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1. Introduction  
 
 
1.1 Chemical Genetics 
 

1.1.1 Definition 
 

Chemical genetics is the study of the function of gene products using 

perturbation by small molecules. A more detailed explanation of certain terms 

within the given definition shall facilitate better understanding. 

Chemical genetics is often used interchangeably with the term chemical 

genomics. In most cases both mean the same field and scientific approach. 

However, there is a certain distinction very similar to the difference between 

the fields of genetics and genomics. In general, the suffix -ome, such as in 

genome, proteome, or metabolome, indicates the entire pool of a certain type 

of molecules within a biological system. Omics aims at the global study of the 

entire pool, e.g. the global transcription analysis to study structural and 

functional differences between two cell types. In the analogous sense, the 

extension from chemical genetics to chemical genomics is the aim to identify 

a specific inhibitor for each gene product in the human genome (Schreiber, 

2005).   

In chemical biology and medicinal chemistry small molecules are used to 

inhibit specific protein functions. Chemical biology applies small molecules to 

study biological phenomena by identifying the protein targets that cause or 

prevent a biological effect. The aim of medicinal chemistry is to identify 

selective and potent inhibitors of protein targets that cause a pathological 

outcome. This process certainly includes the study of the pathological 

mechanism, as well as the mechanism of action of the inhibitor. Both, 

however, contain the three main components of chemical genetics which are  
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the synthetic generation and expansion of small molecule libraries, 

development of screening assays, and target identification and validation.   

Next, the meaning of gene product within the above definition of chemical 

genetics shall be explained. A gene is the sequence of nucleic acids within 

the DNA encoding a protein. The DNA is packaged into chromosomes and 

contains intron and exon regions in eukariotes. According to the central 

dogma of molecular biology the nucleic acid sequence from the DNA is 

irreversibly transcribed into the messenger RNA, which is then irreversibly 

translated into protein. During the process of splicing the introns are removed, 

and only the exons encode the protein. In brief, DNA makes RNA, and RNA 

makes protein. Hence, it becomes obvious that gene products can be twofold, 

since DNA encodes both RNA and protein. To clarify this ambiguity within the 

above given definition of chemical genetics and the following content of the 

presented thesis, by gene product solely protein is meant. 

A specific feature of chemical genetics lies within the tools used to perturb a 

biological system. These tools are in particular small molecules. Small 

molecules are defined as substances with a molecular weight below 800 Da. 

Some definitions of chemical genetics include also other exogenous ligands. 

These could potentially be antisense RNA, or DNA-targeting reagents. Here, 

we shall focus on protein-binding reagents and small molecules only. This 

specification is essential since the generation and modification of small 

molecule libraries by means of synthetic chemistry is a crucial topic in the field 

of chemical genetics as will be explained further below. 

Small molecules are used to perturb a biological system, but how? The 

question itself already provides one half of the answer, namely that small 

molecule compounds are the elementary parts that perturb the system. This 

appears natural to us, but although plants and their extracts have been used 

for thousands of years to treat diseases, the insight that it is individual 

molecules that reside within the plants that cure the diseases did not come 

until the isolation of morphin from opium by Sertürner in 1804, which marked 

the isolation of the first active compound (Klockgether-Radke, 2002). The  
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second premise, namely that small molecule compounds bind to specific 

protein receptors came 100 years later through the works of Paul Ehrlich and 

Emil Fischer who developed the ideas of a molecular receptor and the  

lock-and-key principle (Stockwell, 2000). This insight, that there is a specific 

interaction between the small molecule and the target protein is key to the 

field of chemical genetics. Today, it is known which forces enable the small 

molecule to interact with the target protein. These are noncovalent 

electromagnetic and electrostatic interactions such as hydrogen bonds and 

salt bridges, and hydrophobic interactions, and steric interactions of the 

partners. There were many crucial steps toward this discovery. On the one 

hand, there was the development of protein sequencing, NMR and 

cristalography methods to study protein structure and the properties of binding 

pockets. On the other hand, there were advances in our understanding of the 

physical forces at the atomic level, as well as progress in organic synthesis 

that allowed chemical modification of the small molecule inhibitors to study 

structure-activity-relationships (SAR). Computational chemistry and molecular 

modeling have equally become valuable modern investigation methods to 

study inhibitor-target interaction. 

Taken together, chemical genetics is the study of gene product functions 

through perturbation with small molecule compounds. Chemical genetics is 

predominantly focused on the perturbation of proteins as gene products. 

Chemical biology and medicinal chemistry also apply small molecules to 

perturb protein functions. Small molecules are used as exogenous ligands to 

perturb protein functions.  

 

1.1.2 Why Chemical Genetics 

 
Conventional gene technology methods have been developed to include very 

sophisticated technologies that allow conditional gene knockouts and 

inducible gene expression. New methods using zink finger nucleases,  
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TALENs, and CRISPR offer elegant ways to modify the genome by 

homologous recombination. These techniques offer convenient ways to study 

genes in a conventional genetic approach. So why do we need chemical 

genetics? 

The chemical genetic approach entails several advantages over conventional 

genetics (Spring, 2005). One very obvious advantage is the simplicity of the 

approach. Gene knockout and knockout mouse technology are laborious and 

tissue consuming. Compared to that, the perturbation by using a small 

molecule inhibitor barely involves more than the step in which the compound 

is added.  

Following the same line, small molecules act instantly and rapidly. Small 

molecules are cell permeable and diffuse directly to their target protein to 

inhibit its function. The inhibition of kinases, for example, by using small 

molecules takes not much longer than 15 min, and the results can be made 

visible by western blotting. Transfections of plasmids can take several hours, 

and viral transductions are usually done over night. After the foreign DNA has 

been introduced into the host it still takes 12 - 48 hours for the introduced 

sequence to be processed. In some cases the cells that need to be analyzed 

do not live long enough, or do not exist long enough in a particular 

developmental state, to allow genetic modifications (Hakkim et al., 2011).  

An important advantage of using small molecules is the fact that the inhibiting 

effect is reversible. If cells are treated with an inhibitor in cell culture all that 

needs to be done is to replace the medium by new medium that is not 

containing the compound, i.e. the small molecule can be washed out. The 

remaining compounds inside the cells will be metabolized or actively 

transported outside the cells. On the other side, if a genetic modification has 

been introduced into the genome it cannot be made reversible. Transient 

transfections have to be analyzed by sequencing to reliably exclude 

integrations into the genome, and inducible or conditional genetic 

perturbations are often accompanied by the problem of "leaking". 
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Chemical genetics allows us to study critical genes where genetic knockouts 

are lethal for the organism or the cell. A genetic knockout might also cause a 

cell type to change, for example by differentiation, so that the cell type of 

interest cannot be studied anymore. Small molecules act instantly and rapidly 

and can be applied to study the gene product of interest at different stages, 

e.g. different developmental stages, to determine the moment at which the 

function of the studied gene product is indispensable. Stat3 knockout mouse 

embryos, for example, die before gastrulation which makes investigations on 

cells derived from Stat3 knockout mice impossible (Takeda et al., 1997). By 

using a small molecule Stat3 inhibitor the role of Stat3 could potentially be 

dissected during embryo development, in embryonic stem cells, as well as 

epiblast stem cells, and even later during differentiation (Schust et al., 2006).  

Chemical genetics also allows the simultaneous study of multiple gene 

products by the application of multiple small molecule inhibitors at the same 

time. Thus, the interaction of several gene products that cause a biological 

effect in a concerted fashion can be studied. Genetic techniques are not as 

convenient for this purpose. Random and multiple integrations, and the 

uncontrolled distribution of the transfected plasmids significantly complicate 

this approach.     

Small molecules can be added at different concentrations, thus, allowing the 

study of dose-dependent effects. The argument of simplicity is here especially 

valid. By adding different amounts of the compound to the biological system 

the function of the gene product can be quantified. This is possible if the small 

molecule acts via noncovalent inhibition which is, however, mostly the case. 

Other relevant arguments in favor of the chemical genetic approach deserve 

to be mentioned such as the possibility to study posttranslational function of 

gene products, safety issues, and practical reasons concerning storage, 

handling and the applicability for high-throughput screening. One argument, 

however, that is of significant and fundamental importance needs to be 

emphasized that is of particular importance for the field of medicinal 

chemistry. As outlined earlier, small molecule inhibitors can be applied to  
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inhibit gene products that cause diseases. The majority of the drugs on the 

market are small molecule inhibitors that have improved life quality and 

increased life expectancy considerably during the course of the 20th century. 

Genetic approaches are obviously very difficult to implement and not 

comparable to the simplicity of orally available drugs for the use at home. The 

originally promising gene therapy is not feasible for the treatment of most 

diseases and has failed to cope with the broad expectations.     

The main disadvantage of chemical genetics as compared to the conventional 

genetic approach is probably the fact that inhibitors are still not available for 

each single gene product. However, there is a global coordination of the 

efforts toward a real chemical genomics through databases like ChemBank 

and PubChem. Another argument is that certain gene products are not 

"druggable" because they are too small and do not have a real binding pocket 

for small molecules. However, although transcription factors have been 

considered as not being target proteins for small molecule inhibition recently 

several successful attempts have been made to target transcription factors 

with small molecules (Koehler, 2010). Finally, although small molecules are 

optimally designed to be specific and potent toward their target protein it is 

sometimes impossible to introduce a perfect selectivity in particular among 

conserved isoforms of protein families so that some small molecules exhibit a 

certain promiscuity among a group of target proteins.   

  
1.1.3 Small Molecule Libraries  
 
The chemical genetic approach can be devided into three main steps: 

generation and expansion of a small molecule library, screening, and target 

identification and validation. That means that certain tools are indispensable 

at each of these three steps. The first such tool is the chemical library of small 

molecule compounds. Small molecule libraries are collections of diverse small 

molecules containing thousands and sometimes millions of compounds.  
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These are stored and tested in automated processes in high-throuput 

screening. Probably the largest and best known libraries are those of big 

pharmaceutical companies that have collected their compounds over 

decades. But compound libraries become increasingly available to academic 

institutions as well through automated screening facilities or smaller 

commercial libraries. Chemical genetics involving high-throughput screening 

is a relatively new field since it was not possible before certain technological 

advances that enabled automated processing, as well as advances in 

synthetic chemistry that made it possible to generate huge compound 

collections in a time and labor efficient manner.  

Probably the biggest step toward chemical diversity was the development of 

solid-phase synthesis of small molecules (Bunin and Ellman, 1992). A starting 

material was attached to an insoluble bead which simplified purification and 

isolation of intermediate products significantly. Earlier chemists focused their 

efforts on the total synthesis of complex natural products. The synthetic 

approach aiming at the generation of one target compound was termed 

target-oriented synthesis (TOS). This allowed chemists to synthesize focused 

libraries by using sequential fragment-coupling reactions.  

The expansion of the applicability of solid-phase synthesis, which was initally 

developed for peptide synthesis only (Merrifield, 1997), to non-peptide 

chemistry marked the beginning of combinatorial chemistry of small molecules 

(Bunin and Ellman, 1992). Combinatorial chemistry includes strategies such 

as parallel synthesis and split-and-pool synthesis and aims at the generation 

of the highest possible number of compounds in as few synthatic steps as 

possible. For the generated compounds the highest possible structural 

diversity and complexity are wanted. This approach with the ultimate goal to 

synthesize an inhibitor for each protein function, i.e. the biologically active 

chemical space, is called diversity-oriented synthesis (DOS) (Schreiber, 

2000). In contrast to TOS which applies retrosynthesis to plan a synthatic 

strategy, i.e. a planning starting from the target compound, DOS sets up the 

synthesis starting from the building blocks. The reactions used are equally  
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important since they should encompass stereochemistry and branching 

pathways to accomplish a fast and efficient synthetic pathway toward 

chemical diversity and complexity (Tan et al., 1998). 

DOS aims at the synthesis of the biologically active chemical space to 

generate an inhibitor for each gene product. A third approach toward this end 

has developed that is mainly concerned with the question how to identify the 

areas in chemical space that are enriched with biologically active compounds 

instead of blindly synthesizing every conceivable substance. It argues that a 

complete synthesis of the entire chemical space is not possible and that there 

is a rational and logical method for the discovery of biologically relevant 

subspace. This approach was termed biology-oriented synthesis (BIOS) 

(Wetzel et al., 2011). In principle, it is a natural product-inspired concept. The 

idea behind it is that natural products have evolved to interact with various 

proteins. First, they specifically interact with the active sites of the enzymes 

that are involved in their biosynthesis. And later, they interact with their 

functional target proteins which they are supposed to inhibit within their 

biological activity. Hence, both natural products as well as the binding pockets 

of proteins are evolutionary tailored to each other. Because of that, within the 

chemical space natural products entail evolutionary designed "privileged 

structures" for biological activity in particular because of their structural 

complexity and widespread presence of stereogenic centers (Wetzel et al., 

2011). These structures have highly conserved scaffolds as it is evident from 

the scaffold trees of the structural classification of natural products (SCONP), 

basically a charter of the chemical space of natural products (Koch et al., 

2005). This bioactive chemical space can be explored through the computer-

based tool Scaffold Hunter (http://scaffoldhunter.sourceforge.net/) (Wetzel et 

al., 2009). The synthesis efforts according to biology-oriented synthesis 

should be oriented around these evolutionary favoured scaffolds. Since, both 

natural products as well as the binding pockets of proteins are evolutionary 

tailored to each other then ligands with similar structures should have an 

affinity to binding pockets of proteins with similar structures. This hypothesis  
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lays the ground for protein structure similarity clustering (PSSC) which is in a 

way the protein analogue of SCONP, a classification of proteins according to 

evolutionary conservation of their binding sites. Both methods of analysis, 

SCONP and PSSC, complement each other in the BIOS approach to select 

relevant scaffolds for the synthesis of focused diversity around the biologically 

active starting point (Wetzel et al., 2011).  

 
1.1.4 Screens 
 
The second tool that is required for chemical genetics are high-throughput 

screening assays. Through the advances in chemical synthesis large libraries 

of small molecules can be synthesized which requires automated and 

miniaturized screening platforms for a time and cost efficient identification of 

active compounds. Therefore, large screening assays are usually performed 

fully automated in 1536-well plates with working volumes of 3 - 10 µl. In 

forward chemical genetics libraries of diverse small molecule inhibitors are 

screened aiming at the discovery of a specific phenotype. This approach is 

analogous to forward genetics where random mutations are introduced into a 

large number of organisms. Then the mutants are screened for the desired 

phenotype of interest, and the mutations of specific genes are analysed that 

caused the phenotype. In forward chemical genetics this involves screening of 

a large library of ligands (mutation equivalents) for a specific phenotype of 

interest followed by target identification to uncover the specific protein that 

caused the phenotype. Target identification will be introduced in the next 

section. 

In contrast to forward genetics where the identification of the mutated gene 

that caused the phenotype of interest is the last step and is not known at the 

onset of the screening assay, in reverse genetics the mutation of a specific 

gene is the starting point. What is not known at the beginning is the 

phenotype that the introduced mutation will cause. In analogy to that, in  
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reverse chemical genetics first the inhibitor of a specific protein of interest has 

to be identified. If the inhibitor is not known yet, an in vitro protein-based 

assay has to be developed to identify the inhibitor of the protein of interst. 

Once the target-based assay has yielded a specific inhibitor of the protein of 

interest a cell-based (in vivo) assay can be performed to analyze the resulting 

phenotype. Depending on the specificity and potency of the discovered 

inhibitor it could be optimized through synthetic modification toward more 

desired features before it is applied in the call based assay.   

An important issue in screening of active compounds is the read-out or 

detection of compound activity that will ultimatelly define the assay quality. 

The field has agreed to use the Z'-factor as a standard method of quality 

assessment of screening assays (Zhang et al., 1999). It is, in brief, a 

statistical coefficient between 0 and 1 that describes the screening window of 

the assay depending on the means and standard deviations of the positive 

and negative controls of the screening assay.  

There are multiple detection methods for in vitro target-based assays. 

Depending on the type of target protein, for example, fluorescence-based 

methods for the determination of enzymatic activity. These include fluorogenic 

enzyme substrates, FRET donor/acceptor pairs, oxygen and pH-sensitive 

probes, and immunoassays.  

Detection methods for cell-based assays, on the other side, include  

high-content imaging, marker gene analysis, and functional assays.  

High-content imaging is based on microscopic imaging to detect phenotypic 

changes. Marker gene or protein analysis includes reporter-gene assays and 

antibody-based cellular immunoassays. In functional assays changes in the 

functional activities of cells are detected, such as growth rate, metabolism, or 

apoptosis.        

 

 

 



1.     Introduction 
_____________________________________________________________________ 

! $$!

 

 

1.1.5 Target Identification and Validation 
 
The third step in the forward chemical genetic approach is target identification 

(target ID) and validation. Target ID is necessary only in forward chemical 

genetics, since reverse chemical genetics starts with the specific perturbation 

of the protein of interest. There have been significant advances in the field of 

target identification during the course of the last two decades. Nevertheless, 

compared to the progress in synthetic chemistry and the technological 

progress leading to fully automated and miniaturized high-throughput 

screening, target ID still remains the most challenging step in chemical 

genetics. This is mainly due to the fact that in contrast to its genetic 

counterpart where advanced whole genome sequencing technology allows 

the rapid and straightforward detection of single mutations that cause an 

observed phenotype, in chemical genetics such a general universally 

applicable protocol for the identification of ligand-protein interactions still does 

not exist. Instead, target identification in chemical genetics employs a variety 

of different approaches toward this end. 

The most common methods currently applied can be divided into proteomics, 

genetics, and bioinformatics (Ziegler et al., 2013). Affinity-based proteomics, 

commonly referred to as "pulldown", is probably the most widely applied 

method. In principal, a pulldown probe is immobilized on an insoluble carrier 

and exposed to a protein cell lysate to bind the target protein. Subsequently, 

the carriers are washed to remove unspecific binding, the attached proteins 

are separated on an SDS-PAGE, digested with trypsin, and the resulting 

peptides are analyzed by mass spectrometry. The pulldown probes are 

generated by synthetically attaching a linker, e.g. alkyl, triethylenglycol, or 

peptide groups, connecting the hit compound to the insoluble bead. Before 

the linker can be attached to the hit compound a structure-activity-relationship 

(SAR) analysis has to be performed to identify the inactive site of the hit 

compound at which the linker can be attached without disturbing the 

compound's activity. An important point in protein pulldown are control  
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experiments. Since pulldowns can result in a lot of unspecific binding stringent 

washing steps are essential as well as the inclusion of control experiments 

using only the linker attached to the carrier resin and a slightly modified hit 

compound that exhibits a significantly reduced activity. The final analysis by 

mass spectrometry should result in a list of candidate proteins for further 

confirmation. Quantitative proteomics by isotope labeling, such as SILAC, are 

very powerful methods to quantify the affinity of the attached proteins to the 

pulldown probe (Ong et al., 2002). 

Another protein-based method for target identification are in vitro profiling 

experiments against a target subclass such as kinases, phosphatases, or  

G protein-coupled receptors (GPCR). Profiling assays against various target 

classes are commercially offered by different companies. This step is usually 

taken once there are hints that indicate a certain target class. An additional 

advantage of profilings is the simultaneous target validation, i.e. assessment 

of the specificity of the profiled compound to a particular target protein. 

Microarray technology is a very efficient tool among the genetic methods for 

target identification. It allows an examination of the global changes in gene 

transcription patterns that are caused by a small molecule compound. 

Through the use of proper control inhibitors micro array analyses can help to 

identify the perturbed signaling pathways by subjecting the differentially 

expressed genes to gene ontology (GO) analysis. If the specific modulation of 

target genes of a particular signaling pathway is observed known components 

of that signaling cascade can be investigated by biochemical methods to 

identify the specific protein target. A disadvantage of micro array-based target 

identification methods is the fact that only changes at the RNA level can be 

observed. Hence, one can only indirectly deduce the protein target  from the 

perturbed signaling pathways and the affected target genes which is mostly 

not straightforward. Proper control compounds, statistically relevant technical 

and biological repetitions, and treatments for only very short time periods to 

detect instant effects are indispensable to obtain reliable data. Once a  
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potential target protein is identified it needs to be validated, i.e. scientific 

evidence needs to be provided to confirm that the candidate protein  

is undoubtedly causing the phenotype. Multiple methods must be applied 

simultaneously toward this end. The affinity of the hit compound toward the 

candidate protein must be verified in an in vitro assay, and a dose response 

curve should be generated. Selectivity of the hit compound is equally 

important and can be assessed by profiling against members of various 

protein families and different isoforms of the same protein family. Global 

transcriptome analyses are also suitable to analyse the caused effects within 

the cellular environment. Structurally diverse inhibitors of the same target 

protein could then be applied to reproduce the phenotype, or the affected 

signalling pathway could be modified upstream or downstream using suitable 

inhibitors. The gold standard, however, to confirm the protein target within the 

cell environment is a gene knockdown of the target protein that results in the 

same phenotype. If possible, the mechanism of action of the hit compound 

should be validated in a suitable in vivo assay, for example using a transgenic 

model organism. Eventually, it depends on the given project which 

experiments are most suitable to substantiate the data in support of a 

candidate protein.   

