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Kapitel 1

Einleitung

1.1 Einfuhrung in die Thematik und Motivation

Die Idee, Anlageportfolios durch quantitative Methodensreuern, basiert maf3geblich
auf der grundlegenden Arbeit zur Portfoliotheorie von Mavtarkowitz aus dem Jahr
1952. Sein BeitragPortfolio Selectioﬂ beschreibt formal die Vorteilhaftigkeit einer di-
versifizierten Investition, welche durch die Aufteilung denlagesumme eines Portfolios
auf verschiedene Anlageobjekte erreicht wird. Aus diedaeoretischen Rahmen leitet
Markowitz ein Modell ab, mit dessen Hilfe ein Investor didgen Wertpapiere selektie-
ren kann, die unter Berticksichtigung von Diversifikatwifskten auf Portfolio-Ebene zu
einem optimalen Verhaltnis zwischen Rendite und Risikarén. Dieses Entscheidungs-
modell zur Bildung eines sogenannten effizienten Portédtiasiert jedoch auf teils sehr
restriktiven Annahmen. Unter anderem wird vorausgesdeds der Investor Kenntnis
Uber zu erwartende Renditen und deren (Ko-)Varianzenateb der Realitat unterlie-
gen jedoch Erwartungswerte und (Ko-)Varianzen von Weitgagnditen im Zeitablauf
starken Schwankungen. Daher ist es fur einen Anleger muwescmoglich, auf Basis
der beobachtbaren Daten verlassliche Prognosen fie @asameter zu erstellen. Dies
ist problematisch, weil in dem Entscheidungsmodell dieroplke Gewichtung der ein-
zelnen Anlagen in einem effizienten Portfolio von den gasdieh Parametern abhangt.
Aus den Ergebnissen mehrerer Studien lasst sich schlieféass die optimalen Portfo-
liogewichte besonders sensitiv auf Veranderungen dearéeten Rendite reagieren und
sich somit Schatzfehler bezuglich der Renditeprognokeldich auf die Effizienz des
Portfolios auswirken (vgl. u. a. Best and Grauer, 1991, Chapd Ziemba, 1993 sowie

Gohout and Specht, 2007). Das globale Minimum-Varianz i@igtiungsmodell ist ein

lvgl. IMarkowitz [1952].
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sehr intuitiver Ansatz, welcher weniger anfallig furdeh geschatzte Parameter ist als
die klassiche Erwartungswert-Varianz OptimierHrigljt Hilfe dieser Methode kdnnen
Portfoliogewichte ermittelt werden, die zu einer minimmaRortfolio-Varianz, also einem
geringstmoglichen Risiko fuhren. Die Optimierung basaisschlie3lich auf Varianzen
und Kovarianzen der Renditen. Erwartete Renditen stek@nek relevanten Parameter
dar und mussen daher auch nicht geschatzt werden. Die Wdwng dieses Optimie-
rungsmodells auf Aktienportfolios hat in mehreren Studienim Vergleich mit unter-
schiedlichen Benchmarks zu verbesserten Ergebnissehrg€¥gl.\Haugen and Baker,
1991; Jagannathan and Ma, 2003; Clarke et al., 2006 sowrkedd al., 2013). Gleich-
wohl hangt die Leistungsfahigkeit des Modells auch hign einer moglichst verlassli-
chen Schatzung der Varianzen von Renditen einzelner Afggpe und deren Kovarian-
zen untereinander maf3geblich ab.

Neben der Optimierung im Allgemeinen spielt die Risikosteung im Speziellen eine
wichtige Rolle im Portfoliomanagement. In den vergangedamen hat sich der Value-
at-Risk (VaR) in diesem Kontext als ein zentrales RisikonraRiteratur und Praxis
sowie insbesondere in der Bankenregulierung etabliegs®Kennzahl gibt den Ver-
lust einer Risikoposition an, der Uber eine bestimmte édi@tier mit einer festgeleg-
ten Wahrscheinlichkeit nicht Uiberschritten wird undskasich einfach aus dem Quan-
til der Verlustverteilung ermittelt. Dem Vorteil einer éachen Anwendung und intuiti-
ven Verstandlichkeit dieses RisikomalR3es stehen jedoskmtiiche Nachteile gegeniiber.
Zum einen handelt es sich bei dem VaR nicht um ein kohardigkomal3, da die Ei-
genschaft der Subadditivtat grundsatzlich nicht gegébg Zum anderen liefert er de-
finitionsgemal keine Informationen dartiber, in welchéheél ein Verlust zu erwarten
ist, wenn dieser den VaR tberschreitet. Diese SchwachksvaR haben dazu gefiuhrt,
dass der Basler Ausschuss fur Bankenaufsicht in eineali&firveroffentlichen Konsul-
tationspapier zu den Eigenkapitalanforderungen firtlo&n des Handelsbuches dem

Expected Shortfall (ES) als neues Risikomal3 eine groReuBaag zukommen lasst (vgl.

2In der Literatur wurden weitere Ansatze fur robuste Mtglentwickelt, beispielsweise das Black-
Litterman-Verfahren (Black and Littermen, 1992).

3Der Begriff Subaddivitat beschreibt die Eigenschaftsciess Risiko eines Portfolios kleiner oder gleich
der Summe der Einzelrisiken zu sein hat (vgl. Artzner el1#99).
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Basel Committee on Banking Supervision, 2013). Der ES i8h@et durch den erwar-
teten Verlust fur die Falle, in denen er den VaR erreichgrdaberschreitet. Neben der
Erfullung der Anforderungen an ein koharentes Risikonsafliel3t die Berechnung des
ES auch den extremen linken Rand der Verlustverteilung Esnspiegeln sich im ES
somit auch sehr hohe Verluste wider, die mit einer auRemshgen Wahscheinlichkeit
eintreten konnen. Sowohl fur die Ermittlung des VaR, aishadie des ES kdnnen unter-
schiedliche Ansatze verwendet werden. Die klassischenpetrische Varianz-Kovarianz
Methode basiert auf der Idee, dass Renditen, und somit aedhste, Uber Varianzen
und Kovarianzen einer Normalverteilung dargestellt wer@» konnen VaR und ES sehr
einfach Uber Quantils- und Dichtefunktionen der Normekitung ermittelt werden. In
der Literatur wurden zahlreiche weitere parametrische éllecentwickelt, haufig mit
dem Ziel, Varianzen der Renditen und deren Abhangigkéitemem Portfolio im Zeita-
blauf dynamisch zu modellieren. Als populares Beispietidiier sogenannte GARCH-
Modelle zu nennen, die auf der Arbeit von Bollerslev [1986]5i|ererH Demgegenuber
steht das in der Praxis sehr gebrauchliche Modell der Hsstoen SimulatioE.Bei die-
sem nicht-parametrischen Modell werden historische Rendiner zu bestimmenden
Periode der GroR3e nach sortiert. Der VaR lasst sich darmfadhi aus dem gewiinschten
Quantil dieser Verteilung ablesen. Als dritte Gattung ueh&n semi-parametrische Mo-
delle die wesentlichen Vorziuige der parametrischen Meddinamische Modellierung)
und der nicht-parametrischen Modelle (Verzicht auf Véutegsannahmen) zu verbinden.
Die von/ Barone-Adesi et al. [1999] entwickelte Gefiltertestdrische Simulation ist hier
als gebrauchliches VaR-Modell zu nennen.

Sowohl die Modelle zur Portfoliooptimierung als auch VaRdélle werden un-
abhangig von ihrem konkreten Aufbau in der Regel auf Bagrshistorischen Renditen
parametrisiert. Es stellt sich die Frage, wie weit die Dhigtorie in die Vergangenheit
zurickreichen sollte, damit das jeweilige Modell vesléah spezifiziert werden kann.

Dabei ist zu beachten, dass statistische Lage-, StreuungsZusammenhangsmalie von

4Hansen and Lunde [2005] liefern einen umfassentiéerblick Uiber den Einsatz von GARCH-
Modellen zur VaR Prognose.

SPérignon and Smith [2010] zeigen in einer Studie, dass \arglysierten internationalen Banken
73% Historische Simulation als VaR-Modell einsetzen.
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Wertpapier-Renditen sich im Zeitablauf verandern. Inldearatur finden sich vielfaltige
Studien, die Finanzmarkte insbesondere auf StrukteHh®in Volatilitaten und Korrela-
tionen untersuchJ%Werden solche Briiche ignoriert, kann dies zu fehlerhadizgjzier-
ten Modellen fuhren (vgl. unter anderem Hillebrand, 20@ig Bericksichtigung von
Strukturbriichen bei der Auswahl der Datenhistorie isb@debenso mit Herausforde-
rungen verbunden. So muss sichergestellt sein, dass diagender Strukturbruch mit
hinreichender Sicherheit erkannt wird. Hierzu wurden inldeeratur verschiedene Ver-
fahren und statistische Tests entwickelt, die in der Lagd,ssignifikanteAnderungen
insbesondere von Streuungs- und AbhangigkeitsmaBenezmifidiererH Zudem kann
zwar eine Verkirzung der Datenhistorie durch die Verdalnig ihres Startpunktes bis zu
dem Zeitpunkt eines Strukturbruchs zu einer weniger veieeDatengrundlage fuhren.
Dieser Vorteil wird allerdings dadurch konterkariert, slasifgrund der verringerten Da-
tenmenge die Gefahr von signifikanten Schatzfehlern zomim

Die Beurteilung, ob ein Modell zu prazisen VaR-Prognodéntf erfolgt grundsatz-
lich Gber die Analyse der Eigenschaften von VéBerschreitungeH.Christoffersen
[1998] entwickelte hierzu grundlegende Hypothesen, digenLiteratur standardmafiig
bei der Entwicklung von Backtests verwendet werden. Iivtist die Hypothese, dass
iiber eine Periode die tatsachlich gemessene Anzahl arD¥&Rschreitungen nicht si-
gnifikant von der statistisch erwarteten Anzahl abweicheh ®iese Eigenschaft wird als
Unconditional Coverage bezeichnet. Eine weitere Hypalezieht sich auf die Vertei-
lung der VaRWUberschreitungen auf der Zeitachse. GemaR der sogemdnd&pendence
Eigenschaft fuhren korrekte VaR-Prognosen zu im Zeitdbddatistisch unabhangigen
VaR-Uberschreitungen, da Abhangigkeiten zu deren gehadiéimeten fithren kdnnen.
Der dritten und abschlieBenden Hypothese folgend entspredie VaRUberschreitun-
gen der Conditional Coverage Eigenschaft, wenn sie simshaohl die Unconditional

Coverage als auch die Independence Eigenschaften erfulie evaluieren zu konnen, ob

®EinenUberblick liefert Andreou and Ghysels [2009].

Als Beispiele konnen hier der Test auf konstante VarianzWied et al. [2012a], auf konstante Kova-
rianz von Aue et al. [2009] oder auf konstante KorrelationVdied et al. [2012b] genannt werden.

8Alternativ konnen auch Verfahren eingesetzt werden, digzgallgemein die Prognosefahigkeit eines
Modells Uber den Abstand eines realisierten Wertes zurgrnustizierten Wert untersuchen. Hierzu sei
beispielsweise auf die Arbeit von Giacomini und White [2D@&wiesen.
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die aus Prognosemodellen resultierenden Sequenzen vetUbaRchreitungen den ge-
nannten Hypothesen entsprechen, wurden in der Literatachiedene statistische Tests
entwickelﬂvVerschiedene Studien haben jedoch gezeigt, dass einiggrdiests lediglich
eine geringe Gute besitzen oder ein fehlerhaftes asymphas Verhalten aufweisen.
Andere Tests wiederum sind sehr komplex und wenig intuitiv.

Daneben vernachlassigen die genannten drei Hypotheskdieimn diesem Kontext
entwickelten statistischen Tests die unerwiinschte Eigeft von VaRdberschreitun-
gen, dass deren Wahrscheinlichkeit sich im Zeitablaue&md#ann. So ist es moglich,

dass ein Modell VaR-Prognosen generiert, welche sich zyskam oder in einem zu ge-

ringen Ausmalfd an langere, sehr volatile Marktphasen aepasnd vice versa. Diese

Schwankungen kdnnen dazu fiihren, dass WRrschreitungen zeitlich gehauft auftre
ten, obwohl sie stochastisch unabhangig voneinander BiiedZeitpunkte, an denen ein
Verlust grol3er ist als der prognostizierte VaR, solltethminicht nur unabhangig, son-
dern auch identisch verteilt sein.

