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Abstract

It can be the motion of clouds, the movement of a smoke plume, or the dynamics of fluids in
processes which are interesting to food, petroleum, chemical, pharmaceutical and many other in-
dustries; they are all governed by the same physical laws: fluid dynamics and population balances.

Numerical solution of Population Balance Equations (PBE) coupled to Computational Fluid
Dynamics (CFD) is a promising approach to simulate liquid/gas—liquid dispersed flows, for which
the governing physical phenomena are breakup and coalescence of bubbles/droplets, additional to
transport phenomena of fluids.

In the literature, there are many breakup and coalescence models to close the PBE. Unfor-
tunately, there is no unified framework for these closures; and, it is one of our objectives: to
determine appropriate coalescence and breakage kernels for liquid/gas—liquid dispersions.

Another objective is to investigate numerical techniques for one-way coupled CFD and PBE,
and to develop a computational tool. The developed tool is based on the incompressible flow
solver FEATFLOW which is extended with Chien’s Low-Reynolds number k — € turbulence model
and PBE.

The presented implementation ensures strictly conservative treatment of sink and source terms
which is enforced even for geometric discretization of the internal coordinate. The validation
of our implementation which covers a wide range of computational and experimental problems
enables us to proceed into three-dimensional applications as, turbulent flows in a pipe and through
static mixers.

Regarding the studies on static mixers, not only we have obtained numerical results; we have
conducted comprehensive experimental studies in the Sulzer Chemtech Ltd. laboratories (Win-
terthur, Switzerland). The inclusive experimental results has offered a good ground for verifying
the adopted mathematical models and numerical techniques.

The obtained satisfactory results in the studies for one-way coupled CFD and PBE has moti-
vated us to study two-way coupled CFD-PBE models. The so far developed numerical recipe of
which main ingredients are the method of classes, positivity-preserving linearization and the high-
order FEM-AFC with FEATFLOW including the standard k — € solver has been extended to cover
bubble induced turbulence and mixture-model with algebraic slip relation. A smart algorithm is
developed, offering a compromise between the computational cost and the accuracy.

Numerical simulation of air-in-water dispersed phase systems in a flat bubble column which
is, numerically, a very challenging case-study and is experimentally studied by Becker et al. has
been performed with the developed computational tool. The dynamic movement of the bubble
swarm which is observed in the experiments have been successfully simulated.

Keywords: computational fluid dynamics (CFD), population balances, coalescence, breakage,
numerical solution, method of classes, parallel parent daughter classes, simulation, static mixers,
multiphase flows.



“Do not worry about your difficulties in mathematics,
I assure you that mine are greater.”

Albert Einstein
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Introduction

The dispersed two-phase flow is one of the most common flow types observed both in the nature
and in industrial processes. It can be the motion of clouds, the movement of a smoke plume, or the
dynamics of fluids in processes which are interesting to food, petroleum, chemical, pharmaceutical
and many other industries; they are all governed by the same physical laws. Even though the
dispersed phase systemsE] are encountered so often in daily life and in the industrial processes
worth billions of Euros, our understanding of the physical laws governing the dispersed phase
systems is still quite limited; and indeed, it is not due to lack of interest in this research field but
“simply” due to being the physical phenomena highly complex and tangled.

The dispersed phase systems can be categorized into four: solid—liquid (crystallization sys-
tems), solid—gas (smoke/soot dispersion), gas—liquid (aerobic fermentation) and liquid-liquid
(petroleum industry, polymerization) dispersions. Each of these dispersed phase systems is a
distinct problem to be understood and to be solved by the researchers of the corresponding field.
Liquid-liquid and gas—liquid dispersions which are in the scope of this study are such that the
continuous (primary) phase is liquid and the dispersed phase (secondary phase) is either liquid or
gas.

The liquid—liquid and gas-liquid dispersions are commonly used for many diverse purposes in
the following fields:

° water & wastewater treatment: aeration of water, ozonation of water, pH—control and neu-
tralization.
oil & gas refinery in the applications: crude oil blending and crude oil desalting.
food industry in the production of beer, wine, mineral water and soft-drinks.

All these applications serve to different purposes but require the same: a homogeneous mixing
and a narrow size distribution of the dispersed phase. In these fields and many others, two ways to
obtain the required dispersed phase systems are using in-line static mixers and employing bubble
column reactors.

IDispersed phase system refers to the dispersion of two phases in the context of this thesis.
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In cases of static mixer applications or bubble column reactors, our understanding of the phys-
ical phenomena governing the evolution of the dispersed phase in a flow field is very limited;
although, the first studies on this field can be found from the 17 century by Stevin (1605) and
Newton (1687). The question to be answered is a very “simple” one:

How does the dispersed phase evolve in time and space with the
hydrodynamic quantities and physical properties of the phases?

In the case of liquid/gas—liquid dispersions, the governing physical phenomena are bubbl
breakup and coalescence, additional to transport phenomena of fluids. Bubble breakup occurs
due to collisions of the turbulent eddies with bubbles. Moreover, the turbulent eddies which have
larger sizes than the bubbles transport the bubbles in space and cause bubble—bubble collision that
can result in coalescence. These phenomena are mathematically modeled by many different re-
searchers; nevertheless, there is no unified framework of these models, particularly for the breakup
phenomenon.

On the one hand, the evolution of the bubble size distribution is an example of a research field
which involves the population balance modeling; the transport phenomena of fluid is another prob-
lem which has still been studied by many researchers of distinct fields. However, an attempt on
solving the transport problem of the dispersed phase systems requires the solution of the problems
of these distinct research fields.

The transport phenomena discuss three closely related topics: fluid dynamics, heat transfer and
mass transfer. In the transport problem of isothermal immiscible dispersed phase systems, e.g. oil
in water and air in water at constant temperature, where there is negligible mass transfer and no
heat transfer, we are left with Fluid Dynamics. The fluid dynamics is described with the Navier-
Stokes Equations for the fluids which are sufficiently dense to be considered as continuum and
have velocities for which the laws of Newtonian physics are still valid. Navier-Stokes Equations
are a nonlinear set of partial differential equations (PDEs) governing the motion of fluids whose
stress is linearly dependent on pressure and velocity gradients. Since the equations do not possess
general closed-forms solutions, problems of this field are solved by using computational tools;
and, they are primary interest of Computational Fluid Dynamics (CFD).

Population balances may be regarded either as an old subject that has its origin in the Boltz-
mann equation more than a century ago, or as a relatively new one in light of the variety of applica-
tions in which engineers have recently put population balances to use. There is an intensive ongo-
ing research in this field by researchers of many different backgrounds. Applications cover a wide
range of dispersed systems for which the analytical solutions of Population Balance Equations
(PBE) are limited to very specific cases being far from encountered ones in industrial applications.
And, this study will investigate the numerical solution of PBE for gas/liquid-liquid dispersed sys-
tems where no analytical solution is available [2].

In practical applications a single bubble size model, as reported by numerous researchers [34]],
cannot properly describe the interfacial interactions between the phases, and analytical solutions of
the PBE are available just for very few and specific cases. Hence, the use of appropriate numerical
techniques is unavoidable in order to deal with practical problems. There are several numerical
methods satisfying the necessary requirements with respect to robustness and realizability: the
method of moments (MOM) [5]], the quadrature method of moments [6,7], the direct quadrature

2Unless it is explicitly stated, bubble also refers to droplet in the context of this chapter, but not the other way
around. It is needed to adopt this convention due to readability purposes.
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method of moments (DQMM) [8]], parallel parent and daughter classes (PPDC) [9] and the method
of classes (MC) [10,/11]].

The choice of appropriate numerical technique depends on the nature of the problem and the
results which are of interest. If the problem in the scope does not exhibit any spatial variation
and, rather than the size distribution, certain statistical values are interesting, one can immedi-
ately employ a moment based method like PPDC or MOM to solve the PBE. However, if PBE
equations are to be solved for the dispersed phase systems in bubble columns or static mixer ap-
plications, it is not that easy to say which model is more suitable. Where moment based methods
suffer due to the ill-posed product difference algorithm which leads to lack of robustness, class
based methods require much more computational effort. Therefore, evaluating the discretization
techniques and numerical solutions with respect to robustness and computational efficiency is one
of our objectives.

In the literature, there are several noticeable breakup and coalescence models to close the PBE
and these closures are very often named as breakage kernel and coalescence kernel. The two
competing mechanisms finally lead the distribution to a certain dynamic equilibrium at which the
bubbles continuously breakup and coalesce, yet the size distribution of the bubbles remains the
same. Thus, it is important to have compatible kernels for coalescence and breakage. If one of
these kernels is dominant with respect to the other, the achieved equilibrium distribution can be
unrealistic, or the achievement of an equilibrium distribution can be unrealistic. Therefore, the
breakage and coalescence kernels are usually modeled together. Chen and his co-workers stud-
ied the effect of different breakage and coalescence closures and they showed that incompatible
kernels produce poor results [[12]]. Certain experimental and theoretical models for breakage and
coalescence kernels are regarded as milestones for the evolution of population balances in the
framework of gas/liquid-liquid dispersed phase systems and the development of these models is
presented in detail by Jakobsen [|13]].

Most of the present models for coalescence kernels were derived analogously to the kinetic
theory of gases [15H18]]. In kinetic theory of gases, collisions between molecules are consid-
ered while in the process of coalescence, bubble—bubble and bubble—eddy collisions count. Thus,
various coalescence models show similar trends, that is a monotonous increase in the specific co-
alescence rate with increase in the bubble diameter [[19]. The coalescence kernel function adopted
in this work is the one proposed by Lehr et al. [20] which is implemented according to the tech-
nique developed by Buwa and Ranade [[19|] and improved by an additional term to reduce the
coalescence rate for high holdup values of the secondary phase.

In the case of breakup, most of the published studies on bubble breakup are derived from the
theories which are outlined by Hinze [21] and Kolmogorov [22]]. All these models have their
own advantages and weak points which make them dramatically different. Nevertheless, they
have similar phenomenological interpretations: bubble breakage occurs due to turbulent eddies
colliding with the bubble surface. If the energy of the incoming eddy is higher than the surface
energy, deformation of the surface happens, which may result in breakup of a bubble into two
or more daughter bubbles. The colliding eddies that are larger than the bubble result in spatial
transportation. Thus, collisions between bubble and eddies being smaller than or equal in size to
the bubble give rise to breakage.

The main differences among the available breakage kernels are due to their predictions of
daughter size distributions (DSD). Some of the models assume a uniform or a truncated normal
distribution which is centered at the half of the bubble size. In other words these models are based
on the assumption of equal-sized breakage [23/[25,26]]. In contrast, some others presume unequal
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breakup which means a bubble/droplet breaking into a large and a smaller one [16,23]27]. The
developed model by Lehr et al. [[28]] is able to combine the features of these significantly different
breakage closures. Their model is based on the theoretical findings of Luo and Svendsen [27].
The breakage kernel is derived from the frequency of arriving eddies onto the surface of a bubble
and from the probability that collisions lead to breakage. Accordingly, their model predicts an
equal-sized breakage for relatively small bubbles and an unequal-sized breakage for large ones.
In fact, their approach appears even intuitively to be reasonable: large bubbles firstly collide with
large turbulent eddies so that a large and a smaller daughter bubble exist while for small bubbles
equal-sized breakage is easier due to high interfacial forces (large and small are relative to stable
bubble size under given conditions). A comprehensive comparison of the noticeable coalescence
and breakage models is given by Wang et al. [29]]. The comparison shows that the model proposed
by Lehr et al. [20] is generally superior to other available breakup closures which makes it a
suitable candidate for the choice of our breakage kernels.

The breakage and coalescence kernels are the first terms which exhibit the coupling between
PBE and CFD. In the formulation of these kernels, there are variables which has to be obtained
from the numerical solution of flow problems. The kernels require fluid dynamic variables, e.g.,
turbulent kinetic energy, turbulent dissipation rate, etc. When the coupled system of governing
equations is broken down in Chapter 2, all the existing couplings will be analyzed. However,
even if the problem is solved in OD (ideal Stirred Tank Reactor), the variables from computations
of fluid dynamics appear. Therefore, in order to solve the PBE one always needs accurate CFD
results.

The dynamics of multiphase flows has been a very interesting topic to researchers in the field
of CFD for the last several decades and many different methods have been developed. Numer-
ical simulations which assume the dispersed flows to be laminar are not able to produce mesh
independent results. The finer the grid, the more vortices are resolved. That is more typical for
turbulent flows. Turbulence models which are applicable to produce results with an acceptable
accuracy and reasonable computational cost generally originate from the family of two-equation
eddy viscosity models. The most preferred model in this sense is related to the standard or modi-
fied k — € turbulence models which have been implemented in several commercial CFD programs
and in-house codes, including FEATFLOW.

FEATFLOW is an open source, multipurpose CFD software package which was firstly devel-
oped as a part of the FEAT project at the University of Heidelberg in beginning of the 1990s based
on the Fortran77 finite element packages FEAT2D and FEAT3D (see http://www.featflow.de).
FEATFLOW is both a user oriented as well as general purpose subroutine system which uses
the finite element method (FEM) on unstructured (block-structured) quadrilateral (in 2D) and
hexahedral (in 3D) meshes. Multilevel Pressure Schur Complement techniques are employed
to handle pressure—velocity coupling in Navier-Stokes equations. First, the time discretization is
performed with one of available techniques (Forward—Euler, Backward—Euler, Crank—Nicholson
or Fractional-step—8—scheme) then, the spatial discretization is carried out by finite elements with
nonconforming parametric/nonparametric rotated bilinear/trilinear shape functions for velocities
and piecewise constant approximation for the pressure. The resulting linearized discrete systems
of equations are solved with a geometric multigrid solver accelerated by Incomplete Lower Upper
(ILU) factorization technique. Coarse grid problems are treated within preconditioned Richardson
iterative method for which the preconditioners are chosen from Krylov space methods like, conju-
gate gradient (CG) method, the BICGSTAB. FEATFLOW is being developed with new numerical
methods and various applications at TU Dortmund by Turek and his coworkers.
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In most of the present studies which consider the implementation of CFD coupled with PBE,
it is preferred to work with commercial codes like FLUENT [[12},30-32] or CFX [19,[20}28.,33]],
naming just two of the most important CFD software packages. However, a commercial code is not
the only option, and open-source software packages such as FEATFLOW possess the advantages
of higher flexibility and robustness. FEATFLOW has already been extended with many additional
modules such as turbulence model [34], multiphase model [4], subgrid-scale mixing model [35],
and will be extended with population balance models within this study.

In our approach, the transport problem of bubbles is a pure unsteady convection problem
which is particularly difficult to solve and exhibits challenging numerical problems as stabiliza-
tion of convective term with introducing the least possible or no numerical diffusion to solution.
However, when the unresolved subgrid features of the flow are modeled in a Reynolds Aver-
aged Navier-Stokes fashion, the diffusive term consequently appears due to turbulent viscosity.
Then, the problem is not anymore the solution of a hyperbolic equation but it is the solution of a
parabolic PDE describing nonlinear unsteady convection-diffusion-reaction model. The design of
the required computational tools with adequate numerical methods and combining them in order
to solve the resulting system of integro-differential equations is another objective of this study.

Analytical solutions of PBE are limited to very few cases. The solution of PBE for dispersed
phase systems involves an inevitable coupling of PBE and turbulent flow dynamics which can lead
to unreasonable computational cost and many difficulties in numerics if the problem is not tackled
properly. The aim of this thesis is to propose numerical solution strategies to these challenging
problems and develop an efficient and robust computational tool to solve arising coupled system
of integro-differential and differential equations in the framework of gas/liquid-liquid dispersed
phase systems.

In Chapter 2, an overview of governing equations and the couplings will be presented; then,
the possible simplifications are discussed to obtain subproblems which are of use while studying
the solution of coupled PBE-CFD models: (i) ideal stirred tank reactors, OD problem (ii) steady
flow in a channel, 1D problem (iii) one-way coupled PBE-CFD problem, solution of PBE for a
dispersed pipe-flow and on a quasi-steady 3D flow field through a static mixer, (iv) two-way cou-
pled PBE-CFD problem, solution of PBE in the framework of bubble column reactors. Solution
of the first subproblem is presented with a detailed discussion on PBE in Chapter 3; moreover,
this chapter is also focused on to validate and to verify our implementations. Chapter 4 and
Chapter 5 investigate the solution of the one-way coupled ((ii) and (iii)) and the two-way coupled
((iv)) PBE-CFD problems respectively.
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Mathematical Model and Numerics

This chapter presents the governing equations of the dispersed phase system and discusses the
numerical solution of coupled PBE-CFD models. First, we will give an overview to the solution
of our final problem: population balances of gas/liquid-liquid dispersed phase systems in time
and space; then, the subproblems are formulated in order to investigate and discuss the different
aspects of the problem, and to analyze the numerical behavior of the chosen methods for the
different parts. These problems present a guideline to this research; so that, an accurate and
computationally affordable mathematical model can be established, and the required numerical
methods for the solution of the model can be investigated.

2.1. Overview

The research for population balances of dispersed phase systems has focused two initially-distinct
fields: modeling of coalescence and breakup kernels, and CFD studies on the dispersed phase
flows. The solution of coupled models has been studied for the last two decades, thanks to devel-
opment in computer technologies and boosted compute powers [36]. Lo [37]] presented in 1996
the first computational results of coupled PBE-CFD model for bubbly flows; and, there has been
a growing interest in this new field: modeling and numerical studies of dispersed flows within a
coupled PBE-CFD approach. Jakobsen et al. provided a comprehensive review [[13]] of the studies
in this field which covers the studies up to the middle of the last decade, and a more up to date
review is presented by Cheung et al. [38]] covering the last decade as well.

An attempt to understand the population balance of bubbles or droplets in a continuous phase,
requires the solution of the transport problem which is both in the external coordinate and in the
internal coordinate described with the following hyperbolic transport equation whose right hand
side (RHS) is implicitly written for the moment;




CHAPTER 2. Mathematical Model and Numerics
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where f is the number density probability function. Equation (2.1.T]) describes a purely convective
transport in the external coordinate; indeed equation (2.1.T)) holds, if the population balance of the
dispersed phase is subject to laminar flow. However, in the population balance of bubble the
flow regime of interest is often turbulent. Should the turbulence be modeled with one of the two-
equation eddy viscosity model such as standard k£ — € model in a RANS fashion, a diffusive term
appears and the governing equation is not anymore a hyperbolic transport equation but an unsteady
second order PDE which should be solved with the appropriate modeling of the RHS

p)
a—];+ug-Vf—v-lef = B"4+B +C +C. (2.1.2)
T

When the stationary counterparts of this type PDEs are elliptic, as in the case of equation (2.1.2)),
these equations are of parabolic type. Nevertheless, if there is a distinct direction of advection
and if the diffusion is negligibly small in this direction, the steady convection-diffusion-reaction
equation can be rewritten as a hyperbolic transport equation, a detailed discussion is given by
Kuzmin [39]]. The terms on the RHS of equation are source and sink due to bubble coales-
cence and breakup which needs to be modeled with PBE; then, it leads to

d b v
a{“'vf—v':;;vf:/u rB(U,ﬁ)f(f))df)—f(DD)/o o8 (5,0) do
+;/o rc(f)’”_f’)f(N)f(”—fo)—f(D)/o rC(5,0) £(D)dD. (2.1.3)

Finally, we could write down the complete governing equation describing the transport of bubbles,
which is an integro-PDE and needs to be numerically treated very carefully in order to obtain
results with a desired accuracy and in an affordable computational cost. The right hand side of
equation (2.1.3) is the source and sink terms of the transport problem in the external coordinate
due to transport of bubbles in the internal coordinate, e.g. size coordinate. The equation (2.1.3))
involves all the terms which exhibit the coupling between turbulent fluid dynamics and PBE:
velocity field of the dispersed phase (u), turbulent viscosity (vr) and the breakage and coalescence
kernels, denoted with ¢ and r? respectively. These terms require the solution of a turbulent flow
problem and cause the system to be coupled to the Navier-Stokes equations and a turbulence
model. The complete model with all external and internal couplings can be schematically given as

in Figure 2.1]

The presented model is highly nonlinear due to all these couplings sketched in Figure 2.1} On
the other hand, the couplings for lean liquid-liquid dispersions can be much weaker relative to
the ones for gas—liquid dispersions such that the first system exhibits much less nonlinearity than
the later does; based on this fact, the mathematical model and the solution strategies can alter.
Therefore, it is not reasonable having an attempt to solve the complete model before analyzing
the existing couplings in terms of modeling and numerics, and this can be realized by formulating
subproblems.

Unless it is explicitly stated, bubble also refers to droplet in the context of this chapter, but not the other way
around. It is needed to adopt this convention due to readability purposes.
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Navier-Stokes equation
c1 - external coupling
: S 4 <>
momentum equation [«

% » continuity equation
p ¥ ed - internal coupling
u b, u u :velocity
b1 p :pressure
turbulence model multiphase model Vi .:turbulent eddy viscosity
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C3 % S > \C4 Sy, : production rate of
k-2 model k.2 popu|ati0n balance equa‘tion bubble induced turbulence

Figure 2.1: Sketch of the coupling effects inside the complete model.

2.2. Subproblems

The population balance equation for gas—liquid (liquid-liquid) flows, equation (2.1.3)), is a trans-
port equation for the number density probability function, f, of bubbles (droplets). By definition,
f needs to be related to an internal coordinate, what in most of the cases is the volume or size of

bubbles, v. The transport of f can be basically described with two distinct but coupled phenomena:
° the turbulent flow field,

° the population balance of the dispersed phase.
It is possible to analyze the transport problem of f, which is described with equation (2.1.3)) and
schematically explained in Figure[2.T] with several assumptions such that the phenomena are not
any more associated and the problem is divided into subproblems:

i) OD problem: ideal stirred tank reactor (STR),

ii) 1D problem: solution of PBE with a steady flow in a channel,
iii) 3D problem: solution of PBE with a quasi-steady 3D flow field.
The solution of each set of governing equations describing our coupled model will involve some
uncertainties and errors in the results due to the adopted closures of the mathematical model and
employed numerical techniques. Studying these subproblems provides a basis where we can an-
alyze the solution of each possibly decoupled model, i.e. solution of the turbulent flow dynamics
and solution of the population balances, so that the external and internal couplings in Figure 2.1]
are analyzed and the appropriate modeling approaches and numerical methods are determined for
the solution of our final problem:

Solution of PBE for gas—liquid dispersed systems in the framework
of bubble column reactors.

The first subproblem, namely OD problem, is our “play ground” to study the solution of PBEs
for ideal STR. In the ideal STR, the dispersed phase system is homogeneously stirred and the
dispersion does not exhibit any spatial variation; therefore, the transport problem in the external
coordinate, i.e. the equations regarding the external couplings C6 and C7, and the solution of
multiphase model concerning the internal coupling C4 (Figure [2.1) is not necessary; only, the
solution of PBE is required to obtain the evolution of the size distribution of the secondary phase.
So, the transport equation of f reduces to

47 /oorB(D,f))f(f))df)—f(s/OnﬁrB(f),u)dﬁ

=L = )
dt
+% /O (9,0 =) f(D) f(v—D)dD— f(v) /O rC(5,0)f(D)dd. (2.2.1)
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This subproblem offers advantages of studying the numerical methods related to only PBE and the
closures of the PBE (the coalescence and breakage kernels) independent of the fluid dynamics.

The numerical methods which have been developed for the solution of PBE are initially stud-
ied independent of the external transport problem; the solution of PBE with the transport in the
external coordinate is the later step which is firstly achieved by Lo in 1996 [36].

Lo adopted a class based method for the discretization of PBE and called it MUSIG (Multi Size
Group) model [37], the class based method was originally developed for the solution of PBE in
OD. Therefore, first we will study the discretization of PBE (2.2.T)) in time and internal coordinate
with several hypothetical and physical closures of PBE.

There is no benchmark or validation study (up to the author’s knowledge) to test the solution of
PBE with physical kernels for a full 3D problem which we desire to accomplish. Therefore, after
determining the appropriate numerical methods and closures of PBE, we need to test the employed
methods, e.g. time discretization schemes, stabilization scheme; without any additional uncertain-
ties associated to turbulent flow dynamics. Consequently, a one-dimensional model problem in
3D is formulated based on the assumptions:

° u is known, constant in space and time, and aligned with one of the coordinate axes (say, x);
there is no diffusion;
the kernels are either independent of turbulent variables, or they are known and have the
same value in the whole computational domain;

° cases with pure coalescence or breakage exist.

Then, an unsteady formulation of this problem is described with the following nonlinear hyper-
bolic transport equation,

a ) )
a{—i—wVf:/D rB(n,f))f(f))df)—f(UU)/o o (9,0)db

1 *

+ 2/ (0,0 —0) f(D) f(v—T)dd —f(l))/ rC(D,0)f(D)db. (2.2.2)
0 0

Furthermore, one can immediately see that based on the first assumption the steady version of

equation (2.2.2) is analogous to equation (2.2.1), as it is done in the study by Silva et al. [40]. So

that, equation (2.2.2) can be rewritten:

il =~ [ rwos@a-LY [T
1 V

+2/0 rc(f)ﬂ)—f))f(ﬁ)f(‘)_ﬁ)dﬁ_f(n)/o rC(0,0)f(D)db. (2.2.3)

Equation (2.2.3)) says that time dependent OD-PBE and constant velocity 1D-PBE are equal. So
that, for the cases which have an analytical solution of PBE, the accuracy of the employed numer-
ical schemes to discretize the convective terms can be studied. And with the last assumption, it is
possible to see how accurately the coalescence and breakage integrals are calculated being inde-
pendent of each other. Once the implementation of the employed kernels and numerical schemes
is validated and verified by comparing the obtained results against the analytical solutions and
the available results in the literature, we are ready to progress to the solution of PBE coupled to
turbulent fluid dynamics.

The computational tools which are developed for the numerical simulation of multiphase prob-
lem require extreme computational costs and stability problems arise due to external couplings:
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C5, C6 and C7 (see Figure[2.1). These couplings are very strong and exhibit nonlinearities which
cause stability problems during numerical computations. Furthermore, employing inappropriate
numerical schemes results in numerical instabilities. Then, instead of tackling the complete prob-
lem being described with the model in Figure 2.1} we formulate a simplified mathematical model
describing the evolution of liquid-liquid dispersions in turbulent flows with the following assump-
tions:

° Physical properties as the viscosity and the density of the primary- and the secondary-phase
are similar.
° A quasi-stationary solution of turbulent flow field exists.

The first assumption says that the momentum exchange between the phases is negligible and
the phases share the same momentum field so that the problem is reduced to single phase problem
from the point of the Navier-Stokes equations and the turbulence model, i.e. fluid dynamics part.
That is to say, the C7 external coupling and the C4 internal coupling are canceled so these models
are called as one-way coupled PBE-CFD models.

One-way coupled PBE-CFD models offer the advantage of analyzing solutions of the PBE
for both steady and unsteady flow fields. Since we assumed that the population balance of the
dispersed phase has no influence on the fluid dynamics, the PBE are decoupled from the equations
of the fluid dynamics; additionally with the second assumption, we are left with the solution of
equation (2.1.3) for a given velocity field which is a stationary result of CFD simulationsE]

The numerical simulation of the oil-water dispersion is a comprehensive case to exploit the
one-way coupled PBE-CFD model; and, this is achieved by numerically and experimentally study-
ing the oil-in-water dispersed flows through a static mixer. Nevertheless, first we studied dispersed
phase flows in a pipe with hypothetical immiscible liquids whose physical properties are identical
to the water. The reason to study turbulent pipe flow is: The accurate steady state result of nu-
merical simulation is available for certain Reynolds number flows [34,/41]]. This ensured us that
the results involve the possible least error due to the computation of flow field variables; since
there was no available experimental or numerical result to compare results of PBE computations
for the pipe flow, we numerically and experimentally studied flow through a static mixer with the
oil-in-water dispersion of which the density and the viscosity can be assumed to be the same with
the water for low holdup values of the secondary phase. With the last case study, it was possible
to verify the implemented model and the accordingly developed computational tool.

2.3. Two-way coupled PBE-CFD problems

The last problem to be solved is the dispersed phase flow in bubble columns which is the two-way
coupled PBE-CFD problem in this study. The solution requires a clever modeling of the mul-
tiphase flow such that the model is comprehensive yet does not lead to excessive computational
costs. There are several approaches for modeling of bubbly flows, varying from single-fluid mod-
els with a constant gas phase velocity approach to multi-fluid models with PBE, in other words,
varying from the most simplified and the least computationally expensive one to the least simpli-
fied and the most computationally expensive. The idea is to determine a model which describes
the physical phenomena sufficiently accurate and does not lead to excessive computational costs.

Bubbles can have significantly different sizes in bubble column reactors which change by time

2Turbulent flows never reach a physical steady-state; however, due to the RANS modeling it is possible to obtain
steady numerical solutions for turbulent flows, which corresponds to time averaged quasi-stationary flow.

11



CHAPTER 2. Mathematical Model and Numerics

and in space due to the coalescence and the breakage, i.e. bubbles exhibit a dynamic population-
distribution in the internal coordinate; and, bubble sizes have a certain influence on the flow which
can not be neglected. Therefore, PBE must be considered in the modeling of the bubbly flows,
especially for bubble column reactors. On the other hand, including PBE in the mathematical
model requires to model the turbulent fluid dynamics within the multi-fluid approach. Suitable
ones are the two-fluid model or the multi-fluid model, depending on the discretization of PBE and
how the external coupling C7 is considered; this point is very crucial regarding the computational
effort for solving the developed model.

Independent of which multi-phase model (two-fluid or multi-fluid) is adopted, another diffi-
culty is to decide on the proper modeling of the inter-phase forces which govern the key phe-
nomenon: momentum exchange of the phases. The influential forces are generally considered to
be: drag force (fp), lift force (f1.) and virtual mass force (fyvn). There is no unified formulation
of the last two, and most of the available mathematical descriptions of these forces have some
empirical/free parameters which are determined by data fitting or for specific studied cases in light
of the experimental results.

The only inter-phase force having a widely accepted definition is the drag force which is un-
fortunately still open due to the drag coefficient (Cp) having many drastically different definitions.
The definition of the drag coefficient can be given as a constant function or an intricate function
of Reynolds number, it is the most accurately modeled one; and, there are researchers who prefer
to include only the drag force in their model (please, refer to Chapter 5).

The two-way coupled PBE-CFD model with which we describe the behavior of the dispersed
phase system in our problem involves (i) Navier-Stokes equations, (ii) an extended k — € turbulence
model, (iii) algebraic slip model, (iv) drift-flux model: a simplified two-fluid model, (v) population
balance model. In Chapter 5] while we are developing our model by coupling the listed models,
we discuss in detail which assumptions are done, which inter-phase forces are considered, and
how the nonlinearities are treated. Thus, we aim to have a model describing the dispersed phase
system in our problem which is sufficiently accurate and does not require extreme computational
effort if the problem is tackled within appropriate numerical approaches.
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Population Balance Equation

Population balances are concerned with the “particlesﬂ dispersed in a continuous phase. The
particles are represented with the particle state vector whose components are properties of particles
described with continuous and discrete variables. The particle state vector lies in the particle
phase space which is spanned by the internal coordinates (e = [ey,...,e,] € R” ) and the external
coordinates (x = [x;,x2,x3]7 € Q C R? and time, 1 = [0, 2finat]), so to identify a particle with only
a point in this phase space, i.e. the position of the particle in physical space at a certain time with
its characteristics.