 

 
1.2 Pluripotent Stem Cells 
 
1.2.1 Mouse Embryonic Stem Cells (mESC) 

 
Pluripotent stem cells share two common features that distinguish them from 

other cell types: self-renewal and pluripotency. Self-renewal is defined as the 

cells' ability to maintain their pluripotent cell state indefinitely. It is a sort of 

immortality that allows the cells to be expanded in cell culture for an extended 

period without losing their pluripotency. Pluripotency, on the other hand, is the 

cells' capacity to give rise to all somatic cell types of an adult organism. The  
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derivation of somatic cells from pluripotent stem cells is called differentiation. 

Cells with these two features do not exist in the adult human body. Solely, 

cells with a limited differentiation capacity capable of self-renewal are found in 

the adult body (Wagers and Weissman, 2004). These cells are called adult 

stem cells, or multipotent stem cells to emphasize their limited differentiation 

potential. Examples include haematopoietic or mesenchymal stem cells 

residing in the bone marrow. During development pluripotent stem cells exist 

solely during a narrow time frame and in the early embryo.  

Embryonic stem cells were isolated from the mouse embryo and maintained 

in cell culture in 1981 (Evans and Kaufman, 1981; Martin, 1981). Briefly, after 

the fertilization of the zygote in the oviduct up to the 8-cell stage the embryo 

remains totipotent, i.e. capable of generating extraembryonic tissue, the 

placenta, as well as all somatic cells of the embryo proper. Subsequently, the 

blastocyst is formed containing the trophoectoderm and the inner cell mass 

(ICM) in which the embryonic stem cells reside that will eventually form the 

embryo. It is at this stage of development that embryonic stem cells are 

derived. For mouse this is in most cases at E3.5 of the preimplantation 

embryo, but could be also half a day earlier, or later.    

Two types of tests are widely applied to assess the pluripotency of cells: the 

teratoma formation assay and the chimera assay. Pluripotent cells that are 

injected into the flanks of immunodeficient mice form teratomas that contain 

somatic cells of all three germ layers that result from the differentiation of the 

injected cells. Histological analysis is used to confirm the proper development 

into all three germ layers. On the other hand, if pluripotent cells are injected 

into the blastocysts of host embryos, and the blastocysts are subsequently 

transferred into pseudo-pregnant foster mice the injected pluripotent cells will 

contribute to the development of all somatic cell types of the developing 

embryo (Bradley et al., 1984). The resulting mice will be derived from two 

types of cells, those that were injected and those from the host embryo. 

Hence, the derived mice will be chimeric. Chimerism can be made obvious 

from the firm color of the derived mice if the injected cells and the host  
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embryos are selected properly. The gold standard test for pluripotency is 

tetraploid complementation in which all cells in the ICM of the host embryo are 

replaced by the cells to be tested so that the resulting embryo is completely 

derived from the injected cells. 

In cell culture mouse embryonic stem cells grow in small, oval, dome-shaped 

colonies. They are usually grown on a feeder cell layer of mouse embryonic 

fibroblasts (MEF) or feeder-free, e.g. on gelatin-coated cell culture plates. 

They are passaged as single cells using trypsin and exhibit high clonogenicity. 

Mouse embryonic stem cells have both active X chromosomes in female cells. 

Their pluripotency is maintained through a core regulatory network of the key 

transcription factors Oct4, Sox2, Nanog, Klf2, and Klf4. This core regulatory 

network is extrinsically controlled through the LIF/STAT3 and BMP4 pathways 

(Niwa et al., 2009; Ying et al., 2003). In contrast to that, it has been found that 

stimulation of ERK signaling primes mESC for differentiation (Burdon et al., 

1999; Kunath et al., 2007; Stavridis et al., 2007). Examples of specific gene 

markers that characterize mESC include Rex1, Esrrb, Dppa3, Dppa5, Klf2, 

and Gbx2, and prominant cell-surface markers are SSEA1 and alkaline 

phosphatase.    

 

1.2.2 Human Embryonic Stem Cells (hESC) 
 

It was not until 1998 that human embryonic stem cells were derived and 

maintained in cell culture (Thomson et al., 1998). Their potential to give rise to 

all somatic cell types principally opened doors toward cell replacement 

therapies of dysfunctional or damaged tissues (Kehat et al., 2001; Zhang et 

al., 2001). Especially the arrival of human induced pluripotent stem cells 

(iPSC), which are human pluripotent cells that are indistinguishable from 

embryonic stem cells that are derived, however, from somatic cells through 

nuclear reprogramming, caused a tsunami of scientific activity in this field 

(Takahashi et al., 2007).  
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Like mESC, hESC are derived from the ICM of the preimplantation embryo. 

The human embryo, however, reaches the blastocyst stage at E4 - 5. Human 

ESC are cultured on MEF feeder cells or matrigel-coated cell culture plates. 

However, although hESC, like mESC, are derived at the blastocyst stage from 

the ICM of preimplantation embryos they have certain features that distinguish 

them from mESC. Distinctions are apparent already at the morphology level. 

While mESC grow in small, oval, dome-shaped colonies, hESC form large, 

round, flat, colonies. The maintenance of mESC pluripotency works through 

LIF/STAT3 and BMP4 signaling (Niwa et al., 2009; Ying et al., 2003), whereas 

hESC are maintained through Activin A and FGF2 (Greber et al., 2011; 

Greber et al., 2010; Xu et al., 2008). In contrast to that, ERK stimulation 

primes mESC for differentiation (Burdon et al., 1999; Kunath et al., 2007; 

Stavridis et al., 2007). HESC exhibit low clonogenicity when passaged as 

single cells. Usually a ROCK inhibitor is applied to inhibit apoptosis if hESC 

are dissociated into single cells (Watanabe et al., 2007). HESC are either 

passaged mechanically as small clumps, or by using collagenase or accutase. 

On the gene level hESC share the pluripotency core regulatory network 

consisting of OCT4, NANOG, and SOX2, and also express the mESC marker 

genes REX1, ESRRB, DPPA3, DPPA5, KLF2, and GBX2. While mESC 

express the cell-surface marker SSEA1, but not the cell-surface markers 

SSEA3, SSEA4, and Tra-1-60, hESC do not express SSEA1, but SSEA3, 

SSEA4, and Tra-1-60 (Pera and Tam, 2010). HESC are, like mESC, positive 

for alkaline phosphatase. As mentioned earlier the gold standard experiment 

for the verification of pluripotency is tetraploid complementation. Chimera 

experiments are obviously not possible with hESC. HESC do, however, give 

rise to teratomas with cells of all three germ layers when injected into 

immunodeficient mice.  
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1.2.3 Epiblast Stem Cells (EpiSC) 
 
Epiblast stem cells represent another mouse pluripotent cell type. They were 

first isolated in 2007 (Brons et al., 2007; Tesar et al., 2007). However, in 

contrast to mESC and hESC, which are derived from the ICM of 

preimplantation embryos, EpiSC are derived between E5.5 - 7.5 from 

postimplantation mouse embryos. Since EpiSC can be maintained stably in 

prolonged cell culture they provide a convenient and relevant system for the 

study of developmental events in the pregastrulation embryo through 

investigations of the changes in cell fate between mESC and EpiSC.  

EpiSC are pluripotent stem cells capable of indefinite self-renewal and 

differentiation into all somatic cell types. They readily form teratomas. The 

pluripotency core regulatory network consists of Oct4, Nanog, and Sox2, as in 

mouse and human ESC. However, there are significant differences between 

mESC and EpiSC that clearly distinguish the two cell types. While mESC 

grow in small, oval, dome-shaped colonies EpiSC grow in large, round, and 

flat colonies very similar to hESC colonies. They are passaged using 

accutase, collagenase, or mechanically as small clumps since they do not 

tolerate well single cell dissociation like hESC. Furthermore, like hESC they 

are maintained pluripotent by Activin A and FGF2, in contrast to LIF and 

BMP4 in mESC (Greber et al., 2010). On a genetic level they do not express 

the ICM marker genes Rex1, Esrrb, Dppa3, Dppa5, Klf2, and Gbx2, but some 

early differentiation markers like Fgf5, Fgf8, and T brachyury (Pera and Tam, 

2010). EpiSC do express the cell-surface marker SSEA1, however not 

SSEA3, SSEA4, and alkaline phosphatase. Also, when mESC develop into 

EpiSC one X chromosome undergoes random inactivation in female cells. 

The most important difference between mESC and EpiSC, however, is the 

fact that EpiSC are not chimera competent in contrast to mESC (Bradley et 

al., 1984; Guo et al., 2009; Tesar et al., 2007). EpiSC only form teratomas. 

In light of the above mentioned similarities EpiSC, rather than mESC, appear 

to be the counterpart of hESC. However, there are also crucial differences  
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between the two cell types. In contrast to EpiSC hESC do express all the ICM 

markers such as REX1, ESRRB, DPPA3, DPPA5, KLF2, and GBX2 similar to 

mESC. Furthermore, EpiSC do not express the cell-surface markers SSEA3, 

SSEA4, and alkaline phosphatase unlike hESC (Pera and Tam, 2010). On 

grounds of the described discrepancies the different pluripotent states 

continue to be studied intensively.  

 

1.2.4 Naïve and Primed Pluripotency 
 

Two distinct pluripotent states have been described in the mouse system: one 

is represented by mESC and the other by EpiSC. HESC appear to share 

more similarities with mouse EpiSC than with mESC despite some  

non-neglectable differences. mESC are distinct from EpiSC on several levels 

including derivation, morphology, clonogenicity, signaling, marker expression, 

and epigenetic markup. Most importantly, however, while both mESC and 

EpiSC readily form teratomas only mESC can contribute to chimera 

development while EpiSC can not (Bradley et al., 1984; Guo et al., 2009; 

Tesar et al., 2007). This is consistent with the earlier finding that epiblast cells 

cannot contribute to chimeras when injected into the blastocyst (Rossant, 

2008). This developmental restriction in EpiSC together with the presence of 

early lineage markers has come to be called primed pluripotency, in the sense 

of primed for differentiation (Nichols and Smith, 2009). In contrast, the cells of 

the ICM with fully unrestricted developmental capacity have been said to 

represent the ground state of pluripotency, or naïve pluripotency. 

The two distinct states of pluripotency represented by mESC and EpiSC have 

been intensively investigated since by profiting from the fact that both cell 

types can be stably maintained in cell culture. Hence, through interconversion 

of the two cell types, for example, the distinct features could be explored. 

EpiSC could be derived from mESC through differentiation by adapting mESC 

to the culture conditions of EpiSC, i.e. Activin A, FGF2 and withdrawal of LIF 

(Guo et al., 2009). The conversion of EpiSC to mESC through ectopic  
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expression of ICM-specific transcription factors has equally been reported 

(Festuccia et al., 2012; Gillich et al., 2012; Guo and Smith, 2010; Guo et al., 
2009; Hall et al., 2009; Silva et al., 2009; Tai and Ying, 2013). Other studies 
have reported that transgenic expression is not required, and that EpiSC 
could be converted into ESC by a change in the culture conditions only (Bao 
et al., 2009; Chou et al., 2008; Greber et al., 2010; Hanna et al., 2009; Ware 
et al., 2009). Among these methods the most widely established protocol for 
the conversion is based on the simultaneous inhibition of GSK3# and MEK in 

the presence of LIF, which came to be known as 2i/LIF (Greber et al., 2010). 
This is based on the previous finding that inhibition of GSK3# and MEK with 

small molecule inhibitors can capture and maintain naïve pluripotency 
independent of other factors (Ying et al., 2008).  
The similarity between hESC and EpiSC has prompted researchers to 

investigate whether a mESC-like hESC state could exist. Different attempts 

using ectopic expression and extrinsic factors have been made to generate 

naïve hESC (Buecker et al., 2010; Gafni et al., 2013; Hanna et al., 2010; 

Ware et al., 2009). However, to this date no transgene-free stable cells have 

been generated. Furthermore, it is still widely disputed whether a mESC-like 

equivalent naturally exists in humans. In rodents a natural developmental 

arrest at the late preimplantation stage occurs that prevents the implantation 

of the embryo into the uterus called diapause. At this developmental stage the 

self-renewal of the naïve epiblast from which mESC are derived is facilitated 

in these species. Diapause does not occur in humans.  

 

1.2.5 Early-Stage and Recalcitrant Late-Stage EpiSC 
 

It has previously been shown that EpiSC display heterogeneity within a 
population (Han et al., 2010; Tsakiridis et al., 2014) and between different cell 
lines (Bernemann et al., 2011). The heterogenous cell populations exhibit 
distinct functional features such as the propensity to convert to an ESC-like  
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state under culture conditions. Part of this heterogeneity is probably due to the 
broad developmental window of derivation. In this regard, it has been 
suggested that early-stage EpiSC are susceptible to cellular reprogramming 
towards an ESC-like state, whereas late-stage EpiSC are recalcitrant to this 
process (Han et al., 2010; Hayashi and Surani, 2009). However, the majority 
of EpiSC display functional features of late-stage postimplantation epiblast 
development. The very small subpopulation which respresents early-stage 
EpiSC capable of undergoing reversion to an ESC-like state under 2i/LIF is 
even chimera competent when injected into the ICM (Han et al., 2010). Given 
their chimera competence which is the hallmark feature of naïve pluripotency 
their ESC conversion by 2i/LIF represents merely a switch in the signaling 
pathways that maintain their pluripotency network from TGF#/Activin A and 

FGF2 to LIF/STAT3 and BMP4. The vast majority of EpiSC fail to respond to 
2i/LIF-induced ESC conversion indicating their inertness toward chemical 
modulation of the ERK and WNT pathway in this process. To our knowledge 
until now nobody has explored the mechanistic accounts for the recalcitrance 
of late-stage EpiSC toward ESC-conversion by chemical means only.   
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2. Aims and Objectives 
 
 
It has previously been reported that mouse EpiSC lines comprise 

heterogenous populations, which can be functionally equivalent to cells of 

either the early or the late stages of postimplantation development. So far, 

late-stage EpiSC which represent the vast majority of EpiSC were not 

susceptible to chemical reprogramming to naïve pluripotency as represented 

by mESC.  

At the onset of the presented research project the goal of the thesis was to 

elucidate the molecular mechanism governing the reversion from primed to 

naïve pluripotency. Toward this end, three different questions needed to be 

answered: Can recalcitrant late-stage EpiSC be reverted to a naïve ESC-like 

state by chemical means alone, i.e. without genetically invasive methods? If 

so, which extrinsic factors can accomplish naïve conversion of late-stage 

EpiSC? What is the mechanism-of-action of the extrinsic factor? 

It was hypothesized that it may be possible to revert late-stage EpiSC by 

using appropriate small molecule inhibitors that would modify certain signaling 

pathways in a way that would result in the necessary switch in the gene 

expression pattern that will eventually enforce naïve conversion.    

In order to identify a small molecule compound capable of converting  

late-stage EpiSC a forward chemical genetic approach was followed. Toward 

this end, first a small molecule screening assay was developed. In order to 

ensure cell penetration and bioactivity of the used substances and to facilitate 

potential subsequent target validation I planned to screen the LOPAC library 

of known pharmacologically active compounds. The read-out should be based 

on fluorescent reporter gene expression. The OCT4-GFP EpiSC-GOF18 line 

was used for this purpose. An automated high-content imager could be used 

for the detection of converted OCT4-GFP positive cells. 
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The potential hit compound should first be validated on various late-stage 

EpiSC to confirm its activity. The putative converted cells should be 

characterized to confirm their naïve pluripotency including teratoma and 

chimera assays. As a way to elucidate the mechanism-of-action the direct 

protein target of the hit compound should be identified using various methods 

for target identification including protein pulldown. Structure-activity-

relationship analyses were to be performed toward structure optimization and 

possible pulldown probe generation. Finally, microarray analyses, biochemical 

assays, and gene knockdown experiments should be applied to investigate 

perturbed pathways and crucially involved genes as part of the elucidation of 

the mechanism-of-action of the hit compound.    
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3. Experimental Part 
 
 
3.1 Materials 
 

3.1.1 Cell Culture  
 

PBS w/o Ca/Mg (PAA)  

DMEM high glucose (PAA) 

Knockout - DMEM (Invitrogen) 

DMEM/F12 (Invitrogen) 

Neurobasal (Invitrogen) 

FCS Gold (PAA) 

Knockout - Serum Replacement (Invitrogen) 

L-Glutamine with Pen/Strep (PAA) 

Non-essential amino acids (PAA) 

2-Mercaptoethanol (Invitrogen) 

0.25% Trypsin (Invitrogen) 

Accutase (PAA) 

N2-Supplement (Invitrogen) 

B27-Supplement (Invitrogen) 
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3.1.2 Growth Factors and Small Molecule Inhibitors 
 

Human basic fibroblast growth factor (bFGF) (Peprotech) 

Human leukemia inhibitory factor (LIF) (own production) 

Human/murine/rat Activin A (Peprotech) 

Human bone morphogenetic protein 4 (BMP4) (Peprotech) 

CHIR99021 (CH) (Tocris) 

PD0325901 (PD) (Tocris) 

SB431542 (SB) (Tocris) 

XAV939 (Tocris) 

IWR-1 (Sigma) 

Amiloride (Sigma) 

Triamterene (Sigma) 

D4476 (Tocris) 

AS605240 (Alexis) 

LY294002 (Sigma) 

TG100-115 (in house synthesis) 

Jak Inhibitor 1 (EMD Millipore) 

Y-27632 (Tocris) 

Hoechst 33258 (Sigma) 

DAPI (Invitrogen) 

Sodium butyrate (Sigma) 

AU49 (in house synthesis)  

AU52 (in house synthesis) 

AU58 (in house synthesis) 

LOPAC1280 library (Sigma)  
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3.1.3 Cell Culture Media 
 

• ESC medium 

Knockout-DMEM  

20% Knockout - Serum Replacement   

1x L-Glutamine with Pen/Strep 

1x Non-essential amino acids  

100 µM 2-Mercaptoethanol  

2000 units/mL LIF  

 

• ESC medium (N2B27)  

50% DMEM/F12 

50% Neurobasal 

1x N2 Supplement 

1x B27 Supplement 

1x L-Glutamine with Pen/Strep (PAA)  

1x Non-essential amino acids  

100 µM 2-Mercaptoethanol  

10 ng/mL LIF 

10 ng/mL BMP4 

 

• EpiSC medium (MEF-conditioned; CM) 

Knockout-DMEM  

20% Knockout - Serum Replacement  (KOSR) 

1x L-Glutamine with Pen/Strep 

1x Non-essential amino acids  

100 µM 2-Mercaptoethanol  

5 ng/mL bFGF (before and after conditioning over MEFs) 
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• EpiSC medium (N2B27 medium) 

50% DMEM/F12 

50% Neurobasal 

1x N2 Supplement 

1x B27 Supplement 

1x L-Glutamine with Pen/Strep (PAA) 

1x Non-essential amino acids  

100 µM 2-Mercaptoethanol  

20 ng/mL Activin A 

12 ng/mL bFGF 

 

• MEF medium 

DMEM high glucose  

10% FCS Gold 

1x L-Glutamine with Pen/Strep 

 

• HEK293 medium 

DMEM high glucose  

10% FCS Gold 

 

• Cryopreservation medium 

45% culture medium of cell type to be cryopreserved 

45% FCS or Knockout - Serum Replacement (same as in culture 

medium) 

10% DMSO 

 

 

 

 

 

 



3.     Experimental Part 
_____________________________________________________________________ 

! %*!

 

 

3.1.4 Cell Lines 
 

• EpiSC-GOF18 

E3 

(C57BL/6 X DBA/2) X 129/Sv  

derived at E5.5 

OCT4-GFP under control of 18kb (DE and PE) Oct4 promoter 

(Bernemann et al., 2011; Greber et al., 2010; Yeom et al., 1996) 

 

• EpiSC-OG2 

(CBA/CaJ X C57BL/6J)F2X129 X C57BL/6J 

derived at E5.5 

OCT4-GFP under control of $PE Oct4 promoter 

(Bernemann et al., 2011; Greber et al., 2010; Yeom et al., 1996) 

 

• EpiSC-T9 

129S2/SvHsd 

derived at E5.5 

(Tesar et al., 2007) 

 

• EpiSC-C1a1 

B6XCBA F1 

derived at E5.5 

(Brons et al., 2007) 

 

• ESC-OG2 

C57BL/6J 

derived at E3.5 

OCT4-GFP under control of $PE Oct4 promoter 

(Yeom et al., 1996) 
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• Bcateninfl/fl  ESC  

(provided by Dr Ian Chambers and Dr Rodrigo Osorno) 

Rosa26-CreERT2  

C57/B6 

derived at E3.5 

Upon treatment with 4-OH cells become Bcatenin-/-,  and GFP 

expression is acquired constitutively.  

(Brault et al., 2001; Tsakiridis et al., 2014) 

 

• Stat3-/- ESC 

(provided by Dr Ian Chambers and Dr Rodrigo Osorno) 

MF1 

derived at E3.5 

(Ying et al., 2008) 

 

• TNGETC1 ESC 

(provided by Dr Ian Chambers and Dr Rodrigo Osorno) 

Homologous recombination was used to insert eGFP at the Nanog 

AUG codon in E14Tg2a ES cell (Chambers et al., 2007). 

Subsequently, TdtTomato was inserted just before the 3’ UTR of the 

Esrrb (Festuccia et al., unpublished). 

