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1 Introduction

Binary classification problems are quite common in scientific research. In very high

energy (VHE) gamma-ray astronomy for example, the interest is in separating the

gamma-ray signal from a hadronic background. The separation has to be done as

exactly as possible since the number of gamma-ray events detected is needed for

the calculation of the energy-dependent gamma-ray flux (energy spectrum) and the

time-dependent flux (light curve) as dedicated physical quantities of an observed

source (see e.g. Mazin, 2007). From these quantities source internal features can

be inferred, as e.g. the underlying emission processes (e.g. Aharonian, 2004) or the

size of the region emitting gamma-rays (e.g. Schlickeiser, 2002). In this situation,

there are some distinctive features characterising the data one has to handle.

The most important one is that there is a huge class imbalance in the data. It is

known that hadron observations (negatives) are more than 100 to 1,000 times more

common than gamma events (positives) (Weekes, 2003; Hinton, 2009). The exact

ratio, however, is unknown. Thus the ratio with which classification algorithms

are trained is in general not the one in actual data which has to be classified. A

second feature is that one is not primarily interested in a good classification, but in

the estimation of the number of signal events in a data set. Assessing the quality

of the estimation is difficult, since the influence of individual misclassifications on

the outcome of the analysis is unknown. If the individual influence was known

it could be used as individual misclassification cost and there would be the pos-

sibility to make the used classifier cost sensitive. The classifiers commonly used

in VHE gamma-ray astronomy like random forests (Albert et al, 2008), boosted

decision trees (Ohm et al, 2009; Becherini et al, 2011), or neural networks (Boinee

et al, 2006), are reviewed in Bock et al (2004) and Fegan (1997). Throughout this

work we favor random forests (Breiman, 2001), as usually done in the MAGIC
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experiment (MAGIC Collaboration, 2014). One effective method of making these

cost sensitive is the thresholding method (Sheng and Ling, 2006). The idea of

this method is to minimize the misclassification costs with respect to the discrim-

ination threshold applied in the outcome of a classifier. Obviously, this method

is inapplicable as we do not have individual misclassification costs, but as stated

above in VHE gamma-ray astronomy one is not primarily interested in the best

possible classification of any single event, but instead one wants to know the total

number of gamma observations (positives) as this is the starting point for astro-

physical interpretations. Statistically speaking this means estimation of the true

number of positives based on a training sample. As we will show in the first part

of this work, the mean square error (MSE) of this estimation can be regarded as

misclassification risk in the thresholding method. So the idea is to choose the

discrimination threshold which minimizes the MSE of the estimated number of

positives in a data set. Additionally, the unknown class imbalance is taken into

consideration.

For the analyses in this work we use data from the MAGIC and FACT telescopes.

The two telescopes on the Canary island of La Palma are imaging atmospheric

Cherenkov telescopes (IACTs). Their purpose is to detect highly energetic gamma

rays emitted by various astrophysical sources. The data collection process can be

summarized as follows: A highly energetic particle interacts with molecules in

the atmosphere and induces a so-called air shower of secondary particles. These

air showers emit blue light flashes, so-called Cherenkov light, which is collected by

Cherenkov telescopes like MAGIC or FACT. The camera of an imaging Cherenkov

telescope uses the Cherenkov light to create very pixelized side views of the induced

air shower. From the images, various information can be inferred for example about

the energy and angle of the inducing particle.
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As stated above, only gamma rays are of interest in the FACT experiment, but

also many other particles, summarized as hadrons, induce air showers, which are

also recorded by the FACT telescope. Because of this, a separation of gamma rays

(called signal in the following) and hadrons (called background in the following)

is needed. The separation is done using the classification methods stated above

(in this work random forests), for which variables are extracted from the shower

images.

In very high energy gamma-ray astronomy, so-called Hillas parameters are used as

variables for classification. These variables are based on moment analysis param-

eters introduced by Hillas (1985). Stereoscopic features introduced by Kohnle et.

al. (1996) cannot be used in the FACT experiment as the experiment only uses

one telescope. The original parameters introduced by Hillas (1985) are based on

fitting an ellipse to the shower image and using its parameters such as its length

and width as features. Hillas parameters were first introduced in 1985 and were

not especially made to uncover differences between signal and background. It is

thus desirable to find new or additional variables to improve the classification.

The approach we are following in this work is to extend the idea of fitting an

ellipse to fitting bivariate distributions, as they allow the use of more information

than ellipses. We use several distance measures for distributions to measure the

distance between the fitted distribution and the underlying empirical distribution

of the shower image. The idea of this is to fit a distribution to the shower im-

age which fits well to signal, but not to background events. In the second half

of this work we describe our approach of distance based variable generation. We

introduce the distributions we fit to the showers as well as the distance measures

used. We then use a FACT data set to investigate the quality of the classification

into signal and background applying the newly generated variables along with the

Hillas parameters to a FACT dataset.
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In the following we describe the two telescopes in Chapter 2, introduce the method

to optimize the discrimination threshold in the outcome of a random forest by

minimizing the MSE in Chapter 3 and present newly constructed classification

variables in Chapter 4. The threshold optimization is combined with the new

variables in Chapter 5. We conclude in Chapter 6.
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2 Motivation

In this work, we use data from two astrophysical experiments, MAGIC and FACT.

The underlying idea and theory is the same for both experiments, but technical

details are different. Differences and similarities between the two experiments as

well as the data which is available from them is introduced below. Many processes

which happen in astrophysical sources of cosmic rays are still not known to as-

trophysicists, for example the processes going on in jets of Active Galactic Nuclei

(AGNs). The detection and analysis of cosmic rays sent out by such sources, espe-

cially the energy spectrum of the rays emitted are informative for astrophysicists

and help understanding the processes going on in the sources of cosmic rays. Es-

pecially gamma rays are helpful here, because they do not have an electric charge

and are not influenced by magnetic fields. Therefore, when they reach earth, their

origin can be reconstructed. The detection process is described below.

2.1 Air Showers and Cherenkov Light

In this work, we differentiate mainly between two forms of cosmic rays. The

first one is highly energetic gamma rays, which are basically light photons, but

with a very high energy. We also call these gamma rays signal events or posi-

tives. The other form of cosmic rays we consider in this work is summarized as

hadrons. Hadrons are for example protons and neutrons, but also further parti-

cles like muons. Those hadrons form the background, also called negatives in our

application, as the gamma rays are the interesting events here. Hadrons are only

observed because of the way the gammas are detected.
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The detection of gamma rays is an indirect process, in which the earth’s atmosphere

is used as a calorimeter. When a gamma ray enters the atmosphere, it interacts

with the air molecules and induces a chain reaction, a so-called air shower (Grieder,

2010) of secondary particles. Simulated air showers are displayed in Figure 1. Air

showers can be seen by Cherenkov telescopes by making use of Cherenkov light

(Cherenkov, 1934), which is blue light emitted by air showers. The blue light is

emitted in very short flashes, lasting only some microseconds, and cannot be seen

by the human eye. Cherenkov telescopes, however, collect the blue light flashes and

direct them into a camera, which creates images of the air showers. The imaging

is done in such a way that the shape of a shower as seen in Figure 1 remains in the

image. The camera and thus the quality of the images depends on the telescope

one is using. The cameras of the MAGIC and FACT telescopes and some sample

images are introduced in the following chapters.

The problem with the data collection process is that not only the interesting gam-

mas induce particle showers. Hadrons also induce them and they emit Cherenkov

light just like the gamma-induced showers, which is also collected by Cherenkov

telescopes. To analyse gamma events, it is thus necessary to separate gamma

rays from the hadronic background. The separation is done using classification

techniques described in later Chapters.

The whole data collection process with Cherenkov telescopes can be seen in Fig-

ure 2.

2.2 MAGIC

The two MAGIC telescopes (MAGIC Collaboration, 2014), which are two of the

largest Cherenkov telescopes in the world with a mirror diameter of about 17



2 MOTIVATION 11

Figure 1: Simulated air showers of a gamma ray (left) and a proton (right)(Sidro
Martin, 2008)

meters, are situated on the mountain Roque de los Muchachos on the Canary

island of La Palma. In spite of being so large, the telescopes are highly mobile.

They can be directed to every spot in the sky in about 25 seconds (Ferenc, 2005).

Figure 3 shows the older MAGIC I telescope in the back and the newer MAGIC II

telescope, which began operating in 2009 and features an improved camera (Hsu et

al., 2007) and improved mirrors (Backes et al., 2007), in the front. As can be seen

in the Figure, the telescopes mainly consist of parabolic mirrors, which collect and

focus the Cherenkov light emitted from air showers, and a camera, which converts

the collected light into photo electrons.

At the time of our analysis of MAGIC data, the MAGIC I camera consisted of 578

hexagonal photo multiplier tubes (PMTs, see e.g. Errando, 2006), but has been
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Figure 2: The data collection process with Cherenkov telescopes. A particle enters
the atmosphere and induces a particle shower which sends out Cherenkov light.
The light can be detected by a Cherenkov telescope. (Hadasch, 2008)

upgraded in 2012 to achieve full technical homogeneity between the two telescopes.

Since then, both cameras consist of 1039 PMTs (Nakajima et al, 2013). We did

not use the data from the new camera, as we used data from the FACT telescope

at the time it was installed. This had several reasons, which we point out below.

PMTs convert light into photo electrons. The number of photo electrons triggered

in a PMT depends on the intensity of the light registered in that PMT. To minimize

the space between PMTs, they are complemented by hexagonal cones, so called

Winston Cones. The combination of Winston Cone and PMT is called a pixel. A

schematic view of the older MAGIC I camera and the new camera layout can be

seen in Figure 4.
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Figure 3: The two MAGIC telescopes. The older MAGIC I telescope (left) and
the newer MAGIC II telescope (right) (MAGIC-Homepage, 2010).

2.3 FACT

The FACT telescope seen in Figure 5 is a single dish telescope also located on

the MAGIC site. It is based on one of the former HEGRA telescopes and has

a mirror plane of 9.5 sqm. The name FACT stands for First G-APD Cherenkov

Telescope, which also describes its main characteristic: FACT is the first imaging

Cherenkov telescope to use Geiger-mode avalanche photodiods (G-APDs) instead

of photomultiplier tubes (PMTs), which need a lower voltage and have a higher

photon detection efficiency (FACT Collaboration, 2014).

The FACT camera consists of 1440 G-APDs, that is, 1440 pixels. A schematic
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Figure 4: The cameras of the two MAGIC telescopes with numerized pixels. The
older MAGIC I camera on the left and the newer MAGIC II camera on the right,
which is also used in the MAGIC I telescope now. (MAGIC-Homepage, 2010).

view of the FACT camera with a simulated sample event can be seen in Figure 6.

Although technical details of the FACT telescope differ from the MAGIC tele-

scopes, the aim and analysis of the experiments are basically the same: The de-

tection of highly energetic gamma rays.

2.4 The Analysis Chain

The analysis chain used in the two expermiments MAGIC and FACT is basically

the same. Besides the steps mentioned here, there are some more, which are

mandatory and not interchangable and therefore not of interest here. For example

the calibration of images.



2 MOTIVATION 15

Figure 5: The FACT telescope. One can see the mirror plane and the camera
embedded in the white metal cylinder. (MAGIC-Homepage, 2010).

2.4.1 Image Cleaning

When recording Cherenkov light with the MAGIC or FACT telescopes not only

Cherenkov-photons are recorded. Background light emitted for example by nearby

cities or the illuminated night sky (moon and stars) are also recorded. This back-

ground light is not to be confused with the hadronic background events. For

better differentiation from background events we call the background light here

noise. The noise is present in all camera images, regardless if it is a signal event

or a background event. At full moon this noise can be so strong that taking data

is almost impossible.
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Figure 6: A sample image of an air shower induced by a simulated gamma ray.
The greyscale shows the intensity of light in each pixel. The darker a pixel is, the
more Cherenkov light photons have been collected.

Since the noise is always present, it is inherent in all images recorded. The actual

shower is thereby overlapped by the noise and creates an image which has positive

intensities in all pixels, with the intensity being largest where the actual shower is

recorded. This can be seen on the left hand side of Figure 7. Would further steps

of the analysis be used on this uncleaned picture, the results would be strongly

biased.

