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Notation

R the real line.
R≥0 the closed non-negative real half-line.
R≤0 the closed non-positive real half-line.
R>0 the open strictly positive real half-line.
R<0 the open strictly negative real half-line.
(c)N for c ∈ R, the scalar c rounded to the nearest integer.
(c)≥ for c ∈ R, the scalar c truncated at 0 form below, (c)≥ = max(0, c).
Rk the k-vector space of reals.
Rp×k the vector space of k × p matrices with elements in R.
Rk×k the vector space of squared k × k matrices with elements in R.
1k the k-vector in which each component is equal to the multiplicative

unity in R, hence 1k ∈ Rk and 1k = (1, . . ., 1).
0k the k-vector in which each component is equal to the additive unity

in R, hence 0k ∈ Rk and 0k = (0, . . ., 0).
δk for a scalar δ ∈ R, the k-vector in which each component is equal

to δ, hence δk ∈ Rk and δk = (δ, . . ., δ).
Gk the subspace of units in Rk×k, i.e., each A ∈ Gk is of full rank and

invertible. Under matrix multiplication (Gk, ◦, Ik) is a group.
Ik the identity matrix and unity of Gk.
[τ ]k for a scalar τ ∈ R, the k × k-matrix which has τ · 1k on its diagonal

and zeros otherwise.
[δ] for a vector δ ∈ Rk, the k × k-matrix which has δ on its diagonal and

zeros otherwise.
Ω−1

τδ
= [τ ]k + [δ].

A> for a matrix A ∈ Rk×p, the transpose of A. Hence, A> ∈ Rp×k.
vec A ∈ Rkp, columns of a matrix A ∈ Rk×p stacked as a vector.
rk A ∈ R, the rank of a matrix A.
tr A ∈ R, the trace of a matrix A.
diag A ∈ Rk, the diagonal of square matrix A ∈ Rk×k.
A−1 for a matrix A ∈ Gk, the inverse of A in Gk.
A+ for a matrix A ∈ Rk×k, the Moore-Penrose inverse of A.
A ⊂ B for sets A and B, A is a subset of B.
A ≤ B for linear spaces A and B, A is a linear subspace of B.
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〈A〉 for a set of vectors A = {x1, . . ., xp}, the linear hull of the these
vectors.

〈A〉 for a matrix A ∈ Rk×p, the linear hull of the p columns of A.
S ' T for linear spaces S and T , S and T are isomorph.
S ↪→ T for linear spaces S and T , S is embeddable in T .
xj for a vector x ∈ Rp, the jth element of the vector x.
Ai for a matrix A ∈ Rk×p, the ith row of the matrix A.
Aij for a matrix A, the element in the ith row and jth column of A, i.e.,

the jth element of Ai.
f(α) the image of α after applying the function f to α.
f [α] the image space of α after applying the function f to each element

of α, i.e., f [α] = {f(β) : β ∈ α}.
bA (x, y) 7→ x>Ay for x, y ∈ Rk and A ∈ Rk×k. Usually, A ∈ Gk and bA

denotes a bilinear form on Rk.
qA x 7→ x>Ax for x ∈ Rk and A ∈ Rk×k. In particular,

qA(x) = bA(x, x), and qA is called a quadratic form.
〈x, y〉V = bV −1(x, y).
‖x‖V =

√
bV −1(x, x) =

√
〈x, y〉V .

dV (x, y) = ‖x − y‖V .
〈x, y〉τδ = 〈x, y〉Ω−1

τδ
.

‖x‖τδ = ‖x‖Ω−1
τδ

.

dτδ = dΩ−1
τδ

.

(S, b) for a linear space S and an inner product b on S, the inner product
space defined by S and b.

Dβf(β) the derivative/gradient of f :Rp → Rk, β 7→ f(β) with respect to β.
Hessβ f(β) the Hessian matrix of f(β) with respect to β.
N(θ, σ2) the Gaussian distribution function with mean θ ∈ R and standard

deviation σ ∈ R>0.
Nk(θ, V ) the k-variate Gaussian distribution function with mean θ ∈ Rk and

variance-covariance matrix V ∈ Gk.
X2

p the chi-squared distribution function with p degrees of freedom.
Tp the Student’s t-distribution function with p degrees of freedom.
Binom(n, p) the binomial distribution function with n number of trials and

success probability p.



v

Fβτδ the distribution function of a random effects meta regression model.
zγ the γ-quantile of a standard Gaussian distribution function.
x2

p,γ the γ-quantile of a chi-squared distribution function with p degrees
of freedom.

tp,γ the γ-quantile of a Student’s t-distribution function with p degrees of
freedom.

X depending on the context, usually a random element following some
generic distribution, say F.

Y usually a random element with sample space Rk and following a
random effects meta regression model.

x usually an element in the sample space of a random element X.
y usually an element in the sample space Rk of a random element Y .
E(X) for a random element X, the expectation of X.
V(X) for a random element X, the variance-covariance of X.
Bθ(X) for a random element X, the bias of X with respect to θ.
mean(x) for x = (x1, . . ., xk), the (empirical) mean of x.
var(x) for x = (x1, . . ., xk), the (empirical) variance of x.
X ∼ Y for random elements X and Y , X and Y are equally distributed.
X ∼ F for a random elements X and distribution function F, F is a

distribution function of X.
X ∼ (θ, V ) for a random k-vector X, for θ ∈ Rk, and V ∈ Gk, X has mean θ

and variance-covariance V .
X ∼ (θ, σ2) for a random variable X, for θ ∈ R, and σ ∈ R>0, X has mean θ and

standard deviation σ.

Xn
P
−→ θ for a random element X, X is consistent for θ.

Fn F for a sequence of distribution functions Fn, n ∈ N, Fn converges in
distribution to F.

Xn F for a sequence of random elements Xn with distribution functions
Fn, Fn F.

X ∈ Rk×p, frequently denotes the design matrix of a regression model.
Vτδ =

(
X>ΩτδX

)
.

Bτδ = VτδX>Ωτδ =
(
X>ΩτδX

)−1 X>Ωτδ.
Hτδ = XBτδ = X

(
X>ΩτδX

)−1 X>Ωτδ.
Eτδ = Ik − Hτδ = Ik − X

(
X>ΩτδX

)−1 X>Ωτδ.



vi Notation

qyδ(τ) = ‖Eτδy‖2
τδ.

pyδ(η) the inverse function of qyδ = qyδ(τ).

ANOVA analysis of variance.
REML restricted maximum likelihood.
BCG Bacillus Calmette–Guérin.
GPLv3 GNU General Public License Version 3, 29 June 2007.



1 Preliminaries

1.1 Introduction
Meta analysis aims to combine the effect estimates of various related studies, trials,
or experiments. It is a highly important statistical tool with various areas of appli-
cation and has been a field of active research for many years, (Hedges and Olkin,
1985), (Whitehead, 2002), (Hartung et al., 2008).

When combining different outcomes into an overall analysis, one cannot expect
that each study specific outcome will be centred around the very same value. Such
differences in location occur due to individual study specific design features. Usually,
such differences get accounted for by including a heterogeneity parameter into the
model. Sometimes, however, these differences can be explained by known study
specific covariates. Additionally to adding another variance component, one can
account for these location differences by including these study specific covariates
into the model. This approach also allows for understanding the rationale behind
the observed differences. Berkey et al. (1995) called the resulting model the random
effects meta regression model.

Depending on the underlying scientific question, different model parameters of
the random effects meta regression model are of interest. Either the interest lies
in accessing the amount of heterogeneity itself, as Hartung and Knapp (2005)
and Knapp et al. (2006), or one is interested in the regression coefficients and,
thus, aims to study the causes that may explain the occurring heterogeneity. The
latter has been studied by Thompson and Sharp (1999) who approached the prob-
lem from a Bayesian and a classical weighted least squares point of view. Knapp
and Hartung (2003) proposed an adjustment to this weighted least squares approach
which greatly improved its performance. One objective in this dissertation is to test
whether a construction based on generalised inference principles may again improve
the performance for statistical inference especially when dealing with small sample
sizes. Generalised inference principles have already been successfully applied to in-
ference on the overall treatment effect and between study variance in a meta analysis
setting with Gaussian distributed responses in (Tian, 2008a) and (Tian, 2008b).

The outline of this work is as follows: Section 1.2 presents a data set that will
be used as an example throughout the text to emphasize certain aspects of the pre-
sented methods and their theory. Additionally, the text is accompanied by a general
purpose R-package called metagen, which provides a range of methods for random
effects models and also facilitates the set-up and realisation of large scale simulation
studies evaluating the performance of these methods. Some general information
about metagen are discussed in Section 1.3.



2 1 Preliminaries

Chapter 2 introduces the random effects meta regression model. Some frequently
used notation and important linear projections on the sample space of the random
effects model are introduced in Section 2.3. Related quadratic forms and their
induced inner products on the sample space are discussed in Section 2.4. In Sec-
tions 2.5 to 2.11, fundamental results are laid out allowing to unify many of the sub-
sequently presented inferential methods into a common framework. The developed
functionals are applied to real world data in Section 2.7. Sections 2.2 through 2.7
present results about the random effects meta regression model, which do not rely
on any particular parametric distributional assumptions. Section 2.8 describes the
model in its most frequent form with Gaussian distributed error terms. Likelihood
functions of the model are carried out in Sections 2.9 and 2.10. The distributions
of previously introduced quadratic forms are discussed in Section 2.12 consequently
laying the ground for the constructions of confidence intervals based on asymptotic
statistical theory. Some extensions to the random effects meta regression model
itself are discussed in Sections 2.13 and 2.14.

The generalised inference principle was coined under this term by Tsui and Weer-
ahandi (1989). The paper was followed a few years later by (Weerahandi, 1993)
and (Weerahandi, 1995). An introduction to the basic ideas of this principle are
summarised Chapter 3, in particular in Sections 3.1 and 3.2. Section 3.3 is a con-
tribution to extending the theory of the generalised principle from one to multidi-
mensional parameters of interest, which is original and has not been published yet.
Some additional discussion is found in Section 3.4.

All inferential methods, point and interval estimates, concerning the heterogene-
ity parameter of the random effects meta regression model are gathered in Chapter 4.
After an introduction in Section 4.1, different method of moments estimators for the
heterogeneity parameter are discussed in Section 4.2. Each of these estimators where
originally proposed for the random effects meta analysis model that does not include
any covariance terms. Extensive work went into establishing a general framework
in which each of these estimators could be integrated. The iterative generalisations
suggested in this chapter are new and have not been published or discussed pre-
viously. Their almost apparent appearance in the theory are ramifications of the
earlier developed framework of Chapter 2. Confidence intervals for the heterogene-
ity parameter are discussed in Section 4.3. Maximum likelihood estimators for the
heterogeneity parameter are introduced in Section 4.4. A new genuine method for
point and interval estimation of the heterogeneity parameter based on generalised
inference principles is introduced in Section 4.5.

The first of the two performance studies of this dissertation is presented in Sec-
tion 4.6. This section starts with an outline of the set-up of the corresponding sim-
ulation study which will also be used in the performance study of Section 5.6. It is
the first time this kind of experimental design is applied to the performance study of
inferential methods of a parametric model such as this dissertation’s random effects
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model. Results of the performance study are discussed for the presented point and
interval estimates for the heterogeneity parameter. An exemplary application of the
methods to real data can be found in Section 4.7.

Inference on the regression coefficients of the random effects meta regression
model are put together in Chapter 5. After an introduction and some theoretical
considerations in Sections 5.1 and 5.2, point estimators for the regression coefficients
are defined in Section 5.3. Three important interval estimates for the regression
coefficients based on asymptotic statistical theory are introduced in Section 5.4
including the current state-of-the-art estimator by Knapp and Hartung (2003) and
including a discussion about inference on the full coefficient vector.

Section 5.5 develops new point and new interval estimates for the regression coeffi-
cients based on generalised inference principles. Different approaches and strategies
are discussed including computational issues and generalisations to higher dimen-
sions. Most of the content of Section 5.5 is genuine, though, some of the results got
published in (Friedrich and Knapp, 2013) prior to finalising this dissertation.

The second of the two simulation studies is summarised in Section 5.6. The
general set-up follows the same experimental design as in Section 4.6. Here, each
possible combination of inferential methods for the regression coefficients, point
and interval estimators, are discussed and evaluated in this section. Knapp and
Hartung (2003) have defined, in fact, two different interval estimates, though, only
one of which is commonly applied and implemented in statistical software. The
other has not yet been discussed in the literature. The simulation study of this
chapter also presents results about this interval estimator including some surprising
results. The chapter ends with an application of the discussed methods to real data
in Section 5.7.

The dissertation concludes with some final remarks and a discussion of open
problems in Chapter 6.

1.2 Example: Efficacy of the Bacillus Calmette–Guérin
(BCG) vaccine

Throughout the text, a data set is used for illustrative purposes that is well dis-
cussed in the literature, e.g., (Berkey et al., 1995), (Knapp and Hartung, 2003),
and (Friedrich and Knapp, 2013). The data consist of a combination of 13 clinical
trials which evaluated the efficacy of the Bacillus Calmette–Guérin (BCG) vaccine
for the prevention of tuberculosis.

Even though BCG is in use as a vaccine in humans as early as 1921, the reasons
for its highly variable efficacy are still a topic of current research. One conjecture
is that the presence of certain environmental mycobacteria provides a certain level
of natural immunity against tuberculosis within an exposed population, and that
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Trial Author Year Vaccinated Not vaccinated Ab-
solute

Dis-
eased

Not
diseased

Dis-
eased

Not
diseased

Lati-
tude

A Aronson 1948 4 119 11 128 44
B Ferguson & Simes 1949 6 300 29 274 55
C Rosenthal et al. 1960 3 228 11 209 42
D Hart & Sutherland 1977 62 13536 248 12619 52
E Frimodt-Moller et al. 1973 33 5036 47 5761 13
F Stein & Aronson 1953 180 1361 372 1079 44
G Vandiviere et al. 1973 8 2537 10 619 19
H TPT Madras 1980 505 87886 499 87892 13
I Coetzee & Berjak 1968 29 7470 45 7232 27
J Rosenthal et al. 1961 17 1699 65 1600 42
K Comstock et al. 1974 186 50448 141 27197 18
L Comstock & Webster 1969 5 2493 3 2338 33
M Comstock et al. 1976 27 16886 29 17825 33

Table 1.1 The results of 13 clinical trials evaluating the efficacy of the BCG vaccine.

these mycobacteria are more likely to be found in tropical environments, (Ginsberg,
1998). For this reason, the distance of a clinic to the equator may serve as a po-
tential influential covariate, and can, therefore, be treated as a surrogate for the
environmental effect on efficacy in the analysis. The surrogate is measured by the
absolute value of the latitude of the geographic location of a clinic.

The plan is to regress on this covariate, and thus, asking the question whether
the presence of such mycobacteria do indeed interfere with the efficacy of the BCG
vaccine.

The data are put together in Table 1.1, which is accessible via the metafor package
of Viechtbauer (2010). The data are unbalanced in many aspects. Figure 1.1, for
example, shows how unbalanced the data are with respect to differences in total
study size. Study sizes range from a minimum of 262 in trial A to 176782 in trial H.
But the trials not only differ in total sample size but also in the proportion of
vaccinated and non-vaccinated subjects. Whereas most trials are relatively balanced
between the two groups, Figure 1.2 shows that in some trials the vaccinated group
is considerably larger than the non-vaccinated. See, for example, trials K and G.
Other studies, on the other hand, are very balanced, such as trial H. All this makes
the data difficult to access for statistical inference methods. Figure 1.3 shows a
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Frimodt−Moller et al., 1973

TPT Madras, 1980

Comstock et al., 1974

Vandiviere et al., 1973

Coetzee & Berjak, 1968

Comstock & Webster, 1969
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Stein & Aronson, 1953

Hart & Sutherland, 1977
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Total number of subjects

Figure 1.1 Differences in total study sizes of 13 clinical trials evaluating the effi-
cacy of the BCG vaccine.

Frimodt−Moller et al., 1973

TPT Madras, 1980

Comstock et al., 1974

Vandiviere et al., 1973

Coetzee & Berjak, 1968

Comstock & Webster, 1969

Comstock et al., 1976

Rosenthal et al., 1960

Rosenthal et al., 1961

Aronson, 1948

Stein & Aronson, 1953

Hart & Sutherland, 1977

Ferguson & Simes, 1949

0.0 0.2 0.4 0.6
v − neg(v)
v + neg(v)

Figure 1.2 Differences in subject assignments of 13 clinical trials evaluating the
efficacy of the BCG vaccine. The measure of balance is v−¬v

v+¬v where v is the number
of vaccinated and ¬v the number of non-vaccinated subjects in a study.

forest plot of the data together with 95% confidence intervals for the logarithm of
the relative risks of the studies. The studies in all plots are sorted bottom to top by



6 1 Preliminaries

Frimodt−Moller et al., 1973

TPT Madras, 1980

Comstock et al., 1974

Vandiviere et al., 1973

Coetzee & Berjak, 1968

Comstock & Webster, 1969

Comstock et al., 1976
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−2 −1 0 1 2
Logarithm of relative risk

Figure 1.3 Forest plot of 13 clinical trials evaluating the efficacy of the BCG
vaccine. Trials are sorted top to bottom by their absolute latitude. Intervals show
95% confidence intervals for the logarithm of relative risk.

their absolute latitude with the highest absolute latitude at the top. Thus, clinical
trials at the lower end of the plots are closer to the equator than studies at the
upper end. As Figure 1.3 shows, due to the discussed sample size differences of the
clinical trials, the differences in accuracy of the estimates are large. The plot also
shows, however, that there is nonetheless good reason to suspect a trend in efficacy
with respect to latitude.

A random effects meta regression model is used to give suitable answers for these
kind of questions. This model is often used to analyse data such as the example
given here, in which the model is used to compare the relative risks of two different
treatments. Such data consists of counts of different binary random variables such as
in Table 1.1. Even though each respected count follows a binomial distribution, the
relative risks ratios can be analysed in a meta regression model since the logarithm
of the relative risks are approximately Gaussian distributed.

1.3 The metagen software package
Scientific practice advocates to accompany any scientific work with the means and
necessary tools that allow for its reproducibility. Although, the emphasis of this
work is primarily of theoretic character – to situate common inference techniques
and state-of-the-art inferential methods in a general theoretical framework and to
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develop new inferential methods for the random effects meta regression model –
a considerable and comparable amount of work went into the development of a
software package that implements important aspects of the presented theory.

Thus, the text is accompanied by a software package with the name metagen,
(Möbius, 2014). The package is implemented for the widespread statistical software
environment R, (R Development Core Team, 2010). It is published freely available
under the GPLv3 license and including all source code at CRAN:

http://cran.r-project.org/web/packages/metagen/index.html.

The code-base itself is hosted at GitHub:
http://00tau.github.io/metagen/.

This website also includes links on how to contribute to the package, or how to
simply submit new feature requests.

The package metagen contains all functions and tools needed to reproduce all
results, figures, plots, and tables of this document. The latest version hosted on
CRAN can easily be installed by opening an R-session and executing:

install.packages("metagen", dependencies=TRUE)

The text frequently contains small software excursions which contain fully functional
code samples that explain how to use the metagen package. The following excursion,
e.g., shows how to reproduce the sample plots of Section 1.2.

Excursion 1.1 The following lines reproduce Figure 1.1, Figure 1.2, and Fig-
ure 1.3, which show differences between study sizes, unbalances in group assign-
ments, and a forest plot.

library(metagen)
bcg <- bcgVaccineData()
plotStudySizes(bcg)
plotStudyUnbalance(bcg)
plotStudyForest(bcg)

If desirable, this makes it possible to use the package in an interactive fashion,
side-by-side, next to reading this text.

The package can, however, not only be used as a supporting tool for this par-
ticular text but metagen is, in fact, a fully fledged statistical software package that
enables to perform any kind of desirable random effects meta regression or meta
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analysis. The software sections by themselves can be used as short tutorials and
contain all necessary information on how set up such an analysis. The software
package is, of course, fully documented and all functions contain informative man-
ual pages that integrate fully into R’s native help system. The reference manual,
which is also provided with the distribution of metagen, can be found in the Appen-
dix.

Apart from to the inferential methods, the package also contains functions and
algorithms that allow to reproduce the simulation studies included in this document.
The package allows to set up custom simulation studies with free parameter choice.
The package is written in a modular way allowing the user to extend the built-in
functionality by own inferential methods. The purpose was to establish a tool box
that allows researchers working with meta regression and meta analysis problems
to test their own inferential methods in a quick, non-distracting, and standardised
way to common state-of-the-art inferential methods.

This part of the software is, of course, also fully documented in the same fashion
and accessible via R’s native help system. Thus, the purpose of the accompanying
package metagen are threefold: (i) acknowledging good scientific practise, thus, al-
lowing the reproducibility of all mentioned results, (ii) implementing an interface for
analysing data within a meta regression and meta analysis framework, and, finally,
(iii) allowing to compare new inference methods in a modular and standardised way
to known methods of the field.
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2.1 Introduction
Before developing the random effects regression model with Gaussian responses, a
mathematical description of the model is developed in term of its moments first.
For the k-variate random vector Y with mean θ ∈ Rk and variance-covariance
matrix V ∈ Rk×k, write

Y ∼ (θ, V ) . (2.1)

This is standard notation which simply defines a relation on the set of random
elements with sample space Rk and the space Rk × V where V shall denotes the
open, convex cone of positive definite matrices in Rk×k. A distribution free model
can be understood as the ∼-pre-image of a pair (θ, V ). Thus, the model is identified
with its expectation and variance-covariance structure.

Let 1k ∈ Rk denote the k-vector that only consists of 1’s. If c ∈ Rk, the nota-
tion [c] shall be used for the diagonal matrix C ∈ Rk×k which has c on its diagonal
and zeros otherwise. For a scalar c ∈ R, the notation [c]k is used for the diagonal
matrix C ∈ Rk×k which has c1k on its diagonal and zeros otherwise. In particular,
[c]k = [c1k] = cIk, and

[τ ]k =


τ

. . .

τ

, [δ] =


δ1

. . .

δk

,

and

([τ ]k + [δ])−1 =


1

τ+δ1

. . .
1

τ+δk


for τ ∈ R and δ ∈ Rk.

2.2 Model description – distribution free
The random effects meta regression model is a hierarchical model that models
the univariate effect measures of a number of different studies which may differ
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in their location and their variability. Let Y = (Y1, . . ., Yk)> be an independent
random k-vector where each Yj corresponds to the outcome of a single study. It
is assumed that Y is independent. For variance components δj , τ ∈ R>0, location
component β ∈ Rp, and a vector of covariates xj ∈ Rk, j = 1, . . ., k, assume that

Yj |θj ∼ (θj , δj) , (2.2)

θj ∼
(

x>
j β, τ

)
. (2.3)

In (2.2), Yj |θj denotes the response of the jth study with expected value θj and
variance δj . The parameter δj is called the within study variances and the vector δ =
(δ1, . . ., δk)> the heteroscedasticity parameter vector of the model. A random effect
is introduced when assuming that the studies are themselves a random selection of
otherwise also possible studies which locations, i.e., their expected responses, may
vary. This random effect is modelled by the heterogeneity parameter τ in (2.3), also
called the between study variance. We assume that there exists a linear relation
between E(θj) and the covariates xj , in signs: E(θj) = x>

j β, for some unknown
regression coefficients β = (β1, . . ., βp)> ∈ Rp. Each covariate x>

j equals the jth
row of a design matrix X ∈ Rk×p with rank p strictly less than k − 1. It is common
to define the design matrix X in the form

X =

 1 x12 · · · x1p

..

.
..
.

..

.
..
.

1 xk2 · · · xkp

. (2.4)

Defined in this way, the first component β1 of the regression coefficient vector β
equals the intercept of the model. In the special case of p = 1, β ∈ R, and X =
1k ∈ Rk×1, the model in (2.2) and (2.3) reduces to the common random effects meta
analysis model. Thus, all results of this text concerning the random effects meta
regression model inherit results which also apply to conventional meta analysis.

From the rank restriction, rk(X) = p < k − 1, follows that X has full column
rank, and, thus, its induced linear map is injective. Hence, if either the δj ’s or τ
are known parameters, the above model would be identifiable for β. The model is,
however, not identifiable for the full set (β>, τ, δ1, . . ., δk) of parameters. Usually,
the within study variances are reported together with the estimated effects as part
of the summary statistics of the respected studies, thus, enabling to draw inference
on τ and β.
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Definition 2.1 Let X ∈ Rk×p with rk(X) = p < k − 1. The random effects
meta regression model is defined as

(Xβ, [τ ]k + [δ]) (2.5)

for β ∈ Rp, τ ∈ R>0 and δ ∈ Rk
>0.

This is the reference model for most parts of this text. As said before, for
theoretical considerations, the variance components δ need to be known. In practice,
this is hardly the case, and each δj will usually be set equal to some summary
statistic that is reported together with the respected study. An extension to the
random effects meta regression model will be discussed in Section 2.13 that allows
to model this uncertainty. The model described in Section 2.13 will also be used to
simulate data for the performance studies in order to provide a realistic impression of
the performance of the upcoming methods. Another modelling strategy is discussed
in Section 2.14 which models the underlying data generating process of data such
as the exemplary data presented in Section 1.2.

2.3 Linear projections
For notational brevity, define

Ωτδ :=


1

τ+δ1
. . .

1
τ+δk

. (2.6)

In other words, Ω−1
τδ = [τ ]k + [δ] and Y ∼

(
Xβ, Ω−1

τδ

)
. Define

Vτδ :=
(
X>ΩτδX

)−1 ∈ Rp×p, (2.7)

Bτδ := VτδX>Ωτδ =
(
X>ΩτδX

)−1 X>Ωτδ ∈ Rp×k, (2.8)

Hτδ := XBτδ = X
(
X>ΩτδX

)−1 X>Ωτδ ∈ Rk×k, (2.9)

Eτδ := Ik − Hτδ = Ik − X
(
X>ΩτδX

)−1 X>Ωτδ ∈ Rk×k. (2.10)

The matrices Bτδ, Hτδ and Eτδ are linear functions acting on Rk, the image space
of Y . In particular, each of these functions is a statistic of the random Y . For
brevity, and only if the values of τ and δ are clear from the context, the subscripts
may be skipped, yielding V = Vτδ, B = Bτδ, H = Hτδ, E = Eτδ and Ω = Ωτδ. Note
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that E(BτδY ) = β and E(EτδY ) = 0. Hence, Bτδy is a unbiased linear estimator
of β.

The matrices Hτδ and, consequently, Eτδ are of particular importance. For any τ
and δ, the matrix Hτδ is idempotent, in signs: HH = H. In other words, H is a
projection matrix. Note that if τ = 0 and δ = 1k, then H01 and E01 would also be
symmetric, and, therefore, denote orthogonal projections.

By construction, the columns of Eτδ span the kernel of Hτδ. In other words, E
projects onto the kernel space of H, and H onto the kernel of E. Let 〈E〉 denote
the column space or, equivalently, the image space of E. Then the sample space Rk

of Y can uniquely by decomposed, as for any b ∈ 〈H〉 ∩ 〈E〉, it is b = HEb, since H
and E are idempotent. Hence, b = H(I − H)b = Hb − Hb = 0. Thus, each y ∈ Rk

can uniquely be written as y = u + w such that u ∈ 〈H〉 and v ∈ 〈E〉, and the
decomposition is given by u = Hy and w = y − Hy = Ey. In particular, the sample
space can be written as the direct sum Rk = 〈Hτδ〉 ⊕ 〈Eτδ〉,

Thus, both Hτδ and Eτδ are projections in which H projects along the subspace
〈E〉 onto 〈H〉 and E projects along the subspace 〈H〉 onto 〈E〉. They are, in this
sense, complementary. Interestingly, each Hτδ, independent of the choice of τ and δ,
projects into the same subspace of Rk, namely: the space spanned by the columns of
the design matrix X. In fact, each Hτδ is a function of Bτδ, namely Hτδ = X ◦ Bτδ,
and, since X is injective, their kernels coincide, in signs: ker Bτδ = ker Hτδ = 〈E〉τδ.

The model assumption state that E(Y ) is a linear function of β, in particular:
E(Y ) = Xβ for the injective linear map X. Thus, the parameter space Rp can be
thought of as being embedded in Rk via the map X:Rp ↪→ Rk. This suggests to
identify the parameter space Rp with the linear subspace 〈X〉 of Rk. On the other
hand, the map Bτδ maps the sample space Rk to Rp, which we have just identified
with 〈X〉. Thus, under the embedding X, the projection Hτδ = X ◦ Bτδ and the
map Bτδ are in principle the same map.

If y ∈ Rk and β is estimated by Bτδy, we are, in fact, projecting along ker B
onto the image X[Rp] of X, namely 〈X〉. The image Hτδy is called the estimated
responses or the fit of the model. The goodness of fit of Hτδy is judged by evaluating
the projection onto its complement, namely the residuals Eτδy.

2.4 Quadratic forms, inner products, and the squared
length of the residual vector

The goodness of a fit for an estimate of β is evaluated by a function of the residual
vector Eτδy. This is often a function of the squared length of this vector in Rk with
respect to a suitable metric. The function that maps a vector to its squared length
is called a quadratic form.