(Chambers et al., 2007) 

 

• Mouse embryonic fibroblasts (MEF) 

CF1 

derived at E12.5 

 

• HEK293T cells 
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3.1.5 Antibodies  
 

For immunocytochemistry: 

 

• Nanog 

ab70482 

1:500 dilution 

(Abcam) 

 

• Nanog 

14-5761-80 

1:500 dilution 

(eBioscience)  

 

• Sox2 

sc17320 

1:500 dilution 

(Santa Cruz) 

 

• Sox2 

sc-17320 

1:500 dilution 

(Santa Cruz) 

 

• Stella/Dppa3 

ab19878 

1:300 dilution 

(Abcam) 
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• Esrrb 

PP-H6705-00 

1:500 dilution 

(Persaeus Proteomics) 

 

• Klf4 

AF 3158 

1:500 dilution 

(R&D Systems)  

 

• Oct4 

sc-5279 

1:500 dilution 

(Santa Cruz)  

 

 

For Western blot analysis: 

 

• #-catenin  

C19220-050 

1:500 dilution 

(BD Biosciences) 

 

• p-S33/S37/T41-#-catenin  

#9561 

1:1000 dilution 

(Cell Signaling)  
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• Smad2/3  

#3102 

1:1000 dilution 

(Cell Signaling)  

 

• p-S465/467-Smad2  

#3101 

1:1000 dilution 

(Cell Signaling)  

 

• ERK  

#9102 

1:2000 dilution 

(Cell Signaling)  

 

• p-ERK  

#4370 

1:2000 dilution 

(Cell Signaling)  

 

• Stat3  

sc482 

1:1000 dilution 

(Santa Cruz) 

 

• p-Stat3 

sc8059 

1:1000 dilution 

(Santa Cruz) 
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• Alpha-tubulin 

T6199 

1:10000 dilution 

(Sigma) 

 

 

For FACS analysis: 

 

• CD31/Pecam1  

551262 

1:100 dilution 

(BD Biosciences) 

 

 

3.1.6 qRT-PCR Primers  
 

All qRT-PCR primers were synthesized by Metabion International AG, 

Martinsried, Germany. 

 

• Axin2 

F: TAGGCGGAATGAAGATGGAC 

R: CTGGTCACCCAACAAGGAGT 

 

• Beta-actin 

F: ACTGCCGCATCCTCTTCCTC 

R: CCGCTCGTTGCCAATAGTGA 

 

• Cdx1 

F: GGGGTCACTGTGGACAAACT 

R: GGCCTAGGACACAAGAGCTG 
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• Csnk1delta 

F: ATGCCATTTGGGTTTGTCAT 

R: CACCACACCTTTCTGGAGGT 

 

• Csnk1epsilon 

F: GCTCGAATGTGTGAAGACGA 

R: CGTCTTGAGGCTGAACTTCC 

 

• Dppa4 

F: CGGGCGTCATAACCAGTTCA 

R: GACATGCATGCGGAGGCTAC 

 

• Dppa5 

F: TGTGTCTCCGACCTGGATGC 

R: CACATCAGAATGCGCAGCAG 

 

• Esrrb 

F: AGGCTCTCATTTGGGCCTAGC 

R: ATCCTTGCCTGCCACCTGTT 

 

• Fgf5 

F: CCTTGCGACCCAGGAGCTTA 

R: CCGTCTGTGGTTTCTGTTGAGG 

 

• Fgf8 

F: TCGCGAAGCTCATTGTGGA 

R: GCCGTTGCTCTTGGCAATTAG 
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• Gapdh 

F: CCAATGTGTCCGTCGTGGAT 

R: TGCCTGCTTCACCACCTTCT 

 

• Klf2 

F: AGGCCTGTGGGTTCGCTATAAA 

R: GGCAAATTATGGCTCAAAGTAGCAG 

 

• Klf4 

F: TGTGTCGGAGGAAGAGGAAGC 

R: ACGACTCACCAAGCACCATCA 

 

• Nanog 

F: GAACGGCCAGCCTTGGAAT 

R: GCAACTGTACGTAAGGCTGCAGAA 

 

• Oct4 

F: TGTTCCCGTCACTGCTCTGG 

R: TTGCCTTGGCTCACAGCATC 

 

• Rex1 

F: GGCTGCGAGAAGAGCTTTATTCA 

R: AGCATTTCTTCCCGGCCTTT 

 

• Sox1 

F: GGCCGAGTGGAAGGTCATGT 

R: TCCGGGTGTTCCTTCATGTG 
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• Sox2 

F: TTCGAGGAAAGGGTTCTTGCTG 

R: TCCTTCCTTGTTTGTAACGGTCCT 

 

• Stella 

F: GCCGCACAGCAGATGTGAA 

R: AAATCTGGATCGTTGTGCATCCT 

 

• T brachyury 

F: TTGAACTTTCCTCCATGTGCTGA 

R: TCCCAAGAGCCTGCCACTTT 
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3.1.7 Primers for Bisulfite Sequencing 
 
All primers for bisulfite sequencing were synthesized by Metabion 

International AG, Martinsried, Germany. 

 

• OCT4-GFP 

F1: GTTTTTTTATTTATTTAGGGGG 

R1: AAATAAACTTCAAAATCAACTTACC 

F2: GGGGTTAGAGGTTAAGGTTAGAGG 

R2: ACCAAAATAAACACCACCCC 

 

• Oct4 endo 

F1: TTTGTTTTTTTATTTATTTAGGGGG 

R1: ATCCCCAATACCTCTAAACCTAATC 

F2: GGGTTAGAGGTTAAGGTTAGAGGG 

R2: CCCCCACCTAATAAAAATAAAAAAA 

 

• Esrrb 

F1: TGTAAAAGATAGGGTTTTTGATTTGA 

R1: AAAACAATACCAAAACCACCACTAA  

 

• Rex1 

F1: TATATTAATGTTGGAAAAAGTTTAGGTAAT 

R1: AACTCCTTAAACCCCTCCCTTTTTAAATAA 

F2: GTTTAGGTAATTAGTGTATTTTGTAG 

R2: TAAACCCCTCCCTTTTTAAATAAAC 
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• Dppa3/Stella 

F1: ATTTTGTGATTAGGGTTGGTTTAGAA 

R1: CCAAAACATCCTCTTCATCTTTCTTCT 

F2: TTTTTGGAATTGGTTGGGATTG 

R2: CTTCTAAAAAATTTCAAAATCCTTCATT  

 

• Dppa5 

F1: GGTTTGTTTTAGTTTTTTTAGGGGTATA 

R1: CCACAACTCCAAATTCAAAAAAT 

F2: TTTAGTTTTTTTAGGGGTATAGTTTG 

R2: CACAACTCCAAATTCAAAAAATTTTA 

 

• Vasa 

F1: ATAATGGAATTGATGAGTTTTTGGA 

R1: AAAACAACAAATAACATCAAAC 

F2: GGTTTTAATAAAGGTGGAGAA 

R2: AAAACAACAAATAACATCAAAC 

 

• Pecam1 

F1: TTTTTAGTTTGGAGGTTTGTATTTG 

R1: CCCAAACCTCATTATTCTTAATTTC 
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3.1.8  Other Materials and Kits 
 

• RNeasy Micro/Mini Kit for total RNA extraction  (Qiagen) 

• ZR plasmid miniprep kit (Zymo Research) 

• NucleoBond Xtra plasmid midi/maxiprep kit (Macherey-Nagel) 

• DNAse I (Macherey-Nagel) 

• M-MLV Reverse Transcriptase (USB) 

• Oligo-dT16 primers (Metabion) 

• dNTPs (USB) 

• 5x RT buffer (USB) 

• SYBR green PCR master mix (Biorad) 

• mouseRef-8 V2 expression BeadChips (Illumina) 

• linear TotalPrep RNA amplification kit (Ambion) 

• Dual-Glo luciferase assay (Promega) 

• Super TOP/FOP plasmids (Addgene) 

• Lipofectamin 2000 (Invitrogen) 

• FuGENE 6 (Promega) 

• Opti-MEM medium (Invitrogen) 

• DNeasy Blood & Tissue kit (Qiagen)  

• QIAquick gel extraction kit (Qiagen) 

• EpiTect bisulfite kit (Qiagen) 

• DNA proofreading polymerase (NEB) 

• TOPO cloning kit for sequencing  (Invitrogen) 

• KinaseProfiler / IC50Profiler Services (Merck/Millipore; now Eurofins) 

• shRNA plasmids (Sigma) 

• Fast Red chromogen (Sigma) 

• Naphthol phosphate solution (Sigma) 

• Mounting medium (Invitrogen) 
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3.2 Methods 
 

3.2.1 Derivation and Culture of MEF Feeder Cells 
 

It is important to ensure that sterilized surgery instruments are used and that 

the surgical dissection is performed under a sterile hood. For the generation 

of MEF feeder cells E12.5 embryos from CF1 mice were dissected out from 

the uterus and washed in a 10cm cell culture dish containing prewarmed PBS. 

The washed embryos were then transfered to a new 10cm dish with 

prewarmed MEF medium and the heads and livers were of each embryo was 

removed. Then the remaining embryo tissue of three embryos was cut into 

small pieces in a microtube using scissors. 500 µl of fresh MEF medium was 

added to the minced embryo material and the whole content was transferred 

onto a 100 µm cell strainer in a 6-well plate. The material was gently passed 

through the mesh with the syringe plunger, while making sure that the filter 

membrane was immersed in media. The filtrate from the 6-well plate was 

transferred to a 50 ml Falcon tube filled with MEF media and the cell 

suspension was homogenized by trituration. Then the entire cell suspension 

was transferred to a 15cm cell culture plate and was incubated at 37 °C. The 

medium was changed after 6-7 hrs to remove floating cells and debris. The 

confluent cell monolayers were split 1:4 after 48 hrs and the susequent 

confluent cultures were frozen until they were used. The derived MEFs were 

expanded by passaging up to six times using trypsin before they were used 

as feeder cells for ESC culture.  

 

3.2.2 Generation of MEF-Conditioned Medium  
 

For feeder free culture of EpiSC on FCS-coated dishes EpiSC medium based 

on 20% KOSR in KO-DMEM was conditioned over CF1 MEFs. For this 

purpose CF1 MEFs were seeded out in gelatin-coated 15cm plates at a 

density of 50,000 cells/cm2. The next day the MEFs were %-irradiated by  
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exposure to 4000 rads from a %-radiation source for mitotic inactivation. After 

removing the MEF medium and washing with 1x PBS (w/o Ca2+ and Mg2+) 

80 ml of unconditioned EpiSC medium containing 5 ng/ml bFGF were added 

to the 15cm plate and the cells were kept for 24 hrs at 37 °C. Subsequently, 

the conditioned medium was collected from the culture dishes and new 

unconditioned medium was added conditioning. This process was repeated 

for six consecutive days. After that the collected conditioned madium was 

pooled together and filtered through a 0.22 µm sterile filter, aliquoted into 50 

ml Falcon tubes, and stored at -20 °C. Prior to use bFGF was additionally 

added directly to the culture dish at a concentration of 5 ng/ml.     

 

3.2.3 Culture of EpiSC 
 

EpiSC were routinely cultured in MEF-conditioned medium on feeder-free 

dishes that had been precoated with fetal calf serum (FCS) for 15 min at RT. 

After precoating the FCS was aspirated and the culture dishes were washed 

with plenty of PBS. EpiSC were passaged as soon as individual colonies were 

about to grow into each other initiating differentiation. Prior to their 

dissociation using accutase the differentiated areas were removed 

mechanically with an injection needle under a stereo microscope in a laminar 

flow hood. The dissociated colonies were seeded as single cells at 

approximately 15,000 cells per 6cm dish if not indicated otherwise, and new 

bFGF was added directly into the cell culture dish. The cells were kept at  

37 °C and the cell culture medium was replaced daily.  

 

3.2.4 Culture of ESC 
 

ESC were routinely cultured either on MEF feeder cells, or on feeder-free cell 

culture dishes that were precoated with 0.1% gelatin in PBS for at least  

1 hr at RT. MEF feeder cells were seeded at a density of 50000 cells/cm2 on 

0.1% gelatin-coated dishes and were cultured overnight at 37 °C before they  
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were mitotically inactivated by %-radiation the next day. ESC were passaged 

at 90% confluency using trypsin, and the single cells were seeded at 150,000 

cells per 6cm dish if not otherwise indicated. If the ESC were cultured on MEF 

feeder cells, before they were reseeded on a new MEF feeder layer they were 

cultured for 2 x 1 hr on a gelatin-coated dish to remove the previous MEF 

cells by faster attachment to the gelatin-coated surface. The cells were kept at 

37 °C and the cell culture medium was replaced every other day.  

 

3.2.5 Freezing and Thawing of Cells 
 

Cells were dissiociated to single cells using the appropriate dissociation 

enzyme. Prior to dissociation differentiated cell colonies were mechanically 

removed with an injection needle or a pipette under a stereo microscope in a 

laminar flow hood. Usually the EpiSC or ESC cells of one confluent 6cm dish 

were equally distributed to 5-10 cryovials containing. Once the cells were 

centrifuged after dissociation the cell pellet was resuspended in the 

appropriate amount of cryopreservation medium, and 1 ml aliquots of the cell 

suspension were frozen in cryovials at -80 °C. ROCK inhibitor was added to 

the cryopreservation medium when EpiSC were frozen. For long term storage 

the cells were stored at -150 °C in liquid nitrogen. 

The cryopreserved cells were thawed quickly at 37 °C in a water bath until 

most of the content was liquid, and the cell suspension was diluted at least 

1:10 in the corresponding culture medium of the thawed cell type. The cells 

were centrifuged, the medium was aspirated thoroughly, and the cell pellet 

was resuspended in prewarmed culture medium. The EpiSC or ESC from one 

vial were seeded into one 6cm dish.   

 

3.2.6 Small Molecule Screening Assay 
 

96-well plates with black walls and clear bottoms were precoated with FCS for 

15 min at RT. The FCS was aspirated and the 96-well plates were washed  



3.     Experimental Part 
_____________________________________________________________________ 

! '%!

 

 

with 200 µl of PBS per well using a multichannel pipette. EpiSC were 

dissociated into single cells using accutase and the cells were seeded out at 

2000 cells per well in 150 µl of EpiSC CM. The plates were incubated for  

48 hrs at 37 °C. The culture medium was replaced by 90 µl of fresh CM and 

the compounds of the LOPAC library were added in 10 µl samples so that the 

final concentration of each compound was 10 µM. The cells were incubated 

with the compounds for six days at 37 °C. After the incubation the medium 

was thoroughly aspirated and 50 µl per well of trypsin was added without 

washing the cells and the plates were incubated for 30 min at 37 °C. The 

dissociation of the colonies was further facilitated through rocking and 

vortexing the plate, and pipetting up and down the trypsin cell suspension. 

Then 50 µl of MEF medium containing Hoechst nuclei dye was added to each 

well and the plates were read out by a high-content imager. The quantitative 

readout using high-content imaging was based on the number of single cells 

with a GFP intensity above a preset minimum value. The threshold for the 

GFP intensity was set according to the level in ESC. As a positive control, 

2i/LIF-supplied ESC medium was used, whereas EpiSC CM containing bFGF 

was used as negative control. The quality of the assay was validated using 

the Z-factor, which was calculated to be 0.57.  

 

3.2.7 Conversion of EpiSC 
 

EpiSC were plated either on %-irradiated MEF feeder cells or on FCS-coated 

tissue culture plates at low density (&10000 cells per well of 6-well plate) and 

cultured overnight in MEF-conditioned EpiSC medium supplemented with 

bFGF. The next day the EpiSC medium was replaced by the conversion 

medium. If not otherwise indicated the conversion medium consisted of MEF-

conditioned EpiSC medium containing 5 µM TR or AU52 without additional 

bFGF. The cells were cultured in the conversion medium for eight days, and 

after the first three days medium was changed every day. OCT4-GFP positive  
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colonies usually started to appear on day 6. On day 8 the cells were 

dissociated with trypsin and replated at low density on MEF feeder cells or on 

a gelatin-coated cell culture dish to allow single colony formation, and were 

cultured in standard ESC medium supplemented with PD. For the first 3-5 

passages the newly formed ESC-like colonies were manually selected, 

dissociated with trypsin, and replated in a new culture dish.     

 

3.2.8 FACS 
 

Tissue culture cells for flow cytometry analysis were first dissociated using an 

appropriate enzyme. ESC and converted EpiSC were dissociated using 

trypsin, for EpiSC accutase was used. Around one million cells were 

resuspended in 500 µl of cell culture medium and the cell suspension was 

passed through a 40 µm cell strainer to remove debris and undissociated 

tissue. DAPI dye was added to detect dead cells. The readout was based on 

OCT4-GFP expression.   

If cells were stained for the expression of PECAM1/CD31 usually one million 

of the dissociated cells was resuspended in 100 µl of 3% FCS in PBS. The 

conjugated antibody was added and the cell suspension was incubated on ice 

for 30 min with short vortexing disruptions after each 10 min. After the 

incubation the cells were washed twice with 300 µl of 3% FCS in PBS, 

resuspended in 500 µl of cell culture medium containing DAPI dye, and 

passed through a 40 µm cell strainer before they were submitted for analysis.  

 

3.2.9 Total RNA Isolation 
 

Total RNA from tissue culture cells was isolated using the RNAeasy 

Mini/Micro Kit (Qiagen) following the manufacturer's instructions that are 

briefly described here. Cells grown in a monolayer in a cell culture dish were 

lysed directly in the culture vessel using the RLT lysis buffer. The lysate was 

pipetted directly onto a QIAshredder spin column placed in a 2 ml collection  
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tube, and centrifuged for 2 min at maximum speed. One volume of 70% 

ethanol was added to the homogenized lysate, mixed well by pipetting, and 

applied to an RNeasy mini column placed in a 2 ml collection tube, and 

centrifuged for 15 s at 10000 rpm. The flow-through was discarded since the 

RNA was bound to the silica-gel membrane of the RNeasy mini column. The 

RNA was washed twice with RW1 buffer before DNAse I in Buffer RDD was 

pipetted directly onto the RNeasy silica-gel membrane for a 15 min incubation 

at RT. The RNA was washed once again with buffe RW1, and twice with 

buffer RPE. The RNA was eluted by pipetting a small amount of RNAse-free 

water directly onto the silica-gel membrane, and centrifugation for 1 min at 

10000 rpm. The concentration of RNA was determined using the NanoDrop 

spectrophotometer.     

 

3.2.10 cDNA Synthesis 
 

For qRT-PCR, 200 to 1000 ng of total RNA were used in one reverse 

transcription reaction. A 25 µl reaction mixture with up to 1 µg of total RNA 

consisted of 5 µl RT-buffer, 0.5 µl oligo-dT, 0.5 µl dNTP mix, 0.2 µl M-MLV 

reverse transcriptase, and water. The reaction mixture was incubated in a 

thermo cycler for 60 min at 42 °C, and then for 10 min at 75 °C to inactivate 

the enzyme. The 25 µl of cDNA that was made from 200 ng of total RNA was 

diluted by adding 675 µl of nuclease-free water before it was used in a qRT-

PCR reaction. The cDNA was stored at -20 °C, and the RNA was stored at  

-80 °C. 

 

3.2.11 qRT-PCR 
 

qRT-PCR was performed using the Applied Biosystems 7500 Real-Time PCR 

instrument. The 20 µl reaction mix contained 10 µl SYBR green PCR master 

mix, 7 µl of cDNA prepared as discribed under 3.2.9, and 3 µl of the primer 

mix. The primer mix was prepared by adding together 5 µl of a 100 mM  
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solution of each, the forward and reverse primer, and 190 µl of water. The 

reactions were performed over 40 cycles, and the relative expression levels 

were calculated using the 2-
$$

Ct method. Gapdh and Actb were used as 

housekeeping genes, and the expression levels were normalized to technical 

and biological reference samples. Primer sequences are shown under 3.1.6. 

 
3.2.12 Microarray Analysis 
 

Total RNA for global transcriptome microarray analysis was isolated as 

described under 3.2.9 using Qiagen RNeasy columns with on-column DNA 

digestion. 300 ng of total RNA per sample was used as input into a linear 

amplification protocol (Ambion) which involved synthesis of T7-linked double-

stranded cDNA and 12 hours of in vitro transcription incorporating biotin-

labelled nucleotides. The 2100 Bioanalyzer (Agilent) was used for quality 

control. Purified and labeled cRNA was then hybridized for 18h onto  Illumina 

MouseRef-8 v2 expression BeadChips following the manufacturer’s 

instructions. After washing as recommended, chips were stained with 

streptavidin-Cy3 (GE Healthcare) and scanned using the iScan reader 

(Illumina) and accompanying software. Samples were exclusively hybridized 

as biological replicates.  

