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Abstract

We simplify simplicial depth for regression and autoregressive growth processes in two

directions. At first we show that often simplicial depth reduces to counting the subsets

with alternating signs of the residuals. The second simplification is given by not re-

garding all subsets of residuals. By consideration of only special subsets of residuals,

the asymptotic distributions of the simplified simplicial depth notions are normal dis-

tributions so that tests and confidence intervals can be derived easily. We propose two

simplifications for the general case and a third simplification for the special case where

two parameters are unknown. Additionally, we derive conditions for the consistency of

the tests. We show that the simplified depth notions can be used for polynomial regres-

sion, for several nonlinear regression models, and for several autoregressive growth

processes. We compare the efficiency and robustness of the different simplified ver-

sions by a simulation study concerning the Michaelis-Menten model and a nonlinear

autoregressive process of order one.

Keywords and Phrases: Alternating sign, distribution-free test, robustness, asymptotic distribu-

tion, consistency.
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1. INTRODUCTION

Data depth is a possibility to generalize the median and ranks to complex situations. Starting

with the halfspace depth of Tukey (1975) for multivariate data, meanwhile many depth notions

were proposed. There exist depth notions for regression as in Rousseeuw and Hubert (1999), for

generalized linear models as in Müller (2005), for estimation equations as in Lin and Chen (2006),

for functional data as in López-Pintado and Romo (2009) or Claeskens et al. (2014), for copulas

as in Denecke and Müller (2011), and for correlation as in Denecke and Müller (2014). Further

depth can be used to estimate quantiles, also in regression, as discussed by Hallin et al. (2010). To

describe multimodal densities, Paindaveine and van Bever (2013) and Agostinelli and Romanazzi

(2011) proposed local versions of depth and Lok and Lee (2011) introduced a depth function

based on interpoint distances. Depth is also applied to analyze distributions as shown by Kong

and Zuo (2010), Mizera and Müller (2004) and Rousseeuw and Ruts (1999) or for classification as

presented by Dutta and Ghosh (2012) and Li et al. (2012). See also the book of Mosler (2002) and

the general approaches of Zuo and Serfling (2000a,b) or Mizera (2002).

Important for the statistical applicability of a depth notion beyond estimation is that at least an

asymptotic distribution is known. However, it is very difficult for many depth notions to derive the

asymptotic distribution. One general approach is to use simplicial depth, since simplicial depth is

a U-statistic and the asymptotic distribution for U-statistics is in principle known.

Simplicial depth was originally introduced by Liu (1988, 1990) as an extension of the halfspace

depth of Tukey (1975). If the data are K-dimensional then the simplicial depth of a parameter

µ ∈ RK is the relative number of simplices spanned by K + 1 data points which contain µ.

Thereby, µ is contained in a simplex spanned by K + 1 points if its halfspace depth with respect

to these K + 1 points is greater than 0. This is the key to generalize simplicial depth to many

situations. As soon as a depth notion d(θ, (z1, . . . , zK+1)) of a K-dimensional parameter θ and

a specific model is known for any data set (z1, . . . , zK+1), then simplicial depth of θ in a sample
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z∗ = (z1, . . . , zN) is defined as

dS(θ, z∗) :=
1(
N
K+1

)∑
1≤n1<n2<...<nK+1≤N

1{d(θ, (zn1 , zn2 , . . . , znK+1
)) > 0}, (1)

where 1{h(z) > 0} denotes the indicator function 1A(z) withA = {z̃; h(z̃) > 0} for any function

h. Thereby, dS(θ, z∗) should be large if θ is the correct parameter of the model and should be small

if θ is not the correct parameter. Hence a simple rule for testing H0 : θ ∈ Θ0 is the following:

reject H0 if supθ∈Θ0
dS(θ, z∗) is smaller than a critical value c, as e.g. proposed by Müller (2005).

The critical value must be determined by the distribution dS(θ, z∗) or at least by the asymptotic

distribution of dS(θ, z∗), if θ is the underlying parameter.

Although dS(θ, z∗) is a U-statistic, it is only in few cases not a degenerated U-statistic,

see Denecke and Müller (2011, 2012, 2013, 2014). In most cases, dS(θ, z∗) is a degenerated

U-statistic and its asymptotic distribution must be determined by a spectral decomposition of the

conditional expectation. If the unknown parameter is one-dimensional, then the spectral decom-

position is still simple as shown for linear regression through the origin in Müller (2005) and for

a linear AR(1) model without intercept in Kustosz and Müller (2014). However, it becomes more

complicated if more than one parameter is unknown. Dümbgen (1992) derives a functional limit

theorem for simplicial depth for general distributions under some restrictions and applies it to loca-

tion models. Other results were presented for linear and quadratic regression in Müller (2005), for

polynomial regression in Wellmann et al. (2009), for multiple regression in Wellmann and Müller

(2010a), and for orthogonal regression in Wellmann and Müller (2010b). Thereby, not only the

derivation is complicated but also the resulting asymptotic distributions are. In case of specific

models the limit distributions can be derived exactly. For example, the asymptotic distribution is

given by an infinite sum of Chi-squared distributed random variables for polynomial regression.

For AR(1) processes with intercept, it is even worse. Here the asymptotic distribution is given by

an integrated squared Gaussian process as shown in Leucht et al. (2014).

Therefore here, we provide simplified versions of the simplicial depth. At first, we prove in Section

2 that the calculation of the depth d(θ, (zn1 , zn2 , . . . , znK+1
)) of K + 1 data points reduces in many
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cases to a check whether residuals at the ordered data set have alternating signs. This property of

simplicial depth was already noticed by Rousseeuw and Hubert (1999) for linear regression and

used by Müller (2005) for polynomial regression. However, a complete proof for this property was

not given. Here we provide general sufficient conditions for this property which are satisfied not

only by polynomial regression but by many other models like nonlinear models or autoregressive

models. As soon as these sufficient conditions are satisfied, the simplicial depth can be easily

calculated by counting the subsets with K + 1 points with alternating signs. Hence the simplicial

depth is an extension of the simple sign test where only subsets with one data point are considered.

However, even checking the simple criterion of alternating signs can be computationally intensive

if N and K are large since
(
N
K+1

)
subsets have to be analyzed. Additionally, the above mentioned

problem of deriving the asymptotic distribution remains. Therefore, we propose simplified ver-

sions of the simplicial depth in Section 3 by not regarding all
(
N
K+1

)
subsets. Instead, we propose

only subsequent subsets. The subsets are nonoverlapping in the first version and overlapping in

the second version. Additionally, a third version is introduced for the case of two unknown param-

eters, i.e. K = 2. All versions have a computational complexity of N instead of
(
N
K+1

)
and it is

proven that the asymptotic distribution is always the normal distribution.

In Section 4, sufficient conditions for the consistency of tests based on these simplified simpli-

cial depth statistics are proven. Section 5 contains several examples, where the conditions used in

Sections 2, 3, and 4 are satisfied. These examples include polynomial regression, several nonlin-

ear models and several autoregressive growth processes with two and three unknown parameters.

Finally, Section 6 provides a simulation study for the Michaelis-Menten model and a nonlinear

autoregressive process with two parameters.

All proofs are given in the Appendix.
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2. DATA DEPTH VIA ALTERNATING SIGNS

We consider a general model of the form

yn = g(xn, θ) + en, for n ∈ {1, . . . , N},

where θ ∈ IRK is the unknown parameter vector and zn = (yn, xn) ∈ IR2, n ∈ {1, . . . , N}, are

the data points. The errors e1, . . . , eN are realizations of independent and identically distributed

random variables E1, . . . , EN , so that y1, . . . , yN and z1, . . . , zN are realizations of random vari-

ables Y1, . . . , YN and Z1, . . . , ZN , respectively. Although the regressors x1, . . . , xN are fixed for

regression, we always interpret them as realizations of random variablesX1, . . . , XN which satisfy

X1 < X2 < . . . < XN (2)

almost surely. In particular, we have Xn = Yn−1 for autoregressive processes so that condition (2)

implies that the autoregressive process is strictly increasing, i.e. it is a growth process.