Let A ∈ Rk×k be a matrix. Any A defines a bilinear form
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bA: (x, y) 7→ x>Ay (2.11)

and a corresponding quadratic form

qA: y 7→ y>Ay (= 〈y, Ay〉) (2.12)

where 〈·, ·〉 denotes the canonical inner product on Rk. If A is symmetric, then so
is bA. The bilinear form bA is not degenerated if and only if det A 6= 0. We say A, bA

and qA are positive definite (semidefinite), if qA(y) > 0 (qA(y) ≥ 0) for all y ∈ Rk,
y 6= 0. If A is symmetric and positive definite, its bilinear form bA defines an inner
product on Rk, making (Rk, bA) into an inner product space with induced norm and
metric. Of particular interest are the positive definite variance-covariance matrices
of (non-degenerated) random vectors. Say, V is the symmetric and positive definite
variance-covariance matrix of a non-degenerated random vector Y . For notational
clarity the induced inner product, norm, and induced distance of bV −1 are written
as

〈x, y〉V := x>V −1y = bV −1(x, y),

‖y‖V :=
√

〈x, y〉V =
√

qV −1(y),

dV (x, y) :=
√

(x − y)>V −1(x − y) =
√

qV −1(x − y).

The latter distance dV is often called a Mahalanobis distance in acknowledgement
of Mahalanobis (1936).

For reference, two theorems from (Graybill, 1961) are stated. The first is a
necessary and sufficient condition for a symmetric matrix to be positive definite.

Theorem 2.2 Let A ∈ Rk×k be symmetric. Then A is positive definite if and
only if there exists some B ∈ Gk such that A = B>B.

Here, Gk denotes the unit group of k × k squared matrices of full rank. The
set Gk becomes a group under matrix multiplication. In the statistical context, the
next theorem is interesting as many statistics contain constructions such as AA>

and A>A for all kinds of matrices A.

Theorem 2.3 Let p < k and X ∈ Rk×p. Then X>X ∈ Rk×k and XX> ∈
Rp×p are squared matrices.

a) If rk X = p, then X>X is positive definite and XX> is positive semi-
definite.

b) If rk X < p, then X>X and XX> are positive semidefinite.
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The random effects meta regression model has the variance-covariance matrix Ω−1
τδ .

Again, to avoid notational abuses, the respected induced inner product and norm of
the inner product bΩτδ

shall be written as 〈x, y〉τδ and ‖y‖τδ instead of the awkward
looking 〈x, y〉Ω−1

τδ
and ‖y‖Ω−1

τδ
. Hence, 〈x, y〉τδ = x>Ωτδy and ‖y‖2

τδ = y>Ωτδy.
If τ and δ are known or estimated with sufficient accuracy, we may want to analyse

any observed data not in the canonical inner product space Rk but in Rk equipped by
an adjusted inner product, namely one that reflects the variance-covariance structure
of Y . Depending on the underlying hypothesis, it is suitable to either work in
canonical (

Rk, 〈·, ·〉
)

, (2.13)

or in (
Rk, 〈·, ·〉[δ̂]−1

)
(2.14)

and an estimate δ̂ of δ, or even in the Hilbert space(
Rk, 〈·, ·〉([τ̂ ]k+[δ̂])−1

)
(2.15)

for an additional suitable estimate τ̂ of τ .
When studying quadratic forms as in (2.12), the interest obviously lies in the

case in which A is a non-trivial projection, i.e., in which AA = A but rk A < k.
In case A is additionally symmetric, A is positive semidefinite and qA(y) = ‖Ay‖2,
y ∈ Rk. In other words, qA maps each vector to the squared length of its projected
vector Ay in Rk. Let B ∈ Gk be the matrix of a basis transformation. Here,
B should be thought of as the inverse of the positive definite covariance-variance
matrix of a non-degenerated random vector. Then qA ◦ B = qB>AB. Again, a
theorem form (Graybill, 1961) is stated.

Theorem 2.4 Let A, B ∈ Rk×k such that B ∈ Gk and A is positive definite
(semidefinite). Then also B>AB is positive definite (semidefinite).

The next theorem also deals with idempotent matrices and their definitness.

Theorem 2.5
a) Any symmetric and idempotent matrix not of full rank is positive semi-

definite.
b) Any symmetric and idempotent matrix of full rank is equal to the identity

matrix and, therefore, positive definite.
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Proof. If A is symmetric and idempotent, then x>Ax = x>A>Ax = ‖Ax‖2 ≥ 0.
Hence, A is positive semidefinite. If A is of full rank, then A ∈ Gk. Multiplying
both sides of AA = A by A−1 yields the claim. �

The following is a very interesting result about the idempotent matrices Hτδ

and Eτδ for non-trivial choices of τ and δ. In trivial cases, such as τ = 1 and
δ = 0k, these matrices are symmetric and, thus, constitute very simple forms by
Theorem 2.5. In general, however, Eτδ and Hτδ are not symmetric. The following
result is the main reason that it is nevertheless possible to successfully work with
these matrices and to use them to build inferential methods.

The proof is not too difficult which might be the reason that it cannot be found
in the literature.

Theorem 2.6 Let τ > 0 and δ ≥ 0. Then ΩτδHτδ and ΩτδEτδ are symmetric,
in signs

(ΩτδHτδ)> = ΩτδHτδ, (ΩτδEτδ)> = ΩτδEτδ.

In particular,

E>
τδΩτδEτδ = E>

τδΩτδ. (2.16)

Proof. (ΩH)> = (ΩX(X>ΩX)−1X>Ω)> = ΩX(X>ΩX)−1X>Ω = ΩH. Hence,
ΩH = (ΩH)> = H>Ω> = H>Ω. Also (ΩE)> = (Ω(I − H))> = (Ω − ΩH)> =
Ω − (ΩH)> = Ω − ΩH = Ω(I − H) = ΩE. In particular, E>ΩE = E>(ΩE)> =
E>E>Ω = (EE)>Ω = E>Ω, since E is idempotent. And, E>Ω = E>Ω> =
(ΩE)> = ΩE. �

Suppose there is no heteroscedasticity between the single study responses, i.e.,
suppose τ > 0 and δ = 0k. Then the random effects meta regression model reduces
to a simple linear regression model with variance component τ . Applying the linear
operator E = E10 to the observed data y yields the residuals Ey. In standard
linear regression analysis the (squared) norm of the residual vector equals ‖Ey‖2 =
(Ey)>(Ey). In contrast to mathematics, it is common in statistical literature to
give a mathematical entity a name that reflects its canonical construction instead
of its properties. In this case, the squared residual norm ‖Ey‖2 is called the error
sum of squares and commonly abbreviated by SSE: let e>

i denote the ith row of
E = E10. Then

‖Ey‖2 = (Ey)>(Ey) =
∑

i

(e>
i y)2 (2.17)
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which is indeed a sum of squares. When dealing with heteroscedasticity, one may
work with a weighted quadratic instead, namely ‖EY ‖2

δτ for E = E10:

‖Ey‖2
τδ = (Ey)>Ωτδ(Ey) =

∑
i

1
τ + δi

(e>
i y)2. (2.18)

This is consistent with the special case of the simple linear regression model, since

‖EY ‖2
τ0 = 1

τ
‖EY ‖2 (2.19)

is just a scaled version of the same measure.

2.5 Expectations of residual squared lengths
Of interest is the squared norm or length of the residual vector EτδY for different
values of τ or δ and for different norms on Rk. In this section, the particular interest
lies in the expected value of this squared length as it is frequently used for building
statistics for hypothesis testing and inferential methods.

Theorem 2.7 Let Y ∼ (θ, V ) for some θ ∈ Rk and positive definite V ∈ Gn.
Let A ∈ Rk×k. Then EθV (qA(Y )) = qA(θ) + tr(AV ). In particular, if θ lies in
the kernel of A, then

a) E
(
‖AY ‖2) = tr (AV ).

b) For any positive definite U ∈ Gk, E
(
‖AY ‖2

U

)
= tr

(
A>U−1AV

)
.

Proof. The claim follows from E(Y >AY ) = (EY )>A(EY ) + tr(AV ) = θ>Aθ +
tr(AV ) which holds true for any arbitrary squared matrix A ∈ Rk×k.

a) When Aθ = 0, i.e., when θ lies in the kernel of A, then qA(θ) = θ>Aθ = 0.
b) By definition ‖AY ‖2

U = (AY )>U−1(AY ) = Y >(A>U−1A)Y = qA>U−1A(Y ).
Also, qA>U−1A(θ) = θ>(A>U−1A)θ = (Aθ)>U−1(Aθ) = 0, since Aθ = 0.
By a) follows the claim.

�

In the context of the random effects meta regression model, this yields the fol-
lowing corollary.
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Corollary 2.8 Let Y ∼ (Xβ, [τ ]k +[δ]) for some β ∈ Rp, some full rank design
matrix X ∈ Rk×p and fixed τ ≥ 0 and δ > 0. Let E′ = Eτ ′δ′ for some choice
of τ ′ ≥ 0 and δ′ > 0. Then

a) Eτδ

(
‖E′Y ‖2) = τ(k − p) + tr(E′[δ]).

b) Eτδ

(
‖EY ‖2

τδ

)
= k − p.

c) Eτδ

(
‖E′Y ‖2

τ ′δ′
)

= τ tr(E′>Ω′) + tr
(
E′>Ω′ [δ]

)
with Ω′ = ([τ ′]k + [δ′])−1.

d) If τ ′ = 0, then Eτδ

(
‖E′Y ‖2

0δ′
)

= τ tr(E′> [δ′]−1) + tr
(
E′> [δ′]−1 [δ]

)
.

Proof. Note that Xβ lies in the kernel of E′ for any τ ′ and δ′, since E′(Xβ) =
(E′X)β = 0. For a) note that E′([τ ]k + [δ]) = E′ · τ + E′[δ]. Hence,

tr ((E′([τ ]k + [δ])) = τ tr E′ + tr(E′[δ]) = τ(k − p) + tr(E′[δ]). (2.20)

From Theorem 2.7 follows that

Eτδ

(
‖E′Y ‖2

τ ′δ′
)

= tr
(
E′>([τ ′]k + [δ′])−1E′([τ ]k + [δ])

)
. (2.21)

Let Ω′ = ([τ ′]k + [δ′])−1 and Ω = ([τ ]k + [δ])−1. Then from the right hand side
follows

E′>Ω′E′Ω−1 = E′>Ω′E′([τ ]k + [δ])

= E′>Ω′([τ ]k + [δ])

= τ · E′>Ω′ + E′>Ω′[δ]

Taking the traces of these matrices yields c). Setting τ ′ = 0, yields the claim in d).
For the particular case in which τ ′ = τ and δ′ = δ, it also follows from Theorem 2.6
that

tr
(
E>ΩEΩ−1) = tr

(
E>ΩΩ−1) = tr

(
E>) = k − p. (2.22)

This shows the claim in b). �

2.6 Residual squared lengths as functions of the hetero-
geneity

The previous sections have shown that

‖EτδY ‖2
τδ (2.23)

is a frequently appearing term in the study of the random effects meta regression
model. As mentioned, the within-study variances δ are usually considered known
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and being part of the summary statistics of the studies regarded for the meta re-
gression or analysis. Henceforth, (2.23) will be treated as a function in τ , namely

qy:R>0 → R≥0, τ 7→ qy(τ) := ‖Eτδy‖2
τδ . (2.24)

This idea goes back to Iyer et al. (2004) who suggested to view qy as a function in τ
first. The notation not only suggests that δ is known but also that δ is fixed for
different values of y. This is reasonable as the within study variances are assumed
as being inherited from the respected study designs and not something that would
depend on the random outcome Y . See Section 2.14 for a discussion. The main result
of this section is a matrix result by Khatri (1966) that allows qy to be rewritten in
a mathematically more accessible way. This step is not only of theoretical interest
but, when used in actual inference methods, crucial to obtain numerically stable
results from this function.

The result is comparably old and also not particularly well known. For this
reason, a proof is provided. The result is then applied to qy(τ) and its first derivative
is calculated. This allows to deduce some fundamental properties of qy.

For A ∈ Rk×p, the Moore-Penrose inverse is the unique matrix A+ ∈ Rp×k such
that

A = AA+A,

A+ = A+AA,+

(AA+)> = AA+,

(A+A)> = A+A.

In particular, the Moore-Penrose inverse is a pseudo inverse, and tr AA+ = rk A.
Harville (1977) defined an error contrast to be a linear combination u of the

random Y such that u>Y has expectation 0, in signs: E(u>Y ) = 0. In the case
of the random effects meta regression model, it is sufficient for an error contrast
that u>X = 0. If K ∈ Rk×q is a full rank matrix such that the column space 〈K〉
is spanning the kernel of X>, then each column of K is an error contrast of Y and
each error contrast lies in 〈K〉. The error contrast matrix K can be found, e.g., by
a singular values decomposition of X>.

If X is of full rank, then the kernel of X> is of rank k − p. Thus, the maximum
number of linear independent error contrasts is k − p. Inference using the restricted
maximum likelihood approach is based on the distribution of K>Y instead of Y .
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Lemma 2.9 For q ≤ p ≤ k, let X ∈ Rk×p and K ∈ Rk×q such that the
columns of K are spanning the kernel of ker X>, in signs: ker X> = 〈K〉. If K
is of full rank, then

Ik − XX+ = KK+. (2.25)

Proof. It is not difficult to see that for any A ∈ Rm×n, it is A = 0 if and only
if tr AA> = 0. So, let A := Ik − XX+ − KK+, and let us show that tr AA> = 0.
Now, since Ik, XX+ and KK+ are symmetric and idempotent, also A is symmetric
and idempotent. Hence, tr AA> = tr A = k − tr XX+ − tr KK+ = k − rk X − rk K.
Since the columns of K form a basis of ker X>, it is K of full rank and rk K =
k − rk X> = k − rk X. This completes the proof. �

If A is of full rank, then AA+ = A(A>A)−1A>. Thus, for a full rank matrix X
in Lemma 2.9, it is possible to replace XX+ by X(X>X)−1X>, and KK+ can be
replaced by K(K>K)−1K>. The following result is due to (Khatri, 1966).

Lemma 2.10 Let X ∈ Rk×p and let K ∈ Rk×(k−p) be such that the columns
of K form a basis of the kernel of X>. If X is of full rank, then for any positive
definite V ∈ Gk,

V −1 − V −1X(X>V −1X)−1X>V −1 = K(K>V K)−1K>. (2.26)

Proof. Since V is positive definite, then so is V −1 positive definite. Thus, V −1 has
a unique principle square root V − 1

2 . Since V − 1
2 ∈ Gk, it is also a matrix of basis

transformation. If X and K fulfil the requirements of Lemma 2.9, then so do V − 1
2 X

and V
1
2 K. Substituting V − 1

2 X for X and V
1
2 K for K in Lemma 2.9 results in

Ik − V − 1
2 X(X>V −1X)−1XV − 1

2 = V
1
2 K(K>V K)K>V

1
2 . (2.27)

Multiplying the above equation by V − 1
2 from both sides yields the claim. �

The important thing to notice is that the matrix V looses its inverse operation on
the right hand side of (2.26). This makes this result computationally so appealing.
Applying the result to qy(τ) makes it possible to prove the following equation.
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Theorem 2.11 Let K ∈ Rk×k−p which columns (k1, . . ., kk−p) form a basis
of ker X>. Then

qy(τ) = y>K(K>Ω−1
τδ K)−1K>y. (2.28)

Proof. Note that qy(τ) = y>E>
τδΩτδEτδy. In order to proof the claim, Lemma 2.10 is

applied to the term E>
τδΩτδEτδ. By construction, K is of full rank and its columns

span the kernel of X>. Also, Ω−1 is obviously of full rank and positive definite.
From Theorem 2.6 it follows that E>ΩE = ΩE. Hence, E>ΩE = ΩE = Ω(I −H) =
Ω(I − X>(X>ΩX)−1X>Ω) = Ω − ΩX(X>ΩX)−1X>Ω. Applying Lemma 2.10
yields the claim. �

The above theorem shows that qy(τ) only depends on τ and δ via the term
([τ ]k + [δ]) = Ω−1

τδ and this at one single place only. Since τ → Ω−1
τδ is smooth and

each τ is mapped to a positive definite matrix, the function τ 7→ qy(τ) is also smooth
on R>0. The following lemma calculates its first derivative.

Lemma 2.12 Let X ∈ Rk×p and let K ∈ Rk×(k−p) be such that the columns
of K form a basis of the kernel of X>. If X is of full rank, then qy is smooth
on R>0 and

Dτ qy(τ) = −y>Gy (2.29)

for the positive definite G := A>A ∈ Gk with A := K
(
K>Ω−1

τδ K
)−1

K>.

Proof. First note that Dτ (Ω−1
τδ ) = Ik. Therefore, Dτ (K>Ω−1

τδ K) = K> (Dτ Ω−1
τδ

)
K =

K>K. Hence,

Dτ (K>Ω−1
τδ K)−1 = −(K>Ω−1

τδ K)−1Dτ (K>Ω−1
τδ K)(K>Ω−1

τδ K)−1

= −(K>Ω−1
τδ K)−1K>K(K>Ω−1

τδ K)−1.

And this yields,

Dτ qy(τ) = Dτ

(
y>K(K>Ω−1

τδ K)K>y
)

= y>KDτ (K>Ω−1
τδ K)K>y

= −y>K(K>Ω−1
τδ K)−1K>K(K>Ω−1

τδ K)−1K>y.

�
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Lemma 2.12 shows that, in particular, Dτ qy(τ) is again a quadratic form. Corol-
lary 2.13 studies the convergence of qy.

Corollary 2.13 Let X ∈ Rk×p and let K ∈ Rk×(k−p) be such that the columns
of K form a basis of the kernel of X>. If X is of full rank, then qy is smooth
on R>0, strictly monotone decreasing, and converging to 0 as τ goes to ∞.

Proof. Since G ∈ Gk in (2.29) is positive definite, Dτ qy(τ) is strictly negative and,
therefore, qy is strictly decreasing. Now, let cδ(τ) := 1

τ+maxj δj
. Then cδ(τ) → 0 as

τ → ∞. Also, qy(τ) = y>K(K>Ω−1
τδ K)−1K>y ≤ y>K(K> · cδ(τ) · K)−1K>y =

cδ(τ) · y>K(K>K)−1K>y → 0 as τ → ∞. �

The expected value of the random qY (τ) is

Eτ (qY (τ)) = k − p. (2.30)

This already indicates that the point τ0 for which qy(τ0) = k − p is of particular
importance. In fact, (2.30) shows that τ0 is a method of moments estimator for τ ,
which is commonly known as the Mandel–Paule estimator in meta analysis first
introduced in (Mandel and Paule, 1970) and extended in (Paule and Mandel, 1982).

Since qy is strictly monotone decreasing, it has an inverse. Let py denote this
inverse of qy but defined on the whole real line R, namely

py(η) =
{

q−1
y (η) : 0 < η < qy(0)

0 : otherwise

for η ∈ R. Then, e.g., τ0 = py(k − p) is a Mandel–Paule type estimator for τ .

2.7 Example: Studying the BCG vaccine efficacy
In Section 1.2, data evaluating the efficacy of the BCG vaccine was introduced
as an exemplary data set that is commonly analysed using a random effects meta
regression model. Section 2.14 will discuss how to specifically analyse this kind
of data in the context of the random effects meta regression model. The residual
squared length as a function of τ , namely qy(τ), is shown in Figure 2.1 for this data.
Its inverse function py(η) is shown to the right of this plot.

The function qy hits the y-axis at the intercept of qy(0) ≈ 30.73. Equivalently, py

hits the x-axis at py(30.73) ≈ 0. Both functions are strictly decreasing. The
function qy is converging to zero as τ increases. For py it holds that py(η) = 0
for η ≥ qy(0) ≈ 30.73.
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Figure 2.1 For the BCG vaccine efficacy data, the squared length of the residual
vector qy = qy(τ) as a function of the unknown heterogeneity τ in the data is plotted
for different values of τ . On the right, the inverse function py = py(η) of qy is plotted
for different values of η.
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Excursion 2.14 In the metagen package, the functions qfunc and pfunc can be
used to generate the functions qy and py respectively.

library(metagen)
bcg <- bcgVaccineData()
y <- bcg$logrisk
d <- bcg$sdiv
x <- cbind(1,bcg$x)

qfunction <- qfunc(y, d, x)
pfunction <- pfunc(y, d, x)

# The intercept of the qfunction
qfunction(0)

In order to get an easy and quick view of their dynamical range and properties,
there also exists a ready to use function which will produce plots of qy and py.
These plots can help evaluating the output of inferential methods based on these
functions.

plots <- plotStudyQfuncPfunc(y=y, d=d, x=x, n=500)

where n = 500 tells the algorithm at how many different points the functions shall
be evaluated. The larger n, the higher will be the resolution of the plots. The
above call will in fact generate a list of plots which can be accessed by calling its
respected elements.

plots$plotQ
plots$plotP

For example, the Mandel–Paule type estimator for τ , which is defined in Defini-
tion 4.4, can be calculated in the following way.

k <- dim(x)[1]; p <- dim(x)[2]
pfunction(k-p)

This yields py(k − p) = py(11) ≈ 0.1421.
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2.8 Model description – with Gaussian responses
When assuming Gaussian distributed study effects, the random effects meta regres-
sion model is a Gaussian-Gaussian hierarchical model that models the univariate
effect measures of a number of different studies. Again, let Y = (Y1, . . ., Yk)> be a
random k-vector where each Yj corresponds to the outcome of a single study. It is
now assumed that each Y and θ follow Gaussian distributions.

Yj |θj ∼ N (θj , δj) , (2.31)

θj ∼ N
(

x>
j β, τ

)
, (2.32)

where N denotes the distribution of a univariate Gaussian distributed random ele-
ment. If (Y >, θ1, . . ., θk)> is independent and follows a multivariate Gaussian dis-
tribution, then the marginal model for Y yields the random effects meta regression
model.

Let Nk denote the distribution function of a k-variate Gaussian distributed ran-
dom k-vector. Reformulating Definition 2.1 including the above distribution as-
sumptions, the random effects meta regression model can be defined as follows.

Definition 2.15 Let X ∈ Rk×p with rk(X) = p < k − 1. For any β ∈ Rp,
τ ∈ R≥0 and δ ∈ Rk

>0, let

Fβτδ := Nk (Xβ, [τ ]k + [δ]) . (2.33)

Then the family of distribution functions

F =
(
Fβτδ : (β, τ, δ) ∈ Rp × R≥0 × Rk

>0
)

(2.34)

is called the random effects meta regression model.

In other words, it is assume that there exists some (β, τ, δ) ∈ Rp × R≥0 × Rk
>0

such that

Y ∼ Fβτδ . (2.35)

In case p = 1, β ∈ R and X = 1k, the above model reduces to the random effects
meta analysis model.
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2.9 Likelihood functions and their derivatives
Following Palais (2001) and Hartl (2010), define t = 2π. For a single study re-
sponse Yj , the Lebesgue density fβτδ,j of the random effects meta regression model
is

fβτδ,j(y) = t− 1
2 (τ + δj)− 1

2 exp
(

−1
2

(τ + δj)−1
(

x>
j β − y

)2
)

. (2.36)

Since Y is independent, the joint density fβτδ = D Fβτδ of (2.33) is

fβτδ(y) = t− k
2

(
k∏

j=1
(τ + δj)

)− 1
2

exp

(
−1

2

k∑
j=1

(τ + δj)−1
(

x>
j β − y

)2
)

= t− k
2
(
det Ω−1

τδ

)− 1
2 exp

(
−1

2
(Xβ − y)> Ωτδ (Xβ − y)

)
= t− k

2
(
det Ω−1

τδ

)− 1
2 exp

(
−1

2
‖Xβ − y‖2

τδ

)
(2.37)

as det Ω−1
τδ =

∏
j(τ + δj). Let us have a closer look at this function, in particular, at

the exponent of the exponential in (2.37). This exponent can be rewritten in terms
of the operators defined on page 11. Note that

(β − By)> V −1 (β − By)

= β>V −1β − 2y>B>V −1β + y>B>V −1By

= β>V −1β − 2y>ΩXβ + y>ΩHy,

since
B>V −1 = ΩX(X>ΩX)−1(X>ΩX) = ΩX,

and

B>V −1B = ΩX(X>ΩX)−1X>Ω = ΩH.

Hence,

(Xβ − y)> Ω (Xβ − y) (2.38)

= β>X>ΩXβ − 2y>ΩXβ + y>Ωy

= β>V −1β − 2y>ΩXβ + y>ΩHy − y>ΩHy + y>Ωy

= (β − By)> V −1 (β − By) + y>(E>ΩE)y (2.39)
= ‖β − By‖Vτδ

+ ‖Ey‖τδ .
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Here, (2.39) follows from Theorem 2.6 and

y>Ωy − y>ΩHy = y>(Ω − ΩH)y = y>ΩEy = (Ey)>Ω(Ey). (2.40)

The function qyδ(τ) = ‖Eτδy‖τδ has turned up a few times in previous sections.
Thus, the joint density of the random effects meta regression model is equal to

fβτδ(y) = t− k
2 (det Ω−1

τδ )− 1
2 exp

(
−1

2
‖β − Bτδy‖Vτδ

)
exp

(
−1

2
‖Eτδy‖τδ

)
(2.41)

In particular, this shows that Bτδy is a sufficient statistic for β in case δ and τ are
known parameters by the factorisation theorem. As said before, for any theoretical
considerations, it is reasonable to assume the heteroscedasticity δ to be known.
Thus, the conditional (with respect to δ) log-likelihood function can be written in
the following two forms, namely

l(β, τ |y, δ) = ln fβτδ(y)

= −1
2

(
k ln t +

∑
j

ln(τ + δj) + ‖Xβ − y‖2
τδ

)
(2.42)

= −1
2

(
k ln t +

∑
j

ln(τ + δj) + ‖β − Bτδy‖Vτδ
+ ‖Eτδy‖τδ

)
.

Likelihood methods aim to estimate the unknown parameters by maximising the
likelihood function conditional on the observed data y and any known parameters,
here δ. With regards to β, two cases can be distinguished: τ known and τ to be
estimated from the data as well.

Since the conditional likelihood l is smooth, a necessary condition for l to attain
its maximum, is that its gradient vanishes. In signs, ∇l = 0. This gradient is now
being computed.

Lemma 2.16 The partial derivatives of the log-likelihood function l(β, τ |y, δ)
with respect to β and τ are

a) Dβ l(β, τ) = − (Xβ − y)> ΩτδX,
b) Dτ l(β, τ) = 1

2
(
(Xβ − y)> Ω2

τδ (Xβ − y) − tr Ωτδ

)
.

In particular, ∇l(β, τ) =
(
Dβ l(β, τ), Dτ l(β, τ)

)
.

Proof. Equation (2.42) will be used for calculations. Then,
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Dβ l(β, τ) = −1
2

Dβ

(
(Xβ − y)> Ωτδ (Xβ − y)

)
= − (Xβ − y)> ΩτδDβ (Xβ − y)

= − (Xβ − y)> ΩτδX ∈ R1×p,

since Dβf(β)>Af(β) = 2f(β)>ADβf(β), and Dββ = Ip, and Dβ(Xβ − y) = X.
Moreover,

Dτ

(
(Xβ − y)> Ωτδ (Xβ − y)

)
= (Xβ − y)> (Dτ Ωτδ) (Xβ − y)

= − (Xβ − y)> Ω2
τδ (Xβ − y) , (2.43)

since Dτ

(
1

τ+δj

)
= − 1(

τ+δj

)2 for any j = 1, . . ., k and, therefore, Dτ Ωτδ = −Ω2
τδ.

Then, note that

Dτ

(
n∑

j=1
ln(τ + δj)

)
=

n∑
j=1

1
τ + δj

= tr Ωτδ (2.44)

Hence,

Dτ l(β, τ) = −1
2

(
Dτ

(∑
j

ln(τ + δj)

)
+ Dτ

(
(Xβ − y)> Ωτδ (Xβ − y)

))

= −1
2
(
tr Ωτδ − (Xβ − y)> Ω2

τδ (Xβ − y)
)

. (2.45)

�

Let (β̂, τ̂) be such that the gradient of l = l(β, τ) vanishes. In order to show
that l obtains an optimum, it is sufficient to prove that l is locally convex in a
neighbourhood of (β̂, τ̂). This can be checked by evaluating the Hessian matrix of l
at (β̂, τ̂) and testing whether this matrix is negative definite.

Lemma 2.17 The Hessian matrix of l is equal to

Hess l =
(

−X>ΩτδX X>Ω2
τδ (Xβ − y)

(Xβ − y)> Ω2
τδX 1

2 tr Ω2
τδ − (Xβ − y)> Ω3

τδ (Xβ − y)

)
.

In particular, this shows that Hess l is negative definite if and only if

det Hess l < 0. (2.46)
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Proof. The Hessian matrix of l is equal to

Hess l(β, τ) =


Dβ1β1 · · · Dβ1βp Dβ1τ

..

.
..
.

..

.

Dβpβ1 · · · Dβpβp Dβpτ

Dτβ1 · · · Dτβp Dττ

 l(β, τ). (2.47)

Now, by Lemma 2.16,

Dββl = Dβ

(
D>

β l
)

= −Dβ X>Ω (Xβ − y)

= −X>ΩX.