For microarray data processing the bead intensities were mapped to gene 

information using BeadStudio 3.2 (Illumina). Background correction was 

performed using the Affymetrix Robust Multi-array Analysis (RMA) 

background correction model (Irizarry et al., 2003). Variance stabilization was 

performed using the log2 scaling and gene expression normalization was 

calculated with the method implemented in the lumi package of  

R-Bioconductor. Data post-processing and graphics was performed with in-

house developed functions in Matlab. Hierarchical clustering of genes and 

samples was performed with one minus correlation metric and the unweighted 

average distance (UPGMA) (also known as group average) linkage method. 
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3.2.13 DNA Isolation 
 

Tissue culture cells were lysed using the ATL buffer from the DNeasy Blood & 

Tissue kit. Proteinase K was added and the microcentrifuge tube was placed 

in a thermomixer at 55 °C for overnight incubation. One volume of nuclease-

free water was added and then one volume of a 

phenol:chloroform:isoamylalcohol mixture, and the content was mixed 

thoroughly. The tube was centrifuged for 10 min at 12000 rpm at RT, and the 

separated upper phase was transferred to a new tube. One volume of 

phenol:chloroform:isoamylalcohol was added, the content was mixed 

thoroughly, and centrifuged for 10 min at maximum at 20 °C, and the resulting 

upper phase was transferred to a new tube. Two volumes of ice-cold 96% 

ethanol and 1/10 volume of a 3 M sodium acetate solution were added and 

the sample was kept for 30 min at -80 °C.  After centrifugation for 15 min at 

10000 rpm at 5 °C the supernatant was removed, and the DNA pallet was 

washed with ice-cold 70% ethanol. After another centrifugation for 15 min at 

10000 rpm at 5 °C the supernatant was removed, and the DNA pellet was air-

dried. The DNA pellet was then dissolved in nuclease-free water by incubation 

at 55 °C in a thermomixer for six hours .    

 

3.2.14 DNA Methylation Analysis 
 

To determine DNA promoter methylation status, bisulfite conversion was 

carried out on 2 µg of isolated genomic DNA using the EpiTect Bisulfite kit 

(Qiagen) according to the manufacturer’s protocol. The two step protocol, 

consisting of bisulfite DNA conversion and cleanup of bisulfite converted DNA 

are briefly described here. DNA to be used in the bisulfite reactions was 

thawed. The required amount of Bisulfite Mix was dissolved by adding 800 µl 

RNase-free water to each aliquot. The Bisulfite Mix was completely dissolved 

by vortexing. The bisulfite reactions were prepared in 200 µl PCR tubes 

according to the instructions provided by the manufacturer. The PCR tubes  
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were closed tightly and mixed thoroughly at RT. The DNA protect buffer 

turned from green to blue indicating sufficient mixing and correct pH for the 

bisulfite conversion reaction. The bisulfite DNA conversion was performed in a 

thermal cycler following the program indicated by the manufacturer. After the 

bisulfite conversion was completed the PCR tubes containing the bisulfite 

reaction were briefly centrifuged, and then the complete bisulfite reaction was 

transferred to a clean 1.5 ml microcentrifuge tube. 560 µl of freshly prepared 

Buffer BL containing 10 µg/ml carrier RNA were added to each sample. The 

solutions were mixed by vortexing and then centrifuged briefly. Then, the 

entire mixture from each 1.5 ml microcentrifuge tube was transferred into the 

corresponding EpiTect spin column. The spin columns were centrifuged at 

maximum speed for 1 min. The flow-through was discarded. The spin column 

was then washed once with 500 µl of Buffer BW. 500 µl Buffer BD was added 

to each spin column, and incubated for 15 min at RT. The spin column was 

centrifuged at maximum speed for 1 min, the flow-through was discarded, and 

the spin column was washed twice with 500 µl of Buffer BW. To remove any 

remaining liquid the spin column was centrifuged at maximum speed for 1 min 

in a new 2 ml collection tube, and subsequently incubated for 5 min at 56 °C 

in a heating block. The purified DNA was then eluted with 20 µl Buffer EB and 

centrifugation. 

The bisulfite converted DNA was amplified by PCR using the primers provided 

under 3.1.7. Bisulfite PCR was performed using DNA proofreading 

polymerase according to manufacturer's instructions. 20 µl reaction mixtures 

comprised of DNA proofreading polymerase, primers for methylation analysis, 

bisulfite converted DNA, and nuclease-free water. The PCR cycling conditions 

were 95 °C for 5 min followed by 40 cycles (95 °C for 30 sec, Xoptimal °C for 

45 sec, 72 °C for 1 min) and a final extension step at 72 °C for 5 min. Optimal 

annealing temperature (Xoptimal °C) was empirically determined for each 

primer set using the Primer3web software.  

PCR products were purified using QIAquick gel extraction kit, cloned into the 

pCRII TOPO vector according to the manufacturer’s protocol, and  
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subsequently transformed into TOP10 Escherichia coli. Individual colonies 

were inoculated into LB medium containing Kanamycin (50 µg/ml) and 

cultured overnight in a 37 °C shaking incubator. Plasmids were extracted 

using the ZR plasmid miniprep kit.  

Individual clones were sequenced by GATC-biotech using the M13 primers 

(http://www.gatc-biotech.com/en/index.html). Sequences were analyzed using 

the Quantification Tool for Methylation Analysis (QUMA, 

http://quma.cdb.riken.jp).  

 
3.2.15 Immunocytochemistry 
 

Cells grown in a 12-well plate were rinsed with PBS and fixed with 4% 

PFA/PBS for 10 min at RT. The PFA solution was aspirated, the cells were 

rinsed with PBS, and permeabilized with 0.2% Triton X-100/PBS for 10 min at 

RT. The Triton X-100 solution was aspirated, the cells were rinsed with PBS, 

and the blocking solution, consisting of 2% BSA/5% FCS/PBS, was added for 

1 hour at RT. The blocking solution was aspirated, the cells were rinsed with 

PBS, and the cells were incubated with the primary antibody (given under 

3.1.5) either overnight at 5 °C, or for one hour at RT. The primary antibody 

was diluted as indicated under 3.1.5 in 0.5% BSA/PBS. The cells were 

washed three times rocking for 5 min with PBS, and the secondary antibody 

was applied for one hour at RT in a 1:1000 dilution in 0.5% BSA/PBS. The 

cells were washed three times rocking for 5 min with PBS. Hoechst dye was 

added during the second washing step. The cells were covered with mounting 

medium and a cover slide, and pictures were taken on a Leica fluorescense 

microscope. 

 

3.2.16 Alkaline Phosphatase Staining 
 

The staining solution was prepared by adding 40 µl of naphthol phosphate 

solution to 1 ml of Fast Red chromogen. Cells grown in a monolayer in a  
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culture vessel were rinsed with PBS and fixed with 4% PFA/PBS for 10 min at 

RT. The PFA solution was aspirated, the cells were rinsed with PBS, and 

covered with the staining solution. The cells were incubated with the staining 

solution for 15 min at RT in dark. The staining solution was aspirated, and the 

cells were rinsed with Milli-Q water and allowed to air-dry.   

 

3.2.17 Teratoma Assay and H&E Staining 
 

The teratoma assay was used to assess the in vivo pluripotency of cells. 

Cultured cells were dissociated into single cells using an appropriate enzyme, 

and one million cells were collected in about 250 µl of cell culture medium. 

The cell suspension was injected subcutaneously into the flanks of 

immunodeficient SCID mice. The development of the teratomas was carefully 

observed, and the mice were usually sacrificed 4-6 weeks following the 

injection. The teratomas were excised and fixed in 4% paraformaldehyde at 4 

°C overnight, and paraffin embedded at 4 °C until they were sectioned (4 µm) 

and stained with hematoxylin & eosin for histological analysis according to 

standard procedures.    

 

3.2.18 ESC Aggregation  
 

Cells were aggregated and cultured with denuded post-compacted eight-cell 

stage mouse embryos. Briefly, eight-cell embryos were flushed from 

[(C57BL/6 x C3H) F1 females x CD1 males] at 2.5 dpc and placed in M2 

medium.  Clumps of loosely connected cells (10-20 cells each) with short 

trypsin-treatment were chosen and transferred into microdrops of potassium 

simplex optimized medium (KSOM) with 10% FCS under mineral oil. Each 

clump was placed in a depression in the microdrop. Meanwhile, batches of 

30-40 embryos were briefly incubated in acidified Tyrode's solution until 

dissolution of their zona pellucida.  A single embryo was placed on the clump. 

All aggregates were assembled in this manner, and cultured overnight at  
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37 °C and 5% CO2. After 24 hours of culture, the majority of aggregates had 

formed blastocysts. 11-14 embryos were transferred into one uterine horn of a 

2.5 dpc pseudopregnant recipient.  

 
3.2.19 Kinase Profiling Assay and IC50 Determination 

 

The kinase profiling assay and the IC50 determination have been performed 

by the KinaseProfiler and IC50Profiler Services at Merck/Millipore, which at 

the time this thesis was written belonged to Eurofins. A radiometric assay was 

used for all protein kinases, and a FRET-based assay, called HTRF assay, 

was applied for the lipid kinases. The screening conditions and protocols used 

in the KinaseProfiler radiometric protein kinase assays and HTRF lipid kinase 

assays as provided by Merck/Millipore are briefly described here. 

            

Dilution buffer compositions prior to addition to reaction mix: 

 

• FAK:  

15 mM MOPS, 0.75 mM EDTA, 0.0075% Brij-35, 3.75% Glycerol, 150 

mM NaCl, 0.1% !-mercaptoethanol, 1 mg/mL BSA 

 

• PKC", PKC!I, PKC!II, PKC#, PKC$, PKC%, PKCµ, PKC&, PKC': 

20 mM HEPES, 0.03% Triton X-100 

 

• CK2, CK2"2: 

20 mM HEPES, 0.15 M NaCl, 0.1 M EDTA, 5 mM DTT, 0.1% Triton X-

100, 50% Glycerol 

 

• MEK1: 

25 mM TRIS, 0.1 mM EGTA, 0.1% !-mercaptoethanol, 1 mg/mL BSA 
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• mTOR: 

500 mM HEPES, 10 mM EGTA, 0.1% Tween 20 

 

• PDK1: 

50 mM TRIS, 0.1% !-mercaptoethanol, 1 mg/mL BSA 

 

• JNK1"1, JNK2"2, JNK3, ROCK-II: 

50 mM TRIS, 0.1 mM EGTA, 0.1% !-mercaptoethanol, 1 mg/mL BSA 

 

• Lyn, MAPK1, MAPK2, MKK4, MKK6, MKK7!, Syk: 

50 mM TRIS, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% !-

mercaptoethanol,  

1 mg/mL BSA 

 

• all other profiled kinases: 

20 mM MOPS, 1 mM EDTA, 0.01% Brij-35, 5% Glycerol,  

0.1% !-mercaptoethanol, 1 mg/mL BSA 

 

• The dilution buffer composition for the lipid kinase assays is 

proprietary. 

 

All compounds were prepared to 50x final assay concentration in 100% 

DMSO. This working stock of the compound was added to the assay well as 

the first component in the reaction, followed by the remaining components as 

detailed in the general assay protocols below. In the standard KinaseProfiler 

service, there was no pre-incubation step between the compound and the 

kinase prior to initiation of the reaction. The positive control wells contained all 

components of the reaction, except the compound of interest; however, 

DMSO (at a final concentration of 2%) was included in these wells to control 

for solvent effects. The blank wells contained all components of the reaction, 

with a reference inhibitor replacing the compound of interest. This abolished  
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kinase activity and established the base-line (0% kinase activity remaining). 

The reference inhibitors used to generate the blank signal for each kinase are 

given below. For lipid kinase assays, the blank wells were generated by 

omitting the enzyme (rather than by including a reference inhibitor to abolish 

the signal). 

 

General kinase assay protocol for the radiometric assay: 

 

The majority of the kinases was incubated with 8 mM MOPS pH 7.0, 0.2 mM 

EDTA, 50 µM EAIYAAPFAKKK, 10 mM MgAcetate and [#-33P-ATP] (specific 

activity approx. 500 cpm/pmol, concentration as required). The reaction was 

initiated by the addition of the MgATP mix. After incubation for 40 minutes at 

room temperature, the reaction was stopped by the addition of 3% phosphoric 

acid solution. 10 µl of the reaction was then spotted onto a P30 filtermat and 

washed three times for 5 minutes in 75 mM phosphoric acid and once in 

methanol prior to drying and scintillation counting. Modifications to this 

protocol include the buffer composition (see above) and the substrate and 

substrate concentration. 

 

General kinase assay protocol for the FRET-based assay: 

 

The lipid kinases were incubated in assay buffer containing 25 µM 

phosphatidylinositol 4-phosphate/75 µM phosphatidylserine and MgATP 

(concentration as required). The reaction was initiated by the addition of the 

ATP solution. After incubation for 30 minutes at room temperature, the 

reaction was stopped by the addition of stop solution containing EDTA and 

biotinylated phosphatidylinositol 4,5-bisphosphate. Finally, detection buffer 

was added, which contained europium-labelled anti-GST monoclonal 

antibody, a GST-tagged PH domain and streptavidin allophycocyanin. The 

plate was then read in time-resolved fluorescence mode and the homogenous  
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time-resolved fluorescence (HTRF) signal was determined according to the 

formula HTRF = 10000 x (Em665nm/Em620nm). 

 
3.2.20 Luciferase Assays 

 

To assess the relative Oct4 enhancer activities luciferase vectors containing 

the proximal (PE) and distal (DE) enhancers in the pGL3-promoter were used 

(Greber et al., 2010). The investigated cells were transfected as single cells 

with the luciferase vectors together with a renilla vector by Amaxa 

nucleofection (Program A-23, 4 µg of DNA, 1x106 cells). The cells were 

cultured feeder-free, and EpiSC were cultured with the ROCK inhibitor after 

nucleofection. 48 hours after the transfection the cells were assayed using the 

Dual-Glo Luciferase assay according to the manufacturer's instructions. The 

read out was performed in 96-well plates with white walls and flat, white 

bottoms. The luciferase values were normalized to the renilla values and 

divided by the signals for the empty vector. 

The TOP/FOP luciferase assay was performed in a 96-well cell culture plate. 

EpiSC were plated feeder-free on FCS-coated surface at a density of  

5000 cells/well. The next day, the cells were transfected in Opti-MEM medium 

with 100 ng per well of the TOP/FOPFlash vectors together with 0.4 ng per 

well of a renilla vector using Lipofectamin 2000 according to the 

manufacturer's instructions. After 24 hours the cells were treated with 10 µM 

AU52, 3 µM CH, and DMSO control. The cells were incubated for 24 hours 

and subsequently reporter activity was quantified using the Dual-Glo 

Luciferase assay. The firefly signals were normalized to renilla luciferase 

activity, and then the TOP/FOP ratio was calculated. 

 

3.2.21 shRNA-Based Gene Knockdown 
 

The MISSION TRC shRNA constructs were received as bacterial glycerol 

stocks and were used with packaging plasmids to produce lentiviral  
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transduction particles. Bacterial cultures were amplified from the glycerol 

stocks for use in purification of the shRNA plasmid DNA using the ZR plasmid 

miniprep kit and the NucleoBond Xtra plasmid midi/maxiprep kit following the 

manufacturers' instructions. HEK293T cells were used as packaging cells for 

lentiviral particle production by co-transfection with compatible packaging 

plasmids using FuGENE 6 following standard procedures. EpiSC were 

seeded as single cells on FCS-coated tissue culture dishes at low density 12 

hours prior to the infection. The attached single cells were transduced by the 

lentiviral particles overnight. The transduction medium was replaced by 

normal EpiSC MEF-conditioned medium, and the cells were cultured 

overnight before puromycin selection was initiated. Knockdown efficiency was 

assessed by qRT-PCR.     

 

3.2.22 Western Blotting 
 

Protein isolation was performed on ice to avoid protein degradation. Adherent 

cells were washed with cold PBS, and lysed with RIPA lysis buffer containing 

protease inhibitors (250 µl per well of 6-well plate). Cells were scraped from 

the culture dish using a pre-cooled cell scraper and placed into a 

microcentrifuge tube. To shear DNA to reduce viscosity the sample was 

sonicated 3 times for 15 seconds, and subsequently centrifuged at 16000g for 

20 min at 4 °C. The supernatant was transferred to a new tube, and the pellet 

was discarded. A Bradford assay with BSA as protein standard was used to 

determine the protein concentration. Protein concentrations of the samples 

were equalized by adding lysis buffer, and the lysates were boiled in Laemmli 

sample buffer at 95 °C for 5 min to denature the protein. Equal amounts of 

protein (20 µg) were loaded into the wells of an SDS-PAGE gel (gel 

percentage depending on the size of the protein), and the electrophoresis was 

run in running buffer at 100-150 V to complete the run in about 1 hour. The 

proteins were blotted on a PVDF membrane overnight in a cold room at a  
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constant current of 10 mA. The membrane was blocked in 5% milk powder in 

TBST at RT for 1 hr. The primary antibody was diluted in the blocking 

solution, and the membrane was incubated overnight at 4 °C. The blot was 

rinsed 3 times for 5 min with TBST and incubated in blocking solution 

containing the HRP-conjugated secondary antibody for 1 hour at RT. The 

membrane was rinsed 3 times for 5 min with TBST, and the 

chemiluminescence signal was captured using the chemiluminescent HRP 

substrate and ECL Hyperfilm in an autoradiography cassette. The films were 

developed and scanned in for digital editing. The primary antibodies for 

Western blotting are given under 3.1.5. 

 

 

• RIPA lysis buffer: 

50 mM Tris-HCl pH 8.0 

150 mM NaCl 

0.1% Triton X-100 

0.5% sodium deoxycholate 

0.1% sodium dodecyl sulphate (SDS) 

1 mM sodium orthovanadate 

1 mM NaF 

Protease inhibitors tablet 

 

• Laemmli sample/loading buffer 

4% SDS 

10% 2-mercaptoethanol 

20% glycerol 

0.004% bromophenol blue 

0.125 M Tris-HCl pH 6.8 
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• Running buffer 

25 mM Tris pH 8.3 

190 mM glycine 

0.1% SDS 

 

• TBST 

20 mM Tris pH 7.5 

150 mM NaCl 

0.1% Tween 20 

 

3.2.23 Zebrafish Developmental Assay 
 

Zebrafish were maintained in a recirculating aquaculture system under 

standard laboratory conditions at 27 °C. For mating, a male and a female fish 

were kept overnight in a 1 liter tank, separated by a grid. The next morning, as 

the grid was removed, the female laid eggs that were immediately fertilized by 

the male´s sperm. Embryos were harvested and kept in petri dishes filled with 

1 x E3 embryo medium at 28.5 °C. They were staged by hours post 

fertilization (hpf) at 28.5 °C. Wild type embryos were dechorionated at 5 hpf 

and kept in E3 medium in 2% agarose/E3-coated petri dishes. At 7 hpf the 

medium was exchanged to E3 medium supplemented with either 20 µM IWR-

1, 3 µM CH, 5 µM TR, 5 µM AU52, or the same volume of DMSO as control. 

Embryos were incubated at 28.5 °C and imaged at 48 hpf with a 

stereomicroscope. 60 x E3: 17.2 g NaCl, 0.75 g KCl, 2.9 g CaCl2(2H2O,  

4.9 g MgSO4(7H2O, ddH2O up to 1 liter. 
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4. Results 
 
 
4.1 Late-Stage EpiSC are Recalcitrant as They Do Not Revert Under 
the 2i/LIF Condition 
 
EpiSC-GOF18  contain a GFP transgene that is driven by at least three 

regulatory elements of the Oct4 gene (Yeom et al., 1996). The upstream area 

contains two enhancers, namely the distal enhancer (DE) and the proximal 

enhancer (PE), as well as a TATA-less promoter. In ESC-OG2, the GFP 

reporter depends on the DE of Oct4 for transcription, i.e., the transgene lacks 

the proximal enhancer (Oct4-$PE-GFP) (Yeom et al., 1996). The DE of Oct4 

contains a dense binding locus for key ESC-specific transcription factors 

(Chen et al., 2008). EpiSC preferentially utilize the PE over the DE, and the 

Oct4-$PE-GFP is active only in ESC, and not in EpiSC—both findings 

suggesting that EpiSC must lack some key ESC-specific transcription factors 

(Tesar et al., 2007; Yeom et al., 1996). The two Oct4 reporter lines (GOF18, 

which has the entire Oct4 regulatory region, and OG2, which lacks the 

proximal enhancer, PE) were used to study naïve pluripotency (Yeom et al., 

1996). Naïve pluripotent cells of both the GOF18 and OG2 reporter lines 

express GFP when cultured in ESC conditions (Figures 1, ESC samples). The 

corresponding primed pluripotent cells when cultured in EpiSC conditions do 

not express GFP, except for the small subpopulation which was previously 

shown to be chimera competent (Han et al., 2010) (Figures 1, EpiSC 

samples).  
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Figure 1. OCT4-GFP expression in naive and primed pluripotent stem cells. 
Upper panel: Percentage of OCT4-GFP–positive cells in EpiSC-GOF18 (left),  

EpiSC-OG2 (middle), and ESC-OG2 (right) as measured by FACS. Lower panel: 

Morphology and OCT4-GFP expression in ESC-OG2, EpiSC-GOF18, and EpiSC-

OG2 (Scale bar: 300µm). 
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Global gene expression analysis revealed that EpiSC-GOF18 exhibited a 

gene expression pattern distinct from that of ESC-OG2 (Figure 2). Certain 

genes were specifically expressed in ESC that were not present in EpiSC, 

such as Zfp42/Rex1 and Dppa3. Since they respresent the naïve cell type that 

was originally derived from the ICM, they were termed ICM markers. The 

bioinformatics analysis of microarray data was performed by Dr Marcos Jesus 

Arauzo Bravo.  

 

 

 
 
 

Figure 2. Scatter plot of global gene expression microarrays comparing  
EpiSC-GOF18s with ESC-OG2.  