For this reason a so-called image cleaning step is necessary. In this step, one tries

to decide which of the pixels belong to the actual shower and which ones only

contain noise. The intensity of pixels, which are thought to only contain noise,
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are set to 0. This can be seen on the right hand side of Figure 7. Here an image

cleaning has been used to cut out the actual shower and suppress the noise.

Although the shower can usually be seen by the naked eye in most images, the

image cleaning is not trivial. Especially on the edge of showers it is difficult

to decide which pixels should be suppressed. Especially difficult is the image

cleaning in images, which recorded events of smaller energy, because they emit less

Cherenkov photons than events of higher energy, which leads to lower intensities

in shower pixels.

The image cleaning in Figure 7 is the one typically applied in MAGIC, which is

also used in FACT. The image cleaning done on the data we use consists of these

steps (cf. Thom, 2009):

1. Determine Core Pixels: Pixels with an intensity larger than a threshold chigh

2. Determine Used Pixels: Pixels with an intensity larger than a threshold clow,

which are neighbours of Core Pixels.

3. Set intensity of all other pixels to 0.

4. Set intensity of isolated Core Pixels to 0, that is Core Pixels with neighbours

all having intensity 0.

The thresholds chigh and clow have to be chosen reasonably and are very different for

the two telescopes. For MAGIC the standard values are chigh = 8.5 and clow = 4.5.

For FACT the values have to be much higher, because the G-APDs used are able

to detect more light and thus also more background.

It is possible that there are some separate areas of intensity greater than 0 after
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the image cleaning. We call these areas islands. The biggest island in terms of

used pixels is called Main Island, the other are called Sub Islands.

In an extended image cleaning also time information is considered.

We do not change the image cleaning in this work, but it should be kept in mind

that the image cleaning is an important step in the analysis and shows large

room for improvements. See Deiters (2013) for example for a comparison of filter

techniques and their influence on the image cleaning and the further analysis.

Figure 7: A sample image before (left) and after (right) the image cleaning. In
this case the number of islands in the image is 1.

2.4.2 Quality Cuts

Quality Cuts (cf. Bretz, 2006) filter events, which are either impossible to classify

(for example because they are too small) or which cannot possibly be signal events.

Only events which fulfill the following conditions are kept in the data set:
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� Number of islands < 3. It is known that signal events cannot have more

than two islands.

� Number of pixels > 5. The image must consist of more than five pixels with

an intensity greater than zero after the image cleaning. Else it is too small

to make any justifiable assertions about it.

� Leakage < 0.3. That means that more than 70% of the shower has to be

within the camera plane. This is measured by the Hillas parameter Leakage,

see below.

See Bretz (2006) for more, less intuitive and not interpretable quality cuts.

2.4.3 Variable Extraction

In order to classify the images into background and signal, proper classification

variables have to be extracted from the raw images. The currently used variables

are so-called Hillas parameters, which were first introduced by Hillas (1985) and

extended for example by stereoscopic features introduced by Kohnle et. al. (1996)

and variables describing the time evolution of a shower (e.g. Bastieri, 2005). The

idea underlying the original Hillas variables is to fit an ellipse to a shower image and

use the parameters of the ellipse along with some additional features as variables in

the classification. This can be seen in Figure 8, where a few sample Hillas variables

are displayed. The Hillas variables are explained in more detail in Chapter 4.2,

where we also construct new variables to complement the currently used Hillas

variables.
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Figure 8: Some Hillas variables from fitting an ellipse.
(source: http://ihp-lx.ethz.ch/Stamet/magic/parameters.html)

2.4.4 Gamma-Hadron-Separation

With the Hillas variables extracted in the previous step, a classification is done to

separate gamma ray events from hadronic background events. The separation is

important, as a pure gamma sample is necessary to draw conclusions about the

source one is observing.

Usually in the MAGIC and FACT experiments random forests (Breiman, 2001)

with some minor changes described in Albert et al. (2008) are used for the classi-

fication.

The gamma-hadron-separation is the central aspect of this work. It is described

in more detail in Chapter 3, where a method for optimizing the discrimination

threshold of a random forest is introduced.
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2.4.5 Unfolding of Energy Spectra

A central goal of the analysis of MAGIC and FACT data is to reconstruct energy

spectra of the observed source, that is the distribution of the energy of gamma ray

particles emitted by the source.

Energy spectra are usually estimated by histograms of the estimated energy of

gamma particles. There are several uncertainties in estimating such a spectrum.

For example the energy reconstuction of a particle is not exact, but only an esti-

mation. Because of this the true energy of a particle is not always reconstructed

accurately, so that a particle can be falsely sorted into a wrong energy range.

The most important uncertainty in this work comes from the difficult classification

of signal and background. For the estimation of energy spectra, the data one

estimates it from has to be a very pure gamma sample. Classification errors in the

gamma-hadron-separation make it difficult to estimate the true energy spectrum

and leads to a biased estimation. This means firstly that the classification has to

be done as exactly as possible and secondly that the estimated spectrum has to

be bias-corrected as long as the gamma-hadron-separation is not perfect.

The bias-correction is done using an unfolding procedure implemented in the un-

folding program TRUEE (Milke et al., 2012). The idea of the unfolding is the

following: The true energy distribution, or more exactly, its density f(x), is as-

sumed to be folded by a kernel function A(y, x) into the observed distribution with

density g(y). This can be written using the Fredholm integral equation (Fredholm,

1903),

g(y) =

∫
A(y, x)f(x)dx+ b(y)

where also a known background density b(y) is added additively. Considering
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discrete or classed distributions this becomes a lot easier. Let g1, ..., gk be the

relative number of observations in the k observed energy classes and f1, ..., fm the

true probabilities of the m energy classes (the binning in the observed and true

distributions can be different), then the above Fredholm integral can be rewritten

using a k ×m-Matrix A and vectors g = (g1, ..., gk)T and f = (f1, ..., fm)T :

g = Af + b

This is a well-known linear model with the vector of observations g, design matrix

A, parameter vector f and vector of errors b. Thus, the unfolding of the energy

spectrum is an estimation of the vector f , where the vector g is observed and

the transition matrix A is determined on simulated data and then used on real

data. The estimation of f can be done using ordinary least squares, but experience

shows that such estimations have large fluctuations. Therefore, more sophisticated

approaches are used in TRUEE, such as the usage of B-Splines and a penalized

minimization, which shows high resemblance to Ridge Regression.

The whole theoretical foundation of unfolding can be seen in Blobel (2010) and

the exact procedure used in TRUEE can be seen in Milke (2012).
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2.5 MAGIC and FACT Data

In this Chapter we describe the data we use in this work.

2.5.1 The FACT Data Set

The FACT data set we are using is a synthetic data set consisting of real back-

ground data and simulated signal. The real background is taken from the Crab

Nebula and therefore consists also of gamma rays from this source. The back-

ground data is thus not only pure background, but also contains gamma events.

However, the gamma count in this data is expected to be very small, as the signal

to background ratio is usually about 1:1000 (Weekes, 2003). Additionally, real

background also consists of some gamma rays, only that they are not from the

source one is observing. Also, due to the relatively small number of events we use

only a signal to background ratio of 1:100 in our analyses, so that the number

of gammas in the background is so small that they should not make a difference.

That is why using this data as background should not be much of a problem. The

background data set consists of 12,768 events. The simulated data consists only

of gamma events. The simulations are from an early stadium of simulations and

represent data from the Crab nebula. The signal data set has 12,500 events.

The combined, synthetic data set thus consists of 25,283 events. However, this is

before the quality cuts described in Chapter 2.4.2 are applied. After the application

of quality cuts, 6,707 real background events and 6,472 simulated signal events

remain in the data set, for a total of 13,179 events.

The FACT data set includes data from different analysis steps. We have uncleaned

and cleaned camera pixel data available as well as the Hillas variables. That is
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why we can easily calculate new variables on this data set from the camera data

and combine them with Hillas variables. However, the drawback of this data is

that the data set is relatively small, so that it is difficult to make analyses with a

real signal to background ratio. We also do not have information about the true

or estimated energy of observations in this data.

2.5.2 The MAGIC Data Set

The MAGIC data we use here is synthetic data consisting of real background

and simulated signal events. The data was taken by the two MAGIC telescopes

operating in stereoscopic mode. The data set consists of 652,935 simulated gamma

events and 357,850 hadronic background events, for a total of 1,010,785 events.

We only have Hillas parameters available in this data, along with a variable called

estimated energy, which includes for each observation the energy estimated by a

random forest regression (not to be confused with the random forest used for the

gamma-hadron-separation).

2.6 High Class Imbalance and the Consequences

It is known that in real MAGIC and FACT data the ratio between signal and

background is very unfortunate. Signal events are known to be about 100 to 1000

times less frequent than background (Weekes, 2003). This poses problems. First

of all the classification becomes exceptional difficult and the search for gammas

becomes looking for needles in a haystack. Especially often used measures of

quality for classification like the accuracy, that is the ratio of correctly classified

observations, are much less meaningful. With a ratio of signal to background of
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1:1000, a classifier, which always classifies every event as background, will give

an accuracy of 99.9%. The ratio also poses a problem for the reconstruction of

energy spectra. The first step of the reconstruction is estimating how many signal

events there are in the data. This becomes very difficult if too much background is

classified as signal. ROC curves for example, which are often used in classification

problems, are also not that meaningful here, because a larger area under the curve

does not necessarily mean that the signal is estimated better.

We also have a problem with training data. As we do not know the exact signal to

background ratio in real data, any number of signal and background events can or

has to be used as training data, but the ratio has to be taken into account when

assessing the quality of the classification. With a ratio of 1:1 in the training data

for example, the number of falsely classified background events has to be very low

on this data to achieve a pure sample of signal events on real data and keep the

error of the estimation of the number of signal events as low as possible. That is

why we want the falsely classified background to be in general very small, while

we want to minimize the error we make on signal events.

2.7 Aim

The aim of this work is to improve upon the current MAGIC and FACT analysis

chains. Some methods used in this analysis chain are either old for Cherenkov

astronomy standards or heuristical or both.

The Hillas parameters for example were introduced by Hillas in 1985, which was at

the very beginning of Cherenkov astronomy. They were a first attempt to describe

shower images and were not specifically designed to find differences between the

gamma ray signal and the hadronic background. In other words they were not
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constructed with the aim of the analysis in mind. As stated above, the aim of

the analysis chain is the reconstruction of energy spectra. That means the whole

analysis is only done for that aim to estimate the true energy spectrum of a source

one is observing.

This has some consequences. In the gamma-hadron-separation step for example,

classification methods (here usually random forests (Breiman, 2001; Albert et al.,

2008)) are used to separate the gamma ray signal from the hadronic background.

There are many quality measures for classification methods, for example simply

the classification accuracy, which is the ratio of correctly classified observations.

There is also the false positive rate (FPR) and true positive rate (TPR), also

known as sensitivity and specificity, with the FPR being the ratio of falsely clas-

sified background observations and the TPR being the ratio of correctly classified

signal observations. The two values are often considered together in ROC curves

(Fawcett, 2006).

In our astronomical setting, however, where the overall aim of the analysis is to

reconstruct energy spectra, considering only such quality measures can be mislead-

ing. For example increasing the accuracy of the classification even to very high

values does not necessarily mean an improvement of the reconstruction of energy

spectra. One reason for this is the very unfortunate signal to background ratio,

introduced above.

The aim of this work is thus to improve upon the currently used analysis chain

with respect to the objective of the analysis, that is the reconstruction of energy

spectra. As we will see, the reconstruction can be considered as an estimation

task. We can thus use quality measures for estimators, here especially the MSE,

to measure the quality of our classification.
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In a first step we use this MSE to optimize a discrimination threshold in the

outcome of a random forest to improve the classification in such a way that the

reconstruction of energy spectra is improved.

In a second step we construct new variables for the classification to improve upon

the Hillas parameters. The new variables are constructed by fitting bivariate

distributions to shower images and determining the distance between the observed

and fitted distributions. As stated above, it is important in our context to maintain

a very low FPR, for being able to properly estimate energy spectra. We investigate

if the newly constructed variables improve upon the TPR while maintaining a very

low FPR.