To provide a characterization of the depth of θ at subsets with K + 1 data points in this section, we

regard here only N = K + 1. Moreover, we do not need the random variables here, but they are

important for the asymptotic normality shown in Section 3.

General depth notions are global and tangent depth introduced by Mizera (2002). Mizera proposed

these depth notions for an arbitrary quality function. Here the quality function shall be given by

the squared residuals so that global depth coincides with tangent depth in many cases. Although

the interpretation of tangent depth is less obvious, it is computationally more feasible. Therefore,

we use tangent depth here. The tangent depth of θ in z∗ = (z1, . . . , zK+1) is defined as

dT (θ, z∗) :=
1

K + 1
min
u∈IRK

]

{
n ∈ {1, . . . , K + 1}; u> ∂

∂θ
res(zn, θ)2 ≤ 0

}

where res(zn, θ) := yn−g(xn, θ), n ∈ {1, . . . , N}, are the residuals and ]A denotes the cardinality
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of a set A. Setting

v(xn, θ) :=
∂

∂θ
g(xn, θ)

tangent depth can be also written as

dT (θ, z∗) =
1

K + 1
min
u∈IRK

]
{
n ∈ {1, . . . , K + 1}; u>v(xn, θ) res(zn, θ) ≤ 0

}
.

Our first theorem proves the relation between dT (θ, z∗) > 0 and alternating signs of the residuals.

For that, we need some definitions.

Definition 1.

a) Let sgn(y) denote the sign of a number y ∈ IR, i.e. sgn(y) = 1 if y > 0, sgn(y) = −1 if y < 0,

and sgn(y) = 0 if y = 0.

b) A vector s = (s1, . . . , sK+1)> ∈ IRK+1 has alternating signs if sgn(sk) = −sgn(sk+1) 6= 0 for

all k ∈ {1, . . . , K} is satisfied. If s has alternating signs, then it has K sign changes.

c) A function f : [a, b]→ IR hasK sign changes on the interval [a, b] ⊂ IR if there exist x1 < x2 <

. . . < xK+1 with xk ∈ [a, b] for k ∈ {1, . . . , K + 1} and sgn(f(xk)) = −sgn(f(xk+1)) 6= 0 for

k ∈ {1, . . . , K} and no x1 < x2 < . . . < xL+1 for L > K so that xl ∈ [a, b] for l ∈ {1, . . . , L+1}

and sgn(f(xl)) = −sgn(f(xl+1)) 6= 0 for l ∈ {1, . . . , L}.

Theorem 1. Let be x1 < x2 < . . . < xK+1 ∈ IR and assume the following conditions for

wu : [x1, xK+1]→ IR given by wu(x) = u>v(x, θ):

A) wu has at most K − 1 sign changes on [x1, xK+1] for all u ∈ IRK ,

B) For any s ∈ {−1, 1}K+1 with at most K − 1 sign changes, there exists u0 ∈ IRK with

sgn(wu0(xn)) = sn for n ∈ {1, . . . , K + 1}.

Then dT (θ, z∗) > 0 holds if and only if (res(z1, θ), . . . , res(zK+1, θ))
> has alternating signs or at

least one of the residuals is zero.
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3. SIMPLIFIED SIMPLICIAL DEPTH

Now we consider the simplicial depth defined in (1) based on the tangent depth used in Sec-

tion 2. If we assume that the residuals have continuous distributions then they are not equal

to zero with probability one. Under this assumption and the assumptions of Theorem 1, we

have with probability one that dT (θ, (zn1 , . . . , znK+1
)) > 0 holds if and only if the residuals

res(zn1 , θ), . . . , res(znK+1
, θ) have alternating signs, whereby ni ∈ {1, ..., N} and ni > nj if i > j.

This implies

K+1∏
k=1

1{res(znk , θ)(−1)k > 0}+
K+1∏
k=1

1{res(znk , θ)(−1)k+1 > 0} = 1.

Hence the simplicial depth of θ in z∗ = (z1, . . . , zN) is given by

dS(θ, z∗) =
1(
N
K+1

)∑
1≤n1<n2<...<nK+1≤N

(
K+1∏
k=1

1
{

res(znk , θ)(−1)k > 0
}

+
K+1∏
k=1

1
{

res(znk , θ)(−1)k+1 > 0
})

.

To avoid the consideration of all
(
N
K+1

)
subsets of the data set, we define the following simplified

simplicial depth notions:

d1
S(θ, z∗) :=

1⌊
N
K+1

⌋∑b N
K+1c

n=1

(
K+1∏
k=1

1
{

res(z(K+1)(n−1)+k, θ)(−1)k > 0
}

+
K+1∏
k=1

1
{

res(z(K+1)(n−1)+k, θ)(−1)k+1 > 0
})

,

d2
S(θ, z∗) :=

1

N −K
∑N−K

n=1

(
K+1∏
k=1

1
{

res(zn−1+k, θ)(−1)k > 0
}

+
K+1∏
k=1

1
{

res(zn−1+k, θ)(−1)k+1 > 0
})

.
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The depth d1
S(θ, z∗) uses only nonoverlapping subsets, while the subsets used in d2

S(θ, z∗) are

overlapping. In the case K = 2, we also consider

d3
S(θ, z∗)

:=
1⌊

N−1
2

⌋∑bN−1
2 c

n=1

(
1 {res(zn, θ) > 0} 1

{
res(zbN+1

2 c, θ) < 0
}
1 {res(zN−n+1, θ) > 0}

+1 {res(zn, θ) < 0} 1
{

res(zbN+1
2 c, θ) > 0

}
1 {res(zN−n+1, θ) < 0}

)
.

Theorem 2. If θ is the underlying parameter with Pθ(res(Zn, θ) > 0) = Pθ(res(Zn, θ) < 0) = 1
2

for all n ∈ {1, . . . , N}, then

a) T 1
N(θ) :=

√⌊
N

K + 1

⌋
d1
S(θ, Z∗)−

(
1
2

)K√(
1
2

)K (
1−

(
1
2

)K) −→ N (0, 1),

b) T 2
N(θ) :=

√
N −K

d2
S(θ, Z∗)−

(
1
2

)K√
(1

2
)K · [3− (1

2
)K−1 ·K − 3 · (1

2
)K ]
−→ N (0, 1),

c) T 3
N(θ) :=

√⌊
N − 1

2

⌋
d3
S(θ, Z∗)− 1

4√
3
16

−→ N (0, 1),

in distribution for N →∞.

Note that the only assumption needed here for asymptotic normality is that the median of the

residuals is zero. The proofs are based on appropriate central limit theorems.

An asymptotic α-level test for a general null hypothesis of the form H0 : θ ∈ Θ0 is then for any

i ∈ {1, 2, 3}:

reject H0 if sup
θ∈Θ0

T iN(θ) < qα, (3)

where qα is the α-quantile of the standard normal distribution.

9



4. CONSISTENCY OF THE TESTS BASED ON SIMPLIFIED SIMPLICIAL DEPTH

Since confidence sets can be constructed from tests for point hypothesesH0 : θ = θ0, we now show

the consistency of the tests given by (3) for the case Θ0 = {θ0}. Thereby, a test for H0 : θ = θ0

based on T iN(θ0), i ∈ {1, 2, 3}, is consistent at θ∗ 6= θ0 if

lim
N→∞

Pθ∗
(
T iN(θ0) < qα

)
= 1.