The black lines delineate the boundaries of 4-fold difference in gene expression 

levels. Genes highly expressed in EpiSC samples compared with ESC samples are 

shown as red dots; those less expressed are shown as green dots. Positions of the 

pluripotent cell marker Zfp42/Rex1 and the germ cell marker Dppa3/Stella are 

indicated as orange dots. The color bar to the right indicates the scattering density; 

the higher the scattering density, the darker the blue color. Gene expression levels 

are depicted on log2 scale.  
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Quantitative RT-PCR analysis confirmed that a set of genes including Klf4, 

Rex1, Stella, Esrrb, Dppa4 and Dppa5 were expressed at much lower levels 

in EpiSC compared with ESC, whereas lineage specific markers such as  

T-brachyury, Fgf5 and Fgf8 were expressed at higher levels (Figure 3).  

 

 

 
 
 

Figure 3. Comparison of gene expression patterns in EpiSC versus ESC. 
Expression levels are normalized to the ESC levels (Data represent mean ± SD of 

triplicates; n = 3).  
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As reported previously (Han et al., 2010), when unsorted EpiSC-GOF18 

containing OCT4-GFP–positive and –negative cells were cultured in 2i/LIF, I 

observed an increase in OCT4-GFP–expressing cells that resembled ESC 

(about 6-fold; compare left panels of Figures 1 and 4, vehicle control in lower 

left panel of Figure 4). When sorted OCT4-GFP–negative EpiSC-GOF18 or 

EpiSC-OG2 were cultured under the same conditions, namely 2i/LIF, I did not 

detect an increase in OCT4-GFP–positive cells, demonstrating that these 

GFP-negative cells were recalcitrant to conversion (Figure 4, compare middle 

panels for EpiSC-GOF18 and right panels for EpiSC-OG2).  

 

 

 
 

 
Figure 4. FACS analysis of 2i/LIF-induced ESC conversion. 

Upper panel) Percentage of OCT4-GFP–positive cells after ESC conversion with 

PD/CH/LIF in unsorted EpiSC-GOF18 (left), sorted OCT4-GFP–negative EpiSC-

GOF18 (middle), and EpiSC-OG2 (right) as measured by FACS. Lower panel) 

DMSO controls for the conversion with PD/CH/LIF in unsorted EpiSC-GOF18 (left), 

sorted OCT4-GFP–negative EpiSC-GOF18 (middle), and EpiSC-OG2 (right) as 

measured by FACS. 
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The 2i/LIF converted cells could be maintained under ESC culture condition, 

exhibited an  ESC morphology, and also showed increased expression of the 

ICM/ESC marker Rex1, which was neither increased in FACS-sorted  

OCT4-GFP–negative cells, nor in EpiSC-OG2  (Figure 5).  

 

 

 

 
 

 
Figure 5. 2i/LIF converted EpiSC-GOF18. 

Left panel) OCT4-GFP expression in PD/CH/LIF-converted EpiSC-GOF18 (Scale 

bar: 250µm). Right panel) Expression of the ICM marker gene Rex1 (Zfp42) in 

unsorted EpiSC, OCT4-GFP–negative EpiSC, and  EpiSC-OG2 after conversion with 

PD/CH/LIF compared to EpiSC and ESC. Expression levels are normalized to the 

ESC levels (Data represent mean ± SD of triplicates; n = 3). 
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4.2 Small Molecule Screen Identifies Triamterene (TR) 
 

To identify small molecules capable of converting recalcitrant  

late-stage EpiSC into an ESC-like state, I developed a screening platform in a 

96-well format (Figure 6). Three crucial parameters had to be optimized for 

establishing a robust and reproducible assay. I plated 2,000 single EpiSC per 

well and cultured the plates under EpiSC culture conditions (mouse 

embryonic fibroblast [MEF] conditioned medium containing bFGF) for two 

days to allow the cells to attach and start forming colonies. Plating 2,000 

cells/well proved optimal in terms of growth characteristics, efficiency of the 

positive control (2i/LIF), and standard deviation of the readout. Moreover, I 

determined that six days of incubation resulted in optimum values for the 

positive control.  

 

 

 
 

 
Figure 6. Schematic representation of the assay workflow. 
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The quantitative readout using high-content imaging was based on the 

number of single cells with a GFP intensity above a preset minimum value 

which was based on the OCT4-GFP intensity in ESC (Figure 7).  

 

 
 

Figure 7. Readout system based on consequent fluorescence imaging for 
Hoechst nuclei stain (left) and OCT4-GFP (right) with Arrayscan' .  

(Scale bar: 100 µM) 

 

The threshold for the GFP intensity was set according to the level in ESC. As 

a positive control, I used 2i/LIF-supplied ESC medium. As a negative control I 

used EpiSC culture medium, i.e. MEF conditioned medium containing bFGF, 

in which spontaneous conversion was not observed  (Figure 8).  

 

 
 

Figure 8. Positive and negative controls of the small-molecule screening assay 
as measured by the Arrayscan' .  

 ESC as positive controls, were cultured under PD/CH/LIF condition;  EpiSC as 

negative controls, were kept under EpiSC culture conditions, i.e. on FCS-coated 

surface with MEF-conditioned medium and bFGF. 



4.     Results!
_____________________________________________________________________ 

! )(!

 

 

The quality of the assay was validated using the Z'-factor, which was 

calculated to be 0.57 (Zhang et al., 1999) (Figure 9).  

 

 
 

Figure 9. Z-factor of the developed small-molecule screening assay. (Data 

represent mean ± SD of triplicates; n = 3; p < 0.001).  

 

Then the LOPACTM library containing about 1,200 pharmacologically active 

compounds was screened at 10 µM screening concentration, and an active 

compound capable of inducing OCT4-GFP expression in EpiSC under EpiSC 

culture conditions was identified (Figure 10).  

 

 
 

Figure 10. Hit compound Triamteren. 
The hit compound Triamterene was located in rack number 15, position H07 of the 

LOPAC' library. 



4.     Results!
_____________________________________________________________________ 

! ))!

 

 

The hit compound was found to be a pteridine derivative known as 

Triamterene (TR), which blocks the epithelial sodium channel (ENaC), and is 

therefore used as a diuretic in the treatment of hypertension (Figure 11) 

(Busch et al., 1996). I subsequently evaluated the ability of the hit compound 

to convert late-stage EpiSC into an ESC-like state.  

 

 

 
 

 
Figure 11. Chemical structure of the hit compound Triamterene. 
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4.3 TR Induces ESC Conversion of Recalcitrant EpiSC   
 
TR was intially identified using unsorted EpiSC-GOF18. Next I tested the 

effect of TR on the recalcitrant OCT4-GFP–negative fraction of GOF18 cells. 

After culturing the OCT4-GFP–negative EpiSC-GOF18 with TR for seven 

days, flow cytometry analysis revealed a strong induction of OCT4-GFP 

expression, despite  the presence of bFGF and ActivinA (Figure 12 left panel). 

Furthermore, TR induced OCT4-GFP reactivation in EpiSC-OG2 with an 

efficiency comparable to that of the sorted OCT4-GFP-negative EpiSC-

GOF18 (Figure 12, compare left and right panels).  

 

 

 

 
 

 
Figure 12. Triamterene induces ESC conversion in recalcitrant  
late-stage OCT4-GFP–negative EpiSC-GOF18 and EpiSC-OG2. 

Percentage of OCT4-GFP–positive cells after treatment with Triamterene in sorted 

OCT4-GFP–negative EpiSC-GOF18 (left) and EpiSC-OG2  (right) as measured by 

FACS. 
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Clonal lines from the TR-reverted EpiSC-GOF18 ESC-like cells (TR-GOF18) 

were maintained for a prolongued period in ESC medium containing LIF in the 

absence of TR, and were passaged as single cells using trypsin. The cells 

exhibited a cell morphology and OCT4-GFP expression similar to ESC (Figure 

13).  

 

 
 

Figure 13. Morphology and OCT4-GFP expression in clonally expanded 
converted TR-GOF18 and TR-OG2 cells. 

 (Scale bar: 200µm).  

 

Reverted cells from both EpiSC-GOF18 and EpiSC-OG2 and ESC were also 

similar with respect to ALP expression and their proliferation rates (Figure 14).  

 

 
 

Figure 14. AP expression and growth curves of TR-GOF18 and TR-OG2 cells. 
Left panel) Expression of ALP in converted TR-GOF18 cells (Scale bar: 200µm). 

Right panel) Comparison of cell growth curves of TR-GOF18 and TR-OG2 cells with 

ESC. 
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Moreover, when cultured in the presence of CM/FGF, TR-converted cells 

dramatically changed their morphology toward bigger flat colonies, and also 

lost OCT4-GFP expression, two features consistent with an EpiSC phenotype 

(Figure 15).  

 

 
 
Figure 15. Morphology and OCT4-GFP expression of TR-GOF18 cells cultured 

under ESC conditions (KOES/LIF) and EpiSC conditions (CM/FGF). 
(Scale bar: 300µm). 

 

Additionally, TR-converted EpiSC (re)-expressed ESC-specific markers, such 

as Rex1, Stella, Klf2, Klf4  and Esrrb (Figure 2B). In contrast, genes 

upregulated in EpiSC, such as T-brachyury, Fgf5, and Fgf8, were 

downregulated in TR-induced cells.  

 

 
 

Figure 16. Comparison of gene expression patterns in ESC, TR-GOF18 cells, 
and EpiSC. 

Expression levels are normalized to those of EpiSC (Data represent mean ± SD of 

triplicates; n = 3). 



4.     Results!
_____________________________________________________________________ 

! *-!

 

 

Most importantly, global gene expression analysis showed obvious 

assimilation of the gene expression profiles between TR-converted cells and 

ESC (Figure 17; see also Figure 29). The bioinformatics analysis of 

microarray data was performed by Dr Marcos Jesus Arauzo Bravo. 

 

 
 

Figure 17. Scatter plot of global gene expression microarrays comparing TR-
GOF18 cells with ESC. 

The black lines delineate the boundaries of 4-fold difference in gene expression 

levels. Genes highly expressed in TR-GOF18 samples compared with ESC samples 

are shown as red dots; those less expressed are shown as green dots. Positions of 

the pluripotent cell marker Zfp42/Rex1 and the germ cell marker Dppa3/Stella are 

indicated as orange dots. The color bar to the right indicates the scattering density; 

the higher the scattering density, the darker the blue color. Gene expression levels 

are depicted on log2 scale. 

 

Then the ability of TR to convert EpiSC lines (T9 and C1a1), which were 

previously shown to be basically resistant to media-induced conversion using 

2i/LIF, was assessed (Bernemann et al., 2011). TR efficiently induced the 

reactivation of ESRRB and KLF4 proteins in EpiSC-T9 and EpiSC-C1a1, 

promoted a change in morphology to small dome-shaped colonies, and 

upregulated Pecam1 (Figure 18). The immunocytochemical analysis of TR-

converted EpiSC-T9 and EpiSC-C1a1 was performed by Dr Miao Zhang. 
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Figure 18. Immunocytochemical analysis of KLF4, ESRRB, and PECAM1 

expression in TR-converted recalcitrant late-stage EpiSC. 
Upper panel) Immunofluorescence analysis for the ICM markers Klf4 and Esrrb in the 

TR-converted EpiSC lines C1a1 and T9 (Scale bar: 200µm).  Lower panel) 

Percentage of Pecam1–positive (CD31) cells after treatment of EpiSC-GOF18, 

EpiSC-OG2, EpiSC-T9, and EpiSC-C1a1 with Triamterene as measured by FACS. 
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The effectiveness of TR to re-instate naïve pluripotency in EpiSC was further 

tested using an X-Chromosome-GFP reporter in female EpiSC. Culturing 

these EpiSC in ESC media containing LIF did not reactivate XChr-GFP on the 

silent X-chromosome, consistent with lack of reprogramming, whereas TR 

successfully promoted XChr-GFP reactivation (Figure 19). Taken together, TR 

induced the efficient conversion of recalcitrant late-stage EpiSC toward a 

cellular state that is similar to that of ESC. The immunocytochemical analysis 

of TR-converted EpiSC-T9 and EpiSC-C1a1 was performed by Dr Miao 

Zhang. 

 

 

 
 

 
Figure 19. TR-induced X-Chromosome reactivation in EpiSC. 

Upper panel) X-chromosome reactivation and immunofluorescence analysis for the 

ICM marker Esrrb after TR-conversion (Scale bar: 200µm).  

Lower panel) X-Chromosome reactivation induced by TR as compared to LIF 

treatment alone (Scale bar: 200µm). 
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4.4 Combined Treatment With TR/PD Improves the Transition to Naïve 

Pluripotency 
 
Althought TR-converted cells and ESC had many traits in common, the clonal 

populations displayed some OCT4-GFP-negative cells, which are not 

observed to such an extend in ESC cultured in KO-DMEM/KOSR/LIF (Figure 

20, compare left and middle panels). In order to overcome this deficiency, I 

treated the TR-converted cells with a select set of chemical inhibitors known 

to support ESC self-renewal/cell reprogramming as well as a collection of 

compounds synthesized in house (Nie et al., 2012). I found that culturing the 

TR-converted cells in KO-DMEM/KOSR/LIF, together with the MEK inhibitor 

PD0325901 (PD) dramatically increased the proportion of OCT4-GFP-positive 

cells (Figure 20, compare middle and right panels).  

 

 

 

 
 

 
Figure 20. Percentage of OCT4-GFP–positive cells in ESC, TR-GOF18 cells, and 

TR/PD-converted cells. 
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These TR/PD-converted cells and ESC were indistinguishable wth respect to 

cell morphology, growth characteristics, AP activity and OCT4-GFP 

expression (Figure 21).  

 

 

 
 

 
Figure 21. Morphology, OCT4-GFP expression, and ALP expression in ESC,  

TR-GOF18 cells, and TR/PD-converted cells grown on a MEF feeder layer and 
on a gelatin-coated surface. 

(Upper scale bar: 350µm, lower scale bar: 5mm). 
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At the molecular level, TR-GOF18 cells clearly expressed ICM-specific 

markers such as Rex1, Stella, and Esrrb which are not expressed in EpiSC 

(Figures 16 and 22). However, the expression levels of several ICM markers, 

such as Sox2, Klf4, Dppa4 and Dppa5 did not reach those of ESC (Figures 16 

and 22). On the other hand, some lineage markers, including T, Fgf5, and 

Fgf8 were still higher expressed than in ESC (Figures 16 and 22). This 

deficiency could be overcome by ERK inhibition in TR-GOF18 cells (Figure 

22). TR/PD-converted cells (re)-expressed ESC-specific markers, while 

EpiSC markers were downregulated (Figure 22). 

 

 

 
 

 
Figure 22. Comparison of gene expression patterns in ESC, TR-GOF18 cells, 

EpiSC, and TR/PD-converted cells. 
Expression levels are normalized to those of EpiSC (Data represent mean ± SD of 

triplicates; n = 3). 
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In contrast to EpiSC, colonies of TR/PD-converted cells exhibited 

homogeneously expressed protein levels of Sox2, Nanog, and Stella (Figure 

23). The immunocytochemical analysis of TR-converted EpiSC-T9 and 

EpiSC-C1a1 was performed by Dr Miao Zhang. 

 

 

 
  

Figure 23. Immunofluorescence analysis for SOX2, NANOG, and STELLA 
(DPPA3) in ESC, TR-GOF18 cells, EpiSC, and TR/PD-converted cells. DAPI was 

used for DNA staining. 
(Scale bar: 350µm). 
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ESC preferentially use the distal enhancer (DE) to drive Oct4 expression, 

while EpiSC use the proximal enhancer (PE) (Tesar et al., 2007; Yeom et al., 

1996). Using a luciferase assay, I compared Oct4 enhancer activity in the 

converted cells with that of ESC and EpiSC. The PE/DE ratio in TR/PD-

converted cells was tilted toward the preferential use of the Oct4 DE, 

reminiscent of ESC, but in contrast to EpiSC (Figure 24).  

 

 

 

 
 

 

 
Figure 24. Evaluation of the Oct4 enhancer activity in ESC, TR-GOF18 cells, 

EpiSC, and TR/PD-converted cells. 
Relative luciferase activity was normalized to the activity of an empty vector (Data 

represent mean ± SD of triplicates; n = 3; p < 0.001). 

 

 

 



4.     Results!
_____________________________________________________________________ 

! *+!

 

 

In accordance, TR/PD cells exhibited a global gene expression pattern that 

closely resembled the one of ESC (Figure 25, see also Figures 27 and 28). 

The bioinformatics analysis of the microarray data was performed by Dr 

Marcos Jesus Arauzo Bravo. 

 

 

 
 

 
Figure 25. Scatter plot of global gene expression microarrays comparing 

TR/PD cells with ESC. 
The black lines delineate the boundaries of 4-fold difference in gene expression 

levels. Genes highly expressed in TR/PD samples compared with ESC samples are 

shown as red dots; those less expressed are shown as green dots. Positions of the 

pluripotent cell marker Zfp42/Rex1 and the germ cell marker Dppa3/Stella are 

indicated as orange dots. The color bar to the right indicates the scattering density; 

the higher the scattering density, the darker the blue color. Gene expression levels 

are depicted on log2 scale. 
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Next, the responsiveness of the reverted cells to ESC- and EpiSC-related 

signaling pathways was assessed (Figure 26). EpiSC are dependent on 

TGF!/SMAD2/3 signaling, whereas ESC require stimulation of the LIF/STAT3 

pathway for their propagation. Inhibition of LIF/STAT3 signaling in ESC 

induces differentiation, i.e. pluripotency markers are downregulated, and early 

differentiation markers upregulated as compared to the untreated control 

(Figure 26 left panel, see ESC+JAKi). In contrast to that, EpiSC differentiation 

is induced when TGF!/SMAD2/3 signaling is inhibited (Figure 26 right panel, 

see EpiSC+SB). Upon inhibition of these two pathways TR/PD cells reacted in 

both cases similar to ESC and different from EpiSC which indicates a switch 

in the signaling pathways toward those related to naïve pluripotency (Figure 

26, see TR/PD+JAKi in left panel, and TR/PD+SB in right panel). Notably, TR-

converted cells exerted in both cases a more moderate response than ESC 

and TR/PD-converted cells (Figure 26, see TR-GOF18+JAKi in left panel, and 

TR-GOF18+SB in right panel).  

 

 

 
 

 
 

Figure 26. RT-qPCR analysis of the effects of LIF/STAT3 (left) and SMAD2/3 
(right) inhibition in ESC, TR-GOF18 cells, EpiSC, and TR/PD-converted cells. 

(Data represent mean ± SD of triplicates; n = 3). 
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4.5 Germline Competence is Restored in TR/PD-Converted Cells  
 
The converted cells were compared to EpiSC and ESC by global gene 

expression analysis. The heat maps of TR/PD cells were very similar to those 

of ESC (Figures 27). The bioinformatics analysis of the microarray data was 

performed by Dr Marcos Jesus Arauzo Bravo. 

 

 
 

Figure 27. Heat map of global gene expression patterns in ESC, TR-GOF18 
cells, EpiSC, and TR/PD-converted cells. 

The color bar at top codifies the gene expression in log2 scale. Red and blue colors 

indicate high and low gene expression levels, respectively. 
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The close correlation between TR/PD cells and ESC was also confirmed by 

hierarchical clustering analysis (Figure 28).  The bioinformatics analysis of the 

microarray data was performed by Dr Marcos Jesus Arauzo Bravo. 

 

 

 
 

 

Figure 28. Hierarchical clustering shows that TR/PD-converted cells 
cluster close to ESC. 

 

 

The most significantly differentially expressed genes between TR-converted 

and TR/PD cells give insight into the specific changes at the genetic level that 

distinguish the two cell types (Figure 29). For example, the ICM markers 

Dppa5, Esrrb, Dppa4, Klf2, and Nr5a2 are expressed in TR-GOF18 cells at 

levels comparable to those in ESC. Other ICM markers, such as Tcl1, Tbx3, 

and Klf4, are also strongly induced in TR-GOF18 cells as compared to EpiSC, 

but reach the expressio levels of ESC only upon addition of PD. MEK 

inhibition also results in the suppression of early differentiation markers, such 

as Fgf5 and Fgf8, which were still elevated in TR-GOF18 cells.    
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Figure 29. The 75 most significantly differentially expressed genes among the 

four samples EpiSC (GOF18), TR-GOF18, TR/PD and  
ESC (OG2). 

The color bar at top codifies the gene expression in log2 scale. Red and blue colors 

indicate high and low gene expression levels, respectively. 
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Then, it was assessed whether the aforementioned switch in gene expression 

was accompanied by a global change in the methylation state of TR/PD-

converted cells. Consistent with the gene expression data (Figures 3, 16, 22), 

the endogenous Oct4 promoter was completely unmethylated in both ESC 

and EpiSC, while the OCT4-GFP transgene promoter was mainly 

unmethylated in ESC and highly methylated in EpiSC (Figure 30). In TR/PD 

cells the OCT4-GFP transgene promoter was basically unmethylated, 

whereas in TR-converted cells the transgene promoter was only partially 

unmethylated. Demethylation was also observed for other marker genes 

analyzed in TR/PD-converted cells (Figure 30). Analysis of DNA methylation 

was performed by Dr Kee Pyo Kim. 

 

 

 
 

 
 

Figure 30. DNA methylation status of the promoter regions of ICM marker 
genes in ESC, TR-GOF18 cells, EpiSC, and TR/PD-converted cells. 
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Following global gene expression and methylation analysis, in vivo 

differentiation assays were used to functionally characterise the reverted cells. 

TR/PD-converted cells gave rise to teratomas containing tissues of all germ 

layers (Figure 31). Cell were injected, and teratomas were excised by Dr 

Davood Sabour.  