In a third step the threshold optimization and variable construction are used to-

gether. In this step we examine if the suggested methods in this work lead to

improvements of the analysis chains of the two telescopes.
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3 Threshold Optimization

In this chapter we optimize the threshold in the outcome of a random forest to

improve upon the estimation of the number of signal events in a data set. We

begin by stating the problem setup, then describe the method used to optimize the

threshold and finally apply the method to synthetic MAGIC data. The contents

of this chapter can also be seen in Voigt et al. (2014) and partly in Voigt & Fried

(2013).

3.1 Problem setup

The problem we are facing is a binary classification problem. Some of the features

described here are distinctive properties of our astrophysical setting. We have a

random vector of input variables X = (X1, ..., Xm)T and a binary classification

variable Y . We denote the joint distribution of X and Y with P (X, Y ). We nei-

ther know this distribution nor can we make any justifiable assumptions about

it. Additionally, in our application it is not possible to draw a training sample

from the joint distribution. We are, however, able to draw samples from the con-

ditional distributions P (X|Y = 0) and P (X|Y = 1). Thus, we have independent

realizations (x1, 0), ..., (xm0· , 0) and (xm0·+1, 1), ..., (xm1·+m0· , 1) from the respective

distributions with sizes m0· and m1·, respectively, and m = m0· +m1·.

Based on these samples a classifier is trained. A classifier such as a random forest

or logistic regression can be interpreted as a function f : Rm → [0, 1]. For a

random forest for example the output of this function is the fraction of trees which

voted for Y = 1. For a final classification into 0 and 1 we need a threshold c, so
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that

g(x; c) =

0, if f(x) ≥ c

1, if f(x) < c

. (1)

We consider f to be given and only vary c in this Chapter.

We call the above samples (x1, 0), ..., (xm0· , 0), (xm0·+1 , 1), ..., (xm, 1) the training

data. As stated above, each of the m observations belongs to one of two classes,

where m1· is the number of observations in class 1 and m0· is the number of

observations in class 0. In the following, observations of class 1 are called positives

and observations of class 0 are called negatives.

In addition to the training data, we have a sample of actual data to be classified,

x∗1, ...,x
∗
N , for which the binary label is unknown. This data consists of N events

with N1· and N0· being the unknown random numbers of signal and background

events in this data. N , N1· and N0· are therefore random variables. This means our

actual data, which we want to analyse, contains a random number of observations.

For a given threshold c, we denote the numbers of observations in the training

data after the classification as Mij, i, j ∈ {1, 0}, where the first index indicates

the true class and the second index the class as which the event was classified by

(1). We can display these numbers in a 2×2 table. With Nij, i, j ∈ {1, 0} defined

analogously we get a similar 2×2 table for the actual data, see Table 1.

Table 1: True and classified numbers of positives and negatives in a training sample
(left), in a sample of actual data (middle) and in Off-data (right).

classified
1 0

∑
true

1 M11 M10 m1·
0 M01 M00 m0·∑

M·1 M·0 m

classified
1 0

∑
true

1 N11 N10 N1·
0 N01 N00 N0·∑

N·1 N·0 N

classified
1 0

∑
true

1 0 0 0

0 NOff
01 NOff

00 NOff
0·∑

NOff
·1 NOff

·0 NOff
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It is obvious that we do not know the numbers in the first two rows of the table

of the actual data as we do not know the true numbers of positives and negatives

N1· and N0·.

As we can see above, N1· is considered to be a random variable and our goal is

to estimate, or perhaps better predict, the unknown realization of N1·. The same

applies for the number N0·. That is why we consider all the following distributions

to be conditional on these values.

As explained above, we are only able to draw samples from conditional distribu-

tions. The difference between sampling from the joint distribution and sampling

from the conditional distributions is that the marginal probability P (Y = 1) can

be estimated from samples from the joint distribution, but not from samples from

the conditional distributions. This is because the samples from the conditional

distributions are obtained from Monte Carlo simulations, where the sample sizes

have to be set manually before the simulation.

To estimate the number of signal events N1· we have additional information in the

form of Off data available. In our astrophysical setting we collect Off data by ob-

serving a source-free position in the sky so that only background data is observed.

This can be seen on the right hand side of Table 1. Technically speaking Off data

represents another way to sample from the conditional distribution P (X|Y = 0).

The sample size NOff
0· in this data is assumed to be a random variable with the

same distribution as the unobservable N0·. This is a reasonable assumption in our

asrophysical setting, as background can be considered homogeneous, so that for

equal observation time and collection area, the background should be the same,
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short of random effects. NOff
0· can therefore be used to assess the amount of

background in our data, that is N0·, and is used in estimators derived from a

classification (see Chapter 3.2). Through classification of the NOff
0· Off-Events we

get the number of correctly and falsely classified observations in this data, NOff
00

and NOff
01 , see Table 1. In our astronomical setting we get Off data by observing

a source-free position in the sky, from which we know that no signal events are

emitted. For more information about Off data see Chapter 3.4.

To summarize, we have three data sets:

� Training data, containing a manually fixed amount of positives, m1·, and

negatives, m0·.

� Actual data, of which we want to estimate the number of positives N1·.

� Off data, containing only negatives, where the number of negatives NOff
0·

is random and has the same distribution as the number of negatives in the

actual data.

Our main goal is to estimate the number of positives in the actual data, N1·. This

is not an easy task as P (Y = 1) is known to be very small, of size around 1/100

or 1/1000. Because of this fact and because of the other characteristics of our

application mentioned above, standard estimators of N1· or P (Y = 1) will fail to

estimate these values accurately.

We make some additional assumptions: We assume that the Ni1, the NOff
01 and the

Mi1, i ∈ {1, 0} are independent and (conditionally) follow binomial distributions.

These assumptions also follow directly from an assumed multinomial distribution
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for the entries of Table 1:

N01|N0·=n0· ∼ Bin (n0·, p01) , (2)

N11|N1·=n1· ∼ Bin (n1·, p11) , (3)

NOff
01 |NOff

0· =nOff
0·
∼ Bin

(
nOff

0· , p01

)
, (4)

M01 ∼ Bin (m0·, p01) , (5)

and

M11 ∼ Bin (m1·, p11) , (6)

with some probabilities p01 and p11. As estimators for these two probabilities

we use the True Positive Rate (TPR), which is also known as Recall or (signal)

Efficiency, and the False Positive Rate (FPR)

TPR =
M11

m1·
(7)

and

FPR =
M01

m0·
. (8)

Obviously, both rates can only take values in the interval [0, 1] and they depend

on the discrimination threshold c, as M11 and M01 depend on it. When choosing
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Figure 9: ROC curve for the MAGIC data. The higher in the top left corner the
curve lies, the better is the classification. This curve shows that the classification
in the MAGIC analysis chain is quite good. The problem is how to finally choose
the threshold.

an appropriate c, a high value of TPR and a low value of FPR are desired.

These two requirements, however, are contradictory, because a high value of the

threshold leads to high values of TPR and FPR and vice versa. Figure 9 depicts a

Receiver Operating Characteristic (ROC) curve (see Fawcett, 2006), which shows

the TPR and FPR when altering the discrimination threshold. As we will see

in the following Chapter, these two values are important in the estimation of the

number of positives.
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3.2 Estimation of the true number of positives

As stated above the estimation of the true number of positives N1· is the main

aim of our analysis. Depending on the individual problem such an estimator can

look quite differently. For the given application of VHE gamma-ray astronomy, it

is known that an irreducible portion of the recorded negatives will be misclassified

(Sobczynska, 2007; Maier and Knapp, 2007). Thus, the number of positives is

estimated via a difference estimator, as the number N01 of misclassified negatives

in actual data can be approximated by the number NOff
01 of misclassified negatives

in real Off data. According to Li and Ma (1983) the estimator

ÑLM
1· = N −NOff

0· (9)

is the Maximum Likelihood estimator in this situation if a Poisson distribution is

assumed for N1·, N0· and NOff
0· and if we consider that the observation times of N

and N0· are the same and no classification is done. This estimator is uncondition-

ally unbiased, E
(
ÑLM

1· −N1·

)
= 0, but a major problem of it is that its standard

error is usually very high in case of a large class imbalance. The mean square error

of this estimator is

MSE
(
ÑLM

1·

)
= E

((
ÑLM

1· −N1·

)2
)

= Var (N0·) + Var
(
NOff

0·

)
.

For example, if we assume independent Poisson distributions

N1· ∼ Pois(λ1),

N0· ∼ Pois(λ0),
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and

NOff
0· ∼ Pois(λ0)

a signal to background ratio of 1:100 implies that the root mean square error of

estimator (9) then is
√

100λ1 + 100λ1 =
√

200λ1. In case of λ1 = 1000 the number

of signal events would be estimated with a standard error of about 450, which is

rather high. Additionally, the imbalance in our application is usually much worse

than 1:100.

3.2.1 Estimation with known classification probabilities

The above estimation does not consider a classification before estimating the num-

ber of signal events. The idea of a classification in this situation is to suppress a

large amount of the background events to receive a classified dataset with a more

desirable signal to background ratio. If p11 was known, a corresponding estima-

tor, which takes classification and the above mentioned binomial assumptions into

account, would be

Ñ1· =
1

p11

(
N·1 −NOff

01

)
. (10)

Analogously to the estimator in equation (9), this quantity takes the difference

between N·1 and NOff
01 as an estimate for N11 and multiplies this with 1

p11
to

compensate for the classification error in the signal events. It translates into the

estimator in equation (9), when p11 = p01 = 1. Per construction this quantity can

give negative results though N1· is positive. Since we cannot achieve zero variance

of the estimator, we cannot achieve an unbiased estimation when restricting its

range to positive values. Because of the assumption that N01 and NOff
01 follow the
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same distribution we have E(Ñ1· − N1·) = 0, justifying usage of Ñ1·. Of course,

when the results are to be interpreted in the application context, one might want to

replace negative estimates by 0, but the corresponding estimator would be biased

at least in case of zero or small values of N1·.

Obviously, the estimators in (9) and (10) cannot be used in problems where one

does not have access to an Off data set. In this case, an alternative is for exam-

ple the estimator N·1
m1·
M·1

. The following calculations have to be adapted to this

estimator. In our application, however, this estimator cannot be used, as m1. has

to be set manually for the Monte Carlo simulations, so that using this estimator

does not make sense.

Since we want to estimate the number of positives as exactly as possible we want

to assess the quality of the estimator Ñ1·. A standard measure of the quality of an

estimator is the mean square error (MSE). As in applications we usually have fixed

samples in which we want to estimate N1·, we calculate the MSE conditionally on

N1·, N0· and NOff
0· . The problem of high inaccuracy of the estimator ÑLM

1· remains

in this situation, as its conditional bias is very high, although its variance is 0.

The MSE simplifies to the variance for unbiased estimators, so it is of interest if

the estimator in (10) is unbiased for every fixed number of gamma events N1·, that

is whether

Bias
(
Ñ1·|N1·, N0·, N

Off
0·

)
= E

(
Ñ1·|N1·, N0·, N

Off
0·

)
−N1·

equals 0, where E
(
Ñ1·|N1·, N0·, N

Off
0·

)
is the conditional expectation of the esti-

mator Ñ1· given the values of N1·, N0· and NOff
0· .
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Under the binomial assumptions made in the previous Chapter (equations (2) -

(6)) we can easily calculate the conditional expectation of Ñ1·:

E
(
Ñ1·|N1·, N0·, N

Off
0·

)
= E

(
1

p11

(
N·1 −NOff

01

)
|N1·, N0·, N

Off
0·

)
=

1

p11

E
(
N11 +N01 −NOff

01 |N1·, N0·, N
Off
0·

)
=

1

p11

(
N1·p11 +N0·p01 −NOff

0· p01

)
= N1· +

p01

p11

(
N0· −NOff

0·

)
The conditional bias of Ñ1· from equation (10) thus is

Bias
(
Ñ1·|N1·, N0·, N

Off
0·

)
=
p01

p11

(
N0· −NOff

0·

)
. (11)

This bias matches with what one would expect intuitively as it is small for p01

small and for p11 high and it reaches zero if no background is falsely classified or

if the number of background events in the Off data is the same as in the actual data.