For linear and nonlinear regression we can consider two different asymptotic scenarios.

Scenario (A) with finite horizon: There exist a, b ∈ IR such that a ≤ x1N < x2N < . . . <

xNN ≤ b is satisfied for all N ∈ IN . Usually, it is satisfied that x1N < x2N < . . . < xNN are

equidistant points or the deviation from equidistant points is small.

Scenario (B) with infinite horizon: For all b ∈ IR, there exists N0 ∈ IN such that Xn ≥ b

holds almost surely for n ≥ N0. In particular X1 < X2 < . . . < XN −→ ∞ is satisfied for

N →∞.

For autoregression, only Scenario (B) makes sense.

Note, that the simple sign test, see e.g. Huggins (1989), is usually consistent under Scenario (B)

but has consistency problems under Scenario (A) when, for example, the signs of the residuals are

positive in the first half of the interval [a, b] and negative in the second half.

Let be MiN the set of indexes (n1, . . . , nK+1) used in the simplified simplicial depth diS , for

example M2N = {(1, . . . , K + 1), (2, . . . , K + 2), . . . , (N − K, . . . , N)}. The next theorem

proves the consistency of the proposed tests.

Theorem 3.

a) If i ∈ {1, 2}, Scenario (A) holds for regression, and there exist β1 < β2 <
(

1
2

)K , and a set
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M∗
iN ⊂MiN with ]M∗

iN

]MiN
< β2−β1

2
satisfying

Eθ∗

(
K+1∏
k=1

1
{

res(ZnkN , θ
0)(−1)k > 0

}
+

K+1∏
k=1

1
{

res(ZnkN , θ
0)(−1)k+1 > 0

})
≤ β1 (4)

for all (n1, . . . , nK+1) /∈M∗
iN ,N ∈ IN , then the test forH0 : θ = θ0 based on T iN(θ0) is consistent

at θ∗.

b) If Scenario (B) holds for regression or autoregression and there exists c 6= 0 with g(Xn, θ
0) −

g(Xn, θ
∗) = c for all n ∈ {1, . . . , N}, N ∈ IN , then the test for H0 : θ = θ0 based on T iN is

consistent at θ∗ for i ∈ {1, 2}.

c) If Scenario (B) holds for regression or autoregression and limb→∞ g(b, θ0) − g(b, θ∗) = ∞ or

limb→∞ g(b, θ0)− g(b, θ∗) = −∞, then the test for H0 : θ = θ0 based on T iN is consistent at θ∗ for

i ∈ {1, 2, 3}.

The following lemma is useful to show condition (4) in Theorem 3 a).

Lemma 1. Let be ck := g(xnkN , θ
0) − g(xnkN , θ

∗) for k ∈ {1, . . . , K + 1}, K ∈ IN , i ∈ {1, 2},

and assume that the errors E1, . . . , EN have continuous and symmetric distributions around zero

with support given by IR and for all (n1, . . . , nK+1) /∈M∗
iN with n1 < n2 < . . . < nK+1 we have:

c1 ≤ c2 ≤ . . . ≤ cK+1 or c1 ≥ c2 ≥ . . . ≥ cK+1

and

ck ≥ c > 0 for all k ∈ {1, . . . , K + 1} or ck ≤ −c < 0 for all k ∈ {1, . . . , K + 1}.

If Scenario (A) holds for regression, then condition (4) of Theorem 3 a) is satisfied.
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5. EXAMPLES

5.1 Polynomial regression

Consider the model

yn = θ0 + θ1xn + θ2x
2
n + . . .+ θpx

p
n + en

so that θ = (θ0, θ1, . . . , θp)
> ∈ IRp+1 = IRK with K = p + 1 and g(x, θ) = θ0 + θ1x + θ2x

2 +

. . .+ θpx
p. Then

v(x, θ) = (1, x, x2, . . . , xp)> ∈ IRp+1,

and

wu(x) = u1 + u2x+ u3x
2 + . . .+ up+1x

p (5)

is again a polynomial of order p. It is well known that a polynomial of order p has at most p roots

so that it has at most p = K−1 sign changes and Condition A of Theorem 1 is satisfied. The roots

are determined by (u1, . . . , up+1)>. In particular (x−ω1) · (x−ω2) · . . . · (x−ωp) is a polynomial

of order p with roots at ω1, . . . , ωp. Hence the roots can be placed at arbitrary locations so that sign

changes happen at these roots. This means that also Condition B of Theorem 1 is satisfied.

Now consider θ∗ = (θ∗0, θ
∗
1, . . . , θ

∗
p)
> 6= (θ0

0, θ
0
1, . . . , θ

0
p)
> = θ0. If θ0

k = θ∗k for k ∈ {1, . . . , p},

then θ∗0 6= θ0
0 so that the assumptions of Theorem 3 b) and Lemma 1 are satisfied. Hence according

to Lemma 1 also the assumptions of Theorem 3 a) are satisfied. If θ∗0 = θ0
0, then θ0

k 6= θ∗k for

at least one k ∈ {1, . . . , p} so that g(·, θ0) − g(·, θ∗) is an unbounded function implying that the

assumptions of Theorem 3 c) are satisfied. Moreover, the function g(·, θ0) − g(·, θ∗) consists of a

finite number of monotone pieces and a finite number of roots on an interval [a, b] and for any δ >
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0, subintervals I1, . . . , IL of [a, b] can be found so that the mass of the union of these subintervals

is greater than 1− δ and the assumption of Lemma 1 is satisfied for regressors from these subsets.

Then Lemma 1 implies the assumptions of Theorem 3 a). Hence the test for H0 : θ = θ0 based

on T iN is consistent at all θ∗ 6= θ0 for i ∈ {1, 2} in Scenario (A) and (B). The test based on T 3
N is

consistent at any θ∗ with θ0
k 6= θ∗k for at least one k ∈ {1, . . . , p} for Scenario (B).

5.2 Michaelis-Menten model

The Michaelis-Menten model is a widely used model for enzyme kinetics. In this model, the

explanatory variable is the concentration xn ≥ 0 of a substrate and the dependent variable is the

reaction rate, denoted by yn. Assuming independent measurements errors, the model is given by

yn =
θ0xn
θ1 + xn

+ en

so that θ = (θ0, θ1)> ∈ (0,∞)2 = (0,∞)K with K = 2 and g(x, θ) = θ0x
θ1+x

. Data depth for

the Michaelis-Menten model already was studied by Van Aelst et al. (2002). However, their depth

notion is different from the depth notions used here and no test was provided. Here, we obtain

v(x, θ) =
x

θ1 + x

(
1,
−θ0

θ1 + x

)>
=

x

θ1 + x
(1, x̃)>

with x̃ = −θ0
θ1+x

. Since always x
θ1+x

> 0, this factor has no influence on the sign changes of

wu(x) = u>v(x, θ) so that we can consider w̃u(x̃) = u>ṽ(x̃, θ) with ṽ(x̃, θ) = (1, x̃)>. Hence

w̃u(x̃) is of form (5) for p = 1, i.e. as for polynomial regression of order 1, so that Conditions

A) and B) of Theorem 1 are satisfied for w̃u(x̃) according to Section 5.1. But this means that the

conditions are also satisfied for wu(x).

Since g(·, θ) is a strictly increasing function bounded by θ0, the assumptions of Theorem 3 c) are

not satisfied. Moreover, g(xn, θ
0) − g(xn, θ

∗) = c cannot be satisfied for all n ∈ {1, . . . , N}

if θ∗ = (θ∗0, θ
∗
1)> 6= (θ0

0, θ
0
1)> = θ0. However, the function g(·, θ0) − g(·, θ∗) consists of a finite
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number of monotone pieces and a finite number of roots on an interval [a, b] so that the assumptions

of Theorem 3 a) follow as for polynomial regression. Hence any test for H0 : θ = θ0 based on T iN

is consistent at all θ∗ 6= θ0 for i ∈ {1, 2} for Scenario (A).