Also, (Dβ1τ , . . ., Dβpτ )> = (Dτβ1 , . . ., Dτβp) = Dτ Dβ, and since Dτ Ωτδ = −Ω2
τδ, it

follows that

Dτ Dβl = −Dτ

(
(Xβ − y)> ΩτδX

)
= (Xβ − y)> Ω2

τδX. (2.48)

Before evaluating Dττ , note again that Dτ tr Ω = Dτ
∑

j
1

τ+δj
= −

∑
j

1
(τ+δj)2 =

− tr Ω2, and Dτ Ω2 = −2Ω3, since Dτ
1

(τ+δj)2 = −2 1
(τ+δj)3 . Again by Lemma 2.16,

Dττ l = 1
2
(
Dτ

(
(Xβ − y)> Ω2

τδ (Xβ − y)
)

− Dτ (tr Ωτδ)
)

= 1
2

tr Ω2
τδ − (Xβ − y)> Ω3

τδ (Xβ − y) . (2.49)

Since X>ΩτδX is positive definite, all minors of Hess l up to p are negative. Hence,
Hess l is negative definite if and only if its determinant is negative. �

For any potential candidate (β̂, τ̂), the condition det Hess l < 0 needs to be
checked in order for (β̂, τ̂) to be a valid maximum likelihood estimate, (Viechtbauer,
2005).
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Corollary 2.18
a) Conditional on observed data y, known τ , and known δ, the likelihood

function of the random effects meta regression model is maximised for
the unique β that is a solution to the system of linear equations(

X>ΩτδX
)

· β = X>Ωτδy. (2.50)

b) Conditional on observed data y and known δ, a necessary condition for the
likelihood function of the random effects meta regression model to obtain
its maximum is that τ and β are solutions to the system of equations

β = Bτδy, (2.51)

τ =

∑
k
j=1

1
(τ+δj)2

(
(Xβ − y)2 − δj

)
tr Ω2

τδ

. (2.52)

The first equation (2.51) is a system of linear equations, the second (2.51)
is non-linear and can only be written implicitly.

Proof.
a) From Lemma 2.16a), Dβl(β) = 0 if and only if 0 = (Xβ − y)>ΩτδX =

β>X>ΩτδX − y>ΩτδX if and only if (X>ΩτδX)β = X>Ωτδy. As usual,
let V −1

τδ = (X>ΩτδX). Since X is of full rank, V −1 ∈ Gk and β = VτδX>Ωτδy =
Bτδy is a unique solution to this system of linear equations.

b) It is ∇l = 0 if and only if Dβl = 0 and Dτ l = 0. We have just seen above
that Dβl = 0 if and only if β = By. For the implicit formula for the hetero-
geneity, the following trick will be applied:

tr Ω =
∑

j

1
τ + δj

=
∑

j

τ + δj

(τ + δj)2

=
∑

j

τ

(τ + δj)2 +
∑

j

δj

(τ + δj)2

= τ tr Ω2 +
∑

j

δj

(τ + δj)2 .

Applying the above to Lemma 2.16b),
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Dτ l(β, τ) = 0 ⇐⇒ 0 = (Xβ − y)> Ω2
τδ (Xβ − y) − tr Ωτδ

⇐⇒ 0 = (Xβ − y)> Ω2
τδ (Xβ − y) − τ tr Ω2

τδ −
k∑

j=1

δj

(τ + δj)2

⇐⇒ τ =
(Xβ − y)> Ω2

τδ (Xβ − y) −
∑

k
j=1

δj

(τ+δj)2

tr Ω2
τδ

⇐⇒ τ =

∑
k
j=1

1
(τ+δj)2 (Xβ − y)2 −

∑
k
j=1

δj

(τ+δj)2

tr Ω2
τδ

⇐⇒ τ =

∑
k
j=1

1
(τ+δj)2

(
(Xβ − y)2 − δj

)
tr Ω2

τδ

�

An important note for the implementation of Corollary 2.18: Never ever man-
ually invert a matrix in any computation ever. Equation (2.51) is Equation (2.50)
solved for β. A mathematician may usually be trained to think of β as the result of
the linear operator Bτδ acting on y. Instead, think of β as a vector of coefficients
that expands the vector X>Ωτδy uniquely in the basis consisting of the columns
of (X>ΩX). In other words, think of V = (X>ΩX)−1 as a matrix of basis transfor-
mation. Both approaches yield the same solution to the same problem. The former,
namely By, may be more appealing, the latter, however, should always be used
for any algorithmic computation. Evaluating By is computationally inefficient and
numerically unstable. It is strongly suggested to always use a linear solver for linear
equations instead. For example, when using the statistical software environment R,
use

β := solve
(
V −1, X>Ωτδy

)
(2.53)

for calculating β.
Note that the solution of the above equations may yield negative values for τ . If

this is the case, it should be checked if the likelihood function attains its maximum
on the boundary {(β>, τ)> : τ = 0}. Restricting l(β, τ) to this boundary subspace
makes the maximisation problem easier by loosing one dimension: In this case, the
solution for β is simply (2.51) and setting τ = 0.

2.10 Likelihood function of a contrast and its derivatives
Section 2.6 introduced the notion of an error contrast. It was mentioned that in-
ference on the variance components can be derived by studying the distribution
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of a full rank error contrast applied to the response vector, here Y . In this sec-
tion, the likelihood function of K>Y will be discussed for a full rank error con-
trast matrix K ∈ Rk×k−p. Recall that a vector u ∈ R is called an error contrast
if E(u>Y ) = 0. Hence, K is chosen such that any contrast u lies in the column space
of K and the columns of K form a basis of the space of all error contrasts, namely the
kernel of X>. Since Y ∼ Nk

(
Xβ, Ω−1

τδ

)
, it follows that K>Y ∼ Nk−p

(
0, K>Ω−1

τδ K
)
.

The density function of U = K>Y is, thus,

fτδ(u) = t− k−p
2 det

(
K>Ω−1

τδ K
)− 1

2 exp
(

−1
2

u>(K>Ω−1
τδ K)−1u

)
. (2.54)

In particular, by Theorem 2.11,

fτδ(K>y) = t− k−p
2 det

(
K>Ω−1

τδ K
)− 1

2 exp
(

−1
2

y>K(K>Ω−1
τδ K)−1K>y

)
= t− k−p

2 det
(
K>Ω−1

τδ K
)− 1

2 exp
(

−1
2

qyδ(τ)
)

.

Therefore,

l(τ |y, δ) = −1
2
(
(k − p) ln t + ln det

(
K>Ω−1

τδ K
)

+ qyδ(τ)
)

.

Since the regression coefficients β are nuisance to the estimation of the heterogene-
ity τ , this likelihood can be used for the estimation of τ that is not confined by an
estimation of β. Since K>Ω−1K ∈ Gk−p and Dτ Ω−1 = Ik,

Dτ det
(
K>Ω−1K

)
= det

(
K>Ω−1K

)−1 · tr
(
K>Ω−1KDτ

(
K>Ω−1K

))
= det

(
K>Ω−1K

)−1 · tr
(
K>Ω−1KK>Dτ Ω−1K

)
= det

(
K>Ω−1K

)−1 · tr
(
K>Ω−1KK>K

)
= det

(
K>Ω−1K

)−1 · tr
(
Ω−1KK>KK>) .

Hence, by Lemma 2.12,

Dτ l(τ) = Dτ ln det
(
K>Ω−1K

)
+ Dτ qy(τ)

=
det
(
K>Ω−1K

)−1 tr
(
Ω−1KK>KK>)

det
(
K>Ω−1K

) − y>Gy,

=
tr
(
Ω−1KK>KK>)

det2 (K>Ω−1K
) − y>Gy,

for the positive definite G := A>A ∈ Gk with A := K
(
K>Ω−1

τδ K
)−1

K>.
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There is a discussion when, where, and whether to use a conditional likelihood
approach for the estimation of variance components together with a strong pro
argument in (Harville, 1977).

2.11 Independence of projected random vectors
For known heterogeneity τ and heteroscedasticity δ, the functions y 7→ ‖Eτδy‖2

τδ and
y 7→ ‖β − Bτδy‖2

Vτδ
are statistics of the random Y . The reformulation of the density

function of the random effects meta regression model has already shown that these
statistics play an important role here. They are both quadratic forms in y. The next
section shall study the distributions of ‖EτδY ‖2

τδ and ‖β − BτδY ‖2
Vτδ

. The following
lemma states a result concerning their independence. It shows that the estimators
of b>

i Y of each βi are independent of the residual vector EY where b>
i denotes the

ith row of B. Hence, b>
i y = (By)i.

Lemma 2.19 If Y ∼ Fβτδ follows the random effects meta regression model,
then all linear forms in BτδY are independent of ‖EτδY ‖2

τδ. In signs,

∀i. (BτδY )i ⊥⊥ ‖EτδY ‖2
τδ . (2.55)

Proof. This is a consequence of Theorem 4.17 in (Graybill, 1961). �

2.12 Distributions of residual squared lengths
Let Y denote a k-variate Gaussian distributed random vector with sample space Rk.
The previous sections studied the moments of quadratic forms qA(Y ) for A ∈ Rk×k.
This section shall study the distributions of ‖EτδY ‖2

τδ. The standard literature
usually only considers the case in which the sample space is mapped to subspaces
by orthogonal projections. If this is the case, theorems such as Theorem 2.20 from
(Graybill, 1961) usually play important roles in the development of the theory of
linear models and are used to deduce the distribution of the respected quadratic
forms.
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Theorem 2.20 (Distributions of orthogonal projections) Let A ∈ Rk×k

be symmetric and let Y ∼ Nk(θ, V ) for some vector θ ∈ Rk and some positive
definite unit V ∈ Gn.

a) Let θ = 0 and V = Ik. Then A is idempotent and of rank r if and only if

qA(Y ) ∼ X2
r . (2.56)

b) Let V = Ik. Then A is idempotent and of rank r if and only if

qA(Y ) ∼ X2
r

(
1
2

qA(θ)
)

. (2.57)

c) Let V = λIk for some λ > 0. Then A is idempotent and of rank r if and
only if

qA(Y ) ∼ X2
r

(
1

2λ
qA(θ)

)
. (2.58)

Above, X2
r(θ) shall denote the distribution of a non-centred chi-squared distrib-

uted random element with r degrees of freedom and non-centrality parameter θ.
Now, let Y follow the distribution of a random effects meta regression model.

Then even though none of the above results can be applied to Y directly, a result
about the distribution of qy(Y ) can nevertheless be proven.

Corollary 2.21 Let Y ∼ Nk(Xβ, [τ ]k + [δ]) for some β ∈ Rp, some full rank
design matrix X ∈ Rk×p, and fixed τ ≥ 0 and δ > 0. Then

a) ‖β − BτδY ‖2
Vτδ

∼ X2
p.

b) ‖EτδY ‖2
τδ ∼ X2

k−p.
c) ‖β − BτδY ‖2

Vτδ
+ ‖EτδY ‖2

τδ ∼ X2
k.

Proof.
a) Since V − 1

2 (BY − β) ∼ Np(0, Ip), this yields

(BY − β)> V −1 (BY − β) ∼ X2
p . (2.59)

b) By Theorem 2.11,

‖EτδY ‖2
τδ = qy(τ) = y>K(K>Ω−1

τδ K)−1K>y. (2.60)
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Equation (2.54) has shown that K>Y ∼ Nk−p

(
0, K>Ω−1

τδ K
)
. Form this it

follows directly that

Y >K(K>Ω−1
τδ K)−1K>Y ∼ X2

k−p . (2.61)

c) The model assumption is Y ∼ Nk(Xβ, Ω−1
τδ ). Thus, Ω

1
2
τδ(Y −Xβ) ∼ Nk(0, Ik)

and, therefore, (Y − Xβ)′Ωτδ(Y − Xβ) ∼ X2
k.

�

Lemma 2.22 allows to construct confidence intervals for the location parame-
ters βi, i = 1, . . ., p. In Lemma 2.19, it was shown that each linear form in BτδY
is independent of qY (τ). Let Td denote the centred Student’s t-distribution with d
degrees of freedom.

Lemma 2.22 Let Y ∼ Nk(Xβ, Ω−1
τδ ) for some β ∈ Rp, some full rank design

matrix X ∈ Rk×p, and fixed τ ≥ 0 and δ > 0. Then,

biY − βi√
vi

qY (τ)
k−p

∼ Tk−p, (2.62)

where vi denotes the ith element of (v1, . . ., vk) = diag Vτδ.

Proof. By Lemma 2.19, Lemma 2.21, and since biY ∼ N(βi, vi). �

2.13 Extension: Mean responses as summary statistics
In cases in which it is not possible to establish within-study variabilities trustworthy
enough, one may not feel comfortable enough to assume the δj ’s to be known.
One nevertheless has to use study a specific estimator Dj for each δj . Usually,
one assumes the Dj ’s to be at least consistent for each δj and sets δ̂j := Dj for
all j = 1, . . ., k in the estimation process.

Consider the case in which each effect measure Yj |θj denotes the mean response
of study j with expected value θj and variance equal to

δj :=
σ2

j

nj
. (2.63)

Here, σ2
j denotes the population variance and nj the number of subjects in the jth

study. Assuming again Gaussian responses, model (2.2)+(2.3) can be restated as
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Yj |θj ∼ N

(
θj ,

σ2
j

nj

)
, (2.64)

θj ∼ N
(

x>
j β, τ

)
. (2.65)

Let Sj denote the sum of squares of the jth study, in signs: Sj =
∑

i (Yji − Yj)2,
where each Yjl denotes the lth individual response in the jth study. Then Dj :=

Sj

nj(nj−1) is an estimator for δj , since E(Sj) = σ2
j (nj − 1). Also,

Sj

σ2
j

∼ X2
nj−1, for j = 1, . . ., k, (2.66)

since N is infinitely divisible. From (2.66) follows

Dj =
Sj

nj(nj − 1)
=

σ2
j

nj
· 1

nj − 1
·

Sj

σ2
j

=
δj

nj − 1
· Kj , (2.67)

where Kj ∼ X2
nj−1 . Thus, if the δj are truly assumed to be unknown, the underlying

model is in fact

Yj |θj ∼ N (θj , Dj) , (2.68)

θj ∼ N
(

x>
j β, τ

)
, (2.69)

Kj ∼ X2
nj−1, (2.70)

Dj =
δj

nj − 1
· Kj . (2.71)

The (Yj , Dj), j = 1, . . ., k, denote the summary statistics of the jth study. This
model, however, is no longer identifiable.

2.14 Extension: Binomial responses, risk ratios, and their
limits

This extension to the random effects meta regression model is applied to count
data that comes in the form of the example introduced in Section 1.2. Thompson
and Sharp (1999) suggested a binomial-Gaussian hierarchical model description for
modelling data such as the BCG vaccine efficacy data in a Bayesian framework. The
modelling strategy of this section is loosely based on their idea.

The example introduced in Section 1.2 consisted of data of clinical trials in which
group assignments were highly unbalanced. A measure of unbalance b was defined
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when the data set was introduced. Let v denote the number of vaccinated subjects
within a particular trial, and let s be its total study size. Let ¬v = s − v. Then the
measure of unbalance was defined as

b := v − ¬v

v + ¬v
= v − (s − v)

s
= 2v − s

s

⇐⇒ 2v = sb + s = s(b + 1)

⇐⇒ v = s(b + 1)
2

.

Given parameters b = (b1, . . ., bk) ∈ (0, 1)k and s = (s1, . . ., sk) ∈ Nk, define

vj =
(

sj(bj + 1)
2

)
N

, ¬vj = sj − vj .

Here, (c)N shall denote c rounded to the nearest integer. For a full rank design
matrix X ∈ Rk×p with rows x>

j , a vector β ∈ Rp, and a parameter of heterogene-
ity τ > 0, define the following hierarchical binomial-Gaussian model:

nj1 ∼ Binom (vj , pj) , nj2 = vj − nj1, (2.72)
mj1 ∼ Binom (¬vj , qj) , mj2 = ¬vj − mj1, (2.73)

qj = some fixed number in (0, 1), (2.74)
pj = qj · exp (Yj) , (2.75)

Yj = x>
j β + ej , (2.76)

ej ∼ N(0, τ). (2.77)

Above, Binom(n, p) denotes the distribution of a binomial distributed random ele-
ment of sample size n and success probability p. By (2.75), each pj , qj and Yj stand
in the relation

Yj = ln (pj) − ln (qj) . (2.78)

It is well known that p̂j = nj1
nj1+nj2

and q̂j = mj1
mj1+mj2

are estimates of pj and qj , and

√
vj (p̂j − pj) |pj N (0, pj(1 − pj)) ,

√¬vj (q̂j − qj) |qj N (0, qj(1 − qj)) .

A straight forward application of the delta method yields that
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√
vj (ln(p̂j) − ln(pj)) |pj N

(
0,

1 − pj

pj

)
,

√¬vj (ln(q̂j) − ln(qj)) |qj N

(
0,

1 − qj

qj

)
.

This shows that the logarithm of the relative risk, namely ln (p̂j) − ln (q̂j), has
expectation x>

j β and its variance is approximately

dj =
1 − pj

vjpj
+

1 − qj

¬vjqj
. (2.79)

This suggests to define

yj := ln
(

nj1
nj1 + nj2

)
− ln

(
mj1

mj1 + mj2

)
(2.80)

as the effect size of the meta regression and to estimate its variance as

d̂j :=
1 − p̂j

vj p̂j
+

1 − q̂j

¬vj q̂j

=
1 − p̂j

nj1
+

1 − q̂j

mj1

= 1
nj1

− 1
nj1 + nj2

+ 1
mj1

− 1
mj1 + mj2

.

In the case of the BCG vaccine efficacy data, the question is whether the dis-
tance of a clinic to the equator has a linear influence on the logarithm of the
relative risk. Regressing on absolute latitude results in setting xj = (1, aj)> and
setting nj1, nj2, mj1, mj2, and aj to the values in Table 1.1 in the fashion:

Trial Author Year Vaccinated Not vaccinated Absolute
Diseased Not diseased Diseased Not diseased Latitude

j . . . . . . nj1 nj2 mj1 mj2 aj





3 Theoretical background about generalised in-
ference

3.1 Introduction
One aim of this text is to study whether constructions based on generalised inference
principles may improve the performance of statistical estimators for the random
effects meta regression model for small number of studies.

Analogue to Bayesian methods, generalised inference has the goal of constructing
confidence sets which are the result of exact probability statements. In contrast
to Bayesian methods, however, generalised methods dismiss the use of priors. Of
course, the presence of nuisance parameters, here τ and δ, complicates matters.
Tsui and Weerahandi (1989) advertised an approach to carry out such constructions
which they coined with the label generalised inference. The paper was followed by
an extension of the principle to confidence intervals in (Weerahandi, 1993), and the
book (Weerahandi, 1995). Hannig (2009) was able to show that the generalised
inference principle is in fact related to the fiducial argument by Fisher (1935) and
that both can be unified into, what he calls, the generalised fiducial recipe.

3.2 Basic concepts of generalised inference for confidence
intervals

The definitions of this section are more or less directly taken form (Weerahandi,
1995). As this whole chapter is of more general nature and, thus, not particularly
concerned with the random effects meta regression model itself, the notation will be
slightly altered to reflect the changed emphasis: the random vector capturing the
data generating processes will be denoted by X, the parameter of interest by θ, and
the nuisance parameter by δ.

So, let us assume that a continuous random vector X is given which distribution
belongs to a family of distributions F indexed by a parametrisation F with convex
and closed index sets Θ ⊆ R and Δ ⊆ Rk,

F: Θ × Δ → F, (θ, δ) 7→ Fθδ . (3.1)

Hence, X ∼ Fθδ for some (θ, δ) ∈ Θ × Δ. It is of interest to construct confidence
intervals for θ in the presence of the nuisance parameter δ. The problem is tackled
by defining a (generalised) pivotal quantity R for θ. Tsui and Weerahandi (1989)
call the pivot R generalised, since the value of R is not only allowed to depend on
the parameters (θ, δ) but also on an observed data point x of X.
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Definition 3.1 Let R = R(X, x, θ, δ) be a real valued function. The function R
is called a generalised pivotal quantity if and only if

a) R(x, x, θ, δ) does not depend on the nuisance parameter δ. The value

r(x, θ) := R(x, x, θ, δ) (3.2)

is called the observed value of R.
b) As a function in θ, the observed value r(x, ·): Θ → R is monotone and

continuous.
c) R(X, x, θ, δ) as a function in X is a statistic of X for any given x, θ and δ.

In case of X ∼ Fθδ, the distribution of R(X, x, θ, δ) does not depend on θ
nor δ.

The above axioms stipulated for a generalised pivotal quantity are of technical
character. Property a) assures that r(x, θ) can be calculated for any given θ without
the knowledge of the nuisance parameter δ, property c) assures that it is possible
to calculate probabilities of the form P (R ∈ C) for any C ∈ Bor(R), whereas
property b) assures that the inferred confidence set is a genuine interval in R.

Let R(x) denote the distribution of R(X, x, θ, δ) and let r(x)
γ be its γ-quantile for

any γ ∈ (0, 1). The superscript (x) shall stress that R(x) and r(x) depend on the
observed data x. For γ ∈ (0, 1

2) and any observed x, it is

Pθδ

(
r
(x)
γ
2

≤ R (X, x, θ, δ) ≤ r
(x)
1− γ

2

)
= 1 − γ. (3.3)

This is what is called an extreme region of a pivotal quantity R and should motivate
the next definition.

Definition 3.2 Let (γ, x) 7→ Cγ(x) be such that each Cγ(x) is a closed con-
nected interval in R for all observable x, and let R be a generalised pivotal
quantity. The sequence

(
Cγ(x)

)
γ∈(0,1) is called a family of extreme regions

for R in x if and only if

Pθδ

(
R (X, x, θ, δ) ∈ Cγ(x)

)
= 1 − γ (3.4)

for all γ. If this is the case, the (genuine) interval

Iγ(x) := {θ : R(x, x, θ, δ) ∈ Cγ} = {θ : r(x, θ) ∈ Cγ} (3.5)

is called a generalised (1 − γ)-confidence interval for θ.
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If R(X, x, θ, δ) is a generalised pivotal quantity, then the probability in (3.4)
neither depends on θ nor δ. From (3.3) follows that([

r
(x)
γ
2

, r
(x)
1− γ

2

])
γ∈(0,1)

(3.6)

is a family of extreme regions for R. Hence,

Iγ(x) =
{

θ : r(x, θ) ∈
[
r
(x)
γ
2

, r
(x)
1− γ

2

]}
(3.7)

is a (1 − γ)-confidence set for θ. Since r(x, θ) is monotone and continuous in θ, the
set in (3.7) is a connected and closed genuine interval.

As an example, consider the case in which the observed value of R is simply equal
to θ itself, in signs: r(x, θ) = θ. Then the extreme region[

r
(x)
γ
2

, r
(x)
1− γ

2

]
(3.8)

itself already defines a generalised (1 − γ)-confidence interval for θ. In fact, without
loss of generality, it can always be assumed that this is the case as otherwise one
may replace R(X, x, θ, δ) by R(X, x, θ, δ) − R(x, x, θ, δ) + θ. It can also be assumed
without loss of generality that r(x, ·) is monotone increasing as otherwise one can
always replace R(X, x, θ, δ) by its negative: −R(X, x, θ, δ).

3.3 Higher dimensions: generalising generalised inference
Definition 3.1 as defined by Weerahandi (1995) is sufficient to define generalised
confidence intervals for each of the regression coefficients βi, i = 1, . . ., p, of the
random effects meta regression model. The construction is laid out in Chapter 5,
and a study of the performance of these estimators is studied in Section 5.6. If it
is possible to construct confidence intervals for each single βi, it is straight forward
to construct confidence intervals for all βi simultaneously meeting a given overall
confidence: setting each individual confidence level to 1 − γ

p , the overall confidence
will be equal to or greater than 1 − γ. This is known as the Bonferroni correction.
Doing so, one has in fact constructed a confidence cuboid for β in Rp. Sadly, this
higher dimensional confidence set is very conservative and, when p is large, of little
practical use.

In this section, let X be a continuous random vector which distribution belongs
to a family of distributions F indexed by a parametrisation F with convex and closed
index sets Θ ⊆ Rp and Δ ⊆ Rk,

F: Θ × Δ → F, (θ, δ) 7→ Fθδ . (3.9)
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The set-up is, thus, the same as in the previous section, only that θ now lives in a
higher dimensional space. Hence, X ∼ Fθδ for some (θ, δ) ∈ Θ × Δ.

The goal, now, is to construct (generalised) confidence sets in Rp. However,
property c) of Definition 3.1 is a problem as there exists no canonical order on Rp

for p > 1. Hence, monotonicity as used in Definition 3.1 makes little sense in higher
dimensions. When it comes to confidence sets, the adequate generalisation of (one
dimensional) intervals living R are ellipses in R2 or, more general, ellipsoids in Rp,
p > 2. In classical statistical theory, ellipsoids occur naturally when constructing
confidence sets for parameter vectors in higher dimensions as they are of minimal
Lebesgue measure in most applications.

On the basis of ellipsoids lie quadratic forms, as they have already been discussed,
or, more generally, polynomials of degree 2. As no ambiguity can occur, no difference
will be made notationally between a polynomial q ∈ R[θ] and its induced polynomial
map q:Rp → R. Thus, the induced quadratic form of any homogeneous degree 2
polynomial q will also be denoted as q, just as it was the case in previous chapters.

Let q be a real polynomial in θ = (θ1, . . ., θp), in signs: q ∈ R[θ]. Every degree 2
polynomial q can be written in the form

q(θ) = θ>Aθ + bθ + r (3.10)

where A = (aij) is a p × p matrix, b ∈ Rp and r ∈ R. In (3.10), the aij are
the coefficients of the monomials θiθj of degree 2, the bi are the coefficients of the
monomials θi of degree 1, and r is the coefficient of the unique monomial of degree
0. Note that A in (3.10) can be assumed to be symmetric as otherwise the matrix
can be replaced by 1

2(A + A>), which yields the same polynomial. Let us, therefore,
assume without loss of generality that A is symmetric.

Interest lies particularly in polynomials in which A is not only symmetric but
also positive definite. Assume that q can be written in the form

q(θ) = (θ − c)> A (θ − c) (3.11)

= θ>Aθ − θ>Ac − c>Aθ + c>Ac

= θ>Aθ − 2c>Aθ + c>Ac

for some fixed c ∈ R. In case c = 0, then q is homogeneous, i.e., all terms in q
are monomials of the same degree. The induced polynomial map of a homogeneous
polynomial of degree 2 is a quadratic form. If q is of the form (3.11) with posi-
tive definite A, then q itself is called positive definite. Conveniently, every positive
definite q defines a genuine ellipsoid in Rp as for any l ∈ R, l > 0 the preimage

q−1(l) = {θ : q(θ) = l} (3.12)
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is a non-empty elliptic surface in Rp with centre c. Let v1, . . ., vp and λ1, . . ., λp be
the eigenvectors and eigenvalues of A respectively. Then the elliptic surface q−1(l)
has the principle components v1, . . ., vp and the equatorial radii

√
l

λ1
, . . .,

√
l

λp
.

If r, l ∈ R and r < l, then q−1(r) lies entirely within q−1(l) having the same
centre and principle components. In particular, q−1([0, l]) is the closed solid ellipsoid
having q−1(l) as its surface.

If q is a homogeneous positive definite polynomial of degree 2, then

b(θ, ι) := 1
2
(
q(θ + ι) − q(θ) − q(ι)

)
, (3.13)

as a map from (Rp)2 to R, defines a symmetric positive definite bilinear form on Rp

as the induced map of q is a positive definite quadratic form. If q(θ) = θ>Aθ,
then b(θ, ι) = θ>Aι. In other words, b is an inner product making (Rp, b) into an
inner product space.

Definition 3.3 Let p > 1 and R = R(X, x, θ, δ) be a real valued function.
The function R is called a generalised pivotal quantity for θ if and only if

a) the observed value R(x, x, θ, δ) does not depend on the nuisance parame-
ter δ. For any δ, let r(x, θ) := R(x, x, θ, δ).

b) For all x, the observed value r(x, θ) as a function in θ can be written as
a positive definite quadratic form qx ∈ R[θ], in signs: qx(θ) = r(x, θ).

c) If X ∼ Fθδ, then R(X, x, θ, δ) as a function in X is a random variable
which distribution is free of θ and δ.

Since q is positive definite, all observed values r(x, θ) lie in R≥0. Again, let R(x)

denote the distribution of R(X, x, θ, δ) and let r
(x)
γ denote its γ-quantile. Then for

all x and γ ∈ (0, 1)

P
(

R (X, x, θ, δ) ≤ r
(x)
1−γ

)
= 1 − γ. (3.14)

Hence,

Iγ(x) :=
((

−∞, r
(x)
1−γ

])
γ∈(0,1)

(3.15)

is a family of extreme regions of R in the sense of Definition 3.2. Thus, (3.15) defines
a generalised (1 − γ)-confidence set Iγ(x) for θ. Since r(x, θ) ≥ 0 for all θ,

Iγ(x) =
{

θ : r(x, θ) ∈
[
0, r

(x)
1−γ

]}
= q−1

x

([
0, r

(x)
1−γ

])
. (3.16)
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Since qx is a positive definite quadratic form, this preimage Iγ(x) is a solid closed
ellipsoid in Rp.

3.4 Discussion
As pointed out at the beginning of this chapter, the generalised inference principle
has certain analogies to inference in the Bayesian framework. Both frameworks
result in a distribution on the parameter space. In the Bayesian framework, this
distribution is usually called the posterior distribution. As Cameron and Trivedi
(2005) point out, Bayesian methods can produce entire estimates of this distribution.
This, too, is the case for generalised inference methods. As a result, the choice of
which moment or which quantile of the parameter distribution should be reported
is left until to the end of the analysis. Confidence intervals for the parameters of
interest are only one choice. In particular, there is no need for separate estimators
for the mean, the variance, the mode, the median, or other moments and quantiles
of the distribution.