Die vorliegende kumulative Dissertation umfasst funf iohsabgeschlossene Bei-
trage zu neuen Ansatzen in der Portfoliooptimierung uadRisikosteuerung. Der ers-
te Beitrag der vorliegenden Arbeit (Kapitel 2) befasst sichndlegend mit den Ein-
satzmoglichkeiten von statistischen Tests auf eine laonstKovarianzmatrix sowie auf
konstante Varianzen und paarweise Korrelationen im RahdeerMinimum-Varianz-
Portfoliooptimierung. Es werden Problemfelder bei der Andung der Tests heraus-
gearbeitet und diskutiert. Zudem wird evaluiert, ob dersBta der Tests zu verbesserten
Risiko-Rendite-Verhaltnissen fuhrt. Der darauf folgerArtikel (Kapitel[3) baut auf die-
sen Erkenntnissen auf und erarbeitet Losungsansatziiefizuvor dargelegten Heraus-
forderungen beim Einsatz von Strukturbruchtests in detfélmoptimierung. In diesem
Rahmen wird eine automatisierte Anlagestrategie eratoaitd deren Leistungsfahigkeit
analysiert. Neben der klassischen Risiko-Rendite-Banttang werden hierbei zusatz-

lich Auswirkungen auf Transaktionkosten untersucht, diedinen Einsatz in der Pra-

%Die Arbeit von Berkowitz et al/[2011] liefert einddberblick Uiber verschiedene Ansatze fiir statisti-
sche Tests.
0vgl. Berkowitz et al. [2011] und Candelon et al. [2011].
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xis von hoher Bedeutung sind. Im Kapifdl 4 befasst sich didiegende Arbeit mit
der Diskussion der gewiinschten Eigenschaften von WaBrschreitungen. Dies filhrt
zu der Entwicklung neuer statistischer Tests, die neberUdabhangigkeit von VaR-
Uberschreitungen explizit auch deren identische Veneilmit einbeziehen. Diese auf
Monte-Carlo-Simulationen beruhenden Verfahren sind sstitiv, einfach zu imple-
mentieren und besitzen sehr haufig eine Uberlegene utestyy Vergleich zu den bis-
lang existierenden Ansatzen. In Kapitél 5 werden pardsuwtte, nicht-paarametrische
und semi-parametrische Modelle zur Schatzung von VaR-E8wPrognosen untersucht.
Der Fokus dieser Analyse liegt dabei auf der Anwendung sokeedlicher Strategien zur
Bestimmung der Lange einer fiur die Parametrisierungréeitichen Datenhistorie. Da-
bei kommen einfache Ansatze, wie beispielsweise roligeeDatenhistorien mit unter-
schiedlichen Langen, aber auch komplexere Methoden, tnigtBrbriiche und Strategie-
Kombinationen zum Einsatz. Der Beitrag des abschlieReKapitels 6 setzt sich eben-
falls mit unterschiedlichen Ansatzen zur Schatzung vaRMiund ES-Prognosen ausein-
ander. Der thematische Schwerpunkt liegt hier auf der nariaten Portfoliosicht, bei
der ein univariates GARCH-Modell mit statischen und dyrsaohen Korrelationsmodel-
len kombiniert wird. Es wird der Frage nachgegangen, obdielirrazision der Modelle
erhoht, wenn die Schatzung der Korrelationsmodelle angrelurch verschiedene Struk-
turbruchtests definierten Datenhistorie beruht. Als \@&al dient hierbei ein in Theorie
und Praxis sehr haufig verwendetes rollierendes Fensteeingr festen Lange. Diese
ersetzen regelmaliig die altesten Daten eines Schateferdurch aktuelle und beruick-
sichtigen somit implizit zeitliche Parameteranderungeéus diesem Grund stellen die
rollierenden Fenster eine herausfordernde VergleichHsodetdar.

Der folgende Abschnitt gibt einddberblick tiber Inhalte und Publikationsdetails der

einzelnen Artikel der vorliegenden kumulativen Disséotat
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1.2 Publikationsdetails

Neben dieser Einleitung besteht die vorliegende kumwdddigsertation aus funf in sich
abgeschlossenen Beitragen zu den Themen Portfoliomtimg und Risikosteuerung.
Im Folgenden werden die einzelnen Beitrage kurz inhaltkasammengefasst sowie

Details zu der Veroffentlichung erlautert.

Beitrag | (Kapitel 2):
On the Application of New Tests for Structural Changes on Gltal Minimum-

Variance Portfolios.

Autoren:

Dominik Wied, Daniel Ziggel und Tobias Berens

Zusammenfassung:

Die Effizienz eines Minimum-Varianz-Portfolios ist ablggm von einer prazisen
Schatzung der Kovarianz-Matrix, welche der Optimierungrznde liegt. Jedoch sind
Abhangigkeitsmal3e zwischen den Renditen verschiederetp®piere Uber langere
Zeitraume typischerweise nicht konstant. Dieser Beitnagersucht daher die Frage,
ob sich das Verhaltnis zwischen Risiko und Rendite einesmigrten Minimum-
Varianz-Portfolios verbessert, wenn bei dessen Konstmkpotenzielle Briche in
der Kovarianz-Matrix berticksichtigt werden. Die Ergeds@ zeigen, dass ein Test auf
Konstanz der gesamten Kovarianz-Matrix in Teilen zu vesbdgen Ergebnissen des
Portfolios fuhren kann. Dagegen sind paarweise Tests aobtknte Varianzen und
Korrelationen nicht ohne weitere Modifikationen auf die @perung eines Portfolios

anwendbar.

Publikationsdetails:

Veroffentlicht in: Statistical Papers, Vol. 54, Issue 813, pp. 955-975.
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Beitrag Il (Kapitel 3):

Automated Portfolio Optimization Based on a New Test for Stuctural Breaks.

Autoren:Tobias Berens, Dominik Wied und Daniel Ziggel

Zusammenfassung:

Dieser Beitrag prasentiert eine vollstandig automeattisi Optimierungsstrategie, welche
die klassische Portfoliotheorie nach Markowitz mit Teat$ @ne konstante Kovarianz
kombiniert. Mehrere Studien zeigen, dass die ausscltief@luf der Kovarianz-Matrix
basierende Minimum-Varianz-Portfoliooptimierung beitigkportfolios zu sehr guten
Ergebnissen im Vergleich zu verschiedenen anderen Aesdtihrt. Da die Struktur
einer Kovarianz-Matrix von Aktien-Renditen im Zeitablaméi Briichen neigt, wird
in diesem Beitrag die Kovarianz-Matrix unter Beriicksighhg der Ergebnisse von
Strukturbruchtests geschatzt. Dabei bestimmen die Bwudkte die Lange des der
Schatzung der Kovarianz-Matrix zugrundeliegenden Cfatesters. Daruber hinaus wird
untersucht, ob sich die identifizierten Bruchpunkte dapmen, die Zeitpunkte fur eine
Re-Optimierung festzulegen. Im Rahmen einer Out-Of-SarBpldie wird die Methodik
auf zwei unterschiedliche Datensatze angewendet undrdebgisse hinsichtlich Risiko-
Rendite-Verhaltnis sowie Auswirkung auf Transaktiorstkoa mit unterschiedlichen
Alternativmethoden verglichen. Die Studie zeigt, dass kier prasentierte Ansatz
im Durchschnitt zu besseren Resultaten fiuhrt als glemigigete Portfolios und ein-

fache Minimum-Varianz-Optimierungen ohne die Beriick8gung von Strukturbriichen.

Publikationsdetails:
Veroffentlicht in: Acta Universitatis Danubius. GEconamaj Vol. 10, Issue 2, 2014, pp.

241-262.
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Beitrag Il (Kapitel 4)t

A New Set of Improved Value-at-Risk Backtests.
Autoren:Daniel Ziggel, Tobias Berens, Gregor N.F. Weil3 und DominikedV

Zusammenfassundieser Beitrag prasentiert eine Gruppe neuer formalerkigats
fir Eigenschaften von VaRberschreitungen, welche signifikante Vorteile gegeniibe
bislang veroffentlichten Ansatzen aufweisen. Ein nélest auf Unconditional Coverage
kann sowohl fuir einseitiges als auch fur zweiseitigegéiesingesetzt werden, wodurch
die Testgute deutlich erhdht wird. Daneben wird die gesdte Eigenschaft von
unabhangigen und identischen VaRerschreitungen diskutiert und ein Test vorgestellt,
der explizit auf das Auftreten von zeitlich gehauften VARerschreitungen testet. Die
Anwendung dieser auf Monte-Carlo-Simulationen basiezand@iests in einer Simula-
tionsstudie liefert in vielen Fallen Uberlegene Ergsbaigemessen an vergleichbaren
Tests. Eine abschlieRende empirische Studie verdeutliehVorteile der Tests in der

Anwendung auf reale Daten.

Publikationsdetails:

Zur Veroffentlichung eingereicht in: Journal of BankingdaFinance; nach erster und
zweiter Begutachtung Aufforderung ziitberarbeitung des Manuskripts und Wieder-
einreichung (revise and resubmit). Ein Extrakt des Arskelrde in deutscher Sprache
in der Fachzeitschrift Risiko Manager verbffentli@tDer Artikel wurde im Rahmen
der SFB Finanzakademie sowie der 7th InternationalConéeren Computational and

Financial Econometrics (CFE 2013) in London prasentiert.

117iggel, D., Berens, T., Wied, D., Wei, G. (2013): ValueRisk im Risikomanagement: Der unevalu-
ierte Standard, Risiko Manager, 24/2013, 1 & 7-9.
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Beitrag IV (Kapitel 5):

Estimation Window Strategies for Value at Risk Forecasting

Autor: Tobias Berens

Zusammenfassungm Vergleich zur grof3en Anzahl unterschiedlicher Modelleg z
Schatzung von VaR- und ES-Prognosen existieren in derZwiasenschaftlichen Lite-
ratur verhaltnismaRig wenige Beitrage zu der FragecheelStrategie zur Bestimmung
der fur die Parametrisierung solcher Modelle erfordedit Datenfenster zu guten
Ergebnissen fuhrt. Im Rahmen dieses Beitrags werden sahtiedliche Datenfenster-
Strategien auf parametrische, semi-parametrische uid-parametrische VaR-Modelle
angewendet. Dabei werden sowohl einfache Modelle wie tB#sspeise ein rollierendes
Datenfenster wie auch komplexere Modelle, die auf Tests ldantifizierung von
Strukturbriichen in der Varianz von Wertpapier-Renditelgeavendet. Zudem wird
untersucht, wie sich die Kombination einzelner Strategiehdie Prognosefahigkeit der
Modelle auswirkt. Die Evaluierung der VaR-Prognosen gtf@uf Basis statistischer
Tests der Eigenschaften von VaRberschreitungen. Konkret wird getestet, ob diese
der Unconditional Coverage Eigenschaft entsprechen uwddaunabhangig als auch
identisch verteilt sind. Zusatzlich werden Tests auf ékte ES-Prognosen und auf
Conditional Predictive Ability durchgefuhrt. Der Beitrazeigt, dass die Auswahl der
Strategie zur Bestimmung des Datenfensters zu signifikdditéerschieden in den VaR-
und ES-Prognosen der VaR-Modelle fuhrt. Dabei ist gratdd&€h zu erkennen, dass die
Kombination einzelner Datenfenster-Strategien im Vaecgleu den Ubrigen Strategien

vorteilhaft ist.
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Beitrag V (Kapitel B):
Testing for Structural Breaks in Correlations: Does it Improve Value-at-Risk

Forecasting?

Autoren:Tobias Berens, Gregor N.F. Weil3 und Dominik Wied

Zusammenfassung:

Im Rahmen der Prognose von VaR und ES werden in diesem BeaiagConstant
Conditional Correlation (CCC) sowie das Dynamic Condiabi€orrelation (DCC)
Modell mit einem paarweisen Test auf konstante Korrel&mreinem Test auf eine
konstante Korrelationsmatrix sowie einem Test auf einestamte Kovarianzmatrix
kombiniert. Eine empirische Studie auf Basis multivaria@®rtfolios analysiert die
Prognosefahigkeit sowohl der modifizierten als auch defaehen Modelle ohne
Beriicksichtigung von Strukturbriichen. Dabei erfolgt Bewertung anhand statistischer
Tests der Unconditional Coverage und der Independencensgibaft der VaRJber-
schreitungen sowie der Vorhersagegenauigkeit der ESaBseg. Daneben beinhaltet
die Studie ein Vergleich der Ansatze auf Basis aufsichtdtieher Methoden und
der Conditional Predictive Ability. Die Ergebnisse der Brsiuichung zeigen, dass die
mit Strukutbruchtests modifizierten Modelle grunds&tzlin der Lage sind, bessere

Prognosen zu generieren.

Publikationsdetails:

Zur Veroffentlichung eingereicht in: Journal of Empitdi€anance.



Kapitel 2

On the application of new tests for
structural changes on global
minimum-variance portfolios

Veroffentlicht in:
Statistical Papers, Vol. 54, Issue 4, 2013, pp. 955-975afmumsen mit Dominik Wied und
Daniel Ziggel).

2.1 Introduction

The mean-variance approach proposed by Markowitz [1952 peaome the foundation
of large parts of modern finance theory. Its simplicity antlitive arrangement cause
its common use in both industry and science. In the beginhings usually supposed
that the parameters of interest, i.e. expected returnatildés and correlations can be
estimated accurately. Nowadays, this assumption is, at,lgaestionable. As shown in
various works, it is not an appropriate simplification fopegted returns in most prac-
tical situations|(Chopra and Ziemba, 1993, Kempf and Mem2@02, Merton, 1980).
Moreover, it is well known, in particular in empirical finagdhat variances and correlati-
ons among many time series cannot be assumed to remainmom&alonger periods of
time (Krishan et al., 2009). A good example is the recent fir@rerisis, in which capital
market volatilities and correlations raised quite dragaly. As a conseqguence, risk fi-
gures increased significantly as diversification effecteeveeerestimated (Bissantz et al.,
2011a| Bissantz et al., 2011b).

It is well known that the expected return is the most impdrigarameter within
the Markowitz model, cf. e.g. Gohout and Specht [2007]. Ca@md Ziemba [1993] de-

monstrate that, for mean tolerated risk levels, wrong reestimators have an eleven

12
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times larger impact than wrong risk estimators. Best andi€rgl991] investigate the
sensitivity of mean-variance-efficient portfolios to cgas in the means of individual as-
sets. The results state that portfolio weights are extrgm@hsitive to changes in asset
means and a surprisingly small increase in the mean of aesasget drives half the secu-
rities from the portfolio.