5.3 Exponential model

Another widely used nonlinear model is the exponential model given by

yn = θ1e
θ2 xn + en

so that θ = (θ1, θ2)> ∈ IR2 = IRK with K = 2, g(x, θ) = θ1e
θ2 x, and

v(x, θ) = eθ2 x (1 , θ1x)> ∈ IR2 = eθ2 x ṽ(x, θ)

with ṽ(x, θ) = (1 , θ1x)>. Since always eθ2 xn > 0 we again can work with ṽ(x, θ) instead of

v(x, θ). Then we get

wu(x) = u1 + u2θ1x = ũ1 + ũ2x = w̃ũ(x)

with ũ1 = u1 and ũ2 = u2θ1. Since w̃ũ(x) is the wu(x) in (5) for p = 1, i.e. as for polynomial

regression of order 1, the Conditions A) and B) of Theorem 1 again follow from Section 5.1.

The consistency of a test for H0 : θ = θ0 based on T iN at all θ∗ 6= θ0 and i ∈ {1, 2} for Scenario

(A) follows as for polynomial regression and the Michaelis-Menten model. The assumptions of

Theorem 3 b) are never satisfied. However, the assumptions of Theorem 3 c) hold if θ∗2 > 0 or

θ0
2 > 0 is satisfied so that a test for H0 : θ = θ0 based on T iN is consistent at all θ∗ = (θ∗1, θ

∗
2)> 6=

(θ0
1, θ

0
2)> = θ0 with θ∗2 > 0 or θ0

2 > 0 for i ∈ {1, 2, 3} in Scenario (B).
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5.4 Nonlinear polynomial model I

The derivation of Conditions A) and B) of Theorem 1 is not always possible via the polynomial

regression model treated in Section 5.1. An example is the nonlinear polynomial model given by

yn = θ0 + θ1x
θ2
n + en

so that θ = (θ0, θ1, θ2)> ∈ IR3 = IRK with K = 3, g(x, θ) = θ0 + θ1x
θ2 , and

v(x, θ) = (1, xθ2 , θ1x
θ2 log(x))> ∈ IR3.

This leads to

wu(x) = u1 + u2x
θ2 + u3 θ1x

θ2 log(x). (6)

For deriving the Conditions A) and B) of Theorem 1, the following lemma is necessary.

Lemma 2. If θ1 6= 0, θ2 6= 0, then wu : [0,∞)→ IR given by (6) has the following properties:

a) wu has exactly one extremum at x = exp
(
− 1
θ2
− u2

u3θ1

)
for all u = (u1, u2, u3)> ∈ IR3 with

u3 6= 0.

b) For all 0 < ξ1 < ξ2, there exists a vector u+ ∈ IR3 with wu+(ξ1) = wu+(ξ2) = 0 and

wu+(x) > 0 for all x ∈ (ξ1, ξ2) and a vector u− ∈ IR3 with wu−(ξ1) = wu−(ξ2) = 0 and

wu−(x) < 0 for all x ∈ (ξ1, ξ2).

If θ1 = 0 or θ2 = 0, then clearly wu has at most one sign change on [0,∞) for all u ∈ IR3. If

θ1 6= 0, θ2 6= 0, then wu has exactly one extremum according to Lemma 2 a), which means that wu

can have at most 2 = K−1 sign changes on [0,∞). Hence Condition A) of Theorem 1 is satisfied

for all θ ∈ IR3.

However, to show Condition B) of Theorem 1, we must exclude the cases θ1 = 0 and θ2 = 0. But

this excludes only the case of a constant function, i.e. the model yn = θ0 + en. Hence we assume
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θ1 6= 0, θ2 6= 0.

Now regard any 0 ≤ x1 < x2 < x3 < x4 and any s ∈ {−1, 1}4 with at most K − 1 = 2 sign

changes. If s = (s1, s2, s3, s4)> has K − 1 = 2 sign changes, the missing possible third sign

change is between sk and sk+1 with k = 1, k = 2, or k = 3.

For k = 1, set ξ1 ∈ (x2, x3), ξ2 ∈ (x3, x4). Then x3 ∈ (ξ1, ξ2) and according to Lemma 2 b), there

exists u0 ∈ IR3 with wu0(ξ1) = 0 = wu0(ξ2) and sgn(wu0(x3)) = s3. Since wu0 has exactly one

extremum according to Lemma 2 a), wu0 has only sign changes at ξ1 and ξ2 so that there is a sign

change between wu0(x2) and wu0(x3) as well as between wu0(x3) and wu0(x4), and no sign change

between wu0(x1) and wu0(x2) so that sgn(wu0(xk)) = sk for k ∈ {1, 2, 3, 4}.

Using ξ1 ∈ (x1, x2) and ξ2 ∈ (x3, x4) for k = 2 and ξ1 ∈ (x1, x2) and ξ2 ∈ (x2, x3) for k = 3

provides, with the same arguments as for k = 1, the existence of u0 with sgn(wu0(xk)) = sk for

k ∈ {1, 2, 3, 4}. The case that s has less than K − 1 = 2 sign changes can be treated with similar

arguments. Hence Condition B) of Theorem 1 is satisfied.

If θ∗0 6= θ0
0 and θ∗k = θ0

k for k ∈ {1, 2}, then the assumptions of Theorem 3 a) and b) are satisfied.

Otherwise we have the same situation as for the exponential model. In particular the assumptions

of Theorem 3 c) are only satisfied for θ∗ = (θ∗0, θ
∗
1, θ
∗
2)> and θ0 = (θ0

0, θ
0
1, θ

0
2)> with θ∗2 > 0 or

θ0
2 > 0.

5.5 Nonlinear polynomial model II

Another nonlinear polynomial model is given by

yn = θ1(θ2 − xn)θ3 + en
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so that θ = (θ1, θ2, θ3)> ∈ IR3 = IRK with K = 3, g(x, θ) = θ1(θ2 − x)θ3 , and

v(x, θ) = (θ2 − x)θ3−1 (θ2 − x , θ1 θ3 , θ1 (θ2 − x) log(θ2 − x))> ∈ IR3 = (θ2 − x)θ3−1 ṽ(x, θ)

with ṽ(x, θ) = (θ2 − x , θ1 θ3 , θ1 (θ2 − x) log(θ2 − x)). We here assume that 0 ≤ xn < θ2, where

in particular (θ2 − xn)θ3−1 > 0 holds for all n ∈ {1, . . . , K + 1}. Hence we can work with ṽ(x, θ)

instead of v(x, θ) so that

wu(x) = u1(θ2 − x) + u2θ1 θ3 + u3 θ1 (θ2 − x) log(θ2 − x) = w̃u(x̃)

with x̃ = θ2 − x ∈ (0, θ2] and w̃u(x̃) = u1x̃ + u2θ1 θ3 + u3 θ1 x̃ log(x̃). This w̃u is of the form of

wu in (6) with θ2 = 1 so that the result in Section 5.4 provides that the Conditions A) and B) of

Theorem 1 are also satisfied here.

Again, the assumptions of Theorem 3 a) are always satisfied. The specialty of this model is that

we have explosion for θ3 < 0 when xN → θ2. This is not Scenario (B). However, the proof of

Theorem 3 c) holds also for this case so that consistency of a test for H0 : θ = θ0 based on T iN

follows at all θ∗ = (θ∗1, θ
∗
2, θ
∗
3)> 6= (θ0

1, θ
0
2, θ

0
3)> = θ0 with θ∗3 < 0 or θ0

3 < 0 for i ∈ {1, 2, 3}.