In the upcoming simulation studies, point estimators based on the median of the
constructed generalised pivotal distributions are tested against the performance of
other more commonly used point estimators for the heterogeneity and the regression
coefficients in the random effects meta regression model. Other choices are obviously
also possible such as the mode or the mean of the respected distributions.



4 Inference on the heterogeneity parameter

4.1 Introduction
Estimating the variance components of a model is an integral part in any statistical
inference. In random effects meta regression, accurate estimation of the heterogene-
ity parameter is of particular importance. For example, the decision whether to
analyse data using a meta regression model, instead of a meta analysis model, may
be based on how much the magnitude of the respected heterogeneity parameters
can be reduced by using the former model. In the meta regression context this is
of particular importance. One may say, the goal of a meta analysis is the question
whether there exists an effect. The goal in performing a meta regression is to study
how a covariate influences the measured effect. The question is not if but how. If
the heterogeneity component τ can greatly be reduced by introducing a covariate
to the meta regression model, this can be interpreted as a sign that the covariate
should indeed be considered for data analysis.

As there exists no non-negative unbiased estimator for τ , (LaMotte, 1973), a
variety of different choices for estimating the heterogeneity have been proposed in
the literature. Six of these estimators will be discussed in the following. Most
of these where originally proposed for estimating the heterogeneity in the random
effects meta analysis model (where p = 1 and β ∈ R), namely the Hedges es-
timator, the DerSimonian–Laird estimator, the Sidik–Jonkman estimator, and the
Mandel–Paule estimator. Also, the maximum likelihood estimator and the restricted
maximum likelihood estimator are presented. Additionally, iterated versions of the
DerSimonian–Laird and Sidik–Jonkman estimators are discussed. For the conven-
tional random effects meta analysis model, some variance and bias estimates for the
heterogeneity estimators have been established in (Viechtbauer, 2005).

4.2 Methods of moments
The Hedges, the DerSimonian–Laird, the Mandel–Paule, and Sidik–Jonkman esti-
mators are method of moments estimators. Thus, each of these are essentially based
on the same idea. The goal in this section is to put each of these estimators into
a common context and to integrate each in the general theory. Fortunately, Corol-
lary 2.8 will be doing all the hard work for us in this section.

Assume that Y ∼ Fβτδ follows a random meta regression model. For given τ ′ > 0
and δ′ > 0, let E′ = Eτ ′δ′ . Then first note that the residual projection E′Y is a
consistent estimator for E (E′Y ), and E′y is an estimate of E(E′Y ). Since the
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squared norms ‖·‖2 and ‖·‖2
τ ′δ′ are continuous mappings, it follows by the contin-

uous mapping theorem that also ‖E′Y ‖2 and ‖E′Y ‖2
τ ′δ′ are consistent estimators

for E
(
‖E′Y ‖2) and E

(
‖E′Y ‖2

τ ′δ′
)

respectively.
Suppose δ is known or that at least a trustworthy estimate, say δ̂, is given for δ.

Then each part of Corollary 2.8 consists of an equation in the unknown true hetero-
geneity parameter τ . Taking a “good guess”, say τ ′, for τ , one defines E′ = Eτ ′δ̂.
Then using this estimate (namely E′ for E), one uses the equations in Corollary 2.8
and solves for τ . This yields a new guess for τ̂ . One could iterated this procedure
indefinitely till the sequence of τ̂ ’s converges or stop at a predefined point. The
literature usually stops after one step of the iteration process.

Note that when studying the following methods of moments estimators, no para-
metric assumptions are made about the distribution of the study effects Y . In this
section, it will only be assumed that the first two moments of Y follow the structure
of a random effect meta regression model as defined in Definition 2.1, which is given
by its mean and variance-covariance structure:

Y ∼ (Xβ, [τ ]k + [δ]). (4.1)

Hedges type estimators

As mentioned before, Corollary 2.8 will be doing the hard work in this section. The
Hedges type estimator is based on Corollary 2.8a). Let E′ = Eτ ′δ′ be a residual
projection for some given τ ′ and δ′. Solving 2.8a) for τ suggests the method of
moments estimator

τ̂ =

(
‖E′y‖2 − tr(E′[δ̂])

k − p

)
≥

. (4.2)

Here, (c)≥ shall denote c truncated at 0 form below: (c)≥ = max(0, c). The trunca-
tion is necessary as otherwise the above estimate may yield negative values in any
practical application. This has the side effect of τ̂ becoming biased. The Hedges
type estimator follows from (4.2) by applying the orthogonal projection

E01 = Ik − X(X>X)−1X> (4.3)

for E′.
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Definition 4.1 (Hedges type estimator) Let Y follow the random effects
meta regression model with heterogeneity τ and heteroscedasticity δ. Let δ̂ be
an estimate of δ and let E′ = E01. The method of moments estimator

τ̂HE =

(
‖E01y‖2 − tr(E01[δ̂])

k − p

)
≥

(4.4)

is called a Hedges type estimator for the heterogeneity τ .

If p = 1 and X = 1k, then the random effects meta regression model reduces to
the random effects meta analysis model, in which case τ̂HE reduces to the hetero-
geneity estimate introduced by Hedges (1983).

DerSimonian–Laird type estimators

The positive definite variance-covariance matrix of a non-degenerate multivariate
Gaussian distribution defines an inner product on the sample space. In the case of
the random effects meta regression model, the product is given by

〈x, y〉τδ = x>([τ ]k + [δ])−1y = 1
τ

〈x, y〉2 +
∑

j

xjyj

δj
. (4.5)

The latter summand being a weighted sum. Assume that δ is known and the hypoth-
esis τ = 0 is supposed to be tested. This would suggests to work in the Euclidean
space (Rk, b[δ]), in which

b[δ]−1(x, y) = x>[δ]−1y =
∑

j

xjyj

δj
(4.6)

defines the inner product between x, y ∈ Rk. In particular, ‖·‖0δ defines the induced
norm on Rk.

Lemma 4.2 Let Y ∼ (Xβ, [τ ]k + [δ]) for some β ∈ Rp, some full rank design
matrix X ∈ Rk×p, and fixed τ ≥ 0 and δ > 0. Let E′ = E0δ. Then

Eτδ

(
‖E′Y ‖2

0δ

)
= τ · tr

(
E′>[δ]−1)+ k − p. (4.7)

Proof. Setting τ ′ = 0 in Corollary 2.8c) yields
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Eτδ

(
‖E′Y ‖2

0δ

)
= τ tr

(
E′>[δ]−1)+ tr

(
E′[δ]−1[δ]

)
= τ tr

(
E′>[δ]−1)+ tr

(
E′>)

= τ tr
(
E′>[δ]−1)+ k − p

�

The DerSimonian–Laird type estimator follows from applying the projection

E0δ̂ = Ik − X(X>[δ̂]−1X)−1X>[δ̂]−1 (4.8)

to E′ for a heteroscedasticity estimate δ̂ and solving (4.7) for the unknown τ . Again,
this suggests a method of moments estimator.

Definition 4.3 (DerSimonian–Laird type estimator) Let Y follow the
random effects meta regression model, i.e., Y ∼ (Xβ, [τ ]k + [δ]) for some β ∈
Rp, some full rank design matrix X ∈ Rk×p and fixed τ ≥ 0 and δ > 0. Let δ̂
be an estimate of δ. The method of moments estimator

τ̂DL =

‖‖‖E0δ̂y‖‖‖2 − k + p

tr
(

E>
0δ̂

[δ̂]−1
)


≥

(4.9)

is called a DerSimonian–Laird type estimator for the heterogeneity τ .

Again, the truncation in (4.9) is necessary as otherwise the estimate might yield
negative values. Thus, also τ̂DL is biased. If p = 1 and X = 1k, the estimate τ̂DL

reduces to the estimate in (DerSimonian and Laird, 1986) for the random effects
meta analysis model.

Replacing E0δ̂ with Eτ̂DLδ̂ in (4.9) allows the iteration of the above method. The
convergence of this sequence of τ -estimates might be worth studying, and, if its limit
exists, the properties of its resulting estimator.

Mandel–Paule type estimators

Section 2.6 defined the function

τ 7→ qy(τ), qy(τ) := ‖Eτδy‖2
τδ ,

and it was shown in Corollary 2.13 that this function is strictly monotone decreasing
with limit point 0. By Corollary 2.8b),
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E
(
‖Eδτ Y ‖2

τδ

)
= k − p. (4.10)

The Mandel–Paule type estimator is the unique solution to the equation ‖Eτδy‖2
τδ =

k − p. The inverse function of qy was defined as

py(η) =
{

q−1
y (η) : 0 < η < qy(0)

0 : otherwise

for η ∈ R.

Definition 4.4 (Mandel–Paule type estimator) Let Y ∼ (Xβ, [τ ]k + [δ])
for some β ∈ Rp, some full rank design matrix X ∈ Rk×p, and fixed τ ≥ 0
and δ > 0. Let δ̂ be an estimate of δ. The method of moments estimator

τ̂MP = py(k − p) (4.11)

is called a Mandel–Paule type estimator for τ .

In the reduced case p = 1, β ∈ R, and X = 1k, this estimator was first suggested
for a special case of the random effects meta analysis model in (Mandel and Paule,
1970) and then in its general form in (Paule and Mandel, 1982).

When qy(0) ≤ k − p, which can happen in any practical application, then it
follows that py(k − p) = 0 by definition. Hence, in this case the Mandel–Paule type
estimator will yield τ̂MP = 0. In a certain way, this resembles the truncation by 0
as in the previous method of moments estimators: it represents a discontinuity in
the estimation.

Sidik–Jonkman type estimators
The Sidik–Jonkman type estimator is based on a different parametrisation of the
meta regression model. Define ξ := 1

τ δ = (δ1
τ , . . ., δk

τ )>. Then

[τ ]k + [δ] = τ

(
Ik + 1

τ
[δ]
)

= τ (Ik + [ξ]) = τ · [1k + ξ] . (4.12)

Here, Ik shall denote the unity in Gk, and 1k the k-vector of 1’s, i.e., 1k ∈ Rk and
1k = (1, . . ., 1). In the Sidik–Jonkman approach the variance components of the
random effects meta regression model are parametrised by (τ, ξ) instead of (τ, δ).
This still makes ξ > 0 a nuisance parameter. Assuming ξ known, this suggests to
consider the inner product induced by b[1k+ξ]−1 on Rk. Note that [1k + ξ] = Ω−1

1ξ .
Thus, in the notation for quadratic forms and norms adopted so far, 〈·, ·〉1ξ and ‖·‖1ξ

define the corresponding inner product and induced norm on Rk.
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Lemma 4.5 Let Y ∼ (Xβ, τ [1 + ξ]) for some β ∈ Rp, some full rank design
matrix X ∈ Rk×p, and τ ≥ 0 and ξ > 0. Then

Eτδ

(
‖‖‖E1ξY ‖‖‖2

1ξ

)
= τ(k − p). (4.13)

Proof. From Theorem 2.7 follows that

Eτδ

(
‖‖‖E1ξY ‖‖‖2

1ξ

)
= tr

(
E>

1ξ[1 + ξ]−1E1ξτ [1 + ξ]
)

= tr
(

τE>
1ξ[1 + ξ]−1E1ξ[1 + ξ]

)
= tr τ

(
E>

1ξ

)
= τ(k − p).

�

Assuming δ known, ξ = ξ(τ) can be understood as a function of τ . For ξ evaluated
at some “good guess”, say τ ′, and solving (4.13) for τ yields the basis of a method
of moments estimator for τ . Sidik and Jonkman (2005) suggested to use τ ′ = var(y)
as a starting value. It might be argued that this arguably very large “guess” is not
the most reasonable starting point when performing a meta regression.

Definition 4.6 (Sidik–Jonkman type estimator) Let Y ∼ (Xβ, [τ ]k + [δ])
for some β ∈ Rp, some full rank design matrix X ∈ Rk×p, and fixed τ ≥ 0
and δ > 0. Let δ̂ be an estimate of δ. Define ξ(τ) = δ̂

τ . The method of
moments estimator

τ̂SJ =
‖‖‖E1ξ(τ ′)y‖‖‖2

1ξ(τ ′)
k − p

(4.14)

is called a Sidik–Jonkman type estimator in τ ′.

Note that the estimator defined by (4.14) yields positive values as ‖·‖1ξ is a
positive function. Thus, in particular P (τ̂SJ ≥ 0) = 1. If p = 1 and X = 1k,
the estimate τ̂DL reduces to the estimate in (Sidik and Jonkman, 2005). As with
the other methods of moments estimators defined so far, (4.14) can be iterated by
replacing τ ′ with τ̂SJ in (4.14).

If the sequence is converging, the limit point τ̂ for which
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τ̂ =
‖‖‖E1ξ(τ̂)y‖‖‖2

1ξ(τ̂)
k − p

(4.15)

holds is called the iterated Sidik–Jonkman type estimator.

4.3 Interval estimation for Gaussian responses
When parametric assumptions are made about the form of the distribution of Y ,
then also confidence intervals for the heterogeneity parameter can be constructed.
So, let us assume that Y follows Definition 2.15 of a random effects meta regression
model, namely: Y ∼ Nk(Xβ, [τ ]k + [δ]) for some β ∈ Rp, some full rank design
matrix X ∈ Rk×p and fixed τ ≥ 0 and δ > 0.

Lemma 2.21 shows that the residual vector of the random effects meta regression
model follows a chi-squared distribution:

‖Eδτ Y ‖2
τδ ∼ X2

k−p . (4.16)

Also, recall the function qy(τ) = ‖Eδτ Y ‖2
τδ as a function of τ , which has been shown

to be strictly decreasing and having the inverse

py(η) =
{

q−1
y (η) : 0 < η < qy(0),

0 : otherwise.

Then also py is strictly decreasing and η < η′ implies py(η) > py(η′). Hence,{
τ : x2

k−p, γ
2

≤ qy(τ) ≤ x2
k−p,1− γ

2

}
=
[
py

(
x2

k−p,1− γ
2

)
, py

(
x2

k−p, γ
2

)]
(4.17)

is a genuine (1−γ)-confidence interval for τ for γ ∈ (0, 1
2). Here, x2

k−p,γ denotes the
γ-quantile of a chi-squared distributed random variable. An analogue construction
was used by Hartung and Knapp (2005) and Knapp et al. (2006) for constructing
interval estimates for τ in the one-way ANOVA and the random effects meta analysis
model.

When replacing the unknown δ by within-study variance estimates δ̂, the estimate
(4.17) is called the q-profiling interval estimate for τ .

Similar to the argument when introducing the Mandel–Paule type estimator for τ ,
note that the lower bound of (4.17) will be zero when

qy(0) ≤ x2
k−p,1− γ

2
. (4.18)

Note that the upper bound of this interval may be 0, too, in case

qy(0) ≤ x2
k−p, γ

2
. (4.19)



52 4 Inference on the heterogeneity parameter

It is, thus, possible for this confidence interval to only consist of a singleton.

4.4 Methods based on maximum likelihood

Maximum likelihood estimators

In Section 2.9, it was shown that solutions τ̂ and β̂ to the system of equations

β = Bτδy, (4.20)

τ =

∑
k
j=1

1
(τ+δj)2

(
(Xβ − y)2 − δj

)
tr Ω2

τδ

(4.21)

maximise the likelihood function of the random effects meta regression model. This
system of equations can be solved numerically by iterating over τ and β. Either
the iteration is started by an initial value β0 for β or by an initial value τ0 for τ .
Software packages commonly start with an initial value for τ . An example is the
implementation by Viechtbauer (2010) which, by default, starts the iteration at the
Hedges type estimator.

Algorithm 4.7 Let τ = (τl)l∈N and β = (βl)l∈N be sequences in R≥0 and Rk

respectively, such that

βl+1 = Bτlδy,

τl+1 =

∑
k
j=1

1
(τl+δj)2

(
(Xβl+1 − y)2 − δj

)
tr Ω2

τlδ

,

for all l ∈ N. The sequence (βl, τl)l∈N is converging, and

β̂ = lim
l

βl, τ̂ = lim
l

τl

are a solution to (4.20) and (4.21).

The reason that the above sequence converges is essentially a consequence of the
Banach fix point theorem and of the above function being a contraction, i.e., Lip-
schitz continuous with Lipschitz constant strictly less than 1. If a limit point (β̂, τ̂)
is found by the above algorithm, it needs to be checked if the algorithm yielded a
positive result for τ̂ . It is not guaranteed that the global maximum of the likelihood
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function lies within Rp × R≥0. If τ̂ < 0, it can be truncated by 0 from below, and
it should be checked, whether

det Hess l(β̂, (τ̂)+) (4.22)

is indeed negative on this boundary set. A very important note concerning the
implementation of the above algorithm is that iterating Algorithm 4.7 under the
constraint of τ being non negative will unlikely yield a correct result. For the
algorithm to converge, the marginal sequence of (τl)l∈N needs to be allowed to run
through negative values, too. Otherwise, such an implementation may terminate
the algorithm to prematurely.

Viechtbauer (2005) states that convergence is usually achieved within less than
ten iterations. In a different implementation by Erez et al. (1996), the authors claim
that convergence was achieved in less than seven iterations starting the iteration
at τ0 = 0. A ready-to-use implementation can be found in (Viechtbauer, 2010).

Restricted maximum likelihood estimators

The conditional restricted maximum likelihood (REML) estimate for τ needs to be
found by an iterative procedure, too, as it was the case of the maximum likelihood
estimator. Formulae for the conditional maximum likelihood estimator are not un-
ambiguously in the literature. As Viechtbauer (2005) points out, different formulae
for the REML estimator can be found, some of which may have originated form
an approximation to the REML estimator that is due to Morris (1983). This ap-
proximation, however, does not hold true in general. Also, as Harbord and Higgins
(2008) point out, the iterative algorithm defined in (Morris, 1983) is not guaranteed
to converge.

As there exists no closed form expression for this estimator, the evaluation of
the restricted maximum likelihood estimator relies on numerical approximations,
(Viechtbauer, 2005). The metagen package does not re-implement the necessary
algorithms for perfroming this task but falls back to the already tested and optimised
implementation of the metafor package by Viechtbauer (2010).

4.5 Methods based on generalised inference
In this section, a generalised pivotal quantity will be constructed for the hetero-
geneity parameter τ . An introduction to the principle of generalised inference was
given Chapter 3. The generalised pivotal quantity for the regression coefficient β
will be based on the construction of this section. As it will turn out, the generalised
pivotal for τ can be based on a generalised pivotal for the heteroscedasticity δ, too.
This may allow for incorporating the uncertainty that comes with the estimation
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of δ into the interval estimation of τ and β. The functions qy and py will play a
prominent role in this section.
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Figure 4.1 Density histogram and kernel density estimate of the density of the
generalised pivotal quantity T̃ for the heterogeneity parameter τ in the BCG vaccine
efficacy example. The estimates are based on m = 1000 independent draws from
the pivotal distribution using Algorithm 4.8.

For now, it is assumed that the within study variances are well-established and it
is save to assume that δ is known. The construction is based on (Iyer et al., 2004).
Lemma 2.21 has shown that qY (τ) ∼ X2

k−p. Define

T̃ := py (qY (τ)) = py(Q) (4.23)

for Q ∼ X2
k−p. Thus, the distribution of T̃ is free of unknowns. Since qy is strictly

monotone decreasing and τ > 0, the observed value t̃ of T̃ is equal to

t̃ = py(qy(τ)) = q−1
y (qy(τ)) = τ, (4.24)

which is, well, monotone in τ . Hence, T̃ is a generalised pivotal quantity for τ .
Since the observed value of the pivot T̃ is τ itself, the quantiles of its distribution
can directly be used for the construction of confidence intervals. See the example af-
ter Definition 3.2. Let T denote the distribution of T̃ and let tγ denote its γ-quantile.
Then [

tγ
2
, t1− γ

2

]
(4.25)
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Figure 4.2 Two kernel density estimates of the densities of generalised pivotal
quantities for the heterogeneity parameter τ , one based on Algorithm 4.8, the other
additionally adjusted for uncertainty in the heteroscedasticity estimate.

is a generalised (1 − γ)-confidence interval for τ . The quantiles tγ can be estimated
numerically by generating random quantities Q ∼ X2

k−p, calculating their inverses
with respect to q−1

y , and obtaining the empirical quantiles of these inverses. The
procedure is summarised in Algorithm 4.8.

The algorithm involves the evaluation of py(η) many times for different values
of η which may be computationally expensive if done naively. For this reason, some
issues related to the implementation of py are discussed. Theorem 2.11 has shown
how to rewrite qy in a numerically stable form. Define q0 := qy(0). If η ≥ q0,
then py(η) = 0 by the definition of py. If η < q0, then

py(η) = τ ⇐⇒ qy(τ) = η ⇐⇒ qy(τ) − η = 0. (4.26)

Hence, obtaining the inverse q−1
y (η) is the same as finding the root of the func-

tion f(τ) := qy(τ) − η. This is a smooth function. It is possible to take advantage
of this property when deciding on the proper root finding algorithm, for example,
when using the well known Newton’s method. When converging, Newton’s method
is converging fast. However, when the starting value for the algorithm lies too far
from the true value, the algorithm may not converge at all.

An alternative might be to use algorithms such as Brent’s method, (Brent, 2002).
This method does not rely on f being continuously differential. It has the advantage
of being robust, numerically stable and quite popular. The latter is not to be
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neglected as the good implementation of an algorithm is usually half the battle
when relying on numerically stable results. When using R, e.g., it is the default root
finding method which is available via the function uniroot().

The obvious disadvantage of Brent’s method is that it does not take full advan-
tage of the properties of qy, e.g., that qy is smooth. Another is that two initial
boundary values ε, ζ need to be given to the algorithm a-priori with the property
that f has a unique root within (ε, ζ). A sufficient condition for this is that f(ε)
and f(ζ) are of opposite signs. An obvious choice for f(τ) = qy(τ) − η is ε = 0. In
any worst case scenario, though, ζ might need to be chosen arbitrarily large. Thus,
hard-coding the upper bound ζ, however large, is generally a bad idea. In praxis, it
is advisable to define ζ as ζ = en for n = argminn{n : f(en) < 0}.

Algorithm 4.8 For γ ∈ (0, 1)s, s ∈ N, this algorithm returns a sequence of
s-tuples (tγ,m)m∈N of elements in Rs

≥0, such that

tγ,m
P
−→ tγ , m → ∞. (4.27)

1) Generate a sequence (Ql)l∈N with Ql ∼ X2
k−p.

2) Find a single value decomposition UDV > of X> where X is the design
matrix of the model. Define K := (vp+1, . . ., vk) where v1, . . ., vk denote
the columns of the matrix V . Given the observed response vector y, the
design matrix X, and the fixed response variances δ define qy as in (2.28)
and Dqy as in (2.29).

3) For l ∈ N, use a root finding algorithm to find the roots τl of each
function qy − Ql. Here, Newton’s or Brent’s method should come to
mind. This yields a sequence (τl)l∈N in R≥0.

4) For r = 1, . . ., s and any given m ∈ N, let tγr,m denote the empirical
γr-quantile of (τl)l≤m.

5) Define tγ,m = (tγ1,m, . . ., tγs,m).

Returning again to the example of the BCG vaccine efficacy data, Figure 4.1
shows density estimates of T based on the above algorithm for m = 1000. The
plot shows a right skewed density similar in shape to a chi-squared distribution.
Figure 4.2 shows the same density estimate overlaid by a version of T̃ that adjusts
for the uncertainty in the heteroscedasticity estimate δ in the BCG vaccine efficient
data. This adjustment is discussed in Section 5.5.

When applying Algorithm 4.8 for (γ
2 , 1− γ

2 ) ∈ (0, 1)2, consistent estimators for tγ
2

and t1− γ
2

are obtained that can be used as an approximation for the quantiles
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in (4.25). Note that m in the above approximation can be chosen arbitrarily large
and is only limited by available computation time.

The median of the above random sequence τl, i.e, when the algorithm is applied
for γ = 1

2 , yields a point estimate for τ . This point estimate will also be discussed
in the performance study in Section 4.6. Obviously, other properties of T may also
be used as point estimates for τ such as its mean or mode.

Excursion 4.9 (Independent draws from the distribution of T̃) Equation
(4.23) defines a generalised pivotal quantity T̃ for the heterogeneity parameter τ .
Instructions on how to generate independent draws from its distribution are given
in Algorithm 4.8. The algorithm is implemented in the function pivotalStream in
the metagen-package. The following code shows an example on how to call this
function.

library(metagen)
bcg <- bcgVaccineData()
y <- bcg$logrisk
d <- bcg$sdiv
s <- bcg$size
x <- cbind(1,bcg$x)

set.seed(865287113)
piv <- pivotalStream(1000, y=y, d=d, x=x, adjusted=FALSE)

This will in fact produce pivotal quantities for the regression coefficient vector β,
too, as it will be discussed in Algorithm 5.3 and Algorithm 5.5. The draws from the
distribution of T̃ are contained in the first row of the object piv. For convenience,
the metagen package contains functions for extracting the pivotal draws from piv
and summarises them in a data frame for further processing.

pivh <- joinPivotalHeterogeneity(piv)

The plot in Figure 4.1 can be produced by invoking:

plotDensityH2(pivh)

In Section 5.5, an adjustment to the generalised pivotal quantity (4.23) will be
discussed that allows for incorporating the unknown uncertainty of the hetero-
scedasticity estimate δ into the pivot. This modifies Algorithm 4.8 as it will be
discussed later in the text. To generate independent draws from this adjusted
distribution, run:
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set.seed(865287113)
pivAdjusted <- pivotalStream(1000, y=y, d=d, x=x, s=s, adjusted=TRUE)

The following code produces plots of density estimates of both versions next to
each other.

pivh <- joinPivotalHeterogeneity(piv, pivAdjusted)
plotDensityH(pivh)

library(ggplot2)
plotDensityH2(pivh) + facet_wrap(~type)

4.6 Performance study of inference methods about the
heterogeneity

General set up of the simulation and experimental design

Weerahandi (1995) calls methods based on the generalised inference principle with
the somewhat misleading term exact. The term is misleading, since these methods
are not exact in a strict frequentist sense: The coverage probability of a (1−γ)-con-
fidence interval should, by definition, be 1 − γ. Rather, Weerahandi speaks of exact
methods when they are the result of exact probability statements. This is similar
to the understanding of the term in Bayesian statistics. Thus, even though these
methods are exact in this sense, the true coverage probabilities of generalised con-
fidence intervals need to be evaluated, for example, by simulation studies. In this
section, the results of such a study are summarised which was targeted to estimate
the coverage probabilities and average lengths of the presented point and intervals
estimates for the heterogeneity parameter τ of this section.

In the past sections, different point and interval estimates for the heterogene-
ity parameter in the random effects meta regression model have been developed.
Four point estimates have been discussed that were based on methods of moments,
namely the Hedges type estimator, the DerSimonian–Laird type estimator, the
Sidik–Jonkman type estimator, and the Mandel–Paule type estimator. Two point
estimates based on likelihood methods have been discussed, the maximum likeli-
hood estimator, and the conditional maximum likelihood estimator (REML) for the
heterogeneity. A new point estimator based on generalised inference principles was
defined as the median of the generalised pivotal distribution T. In this section, the
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performance of these point estimators is evaluated by an extensive simulation study.
The performance evaluation is based on the following features: the mean squared
error, the bias, and the standard deviation of the estimators.

The past sections have also introduced two different constructions for intervals
estimators for the heterogeneity parameter. One based on a pivotal quantity for τ ,
the other based on a generalised pivotal quantity for τ . The performance of these
two interval estimates is also compared by the same simulation study. The features
for the performance evaluation are their coverage and their average width.

In Chapter 2, different modelling strategies for the random effects meta regres-
sion model have been discussed. First the canonical model was introduced in Defin-
ition 2.15. Then a non-identifiable extensions to the canonical model was discussed
in Section 2.13. For the simulation study, data has been generated using each of
these two models, once for k = 7 and once for k = 13 number of studies. The
number of regression parameters was fixed at p = 2, allowing the model to have an
intercept and a slope. The design matrix in each scenario was set to

X =

 1 1

..

.
..
.

1 k

. (4.28)

The simulation studies’ main focus of attention was the comparison and influence of
different relations of the heteroscedasticity parameter vector and the heterogeneity
parameter of the model on the above performance features. To study this relation,
the heterogeneity τ was varied within [0, 1] and heteroscedasticity vector δ within
[0.01, 2]k. The experimental design of the computer experiment was defined via a
Latin hypercube design of 150 within

[0, 1] × [0.01, 2]k (4.29)

for k = 7 and k = 13 each. Thus, 150 different parameter configurations for each
sample size scenario were considered in the simulation study.

When the mean response extension model was used for data generation, the
experimental design for the study size vector s was also defined by a Latin hypercube
design with 150 points in

[200, 2000]k . (4.30)

These 150 size configurations were randomly allocated to each pair (τ, δ) from the
first design. Thus, also for the mean response extension, 150 parameter configu-
rations were used for the simulation study for k = 7 and k = 13 each. For each
parameter configuration (τ, δ) or (τ, δ, s), the respected performance feature was es-
timated by drawing 1000 independent data sets from either the canonical model or
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its mean response extension. These shall be called the two modelling scenarios of
the simulation study.