A standard measure for the quality of an estimator is the (conditional) MSE given

by

MSE
(
Ñ1·|N1·, N0·, N

Off
0·

)
= E

((
Ñ1· −N1·

)2

|N1·, N0·, N
Off
0·

)
= Bias

(
Ñ1·|N1·, N0·, N

Off
0·

)2

+ Var
(
Ñ1·|N1·, N0·, N

Off
0·

)
.

(12)

This variance term can easily be calculated by again using the assumption that
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N11, N01 and NOff
01 are independent and follow binomial distributions:

Var
(
Ñ1·|N1·, N0·, N

Off
0·

)
= Var

(
1

p11

(
N·1 −NOff

01

)
|N1·, N0·, N

Off
0·

)
=

1

p2
11

Var
(
N11 +N01 −NOff

01 |N1·, N0·, N
Off
0·

)
=

1

p2
11

(
N1·p11 (1− p11) +

(
N0· +NOff

0·

)
p01 (1− p01)

)
= N1·

(
1

p11

− 1

)
+
p01 − p2

01

p2
11

(
N0· +NOff

0·

)
(13)

Using equations (13) and (11) the MSE in (12) becomes

MSE
(
Ñ1·|N1·, N0·, N

Off
0·

)
=
p2

01

p2
11

(
N0· −NOff

0·

)2

+N1·

(
1

p11

− 1

)
+
p01 − p2

01

p2
11

(
N0· +NOff

0·

)
.

(14)

3.2.2 Estimation with Unknown probabilities

The above equation (14) depends on the values of p11 and p01. As we do not know

these values we have to estimate them. Consistent estimators for these values are

TPR and FPR (equations (7) and (8)). Using TPR as an estimator for p11 in

equation (10) we get the realistic estimator

N̂1· =
m1·

M11

(
N·1 −NOff

01

)
=

1

TPR

(
N·1 −NOff

01

)
. (15)

As TPR and FPR are consistent estimators of p11 and p01, and the sample sizes

m1· and m0· are usually large (> 105), using the estimators instead of the true
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probabilities should only lead to a small difference. By estimating p11 with TPR

and p01 with FPR in equation (14) we get the estimate

M̂SE
(
Ñ1·|N1·, N0·, N

Off
0·

)
=
FPR2

TPR2

(
N0· −NOff

0·

)2

+N1·

(
1

TPR
− 1

)
+
FPR− FPR2

TPR2

(
N0· +NOff

0·

)
.

(16)

Note that Ñ1· is not a feasible estimator since p11 is unknown. Instead we propose

N̂1·, but under our binomial assumptions neither the expectation nor the MSE of

N̂1· exist, since the term E
(

1
M11

)
is involved, which is infinite if P (M11 = 0) >

0. The binomial distribution, however, is only an approximation to reality as in

practice we can simulate data until M11 > 0. We find it hard to provide a realistic

model for this process and use MSE
(
Ñ1·|N1·, N0·, N

Off
0·

)
as a measure of quality

also for the estimator N̂1· deduced from Ñ1·. In our experience this gives good

results, see Chapter 3.5.

As we see in the following Chapter, equations (15) and (16) can be used in an iter-

ative manner to find an optimal discrimination threshold. Therein equation (16)

is treated like the total misclassification costs in the thresholding method as value

to be minimized over the threshold.

3.3 Minimizing the MSE to choose the threshold

As stated above, the values TPR and FPR directly depend on the discrimination

threshold. If the number of positives N1· was known we could minimize the MSE

in equation (16) over all possible thresholds and thus find the one with which the
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number of positives can be estimated best.

For simulations with a known ratio of positives and negatives, this is shown in

Figure 10. It illustrates the MSE, calculated with equation (16) and depending

on the threshold, for a fixed number of 5000 positives and different numbers of

negatives. The solid curve, for a ratio of 1:50, that is 250000 negatives, is rather

flat in comparison to the other curves, depicting ratios up to 1:1000. When looking

at higher numbers of negatives one can see two major distinctive features. The

first one is that the MSE is generally higher. This seems intuitive as it gets more

difficult to separate signal and background when the background increases. The

second feature is that the optimal value of the threshold approaches zero when

the number of negatives is increased. An optimal threshold obviously depends on

the class imbalance in the data, that is the ratio between positives and negatives,

which is unknown in practice.

In the given astronomical application, this ratio can in general be different for dif-

ferent astrophysical sources the telescope is taking data from and even for different

observation times of the same source. Thus using always the same threshold is

not recommended. Instead it is desirable to adapt the threshold to the data and

to the class imbalance in the data.

The problem here is that, as one knows the sum of positives and negatives N ,

knowing their ratio is equivalent to knowing the number of positives N1·, the value

one wants to estimate. One needs to know N1· to optimize the threshold to find

the best estimate of N1·.

An intuitive idea to overcome this problem is to use a rough and easy to compute

estimate of N1· to optimize the threshold and then get a better estimate from a

new classification. An easy to compute estimate can be obtained by setting the

threshold to a fixed default value. According to Figure 10, c = 0.1 seems to be a

reasonable initial choice. Using this value for the threshold we estimate N1·, then
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calculate the optimal threshold for this estimate and estimate N1· again for this

new threshold. This procedure can be iterated until some convergence criterion is

met. This approach leads us to the following algorithm:

1. Set an initial value c for the threshold.

2. Estimate N1· using this threshold and equation (15).

3. Compute a new threshold through minimizing equation (16) over all thresh-

olds using the estimates N̂1· for N1· and N − N̂1· for N0·.

4. If a stopping criterion is fulfilled, compute a final estimate of N1· and stop.

Otherwise go back to step 2.

At this point we need a treatment for negative values of N̂1·, because negative

estimates could lead to a negative estimate of the MSE. We then set negative

values of (16) to 0. This happens very rarely, as the third term is positive and

usually dominant. Please also note that minimization of the MSE takes place only

over TPR and FPR, so the estimation of N1. does not diverge to −∞, because

the factors in the other two terms decrease faster in TPR than the second. As a

stopping criterion, we require that the change in the threshold from one iteration

to the next is below 10−6.

In the following we refer to this algorithm as the MSEmin method. This method

takes both into consideration: The class imbalance problem and the minimization

of the MSE, that is, the overall misclassification cost. In the next Chapter we

investigate the performance of this algorithm on simulated data and compare it to

other possible approaches.
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Figure 10: The MSE plotted against the threshold c for a fixed number of gamma
events and different numbers of hadron-events according to several gamma-hadron-
ratios

3.4 Application to astronomical data

In this Chapter we apply the MSEmin method to data from VHE gamma-ray as-

tronomy collected with the MAGIC telescopes.

The MAGIC telescopes on the Canary island of La Palma are a stereoscopic imag-

ing atmospheric Cherenkov telescope system. Its purpose is to detect highly ener-

getic gamma-rays from astrophysical sources. This is done in an indirect way, em-

ploying the Earth’s atmosphere as calorimeter: gamma-rays impinging the atmo-

sphere induce cascades of highly energetic charged particles, emitting Cherenkov

light (Cherenkov, 1934). For reviews of this research field see Hinton and Hofmann
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(2009), Hinton (2009), and Chadwick et al (2008). One major difficulty is that

not only gamma-rays induce such particle showers, but also many other particles

summarized as hadrons, which are, for the strongest gamma-ray sources, 100 to

1000 times more common than the gamma-rays of interest (Weekes, 2003; Hinton,

2009). So the gammas, which are the positives in this application, have to be

separated from the vast majority of hadrons, which represent the negatives. The

separation was enhanced with a significant boost in sensitivity in 2009, when the

second telescope was built and the telescope system began observation in stereo-

scopic mode (Aleksic et al, 2012).

The measurements are conducted in such a way that both the astrophysical sources

of VHE gamma-rays and similar sky positions without (known) gamma-ray sources

(Off data) are observed, which leads to N events in the data sample, and NOff

events in the Off data sample. For a time-efficient use of the telescopes these ob-

servations can even be conducted at once utilizing the false source method (Fomin

et al, 1994).

In the MAGIC analysis chain (outlined in Chapter 2.4 or e.g. Firpo Curcoll et

al, 2011) the classification is usually done by a random forest (Breiman, 2001;

Albert et al, 2008). For the training of the random forest, Monte Carlo generated

gamma-ray events are used as positive examples. The variables used for separa-

tion are based on the moment analysis parameters introduced by Hillas (1985),

complemented by stereoscopic variables based on Kohnle et al (1996) and vari-

ables describing the time evolution of the shower images (Aliu et al, 2009). To

obtain realistic distributions of these variables, the whole physical detection pro-

cess is simulated, from the simulation of the particle showers and the emission of

Cherenkov light (Heck and Knapp, 2010) up to the light detection and electronic

digitalization process (Carmona et al, 2008; Majumdar et al, 2005). As the in-

volved processes in hadronic shower development are much more complex and the
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telescopes’ efficiency for recording hadron events is about a factor of 10 lower com-

pared to gamma induced particle showers, the computation time for a sufficient

sample of Monte Carlo simulated hadron events would require many CPU-hours of

computation time for a similarly plentiful Monte Carlo sample of hadron events.

Furthermore, the underlying particle physics processes are unaccessible for current

precision measurements, so that predictions of different theoretical models differ

by 20%–40% (Maier and Knapp, 2007). For these reasons, the negative examples

for the training of the random forest are not Monte Carlo generated but taken

from measured Off data.

The output of a random forest for each event is the fraction of trees which voted

for this observation to be a hadron. A discrimination threshold c has to be applied

in this fraction to finally classify each observation. From applying the trained

random forest model f with a fixed discrimination threshold c on a test sample of

n events, being comprised by m1· Monte Carlo simulated gamma events and m0·

Off data hadron events, the Mij and thus TPR and FPR can be inferred.

3.4.1 Energy-dependency

As for calculating energy spectra from the number of gamma events, the value

of interest is not simply the total number of all gamma events by itself, but the

number depending on the energy of the gamma-rays. Therefore we do not compute

a single threshold for the whole data set. Instead the data is binned into several

classes according to their energy and then the threshold is computed for every

bin separately. This can lead to rather different values of the threshold in each

energy bin. In reality, the energy of the gamma-rays is neither known nor directly

measurable and thus has to be estimated, taking both the limited acceptance and

limited energy resolution of the detector into account. This is done by applying
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an unfolding procedure (see Milke et al, 2011, 2012) and possibly also a random

forest regression beforehand (Albert et al, 2007). Typically, this is conducted on a

logarithmic-equidistant binning in energy, reflecting the detectors energy resolution

and the power-law-like decline of event numbers depending on their energy. For

this study, we neglect the unfolding procedure to not further complicate the issue

and use the term energy for a random forest regression estimate of the true energy

for simplicity.

3.4.2 Currently used Recall-methods

The currently used method to find the discrimination threshold, which is called

hadronness cut in this application, is a rather simple one. Assuming that the

Off data, introduced in Chapter 3.1, represent the real hadron-data exactly, that

is N0· = NOff
0· , the estimate of N1· in (15) becomes N̂1· = N11

TPR
. This estimate

is unbiased under the assumption of a binomial distribution in combination with

N0· = NOff
0· , see (11), and its variance is, see equation (13),

Var

(
N11

TPR
|N1·

)
=

(
1

TPR
− 1

)
N1·.

Minimizing this variance over all thresholds is equivalent to maximizing TPR. So

under the assumption that the Off data perfectly represents the real hadron-data,

the best discrimination threshold is the one which maximizes TPR. This results

in a threshold where hadronness is equal to 0, classifying all events as gamma and

thus receiving TPR = 1.

However, the assumption N0· = NOff
0· is very strong, as only their underlying dis-

tributions are the same. Therefore, the approach which is used in practice is to

set the threshold manually so that the TPR is “high, but not too high”. Often
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TPR is set to values between 0.4 and 0.9 (e.g. Aleksic et al, 2010; Jogler, 2009;

Hadasch, 2008) and the threshold is chosen accordingly.

3.4.3 Logistic Regression approaches

An approach to avoid energy binning is to fit a binary regression model to the

random forest output, with energy as the covariate. The fitted curve can then

be regarded as discrimination threshold. In this work we use a logistic regression

model. Figure 11 illustrates this principle. In this Figure, the output of a random

forest, here called Hadronness, is plotted against the energy of a particle. A logistic

regression curve is fitted to the points and used as a variable, energy-dependend

threshold. In this case each point above the curve is classified as background,

whereas the points under the curve are classified as signal. We first fit the model

to the training data using a standard Maximum Likelihood approach to estimate

the model coefficients. In the following we refer to this method as Logreg.