5.6 AR(1) growth models

General linear and nonlinear AR(1) growth processes are given by

yn = g(yn−1, θ) + en

or

yn = yn−1 + g(yn−1, θ) + en (7)
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with y0 < y1 < . . . < yp+1, where g(x, θ) is of the same form as in the examples of Sections 5.1

to 5.5. Setting ỹn = yn − yn−1 in the second case and xn = yn−1, the Conditions A) and B) of

Theorem 1 are also satisfied according to Sections 5.1 to 5.5. The results for consistency under

Scenario (B) of Sections 5.1 to 5.5 transfer to these processes as well.

Model (7) appears in particular when the Euler-Maruyama approximation is used for stochastic

differential equations, see e.g. Iacus (2008). An example of strictly increasing observations yn is

crack growth where the function g(x, θ) of Section 5.4 provides a stochastic version of the Paris-

Erdogan equation which is widely used in engineering sciences, see Pook (2000). In Kustosz and

Müller (2014) the one-parameter case with θ0 = 0 and θ3 = 1 was studied. Here the two-parameter

case of the nonlinear function of Section 5.4 with θ0 = 0 is considered in the simulation study of

Section 6.2. A simulation study for the linear version with θ3 = 1 is provided by Leucht et al.

(2014).

6. SIMULATION STUDY

In this section, the finite sample behavior of the simplified simplicial depth tests for H0 : θ = θ0

is studied in two models. All calculations were performed in R, see R Core Team (2014). In all

examples, the simplified depth tests are compared with the simple sign test which is based on the

numbers of positive residuals. Further two types of errors, namely N(0, 0.1) error variables, to

evaluate the tests under standard assumptions, and errors defined by (1 − ε)N(0, 0.1) + εN(5, 1)

with ε = 0.05, to simulate a skewed and contaminated error distribution, are considered.

6.1 Michaelis-Menten model

The first example evaluates the resulting depth based tests for a Michaelis-Menten model. In Fig-

ure 1 (a) an example process with parameter θ0 = (θ0
0, θ

0
1)> = (20, 2)> is depicted. An exemplary

process with contaminated errors is illustrated in Figure 1 (b). To satisfy the conditions of Sce-
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nario (A), xn is fixed by x1 = 0 < x2 = x1 + 0.1 < ... < x60 = 6, so that N = 61. To

analyze the power, the tests are evaluated for H0 : θ = θ0 and processes with parameters on a grid

defined by [18, 22] × [1, 3] for θ0 and θ1 with step width 0.01 are simulated. The tests are evalu-

ated 100 times for each parameter on the grid. The simulated power is then defined by the relative

number of rejections. The results forN(0, 0.1) errors on a level of α = 0.05 are shown in Figure 2.

0 1 2 3 4 5 6

2
6

10
14

xn

y n

(a) N(0, 0.1) Errors

0 1 2 3 4 5 6

5
10

15

xn

y n

(b) Contaminated N(0, 0.1) Errors

Figure 1. Simulated Processes from the Michaelis-Menten Model. Two exemplary simulations
from the Michaelis-Menten model with θ0 = 20, θ1 = 2 observed at x = (0, 0.1, 0.2, ..., 5.9, 6)
with two different error distributions.
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(a) T 1
N (b) T 2

N

(c) T 3
N

(d) Sign

Figure 2. Simulated Power for Different Tests with N(0, 0.1) Errors under the Michaelis-Menten
Model. The simulated relative number of rejections of H0 : θ = (20, 2) based on different values
of θ = (θ0, θ1) is depicted. The errors are simulated asN(0, 0.1) random variables. The parameters
for the null hypothesis are marked by the dashed lines.

The simplicial depth tests have power functions, which are monotonically increasing when the

parameter deviates from H0 : θ = (20, 2). This is also true for the sign test. Due to the fixed

sample size the sign test has a wide range of not rejected parameters if half of the data is under

and half of the data is overestimated. Since these fits can be arbitrary chosen when one residual

is fixed in the middle of the dataset, there is an unbounded set of such parameters. This problem

does not appear for the simplicial depth statistics. In a direct comparison the T 3
N test performs best,

followed by the T 2
N and T 1

N versions. Note, that even if we were not able to prove the consistency

of the T 3
N test it appears to be a valid test for H0 : θ = θ0 as well.

We also evaluate the tests in case of skewed and nonnormal errors. The resulting power functions
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are given in Figure 3.

(a) T 1
N (b) T 2

N

(c) T 3
N

(d) Sign

Figure 3. Simulated Power for ContaminatedN(0, 0.1) Errors under the Michaelis-Menten Model.
The simulated relative number of rejections of H0 : θ = (20, 2) based on different values of
θ = (θ0, θ1) is depicted. The errors are simulated as contaminated N(0, 0.1) random variables,
whereby in a fraction of 5% N(5, 1) variables are added. The parameters for the null hypothesis
are marked by the dashed lines.

The results are similar to the noncontaminated case. Due to the contamination the power decreases

slightly for values of θ2 > θ0
2 but still leads to rejection in most cases. The sign test shows

systematic problems again but is less influenced by the contamination.
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6.2 Nonlinear AR(1) growth model

In the second example, the model

yn = yn−1 + θ1y
θ2
n−1 + en,

which plays an important role in modeling crack growth, see Section 5.6, is considered. Here the

null hypothesis H0 : θ = (θ0
1, θ

0
2) with θ0

1 = 0.005 and θ0
2 = 1.002 is tested. Processes with a

starting value y0 = 15 and N = 500 observations are examined. Example processes under H0 are

presented in Figure 4.

0 50 150 250

20
40

60

n

y n

(a) N(0, 0.1) Errors

0 50 150 250

50
15

0

n

y n

(b) Contaminated N(0, 0.1) Errors

Figure 4. Simulated Nonlinear AR(1) Processes. Realizations of nonlinear AR(1) processes with
θ1 = 0.005, θ2 = 1.002, y0 = 15 and two different error distributions are depicted.

To evaluate the power of tests for H0 : θ = θ0 := (θ0
1, θ

0
2)>, a grid defined by [−0.02, 0.05] ×

[0.5, 1.5] with a step width of 0.0001 for θ1 and 0.001 for θ2 is considered. On each grid point the

processes are generated 100 times to simulate the power of the test at a 5% level for processes with

a length of N = 500 observations. The resulting power functions for normal errors are depicted in

Figure 5.
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(a) T 1
N (b) T 2

N

(c) T 3
N

(d) Sign

Figure 5. Simulated Power for N(0, 0.1) Errors under the Nonlinear AR(1) Model. The simulated
relative number of rejections of H0 : θ = (0.005, 1.002) based on different values of θ = (θ0, θ1)
is depicted. The errors are simulated as N(0, 0.1) random variables. The parameters for the null
hypothesis are marked by the dashed lines.

One can observe, that the depth based tests have power functions, which are increasing to one

when the parameter deviates from H0 : θ = (0.005, 1.002). Due to the model, the power functions

are not symmetric. It is hard to compare, which test is best, but it appears, as if the T 2
N test

slightly outperforms the T 3
N test followed by the T 1

N version. By consideration of a wider parameter

range, a systematic shortcoming of the sign test gets obvious. The sign test again does not reject

parameters, for which half of the residuals are negative and half are positive, even if the model

fit is poor. The residuals of a process Ỹ defined by θ = (θ1, θ2) 6= (θ0
1, θ

0
2) = θ0 are given by

rn(θ0, Ỹ ) = En + θ1Ỹ
θ2
n−1 − θ0

1Ỹ
θ02
n−1. If the errors are assumed to be approximately zero, then

rn(θ0, Ỹ ) ≶ 0 holds approximately if and only if θ1 ≶ θ0
1Ỹ

θ02−θ2
n−1 . Since Ỹ is strictly increasing, we
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obtain for θ2 < θ0
2 that

θ0
1Ỹ

θ02−θ2
0 < ... < θ0

1Ỹ
θ02−θ2
bN/2c−1 < θ1 < θ0

1Ỹ
θ02−θ2
bN/2c < ... < θ0

1Ỹ
θ02−θ2
N

implies rn(θ0, Ỹ ) > 0 for n ∈ {1, ..., bN/2c} and rn(θ0, Ỹ ) < 0 for n ∈ {bN/2c + 1, ..., N}.