 

 
 

Figure 31. Teratoma assay with TR/PD cells. 
Upper panel) Representative image of a teratoma derived from TR/PD cells in a 

teratoma assay. Lower panel) Representative tissues of ectodermal (skin 

epithelium), mesodermal (muscle), and endodermal (gut-like) lineages in teratomas 

obtained from TR/PD-converted cells (Scale bar: 50µm). 

 

Most importantly, upon injection into blastocysts, TR/PD-converted cells 

showed successfull integration into the ICM, and consequently germline 

contribution (Figure 32).  

 

 
 

Figure 32. Germline contribution of TR/PD cells. 
ICM integration of TR/PD-converted cells in blastocyst (left, scale bar: 50µm), 

embryonic day (E)14.5 pups obtained after embryo transfer (middle), and 

germline contribution of TR/PD-converted cells (right, scale bar: 450µm). 
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4.6 TR Targets CK 1!/"   
 
Then, efforts were focused on the identification of the molecular target of TR,  

a well-known ENaC inhibitor (Busch et al., 1996). Amilorid, another 

structurally diverse ENaC inhibitor failed to induce OCT4-GFP expression in 

EpiSC-GOF18, thus ruling out ENaC as the effective target of TR-induced 

ESC conversion (Figure 33) (Canessa et al., 1994).    

 

 

 
 

 
Figure 33. ENaC and PI3K inhibition in EpiSC. 

Influence of ENaC and PI3K inhibitors on the induction of OCT4-GFP expression in 

EpiSC as determined by flow cytometry (Data represent mean ± SD of triplicates;  

n = 3). 
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Previously, several pteridin derivatives were reported to inhibit different 

protein kinases (Doukas et al., 2009; Gomtsyan et al., 2004; Leung et al., 

2006). Therefore, it was hypothesized that a kinase may be the target of TR. 

A kinase profiling assay against a selected panel of more than 100 protein 

kinases and their isoforms, covering the majority of the signaling pathways 

reported to govern stem cell fate was performed with TR (Appendix 1). 

According to this screen TR specifically inhibited casein Kinase 1$ (CK1$) 

and phosphatidylinositide 3-kinase class 2% (PI3KC2%). To validate CK1$ and 

PI3KC2% as possible targets of TR during ESC conversion I selected the pan-

PI3K inhibitor LY294002, the potent and selective PI3K gamma inhibitors AS-

605240 and TG100-115, and the CK1$/% inhibitor D4476. While inhibition of 

PI3K did not lead to induction of OCT4-GFP expression, using D4476 to 

inhibit CK1$/% resulted in a significant number of OCT4-GFP–positive cells 

(Figures 33 and 34). 

 

 

 
 

 
Figure 34. OCT4-GFP expression in EpiSC after 8 days treatment with the CK1 

inhibitor D4476 and the PI3K inhibitor TG100-115. 
(Scale bar: 300 µm). 
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Having identified CK1$ as a target of TR, Andrei Ursu then chemically 

synthesized a library of about 80 derivatives around the pteridine scaffold in 

an attempt to study the structure-activity-relationship for inhibition of CK1$, 

and to produce a more potent inhibitor that would further augment conversion 

(Ursu, 2014). I tested the synthesized compounds in an EpiSC conversion 

assay based on OCT4-GFP and PECAM1 expression as readout using 

FACS. The SAR study revealed that modifications of the phenyl ring in 

position 6 of the pteridine scaffold resulted in significant changes in compound 

activity. Interestingly, while any modifications in the para-position of the 

phenyl ring reduced compound activity dramatically, introducing substituents 

in the meta-position such as fluorine, chlorine, bromine, or methyl produced 

more active compounds with the chlorine derivative showing the highest 

conversion efficiency (Figures 35 and 36). Detailed information concerning the 

synthesis of the derivatives will be part of the doctoral dissertation of Andrei 

Ursu, and are not further discussed in this thesis (Ursu, 2014). 

 

 

 

 
 

 
Figure 35. Chemical structure of the Triamterene derivative AU52. 

(o: ortho, m: metha, p: para). 
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The potential of AU52 to convert EpiSC was assessed based on the induction 

of PECAM1 and OCT4-GFP upon treatment. AU52 clearly demonstrated the 

highest conversion efficiency among the selected inhibitors (Figure 36). It 

achieved a 3-fold higher conversion efficiency than 2i/LIF. Wnt inhibition alone 

did not yield PECAM1/OCT-GFP double-positive cells, and neither did sodium 

butyrate which was previously reported to be capable of ESC-conversion of 

EpiSC (Figure 36).  

 

 

 

 
 

 
Figure 36. Conversion efficiency of AU52 compared to other inhibitors. 

Percentage of OCT4-GFP and PECAM1 (CD31) double–positive cells after 7 days 

ESC conversion with AU52, TR, 2i, CH, NaB, and D4476 in EpiSC-GOF18 as 

measured by flow cytometry. 
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Consistently, the derivative AU52 which demonstrated the highest biological 

activity clearly showed stronger inhibition of CK1$, with IC50 values of  

7.95 µM for TR, and 5.79 µM for AU58 (Figure 37). The graph in figure 37 

was generated by Andrei Ursu. 

 

 

 

 
 

 

 
Figure 37. Dose-response curves of Triamterene and its derivative AU52 for the 

inhibition of CK1!. 
The IC50 values were calculated to be 7.95 µM for TR and 0.44 µM for AU52. 
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Having identified AU52 as the derivative with the highest conversion efficiency 

and a nearly 20 times higher affinity for CK1$ than TR, the selectivity of AU52 

and TR among the selected panel of kinases, particularly among the CK 

family members, were then assessed (Figure 38 and Appendix 1). AU52 

displayed a selectivity very similar to that of TR (Appendix 1). Although TR 

and AU52 both displayed stronger inhibition of CK1$, they also inhibited 

CK1%, suggesting a potential role also for CK1% in ESC conversion (Figure 

38).  

 

 

 

 
 

 
Figure 38. Kinase acitivity profiling of Triamterene against representatives of 

the casein kinase family. 
(Compound concentration = 10 µM; data represent mean ± SD of triplicates; n = 3). 
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The IC50 values against CK1% were calculated to be 23.65 µM for TR and  

5.36 µM for AU52 (Figure 39). The graph in figure 39 was generated by 

Andrei Ursu. 

 

 

 

 
 

 

 
Figure 39. Dose-response curves of Triamterene and its derivative AU52 for the 

inhibition of CK1". 
The IC50 values were calculated to be 23.65 µM for TR and 5.36 µM for AU52. 
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Next, the ability of AU52 to promote the reversion of EpiSC was analyzed in 

further detail. Among a set of different compounds AU52 displayed the 

highest conversion efficiency based on OCT4-GFP and PECAM1 reactivation, 

almost 2-fold higher than TR and 3-fold higher than 2i (Figure 36).  

Interestingly, CH, as well as sodium butyrate, had a negliagible effect on the 

reactivation of OCT4-GFP and PECAM1 (Figure 36). AU52-converted cells 

exhibited cell morphology, OCT4-GFP expression, AP immunoreactivity, 

protein levels of Sox2, Nanog and Stella, and gene expression profile similar 

to those of ESC (Figure 40). Immunocytochemical characterization of AU52-

converted cells was performed by Dr Miao Zhang. 

 

 

 

 
 

 

 
Figure 40. Characterization of AU52-converted cells. 

Left panel) Morphology, OCT4-GFP and ALP expression in AU52-GOF18 cells 

(Scale bars: 300 µm). Middle panel) Immunofluorescence analysis for SOX2, 

NANOG, and STELLA (DPPA3) in AU52-GOF18 cells. DAPI was used for nuclear 

staining (Scale bar: 300 µm). Right panel) Comparison of gene expression patterns 

in ESC, AU52-GOF18 cells, and EpiSC. Expression levels are normalized to those of 

EpiSC (Data represent mean ± SD of triplicates; n = 3). 

 



4.     Results!
_____________________________________________________________________ 

! ,&!

 

 

Most importantly, AU52-converted cells regained the ability to contribute to 

chimeras when injected into blastocysts (Figure 41). The chimeric mice were 

generated by Dr Guangming Wu by morula aggregation. 

 

 

 

 
 

 
 

Figure 41. Chimeric mice derived from AU52-GOF18 cells upon blastocyst 
injection. 
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4.7 CK1!/" Inhibition Promotes the Activation/Maintenance of the 
ESC Pluripotency Gene Regulatory Network   
 
Then, it was analysed how CK1$/% inhibiton influenced the expression of 

known pluripotency factors in EpiSC after treatment with TR for 2, 4, 6, and 8 

days. Notably, Klf2, Nanog, and Esrrb were upregulated from day2, albeit with 

different expression dynamics (Figure 42).  

 

 

 
 

 
Figure 42. Timecourse for whole mRNA expression of Klf2, Nanog, and Esrrb in 

Triamterene-treated EpiSC. 
Gene expression levels were normalized to those of untreated EpiSC samples (Data 

represent mean ± SD of triplicates; n = 3). 
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In the case of Nanog and Esrrb, the expression levels following 8 days of 

treatment with TR exceded those in ESC. This result was recapitulated using 

D4476, another inhibitor of CK1$/% (Figure 43). 

 

 

 
 

 
Figure 43. RT-qPCR analysis of TR-induced expression of Nanog and Esrrb. 
Untreated EpiSC, ESC and EpiSC treated for 8 days with TR (upper panel), and 

D4476 (lower panel). Gene expression levels were normalized to those of untreated 

EpiSC samples (Data represent mean ± SD of triplicates; n = 3). 

 

 

Then, the role of Klf2, Nanog, and Esrrb during AU52-based conversion was 

determined by shRNA-based knockdown (KD) experiments (Figure 44). 

Interestingly, Nanog-KD basically abolished conversion by AU52, and Klf2-KD 

significantly reduced the conversion, suggesting critical roles for both factors 

in the process. Esrrb-KD was less dramatic, but still reduced the conversion  
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efficiency of AU52 by about 30% (Figure 44). Transduction of shRNA was 

performed by Dr Kee Pyo Kim. 

 

 
 

Figure 44. Knockdown of Esrrb, Nanog, and Klf2 in EpiSC during ESC 
conversion with AU52. 

Upper panel) Percentage of OCT4-GFP and PECAM1 (CD31) double–positive cells 

after 6 days treatment with AU52 together with shRNA-based knock down of Esrrb, 

Nanog, and Klf2 respectively, in EpiSC-GOF18 as measured by flow cytometry. 

Lower panel) Assessment of shRNA-based knock down efficiency by RT-qPCR 

analysis (Data represent mean ± SD of triplicates; n = 3). 
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Based on the effect of CK1$/% inhibitors on key pluripotency genes during the 

reversion of EpiSC to ESC-like cells, it was tested whether TR/AU52 had an 

effect on self-renewal by maintaining the pluripotency gene regulatory 

network. Too high levels of AU52 are toxic (data not shown). N2B27 medium 

alone is not permissible for ESC self-renewal. However, following a titration 

experiment an optimal working concentration of 2 µM AU52 in ESC was found 

at which the clonal expansion of ESC in N2B27 was promoted. Addition of 

either LIF or PD to AU52-supplemented media increased the self-renewal 

ability of the cells, whereas addition of CH to AU52-supplemented media 

decreased their self-renewal (Figure 45). Clonal assays were performed by Dr 

Rodrigo Osorno. 

 

 

 
 

 
Figure 45. Clonal assay of ESC in the indicated culture conditions. 

ESC were plated onto gelatin coated plates and cultured for 7 days, after which the 

cells were stained for alkaline phosphatase and counted. (F: FCS, L: LIF, 52: AU52) 
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Upon switch to EpiSC media (based on N2B27/ActivinA/bFGF), ESC acquire 

properties of primed pluripotency (Guo et al., 2009). Nanog-GFP ESC show 

progressive downregulation of Nanog-GFP under this condition (Chambers et 

al., 2007; Karwacki-Neisius et al., 2013). Wnt signaling has been reported to 

prevent the commitment of ESC into EpiSC (ten Berge et al., 2011). 

Consistent with this finding, it was found that downregulation of Nanog-GFP 

during EpiSC differentiation was blocked by the addition of TR with an 

efficiancy comparable to the Wnt agonist CH (Figure 46). The assay of figure 

46 was performed by Dr Rodrigo Osorno. 

 

 
 
Figure 46. Differentiation of ESC into EpiSC is blocked by supplementation of 

TR. 
Flow cytometry analysis of Nanog-GFP positive cells during EpiSC differentiation 

(A/F) and in the presence of either Chiron or TR. (A: ActivinA, F: bFGF, black cell 

population represents non-fluorescent control cells). 
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On the other hand, it has been shown that ESC cultured in the presence of 

serum and LIF result in transcription factor heterogeneity, coinciding with the 

presence of cells with different self-renewal capabilities (Chambers et al., 

2007). To test the ability of TR/AU52 to maintain homogenous expression of 

ICM transcription factors, two reporter lines were used, Nanog-GFP and 

Esrrb-Tomato. TR treatment induced high, homogenous expression of Nanog-

GFP and Esrrb-Tomato for the duration of the assay, whereas untreated 

controls gave rise to Nanog-GFP-negative and Esrrb-Tomato-negative cells 

(Figure 47). The heterogeneity assays of figure 47 using Nanog-GFP and 

Esrrb-Tomato reporter ESC were performed by Dr Rodrigo Osorno. 
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Figure 47. Heterogeneity of Nanog-GFP and Esrrb-Tomato is blocked by the 

presence of Triamterene. 
Flow cytometry analysis of Nanog-GFP (left) and Esrrb-Tomato (right) reporter ESC 

cultured in GMEM!/FCS/LIF/TR at low density for the indicated days (black cell 

population represents non-fluorescent control cells). 
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4.8 Inhibition of CK1" Results in Simultaneous Activation of WNT 
Signaling and Inhibition of TGF#/SMAD2 Signaling 
 

Next, the mechanism by which inhibition of CK1$/% exerts its effects was 

investigated. Signaling pathways known to be involved in ESC pluripotency 

were analyzed upon treatment with CK1 inhibitors. It was found that AU52 

prevented phosphorylation of !-CATENIN as well as SMAD2 (Figure 48). It 

also affected STAT3 phophorylation which is probably a result of the inhibition 

of PI3K which was identified by kinase profiling. In contrast, the ERK pathway 

was not affected (Figure 48). The western blot analysis was performed by Dr 

Juyong Yoon. 

 

 
 

Figure 48. Western blot analysis showing the effects of AU52 and Chiron on  
#-CATENIN, SMAD2, STAT3, and ERK phosphorylation in EpiSC. 

Cells were treated with either AU52 or Chiron for 30min. 
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Following the inhibition of phosphorylation of !-CATENIN the effect of 

TR/AU52 on the WNT pathway were further analyzed. To determine the 

enrichment of factors associated with signaling pathways, a gene ontology 

enrichment analysis was performed with the genes that were significantly 

upregulated within 12 hours of TR treatment of EpiSC. Based on this analysis 

the WNT receptor signaling pathway clearly ranked at the top of significantly 

enriched "biological process" terms (Figure 49). The bioinformatics analysis of 

microarray data was performed by Dr Marcos Jesus Arauzo Bravo. 

 

 

 
 

 

 
Figure 49. Direct acyclic graph (DAG) associated with the top 3 significantly 

enriched gene ontology terms. 
The higher the significance of the term, the more red is the box framing the term. The 

significantly enriched terms are encircled by ellipses. The most significant term 

shown is Wnt receptor signaling pathway with the p-value of 8.3683e-8. 
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The known WNT/Tcf target genes Axin2, Cdx1, and T-brachyury were 

upregulated upon TR treatment (Figure 50) (Kelly et al., 2011).  

 

 

 

 
 

 

 
Figure 50. RT-qPCR analysis of the expression of WNT target genes in EpiSC 

upon treatment with Triamterene. 
The gene expression levels are normalized to those of untreated samples. 

CHIR99021 and XAV939 were used as a positive and negative control, respectively 

(Data represent mean ± SD of triplicates; n = 3). 
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Then, I performed the TOPFlash Tcf-Luciferase assay to assess the WNT-

inducing activity of AU52, and found that AU52 was more active than CH 

(Figure 51).  

 

 

 
 

 
Figure 51. Luciferase assay of Tcf/Lef-mediated transcriptional activity in 

EpiSC as a result of AU52 and Chiron treatment. 
Chiron was applied as a positive control. Columns depict TOP/FOP ratio (Data 

represent mean ± SD of triplicates; n = 3; p < 0.001). 
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Then, it was tested whether the positive effect on ESC self-renewal that was 

observed upon AU52 treatment depended on the Wnt/!-CATENIN pathway 

(Figure 45). To this end, an ESC line in which both  

!-catenin alleles have been floxed and that also carries a CreERT2 cassette 

inserted into the ROSA26 locus (Bcateninfl/fl) was used (Brault et al., 2001; 

Tsakiridis et al., 2014). Treatment of Bcateninfl/fl ESC by 4-Hydroxytamoxifen 

induces deletion of both !-catenin alleles generating Bcatenin-/- ESC. 

Bcatenin-/- ESC are unable to self-renew in the presence of CH/PD (2i) or 

CH/LIF. In the absence of !-catenin, self-renewal is only supported by the 

combined presence of PD and LIF, though greatly diminished (Wray et al., 

2011). Interestingly, though equally diminished by depletion of !-catenin, 

AU52 still mediated ESC self-renewal (Figure 52). Clonal assays were 

performed by Dr Rodrigo Osorno. 

 

 
 

 
Figure 52. Clonal assay of Bcateninfl/fl and Bcatenin-/- ESC in the indicated 

culture conditions. 
Bcateninfl/fl ESC were plated at clonal density (600 cells) onto gelatin coated plates 

and cultured for 7 days, after which the cells were stained for alkaline phosphatase 

and counted. In order to generate Bcatenin-/-, Bcateninfl/fl were plated just as 

described above. After 48hrs the cells were treated with 1 µM of 4-Hydroxytamoxifen 

for 24hrs to induce the Cre-excision of the floxed-Bcatenin. (P: PD, C: CH, L: LIF,  

52: AU52). 
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Finally, the potential of TR/AU52 to modulate the WNT pathway in vivo was 

assessed. Zebrafish embryos from 7-48 hpf were kept in the presence of TR 

or AU52. At 48hpf the zebrafish embryos showed a typical phenotype that 

results from WNT over-activation during this period of development, including 

an impaired development of the eyes, the forehead, and the tail (Figure 53). 

The zebrafish assay was performed by Kathrin Grassme. 

 

 
 

Figure 53. Phenotypes of zebrafish embryos at 48hpf. 
The embryos were allowed to grow in the presence of the indicated inhibitors from 

7hpf (hpf: hours post fertilization, scale bar: 500 µm). 

 

SMAD2 was affected by TR/AU52 (Figure 48). Therefore, I determined the 

role of SMAD2 during conversion. I hypothesized that TR/AU52 acted via dual 

inhibition of phosphorylation of both !-CATENIN and SMAD2 and thus 

simulated this action by applying CH together with SB in order to convert 

EpiSC. Interestingly, while CH and SB alone had rather differentiating effects 

on EpiSC, together they gave rise to ESC-like colonies expressing OCT4-

GFP and ICM marker genes comparable to ESC (Figure 54). Just like with 

TR/AU52 the conversion with CH/SB took six days and was accomplished 

under EpiSC culture conditions.  
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Figure 54. SB/CH-converted EpiSC. 

Upper panel) Morphology and OCT4-GFP expression in EpiSC treated for 6 days 

with the indicated inhibitors (Scale bar: 200 µm). Lower panel) RT-qPCR analysis of 

ICM marker gene expression in SB/CH-treated cells, EpiSC and ESC. Gene 

expression levels were normalized to those of untreated EpiSC samples (Data 

represent mean ± SD of triplicates; n = 3). 
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A role for CK1$/% in !-catenin and Smad2 phosphorylation was previously 

reported (Amit et al., 2002; Waddell et al., 2004). To determine whether 

CK1$/% was involved in !-catenin and Smad2 phosphorylation, an shRNA-

based KD of CK1$ and CK1% in EpiSC was performed. Most strikingly, KD of 

CK1%, and not CK1$, gave rise to OCT4-GFP-positive cells, and Western blot 

analysis revealed that KD of CK1% hindered phophorylation of both !-catenin 

and Smad2 (Figure 55). Given the fact that TR did not inhibit GSK3! and ALK 

(Appendix 1), these findings suggest that TR/AU52 acts on !-catenin and 

Smad2 phosphorylation via CK1%. Transduction of shRNA was performed by 

Dr Kee Pyo Kim. Western blot analysis was performed by Dr Juyong Yoon. 

 

 

 
 

 
Figure 55. Knockdown of CK1!  and CK1"  in EpiSC. 

Left panel) Assessment of shRNA-based knock down efficiency by RT-qPCR 

analysis (above, data represent mean ± SD of triplicates; n = 3) and  

OCT4-GFP expression in EpiSC-GOF18 after shRNA-based knock down of CK1" 

(below, scale bar: 250 µm). Right panel) Western blot analysis of  

!-catenin and Smad2 phosphorylation in EpiSC after shRNA-based knock down of 

CK1!  and CK1" . 
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Finally, the role of LIF during the conversion was left to be clarified. TR was 

found to inhibit PI3K which could explain the blocked Stat3 phophorylation 

pointing toward a redundancy of this pathway during conversion (Figure 48 

and Appendix 1). Moreover, ESC could be maintained with AU52 alone, i.e. 

without LIF, for an extended period, and SB/CH could equally maintain ESC 

without LIF (Figure 56).  