Discrete variables of the particle state vector are the discrete characteristics of the particle,
e.g., color, density, hardness, surface charge, which are mostly related to the material property of
the particles. However, the evolution of the dispersed phase system in time continuously varies
and considers the rate of change of particle state variables. Therefore, continuous variables are
mostly of interest while analyzing the population balances. Continuous variables can be size,
mass, surface area, age, coordinates of point-like particles (external coordinate), etc. Whether the
variables of the particle state vector are continuous or discrete, they are always the direct variables
of the primary interest. In case of bacterial growth (thinking out of the context), the age of the
particles is not a direct interest; nevertheless, it is not possible to have a complete particle state
vector without including the age variable. The growth of population is directly related to the age
variable. Therefore, the variables of the state vector, either continuous or discrete, strongly depend
on the applications. For a more detailed discussion on the particle state vector, the internal and
external coordinates, and the discrete and continuous variables of the particle state vector, the
reader is referred to the cited studies [2,/5,43]].

In this chapter, we study the population balances of dispersed phase system (gas/liquid—-liquid)
in the framework of ideal stirred tanks, namely our OD problem. We will have two main aspects
to the solution of the PBE: (i) discretization of PBE, (ii) closures of PBE.

I«Particles" refer to the secondary phase, e.g., bacteria, crystals, polymers, glass beads, bubbles, droplets.
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First, regarding the discretization of Equation (2.2.1)),

dr v
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it is discussed with a review of available numerical techniques in the literature, and the semi-
discrete formulation of Equation will be presented for the chosen numerical techniques:
method of classes and parallel parent daughter classes. First, the semi-discretized equations are
rewritten in-terms of holdup (o) as the internal coordinate, additional to the formulation with
volume (v); and, the equations are discretized in time with classical one-step 6-schemes. Later,
we study the closures of PBE, the studies on coalescence and breakage kernels are reviewed and
three physical breakage kernels and one coalescence kernel in addition to hypothetical kernels
(sum coalescence and erosion) are analyzed.

After the PBE are discretized and closed, 0D problems are solved as numerical tests. We study
the influence of time step size and the time-stepping techniques: 6 = 1 for the Backward Euler-,
0 = 0.5 for the Crank-Nicolson- and 8 = 0 for the Forward Euler-scheme. Then, the convergence
behavior of different coalescence and breakage kernels are compared with respect to time step
size and discretization in the internal coordinate. Finally, in order to verify our implementation the
numerical results will be compared with the experimental results. Consequently, we determine the
discretization technique and the closures of PBE with which we adopt to solve coupled PBE-CFD
problems.

3.1. Numerical solution of the population balance equations

Analytical solutions of PBE are available in very few cases, only depending on the closures and the
initial size distributions. The existence of these solutions is discussed in detail by Ramkrishna [2].
The presented idea is to recast PBE such that an equivalent formulation to Fredholm or Volterra
integral equations of second kind is obtained which are commonly studied in the mathematical
textbooks. In Section we present a case having an analytical solution which was obtained
by McCoy and Madras [42]]; however, here we consider the solution of PBE in cases for which
analytical solutions are not available, and we need numerical techniques to discretize PBE in
order to obtain the desired solution. In the context of this chapter, the population balances of
dispersed phase systems are described with equation (2.2.1]), and the discretization of this equation
is achieved in the internal coordinate and in time.

3.1.1. Discretization in the internal coordinate

The internal coordinates help us to distinguish individuals of the secondary phase, e.g., droplets,
bubbles, with respect to properties of interest. Internal coordinates can be dependent as in the case
of the size and the volume of spherical droplets — in case of the constant density even the mass —,
all these internal coordinates are related; if one of these variables is given in the physical state, it
is sufficient to identify the other properties.

The choice of variables defining the internal coordinate strongly depends on the application
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and is a restriction on numerical techniques which can be employed. In the choice of the dis-
cretization technique, it is important (i) which dynamics of the population appears, e.g., coales-
cence, breakage, nucleation, growth, (ii) which properties of interest are given in the particle state
vector.

Let us slightly digress to give a clear picture about these two criteria and consider the PBE of
a crystallization process. In the crystallization process, the key dynamics of the population to be
modeled is the growth: once the concentration of the crystal molecule is above a threshold value
(saturation concentration), crystals nucleate and grow. This phenomenon is added to population
balance models as a convection in the internal coordinate (size coordinate). Then, for ideal STR,
the governing equation is not anymore equation (2.2.T)) but it is a one-dimensional, in internal
coordinate, integro-partial-differential equation of the hyperbolic type. And the arising convective
term due to the growth requires special care while being discretized. So, a low order method which
fits to the purpose of discretization of governing equation for bubble dynamics will be a poor
choice for the solution of mathematical models describing the crystallization process. Moreover,
if one wants to model the population dynamics of the crystallization process with more than one
property, an appropriate discretization technique for multivariate PBE has to be employed. It is
worth to mention here that in the study of bubble dynamics for ideal stirred tanks (reactors), the
interesting characteristics of the secondary phase are diameter, surface area, volume and mass;
however, all these variables are related to each other since bubbles are assumed to be spherical,
and it is sufficient to identify the secondary phase with one of them. Through this thesis, we will
interchangeably adopt the diameter and the volume as the internal coordinate, depending on the
convenience. Therefore in the governing equation (2.2.1)) we have only one internal coordinate
which needs to be discretized.

The discretization methods can be first categorized with respect to the PBE: multivariate PBE
and one-dimensional PBE. When multivariate population balance equations are considered, there
is no single numerical method which applies to all. The number density distribution of the sec-
ondary phase is described with more than one variable as age, volume, size, concentration. In
(wet) granulation, a particle may be identified with the properties: individual masses of binder,
active material, particle size, porosity of granules. For instance, a three-dimensional population
balance model of granulation with wetting, nucleation, aggregation and consolidation phenom-
ena is given by Poon et al. [44]]. In their study, the three internal coordinates are chosen as the
solid volume, liquid volume and gas volume of the granules. Or, in liquid—liquid extraction, a
drop is identified with its volume and concentration of solutes within this volume, which leads
to a bivariate population balance model, some of the bivariate population balance models can
be listed as Boltzmann Equation, granulation by Marshall Jr. et al. [45]], sintering by Fox [46]
and microbial production of chemicals by Roussos and Kiparissides [47] and anisotropic crystal
growth by Briesen [48]. The list can be extended with more studies on modeling of PBE in the
bivariate [50-54]] and multivariate [S5H59] fashions; and they all need to be solved with appropri-
ate numerical methods, e.g., X-discretization by Chauhan et al. [|60|], bivariate direct quadrature
method of moments by Fox [46], a Monte Carlo method by Braumann [58]], extended sectional
grid technique by Alexopoulos et al. [61]], bivariate extension of the Quadrature Method of Mo-
ments by Wright et al. [62], Galerkin FEM based discretization by Alexopoulos et al. [63]], fast
Monte Carlo methods by Irizarry [65}|66]], a new framework by Chakraborty and Kumar such
that by requiring n + 1 property of population instead of 2" the use of triangles (bivariate) and
tetrahedral (multivariate) is possible for discretization [[67]], or a dimension reduction approach by
Heineken et al. [68]]. Among all these studies and more, the study which focuses on multivariate
population balance modeling of bubbly flows by Buffo et al. (2012) [49]] is very interesting in the
aspect of presenting an outlook for this study.
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In this study by Buffo et al. [49], the dynamics of bubbly flows in STR is modeled within an
approach of multidimensional population balance model coupled to CFD. Within their approach,
they were able to describe the interactions between the continuous liquid phase and the gas bub-
bles, as well as the interactions among different gas bubbles: the coalescence and break-up phe-
nomena. The internal coordinates chosen as, the bubble velocity, the size, and the composition of
bubbles. In order to solve this multivariate PBE they suggest a numerical technique based on the
direct quadrature method of moments. Although, the studied problem can be formulated within
one-dimensional PBE fashion, as it has been achieved in this study, it can be interesting to adopt
their approach to solve the problem and compare the results of these two different methodologies.

When the discretization of one-dimensional PBE is considered, one has to firstly account
whether the growth term, i.e. convection in the internal coordinate, arises in the governing equa-
tion or does not. The arising difficulties due to the growth term have been already mentioned
when the crystallization process has been discussed. Most of the methods providing sufficient
accuracy for the numerical solution of population balance models with the breakage and coales-
cence phenomena will not be accurate enough to solve the models with the growth term. John
et al. presented a comprehensive study [69] in which only the nucleation and growth terms are
considered in the model, appropriate numerical techniques based on the finite element method
are presented to solve the PBE coupled to the Navier-Stokes equations, and they conduct detailed
numerical experiments for the validation. This study is another one which presents us a possible
direction for further research: Extending our model with the growth and nucleation terms and
adopting numerical techniques presented in the study [[69] to handle the arising terms so to obtain
the numerical solution of a population balance model which involves nucleation, growth, breakage
and coalescence.

The approaches to solve one-dimensional PBE can be categorized into three: (i) The distri-
bution function is approximated by dividing into finite number of bins and employing polynomi-
als of certain order(s), (ii) PBE is averaged according to one internal coordinate, (iii) simulation
techniques designed to artificially realize the system behavior through the generation of random
numbers used for the identification of the probability functions governing the system behavior [2].
Each approach leads to a family of methods; the first approach leads us to methods based on
classes, the second points to method of moments and the last one is concerned with the stochastic
methods.

Stochastic methods, i.e. Monte Carlo method and its variations, are preferred mostly due to its
ability to deal with multivariate and one-dimensional PBE in a relatively less complicated manner,
and the numerical solution of the PBE, especially multivariate, gets computationally expensive
when these methods are preferred. Stochastic methods are based on the assumption that dynamics
of a population (e.g. 10!? particles) can be simulated with a representative population which has
a much smaller number of particles (e.g. 109) [70]. These methods can realistically describe the
behavior of the population by tracking representative particles which undergo randomly selected
events which are nothing else but coalescence and breakup phenomena observed in the real system.
The drawback of these methods is: The accuracy of the method strongly depends on the number
of particles in the representative population, the greater the number of particles, the more accurate
the results will be, on an exponentially increasing computational cost.

Stochastic methods are used to simulate various processes. Firstly, Spielman and Leven-
spiel [72]] used to simulate progress of reactions occurring in the dispersed phase of two-phase
systems in backmix reactors; then, in 1981 Ramkrishna [[73]] provided a comprehensive mathe-
matical background of the stochastic simulation methods and population balance equations. After
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this study, a great interest developed in using and improving the stochastic methods to solve PBE.
A review of stochastic methods is given in the study by Meimaroglou et al. [70], they compare
Monte Carlo and the generalized method of moments. Recently, stochastic methods are used to
simulate PBE in a batch stirred tank by Goodson and Kraft [74]], nano-particle processes by Zucca
et al. [[75]] and aerosol modeling by Kruis et al. [76]. The last study is one of the very first steps to
combining Monte-Carlo based PBE modeling with a CFD model. Nevertheless, considering the
required number of representative particles to obtain sufficiently accurate results and the state of
art computer technology, it can be concluded that these methods are not yet ready to be fully cou-
pled with CFD for the simulation of coalescence and breakage dominant systems, i.e. simulation
of bubbly flows [49].

In the following paragraphs, the review of class based and moment based methods is given
with a detailed description of the method of classes with a fixed pivot technique and method of
parallel parent daughter classes,

The Method of Classes

The method of classes is the most widely used numerical method from the family of sectional
methods. In the context of this thesis, class based methods are used to define the methods which
discretize the population balance equations in the internal coordinate, e.g., size, area, volume,
mass. Considering “class” as a discrete size range we can define “higher order methods” or “zero
order methods” as methods which approximate the continuous particle size distribution with a
set of linearly independent functions of high order or zero-order, respectively [77]. High order
schemes are mostly preferred for the numerical solution of models describing processes like crys-
tallization (John et al. [69]], Wulkow et al. [89]]) where the convection in the internal coordinate
should be taken into account. Whereas low order methods are mostly preferred to simulate pro-
cesses which are driven with the breakage and the coalescence, even though they have a tendency
to overestimate the resulting particle size distribution.

Sectional methods are developed on the idea which was first suggested by Bleck in 1970
[78] and later by Gelbard and Seinfeld [79]. The population of rain droplets for a finite range is
considered to be constant via the use of mean field approximation on the number density [78]];
then, the PBE could be written as a set of ordinary differential equations with double integrals
which are costly to calculate, and these are considered as the drawback of this method. Later,
Hounslow et al. [80] proposed a new discretization technique with the geometrically increasing
class width (interval) (v; = 2v;_) which avoids the calculation of double integrals and ensures
the mass conservation and the total number of particles being tracked correctly. In the mean time
Gelbard and Seinfeld (1978) [[79]] presented the solution of PBE for droplet coalescence in an ideal
stirred tank by employing cubic polynomials on finite elements, as the first study with high order
methods. Nevertheless, their method also suffered from the excessive computational load due to
the computation of multiple integrals, particularly when the coalescence and breakage kernels also
involve integral terms in their formulations. Moreover, the integrands could exhibit singularities
causing other difficulties [81]].

Hounslow et al. contributed with a major advancement to the numerical solution of the PBE
in their study [80]. They were mostly influenced by the study of Batterham et al. [[82]]. Batterham
et al. described the process of coalescence with a system of discretized equations in the internal
coordinate. Volume was chosen as the internal coordinate and the discretization is firstly achieved
with equidistant intervals, i.e. V;+] —V; = V; — V;—1, within this approach it was not feasible to
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account for particles with size differences in the order of magnitudes; therefore, the numerical
solutions was not providing the satisfactory resolution in the internal coordinate. Then, they intro-
duced the discretization of the internal coordinate such that the notional particle volumes were in
a geometric series (U{)—t' = 2). Nevertheless, particles appearing as a result of coalescence whose
volume do not coincide with the values in the series can not be represented with conserving both
particle number and particle volume.

Hounslow et al. took over the work from where Batterham et al. had left and proposed a
piecewise constant approximation of the particle size distribution over a discretized size domain
of which the values follow the geometric series introduced by Batterham et al. Hounslow et al.
studied the nucleation, growth and aggregation of calcium oxalate monohydrate crystals (kidney
stones). By considering the finite intervals, they were able to simulate the aggregation process in a
way that unless two parent particles had the same size, the daughter particle always appears in the
size interval of the larger particle and in case of the aggregation of two equal sized parent particles,
the daughter particle appears in the next interval. However, due this consideration, the method
was able to correctly account only for the changes in particle number but could not conserve the
mass. Therefore, a correction factor independent of the kernel was incorporated to the method
by enforcing the mass conservation. With respect to how the discrete particle size distribution
described, Figure their method is the closest to the technique of Kumar and Ramkrishna [83]]:
the method of classes.
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Figure 3.1: Discrete size distributions with length (L) or volume (v) as internal coordinate (Source:
Hounslow et al. [80]).

In 1994, Kostoglou and Karabelas had published their study [85]] which was about compar-
ing the different numerical techniques for solving PBE. They studied the methods by Batterham et
al. [82]], Marchal et al. [86]], Gelbard et al. [[87]] and Hounslow et al [80]. The methods are evaluated
according to their accuracy and performance by comparing the numerical solutions with analyt-
ical solutions for a constant coalescence rate and a sum of arguments coalescence kernel. They
concluded that due to the best computational performance additional to conserving both mass and
particle number, the method proposed by Hounslow et al. was superior to others [85].

Parallel to the development of the zero-order methods, high-order methods were introduced
as an alternative approach. One of the very first studies was presented by Gelbard and Seinfeld in
1978 [[79]. They suggested a finite element approach for the discretization of PBE involving the
orthogonal collocation methods and cubic polynomials. Later, Nicmanis and Hounslow [88]] had
an hybrid approach, they combined Galerkin finite element approach with the method suggested
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by Gelbard and Seinfeld: the mixed Galerkin and the orthogonal collocation method. Wulkow et
al. [89]] had a Galerkin finite element approach with h- and p-adaptivity. One of the recent studies
is by John et al. [[69], they studied the numerical simulation of crystallization process with one-
dimensional PBE in 2D space. A high order upwind finite difference method was used to discretize
the particle size distribution. The main drawback of the high-order methods is: They require
high computational effort due to arising multiple integral terms, especially when the coalescence
and breakage kernels involve additional integral expressions in their formulations; although, high-
order discretization is not a “must” for these terms but the growth term. Another major difficulty is
to decouple the coalescence and the breakage from the variables depending on time [77]]; however,
Mahoney and Ramkrishna suggested a remedy for this complication within Galerkin’s method on
finite elements in their study [81]]. If it is considered that the difficulties in high-order methods arise
due to the breakage and coalescence terms and actually these methods are of use to have a stable
scheme for the growth term, it can be concluded that for the solution of PBE involving only the
coalescence and breakage terms, high-order methods are not more preferable. For OD problems,
e.g., problem in the study by Wulkow et al. [89]], finite elements with h- and p- adaptivity can be
considered as an ultimate solution when they are combined with high order stabilization schemes.
In problems of the same type exhibiting variation in space, h-adaptivity will be cumbersome, if it
is possible at all. Consequently, the numerical solution of PBE for problems of this type is still
opened and deserves attention of researchers.

Kumar and Ramkrishna presented their method, the method of classes [83,(84], which was a
breakthrough in the numerical solution of PBE, appeared with a novel concept: internal consis-
tency. The discrete counterpart of PBE can be reformulated in terms of any moment (property)
of the size distribution, and the internal consistency of the employed numerical technique requires
that the scheme is conservative for this (these) moment (moments) even if a coarse grid is em-
ployed. Kumar and Ramkrishna had firstly suggested the fixed pivot approach [83]] with which it
was possible to conserve only one moment value; shortly later, they published the moving point
approach [|84]] which was able to conserve desired two properties of the size distribution.

The motivation of Kumar and Ramkrishna was: Unless the internal coordinate was linearly
discretized, it was not possible to obtain a grid where all daughter particles coincided with a pivot
(representative value of the property on the grid). The main idea of their study reads: When a
daughter particle is formed (after the breakage or the coalescence), the daughter particle is as-
signed to the class whose lower (upper) limit is smaller (larger) than the value of the particle’s
property and represented by the fixed pivot value, this way it was possible to conserve only one
property, e.g., volume, size, number density. With the successor, they were able to conserve two
desired properties. If these two properties are taken as volume and number (as it is generally done),
the total volume of the remaining parent particles and the appearing daughter particles in the cer-
tain class are correctly tracked and the pivot is dynamically adjusted according to these values.
This method arose as a remedy to the problem: the fixed pivot approach leads to over-predicted
size distributions when it was used on coarse grid and the particle size distribution exhibits steep
changes. With the moving pivot approach, they overcome this difficulty such that the pivot moves
towards the lower (upper) limit of the class when the number density is sharply decreasing (in-
creasing) and to the center when the change is less steep. They achieved this by solving two sets
of equations which describe the conservation of the related properties. This method definitely in-
creased the accuracy by doubling the computational cost; moreover, the realization of the method
of classes within moving pivot approach gets very tedious and much more expensive than the first
when dispersions with spatial variation are considered [[77].

The method of classes was embraced by researchers and was employed to obtain the numerical
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solution of the PBE describing many different processes; additionally, numerous studies were
done to improve this method. Vanni studied the numerical solution of the PBE for “aggregation-
fragmentation” (coalescence-breakage) by adopting 7 different discretization methods of which
one was the method of classes with the fixed pivot approach. The others were the methods by
Vanni [90], Batterham [82]], Hounslow et al. [[80], Marchal et al. [[86]], Lister et al. [91]], and Gelbard
and Seinfeld [79]. They studied several hypothetical closures (coalescence and breakage kernels)
and compared the methods with respect to accuracy, efficiency and robustness. Vanni concluded
that the methods developed by Kumar and Ramkrishna, and Gelbard and Seinfeld were superior at
all. The comparison criteria and the differences between these two model is presented as: “They
are capable of predicting accurately the PSD, the average values and the corresponding uncertainty
even in the most ill-conditioned situations. While the implementation of the method by Gelbard
is complex and time-consuming, the method by Kumar and Ramkrishna is rather simple” [92].
Consequently, Vanni suggested to employ the method of classes for the numerical solution of
general case of coalescence-breakage problems.

Lee et al. [25]] studied the numerical simulation of the crystallization process with a combined
discretization method: The method of characteristics is combined with the method of classes with
a mesh adaptation; Puel et al. [93]] use the method of classes to numerically study a bi-modal pop-
ulation balance model describing the crystallization processes; Attarakih et al. also studied PBE
with more than one internal coordinate by extending the method of classes for describing the flow
dynamics of liquid-liquid extraction contactors [94-96]]. Bove et al. suggested a “non-standard
method of classes”, parallel parent daughter classes, and used this method for numerical simu-
lations of bubble columns [9,97]]. Alopaeus and his coworkers contributed remarkable studies,
several of which were based on the method of classes as well [98H100]], he mostly studied liquid-
liquid dispersions in nonideal stirred tanks. Bannari et al. [101]] and Selma et al. [[102]] adopted the
method of classes to study the numerical solution of the PBE in the framework of bubble columns.
Among these and other available studies, the study of Bove et al. is very interesting, according to
us it is a hybrid method of the method of class and the quadrature method of moments, perhaps it
is possible to agree with the authors that the method is a “non-standard method of classes” with
the description in their study; nevertheless, we will suggest a novel implementation approach so
that it shall be considered as a moment based method. Therefore, we analyze this method in more
detail in the related section.

Implementation of the method of classes

The discretization of the population balance equation is carried out by the method of classes
with the fixed pivot approach (with piecewise constant approximation functions). The fixed pivot
volume of the classes is initialized by specifying the particle volume of the smallest “resolved"
class Ly and the discretization factor g, such that

Vi =Vming' | with i=1,2,..n (3.1.1)

where 7 is the number of classes. The class width Av; is defined by the difference of the upper vY
and lower vF limits of the given class i:

Av; =Y —f

Fowith oW =vk, and WY, =0k (3.1.2)

The limits are fixed and initialized such that in the case of ¢ = 2 the pivot volume v; is centered in

the class

1
VO =it (Vi1 =), o

l l

2
:Di_§<0i_ui—1)- (3.1.3)
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3.1. Numerical solution of the population balance equations

Following equation (3.1.3)), the discrete internal coordinate can be sketched as in Figure [3.2]

. . V.
i-1 i i+1
0T Wk
i-1 i i i+1

Figure 3.2: Discrete internal coordinate with MC.

The discretized PBE (2.2.1) of the i-th class’ number density probability, f; (i, j and k are class
indices), results in
ofi v~ B fi ¢ /B I & o - C
= = Y P fiav; — o 2 0jr5A + 5 N 15 fifilkoj = fi ) A,
=i j=1 j=1 j=1
for i=1,2,..n. (3.14)

The choice of fixed pivot volumes and fixed class widths with piecewise constant approximation
functions offers the advantage of expressing the discretized transport equation (3.1.4) in terms of

class holdups o; instead of the number probability density, f; = ;- with the following definition
of the number density and the holdup of particles having a volume between v, and vy,
Vp Vp
Nup —/ fdv, dg —/ fodv. (3.1.5)
Vg Vg

Doing so enforces only mass conservation, and the bubble number density is not conservative.
Regarding the arising inconsistency we subscribe to the argument of Buwa and Ranade [19]], who
reported that the difference in the predicted values of interfacial area and Sauter mean bubble
diameter obtained with only mass conservation and obtained with mass and bubble number con-
servation was less than 1%. Multiplying equation with v;Av; results in conservative source
and sink terms, since the overall gas-holdup can not be changed due to coalescence or breakup pro-
cedureﬂ Additionally, any sink (source) term of a given rate associated to a particular breakup
or coalescence procedure induces a source (sink) term with the same rate but in a different class.
This enables us to assemble only the sink terms while the same contribution is applied to the
corresponding source term in the resulting class.

For instance, let us consider a breakup of particles of class i into particles of classes j and k.
Such a procedure, obeying to equations (3.1.4) and (3.1.5)), leads to the following sink in the i’th
class and the sources in the j’th and k’th classes with a zero net flux:

i (ortaod Josor — (orfiau Jodo = e o
j: + (ot vido; = it

k: + (DkrfkfiAui) Vi AYE = e

: -0

where v = v; —v;. However, if we consider the coalescence of particles of the j’th and the k’th
class to form particles of the i’th class, to show the conservation of void fraction is a little bit more
tricky. The losses in the j’th and &’th classes due to coalescence with each other are as follows:

j . (fjrjc-:kka‘Dk) ‘l)jA‘l)j = —er-:k(Xjka‘l)k
ki = (i 05 ) ooy = 1 Jau [,

2Note that we assume incompressible conditions for bubbles.

21



CHAPTER 3. Population Balance Equation

The gain in the i’th class due to coalescence of the k’th and j’th classes is:

i L (S + i) v

If we assume that the discretization is equidistant, that means Av; = Av; = Avy, and recalling that
V; = V; +Vy then the following relation is obtained

1. ¢ C C c

3 (P fifieth0 4 1 i fifiAOK) (0 4 01) Av; = 1§ o frhog + 1y 04 fAV;;

which shows that the sink and source terms of coalescence are also conservative in terms of void
fraction.

In this study, geometric grids (for the internal coordinate) with varying discretization constants
are employed. Therefore, instead of calculating individual sink and source terms due to coales-
cence, only sink terms for each possible pair of classes are calculated and their sum is added to
the resultant bubble class. Accordingly, conservation of mass is enforced from the point of view
of coalescence, too.

The above explained implementation strategy of the method of classes does not only enforce
the mass conservation but also leads to an efficient computational tool. The coalescence and
breakage kernels, 7(v;,v;) and 8(v;,v;), which can be now described as functions of internal
coordinate with fixed pivot volumes, turn out to be constant in time since the pivots are fixed to a
certain volume. Therefore, they are calculated and stored at the beginning of the computation and
used for the rest. Moreover, since neither breakage nor coalescence necessarily result in the parti-
cle volume which coincides with the fixed pivot sizes, a search algorithm has to be implemented
to assign the resulting particles after the coalescence and breakage phenomena to the correspond-
ing classes. And, this was also realized as it was done for the calculation of the kernels: At the
beginning of computation, coalescence and breakage maps are initialized such that the daughter
k’th class as a result of coalescence of i’th and j’th classes is found, as well as in the breakage
map, the second daughter, k’th, class is determined as a result of the breakage of the i’th class into
Jj’th, the first, daughter class. Again by taking advantage of the fixed point approach, the breakage
and the coalescence maps are initialized for once and all.

As a summary, the method of classes has proven to be a robust and sufficiently accurate numer-
ical method on the cost of high computational demands, especially when the method is employed
in CFD simulations (A further discussion will be given in Chapter d}). Hereby, we proposed a
strategy to implement the method of classes within the fixed pivot approach, which results in a
highly robust and relatively efficient computational tool and in the need of accuracy for coarse
meshes due to conservation of only one particle property. Therefore, the arising objective is to de-
termine the approximate discretization constant and the corresponding number of classes such that
results are grid independent. This objective is accomplished by studying convergence behavior of
the method in OD problem:s.

Parallel parent daughter classes

Some of the engineering applications require the properties of the particle size distribution rather
than the distribution function itself. Therefore, only the low-order moments of the particle size
distribution which corresponds to certain physical properties of the population are considered to
be interesting and sufficient for these engineering applications. The moment based method arose as
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3.1. Numerical solution of the population balance equations

an effort to reduce the computational cost and to increase the accuracy of the numerical solution of
PBE for the specified low order moment of the particle size distribution which are of interest. The
evolution of the methods follows as, the method of moments, the quadrature method of moments,
direct quadrature method of moments and their variations.

The main idea of the moment based method is to track the certain properties of the particle
size distribution instead of tracking the evaluation of the distribution itself. When the distribution
is evaluated as a function of size, the low-order integer moments (Equation (3.1.6)) correspond to
certain physical properties, e.g. k = 0 for total number density, k = 1 for total size density, k =2
for total surface density, k = 3 for total volume density:

my = / ) fx)x'dx  keN (3.1.6)
0

The ratio of some of these moments corresponds to useful variables of the population, e.g., ratio of
the third order moment to the second corresponds to the Sauter mean diameter of the population:
dz = % The moments, i.e. the integral properties of the particle size distribution, are tracked
accurately to the steady state and the final particle size distribution is reconstructed from these
values.

Case studies which do not show spatial variation, ideal stirred tanks, exhibits a very suitable
framework for the moment based methods. Since the moment values are very accurately tracked
in time, depending on the mathematical model and its closures even exactly, the variables which
are of interest, e.g. interfacial area density (very important for heat and mass transfer), can be
directly calculated. However, if one is interested in the actual size distribution of the population,
then the distribution function has to be obtained from the available moments with appropriate
reconstruction methods and this is one of the main difficulties within in these methods.

The moment based methods convert equation (2.2.1)) into a set of differential equations by
integrating both sides of the equation with respect to the internal coordinate according to equation
(3.1.6) which results in .

o _ / (GT+CT +C)dbdx (3.1.7)

ot 0

with the implicit definition of the source and sink terms. The characteristics of the growth and
coalescence kernels, i.e. formulation of G* +C" +C~, determines whether equation (3.1.7) is
closed or not. And, it can be immediately concluded that this exhibits a limitation for the numer-
ical solution of general case of coalescence-breakage problems. However, the closure problem
holding for the equation ( can be easily relaxed by adopting the quadrature approximation.
Consequently, moment based methods, with this approximation, were proposed as Quadrature
Method of Moments (QMOM) and in this respect, it can be considered as generalization of stan-
dard method of moments.

The (standard) method of moments (MOM) has been used as a powerful numerical tool to
solve the PBE with the advantage of describing dynamics of the population with nucleation,
growth and coalescence. The MOM established the concept for the methods which were based on
tracking the evolution of properties of the population rather than the size distribution. It has been
successfully used to numerically simulate aerosol dynamics by, e.g., McGraw and Saunders [103],
Frenklach and Harris [[104], Pratsinis [[105]], and crystallization processes by, e.g., Melikhov and
Berliner [[106], Wey [[107]], Nagy et al. [[108]. Hulburt and Katz [5]] extended the use of MOM by
working with two internal coordinates in order to describe the dynamics of non-spherical particles.

The MOM could have found a wider area of application unless the closure requirement of
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CHAPTER 3. Population Balance Equation

the method had been so severe. The method accomplishes its objective by formulating equations
for evolution of the moments in the closed form that is more likely to obtain for mathematical
models describing aerosol dynamics and crystallization processes with only growth phenomenon,
and, rarely, coalescence and growth phenomena together. Fortunately, there are certain cases of
interest in which the first low-order moments can be written in the closed form or the unknown
size distribution can be approximated with a predefined distribution. For constant or linear growth
kernels, 0(x) = a + bx, as it is studied by Hulburt and Katz, and McGraw and Saunders [5}/103],
the moment equations are in the closed form; however, when a more complex growth kernel is
used or the coalescence is needed to be incorporated into the model, a predefined size distribution
in the form of, e.g., log-normal distribution, gamma distribution, must be employed as in these
studies [5,/109,(110]. In some other cases the resulting moment equations can be closed with an
interpolative closure method as Franklach et al., and Deimer et al. have done in their studies
[104,[111,[112]. Even though with these tricks the MOM widen the area of application, it has yet
not been possible to adopt the MOM to numerically solve the general PBE; therefore, generalized
moment methods have been developed to overcome the difficulties concerned with the closure of
moment equations.