One possible solution to overcome the problem of portfokaghits, which seem over-
ly sensitive to estimation errors of returns, is the usagefglobal minimum-variance
portfolio at the left-most tip of the mean-variance effi¢ciéontier. This portfolio has
the unique property that portfolio weights are indepenaénle forecasted or expected
returns on the individual assets as risk is minimized witheou expected return input.
Besides the advantage that no returns have to be estimagegipbal minimum-variance
portfolio allows the investor a risk optimal strategy. Thif special interest as passive
(equity) investing has gained popularity (Clarke et/al.0€0 Moreover, the covariance
matrix can usually be estimated and forecasted much moablel resulting in an advan-
tage for both practical and theoretical problems (Golosstal., 2011).

In this context, several studies find that mean-variancemigpdtion does not appe-
ar to result in a meaningful diversification improvement rosen-optimized portfoli-
os, despite the added complexity. This finding is consistetht the extensive literature
documenting the puzzling under-performance of global mum-variance approaches
(Chow et al.; 2011). Nevertheless, using historical batkieHaugen and Baker [1991]
and Clarke et all [2006] demonstrate that minimum-varigth@egies improve upon their
cap-weighted counterparts by supplying better returnis veitiuced volatility, suggesting
a latent potential of this approach. In order to open up tbtemtial, the remaining mar-
ket parameters (i.e. correlations and volatilities) havied modelled time-dependent and
flexible.

One of such methods is the regime switching model. This matelvs the mar-
ket parameters to depend on the market mode which switchesag finite number
of states. In the simplest form, the market could be dividedballish” and “bearish”

with very different market parameters. Of course, it is uktd define more intermedia-
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te states between these extremes, cf. e.g. Garcia and|fE9&6].. Zhou and Yin [2003]
develop a continuous-time version mean-variance pootfgiection model with regime
switching and attempt to derive closed-form solutions fothb efficient portfolios and
efficient frontier. Although this approach is promisinge tiuestion arises how to define
the states properly. Moreover, market parameters chaegedntly and are complexly
interwoven. This kind of problem is addressed with contt@rts in e.gl. Golosnoy et al.
[2011]. The present paper makes use of several recentlyopeapfluctuation tests for
structural changes in the market parameters.

For example, Aue et al. [2009] and Wied et al. [2012b] propimssal completely
nonparametric tests for unconditional dependence mesastiney do not build upon prior
knowledge as to the timing of potential shifts. More prelgisg&ue et al. [2009] propose a
test to detect changes in the (multivariate) covarianeegire, while Wied et all [2012b]
present a method to test for changes in the correlationtateibetween two assets. They
are based on cumulated sums of second order empirical crosgents (in the style of
Ploberger et al., 1989) and reject the null of constant ¢gamae or correlation structure if
these cumulated sums fluctuate too much. A similar fluctna#st for univariate varian-
ces is introduced and applied to financial time series by \Wiead. [2012a].

In this paper, we investigate if a combination of these newtdlation tests and the
classical minimum-variance approach improves global mimh-variance portfolios. To
this end, we perform an empirical out-of-sample study andpare the performance of
the resulting portfolios. Moreover, we investigate theutisg portfolio shiftings as a
further quality measure.

The remainder of the paper is organized as follows. In Se@iwe present a sum-
mary of the required theory and introduce the investigagststfor structural breaks. A
description of the empirical analysis is given in SectiomBile the results can be found
in Section 4. Finally, we end with a discussion of the resulSection 5 and a conclusion

in Section 6.
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2.2 Methods

In this section, we briefly present the mean-variance agbrgaoposed by Markowitz
[1952] for constructing a portfolio with minimal varianc&o this end, we assume that
there ared risky assets with random returng!, ..., R¢, such thatk := (R!,..., R%).
Let 1. be the vector of expectations alidhe covariance matrix ak which is assumed to
be positively definite (such that there is no risk-free gs3éte vecton, and the matrix:
are both assumed to be constant over time.

A portfolio is a mixture of then assets with portfolio weighta = (ay,...,a4) €
R? such thata’l; = 1. In the mean-variance theory we want to solve the optinozati
problem

min a'Yas.t.a'y=pup,a'ly=1, (2.1)

acRd

wherepp is a constant chosen by the analyst.
In general, the solution of this problem depends on the wvailyge. However, it is also

possible to solve the problem globally with the weightingtese

1

min — 72_11
a e,

which yields the lowest possible variangg>~'1,)~!. In practice, some more assump-
tions ona are often imposed, e.g. the entriesaohave to be nonnegative (such that no
short sales are allowed) or have to be bounded (such that veerhaximal limits). In
these cases, the optimization problém]|(2.1) still has a-#defihed solution which can be
calculated or approximated with numerical optimization.

The global minimum-variance portfolio has the unique propthat portfolio weights
are independent of the expected returns, which are verguliffio estimate. Hence, this
portfolio relies solely on the covariance matrix which cawaily be estimated more ac-
curately.

To get a feasible solution of (2.1) in practice, it is necegs$a estimate” based on

realizations ofR. If we assume: to be constant over time, it is useful to use the largest
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guantity of data available for estimation. If we, howeveak®a the more realistic assump-
tion thatX is subject to structural changes, we have to take these ekantp account.
In this paper, we compare two nonparametric approacheg$ting for the presence of
structural breaks: The first one by Aue et al. [2009] testef@anges in the complete ma-
trix. Since they assume throughout their paper that theoveaftexpectations is equal
to 0, the whole test and the test statistic base on the secomdl-omlss moments. Com-
plementarily to this, the tests proposed|by Wied et al. [2Q0Ehd| Wied et al.|[2012a]
separately test for changes in correlations and variai&ase the covariance matrix

can be written as

Y (i,7) = v/Var(R?) - v/Var(R?) - Cor(R', R%), i,j € {1,...,d}, (2.2)

we can thus steer each entryXkeparately.

Basically, all three nonparametric tests work in a similaywGiven the null hypo-
thesis of constant covariance matrix, correlation or vexgeand!’ realizations ofR? these
fluctuation tests compare the successively estimated iama matrix (transformed into
a vector with the vec-operator), (pairwise) correlatioeftioient or (element-wise) va-
riance with the respective value calculated fromZalbbservations. The null hypothesis
is rejected whenever these differences become too largaiove To be more precisely,
the test statistic is a functional, for example the maximdanetional, of the series

-2
P() = (0 = @) 5, (65 — ),

whereg; is the quantity of interest calculated from the fifsibservationsj; is the quan-
tity of interest calculated from the fir§t observations ané]]q is an estimator (from all
T observations) for the asymptotic covariance matrig;ainder the null. Both expressi-
ons% andi;l serve for standardization. In particular, wifhless weight is laid on the
differences at the beginning, where the parameters caenetb estimated. The expres-
sioniq—1 captures serial dependence and fluctuations of the timessdifie procesB ()

converges against a Gaussian process and thus, in praeticempare the functionals of



2.2. METHODS 17

P(7) with the respective quantiles of this functional. In theretation case, we get

and in the variance case, we get

max [v/P(j)] —a sup |B(2)|.

1<5<T 0<z<1

In these cases3(z) is a one-dimensional Brownian bridge with quantiles 1.35&%4)
and 1.628 (99%).

In the case of a covariance matrix, we have

max |P(j)] =4 sup E
1<;<T 0<z<1

whered is the number of upper-diagonal elements in the covariaratexrandB;(-) are
independent Brownian bridges. We approximate the quardii¢his limit distribution by
simulating Brownian bridges on a fine grid. For this, the esentation of a Brownian
bridge as a limit of a random walk is used. Note that we do nettkis “second” approxi-
mation for growingd, which is discussed in Remark 2.1 in Aue et al. [2009], asdbiss
not seem to be appropriate here(cf. Aue et al., 2009, p. 4884kd on these simulations,
we obtain 53.583 (95%) and 56.961 (99%) as quantiles for 48tss

The tests are basically applicable to financial time serigis its specific characte-
ristics such as serial dependence and missing normalityekample, all tests can be
applied if the returns can be modeled by a GARCH process. Asoitant property is
the fact that the location of the possible change points meedbe specified a priori. In
general, these fluctuation tests are sufficiently powerddlAue et al.|[2009] prove con-
sistency of the covariance matrix test against fixed alteresmwhile Wied et al.[[2012b]
and Wied et al. [2012a] obtain local power results againgstathalternatives characteri-
zed by a continuous functian

Once the presence of a parameter change is detected, aes@iséimate of its lo-
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cation can be obtained by the statistic proposed in Galeaddaed [2014] (the origi-

nal idea goes back at least/to Vostrikova, 1981), i.e. by thiatmat which P(j) (or a

transformation ofP(;)) takes its maximum. For example, in the correlation case ete g

k= aggpggxm. Since we use these break point estimators in our study, we ha
<j<

ve decided to focus on the maximum-functional instead osm®ring for example the

Cramér-von Mises functional as e.g./do Aue et al. [2009)a¢ign (2.8).

2.3 Empirical investigation

2.3.1 Data

In order to investigate if a combination of the above merdgtbfluctuation tests and the
classical minimum-variance optimization yields reasd@absults, we perform an out-
of-sample study and compare the results with several aliemnmethods. We use two
different data sets. More precisely, we use daily log-returased on final quotes of 18
sector subindices based on the STOXX EUROPE 600 (totalretdices) and log-returns
based on final quotes of 18 stocks (treated as total returceis)d which were listed on the
DAX 30 for the period between 01.01.1973 and 30.06.201144@fata points). For the
subindices, data are available for the time span 01.01.139206.2011, which equates

to 5087 data points. All data sets are obtained fidmmson Reuters Datastream

2.3.2 Parameter Estimation

As already mentioned, for a fixed point in time, calculatidntiee global minimum-
variance portfolio depends only on the estimated covaeanatrix. Hence, we compare
the results of several estimation procedures. First, wehesempirical covariance matrix
given by the last 250/500/1000 data points. For sake of somyphwe denote combinations
of these empirical estimators and the minimum-varianceropation as plain Markowitz
optimizations. In addition to that, we use the new fluctuatests. Here, the estimation

procedure is as follows:
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1. Initialize: = 1, £ = 1000 andm = number of observed returns.
2. Perform the fluctuation test for the ddta;, ..., x; }.

3. If the test rejects the null, define= [, wherel maximizes the corresponding func-
tional of P(j) and go back to step 2. Otherwise use the data ..., z;} in or-
der to calculate the empirical estimator of the respectasameter, where =

min{i, k — 19}.

4. Setk = k+n, wheren is the number of days between two optimizationg. i m,

stop. Otherwise go back to step 2.

Note that the modificatiop = min{i, k — 19} ensures that at least 20 data points
are used for parameter estimation. This proceeding is é@Miith/Wied et al.[[2012a]. As
mentioned above, we use the fluctuation tests in two diffenexys. On the one hand,
we use the test of Aue etlal. [2009]. Hence, the procedurdgeethe covariance matrix
directly. On the other hand, we separately apply the tesisqaed by Wied et al. [2012b]
and Wied et al.[[2012a]. The resulting covariance matrixentgiven by[(Z2.]2).

We choosexr = 1% anda = 5% as significance levels for the fluctuation tests. The
choice ofa = 1% is due to the fact that in this case the number of possible fitgals
should be relatively small. Nevertheless, several apiica show thaty = 5% yields

convincing results in practice (Ziggel and Wied, 2012).

2.3.3 Optimization

In addition to parameter estimation, there are severakidgiscrews concerning the op-
timization which have an impact on the results. First, weeht@vdefine an interval for
re-optimizations. To this end, we define= 21, 63 and252, respectively. These choices
correspond to monthly, quarterly and yearly re-optim@atiThe same intervals will also
be used in order to perform a re-balancing of the equally atejportfolio which serves
as a benchmark. These frequencies allow us to neglect théepnaf sequential testing.

Nevertheless, it would be worthwhile to implement a theoa¢tanalysis for smaller fre-
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guencies about this issue using ideas of Chulet al. [1996\érd and Galeano [2013],
but this lies beyond the scope of the present paper.

Aside from the interval for re-optimizations, we analyze tmpact of some additional
constraints to the portfolio weights. In a first run, we definé < 1, Vi which particularly
allows for short selling. In the next step, we exclude sheltirgy by requiringd < a; <

1,Vi.

2.3.4 Miscellaneous

We use several quality criteria in order to judge the peroroe. Of course, we investigate
the resulting variance. Nevertheless, we also compareeghdting returns and Sharpe-
ratios. To this end, we assume 1.1% as risk free return folatker. This corresponds to
the average return of German government bonds with less3tlyaars to maturity in the
year 2011. Besides, we measure the portfolio turnover ieraia draw conclusions for
a usage in practice. In line with DeMiguel et al. [2009], wdinke the average absolute

change in the weights as

TD-1 d

1
Turnover(R) = TD 1 Z Z |@ir1,; — a1,

i=1 j=1

whereT'D is the number of the trading days asithe number of assets. Besides, ; is
the portfolio weight of assetbefore a rebalancing or re-optimization at tisvel . In addi-
tion, we callT'urnover(A) the absolute amount of changes, that méamsnover(A) =
Turnover(R) - (TD —1).

To evaluate the impact of diverging turnovers, we compuijiesteld returns and Sharpe-
ratios by including transaction costs. Therefore, we agsanconstant relative bid-ask
spreads.. (bid-ask spread divided by bid-ask midpoint) which dimin@s the return?.
To quantify the spread, we have analyzed daily bid and askeguaf the 18 stocks lis-
ted on the DAX 30 and for all stocks listed on the STOXX EUROHRB €or the time
span 01.07.2010-30.06.2011. The average relative spfead analyzed stocks amounts
to 0.15% (DAX) and 0.22% (STOXX). As a simple approximation, we determing
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to be 0.2% in both cases. The loss of return due to transaction costalésilated by
Turnover(A) - %.