 

 

 
 

 
Figure 56. Morphology and OCT4-GFP expression in ESC cultured for 8d under 

the indicated conditions. 
(Scale bar: 100 µm). 
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To categorically determine whether LIF/Stat3 signaling is involved in AU52-

mediated self-renewal Stat3-/- ESC were used. These ESC can only be 

propagated by the supplementation of CH/PD (2i) (Ying et al., 2008).  In the 

absence of Stat3, AU52-mediated self-renewal was severely reduced in the 

presence of either LIF or CH (Figure 57). In contrast, the dual inhibition of Erk 

and CK1 (N2B27/PD/AU52), promoted a robust propagation of Stat3-/- ESC 

for more than two months (Figure 57). Clonal assay was performed by Dr 

Rodrigo Osorno. 

 

 

 
 

Figure 57. Colony formation of Stat3-/- ESC after clonal density plating and 7 
days culture under the indicated conditions. 

(P: PD, C: CH, L: LIF, 52: AU52). 
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Stat3-/- ESC cultured for more than two months in PD/AU52 retain robust 

expression of OCT4, NANOG, ESRRB and KLF4 proteins, and give rise to 

chimeric mice upon blastocyst injection (Figures 58). Immunocytochemical 

characterization was performed by Dr Rodrigo Osorno. 

 

 

 

 
 

 

 
Figure 58. Stat3-/- ESC maintained in AU52/PD exhibit chimera-grade 

pluripotency. 
Left panel) Immunofluorescence analysis of Oct4, Nanog, Esrrb, and Klf4 in Stat3-/- 

ESC cultured for two months in the presence of PD/AU52 (Scale bar: 200 µm). Right 

panel) Chimeric mice derived from the injection of Stat3-/- MF1 ESC into BL6 

blastocyst. Prior to blastocyst injection the  

Stat3-/- ESC were cultured for two months in the presence of PD/AU52. 
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Taken together, the data of this thesis suggest a concise mechanism of action 

for TR/AU52 that is based on !-catenin and Smad2 modulation via inhibition 

of CK1% (Figure 59).     

 

 

 

 
 

 

 
Figure 59. Schematic model of the mechanism through which TR/AU52 reverts 

recalcitrant EpiSC into ESC pluripotency. 
See text for discussion. 
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5. Discussion 
 
 
5.1 Recalcitrant Late-Stage EpiSC 
 

It has been shown that EpiSC are heterogeneous within a given cell line, and 

to different degrees among cell lines (Bao et al., 2009; Bernemann et al., 

2011; Han et al., 2010; Tsakiridis et al., 2014). Only a small subpopulation of 

EpiSC displays features of the early post-implantation epiblast (Bao et al., 

2009; Han et al., 2010), whereas the vast majority of EpiSC functionally 

represent late stages of the postimplantation epiblast. Early-stage EpiSC are 

susceptible to media-induced reversion to an ESC-like state, whereas late-

stage EpiSC are refractory to this process (Figures 4, 5) (Bernemann et al., 

2011; Han et al., 2010). In this study, using a small-molecule library screen, I 

found a novel compound able to induce the conversion of early- and late-

stage EpiSC into ESC-like cells, and I describe how this is accomplished. To 

my knowledge this is the first study showing the robust conversion of 

recalcitrant late-stage EpiSC to ESC through chemical means alone.  

The starting point for this project was the wide acceptance of an 

unsubstantiated notion within scientists studying naïve and primed 

pluripotency that basically all EpiSC can be reverted into naïve pluripotent 

cells with the current protocols. In particular, the misconception lies in the 

assumption that the methods by which naïve pluripotency can be induced 

actually apply to all EpiSC. In stark contrast to this assumption, the most 

widely accepted conversion method based on culture conditions, namely the 

presence of 2i/LIF in the culture medium, is far from being a universal 

conversion method for EpiSC. Inhibition of MEK and GSK3#, together with the 

presence of LIF, can convert only a select fraction of EpiSC (Figures 1, 4) -  
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a specific fraction that demonstrates features of naïve pluripotency such as 

ICM integration and chimeric competence (Han et al., 2010).  

 

 

5.2 Small Molecule Screening Assay 
 
Following a chemical genetic approach I developed a small molecule 

screening assay to identify ligands capable of converting recalcitrant late-

stage EpiSC into naïve pluripotency. By identifying the protein targets of such 

ligands I tried to define the mechanism governing conversion of late-stage 

EpiSC to a naïve pluripotent state. I screened the LOPAC library of known 

pharmacologically active compounds. The advantages of the LOPAC library 

are the cell penetrating capacity of the screened compounds, the broad range 

of target classes that are covered, and the known biological activity of the 

inhibitors. At the same time the known biological activity of the compounds 

promised to facilitate later target identification efforts.  

I developed a screening assay based on fluorescent reporter gene expression 

under the control of Oct4. Two Oct4 reporter lines were available: the OG2 

and GOF18 (E3) cell lines. EpiSC-GOF18 contain a GFP transgene under the 

control of the entire regulatory region of the Oct4 gene (Yeom et al., 1996). In 

EpiSC-OG2 the GFP reporter is solely under the control of the distal enhancer 

(DE) of the Oct4 gene, i.e. the construct lacks the proximal enhancer (Oct4-

$PE-GFP) (Yeom et al., 1996). The distal enhancer of Oct4 contains a dense 

binding locus for key ESC-specific transcription factors (Chen et al., 2008). 

The fact that EpiSC preferentially utilize the PE over the DE, and that the 

Oct4-$PE-GFP is only active in ESC and not in EpiSC suggests that EpiSC 

must be lacking some of the key ESC-specific transcription factors (Tesar et 

al., 2007; Yeom et al., 1996). Accordingly, under their respective normal 

culture condition ESC (OG2) exhibit strong OCT4-GFP expression whereas 

OG2-EpiSC do not express OCT4-GFP (Figure 1). Theoretically, EpiSC-

GOF18 containing both the PE and the DE should be OCT4-GFP positive.  
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However, only a very low percentage of established EpiSC-GOF18 expresses 

OCT4-GFP which probably results from epigenetic modifications during the 

adaptation to the in vitro culture conditions affecting the Oct4-GFP transgene, 

but not the endogenous Oct4 (Figures 1, 3). I made use of the differential 

expression of the OCT4-GFP reporter in EpiSC and ESC to detect converted 

cells in the screening assay and hence active compounds. 

I chose to keep the EpiSC in CM and not in mESC medium supplemented 

with LIF that is used for the conversion with 2i. This EpiSC culture condition 

was more stringent in two ways: Through the absence of additional LIF 

spontaneous conversion was prevented, and the presence of FGF2 

represented an additional "barrier" toward naïve pluripotency. Thus, I was 

able to design an assay with a satisfactory screening window (Figures 8, 9). 

Once a hit compound had been identified, the converted cells needed to be 

extensively characterized as authentic naïve pluripotent stem cells. A high-

content imager was used for the readout to identify converted naïve stem 

cells. Dissociation into single cells prior to the readout allowed me not only to 

detect cells with a GFP intensity equal to ESC, but also to quantify them. 

Hence, the readout was based on the number of single cells with a GFP 

intensity equivalent to those in ESC.  

 

 

5.3 Triamterene 
 
Our screening assay yielded a pteridine derivative known as Triamterene 

(Figures 10, 11), which blocks the epithelial sodium channel (ENaC), and is 

clinically used as a diuretic (Busch et al., 1996). The fact that despite the 

small library size Triamterene turned out as a hit that could subsequently be 

validated in secondary assays was a great surprise.  

The screen was initially performed with unsorted EpiSC-GOF18. The next 

step after identifiying Triamterene was to confirm its activity on late-stage 

EpiSC. Triamterene induced transgenic Oct4-GFP expression in recalcitrant  
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EpiSC of both the EpiSC-GOF18 and EpiSC-OG2 lines (Figure 12). The TR-

treated EpiSC changed their morphology toward smaller dome-shaped 

colonies. This newly acquired dome-shaped morphology could not be retained 

if cultured under EpiSC conditions, indicating that they had been converted to 

a state different to that of EpiSC (Figures 13-15). Furthermore, the activity of 

TR could be shown also for two other late-stage EpiSC lines, T9 and C1a1, 

through expression of the ESC-specific markers PECAM1, KLF4, and ESRRB 

(Figure 18) (Bernemann et al., 2011). The conversion was done in EpiSC 

medium, i.e. CM without addition of LIF. It is remarkable that Triamterene 

could induce the reversion of late-stage EpiSC despite the presence of FGF2 

which is known to prime ESC for differentiation (Burdon et al., 1999; Kunath et 

al., 2007; Stavridis et al., 2007). Gene expression analyses by qRT-PCR 

revealed that other ESC specific markers were upregulated, such as Nanog, 

Rex1, Stella, Dppa4, and Dppa5 (Figure 16). Consistently, early lineage 

markers like Fgf5, Fgf8, and T were downregulated. An overall assimilation of 

the global gene expression pattern toward that of ESC could be observed 

(Figure 17).  

The TR-induced conversion of EpiSC from primed to naïve pluripotency 

displays several striking features distinct from the 2i-based conversion. After a 

relatively short exposure period to induce naïve pluripotency (6-8 days), TR-

converted cells could be clonally expanded and maintained in LIF-

supplemented ESC medium - without further addition of TR. Notably, TR 

induces the expression of OCT4-GFP in EpiSC cultured in CM medium 

despite the presence of FGF2 and without added LIF. This is likely to be 

possible as MEF-conditioned medium contains LIF. However, it was found 

that TR also inhibits PI3K-mediated STAT3 phosphorylation indicating a 

redundency of this pathway during the conversion (Figure 48). Furthermore, 

STAT3-null ESC could be stably maintained and expanded in AU52/PD, or 

TR/PD, and even maintained the capacity to give rise to chimeric mice 

(Figures 57, 58).   
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Despite the apparent assimilations toward the naïve pluripotent state cells 

derived with TR alone failed to contribute to chimerism. The lack of 

homogenous high expression of OCT4-GFP in all TR-derived cells already 

raised suspicion whether the cells were fully converted (Figure 13). Global 

gene expression analysis then indeed pointed out that gene expression was 

not identical to that of ESC (Figure 17, 27). I do not want to exclude that 

chimera competent cells can be derived from recalcitrant EpiSC through the 

conversion with TR alone. Maybe the presence of FGF2 during the 

conversion, which is known to prime ESC for differentiation, counteracts the 

effect of TR (Burdon et al., 1999; Kunath et al., 2007; Stavridis et al., 2007). I 

was also able to convert late-stage EpiSC in N2B27-based ESC medium and 

in KO-DMEM-based ESC medium in the absense of FGF2. Proper selection 

of cell colonies with high OCT4-GFP expression and repeated subcloning 

might yield homogenous strongly OCT4-GFP-expressing cells capable of 

chimera contribution. Another important issue in this context is the passage 

number of the late-stage EpiSC before conversion. It could be that cells of an 

earlier passage revert more readily to cells that can contribute to chimeras. 

 

 

5.4 FGF/ERK Inhibition 
 

Activation of the FGF/ERK pathway predisposes ESC to undergo 

differentiation (Burdon et al., 1999; Kunath et al., 2007; Stavridis et al., 2007).  

In contrast, ERK-inhibition in combination with LIF and/or CH supports the 

maintenance of undifferentiated ESC (Ying et al., 2008). The presence of 

FGF2 in the EpiSC culture medium that was used for the conversion might 

have been a hindering factor toward full reprogramming. This is why I tried to 

complete conversion by inhibition of the FGF/ERK pathway. Inhibition of this 

pathway in TR-converted cells facilitated the transition of these cells to naïve 

pluripotency (Figures 20-32). ERK inhibition lead to strong downregulation of 

many lineage markers including Fgf5 and Fgf8, and simultaneous  
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upregulation of ESC-specific marker genes like Klf4, Tbx3, and Tcl1 (Figure 

29). An overall assimilation to the ESC-like state was observed including 

changes in the epigenetic markup and Oct4 promoter utilization (Figures 24, 

30). Most importantly TR/PD-converted cells resulted in chimera competent 

cells capable of germline contribution (Figure 32). It is important to state that 

ERK inhibition merely completes TR-induced conversion. TR/PD-based ESC 

conversion is a two-step procedure that is initiated by TR and completed by 

Erk inhibition. Neither does ERK inhibition alone induce naïve pluripotency 

even in early-stage EpiSC (Figure 54), nor is it necessary at the beginning of 

the TR-induced conversion (Figures 12, 18). Even the combined inhibition of 

ERK and GSK3# (2i) does not suffice to convert late-stage EpiSC (Figures 4, 

5). As discussed earlier I cannot exclude that under certain favourable 

conditions chimera competent ESC-like cells can be derived from late-stage 

EpiSC through the conversion with TR alone. As ERK inhibition merely 

completes the conversion of recalcitrant EpiSC to naïve pluripotent cells, I 

consider it straightforward to hypothesize that for the most part conversion 

can be attributed to the effects of TR. 

 

 

5.5 Casein Kinase 1"  (CK1") 

 

Pteridin derivatives were known to inhibit protein kinases (Doukas et al., 2009; 

Gomtsyan et al., 2004; Leung et al., 2006). It was, therefore, hypothesized 

that a kinase may be the target of TR, and TR was profiled against a set of 

selected protein kinases which were previously reported to be relevant in 

stem cell biology.  

Several kinase inhibitors were reported to support induced pluripotent stem 

(iPS) cell generation, or to promote ground-state pluripotency (Ichida et al., 

2009; Li and Rana, 2012; Maherali and Hochedlinger, 2009; Sato et al., 2004; 

Ying et al., 2008). I tested TR against the reported kinases, but none were 

affected by TR (Appendix 1). Notably, TR did not inhibit GSK3!, MEK/ERK  
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nor ALK4/5, which are all known targets that promote the reversion of EpiSC 

to ESC-like cells (Greber et al., 2010; Zhou et al., 2010) (Appendix 1). This 

observation suggested that TR might be working through the regulation a 

different kinase. 

Kinase profiling revealed that TR inhibited CK1$/% and PI3KC2# (Appendix 1). 

Notably, however, none of the PI3K inhibitors tested were able to induce 

OCT4-GFP expression in EpiSC (Figures 33, 34). Therefore, I excluded PI3K 

as the effective target of TR-induced reversion of EpiSC. In contrast, a 

structurally unrelated CK1$/% inhibitor (D4476) was able to induce OCT4-

GFP, and promote Nanog and Esrrb expression in EpiSC (Figures 33, 34, 36, 

43). Profiling of TR against different isoforms of the Casein kinase family 

revealed affinity to CK1! and CK1" (Figure 38). This is not surprising given 

the highly conserved protein sequences of these two isoforms. The IC50 

values were 7.95 µM and 23.65 µM for CK1! and CK1", respectively (Figures 

37, 39). Importantly, knockdown of CK1% (and not knockdown of CK1$) gave 

rise to OCT4-GFP positive colonies, and resulted in a reduction of  

!-CATENIN and SMAD2 phosphorylation, thus, further substantiating the role 

for CK1% in the reprogramming process (Figure 55).  

Taken together, I report the first chemical conversion of late-stage EpiSC to 

the naïve pluripotent state and also define for the first time a role for CK1% in 

this process.  

 

 

5.6 AU52 
 

In collaboration with Andrei Ursu, who synthesized the Triamterene 

derivatives, I performed a structure-activity-relationship analysis with TR with 

the aim to study the structural requirements needed for naïve conversion. 

Detailed information concerning the synthesis of the Triamterene derivatives 

will be part of Andrei Ursu's dissertation and will not be discussed here (Ursu, 

2014). The aim of the SAR study was to explore potential room for synthetic  
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improvement of activity and to detect the indispensable substituents with 

regard to the design of pulldown probes for follow-up studies. The phenyl ring 

in position 6 of the pteridine scaffold proved to be sensitive to synthetic 

modifications with regard to the compound's conversion efficiency. The para-

position of the phenyl ring was particularly sensitive, as insertions of any 

substituents resulted in a dramatic decrease of compound activity. Introducing 

substituents in the meta-position, on the other hand, such as fluorine, 

chlorine, bromine, or methyl, resulted in more active compounds with the 

chlorine derivative showing the highest conversion efficiency (AU52, Figure 

35). Consistently, the higher biological activity was accompanied by obviously 

stronger inhibition of CK1$ and CK1% with IC50 values of 0.44 µM and 5.36 

µM, respectively (Figures 37, 39). AU52 showed a kinase inhibition profile 

similar to TR and was subsequently used as a substitute for TR. I could show 

that AU52 was capable of converting late-stage EpiSC into ESC-like cells 

sharing the features of naïve pluripotency (Figure 40). Most importantly, AU52 

converted cells contributed to chimeric mice (Figure 41). 

 

 

5.7 WNT and TGF# Signaling 

 

CK1 family members are known to exert both negative and positive effects on 

WNT signaling (Price, 2006). Potential contact points for negative regulation 

of WNT signaling via phosphorylation by CK1 include !-CATENIN (Amit et al., 

2002; Liu et al., 2002), APC (Rubinfeld et al., 2001), and LRP5/6 (Swiatek et 

al., 2006). However, members of the CK1 family are also known to be 

involved in numerous other processes including p53 and E-CADHERIN 

modifications, nuclear-cytoplasmic shuttling of transcription factors and  TGF! 

signaling (Dupre-Crochet et al., 2007; Knippschild et al., 1997; Rena et al., 

2004; Waddell et al., 2004). The agonistic effect of TR/AU52 on the WNT 

pathway was confirmed in vitro (Figures 48-52) and in vivo (Figures 53).  
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However, the finding that TR/AU52 simultaneously modulate  

WNT/!-CATENIN and TGF!/SMAD2 signaling via inhibition of CK1% is of 

special importance. By this I show that only activation of the WNT pathway 

together with the simultaneous inhibition of SMAD2 signaling can reproduce 

the TR/AU52-based reprogramming.,which is in contrast to affecting the 

individual pathway (Figures 48, 54, 55). This finding helps us to understand 

why neither SB, nor CH alone can convert EpiSC to a naïve pluripotent state. 

Neither the CK1% pathway nor the TGF!/SMAD2 pathway to date were known 

to be involved in naïve conversion of late-stage EpiSC. Thus, I also 

demonstrate why WNT modulation alone, or even 2i/LIF is incompetent in this 

regard. The missing link in 2i/LIF-based conversion indeed is inhibition of 

TGF!/SMAD2 signaling.  

 

 

5.8 Klf2, Nanog, and Esrrb 
 

TR-treatment of EpiSC coincided with strong upregulation of the key ESC-

specific pluripotency markers Klf2, Nanog and Esrrb (Figures 42, 43). 

Interestingly, KD of Klf2 or Nanog significantly impaired TR/AU52-based 

conversion, highlighting their importance during this process (Figure 44). 

Esrrb-KD reduced by half the number of AU52-induced OCT4-GFP-positive 

cells (Figure 44). However, it should be noted that the shRNA probes for 

Esrrb were less efficient than those for Nanog and Klf2 (Figure 44). In any 

case, these three factors may indeed be necessary in the chemical-induced 

reversion of EpiSC, which is consistent with previous reports that they 

promote the efficient conversion when expressed in EpiSC (Festuccia et al., 

2012; Hall et al., 2009; Silva et al., 2009).  

)aken together, I have developed a simple and efficient method for the 

conversion of recalcitrant EpiSC into an ESC-like state. The here presented 

findings reveal novel insights into the mechanisms governing the transition 

between primed and naïve pluripotency. Notably, I introduce CK1% as a key  
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player in the regulation of naïve pluripotency, through the direct modulation of  

WNT/!-CATENIN and TGF!/SMAD2 signaling which results in induction of 

the ESC-specific transcription factors Klf2, Nanog and Esrrb that drive the 

necessary change in the gene expression pattern of late-stage EpiSC.  

 

 

5.9 Summary 
 

EpiSC contain subpopulations within a given cell line, and to different degrees 

among cell lines. These subpopulations functionally correspond to an early 

and late stage of postimplantation development (Figure 59). Interestingly, the 

subpopulation, that normally is smaller in number and that represents early-

stage EpiSC, was found to contribute to chimeras when injected into the ICM 

at the blastocyst stage, which is considered a hallmark feature of 

preimplantation pluripotent cells. So far, late-stage EpiSC which represent the 

vast majority of EpiSC and cannot contribute to chimera development when 

introduced into the ICM were recalcitrant to chemical reprogramming to naïve 

pluripotency.  

The aim of the presented study was to enable the reversion of recalcitrant 

late-stage EpiSC to a naïve pluripotent state and to elucidate the molecular 

mechanism underlying the reversion. The questions that I was interested in 

were: Can recalcitrant late-stage EpiSC be reverted to a naïve ESC-like state 

by chemical means alone, i.e. without genetically invasive methods? If so, 

which extrinsic factors can accomplish naïve conversion of late-stage EpiSC? 

What is the underlying mechanism that such extrinsic factor exerts? 