The first study which is considered as one of generalized moment methods was presented by
McGraw for a dispersed system which involves only the nucleation and the growth, Quadrature
Method of Moments [7]. The QMOM is based on an approximated closure, quadrature-based
closure, rather than the exact closure in the case of MOM so it is possible to apply the method to a
wider range of problems. The main idea of the approximated closure is that the abscissas, x;, and
weights, w;, can be directly determined from the low-order moments of the unknown distribution
function, f(x), i.e. there is no dependence of x; and w; on the size distribution and kernels. With
n-point Gaussian quadrature we can rewrite the equation (3.1.6) as,

oo n
mk:/ Fe)xtdx =Y xXw; k=0,1,..2n—1. (3.1.8)
0 i=1

For the first 2n moments we obtain 2n nonlinear algebraic equation of which the solution will be
n abscissas and the corresponding weights. The solution of this type of equation would require
a nonlinear search and would be computationally too expensive, instead the algorithm proposed
by Gordon [14] in 1967 was employed, product-difference algorithm. The solution strategy to
obtain the abscissas and the weights involves the solution of an eigenvalue problem for the sym-
metric tridiagonal Jacobi matrix constructed from the sequence of moments by using the product-
difference algorithm. This matrix has to be positive definite so that the solution, x; and w;, is found
in R™|JO; however, this may not be so for problems involving spatial transport of the moment
which is discussed later when the one-way coupled PBE-CFD model is analyzed in the next chap-
ter. As a summary, the QMOM was developed to calculate the growth contribution was based
on the idea: The n-point quadrature approximation of the distribution function can be obtained
from the first 2n moments by means of product difference algorithm and the growth contribution
to moments can be easily calculated by the known abscissas and weights.

The QMOM found a wide area of application, the method first extended to numerically sim-
ulate the growth and coalescence phenomena in the study by Barret and Webb [113]] and later,
the QMOM has beem improved to be applied to systems involving breakage and coalescence by
Marchisio et al. [115].

Marchisio et al. firstly studied the numerical simulation of precipitation process with fluid
dynamics, in their study [114]] they considered only the growth and coalescence phenomena and
showed that QMOM is computationally affordable and an accurate method for problems of this
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3.1. Numerical solution of the population balance equations

type. Then, they extended their study including breakage, as well. They had many numerical tests
with several different hypothetical breakage and coalescence kernels and compared the solutions
obtained with QMOM to “the rigorous solution” which was presented by Vanni [92]. They found
results to be very satisfactory; then, they employed QMOM to numerically solve PBE coupled to
fluid dynamics in their next study [116]] in which they implemented QMOM into a commercial
CFD software package, FLUENT, to numerically simulate simultaneous aggregation-breakage in
turbulent Taylor-Couette flow. They employed relatively simple coalescence (Brownian kernel)
and breakage (power-law and exponential breakage kernels) kernels which make the implementa-
tion of the QMOM more straightforward. They successfully achieved the numerical simulation of
the process and verified their results by comparing with experiments.

QMOM was shown to be a strong numerical tool to simulate simultaneous coalescence—
breakage with fluid dynamics by Marchisio et al. [[116]. However, they also presented that QMOM
exhibits two strong drawbacksE]: (i) application to the multidimensional PBE is tedious and rela-
tively inefficient, (ii) the coupling between the PBE and fluid dynamics is loosened due to assump-
tion of a constant advection velocity for the moments; [117]]. In order to establish a remedy, they
proposed the direct quadrature method of moments (DQMOM) which suggests to directly track
the variables existing in the formulation of the quadrature approximation (abscissas and weights)
rather than tracking the moments of the particle size distribution. Nevertheless, for the monovari-
ate case they showed that QMOM and DQMOM leads to the same solution [117]. DQMOM was
generally accepted by researchers to numerically solve coupled PBE-CFD problems, therefore the
further discussion on this method is left to the relevant chapter, Chapter[d]

As the last method to be discussed in this section parallel parent daughter classes (PPDC) will
be reviewed. Here, we would like to present only the concept of PPDC, and the details of the
method is given when the implementation of the method is presented in the corresponding section.
PPDC is categorized as a non-standard method of classes by its developers, Bove et al [97], since
it approximates particle size distribution (PSD) as a set of Dirac’s delta functions. Nevertheless,
it has the same step with QMOM: obtaining the abscissas and weights of the approximated PSD.
And, the product-difference algorithm which was suggested by McGraw [7] was also adopted by
Bove et al. to solve the ill-conditioned problem: root finding of a polynomial.

This section can be concluded with a common critique for the all moment based methods: the
methods of this type leave the finite-moment problem opened. After obtaining the final values of
the moments, PSD must be reconstructed from a given number of moments and this is severely
ill-conditioned problem because of the ill-posedness of the Hausdorff moment problem [118].
The reconstruction of the PSD from a number of given moments is studied in detail by John et
al. [119]. He concluded that there is no unified framework to solve this ill-posed inverse problem.
The reconstruction by parameter fitting with a predefined shape functions is more accurate and is
only possible when the shape of the distribution is known in advance; however, this is the trivial
case that is not our interest in this study. The discrete method works for dispersed phase systems
involving only the nucleation and growth processes, and the spline reconstruction requires a greater
number of moments than the others do. Consequently, the reconstruction problem still remains
unsolved; and if one needs the detailed information of the PSD, the moments based methods
would not be a wise choice.

3These critiques will be further discussed when we are concerned with coupling PBE to CFD.
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Implementation of parallel parent daughter classes

PPDC is a recently proposed numerical technique by Bove et al. [97]]. Even if Bove et al. define
this method as a non-standard method of classes, we can consider it as an hybrid approach of class
based and moment based methods as it has the robustness of class based methods and accuracy of
the moment based methods.

PPDC suggests to approximate the number density function with quadrature points similar to
MC but PPDC requires much less quadrature points. In the study by Bayraktar et al. [1]], it was
shown that 20-30 classes are required for an accurate approximation of the particle size distribution
with MC; whereas in the study by Bove et al., three parent classes are sufficient to have accurate
calculations. Since PPDC is presented with all details in the study by Bove [9], it is sufficient to
give the necessary definitions and the implementation algorithm so to highlight the outline of this
method.

The method is described with certain definitions and properties of the parent and daughter
classes. The definitions are taken from the study of Bove [9]] since they are necessary to explain
the method; the prescribed properties of the classes are only discussed as they can be intuitively
deduced.

Definition 1. Parent Classes are those present at time " in the unexpanded
PSD. They are denoted by abscissas x; € [v;,0;+1) and weights N;, with
i=1,.. M.

Definition 2. The i’th breakage daughter classes denoted by abscissas
2% € [V, Vkr1) C [0,x;) with k = 1,...,NB(i) and weights B!, are classes
originated from the i’th parent class having abscissa x;.

Definition 3. Coalescence daughter classes are denoted by abscissas
yij € [0,00) and weights A;; with i,j = 1,...,M and j > i. The coalescence
daughter class with double index ij, generated by coalescence of particles
from the i’th and j’th parent classes, is coincident with the ji coalescence
class. There is no duplication.

With these definitions, it is clear that the change of parent classes are only sink terms as a result
of the death events due to breakage and coalescence. Even if the abscissa of a daughter class
coincide with one of the parent class’, it is not considered as a source term at the corresponding
parent class, because the daughter classes after each breakage or coalescence are represented in a
distinct internal coordinate which is parallel and may overlap with the internal coordinate of the
parent classes. Considering these properties we can conclude that the source terms appear only for
the daughter classes in the parallel coordinates and they are not additives.

The numerical treatment of coalescence terms and sink term due to breakage in equation
(2.2.7) is straightforward with these definitions and properties; however, how to numerically cal-
culate the source term is neither obvious nor explained in the studies by Bove et al. [9,97]. The
arising difficulty can be explained with ease by using Figure [3.3] which pictures the complete al-
gorithm of PPDC with all the possible processes at time = ¢ according to the given definitions. In
Figure it is clear that the daughter sizes due to coalescence of parent classes are exactly de-
fined. Nevertheless, the daughter classes due to breakage are unknown and need to be prescribed,
which is the loose end of this method.
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3.1. Numerical solution of the population balance equations

The algorithm of the PPDC starts with an n-point quadrature approximation of PSD for M

parent classes,
M

N(v,1) =Y Ni(1)8(v —x;) (3.1.9)

i=1
where x; is a quadrature point (size of the i’th parent class) and N; is the corresponding weight
(number density of the i’th parent class). Then, approximated PSD that expands with daughter
classes due to breakage and coalescence of particles, i.e. the sink and source terms which are
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calculated according to equations (3.1.10)—(3.1.12), can be given with equation (3.1.13).

ON;(t v
a( ) Z (v;,,)N —N,-(t)/o B(v;,0)dv (3.1.10)
0A;(t 1
g,( ) (5 = 8i)r (i VNN (1) fori,j=1,....M; j > i, (3.1.11)
E)B,-k(t) _ Vi ]
o :Y(Di)Ni([>M(t)P(Ui;Uk) Bo,v)dv fori=1,...M;k=1,...NB;, (3.1.12)
M
Dt):ZN,-(t) (v —x; +ZZAU (v —yij +ZZBk _Zk)‘
=1 i=1j= i=1j= (3.1.13)
parent classes coalescence daughter classes breakage daughter classes

Equation (3.1.12) describes the rate of change in the k’th daughter class due to breakage of the
i’th parent class by assigning the certain ratio, P(v;, V), of the total sink (the second integral
term on the right hand side of equation (3.1.10) ), in the i’th parent class to the k’th daughter
class. The ratio is given by the integral value of all breakage probabilities of v; to particles with
volume represented by ;. Analogously to the method of classes, the k'th daughter class is defined
with the pivot size Vg, and the upper and lower limits 1),[(] and Dé, respectively. Then, P(v;, k)

U
is given by f;} p(v;/v)dv, where p(v;/v) is the daughter size distribution function and defines
k

the breakup probability of a particle with volume v; to particle with volume v, under certain
conditions. The prescription of daughter classes and the calculation of this integration is a key
factor on the accuracy of this method. For the time being, p(v;/vy) is given as an explicit function
of only the ratio of volumes; nevertheless, it is a function of several variables. Since this issue is
more related to the modeling of closures, we leave the further discussion to the related section.

The increase in the set of Dirac’s functions is cumulative in time; therefore, the expanded PSD
should be reduced to the number of parent classes by preserving 2M order of moments of the
expanded distribution by solving Equation with the given definition of moment, (3.1.8).

oM K

Y N ) = Y N s ) (3.1.14)

= i=1
where N; and £; denotes weight and abscissas of the expanded DSD. Equation (3-1.14) is a non-
linear algebraic equation and can be solved by employing Product-Difference algorithm (PD) the
details of the solution of this type of problems are given in the Gordon’s study [14]. Nevertheless,
this algorithm does not ensure that the solution is always non-negative for N; and x;, it’s very
sensitive to perturbations of right hand side values and this exhibits a bottleneck for the numerical
solution of PBE coupled to CFD.

3.1.2. Time discretization

The numerical studies on the solution of population balance equations are mostly focused on
developing numerical methods to discretize the PBE in the internal coordinate. The discretization
in time is handled with explicit time stepping techniques, i.e. Forward Euler. However, regarding
the problem being highly non-linear and having large time scale{f] high order implicit time stepping
techniques can be more suitable.

4A “true” steady state could have not been observed in the experiments related to the simultaneous coalescence and
breakage processes for large time scales [[120)].
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3.1. Numerical solution of the population balance equations

Equation (2.2.1)) is a an integro-differential equation and can be solved by even using “ex-
otic” time stepping techniques. Bakhbakhi studied the solution of the PBE with the high-order
Lax-Wendroff method and the combined Lax-Wendroff and Crank-Nicolson method, and he con-
cludes that the second method could successfully treat the adopted population balance model in
his study [121]. Bakhbakhi focused on the numerical solution of PBE in OD, so he could study
many different numerical techniques. However, this study is restricted with the conventional time-
stepping techniques used in the field of computational fluid dynamics, One-step-0 schemes.

The PBE (2.2.1)) with implicitly written right hand side can be given as,

n+1 _ rn
% — 05"+ (1-0)5". (3.1.15)

The time index is denoted with the " superscript and 0 is the parameter of the time-stepping
scheme. Certain values of the 6 parameter leads to well known schemes as, 6 = 0 for the Forward
Euler-, © = 1 for the Backward Euler- and 6 = 0.5 for the Crank-Nicolson-scheme.

Time discretization within method of classes

We can discretize the semi-discrete PBE in time according to equation (3.1.15)). The resulting
fully discrete equation is

S 0) = ()
At

= 0S(/" 7 (02), S (0))) + (1= 8)S(f" (v), /" (v;)). (3.1.16)

This is a non-linear equation for the unknown f(v;)"™! and should be iteratively solved. The
algorithm for the solution of this non-linear equation is presented in Figure 3.4

For n=1,2,... main time-stepping loop " — ]
For 1=1,2,... iteration loop
For i=1,2,...,m loop over all classes

o If |1+1fin+l _lfin—i-l| < eps,

Solve equation (3.1.16).

Figure 3.4: Solution of discrete PBE (eps: a small number, typically ~ 10~%).

Time discretization within parallel parent daughter classes approach

The time discretization of equations within the PPDC method is analogous to the one within
method of classes. However, solutions of the discrete equations are the sources and the sinks, i.e.
births of the daughter classes and deaths in the parent classes, which are used to calculate moments
of the population in the following part of the solution procedure given. Equations (3.1.10)—(3.1.12)
need to be discretized in time to obtain the expanded particle size distribution, (3.1.13).

The equation (3.1.10) is the only non-linear equation in terms of the unknown N; which should
be treated implicitly for this equation. On the other hand, ; is treated explicitly for the source
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terms (3.1.T1) and (3.1.12)), since it is obtained by solving equation (3.1.10). By following this
prescription, foremost we write down the discretized equation for the sink term analogously to

equation (3.1.15).

l+1Ni(tn+l) —Ni(t")
At N 6(

M v}
n+] (tn-H) IN (tn-H) ( )d
Jg / v 1))

M
+(1-8 (— Z, o}, 0 /rBu udu (3.1.17)

On the right hand side, at the first term it may occur that the time indices ” ! are mixed but this

is not true. While the sink term is calculated, only the change in weights (%;) is accounted and the
corresponding abscissas (V;) are constant through the time step, #"*!, and they are updated when
the expanded size distribution is reduced at the end of the time step; this point can be clearly seen
at the presented algorithm in Figure[3.5] Therefore, we should keep in mind that the abscissas of
parent classes are constant within one time step.

The discrete equation (3.1.17) can be solved with an analogous approach presented in Figure
to obtain N;(#"*!). Then, since the value of N;("*!) is known, A; ; and By, can be explicitly
calculated according to the discrete equations (3.1.18) and (3.1.19).

A (") — Ay (")
At

= (1-0)((5 — By L VNN () )

+e((% 5:/)r (UL,DJ)N(t”“)N,-(t”H)) for i j=1,..,M; j>i (3.1.18)

— (1-0) (Ywh NV um&/rﬁvvm

'U”

+9(y(uf’)Ni(t"“)Ni(t"“)P(D my [ B U)db)
0

fori=1,..M;k=1,....NB; (3.1.19)

3.2. Closures of Population Balance Equations

The Population Balance Equations of liquid/gas-liquid dispersed systems (Equation (2.2.1))) in-
volve breakage and coalescence kernels (+® and ¢ respectively) which describe all the physics
in breakup and coalescence phenomena. There are numerous studies available in the literature
about modeling coalescence and breakage processes and a detailed review of these studies was
presented by Jakobsen et al. [[13]. While it is more likely to gather coalescence kernels into a
unified framework, the breakage kernels show distinct behaviors and their formulations can ex-
hibit remarkable differences which cause determination of the appropriate breakage kernel for this
study to be cumbersome. To determine an appropriate coalescence kernel can also be trouble-
some if one is interested in the “unusual” effects of the chemical or physical properties of phases,
e.g., electrocoalescence: is the coalescence which occurs due to the motion of an electrostatically
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3.2. Closures of Population Balance Equations

1. Abscissas and weights for M parent classes at t = t"; if n = 0, initial
conditions.

2. Calculating the weights of parent classes at ¢! (3.1.17).

3. Calculating the abscissas and the weights of the coalescence daughter

classes, (3.1.18).

4. Calculating the abscissas and the weights of the breakage daughter

classes (3.1.19).

5. Solving the inverse finite-moment problem to obtain the abscissas and
the weights of the parent classes at t"+! from the expanded PSD

@.L13).

n+1__amn
6. Goto (1), if tr1 < fena and W > Tolx

7. Stop

Figure 3.5: PPDC algorithm

charged dispersed phase under the influence of an electric field. Fortunately, we do not need to
consider these “unusual" effects for our purposes; hence, a coalescence kernel which is commonly
adopted for the studies of air/oil-water dispersions has been chosen.

The breakage kernels can be classified as statistical, theoretical and phenomenological. The
last two are subject to this study because of their rigorous formulations and accurately reflecting
the physics in the breakage process. The breakage kernels are adopted from the studies by (i) Lehr
and Mewes [28]], (ii) Lehr et al. [20], (iii) Martinez—Bazan et al. [23,]24]].

3.2.1. Coalescence Kernel

Most of the present models for coalescence kernels were derived analogously to kinetic theory of
gases [[15H18]]. In kinetic theory of gases, collisions between molecules are considered while in
the process of coalescence, bubble (droplet)-bubble (droplet) and bubble/droplet—eddy collisions
count. Thus, various coalescence models show similar trends, that is a monotonous increase in the
specific coalescence rate with increase in the bubble/droplet diameter [[19]. The coalescence kernel
adopted in this work is the one proposed by Lehr ef al. [20] which is implemented according to
the technique developed by Buwa and Ranade.

According to Lehr and Mewes [28]] the coalescence kernel function is defined by
T ~
€ (0,) = Z(d+d)2 min(u’, uerit), (3.2.1)

with d and d denoting the diameter of bubbles of v and D. The characteristic velocities «’ and ucj¢
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are computed as follows

W' =/2e'3(dd)'/°, (32.2)

Wee _
Cerit®  With  dyg =2(d~ +d"1)71, (3.2.3)
pldeq

Ucrit =

where € is the turbulent dissipation rate, ¢ is the surface tension of the liquid phase, p; is the
density of the liquid phase, and We; is the critical Weber number being equal to 0.06 for pure
liquids [20]. Alternatively, it is also common to assume #' = 0.08 m/s instead of considering u’ to
be a function of v and D, as it was done in the study of Lehr and his colleagues [20]. On the other
hand, the coalescence kernel described with shows similar trends with the most of the other
models in the literature.

3.2.2. Breakage Kernel

Most breakage kernels are derived from the theories which are outlined by Kolmogorov [22] and
Hinze [21]]. Physical interpretations of these kernels are all the same: droplet breakage occurs due
to the collisions of turbulent eddies onto the droplet surface; should the energy of the turbulent
eddy larger than the surface energy, the surface is deformed. And, this deformation may split the
droplet; so that, two or more daughter droplets appear. The turbulent eddies whose size is larger
than or equal to the droplet size (diameter) spatially transport the droplets. Consequently, eddies
which cause breakage are the ones only being smaller than the droplet size.

The main distinction among all these models which have the same physical interpretation is
their prediction on the resulting daughter size distribution; some models presume a uniform or a
truncated normal distribution which is centered at the half of the droplet size (I-type distribution
function), i.e. an equal-sized breakage is preferable according to some models. In contrast, there
are other models which suppose an unequal-breakage, breakage into a small and a large daughter
droplets, which is preferable; these models suggest a U-type distribution function.

Regarding the daughter size distribution there are various different formulations which yield
significantly different results. This is why it is not likely to claim that one model can highlight
all the features of the given process. A comparison of the most remarkable breakup kernels in
the literature is carried out by Wang et al. [29]. In pursuance of the this study, it is shown that
the model presented by Lehr et al. [20] is more comprehensive than the others. Nevertheless,
motivated by the wide diversity of available breakage models in the literature, we extended our
scope by consideration of several breakage kernels: (i) Lehr and Mewes [28], (ii) Lehr et al.
[201, (iii) Martinez—Bazan et al. [23][24]. The first two are theoretical kernels, the last one is a
phenomenological kernel with a statistically modeled daughter size distribution; and, each has
been adopted by many researchers to model gas/liquid-liquid dispersed phase systems.

All the breakage models have the common definition: the multiplication of the total breakage
rate, K2, and daughter size distribution (DSD), ®(v, %), and the same underlying assump-
tions: (i) the turbulence is usually assumed to be isotropic, (ii) only the binary breakage is consid-
ered, (iii) the breakage volume fraction is considered to be a stochastic variable, (iv) the occurrence
of breakup is determined by the energy level of the arriving eddies, (v) only the eddies which are
smaller or equal to the droplet/bubble diameter can lead to breakup. These assumptions have been
introduced in order to achieve phenomenological simplifications by Luo and Svendsen [27]]. So
that, it has been possible to theoretically model the breakage rate without any free or adjustable
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parameter; therefore, we focused on the mentioned breakage kernels.

B(v,0) = KBd(v,D) (3.2.4)

Breakage Kernel by Lehr and Mewes

Lehr and Mewes [28] have had two approaches: a local and a global approach, to model the
interfacial area density in bubble columns; and, population balance equations arise within the
local approach as an attempt to model the breakup and the coalescence. Later, this model has
been revised by Buwa and Ranade [[19]], and it is reformulated such that the implementation of the
model is more straightforward.

Following the formulation of Buwa and Ranade, the breakage kernel can be rewritten accord-
ing to equation (3.2.4) and the first term (breakage rate) can be given as,

B _ _ Pr\22 18
kP =1.5(1 ocg)(c) els, (3.2.5)

where o, p;, 0 and € are the void fraction of the secondary phase, the density of the primary
phase, the interfacial tension and the turbulent dissipation rate, respectively. The aforementioned
properties of the adopted breakage kernel are hidden in the definition of the daughter size proba-
bility distribution function, ¢(v,?), which can provide DSD representing both equal and unequal
breakage; Figure [3.6] shows that the daughter size probability distribution function can describe

10,
—v=1.25v*

v=2.5v*
--v=10v*

DSD

0.8 1

fBV

Figure 3.6: Dimensionless daughter size distribution.

the equal and unequal breakage as a function of the droplet size. If the parent droplet is very
large respective to the stable droplet size, its daughter droplets have two extremely different sizes,
i.e. unequal breakage, see the dashed-line curve for v = 10v*. On the other hand, if the parent
droplet’s size is close to the stable size, the resulting daughter droplets have similar sizes, i.e.
equal breakage, see the solid-line curve for v = 1.25v*. This behavior of the distribution function
is even intuitively right: Large bubbles are firstly hit by large eddies; so that, a very large and a
very small daughter bubble form; and small bubbles are spatially transported by the large eddies
but the collisions with small eddies result in two similarly sized bubbles. This behavior of the
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distribution function is achieved by the following formula

o!/3 , @
oy O 76 ~7/9) . —7/9 ®
¢(v,D) = max (6)4/3 (mln (0) ,® ) ® ) ,0] for % € (0,0.5)

s (3.2.6)

. N T
with ®=7° and ®W=v—

6 pll.881.2 6 p11.881.2'

According to the implementation technique developed by Buwa and Ranade [19], the substitution

of the dimensionless bubble volume fzy = 3 = T — Luo and Svendsen assumed that fpy is the

stochastic variable [27]] — into (3.2.6) yields to

o) s o i, 7))
for fpy € (070.5),

(3.2.7)

and makes it possible to analytically integrate the DSD in arbitrary limits. Being consistent with
the assumption, the breakup process results in a pair of daughter bubbles of volume ¥ and v —
©, this requires function being symmetric ¢(v,d) = ¢(v,v — D) for fzy € (0.5,1) (Figure [3.6).
Consequently, the mean probability of breaking a bubble of volume v into a bubble between
(D—Av) and (D + Av), i.e. into a certain class whose pivot size is equal to D, can be obtained as
follows

+Av
)

v

q)('l.),ﬁ) - m .

0(0,0)dfpy. (3.2.8)

Breakage Kernel by Lehr et al.

Lehr et al. [20] follow the definition of breakage kernel in (3.2.4) and they postulate that bub-
ble/droplet size distribution can be calculated by specifying the breakage rate and knowing the
daughter size distribution. They also clearly state all the assumptions which were made by Luo
and Svendsen but the first one (see above the given assumptions). However, even though it is not
explicitly stated, this assumption is in between the lines of their study; otherwise, they would not
be able to handle the problem.

They start with the assumption: Right before the breakage, the bubbles are locally almost
cylindrical; so that, the force balance can be written as

I 5 c
Py = 25, (3.2.9)

where u;, p;, 6 and d denote the turbulent eddy velocity, the continuous phase density, interfacial
tension and the smaller daughter droplet’s size.

The breakup kernel is calculated from the frequency of the colliding eddies and the probability
of these collisions leading to breakup

d

B (0,5) = /d (0, \)P(A, 5, 0)dA.

(v, ) stands for the number of collisions between a droplet with the volume v and an eddy of
length scale A; and P(A,D,v) is the probability that the collision between them results in a droplet
of size ¥. The collision frequency has been derived analogously to the kinetic gas theory as follows

®(V,\) = g(xjtd)zum. (3.2.10)
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3.2. Closures of Population Balance Equations

The turbulent eddy velocity can be calculated according to Hinze [21] as @), = v/2(€X)'/3. The

number of eddies per unit volume nA having size between A and A+ dA is given as ny = 0'%13.

One can derive the breakage probability P(A,D,v) again by following Hinze and starting with
the force balance (3.2.9), Hinze postulates that the eddy velocities is distributed according to a
Gaussian curve (normal distribution) about a mean value %, . Then, the breakage probability is

3 46 (e)~2/3 26(er) /3
P()L,D,l)) = 7[pld~4€xp(_pfd~> (3211)

So, the breakage kernel function can be obtained by combining equations (3.2.11)) and (3.2.10) as
d L+d)? 26
o) = [ vie—2 | (-~
(,v) ; vac pre2/3dh A3 exp pe2/3N2/3d d
for 0<D<v/2
B0,0)=rf(v—T,0) for v/2<D<V

3.2.12)

where C = 0.8413. However, equation (3.2.12)) can not yet be expressed as (3.2.4)); hence, (3.2.12)
is rewritten as being analogous to (3.2.4)), by using the incomplete I'-functions and by introducing
the length and time scales:

L= (;)0'6804 and T = (;)0'4806 (3.2.13)

Defining the dimensionless bubble diameter d* = d /L and bubble volume v* = v /L3 gives rise to:

d*5/3 \/E
B
K=o <_d*3

6 oxp(-225(n(22°d))%)
(Lvad?)’ 1+erf(In(21/150%)")
and ¢o(v,09) =¢(v,u—0) for ¥" € (0.5,1).

0(v,0) = for ©* € (0,0.5) (3.2.14)

So that, to rewrite the kernel in the form of (3.2.4)) is accomplished.

Breakage Kernel by Martinez-Bazan et al.

Martinez-BaZan et al. experimentally studied a lean air-in-water dispersion to model the breakup
phenomenon. The dispersed system exhibits negligible coalescence therefore they could consider
solely the effect of the breakage on the transient evaluation of bubble—sizeE] distribution function
in a fully developed turbulent flow field in order to model a phenomenological breakup kernel.

Martinez-Bazan et al. modeled the breakage kernel according to the definition of Luo and
Svendsen, (3.2.4). In the first part of their study they obtained the breakup frequency [23] and
later they drived the expression for the daughter size distribution [24]]. Then, they performed a
number of experiments and computations over a wide range of bubble sizes to verify the derived
breakup kernel.

SMartinez-Bazan et al. stated that their model is also valid for liquid-liquid dispersions. Since they use the word
“bubble” in their article, in this subsection the word “bubble” is adopted to refer the dispersed phase.
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They started with the same assumptions of Luo and Svendsen; additionally, they assumed that
since the studied dispersion is very lean, the secondary phase had no significant influence on the
primary phase, no back-coupling. And, their basic presumption was: The turbulent stress produced
by the primary phase deforms the bubble’s surface and this deformation might lead to breakup of
bubble. Then, it was possible to write with neglecting the internal viscous deformation forces due
to very small Ohnesorge number, e.g, Oh < 1072 for a bubble of size 10-6m, the deformation
force per unit surface as

(D) = LpAE(D),

where the last term denotes the velocity fluctuations between the two points having a distance D
and it can be estimated by the expression

N2 (D) = B(eD)*?,

where [ is an empirical parameter and whose value was given as 8.2 by Batchelor [122]. Then,
following the presumption and the the deformation force per unit area, it is possible to introduce
two key concepts: the critical diameter (D.) and the minimum diameter (Dy,;,) and they can be

formulated as,

126\ 3/5 126 \3/2

D, = (—G> e 2 and Dpin = (—G> el

Bp BpD
With these concepts, one can describe the breakage of a bubble as, only bubbles which are larger
than the D, can breakup and the smaller or equal-sized bubbles are stable in the turbulent flow,
and the smallest daughter bubble can not be smaller than Dy,,. These two concepts are the basic
differences of this breakage model compared with the first two and lead to a significantly different
daughter size distribution.

The breakup frequency was considered as a function of mainly two variables: bubble-size (d)
and turbulence which is characterized by a dissipation rate (€). Then, the authors postulated that
the breakup frequency is inversely proportional to the difference between the deformation and the
confinement forces which produce the deformation of the interface. Then, the breakup frequency
can be written as,

\/B(Sd)2/3d— 120/(pd) (3.2.15)

where K, is another empirical parameter being equal to 0.25 which was obtained by the authors.
The breakup frequency is zero for bubbles of size d < D, and it rapidly increases for the ones
being larger than the critical size and reaches a maximum at d = 1.63D, and later, it decreases
monotonically with increasing bubble size.

K%(e,d) =K,

Independent of the breakup frequency the authors assume a binary breakage which leads to two
daughter bubbles of complementary masses/volumes, with sizes d; and d,. When the stochastic
variable d; (the third assumption) is uniformly distributed on [0,d)], so does d* = d; /dy on [0, 1].
On the other hand, the breakup does not produce a uniformly distributed density function and
the probability of the splitting of a bubble of size d; should be weighted with the difference in
the stresses, AT;; = %pB(edl)z/ 3 —66/dy. Moreover, appearance of a daughter bubble of size
d; implies that there exists a complementary bubble for which the probability is proportional to
AT = %pB(edz)z/ 3 —66/dy. Hence, the author postulates that the probability of a bubble breaking
into a pair of bubbles with sizes d; and d> should be proportional as following:

X N 60
P(d*) o< | LpB(ed*dy)*? - %
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Then, by introducing a dimensionless variable A = D, /dj and regarding that the density probabil-
ity is normalized, the daughter probability density function of d* can be written as:

Pd) (@ —A[(1-dP)— A (3.2.16)

0'(d) = o
fo Pa) ) = Al —d - ATd(@)

min

Finally, the probability density function of daughter bubbles as a result of the breakup of a parent
bubble dj is obtained as ¢(d1,d0) = ¢ x (d*)/dp. The function ¢ mainly depends on € and dp and
this is presented in Figure[3.7] In Figure [3.7] the dependence of DSD on the turbulent dissipation

n,
Z|

—e=10ms"

f*(d*)

Figure 3.7: The dependence of DSD on € and dy, respectively.

rate is given for air in water dispersed phase system, with a fixed parent size, dy = 3mm; on the
right the dependence on dj is shown for a fixed turbulent dissipation rate, € = 1000m?s 3. The
possible minimum bubble size, Dyp, is strongly related to € and dy. The inverse proportionality
between Dpi,, and € and dy is clearly shown. Additionally, these are the reproduction of the
Figure 3 from Martifiez—Bazan et al. and our computations match exactly to theirs; consequently,
our implementation is validated.