Another approach is to combine the aforementioned logistic regression with our

MSEmin method from Chapter 3.3. Instead of using a fixed threshold c in the

algorithm, we optimize the parameters of the fitted logistic regression curve, β0

and β1, so that the MSE becomes minimal. The algorithm remains the same as

before, with the only difference being that we do not minimize the MSE over one

value, the threshold c, but over two, the model parameters. The minimization is

done numerically via the Nelder Mead method (Nelder and Mead, 1965). We refer

to this combination of the two methods as LogregMSE.
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Figure 11: The random forest votes for a subset of 1000 sample observations,
consisting of 500 gammas and 500 hadrons, and a fitted Logistic Regression curve.
All observations under the curve are classified as Signal, the others as Background.

3.4.4 Comparison of the methods

To compare the MSEmin approach presented in Chapter 3.3 to the other methods,

we apply all methods to several artificial test samples. For the method of manual

choice we set TPR to 0.1, 0.2,..., 0.9 and refer to these methods as Recall01 to

Recall09.

For the comparison we use the following data:
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Test data: To represent actual data we simulate 500 samples for each gamma-

hadron-ratio 1:100, 1:200,...,1:1000. The number of hadron-events in each

sample is drawn from a Poisson distribution with mean 150,000. The number

of gamma events is chosen to match the respective ratio.

Training data: We use all gamma and hadron observations which are not used

in the Test or Off data to represent the training data from which TPR and

FPR are calculated. Note that the ratio of gammas and hadrons in this

data has no influence on the outcome, as only TPR and FPR are calculated

from this data.

Off data: For each test sample we draw a sample of hadron observations to rep-

resent the Off data. The number of hadrons in each sample is drawn from a

Poisson distribution with mean 150,000.

As outlined above, all gamma events are simulated whilst the hadrons are real Off

data observed from a sky-position with no gamma-ray source.

We split every sample into 12 energy-bins and apply the methods MSEmin and

Recall01 to Recall09 to determine the optimal threshold in every energy bin. The

classes are chosen to contain equal numbers of observations. This approach is

in practice almost the same as choosing equidistant classwidths on a logarithmic

scale, but it avoids (nearly) empty classes. The Logreg and LogregMSE methods

are applied without binning the data.

For each method we additionally apply the θ2-cut (Lessard et al, 2001; Domingo-

Santamaria et al, 2005) as it is always applied in the MAGIC analysis chain. θ2 is

a variable, which is not included in the random forest for various reasons. Instead,

an additional cut is applied in θ2 after the classification. An event is classified as
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Figure 12: Boxplots of the estimates in the 500 samples with different gamma-
hadron-ratios. The thick line in the middle of each box represents the median of
the estimates. Between the upper and lower boundaries of each box lie 50% of
the estimates. The whiskers range to the minimum and maximum of all the data.
The true number is marked by the long horizontal line.
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Figure 13: The empirical MSE of the estimation in each energy bin for a gamma
to hadron ratio of 1:1000 and the three methods MSEmin, Recall04 and Recall02.
The bottom panel shows the marked area of the top panel magnified. The lines
are only drawn to guide the eye.

gamma if the used classification algorithm classifies it as gamma and its value of

θ2 is smaller than the respective cut. Here we choose the θ2-cut to be 0.1. This cut

is usually chosen energy dependent but for simplicity we choose it to be constant.

Due to this cut it is sometimes not possible to reach the desired Recall in the

method Recall09. We then choose the threshold so that the Recall is as high as

possible.
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Table 2: Empirical mean square error of the estimation of the number of gammas
in each energy bin with standard deviations for a ratio of 1:1000.

bin 1 2 3 4 5 6

energy (GeV) [0,25] (25,35] (35,49] (49,66] (66,88] (88,123]
MSEmin 744± 164 459± 40 2352± 162 6513± 398 3117± 193 1559± 90
Recall04 22994±1465 21756±1376 10459± 678 6602± 388 3450± 230 1748± 106
Recall02 2522± 149 5261± 350 9081± 560 7429± 478 4965± 317 1831± 122

bin 7 8 9 10 11 12

energy (GeV) (123,176] (176,265] (265,434] (434,817] (817,2023] (2023,∞)
MSEmin 796± 47 600± 33 368± 22 117± 7 56± 5 30± 2
Recall04 834± 47 566± 36 443± 28 148± 9 126± 8 97± 6
Recall02 1024± 66 1102± 73 635± 43 289± 18 207± 13 152± 10

Figure 12 depicts boxplots of the estimated number of positives in the test sam-

ples. As we can clearly see for all considered ratios the overall number of gamma

events is estimated with a smaller error for the MSEmin method than for any Re-

call method. The performance of MSEmin is quite similar to that of the standard

logistic regression approach. The combination of these two methods give the best

results with smaller errors in all ratios above 1:200. For 1:100 and 1:200 the per-

formance of LogregMSE seems worse than that of Logreg. This is not intuitive as

LogregMSE is made to produce smaller errors than Logreg. A possible explanation

for this is that the Nelder Mead method may have ran into local optima.

Figure 13 and Table 2 show the MSE of the estimate in each energy bin for a

ratio of 1:1000 and the three methods MSEmin, Recall02 and Recall04. The two

Recall-methods were chosen because of their distinctive behavior in the first three

energy bins. The other Recall-methods perform similar to one of them, but with

higher MSEs.

As it is clearly seen in Figure 13, MSEmin drastically outperforms the other two in

the first three energy bins, ranging from 0 to about 50 GeV. Although the perfor-

mances of MSEmin and Recall04 at first glance look similar in the higher energy

ranges, the magnification in Figure 13 and Table 2 show that MSEmin again per-
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forms significantly better than the other methods, with a 55% smaller error than

Recall04 in the 11th energy bin and up to 70% in the 12th, covering energies higher

than 2023 GeV.

Although Recall02 is better than Recall04 at low energies, it is the other way

round at higher energies. In medium energy ranges between 123 and 265 GeV the

difference between MSEmin and Recall04 is not significant (c.f. Table 2).

All three methods produce smaller MSEs in high energies than in lower ones (ex-

cept for the first three bins for MSEmin and Recall02). This is because observations

in higher energies are bigger and therefore easier to classify.

The different behavior at lower energy bins can also be explained. Monte-Carlo

simulations for the gamma signal usually start at around an energy of 50 GeV.

This corresponds to the fourth and higher bins. Nevertheless, as the energy of

the observations is only estimated, there are also gamma ray observations in lower

energy bins, even though not as many as in the other bins. The first three bins

therefore represent situations, in which the gamma ray signal is very sparse and

the classification is quite difficult due to the low energy range. In such situations

the MSEmin method seems to work better than in other situations.

3.5 Investigation of the influence of the binomial assump-

tion

In this Chapter the binomial assumptions from Chapter 3.2, Nij|Ni·=ni.
∼ Bin (ni·, pij),

i, j ∈ {1, 0} and NOff
0j |NOff

0· =nOff
0.
∼ Bin

(
nOff

0· , p0j

)
, j ∈ {1, 0}, are investigated.

For this we compare the MSE calculated using equation (16) with the empirical

estimate

M̂SE =
1

m

m∑
i=1

((N̂1·)i −N1·)
2
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Figure 14: The MSE for ratios 1:500 (left) and 1:1000 (right) calculated via equa-
tion (16) which uses the assumption of a binomial distribution (solid line) and
estimated from several samples (dots). Each dot is the mean of the MSEs esti-
mated from 50 different samples. The errorbars indicate the standard error of each
estimate

obtained from m = 50 estimates (N̂1·)i of N1·, based on different training samples,

all with the same N1· and N0·. Systematic differences between the two estimates

of the MSE indicate a violation of the binomial assumption. Figure 14 shows

estimates of the MSE with and without the use of the binomial assumption for

different gamma-hadron-ratios with m = 50. Although there seem to be some

systematic differences, the red line corresponding to formula (16) fits the empirical

estimates quite well. The differences between them are small in comparison to the

standard errors of the estimates. Thus, according to Figure 14 the assumption of

the binomial distribution seems to be justifiable at least as a useful approximation.
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4 New classification variables

In this Chapter, we construct new variables for the separation of FACT data into

signal and background. The new variables are based on fitting bivariate distri-

butions to shower images and calculating distance measures between the fitted

and observed distributions. As we will see, the new variables lead to substantial

improvement of the misclassification rates. The contents of this Chapter can also

be seen in Voigt & Fried (2014a) and Voigt & Fried (2014b).

4.1 Distance based feature generation

The idea underlying the majority of the following chapter is to regard the images

of gamma events as realizations of bivariate distributions. In other words as a

shower image consists of a number of photons registered by the camera we assume

a bivariate distribution for the random arrival coordinates (X, Y ) of the photons

on the camera plane. A camera image with its pixelized structure is thus seen

as a kind of two-dimensional histogram with hexagonal classes. This way we get

a natural embedding into the statistical context: The pixel-data can be seen as

bivariate dataset, in which the data at hand is already binned.

In the following chapter we will see that the binning of the data can be problematic.

Many statistical methods require that the data is available unbinned. If a method

allows the incorporation of weights this problem can somehow be managed by

assuming the value of each bin (here the intensity in a pixel) to be concentrated

on one point, usually the centre of each pixel. As it is not known how the intensity

is distributed in a pixel, the results can, however, be biased. This can be seen in
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the following.

When assuming that the shower images come from bivariate distributions a few

questions arise. The first question is, obviously, which distribution underlies the

events. Here it is important that the recorded Cherenkov light is emitted by

showers induced by various particle types. The shape of the shower depends on

the particle type which induced the shower. Proton induced showers for example

have a different shape than gamma induced showers and the shape carries over to

the shower image.

Here it is enough to model showers induced by gammas, as these are the important

particles in our application. The approach here is thus an asymmetrical one similar

to hypothesis testing. In fact, the resemblance to statistical testing is quite strong.

We could hypothesize that a gamma shower comes from a bivariate distribution

with cumulative distribution function (cdf) F0 and see if the data contradicts this

hypothesis.

Instead, we use a similar idea to construct variables for our classification. We

assume a family of distributions for signal events and fit a distribution from this

family to each shower. Then, we calculate distance measures between the fitted and

observed distributions. If the assumed family of distributions is close to the true

family of signal showers, the distance between the fitted and observed distributions

should be small for signal events and higher for background events.

In the following, we try to find a distribution which fits well to signal images.

We explain how we fit the distribution to a shower, which is not trivial due to the

pixelized structure of the data. We will then show how with the fitted distributions

and some distance measures new variables for the signal-background classification

can be constructed. We will see that the new variables improve the classification

on a sample of FACT data. We first explain, how the Hillas parameters are

constructed and how our approach extends the idea underlying Hillas parameters.
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4.2 Hillas variables

The idea of Hillas variables is to fit an ellipse to a shower image and use the

parameters of the ellipse as variables for classification. The first two Hillas variables

are the center coordinates of the ellipse, also known as the centre of gravity, CoGX

and CoGY. Then there are the Width and Length of the fitted ellipse, that is

the lengths of the two semiaxes, where the shorter one is always considered as

Width. Another Hillas parameter directly calculated from the fitted ellipse is

Area = π · Width · Length, the area of the fitted ellipse. The remaining two ellipse

parameters are angles. The first is δ, the angle between the longer semiaxis of

the ellipse and the x-axis of the camera. The second is α, which describes the

angle between the longer semiaxis of the ellipse and the line between the centre

of the camera and the centre of the ellipse. Besides, there are seven further Hillas

variables mainly based on pixel brightnesses and ratios between them. Some Hillas

variables and the underlying MAGIC telescope camera (MAGIC collaboration,

2014) can be seen in Figure 8 in Chapter 2.4.3. A summary of all Hillas variables

available in our FACT data set can be seen in Table 3.

4.3 Distributions to fit

As stated above, the idea of the following chapter is to fit bivariate distributions

to shower images. The distributions we try in this work are introduced below.
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Table 3: The Hillas variables available in our data set.