Similarly, if θ2 > θ0
2 then

θ0
1Ỹ

θ02−θ2
0 > ... > θ0

1Ỹ
θ02−θ2
bN/2c−1 > θ1 > θ0

1Ỹ
θ02−θ2
bN/2c > ... > θ0

1Ỹ
θ02−θ2
N

implies rn(θ0, Ỹ ) < 0 for n ∈ {1, ..., bN/2c} and rn(θ0, Ỹ ) > 0 for n ∈ {bN/2c+ 1, ..., N}. For

θ2 → ∞, the interval
[
θ0

1Ỹ
θ02−θ2
bN/2c , θ

0
1Ỹ

θ02−θ2
bN/2c−1

]
reduces to one point, so that only few θ1 can satisfy

θ0
1Ỹ

θ02−θ2
bN/2c−1 > θ1 > θ0

1Ỹ
θ02−θ2
bN/2c for large θ2. The opposite is the case for θ2 → 0, where the interval[

θ0
1Ỹ

θ02−θ2
bN/2c−1, θ

0
1Ỹ

θ02−θ2
bN/2c

]
becomes larger, explaining the widening of the area with low power of the

sign test for small θ2.

For an error distribution which is contaminated with positive outliers in 5% of all cases, the result-

ing power functions are presented in Figure 6. As in the noncontaminated case the region of the

depth based tests with low power is bounded while the sign test shows a systematic problem for a

range of parameters with small θ2. In general the power functions are steeper, since the jumps lead

to a faster growing process, what is exploited by the proposed tests.
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(a) T 1
N (b) T 2

N

(c) T 3
N

(d) Sign

Figure 6. Simulated Power for Contaminated N(0, 0.1) Errors under the Nonlinear AR(1) Model.
The simulated relative number of rejections of H0 : θ = (0.005, 1.002) based on different values
of θ = (θ0, θ1) is depicted. The errors are simulated as contaminated N(0, 0.1) random variables,
whereby in a fraction of 5% variables with a N(5, 1) distribution are added. The parameters for
the null hypothesis are marked by the dashed lines.
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7. APPENDIX: PROOFS

Proof of Theorem 1:

Clearly, dT (θ, z∗) > 0 if res(zn, θ) = 0 for some n ∈ {1, . . . , K + 1}. Therefore, we only have to

consider the situation where res(zn, θ) 6= 0 for all n ∈ {1, . . . , K + 1}.

Assume that (res(z1, θ), . . . , res(zK+1, θ))
> does not have alternating signs. This means that there

exists k ∈ {1, . . . , K} with sgn(res(zk, θ)) = sgn(res(zk+1, θ)). Set sn = sgn(res(zn, θ)) for

n ∈ {1, . . . , K + 1} and s = (s1, . . . , sK+1)>. Then s ∈ {−1, 1}K+1 and s has at most K − 1

sign changes. According to Condition B), there exists u0 ∈ IRK with sgn(wu0(xn)) = sn for

n ∈ {1, . . . , K + 1}. But this implies

sgn(wu0(xn)) sgn(res(zn, θ)) = 1 for n ∈ {1, . . . , K + 1}

and thus

u>0 v(xn, θ) res(zn, θ) = wu0(xn) res(zn, θ) > 0 for n ∈ {1, . . . , K + 1}

so that dT (z∗, θ) = 0.

Conversely, assume dT (θ, z∗) = 0. Then there exists u ∈ IRK with

u>v(xn, θ) res(zn, θ) = wu(xn) res(zn, θ) > 0 for n ∈ {1, . . . , K + 1}. (8)

Since wu has at most K − 1 sign changes on [x1, xK+1] according to Condition A), there exists

k ∈ {1, . . . , K} with

sgn(wu(xk)) = sgn(wu(xk+1)).

This means with (8) that sgn(res(zk, θ)) = sgn(res(zk+1, θ)) so that (res(z1, θ), . . . , res(zK+1, θ))
>
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does not have alternating signs. 2

Before we start the proof of Theorem 2 we recall the definition of m-dependence for random

variables.

Definition 2. A sequence of random variablesX1, X2, ... is m-dependent form ≥ 0, if (Xi, ..., Xi+n)

is independent of (Xi+j, ..., Xi+j+n) for all j > m and i, n ∈ IN .

Proof of Theorem 2:

First note, that res(θ, Zn) = En holds if θ is the underlying parameter.

a) Set

Vn :=
K+1∏
k=1

1
{

res(Z(K+1)(n−1)+k, θ)(−1)k > 0
}

+
K+1∏
k=1

1
{

res(Z(K+1)(n−1)+k, θ)(−1)k+1 > 0
}
.

Then Vn, n ∈ {1, . . . ,
⌊

N
K+1

⌋
}, are independent variables with Bernoulli distribution satisfying

P (Vn = 1) = 1/2, so that the assertion follows from the CLT.

b) Set

Vn :=
K+1∏
k=1

1
{

res(Zn−1+k, θ)(−1)k > 0
}

+
K+1∏
k=1

1
{

res(Zn−1+k, θ)(−1)k+1 > 0
}
.

Then Vn, n ∈ {1, ..., N −K}, are also Bernoulli variables with P (Vn = 1) = 1/2. By centering to

Xn = Vn − (1
2
)K we get a series of stationary random variables with E[Xn] = 0 and E[|Xn|3] <

∞. So the limit theorem of Hoeffding and Robbins (1948) for m-dependent random variables

can be applied, since Xn and Xm are dependent if and only if the corresponding index sets are

overlapping. This implies, that V1, V2, ... is K-dependent. To calculate the variance component in

the limit distribution we need to calculate E(X1Xd) for d ∈ {1, ..., K + 1} and get

A = E[X2
1 ] +

∑K+1

d=2
2 · E[X1Xd].

For d > K + 1 the terms are zero, since the underlying events are independent.
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For d ∈ {1, ..., K + 1} we have

E[X1Xd] = E

[(
V1 −

(
1

2

)K)(
Vd −

(
1

2

)K)]

= E [V1Vd]−
(

1

2

)2K

=

(
1

2

)K+d−1

−
(

1

2

)2·K

.

By insertion of the explicit expressions for the expected values, A can be calculated by

A =
∑K+1

d=2
2 ·

[(
1

2

)K+d−1

−
(

1

2

)2K
]

+

(
1

2

)K (
1−

(
1

2

)K)

=

(
1

2

)K [∑K−1

d=0

(
1

2

)d
−K

(
1

2

)K−1

+ 1−
(

1

2

)K]

=

(
1

2

)K [
2−

(
1

2

)K−1

−K
(

1

2

)K−1

+ 1−
(

1

2

)K]

=

(
1

2

)K [
3−K

(
1

2

)K−1

−
(

1

2

)K−1(
1 +

1

2

)]

=

(
1

2

)K [
3−

(
1

2

)K−1

·K − 3 ·
(

1

2

)K]
.

c) Set

Vn = 1 {res(Zn, θ) > 0} 1
{

res(ZbN+1
2 c, θ) < 0

}
1 {res(ZN−n+1, θ) > 0}

+1 {res(Zn, θ) < 0} 1
{

res(ZbN+1
2 c, θ) > 0

}
1 {res(ZN−n+1, θ) < 0} .