Martinez—Bazar et al. suggested the DSD which prefers only the equal breakage hence the
function is I-type. This is significantly different than the previously discussed kernels which com-
bines the advantages of both U-type and I-type functions. Also, defining D, and especially Dp;p
is debatable, having a certain minimum size enforces the daughter size distribution to be I-type,
where as Lehr et al. states that collision of large bubbles firstly with large eddies results in two
daughter bubbles which are extremely different in size. The statement of Lehr et al. is more
satisfactory with respect to Martinez—Bazan et al.; however, once we successfully compare these
models, we can make a clear conclusion.

3.3. Hypothetical Closures

Certain kernels are proposed to close the PBE only in order to study them computationally. These
kernels are chosen so simple that they lead to analytical solution of the PBE. We will address
several of the hypothetical closures to test the implemented numerical techniques.

Coalescence kernels for which analytical solutions of PBE are available from Scott (1967)
[[123]] describes a constant coalescence

r“(0,0) =C, (3.3.1)
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and a sum-coalescence
r€(v,0) =C(v+7D). (3.3.2)

The analytical solution of the PBE being closed with these kernels are provided for the initial
condition

Fo,r=0)=Noe . (3.3.3)
The analytical solution with the constant closure (3.3.1) is given as
2Ny
v,t=0)=——. 334
f( ’ ) CNpt +2 ( )
And the solution with the sum coalescence (3.3.2) is
f(v,t = 0) = Nye CMovor, (3.3.5)

McCoy and Madras [42] studied analytical solution of PBE for simultaneous coalescence and
breakage. They adopted the constant coalescence kernel and a breakage kernel which is
directly proportional to the volume of the parent droplet/bubble and the breakage rate and daughter
size probability function are given as equation (3.3.6).

K®=5v and ¢(v,0) =1/ (3.3.6)

The initial condition which leads to the analytical solution for the total number density, (3.3.8),
was chosen as following,

0)2 _m©
N(v.r = 0) = M0 =2 (3.3.7)

o(n, 1) = [p(7)]2e~ MO, (3.3.8)

In Equation (3.3.8) the dimensionless variables are 1| = vmg(0)/m3, T =tC/mo(0) and @ with
the expression:
1+ @(c0) tanh(@()7/2)
¢(o0) + tanh(@(eo)t/2)

P(1) = ¢(e0) (3.3.9)

where @(o0) = [2Sm3/C]'/? /mg(0).

For different values of @(e0), it is possible to simulate three cases: (i) the invariant solution:
@(e0) = 1, (ii) the breakage dominant solution: @(eo) > 1, (iii) the coalescence dominant solution
(9(e0) < 1). The last two cases are in our scope to test the accuracy of the implemented numerical
techniques, PPDC and MC.

3.4. Numerical Computations

The breakage and coalescence models and the numerical techniques which have been discussed in
this chapter are employed to simulate physical and hypothetical cases. While we are analyzing the
accuracy of the implemented models, the efficiency and the robustness of the adopted numerical
techniques are investigated, as well. First, we consider the accuracy and the efficiency of the
numerical techniques, MC and PPDC, for cases which admit analytical solutions. Later, physical
cases which have been already numerically and experimentally studied by other researchers are
studied with the theoretical and phenomenological breakage kernels and the coalescence kernel.
So that, we are able to validate our implementation and to see the accuracy of the models and the
range of their operating conditions. Consequently, we can determine the pair of kernels and the
discretization technique for the internal coordinate to be adopted so to study the PBE in 3D.
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3.4.1. Hypothetical Cases

We have numerically studied three cases with the hypothetical kernels proposed by Scott [[123]],
and McCoy and Madras [42] who also provided the analytical solution of the PBE with them.
The first two cases are numerical simulation of pure coalescence phenomena which are described
with the kernels (3.3.1)) and (3.3.2), in order. Later, we look upon a simultaneous coalescence and
breakage case which are modeled with (3.3.1)) and (3.3.6).

The constant coalescence kernel describes the coalescence of droplets with a constant
rate independent of any other variable or parameter. When the initial condition is taken as in
(3.3.3), the PBE with this kernel can be analytically solved for the total number density and the
solution is given with (3.3.4).

For the calculations the initial value of the total number density N(r = 0) = Np and C were set
to 1 and the numerical results were obtained with the PPDC and the MC, see Figure[3.8]and Figure
3.9

_err2A vio
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Figure 3.8: N(¢) for different number of parent classes (npcX) and the corresponding errors (errX),
within the PPDC method.
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Figure 3.9: Comparison of N(z) with the analytical solution (red) for different time discretization
techniques and g = 1.5 (left), and for different values of ¢ (right).

The first conclusion reads: the PPDC is more accurate than the MC and the computational
effort and the time are incomparably in favor of the PPDC. Different numbers of parent classes
(npc =2,3,4) lead to identical evaluation of total number density in time. This is not surprising be-
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cause within PPDC, the first 2 X npc number of moments are always conserved; N(¢) corresponds
to the zeroth order moment hence it has to be preserved even with the least number of parent class,
2. On the other hand, with the adopted approach of MC it is possible to preserve only one moment
which has chosen to be the third order moment, total volume density, i.e. volume fraction of the
secondary phase. The conservation of this variable is more important for the solution of physical
problems, otherwise the mass conservation is violated (incompressibility). Consequently, there is
a visible difference among the results with MC, see Figure however, as ¢ — 1 the difference
is getting visibly smaller; and, when one has a linear discretization of the internal coordinate, the
error will be independent of the internal coordinate discretization and will be limited by the accu-
racy of the time discretization as in the case of PPDC, Figure [3.8] The plots of the errors show
that the error is reduced to the one tenth when the time step size is chosen to be one tenth, 0.1 ms.
We can have a closer look at the errors in the results with MC, first we see the convergence with g,
Figure [31_0] (BE, FE and CN denote Backward-, Forward-Euler and Crank-Nicholson, in order).

20 T . T 15 . - .
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Figure 3.10: N(¢) with various values of ¢ (discretization constant) and different time discretiza-
tion techniques.

The error for the smallest g decreases to ~ 5% from =~ 13%, and the computational cost
increases exponentially; even though the required computational cost for the finest calculations
are easily affordable for ideal STR simulations, this is not the situation for 3D simulations which
are coupled to CFD. Table [3.1] shows that how the computation time changes with respect to
number of classes; for this purpose, the constant-coalescence case is computed with FE method
with fixed time step-size on dual-core AMD Opteron™ 2214 processor (2.2 GHz).

The behavior of the PPDC regarding the time discretization technique is studied for three
parent classes and the time step size being df = 1 ms, see Figure Although the results which
are obtained with PPDC are very sensitive to the time step size, Figure[3.8] it is not surprising that
all time-stepping methods produce the same results for sufficiently small time steps. Consequently,
the results can not be significantly improved with adopting a higher order or a more stable time
discretization technique and the error introduced by the time discretization is linearly proportional
to the time step size within PPDC.

The results which are obtained with MC have larger errors than the ones obtained by PPDC,
Figure(3.11|and Figure Moreover, as in the case of PPDC, the choice of discretization tech-
nique is not very influential on results unless the time step size is too large. Nevertheless, this test
case is only for a constant coalescence kernel and it is not sufficiently complicated to comprehen-
sively compare the two methods but, this test case is important to see that our understanding and
implementation is correct for the constant coalescence.
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Table 3.1: Time vs number of classes.

q nClass Time (s)

2 30 3.53E0
1.9 32 3.99E0
1.8 35 4.88E0
1.7 39  6.04E0
1.5 50 1.02E1

1.25 91 3.27E1

1.20 111 4.94E1
1.15 145 8.38El
1.075 279 3.15E2
1.05 413 6.94E2
1.01 2021 2.13E4
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Figure 3.11: Errors due to different discretization techniques within PPDC.

The sum-coalescence kernel [3.3.2]is slightly more complicated than the constant coalescence
kernel. This time, the coalescence rate is not constant and depends on the droplet sizes, i.e. the
solution of the previous time step, and it logarithmically increases in time. We studied this case
for different number of parent classes (npc = 2,3,4) with PPDC, and for ¢ = 1.5 with MC; the
results are as follows, Figure [3.12]and Figure [3.13]

The obtained results by both methods are satisfactory and as in the first case, PPDC leads to
more accurate results such that the error is always less than 1% independent of the number of
parent classes. On the other hand the error for MC is mostly between 10% and 15%, and this can
be reduced by decreasing the value of g or adopting a linearly discretized internal coordinate which
leads to results only involving errors due to time discretization as it holds for PPDC. Nevertheless,
our aim, here, is not to obtain the exact results but to see the accuracy of the employed numerical
techniques with the values of parameters which we will employ in the 3D simulations.
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Figure 3.12: Results for sum coalescence kernel with PPDC.
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Figure 3.13: Results for sum coalescence kernel with MC.

There is a very small difference in the results with PPDC for different number of parent classes,
almost invisible, Figure [3.12] The results are very sensitive to initial conditions and parent classes
can not be uniquely initialized for two and three parent classes because there are only two con-
straints on the initial condition: the total volume and the total number of droplets. Hence, the
difference in the results must be due to the initial conditions.

The second case was studied also by Bove et al. [97]]. Our results are almost identical with
theirs but the results of Bove et al. are slightly oscillatory for the first eight seconds. We think
that these oscillations are purely due to the time discretization. They write the discrete form of the
equations in the Forward-Euler scheme; if they had used smaller time step size or a stable time
stepping scheme, e.g., Backward-Euler, their results would not have been oscillatory.

The last case which is the most challenging involves both the breakage and the coalescence
phenomena. The coalescence phenomena is again described with the constant kernel (3.3.1)) and
the breakage is described with equation (3.3.6). The challenging part of this problem is the imple-
mentation of the breakage kernel. Whereas the arising coalescence daughter classes are uniquely
specified, the breakage classes are not. We see two options, either the breakage daughter classes
are specified in a similar fashion to the one employed in MC or directly the arising source terms
for the moments due to the breakage daughter classes are calculated. The later option would not
require the specification of the breakage daughter classes; and, their contribution to the first 2M
moment values can be calculated analogously to the quadrature method of moments. In this case,
the method would suffer the same problems as does QMOM, closure problems. Moreover, Bove
et al. clearly state that the breakage daughter classes exist due to the breakage of parent classes.
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Therefore, we followed the first choice and define the width of classes as one hundredth of the par-
ent classes’ so that the discrete internal coordinate consists of 100 equidistant classes; and, for the
i’th class the pivot location is given as v; = 256011) fori=1,2,...,100. The number hundred is not
a magical number, our studies which are presented later show that the results with 100 breakage

daughter classes lead to sufficiently accurate results.

The case is simulated for S = 1 and C = 0.1 with both MC and PPDC and the results are
compared against the values computed from the analytical solution (3.3.8)), Figure [3.14] The
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Figure 3.14: Results for the simultaneous breakage and coalescence phenomenon with PPDC
(left: with 3 and 4 parent classes) and MC (right: for varying values of g).

results which have been obtained with PPDC are so accurate that it was not necessary to plot
the reference solution (the curve “analy” in the right plot); whereas, it was required to reduce
the discretization constant to very small values (¢ < 1.01), of course, this ends up in such high
computational costs that it is not possible to afford for the solution of coupled CFD-PBE problem:s.
Therefore, the convergence of PBE’s solution for physical kernels is also needed to be analyzed.
Unless fairly converged results can be obtained with reasonably small values of the discretization
constant, g =~ 1.5, progressing with MC will not be possible.

The errors due to the number of parent classes adopted in PPDC are presented in Figure 3.1
The total number density, N(t), is indistinguishably evolving in time for two and three parent
classes. This is expected because the total number density is conservative for any number of
parent classes; however, this is not the case for the high order of moments, e.g., greater than four
because the required order of moments for the engineering applications are mostly smaller than
four and seldom equal to four. To investigate the results for the high order moments we adopted
the analytical solution for the fractional moment order (3.4.1)) from the study by Silva et al. [40].

k—1

¢(o0) + tanh(@(>)1/2) T(k+1) (3.4.1)

1+ @(c0) tanh(@(>)7/2)

mi(T) = | ¢(ee)

The results obtained with three parent classes are less accurate than the case with four parent
classes, especially for moment order being larger than five, k > 5. The error at k = 3 drops to
the machine precision which means that volume (in case of constant density mass) is strictly
conserved. Of course, the error values reduce linearly with reducing the time step size. These
results agrees well with those of Bove et al. [97]]. The results for the same case which are obtained
by MC are not as promising as the ones with PPDC, Figure [3.14] Errors due to the discretization
of internal coordinate with different number of classes, i.e. varying values of the discretization
constant, are presented in Figure [3.16] The steady-state results which are obtained with MC are

43



CHAPTER 3. Population Balance Equation

0
10

Error%
Error%

0 10 20 30 40 0 2 4 6 8 10
time (s) fractional moment order

Figure 3.15: Error of the results for the simultaneous breakage and coalescence phenomenon with
PPDC, left: for N(t), right: for the fractional moment order.
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Figure 3.16: Error of the results for the simultaneous breakage and coalescence cases with MC.

nicely converging to the analytical solution with the grid refinement. The error drops from 40 %
to less than 1% for values of ¢ which decreases from 2 to 1.01, Table[3.2]

Table 3.2: Final error in total number density vs the discretization constant.

q 1.01 105 115 120 135 150 1770 1.80 1.90 2
Error (%) 04 34 37 55 159 169 242 285 351 37.1

The test cases: (i) the constant coalescence, (ii) the sum coalescence, (iii) the simultaneous
breakage and coalescence kernels were numerically studied within MC and PPDC frameworks.
Numerically obtained results are compared against the computed results from the analytical so-
Iutions which are presented by Scott [[123] for the first two cases, and McCoy and Madras [42]]
for the last case. Moreover, the numerical solution of the third case has been compared with the
analytical solution of Silva et al. [40] for fractional order of moments. PPDC is very satisfactory
according to accuracy, performance and robustness, and MC requires a very fine grid in the in-
ternal coordinate to be sufficiently accurate; this requirement leads to much higher computational
cost than PPDC. Of course, the studied problems are OD and the computational costs/efforts are
negligible comparing to available computer resources. However, the methods will be employed
in 3D as well, in those cases negligible costs will add up and perhaps create a great bill. Hence,
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it is a very important point that MC is relatively an expensive method, and if it requires such fine
grids to converge when the physical kernels are employed, MC should be discarded. On the other
hand the studied case suits better to test mostly moment based methods; thus, it was not fair to
compare the two methods within these test cases. Nevertheless, the comparisons verify that our
implementations are correct and the numerical results are valid.

3.4.2. Physical Cases

In this subsection, the physical kernels are employed to close PBE, so to numerically simulate
the dispersed phase flow in stirred tanks. Several studies [[19}(124H126] provide comprehensive
experimental data and numerical results for dispersed phase systems in STRs which are mostly
air in water dispersions for varying volume ratios of the phases and different values of turbulent
dissipation rates. These studies provide us with a good basis to verify employed breakage and
coalescence kernels and to compare them within the adopted numerical approaches because if
the values of dissipation rate and gas holdup are fixed for a certain dispersed phase system, the
equilibrium size distribution will be unique regardless of the initial conditions.

This subsection is also interesting to see the applicability range of the kernels for different
physical parameters, e.g. void fraction, interfacial tension, turbulent dissipation rate. For this pur-
pose, the experiments which are conducted by Laakkonen et al. [127] and Olmos et al. [[128]] will
be numerically simulated and the results will be compared. Laakkonen et al. studied the evolution
of the secondary phase in highly turbulent flows and Olmos et al. focused on the experiments with
low values of turbulent dissipation rate.

First, we compare the first and the second breakage kernels, breakage kernels by Lehr et
al. [20,28]]. Three test cases are considered, they all involve air in water dispersion with different
holdup and turbulent dissipation rate values:

i) case-1A: oo =0.13 and € = 0.392m?s 3,

ii) case-1B: oo =0.08 and € = 0.196m?s 3,
iii) case-1C: o0 =0.20 and € = 0.785m?s 2.
The test cases are chosen such that they have already been studied by other researchers and reliable
experimental and/or numerical results are available. Later, PPDC and MC are studied in test
case-1A by employing the superior breakage kernel of the tests, so to compare the accuracy and
efficiency of the numerical methods. The superior theoretical kernel is also compared against the
phenomenological kernel and the chosen breakage kernel is used to numerically simulate the cases
which were studied by Laakkonen et al. and Olmos et al. in order to have an idea on the range of
applicability.

Comparison of the Theoretical Breakage Kernels

The theoretical kernels are studied within the three test cases, case-1A is simulated with using both
the first [28]] and the second [[20]] breakage kernels for varying values of the discretization constant
q in order to obtain a converged result with respect to the discrete internal coordinate; then, the
coarse grid and the fine grid results are compared against the experimental and the numerical
results which were provided by Wilkinson [124], and by Buwa and Ranade [19]], respectively.
Later, the value of ¢ for the fine grid is adopted to simulate the case-1B and case-1C with the both
breakage kernels.
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If we consider that the three test cases exhibit a range, case-1A is the moderate one with
respect to both turbulent dissipation rate and holdup of the secondary phase with o =0.13 and € =
0.392m?s 3. This air in water dispersed phase system is simulated with both breakage kernels for
varying values of discretization constant, g ={1.05, 1.075, 1.15, 1.25, 1.5, 2.0}, see Figure
in order to see the convergence behavior of the kernels.
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Figure 3.17: Steady state interfacial area density vs bubble diameter for case-1A, g =
1.05,1.075,1.15,1.25,1.5,2.0. Left: The first breakage kernel [28]]. Right: The second break-
age kernel [20]].

The results which are obtained with the first breakage kernel show a great change for varying
values of g, the steady-state results for ¢ = 2 and ¢ = 1.05 are completely distinguishable, and
the results poorly converges, even the results for ¢ = 1.075 and g = 1.05 visibly differ, see Figure
Regarding the plot on the left, it is unlikely to claim that any value of ¢ leads to a grid
independent result but we can conclude that one has to choose ¢ less than 1.15 for a “converged”
result. On the other hand, the results which are obtained with the second kernel converge very
nicely with the grid refinement, even the results with ¢ = 1.5 can be accepted as converged. The
results with ¢ < 1.25 are indistinguishable in the plot at the right in Figure Consequently,
the second breakage kernel has a better convergence behavior with the grid refinement.

The obtained converged results motivated us to compare our numerical results against the
experimental results. The results which we got on the finest and the coarsest grids were plotted
with the experimental results, see Figure[3.18] It should be noted, that Wilkinson’s data on bubble
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Figure 3.18: Comparison of case-1A’s results with the reference results (Wilkinson [124] — ex-
perimental, Buwa and Ranade [[19]] — computational). Left: The first breakage kernel [28]]. Right:
The second breakage kernel [20].

size distribution corresponds to the average over the whole reactor, so it does not necessarily
reflect the true equilibrium of the bubble breakage and coalescence. Our comparison has been
performed on the basis of the bubble number fraction normalized with the group width, E(d), for
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both adopted breakage models. Our computational predictions are in a good agreement with the
experimental results of Wilkinson and correlate well with the computational results obtained by
Buwa and Ranade (especially in the case of the first breakage kernel [28]]) for the same problem
and for the same model, see Figure [3.1§]
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Figure 3.19: Comparison of case-1B’s and case-1C’s results with the experimental results by
Grienberger and Hofmann [125]], and by Schrag [126]. Left: The first breakage kernel [28]]. Right:
The second breakage kernel [20].

In Figure experimental data which were measured by Grienberger and Hofmann [[125]]
and by Schrag [[126] are presented and compared to our computational predictions. The experi-
ments were conducted with air—water multiphase flow for different values of superficial gas ve-
locities jg =0.08ms~ ! and jg =0.02ms ™! which corresponds to dissipation rates of 0.196m?s 3
and 0.785m?s ™3, respectively. The representative quality of the results was chosen to be the “nor-
malized number of bubbles per fraction width”, E(d). We obtained a good agreement between
the results of our numerical calculations and the presented experimental results, Figure [3.19] This
comparison leads us to conclude that the model by Lehr et al. [20]] is a more suitable candidate for
our CFD coupled PBE model because (i) its convergence behavior with the grid refinement is bet-
ter such that with ¢ = 1.5 qualitatively converged results can be obtained, i.e. a grid of 35 classes
is sufficient to cover a fairly large domain and to get grid independent results, Figure (ii) it
can predict the experimental results more accurately in a wider range of operating conditions, see

Figure[3.19

Comparison of MC and PPDC

The pure coalescence and simultaneous coalescence-breakage phenomena have been studied with
the hypothetical breakage kernels in section [3.4.1] with both PPDC and MC. The results have
shown that one needs a very small discretization constant, g ~ 1.01, for a sufficiently accurate
results within MC; although, computations with such small g can be easily affordable for 0D
problems, it is not reasonable for the computation of CFD coupled PBE in 3D. Here, the MC and
PDDC are studied with physical kernels in order to compare the convergence of the methods.

In section [3.4.2] we showed that obtaining converged results are possible with g = 1.35 for the
second breakage kernel [20] in studies of case-1A. However, there is no evident that the converged
result is sufficiently accurate; therefore, we simulated case-1A by adopting PPDC whose accuracy
was shown to be better by studying the hypothetical kernels, section[3.4.1] So that, we aim to have
more accurate results by using PPDC and compare the results with MC against those.

Before progressing to the results of the simulations for case-1A, one point has to be clarified:
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why only 100 breakage daughter classes was chosen; the implementation of breakage kernel was
comprehensively explained within PPDC but this point. In the studies of Bove et al. [9,97] the
implementation detail of PPDC for the breakage is not given, how to define the breakage daughter
classes is not described. Since the PPDC algorithm is conservative for the first 2n moments, the
chosen definition of the breakage daughter classes has to be moment conservative, as well. Thus,
we could not adopt the same definition of classes from our implementation of MC but a similar ap-
proach is adopted: considering the computational cost, a piecewise-constant approximation (PCA)
of values on an equidistant grid is adopted; the accuracy of the adopted approach is checked with
a comparison of a more sophisticated approximation.

The definition of the breakage daughter classes should satisfy two requirements. First, the
numerical solution of PBE should be conservative in number (-density) and volume/mass with the
defined daughter classes, and the probability of a certain bubble/droplet breaking to a daughter
whose size is between the limits of a certain class should be accurately calculated. To satisfy
the first requirement the equidistant grid (classes with equal width) is adopted and to satisfy a
predetermined accuracy, a certain number of daughter classes is chosen, 100.

The required number of daughter classes is determined as follows: (i) the breakage of signif-
icantly different sized bubbles (air in water) are chosen, volume of v, 8 X v and 512 x v; (ii) the
breakage kernel from Martifiez—Bazaf et al. [2324]] was studied, equation [3.2.16} (iii) the ob-
tained results are compared with reference results which are obtained with an error of 107 by
using recursive adaptive Simpson quadrature (RASQ); the results are presented in Figure

f(d*)

0.5

Figure 3.20: Probability density functions of the daughter bubbles for varying parent sizes and
€ = 1000m2s~3 with two numerical approaches: RASQ (curves Ref, ) and PCA.

The results that are obtained with RASQ and PCA are in agreement, with respect to the com-
parison of the solid and dashed curves in Figure[3.20} the results are qualitatively identical. More-
over, these cases are studied by Martinez—Bazan et al. [24]], and our results agree with theirs, as
well. The black curve (Dy = 50mm) does not differ more than the blue curve (Dy = 4mm), this
shows that when the parent bubble is larger than a certain bubble size (under certain operating con-
ditions), the p.d.f of larger bubbles does negligibly vary, see the curves for 0.5mm, 1 mm, 3 mm,
4mm and 50mm. Consequently, these results verify that the suggested approaches to define the
breakage daughter classes are sufficiently accurate in a wide range of parent class’s size such that
the ratio of the limits is 10°.

As our approach to implement PPDC is completely verified, we can go on with the results of

SFor visualization purposes, the plot data is linearly interpolated.
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the numerical computations for the case-1A. Case-1A is studied with PPDC and MC; two, three
and four parent classes were employed within PPDC, and g was set to 1.35 within MC. Then, the
results are compared in time for the variables: number density (dy), interfacial area density (iad)
d(23), Sauter mean diameter (d3;), and volume averaged diameter(dy3), see Figure and Figure
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Figure 3.21: Comparison of the total number density and interfacial area density results which are
obtained with MC and PPDC for ¢ = 1.35 and 2,3 and 4 parent classes, respectively.

The first results are promising: the value of ¢ does not need be as small as in the case of hypo-
thetical kernels, Figure [3.14] and the value of ¢ = 1.35, which is sufficient to obtain a converged
result in previous computations (Figure leads us to agreeing results with PPDC in this case,
Figure While the difference between the results of N(¢) is more visible, the results for iad
are almost identical. Since the results for iad are related to the higher order moments than the total
number density, we also checked other variables related to the higher order moments, d3; and dy3,
which are also more interesting than the number density for the engineering applications.
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Figure 3.22: Comparison of the d3; and dy3 results which are obtained with MC and PPDC for
g = 1.35, and 2, 3 and 4 parent classes, respectively.

The results for ds, are more satisfactory with respect to the ones for d43. This consequence
was expectable, the accuracy of the MC reduces as the moment’s order of interest gets further
than the 3" order; nevertheless, the variables, ds, and ds3, which have great importance for the
engineering applications can be very precisely predicted with the both methods, MC and PPDC,

Figure 3.21] and Figure[3.22]

Figure [3.21] and Figure [3.22] presents the qualitative comparison of the results; still, it can be
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interesting to have a quantitative comparison. Since, there was neither experimental nor numerical
reference-results, we had the following approach for the quantitative comparison of the results:
We compare the fractional order of moments against two reference results which are obtained
with i) MC with g = 1.35, ii) PPDC with five parent classes.
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Figure 3.23: Relative error for PPDC against MC (left) and PPDCS5 (right).

Fractional moment order values of the steady-state solution are obtained with MC (¢ = 1.35)
and with PPDC for 2-5 parent classes (the results are denoted as PPDCX). The relative errors
which are obtained for PPDC show that the results with two parent classes (PPDC2) are signifi-
cantly different than the second reference, Figure [3.23] (right); nevertheless, PPDC3 and PPDC4
differ from the second reference less than 2% for the first four moment orders, which are of inter-
est. For the higher moment orders, as expected, the difference gets greater and reaches to 10% for
the 10°th order moment which is not very important. It is clearly shown that discrepancies among
the results reduce with increasing number of parent classes with PPDC. On the other hand, when
the first reference result (MC, g = 1.35) is regarded, the error is on an acceptable range for the
first 4 low-order moments which are of interest. Briefly, both methods lead to almost converged
results with acceptable numbers of parent classes (PPDC) and the discretization constant (MC);
g determined to be about 1.35 for converged results, even the value of 1.5 leads to the accurate
results with the studied physical kernels in contrast to the case of the studied hypothetical ker-
nels. The method of classes provides a smooth size distribution; whereas, PPDC requires to solve
the ill-posed inverse problem to obtain the size distribution. PPDC is significantly more accurate
for moment orders which are higher than four; nevertheless, since both methods have a similar
accuracy for the first 4 order moments which are mostly of our concern, the accuracy is not the
predominant criteria on choosing either.

Comparison of theoretical and phenomenological kernels

Theoretical kernels were not the only option, we also adopted a phenomenological breakage ker-
nel by Martinez—Bazan et al. [23,[24]] to close PBE and to simulate breakage- and coalescence-
dominant cases. The phenomenological kernel is adopted by many researchers to simulate liquid-
liquid [[129]] and gas-liquid [12] dispersions and is also considered as a milestone in reviews of
bubble/droplet breakup of immiscible turbulent flows [[13/131]].

Case-1A is studied with the later breakage kernel from Lehr et al. (the first kernel) (3.2.11)-
(3.2.12) and Martinez—Bazar et al. (the second kernel) (3.2.15)—(3.2.16)) within PPDC method for
2, 3 and 4 parent classes with an initial condition which is prescribed in one parent class whose size
is set to 1.67 mm, Figure @} Later, the initial condition has changed to d = 6.43 mm,; so that, a
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Figure 3.24: Comparison of results with breakage kernels from Lehr et al. (LMM) and Martinez—
Bazan et al. (MB) for case-1A: total number density (left) and Sauter mean diameter (right).

breakage dominant case is simulated whose results are compared with the previously studied case
which was a coalescence dominant case, Figure [3.25]
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Figure 3.25: Comparison of results with breakage kernels from Lehr et al. (LMM) and Martifiez—
Bazan et al. (MB) for breakage- and coalescence-dominant cases: total number density (left) and
Sauter mean diameter (right).

Either breakage kernel has its own converged results in time and in number of parent classes
(npc). The steady state results are obtained for both kernels and for every number of parent classes;
nevertheless, while the steady state solutions of the PBE with the second kernel were obtained for
different npc at significantly different times: 3.3, 2.6s and 1.5s, with the first kernel the numer-
ical solutions converged to steady state about 1s for every npc regardless of the initial condition,
i.e. either in coalescence-dominant cases or in breakage dominant cases the numerical solutions
converged to the same steady-state solution, Figure [3.25]

The steady-state solution of the PBE can be described as a dynamic equilibrium in which
the coalescence and breakage phenomena still occur but the size distribution of the secondary
phase does not change. The first kernel predicts the Sauter mean diameter of the population at the
equilibrium smaller than the other does, Figure In these figures, we also see that the
convergence behavior of the solutions is better with the first kernel. This is a good reason to prefer
to work with this kernel; moreover, in general the numerical solution of PBE overpredicts the size
distribution of the secondary phase comparing to the experimental data, which is another reason
to adopt the first kernel.
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Experiments by Olmos et al. and Laakkonen et al.

The validity range of the kernels for operating conditions is always an issue in population balance
models. Some kernels can be very accurate for a narrow range and have very poor prediction out of
this range. Theoretical kernels typically have a broader operation range since they do not involve
(free-) parameters which (should be) have been found out according the experimental data. We
test our kernels against the experiments which are conducted by Olmos et al. [[128] and Laakkonen
et al. [[127] in order to see their accuracy for various operating conditions and physical properties.

Olmos et al. combine population balance equations to a classical hydrodynamic Euler—Euler
simulation to investigate the operation of a cylindrical bubble column in a commercial software-
package (ANSYS CFX-4.3) for various superficial gas velocities. On the other hand, Laakkonen
et al. numerically and experimentally studied the stirred tanks for different dispersed systems:
air—water, air—1-propanol and air—diethylene glycol. The former study concerns the low turbulent
flow whereas the later one is focused on the high turbulent flows, and the both studies present
comprehensive experimental and numerical data for the comparison.

Olmos et al.’s studies concern low- and mild-turbulent flows in a cylindrical bubble column for
different superficial gas velocities. Their detailed numerical simulations and experiments allowed
them to characterize the occurring dispersed flow regimes, and they could also determine the global
mean diameter in both the experiments and the numerical simulations. This is very interesting for
us because by adopting the simple relation (3.4.2)) between the superficial gas velocity and the
turbulent dissipation rate in bubble columns from Lehr and Mewes [28]] we can roughly simulate
the evolution of the secondary-phase’s mean distribution in time without resolving the flow field:

£=j.8 (3.4.2)

So, we simulated the cases from their study and compared our results against theirs, Figure [3.26
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Figure 3.26: Comparison between experimental and numerical results by Olmos [[128]] and this
study.