The respected designs were created by using the maximinLHS-function of the
R-package lhs, (Carnell, 2012). This function aims to maximise the minimal distance
between the points of the design and, thus, to spread out the design points as even
as possible throughout the parameter space, (Stein, 1987), (Santner et al., 2003).
Such a simulation study has not been performed in the literature in the context of
estimating performance features of point and interval estimators for a parametric
model such as the random effects meta regression model, yet.

When the canonical model was used for data generation, a simulated data set
consists of a tuple (y, δ) where y ∈ Rk is simulated according to the canonical model
and δ equals the true heteroscedasticity. In the canonical scenario, the methods
for point and interval estimation are, therefore, fed with the true heteroscedasticity
parameter δ that has been used for the data simulation. This scenario corresponds
to the underlying model assumption of all presented methods, namely: δ is known.

In contrast, when the mean response extension is used for the data generation, a
simulated data set consists of a tuple (y, d) where both y and the heteroscedasticity d
are simulated. Thus, in the second scenario, the methods only see an estimate
for the heterogeneity: namely δ̂ = d where d is a simulated element D following
the distribution of (2.67). As the underlying study sizes are known in this second
scenario, also the adjustments to the generalised methods can be evaluated in this
scenario.

Excursion 4.10 (Running a computer experiment) Essentially, a computer
experiment was performed for each combination of method and scenario together
with an experimental design that defines the different parameter configurations
for τ and δ. The metagen package provides a function that allows the easy set up
of the described simulation studies.

library(metagen)
library(BatchExperiments)

The following produces the set-up of the described computer experiment for k = 7:

set.seed(8759179L)
reg07 <- setupExperiment( name="k07regression", seed=5311151L, n=1000L

, resolution=150L
, bounds=list(h=c(0,1), d=c(0.01, 2), s=c(200L,2000L))
, x=cbind(1,1:7), b=c(0.05, -0.5)
, sgnf=c(0.01, 0.025, 0.05, 0.1)
, piv_draws=1000L
, file.dir="k07")
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And for k = 13:

set.seed(5731287L)
reg13 <- setupExperiment( name="k13regression", seed=5311151L, n=1000L

, resolution=150L
, bounds=list(h=c(0,1), d=c(0.01, 2), s=c(200L,2000L))
, x=cbind(1,1:13), b=c(0.05, -0.5)
, sgnf=c(0.01, 0.025, 0.05, 0.1)
, piv_draws=1000L
, file.dir="k13")

This will generate two registries with 2 ·150 = 300 jobs each. One job corresponds
to a single parameter configuration either for the canonical model or for the mean
response extension.

Together, the two computer experiments consist of 600 such jobs in total. Each
job has an approximate run time of around two to two and a half hours on one
single CPU node on a high performance cluster.

To submit the generated jobs to the batch system execute:

submitJobs(reg07)
submitJobs(reg13)

The results of the finished jobs can be extracted by the function collectAllEx-
periments which scans the finished jobs of the registry, collects the results, and
summarises them in an accessible data frame for further precessing in R.

results07 <- collectAllExperiments(reg07)
results13 <- collectAllExperiments(reg13)

At the backbone for the efficient batch distribution of the mentioned jobs, metagen
is using the package BatchJobs by (Bischl et al., 2012). The functionality of this
package allows to add additional jobs to the above registry based on methods
that are not a-priori implemented in the metagen package. As new jobs added to
the same registry can share experimental designs, here defined via the metagen
package, this allows other researchers to add their own methods to the simulation
study.
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Evaluating point estimators for the heterogeneity

Different boxplots of the estimated mean squared errors, the estimated bias, and
the estimated standard deviation for different point estimates for τ are presented
in Figures 4.3 to 4.5. Each boxplot is based on 150 points corresponding to the
different parameter configurations which were discussed above. Thus, each box
plot in Figures 4.3 is based on 150 estimated mean squared errors corresponding to
different model parameter configurations. In Figures 4.4 and 4.5 respectively, the
box plots are based on 150 estimates of the bias and the standard deviations of
these different estimators. Each of these point estimates of mean squared error, bias
and standard deviation are based on 1000 simulated studies following the respected
parameter configuration and the respected modelling scenario. For the canonical
simulation scenario, no performance measures for the adjusted generalised methods
are plotted in Figures 4.3 to Figure 4.5 as these methods do not apply to these
settings.

As Figure 4.3 shows, the maximum likelihood has the lowest mean squared error
in comparison with all other point estimators of τ . For k = 7, the largest mean
squared errors are shown by the new point estimators based on the generalised
pivotal quantities. For k = 13, the Sidik–Jonkman type estimator shows the largest
mean squared error. The high reduction in mean squared error of the generalised
estimators is interesting to acknowledge. For k = 13, the mean squared error of
the generalised point estimators are on a comparable level with the Hedges type
estimator. As expected, differences between the adjusted and unadjusted generalised
methods are hardly visible. Also as expected, the mean squared error of the all
point estimate is reduced when sample size is increased from k = 7 to k = 13. This
reduction is particular visual when the mean response extension is the underlying
data generating process.

Of the point estimators based on the method of moments approach, i.e., the
Mandel–Paule, Sidik–Jonkman, DerSimonian–Laird, and Hedges type estimators,
the DerSimonian–Laird type estimator shows the least mean squared error. The
Sidik–Jonkman type estimator shows the largest average mean squared error.

In Figure 4.4, box plots of the estimated bias of the different point estimators for
τ are summarised. The plots show that the low mean squared error of the maximum
likelihood estimator that one could see in Figure 4.3 was paid for by a very high
bias: the maximum likelihood estimator will on average underestimate the true
heterogeneity τ of the underlying model. In comparison, the restricted maximum
likelihood estimator tends to slightly overestimate the true heterogeneity.

Among the method of moments estimators, the Sidik–Jonkman type estima-
tor shows the largest bias, overestimating the true heterogeneity even more severe
as the maximum likelihood estimator is underestimating it. Within the group of
method of moment estimators, the best performing method with respect to bias
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Figure 4.3 Box plots of the estimated mean squared errors of different point es-
timators for the heterogeneity parameter τ .

is the DerSimonian–Laird type estimator. The new methods based on generalised
inference are on average overestimating the true heterogeneity, however, not as se-
vere as the Sidik–Jonkman type estimator. The DerSimonian–Laird type and the
restricted maximum likelihood estimator show the least bias of all estimators. The
Mandel–Paule and the Hedges type estimator show similar bias.

The standard deviations for the different point estimators are shown in Figure 4.5.
Note that this plot does not make any claim on how well an estimator estimates the
true value. It rather shows how much the estimator varies for different parameter
configurations. A low standard deviation does not necessarily mean a good estimator
but it may give a hint on how reproducible an estimate is when an experiment is
repeated. This is shown exemplary by the standard deviation of the maximum
likelihood estimator. As Figure 4.4 has shown, the maximum likelihood estimator
has very high negative bias marking this estimator as not very reliable. The low
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Figure 4.4 Box plots of the estimated bias of different point estimators for the het-
erogeneity parameter τ .

average mean squared error in Figure 4.3 is a consequence of the low standard
deviation shown in Figure 4.5.

The methods based on the generalised inference principle show the highest vari-
ability, though not utterly severe. As expected, the estimated standard deviations
of all estimators are smaller, when the number of available studies increases. The
biggest decrease in standard deviation are shown by the generalised methods.

Figures 4.6 to 4.14 show scatter plots of all discussed point estimators with respect
to the true underlying heterogeneity τ used in the respected parameter configuration.
Figures 4.6 to 4.8 show scatter plots between the true τ and the estimated mean
squared error for different heteroscedasticity parameters δ. As one may expect,
the mean squared error of all estimators increases when the heterogeneity between
the study increases. The plots, however, show that this increase is happening with
different magnitudes for the different point estimators. This effect is less severe if
the number of studies in the analysis gets larger. A linear model has been fitted to
the data in each plot, and the estimated regression line has been overlaid.

In Figure 4.6, it is interesting to see that the Sidik–Jonkman type estimator
for the heterogeneity starts off (small values of τ) with having the largest mean
squared error among the method of moments estimators. For k = 7 though, the



4.6 Performance study of inference methods about the heterogeneity 65

k=7 k=13

Hedges

DerSimonian−Laird

Sidik−Jonkman

Mandel−Paule

maximum−likelihood

restricted maximum−likelihood

generalised unadjusted

generalised adjusted

Hedges

DerSimonian−Laird

Sidik−Jonkman

Mandel−Paule

maximum−likelihood

restricted maximum−likelihood

generalised unadjusted

generalised adjusted

canonical
m

ean response

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Standard deviation

Ty
pe

 o
f p

oi
nt

 e
st

im
at

or
 fo

r 
τ

Figure 4.5 Box plots of the estimated standard deviation of different point estimators
for the heterogeneity parameter τ .

mean squared error of this estimator falls below the Hedges type estimator with
increasing τ .

The scatter plots in Figures 4.9 to 4.11 show the true heterogeneity and the es-
timated bias for the different heterogeneity vectors in the simulation design. Inter-
esting in these figures is the large positive bias of the Sidik–Jonkman type estimator
for τ in Figure 4.9 and the large negative bias of the maximum likelihood estimator
in Figure 4.10. The large magnitudes of these biases will have an impact on the
performance of the interval estimates for the regression coefficients which are based
on these estimates for τ yielding quite surprising results for the Sidik–Jonkman type
estimator.

The scatter plots showing τ and the estimated standard deviations of the esti-
mators, see Figures 4.12 to 4.14, reflect the picture drawn by the previous plots.

It is advisable to choose a point estimator for τ which shows low bias and a low
average mean squared error. Unfortunately, the new methods based on generalised
inference principle were not able to shine in the performance study.

When bias is an issue and the expected heterogeneity of the studies is high,
Figure 4.9 and Figure 4.10 suggest to either use the DerSimonian–Laird type es-
timator or the restricted maximum likelihood estimator for the point estimation.
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Figure 4.6 Scatter plots of the estimated mean squared errors of point estimators
for the heterogeneity parameter τ which are based on method of moments.

The restricted maximum likelihood method is slightly outperforming the DerSimon-
ian–Laird estimator. Note that the restricted maximum likelihood estimator relies
on non-trivial numerical optimisation methods that may not be implemented in all
software packages. On the other hand, the DerSimonian–Laird type estimator can
be calculated on every standard office calculator if necessary.
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Figure 4.7 Scatter plots of the estimated mean squared errors of point estimators
for the heterogeneity parameter τ which are based on likelihood methods.
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Figure 4.8 Scatter plots of the estimated mean squared errors of point estimators
for the heterogeneity parameter τ based on generalised inference principles.
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Figure 4.9 Scatter plots of the estimated bias of different point estimators for the
heterogeneity parameter τ which are based on method of moments.
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Figure 4.10 Scatter plots of the estimated bias of different point estimators for
the heterogeneity parameter τ which are based on likelihood methods.
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Figure 4.11 Scatter plots of the estimated bias of different point estimators for
the heterogeneity parameter τ which are based on generalised inference principles.
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Figure 4.12 Scatter plots of the estimated standard deviations of point estimators
for the heterogeneity parameter τ which are based on method of moments.
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Figure 4.13 Scatter plots of the estimated standard deviation of point estimators
for the heterogeneity parameter τ which are based on likelihood methods.
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Figure 4.14 Scatter plots of the estimated standard deviations of point estimators
for the heterogeneity parameter τ which are based on generalised inference principles.
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Evaluating interval estimators for the heterogeneity

Two different interval estimates were discussed in the text. The first is the q-profiling
interval estimator (4.17), the other one was based on generalised inference principles,
namely (4.25). The performances of both interval estimates were evaluated with
respect to their coverage and mean width.

For i = 1, . . ., p and γ ∈ (0, 1
2), the coverage of an interval estimator Ii(γ) for βi

is the expectation of Ii(γ) to contain βi, in signs

E
(
βi ∈ Ii(γ)

)
. (4.31)

For a well behaved interval estimate Ii(γ), the above expectation should yield a
value close to 1 − γ. If

E
(
βi ∈ Ii(γ)

)
> 1 − γ, (4.32)

then Ii is overconfident. Clinical settings usually aim to reduce the probability of
false positive outcomes. For this reason, if the performance of

E
(
βi ∈ Ii(γ)

)
− (1 − γ) (4.33)

results in values below zero, they are regarded as less severe than the other way
around.

The coverage of the discussed interval estimate was evaluated for

γ = 0.01, 0.025, 0.05, 0.1 (4.34)

in each of the parameter configurations, in each of the modelling, and in each of
the sample size scenario of the previous section. Figure 4.15 shows box plots of
the coverage distributions of the interval estimators. As mentioned, it is desirable
for a method to be close to the zero line but preferable to be below rather than
above this line as this corresponds to a method being more conservative rather
than being too liberal in comparison to its aspired confidence level. The figure also
includes box plots of an adjustment of the generalised method that will be discussed
in Section 5.5.

The plots show that the q-profiling method performs on average better than the
methods based on generalised principles, though not severely. As expected, the
adjusted and unadjusted generalised methods perform visually undistinguishable in
the mean response scenario.

Figure 4.16 shows a scatter plot of the true τ and the coverage of the interval
estimators. No big variations can be seen with respect to varying heterogeneities.
Figure 4.17 shows that the average width of the generalised interval estimate for τ
tends to be slightly shorter than the q-profiling method, though only minimal.
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Figure 4.15 Box plots of the estimated coverage of the interval estimators for the
heterogeneity parameter τ .
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the heterogeneity parameter τ .

k=7 k=13

0.9

0.95

0.975

0.99

0.9

0.95

0.975

0.99

canonical
m

ean response

0 10 20 0 10 20
Estimated mean interval width

A
sp

ire
d 

co
nf

id
en

ce
 le

ve
l

Type of method
used for
interval estimation q−profiling generalised unadjusted generalised adjusted

Figure 4.17 Box plots of the estimated mean width of the discussed interval es-
timators for the heterogeneity parameter τ .



74 4 Inference on the heterogeneity parameter

4.7 Example: Heterogeneity of clinical trials studying BCG
vaccine efficacy

The above methods for point and interval estimation of the heterogeneity parame-
ter τ in the random effects meta regression model are now applied to the BCG
vaccine efficacy data discussed in Section 1.2.

Point estimates for the heterogeneity
Hedges 0.2090
DerSimonian–Laird 0.0633
Sidik–Jonkman 0.2318
Mandel–Paule 0.1421
maximum likelihood 0.0344
restricted maximum likelihood 0.0764
generalised unadjusted 0.1579
generalised adjusted 0.1678

Table 4.1 Point estimates of the heterogeneity parameters in the BCG vaccine
efficacy example.

Method Confidence Lower Upper
q-profiling 0.900 0.02688 0.615
generalised unadjusted 0.900 0.02471 0.624
generalised adjusted 0.900 0.02732 0.612
q-profiling 0.950 0.01667 0.785
generalised unadjusted 0.950 0.01612 0.834
generalised adjusted 0.950 0.01575 0.737
q-profiling 0.975 0.01012 0.976
generalised unadjusted 0.975 0.00756 0.991
generalised adjusted 0.975 0.00952 0.999
q-profiling 0.990 0.00465 1.268
generalised unadjusted 0.990 0.00333 1.179
generalised adjusted 0.990 0.00454 1.358

Table 4.2 Interval estimates of the heterogeneity parameter in the BCG vac-
cine efficacy example.
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Applying the methods for point estimation to the data yield the heterogeneity es-
timates in Table 4.1. The estimates have a rather large dynamical range from 0.03
(maximum likelihood) up to 0.23 (Sidik–Jonkman). The performance study has
shown that the Sidik–Jonkman type estimator tends to overestimate the true het-
erogeneity, so it was to be expected that this estimator would yield a large estimate of
the heterogeneity. The performance study suggests to trust the DerSimonian–Laird
type estimator to be close to the truth.

The bounds of the different interval estimates for the heterogeneity τ are sum-
marised in Table 4.2. The interval estimates based on the q-profiling method yields
slightly sharper confidence intervals than the generalised constructions in this ex-
ample. The unadjusted generalised method results in slightly larger estimates than
the adjusted generalised method.

The following excursion shows some code examples on how to reproduce the
above results.

Excursion 4.11 (Between-study variance of BCG vaccine efficacy trials)
Using the metagen package, the analysis of the BCG vaccine efficacy data can be
performed by the following code:

library(metagen)
sgnf <- c(0.01, 0.025, 0.05, 0.1)

bcg <- bcgVaccineData()
y <- bcg$logrisk
d <- bcg$sdiv
s <- bcg$size
x <- cbind(1,bcg$x)

set.seed(531553313)
estimation <- metagen( y=y, d=d, x=x

, sgnf=sgnf, s=s
, n=1000, adjusted=TRUE)

The estimation object is a list that contains point and interval estimates of the
heterogeneity and the regression coefficient of the regression model. The point
and interval estimates of the heterogeneity are found in

estimation$pointh
estimation$confh

respectively. The list of confidence intervals can easily be ordered by the aspired
confidence level via
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with(estimation, with(confh, confh[order(confidence),]))

A graphical representation of the interval estimates can be produced by

plotHeterogeneityInterval(estimation$confh)



5 Inference on the regression coefficients

5.1 Introduction
Having developed different point and interval estimates for the variance components
in the random effects meta regression model in Chapter 4, the focus will now shift
to the location parameters of the model. Different constructions of point and in-
terval estimates for the regression parameters βi will be constructed, including the
current state-of-the-art interval estimate developed by Knapp and Hartung (2003).
The key construction of this chapter will be the development of a new, genuine in-
terval estimate for the βi’s based on generalised inference principles. As before, the
construction will also yield new, genuine points estimate for these parameters.

5.2 Theoretical considerations
Let Y follow the distribution of a random effects meta regression model with design
matrix X, heterogeneity τ , and heteroscedasticity δ. Conditional on an observed
data y of Y , the aim is to construct point and interval estimates for the regression
coefficients β = (β1, . . ., βp)>. A common approach is to minimise the distance
between the expected responses E(Y ) = Xβ and the observed response vector y
with respect to β in some fixed Hilbert space. This approach is commonly referred
to as the method of minimal least squares or method of weighted minimal least
squares. Here, the choice of the Hilbert space is equivalent to the choice of an
inner product for Rk which has to be defined a-priori. Fortunately, there are some
canonical options for how to choose a suitable inner product or norm. Choices are
the canonical inner product on Rk, which would correspond to the Euclidean norm,
or the inner product 〈·, ·〉τδ on Rk, which has been introduced earlier.

The variance components τ and δ are obviously not known prior to the analysis of
the model. Loosely speaking, when applying inference methods to the observed y,
somewhat appropriate values for either τ , δ or both need to be chosen. In this
chapter, whenever the variables τ and δ are used in formulae, their values shall
correspond to the true variance components of the model. In contrast, τ̂ and δ̂ shall
correspond to any choice of τ and δ in the respected parameter spaces R≥0 and Rk

>0
and not necessarily being equal to the truth. The notation shall obviously suggest
that τ̂ and δ̂ shall later be treated as consistent estimators for τ and δ respectively.
For now, though, τ̂ and δ̂ can be arbitrarily chosen and they are treated as fixed.

Different linear operators on the sample space have been defined on page 11.
Let Ω̂ = Ωτ̂ δ̂, V̂ = Vτ̂ δ̂, B̂ = Bτ̂ δ̂, Ĥ = Hτ̂ δ̂, and Ê = Eτ̂ δ̂. For any arbitrarily
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but fixed choice of τ̂ and δ̂, there exists a minimal distance estimator with respect
to 〈·, ·〉τ̂ δ̂, or, consequently, with respect to ‖·‖τ̂ δ̂.

Theorem 5.1 Let Y ∼ (Xβ, [τ ]k + [δ]) for some fixed τ and δ. Then for
any τ̂ , δ̂ the minimisation problem

argmin
β

‖y − Xβ‖τ̂ δ̂ (5.1)

has the unique solution B̂Y with expectation and variance-covariance structure

B̂Y ∼
(

β, B̂Ω−1
τδ B̂>

)
. (5.2)

In particular, B̂Y is an unbiased linear estimator of β.

Proof. It needs to be proven that argminβ ‖y − Xβ‖τδ is a singleton. For this it is
sufficient to show that the smooth β 7→ ‖y − Xβ‖τδ has a unique minimum. This is
standard calculus,

‖y − Xβ‖τ̂ δ̂ = (y − Xβ)>Ωτ̂ δ̂(y − Xβ)

= y>Ωτ̂ δ̂y − 2y>Ωτ̂ δ̂Xβ + β>X>Ωτ̂ δ̂Xβ,

Dβ ‖y − Xβ‖τ̂ δ̂ = −2X>Ωτ̂ δ̂y + 2X>Ωτ̂ δ̂Xβ,

Dβ ‖y − Xβ‖τ̂ δ̂ = 0 ⇐⇒ β =
(
X>Ωτ̂ δ̂X

)−1 X>Ωτ̂ δ̂y = Bτ̂ δ̂y.

The expectation of B̂Y is E(Bτ̂ δ̂Y ) = Bτ̂ δ̂E(Y ) = Bτ̂ δ̂Xβ = β and its variance-
covariance structure is V(Bτ̂ δ̂Y ) = Bτ̂ δ̂V(Y )B>

τ̂ δ̂
= Bτ̂ δ̂Ω−1

τδ B>
τ̂ δ̂

. �

This is quite an important result as it shows that any B̂Y is in particular con-
sistent for any choice of τ̂ and δ̂. The essential message of the above corollary is
that a wrong choice of τ̂ and δ̂ might be levelled out by sufficient amount of data.
Unfortunately, the amount of data in a meta analysis is typically rather limited.
This makes the choices of good estimates for τ and δ important again but also to
use statistical methods for inference on β with a sufficient high rate of convergence.

In the special case in which τ̂ = 0 and δ̂ = 1k, the above theorem defines a rather
commonly chosen estimator for β, namely the minimal least squares estimator

B01Y = (X>X)−1X>Y . (5.3)

In case there is no heteroscedasticity present in the data, only a single variance
component remains in the model. Without loss of generality, δ > 0 can assumed to
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be constant and τ = 0. The reason that δ = 1k can deliberately be chosen as one is
essentially a consequence of (δ ∈ R>0)

V0δk
(B01Y ) = δ · V01,

E0δk
(‖E01Y ‖) = δ · ‖E01Y ‖01 ,

which holds since V0δk
(B01Y ) = B01Ω−1

0δk
B>

01 = δB01B>
01 = δ(X>X)−1 = δV01.

Hence, the variance-covariance matrix and the norm of the residuals are essentially
multiples of the heterogeneity/heteroscedasticity parameter δ, which, in turn, has
no influence on the minimisation problem in Theorem 5.1.

The other interesting special case occurs when the true values of τ and δ are
known. This case is interesting as, when τ and δ are replaced by consistent estima-
tors, the delta method produces many fruitful estimates for the βi since

(τ, δ) 7→ BτδY , (5.4)

as a function of τ and δ, is jointly continuous and, in fact, smooth in (τ, δ1, . . ., δk).
Thus, consistency of τ̂ and δ̂ yields consistency in B̂Y .

The bias of a multivariate estimator, say β̂ of β, is defined as Bβτδ(β̂) :=
Eβτδ(β̂) − β. The mean squared error of β̂ is defined as

Eβτδ

(
‖‖‖‖‖‖‖‖‖β̂ − β‖‖‖‖‖‖‖‖‖

2
)

= trVτδ

(
β̂
)

+ ‖‖‖‖‖‖‖‖‖Bβτδ

(
β̂
)

‖‖‖‖‖‖‖‖‖
2

. (5.5)

In particular, the mean squared error of an unbiased estimator is equal to the trace
of its variance-covariance matrix. The following corollary summarises some basic
properties of the estimator B̂Y such as bias, consistency, and its mean squared
error.

Corollary 5.2 (Mean squared error) Let Y ∼ (Xβ, [τ ]k + [δ]) for some
fixed τ and δ. Let τ̂ ≥ 0 and δ̂ > 0. Then B̂Y is unbiased and its mean
squared error is equal to

Eβτδ

(
‖‖‖‖‖‖‖‖‖B̂Y − β‖‖‖‖‖‖‖‖‖

2
)

= tr B̂>B̂Ω−1
τδ . (5.6)

In particular, when τ̂ = τ and δ̂ = δ are equal to the truth, then

Eβτδ

(
‖BτδY − β‖2) = tr Vτδ. (5.7)
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Proof. First note that Eτδ

(
‖‖‖‖‖‖‖‖‖B̂Y − β‖‖‖‖‖‖‖‖‖

2
)

= trVτδ

(
B̂Y
)

= tr B̂>B̂Ω−1
τδ . Then in

particular, V(BY ) = BΩ−1B> = (X>ΩX)−1X>ΩΩ−1ΩX(X>ΩX)−1 = (X>ΩX)−1.
�

From now on, τ̂ and δ̂ shall be treated as consistent estimators for τ and δ
respectively.

5.3 Point estimation of the regression coefficients
We have just seen that Eβτδ(B̂Y ) = β. Thus, we could say that the (weighted)
minimal least squares estimator B̂Y is a method of moments estimator for the
regression coefficient vector β. When τ and δ were known, BY is the maximum
likelihood estimator of β. If τ and δ are replaced by consistent estimators, say τ̂
and δ̂, the estimator Bτ̂ δ̂Y and its estimate Bτ̂ δ̂y are usually both denoted by β̂. This
convention shall be adapted here as well. The ambiguous notation usually proves
to be unproblematic, since it is mostly clear from the context if the estimator or the
estimate is meant in any given formula.

Formulae for generalised test statistics and generalised pivotal quantities, how-
ever, can contain both quantities: the observed data y and its random counter-
part Y . If no ambiguity can occur, then β̂ will be used to denote either estimator
or estimate depending on the context. This will make formulae easier on the eye.
If a formula contains both, observed data and the underlying random element, the
non-ambiguous BY - and By-notation will be used instead.

If τ̂ and δ̂ are consistent estimators for τ and δ, then B̂y is a consistent estimator
for β by the delta method.

5.4 Interval estimation for Gaussian responses

Two-step maximum likelihood approach

Let us now assume that Y follows a multivariate Gaussian distributed random effects
meta regression model

Y ∼ Nk (Xβ, [τ ]k + [δ]) , (5.8)

as it was defined in Definition 2.15 with design matrix X ∈ Rk×p, heterogeneity τ ,
and heteroscedasticity δ. A classic interval construction for β is based on the dis-
tribution of B̂Y . Since B is linear, BY is multivariate Gaussian distributed, and it
follows from Theorem 5.1 that
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BY ∼ Np (β, V ) . (5.9)

Let (v1, . . ., vp) := diag V . Since β̂i N (βi, vi), when replacing τ and δ by consistent
estimators τ̂ and δ̂, this yields

β̂i − βi√
v̂i
 N(0, 1). (5.10)

Here,  denotes convergence in distribution, and v̂i denotes the ith element of the
tuple (v̂1, . . ., v̂p) = diag V̂ . For any γ ∈ (0, 1

2), this yields the approximate (1 −
γ)-confidence interval for βi[

β̂i − z1− γ
2

·
√

v̂i, β̂i + z1− γ
2

·
√

v̂i

]
. (5.11)

Here, zγ denotes the γ-quantile of the standard Gaussian distribution. The confi-
dence interval in (5.11) is probably the most straightforward method for making
inference on the regression coefficients in the random effects meta regression model.
It is implemented in many statistical software packages as the default methods for
parameter estimation, see for example (Viechtbauer, 2010).

The Knapp–Hartung-Adjustment
As the simulation studies will show, the interval estimate in (5.11) is generally too
short and tends to be overconfident, i.e., it is too liberal and its actual confidence
is lower than its aspired level. For this very reason, Knapp and Hartung (2003)
suggested an adjustment to (5.11) based on the function qy(τ) defined in (2.24),
which was used multiple times for different constructions for point and interval
estimates for τ in Chapter 4. The adjustment takes advantage of properties of qy,
which were discussed thoroughly in Chapter 2.

So, let

τ 7→ qy(τ), qy(τ) = ‖Eτδy‖τδ .

It was shown that qY (τ) ∼ X2
k−p and, in particular, that E (qY (τ)) = k − p.

Also, qy(τ) is strictly monotone decreasing, injective, smooth and converging to 0
as τ goes to infinity. The dependence of qy(τ) on the parameter δ will not be written
explicitly. In Lemma 2.22 it was shown that

biY − βi√
vi

qY (τ)
k−p

∼ Tk−p, (5.12)

where Tk−p denotes the centred Student’s t-distribution with k − p degrees of free-
dom. If the nuisance parameters τ and δ are known, (5.12) would yield an exact
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confidence interval for βi. Exact, here, shall not only mean that the corresponding
interval estimate is the result of an exact probability statement but shall also be
understood in the frequentist sense: for any γ ∈ (0, 1)

P

tk−p, γ
2

≤ biY − βi√
vi

qY (τ)
k−p

≤ tk−p,1− γ
2

 = 1 − γ. (5.13)

For any consistent estimators τ̂ and δ̂, it follows by the delta method and the joint
continuity of qy(τ) in (τ, δ) that

qy(τ̂)
P
−→ qy(τ). (5.14)

Again, the delta method can be applied to yield

β̂i − βi√
v̂i

qY (τ̂)
k−p

 Tk−p . (5.15)

This results in the approximative (1 − γ)-confidence interval[
β̂i − tk−p,1− γ

2
·

√
v̂i

qy(τ̂)
k − p

, β̂i + tk−p,1− γ
2

·

√
v̂i

qy(τ̂)
k − p

]
. (5.16)

Here, tk−p,γ denotes the γ-quantile of the centred Student’s t-distribution Tk−p

with k − p degrees of freedom.
If qy(τ̂) < k − p, the interval estimate in (5.16) will turn out tighter than the

interval in (5.11). As it was desired to construct an interval estimate that is in any
case more conservative than (5.11), Knapp and Hartung (2003) suggest to truncate
the factor q

δ̂
(τ̂)

k−p by 1 below as an additional ad hoc improvement to (5.16). Let

v̌i := v̂i · max
(

1,
qδ̂(τ̂)
k − p

)
(5.17)

denote the result of this truncation. Then for each βi, i = 1, . . ., p and aspired
significance γ ∈ (0, 1

2), this yields the approximate (1 − γ)-confidence interval[
β̂i − tk−p,1− γ

2
·
√

v̌i, β̂i + tk−p,1− γ
2

·
√

v̌i

]
. (5.18)

The interval estimate in (5.18) is probably the current state-of-the-art for inference
on the regression coefficients in the random effects meta regression model.