MATLAB R2009b is used for all computations. While the glolagitimization pro-
blem can be solved analytically, numerical optimizatiortmoes are necessarily under
additional conditions on the weighting vectisee Section 2). We perform these me-
thods with the “fmincon” function included in the “Optimizan Toolbox”. Since the
usage of just one starting point in the optimization can leea local minimum, we use
multiple starting points. More precisely, we use startiogfs which lie on the boundary
of the feasible region, the equally weighted portfolio andhe random starting points.
However, the optimizations have proceeded stable and &nengt points have had only

minor impact on the results.

2.4 Results

In this section we present the results of our out-of-sampldyswhich can be found in
Tabled 2.1 t¢ 218. We start with the dataset including 18osexttbindices based on the
STOXX EUROPE 600. As described in Section 3, the equally fateig portfolios serve
as a benchmark. It is noticeable that the interval for redie@ihgs has only a negligible
effect on these results. In all cases the p.a. volatilityauad 19.2%, while the average
p.a. return is slightly above 8%. Besides, the portfolimmawer is very low and has no
relevant impact on adjusted returns and Sharpe-ratios.
Table 2.1: Results for the Equally Weighted Portfolios -ited

Results for the equally weighted portfolios including 18tee subindices based on the STOXX EUROPE
600. Values in brackets include transaction costs.

Interval . ... Turnover Turnover
Re-Balancing Sharpe Ratio Return Volatility R) A)

21 0.3620 (0.3604) 8.08% (8.05%) 19.29% 0.03 5.66

63 0.3633 (0.3622) 8.07% (8.05%) 19.20% 0.05 3.24

252 0.3638 (0.3633) 8.04% (8.03%) 19.08% 0.10 1.62

The Markowitz optimizations based on the empirical covazeamatrix improve upon

the equally weighted portfolios. The average volatilitcemases by 3.99% to 5.78%,
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while the return simultaneously increases by 0.1% to 3.04&tertheless, the portfolio
turnover increases by about ten times on average leadingtuonrlosses of 0.03% to
0.59%. With respect to the setup options of the plain Markoaptimizations, the choice
of the days of data history as well as the re-optimizatioaridl has only little impact to
the volatility results. Nevertheless, in terms of retutasnover and the Sharpe-ratio, the
choice of 1,000 days as the data point history seems to berpla#é¢. Besides, the choice
of the weight limits has a marked effect on the results. Theaance for short selling
reduces the volatility by more than 1% on average.
Table 2.2: Results for the Plain Markowitz Optimizationgdices

Results for optimizations using the empirical covarianedrinr including 18 sector subindices based on the
STOXX EUROPE 600. Values in brackets include transactistsco

Interval . ... Turnover Turnover
# Data Re-Opt. Sharpe Ratio Return Volatility R) A)

Panel A:a;| < 1

250 21 05819 (0.5388) 9.02%  (8.43%) 13.61% 061 11853
250 63  0.6283 (0.6013) 9.46%  (9.10%)  13.30% 1.14 73.18
250 252  0.5338 (0.5196) 8.51% (8.32%)  13.89% 2.44 38.95
500 21 0.6800 (0.6549) 10.24%  (9.90%)  13.44% 0.35 68.29
500 63  0.7014 (0.6852) 10.52% (10.30%)  13.43% 0.69 43.85
500 252  0.6074 (0.5985) 9.66%  (9.53%)  14.09% 1.61 25.77
1000 21 07295 (0.7144) 11.01% (10.80%) 13.58% 0.22 42.12
1000 63 07292 (0.7197) 11.12% (10.99%) 13.74% 0.42 26.63
1000 252  0.6149 (0.6093) 9.98%  (9.89%)  14.43% 1.10 17.58

PanelB0 < a; <1

250 21 05128 (0.5014) 8.56% (8.40%)  14.55% 0.17 33.27
250 63  0.4935 (0.4860) 8.29%  (8.18%) 14.57% 0.34 21.99
250 252  0.4754 (0.4715) 8.18%  (8.12%)  14.88% 0.81 13.03
500 21 05211 (0.5141) 8.68% (8.58%)  14.55% 0.10 20.26
500 63 05158 (0.5113) 8.66% (8.59%)  14.65% 0.22 14.07
500 252 05142 (0.5110) 8.75%  (8.70%)  14.88% 0.59 9.36
1000 21 05584 (0.5542) 9.35%  (9.29%)  14.77% 0.07 13.08
1000 63  0.5582 (0.5553) 9.41%  (9.36%)  14.88% 0.15 9.47
1000 252 05618 (0.5597) 9.58%  (9.55%)  15.09% 0.44 7.04

By using the test of Aue et al. [2009] in order to estimate theaciance matrix, the
resulting level of volatilities is slightly higher than tee of the empirical covariance ma-

trix. Nevertheless, the returns increase by about 2% orageewhich leads to superior
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Sharpe-ratios. Besides, the turnover is much lower anddiscexd by about two thirds
compared to the plain Markowitz optimization approachnsetion costs reduce the re-
turns by only 0.07% on average. The application of diffeseghificance levels (5% and
1%) makes no notable difference in the results. Conside¢hi@golatility, the choice of 21
days for the re-optimization interval lowers the volayility about 1% compared to 252
days. Astonishingly, no clear statement can be made withrdsgto the limits of asset
weights because the results are quite inconclusive. Orageethe differences between
both options are negligible. In terms of the returns, theltef the different test and
optimization options are comparable to each other and cdada¢ed between 10.88%
and 11.11%.

Table 2.3: Results for the Markowitz Optimizations in Comdiion with the Test of

Aue et al. [2009] - Indices
Results for optimizations using the test.of Aue etlal. [20@@]uding 18 sector subindices based on the
STOXX EUROPE 600. Values in brackets include transactiagtsco

Interval . ... Turnover Turnover
Re-Opt. Sharpe Ratio Return Volatility R) A)

Panel Aija;| < 1

95% 21  0.6901 (0.6790) 10.77% (10.62%)  14.02% 0.16 30.25
95% 63  0.6750 (0.6681) 10.89% (10.79%)  14.51% 0.30 19.26
950 252  0.6063 (0.6023) 10.60% (10.54%)  15.67% 0.78 12.52
99% 21 07021 (0.6920) 10.97% (10.82%)  14.05% 0.15 29.75
99% 63  0.6936 (0.6865) 11.06% (10.96%)  14.37% 0.30 19.30
99% 252  0.6355 (0.6313) 11.01% (10.95%)  15.60% 0.77 12.33

PanelB0 < a; <1

95% 21  0.6658 (0.6628) 11.15% (11.10%)  15.09% 0.05 9.79
95% 63  0.6578 (0.6555) 11.08% (11.04%) 15.17% 0.11 7.32
950 252  0.6433 (0.6416) 10.99% (10.96%)  15.37% 0.36 5.69
99% 21  0.6747 (0.6714) 11.30% (11.25%) 15.12% 0.05 9.71
99% 63  0.6665 (0.6643) 11.20% (11.16%) 15.15% 0.11 7.24
99% 252  0.6393 (0.6372) 10.96% (10.93%)  15.43% 0.35 5.61

An application of the tests of Wied etlal. [2012b] and Wiedlef2012a] yields favo-
rable results compared to the benchmark of equally weightetfolios. The results are
however considerably worse with respect to each measuréarp@nce indicator com-

pared to the plain Markowitz optimization as well as to théimjzation including the
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test of_ Aue et al.[[2009]. High turnovers lead to a substidss of returns by 0.35%
on average. Nevertheless, it should be noted that the clobitee weight limits has a
considerable impact on the resulting volatility. Surprggdy, the more restrictive option of

0 < a; < 1,Vi shows lower volatilities.

Table 2.4: Results for the Markowitz Optimizations in Conddion with the Test of

Wied et al. [2012b] and Wied et al. [20123a] - Indices
Results for optimizations using the tests of Wied et al. Pl)land Wied et al![2012a] including 18 sector
subindices based on the STOXX EUROPE 600. Values in bratidtgle transaction costs.

Interval . ... Turnover Turnover
Re-Opt. Sharpe Ratio Return Volatility R) (A)

Panel A:a;| < 1

95% 21 0.5813 (0.5142) 11.34% (10.16%) 17.61% 1.23 239.12
95% 63 0.5958 (0.5682) 12.33% (11.81%) 18.85% 1.64 104.82
95% 252 0.3728 (0.3629) 8.73%  (8.53%) 20.48% 2.50 40.06
99% 21 0.3539 (0.3149) 7.18% (6.51%) 17.17% 0.70 135.93
99% 63 0.4615 (0.4452) 8.96%  (8.68%) 17.03% 0.88 56.22
99% 252 0.4075 (0.4029) 8.33%  (8.24%) 17.73% 1.10 17.63

PanelB0 < a; <1

95% 21 0.3882 (0.3545) 7.28%  (6.74%) 15.92% 0.56 108.29
95% 63 0.6144 (0.5953) 10.70% (10.40%) 15.62% 0.95 60.86
95% 252 0.3418 (0.3359) 6.72%  (6.62%) 16.44% 1.23 19.61
99% 21 0.4675 (0.4569) 8.82%  (8.64%) 16.51% 0.18 35.67
99% 63 0.4900 (0.4831) 9.23%  (9.11%) 16.59% 0.36 23.22
99% 252 0.5138 (0.5098) 9.12%  (9.06%) 15.62% 0.71 11.35

We continue with the second dataset including the returrk8adtocks, which we-
re listed on the DAX 30 for the time span 01.01.1973 - 30.06120"he benchmark of
equally weighted portfolios shows that the re-balancingrival has only very little effect
on the volatility as well as on the return. The volatility anmés to about 18.8%, while the
returns are around 11.4%. Transaction costs are negligible

Compared to the equally weighted portfolios, the resulthefplain Markowitz opti-
mizations show an improvement again. The average volatiitreases by 2.21%, while
the average return increases by 0.48%. Consequently, énagey Sharpe-ratio increases
by about 0.10 points. The portfolio turnover is about sixegrhigher, while transaction

costs decrease the returns by averaged 0.14%. Concereisgtilp options, a lower re-
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Table 2.5: Results for the Equally Weighted Portfolios -cB&
Results for the equally weighted portfolios including 18cHts listed on the DAX 30. Values in brackets
include transaction costs.

Interval . ... Turnover Turnover
Re-Balancing Sharpe Ratio Return Volatility R) A)
21 0.5520 (0.5496) 11.50% (11.45%) 18.84% 0.04 18.49
63 0.5475 (0.5464) 11.42% (11.37%) 18.84% 0.07 10.59
252 0.5366 (0.5362) 11.14% (11.13%) 18.70% 0.14 4.90

optimization interval is accompanied by lower volatilgiand returns, while the influence
to the Sharpe-ratio is inconclusive. Furthermore, theltestow only a little impact of
the choice of the data history and surprisingly the weightts.

Table 2.6: Results for the Plain Markowitz Optimizationdecks

Results for optimizations using the empirical covarianegrir including 18 stocks listed on the DAX 30.
Values in brackets include transaction costs.

Interval . ... rurnover Turnover
# Data Re-Opt. Sharpe Ratio Return Volatility R) A)

Panel Alja;| < 1

250 21 0.6489 (0.6205) 11.39% (10.94%) 15.85% 0.42 181.30
250 63 0.5888 (0.5722) 11.03% (10.75%) 16.87% 0.77 110.70
250 252 0.6413 (0.6334) 12.29% (12.15%) 17.45% 1.56 54.48
500 21 0.6178 (0.6016) 10.89% (10.63%) 15.84% 0.24 103.90
500 63 0.6229 (0.6124) 11.29% (11.13%) 16.37% 0.46 65.59
500 252 0.6578 (0.6527) 12.37% (12.28%) 17.13% 1.04 35.86
1000 21 0.6553 (0.6457) 11.58% (11.42%) 15.99% 0.14 62.10
1000 63 0.6519 (0.6460) 11.65% (11.55%) 16.18% 0.27 39.08
1000 252 0.6861 (0.6824) 12.50% (12.44%) 16.62% 0.67 23.52

PanelB0 < a; <1

250 21  0.6567 (0.6435) 11.83% (11.62%) 16.34% 0.20 85.58
250 63  0.6235 (0.6154) 11.56% (11.43%) 16.78% 0.37 53.32
250 252  0.6489 (0.6446) 12.36% (12.28%) 17.35% 0.86 30.11
500 21  0.6345 (0.6264) 11.47% (11.34%) 16.34% 0.13 53.53
500 63  0.6453 (0.6399) 11.75% (11.66%) 16.51% 0.24 34.26
500 252  0.6669 (0.6641) 12.51% (12.46%) 17.10% 0.61 21.33
1000 21 0.6611 (0.6559) 11.93% (11.84%)  16.38% 0.08 34.46
1000 63  0.6568 (0.6538) 11.91% (11.86%)  16.45% 0.15 21.81

1000 252 0.6783 (0.6765) 12.54% (12.51%) 16.86% 0.40 13.93
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The extension by the test of Aue et al. [2009] outperformspiaen Markowitz opti-
mization and results to small improvements of the averaiyene and Sharpe-ratios. But
in contrast to the application to the subindices datasetytiatility remains unchanged.
Additionally, the portfolio turnover and hence transactomsts are much lower. There are
just minor changes of the performance measures due to theecbbthe setup options

except the re-optimization interval, where the return@ases with larger gaps.

Table 2.7: Results for the Markowitz Optimizations in Comdiion with the Test of

Aue et al. [2009] - Stocks
Results for optimizations using the testlof Aue etal. [20D@Juding 18 stocks listed on the DAX 30.
Values in brackets include transaction costs.