The results show that even with a roughly determined €, for the moderate superficial gas ve-
locities the numerical solutions of PBE yield to accurate predictions of the experimental results.
The flow field is not homogeneous for the low superficial gas velocities [[128]], this can be one of
the reasons for large discrepancy between the numerical and experimental results. Moreover, the
empirical relation can be less accurate for high u,, and in the highly turbulent flow-regions
occurring very small droplets significantly reduces the global mean diameter, which can not be
simulated in our approach, thus the experimental results were overpredicted.

Laakkonen et al. studied the local bubble size distributions (BSD) for dense air—water and
CO;—n-butanol dispersions under hydrodynamic conditions characterized by high turbulent dissi-
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pation rates. They measured the BSD at different regions of the Rushton turbine agitated disper-
sions in stirred tanks (14/200L), and they adopted a numerical approach analogous to the com-
partment method in order to simulate the evaluation of the dispersed phase in time at the different
regions of the stirred tanks, a multiblock strirred tank model. For extremely intense agitation, they
considered that the stirring is ideal and the BSD does not spatially vary in the tank so the simula-
tion of these cases is possible with a OD model. They numerically simulated the cases which are
experimentally studied by Hu et al. [[132]]; they also employed the kernel from Lehr et al. [20]. The
experimental [[132] and simulation results obtained in the reference study of Laakkonen et al. [[127]]
together with our simulation results corresponding to the simulation-time of 50 s are summarized
in Table 3.3

Table 3.3: Sauter mean diameters (mm)

Case Hu et al. Laakkonen et al. Our study
air-water 0.447 0.359 0.358
air-1-propanol 0.316 0.207 0.205
air-diethylene glycol ~ 0.598 0.251 0.250

The results are in good agreement with the reference study, in fact they are almost identical.
Nevertheless, we want to remark that: The obtained equilibrium BSDs and the Sauter mean diam-
eters are strongly dependent on the stopping criteria of the iterative scheme. Meaning, the final
Sauter mean diameters may slightly change by changing the criteria for convergence resulting in
different simulation times (smaller criterion longer simulation and vice versa). Accordingly, the
graphs plotted in Figure show the evolution of the Sauter mean diameter for two different
time frames.
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Figure 3.27: Case: air-1-propanol, for 50s and 500s.

In Figure (left), the convergence criteria — defined as the maximum relative change of
gas holdup of all classes — is on the order of 10~ while in Figure (right), its value has been
set to 1078, Tt is apparent from the graph corresponding to long time simulation, that the Sauter
mean diameter is still changing. Such a behavior has been already described in the literature
by Kostoglou [120]]: The steady equilibrium state even for large time scales was not observed.
According to the mentioned study and our observations the results tabulated in the original study
of Laakkonen would have been more meaningful if the time scales had been specified.

Briefly, our numerical simulations have predicted the experimental results for d3, within a
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CHAPTER 3. Population Balance Equation

reasonable error for a wide range of operating conditions and predict the same behavior as it
has been stated in experimental studies. However, for very low turbulent dissipation rates and
small gas holdups, predictions of the model get poorer due to inhomogeneous flow field. On
the other hand, when the flow field and BSD do not significantly vary in the domain (which is
the case for ideally agitated dispersions), even if the void fraction is low, the employed kernel
from Lehr et al. [20] leads to very accurate results. Although, Laakkonen et al. shows that their
phenomenological model is more accurate after a parameter fitting is accomplished for the free-
parameters in the kernels, this is not a desirable remedy for us; because it requires large amount
of experimental study to determine values of the free-parameters. As the inhomogeneous flow
field can be resolved with comprehensive CFD simulations, numerical studies considering PBE
coupled to CFD should significantly increase the accuracy of results.
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The dynamics of gas/liquid—liquid dispersed flows has been a topic of research for the last several
decades and many different methods were developed. Numerical simulation of the dispersed flows
is a cumbersome problem due to high complexity of the flow field and can be possible by adopting
the Euler—Euler (E-E) or Euler-Lagrange (E-L) approaches. For practical reasons like avoiding
high numerical efforts and computational costs which are related to tracking and calculating the
motion of each bubble individually in the flow field, the former method is restricted to be applied
when low volume fractions of the dispersed phase are considered. While the latter method requires
comparatively small efforts in both numerics and computation; nevertheless, both of the methods
lead to the same results if the problems are handled with adequate computational effort [[134].

Each single dropletﬂ is tracked within the E-L approach so that an appropriate mathematical
model can describe the coalescence and breakage phenomena implicitly without statistically mod-
eling these phenomena, i.e. without population balance models. However, if the system which
is desired to be numerically simulated consists of enormous number of droplets, E-E approach
should be adopted; then, it is required to explicitly describe the evolution of the size distribution
with PBE. Consequently, we are faced to a multifaceted problem: solution of coupled CFD-PBE
model.

When the laminar dispersed flows are considered for liquids with similar densities, we are
left with a trivial problem: there will be no breakage due to absence of turbulent eddies; and
droplets follow the streamlines and they do not coalesce. Therefore, we will focus on the turbulent
dispersed flows in which the colliding turbulent eddies on the droplet surface result in breakage,
and the eddies of larger size than the droplet transports and give rise to coalescence.

The numerical simulation of turbulent flows is a very challenging subject. The mathematical
models describing the turbulent flows are mostly very demanding in computational effort and

I'Since one-way coupled PBE-CFD models are mostly employed to describe liquid—liquid dispersed systems, we
adopt the word “droplet” through this section; nevertheless, the reader can freely refer to the bubbles, as well. When
this does not hold and it is not clear from the context, it is explicitly mentioned.
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CHAPTER 4. PBE and CFD: One-way coupling

require highly accurate numerical techniques: very fine spatial grid and small time-steps, high-
order stabilization schemes, implicit numerical methods, positivity-preserving linearization.

The turbulence models deviate in a wide range from zero-equation (algebraic) models to sec-
ond order models (Reynolds Stress Models). Turbulence models which are applicable to produce
results with an acceptable accuracy and reasonable computational cost in general originate from
the family of two-equation eddy viscosity models. The most preferred model in this sense is re-
lated to the standard or modified k — € turbulence models which have been implemented in several
commercial CFD programs and in-house codes. In most of the present studies which consider
implementation of CFD coupled with PBE, it is preferred to work with commercial codes, .e.g.
Parsival, Ansys CFX. In our study, the turbulence is described within a Reynolds Average Navier-
Stokes (RANS) approach by adopting a modified k—& model: Chien’s Low-Reynolds Number
k — ¢ model [133]].

Difficulties in the numerical solution of the PBE have been discussed in detail in Section 3. Ad-
ditional to those difficulties in numerical simulations of dispersed flows, the mathematical model
describing our problem has a rather interlocking structure. The external and internal couplings
in this interlocked structure cause high non-linearities for which a carefully-planned nested-loop
strategy is required in order to obtain accurate results with reasonable amount of computational
effort.

Size distribution of the secondary phase has a certain influence on the flow field; however,
when the density and viscosity of the two fluids are similar, and the holdup of the secondary
phase is low, one can assume that both phases share the same velocity field. So that, we can
couple the PBE with CFD in a one-way fashion: The flow field influences the size distribution of
the secondary phase but size distribution has no effect on the flow field. This assumption yields
further significant simplifications and is important from the aspect that the uncertainties/errors in
the solution of the PBE will not influence the flow solution, and cases with well known solutions
of the flow field can be employed to test our coupled PBE-CFD implementation.

The studied test cases involve a channel flow, a pipe flow and static mixer applications. The
channel flow is a case study to test the accuracy of the employed stabilization scheme; the pipe
flow case-study concerns the transient simulation of population balances and flow field. The last
case is a rigorous numerical and experimental study in which flows with varying flow-rate- and
holdup-values through Sulzer SMV™ static-mixer-elements are considered. So that, the one-way
coupled PBE-CFD implementation is validated and verified by comparing the obtained numerical
results against experimental ones.

4.1. Mathematical modeling and numerical treatment

The evolution of the dispersed phase in a turbulent flow field occurs in time, space and internal
coordinates according to the hydrodynamic quantities and physical properties of the dispersed
phase system. In the E-E approach, the governing equation of the dispersed system in a turbulent
flow field can be written as an inhomogeneous unsteady transport equation

g—FuD-Vf:B +B"+CT+C. 4.1.1)
This equation (4.1.1)) is a transport equation for liquid/gas—liquid flows in terms of the number
density probability function, f, of drops. By definition, f needs to be related to an internal coor-
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dinate, what in most of the cases is the volume of bubbles, v. So that, the number density, N, and
void fraction, o, of bubbles having a volume between v, and v, are:

Vp Vp
Nap :/ fdv, dgp :/ fodv 4.1.2)
Vg Vg

While the considered transport phenomena account for convection in spatial space (governed by
the flow field up in (4.1.1))), the breakage and coalescence transport drops in the internal coordinate
(governed by the PBE). This is why, the attempt on describing the liquid/gas—liquid flows requires
the coupling of the PBE and fluid dynamics; moreover, since the flow field in our scope which
is characterized as turbulent can not be numerically simulated in a direct numerical simulation
(DNS) fashion, the turbulence model has to be incorporated in order to account for the unresolved
flow features.

Let us recall Figure 2.1, we see that the complete mathematical model involves three parts

Navier-Stokes equation
C1 - external coupling
2, <>
m B

omentum equation | »| continuity equation . '

p - internal coupling

u B, U u : velocity
& p :pressure
turbulence model multiphase model Vi .:turbulent eddy viscosity

Pr o holdup

C3 < S »|C4 Sy - production rate of

k-c model k. popu|ati0n balance equation bubble induced turbulence

(i) the Navier-Stokes equations (N-S), (ii) the turbulence model, (iii) the population balance model;
and external couplings among these parts additional to internal couplings of the each part. This
sketch gives an idea about nonlinearity of the complete model. The internal couplings (C2, C3
and C4) are very strong and they have to be treated either in a coupled fashion, e.g. Galerkin
schemes for N-S, or should be decoupled and treated in a non-linear loop, e.g., Projection schemes
for N-S. The C5 coupling, which is also strong, associates the Navier-Stokes equations with the
turbulence model and requires the equations to be solved in an iterative manner. Meanwhile,
as a consequence of multiphase modeling, one has to be aware of even more complex coupling
effects due to buoyancy (C6) and enhanced turbulence effects (C7). Furthermore, the turbulence
and the multiphase model is coupled by means of the flow field with the Navier-Stokes equations
(C5 and C7); which all results in a rather interlocking structure. To cope appropriately with the
described strongly coupled system is quite challenging and may result in unavoidably increased
computational cost. Therefore, in this work the coupling effects are relaxed by not taking into
account the influence of the turbulence induced by the secondary phase (also known as bubble
induced turbulence in gas-liquid systems) and by neglecting the buoyancy forces. Consequently,a
one-way coupled model arises, which is valid for pressure driven and shear induced turbulence
dominating systems.

The fluid dynamics is described by the RANS equations of the following form

8u T _
3 T Vu— V- (v4vr)[Va+ Vu']) 4 Vp =1, (4.1.3)
V-u=0,

where v depends only on the physical properties of the fluid, while v (turbulent eddy viscosity)
is supposed to emulate the effects of the unresolved velocity fluctuations u’. According to Chien’s
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Low-Reynolds Number modification of the k — € model, the eddy viscosity has the following

definition 5

k k
vr=Cufyg with E=e—2v, (4.1.4)

where k is the turbulent kinetic energy, € is the dissipation rate and y is the closest distance to
the wall [[133]]. Clearly enough, for computations of k& and € the above PDE system is to be
complemented by two additional mutually coupled convection-diffusion-reaction equations [[135].
For our purposes, it is worthwhile to introduce a linearization parameter y = ‘c}] = €/k, which
is related to the turbulent time scale Tr and which makes it possible to decouple the transport

equations as in (4.1.3)—(@.1.6) [136].

k. v <ku—VTVk>+ock:Pk, 4.15)
ot Oy
%€ v. (éu—vTVé>+[3€‘:yC1f1Pk. (4.1.6)
ot O¢

The involved coefficients in equations (.1.5)—(4.1.6) are given by
2v 2v + vr T2
oa=v+ 7 B=Cfav+ y—zexp(—O.Sy ), Pe= 7|V“+V“ "
4.1.7)

2 2
fu=1-—exp(—0.0115y"), fi=1, fo=1-022exp— <6vé) .
In the one-way coupled approach the dispersed phase is considered to be advected with the same
velocity as the continous phase, so the dispersed phase velocity up in (4.1.1) can be replaced
with u; and, when the source and sink terms are written explicitly, the governing equation for the
dispersed phase follows as

%ﬁch“'Vf:/Dm"B(D’ﬁ)f(ﬁ)dﬁ—fi)m/OuﬁrB(ﬁ,o)dﬁ
+;/OurC(f),Uﬁ)f(6)f(Df))dﬁf(n)/omrc(f),v)f(f))dﬁ. (4.1.8)

Nevertheless, the fluid dynamics has been described with a turbulence model; and according to the
(temporal) averaging concepts, equation (4.1.8) has to be extended with the arising pseudo diffu-
sion terms in analogy to the approach of the Reynolds stress tensor, V-u/f/ = —V - (;—;V?), where
or is the so-called turbulent Schmidt number which is equal to 1 for spherical particles/drops.
Then, the governing equation is extended with the diffusion term, even though the dispersed phase
is not diffusive in nature.

%{ﬂl.wv.(vTVf):;/ODrC(ﬁ,uf))f(ﬁ)f(uﬁ)dﬁ
—f(u)/Owrc(ﬁ,n)f(f))df)+/:r3(u,f))f(f))df>—fg)u)/Onf)rB(f),U)df) (4.1.9)

Equation has to be closed with the appropriate definitions of the breakage and coalescence
kernels (#8 and € respectively). In Section 3, we discussed this issue in detail and decided to
employ the kernels from the study by Lehr et al. [[20]]. So that, the equation describing the turbulent
dispersed phase motion in a one-way coupled fashion with Euler-Euler approach has been closed,
and we can progress with a discussion on numerical solutions of (4.1.9).
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4.1.1. Initial and boundary conditions

Governing equations are the mathematical description of physical phenomena; when they are
prescribed with specific initial and boundary conditions in a certain spatial domain (Q C R%)
and a given time interval ([0,7]), they describe a certain problem. Despite of their importance,
initial and boundary conditions are rarely discussed in detail.

We followed the studies by Turek [[137]], Hysing [138]] and Kuzmin et al [139] on the discus-
sion of the initial and boundary conditions. Usually two distinct boundary conditions suffices to
prescribe a problem: the Dirichlet condition and the Neumann condition. While the first one spec-
ify the value of a variable on the corresponding part of the boundary (dQp), the later determines
the in- or out-flux at the respective part (dQy).

Boundary conditions for Navier-Stokes equations need to be given for the velocity variable
and the pressure; the Dirichlet condition, usually, is used to prescribe the inflow and the (no-)slip
condition at the inlet and on the impermeable walls, respectively (.1.10).

u=up on 0JIQp (4.1.10)

On the other hand, it is a very common practice to set zero stress (h* = 0) as a special case of
Neumann condition on the outlet part of the domain in order to prescribe the outflow (4.1.11)).

fi-(Vu+Vvu')=h" on 9Qy 4.1.11)

The adopted Chien’s turbulence model offers the advantage of simple boundary conditions on the
walls (I'), C 0Qp):
u=0, k=0, €=0 on I,.

While the initial definition can be easily set for the velocity field (4.1.12), for turbulence variables
it is not so; it is rather complicated to prescribe the proper initial conditions of the turbulence
variables for a transient solution.

u(x,0) = up(x) (4.1.12)

If the velocity field is initialized with ug(x) = 0, the flow is initially not turbulent and takes a
certain time for the turbulent flow to develop, say t*. When ¢ < t*, the flow is simulated by solving
only incompressible nonstationary Navier-Stokes equations with a predefined constant effective
viscosity Vg. And, the initial values of k£ and € at r = t* can be given depending on the default
mixing length /y and vg as follows,

3/2

2 k
ko = (\Q) . e=C, 0~ forr<t. (4.1.13)
lo lo

4.2. Numerical treatment

The left hand side of equation is very well known to researcher from CFD world, and
the right hand side concerns the experts in the PBE field; and the researchers of these fields are
engaged in the numerical solutions of these equations. The numerical solution of Navier-Stokes
equations has been a research topic for more than half a century and many researchers with differ-
ent backgrounds, e.g., mathematicians, physicists, engineers, computer scientists, have still been
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active on this topic. The numerical solution of PBE is considered in numerous studies with an
extensive interest since 1960s, as it is presented in detail at Chapter 3.

Mathematical aspects of the problem to which the researchers in the CFD field faced are:
(i) highly nonlinear systems of equations which involves unsteady partial differential equations to
be solved within sophisticated domains, (ii) arising saddle-point problems because of the incom-
pressibility constraint, (iii) local changes of the problem character in space and time, (iv) tem-
porarily stiff systems of differential equations. [[137]. These characteristics cause great challenges
in numerical and computational solutions of the problem. Sophisticated domains and boundary
layers require that the computational domain is represented with anisotropic spatial meshes which
lead to systems of equations with huge number of unknowns; the solution of those are possi-
ble with only efficient iterative solvers. Moreover, the pair of discrete spaces for the velocity
and pressure unknowns should not be any but rather satisfying the LBB-condition. CFD experts
have been working to over come these solutions for decades, and one of the most remarkable and
comprehensive study is by Turek [[137] who presents a guideline how to get through with these
challenges and implements his methodologies within the FEATFLOW CFD solver package, which
is developed further through this study with a coupled PBE solver.

Numerical solutions of the turbulence models have been a research topic since 1970s; how-
ever, very few studies presented the implementation details with all the aspects [139]]. Each
employed numerical technique may be decisive on the accuracy of the solution; nevertheless, a
positivity-preserving discretization with a high-order accurate FEM stabilization scheme for the
nasty convective term has a predominant importance while solving both the turbulence equations

#@.1.5)-(.1.6) and the governing equation (4.1.9).

Our approach to the numerical solution of the equations is first to (semi-)discretize unsteady
equations in time by using the standard 6—scheme; then, the spatial discretization follows within
FEM. And, in case of the one-way coupled CFD-PBE the right hand side of the equation
is computed by using either MC or PPDC.

4.2.1. Time stepping technique

The temporal discretization is, as a common practice, the first step in the numerical solution of
unsteady partial differential equation. It requires the choice of an appropriate time stepping tech-
nique which needs to be not only accurate but also stable, easily realizable, and computationally
efficient and robust. One of the several candidates is 6—scheme which depending on the choice
of the 0’s value, leads to one of the following schemes: (i) Forward-Euler (8 = 0) (ii) Crank-
Nicholson (6 = 0.5) (iii) Backward-Euler (6 = 1) After applying the 6—scheme to (4.1.3)), the
semi-discrete Navier-Stokes equations read as follows:

At time ¢ = ¢" with time step Ar = t"*! —¢" for a given u",
then solve for u = u"*! and p = p"*!

u—u" ‘ v, T _ on+l
& Ol V)u— V- ((v+vr)(Vu+ Val)) 4 Vp=v “2.1)
Vu=0

where the right hand side is given by

Vi =t (1-0)" — (1-0)[(u"-V)u" — V- (v+vr)(Vu" +V(u")T))] (4.2.2)
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The other equations, @.1.5)-(@.1.6) and (@.1.9), are discretized in time analogously to the ex-
plained procedure yet the application of 6—scheme to (4.1.9) is not as straightforward as for the
others and it will be presented in detail when the fully-discrete counterpart of the equation is given
in the Section

4.2.2. Spatial discretization

The spatial discretization is commonly realized by employing one of the following methods: finite
difference (FDM), finite volume (FVM), and finite element methods (FEM); the last two are gen-
erally employed methods in today’s CFD solver packages. Bayraktar et al. [167]] had a detailed
comparison of CFD solver packages which employ FVM (OpenFOAM), element based FVM
(Ansys-CFX) and FEM (FEATFLOW-Q,/P)); and it was shown that the FEM based CFD-solver
has a significant superiority in terms of the accuracy and the efficiency.

In the finite element discretization, firstly, the weak or variational formulation of the problem
is obtained by integrating the equations in whole domain after multiplying them with the test
functions (v = [v;v2...v4] and v € R¥) of an appropriate finite element space, namely test function
space. In order to reduce the smoothness requirements of the variables, the terms involving higher
order derivatives can be integrated by using the Gaussian theorem (integration-by-part).

In order to present the finite element formulation of Navier-Stokes equations, we firstly define
an inner product:

(u,w) = / u-wdQ.
Q

And, the weak formulation of Navier-Stokes equations can be obtained by applying the test func-
tions through the defined inner product to (4.1.3))

0
u-de—i—/(u~V)u-de:/Vp-de+
o ot Q o)

. - )
/QV ((v+vr)[Vu+vu']) Vdf”/gf VI 423)

Diffusion term

/(V-u)qu—O.
Q

With the following definition of trilinear, bilinear and linear forms (in order)
c(u,v,w) := / (uV)vwdQ,
Q
a(lu,v) = / {[Vu+Vu']-VvdQ = ({[Vu+Vu'],Vv),
Q

b(q,v) :—/QqV-de,

equation (4.2.3)) can be written in a more compact form as

Diffusion term

J
(5¥) +cwuy) +a(v,uv)+ 10 ~b(p,v) = (EV) (424
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where f(h,v) is the arising surface/line integral as a result of applying integration by part on the
diffusion term

f(h,v)z/aQ h-vds,

and the value of the flux 7 = —(vVu) - n is provided with the Neumann boundary condition on
the boundary part 0Qy; we extend the discussion on the term f after the discrete counterpart is
obtained.

First, the time-discretization is applied to (#2.4) in accordance with @.2.1)-@2.2) (u = u"*!
and p = p"th).

(w,v) +AtOn(v,u,v) — A0 b(p,v) = AO (£, v) — f(",v))
+ (", V) + At (1=0) (b(p",v) + (£, v) +n(v,u",v) — f(h",v)) (4.2.5)

where n(v,u,v) := c¢(u,u,v) +a(v,u,v). Treating explicitly the terms on the right hand side and
denoting it with r, gathering the terms with the same unknown together with defining s(u,v) =
(u,v)+n(v,u,v), and rewriting (4.2.3) yields to the formulation (4.2.6)—(4.2.7) for given v, 8 and
At, which gives an idea about how the algebraic system of equations can be resembled on the
matrix level after the discretization of (#.2.5) is realized. Since the solution u does not necessarily
to be divergence free, g appears on the right side of the incompressibility condition; however,
we will explicitly impose this constraint on u while seeking for an approximated solution for
the pair {u,p} € H := H)(Q) x L := L2(Q), where H{(Q) L3(Q) are the usual Lebesgue and
Sobolev spaces. Each term on the left hand side leads to a block matrix with the finite element
approximation of the unknowns and test functions.

s(u,v) —0Atb(p,v) =r VveH (4.2.6)
b(q,u) =g Vg€ L. 4.2.7)

Then, the domain must be decomposed, the approximate solution u, has to be defined, and the test
functions should be chosen from a suitable finite dimensional space.

The approximation of the problem can be obtained with the finite element spaces H, C H
and Ly C L which are spanned by piecewise polynomials with respect to a regular subdivision or
triangulation T, = U{T} of the domain Q into simple cells 7 (triangles, quadrilaterals, etc. in R?
and tetrahedarals, hexahedrals in R?); the subscript /4 is a measure of the cell-size, e.g., diameter,
width. Now, we need the choose an appropriate pair of finite element spaces for the pair {u, p}
representing the velocity and the pressure in a bounded region Q C RY (d € {2,3}) with sufficiently
regular boundary dQ. There are numerous discrete spaces Hj, and L, which are proposed in the
literature satisfying the stability estimate and the approximability property; however, not all leads
to linear system of equations which can be efficiently solved [137].

Pairs of stokes elements, e.g., nonconforming linear or rotated multilinear for the approxi-
mated velocity solution and piecewise-constant pressure functions, can implicitly satisfy Babuska-
Brezzi condition (stability estimate). Moreover, certain higher order elements, e.g, Q> /Py, P>/ P,
(Taylor-Hood) element, can directly satisfy the stability estimate. All rigorous studies on the
derivation of stable finite element pairs agree on one major result that the approximate velocity
space Hj, should have at least one higher degree than the pressure space Ly has [137].

The rotated bi/trilinear shape functions for the velocity and piecewise constants for pressure
(O, /Qop) which may be considered as the natural analog of the well-known Crouzeix-Raviart ele-
ment is presented by Rannacher and Turek [[140]. Rannacher-Turek element has shown that (i) sat-
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isfying the stability condition without any additional stabilization being independent of the geo-
metrical decomposition, in addition it can be supported with the upwind and streamline-diffusion
stabilization schemes for higher Reynolds number flows; (ii) having comparable accuracy with
other first order elements (Q;/Qo, Q1/0Q1, P1/P)) yet being the only unconditionally stable one;
(iii) leading to an “optimal” solution schemes with the local and the global Multilevel Pressure
Schur Complement solvers, particularly for the transient simulation of unsteady flow problems.

In the solution of the Navier-Stokes equation, the velocity solution has been approximated
with the rotated trilinear polynomial trial functions QO which is defined as

QI(T) = {QOWEI‘ S <17x7yvzax2_y27x2 _Z27>}

with the corresponding multilinear 1-1-transformation 7 : 7 — T holding for each T € T}, where
T = [~1,1]? denoting the reference element. Depending on the choice, having either the mean
values (“)or point-wise values (%) on the faces, the degrees of freedom are determined with either
following nodal functionals,

FO @) = ]! ﬂ% vdy or FO () = vmr)

where I' C dT), which stands for all boundary faces I" of the elements 7'; moreover, considering
the accuracy purposes one can employ the non-parametric counterparts on the cost of increasing
computational effort in case of triangulations with highly distorted and stretched cells.

The pressure shape functions are chosen from the finite element space of piecewise constant
polynomial functions Qg such that

Ly={qn € L%(Q) | g = const.,VT € T),}
Consequently, the approximate solutions u;, € Q1 and p;, € Qp can be given as

wi(x,1) = Y u;()9;(x), and pi(x.r) Z;pk(t)llfk(X)
J

where @; basis functions span Q0 finite element space. Then, following the conventional Galerkin
method the test functions ¥; are chosen from the same space; which yields to the equal number of
unknowns and equations; nevertheless, this is not the only option, e.g., for convection-dominated
transport problems Petrov-Galerkin methods offer certain advantages [39].

Now, we are ready to present the discrete operators which arise when the finite element spatial
discretization is applied to (4¢.2.3)). First, let us write the semi-discrete problem according to (4.2.3)
within Galerkin finite element approach for the nodal value u;,

du;
;[/ﬂ (Pi(deX} 71‘1 +; [/Q V- (Veff[V(pj+ (V(Pj)TDdX} u;
+Z |:/ (Pi(llj . V(pj) dx] u; —I—Z [/ \PkV(PidX:| Dk = / ofdx— | @;hdS (4.2.8)
~ /e T L/ Q aQy

The first three terms on the left hand side yield to , so-called, the system matrix S; and the last term
will result in the discrete gradient operator B, transpose of which is the discrete divergence operator
BT . The system matrix has 2 components: the mass matrix M = m; ; and discrete transport operator
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K = k;j; the discrete transport operator involves discrete convective ¢;; and diffusive operators d;;.

Mc =(m;j) = /Qwitpjdx
K=(kij) = —(n;j)—(dij)

where n;; = /(Pi(llj'V(Pj)dX
Q

and d;; = /V(Pi'<veff[V(pj+(V(Pj)T]) dx
Q

The discrete gradient operator B and the discrete divergence operator B can be given within mixed
finite element formulation as

B= / ¥.Ve;dx and B! = / Vo, dx (4.2.9)
Q Q

By using the defined discrete operators we can write the discrete counterpart of (4.2.5)), i.e. the
fully-discretized momentum equation.

[M +0AtK ()] u+BArBp = [M + At(1 — 0)K (u")]u" + Ar(1 — 0)(Bp" + ") +f(u)  (4.2.10)
The incompressibility constraint can be analogously written to (4.2.10),
B'u=0 4.2.11)

Then, the problem which is formulated with (.2.6)—(.2.7) can be given on the matrix level as a
coupled nonlinear problem in the form of

S OAB| |u f
= 4.2.12)

BT 0 p 0

where the block matrix S is the so-called system matrix which consists of the mass matrix and the
discrete transport operator, S = [M + 0ArK(u)]. The system matrix S has an analogous structure
for all conventional unsteady transport-problems; and that is what we also need for numerical
solutions of turbulence equations (.1.3)—(4.1.6) and coupled CFD-PBE (#.1.9).

In case of the coupled equations of k — € turbulence model, the finite element approximation
yields to a similar algebraic system of equations with the analogous mass M and transport K
matrices. For the discretization of nonlinear scalar transport equations (4.1.3)—(4.1.6) we adopted
the O, finite element space within the Galerkin approach; so that, the discrete counterpart of
(@#FT3)—@T1.6) can be respectively given for the unknowns k = k"*! and & = &*! as following,

M — 0AK ()] k = [M + (1 — 0)At(K ()] K +r(k), (4.2.13)
M — 0ATK ()] & = [M + (1 — 0)Ar(K (u"))] &" +1(8). 4.2.14)

Actually, the fluid dynamics coupled PBE will lead to a very similar algebraic system, if the source
and sink terms in (4.1.9) are discretized within MC; then, the scalar transport problem in space
and the internal coordinate (4.1.9), however, yields to a number of coupled nonlinear algebraic
systems which is as many as the number of classes and can be given in the following form for the
i’th class;

M —OAtK (u)] fi = M+ (1—-0)At(K(u"))] fi' +r(f))- (4.2.15)
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And, when the PPDC is employed resulting nonlinear algebraic systems are as large as the double
number of parent classes.

As a conclusion, it is, now, clear how to achieve the space- and time-discretization of the equa-
tions, as well in the internal coordinate (regarding Chapter 3). However, the presented algebraic
systems are strongly nonlinear, and the fully discretized Navier-Stokes equations exhibit
a saddle point problem for which the pressure can be considered as the Lagrange multiplier for
the incompressibility constraint. Therefore, we should firstly focus on solutions of two different
algebraic systems: (i) a saddle point problem being described with (.2.12)) (ii) multiple nonlin-
ear algebraic systems of the generic form 8(x())x(!) = r(x(!)) arising due to any of the equations
@.2.13)-@.2.15); with regarding the internal and external couplings in the respected mathematical
model, see Figure 2.1]

4.2.3. Solution of the discretized equations

When the complete system of equations is considered, as it is shown in Figure[2.1] the three “sepa-
rate” systems of equations (the Navier-Stokes equations, the turbulence model and the multiphase
model) are linked to each other with external couplings which are evident even at the level of con-
tinuous equations, whereas the internal couplings should be considered depending on the chosen
numerical approach to solve the obtained discrete systems of equations, e.g., the velocity-pressure
coupling (C2) in N-S can be handled in many different ways.

For n=1,2,... main time-stepping loop L

For k=1,2,... outermost coupling loop

e Solve the incompressible Navier-Stokes equations

For 1=1,2,... coupling of v and p

For m=1,2,... flux/defect correction

e Solve the transport equations of the k — € model

For 1=1,2,... coupling of k and €

For m=1,2, ... flux/defect correction

e Solve the population balance equation

For 1=1,2,... coupling of a; fori =1,...,s

For m=1,2, ... flux/defect correction

Figure 4.1: Developed computational algorithm consisting of nested iteration loops.