The interval estimates in (5.11) and (5.18) are implemented in the R-package
metafor by Viechtbauer (2010), and in the STATA-package metareg by Harbord and
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Higgins (2008). All three intervals, (5.11), (5.16), and (5.18), are implemented in
the R-package metagen by Möbius (2014). A comparison study of the two adjusted
interval estimates, with and without truncation, is missing in the literature so far
and is included in the performance study of Section 5.6, which yields quite surprising
results.

Inference on the full coefficient vector

The pivotal argument of the previous section can be extended to higher dimensions.
Recall that

BY ∼ Np (β, V ) . (5.19)

The observed value of BY is By. If τ, δ are assumed to be known, BY is the
maximum likelihood estimator of β. The model assumptions are

Y ∼ Nk(Xβ, Ω−1
τδ ). (5.20)

Therefore, Ω
1
2
τδ(Y − Xβ) ∼ Nk(0, Ik) and thus, (Y − Xβ)>Ωτδ(Y − Xβ) ∼ X2

k.
Replacing τ and δ with consistent estimators, say τ̂ and δ̂, yields the approxi-
mate (1 − γ)-confidence ellipsoid

A1 :=
{

β ∈ Rp : (y − Xβ)> Ω̂ (y − Xβ) ≤ x2
k,1−γ

}
(5.21)

for β and γ ∈ (0, 1). Here, x2
k,γ denotes the γ-quantile of the chi-square distri-

bution X2
k with k degrees of freedom. A different approach follows from (5.19):

from V − 1
2 (BY − β) ∼ Np(0, Ip) follows that (BY − β)> V −1 (BY − β) ∼ X2

p. Re-
placing τ and δ with consistent estimators yields

A2 :=
{

β ∈ Rp :
(

B̂y − β
)>

V̂ −1
(

B̂y − β
)

≤ x2
p,1−γ

}
, (5.22)

as an approximate (1 − γ)-confidence ellipsoid for β and γ ∈ (0, 1). The confidence
set in (5.22) reassembles familiarity: it is based on an unbiased point estimator of
the parameter of interest, namely B̂Y of β, and the form of its inherited inequality
allows to immediately read of basic properties of its defining ellipsoid; the centre of
the ellipsoid is B̂y and the principle components of the ellipsoid are the eigenvectors
of V̂ −1.

In contrast, the confidence set in (5.21) appears peculiar and naive. Their re-
spected ellipsoids, though, have the same centre and share the same principle com-
ponents. They only differ in their respected equatorial radii. Recall that

‖Xβ − y‖2
τδ = ‖β − By‖2

Vτδ
+ ‖Eτδy‖2

τδ . (5.23)
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Define the following function.

py(β, τ) := (β − By)> V −1 (β − By) . (5.24)

In terms of py(β, τ) and qy(τ), the ellipsoids (5.21) and (5.22) can be rewritten as{
β ∈ Rp : py(β, τ) ≤ x2

p,1−γ

}
vs.

{
β ∈ Rp : py(β, τ) ≤ x2

k,1−γ −qy(τ̂)
}

. (5.25)

This shows that the ellipsoid defined in (5.21) has the same centre and the same
principle components as (5.22). To summarise previous results in the new notation,
note that

pY (β, τ) ∼ X2
p,

qY (τ) ∼ X2
k−p,

pY (β, τ) + qY (τ) ∼ X2
k .

Thus, in order to understand the difference between the confidence ellipsoids in (5.25),
it needs to be understood what the term qy(τ) is quantifying. But this has already
been established in Chapter 4. As a diagonal matrix with positive eigenvalues, Ωτδ

is positive definite. In particular, Ωτδ defines an inner product on Rk

〈a, b〉τδ := a>Ωτδb (5.26)

for a, b ∈ Rk, and, therefore, a norm on Rk which is denoted by ‖a‖τδ :=
√

〈a, a〉τδ.
This shows that the difference between the two ellipsoids lies in the equatorial radii
of the principal components, namely for i = 1, . . ., p√

x2
p,1−γ

λi
vs.

√√√√ |||||||||x
2

k,1−γ − ‖Ey‖2
τ̂ δ̂

|||||||||

λi
. (5.27)

Let γ0 ∈ (0, 1). If

x2
k,1−γ0 < ‖Ey‖2

τ̂ δ̂
, (5.28)

then the confidence set in (5.21) evaluates to the empty set for all γ ≥ γ0, since x2
k,1−γ

is strictly monotone decreasing in γ. However, since

lim
γ→0

x2
k,1−γ = ∞ and lim

γ→1
x2

k,1−γ = 0, (5.29)

there always exists some γ0 ∈ (0, 1) such that x2
k,1−γ ≥ qy(τ̂) for all γ ≤ γ0 and for

which (5.21) is not empty. We can even compute γ0 explicitly:

γ0 := X2
k

(
‖Ey‖2

τ̂ δ̂

)
. (5.30)
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On the other hand, the probability that (5.21) is empty can be calculated for any
fixed γ ∈ (0, 1). Recall that qY (τ) = ‖EY ‖2

τδ ∼ X2
k−p. If τ and δ were known, then

P
(
A1 = ∅

)
= P

(
x2

k,1−γ < ‖EY ‖2
τδ

)
= 1 − X2

k−p

(
x2

k,1−γ

)
. (5.31)

It might, nevertheless, be advisable to use (5.22) for the construction of confidence
ellipsoids as this estimator is guaranteed to yield non-empty sets.

Methods based on a full likelihood approach

The maximum likelihood estimators for τ and β have already been established in Sec-
tion 4.3. Necessary and sufficient conditions have been established in Section 2.9.
For details see the discussion after Algorithm 4.7.

5.5 Methods based on generalised inference

First construction based on generalised inference principles

From a theoretical perspective, the following construction shows how to construct
new generalised pivotal quantities from old ones. In Section 4.5, a generalised pivotal
quantity for the heterogeneity parameter τ was constructed. This quantity will now
be used to build a generalised pivotal quantity for the regression coefficients βi, i =
1, . . ., p.

So, let T̃ be the generalised pivotal quantity for τ defined in (4.23), namely

T̃ := pδ (Qδ(τ)) = pδ(Q) (5.32)

for Q ∼ X2
k−p. Define (ṽ1, . . ., ṽp) := diag VT̃ δ and let b̃i denote the ith row of BT̃ δ,

hence ṽi =
(
VT̃ δ

)
ii

and b̃i =
(
VT̃ δ

)
i
X>ΩT̃ δ. The observed values of ṽi and b̃i

are vi and bi respectively. As T̃ is a generalised pivotal quantity, the respected
(multivariate) distributions of ṽi and b̃i can explicitly be calculated:

ṽi =
((

X> ([T̃ ]
k

+ [δ]
)−1

X
)−1

)
ii

, (5.33)

b̃i =
((

X> ([T̃ ]
k

+ [δ]
)−1

X
)−1

)
i

X> ([T̃ ]
k

+ [δ]
)−1 . (5.34)

Since the distribution of T̃ is free of unknown parameters, so are the distributions
of ṽi and b̃i free of unknowns. Define
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Li := b̃iy − biY − βi√
vi

·
√

ṽi = b̃iy − N ·
√

ṽi (5.35)

where N ∼ N(0, 1). By (5.33), (5.34), and (5.35), the distribution of Li is free of
unknowns, though, it depends on the data via the observed response vector y. The
observed value of Li is βi. Hence, Li is a generalised pivotal quantity for βi. Let Li

denote the distribution of Li and let liγ denote its γ-quantile for any γ ∈ (0, 1).
Then for any fixed γ ∈ (0, 1

2) and fixed i = 1, . . ., p,[
li γ

2
, li1− γ

2

]
(5.36)

is a generalised (1 − γ)-confidence interval for βi.
The following algorithm can be used to estimate the quantiles liγ for any γ ∈

(0, 1). If γ ∈ (0, 1)s, let lγ = (liγ1 , . . ., liγs) denote the s-tuple of γr-quantiles of Li,
r = 1, . . ., s.

Algorithm 5.3 Let i = 1, . . ., p be fixed. For γ ∈ (0, 1)s, this algorithm returns
a sequence (li,γ,m)m∈N of random elements in Rs, such that

li,γ,m
P
−→ liγ , m → ∞. (5.37)

1) Let (τl)l∈N be a stream of generalised pivotal quantities generated, for
example, using Algorithm 4.8.

2) Let (Nl)l∈N be a stream of random elements with Nl ∼ N(0, 1).
3) For each l ∈ N, solve the system of linear equations(

X>ΩτlδX
)

βl = X>Ωτlδy, (5.38)

which yields a sequence of (βl)l.
4) Let vil, i = 1, . . ., p denote the diagonal elements of (X>ΩX)−1. This

yields a sequence of (vil)l∈N.
5) Take the random sequences (ṽil)l∈N, (b̃il)l∈N, and (Nl)l∈N and zip them

together using (5.35). This yields a random sequence (Lil)l∈N. Then
each Lil has distribution Li.

Finally, for any m ∈ N, define li,γr,m as the empirical γr-quantile of (Lil)l≤m.
This yields

li,γ,m := (li,γ1,m, . . ., li,γs,m) . (5.39)
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Instead of obtaining confidence intervals for βi which are based on stochastic
approximation, such as (5.11), (5.16), and (5.18), the above construction produces
confidence intervals which are the result of exact probability statements.

The pivotal distribution in (5.35), the resulting interval estimate in (5.36), and a
short version of Algorithm 5.3 have already been successfully published in (Friedrich
and Knapp, 2013)

Note that step 4) forces to invert the matrix (X>ΩX). This is computationally
expensive as the algorithm is potentially evaluated around 1000 times or more. It
will be discussed later how to modify this algorithm such that (X>ΩX)−1 does not
need to be computed.

Excursion 5.4 The evaluation of the generalised pivotal quantity Li is imple-
mented in the function formulaL in the metagen package.

library(metagen)

First the summary statistics of the BCG vaccine efficacy data are collected.

bcg <- bcgVaccineData()
y <- bcg$logrisk
d <- bcg$sdiv
x <- cbind(1,bcg$x)

k <- dim(x)[1]
p <- dim(x)[2]

Points of the independent random streams of step 1) and 2) are generated by

set.seed(8572178)
h <- pfunc(y, d, x)(rchisq(1, k-p))
g <- rnorm(1)

Then the following call will produce a random pair from the generalised pivotal
distributions Li, i = 1, 2.

formulaL(y, d, h, g, x)
# [1] 0.42897269 -0.02472352
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Second construction based on generalised inference principles

Recall that V − 1
2 (BY − β) ∼ Np(0, Ip). This distribution is free of unknowns.

Let Ṽ := VT̃ δ and B̃ = BT̃ δ where T̃ is a pivotal quantity of τ . Then define

R := B̃y − Ṽ
1
2 · V − 1

2 (BY − β) (5.40)

= B̃y − Ṽ
1
2 · N,

for some N ∼ Nk(0, 1). The latter formula already shows that the distribution of
this quantity is free of unknowns. The observed values of Ṽ and B̃ are V and B
respectively. Hence, the observed value of R is simply r = β. The distribution of R
is given in detail by the equation

R = Bpδ(Q)δ · y − V
1
2

pδ(Q)δ · N

= Vpδ(Q)δX>Ωpδ(Q)δ · y − V
1
2

pδ(Q)δ · N

=
(
X> ([pδ(Q)]k + [δ])−1 X

)−1 X> ([pδ(Q)]k + [δ])−1 y

−
(
X> ([pδ(Q)]k + [δ])−1 X

)−1 · N

where N ∼ Np(0, 1) and Q ∼ X2
k−p. Each marginal projection Ri of R is a gener-

alised pivotal quantity for βi in the sense of Definition 3.1. Let R denote the p-vari-
ate distribution of R and rγ denote its (p-variate) γ-quantile for any γ ∈ (0, 1).
This suggests an alternative route on how to obtain a generalised pivotal quantity
for each βi, i = 1, . . ., p. If Ri denotes the ith marginal distribution of R and riγ

its γ-quantile, then each [
ri γ

2
, ri1− γ

2

]
(5.41)

is a generalised (1 − γ)-confidence interval for βi.
Computationally, R is a solution to the system of linear equations

V
− 1

2
pδ(Q)δ · R = V

1
2

pδ(Q)δX>Ωpδ(Q)δ · y − N . (5.42)

In different notation, this is equal to

Ṽ − 1
2 · R = Ṽ − 1

2 B̃y − N

= Ṽ
1
2 XΩ̃y − N,

since Ṽ − 1
2 B̃ = Ṽ − 1

2 Ṽ X>Ω̃ = Ṽ
1
2 X>Ω̃. Hence, x := Ṽ − 1

2 B̃y is the solution to the
system of linear equations
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(X>ΩT̃ δX) 1
2 x = X>ΩT̃ δy. (5.43)

Thus, the generalised pivotal quantity R can be computationally calculated by solv-
ing sequentially two systems of linear equations. This is numerically more efficient
than inverting a single matrix. The above argument yields Algorithm 5.5.

Algorithm 5.5 Let i = 1, . . ., p be fixed. For γ ∈ (0, 1)s, this algorithm returns
a sequence (ri,γ,m)m∈N of elements in Rs such that

ri,γ,m
P
−→ riγ , m → ∞. (5.44)

1) Let (T̃l)l∈N be a stream of independent generalised pivotal quantities
generated, for example, using Algorithm 4.8.

2) Let (Nl)l∈N be a stream of independent random elements such that
each Nl ∼ N(0, 1).

3) For each l ∈ N, calculate the principle root Ṽ
− 1

2
l of

Ṽ −1
l =

(
X>ΩT̃lδ

X
)

, yielding
(

Ṽ
− 1

2
l

)
l∈N

, (5.45)

a sequence of matrices in Rp×p. Even though the notation might suggest
differently, note that no matrix needs to be inverted during this step.

4) For each l ∈ N, solve the system of linear equations

Ṽ
− 1

2
l xl = X>ΩT̃lδ

y (5.46)

for xl, which yields a sequence of (xl)l ∈ N.
5) For each l ∈ N, solve the system of linear equations

Ṽ
− 1

2
l · Rl = xl − N (5.47)

for Rl. This yields a sequence of (Rl)l∈N. Then each Rl has the distrib-
ution R.

For any m ∈ N, let rγr,m denote the empirical γr-quantile of (Rl)l≤m. Define

rγ,m := (rγ1,m, . . ., rγs,m) , ri,γ,m = (rγ,m)i .

Algorithm 5.5 is computationally more efficient and numerically more stable
than Algorithm 5.3. The construction in (5.40), the generalised pivotal quantity Ri,
its resulting interval estimate (5.41), and Algorithm 5.5 are genuine and have not
been published prior to this dissertation.
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Excursion 5.6 (Continuation of Excursion 5.4) The generalised pivotal quan-
tity Ri is implemented in formulaR in an analogue fashion to Li in the function
formulaL. For the BCG vaccine efficacy data, the following call will produce a
random draw from the distributions R.

set.seed(8572178)
h <- pfunc(y, d, x)(rchisq(1, k-p))
g <- rnorm(1)

formulaR(y, d, h, g, x)
# [1] 0.42479083 -0.03136872

Adjusting for uncertainties in the heteroscedasticity estimate

In Section 2.13, it was argued that most practical applications are more closely mod-
elled by an extension to the random effects meta regression model that is, however,
not identifiable. Using the generalised inference principle, the modelling assump-
tions may nevertheless be used to compensate for the added uncertainty of the
heteroscedasticity estimates in a bottom-up approach. This is analogue to the use
of the generalised pivotal quantity T̃ in the construction of the generalised pivot
quantities Li and Ri.

It was argued that, in case the δj ’s are truly assumed to be unknown, the model
with whom one is actually working is

Yj |θj ∼ N (θj , Dj) ,

θj ∼ N
(

x>
j β, τ

)
,

Kj ∼ X2
nj−1,

Dj =
δj

nj − 1
· Kj ,

where (Yj , Dj) denotes the summary statistics of the jth study.
Define

D̃j := δj ·
dj

Dj
= δj · dj ·

nj − 1
δj

· K−1
j = dj(nj − 1)K−1

j . (5.48)

As the distribution of D̃j is independent of unknowns and its observed value is d̃j =
δj , it is obvious that D̃j is a generalised pivotal quantity for δj . If the unknown δj

is replaced by the generalised pivotal quantity D̃j in the definitions of ṽi and b̃i
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in (5.33) and (5.34) respectively, the distribution of Lj in (5.35) would still stay free
of unknowns. Also, its observed value would still be βi. Let us denote these new
random quantities by v̄i, b̄i and L̄j respectively.

For independent (K1, . . ., Kk, Q, N) with Kj ∼ X2
nj−1 , with Q ∼ X2

k−p, and
with N ∼ N(0, 1), the uni- and multivariate distributions are described via the
formulae

D̃j = dj(nj − 1)K−1
j , (5.49)

v̄i =
((

X>
([

pD̃j
(Q)
]

k
+
[
D̃j

])−1
X

)−1)
ii

, (5.50)

b̄i =
((

X>
([

pD̃j
(Q)
]

k
+
[
D̃j

])−1
X

)−1)
i

X>
([

pD̃j
(Q)
]

k
+
[
D̃j

])−1
, (5.51)

L̄i = b̄iy − N ·
√

v̄i. (5.52)

If L̄i denotes the distribution of L̄i in (5.52) and l̄i,γ its γ-quantile, then[̄
li, γ

2
, l̄i,1− γ

2

]
(5.53)

is a generalised (1−γ)-confidence interval for βi for γ ∈ (0, 1
2) and fixed i = 1, . . ., p.

Note again that this confidence set is the result of an exact probability statement.
The quantiles l̄i,γ are obtained by numerical simulations by Algorithm 5.7 which is
a modified version of Algorithm 5.3.
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Algorithm 5.7 Let i = 1, . . ., p be fixed. For γ ∈ (0, 1)s, this algorithm returns
a sequence (l̄i,γ,m)m∈N of random elements in Rs, such that

l̄i,γ,m
P
−→ l̄i,γ , m → ∞. (5.54)

1) For each j = 1, . . ., k, let Kj = (Kjl)l∈N be an independent sequence such
that each Kjl ∼ X2

nj−1.
2) Let D̃l = (D̃1l, . . ., D̃jk) with D̃jl = dj(nj − 1)K−1

jl .
3) Let (τl)l∈N be a stream of generalised pivotal quantities that has been

generated by applying Algorithm 4.8 but setting δ := D̃l in the algorithm
itself.

4) For each l ∈ N, solve the system of linear equations(
X>ΩτlDl

X
)

βl = X>ΩτlDl
y, (5.55)

which yields a sequence of (βl)l, and define vil = ((X>ΩτlDl
X)−1)ii.

5) Let (Nl)l∈N be a stream of random elements with Nl ∼ N(0, 1).
6) Take the random sequences (vil)l∈N, (bil)l∈N, and (Nl)l∈N and zip them

together using (5.52), which yields a random sequence (Lil)l∈N. Then
each Lil has distribution L̄i.

For any m ∈ N, let li,γr,m denote the empirical γr-quantile of (Lil)l≤m. Define

li,γ,m := (li,γ1 , . . ., li,γs) . (5.56)

The key in going from Algorithm 5.3 to Algorithm 5.7 is happening in steps 3)
and 4) where the unknown inner-study variances δj are replaced with generalised
pivots which are in turn based on the observed summary statistics dj = δ̂j of the
respected studies. This will increase the variance of the resulting generalised pivotal
quantity and should adjust for the uncertainty in the estimation of the δj ’s.

Note that replacing the δj ’s by the generalised pivots D̃j in Algorithm 4.8 already
defines a new adjusted pivotal quantity for the heterogeneity parameter τ . An
adjusted version of Algorithm 5.5 can also be constructed by modifying its steps 1)
and 3) accordingly. This yields another adjusted pivotal quantity for the βi’s.

Unfortunately, the above procedure has its limitations. Consider the case, when
the effect measures of the studies are risk ratios as in the BCG example of Sec-
tion 1.2. Then model (2.2)+(2.3) is used with the logarithms of the relative risks
as response values, since these are approximately Gaussian distributed. In this
case, however, the estimated within-study variances are no longer independent of
the responses. Expressed in the above notation, each (Yj , Dj), j = 1, . . ., k, is no
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longer independent. The derivation of the distribution of D̃j , though, relies on this
independents in Equations (2.66) and (2.67).

Example: Generalised pivotal distributions in the BCG vaccine effi-
cacy data
The previous sections have shown that inference on the regression coefficients may
either be based on the distributions Li, i = 1, . . ., p, or on the marginal distributions
of R. The obvious question is whether differences are to be expected between the
pivotal distributions Li and Ri. In case the underlying model follows the mean re-
sponse extension, the question is whether it is worth the effort to apply the discussed
adjustment of the last section.

Different density estimates of the respected distributions can be seen in Figure 5.1
and Figure 5.2. As one can see, no big differences are to be expected when using
either L2 or R2 for making inference on the slope β2. One may argue that R2 shows
a sharper peak in the middle of the distribution and less heavy tails than L2. This
suggests to base inference on R as the implementation of this generalised pivotal
quantity allows a higher degree of numerical optimisation.

Differences between the adjusted and unadjusted versions of L2 and R2 are hardly
visible Figure 5.2. One may think that this is due to the large sample sizes in some
of the clinical trials of the BCG vaccine efficacy data. This supposition, however,
could not be supported by artificially altering the sample sizes.

Excursion 5.8 Algorithm 4.8, Algorithm 5.3, Algorithm 5.5, and their re-
spected adjustments analogue to Algorithm 5.7 can all be accessed by the function
pivotalStream of the metagen package.

library(metagen)
bcg <- bcgVaccineData()
y <- bcg$logrisk
d <- bcg$sdiv
s <- bcg$size
x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(1000, y=y, d=d, x=x, adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(1000, y=y, d=d, x=x, s=s, adjusted=TRUE)

The form of the response of this function, namely pivUn and pivAd above, is
a matrix in which each row corresponds to the different pivotal distributions T,
L1, . . .,Lp, and R1, . . .,Rp where T is the pivotal distribution of the heterogeneity.
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There exist, however, functions which join and extract the respected pivotal draws
from this matrix and attach human readable labels to each of them.

pivh <- joinPivotalHeterogeneity(pivUn, pivAd)
pivr <- joinPivotalCoefficients(pivUn, pivAd)

To produce plots as shown in Figure 5.1 and Figure 5.2 try one of the following
functions:

plotDensityH(pivh)
plotDensityH2(subset(pivh, variable=="unadjusted"))
plotDensityH2(subset(pivh, variable=="adjusted"))
plotDensitySlope(pivr)
plotDensitySlope2(pivr)
plotDensityIntercept(pivr)
plotDensityIntercept2(pivr)

unadjusted adjusted
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Figure 5.1 Density estimates of the distributions L2 and R2 for the slope in the
BCG vaccine efficacy example.

Generalised inference in higher dimensions

In the last sections, different point and interval estimates were defined for the indi-
vidual regression coefficients βi of the regression model. Here, the construction of
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Figure 5.2 Density estimates of the distributions L2 and R2 for the slope in the
BCG vaccine efficacy example.

generalised confidence ellipsoids for the vector β = (β1, . . ., βp) shall be discussed.
The goal is to construct a generalised pivotal quantity in the sense of Definition 3.3.

One might be tempted to define the cube[
rγ

2
, r1− γ

2

]
(5.57)

as a potential set estimate for β. However, the (1−γ)-confidence of the cube, namely

µR

([
rγ

2
, r1− γ

2

])
, (5.58)

will usually be much smaller than 1 − γ. Applying a Bonferroni correction suggests
to replace γ by γ

p which yields p simultaneous (1 − γ)-confidence intervals,[
ri γ

2p
, ri1− γ

2p

]
(5.59)

for all βi.
Instead of constructing simultaneous interval estimates for each βi, or, equiv-

alently, cube shaped confidence sets in Rp, one could also aim for finding a con-
vex area Aγ under the density DR of R of minimal extent, or measure, such
that µR(Aγ) ≤ 1−γ. This might be archived by using numerical methods. Theoret-
ical considerations suggest to define suitable quadratic forms instead. For example,
define

R>R (5.60)
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as a test statistic. Let R2 be the distribution of R>R, and r2
γ be its γ-quantile.

Then indeed

{β : ‖β‖2 < r2
γ} (5.61)

is an ellipsoid in Rp and a set estimate for β.
In case one has a (classical) Gaussian distributed pivotal quantity, such as BY ∼

Np(β, V ) for β, the usual course of action is to base further inference on quadratic
forms such as

(BY − β)>V −1(BY − β) ∼ X2
p . (5.62)

It is possible to go an analogue path when constructing an higher dimensional gener-
alised pivotal quantity in the sense of Definition 3.3. Let us assume that we are given
a multivariate statistic for which each marginal component is a generalised pivotal
quantity for each βi respectively and which variance-covariance structure is free of
unknowns. This holds true for both R, defined in (5.40), and L = (L1, . . ., Lp), de-
fined in (5.35). Say, we are given R ∼ R and let U := V(R). Then the distribution
of

T := R>U−1R (5.63)

is also free of unknowns. But note that the observed value T does also not depend on
any nuisance parameters and is a quadratic form in β. Let T denote the distribution
of T , and let tγ denote its γ-quantile. Then

Iγ = {β ∈ Rp : β>U−1β ≤ tγ} (5.64)

is a (1 − γ)-confidence ellipsoid for β in Rp. Given an algorithm that produces a
stream of random draws from R, Algorithm 5.9 can be used to estimate its variance-
covariance structure and the quantiles of the distribution T.
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Algorithm 5.9 Let i = 1, . . ., p be fixed. For γ ∈ (0, 1)s, this algorithm returns
a sequence (ti,γ,m)m∈N of random elements in Rs, such that

tγ,m
P
−→ tγ , m → ∞. (5.65)

1) Let (Rl)l∈N be a stream of independent draws from the distribution R,
for example, being produced by Algorithm 5.3.

2) Let R̄m := 1
m

∑
m
l=1 Rl. Then for each i, j = 1, . . ., p let

cmij := 1
m

m∑
l=0

(
Rli − R̄m

) (
Rlj − R̄m

)
,

Cm := (cmij)ij .

Then each Cm, m → ∞ is an unbiased, consistent estimator of V(R).
3) Let

Tlm := R>
l C−1

m Rl. (5.66)

Then for each m ∈ N, this will produce a list (Tml)l≤m of length m.
For any m ∈ N, let tγr,m denote the empirical γr-quantile of (Tlm)l≤m. Define

tγ,m := (tγ1 , . . ., tγs) . (5.67)

The larger m the better the variance-covariance structure of R can be estimated
by Cm.

5.6 Performance study of inference methods about the
regression coefficients

Evaluating point estimators for the regression coefficients

As it has been discussed at the beginning of Section 4.6, the performance of point
and interval estimators have to be evaluated, for example, by simulation studies.
This holds true whether these methods are based on asymptotic statistical theory or
if they are based on generalised inference principles, and it is particularly important
if sample sizes are small.

As in the performance study of the heterogeneity estimators, the performance for
the regression coefficient estimators will be evaluated with respect to the canonical
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model and its mean response extension. The canonical model assumes the within-
study variances δ to be known, i.e., the true δ-vector is fed to each of the methods.
This corresponds to model (2.2)+(2.3). The mean response extension corresponds
to model (2.68)–(2.70) in which the methods only see estimates δ̂ of the heterosce-
dasticity based on a vector of known study sizes.

When setting up the experimental design of the simulation study, the goal was
to get a comprehensive overview on how the performance of the respected interval
estimators changes due to differences in heterogeneity and heteroscedasticity. The
same parameter settings and model strategies were used here as in Section 4.6.

The past sections have developed different point and interval estimators for the
regression coefficients in the random effects meta regression model. As point es-
timators for the regression coefficients, essentially two different estimators where
suggested. One based on asymptotic theory, namely B̂y, the other based on gen-
eralised inference principles, either using the univariate distribution Li or the ith
marginal distribution of R.

Six possible point estimators for the heterogeneity τ in B̂y = Bτ̂ δ̂ were discussed
in Chapter 4. These yield six different point estimators for the regression coefficients
each. It is interesting to see which of these heterogeneity estimators will result in the
best performing point estimators for β. Recall that Section 4.6 concluded to either
use the DerSimonian–Laird type estimator or the restricted maximum likelihood
estimator for the point estimation of τ .