Interval . ... Turnover Turnover
@ Re-Opt. Sharpe Ratio Return Volatility R) A)

Panel A:a;| < 1

95% 21 0.6493 (0.6439) 11.74% (11.65%) 16.38% 0.09 36.71
95% 63 0.6602 (0.6565) 11.93% (11.87%) 16.41% 0.16 22.81
95% 252 0.6868 (0.6851) 12.72% (12.69%) 16.91% 0.39 13.66
99% 21 0.6552 (0.6496) 11.85% (11.76%) 16.41% 0.08 35.88
99% 63 0.6632 (0.6600) 11.98% (11.92%) 16.40% 0.16 22.32
99% 252 0.6952 (0.6937) 12.80% (12.77%) 16.82% 0.37 12.90

PanelB0 < a; <1

95% 21  0.6588 (0.6553) 11.99% (11.93%) 16.53% 0.06 23.60
95% 63  0.6637 (0.6515) 12.10% (12.06%) 16.57% 0.10 14.45
95% 252  0.6820 (0.6807) 12.65% (12.63%)  16.93% 0.26 9.10
99% 21  0.6623 (0.6585) 12.05% (11.99%)  16.54% 0.05 23.14
99% 63  0.6636 (0.6614) 12.08% (12.04%) 16.54% 0.10 14.21
99% 252  0.6846 (0.6836) 12.64% (12.62%)  16.85% 0.25 8.67

Employing the tests of Wied et al. [2012b] end Wied et al. 4)1the results show a
slight decrease of the Sharpe-ratio compared to the equalhted benchmark portfolio
which is caused by a small improvement of the average retndnaa increase of the
volatility. However, this approach does not achieve thevouaing results of the remaining
optimization methods. This goes along with the highestfpotturnover and transaction
costs of all alternatives. In line with the correspondingimzation on the basis of the
subindices data, the allowance for short sales leads to &tasutal higher volatility on

average.
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Table 2.8: Results for the Markowitz Optimizations in Comdiion with the Test of

Wied et al. [2012b] and Wied et al. [2012a] - Stocks
Results for optimizations using the tests of Wied et al. P}land Wied et al. [20124a] including 18 stocks
listed on the DAX 30. Values in brackets include transactiosts.

Interval . ... Turnover Turnover
Re-Opt. Sharpe Ratio Return Volatility R) A)

Panel Aija;| < 1

95% 21  0.4929 (0.4420) 10.04%  (9.12%)  18.14% 0.86  367.74
95% 63  0.4418 (0.4186) 11.74% (11.18%)  24.09% 155  221.80
95% 252  0.5128 (0.5033) 14.21% (13.97%) 25.56% 2.76 96.66
99% 21  0.4593 (0.4358) 11.21% (10.69%)  22.01% 0.48  206.76
99% 63  0.4456 (0.4281) 10.56% (10.19%)  21.23% 1.03  147.80
99% 252  0.5524 (0.5464) 12.51% (12.38%)  20.65% 1.45 50.83

PanelB0 < a; <1

95% 21 05020 (0.4847) 10.52% (10.19%)  18.76% 030  130.15
95% 63  0.5463 (0.5324) 10.47% (10.24%) 17.16% 0.65 93.48
95% 252  0.6264 (0.6212) 12.28% (12.19%)  17.86% 1.07 37.59
99% 21  0.4115 (0.4046) 9.52%  (9.38%)  20.46% 0.13 56.86
99% 63  0.6377 (0.6314) 11.94% (11.83%) 17.00% 0.29 42.02
99% 252  0.6529 (0.6496) 12.50% (12.44%)  17.46% 0.67 23.38

2.5 Discussion

In line with previous works of Haugen and Baker [1991] andrk#aet al. [2006], our
empirical study supports the finding that plain Markowitziopzed portfolios deliver
superior results in terms of portfolio variance as well agfpbo returns compared to
equally weighted portfolios. On the basis of two differeatakets, we show that equally
weighted portfolios are clearly outperformed by this optiation strategy. Moreover, the
benefit of lower volatilities and higher returns is only maadly offset by increasing
transaction costs due to considerable higher portfolioduers.

The extension of the plain Markowitz optimization by thettekAue et al. [2009] leads
to inconclusive results. With respect to the two used d&tatee results show increased
returns and volatilities on average. However, it is rembl&#hat the portfolio turnover is

much lower compared to the classical optimization. Bakjictiis is reasoned by the fact
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that the test yields only a few rejections of the null hypsthef a constant covariance
matrix. For example, a portfolio optimization includingetlibAX 30 dataset under the
option setup of a 5% significance level and a re-optimizaitiberval of 21 days leads to
only four rejections within 10,043 data points.

The small number of rejections might be the result of a lackamuracy of the criti-
cal values in connection to the setup of our study. The alfitralues are approximated
by simulating Brownian bridges on a fine grid as describedanti®n 2. However, an
additional simulation study, whose results are availalenfthe authors upon request,
indicates that this approximation does not perform welhd sample size is small. We
simulated the actual critical values fér= 18 by generating standard normal distributed
values and calculating the respective test statistic. kammele, for a sample df, 000 data
points the0.95-quantile is24.20 while the asymptotic critical value i£3.58. Probably, a
suitable derivation of finite sample critical values is a #tiovial task because in practi-
ce the underlying distribution of the asset returns is warclespecially the assumption
of the standard normal distribution is doubtful. Neveréiss, we used this procedure to
show the effect of using critical values that are to someekegrore suitable for the finite
samples of our dataset. As a simple and rough approximatotonwcern a sample size of
[2951] = 2,544 for the STOXX EUROPE 600 subindices dataset aHg**| = 5,022
with respect to the DAX 30 dataset. The actual critical valiog the0.95-quantile (.99-
quantile) are estimated .77 (36.43) and41.32 (43.40). Applying the test with the
modified critical values leads to a higher number of rejeje.g. seven instead of four
considering the example above (DAX 30, 5% significance |&&days interval). Com-
pared to Tablé 213, the improved results of Tablé 2.9 shownelary that the adjustment
of our very simple approach is a step in the right directioomére sophisticated proce-
dure for calculating critical values may perform even hbette

Certainly, the dates at which the null is rejected are ofrgge Returning to the ex-
ample mentioned above (DAX 30, 5% significance level, 21 daieyval) these dates
are 26.01.1983, 25.07.1989, 05.11.1996, and 19.02.200hdcritical values based on

the asymptotic analysis. In contrast to that, the dates ahatme null is rejected are
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Table 2.9: Results for the Markowitz Optimizations in Comdiion with the Test of
Aue et al. [2009] - Modified Critical Values

Results for optimizations using the test of Aue etlal. [208%ombination with the modified critical values
including 18 sector subindices based on the STOXX EUROPE \é@lQes in brackets include transaction
costs.

Interval . ... Turnover Turnover
@ Re-Opt. Sharpe Ratio Return Volatility R) A)

Panel A:a;| < 1

95% 21 07886 (0.7744) 11.94% (11.75%) 13.75% 0.20 39.41
95% 63  0.8080 (0.7986) 12.34% (12.21%) 13.91% 0.42 26.63
95% 252  0.6501 (0.6440) 10.61% (10.52%)  14.63% 1.11 17.81
99% 21 07724 (0.7591) 11.63% (11.45%) 13.63% 0.19 36.62
99% 63 07655 (0.7570) 11.76% (11.64%)  13.93% 0.38 24.06
99% 252  0.6611 (0.6557) 11.05% (10.97%)  15.05% 1.03 16.51

PanelB0 < a; <1

95% 21  0.6103 (0.6065) 10.16% (10.10%)  14.84% 0.06 11.37
95% 63  0.6083 (0.6054) 10.19% (10.15%)  14.95% 0.14 8.65
95% 252  0.5799 (0.5776) 9.87%  (9.84%) 15.13% 0.44 6.96
99% 21  0.6035 (0.5996) 10.07% (10.01%)  14.86% 0.06 11.55
99% 63  0.6084 (0.6055) 10.21% (10.16%)  14.97% 0.14 8.75
99% 252  0.6146 (0.6126) 10.53% (10.50%)  15.34% 0.40 6.46

28.08.1975, 03.02.1981, 10.10.1986, 13.11.1990, 25308,115.02.1999 and 03.12.2001
for the modified critical values based on a sample size of5 ,Bst of these dates seem
to be reasonable. The Latin American debt crisis of the eE880s in combination with
the savings and loan crisis of the 1980s in the United Stxg@gi@ some rejection dates.
Besides, in each case one rejection date corresponds teethea@ reunification. Finally,
in both cases the last rejection date can be explained byutts¢ &f the dot-com bubble.
Nevertheless, in both cases no change point is detectemdine market turmoils of the
financial crisis at the end of the last decade or the currerdggan sovereign-debt crisis.
Hence, it is very likely that the accurate number of changeé covariance matrix is
somewhat higher.

As described in Sectidn 2.4, the results of the optimizaitiocombination with the
tests proposed by Wied et al. [2012b] and Wied etlal. [2012ajralatively poor com-
pared to the remaining optimization approaches. This cbalthe result of the special

character of these statistical tests. In contrast to thefd@eshanges in the entire cova-
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riance matrix, the test for changes of variances is appbegath of thel = 18 diffe-
rent time series, whereas the test for changes in corretai® applied to each of the
18(18 — 1)/2 = 153 upper-diagonal elements of the correlation matrix. Duéneotigh
number of statistical tests, it is very likely that after Bvee-optimization interval one or
more tests (wrongly) reject the null hypothesis. For examphbld 2.10 and 2.111 show

the number of rejections of the tests including the DAX 3@dat under the option setup

of a 1% significance level and a re-optimization interval bfdays.

Table 2.10: Number of rejections - Test of Wied et al. [20123a]

Number of rejections of the null hypothesis of constant tilitha for each asset for an optimization using
the test of Wied et al. [201Pa] including 18 stocks listed ba DAX 30 under the option setup of 1%

significance level and a test interval of 21 days.

d= 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of
Rejections

0 8 v 7 9 13 12 9 8 7 12 3 7 9 9 11 13 7

Table 2.11: Number of rejections - Test of Wied et al. [2012b]
Number of rejections of the null hypothesis of constant @ation for each bivariate combination of the
assets for an optimization using the test of Wied et al. [2QIr&cluding 18 stocks listed on the DAX 30

under the option setup of 1% significance level and a testiatef 21 days.

d= | 12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18
1 /05 6 6 8 6 6 6 2 5 6 6 8 5 7 10 11 7
2 0O 4 58 8 6 10 5 3 5 6 8 5 6 9 7 7
3 0 10 5 9 7 10 4 2 4 5 3 6 8 11 9 7
4 0o 6 12 7 8 9 5 7 6 7 4 5 7 7 5
5 0 11 10 6 2 2 4 5 7 5 7 15 9 10
6 o 7 7 6 6 5 9 10 5 6 10 7 11
7 0O 85 4 5 8 6 6 10 11 8 8
8 0O 4 3 4 6 6 3 8 13 7 10
9 O 2 4 6 6 3 4 6 6 4
10 o 3 5§ 7 1 3 5 4 4
11 o 4 3 4 5 8 7 8
12 0O 5 2 9 9 6 6
13 o 3 8 7 8 7
14 o 3 7 7 7
15 0 15 10 9
16 0O 13 9
17 0O 8
18 0
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In summary, this setup leads 161 rejections of the volatility test antl 001 rejecti-
ons of the correlation test withifi31 test intervals in total or 2.7 rejections at each test
interval on average. As a consequence, the data historgebaaiter each interval which
might lead to substantial fluctuations within the covaranwatrix and hence an increased
portfolio turnover. Apparently, these large shifts havgai&ve effects on the performance
of the model.

In order to remedy this drawback, it may be advantageousateeleut the test for
changes in the bivariate correlations. Bissantz el al. 1BD&how that the impact of fluc-
tuations and estimation errors is ten times larger for dlas than for correlations. Con-
sequently, the detection of change points of volatiliteeshviously much more important
than the correlation based test. By omitting that test, tiraler of tests for each interval
is reduced tal = 18. First studies show an improvement into the desired dwactdn
average, volatility is reduced ly29% (STOXX EUROPE 600) and b.68% (DAX 30).
But the benchmark volatility and Sharpe-ratio levels of ptean Markowitz optimizati-
ons are still not attained. More details are available froenaduthors upon request. Further
studies of the suggested solution may provide a deepersasaly

In addition to the investigated strategies, it might be pmesto pursue a further
strategy, i.e. to let the fluctuation tests themselves deter reasonable dates for a re-
optimization. To be more precisely, a re-optimization & gortfolio would only be per-
formed if a fluctuation test rejects the null hypothesis. ldeer, in this paper we refused
this further strategy for two different reasons. With regpe the test of Aue et al. [2009],
this strategy suffers from the seldom rejections of the nyiothesis. We would then re-
optimize very infrequently which is not useful in practié&egarding the tests proposed
by Wied et al. [2012b] and Wied etlal. [2012a], the opposiwbpgm arises, namely the
problem of multiple testing and undesired frequent reroations. Consequently, this
kind of application would require different theoreticaja@tments of the procedures.

Surprisingly, the allowance for short selling does not leatbwer volatilities in all
cases (e.g., see Table]2.6). Although it is not intuitive: itm@osing the constraint of non-

negative portfolio weights leads to an improved efficienlbis finding is in line with the
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empirical study of Jagannathan and Ma [2003]. These autrgrge that constraints for
portfolio weights increase specification error, but can adsluce sampling error. The gain
or loss in efficiency depends on the trade-off between batr grpes.

Since we employ portfolios consisting of very liquid Gernaard European blue chip
stocks, transaction costs are marginal due to the smalkshdspread of 0.2%. For ex-
ample, assumin@urnover(A) to be100 for the portfolio consisting of the dataset of 18
stocks listed on the DAX 30, the loss of annual log-returnsamts only td).25%. Howe-
ver, the impact of high turnovers may be significantly higivben datasets of less liquid
assets are used. It would be worthwhile for further resetovcdddress a more detailed
analysis of the trade-off between improved volatility aeturn of an optimized portfolio

on the one side and costs relating to increased portfolimttar on the other side.