Variable Explanation
Size Sum of intensities of all pixels in a shower
Width Width of the fitted ellipse
Length Length of the fitted ellipse
Area π · Length ·Width
Delta Angle between the longer semiaxis of the ellipse and the x-axis
Alpha Angle between reconstructed and expected direction of the shower
Concentration Ratio of the brightest pixel to Size

Concentration2 Ratio of the two brightest pixels to Size

NumberIslands The number of islands in a shower
NumberShowerPixel The nubmer of pixels with intensity greater 0 after the image cleaning
Leakage Ratio of the intensity of pixels on the edge of the camera to Size

Leakage2 Like Leakage, only additionally with neighbouring pixels

4.3.1 Gaussian Fit

Fitting an ellipse as done for the Hillas variables corresponds to fitting a contour

line of a bivariate elliptic distribution. The most popular example of such a dis-

tribution is a bivariate Gaussian, which can be fitted for example by minimizing a

χ2-distance between the observed and the expected frequencies in the hexagonal

telescope image. This allows to include information not only on the boundaries of

the ellipse, but also on the values in the interior.

The relation between the parameters of the ellipse and the fitted Gaussian is as

follows: Let µ ∈ R2 and Σ ∈ R2×2 be the parameters of the fitted bivariate

Gaussian distribution. The fitted distribution is thus N2(µ,Σ).

We look at the spectral decomposition of Σ:

Σ = U∆UT

where
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� ∆ = diag (λ1, λ2) is a diagonal matrix with the sorted eigenvalues of Σ:

λ1 ≥ λ2.

� U = (u1, u2) is an orthogonal matrix containing the corresponding eigenvec-

tors u1 ∈ R2 and u2 ∈ R2.

� UT denotes the transposition of the matrix U .

With this notation, we can describe the relationship between the fitted Gaussian

and the other Hillas variables:

� µ =

CoGX

CoGY

,

� λ1 = c · Length,

� λ2 = c · Width, where c is some constant,

� Area = πλ1λ2,

� δ is the angle between the x-axis and u1,

� α is the angle between µ and u1.

Note that the Hillas variables contain the full information about the parameters of

the fitted Gaussian distribution. However, it is known that the signal has a more

regular shape than the background. For example, signal is known to be unimodal,

while background can have several peaks. This information cannot be evaluated

by fitting a single ellipse, but can be used by fitting a distribution, for example

through the use of goodness of fit measures. Fitting a Gaussian distribution instead

of an ellipse allows to incorporate information on the shape of signal images. The

left hand side of Figure 15 shows a sample image on the underlying FACT telescope
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camera (The FACT collaboration, 2014) and a fitted bivariate Gaussian. It can be

expected that a bivariate Gaussian fits better to signal images than to background

images, because of the more regular shape of the former. We thus use distance

measures between the observed image and the fitted Gaussian distribution in our

classification, as these tend to take smaller values for signal events.

4.3.2 Skew-normal distribution

Fitting Gaussian distributions for constructing variables for classification can pos-

sibly be further improved. Signal images seem to be roughly elliptical, but not

exactly. It is known that signal showers are skewed in one direction (de Naurois &

Rolland, 2009). Because of this, an elliptical fit or fitting a Gaussian distribution

can neither describe signal observations nor background observations very well.

As the aim of our analysis is to find differences between signal and background, it

makes sense to fit a distribution to the images which describes signal images well.

Fitting a skewed distribution to the images, instead of a Gaussian, seems therefore

to be mandatory.

A skewed extension of the bivariate normal is the bivariate skew-normal distribu-

tion introduced by Azzalini & Dalla Valle (1996). Azzalini & Capitanio (1999)

extended the work by adding location and scale parameters. A random vector Y

is said to have a multivariate skew-normal distribution with parameters ξ ∈ Rk,

Ω ∈ Rk×k and α ∈ Rk, short Y ∼ SNk(ξ,Ω, α), if it has the density function

fk(y) = 2φk(y − ξ; Ω)Φ(αTω−1(y − ξ))

where φk is the density function of a k-variate normal with zero mean, standardized

marginals and correlation matrix Ω, Φ is the distribution function of a standard
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Figure 15: Contour lines of a bivariate normal (left) and bivariate skew-normal
(right) distribution fitted to a random shower image. Only the relevant part of
the camera is shown.

normal distribution and ω is the diagonal matrix of the square roots of the diagonal

elements of Ω. The bivariate skew-normal distribution thus has seven parameters,

whereas a bivariate normal has only five. A bivariate skew-normal distribution

fitted to the same shower image as before can be seen on the right hand side of

Figure 15.

4.3.3 Gaussian with fixed alignment

We can also use other information when fitting a distribution to a shower. We know

for example that signal showers are always aligned to the center of the camera.

This can be seen on the left hand side of Figure 16, where a simulated signal event

is displayed. To use this information we force a fitted distribution to be aligned to

the centre of the camera. As we know that signal events are aligned to the source

(here the camera center), we force the fitted distribution to be aligned, too. In the
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case of the bivariate Gaussian, we fit the distribution under the constraint that

at least one of the eigenvectors u1 or u2 has the same direction as µ, that is, one

of the semiaxes of the elliptical contour lines is aligned to the camera center. For

this we rotate the camera image so that the centre of gravity of the shower lies on

the x-axis of the camera as seen in Figure 16. We then fit two one-dimensional

distributions to the x- and y-directions of the shower. For now we fit two univariate

normal distributions. These represent a bivariate normal distribution with zero

covariance, so that we get a bivariate normal which is in one direction aligned to

the center, when we rotate the image and the fitted distribution back.

After fitting a distribution in this way, we can apply the same distance measures

as for the other distributions.

4.3.4 Skew-Normal with fixed alignment

While the skew-normal distribution takes the skewness and the normal with fixed

alignment takes the alignment of the signal showers into account, both aspects

together have not been considered, yet. We try to consider both by fitting a skew-

normal distribution with fixed alignment. Like in the case of a normal, we rotate

the shower image so that the centre of gravity of the shower lies on the x-axis. We

then fit a univariate skew-normal to the x-direction and a univariate normal to the

y-direction. We fit a skewed distribution to the x-axis and a symmetric one to the

y-axis, because it is known that signal showers are skewed in the direction, which

points to their source. The rotation of the images is done so that this direction

is the x-axis in the rotated image for signal events. It is also known that signal

showers are symmetric in the direction perpendicular to the one aligned to the

source, which is the y-axis in the rotated image (de Naurois & Rolland, 1996).
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Figure 16: Rotating an image to fit two univariate normal distributions to the
new x- and y-directions.

4.4 Maximum Likelihood Fitting

In this Chapter, we describe how we fit the distributions to the shower images. One

possibility for fitting a density to the shower images is to use maximum likelihood

estimators (MLEs) for the parameters of the distribution. For observations from

normal distributions this is easy, as MLEs are known and simple to calculate,

namely the arithmetic mean and the empirical covariance matrix. In our case of

discretized data on a crude hexagonal pixel structure these estimators have to be

adjusted for this discretization. A well-known possibility to adjust estimators for

binned data are Sheppard’s corrections (see e.g. Kendall & Stuart, 1963). These

are, however, not applicable in our case, as they require equidistant (and therefore

rectangular) class limits. As no corrections for hexagonal binning are known to us,

we use intuitive, heuristical estimators. The principle underlying these is to use

the center point of each bin weighted by the relative number of events in this bin.
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The resulting estimators are weighted means, variances and covariance given by:

µ̂x =
∑
i

mxi
Mi

M

µ̂y =
∑
i

myi
Mi

M

σ̂2
x =

∑
i

Mi

M
(mxi − µ̂x)2 ,

σ̂2
y =

∑
i

Mi

M
(myi − µ̂y)

2 ,

σ̂2
xy =

∑
i

Mi

M
(mxi − µ̂x) (myi − µ̂y) ,

where Mi is the intensity in the i-th pixel, M is the sum of all intensities in the

shower and mi = (mxi,myi)
T is the vector of the center coordinates of the i-th

pixel.

We use these estimators to fit the normal and bivariate normal distributions. For

the skew-normal distribution the fit is not that easy, as its parameters are not sim-

ply its mean and variance/covariance. In the case of the skew-normal distributions

we use numerical ML-estimates of the parameters making use of the R package

sn (Azzalini, 2014). As above, we consider the observations in each pixel to be

concentrated on the center of the pixel. The calculated estimates are therefore no

exact ML-estimates.
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4.5 Discretization

The distributions described above are continuous, while the shower images are

pixelized and thus discretized. In the following, we want to use distance measures

to compare the observed and fitted distributions. These distance measures usually

require that both distributions are either continuous or discrete. To use these

distance measures, we discretize the fitted distribution.

The probability of a Cherenkov photon of shower i to fall in pixel j under the

fitted distribution is

pij =
x

7j

f0(x, y; θi)dxdy

where f0 is the probability density function (pdf) of the fitted distribution and θi

is its parameter vector.

For calculating this integral, the hexagonal pixel can be split into two triangles

and a rectangle:

p = I1 + I2 + I3

with

I1 =

mx− r
2∫

mx−r

my+
√

3x−
√

3mx+
√

3r∫
my−

√
3x+
√

3mx−
√

3r

f(x, y)dxdy
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I2 =

mx+ r
2∫

mx− r
2

my+
√
3

2
r∫

my−
√
3

2
r

f(x, y)dxdy

I3 =

mx+r∫
mx+ r

2

my−
√

3x+
√

3mx+
√

3r∫
my+

√
3x−
√

3mx−
√

3r

f(x, y)dxdy

Here, mx and my are the coordinates of the centre of the pixel and r is the radius

of the circumcircle of the pixel.

Even for the Gaussian distribution these integrals are not analytically solvable, so

that they would have to be solved numerically for each pixel. We use the R package

cubature (Narasimhan, 2013), which use algorithms for adaptive multidimensional

integration, which are in detail described in Genz & Malik (1980) and Berntsen et

al. (1991). The numerical solution poses a problem, however, because the FACT

telescope camera consists of 1440 pixels. That means we have to numerically solve

4320 integrals per shower image. The compute cluster LiDo of the TU Dortmund

University needs slightly more than half a second to compute one of these integrals

numerically using cubature. This means that a single image needs more than half

an hour of computation time. Considering that we have several million shower

images every night this is far too much time needed for this step. Although the

very slow computation times might be enhanced by using a different software than

R, a faster method has to be used in R.

One possibility is to approximate the hexagonal pixels through rectangles, as seen

in Figure 17. A rectangular pixel structure instead of a hexagonal one decreases

the computation time by a factor of three. This is, however, still too long for the
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Figure 17: The original camera image (left) and an approximation with rectangles
(right).

large data sets one has to handle in our astrophysical setting.

Another faster, but more inaccurate method is to just simulate from the fitted

distribution and count the number of observations in each pixel. For a large

enough number of observations the relative frequency in each pixel should be close

to the true probability of an observation to fall into this pixel. This is the method

used here. For each shower we draw 5000 observations from the fitted distributions

and count the relative frequency of realizations in each pixel.

4.6 Distance measures

After we fit distributions to the showers we use the fitted distributions to construct

new variables for classification. The idea here is that the fitted class of distribu-
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tions describes the true distribution of signal events well, so that the fit should

be better for signal events than for background events. We thus want to measure

the distance between the fitted and the observed distribution of each of our ob-

served events. Several distance measures between distributions exist. There are

for example goodness of fit test statistics like the Chi-square (e.g. Greenwood &

Nikulin, 1996), which can easily be extended to the bivariate case. There are also

some distance measures for densities like the Kullback-Leibler divergence (Kull-

back & Leibler, 1951) or the Hellinger distance (e.g. Nikulin, 2001), described in

the following. As we only need the discrete versions of the distances, we do not

consider the continuous versions here.

4.6.1 Chi-square Statistic

An advantage of the Chi-square distance, underlying the corresponding test, in

our situation is that it is based on binned data as given in our application. We

can hence directly apply it to our data without the need of further modification.

The resulting Chi-square distance is

Qn =
m∑
i=1

(ni − npi)2

npi

where ni is the observed intensity in pixel i, n =
m∑
i=1

ni, pi is the probability that

a gamma-induced photon arrives at pixel i and m is the number of pixels in the

camera. Because we have discrete (binned) observed values we discretize the fitted

distribution and directly calculate the pi from it.