On the generalised inference side, inference can either be based on Li or Ri. The
plots in Figure 5.1 and Figure 5.2 suggested that not too much difference between
these estimators is to be expected. In case the underlying model follows the mean
response extension, also the adjusted versions L̄i and R̄i can be used as the base
for inference. Thus, 10 different point estimators for the regression coefficients have
been suggested in total, which will be discussed respectively.

This section will show multiple plots of different performance measurements. Just
as in the case of the BCG vaccine efficacy example, most interest usually lies in the
estimation of the slope parameters in a meta regression analysis. As performance
results for the slope and the intercept have been very similar, performance measures
will only be shown for the slope parameter β2.
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Figure 5.3 Box plots of estimated mean squared error of different point estimators
for the slope parameter for different model parameter configurations.
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Figure 5.4 Box plots of estimated bias of different point estimators for the slope
parameter for different model parameter configurations.
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Figure 5.5 Box plots of estimated standard deviation of different point estimators
for the slope parameter for different model parameter configurations.

Figure 5.3, Figure 5.4, and Figure 5.5 show box plots of the estimated mean
squared error, the bias, and the standard deviation of each of the 10 point estimators
for the slope parameter. As it can be seen, the point estimators do not vary much
in their respected mean squared errors. The minimal observed mean squared error
for the different parameter configurations is slightly higher in case of the mean
response extension, which is to be expected. Obviously, when sample sizes increase,
the mean squared errors of the estimators are reduced. The methods based on
generalised inference principles are very much in line with the methods based on
more traditional approaches.

A more diverse picture is shown in Figure 5.4, which shows the estimated bias
of the point estimators. Differences are not severe but one may argue that B̂y in
conjunction with the Hedges type or Mandel–Paule type estimator shows a slight
tighter distribution around 0 in comparison to others methods. For k = 13 and the
mean response extension, the unadjusted generalised method based on R2 shows
the tightest bias distribution around 0. Figure 5.5 shows a very similar picture
to Figure 5.3.
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Figure 5.6 Scatter plots of estimated mean squared error of different point esti-
mators for the slope parameter for different model parameter configurations.
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Figure 5.7 Scatter plots of estimated mean squared error of different point esti-
mators for the slope parameter for different model parameter configurations.
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Figure 5.8 Scatter plots of estimated mean squared error of different point esti-
mators for the slope parameter for different model parameter configurations.
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Figure 5.9 Scatter plots of estimated bias of different point estimators for the
slope parameter for different model parameter configurations.
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Figure 5.10 Scatter plots of estimated bias of different point estimators for the
slope parameter for different model parameter configurations.
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Figure 5.11 Scatter plots of estimated bias of different point estimators for the
slope parameter for different model parameter configurations.
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Figure 5.12 Scatter plots of estimated standard deviation of different point esti-
mators for the slope parameter for different model parameter configurations.
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Figure 5.13 Scatter plots of estimated standard deviation of different point esti-
mators for the slope parameter for different model parameter configurations.
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Figure 5.14 Scatter plots of estimated standard deviation of different point esti-
mators for the slope parameter for different model parameter configurations.

The scatter plots of the true underlying heterogeneity τ and estimated mean
squared error of Figure 5.6, Figure 5.7, and Figure 5.8 show hardly any differences.
The scatter plots of τ and the estimated bias are shown in Figure 5.9, Figure 5.10,
and Figure 5.11. As Figure 5.9 suggests, the bias of the estimator B̂y in conjunction
with the Mandel–Paule type estimator consistently lies below the bias of the other
methods. Also note the difference in the regression lines for the likelihood methods
in Figure 5.10 for k = 7 and k = 13. No mentionable differences are seen in the
scatter plots of Figure 5.12, Figure 5.13, and Figure 5.14 of τ and the estimated
standard deviation.

This suggests no clear recommendation of which point estimator to use for esti-
mating the regression coefficients. One may argue in favour of B̂y in conjunction
with the Hedges type estimator or the new generalised estimate based on the median
of the unadjusted distribution R. Worth mentioning is that the point estimators
based on the distributions Li, Ri, L̄i, and R̄i are very much in line with the perfor-
mance of all other presented methods.

Evaluating interval estimators for the regression coefficients

This chapter has developed different interval estimators for the regression coefficients
of the random effect meta regression model. Three of these were based on asymptotic
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theory. The first being (5.11), the Knapp–Hartung adjustment (5.16), as well as an
additional ad hoc improvement to this adjustment, the Knapp–Hartung ad hoc
improvement (5.18), which is considered to be the current state-of-the-art. Each
of these three interval estimators rely on a consistent point estimate for τ . In
conjunction with the six estimators for τ which are based on either methods of
moments or maximum likelihood, this results in 18 different interval estimators for
each βi.

Additionally, two generalised pivotal distributions, Li and the ith marginal dis-
tribution of R, were developed which quantiles led to the interval estimators (5.53)
and (5.41) respectively. In case of the mean response extension, these interval es-
timators may also be based on L̄i and R̄i instead. This section will, therefore,
compare 22 different interval estimators for βi. Only the performance with respect
to β2 will be discussed and their respected performance measures plotted since per-
formance with respect to β1 is comparable and β2 is the parameter of practical
importance in most applications.

For each of the 22 interval estimators, Figure 5.15 shows box plots of the as-
pired confidence level minus the estimated coverage. For a good performing interval
estimate confidence level - coverage probability is expected to be close to 0. For a
conservative method this value is preferably below 0 rather than above.

In conjunction with the Sidik–Jonkman type estimator for τ , the three interval
estimators based on asymptotic theory show the most conservative performance.
Among these, the Knapp–Hartung ad hoc improvement used in conduction with
the Sidik–Jonkman estimator is the most conservative of all discussed interval esti-
mators, and it is, in fact, the only one which holds true to its aspired confidence level
in all simulated parameter scenarios. In conjunction with the maximum likelihood
estimator for τ , each of these interval estimators show the most liberal performance.
The worst performing interval estimate is (5.11) in conjunction with the uncondi-
tional maximum likelihood estimator for the heterogeneity. Results based on this
method are almost bound to overestimate their statistical significance.

Interesting to see is the wide spread of the estimated coverage that some of
these interval estimators show with respect to different parameter configurations.
This is especially severe in conjunction with the unconditional maximum likelihood
method for τ . Recall the high bias of this estimator in Chapter 4. But also in
conjunction with Hedges type estimator, the estimated coverage probability of the
corresponding interval estimators for β2 is quite diverse. This makes it difficult to
predict the actual coverage of these interval estimate independent of any underlying
(unknown) parameter configuration. Most accurately, the coverage can be predicted
in conjunction with the Sidik–Jonkman type estimator. In conjunction with this
estimator, the Knapp–Hartung adjustment without the ad hoc truncation shows a
good mix between accuracy and precision.
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Figure 5.15 Boxplots of confidence level - coverage probability for different model pa-
rameters for k = 7 number of studies and different inferential methods shown for the
slope parameter. The optimal line is the black vertical line at zero in each of the plots.
Being to the left of this line is preferable.
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Figure 5.16 Boxplots of confidence level - coverage probability for different model pa-
rameters for k = 13 number of studies and different inferential methods shown for the
slope parameter. The optimal line is the black vertical line at zero in each of the plots.
Being to the left of this line is preferable.
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Figure 5.17 Scatter plots of estimated coverage of different interval estimators
for the slope parameter for different model parameter configurations.

For the interval estimators based on generalised inferential principles, difference
between the performance of the different pivotal distributions are not visible. As
mentioned before, this was to be expected and is in line with Figure 5.1 and Fig-
ure 5.2. This suggests to use Ri when inference is based on generalised inference
principles.

The performance of the interval estimate based on Ri is comparable with the per-
formance of the Sidik–Jonkman-Knapp–Hartung adjusted interval estimate. This is
also visible in the scatter plot of Figure 5.17 that plots the true heterogeneity τ and
the performance measure confidence-coverage. For small magnitudes of heterogene-
ity, the generalised confidence interval shows more conservative behaviour. A direct
comparison of these three interval estimators is shown in Figure 5.18 which shows
kernel density estimates of the respected coverage distributions for the same inter-
val estimators as in Figure 5.17. The density estimates suggest that the coverage
of Sidik–Jonkman-Knapp–Hartung adjusted interval estimate lies tighter around its
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Figure 5.18 Density estimates of estimated coverage of different interval estima-
tors for the slope parameter for different model parameter configurations.

aspired confidence level than the Ri-method. Both perform better than the so far
believed state-of-the-art REML-Knapp–Hartung estimator. If it were not for the
Sidik–Jonkman-Knapp–Hartung estimator, the new method based on generalised
inference principles would have been the best performing interval estimate of all.
The plots have also shown that the ad hoc truncation of

qy(τ̂)
k − p

, (5.68)

which was suggested by Knapp and Hartung (2003), seems to be making their
original interval estimator unnecessarily conservative.

Last but not least, Figure 5.19 shows box plots of the estimated mean inter-
val width for the same interval estimators as in Figures 5.17 and Figure 5.18.
The mean interval widths are on comparable scales. Interestingly, even though
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Figure 5.19 Box plots of estimated average width of different interval estimators
for the slope parameter for different model parameter configurations.

the Knapp–Hartung ad hoc improved interval estimate in conjunction with the re-
stricted maximum likelihood estimator for τ shows less conservative behaviour than
the Sidik–Jonkman-Knapp–Hartung adjusted and the generalised-Ri interval esti-
mate, its estimated mean interval widths lie above the latter two.

When using the classic and non-adjusted maximum likelihood approach for infer-
ence on the regression coefficients in the random effect meta regression model, e.g.,
in case no other methods are implemented in the software package used for the sta-
tistical analysis, the performance study suggests to use this estimator in conjunction
with the Sidik–Jonkman type estimator for the heterogeneity parameter. If adjust-
ments such as the Knapp–Hartung adjustment are available, it is strongly suggested
to use this method. It is also suggested to use this method in conjunction with the
Sidik–Jonkman type estimator as a default method. The Sidik–Jonkman type esti-
mator will lead to comparably high accuracy and precision of the aspired coverage
probability. When the Knapp–Hartung ad hoc improvement is implemented in the
statistical software, the simulation study suggests to use the conditional restricted
maximum likelihood method in conjunction with this estimator.
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The surprise of the performance study is that the method that was so-far believed
to be the current state-of-the-art, namely the Knapp–Hartung ad hoc improve-
ment, is outperformed by its counterpart without the ad hoc truncation. Thus,
two messages can be concluded from the performance study. The new presented
method based on generalised inference principles was able to outperform this cur-
rent state-of-the-art. Second, the performance study gives a clear suggestion to
the actual state-of-the-art method, namely the Sidik–Jonkman-Knapp–Hartung ad-
justed interval estimator without truncation. This is new and unexpected.

5.7 Example: Regressing BCG vaccine efficacy on geo-
graphic location

In the BCG vaccine efficacy example of Section 1.2, the logarithm of the relative
risk is used as the effect size in the statistical analysis in order to study whether
the geographic distance of a clinic to the equator has a linear influence on this
effect. The absolute latitude of the geographic location of a clinical trial is used as
a surrogate for this distance. The effect size, i.e., the logarithm of the relative risk,
converges in distribution to a Gaussian.

Point estimates for the Intercept Slope
Hedges 0.203 -0.0282
DerSimonian–Laird 0.260 -0.0292
Sidik–Jonkman 0.198 -0.0281
Mandel–Paule 0.222 -0.0286
maximum likelihood 0.282 -0.0295
restricted maximum likelihood 0.251 -0.0291
generalised (via L) unadjusted 0.251 -0.0283
generalised (via R) unadjusted 0.253 -0.0289
generalised (via L) adjusted 0.239 -0.0283
generalised (via R) adjusted 0.239 -0.0287

Table 5.1 Point estimates of the intercept and slope parameters in the BCG vaccine
efficacy example

Table 5.1 shows point estimates of the regression coefficients, the intercept, and the
slope for different point estimators. The point estimate B̂y in conjunction with
the DerSimonian–Laird type estimator in conjunction with the restricted maximum
likelihood estimator and the generalised (unadjusted) point estimator based on R
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show very similar estimates for the slope parameter. The performance study suggests
to trust the Hedge type estimate.

The interval estimates for the intercept and slope parameter for the fitted random
effects meta regression model are shown in Table 5.2 and Table 5.3 for different
confidence levels.

Excursion 5.10 (Regression coefficients of BCG vaccine efficacy trials)
All methods which performances have been compared by the computer experiment
can be accessed via the metagen package. The following will run all inferential
methods on the BCG vaccine efficacy data set.

library(metagen)
bcg <- bcgVaccineData()
y <- bcg$logrisk
d <- bcg$sdiv
s <- bcg$size
x <- cbind(1,bcg$x)

set.seed(865287113)
estimation <- metagen( y=y, d=d, x=x

, sgnf=sgnf, s=s
, n=1000, adjusted=T)

Here, n = 1000 defines the number of draws taken from the generalised pivotal
distributions respectively. The list of point estimates can be accessed via

# point estimate of the regression coefficients
estimation$pointr

The form of this data frame is suitable for further automated processing by R.
If you are interested in a more human readable table, you can reshape the data
frame into wide format by the following code.

# point estimates of the regression coefficients
library(reshape2)
pointr <- reshape( data = estimation$pointr

, v.names = "value"
, idvar = "type"
, timevar = "parameter"
, direction = "wide")

library(plyr)
pointr <- rename(pointr, c("value.1"="intercept", "value.2"="slope"))
pointr
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As a small gimmick, consider the following. Recall that the Knapp–Hartung
adjustment and the Knapp–Hartung ad hoc improvement will yield the same
result whenever qy(τ̂) ≥ 11 = k − p. The following code will print the names
of the point estimates for τ for which these two interval estimates will yield the
same results.

qfunction <- qfunc(y, d, x)
with(estimation$pointh, type[qfunction(h) >= 11])
# [1] DerSimonian-Laird Mandel-Paul maximum-likelihood restricted maximum-likelihood

Graphical representations of the interval estimates can be produced by

plotCoefficientInterval(subset(confr, parameter == 1))
plotCoefficientInterval(subset(confr, parameter == 2))

Section 1.2 argued that the absolute latitude may be linked to a level of natural
immunity against tuberculosis within the population of a clinical trial. Formally,
this translates into the testing problem

H0 : β2 ≥ 0 vs. H1 : β2 < 0. (5.69)

At an aspired confidence level of 0.01, this hypothesis is failed to be rejected when
using the generalised method based on R2 and when using the Sidik–Jonkman-
Knapp–Hartung adjusted method for the interval estimation but not when using
the REML-Knapp–Hartung ad hoc improvement.
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The text has developed new inferential methods for the random effects meta regres-
sion model and the random effects meta analysis model. In particular, new point
and interval estimates were proposed for the heterogeneity parameter and the regres-
sion coefficients of the respected models based on the generalised inference principle
by Tsui and Weerahandi (1989). These methods are genuine. Preliminary results,
though, for the regression coefficients have been published prior to this dissertation
in (Friedrich and Knapp, 2013).

Current point and interval estimates commonly found in the literature were pre-
sented in the text in a unified framework. For multiple point estimates of the
heterogeneity parameter which are based on the method of moments approach, this
unifying framework allowed the formulation of new iterative procedures. The con-
vergence of these methods has not been established yet, and the presented approach
should yield a fruitful connection point for further theoretical studies. It would be
very interesting to see, if the resulting sequences of estimates always converge, and
if the resulting limits equal already otherwise known estimates.

A concise introduction to the generalised inference principle was given. Addi-
tionally, an extension of the principle to higher dimensions was suggested which is
original and has not been published yet.

All discussed methods, point and interval estimates, new and known methods,
have been evaluated by two extensive simulation studies. The specific set-up of these
simulation studies is genuine in this context. The set-up and the results of these
studies have been presented and discussed thoroughly.

A software package called metagen was written for the statistical software envi-
ronment R, (R Development Core Team, 2010). The package implements all dis-
cussed methods and can, thus, be used as a statistical software tool for analysing
data in the meta analysis or meta regression framework. The package also allows
to reproduce the simulation studies and all results presented in this text. It also
allows to set up custom simulation studies including new methods which have not
been coded into the base package of metagen. It, thus, establishes a tool box for the
field in which a variety of different method can be compared in a standardised way.

Hannig (2009) argues that the generalised inference principle and the fiducial in-
ference recipe by Fisher (1935) are not too far from each other. He underwent con-
siderable work in producing first sketches of a unifying theory. This may also open
the possibility to compare method of generalised inference with Bayesian methods
on a theoretical level. Hannig (2009) points out that in some special cases Bayesian
methods in conjunction with Jeffreys prior result in statistics that would otherwise
also be found when applying the generalised inference principle. This conjecture
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has not been applied to the random effects meta regression model yet and should
be worth to be investigated.

So far, the generalised inference principle has only been defined for continuous
random variables, and, indeed, is it unclear if the principle can be extended to
discrete random variables.

A very different approach would be to exploit ideas by Fraser (1982) and his
notion of a structural model and an implied invariant group structure that can be
pulled back to the parameter space. His approach to statistical modelling resulted in
quite some discussion, see (Dawid and Stone, 1982a), followed by (Barnard, 1982),
and again (Dawid and Stone, 1982b). Fraser’s idea of using group structures on
the sample space as a guideline on how to construct pivotal quantities was pick up
by Weerahandi (1995) who applied it to the generalised inference principle. These
results, however, did not find their way into the unification approach by Hannig
(2009). The interconnections between these theoretical approaches should be inter-
esting to study.

The text has also defined point estimates on the basis of the distribution of
generalised pivotal quantities. The first paper that can be found on this topic is
(Weerahandi, 2012). As mentioned, different measures of the generalised pivotal
distribution may be used for the construction such as the mean or the mode of these
distributions. How these measures perform in practical examples would be a typical
application for which the metagen package could be used.

The correlation structure of V(β̂) for an estimator β̂ of the regression coefficients
vector of a random effects meta regression model may influence on the convergence
rate of point and interval estimates. This has not been studied yet. Though the
metagen package could be used to produce simulation results, it would be more
interesting to see if results concerning the convergence rate could also be established
on a theoretical level.

Another correlation structure that is worth investigating is whether an existing
correlation dependence between the study responses and their respected variance
estimates has an influence on the performance of the presented inferential methods.
This is, for example, the case for the discussed binomial-Gaussian hierarchical model.
In (Friedrich and Knapp, 2013), this had a positive effect on the performance of
the generalised inference method in comparison to the Knapp–Hartung adjusted
method. Whether this is generally the case, however, is not clear.
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May 9, 2014

Version 1.0
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on generalised inference. The package also includes tools to run extensive
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implemented state-of-the-art methods in a standardised way. Tools for
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License GPL-3
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ByteCompile yes

Encoding UTF-8
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2 R topics documented:

R topics documented:
bcgVaccineData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
boxBias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
boxByConfidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
boxByMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
boxByType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
boxMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
boxSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
cbbPalette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
cbgPalette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
collectAllExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
collectExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
designB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
designD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
designY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
dvec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
experimentD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
experimentY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
formulaL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
formulaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
hConfidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
hEstimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
intervalEstimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
joinPivotalCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
joinPivotalHeterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
lenBoxByMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
lenBoxByType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
lenDenByMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
lenDenByType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
makeConfInt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
makeConfInts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
metagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
metagenEmpty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
metagenGeneralised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
metareg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
performanceConfH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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performancePointH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
performancePointR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
pfunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
pivotalStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
plotCoefficientInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
plotDensityH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
plotDensityH2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
plotDensityIntercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
plotDensityIntercept2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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plotDensitySlope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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regressionEstimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
render . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
renderSVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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Index 53

bcgVaccineData Example: Setting up the BCG-data set

Description

Exemplary data set of 14 clinical trials evaluating BCG vaccine efficacy.

Usage

bcgVaccineData(sgnf = 0.05)

Arguments

sgnf significance level of the confidence intervals for the relative risks.
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4 boxByConfidence

Details

Reads in the BCG vaccine efficacy data from the metafor package and adds some statistics to the
data such as the log-relative risk, study size, measurements of balance, confidence intervals of the
responses, and the like.

Value

Returns a data set of 13 clinical trials which evaluated the efficacy of the BCG vaccine. The data set
is an exact copy of the data set found in the dat.bcg data frame provided by the metafor package.

Examples

bcgVaccineData()

boxBias Plotting performance: Box plots for bias

Description

Box plots for the bias.

Usage

boxBias(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

boxByConfidence Plotting performance: Box plots for target value confidence-coverage

Description

Plotting performance: Box plots for target value confidence-coverage

Usage

boxByConfidence(res)
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Arguments

res The collected results from a computer experiment.

Value

A plot object.

boxByMethod Plotting performance: Box plots for target value confidence-coverage

Description

Plotting performance: Box plots for target value confidence-coverage

Usage

boxByMethod(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

boxByType Plotting performance: Box plots for target value confidence-coverage

Description

Plotting performance: Box plots for target value confidence-coverage

Usage

boxByType(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.
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6 boxSD

boxMSE Plotting performance: Box plots for mean squared error

Description

Box plots for mean squared error.

Usage

boxMSE(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

boxSD Plotting performance: Box plots for standard deviation

Description

Box plots for standard deviation.

Usage

boxSD(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.
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cbbPalette Colour palettes for colour blind people

Description

The palette with black.

Usage

cbbPalette

Format

chr [1:8] "#000000" "#E69F00" "#56B4E9" "#009E73" "#F0E442" ...

Details

This palette is directly taken from

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/

Hence, I don’t take any credit for this.

Examples

scale_fill_discrete <- function(...) scale_fill_manual(...,
values=cbbPalette)

scale_colour_discrete <- function(...) scale_fill_manual(...,
values=cbbPalette)

cbgPalette Colour palettes for colour blind people

Description

The palette with grey.

Usage

cbgPalette

Format

chr [1:8] "#999999" "#E69F00" "#56B4E9" "#009E73" "#F0E442" ...
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8 collectExperiments

Details

This palette is directly taken from

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/

Hence, I don’t take any credit for this.

Examples

scale_fill_discrete <- function(...) scale_fill_manual(...,
values=cbgPalette)

scale_colour_discrete <- function(...) scale_fill_manual(...,
values=cbgPalette)

collectAllExperiments Running a computer experiment – Collect all the results

Description

Collects all the results of all finished experiments in the given registry for all predefined algorithms.

Usage

collectAllExperiments(reg)

Arguments

reg A valid registry generated by ’makeExperimentRegistry’.

Value

List of data frames containing the performance measures of all point and interval estimates for the
heterogeneity and the regression coefficients.

collectExperiments Running a computer experiment – Collect specific results

Description

Collects specific results of all finished experiments in the given registry for a given pattern.

Usage

collectExperiments(reg, pattern)



127

designB 9

Arguments

reg A valid registry generated by ’makeExperimentRegistry’.

pattern string containing the algorithm pattern for which the collection shall be per-
formed.

Value

List of data frames containing the performance measures of all point and interval estimates for the
heterogeneity and the regression coefficients.

designB Design: Binomial responses

Description

Method for generating a sampling design for data generation following a binomial-Gaussian model.

Usage

designB(n, h_bounds, a_bounds, s_bounds, r, x)

Arguments

n resolution of the heterogeneity. n is the number of of different heterogeneity
parameters in the design.

h_bounds bounds of the heterogeneity.

a_bounds bounds of the balancing factor of group assignments.

s_bounds bounds of the study sizes.

r fixed risk in the control.

x design matrix.

Details

Generates a sampling design for the heterogeneity ’h’, balancing factors ’a1’, ..., ’ak’ of group
assignments, and study sizes ’s1’, ..., ’sk’. This design can be used for testing methods for inference
for the random effects meta regression model since the logarithm of relative risks of each study
is approximately Gaussian distributed. One may use methods that adjust for uncertainty in the
heteroscedasticity estimates by additionally considering the size of the respected studies.

Points in the design are selected via a maxi-min hypercube sampling using the ’lhs’ package in a
predefined parameter cube.

Value

Function returns a data frame. Each line of this data frame can be an input to the function ’rB’
which is used to sample data from such a design.



128 Appendix: Software documentation

10 designD

Examples

dB <- designB(n=15L, h_bounds=c(0,1), a_bounds=c(-.3,3),
s_bounds=c(200L,2000L), r=0.03, x=cbind(1,1:5))

if(!all(dim(dB) == c(15,2*dim(cbind(1,1:5))[1]+2))) {
stop("Wrong dimension")

}

designD Design: Gaussian responses (unknown heteroscedasticity)

Description

Method for generating a sampling design for data generation following a random effects meta re-
gression model with unknown heteroscedasticity.

Usage

designD(n, h_bounds, d_bounds, s_bounds, x)

Arguments

n resolution of the heterogeneity and heteroscedasticity parameters, i.e., the num-
ber of of different (heterogeneity, heteroscedasticity, sizes) tuple in the design.

h_bounds bounds of the heterogeneity.

d_bounds bounds of the heteroscedasticity.

s_bounds bounds of the study sizes.

x design matrix.

Details

Generates a sampling design for the heterogeneity ’h’, heteroscedasticity ’d1’, ..., ’dk’, and study
sizes ’s1’, ..., ’sk’. This design can be used for testing methods that adjust for uncertainty in the
heteroscedasticity estimates by additionally considering the size of the respected studies.

Points in the design are selected via a maxi-min hypercube sampling using the ’lhs’ package in a
predefined parameter cube.

Value

Function returns a data frame. Each line of this data frame can be an input to the function ’rD’
which is used to sample data from such a design.
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Examples

dD <- designD(n=15L, h_bounds=c(0,1), d_bounds=c(0.01,2),
s_bounds=c(200L,2000L), x=cbind(1,1:7))

if(!all(dim(dD) == c(15,2*dim(cbind(1,1:7))[1]+1))) {
stop("Wrong dimension")

}

designY Design: Gaussian responses (known heteroscedasticity)

Description

Method for generating a sampling design for data generation following a random effects meta re-
gression model with known heteroscedasticity.

Usage

designY(n, h_bounds, d_bounds, x)

Arguments

n resolution of the heterogeneity and heteroscedasticity parameters, i.e. the num-
ber of of different (heterogeneity, heteroscedasticity) pairs in the design.

h_bounds bounds of the heterogeneity.

d_bounds bounds of the heteroscedasticity.

x design matrix.

Details

Generates a sampling design for the heterogeneity ’h’ and a heteroscedasticity ’d1’, ..., ’dk’.

Points in the design are selected via a maxi-min hypercube sampling using the ’lhs’ package in a
predefined parameter cube.

Value

Function returns a data frame. Each line of this data frame can be an input to the function ’rY’
which is used to sample data from such a design.

Examples

dY <- designY(n=15L, h_bounds=c(0,1), d_bounds=c(0.01,2),
x=cbind(1,1:7))

if(!all(dim(dY) == c(15,dim(cbind(1,1:7))[1]+1))) {
stop("Wrong dimension")

}



130 Appendix: Software documentation

12 experimentD

dvec Data generation: Sampling data of clinical trials

Description

Calculates the variance estimate of log risk ratios from a study in the right format. See the example
below for details.

Usage

dvec(study)

Arguments

study Study data of a clinical trial with binomial outcomes.

Examples

h_test <- .03
x_test <- cbind(1,1:13)
b_test <- c(0.02, 0.03)
s_test <- rep(2000, 13)
a_test <- rep(.3, 13)
rBinomGauss( h=h_test, s=s_test, a=a_test, r=0.03

, x=x_test, b=b_test)$study -> test
yvec(test)
dvec(test)

experimentD Running a computer experiment

Description

Runs a computer experiment that evaluates the performance of different inference methods for the
random effects meta regression model with respect to heterogeneity and regression coefficients.

Usage

experimentD(n, h, d, s, x, b, sgnf, piv_draws)
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Arguments

n number of draws.

h heterogeneity.

d heteroscedasticity.

s vector study sizes.

x design matrix.

b regression coefficients.

sgnf significance levels.

piv_draws privotal draws.

Details

This also includes methods adjusting for uncertainty in the heteroscedasticity vector. In particular,
the study sizes need to be known, here.

Value

Data frame of accumulated performance measures.

Examples

h_test <- 0.03
x_test <- cbind(1,1:7)
b_test <- c(.5, .25)
sgnf_test <- c(0.025, 0.01)

set.seed(5133568) # for reproducibility
d_test <- rchisq(7, df=0.02)
s_test <- runif(7, min=200, max=2000)

# In an actual computer experiment, use ’piv_draws=1000’ instead!!
experimentD(n=5, h=h_test, d=d_test, s=s_test, x=x_test, b=b_test,

sgnf=sgnf_test, piv_draws=50)

experimentY Running a computer experiment

Description

Runs a computer experiment that evaluates the performance of different inference methods for the
random effects meta regression model with respect to heterogeneity and regression coefficients.

Usage

experimentY(n, h, d, x, b, sgnf, piv_draws)
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Arguments

n number of draws.

h heterogeneity.

d heteroscedasticity.

x design matrix.

b regression coefficients.

sgnf significance levels.

piv_draws privotal draws.

Value

Data frame of accumulated performance results.

Examples

h_test <- 0.03
x_test <- cbind(1,1:7)
b_test <- c(.5, .25)
sgnf_test <- c(0.025, 0.01)

set.seed(5133568) # for reproducibility
d_test <- rchisq(7, df=0.02)

# In an actual computer experiment, use ’piv_draws=1000’ instead!!
experimentY(n=5, h=h_test, d=d_test, x=x_test, b=b_test,

sgnf=sgnf_test, piv_draws=50)

formulaL Regression coefficients: formulaL

Description

Calculate pivotal quantities for the regression coefficients using the method: formulaL form the
dissertation.