Again Vn are Bernoulli variables, here with P (Vn = 1) = 1/4. To apply the CLT we need to assure
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independence of V1, ..., VbN−1
2
c. At first note that

P
(
Vn = 0|EbN+1

2
c > 0

)
=P

(
{En > 0, EN−n+1 > 0} ∪ {En > 0, EN−n+1 < 0} ∪ {En < 0, EN−n+1 > 0}|EbN+1

2
c > 0

)
=P (En > 0, EN−n+1 > 0) + P (En > 0, EN−n+1 < 0) + P (En < 0, EN−n+1 > 0)

=
3

4
= P (Vn = 0),

since E1, ..., EN are independent. Analogously we obtain

P
(
Vn = 0|EbN+1

2
c < 0

)
=

3

4
= P (Vn = 0)

and

P
(
Vn = 1|EbN+1

2
c < 0

)
= P

(
Vn = 0|EbN+1

2
c > 0

)
=

1

4
= P (Vn = 1).

Therefore independence of E1, ..., EN implies that Vn and Vm, with n < m < bN+1
2
c are condi-

tionally independent given EbN+1
2
c, so that

P (Vn = k, Vm = l)

=P
(
Vn = k, Vm = l|EbN+1

2
c > 0

)
P
(
EbN+1

2
c > 0

)
+P

(
Vn = k, Vm = l|EbN+1

2
c < 0

)
P
(
EbN+1

2
c < 0

)
=P

(
Vn = k|EbN+1

2
c > 0

)
P
(
Vm = l|EbN+1

2
c > 0

)
· 1

2

+P
(
Vn = k|EbN+1

2
c < 0

)
P
(
Vm = l|EbN+1

2
c < 0

)
· 1

2

=P (Vn = k)P (Vm = l),

for k, l ∈ {0, 1}. Hence Vn and Vm are independent. Similarly, we obtain the independence of

V1, ..., VbN−1
2
c. 2

Proof of Theorem 3:
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Let be ε > 0 arbitrary. If we can show that N∗ ∈ IN , δ∗ > 0, and a statistic T̃ iN with T iN(θ0) ≤ T̃ iN

exist such that

Eθ∗
(
T̃ iN

)
≤ −
√
N

(
δ∗ −

qα√
N∗

)
(9)

and

varθ∗
(
T̃ iN

)
≤ εNδ2

∗ (10)

for all N ≥ N∗, then Chebyshev’s inequality provides for all N ≥ N∗ using qα√
N
≥ qα√

N∗

Pθ∗

(
T iN(θ0) ≥ qα

)
≤ Pθ∗

(
T̃ iN ≥ qα

)
≤ Pθ∗

(
|T̃ iN − Eθ∗(T̃ iN)| ≥ qα − Eθ∗(T̃ iN)

)

≤ Pθ∗

(
|T̃ iN − Eθ∗(T̃ iN)| ≥

√
N

qα√
N

+
√
N

(
δ∗ −

qα√
N∗

))

≤ Pθ∗

(
|T̃ iN − Eθ∗(T̃ iN)| ≥

√
N δ∗

)
≤ εNδ2

∗
N δ2

∗
= ε.

a) Condition (4) implies

Eθ∗

(
diS(θ0, Z∗)−

(
1
2

)K ) ≤ ]M∗
iN

]MiN
2 +

]MiN−]M∗
iN

]MiN
β1 −

(
1
2

)K
< β2−β1

2
2 + β1 −

(
1
2

)K
= β2 −

(
1
2

)K
=: γ < 0.

If N ≥ 2K then N −K ≥ N
2
≥ N

2(K+1)
and b N

K+1
c ≥ N

2(K+1)
, so that

Eθ∗(T iN(θ0)) ≤

√
N

2(K + 1)

γ

vi
=:
√
Nγi,

where vi is the denominator of T iN(θ0) and γi = γ√
2(K+1)vi

.

Setting
√
Ni >

qα
γi

delivers δi := qα√
Ni
− γi > 0. Since res(Z1, θ

0), . . . , res(ZN , θ0) remain inde-

pendent under Pθ∗ for regression, the summands of T 1
N(θ0) are independent and the summands of
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T 2
N(θ0) are K-dependent, so that

varθ∗(T iN(θ0)) = σ2
i ≤ εNδ2

i ,

if N ≥ σ2
i

εδ2i
. Set N∗ := max(

√
Ni,

σ2
i

εδ2i
) and δ∗ = qα√

N∗
− γi, then

δ∗ ≥
qα√
Ni

− γi = δi > 0.

Therefore

Eθ∗(T iN(θ0)) ≤
√
Nγi = −

√
N

(
δ∗ −

qα√
N∗

)

and

varθ∗(T iN(θ0)) = σ2
i ≤ N∗εδ

2
i ≤ N∗εδ

2
∗ ≤ Nεδ2

∗

for all N ≥ N∗, so that conditions (9) and (10) are satisfied for T̃ iN = T iN(θ0) and i ∈ {1, 2}.

To prove the assertions b) and c), note that the residuals under Pθ∗ satisfy

res(Zn, θ0) ≶ 0⇔ Yn − g(Xn, θ
0) ≶ 0 (11)

⇔ Yn − g(Xn, θ
∗) ≶ g(Xn, θ

0)− g(Xn, θ
∗)⇔ En ≶ g(Xn, θ

0)− g(Xn, θ
∗).

b) Under the assumptions of b), the simplified simplicial depths are given by

diS(θ0, Z∗)

=
1

]MiN

∑
(n1,...,nK+1)∈MiN

(
K+1∏
k=1

1
{
Enk (−1)k > c

}
+

K+1∏
k=1

1
{
Enk (−1)k+1 > c

})
.
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Setting p := Pθ∗(En > c), we get p 6= 1
2

and obtain

Eθ∗(d1
S(θ, Z∗)) = Eθ∗(d2

S(θ, Z∗)) =

 2 p
K+1

2 (1− p)K+1
2 <

(
1
2

)K
, if K is odd,

p
K
2 (1− p)K2 <

(
1
2

)K
, if K is even,

so that condition (9) and (10) are satisfied as in a).

c) We consider only the case limb→∞ g(b, θ0) − g(b, θ∗) = ∞ since the proof for the other case is

completely analogous. Because of limb→∞ g(b, θ0) − g(b, θ∗) = ∞ , there exists b0 > 0, γ > 0,

and β <
(

1
2

)K with g(b, θ0) − g(b, θ∗) > γ for all b > b0 and Pθ∗(En > γ) ≤ β
2
. According to

Scenario (B), there exists N0 ∈ IN so that Xn > b0 almost surely for all n ≥ N0. Then we can

work with the following upper bounds

d1
S(θ0, Z∗) ≤

1⌊
N
K+1

⌋ (
N0 +

∑b N
K+1c

n=N0

(
1
{
E(K+1)(n−1)+2 > γ

}
+ 1

{
E(K+1)(n−1)+1 > γ

}))
=: d̃1

S

d2
S(θ0, Z∗) ≤ 1

N −K

(
N0 +

∑N−K

n=N0

(1 {En > γ}+ 1 {En+1 > γ})

)
=: d̃2

S

d3
S(θ0, Z∗) ≤ 1⌊

N−1
2

⌋(N0 +
∑bN−1

2 c
n=N0

(
1

{
EbN+1

2 c > γ
}

+ 1 {EN−n+1 > γ}
))

=: d̃3
S.