2.6 Conclusion

The aim of this paper is to investigate whether a classicak®Maitz mean-variance port-
folio can be improved by the use of change point tests for nidgece measures. To the
best of our knowledge, we are the first to apply, on the one htedrecently proposed
test of Aue et al..[2009] for a constant covariance matrix, amhe other hand, the tests
of Wied et al. [2012b] and Wied et lal. [201.2a] for constania@aces and correlations to
a minimum-variance optimization. We find out that portfaliptimizations considering
change points of the covariance matrix yield considera¢elts and outperform plain
Markowitz optimizations in several cases. In conducting émpirical study, we gain
interesting insights in the behavior of these tests in coatimn with a portfolio optimi-
zation. This allows us to carve out the benefits as well as ssirakdenging drawbacks of
these new approaches. Moreover, we make some notes whicth Ingidnelpful to future

works.
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3.1 Introduction

The model by Markowiiz [1952] represents a milestone in tbgraent of modern techni-
gues concerning portfolio optimization. Neverthelesss, well known that there are some
serious challenges for the application of optimizatiomteques to portfolio management
practice. In particular, the error-prone estimation ofelkpected returns is crucial for re-
asonable results of the optimization (Best and Grauer,,108tpra and Ziemba, 1993).
The global minimum-variance portfolio approach circunteethis problem. It determi-
nes the portfolio weights independently from expectedrnstuT he optimization depends
solely on the covariance matrix which can be estimated muate meliable than expec-
ted returns|(Golosnoy et al., 2011). It leads to a minimumavece portfolio that lies on
the left-most tip of the efficient frontier. Considering é@guportfolios, numerous his-
torical backtests show that minimum-variance optimizagpoovides higher returns and
lower risk compared to capitalization-weighted portfelie@.g. Haugen and Baker, 1991,

Jagannathan and Ma, 2003, Clarke et al., 2006, Clarke 204I3).

33
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However, some crucial challenges remain by this approachrder to compose an
efficient minimum-variance portfolio a precise estimatadrihe covariance matrix is es-
sential. Surprisingly, in finance literature and practioe tovariance matrix is often esti-
mated on the basis of a constant historical (rolling) timedew of more or less arbitrary
length (e.g. Haugen and Baker [1991]: 24 month; Jagannathéma [2003]: 60 month
and 1260 days; Pojarliev and Polasek [2003]: 800 days; Elarkl. [2006]: 60 month
and 250 days; DeMiguel etlal. [2012]: 250 and 750 days; Beal ¢2013]: 120 month),
although several studies show that variances and cooesatif asset returns are not con-
stant over time (e.g. Longin and Solnik, 1995). To this ehds tommon approach may
suffer from serious sampling errors.

Besides parameter estimation, the question arises whebadaneing or a reop-
timization should be performed. In finance literature andpractice it is common
to choose a fixed reoptimization frequency (e.q. Baltuts@ockner [2007]: wee-
kly; Lenoir and Tuchschmid [2001] and Clarke et al. [2006¢anthly; Haugen and Baker
[1991]: quarterly; Chan et al. [1999] and Jagannathan and2@83]: annually; MSCI
Minimum Volatility World Index: semi-annually). Usuallprevious studies fail to motiva-
te the determination of the frequency in detail despite éloethat portfolio rebalancing is
crucial for portfolio performance. Behr and Miebs [2008psied that minimum-variance
portfolios are highly sensitive to revision frequenciealtBtis and Dockner [2007] found
out that under high frequency revision the turnover of thefplo increased undesirably
not necessarily reducing its realized volatility signifids.

By improving on the naive approach of periodic rebalancitigg financial lite-
rature provides numerous paper dealing with the issue dinf@p) portfolio revisi-
ons. These works proposed rebalancing strategies basedffererdt approaches li-
ke e.g. tolerance bands around the desired target allocétig. Masters, 2003 and
Donohue and Yip, 2003), dynamic programming (Sun et al. 6208nd quadratic heu-
ristics (Markowitz and van Dijk, 2003 and Kritzman et al. 02Q.

To the best of our knowledge, there are just a few paper usxpgcély chan-

1See Sun et al. [2006] and Kritzman et al. [2009] for a disarssi these rebalancing strategies.
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ges in the covariance matrix as a trigger to perform a reopation. Baltutis [2009],
Golosnoy and Schmid [2007] and Golosnoy et al. [2011] usdroboharts for monito-
ring changes in the the covariance matrix and global mininsanance portfolio weights.
In addition,) Baltutis![2009] proposed a concept where aratgdf the portfolio weights
is based on testing for statistically significant shiftshie tovariance matrix which have
already occurred in a realized sample.

In these contexts, we follow Baltutis [2009] by using a statal test for structu-
ral breaks in the covariance matrix, but apply the recentbppsed fluctuation test by
Aue et al. [2009] for a constant covariance matrix to dailgedgeturns. Additionally,
the break points detected by this test are used not only fion@atically inducing dates
for reoptimizations, but also for determining proper sasdor parameter estimation.
Wied et al. [2013Db] introduce basic concepts of combining mhinimum-variance ap-
proach with various fluctuation tests for volatility and dagence measures. Within the
optimization context, they investigated a combinationhaf fluctuation tests for constant
volatility and for constant correlations (Wied et al., 281 8Vied et al., 2012b) as well as
a fluctuation test for constancy of the entire covarianceriméhue et al., 2009). They
find out that the usage of the test for constancy of the entivartance matrix is the most
promising approach.

However, despite the demonstrated potential of this agbrtiaey point out several
serious drawbacks and challenges which have to be solvadrtimef investigations in
order to make this approach applicable for practitionarghis paper, we take up these
points and present useful methodological adjustmentsdardo develop algorithms and
techniques for applications. Furthermore, we discussripementation of this new ap-
proach as an automated investment system for strategitaksmtions. Our empirical
study shows that tests for structural breaks in the coveeiamatrix improve the results of

a global minimum-variance optimization on average.
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3.2 Portfolio Optimization

As the model by Markowitz [1952] is well known, we give only ary brief summary.

It assumes the existence @fssets with normally distributed returns. Optimal setecti
of the portfolio weightsv = (wq, - - - ,wy) is intended, where; is the fraction which is
invested into assét For most applications it is required that > 0, which avoids short
selling, and>_? , w; = 1, which ensures an investor to be fully invested. The crucial
parameter for a global minimum-variance optimization is tisk of the portfolio, which

is defined by the variance’,. Hence, the portfolio weights are determined indepengent
from expected returns and the optimization depends soteth®@ covariance matrix. The
resulting portfolio lies on the left-most tip of the efficteinontier. These considerations

result in the following optimization problem:

man 0%
d
st ) wi=1, (3.1)
i=1

whereo? = w¥w’ and¥. is the covariance matrix. Moreover, sometimes the addition
constraintv; > 0, Vi, is imposed.

As mentioned above, the global minimum-variance optinmratiepends solely on
the covariance matrix. In this context, however, the qoeséirises which time window
should be used in order to estimate the covariance matrithdrfollowing section, we

present a new approch to tackle this issue.

3.3 Tests for Breaks in the Covariance Structure

Aue et al. [2009] present a nonparametric fluctuation tesafoonstant-dimensional
covariance matrix of the random vectaXs, ..., Xy with X, = (X,1,...,Xj4). The
basic idea of the procedure is to compare the empirical @vee matrix calculated from
the first observations with the one from all observationstandject the null hypothesis if

this difference becomes too large over time. Deneté(-) the operator which stacks the
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columns on and below the diagonal ofla« d matrix into a vector andi’ the transpose

of a matrixA. Then, we consider the term

S = li h(X-X’)—ii h(X,X') (3.2)
k_\/Tk,veC iXG) = 7 2 vech(X;.X; .

which measures the fluctuations of the estimated covariaateces calculated by means
of the firstk observations and use the maximum of the resultg ferl, - - - ,T. Here, the
factor% serves for standardization; intuitively it corrects foe tlact that the covariance
matrices cannot be well estimated with a small sample sizeelmaximum is standar-
dized correctly, the resulting test statistic convergesragy a well know distribution and
the null of a constant covariance matrix is rejected, if & statistic is larger than the
respective critical value.

For sake of readability we will not describe the entire teatistic at this point and re-
fer to appendix C or Aue et al. [2009]. Nevertheless, thetlafistribution under the null
hypothesis is the distribution of

d(d+1)/2

sup Z B}(t), (3.3)

where(B,(t),t € [0,1]),l =1,...,d(d + 1)/2 are independent Brownian bridges.

The test basically works under mild conditions on the timeeseunder considerati-
on. One does not need to assume a particular distributidnasithe normal distribution
and the test allows for some serial dependence which makessible to consider e.g.
GARCH models. Moreover, the test is consistent against fatestnatives and has con-
siderable power in finite samples. Regarding moments ofahdam variables, note that
the correct application of the test needs constant expeatail he asymptotic result is de-
rived under the assumption of zero expectation; if we hadtzom non-zero expectation,
it would be necessary to subtract the arithmetic mean. Whiseassumption is sufficient-
ly fulfilled for daily return series, the derivation of theyasptotic null distribution also

needs the assumption of finite fourth moments. Theoreficklis assumption could be
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violated (Mandelbrot, 1962). However, in the following, We not further consider this

potential problem as this lies beyond our scope.

3.4 Empirical Study

The aim of this empirical study is to compare the out-of-sienperformance of a global
minimume-variance optimization combined with the test faoastant covariance matrix
(hereinafter referred to as covariance-test optimizatiowarious relevant asset allocati-
on strategies. First, we decide for a equally weighted adketation strategy as a natural
benchmariB For this, we obtain market values for each of the (sub)irslfoem Thom-
son Reuters Datastreaamd the portfolio weights are rebalanced each 21/63/2%firia
days, which corresponds approximately to monthly, quigrtend yearly rebalancings.
The benchmark of most interest is the classical global minmvariance portfolio where
the optimization is based on constant rolling time-windderscalculation of the empiri-
cal covariance matrix (hereinafter referred to as plaimnoigation).

As this study is focused on strategic asset allocation, \edioge series from indices
or subindices rather than from single stocks. The pros and ob active portfolio ma-
nagement are extensively discussed in numerous studgead/Nermers, 2000, Jacobsen,
2011). However, we agree with Sharpe [1991] who pointed bat the return on the
average actively managed dollar will equal the return oretlerage passively managed
dollar. Including costs for the active management it wildven less. This statement is un-
derpinned by Standard & Poor!s [2012] who showed that 65% &f.&. large cap equity
funds do not outperform the S&P 500 index over the last fives/ddoreover, indices
are much more robust against unsystematic market risks aveéments and can easily
be replicated by means of ETFs. Note, as we deal with indicasstrategic asset alloca-
tion environment we can avoid questions arising from Iamﬁable sets (compare for

example Michaud, 1989, Bai etlal., 2009, Arnold et al., 2(13ence, we apply each of

2\We also investigated cap-weighted portfolios. Nevertiglthe results of the equally wighted portfolios
were slightly better. The results for cap-weighted poitfobre available from the authors upon request.

3Furthermore, high-dimensional portfolios can be reducethanagable sizes for example by factor
analysis|(Krzanowski, 2000, Hui, 2005).
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these approaches to two samples consisting of five and teesdespectively. In detail,

the empirical study is designed as follows:

3.4.1 Data

To carry out the out-of-sample study we compute log-reténors two different datasets.
To avoid undesirable effects, both datasets have to fui@lrequirements of single cur-
rency and uniform time zone. For the first portfolio, we usigydatal return quotes from
five stock indices of main European countries that are faupdiembers of the eurozone
(AEX, CAC 40, DAX 30, FTSE MIB, IBEX 35). The quotes cover a jpef from the
introduction of the Euro at January 1, 1999 to July 31, 20&dileg to 3481 trading days.
For the second portfolio, we used daily total return quotemfthe ten S&P 500 sector
subindices (Consumer Discretionary, Consumer StaplesglgnFinancials, Health Care,
Industrials, Information Technology, Materials, Telecommication Services, Utilities).
This quotes cover the total period provided by S&P startintpa initial publication on
January 1, 1995 to July 31, 2012 leading to 4429 trading dalygjuotes are obtained

from Thomson Reuters Datastream

3.4.2 Parameter Estimation

The optimization of a global minimum-variance portfoliosed solely on the covarian-
ce matrix. Consequently, the performance differences émtwplain optimizations and
covariance-test optimizations are due to the varying leonfitime-windows for parame-
ter estimation. For the plain optimizations we define camtstalling time-windows of

250, 500 and 1000 trading days. The time-window of the cavae-test optimization is

determined by following procedure:
1. Initialize: = 1 andk = 1000.
2. Apply the test of a constant covariance matrix to the data. . ., z }.

3. If the test rejects the null, set= k, otherwise sep = .
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4. Adjust the time-window by = min{p, k— 126+ 1} in case of the five-dimensional

portfolio ori = min{p, k — 252 + 1} in case of the ten-dimensional portfolio.
5. Use the datdx;, . . ., 2 } for estimating the empirical covariance matrix.

6. Setk = k + n, wheren is the number of trading days between two tests and

optimizations and go back to step 2.

Note, a reliable estimation of the covariance matrix regpia sufficient sample size. To
this end, the modificationis= min{p, k — 126 + 1} andi = min{p, k — 252+ 1} ensure
that the estimation is based on data of the last (half) yegexding on the dimensionality
of the portfolio. As before, we choose= 21, 63 and252.