Following a chemical genetic approach I discovered Triamterene to be able to 

induce the conversion of late-stage EpiSC to naïve pluripotent cells (Figure 

59). An SAR study in collaboration with Andrei Ursu revealed AU52 as a more 

potent Triamterene derivative capable of converting late stage EpiSC to naive 

pluripotency (Ursu, 2014). The data of the presented thesis demonstrate that 

Triamterene acts via a dual mechanism through the inhibition of CK1% (Figure  
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59). The inhibition of CK1%, namely, results in simultaneous inhibition of  

!-CATENIN and SMAD2 phosphorylation which actuates WNT and 

attenuates TGF# signaling (Figure 59). The simultaneous modulation of the 

two signaling pathways results in the induction of the ESC-specific 

transcription factors Klf2, Nanog and Esrrb which eventually drive the 

conversion to naïve pluripotency (Figure 59).  

Following up on the findings of the presented work there are several 

interesting aspects to be investigated to gain better understanding of the 

mechanisms governing naïve pluripotency. I introduce for the first time CK1% 

as a new player in naïve pluripotency. It would be interesting to determine 
whether the role of CK1 in the regulation of naïve pluripotency is conserved 
across species. It must be noted, however, that the ESC-specific markers 
Klf2, Nanog and Esrrb which are induced by the inhibition of CK1% and which 

were shown to convert EpiSC to naïve pluripotency in the mouse system are 

already expressed in hESC.  

It has been demonstrate that inhibition of CK1% results in simultaneous 

modulation of !-CATENIN and SMAD2 phosphorylation directly associating 

SMAD2 signaling with late-stage EpiSC. Inhibition of SMAD2 together with 

ERK signaling was recently shown to promote ESC derivation from non-

permissive mouse strains (Hassani et al., 2014). BMP4 signaling can be 

augmented in these cells which might indicate a crosstalk between SMAD2 

and BMP4-directed SMAD1. 

Finally, the role of ERK inhibition has to be studied in more detail to determine 

whether chimera competent naïve pluripotent cells can be obtained through 

TR/AU52 treatment alone (Figure 59). As suggested earlier key to that might 

be proper selection of converted colonies, and conversion media free of FGF. 

In the same sense, it might be possible to identify the minimal key set of 

genes that establish and control chimera competence.  
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7. Abstract  
 

 
7.1 Background 
 
Embryonic stem cells (ESC) are derived from the inner cell mass (ICM) of 

preimplantation embryos. They are capable of contributing to the development 

of chimeric mice when injected back into the ICM. This particular ability is 

called naïve or ground state pluripotency. Epiblast stem cells (EpiSC) are 

derived from the epiblast of postimplantation embryos. While they equally 

represent pluripotent cells capable of teratoma formation they do not 

contribute to the development of chimeras when injected into the ICM. This 

somewhat restricted pluripotency of the slightly more advanced embryo was 

termed primed, i.e. ready for lineage commitment. EpiSC are heterogenous 

within and among cell lines. They were shown to comprise at least two 

subpopulations which are functionally equivalent to the early and late stage of 

postimplantation development. The small fraction representing the early stage 

is even chimera competent while the vast majority representing the late stage 

is not chimera competent. Until now these late-stage EpiSC could not be 

reprogrammed to naïve pluripotency through chemical inhibitors alone. In 

contrast to early-stage EpiSC, late-stage EpiSC were recalcitrant to the 2i/LIF 

condition which is widely known to stabilize the ground state of pluripotency 

based on GSK3# and MEK inhibition. 

 

 

7.2 Aim of the Study 
 
The aim of the presented study was to identify a novel chemical means for the 

conversion of recalcitrant late-stage EpiSC into naïve pluripotency.  
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Through the study of the mechanism-of-action of the discovered inhibitors I 

aimed at the elucidation of the mechanism governing the establishment of 

ground state pluripotency in late-stage EpiSC. 

 
 
7.3 Methods 
 
Toward this end, I applied a chemical genetic approach. I developed a small 

molecule screening assay and used the LOPAC library of known 

pharmacologically active compounds to discover a hit compound. The hit 

compound was validated in secondary assays through full characterization of 

the converted cells using FACS, qRT-PCR, global transcription analysis, 

immunocytochemistry, teratoma and chimera assays. Target identification 

efforts included kinase profiling, testing of structurally diverse inhibitors, 

microarray and gene ontology analyses, structure-activity-relationship 

analyses and IC50 value determinations. Further investigations of the 

mechanism-of-action and target validation involved biochemical assays like 

western blotting, genetic knockdown experiments, and in vivo phenotypic 

zebrafish assays.  

 

 

7.4 Results 
 
I developed a 96-well plate small molecule screening assay based on the 

differential expression of the OCT4-GFP reporter in EpiSC-GOF18 and ESC 

using a high-content imager. I discovered Triamterene (TR) as a hit 

compound, a known diuretic pteridine derivative. Validation of the hit 

compound revealed that TR was capable of converting several late-stage 

EpiSC lines into a state that shared many features with ESC. The converted 

cells, however, did not yield chimeric mice when injected in blastocysts. This 

imparity could be overcome through complementation of TR-induced  



7.     Abstract!
.............................................................................................!

! $&,!

 

 

conversion by the simultaneous inhibition of ERK signaling to yield ESC-like 

cells with full chimera competence. Kinase profiling identified CK1!/" and 

PI3Kclass2% as potential targets of TR. Subsequent gene knockdown 

experiments confirmed the isoform CK1" as the target of TR-induced 

conversion, and structure-activity-relationship analysis lead to the synthesis of 

a significantly more potent inhibitor capable of naïve conversion, termed 

AU52. Biochemical analyses revealed that inhibition of CK1" resulted in 

simultaneous inhibition of #-CATENIN and SMAD2 phosphorylation. The 

concurrent stimulation of WNT and attenuation of TGF# signaling lead to the 

induction of the ESC-specific transcription factors Klf2, Nanog, and Esrrb 

which eventually effected the naïve conversion.      

 

 

7.5 Conclusion 

 

Taken together, the findings of this thesis represent the first chemical 

condition for the conversion of late-stage EpiSC to naïve pluripotency. I 

introduce CK1" as a novel player to affect the core regulatory network of 

ground state pluripotency and elucidate the mechanism-of-action of TR/AU52-

induced naïve conversion. Finally, I offer a novel chemical platform as a 

convenient tool for further investigations of the two states of naïve and primed 

pluripotency.     
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8. Zusammenfassung (German) 
 

 
8.1 Einleitung 
 
Embryonale Stammzellen (ES-Zellen) werden aus der inneren Zellmasse 

(IZM) von Präimplantationsembryonen gewonnen. Sie sind in der Lage, zur 

Entwicklung von chimärischen Mäusen beizutragen, wenn sie in die IZM 

zurücktransplantiert werden. Diese besondere Fähigkeit wird als naive 

Pluripotenz oder als der Grundzustand der Pluripotenz bezeichnet. Epiblast-

Stammzellen (EpiS-Zellen) werden aus dem Epiblasten von 

Postimplantationsembryonen gewonnen. Während sie ebenfalls pluripotente 

Stammzellen darstellen, die in der Lage sind, Teratomen zu generieren, 

tragen sie nicht zur Entwicklung von chimärischen Mäusen bei, wenn sie in 

die IZM zurücktransplantiert werden. Diese etwas beschränkte Pluripotenz 

des geringfügig weiter entwickelten Embryos wird "primed" Pluripotenz 

genannt, d.h. bereit für die Festlegung auf ein Keimblatt. EpiS-Zellen sind 

heterogen sowohl innerhalb von, als auch zwischen Zelllinien. Es wurde 

gezeigt, dass sie aus mindestens zwei Subpopulationen bestehen, die 

funktional der frühen bzw. der späten Postimplantationsentwicklung 

entsprechen. Der kleine Anteil, der das frühe Stadium repräsentiert, ist sogar 

fähig Chimären zu generieren, während der allergrößte Teil, der das späte 

Stadium repräsentiert, nicht zur Entwicklung von Chimären beitragen kann. 

Bis jetzt konnten diese EpiS-Zellen des späten Stadiums nicht, allein durch 

chemische Inhibitoren, in naive Pluripotenz reprogrammiert werden. Im 

Gegenteil zu EpiS-Zellen des frühen Stadiums widersetzten sich EpiS-Zellen 

des späten Stadiums der 2i/LIF-Bedingung, mit dem die Stabilisierung des 

Grundzustands der Pluripotenz durch Inhibition von GSK3# und MEK erreicht 

werden kann.    
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8.2 Ziel der vorliegenden Arbeit 
 
Ziel der vorliegenden Arbeit war, eine neue chemische Methode für die 

Konvertierung von inerten EpiS-Zellen des späten Stadiums in naive 

Pluripotenz zu identifizieren. Im Rahmen der Untersuchungen des 

Wirkmechanismus der entdeckten aktiven Verbindungen sollte der 

Mechanismus, der der Etablierung des Grundzustands der Pluripotenz in 

EpiS-Zellen des späten Stadiums zugrunde liegt, aufgeklärt werden. 

 

 

8.3 Methoden 
 
Zu diesem Zweck wählte ich einen chemisch-genetischen Ansatz. Ich 

entwickelte ein systematisches Testverfahren (screening assay) zur 

Identifizierung von niedermolekularen Verbindungen (small molecules) und 

benutzten die LOPAC-Bibliothek von bekannten pharmakologisch aktiven 

Verbindungen, um "Treffer" (hits) zu finden. Der Hit wurde in 

Sekundärtestverfahren durch vollständige Charakterisierung der konvertierten 

Zellen mittels FACS, qRT-PCR, globaler Genexpressionsanalyse, 

Immunozytochemie und Teratom- und Chimärentest validiert. 

Untersuchungen zur Zielidentifizierung umfassten Kinaseprofilierung, 

Testierung weiterer Inhibitoren mit abweichenden chemischen Strukturen, 

Microarray- und Gene Ontology-Analysen, Untersuchungen zur Struktur-

Aktivitätsbeziehung und IC50-Wertbestimmungen. Die weitere Erforschung 

des Wirkmechanismus und die Zielvalidierung umfassten biochemische 

Testverfahren, wie Westernblot, genetische Knock-down-Experimente, und in 

vivo phänotyp-basierte Testverfahren am Zebrafischmodell.  
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8.4 Ergebnisse 
 
Ich entwickelte ein Testverfahren (screening assay) in 96-Well-

Mikrotiterplatten basierend auf der unterschiedlichen Exprimierung des OCT4-

GFP-Reportergens in GOF18 EpiS-Zellen und ES-Zellen für die 

Identifizierung von aktiven niedermolekularen Verbindungen (small 

molecules). Für die Auslese wurde ein High-content-Lesegerät für 

Mikrotiterplatten verwendet. Ich identifizierte Triamteren (TR), ein bekanntes 

Pteridinderivat, das als Diuretikum verwendet wird, als Trefferverbindung. Die 

Validierung der Trefferverbindung zeigte, dass TR mehrere EpiS-Zelllinien 

des späten Stadiums in einen Zustand konvertieren konnte, der viele 

Eigenschaften mit ES-Zellen teilte. Die konvertierten Zellen waren jedoch 

nicht in der Lage, zur Entwicklung von Chimären beizutragen, wenn sie in 

Blastozysten injiziert wurden. Dieses Defizit konnte durch die Ergänzung der 

TR-induzierten Konvertierung durch gleichzeitige Inhibition des ERK-

Signalwegs überwunden werden, was in der Gewinnung von ES-Zell-

ähnlichen Zellen mit vollständiger Chimärenkompetenz resultierte. 

Kinaseprofilierung identifizierte CK1!/" und PI3Kclass2% als mögliche 

Zielmoleküle von TR. Anschließende Gen-knock-down-Experimente 

bestätigten die Isoform CK1" als das Zielmolekül der TR-induzierten 

Konvertierung. Untersuchungen der Struktur-Aktivitätsbeziehung führte zur 

Synthese eines deutlich potenteren Inhibitors, genannt AU52, mit der 

Fähigkeit der naiven Zellkonvertierung. Biochemische Analysen zeigten, dass 

die Inhibition von CK1" in der gleichzeitigen Inhibition der Phosphorylierung 

von #-CATENIN and SMAD2 resultierte. Die zeitgleiche Stimulierung des 

WNT und Blockierung des TGF# Signalwegs führten zur Aktivierung der ES-

Zell-spezifischen Transkriptionsfaktoren Klf2, Nanog und Esrrb, die schließlich 

die naive Konvertierung bewerkstelligten. 
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8.5 Schlussfolgerung 
 
Zusammenfassend stellen die vorliegenden Ergebnisse das erste chemische 

Protokoll für die Reprogrammierung von EpiS-Zellen des späten Stadiums in 

naive Pluripotenz dar. Ich zeige, dass CK1" einen Einfluss auf das 

Kernnetzwerk der Regulierung des Grundzustands der Pluripotenz hat, und 

erläutere den Wirkmechanismus der TR/AU52-induzierten naiven 

Konvertierung. Letztendlich stelle ich eine neue chemische Methode für die 

weitere Erforschung der zwei Stadien der "naïve" und "primed" Pluripotenz 

vor. 

!
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9. Appendix 
 
 
Appendix 1. Kinase Profiling of Triamterene and AU52 Against a 
Selected Set of ESC-Related Kinases 

 

 Residual kinase activity [%] 
Kinase TR @ 10$M  AU52 @ 10 $M 

Abl 98 92 
Abl (m) 97 91 

Akt1  100 102 
Akt2  112 94 
Akt3 95 71 
ALK  86 79 

ALK4  93 86 
ALK5  107 102 

Aurora A 103 66 
Aurora B 101 98 
Aurora C  90 86 

CDK1/cyclinB  103 101 
CDK2/cyclinA  103 100 
CDK2/cyclinE  101 85 
CDK3/cyclinE  96 97 

CDK5/p25  97 85 
CDK5/p35  103 86 

CDK6/cyclinD3 93 98 
CDK7/cyclinH/MAT1 86 139 

CDK9/cyclin T1 87 101 
CK1#1 98 86 
CK1#2  95 85 
CK1#3  110 90 
CK1$  28 -7 
CK2  95 86 

CK2"2 109 79 
cSRC 97 102 
FAK  105 105 
Fer  111 96 
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Appendix 1 cont. 
 

FGFR1 93 116 
FGFR2 104 93 
FGFR3 99 84 
FGFR4 99 100 

GSK3-alpha  102 95 
GSK3-beta 114 95 
IKK-alpha  103 96 
IKK-beta  93 71 

JAK2 94 104 
JAK3 118 86 

JNK1"1 104 101 
JNK2"2 102 89 

JNK3 90 59 
LIMK1  89 92 

Lyn  88 86 
Lyn (m) 97 103 
MAPK1 115 84 
MAPK2 108 94 

MAPK2 (m) 102 90 
MAPK12  107 93 
MAPK13 87 76 

MEK1 107 117 
MKK4 (m) 129 120 

MKK6  108 111 
MKK7-beta  114 135 

MLCK 89 82 
MLK1 88 71 
MST1  101 99 
MST2  99 85 
MST3 102 89 
mTOR 83 94 
NLK  93 84 

p38 alpha  100 93 
p38 beta  92 89 
p70S6K  91 94 
PAK2  107 103 
PAK4  94 103 
PAK5  100 82 
PAK6  89 85 
PDK1  103 83 
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Appendix 1 cont. 
 

PI3 Kinase (p110b/p85a) 100 93 
PI3 Kinase (p120g) 58 60 

PI3 Kinase (p110d/p85a) 81 51 
PI3 Kinase (p110a/p85a) (m) 89 90 
PI3 Kinase (p110a/p65a) (m) 91 90 

PI3 Kinase (p110a(E545K)/p85a) (m) 91 82 
PI3 Kinase (p110a(H1047R)/p85a) (m) 96 91 

PI3 Kinase (p110b/p85b) (m) 98 88 
PI3 Kinase (p110b/p85a) (m) 97 90 
PI3 Kinase (p110d/p85a) (m) 60 66 

PI3 Kinase (p110a(E542K)/p85a) (m) 89 83 
PI3 Kinase (p110a/p85a) 82 79 

PI3 Kinase (p110a(E542K)/p85a) 81 91 
PI3 Kinase (p110a(H1047R)/p85a) 81 95 
PI3 Kinase (p110a(E545K)/p85a) 75 84 

PI3 Kinase (p110a/p65a) 86 87 
PI3KC2a 107 76 
PI3KC2g 35 23 

PKA  103 104 
PKC" 110 88 
PKC!I 101 98 
PKC!II 93 90 
PKC# 103 102 
PKC$ 107 93 
PKC% 106 87 
PKCµ 106 88 
PKC' 105 95 
PKC& 102 86 
PKCµ 100 96 
PKC* 107 97 
PKC+ 123 100 

PIP4K2a 98 86 
PIP5K1a 95 87 
PIP5K1g 76 73 
ROCK-I 105 80 
ROCK-II  100 102 

Src(1-530) 96 94 
Syk  92 89 
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Appendix 2. Primer Sequences for qRT-PCR 
 

Gene Fwd primer 
5'-3' 

Rev primer 
5'-3' 

Axin2 TAGGCGGAATGAAGATGGAC CTGGTCACCCAACAAGGAGT 
beta-
Act ACTGCCGCATCCTCTTCCTC CCGCTCGTTGCCAATAGTGA 

Cdx1 GGGGTCACTGTGGACAAACT GGCCTAGGACACAAGAGCTG 
Dppa4 CGGGCGTCATAACCAGTTCA GACATGCATGCGGAGGCTAC 
Dppa5 TGTGTCTCCGACCTGGATGC CACATCAGAATGCGCAGCAG 
Esrrb AGGCTCTCATTTGGGCCTAGC ATCCTTGCCTGCCACCTGTT 
Fgf5 CCTTGCGACCCAGGAGCTTA CCGTCTGTGGTTTCTGTTGAGG 
Fgf8 TCGCGAAGCTCATTGTGGA GCCGTTGCTCTTGGCAATTAG 

Gapdh CCAATGTGTCCGTCGTGGAT TGCCTGCTTCACCACCTTCT 
Klf4 TGTGTCGGAGGAAGAGGAAGC ACGACTCACCAAGCACCATCA 

Nanog GAACGGCCAGCCTTGGAAT GCAACTGTACGTAAGGCTGCAGAA 
Oct4 TGTTCCCGTCACTGCTCTGG TTGCCTTGGCTCACAGCATC 
Rex1 GGCTGCGAGAAGAGCTTTATTCA AGCATTTCTTCCCGGCCTTT 
Sox1 GGCCGAGTGGAAGGTCATGT TCCGGGTGTTCCTTCATGTG 
Sox2 TTCGAGGAAAGGGTTCTTGCTG TCCTTCCTTGTTTGTAACGGTCCT 
Stella 

(Dppa3) GCCGCACAGCAGATGTGAA AAATCTGGATCGTTGTGCATCCT 

T TTGAACTTTCCTCCATGTGCTGA TCCCAAGAGCCTGCCACTTT 
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10.  Abbreviations 
 
 
°C  degree Celsius 

µg  microgram 

µl  microliter 

µM  micromolar 

2i  PD0325901 and CHIR99021 

ALP  alkaline phosphatase 

AP  alkaline phosphatase 

bFGF  basic fibroblast growth factor; also FGF2 

BIOS  biology-oriented synthesis 

BMP4  bone morphogenetic protein 4 

BSA  bovine serum albumin 

cDNA  copy deoxyribonucleic acid 

CH  CHIR99021 

cm  centimeter 

CM  conditioned medium 

CRISPR clustered regularly interspaced short palindromic repeats 

Ctrl  control 

Da  Dalton 

DE  distal enhancer 

DMEM Dulbecco's Modified Eagle's Medium 

DNA  deoxyribonucleic acid 

DOS  diversity-oriented synthesis 

dpc  days post coitum; also E3.5 

E3.5  embryonic day 3.5; also 3.5 dpc 

ENaC  epithelial sodium channel 

EpiSC  epiblast stem cell 
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FCS  fetal calf serum 

FGF2  fibroblast growth factor 2; also bFGF 

FRET  fluorescence resonance energy transfer 

GFP  green fluorescent protein 

GO  gene ontology 

GPCR  G protein-coupled receptor 

H&E  hematoxylin and eosin stain 

hESC  human embryonic stem cell 

hpf  hours post fertilization 

HRP  horseradish peroxidase 

hrs  hours; also hr 

HTRF  homogeneous time resolved fluorescence 

ICM  inner cell mass 

ID  identification 

KD  knockdown 

KOSR  knockout serum replacement 

LIF  leukemia inhibitory factor 

MEF  mouse embryonic fibroblasts 

mESC  mouse embryonic stem cell 

mg  milligram 

min  minute 

ml  milliliter 

mm  millimeter 

mM  millimolar 

ng  nanogram 

NMR  nuclear magnetic resonance 

PBS  phosphate buffered saline 

PD  PD0325901 

PE  proximal enhancer 

PFA  paraformaldehyde 

PSSC  protein structure similarity clustering 
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PVDF   polyvinylidene difluoride 

qRT-PCR  quantitative reverse transcription polymerase chain  

   reaction 

RNA   ribonucleic acid 

rpm   revolutions per minute  

RT   room temperature 

SAR   structure-activity-relationship 

SB   SB431542 

SCONP  structural classification of natural products  

SD   standard deviation 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel   

   electrophoresis 

shRNA  short hairpin ribonucleic acid 

SILAC   stable isotope labeling by/with amino acids in cell culture 

TALEN  transcription activator-like effector nucleases  

TBST   tris buffered saline with Tween 20 

TOS   target-oriented synthesis 

TR   Triamterene 
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