Set T̃ iN :=
√
Nλi

(
d̃iS −

(
1
2

)K), where λi is an appropriately chosen constant, then T̃ iN also is an

upper bound of T iN(θ0). Then there existsN∗ > N0 such that (9) is satisfied for T̃ iN for i ∈ {1, 2, 3}

and N ≥ N∗ as in a). Since the summands of T̃ 1
N are independent and the summands of T̃ 2

N are

1-dependent, also condition (10) is satisfied for T̃ 1
N and T̃ 2

N . To show that (10) also is satisfied for

T̃ 3
N , use γ so large that Pθ∗(EN > γ)2 ≤ Pθ∗(En > γ) ≤ ε δ2∗

λ23 4
is satisfied as well. Since the errors

En are independent and identically distributed, we obtain then

varθ∗
(
T̃ iN

)
≤ Nλ2

3 Eθ∗
[(
1

{
EbN+1

2 c > γ
}

+ 1 {EN−N0+1 > γ}
)2
]

= 2Nλ2
3 (Pθ∗(EN > γ) + Pθ∗(EN > γ)2) ≤ 2Nλ2

3 2
ε δ2
∗

λ2
3 4

= εNδ2
∗. 2
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Proof of Lemma 1: Without loss of generality, assume 0 < c ≤ c1 ≤ c2 ≤ . . . ≤ cK+1. Since the

distribution of En is continuous and symmetric around 0 with support given by IR, we have

bk :=
1

2
− Pθ∗(Enk > ck) =

1

2
− Pθ∗(Enk < −ck) > 0 for all k ∈ {1, . . . , K + 1},

and in particular Pθ∗(Enk > ck) = 1
2
− bk, Pθ∗(Enk < ck) = 1

2
+ bk, and

0 < b1 ≤ b2 ≤ . . . ≤ bK+1 <
1
2
. This implies with (11)

Eθ∗

(
K+1∏
k=1

1
{

res(ZnkN , θ
0)(−1)k > 0

}
+

K+1∏
k=1

1
{

res(ZnkN , θ
0)(−1)k+1 > 0

})

=
K+1∏
k=1

(
1

2
+ (−1)k+1bk

)
+

K+1∏
k=1

(
1

2
+ (−1)kbk

)
. (12)

To prove the assertion we have to show, that (12) is bounded by (1
2
)K , which is equivalent to

K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

)
< 2, (13)

whereby xk := 2 · bk and 0 < x1 ≤ x2 ≤ ... ≤ xK+1 < 1.

Note that

(1 + x1)(1− x2) + (1− x1)(1 + x2) = 2− 2x1x2 ≤ 2− 2x2
1 < 2,

since x1 > 0. To conclude by induction first note, that from xK+1 ≥ xK

(1− xK)(1 + xK+1) ≥ (1 + xK)(1− xK+1)

and

(1 + xK−1)(1− xK)(1 + xK+1) ≥ (1− xK−1)(1 + xK)(1− xK+1)

37



follows. By a successive application of this inequality we get

b :=(1± x1)(1∓ x2) · ... · (1− xK)(1 + xK+1) (14)

≥(1∓ x1)(1± x2) · ... · (1 + xK)(1− xK+1) =: a.

By (14) and ad+ bc ≤ ac+ bd for 0 < a ≤ b, 0 < c ≤ d we get

(1∓ x1)(1± x2) · ... · (1 + xK)(1− xK+1)(1 + xK+2)

+(1± x1)(1∓ x2) · ... · (1− xK)(1 + xK+1)(1− xK+2)

≤(1∓ x1)(1± x2) · ... · (1 + xK)(1− xK+1)(1− xK+2) (15)

+(1± x1)(1∓ x2) · ... · (1− xK)(1 + xK+1)(1 + xK+2),
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by setting d = (1 + xK+2), c = (1− xK+2). (13) now follows from

K+2∏
k=1

(
1 + (−1)k+1xk

)
+

K+2∏
k=1

(
1 + (−1)kxk

)
=

K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+3xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+2xK+2)

=
1

2

[
(
K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+3xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+2xK+2)

+ (
K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+3xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+2xK+2)

]
(15)

≤ 1

2

[
(
K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+3xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+2xK+2)

+ (
K+1∏
k=1

(
1 + (−1)k+1xk

)
(1 + (−1)K+2xK+2) +

K+1∏
k=1

(
1 + (−1)kxk

)
(1 + (−1)K+3xK+2)

]

=
1

2

[(
K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

))

·
(

(1 + (−1)K+3xK+2) + (1 + (−1)K+2xK+2)
)]

=
1

2

[(
K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

))
((1 + xK+2) + (1− xK+2))

]

=
1

2

[(
K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

))
· 2

]

=
K+1∏
k=1

(
1 + (−1)k+1xk

)
+

K+1∏
k=1

(
1 + (−1)kxk

)
<2

by induction. 2

Proof of Lemma 2:
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a) Because of

∂

∂t
wu(x) = u2θ2x

θ2−1 + u3 θ1θ2x
θ2−1 log(x) + u3 θ1x

θ2
1

x

= xθ2−1 (u2θ2 + u3 θ1θ2 log(x) + u3 θ1) ≥ 0

⇐⇒ u2θ2 + u3 θ1θ2 log(x) + u3 θ1 ≥ 0

⇐⇒ u3 θ1θ2 log(x) ≥ −u2θ2 − u3 θ1

⇐⇒ log(x) ≥ − u2

u3θ1

− 1

θ2

if u3 θ1θ2 > 0, log(x) ≤ − u2

u3θ1

− 1

θ2

if u3 θ1θ2 < 0

⇐⇒ x ≥ exp

(
− u2

u3θ1

− 1

θ2

)
if u3 θ1θ2 > 0, x ≤ exp

(
− u2

u3θ1

− 1

θ2

)
if u3 θ1θ2 < 0,

wu has a minimum at x = exp
(
− 1
θ2
− u2

u3θ1

)
if u3 θ1θ2 > 0 and a maximum at x = exp

(
− 1
θ2
− u2

u3θ1

)
if u3 θ1θ2 < 0.

b) Let be 0 < ξ1 < ξ2 arbitrary. The equation system

 ξθ21 θ1ξ
θ2
1 log(ξ1)

ξθ22 θ1ξ
θ2
2 log(ξ2)


 v2

v3

 =

 v2ξ
θ2
1 + v3 θ1ξ

θ2
1 log(ξ1)

v2ξ
θ2
2 + v3 θ1ξ

θ2
2 log(ξ2)

 =

 −1

−1


has exact one solution (v2, v3)> since

det

 ξθ21 θ1ξ
θ2
1 log(ξ1)

ξθ22 θ1ξ
θ2
2 log(ξ2)


= ξθ21 θ1ξ

θ2
2 log(ξ2)− ξθ22 θ1ξ

θ2
1 log(ξ1) = ξθ21 θ1ξ

θ2
2 (log(ξ2)− log(ξ1)) 6= 0.

For this solution (v2, v3)>, it holds

w1,v2,v3(ξ1) = 1 + v2ξ
θ2
1 + v3 θ1ξ

θ2
1 log(ξ1) = 0,

w1,v2,v3(ξ2) = 1 + v2ξ
θ2
2 + v3 θ1ξ

θ2
2 log(ξ2) = 0.

Since w1,v2,v3 has at most one extremum according to a), this extremum must be attained in (ξ1, ξ2)
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and the extreme value is not equal to zero. It is negative if it is a minimum and positive if it is

a maximum. The use of u0 = (−1,−v2,−v3)> changes a negative minimal value for wu∗ with

u∗ = (1, v2, v3)> to a positive maximal value for wu0 and vice versa. Denote u0 or u∗, respectively,

by u+ if the extreme value is positive and by u− if the extreme value is negative. If the extreme

value is positive, then wu+(x) > 0 for all x ∈ (ξ1, ξ2) because only one extremum exists. The

same argument provides wu−(x) < 0 for all x ∈ (ξ1, ξ2) if the extreme value is negative. 2
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