The existing external couplings in the adopted one-way coupled CFD-PBE approach leads to a
nested iteration strategy, see Figure which needs to be elaborated after specifying the solution
methodologies for each part of the coupled model. In order to solve the complete model, first
the discrete Navier-Stokes equations should be solved; followed by solving the turbulence model;
however, since C5 coupling is strong, the equations need to be solved in an outer-loop; and when
a converged solution is obtained; the decoupled PBE needs to be solved by using the obtained
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CHAPTER 4. PBE and CFD: One-way coupling

solutions for the velocity, the turbulent dissipation rate and the turbulent eddy viscosity. The
adopted one-way coupled CFD-PBE approach also offers the advantage of solving the coupled
CFD-PBE on a given quasi-stationary turbulent flow field.

Navier-Stokes equations

The discretized Navier-Stokes equations exhibit a saddle point problem; zeros exist on the diagonal
of the matrix in (4.2.12) due to the incompressibility constraint. The matrices are indefinite and,
often, with poor spectral properties; thus, the solution of this sort of algebraic systems requires
special care.

The solution algorithm for generalized saddle point problems emerges in two broad categories:
(i) coupled methods, (ii) and segregated methods. Coupled methods consider the saddle point
system (4.2.12) as a whole and compute the unknowns simultaneously; all unknowns are treated
implicitly without approximating any. Either direct solvers or iterative solvers can be employed
within these methods. The direct solvers are based on triangular factorization of the global matrix
A (the matrix on the left hand side of (#.2.12)), and the iterative solvers are usually chosen from
the Krylov subspace methods, which all are applied to the whole system; commonly with an
appropriate preconditioning. Segregated methods compute the two unknowns separately but in
order; in some methods the first unknown is the first to be solved, later the second; and others do it
in the other-way around. These methods involve the solution of the reduced linear systems, which
involves only one of the unknowns, so the reduced system is smaller in size than the coupled
system. The each reduced system can be solved by using direct or iterative solvers; the two
most typical segregated methods are the null space method and Schur Complement method which
is based on a block LU factorization of \A. The reader is referred to the study of Liesen et al.
[[141]]; they comprehensively present the numerical solution of saddle point problems in their rather
lengthy paper.

Turek throughly discusses the solution of the saddle point system arising as an attempt
to numerical solutions of Navier-Stokes equations in his book [137]]. It can be deduced from his
book that the segregated Navier-Stokes solvers which are constructed based on projection schemes
are suitable to be employed for the simulation of two-/multi-phase flows which has to be studied on
rather small time intervals; thus, in the numerical solution of Navier-Stokes equations maximum
allowable time step sizes are naturally restricted.

The solution of equation (@.2.12) in a segregated fashion is based on the notion that the mo-
mentum equation is decoupled from the incompressibility constraint within the Schur complement
method, which yields to the general Pressure Schur Complement approach by assuming that the
operator S~! exists. And the corresponding (linear) pressure Schur complement equation reads

1
BT'S 'Bp = %BTS’lf; (4.2.16)

and the corresponding velocity vector is given as u = S~!(g — kBp) for a known pressure p. The
pressure complement equation can be solved by employing the preconditioned Richardson itera-
tion [[142]].

pU) = p 4 [BTs'B] " A BT (£ — At ) 4.2.17)
However, from the computational aspect there still remains a challenge: to obtain the Schur com-

plement matrix C := BTS~!B, which is not very likely because S is a full matrix and usually
(computationally) not possible to be explicitly inverted.
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4.2. Numerical treatment

The matrix S can be assumed, consistent with the previous definition in (4.2.12), to have the
following form
S:= oM + BAIK (4.2.18)

where the coefficients oL and k are spatial and temporal discretization related. Here, it is clear that S
can be approximated with the mass matrix as the time step size decrease, Ar — 0, which suits very
well to our purposes since the nature of problems in our focus is very restrictive on the allowable
maximum step sizes and characterized with high Re. Then, the mass matrix M can be substituted
with its approximation My, the lumped mass matrix, which is a diagonal matrix assembled with the
corresponding row-sums of M, or directly with an appropriate cubature formula for the numerical
integration in the assembly of M. And, when is rewritten within the discrete projection
method, with C := P =BT M, IB it yields to the following iterative scheme in Figure where
the matrix P = BTML_IB can be considered as a discrete operator originating from the mixed finite
element formulation of the continuous Poisson problem. Now, the problem is reduced to solving
the linear equations in Step I and Step 2 where the Burgers’ equation and the discrete pressure
Poisson equation have to be solved.

1. Solve the Burgers equation for the velocity ot

S = f— ArBp!)

2. Compute the update g for the pressure from the ‘Pressure-Poison’
problem
Pg=A"'Bla

3. Update the pressure p and project the intermediate velocity @ to a
divergence free space

pUth = p g D) = ﬁ_AtMZIBq

Figure 4.2: Conventional Projection methods

Solutions of the Burgers’ equation require the solution of non-symmetric linear system which
can be achieved by employing BICGSTAB from Krylov subspace methods and/or by geometric
multigrid methods. And, it is also well known that the geometric multigrid method is one of the
most, if not the most, efficient methods for the solution of discrete pressure Poisson problem.
For the chosen pair of elements it was shown that it is possible to construct an “optimal® flow
solver with the geometric multigrid solvers [137]]. Therefore, for the solution of linear problems
we employ a multigrid solver of which one sweep to solve the linear problem Azu; = f can be
interpreted as

1. Perform m presmoothing steps to obtain a more accurate iterate for the initial guess u; at
level k . _
ui:Skui_l for j=1,...m
where 8y is the smoothing operator.

2. Sufficient presmoothing steps yield to a solution which involves high frequency errors when
it is restricted onto a coarser grid. Then, the residual on the k’th level is restricted
ne1 =1 (fi — Axu")
where ’ciil is the restriction operator.
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3. Compute the update term for the solution at the coarse grid level
Apug_; = ri—q

4. Interpolate calculated corrections to the fine grid and update the intermediate solution

m+1 __ k k *
W~ = Uy T 0Ty

where o is a damping parameter and 1’,271 is the prolongation operator from level k — 1

to level k.

5. Perform n postsmoothing steps to get the final solution MZHH'".

ui“ = Sk(u,{)

This multigrid sweep can be applied on successively refined/coarsened meshes such that distinct
multigrid cycles e.g., V-cycle, W-cycle or F-cycle, having significantly different performance are
obtained (regarding the computational cost and the linear convergence); the multigrid cycles are
successively applied to ensure a converged solution with respect to a predefined tolerance.

Multigrid sweeps have four main components: the smoother, the restriction and prolongation
(interpolation) operators, and the coarse grid solver; from those the most computationally demand-
ing is the smoother. The smoothing-step is based on the iterative solvers, e.g., Jacobi, SOR, SSOR,
and consists of several iterations of the chosen method; the incomplete LU factorization (ILU) also
stands as an excellent candidate for the smoother; nevertheless, they can be unnecessarily expen-
sive for the regular grids [[138]]. The prolongation and restriction operators are mostly built in
two ways, either as a interpolation or discrete L>-projection operators; and we have preferred the
later for accuracy purposes on non-equidistant grids. The last component is the coarse grid solver
which can be adopted as one of the mentioned iterative or the Krylov subspace methods, e.g., con-
jugate gradient (CG), biconjugate gradient (BiCG), biconjugate gradient stabilized (BiCGSTAB),
depending on the symmetry of the linear system in the scope. Moreover, with up-to-date comput-
ers even the direct solvers can be employed to construct efficient multigrid solvers for fairly-fine
coarse-grids (approx. 20,000 unknowns).

The efficiency/optimization of the multigrid solver has always been an interesting topic. The
multigrid solver has many (in)dependent components which have several problem-dependent pa-
rameters to be set, e.g., number of pre-/post-smoothing steps, number of grid levels to be swept,
type of multigrid cycle, the adopted solvers/smoothers and their own parameters. One rule of
thumb can be postulated as the residual error does not need to be reduced by a great factor in the
coarse-grid solver step, one digit gain usually suffices. There are many studies on the optimiza-
tion of the multigrid solvers but the following study [142] stands out regarding how an efficient
flow solver can be constructed within the Multilevel Pressure Schur Complement approach based
on optimized multigrid solvers, which clearly states that the challenge is far larger than to only
develop an optimal multigrid solver but to build an efficient rigorous approach for the accurate
solution of Navier-Stokes equations.

Even the most-accurate flow solvers may fail to converge in the solution of flow problems
when special care is not taken for the discrete convective operator. Depending on the high local Re
(Reyp,) and the mesh size, there may exist unresolved subgrid effects which sooner or later cause the
numerical solution to prescribe unphysical flow field. The underlying fact in numerics is that with
the chosen finite element discretization the obtained “central” discretization is, in principle, 2nd
order accurate unless the local mesh size is larger than a certain mesh size, which is very restrictive
and makes it impossible to obtain accurate results without special treatment of the convection term.
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4.2. Numerical treatment

As a remedy, artificial diffusion is added to cancel out the dominating convective terms, which is
not very straightforward and can be accomplished in many different ways.

A common way to introduce the “required” numerical diffusion is to follow the upwind strate-
gies which are employed for different discretization methods, e.g., FVM, element based FVM,
FDM, FEM. The implementation of the method varies but the idea remains the same: new lump-
ing regions and lumping operators which are edge oriented should be incorporated. An upwind
discretization for the employed O, finite element is described in detail based on the works by
Ohmori and Ushijima [[143]], and Tobiska and Schieweck [144]]. This stabilization scheme is em-
ployed through this study. Nevertheless, this was not the only option and the so-called stream-line
diffusion, namely the streamline upwind Petrov-Galerkin (SUPG) method in finite element method
context, can be employed,; it is a classical Petrov-Galerkin method and designed to mainly add dif-
fusion in the streamline/flow direction. The method is based on the idea that is to locally modify
test functions vpg := v+ du cdotVv, where 8 varies with Rej, and & so that the accurate amount
of artificial diffusion is added [145]]. Moreover, the standard Galerkin method which is a centered
scheme can be expected to remain still 2nd order accurate after it is modified with stabilization
schemes [[137]. Yet, these stabilized high-order schemes may lead to undershoots and overshoots
in the region of steep gradients. These can deteriorate the solution and lead to unacceptable results
in certain cases, such as, where the positivity of the unknowns is a must. Then, algebraic flux cor-
rection schemes can be employed, which are discussed in the next subsection while the solution
of turbulence equations is in the scope.

The so-far discussed methods can be readily employed to solve linearized Navier-Stokes equa-
tions, namely Oseen equations, but we need another mathematical component to deal with the non-
stationary Navier-Stokes equations which are nonlinear due to the convective term (C2 coupling).
The nonlinear model problem A(u)u = f can be solved efficiently within a defect correction loop.
The unknown u can be expressed in the basic nonlinear iteration as

uj:uj,1+(oC*1rj,1, j=0,1,2,...;

where the defect is given as ry = f — A(ux)uy in k’th iteration, so is the damping factor ® which
can be a fixed choice or adaptively determined with respect to a certain algorithm, for further dis-
cussion refer to the study [[137]]. In this iteration the choice of C is very crucial, depending on the
choice one can obtain the standard Newton’s method or fixed point defect correction schemes. The
construction of the Newton matrix in each iteration is very costly, to obtain the exact derivative
on discrete level is not the most affordable, and it is not very likely to obtain optimal solvers with
the derivatives being calculated on the continuous level; therefore, we rule out this option despite
the fact that quadratic convergence of Newton’s method is very promising in terms of required
number of iterations. And, we go for fixed point defect correction methods with a constant ® for
which one can choose C = A leading to the standard fixed point approach. Then, one iteration of
the defect correction loop can be presented as in Figure @ The unknown u; is iterated within
this loop until a converged solution with respect to a predefined criterion is obtained.

The nonlinear convective term is hereby linearized with the approximation (u; - V)u; ~ (uj_ -
V)u;; however, this is not the only option but also backwards extrapolation in time can be used to
linearize the convective term, e.g., (" - V)u;, ((2u" —u"~')-V)u;. These linearized convection
terms are, indeed, computationally-favorable due to the reduced cost with the removed nonlinear-
ity. Unless problems are strongly nonlinear, they can be safely employed. The problem in our
scope is highly nonlinear; thus, even though the linearized convection terms by backwards extrap-
olating in time are advantageous in terms of computational performance, they can not be employed
for our purposes.
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1. Calculate the residual for the given u;_;
ri-1=f—A(uj-1)uj-
2. Solve an auxiliary problem for the update term z;_;
A(uj1)zj—1=rj-1
3. Obtain u; by updating u;_; with relaxing z;

Uj=uj_1 +0)Zj_1

Figure 4.3: Defect correction iteration.

As a summary, the numerical solution of discretized (both in time and space) Navier-Stokes
equations have been discussed. The resulting algebraic system is of saddle point type and a Schur
Complement method has been suggested for the solution, Pressure Schur Complement Approach.
Solutions of the decoupled linearized algebraic equations have been considered in the framework
of geometric multigrid methods of which components have been explained in detail, especially
smoothers and coarse grid solvers. Linearization and stabilization of the nonlinear convection term
have been introduced with the efficient solution of nonlinear equations in a fixed-point scheme.
So that, we analyzed the solution of coupled problems of saddle-point type, the solution of non-
linear equations and the solution of linear equations, which are pretty much what is required while
solving any transport problem.

The k — € transport equations

The k — € transport equations (.1.5)—(.1.6) are highly nonlinear, strong couplings arise due to
the variables, e.g. vy, and the model coefficients vy, B and f>. There are not many studies
presenting all the details considering the numerical solution of these equations but studies by
Kuzmin [34}/146,|147]. The main challenges are to efficiently solve computationally highly de-
manding coupled nonlinear problems, design of accurate “non-diffusive” stabilization schemes
for convection dominated problems which avoids under- and over-shoots, and the positivity pre-
serving linearization. The first difficulty has been discussed in detail in the previous section, and
a fixed-point scheme is suggested for the numerical solution of non-linear equations which also
allow us to treat the coupled equations in the same defect correction loop. Thus, we will stress the
last two points of which the former has been partially discussed in the framework of numerical
solution of the discretized Navier-Stokes equations.

As it has been mentioned in the previous section, the numerical treatment of convection is
very difficult, especially for highly convection dominated problems. While the low-order meth-
ods introduce excessive artificial diffusion which causes to lose of accuracy, stabilized high-order
schemes produce undesired overshoots and undershoots which can not be tolerated depending on
the nature of the problem, even the stabilized high-order schemes can fail to provide accurate
acceptable results in the vicinity of steep gradients. Therefore, we need a scheme which com-
bines the advantages of high-order and low-order schemes so that excessive addition of numerical
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diffusion and the formation of wiggles can be avoided.

Boris and Book are the first who presented a stabilization scheme which adaptively alternates
between the high- and low-order methods, Flux-corrected-transport (FCT) [[148]]. Later, at the end
of 1970s, their algorithm is generalized by Zalesak so that it can be employed with unstructured
grids; nonetheless, Lohner et al. has published the first study on FCT for unstructured grids [[149].
Total variation diminishing (TVD) schemes are introduced with a rigorous mathematical formu-
lation as a robust high-resolution method by Harten; however, its application/implementation in
finite element context had been unwieldy and the applications could be realized with only P;/Q;
continuous elements which provides the preeminent three-point stencil [[146[]. Then, an algebraic
approach, Algebraic Flux Correction (AFC), which combines the advantages of both FCT and
TVD is presented by Kuzmin et al., who also explains the underlying concepts of the AFC scheme
within several publications citeKuzmin2004a, Kuzmin2004b, Kuzmin2006b.

In order to present a brief description of the employed AFC scheme, we firstly introduce
principles of a low-order scheme. Let’s recall the discrete transport operator K = (k;;) and the
lumped mass matrix My = (m;) and consider an unsteady convection problem, ML‘CII—L; = Ku which
can be rewritten as

—Zk,, i)+ riu;, where r,-:Zk[j.
i#] J

When the entries of K are nonnegative but the diagonal ones, the scheme is local extremum dimin-
ishing (LED) with omitting the term r;u; which naturally vanishes for a divergence free velocity
field; otherwise, it represents the physical growth of local extrema. The transport operator K can
be modified by introducing artificial diffusion; so, we obtain its stabilized and non-oscillatory
counterpart L = K + D where

dij = max{—k;;,0,—k;i} =dji dii=—Y du. (4.2.19)
ki

It is obvious that the constructed numerical diffusion operator is conservative: diagonal terms are
the sum of the off-diagonal terms with an opposite sign, and it can be considered as the coefficients
of the inter-nodal fluxes.

It is preferred to work with fluxes to recapture the high-order scheme, and as a straightforward
idea: one completely subtracts the contribution of the modification term on the flux-level and ends
up with the initial high-order scheme. Then, one can define the numerical diffusive flux and can
adaptively remove the contribution of the artificial diffusion by introducing a local blending factor
0 < g;; <1, which yields to the low-order (high-order) scheme for the value 0 (1). The idea can
be mathematically expressed as

_lej ‘H”tut"—zgufu
J# J#
where f;; = d,-j(ui —u j) = —f;j is the raw antidiffusive flux which needs to be limited [152].

Consequently, two difficulties remain: defining a prelimited upwind-flux and a clever way to
adaptively set ¢;; values.

First of all, an orientation convention has to be chosen, for which entries of L for the edge
é;j are such that [;; > [;;. The edge ¢;; is specified between two adjacent nodes i and j of which
basis functions have at least one overlapping support; as a result, node i is the upwind one. Later, a
prelimited upwind-biased flux can be defined as f;; := min{lﬁ, d,-j}(uj —u;), and f;j:=—f;; [152].
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Nevertheless, the prelimited flux does not ensure that the stabilized discrete convective operator is
positivity preserving; hence, the row sum of antidiffusive fluxes are bounded.

The lower/upper bounds are determined such that

0 =) qijmin{0,u; —u;} (4.2.20)
i

where g;;:= % +1;; > 0,Vj #i. Then, these bounds must be applied to the sum of antidiffusive
fluxes which can be given by

" .
P =Y pij i {0,u; — ui} 4.221)

J#i
with p;; ;= —min{/j;,d;;;} <0and pj;; := 0, so it is ensured that the positivity of the off-diagona
ith p;; in{/j;,d;; 0 and p; 0 it i d that th itivity of the off-di 1

coefficient /j; is not deteriorated and larger time steps are allowed. Accordingly, the blending
factor G;; can be defined as

RS if fij >0, ,
Gij = {R’_ ;f ji” “0 where R = min{1,07/P7}. (4.2.22)
i 1] 9

which is also used to limit fj;. As a consequence a positivity preserving stabilization scheme
with adding as less as possible artificial diffusion can be obtained; nevertheless, this was the
first challenge to overcome, and now a positivity preserving linearization must be applied to the
nonlinear system.

The above explained high-resolution scheme can be safely employed to solve linear scalar
transport problems without undershoots and overshoots; moreover, the scheme satisfies the posi-
tivity condition. However, securing the positivity of the (quasi-) linear transport problem’s solution
is not enough to preserve the positivity of the coupled turbulence equations (.1.5)—(4.1.6). The
equations are strongly non-linear; and due to the sink terms at the right hand sides the positivity of
the solutions can be easily deteriorated unless a careful linearization is applied. The positivity of
the solution is very important because, obviously, the negative values of k and € are not physical,
and since the exact solution of the k—€ equations remains non-negative for physically valid initial
conditions so should the numerical scheme do [[153]].

The solution of the coupled equations evolves in time within four nested loops (see Figured.1]),
the solution marches in time in the main time-stepping loop, and each time step is solved within
the outermost coupling loop where only the unknowns of the subproblems/steps are updated at
each iteration, e.g, k and € at Step 2. Hence, the dependent variables, such as y and B, are treated
explicitly; their values are calculated with the solutions of the previous time step. So that, the
positivity of coefficients which is even more important than satisfying the positivity condition for
the transported quantities is ensured with suitable initial conditions and a positivity preserving
scheme [|136,/146].

The application of the positivity preserving linearization has already started by writing the
modified k—€ equations {@.1.6)—(4.1.5) according to Lew et al. [136] and introducing the lineariza-
tion parameter y. In this formulation, the equations can be already considered as linear if one
explicitly treats the coefficients and the source terms. The linearization parameter also has a great
advantage that the sink terms can be treated implicitly at the left hand side. Moreover, the source
terms Py and YC| f1 P, are always non-negative according to their definition. Consequently, we ob-
tain two algebraic systems analogous to (4.2.13)) and (#.2.14)) which need to be solved successively
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within an outer iteration loop of which index is denoted with /, see Figure 4.1
My — 0AtK* ()] = My + (1 — 0)ArK* (uD)]u) + ¢ (4.2.23)

K* is the stabilization applied discrete transport operator and ¢(¥) stands for the source term which
are updated at every outermost iteration due to coupling with the Navier-Stokes equations. At each
outer iteration, a linear problem is solved for a given ' within a defect correction loop where also
the flux correction is applied; all these intertwined steps can be clearly shown in Figure 4.1]

Hereby, we have discussed two more very crucial numerical ingredients in our solution method-
ology: a high-resolution scheme for the discretization of the convective terms which does not cause
wiggles at the vicinity of steep gradients, and positivity-preserving linearization which is preemi-
nent for the solution of nonlinear transport problems which do not admit negative solutions; these
are also essential components which are required for the numerical solution of the coupled PBE-
CFD problem @.2.15). Additionally, the iterative solution algorithm which is realized within a
nested-loop strategy has been discussed in detail.

Coupled PBE-CFD equations

The equation describing coupled PBE-CFD problems (#.1.9), from our aspect, can be considered
as a convection-diffusion reaction (CDR) equation, which inherits all challenges related to this
sort of problems additional to the difficulties regarding the PBE. The challenges in numerical
solutions of a CDR equation have been inclusively discussed above, in the context of Navier-
Stokes equations and the turbulence model. From our point of view, equation (4.1.9) describes
the transport of an active scalar for a given flow field; nevertheless, the calculation of the reaction
term is not trivial and can be realized with MC or PPDC.

The inherited difficulties can be recalled such as, the stabilization of the convective term with
a bounded scheme since the nature of the problem do not admit overshoots and undershoots; and
due to the fact that the transported quantities are “non-diffusive” but the turbulent eddy viscosity
is responsible for the diffusion of the transported quantities, the stabilization scheme can be eas-
ily over-diffusive. The resulting algebraic systems is huge and highly nonlinear; moreover, the
problem admits only non-negative solutions, which enforces the use of positivity-preserving lin-
earization/schemes. Fortunately, these are already matched challenges which we have successfully
overcome.

The reaction term is highly nonlinear and this leads to strongly coupled nonlinear algebraic
systems when MC is employed. The nonlinearity/strong-coupling can be handled in an outer loop
as it has been done for the turbulence model. However this time the number of equations need
to be considered is much more than the two-equation turbulence models. When MC is applied to
equation (@.1.9), it yields to the following semi-discrete form (the equations are discretized in the
internal coordinate yet not in the external coordinate and time)
9fi v B fiv, B
5 Tw V-V (vrVf) = ]Zirl.’jfjAuj - Dfijzlujrjv,.m,-

1 i n
+§Zrﬁkfjfkmj—f,-2rﬁ,.fjmj for i=1,2,..n. (4.224)
j=1 j=1

Now, we see that while in the continuous formulation there has been only one nonlinear equation
to solve, in its discrete form we have n+ 1 (number of classes and the total holdup of the classes)
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CHAPTER 4. PBE and CFD: One-way coupling

coupled transport equations to solve, and this number is usually about 50 as we have found when
the convergence analysis with respect to number of classes has been studied in Section And
now, we are left with numerous equations of the form (4.2.15) which have to be solved by employ-
ing efficient (non)linear solvers and positivity-preserving high-resolution schemes. The required
numerical methods and techniques have been already developed for the solution of the turbulence
model; then, they should be applied in the frame work of PBE.

Let us recall that we have chosen the MC with the fixed-pivot technique which enabled us to
express the coupled CFD-PBE (#.1.9)) and its discrete counterpart (4.2.15)) in terms of the holdup
values according to (3.1.5)). So, the actual equation being solved is given in the semi-discrete form
as

80(1-
ot

n o i
+u-Vo,;, — V- (VTVOLI‘) = erj()(,jAl)j— j Z'l)jrﬁiAl)j
J=i Lj=1

n
Z ”ﬁi%‘AU; for i=1,2,..n. (4.2.25)
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Additionally, there the transport equation of the total holdup of classes is

870c
ot

The obtained FEM discretization with Q| conforming trilinear elements admits the explained high-
resolution scheme, Algebraic Flux Correction (AFC). The considerable cost of employing AFC
is due to the arising “numerical nonlinearity”, even a linear problem needs to be treated in a
nonlinear fashion; nevertheless, our problem is highly nonlinear in nature, and AFC turned out to
be an efficient scheme as accurate as it is. Since employed AFC was not enough to ensure the
positivity-condition, the above-explained (Subsection {#.2.3] ) positivity preserving linearization
was employed as well. In order to linearize the equation (4.2.3), the source term and the sink
term were treated explicitly and implicitly, respectively. The source term were calculated with the
known values from the previous iteration (outer-iteration loop due to C4 internal coupling which
is caused by the dependency of classes’ holdup on each other, see Figure [2.1)); the sink terms
are treated “implicitly” at the left hand side and thus modifies the system matrix. The “implicit"
treatment (perhaps semi-implicit is more suitable than implicit), is obtained by considering o;
as unknown and the remaining part of the term is calculated for the given values of o; from
the previous outer-iteration as coefficients and are added to the system/global matrix A of the
linearized equation (4.2.28). Later, the source and sink terms are updated at each outer-iteration.
Then, by accordingly reformulating equation the following algebraic system is obtained:

+u-Va—V-(vyVa) =0 (4.2.26)

- — (n+1) (n+1) (n+1)
(ML + (6K —B; —C; ) Ar) o) = (ML — (1 —8) KAr) oy +(Bj’+C;r)Atoci7(l) 22
(nt1) _ n (4.2.27)

where o " = 0y for i=1,2,..n,

Equation (4.2.27) (see Figure [4.1] for the indices) can be efficiently solved within a defect cor-
rection loop which is also very convenient for the application of flux-correction according to the
employed AFC scheme, which yields to the algebraic system of the form

A v gD Oy ag Y = pm)

1

(mt1) (4.2.28)

o (m+1)

+ Ao,

™) denotes the defect vector and the super-/sub-scripts refer to the loop in which the correspond-
ing variable is updated, see Figure @.1]
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The solution of #.2.26) is relatively straightforward as it describes a convection dominated
transport problem of a passive scalar. The resulting algebraic system is in the form of equation
#.2.27) but with the zero source and sink terms, which is solved with a fixed-point defect correc-
tion method, that resulted in the same formulation with (4.2.28)) for o instead of o;.

The linear equation system is, preferably, solved by employing SOR or SSOR schemes
which are satisfactory for rather small time step sizes, as we mostly have to choose due to the na-
ture of the problem. However, the condition number of the matrix is deteriorated for larger time
steps; then, schemes which involve BICGSTAB with ILU decomposition and suitable renumbering
are satisfactory.

Another possibility is to consider the solution of coupled CFD-PBE problems in the frame-
work of the PPDC method. The PPDC method has already been comprehensively presented and
discussed for OD applications and shown to a be very accurate method, in Section 3] and Subsec-
tion however, its application in 3D is not straightforward, and the suggested strategy by Bove
et al. [9,97] has shown to be not “adequate” [[154]]. Therefore, first we discuss the suggested strat-
egy by Bove for the convection in 3D; then, we suggest a novel implementation strategy so that an
efficient and an accurate hybrid method which is based on MC and MOM is obtained.

The PPDC method is characterized as a “non-standard method of classes” by Bove; never-
theless, since it has much common with QMOM; and particularly the closure of each method is
given by a Gaussian quadrature whose weight is the particle number density distribution function,
it can be also considered as a moment based method, especially within the suggested approach
in this study. When the quadrature approximation is adopted, most methods use the PDA algo-
rithm (Gordon, 1967 [14]]) which needs the first 2n moments of the distribution function. However,
PPDC, QMOM and MC, they all have discrete representations of the particle size distribution with
quadrature approximation, which is a common point for all.

Bove has suggested that the spatial transport of the dispersed phase can be described either
analogously to DQMOM, or by solving a transport problem for the parent classes by strictly keep-
ing track of transported quantities (number density, volume density, etc.) of each parent class
and the class related properties (size, volume, etc.). He clearly pictures his idea with a sketch for
1D-convection in his study [9] but there is no rigorous mathematical description of how it was
realized. His idea is to transport the expanded classes so that in each control volume to obtain a
size distribution due to transport in space and in the internal coordinate. That, later, can be reduced
to initial number of parent classes by using the PDA algorithm, which is the same step performed
in OD to reduce the increased number of quadrature points as a result of coalescence and breakage.

Bove employs an operator splitting approach to decouple PBE from the CFD part. Then, in
one half of the time step % PBE are solved and in the other half the parent classes are advected.
Solving the decoupled problems for % step size is not clearly reasoned neither we appreciate the
application. And, advecting the classes which all have different sizes are also not very convincing.
Therefore, we suggest reformulating the transport equation of classes in terms of the first 2n order
of moments and transporting the moments. Once the moment distribution is updated, the rest is to
obtain the quadrature approximation of size distribution for » points, i.e. n parent classes.

First, the transport equation has to be rewritten in terms of moments according to the
equation (3.1.6) which can be more explicitly written as

mk:/ fLx,)L¥  keR
0
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where L denotes the diameter of drops, as very common in the literature; however, it may refer
to the volume or area, or any size-related property; then, k € R. With this definition the transport
equation can be given as,

Iy (L,x,1)

5 +u-Vmy(L,x,t) — V- (vpVm(L,x,1))

:/Ooo{;/Oorc(ﬁvu_ﬁ)f(ﬁ)f<1)—ﬁ)d’l~)—f(l))/ooorc(f)71))f<ﬁ)dﬁ

LV Jo

+ / i r#(v,0)(9)dd _I) / Df)rB(ﬁ,D)dﬁ}Lde (4.2.29)

For readability purposes, at the right hand side my is given as an explicit function of L whereas
at the left hand side f(v) has been used; and v is a one-to-one function of L. So that, (4.2.29)
presents our approach: calculate the reaction term explicitly according to the MC (which is al-
ready explained for OD in Section [3]); and solve the transport problem with obtaining moment
values from the calculated source and sink terms. Finally, we obtain the updated moment distri-
bution from which the size distribution with the initial number of parent classes can be obtained
according to the PDA. Consequently, the updated distribution is obtained with respect to the trans-
port phenomena and the breakage and coalescence phenomena.

From the numerical point of view, this formulation does not allow the positivity-preserving
linearization for which the sink terms have to be treated implicitly with the unknowns on the
left hand side. Thus, we have two possibilities: (i) explicit treatment of the reaction so to insert
the source and sink terms on the right hand side of (ii) an operator splitting approach in
which first the transport in the internal coordinate is solved, later is the spatial transport. It is well
known that when the time step is chosen sufficiently small such that the positivity constrained is
not violated, the first approach is more accurate. Nevertheless, the second approach allows to use
different time step sizes for the solution of PBE and the transport problem, which indeed exhibits a
great advantage for the cases of the spatial transport, and the breakage and coalescence phenomena
occurring in different time scales. We will study the both approaches.