Large values of Qn indicate that the observed event is likely to be a background
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event. That means we expect signal events to lead to smaller values of Qn than

background events.

4.6.2 Kullback-Leibler Divergence

One possibility to compare two distributions is to use distance measures for den-

sities. The best known of these is the Kullback Leibler divergence (Kullback &

Leibler, 1951).

Let P andQ be two discrete distributions and p and q their corresponding probabil-

ity density functions (pdf). The asymmetric Kullback-Leibler divergence between

p and q is defined as

Dk(P,Q) =
∑
x

p(x) log

(
p(x)

q(x)

)

for discrete distributions. The Kullback Leibler divergence is not symmetric, so in

general Dk(P,Q) 6= Dk(Q,P ).

In our case we want to measure the distance between the empirical distribution

with cdf Fn and pdf fn and the fitted distribution with cdf F0 and pdf f0. As

said in the previous paragraph we discretize the fitted distribution leading to the

discrete empirical density given by ni

n
with n and ni being the same as above.

The values of the discretized fitted distribution are given by p1, ..., pm, so that the

Kullback Leibler divergence reduces in our case to

Dk(F0, Fn) =
m∑
i=1

pi log

(
npi
ni

)
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and accordingly

Dk(Fn, F0) =
m∑
i=1

ni

n
log

(
ni

npi

)
.

We use both versions in the following application and call the first one Kullback

Leibler Divergence theor. and the other Kullback Leibler Divergence obs..

4.6.3 Hellinger Distance

The Hellinger distance is another distance measure between densities. For discrete

distributions P and Q with pdfs p and q it is in general given by

Dh(P,Q) = 1−
∑
x

√
p(x)q(x).

The Hellinger distance is bounded by 0 and 1 and symmetric, 0 ≤ Dh(P,Q) ≤ 1

and Dh(P,Q) = Dh(Q,P ).

With the same reasoning as above the Hellinger distance simplifies in our case to

Dh(F0, Fn) = 1−
m∑
i=1

√
pi
ni

n
.

4.7 The new variables

The new variables we add to the Hillas parameters are the combinations of distri-

butions and distance measures described above. A further variable added is the

quotient of the variances in x- and y-direction in the rotated shower image we

used to fit the aligned normal and skew-normal distributions. Like the aligned
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distributions it uses the information that signal events are aligned to the centre of

the camera. It can be expected that for signal events this quotient is smaller than

for background.

In one of the previous Chapters it could be seen how the camera is rotated in

order to fit the aligned normal and skew-normal distributions. When fitting the

two univariate Gaussians the two variances in the x- and y-directions need to be

calculated. Those two variances are used here to construct one additional variable.

Similar to the aligned distributions, the idea here is to use the alignment of signal

showers opposing to the not aligned background. We additionally use, that signal

showers are usually quite narrow, as can be seen in Figure 1 in Chapter 2.1. The

information can be used in the ratio of the empirical variances Sy and Sx:

Sy

Sx

where Sy is the empirical variance of the rotated shower in y-direction and Sx is

the empirical variance of the rotated shower in x-direction.

If this ratio is larger than one, the semiaxis of the fitted contour lines which is

aligned to the center is smaller than the perpendicular one. This is a strong

indicator that the event belongs to the background, because the longer semiaxis

of signal events is usually aligned to the center, not the shorter one. If the ratio

is 1, the fitted contour lines are circles. This is also an indicator that the event is

background. For signal events we expect a ratio smaller than 1.

A summary of all new variables including the ratio can be seen in Table 4.
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Figure 18: Some histograms of newly constructed variables. The x-axis is on
a logarithmic scale to make signal and background better distinguishable, as the
histograms of the original data are very skewed.
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Table 4: Newly constructed features for classification.

Variable Explanation
normhell Dh(Fn, F0) with F0: cdf of bivariate normal
skewhell Dh(Fn, F0) with F0: cdf of bivariate skew-normal
alignnormhell Dh(Fn, F0) with F0: cdf of bivariate normal aligned to source
alignskewhell Dh(Fn, F0) with F0: cdf of aligned normal/skew-normal
normkullobs Dk(Fn, F0) with F0: cdf of bivariate normal
normkulltheor Dk(F0, Fn) with F0: cdf of bivariate normal
skewkullobs Dk(Fn, F0) with F0: cdf of bivariate skew-normal
skewkulltheor Dk(F0, Fn) with F0: cdf of bivariate skew-normal
alignnormkullobs Dk(Fn, F0) with F0: cdf of bivariate normal aligned to source
alignnormkulltheor Dk(F0, Fn) with F0: cdf of bivariate normal aligned to source
alignskewkullobs Dk(Fn, F0) with F0: cdf of aligned normal/skew-normal
alignskewkulltheor Dk(F0, Fn) with F0: cdf of aligned normal/skew-normal
normchi Qn of χ2-Test for bivariate normal
skewchi Qn of χ2-Test for bivariate skew-normal
alignnormchi Qn of χ2-Test for bivariate normal aligned to source
alignskewchi Qn of χ2-Test for aligned normal/skew-normal
varquot Ratio of variances in the rotated shower picture (Sy/Sx)

4.8 Application to FACT data

In this Chapter, we apply the above variable construction to FACT data. We

measure the quality of a classification with and without the newly constructed

variables with respect to the task of estimating the number of signal events as well

as possible.

4.8.1 Distances on FACT data

In this Chapter, we have a descriptive look at the new variables, calculated on our

FACT data set. Histograms of some of the new variables can be seen in Figure 18.

We see that some of them show different shapes for signal and background.

Especially interesting are the new distances. The smaller these distances are the
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better fits the fitted distribution to the data. However, it can be assumed that

there will be a lower bound on the distances, because of the pixelized camera, which

makes it difficult to fit the distributions. So even if the underlying distribution

is of the same family as the fitted one, the distance between observed and fitted

distribution might be relatively far away from 0. To verify this we simulate data

from bivariate normal distributions and discretize them on the camera surface. We

choose the parameters of the bivariate normal so that the resulting camera images

look reasonably similar to real showers.

The shower images we simulate consist of nk realisations ofNk(µk,Σk)-distributions.

The number of realizations nk and the parameters of the distribution µk =

µxk

µyk


and Σk =

 σ2
xk σxyk

σxyk σ2
yk

 are drawn randomly and independently from each other

for each shower image:

� Because it is known that small showers are more common than large ones, we

draw the number of photons nk of a shower from an Exp(0.002) distribution,

rounding to the nearest whole number. The parameter value of 0.002 is

chosen so that it resembles the shape of the distribution of Size in our data,

which is the sum of the intensities of all pixels.

� µxk and µyk are drawn indepentently from a Unif(−15, 15) distribution. The

centre of gravity of the simulated shower thus lies randomly somewhere on

the camera plane, but not too far on the sides.

� σ2
xk and σ2

yk are both drawn from an Exp( 1
0.1·√nk

) distribution. This choice

is arbitrary, but it can be seen that it creates realistic shower images. The

idea is that a small number of photons nk usually leads to smaller showers.
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� For σxyk we draw a correlation randomly from a Unif(−1, 1) distribution.

We multiply it with the square root of the product of σ2
xk and σ2

xk to get a

random covariance.

Figure 19 shows exemplarily, that these arbitrary choices lead to simulated images,

which look a lot like real shower images.

That way we simulate 2000 camera images where the underlying distribution is

bivariate normal and fit bivariate normal distributions to them. We then calculate

the distances described above and use the resulting distances as reference as for

how close we can get to 0. If all of the distances calculated on FACT data are close

to the reference, we can assume that we cannot get a better fit. In Figure 20 there

are boxplots of the distances on only signal events in FACT data, including the

distances on the simulated normal distributions, called Reference in the Figure.

We only use signal events, because we want a fitted distribution to fit especially

well to signal events. We see that the skew-normal distribution fitted to FACT

data overall gives the smallest distances. That is not surprising, as it is the most

flexible distribution we fit here. The aligned distributions on the other hand give

higher distances. This seems unintuitive as with the aligned distributions we used

the known alignment of signal events. However, in reality, the alignment to the

camera center is often not perfect, so that a forced perfect alignment can lead to

a worse fit than without forced alignment. We expect the background, however,

to realize even greater distances, so that these variables may still work well in

practice. We see later in this work that this is indeed the case.

We also see in the boxplots that the skew-normal with forced alignment gives high

Kullback-Leibler Distances for our simulated background. We will see later that

this variable has a high importance in a classification and is selected by variable
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Figure 19: Exemplary four simulated shower images. 2000 of such images have
been created.
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selection methods.

Another observation in the boxplots is that the Chi-square distance is overall very

small, in some cases the median is even slightly smaller than the reference. We

conclude that the Chi-square distance cannot distinguish between different fitted

distributions as well as the other distances.

4.8.2 Variable selection

As we have created quite a few variables in the previous Chapter, it is now of

interest which of these variables improve the classification. As nearly all new

variables are based on the same idea, it is possible that some of them are redundant.

It is also possible that they are completely unimportant for the classification in

which case it would be desirable to eliminate them from the dataset. In addition,

it is of interest if some of the Hillas variables are not needed as well. If so, they

can be left out, too.

This is why a variable selection is done here. After the selection, the results of a

dataset with the selected variables is compared to a dataset containing all variables

and one that contains only Hillas variables.

For the variable selection we use one wrapper and one filter variable selection (e.g.

Guyon and Elisseeff, 2003). As a representative of the wrappers we use a variable

selection based on the out of bag (OOB) error of a random forest (varSelRF).

As a filter variable selection method we use a Minimum Redundancy Maximum

Relevancy technique (MRMR). Both methods are used separately on the same

dataset and the results are compared.
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Figure 20: Boxplots of the newly constructed variables. Please note that in
the case of the Chi-square distance there are a few outliers larger than 15 in the
simulated data (the left boxplot), which have been omitted for the sake of better
readability.
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4.8.3 varSelRF

The varSelRF method is a backward selection algorithm which chooses variables for

classification through random forests (Diaz-Uriarte & Alvarez de Andres, 2005).

It begins with all variables and in each step it discards a number of variables

based on the random forest OOB error estimate (Breiman, 2001). Table 5 shows

which variables are chosen by this method. We see that of the newly constructed

variables varquot, alignnormhell, alignskewhell and alignskewkullobs have

been selected. We also see that the alignment seems to have a high influence on the

classification, as the distance variables selected are all from aligned distributions.

4.8.4 MRMR

MRMR (Minimum Redundancy Maximum Relevancy; Peng et. al., 2005) deals

with a problem of many other filter selection techniques. Many filter techniques

only choose relevant variables. The problem is that such variables that work

well for classification are often highly correlated, so that selection of only relevant

variables often results in worse classification than discarding redundant variables in

favor of less relevant ones. As the name suggests, MRMR tries to select variables,

so that at the same time redundancy is minimized and relevancy is maximized.

The technique uses a mutual information matrix. The number of variables has

to be chosen manually for MRMR. We set it to 9 here, which is the number

chosen automatically by the varSelRF method. Table 5 shows which variables are

chosen by this method. In this selection only two newly constructed variables are

selected. Both of them have been selected by varSelRF, too. The Kullback-Leibler

divergence with aligned skew-normal distribution seems to be quite important in

the classification. An investigation of the importance is reported later on.
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Table 5: Variables selected by the two feature selection methods MRMR and
VarSelRF.

MRMR Leakage VarSelRF Alpha

NumberIslands Concentration2

Leakage2 varquot

varquot alignnormhell

alignskewkullbeob alignskewhell

Width alignskewkullobs

Delta Leakage2

Alpha Size

Concentration Width

4.8.5 Quality of the classification and the estimation

In this Chapter we assess the quality of the classification with and without the

newly constructed variables. Additionally, we look at classifications using only the

variables chosen by the two variable selection methods, as seen in Table 5.

We draw 500 subsamples from the FACT data described above to use as test data.