Usage

formulaL(y, d, h, g, x)

Arguments

y k-vector of responses.

d k-vector of heteroscedasticity.

h scalar of heterogeneity.

g p-vector of some p-variate Gaussian draw.

x design k-p-matrix.
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Details

Algorithm for calculating a single generalised pivotal quantity for the regression coefficients for
given generalised pivotal quantities for the heterogeneity using the univariate version of the pivotal
formula.

Value

A p-vector.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)

# When for example using the Mandel-Paule estimate:
bcg_h <- pfunc(y=bcg_y, d=bcg_d, x=bcg_x)(dim(bcg_x)[1] -

dim(bcg_x)[2])

set.seed(51351) # for reproducibility
random_g <- rnorm(dim(bcg_x)[2])
formulaL(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=bcg_x)

# The function can also be used when planing to perform
# a meta regression with no intercept, and only a singel
# covariate (i.e. dim(x) = 1). In this case,
# the design matrix can simply be provided by a vector.
set.seed(51351) # for reproducibility
random_g <- rnorm(1)
formulaL(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=bcg$x)

# When performing a meta analysis, provide the function
# with a vector of 1s.
formulaL(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=rep(1,

length(bcg_y)))

formulaR Regression coefficients: formulaR

Description

Calculate pivotal quantities for the regression coefficients using the method: formulaR form the
dissertation.

Usage

formulaR(y, d, h, g, x)
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Arguments

y k-vector of responses.

d k-vector of heteroscedasticity.

h scalar of heterogeneity.

g p-vector of some p-variate Gaussian draw.

x design k-p-matrix.

Details

Algorithm for calculating a single generalised pivotal quantity for the regression coefficients for
given generalised pivotal quantities for the heterogeneity using the multivariate version of the piv-
otal formula.

Value

A p-vector.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)

# When, for example, using the Mandel-Paule estimate:
bcg_h <- pfunc(y=bcg_y, d=bcg_d, x=bcg_x)(dim(bcg_x)[1] -

dim(bcg_x)[2])

set.seed(51351) # for reproducibility
random_g <- rnorm(dim(bcg_x)[2])
formulaR(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=bcg_x)

# The function can also be used when planing to perform
# a meta regression with no intercept, and only a singel
# covariate (i.e. dim(x) = 1). In this case,
# the design matrix can simply be provided by a vector.
set.seed(51351) # for reproducibility
random_g <- rnorm(1)
formulaR(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=bcg$x)

# When performing a meta analysis, provide the function
# with a vector of 1s.
formulaR(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=rep(1,

length(bcg_y)))
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hConfidence Inference: Based on methods of moments and maximum likelihood.

Description

Calculates the so called Q-profiling confidence interval for the heterogeneity for data following a
random effects meta regression model.

Usage

hConfidence(y, d, x, sgnf)

Arguments

y k-vector of study responses.
d k-vector of heteroscedasticity.
x design k-p-matrix.
sgnf significance levels.

Value

A data frame containing the bounds of the interval estimate.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)

set.seed(865287113) # for reproducibility

hConfidence(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025)
hConfidence(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev)

hEstimates Point estimates: For the heterogeneity parameter

Description

Returns a list of tau estimates based on different approximative methods. Different point esti-
mates for the heterogeneity parameter are calculated: HD (Hedges), SL (DerSimonian-Laird), SJ
(Sidik-Jonkman), MP (Mandel-Paule), ML (maximum likelihood), REML (restricted maximum-
likelihood). Since any of these methods may fail to converge, there result may be ’NA’ in this
case.
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Usage

hEstimates(y, d, x)

Arguments

y study responses

d heteroscedasticity

x design matrix

Value

A data frame containing point estimates. Variables are ’type’ and ’h’.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
hEstimates(y=bcg_y, d=bcg_d, x=bcg_x)

# The implementation can also handle the case in which
# a meta regression is planed with no intercept and only a
# single covariate (i.e. dim(x) = 1). In this case,
# the design matrix can simply be provided by a vector.
# (This makes no sense in this example and shall only prove
# feasibility)
hEstimates(y=bcg_y, d=bcg_d, x=bcg$x)

# When performing a meta analysis, provide the function
# with a vector of 1s.
hEstimates(y=bcg_y, d=bcg_d, x=rep(1, length(bcg_y)))

intervalEstimates Interval estimates: For the regression coefficients

Description

Interval estimates: For the regression coefficients

Usage

intervalEstimates(y, d, h_dat, x, sgnf)
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Arguments

y study responses.

d heteroscedasticity.

h_dat data frame of tau estimates.

x design matrix.

sgnf significance levels.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
bcg_h <- hEstimates(y=bcg_y, d=bcg_d, x=bcg_x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)

intervalEstimates(y=bcg_y, d=bcg_d, h_dat=bcg_h, x=bcg_x, sgnf=0.025)
intervalEstimates(y=bcg_y, d=bcg_d, h_dat=bcg_h, x=bcg_x,

sgnf=sgnf_lev)

joinPivotalCoefficients

Pivotal distributions: Extract pivots for regression coefficients

Description

Pivotal distributions: Extract pivots for regression coefficients

Usage

joinPivotalCoefficients(p0, p1)

Arguments

p0 pivotal stream without adjustment.

p1 pivatal stream with adjustment.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,



138 Appendix: Software documentation

20 joinPivotalHeterogeneity

adjusted=FALSE)
set.seed(865287113)

pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s,
adjusted=TRUE)

pivr <- joinPivotalCoefficients(pivUn, pivAd)

joinPivotalHeterogeneity

Pivotal distributions: Extract pivots for heterogeneity

Description

Pivotal distributions: Extract pivots for heterogeneity

Usage

joinPivotalHeterogeneity(p0 = NULL, p1 = NULL)

Arguments

p0 pivotal stream without adjustment.

p1 pivatal stream with adjustment.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,

adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s,

adjusted=TRUE)

pivh <- joinPivotalHeterogeneity(pivUn, pivAd)
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lenBoxByMethod Plotting performance: Box plot of mean width

Description

Plotting performance: Box plot of mean width

Usage

lenBoxByMethod(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

lenBoxByType Plotting performance: Box plot of mean width

Description

Plotting performance: Box plot of mean width

Usage

lenBoxByType(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.
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lenDenByMethod Plotting performance: Density estimate of mean width

Description

By method.

Usage

lenDenByMethod(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

lenDenByType Plotting performance: Density estimate of mean width

Description

By type.

Usage

lenDenByType(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.
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makeConfInt Interval estimates: Generic function

Description

Generic function to produce interval estimates of univariate parameters based on first order limit
theory.

Usage

makeConfInt(sgn, pst, fct, crt, name)

Arguments

sgn one significance level.
pst point estimate.
fct standard error.
crt function for critical value computation.
name string: name of the method.

Details

Function for symmetric confidence intervals based on standard deviations, point estimates, and
quantile functions.

Can only handle a single significance level! See ’makeConfInts’ for a more flexible solution.

makeConfInts Interval estimates: Generic function

Description

Generic function to produce interval estimates of univariate parameters based on first order limit
theory.

Usage

makeConfInts(sgn, pst, fct, crt, name)

Arguments

sgn one significance level.
pst point estimate.
fct standard error.
crt function for critical value computation.
name string: name of the method.
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Details

Function for symmetric confidence intervals based on standard deviations, point estimates, and
quantile functions.

metagen Inference: Analysis of the data set

Description

Runs all implemented methods and combines them in a neat summary.

Usage

metagen(y, d, x, sgnf, s = NULL, n,
method = list("univariate", "multivariate"),
adjusted = FALSE)

Arguments

y k-vector of responses.

d k-vector of heteroscedasticities.

x design k-p-matrix.

sgnf vector of significance levels.

s k-vector of study responses. Default is NULL. If ’adjusted=TRUE’, this value
needs to be given.

n draws from the pivotal distribution.

method Default is ’list("univariate", "multivariate")’.

adjusted : TRUE or FALSE

Value

The same return type as the skeleton ’metagenEmpty()’.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)

set.seed(865287113) # for reproducibility

# Runs a standard analysis, use n=1000 in an actual
# analysis instead!
m1 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025, n=50)
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m2 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev, n=50)

# Runs the methods based on generalised principles via an
# adjustment for the unknown heteroscedasticity. Use
# n=1000 in an actual analysis instead!!
bcg_s <- bcg$size
m3 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025, s=bcg_s, n=50,

adj=TRUE)
m4 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev, s=bcg_s,

n=50, adj=TRUE)

if (!all(names(m1) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m2) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m3) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m4) == names(metagenEmpty()))) stop("Name clash")

metagenEmpty Inference: Empty skeleton

Description

Returns an empty skeleton that has the same return type as any other ’metagenSOMETHING’
function.

Usage

metagenEmpty()

Examples

metagenEmpty()

metagenGeneralised Inference: Based on generalised inference principles.

Description

Inference: Based on generalised inference principles.

Usage

metagenGeneralised(y, d, x, sgnf, s = NULL, n,
method = list("univariate", "multivariate"),
adjusted = FALSE)
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Arguments

y k-vector of responses.

d k-vector of heteroscedasticities.

x design k-p-matrix.

sgnf vector of significance levels

s k-vector of study responses. No need to provide this, when ’adjusted==FALSE’.
Default is NULL.

n draws from the pivotal distribution.

method Default is ’list("univariate", "multivariate")’.

adjusted TRUE or FALSE. Default is FALSE.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)

set.seed(865287113) # for reproducibility

# Runs a standard analysis, use n=1000 in an actual
# analysis instead!!
g1 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025, n=50)
g2 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev,

n=50)

# Runs the methods based on generalised principles via an
# adjustment for the unknown heteroscedasticity. Use n=1000 in an
# actual analysis instead!!
bcg_s <- bcg$size
g3 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025,

s=bcg_s, n=50, adj=TRUE)
g4 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev,

s=bcg_s, n=50, adj=TRUE)

# The implementation can also handle the case in which
# a meta regression is planed with no intercept and only a
# single covariate (i.e. dim(x) = 1). In this case,
# the design matrix can simply be provided by a vector.
# (This makes no sense in this example and shall only proves
# feasibility)
g5 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg$x, sgnf=0.025, n=50)

# When performing a meta analysis, provide the function
# with a vector of 1s.
g6 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=rep(1,length(bcg_y)),

sgnf=0.025, n=50)
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if (!all(names(g1) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(g2) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(g3) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(g4) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(g5) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(g6) == names(metagenEmpty()))) stop("Name clash")

metareg Inference: Based on methods of moments and maximum likelihood.

Description

Calculates common statistics for point and confidence interval estimates for the heterogeneity and
the regression coefficients of the random effects meta regression model based on the given data.

Usage

metareg(y, d, x, sgnf)

Arguments

y k-vector of study responses.

d k-vector of heteroscedasticity.

x design k-p-matrix.

sgnf significance levels.

Value

The same return type as the skeleton ’metagenEmpty()’.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)

set.seed(865287113) # for reproducibility

c1 <- metareg(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025)
c2 <- metareg(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev)

# When performing a meta analysis, provide the function
# with a vector of 1s.
if (!all(names(c1) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(c2) == names(metagenEmpty()))) stop("Name clash")
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performance Running a computer experiment

Description

Adding performance measures to the results

Usage

performance(results, b, h)

Arguments

results Needs to be of the same type as, for example, the return value of the computer
experiments ’experimentY’, ’experimentD’.

b true regression coefficients.

h true heterogeneity.

Details

Calculating performance measurements from a computer experiment.

Value

Data frame containing performance measurements of inference methods based on the results of the
computer experiment given by ’results’.

Examples

h_test <- 0.03
x_test <- cbind(1,1:7)
b_test <- c(.5, .25)
sgnf_test <- c(0.025, 0.01)

set.seed(5133568) # for reproducibility
d_test <- rchisq(7, df=0.02)

# In an actual computer experiment, use ’piv_draws=1000’ instead!!
eY <- experimentY(n=5, h=h_test, d=d_test, x=x_test, b=b_test,

sgnf=sgnf_test, piv_draws=50)

performance(results=eY, b=b_test, h=h_test)
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performanceConfH Running a computer experiment: Adding performance measures

Description

Adding performance measurements to accumulated results of a computer experiment running mul-
tiple analysis of different simulated data following a random effects meta regression model.

Usage

performanceConfH(accum_int, true)

Arguments

accum_int accumulated interval estimates. At least the following columns need to be
present: lower and upper.

true true parameter.

Details

Adds performance measurements to interval estimates of the heterogeneity.

Examples

# For an example, see the ’performance’ function.

performanceConfR Running a computer experiment: Adding performance measures

Description

Adding performance measurements to accumulated results of a computer experiment running mul-
tiple analysis of different simulated data following a random effects meta regression model.

Usage

performanceConfR(accum_int, true)

Arguments

accum_int accumulated interval estimates. At least the following columns need to be
present: lower and upper and parameter.

true true parameter.
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Details

Adds performance measurements to interval estimates of the regression coefficients.

Examples

# For an example, see the ’performance’ function.

performancePointH Running a computer experiment: Adding performance measures

Description

Adding performance measurements to accumulated results of a computer experiment running mul-
tiple analysis of different simulated data following a random effects meta regression model.

Usage

performancePointH(point, h)

Arguments

point accumulated point estimates.

h true parameter.

Details

Adds performance measurements to point estimates of the heterogeneity.

Examples

# For an example, see the ’performance’ function.

performancePointR Running a computer experiment: Adding performance measures

Description

Adding performance measurements to accumulated results of a computer experiment running mul-
tiple analysis of different simulated data following a random effects meta regression model.

Usage

performancePointR(point, b)
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Arguments

point accumulated point estimates.

b true parameter.

Details

Adds performance measurements to point estimates of the regression coefficients.

Examples

# For an example, see the ’performance’ function.

pfunc The p_delta(eta) function.

Description

Returns the p-function.

Usage

pfunc(y, d, x)

Arguments

y study responses.

d heteroscedasticity.

x design matrix.

Value

A vector valued function.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
pfunc(y=bcg_y, d=bcg_d, x=bcg_x)

# Calculating the Mandel-Paule estimate:
pfunc(y=bcg_y, d=bcg_d, x=bcg_x)(dim(bcg_x)[1] - dim(bcg_x)[2])
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pivotalStream Steams of pivotal quantities of the regression coefficient

Description

Algorithm for generating a steam of generalised pivotal quantities for the regression coefficients.
If adjusted=FALSE, then no adjustments are made for the uncertainty in the heteroscedasticity
estimates d. If adjusted=TRUE, then adjustments are performed. In this case, ’s’ needs to be
provided.

Usage

pivotalStream(n, y, d, x, s = NULL,
method = list("univariate", "multivariate"), adjusted)

Arguments

n length of stream.

y k-vector of responses.

d k-vector of heteroscedasticity.

x design (k,p)-matrix.

s k-vector of study responses. No need to provide this, when adjusted=FALSE.
Default is NULL.

method A list. Used to choose the methods for calculating the pivotal quantities of the
regression coefficients. Default is ’method=list("univariate", "multivariate")’.

adjusted TRUE or FALSE. Default is FALSE.

Value

If method=="univariate" or method=="multivariate", then the return is a (p+1)-n-matrix. The first
row contains pivotal quantities of the heterogeneity, the rest of the rows pivotal quantities of the
regression coefficients. Each column is an independent draw.

If ’method==list("univariate", "multivariate")’, then the return is a (2p+1)-n-matrix. Of each col-
umn, the first element is a pivotal for the heterogeneity, the next ’p’ elements is a pivotal vector for
the regression coefficients based on "univariate", the last ’p’ elements are a pivotal vector for the
regression coefficients based on "multivariate"
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plotCoefficientInterval

Plot pivots: Interval estimates of the heterogeneity

Description

Plot pivots: Interval estimates of the heterogeneity

Usage

plotCoefficientInterval(cnfr)

Arguments

cnfr interval estimates of the heterogeneity.

plotDensityH Pivotal distributions: Plot pivotal distribution of heterogeneity

Description

Pivotal distributions: Plot pivotal distribution of heterogeneity

Usage

plotDensityH(pivh)

Arguments

pivh pivotal stream with or without adjustment of independent draws of a pivotal
quantity of the heterogeneity.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,

adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s,

adjusted=TRUE)

pivh <- joinPivotalHeterogeneity(pivUn, pivAd)
plotDensityH(pivh)
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34 plotDensityIntercept

plotDensityH2 Pivotal distributions: Plot pivot density of the heterogeneity

Description

Pivotal distributions: Plot pivot density of the heterogeneity

Usage

plotDensityH2(pivh)

Arguments

pivh pivotal stream with or without adjustment of independent draws of a pivotal
quantity of the heterogeneity.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,

adjusted=FALSE)
pivh <- joinPivotalHeterogeneity(pivUn)
plotDensityH2(pivh)

plotDensityIntercept Pivotal distributions: Plot pivotal distribution of regression coeffi-
cients

Description

Pivotal distributions: Plot pivotal distribution of regression coefficients

Usage

plotDensityIntercept(pivr)

Arguments

pivr data frame of independent draws from of pivots.
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Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,

adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s,

adjusted=TRUE)

pivr <- joinPivotalCoefficients(pivUn, pivAd)
plotDensityIntercept(pivr)

plotDensityIntercept2 Pivotal distributions: Plot pivotal distribution of regression coeffi-
cients

Description

Pivotal distributions: Plot pivotal distribution of regression coefficients

Usage

plotDensityIntercept2(pivr)

Arguments

pivr data frame of independent draws from of pivots.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,

adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s,

adjusted=TRUE)

pivr <- joinPivotalCoefficients(pivUn, pivAd)
plotDensityIntercept2(pivr)
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36 plotDensitySlope2

plotDensitySlope Pivotal distributions: Plot pivotal distribution of regression coeffi-
cients

Description

Pivotal distributions: Plot pivotal distribution of regression coefficients

Usage

plotDensitySlope(pivr)

Arguments

pivr data frame of independent draws from of pivots.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,

adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s,

adjusted=TRUE)

pivr <- joinPivotalCoefficients(pivUn, pivAd)
plotDensitySlope(pivr)

plotDensitySlope2 Pivotal distributions: Plot pivotal distribution of regression coeffi-
cients

Description

Pivotal distributions: Plot pivotal distribution of regression coefficients

Usage

plotDensitySlope2(pivr)
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Arguments

pivr data frame of independent draws from of pivots.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,

adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s,

adjusted=TRUE)

pivr <- joinPivotalCoefficients(pivUn, pivAd)
plotDensitySlope2(pivr)

plotHeterogeneityInterval

Plot pivots: Interval estimates of the heterogeneity

Description

Plot pivots: Interval estimates of the heterogeneity

Usage

plotHeterogeneityInterval(cnfh)

Arguments

cnfh interval estimates of the heterogeneity.

plotIntervalEstimates Example: Plotting interval estimates

Description

Plots a graphical representation of interval estimates in the data frame ’cnf’ by type of method used
for the estimation.
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38 plotStudyForest

Usage

plotIntervalEstimates(cnf)

Arguments

cnf data frame of interval estimates

Value

An object created by ggplot2.

plotStudyForest Example: Plotting a forest plot of a data frame

Description

Example: Plotting a forest plot of a data frame

Usage

plotStudyForest(dat)

Arguments

dat data frame of study responses of binomial type.

Value

An object created by ggplot2.

Examples

bcg <- bcgVaccineData()
plotStudyForest(bcg)
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plotStudyQfuncPfunc Example: Plotting the q- and p-function from the dissertation

Description

Example: Plotting the q- and p-function from the dissertation

Usage

plotStudyQfuncPfunc(y, d, x, n)

Arguments

y a vector of responses.

d a vector of heteroscedasticity.

x a design matrix.

n number of points to interpolate along.

Value

A list of objects created by ggplot2.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)
p <- plotStudyQfuncPfunc(y=bcg_y, d=bcg_d, x=bcg_x, n=500)
p[1] # plot of the q-function
p[2] # plot of the p-funciton

plotStudySizes Example: Plotting study sizes

Description

Example: Plotting study sizes

Usage

plotStudySizes(dat)
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40 qfunc

Arguments

dat data frame of study responses of binomial type.

Value

An object created by ggplot2.

Examples

bcg <- bcgVaccineData()
plotStudySizes(bcg)

plotStudyUnbalance Example: Plotting study unbalances in group assignments

Description

Example: Plotting study unbalances in group assignments

Usage

plotStudyUnbalance(dat)

Arguments

dat data frame of study responses of binomial type.

Value

An object created by ggplot2.

qfunc The q_delta(tau) function.

Description

Returns the q-function.

Usage

qfunc(y, d, x)

Arguments

y study responses.
d heteroscedasticity.
x design matrix.
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Value

A vector valued function.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
qfunc(y=bcg_y, d=bcg_d, x=bcg_x)

rB Data generation: Log-risk-ration of a binomial-Gaussian model

Description

Random draws of log risk ratios from a hierarchical binomial Gaussian model.

Usage

rB(n, h, s, a, r, x, b)

Arguments

n number of draws.

h heterogeneity.

s study sizes.

a balance of group assignments.

r fixed risk in the treatment group.

x design matrix.

b regression coefficients.

Details

It is always assumed that at least one response in a study has happend, i.e., a response of 0 in a
treatment or control group is rounded up to 1. Note that this may lead to an overestimation of small
risks. If possible, make sure your sample sizes are large enough to compensate for this effect.

Value

A (2k,n) matrix. Each column is an independent draw.
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42 rBinomGauss

Examples

h_test <- .03
x_test <- cbind(1,1:13)
b_test <- c(0.02, 0.03)
s_test <- rep(2000, 13)
a_test <- rep(.3, 13)
rB(n=10, h=h_test, s=s_test, a=a_test, r=.3, x=x_test, b=b_test)

rBinomGauss Data generation: Sampling data of clinical trials

Description

A random draw of a hierarchical binomial Gaussian model.

Usage

rBinomGauss(h, s, a, r, x, b)

Arguments

h heterogeneity.

s study sizes.

a balance of group assignments.

r fixed risk in the control group.

x design matrix.

b regression coefficients.

Details

It is always assumed that at least one response in a study has happend, i.e., a response of 0 in a
treatment or control group is rounded up to 1. Note that this may lead to an overestimation of small
risks. If possible, make sure your sample sizes are large enough to compensate for this effect.

You may work around this by increasing study sizes.

Value

A list containing the risk and a data frame with the studies.
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Examples

h_test <- .03
s_test <- rep(2000, 13)
a_test <- rep(.3, 13)
x_test <- cbind(1,1:13)
b_test <- c(0.02, 0.03)
dat <- rBinomGauss(h=h_test, s=s_test, a=a_test, r=0.03 , x=x_test,
b=b_test)$study

if(!all(dim(dat) == c(dim(x_test)[1], 4))) stop("Wrong dimension")

rD Data generation: Gaussian-Gaussian model

Description

Random draws of heteroscedasticity responses of studies, where each study in a random effects
meta regression model follows a Gaussian response. Thus D = (d * X) / (s-1) where X is chi-
squared distributed.

Usage

rD(n, d, s)

Arguments

n number of draws.

d heteroscedasticity.

s study sizes.

Value

A (k,n)-matrix. Each column is an independent draw.

Examples

d_test = rchisq(13, df=0.02)
s_test = rep(100, 13)
rD(n=10, d=d_test, s=s_test)
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44 render

regressionEstimates Point estimates: For the regression coefficients

Description

Calculates point estimates for the regression coefficient for given point estimates of the variance
components ’d’ and a data frame of different estimates of the heterogeneity ’h’.

Usage

regressionEstimates(y, d, h_dat, x)

Arguments

y study responses, k-vector of responses.

d heteroscedasticity, k-vector of heteroscedasticities.

h_dat Here, ’h_dat’ should be a data frame with variables ’type’ and ’h’. Thus, one
may use h_dat = hEstimates(y, d, x).

x design matrix, k-p-matrix.

Value

A list of estimates for the regression coefficients.

Here, ’h_dat’ should be a data frame with variables ’type’ and ’h’, thus, we may use h_dat =
hEstimates(y, d, x)

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
bcg_h <- hEstimates(y=bcg_y, d=bcg_d, x=bcg_x)
regressionEstimates(y=bcg_y, d=bcg_d, h_dat=bcg_h, x=bcg_x)

render Render plot: To PDF

Description

Renders obj into a pdf-file of name: path++name. Neat feature is that the default size in A4. Simply
use the ‘scale‘ parameter to adjust the size of the plot to a fraction of a page.



163

renderSVG 45

Usage

render(name, plotObj, path, scale = 1, height = 11.6,
width = 8.2)

Arguments

name Should be self explanatory.

plotObj Should be self explanatory.

path Should be self explanatory.

scale Should be self explanatory.

height Should be self explanatory.

width Should be self explanatory.

renderSVG Render plot: To SVG

Description

Renders obj into a svg-file of name: path++name. Neat feature is that the default size in A4. Simply
use the ‘scale‘ parameter to adjust the size of the plot to a fraction of a page.

Usage

renderSVG(name, plotObj, path, scale = 1, height = 11.6,
width = 8.2)

Arguments

name Should be self explanatory.

plotObj Should be self explanatory.

path Should be self explanatory.

scale Should be self explanatory.

height Should be self explanatory.

width Should be self explanatory.
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46 sctBias

rY Data generation: Gaussian-Gaussian model

Description

Random draws of response vectors y following the distribution of a random effects meta regression
model. Each column is an independent draw.

Usage

rY(n, h, d, x, b)

Arguments

n number of draws.

h heterogeneity.

d heteroscedasticity.

x design matrix.

b regression coefficients.

Value

A (k,n)-matrix. Each column is an independent draw.

Examples

x_test = cbind(1,1:13)
h_test = .03
d_test = rchisq(13, df=0.02)
b_test = c(0.02, 0.03)
rY(n=10, h=h_test, d=d_test, x=x_test, b=b_test)

sctBias Plotting performance: Scatter plots against heterogeneity

Description

Scatter plots of heterogeneity and bias.

Usage

sctBias(res, ...)
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Arguments

res The collected results from a computer experiment.
... further arguments to scale_y_continuous

Value

A plot object.

sctMSE Plotting performance: Scatter plots against heterogeneity

Description

Scatter plots of heterogeneity and mean squared error.

Usage

sctMSE(res, ...)

Arguments

res The collected results from a computer experiment.
... further arguments to scale_y_continuous

Value

A plot object.

sctSD Plotting performance: Scatter plots against heterogeneity

Description

Scatter plots of heterogeneity and standard deviation.

Usage

sctSD(res, ...)

Arguments

res The collected results from a computer experiment.
... further arguments to scale_y_continuous

Value

A plot object.
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48 sctVersusH

sctVersusC Plotting performance: Scatter plot against heterogeneity

Description

Plotting performance: Scatter plot against heterogeneity

Usage

sctVersusC(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

sctVersusH Plotting performance: Scatter plot against heterogeneity

Description

Plotting performance: Scatter plot against heterogeneity

Usage

sctVersusH(res)

Arguments

res The collected interval results from a computer experiment.

Value

A plot object.
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sdmByMethod 49

sdmByMethod Plotting performance: Scatter plot against heterogeneity

Description

Plotting performance: Scatter plot against heterogeneity

Usage

sdmByMethod(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

sdmByType Plotting performance: Scatter plot against heterogeneity

Description

Plotting performance: Scatter plot against heterogeneity

Usage

sdmByType(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.
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50 sdsByType

sdsByMethod Plotting performance: Scatter plot against heteroscedasticity

Description

Plotting performance: Scatter plot against heteroscedasticity

Usage

sdsByMethod(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

sdsByType Plotting performance: Scatter plot against heteroscedasticity

Description

Plotting performance: Scatter plot against heteroscedasticity

Usage

sdsByType(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.



169

setupExperiment 51

setupExperiment Running a computer experiment in batch mode

Description

Sets up a computer experiment evaluating the performance of different inference methods in the
random effects meta regression model.

Usage

setupExperiment(name, seed, n, resolution, bounds, x, b,
sgnf, piv_draws, ...)

Arguments

name Reference name for the experiment.

seed Random seed for the experiment.

n number of simulations to at each parameter configuration.

resolution list of number of parameter configurations in each design, e.g. resolution=list(h=5L,
d=3L)

bounds list of parameter bounds used for experimental design, e.g. bounds=list(h=c(0,1),
d=c(0.001, 2), s=c(200L, 2000L)) where - h : bounds of the heterogeneity. - d
: bounds of the heteroscedasticity. - a : bounds of the balancing factor of group
assignments. - s : bounds of the study sizes. - r : fixed risk in the control.

x design matrix.

b regression coefficients.

sgnf levels of significance.

piv_draws number of pivotal draws.

... further arguments to makeExperimentRegistry, e.g. file.dir=tempfile().

Value

The registry.
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52 yvec

yvec Data generation: Sampling data of clinical trials

Description

Calculates log risk ratios from a study in the right format.

Usage

yvec(study)

Arguments

study Study data of a clinical trial with binomial outcomes.

Examples

h_test <- .03
x_test <- cbind(1,1:13)
b_test <- c(0.02, 0.03)
s_test <- rep(2000, 13)
a_test <- rep(.3, 13)
rBinomGauss( h=h_test, s=s_test, a=a_test, r=0.03

, x=x_test, b=b_test)$study -> test
yvec(test)
dvec(test)
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