The determination of critical values is a crucial issue Fer &pplication of the test for
a constant covariance matrix. Aue et al. [2009] approxichatiical values by simulating
Brownian bridges on a fine grid. Wied et al. [2013b] showed tihia approximation does
not perform well if the sample size is small. In this case,dhgcal values are overesti-
mated and hence lead to low numbers of rejections. We takieisipadint and propose an
alternative approach which is suitable for a practical agpibn of the test. To this end,
we generate d-dimensional standard normal distributetbranvariables. Then, we apply
the test for a constant covariance matrix to the sample.grbsedure is carried out 10000
times. After that, we determine thié — «)-quantile of the resulting test statistics as the
critical value. In line with Wied et all [2013b], we computetcritical values fory = 1%
anda = 5%. Depending on the chosen length of the sample, the critedalewaries wi-
thin a relatively wide range. Therefore, regarding the ili@ensional (ten-dimensional)
portfolio, we estimate critical values for 18 (12) diffetesample sizes which are congru-
ent to time-windows of 126 (250) to 1400 trading days (Tabl§.3
Using these critical values as grid points, we computecaiitvalues for time-windows
of any required length by linear interpolation. Althouglsé&ems only to be a small mo-
dification, it leads to a much more realistic determinationhe dates where structural
breaks in the covariance matrix occur. Moreover, it allowsaiestablish an automated

investment strategy, which automatically determinessifatereoptimizations.
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Table 3.1: Critical Values
Critical values for the five and the ten dimensional portf@stimated by use of a Monte-Carlo-Simulation.

Sample  five-dimensional ten-dimensional

Size Portfolio Portfolio
a=5% a=1% a=5% a=1%

126 4.25 4.63 - -
138 4.39 4.80 - -
150 4.54 4.96 - -
175 4.74 5.19 - -
200 4.92 5.45 - -
225 5.11 5.65 - -
250 5.24 5.84 8.60 8.94
275 5.37 6.01 8.97 9.35
300 5.48 6.10 9.36 9.77
350 5.69 6.41 10.01 10.48
400 5.89 6.68 10.60 11.18
500 6.11 6.99 11.49 12.12
600 6.31 7.25 12.28 13.05
700 6.47 7.41 12.88 13.83
800 6.57 7.52 13.41 14.35
1000 6.76 7.76 14.26 15.27
1200 6.86 7.90 14.95 16.07
1400 6.99 8.12 15.47 16.61

As we have just mentioned, the more precise estimation tgaearor critical values
allows us to investigate an automated investment systemrenthe test is performed on
a daily basis and the optimization is conducted only if thet tejects the null. Hence,
an investor does not need to decide for a particular timed@nin order to estimate
the covariance matrix and reoptimization interval. Onlg #ignificance level has to be
determined in advance. In more detail, we se= 1 and modify the last step of the

previous procedure as follows:

6. If the test rejects the null, skt= k + 63, otherwise set = k£ + 1. Then go back to

step 2.

By conducting the fluctuation test at each day, clusterezttigns are very likely due to
the small changes in the sample. The conditioa: £ + 63 in case of a null rejection

assures that the sample for the subsequent test includeeguaie amount of new data.
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3.4.3 Optimization Setup

The portfolio performance is strongly affected by the freaey of reoptimizations. In
line with the test intervals of the previous section, we e every 21, 63, and 252
traiding days in the first setting. In this case, the asseghisiare reoptimized after each
test, regardless whether the null is rejected or not. Becafigshe identical intervals,
this procedure allows for a direct comparison between thénpptimization and the
covariance test optimization. In contrast to that, if thestancy of the covariance is tested
on a daily basis, optimizations will be conducted only whestractural break is detected.
In this context, portfolio weights remain unchanged in tease that no trading takes
place until the test again rejects the null. Hence, the plotiveights will drift from the
initially determined portfolio weights due to the variatiom asset returns. Note, however,
the simulations for the equally weighted portfolios suggiest the rebalancing frequency
is only of minor importance. Besides, we consider two défgrconstraints concerning
the portfolio weights. First, we assunte< w; < 1,Vi, which in particular excludes
short selling (hereinafter referred to as long portfolide)addition to that, we assume
lw;| < 1, Vi, throughout the second run (hereinafter referred to ag glootfolios). The

optimizations are performed by using tfigiincon-function of MATLAB R2012Q

3.4.4 Performance Measurement

The portfolio performance is analyzed from various perspes. First of all, the measure-
ment of the risk in terms of volatility takes a prominent pzfrthe evaluation, as portfolio
variances are optimized. Nevertheless, we investigatarthact on the resulting returns
and the relationship between risk and return in terms of ta&-ratio, too. For its com-
putation we assume 1% as risk free return which corresponds to the average return o
German goverment bonds with less than 3 years to maturit91d 2

Reoptimization (and rebalancing) of portfolio asset wesghaturally leads to incre-

“Note, we checked the performance of theincon-function by means of several examples and com-
parison to theyuadprog-function. All results indicate that there are no convangiwoblems within this
optimization task. Nevertheless, to minimize the risk alegéng local minima, we use an adequate num-
ber of different starting points for the optimization. Thestarting points include the defined weighting
boundaries as well as the equal weighted portfolio and nandeights.
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asing trading volume. Hence, we measure this turnover inlatesand relative Terms.
Following/DeMiguel et al.|[2009], we define the sum of abselchhanges in the weights

as
RD-1 d

Turnover(A) = Z Z @it — ai+ jl, (3.4)

i=1 j=1
where RD is the number of the reoptimization (rebalancing) days @tlide number of
assets. The portfolio weight of asgdiefore a rebalancing or reoptimization at time 1
is defined as,+ ;. Besides, we call'urnover(R) the average amount of changes at each

RD, that meand urnover(R) = p— - Turnover(A).

In order to attribute a financial impact to the trading volynve transform turnover
to transaction costs and analyzes the effects. In linelwigdwt al. [2013b] we compu-
te adjusted returns and Sharpe-ratios by subtractingactina costs from the returf.
These costs are defined Byirnover(A) - 3 where the constant relative bid-ask spread
represents the bid-ask spread divided by bid-ask midpdiatquantify the spread on the
basis of the average relative bid-ask spread of the stosteilion the European indices
(5 asset portfolio) and stocks listed on the S&P 500 (10 ges#fiolio) for the time-span
August 1, 2011 to July 31, 2012. The spread of the analyzeztkstamounts to about
0.15% (European indices) and about 0.05% (S&P 500). Moreaxeerefine this metho-
dology used in Wied et al. [2013b] and introduce criticahtie bid-ask spreads. To this
end, consider two portfolio selection methods where a sopserethod outperforms an
inferior method in terms of Sharpe-ratio (excluding trartgan costs) and the absolute
turnovers are different. Then, the critical relative bgkapread is defined as the spread at
which for both portfolios the Sharpe-ratios adjusted bgseection costs are equal. In this
context, we use the average Sharpe-ratio of the equallyhtezigportfolios as benchmark

in order to calculate critical spreads for optimized pdrti®.

3.5 Results

In the following, we present the results of the out-of-sagrgildy.
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3.5.1 European Stock Indices Portfolio

We start with the dataset including the five European stodices. The results of the
equally weighted portfolios are presented in Tdble 3.2Mities, returns, and Sharpe-
ratios remain in a narrow range and show only small variatohure to the rebalancing in-
terval. On average, an annualized return of 3.73% and aradined volatility of 22.67%

results to a Sharpe-ratio of 0.1161. The low turnover leadgglectable transaction costs.

Table 3.2: Results for the Equally Weighted European Stodices Portfolio
Results for the equally weighted portfolio consisting of five European stock indices. Interval refers to
the frequency at which a rebalancing is conducted. Valuesiiantheses refer to Sharpe-ratios and returns
adjusted by transaction costs.

Interval Sharpe Ratio Return Volatility ~ Turnover
p.a. p.a. R @A
21 0.1164 (0.1158) 3.74% (3.73%) 22.70% 0.02 1.83

63  0.1162 (0.1159) 3.74% (3.73%) 22.69% 0.03 1.06
252  0.1155 (0.1154) 3.71% (3.71%) 22.61% 0.04 0.39

Average 0.1161 (0.1157) 3.73% (3.72%) 22.67% 0.03 1.09

As expected, the volatility of the plain optimization poittbs (Tabled 313 and 3.4,
Panel A) is reduced significantly by averaged 1.08% for thg jportfolios. Furthermore,
the portfolio return is improved by 0.61% on average. Néwadgss, the reoptimizations
generate a much higher trading volume and the related thosaosts decrease the re-
turns by 0.02% to 0.15%. The allowance for short selling cedwolatilities even more.
However, compared to the long portfolios, the returns arat@ratios tend to be lower
and do not even achieve the level of the equally-weightetigls on average. Further-
more, the turnover increased by more than two times. Comselyuthe average critical
spread is negative. On average, the choice of the time-wirelogth has a bigger impact
to returns and Sharpe-ratios than the choice of the reagiion interval. Conversely, the
volatility is slightly more affected by the choice of the pimization interval.

From a theoretical point of view the allowance for shortiaglishould lead to lower
volatilities because it implies less stringent constafnt the optimization. As shown by
Table[3.8 and 314 for example, applying the optimizationnaricial market data, a loo-

sening of constraints could lead to a less efficient podfisome cases. This finding is
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Table 3.3: Results for the Optimized European Stock IndRmasfolio and) < w; < 1
Results for the portfolio consisting of five European staaflices under the constraidt< w; < 1. For
Panel A, # Data refers to the sample size used for the optilbiza=or Panel B and Gy refers to the
significance level for the test for a constant covarianceimathe interval refers to the frequency at which
optimizations and tests are conducted. Values in pareesireger to Sharpe-ratios and returns adjusted by
transaction costs.

#Data/ Interval Sharpe Ratio Return Volatility Turnover itical
o p.a. p.a. (R) (A)  Spread

Panel A: Plain Optimizations

21 01687 (0.1615) 4.66% (4.51%) 21.11% 0.17 19.86 1.16%
250 63  0.1958 (0.1901) 527% (5.15%) 21.30% 0.41 1596 2.24%
252  0.1437 (0.1404) 4.27% (4.20%) 22.09% 1.05 9.41 1.44%

21 0.1505 (0.1465) 4.29% (4.20%) 21.18% 0.09 11.19 1.41%
500 63  0.1664 (0.1633) 4.65% (4.58%) 21.34% 0.22 8.71 2.75%
252  0.1663 (0.1643) 4.70% (4.66%) 21.68% 0.61 5.48 4.82%

21 0.1192 (0.1170) 3.69% (3.64%) 21.71% 0.05 6.19 0.26%
1000 63  0.1168 (0.1151) 3.65% (3.61%) 21.80% 0.12 4.73 0.09%
252  0.1261 (0.1251) 3.88% (3.86%) 22.07% 0.33 298 2.28%

Average 0.1504 (0.1470) 4.34% (4.27%) 21.59% 0.34 9.39 %.83

Panel B: Optimization + Test for a Constant Covariance Matri

21 02127 (0.2028) 552% (5.32%) 20.79% 0.23 26.83 1.53%
5% 63  0.2447 (0.2378) 6.23% (6.08%) 20.94% 0.49 19.10 2.93%
252  0.1315 (0.1275) 4.01% (3.92%) 22.13% 1.27 11.47 0.65%

21 0.2167 (0.2074) 5.63% (5.44%) 2091% 0.21 2534 1.70%
1% 63 0.2601 (0.2534) 6.59% (6.45%) 21.12% 0.48 18.63 3.40%
252 0.1555 (0.1522) 4.46% (4.39%) 21.63% 1.03 931 2.03%

Average 0.2035 (0.1969) 5.41% (5.27%) 21.25% 0.62 18.45 493.0

Panel C: Optimization + Daily Test for a Constant Covariakiegrix

5% 1 0.1946 (0.1882) 5.21% (5.07%) 21.10% 0.69 17.82 1.94%
1% 1 0.1301 (0.1261) 3.95% (3.86%) 21.91% 0.66 11.30 0.59%

Average 0.1623 (0.1572) 4.58% (4.47%) 2151% 0.68 14.56 7%.2

in line with the empirical study of Jagannathan and Ma [20(3) argue that constraints
for portfolio weights increase specification error, but e#so reduce sampling error. The
trade-off between both error types determines the gainssritoefficiency.

The results of the covariance-test optimizations are ptesdn Panel B of the Tables
[3.3 and 3.4. Considering the long (short) portfolios, thenres increase by 1.07% (0.72%)

while the volatility decrease by 0.34% (0.76%) on averagapared to the plain optimi-
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Table 3.4: Results for the Optimized European Stock Indrmfolio and|w;| < 1
Results for the portfolio consisting of five European staulices under the constraifat;| < 1. For Panel
A, # Data refers to the sample size used for the optimizakonPanel B and Gy refers to the significance
level for the test for a constant covariance matrix. Therirgkrefers to the frequency at which optimizations
and tests are conducted. Values in parentheses refer tpestatios and returns adjusted by transaction
costs.

#Data/ Interval Sharpe Ratio Return \olatility Turnover itical
! p.a. p.a. (R) (A)  Spread

Panel A: Plain Optimizations

21 0.0603 (0.0443) 2.33% (2.00%) 20.37% 0.36 42.67 -0.54%
250 63 0.0766 (0.0647) 2.69% (2.44%) 20.74% 0.83 32.38 -0.51%
252  0.1468 (0.1399) 4.30% (4.15%) 21.79% 2.17 1954 0.71%

21 0.1315 (0.1217) 3.85% (3.65%) 20.92% 0.23 26.98 0.25%
500 63 0.1399 (0.1325) 4.07% (3.91%) 21.24% 0.53 20.75 0.51%
252 0.1839 (0.1792) 5.11% (5.01%) 21.80% 1.49 13.40 2.36%

21 0.0570 (0.0515) 2.33% (2.21%) 21.51% 0.13 15.38 -1.74%
1000 63 0.0616 (0.0572) 2.44% (2.35%) 21.81% 0.32 12.41 -2.06%
252  0.0870 (0.0841) 3.05% (2.98%) 22.42% 0.96 8.65 -1.69%

Average 0.1050 (0.0972) 3.35% (3.19%) 21.40% 0.78 21.35309%.