The number of background events in each of these subsamples is drawn from a

Poisson distribution with mean 1000. We add signal events according to the ratio

1:100 and use the events left in the original dataset as training data. For each of

the 1000 test samples of each ratio we train a random forest (Breiman, 2001) and

classify the test data with the trained forest. We choose the ratio 1:100 because

it is closest to reality we can get with our data. If we reduce the ratio more we

do not have enough signal events in the test data. A random forest requires a

threshold value as tuning parameter. A threshold value of α means here that

α · 100% of the trees in the random forest have to vote for a background event to

classify it as such. This threshold is the same we optimized in the previous chapter.

For now we do not use this optimization here, but evaluate only the influence of

the new variables on the classification using several different thresholds. We vary
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the threshold between 0.01 and 0.5. A combination of the previously introduced

threshold optimization and the new variables is done in the next chapter.

One would usually use ROC curves (Fawcett, 2006) to compare the different clas-

sifications, but because of the high signal to background ratio, the ROC curve is

not very meaningful, so that we look at the signal error (1− true positive rate)

and background error (false positive rate) separately.

Figure 21 reports the errors of the classification, depending on the cutoff in the test

data sample. We see an overall very small classification error in the background,

which is necessary at this signal to background ratio. The new features do not

significantly improve the already very small background error. The two variable

selection methods also do not lead to lower background errors. The signal error on

the other hand is improved a lot by the new features and especially by the variable

selection methods. We have an overall gain in the misclassification rate of about

3% for the new variables and about 10% for the variable selection methods.

Although the background error is not improved for the variable selection methods

the signal error is improved very much. Because it can be expected that in real

data there is a signal to background ratio of about 1:1000 (Weekes, 2003), a low

signal error is desirable, while maintaining a very low background error, so that

the new variables can be seen as an overall improvement.

4.8.6 Importance

We also have a look at the individual features to see, how important they are in the

classification. A random forest has a built in importance measure for the features

used: The mean Gini decrease (Breiman, 2001). This importance is provided in
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Figure 21: Error rates depending on the signal background ratio. The signal error
is the ratio of falsely classified signal events to all signal events. Analogously the
background error is the ratio of falsely classified background events to all events.

Table 6. Among the new features, varquot has overall a very high importance

and alignskewkullobs has also a higher importance than most other variables,

while most other new features have smaller importance.

Like in the variable selection methods we observe again the high importance of

alignskewkullobs in comparison to other variables, especially the other Kullback

Leibler Divergence, alignskewkulltheor, which is the same distance, but with

the role of the fitted and observed distributions being switched. A possible expla-

nation is that, as we see in Subsection 4.6.1, the Kullback Leibler divergence obs.

has high contributions where the observed distribution has high values, whereas

the Kullback Leibler divergence theor. has high contributions where the fitted

distribution has high values. That means that KL divergence obs. detects mainly

situations where the fitted distribution has smaller values than the observed dis-

tribution. In turn, the KL divergence theor. tends to have high values where the

fitted distribution has larger values than the observed one. As background events
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Table 6: The importance of each variable when using all variables in a random
forest.

Variable Importance Variable Importance
Hillas-Parameters: New Features:
Size 123.57 alignnormhell 129.02
Width 185.93 normhell 63.95
Length 126.63 skewhell 59.06
Area 103.01 normkullobs 69.23
Delta 56.56 normkulltheor 59.71
Alpha 440.92 normchi 100.48
Concentration1Pixel 137.56 alignnormchi 71.50
Concentration2Pixel 158.30 skewchi 75.71
NumberIslands 3.28 skewkullobs 63.92
NumberShowerPixel 48.88 skewkulltheor 60.93
LeakageBorder 98.12 alignnormkullobs 93.87
LeakageSecondBorder 266.03 alignnormkulltheor 63.88

alignskewchisq 60.53
alignskewhell 121.04
alignskewkullobs 161.30
alignskewkulltheor 76.19
varquot 725.25

usually scatter more on the camera plane and tend to take extreme values more

often than signal events, through the Kullback Leibler divergence obs. one is more

likely to detect those events, because it puts more weight on such outliers.

varquot and alignskewkullobs, the two most important among the new vari-

ables, both use the information about alignment and the shape of signal events,

which is why they might have such high importances in the classification. This

shows that it is important to use all information available.
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5 Combination of the two methods

In this last Chapter we combine the threshold optimization we did on MAGIC

data with the variables constructed using FACT data, by using Hillas parameters

and new variables together on a FACT data sample and optimizing the threshold

of the random forest as outlined in Chapter 3.

Unlike MAGIC data, FACT data does not provide us with an estimate of the energy

of each event, so that energy-bin-wise analysis cannot be done here. Instead, we

use the threshold optimization on the whole data set.

From the FACT data we draw 500 times training, test and Off data. We draw

the samples in the same way as in Chapter 4.8.5. The number of hadrons in

the test and Off data is drawn from a Poisson distribution with mean 1000. A

number of gammas is added according to the used signal to background ratio of

1:50 or 1:100. Each time we train a random forest on the training data and try to

estimate the number of signal events in the training data. Instead of looking at

varying thresholds like in Chapter 4.8.5, we here use different ways of setting the

threshold and compare the quality of the estimation of signal events.

We compare the following settings:

� Allvars thropt : All variables including the new variables constructed in Chap-

ter 4.1 used with a random forest of which the threshold is optimized as

presented in Chapter 3. This combines both methods introduced in this

work.

� Varsel thropt : Only the variables selected by the varSelRF selection method

combined with the new threshold optimization.
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� Hillas thropt : Only Hillas variables combined with the new threshold opti-

mization.

� Allvars rec: Hillas variables and the new distance based variables used in a

random forest where the threshold is chosen by setting a value for the recall

(here 0.1, as this seems to be the best value as seen in Figure 12), with which

we already compared the threshold optimization in Chapter 3.4.4.

� Varsel thropt : The variables chosen by the varSelRF selection method com-

bined with the recall threshold selection currently in use.

� Hillas rec: Only Hillas parameters combined with the recall threshold selec-

tion currently in use. This is what is currently done in the MAGIC experi-

ment.

The results can be seen in Figure 22 where boxplots of the 500 estimations of the

number of signal events using the different approaches are plotted. It can be seen

that for both ratios the new variables combined with the threshold optimization

presented in this work (Allvars thropt) lead to a smaller variance when estimating

the number of signal events than when using the two methods currently in use

(Hillas rec). The current methods also seem to slightly underestimate the number

of signal events. It can also be seen that the new method leads to a more symmetric

estimation.

The variable selection, however, seems not to have a positive influence on the

estimation of signal events, when combined with the new threshold optimization

(Varsel thropt). The boxplot is about as wide as for all variables in both signal

to background ratios. It is a bit surprising that the estimation using the variable

selection seems to be slightly worse than with all variables, as in Chapter 4.8 it
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could be seen that the variable selection improved the TPR of the classification

significantly.

The variable selection combined with the currently used recall method (Varsel rec)

gives surprising results, especially for a ratio of 1:100. The variance is very small

in this ratio, but there seems to be an undesirably large bias. The same effect, only

at a smaller scale, can be seen in the ratio of 1:50. The Hillas and new variables

combined with the recall method (Allvars rec) seem to give the largest variance in

the estimation.

Overall, using both, the Hillas variables and the newly constructed ones, together

with the threshold optimization introduced in this work, seems to give the most

desirable results, as their estimation of the number of signal events is unbiased

and has smaller variance than most other methods.

The average threshold chosen by the methods is 0.0099 for the new method Al-

lvars thropt and 0.0002 for the currently used reference method Hillas rec. The

latter thus chooses smaller thresholds of about a factor of five. The standard de-

viation of the chosen thresholds is 0.0466 for the new methods and 0.0008 for the

currently used methods, so the new method chooses much more varying thresh-

olds. This indicates that the new method adapts more to the data at hand, while

the reference chooses similar thresholds in all situations.

It would be desirable to do the threshold optimization binwise like we did in Chap-

ter 3. That way the estimation could probably be improved further, as usually

different thresholds are chosen for different energy bins by our threshold opti-

mization. Furthermore, the logistic regression approaches cannot be used without

information about the energy of a particle. However, unlike in the MAGIC exper-

iment, in the FACT experiment the energy of the particles is not estimated before
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Figure 22: Boxplots of 500 estimations of signal events in some test data with
two different signal to background ratios. Different approaches for the classification
have been used. The estimation method itself is the same for all classifications.
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the gamma hadron separation, so that in this experiment (at this time) the energy

cannot be used. The results in Chapter 3 show that this information is very useful

in the threshold optimization and should be made available in this experiment.

But as seen above even without the energy binning the new methods estimate the

number of signal events with a smaller error.
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6 Conclusion

In this work we have introduced a method which chooses an optimal discrimi-

nation threshold in highly imbalanced data with unknown misclassification costs.

To choose the threshold the method minimizes the MSE of an estimator of the

number of positives in the data. Estimating this number well is important in the

analysis chain of the MAGIC telescopes, used here to investigate the performance

of the method. Minimizing the MSE is a general principle where the estimation

of the number of positives is only one possible application. The method can be

used whenever one is interested in estimations which are based on the outcome of

a classification.

The MSEmin method can be used to optimize a threshold in the whole data or in

subsets such as energy bins. In our application the best performance was reached

by combining the principle of minimizing the MSE with a Logistic Regression, that

is, a method where the threshold is not fixed, but depends on a covariate. Logistic

regression is of course not the only method with which the MSEmin method can be

combined. Other methods, which provide a fixed or variable threshold are equally

possible.

We have applied some assumptions for developing the method introduced here.

One is the assumption that the Nij follow binomial distributions. Implicitly this

means that all events are classified correctly or not with a constant probability,

which is the same within positives and within negatives. In the MAGIC experi-

ment, the probability of classifying an event correctly depends for example strongly

on the energy of the particle which induced the event (e.g. Voigt, 2010). Neverthe-

less, the MSE based on this assumption fits the empirical MSE (as an estimator for

the real MSE) quite well over the whole range of possible discrimination thresholds

and for different class imbalances so that this assumption seems to provide good
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approximations. Another assumption we made implicitly is that there is no data

set shift (Quionero-Candela et al, 2009), that is that there are no differences in

the distributions between training data and actual data. As it is impossible to

receive an actual dataset with 100% correct labels, it is likely that the probability

distributions in our simulated data do not exactly match actual data, meaning it

is likely that there is at least a covariate shift. However, this problem is inherent in

any method in our application and thus a general examination of this problem is

necessary, taking also any other steps of the MAGIC analysis chain into account.

This is, however, beyond the scope of this work.

When looking at the training and Off data one may ask why the negatives in these

data sets are treated separately. As the false positive rate (FPR) can also be in-

ferred from Off data as well, the negatives in the training data seem to be obsolete.

However, it is necessary to keep FPR and the number of falsely classified events

in the Off data set, NOff
01 , independent from each other. Otherwise an estimation

bias is introduced.

Keeping that in mind, the MSEmin method introduced here provides an estima-

tion method for the number of positives in a data set with high class imbalance,

which outperforms other methods currently in use. Further improvement can be

achieved by combining the method with a Logistic Regression approach.

We have also discussed the usage of variables in a classification to separate the

gamma-ray signal from a hadronic background. We have introduced Hillas parame-

ters and reasoned why these parameters need improvement. We have established a

connection between Hillas variables and bivariate Gaussian distributions. We have

seen that Hillas variables alone cannot include all information available about sig-

nal events and have extended the idea of fitting an ellipse to fitting a bivariate

distribution. Although most of the information on a Gaussian fit is given by the

Hillas variables (except for a constant factor c), the Gaussian fit allows construc-
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tion of some additional variables. The new variables are based on fitting a normal

or skew-normal distribution to a shower and using distance measures for densities

to evaluate the distance of an event to the fitted distribution. We have seen that

the classification is improved by the new features. Especially a fitted skew-normal

distribution with a fixed alignment combined with the Kullback-Leibler distance

seems to be important in the classification along with an additional variable based

on the quotient of variances. We have also seen that feature selection methods do

not only decrease the number of variables, but also that the reduced number gives

better results in the classification in terms of misclassification.

In a third step we combined the new variables with the threshold optimization. We

have seen that the two methods combined lead to significant improvements of the

estimation of the number of signal events, which is important for the reconstruction

of energy spectra, one of the main goals of the analysis of this kind of data. It can

be concluded that both new methods introduced here can improve the analysis

chains currently in use by the MAGIC and FACT experiments.
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