The challenge in the either suggested approaches is to accurately transport the moment values.
Even if the secondary phase exhibits a smooth field for the lower order moments, there can, very
well, be steep changes in the high-order moment field. Let’s consider the case for which the
distribution of first order moment values is described with a linear function; and the advection of
this linear function can be accurately realized without a rigorous numerical treatment. However,
when high order functions are advected, the transport problem turns out to be more challenging
due to quick changes of values. Moreover, if it is considered that there may exist sharp fronts and
jumps in the low order moment distribution, those will be even more prominent in the high order
moment distribution, so to accurately solve the transport problem is a true challenge; we, hence,
suppose that nobody has had an attempt on this yet.

The discussion can be concluded by presenting the suggested algorithm for the numerical
solution of PBE within the frame work of modified PPDC:

1. Calculate the birth events according to PPDC (source term), Steps 3—4
in Figure
2. Calculate the death events due to the birth events (sink term).

3. Calculate the corresponding source and sink terms in terms of mo-
ments for the first 2n low-order moments k =0,1,..,2n— 1.
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4. Solve the transport problem for the moments:

(a) if operator splitting approach, first add the update terms to the
moment fields and solve (4.2.29) with a zero right hand side for
M.

(b) if explicit treatment of the reaction term, solve (4.2.29)) with the
corresponding update term on the right hand side for m.

5. Obtain the new parent classes from the advected moment fields by
using PDA, analogously to the Step 5 in Figure[3.3]

The solution of the obtained/derived equations and the resulting algebraic systems are not
further discussed for this new approach because they concern the solution of the (in-)homogeneous
convection-diffusion equation regarding the chosen approach which has been already
discussed for MC; above the discussion on the solution of (#.2.3)) or (4.2.26)).

4.3. Computational studies for validation

The computational studies in this subsection concern, firstly, the validation of the implemented
numerical methods and techniques for the solution of coupled CFD-PBE problems via comparing
the accuracy of the obtained results and the robustness of the accordingly developed computational
tool.

The first computational study deals with a steady 1D (in space) channel problem which is
analogous to an unsteady OD population balance problem. This problem is studied in both steady
and unsteady fashions so to determine the accuracy of the adopted numerical methods: FE spatial
discretization, positivity-preserving stabilization scheme and the time discretization techniques.

The oil-in-water dispersed flow is studied in a 3D pipe in an unsteady fashion in order to verify
the solution of the flow solver and to obtain a framework for the comparison of MC and PPDC.
The available comprehensive CFD results for pipe-flows make this case a suitable validation and
verification study. Since there is neither experimental nor numerical reference-results for turbulent
dispersed flows (up to the author’s knowledge) regarding either flow field or size distribution of
the secondary phase; we consider it as very important to firstly study the coupled problem with
verified flow-field’s results so to avoid the discrepancies which may arise due to the inaccurate
CFD results.

Once the simple geometries are studied and the results are found to be satisfactory, the next
step is to compare MC and PPDC within an industrial problem regarding the robustness because
it is well known that the implementations which involve the moment transport and the PDA are
prone to abruptly fail. The complex geometry of SMV™ Jeads to steep changes of the flow-field
variables as, velocity and turbulent energy dissipation rate. The great changes in the flow-field
make solving the spatial transport problem very challenging; moreover, since the different € values
result in distinct size distributions, there will be sharp fronts for the moment fields, especially for
the high order moments. The comparison will be conclusive for the final decision on choosing the
methodology to study the verification cases.

77



CHAPTER 4. PBE and CFD: One-way coupling

4.3.1. 1D Channel Problem

Analytical solutions of population balance coupled CFD problems are not available; therefore,
how to validate an implementation which concerns solutions of CFD-PBE problems is not clear.
However, Silva et al. had the idea to study the time dependent 0D PBE as a steady 1D problem by
transforming the related equation [40]]. This idea inspired us to restudy the transient OD case from
McCoy and Madras [42], which is the simultaneous breakage-coalescence case in Section

The transformation of the equation for a general variable ¢ follows as

do o _
G0 S w9 4.3.1)

where § is channel’s longitudinal direction and the ug is the magnitude of the steady uniform ve-
locity in this direction; this way the time axis is substituted with & so to obtain a 1D steady problem
which is analogous of a transient OD problem. Moreover, when the 1D unsteady-convection prob-
lem (4.3.2) is solved for the steady-state, the obtained results should be the same with the ones for

the steady problem @.3.1).
Tru = (43.2)

The 1D problems have been solved with our implementation for 3D. The solution of the unsteady
problem is straightforward with the developed computational tool; one needs to set the viscosity
parameter to 0 and the solver will do the job. Nevertheless, for the steady problem the solver
strategy has to be altered. The issue is the employed iterative linear solvers tends to diverge
or hardly converge (luckily) for convection problems when the initial guess is poor; and, this
is exactly what happens when one tries to solve the steady problem with the developed solver
strategy for transient problems. Therefore, we suggest the following strategy: first, we assemble
all the required discrete operators and the right hand side; then we solved auxiliary problems in
order to obtain a better initial guess for the solution. The auxiliary problems were nothing but
considering the same problem with an under-relaxed right hand side. Our strategy for the solution
of the steady problem can be given as:

1. Build the discrete operator A and r

2. Solve auxiliary problems for the update term z; until ®; = ®, = 1.
Alwiri—Aui—y) =z, fori=1,2,..,n

where u; = u;—1 +z; and ®; = ®;—; + Aw®; is an adaptive or a
constant under-relaxation parameter, 0 < A® < ] < 1; ug is the
initial guess for the first auxiliary problem i = 1.

Figure 4.4: Solver strategy for the steady convection problem.

Let us recall the studied test case and its analytical solution; the numerically simulated phe-
nomenon is simultaneous breakage-coalescence of droplets, and the events are modeled with hy-
pothetical kernels (3.3.1)) and (3.3.6). The closures are chosen by McCoy and Madras [42] such
simple that they yield to the analytical solution (3.3.9). The provided analytical solution can be
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extended to obtain the evolution of moment orders in time [40]] as follows:

k—1

¢(c0) + tanh(¢(c0)7/2) T(k+1) (4.3.3)

¢(c0) (1 + tanh(@()t/2))

So that, the initial moments of the dimensionless distribution can be simply written as [40]

mk(’c) =

m(0) =(k+1) (4.3.4)

The computational domain is a square channel with the dimensions I m x 0.1m x 0.1 m. The
x-direction is the longitudinal direction which is also the direction of the advection velocity whose
magnitude is equal to 0.05ms~!. The chosen convection velocity provides a steady size distribu-
tion in the computational domain; the previous calculations in Section helped us to adjust the
length of the channel and the velocity. The computational domain (see Figure [4.5) is meshed 3
times such that the equidistant mesh size 4 is equal to 0.025m, 0.00625m, and 0.001 m. In these
computational domains steady and transient simulations are performed to obtain the steady size
distribution.

Figure 4.5: The computationally modeled channel.

The breakage (3.3.6) and coalescence (3.3.1)) kernels are closed with S =1 and C = 0.1, re-
spectively. The chosen values of the free-parameters leaded to a breakage dominant case of which
20 seconds simulations have provided the steady-state results within the transient-OD approach;
this is the equivalent time of one complete flow-through in 1D steady simulations. The boundary
condition is set at x = 0 with the same values for the initial condition of the transient case; and
the initial values of the size and weight fields are set to the same values in both simulation, as
well. Firstly, we wished to set zero initial-condition but we observed in the simulations that due
to the sharp front the accuracy of the transported moment values decreases leading to a failure in
the solution of the PDA: The PDA always provide a solution for 2n unknowns and 2n equations
providing a system which has a unique solution but when the quantities are not transported suffi-
ciently accurate, the solution may include negative values for the size or the weight; indeed, they
are not acceptable. Thus, we preferred an homogeneous initial condition (same as the boundary
condition); however, the initial condition is not crucial regarding the final results, since the steady
state is sought.

The first computations involve the three grids with the mentioned different mesh sizes: L1
(h=1/40), L2 (h =1/160) and L3 (h = 1/1000). The Sauter mean diameter (d3;) which can be
defined as the diameter of a sphere that has the same volume-surface ratio as a particle of interest is
an accurate representative size for the particle ensemble and is equal to the ratio of m3 to m,, which
is also an important variable of interest in chemical engineering applications. Therefore, we have
computed the analytical solution of dimensionless ds; according to (4.3.3)) and have compared the
obtained numerical results against those.

The qualitative comparison shows that results of the finest grid (L3) computation and the ana-
Iytical solution are visually indistinguishable; nonetheless, results of the lowest level (L.1) compu-
tations slightly differ from the reference one. Thus, we have calculated means of absolute errors
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Figure 4.6: Evolution of dimensionless d3; in the channel for the steady-state at different grid
levels, with steady solver.
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and mean of percentage errors, aErr := Y7 |x; — x| and pErr := Y/
see Table

x 100 respectively,

Table 4.1: Mean absolute errors and mean percentage errors in the numerical results for different
grid levels.

Level aErr pErr (%)

L1 1.40E-3 0.151
L2 577E-4 0.061

L3  5.69E-4 0.056

The calculated errors justify that our implementation is valid and the convection term is accu-
rately discretized; nevertheless, the accuracy of the discrete convection operator decreases when a
sharp front appears; indeed, this is due to the fact that the adopted AFC scheme mimics a low-order
stabilization scheme in order to avoid under-/over-shoots in the vicinity of steep gradients.

Later, the same case has been studied with the developed transient solver; however, this time
we adopted the operator splitting approach which can be more preferable within transient solvers,
based on our preliminary studies. The same computational grids are used in these numerical
computations, as well. We expect that since the steady-state results are sought, for which the
time derivative vanishes, the obtained results should be independent of the chosen time-step size;
though, we study the 2nd level computations with two different time-step sizes. First, a time-step
size corresponding to the CFL number C = 1 has been chosen; later for L2 computation it has
been chosen as 0.5s (C =4). The results of the computations at different grid levels for C =1 are

presented in Figure

The first conclusion is that the coarse-level results are visibly different from the other two
computations; moreover, it differs from the reference results more than L1 steady-computations.
The quantitative analysis will be more helpful to draw more certain conclusions, see Table[4.2]
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Figure 4.7: Evolution of dimensionless d3, in the channel for the steady-state at different grid
levels, with transient solver.

Table 4.2: Mean absolute errors and mean percentage errors in the numerical results for different
grid levels.

Level aErr pErr (%)

L1 35E-3 0.36
L2  74E-4 0.08

L3 57E4 0.02

The mean absolute errors and the mean percentage errors nicely decrease with the grid refine-
ment in the transient simulations, as well; especially, the mean percentage errors are very indica-
tive. By comparing the mean error values in Table 4.T]and Table .2 we can say that adopting the
operator splitting approach has reduced the accuracy for the lower mesh levels; nevertheless, at
the finest grid it almost had no effect on the mean absolute error and reduced the mean percentage
error. A conclusion is that operator splitting approach can cause loss of accuracy, in our approach,
when the computational grid is not sufficiently fine; this conclusion can be extended to other ap-
proaches but it needs to be supported with more numerical experiments. Since the goal is only
to study the accuracy of the developed computational tools so to validate them, this issue is not
discussed further; and we conclude the discussion hereby stating that both approaches (explicit
treatment and operator splitting approach) have been validated and they are highly accurate, even
for very coarse grids.

Another point to be discussed is how accurate the time discretization shall be; since the steady
state results should be free of error arising due to the time discretization, we reconsider L2 simu-
lation with a four times large time step, see Figure

As we have expected, the steady-state results are free of time discretization error, equal within
the single-precision (7 significant digits); however, when intermediate results are compared, e.g.,
see Figure for t =35, it is visible that the results slightly differ. The interesting point is that
the discrepancy, which is not very significant, aErr=2.0E-3 and pErr=%0.23 (regarding the results
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Figure 4.8: Evolution of dimensionless d3; in the channel for the steady-state at different grid
levels, with transient solver.

with small time step as reference), is mostly through the outlet part which has not been influenced
yet by the inflow. We can say that this loss of accuracy with the increased time step size is not due
to the discrete reaction operator but it is caused by the explicit treatment of the PBE in the operator
splitting approach. This is a consequence which was foreseen, yet is not a severe one; and, this
amount of loss of accuracy is acceptable by considering the provided advantages by the operator
splitting approach.

4.3.2. Comparison of PPDC vs MC within 3D Pipe-Flow

Accurately resolving the underlying turbulent flow field is a prerequisite for a subsequent pop-
ulation balance modeling in the framework of dispersed flows; moreover, there is no published
benchmarked computational result for full 3D problems combining CFD and PBE [1]]. Hence, we
restricted our focus firstly to a relatively simple 3D problem. The 3D pipe-flow problem offers
advantages: the validation of the flow field and distribution of turbulent quantities such as the dis-
sipation rate of the turbulent kinetic energy (€) to which the coalescence and breakage models are
very sensitive.

The flow is characterized by the Reynolds number, Re = dv—w = 114, 000 (w stands for the bulk
velocity), that is influenced by the study of Hu et al. [41] who focused on one dimensional dis-
persed pipe flow modeling. All presented computational results in this section have been obtained
by means of an extruded (2D to 3D) unstructured mesh employing 1344 hexahedral elements at
each layer. The computationally obtained radial distributions of the temporally and spatially de-
veloped velocity- and turbulence-quantities are given in Figure [4.9]for dispersed flow simulations
in a 1 m long pipe of diameter 3.8 cm and they are in agreement with the reference study [[133]].

The dispersed phase system is water which contains droplets of another immiscible liquid with
similar physical properties to water, say oil (the physical properties are given in Table [4.3). This
assumption and the fact that the flow is not driven by buoyancy but by the pressure drop enabled us
(i) to neglect the buoyancy force, (ii) to approximate the dispersed phase velocity with the mixture
velocity; so that, the developed one-way coupled PBE-CFD approach could be applied to simulate
the dispersed pipe-flow. Additionally, the case study provides a good basis to compare different
numerical methods to solve PBE, MC and PPDC in this study.
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Figure 4.9: Radial profiles of the axial velocity component (left), turbulent dissipation rate (mid-
dle) and turbulent viscosity (right).

Table 4.3: Physical properties of the phases

Physical properties Water Oil

p (kgm™) 1000 847

v (kgm's™) 1x1073 32x1073
o (Nm™) 72x1073 21x1073
d3 (m) - 1x1073

The CFD-PBE simulations involved 30 classes initialized by the discretization factor ¢ = 1.7,
which according to the previous 0D convergence studies turned out to be fine enough to reach
approximately grid (internal coordinate) independent solutions. The feed stream is modeled as
a circular sparger of a diameter of 2.82cm containing droplets of a certain size (dj, = 1.19mm)
and of a certain holdup, oy, = 0.55. Such an inflow holdup condition after reaching developed
conditions ensures a flat total holdup distribution of a value ¢t = 0.30. The same case is simulated
with 3 parent classes by employing PPDC, as well; and the results are compared, see Figure .10}

and Table [£4]
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Figure 4.10: Holdup distributions of certain classes: 10, 17 and 23 (top to bottom).

In Figure .10} holdup distribution of the certain classes are shown; the holdup of small
droplets, e.g. class 10, has higher holdup values in the vicinity of walls where the turbulent kinetic
energy has the largest values. As € values decrease in the inward radial direction, the coalescence
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phenomenon dominates the breakage; so the droplet sizes enlarge, and the void fraction of larger
classes increases far away from the wall region, see Figure These results are also, indirectly,
visible in the results of the simulation with PPDC, see Figure d.T1] In the wall region the num-
ber density of the particles is the largest since the Sauter mean diameter of the particles are the
smallest (see Figure 4.12), and this result is justified with the 0’th order moment distribution in
Figure [4.T1] which corresponds to the number density distribution.

Both methods (MC and PPDC) yield to qualitatively almost the same results, it is visible if
one compares, regardless of the color scale, the presented results in Figure.12] Nevertheless, the
ds» value, which is an accurate representative value of a drop/bubble ensemble, the other statistical
values as number density, interfacial area density and volume averaged diameter ds43 have certain
discrepancies, see Table [#.4] This result was expected regarding the previous comparison stud-
ies with the methods. The results differ because the suggested MC preserves only the 3rd order
moment, which corresponds to the mass/volume conservation (with incompressible fluids), other
moment-orders are preserved within only PPDC. The both methods predict the same evaluation of
the secondary phase but with different accuracies. In Section[3] we have shown that the results ob-
tained with MC converges to the ones with PPDC as the grid in the internal coordinate is refined.
However, since it is not feasible to use so fine grids in 3D computations, and as the uncertain-
ty/disparity in the population balance models can be larger than the errors due to the inaccuracy of
the adopted numerical method, we conclude that the results which are obtained with both methods

9.80E7 4.1[5E8 7.27E8 9.3‘6E8 1.15E9
0’th moment se— o —

1.30E5 2.68E5 4.04E5 5.42E5 6.80E5
1’st moment ] o P "

1.5E-2 1.6E-2 1.8E-2 1.9E-2 2.0E-2
4'th moment ; 2 ~r——— F "

Figure 4.11: Fields of certain moment orders.
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Figure 4.12: Sauter mean diameter distribution of the dispersed phase at different locations, x =
{0,0.06,0.18,0.33,0.6}.
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Table 4.4: Comparison of MC vs PPDC regarding to substantial variables.

MC
Cut-plane 1 Cut-plane 2 Cut-plane 3 Outlet
PPDC
number 4.926E8 5.439E8 5.586E8 5.614E8
density (m™) 2.782E8 3.338E8 3.511ES8 3.536E8
interfacial area 1.064E3 1.094E3 1.114E3 1.125E3
density (m™") 0.967E3 0.961E3 0.963E3 0.964E3
1.51E-3 1.75E-3 1.80E-3 1.82E-3
ds; (m)
1.62E-3 1.83E-3 1.87E-3 1.95E-3
2.81E-3 2.66E-3 2.72E-3 291E-3
d43 (m)
3.02E-3 3.08E-3 3.10E-3 3.10E-3

are acceptable.

During the computations with PPDC mainly two difficulties are encountered: when there is a
sharp front in moment values, they are not transported sufficiently accurate, such that the reduced
parent classes had negative values as the result of PDA. And, the time step size has to be smaller
than the one which is adopted in the simulations with MC. In the simulation with MC, we had
no difficulties and the required computational time was comparable; so that, although simulations
with MC require solution of a larger number of scalar transport problem than with PPDC, the
computations are equally affordable.

4.3.3. Comparison of PPDC vs MC within SMV™

Static mixers are tubular internals with optimized geometries to obtain desired dispersions/mix-
tures while the pressure driven flow is passing through the stationary mixer elements. Dispersion
by static mixers is industrially preferable to dispersion by rotating impellers because it is mechan-
ically simpler and frictional energy dissipation in the packing is more uniform, favoring a more
uniform drop size distribution [[155]]. Thus, static mixers are very common applications in the
industry; nevertheless, the numerical simulation of the dispersed systems in static mixer appli-
cations is very challenging due to the underlying complex turbulent flow field and the numerical
computation of PBE.

Sulzer Chemtech Ltd. is a major producer of static mixers for various applications. This
case study concerns the numerical simulation of a dispersed flow in Sulzer SMV™ static mixers,
see Figure which is used to obtain homogeneous dispersions within a short mixing-length
and on the cost of an additional certain pressure-drop, for mainly oil-water dispersed systems.
Narrow size distribution of droplets can be achieved due to the relatively homogeneous flow-field
so to optimize and to control chemical processes. The Sulzer SMV™ mixing elements consist
of intersecting corrugated plates and channels which lead to an efficient and rapid mixing action
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in turbulent flow through the mixer. Therefore, they are ideal for a distributive and homogeneous
dispersive mixing and blending action in the turbulent flow regime.

Figure 4.13: Laboratory scale Sulzer SMV™ gtatic mixers, 3 adjacent mixer elements relatively
rotated by 90°.

In literature there are many experimental and computational studies on static mixers in laminar
and turbulent flow-regimes, a detailed review about static mixers is given in the study [[156]; never-
theless, there is hardly any study which focuses on the numerical simulation of coupled CFD-PBE
in static mixers. Moreover, there is no study which presents some results considering the size
distribution; nonetheless, fortunately, Sulzer Chemtech Ltd. provided us experimental results for
a certain case. In the scope of this section, the SMV™ static mixer is studied in order to show the
capabilities of the developed computational tools and compare the MC and PPDC methods for an
industrial application.

The developed one-way coupled CFD-PBE approach makes it possible to numerically study
the flow field and size distribution of droplets in static mixer applications by avoiding the excessive
computational cost. Since the size distribution of the secondary phase is assumed not to influence
the momentum field of the dispersion, it is possible to solve PBE for a given “frozen” flow field
which is the quasi-stationary result of the turbulent flow simulations. Therefore, we will not
discuss the CFD results but consider that they are given, and only numerical solutions of PBE
@.TI9) on this flow field is studied, i.e. simulation of the transport phenomenon in the internal and
external coordinate on a given flow field is considered.

Figure 4.14: Computer modeled SMV™ static mixers.

The computational domain, see Figure [d.13] is meshed with ~ 50,000 hexahedral elements.
The CFD results are interpolated onto a coarser grid with which the coupled problem is solved,
see Figure .16] The coupled problem is studied with MC and PPDC; three parent-classes are
employed with PPDC while forty-five classes are used with MC for which discretization constant
q is 1.4, and the smallest class has the size of 0.5mm.

The inflow condition is a flat velocity profile of value 1 ms~!. Do-nothing and no-slip boundary

86



4.3. Computational studies for validation

conditions are prescribed at the outlet and on the walls, respectively. The dispersed phase system
is oil-in-water with 0.1 volumetric ratio of oil to mixture. In CFD simulations, the mixture is
considered as a single phase whose physical property is a weighted average value of phases’
physical properties with weight factors being volumetric ratios. Physical properties of the phases
are the same with the ones given in Table 4.3] The initial droplets are introduced as a mono-
dispersed phase with the Sauter mean diameter of 1.22mm which corresponds to the 9th class.
The same initial condition is applied for the simulation with PPDC such that one of the parent
classes’ size is chosen to match the desired size.

velocity Z turbulent dissipation rate
-1.4 -0.34 0.72 1.8 2.8 000 500 100. 150. 200. 250.
| | . | i | .

Figure 4.16: CFD results of the case with a flat inflow-profile of 1 ms™'.
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For the comparison of the cases, the solution of the PBE at the outlet has been several times
prescribed as the inflow boundary condition such that the average Sauter mean diameter at the
outlet does not change any more. Then, the Sauter mean diameters of the “stationary” results have
been qualitatively compared, see Figure [d.17}
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Figure 4.17: Comparison of MC and PPDC d3;values at certain cutplanes.

The qualitative comparison has yielded the same conclusion as in the case of pipe-flow, the
evaluation of the secondary phase is predicted identically with both methods; nevertheless, as
we have observed in the case of pipe-flow, PPDC has predicted ds; values slightly larger up to
10%. With these consistent results the implementation has been validated; nevertheless, we can
not judge on the accuracy of the results due to lack of the reference/experimental results.

The simulations with PPDC have been troublesome, the negative results were arising due
to insufficiently accurate transport of the moment values. In order to increase the accuracy of
the transport step considerably small time step sizes had to be employed, one tenth of the time
step used in the simulations with MC. On the other hand, without deteriorating the positivity
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condition relatively fairly large time steps could have been employed in simulations with MC,
and the simulations have never crashed. The MC is known to be less accurate and requiring the
solution of larger number of scalar transport problems (one transport problem for each class),
which leads to a large computational costs. On the other hand, since the time step sizes are
restricted within PPDC, both methods requires equally expensive computations. One clear finding
is that MC implementation is very robust; moreover, MC can directly provide the size distribution
which is needed to be recovered from the existing moments in case of PPDC. Thus, we conclude
that MC is a more favorable method than PPDC for the solution of coupled CFD-PBE problems
in our scope.

4.4. Computational Studies for Verification

The developed computational tool needs to be verified for challenging cases, which can be, very
well, industrial applications. Thus, numerically and computationally challenging cases which
offer comprehensive and reliable experimental data are required. Unfortunately, there were no
such cases; therefore, we needed to design experiments and conducted them at Sulzer Chemtech
Ltd. laboratories, Winterthur, Switzerland.

Sulzer SMV™ static mixers are used as dispersers to obtain “steady” homogeneous dispersed
flows. First, experiments with only one SMV™ mixer element have been conducted for varying
inflow rates and holdup values of the secondary phase. Later, computationally and experimentally
more difficult cases have been studied, three SMV™ mixer elements have been adjacently placed
with 90°rotations (relative to the preceding one, see Figure d.14). The mean droplet size distribu-
tions and the corresponding Sauter mean diameter values behind the mixer elements are compared
for experimental data against numerical results. While we explain the numerical studies in detail
at the coming subsections, details of experimental studies, such as, experimental rig, measurement
devices and methods, evaluation of the measurements, and the accuracy of the experimental data,
are discussed in Appendix A.

4.4.1. SMV™mixer applications

The dispersion by a single static mixer element is not a very common application, mostly several
mixer elements are used adjacently; nevertheless, since the flow field can be resolved more accu-
rately for one mixer element which has less complexity regarding the geometry, this case study
concerns dispersed flow through a single static mixer element.

The developed one-way coupled CFD-PBE approach is employed to simulate the evaluation
of the dispersed phase system on stationary flow fields which is obtained for the given inflow
profiles as it has been explained in Section Once the stationary solution of PBE is obtained,
the space averaged size distributions and the corresponding Sauter mean diameters are calculated.

The computational domain is the same one which has been used in Subsection see
Figure 4.15] The numerically simulated experiments consist of cases for flat inflow profile with
varying velocities and holdup values. Three inflow velocities 1ms~!, 1.25ms™! and 1.5ms™!
are chosen, and three holdup values of the secondary phase 0.05%, 0.10% and 0.15% have been
studied for each inflow profile. The chosen values, for both velocity and holdup, mostly cover the
moderate operating conditions. The experimental set-up is based on visual observation, and the
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extreme operation conditions yield to dispersions which are not possible to accurately observe;
therefore, the higher values of holdup, and inflow profiles with larger velocities are not studied.

The discretization in the internal coordinate is achieved with 45 classes such that the smallest
class-size is 0.03 mm and the discretization constant g is set to 1.38. The initial size of the droplets
is 1.2mm which corresponds to the size of the 35th class. The physical properties of the phases
are as given in Table and the interfacial tension value is 0.043kgs 2.

0.02 0.035
—numer ——numer
— exper 0.03l—exper
0.015f 0,025k
dy, = 3.37E04m 0.02} |d,, = 3.37E-04m
@ 0011y =280E-04m & d,, = 2.80E-04 m
0.015F_
0.005} 0.0
0.005F
0 0
10* 10° 10* 10°
d (m) d(m)

Figure 4.18: An example for mapped results from fine grid to coarse, inflow of 1.5ms™! and
o= 10%.

A very large number of droplets was required to be manually measured in order to obtain a
“smooth” distribution curve such that in all the classes there would be enough number of droplets
to represent the size distribution. On the other hand, while we are evaluating the experimental re-
sults, we have seen that ensembles of 300-350 bubbles have almost the same Sauter mean diameter
value, with 15 x 10~ °m discrepancy, for more details see Appendix A. Therefore, a coarser internal
grid is obtained by adopting 17 classes (the coarse and internal grids cover the same range of size
coordinate) so that 300-350 counted droplets yield to a “smooth” size distribution, see Figure
Then, both numerical and experimental results are evaluated on this coarse grid, see Figure 4.1
however, results with fine grid are used to plot the cumulative holdup values with respect to size,

see Figure .20

When the plots at the first row and the first column in Figure[d.19)or Figure .20 are considered,
the agreement in the results is more than being satisfactory; especially, for the cases with 5%
holdup (the first column), the discrepancy between the numerical and experimental results remain
less than %12 which is a surprisingly small disagreement regarding the complexity of the problem,
or the results in Section[3.4.2which present comparison of different closures. This good agreement
of the results motivated us to study more challenging cases with multiple mixer elements.

Applications with static mixers to obtain the desired dispersed phase system usually involve
multiple static mixer elements which may be placed adjacently or with certain distances between
each other. In case of Sulzer SMVT™ static mixers, it is very common to have several mixer
elements adjacently and relatively rotated with 90°, which exhibits a very complicated geometry
and a highly turbulent flow field; therefore, we have also studied the cases with three mixer-
elements to see the prediction capability of the developed computational tool, see the geometry in
Figure 4.14 The new geometry is studied analogously to the single mixer-element studies, and
three inflow-velocities I ms™', 1.25ms ™! and 1.5 ms~! are chosen, and three holdup values of the
secondary phase 0.05%, 0.10% and 0.15% have been studied for each inflow profile; the results

are given in Figure d.2T}-Figure [4.22]
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Even the results show that the later cases (3SMV) are more challenging. For the case v =
Ims~! and o = 5% the results are in a surprisingly good agreement, with a 5% discrepancy. Not
only the Sauter mean diameter is obtained very accurately, the size distribution of the droplets is
precisely captured, see Figure 4.21] On the other hand, for the case with three mixer-elements
(3SMYV) the accuracy of the numerical results is clearly less than the one for the single mixer-
element case (1ISMV), see differences between the curves at the plots for cumulative holdup values
in Figure.20|and Figure4.22] Considering this is the first study which compares numerically and
experimentally obtained size distributions of dispersed phase systems in static-mixer applications,
the results are very satisfactory; especially for ISMV cases and the cases with low holdups and
low velocities for 3SMV.

The closures of PBE, breakage and coalescence kernels, are mostly modeled for lean disper-
sions, and their prediction capabilities get worse with the increasing holdup values. Researchers
have still been working on developing coalescence and breakage kernels which will be good for
higher holdup values and the mostly encountered difficulty is to obtain accurate measurements and
data in experiments with high holdup values.

CFD results of less turbulent flows are more reliable because as the Reynolds number in-
creases, the effect of the unresolved subgrid scales becomes more influential on the main flow,
which leads to more uncertainty and lack of accuracy in the results. Moreover, we have as-
sumed that momentum interchanges between the phases are negligible so the discussed single
phase model was used in CFD calculations; thus, the effect of change of the holdup value on the
flow field could not be accurately simulated. Although the physical qualities of the fluids are very
similar, this assumption is certainly less accurate for the high volume fractions of the secondary
phase than it is for lean dispersions.

The modeling assumptions and kernel-related-inaccuracies are not the only reasons of dis-
crepancies between the results; the experimental results also have certain inaccuracies. First of
all, the pictured droplets can be more accurately evaluated for low hold up and velocity values.
Figure [4.23| shows two pictures captured for high and low holdup values.

% o\ %

Figure 4.23: Pictures are taken during experiments by LLISA; left: v = 1.00ms™! and o = 0.05,
right: v =1.50ms™' ms™! o0 = 0.20.

The droplets are sharper and can be more easily and accurately measured in Figure [d.23]on the
left (see Appendix A for details on evaluating the pictures) whereas on the right the evaluation of
the droplets is very troublesome. In addition, the distance between the flash and camera windows
of LLISA should be small to obtain clear pictures for higher holdup values or when the flow
is highly turbulent but this can be a crucial mistake to do. Since the distance between the two
windows is not sufficiently large, the large droplets can not pass through the control volume so
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they are not captured in snapshots. This argument is supported with the experimental results
in Figure .21 When the cases for the same velocity and different holdups are (column-wise)
compared, the largest measured droplet is getting smaller in the experimental results. However,
there is no physical explanation of this consequence; actually, it should be the other way around
according to population balance models. It is clear that there is a limitation for the largest droplet
which can be measured; and, most probably, this restriction is the distance between two windows
of LLISA. While taking pictures for the case with higher holdup, the distance was narrowed down
in order to shot clear pictures; hence, it had not been possible to capture the large droplets.

The differences in the results can not be explained only with the fact of not being able to
capture the large droplets. The calculated size distribution of droplets shifts through large classes
much faster than the measured ones do when the secondary phase has higher holdup; compare
the plots row-wise in Figure .19] and Figure .21} The coalescence rate should increase faster
comparing to the breakage rate with the increase of holdup value; and, the breakage rate of the
large droplets is slower than their coalescence rate. The comparisons show that there is a certain
difference between the measured and computed smallest droplet sizes, numerical solutions always
predict the existing smallest droplet to be larger than in the experiments; see Figure4.19)and Figure
.21} especially for the the largest velocity case. This consequence arises due to the daughter size
distribution (DSD) of the breakage kernel (3.2.11)), DSD provides a distribution curve starting
from a large minimum size. These issues can be resolved by further modeling of the adopted
kernels or by employing more suitable kernels, which we have not been able to determine yet.

Briefly, the accuracy of the numerical results are satisfactory; nevertheless, in certain cases
there are large discrepancies, especially for the dispersed systems with large holdup and highly
turbulent flow-fields. According to our discussion, the disarrangement of the results are mostly
due to the systematic errors in the experimental studies, but also the closures of PBE and turbulent
flow simulations have certain inaccuracies. To judge on the accuracy of the employed numerical
methods is not possible with these experimental results, due to the mentioned uncertainties; how-
ever, the numerical methods on which the computational tool is based provided a very robust and
acceptably efficient solver for CFD-PBE coupled problems, even for very challenging cases like
industrially used static-mixer applications.
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The dynamics of bubble columns has been a very interesting topic to researchers in the field of
CFD for the last several decades, and many different methods have been developed. The process is
very elaborate, and our understanding on different parts of the problem is very limited. Therefore,
there is no unified framework of mathematical modeling or the numerical approaches for bubbly
flows.

A comprehensive review of the studies in modeling of bubble columns and on the numerical
solution approaches is given by Jakobsen et al. [[13]]. Numerical simulations of bubbly flows are
generally realized by adopting either the Euler-Lagrange approach or the Euler-Euler approach.
For practical reasons, e.g., high numerical efforts and computational costs which are related to
tracking and calculating the motion of each bubble individually in the flow field, the former method
is restricted to be applied on lean dispersions for small systems while the later method requires
less effort in both numerics and computation and can be employed for large scale systems, as
well. Nevertheless, both of the methods lead to the same results if the problems are handled with
accurate numerics and adequate computational effort, as it has been reported by Sokolichin et
al. [[134]]. We followed Sokolichin et al. and adopted the Euler-Euler approach to solve the fluid
equations coupled with PBE.

In the Euler-Euler approach, one should employ one of the following models: mixture model,
two- and multi-fluid model. Solving the continuity equation for two-/multi-fluid models is very
troublesome because the continuity has to be satisfied with the numerical solutions of the weakly
coupled phase velocities, that exhibit a great numerical challenge for Navier-Stokes solvers [10],
especially for segregated ones. The choice of the fluid model is not independent of how the
PBE are coupled to the flow part. One-way coupled CFD-PBE models can not comprehensively
describe the dynamics of bubble columns. Therefore, a two-way coupled CFD-PBE model is
required and beginning from the employed discretization method for the internal coordinate, each
adopted approach influences the decision on the fluid model.

The numerical simulations which assume the dispersed flows to be laminar are not able to
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produce mesh independent results. The finer the grid, the more vortices are resolved; this is more
typical for turbulent flows [[161}/162]. Turbulence models which are applicable to produce results
with an acceptable accuracy and reasonable computational cost generally originate from the family
of two-equation eddy viscosity models. In this sense, most preferred models are related to the
standard or modified k-¢ turbulence models which have been implemented in several commercial
CFD programs and in-house codes, including FEATFLOW [1]]. This is another reason that we
adopted the Euler-Euler approach; otherwise, to be able to fully resolve the flow field by using
direct numerical simulation and by tracking the each bubble with an appropriate method — naming
the most widely used: volume of fluid, level-set — would require unaffordable computational cost.

The turbulent flow simulations, especially standard k-€ turbulence models, require relatively
coarse grids compared to direct numerical simulations; moreover, PBE require even coarser grids
and they do not need to be solved on same computational grids (in space, and in time as well)
with the flow equations due to excessive computational costs. The first attempt to reduce the
required computational afford may be the compartment method [[127]] which is based on the idea
of dividing the computational domain into very large units, namely compartments, and solving the
PBE in each compartment with mean values of flow-field variables. This method can be employed
to simulate liquid-liquid dispersions in stirred tanks for which certain regions have quasi-steady
flow behavior [43]] whereas for the applications like bubble columns, i.e., when the interaction
of the phases should be considered in a two-way direction, the compartment method is not good
anymore; and, the PBE must be solved for the flow problem’s number of degrees of freedom (dof).
If one considers that the number of required compartments is on the order of 10 but numbers of
dof is on the order of 10* and more, it is clear that the computational cost dramatically increases.
Moreover, now the non-linear scalar transport problem needs to be solved for the dispersed phase.
And, all these add up to an enormous computational effort hence the use of efficient numerical
techniques are of predominant importance.

A comprehensive PBE-CFD model involves a two- or multi-fluid model for the momentum
balance [13]]. If all the bubbles are assumed to share the same velocity field, only one momentum
equation is solved for the dispersed phase, which is very common when a moment based method
is adopted to solve PBE; it is also used with MC [[101}/102]. Nevertheless, additional convection-
diffusion-reaction (CDR) problems have to be solved when either method is employed. These
problems are either transport of the low-order moments or certain property (properties) of classes
(multi-dimensional PBE); and, the number scales with the required number of moments or the
employed number of classes. However, multi-fluid models can be more preferable when MC is
chosen; then, a separate momentum equation is solved for each class. Then, there are three main
difficulties which are inherited from multi-fluid models independent of PBE: (i) satisfying the
continuity equation, (ii) excessive computational costs of the matrix assembly, (iii) determining
the interphase forces. There are many studies on how to write continuity equation for multiphase
flows such that the incompressibility constraint is satisfied with the solution of separate momentum
equations for each phase. Moreover, not only solving a large number of transport problems is
challenging, another problem is to determine the appropriate advection velocity, especially for the
moment based methods [163L|164]]. The size of the second difficulty can be understood better, if it
is considered that each class is a separate phase, for each one the discrete convection operator has
to be assembled, and the cost of assembling the convection matrix is much more than solving the
associated linear equation with the CDR problem.

The third difficulty should be considered in detail since it is the coupling term between the
momentum of the phases. There are three main interphase forces, the virtual mass force (fya), the
lift force (f1) and the drag force (fp); and, we prefer to work only with the drag force. The drag
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force is the only force which has significant influence and a clear definition even tough there are
various definition of it. On the other hand, fyvu is not very influential and can be freely neglected
for the sake of reducing the computational cost.The lift force has extremely deviating formulations;
moreover, it is frequently abused for fitting numerical results to experimental data [[146,(165]].

We preferred a simplified model and tackled the problem within the Euler-Euler approach.
The dispersed system is considered as a mixture and a single momentum equation is solved for the
fluid in the framework of the mixture-model and the algebraic slip relation is employed to recover
the gas phase velocity. Discretized PBE with MC are coupled to turbulent flow equations in a two-
way fashion. While the hydrodynamic variables are coupling the PBE equation to flow solutions,
the formulation of the drag force requires the solution of PBE. The turbulence is modeled with
the standard turbulence model and buoyancy induced turbulence; buoyancy is handled with a
relaxed Boussinesq approximation. Then, the continuity equation of the mixture is solved with
the constant density assumption, the local gas holdup is calculated regarding the ideal gas law. We
assume that all the bubbles share the same velocity field, which is obtained by using the Sauter
mean diameter of the population within the algebraic slip relation.

Next, we present the governing equations and our approach to the numerical solution of these
equations with specifying the employed numerical methods; the discussion will be focused more
on the mathematical model and rewriting it such that it can be solved with the computational
tools that we have so far developed. Later, we study the Becker’s experiment which concerns
bubbly flows (particularly, bubble swarm motion) in a flat bubble column which yields a flow field
characterized by 2D motion of bubble swarm.

5.1. Mathematical model and numerical approaches

The developed complete mathematical model is based on an Euler-Euler approach and consists
of three parts: (i) the hydrodynamic core, a model to solve “incompressible”" Navier-Stokes equa-
tions; (ii) the simplified two-fluid model based on an analog of Boussinesq approximation for
natural convection problems; (iii) PBE to describe the size distribution of the dispersed phase; the
schematic view of how these models are connected is given in Figure [2.1] (it is recalled below).

Navier-Stokes equation
P ) @- external coupling
u
= R

omentum equation |« »| continuity equation . i

p - internal coupling

u 2 U u :velocity
b1 p :pressure
turbulence model multiphase model v .:turbulent eddy viscosity

Pr o« holdup

) < S > \C4 S - production rate of

k-2 model ks population balance equation bubble induced turbulence

The second part restricts the model to be valid for bubbly flows with moderate gas holdups (up
to 10%). Under such circumstances, incompressible Navier-Stokes equations are enriched with
an extra buoyancy force term, that characterizes the gas-liquid mixture as a weakly compressible
fluid. Consequently, the dispersed phase system can be considered as space-sharing interpenetrat-
ing continua. The major advantage of this approach is that the computational cost is independent
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of the number of bubbles to be simulated.

Replacing the effective density Py by the liquid density p; except for the gravity force leads
the Navier-Stokes equations for the liquid phase in the following:

ou
ETtL +ug-Vu, =—-Vp,+V-(vrD(uy)) +eg,

) ; (5.1.1)
Vo =0, p=CPmigx o=

PL PL

where D (u) = Vu+ Vu! and the effective viscosity vy = Cyg is a function of the turbulent kinetic
energy k and its dissipation rate €. The continuity equation of the gas phase and the evolution of
these quantities are described, respectively, by the following transport equations:

op ~
%—FV-(pGug) =0 (5.1.2)
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The production terms P, = V%]Vu + VuT]2 and Sy = —CyeVp - uy), are due to the shear and

bubble-induced turbulence (BIT), respectively. The involved constants C, = 0.09,C; = 1.44, C, =
1.92, 6, = 1.0 and o = 1.3 for the standard k£ — € model are known with high precision, whereas
the BIT parameters Cy € [0.01,1] and C; € [1,1.92] are highly problem-dependent. After decom-
position of the interphase force term responsible for momentum exchange between the present
two phases and using the assumptions introduced by Sokolichin et al. [165|166], the momentum
balance of the gas phase reduces to:

0= —aVp—oCyugpy,  Cw :CDgp—rL|uslip]. (5.1.5)
And the term r (radii of bubbles), appearing in the definition of the Cy linearization parameter,
couples the system to PBE. One common practice is to adopt a certain value for r and having a
model without PBE; however, this is not a general solution, even though it may lead to acceptable
results for specific cases. Moreover, even ugjj, can be considered having a certain value depending
on the initial and boundary conditions so that the model is further simplified. Nevertheless, we
wish to investigate the effect of size distribution of the bubbles on the bubble swarm motion hence
we incorporate our fluid model with PBE which yields to again (4.1.9). Let us recall this equation
in the conservative form:

%{jtv.(u(;f)—(v.;’;w) - /:rB(D,f))f(f))df)—f(D)/ouf)rB(f),D)dﬁ

L
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We comprehensively discussed the numerical solution of this integro-partial differential equation
in Chapter 4| by specifying the required numerical methods and the algorithms. In two-way cou-
pled fashion, this equation exhibits strong internal and external couplings, C4, C6, and C7 (see
Figure[2.1). The external couplings are due to the turbulent diffusivity and the velocity which are
given with (VF—; and u. The internal couplings are more apparent when the discrete counter part of
#@.1.9) is considered, (4.2.24). One important remark here is about the treatment of the diffusivity;
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as the air bubbles are accepted non-diffusive in water, there should have been no diffusion in our
model; however, since the fluid dynamics is modeled with RANS model, the turbulent viscosity
arises which is responsible for the diffusive term in (4.1.9).

As in the case of oil-in-water dispersions, the turbulent diffusivity can be very small such
that with an over-diffusive stabilization scheme for the convection term the introduced numerical
diffusion to the solution can be much more than the calculated/physical one. Therefore, high-
resolution positivity preserving schemes are required, which have been already developed and
employed for the solution of this sort of problems in Chapterd] Here, we have employed again
the implicit high order finite elements method with AFC and positivity preserving linearization
scheme for the spatial discretization.

PBE can be coupled to fluid dynamics equations either in one-way fashion or two-way fashion.
In one-way fashion, the underlying presumption is that the dispersed phase do not influence the
fluid dynamics but the flow field has an influence on the evolution of the secondary phase; that
is very suitable to model, for instance, moderately mixed oil-water systems or similar dispersed
systems, as it was studied in Chapter 4| Our studies on the one-way coupled PBE-CFD models
have shown that with the proper implementation these models leads to acceptable results for the
flows of oil-in-water dispersions in complex geometries like static-mixers (see the results in the
previous chapter) [1,/167]]. In case of air-in-water dispersed systems, it is not possible to assume
that the dispersed system has no influence on the dynamics of the primary-phase. Therefore, we
realized the coupling of PBE and CFD in a two-way fashion so the C7 and C6 external couplings
were taken into account in both directions. In the mathematical model, back coupling (influence
of PBE on fluid model) arises due to the definition of the slip velocity which is obtained from

(5.1.5) as, |

———— Vp,  where Cp=0.666. (5.1.6)
Cp B ugip|

Uglip =

Before discussing further how to obtain the slip velocity, we introduce the gas velocity (5.1.7) and
the drift velocity (5.1.8) for the completeness.

UG = Uy, + Uglip + Udrifc- (5.1.7)
vr Vo

Ugrify = — — —. (5.1.8)
Og O

With this formulation of drift velocity, now it is all clear how the diffusive term arises in (4.1.9).
While it is a purely convection problem, when the gas velocity is obtained according to
(B.1.7)—(5.1.8), and the convective term is rewritten; the diffusion term appears and the gas ve-
locity remains only as a function of the liquid and slip velocities.

The slip velocity has the opposite direction of the gradient of the pressure, and its
magnitude is quadratically proportional to the magnitude of the pressure-gradient unless the drag
coefficient Cp is a function of ug;p. There are various definitions of Cp; since our focus is mostly
on investigating the couplings between PBE and equations of fluid dynamics, we prefer to adopt
a constant drag coefficient in order to keep the model less non-linear and less demanding in com-
putational costs. Cp (5.1.6) is adopted from the study by Bannari et al. [I01] in which several
other formulations are comprehensively discussed. Even though the chosen drag coefficient does
not provide the most accurate results, it has the advantage that it yields to a linear formulation of
ugjip after some manipulation of the equation (5.1.6). Additional nonlinearities arise with other
formulations of Cp which involve uyj;p; then, computations get even more demanding.

Once the gas-phase velocity is obtained with the solution of turbulent fluid dynamics; in order
to progress with the solution of PBE, we have all the required variables: u,, € and vr. Then, we
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can safely employ the developed solver for the PBE-CFD coupled problems (see Chapter[d) which
is nicely suited to our purposes. The case study in our scope did not require to cover a wide range
of the internal coordinate so with relatively small number of classes the required domain could
be covered, i.e. solution of fewer transport equations are required. And, since we considered
that all the classes/bubbles share the same velocity field, the convective operator needed to be
assembled only once at the each outermost iteration (see Figure [5.1)), which leaded to a great
reduction in the computational cost. The problem could be solved with large time steps since the
whole scheme is treated implicitly with positivity preserving linearization within Crank-Nicolson
time stepping technique; therefore, the solution of PBE with MC was not a bottle-neck in this
manner even though for the simulation of bubble columns they are found to be computationally
costly. Moreover, since we could use the same time step sizes while marching in the solutions
of the transport equations and PBE, we did not need to adopt an operator splitting approach; so
that, we could modify the system matrix which we obtained after our high-order finite element
discretization with the implicit treatment of the sink terms.

A last point worth to be discussed is the implementation of boundary conditions which is not a
trivial subject; we follow the prescriptions by Kuzmin et al. [[159]]. At the inflow boundary, all ve-
locity components and turbulent quantities, k£ and €, are prescribed as Dirchlet boundary condition.
At the outlet “do-nothing” boundary condition is employed which states that all the normal gradi-
ents of all the related variables vanish. The walls are modeled with the free-slip boundary condi-
tion, this requires the computation of walls’ normal which can be cumbersome when the walls are
not aligned with the chosen coordinate system. The gas inflow rate can be incorporated as a source
into the gas phase continuity equation, and bubbles are introduced at the sparger having a size of
1 mm which corresponds to the median class (4th/6th class) for simulations with seven/eleven
classes. For the further implementation details of boundary and initial conditions, and the wall
functions, we encourage the reader to refer to the following studies [[146L/158,(159]. Hereby, we
have completed our discussion on the mathematical model and the numerical approaches and now
we can present our algorithm which explains our approach to the solution within the time step #":

Solve the Navier-Stokes equations.
Obtain the gas velocity.
Solve the transport equation for the gas holdup a.

Solve the coupled equations of the k—€ model.

AR S

Check the convergence criteria for the outer-loop (1-4) for the solution
of the CFD equations,

(a) YES: pass the necessary values to population balance model and
progress to solve PBE, go to 6.
(b) NO: go on with the next iteration in the outer-loop, go to 1.

6. Solve internally coupled PBE in the outer-loop,

(a) Calculate the sink and source terms for PBE.
(b) Solve the transport problem for each class.

7. Check the convergence criteria for the outer-loop (6).

(a) YES: calculate the d3, of the population and pass it to the fluid
dynamics part (2) for 1.
(b) NO: go on with the next iteration in the outer-loop, go to (6.a).
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The internal and external couplings, which are implemented according to the presented com-
putational recipe, give rise to the nested iteration loops, Figure [5.1] It is important to see how
the couplings have been realized within the nested iteration strategy; additionally, it gives an idea
about the computational demand of the accordingly developed computational tool.

For n=1,2,... main time-stepping loop " —s ]

For k=1,2,... First outermost coupling loop

e Solve the incompressible Navier-Stokes equations

For 1=1,2,... coupling of v and p

’For m=1,2,... flux/defect correction ‘

e Solve the transport equation for o

’For m=1,2,... flux/defect correction ‘

e Solve the transport equations of the kK — € model

For 1=1,2,... coupling of k and €
For m=1,2,... flux/defect correction
For k=1,2,... Second outermost coupling loop

e Compute the source and sink terms of PBE

e Solve the population balance equation

For 1=1,2,... solve the equation of oy

For m=1,2, ... flux/defect correction

Figure 5.1: Developed computational algorithm consisting of nested iteration loops.

As a summary, the computational approach shall be explained with all details for one time
step: At the time step ", one should first solve the Navier-Stokes equations which are modified
with Boussinesq approximation (5.1.1). In order to solve these equations, the employed numerical
methods methods are: FEM on unstructured grid, Pressure-Schur-Complement approach which
yields to the C2 external coupling, the loop with the / index (loop;), see Figure

The Burgers’ equation is solved in a decoupled fashion for each velocity component, which
caused the C1 internal coupling with the nonlinear convection term. The obtained linear equations
for the velocity and pressure unknowns are solved with an efficient geometrical multigrid solver
in a defect correction loop (loop,,).

Then, the transport equation for the total gas holdup, @, is solved with the obtained gas velocity
being computed with d3, from the PB part. Since this equation and the other scalar transport
equations in our model are convection dominated, an SOR-solver on the finest computational
grid is employed with an Algebraic Flux Correction (AFC) scheme additional to the positivity-
preserving linearization in order to ensure valid non-negative solutions. Then, the coupled system
of k — € equations is analogously solved in a loop;. So far, Steps 1—4 have been realized. Since all
the involved equations are strongly coupled, Steps I—4 have to be performed in the first outermost
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coupling loop. We consider that the coupling between PBE and CFD is weak, i.e., we assumed that
the bubble size distribution changes negligibly while solving the CFD equations in one time-step.
Thus, the slip velocity remains constant in the first outermost coupling, and we can solve PBE
after we obtain a converged solution of the flow problem at the certain time-step. This assumption
reduces the computational cost significantly such that we are able to simulate our problems with
the developed sequential computational tool. Once the converged solution of the CFD part is
obtained, the next step is the solution of PBE. First, the sink and source terms are computed with
MC in a fixed-pivot fashion, Step 6.a; then, the related terms are incorporated into the transport
equation of oy, which is solved analogously to the previous scalar transport equations. Since
the values of the classes strongly depend on each other, the equations have to be solved non-
linearly in the second outermost coupling loop. When the converged solution of PBE is obtained,
the corresponding d3, field of the population is calculated and passed to the CFD part for the
computation of the slip velocity in the next time step "*'; and the discretization of equations in
time is obtained according to the Crank-Nicolson method.

5.2. Numerical simulation: Becker’s experiment

Becker et al. conducted elaborated experiments on the motion of bubble swarms in a partially
aerated flat rectangular bubble column [[160]; their studies are both experimentally and numerically
very interesting and challenging.

The choice of flat geometry is due to fact that 3D flow field can be almost exactly character-
ized by 2D flow structures; so that, the observation of the flow field and measuring the relevant
variables were easier and more accurate than doing it for 3D flow structures. On the other hand,
even, when the sparger is relocated from the middle of the column to be closer to one of the side
walls, the bubble swarm-motion remains unsteady [[160]. However, to numerically simulate the
unsteady bubble swarm-motion is very challenging for long-runs; usually, after several oscillations
the bubble swarm tends approaching to the closer wall, and later it exhibits a quasi-steady flow
field. Indeed, this is not an acceptable result.

The bubble column is numerically simulated within a computational domain Q = (0, 0.5) x
(0, 1.5) x (0, 0.08) [m], which is a cartesian mesh of 6,912 hexahedral elements. The spatial dis-
cretization resulted in 22848 x 3 degrees of freedom (dof) for velocity (Ranacher-Turek element,
nonconforming trilinear 0: FE [168]), 6912 dof for pressure (piecewise-constant Qg FE), and
(2+11) x 9125 dof for k — € equations additional to PBE (conforming trilinear Q; FE). The cir-
cular gas sparger with 0.06 m diameter is located at the point (0.15, 0.00, 0.04) and the prescribed
volumetric flow rate is 1.61/min.

We prefer to simulate breakage and coalescence on a developed flow field; hence, we obtain
a flow field, firstly, with a constant slip velocity; |ugjip| = 0.2ms~! in the opposite direction to
gravity, as Kuzmin et al. have done [4}[146]]. After time + = 10s, the flow field is simulated
with the population balance model coupled and the initial bubble size d = 1mm. The initial
bubble size is determined according to (5.1.5), the linearization parameter C,, =~ 5 x 10*kgm~3s~!
corresponding to the initially adopted constant ugp is considered [[146].

The simulation results are similar to the observations in the experiment, the meandering bubble
swarm is numerically simulated until time r = 60s, see Figure[5.2] In the experiments it is observed
that the flow field does not tend to be steady in the long term. Our numerical simulations show that
after the 15th second the bubble swarms approaches to the near side wall, see Figure[5.2]at7 = 15s;
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later, leading to a quasi-steady flow field at t = 60s, see Figure[5.2] Although, these results are
more unsteady compared to the simulations without PBE, they are not satisfactory. Nonetheless,
we think that a computation that is performed on a finer spatial grid can yield to more agreeable

results.
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Figure 5.2: Holdup- and velocity-magnitude-field (ms™') solutions with the coarse mesh at various
time-instants.

The slip velocity is one of the most influential variables on the flow field of the gas phase, and
it requires that the gradient of the pressure is accurately recovered. If the flow field is resolved on a
finer grid, it can be more accurately recovered; hence, we homogeneously refined our hexahedral
mesh and obtained a mesh of 55,296 hexahedral elements. The simulation results are able, even
in the long run, to capture the unsteady meandering bubble-swarm motion, see Figure[5.3]

We could successfully simulate the observed motion of the bubble swarm in experiments;
the numerical simulation predicts a qualitatively similar meandering behavior. A great challenge,
to obtain a “non-diffusive” numerical scheme so that the dynamic behavior of bubbly flows can
be numerically simulated for long-runs, is achieved within an efficient implementation of PBE
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Figure 5.3: Holdup-field solutions with the fine mesh at various time-instants.

coupled to CFD. In Table[5.1} the required computational time by different parts of the PBE-CFD
solver is presented for 60 s of the flow simulation which is performed on the coarse computational
grid with 7 classes. The simulation is performed within a sequential computation on the AMD
Opteron 250 CPU with 2.4 GHz frequency. The additional cost due to the incorporation of PBE
is affordable and the required computational time remains on the same order with or without
the PBE. The computation on the fine grid requires approximately 10 times larger computational
time (approx. 1 week), which is at the edge of acceptable computational time for us. Therefore,
although the Navier Stokes solver and the population balance solvers are efficiently parallelized
within the domain decomposition method, a computation on a finer grid which would be good
for the completeness of the results is currently not possible with our state-of-art turbulent-flow
solver; and we leave it as a future task in our coming studies, particularly in combination with
hardware-oriented techniques and GPU computing.

Table 5.1: Computational time required for the solution of different part of the model. (NS:
Navier-Stokes Equ.; KE: Turbulence Equ.; a: Gas phase cont. Equ.; MP: Multiphase Equ.).

Equation Time (s) Time (%)
NS 33500 554
(o4 4270 7.1
KE 13200 21.8
PBE 9475 15.7
MP (PBE & o) 13745 22.8
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5.3. Conclusions and outlook

PBE coupled with CFD simulations lead to agreeable results on reasonably fine computational
grids. The highly nonlinear coupled-model is very demanding with respect to computational ef-
forts and, hence, requires very accurate and efficient numerical methods. The method of classes
has shown to be a good choice, being able to describe the population with few classes, 7, that
adds up to an affordable computational cost. The modified models, e.g., Chien’s Low-Reynolds
number turbulence model [[1]], should be tested since the resolved flow field was mildly turbulent.
The spatial discretization is of great importance: both considering the employed finite element
spaces and the mesh size. Positivity preserving linearization and high-order stabilization schemes
are very crucial to avoid undershoots and overshoots. In this manner, a parallel implementation
of the Q2/P1 solver for the incompressible multi-fluid model and a parallel high-order FEM-AFC
solver with Q1 elements for scalar transport equations (the PBE and the turbulence equations) is
very promising to simulate bubbly flows. Moreover, simulations will be more comprehensive if
the motion of the water surface is resolved with a surface tracking or surface capturing method,
e.g., level set method [[169]]. In case of highly turbulent bubbly flows for which the dispersion can
exhibit a wide distribution in the internal coordinate, the method of classes might be less efficient;
then, another numerical method to compute PBE can be employed, e.g. DQMOM, QMOM.
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Experimental Studies on Static Mixers

The experimental work has been executed in Sulzer Chemtech Ltd. laboratories, Winterthur,
Switzerland by Evren Bayraktar. Liquid-Liquid In-Line Sizing Apparatus (LLISA) has been de-
veloped in these laboratories and has been used for measuring the size distribution of dispersed
phase systems, particularly oil-in-water and water-in-oil systems; a schema of the experimental
set-up is given in Figure[AT]

E-- Dispersion
g Camera | ;- Flash

PC

Disperser dP

Qil

Water

)

Figure A.1: Experimental setup in Sulzer Chemtech laboratories.

LLISA was designed modularly, allowing to use different sized mixers as well as altering the
position of the measurement section. It has enhanced magnification features through the micro-
scope lens, so that very small droplets (on the microscale) can be accurately measured by capturing
them on the sharp focal plane. In this measurement technique, the underlying assumption is: time
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integrated count of bubbles/droplets which are captured in the photographed volume represent
time averaged size distribution of population in the cross section where LLISA is placed. Thus,
the gap between the two windows of LLISA (at the bottom of the hallow threads where the flash
and camera are placed) should always be more than a certain width such that even the largest
droplets should pass with ease.

The opening width between the windows is also important to obtain sufficient illumination; so
that, the droplets can be pictured sharply. Indeed, it is very difficult to obtain sharp and clear pic-
tures for dispersed phase systems with high void fraction of the secondary phase and/or for highly
turbulent flows due to increasing reflection and deflection of light rays; under these circumstances,
the illumination is not the optimal for optical measurements. In order to have a better illumination
so to take better pictures, one can adjust the gap between the windows of LLISA. Nevertheless,
this may be a faulty solution because when the gap narrows down less than a certain width, large
bubbles can be filtered out, and this causes a systematic error in measurements.

The droplet capturing apparatus is automated but evaluation of the droplet size is manual. The
camera and the flash of LLISA are triggered simultaneously, and the taken pictures are saved in
the disc drive of the attached computer. Then, the pictures are processed manually to evaluate
the droplet size by “Bubble Count" software which is provided by Sulzer Chemtech. First, the
picture-files are opened with this software, and every sharp droplet is marked with a circle; a
sample picture taken by LLISA and evaluated with the Bubble Count software is shown in Figure
A2

Figure A.2: Left: taken by LLISA; Right: evaluated by Bubble Count.

The evaluation of droplet sizes is rather a time consuming process because all the work has
to be done manually. Nevertheless, a better alternative was not available and the Bubble Count
software was the only solution. Data which are produced during evaluation of bubble sizes are
saved in comma-delimited ascii files for each picture; then, the data exported from related files by
a Matlab script. Later, the imported data are filtered and only radii of measured droplets are saved.

The measured radii are in pixel unit, and they have to be converted to actual sizes with a
conversion factor. The required factor obtained by taking several pictures of the calibration slide
(see Figure [A.3) and processing them with the software. Pictures were taken by replacing the
camera and flash several times so we took thirty pictures. Then, the mean value and the standard
deviation of the measurements were calculated in order to determine the conversion factor and
the accuracy of our measurements. The conversion factor and the standard deviation were found,
respectively, to be 2.5 x 107® mpx! and 2 px, which is equal to 5 x 107° m.
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Figure A.3: Calibration slide (measured size: 80 px, actual size: 200 x 10~ m) by LLISA.

After obtaining the conversion factor, all results were converted to the meter unit; then, mean
diameter and standard deviation of the mean is calculated for each case. Nevertheless, extracting
only this information from the available data was not very efficient. Besides, obtaining some
distributions, e.g. Gaussian distribution, with these statistical values was not a good idea, as the
physics in the problem is neglected; moreover, no evidence suggests that the size distribution of
dispersed phase obeys to a predefined distribution. Therefore, we suggest a simple and reasonable
post-processing without adding any more assumptions to the problem. The measured droplets (v;,;)
are assigned to certain classes (with 1)?’”'” and v/"*" being lower and upper limit of the i’th class,
respectively), as it has been done in numerical simulations; for details refer to Section 3]

lf Vm € [D:'nmav;mlx)a Uy = Nim Vi
where n;, is the weight factor of droplet v,, for i’th class. Then, the volume of the measured
droplets is added to their corresponding classes. Finally, we obtain a size distribution for an
arbitrary volume of the secondary phase. However, we know that this arbitrary volume should
actually be the total-volume of the secondary phase in a certain control volume in time, because
all the measurement set-up was developed based on this assumption. This knowledge leads us to
calculate a discrete probability distribution (DPD) of the holdup (or volume, DPD is the same for
both); dividing the volume assigned to each class by the total volume of the measured secondary

phase yields to DPD:
T
!
Pr;= D—’T Y viPr(x=v)=1

Then, the holdup distribution of i’th class is calculated as:
o; = Pr;o

As a consequence, the measured droplet sizes are evaluated in a way which allows to compare size
distributions obtained in numerical simulations and experiments.
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