Panel B: Optimization + Test for a Constant Covariance Matri

21 0.1466 (0.1226) 4.03% (3.55%) 20.00% 0.53 62.86 0.19%
5% 63 0.1337 (0.1167) 3.83% (3.49%) 20.45% 1.17 4564 0.16%
252 0.1360 (0.1284) 4.07% (3.91%) 21.87% 2.40 2157 0.42%

21 0.1634 (0.1405) 4.37% (3.91%) 20.02% 0.51 5990 0.32%
1% 63 0.1363 (0.1210) 3.88% (3.56%) 20.36% 1.05 40.82 0.20%
252 0.1497 (0.1436) 4.26% (4.13%) 21.11% 1.88 16.94 0.88%

Average 0.1443 (0.1288) 4.07% (3.76%) 20.64% 1.26 41.29 6%.3

Panel C: Optimization + Daily Test for a Constant Covariakleerix

5% 1 0.0928 (0.0793) 3.01% (2.73%) 20.55% 1.40 36.40 -0.27%
1% 1 -0.0192 -(0.0295) 0.67% (0.45%) 22.16% 1.76 29.95 9.04

Average 0.0368 (0.0249) 1.84% (1.59%) 21.35% 1.58 33.1715%.

zation portfolios. This leads to an improvement of the ager&harpe-ratio by 0.0531
(0.0393). For both, long and short portfolios, the appiarabf the tests for structural
breaks leads to almost a doubling of the average turnoveerieless, the average cri-
tical spreads are higher compared to the plain optimizafibe significance level of 1%
leads to superior returns, whereas the impact of the signifie level on the volatility is

inconsistent.
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Panel C of the Tablés 3.3 and 3.4 present the results for tlaiaace-test optimizati-
ons where the test is performed on a daily basis. It is renbdekhat the significance level
of 5% leads to much better results compared to a level of 1%d &0, long portfolios
are comparable to the corresponding covariance-test atilons. With respect to the
short portfolio, this applies also for the volatility, wieas returns and Sharpe-ratios are

worse.

3.5.2 S&P500 Subindices Portfolio

Below, we continue with the results for the portfolio cotisig of ten Standard & Poor’s
500 subindices. The results of the equally weighted paosadre presented in Takle B.5.
On average, a annualized return of 4.99% and an annualizatilityp of 20.15% results
to a Sharpe-ratio of 0.1933. As before, the low turnoverddadeglectable transaction

costs.

Table 3.5: Results for the Equally Weighted Standard & P0s00 Subindices Portfolio
Results for the equally weighted portfolio consisting af ten Standard & Poor’s 500 subindices. Interval
refers to the frequency at which a rebalancing is condudades in parentheses refer to Sharpe-ratios and
returns adjusted by transaction costs.

Interval Sharpe Ratio Return Volatility ~ Turnover
p.a. p.a. R @A
21 0.1916 (0.1912) 4.99% (4.98%) 20.29% 0.03 4.75

63 0.1953 (0.1950) 5.04% (5.03%) 20.16% 0.05 2.89
252 0.1929 (0.1928) 4.96% (4.96%) 20.01% 0.11 1.37

Average 0.1933 (0.1930) 4.99% (4.99%) 20.15% 0.06 3.00

As before, the application of the plain optimization impesuhe performance mea-
sures significantly (Tablés 3.6 and13.7, Panel A). Comparédet equally weighted port-
folio, the volatility of the long-portfolio decreases by88% whereas the return increases
by 1.03% on average. Transaction costs vary between 0.00@%.835%. In contrast to
the European indices portfolio, the allowance for shotirsgfor the S&P500 portfolio
leads to considerable improvements on the long portfoltb vaspect to volatility, return,
and Sharpe-ratio. This goes along with a rise in averagedivelturnover from 0.21 to

0.56. The critical spreads reach considerably high values.
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Table 3.6: Results for the Optimized Standard & Poor’s 50Biiglices Portfolio and
O<w; <1

Results for the portfolio consisting of ten Standard & Ps&00 subindices under the constraint w; <

1. For Panel A, # Data refers to the sample size used for then@atiion. For Panel B and G, refers to the
significance level for the test for a constant covarianceimathe interval refers to the frequency at which
optimizations and tests are conducted. Values in pareesireger to Sharpe-ratios and returns adjusted by
transaction costs.

# Data/ Interval Sharpe Ratio Return \olatility Turnover itical
! p.a. p.a. (R) (A)  Spread

Panel A: Plain Optimizations

21 0.3037 (0.3013) 5.63% (5.60%) 14.93% 0.12 19.11 2.66%
250 63  0.3219 (0.3204) 5.93% (5.91%) 15.00% 0.22 11.71 5.53%
252 0.3694 (0.3686) 6.71% (6.70%) 15.19% 055 7.15 14.87%

21 0.3082 (0.3069) 5.75% (5.73%) 15.09% 0.07 11.42 5.15%
500 63 0.3138 (0.3128) 5.87% (5.86%) 15.20% 0.15 7.89 8.85%
252 0.3459 (0.3452) 6.46% (6.45%) 15.49% 0.40 5.22 22.09%

21 0.2935 (0.2927) 5.65% (5.64%) 15.51% 0.04 6.65 9.75%
1000 63  0.3050 (0.3044) 5.86% (5.85%) 15.61% 0.09 4.84 18.81%
252  0.3299 (0.3295) 6.34% (6.33%) 15.88% 0.29 3.75 42.64%

Average 0.3213 (0.3202) 6.02% (6.01%) 15.32% 0.21 8.64 8¥4.4

Panel B: Optimization + Test for a Constant Covariance Matri

21 0.3027 (0.3003) 5.62% (5.58%) 1493% 0.12 19.13 2.63%
5% 63 0.3349 (0.3336) 6.12% (6.10%) 15.00% 0.21 11.13 6.50%
252 0.3696 (0.3687) 6.71% (6.70%) 15.19% 055 7.10 15.06%

21 03088 (0.3066) 5.71% (5.68%) 14.93% 0.11 17.89 2.99%
1% 63  0.3262 (0.3249) 5.99% (5.97%) 14.99% 0.20 10.93 6.23%
252  0.3655 (0.3647) 6.64% (6.63%) 15.16% 0.51 6.69 16.01%

Average 0.3346 (0.3331) 6.13% (6.11%) 15.03% 0.28 12.14 498.2

Panel C: Optimization + Daily Test for a Constant Covariakieerix

5% 1 0.3519 (0.3506) 6.33% (6.32%) 14.88% 0.24 10.16 8.08%
1% 1 0.3667 (0.3657) 6.63% (6.61%) 15.07% 0.30 8.75 10.93%

Average 0.3593 (0.3581) 6.48% (6.46%) 14.98% 0.27 9.45 9%.51

As presented in Tablés 3.6 andl3.7 (Panel B), the applicafithre test for a constant
covariance matrix yields to superior results on average. [bhg portfolio shows only
slight improvements of the return whereas the return of tireetortfolio increases by
0.52% on average. Moreover, the volatility decreases b9%.%r the long and 0.25%

for the short portfolio. Although the average trading vokurises by more than 40% com-
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Table 3.7: Results for the Optimized Standard & Poor’s 50Biiglices Portfolio and
|(UZ'| <1

Results for the portfolio consisting of ten Standard & Pe&00 subindices under the constraing < 1.

For Panel A, # Data refers to the sample size used for the matiion. For Panel B and @y refers to the
significance level for the test for a constant covarianceimathe interval refers to the frequency at which
optimizations and tests are conducted. Values in pareesireger to Sharpe-ratios and returns adjusted by
transaction costs.

# Data/ Interval Sharpe Ratio Return \olatility Turnover itical
! p.a. p.a. (R) (A)  Spread

Panel A: Plain Optimizations

21 0.4034 (0.3967) 6.83% (6.73%) 14.20% 0.32 51.84 1.63%
250 63  0.4186 (0.4145) 7.15% (7.09%) 14.45% 0.60 32.32 2.94%
252  0.4960 (0.4935) 8.44% (8.40%) 14.79% 1.53 19.95 6.86%

21 0.3952 (0.3911) 6.75% (6.70%) 14.31% 0.20 31.84 2.64%
500 63 0.3996 (0.3969) 6.92% (6.88%) 1456% 0.39 21.13 4.31%
252 0.4569 (0.4552) 8.01% (7.99%) 15.13% 1.06 13.75 9.44%

21 02944 (0.2921) 5.44% (5.41%) 14.74% 0.11 18.37 2.51%
1000 63  0.3228 (0.3213) 5.92% (5.90%) 14.93% 0.22 11.85 5.46%
252  0.3614 (0.3603) 6.67% (6.66%) 15.42% 0.65 8.45 11.44%

Average 0.3942 (0.3913) 6.90% (6.86%) 14.73% 0.56 23.28 5%.2

Panel B: Optimization + Test for a Constant Covariance Matri

21 0.4045 (0.3978) 6.84% (6.75%) 14.20% 0.31 51.26 1.66%
5% 63 0.4169 (0.4130) 7.12% (7.07%) 14.45% 0.57 30.68 3.08%
252 0.4953 (0.4929) 8.43% (8.40%) 14.80% 154 1996 6.85%

21 0.3968 (0.3906) 6.74% (6.65%) 14.20% 0.30 48.26 1.70%
1% 63 0.3989 (0.3951) 6.87% (6.81%) 14.46% 0.56 30.16 2.89%
252 0.5013 (0.4989) 8.51% (8.48%) 14.79% 1.47 19.06 7.35%

Average 0.4356 (0.4314) 7.42% (7.36%) 14.48% 0.79 33.23 298.9

Panel C: Optimization + Daily Test for a Constant Covariakieerix

5% 1 0.4763 (0.4727) 7.83% (7.78%) 14.14% 0.67 28.19 4.17%
1% 1 0.4580 (0.4547) 7.70% (7.65%) 14.40% 0.88 25.44 4.45%

Average 0.4672 (0.4637) 7.76% (7.72%) 14.27% 0.77 26.82 1%.3

pared to the plain optimizations, the improvements of tisellte are not offset by a loss
of return due to transaction costs. However, the criticed¢a@s are somewhat lower com-
pared to the plain optimizations. The choice of the signiftealevel has no substantial
impact to both return and volatility.

Panel C of the Tablés 3.6 and13.7 show the results for the iemva-test optimizations
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where the test is performed on a daily basis and the optimaizés conducted only if
the test rejects the null. On average, the results of thisoagh improve even on the
covariance-test optimizations with a fixed test and reopation interval. Furthermore,
the turnover is reduced considerably. In contrast to thedasple, the significance level
has a minor impact on the results. Nevertheless, a level afegsUits in slightly superior

results.

3.5.3 Rejection Dates

In this section we have a closer look at the rejection datéiseofull. Considering the Eu-
ropean indices dataset as an example, Figure 3.1 preserttatds at which the test for a
constant covariance matrix rejects the null (63 days téstval / 1%-level) in connection

with a trend of variances and covariances.

Figure 3.1: Trend of Variances and Covariances and Dateswudt8Bral Breaks
The Figure shows the trend of the sum of variances and caoxaassfor the European indices dataset over
the time span November 26, 2002 to July 31, 2012 (2481 tradays). For each trading day, the sum
results by adding up the entries on and below the diagonatofariance matrix. The matrix is computed
on the basis of a rolling 500 trading day time-window. In didai, the points in time at which the test for
a constant covariance matrix rejects the null (structureak) are marked by vertical bars. The tests are
conducted under a setup of a 63 trading days test interved d8d significance level.
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The chart illustrates that significant changes of variaaoelscovariances are due to points
in time at which the test rejects the null. Consequenths fimocedure leads to consi-

derably improved results with respect to volatility, retuand Sharpe-ratio compared to
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the optimizations with a fixed historical time-window. Figli3.2 compares exemplary
the performance of an equally weighted portfolio, a plaitimjzation portfolio, and a
covariance-test optimization portfolio in connectionwihe dates at which the test for a

constant covariance matrix rejects the null.

Figure 3.2: Portfolio Values
The Figure shows the portfolio values for the European esldataset over the time span November 26,
2002 to July 31, 2012 (2481 trading days). The portfolio galare based on a rebalancing, reoptimization,
and test interval of 63 trading days and a 500 trading day-tinmelow with respect to the plain optimization.
In addition, the points in time at which the test for a constaivariance matrix rejects the null are marked
by vertical bars. The tests are conducted under a setup afadiBg days test interval and a 1% significance
level.
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The chart reveals that the covariance-test optimizatiapeytorms the equally weighted
portfolio and/or the plain optimization throughout mosttoé time. In particular during
the late phase of the bull market 2006/2007 and the Europmasreign-debt crisis be-
ginning in the fall 2009, this new method outperforms the aammg portfolio selection
approaches.

The results of the covariance-test optimization indichég they are quite sensitive to

the choice of the test and reoptimization interval, whetbasselected significance level
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plays only a minor role. This finding leads to a strategy, wh&e apply the test on a
daily basis and conduct a reoptimization only if the tesectg the null. However, this
strategy does not improve upon the covariance-test omimizs for fixed intervals in
most settings. Moreover, the results are even worse for tinegean indices.

This behaviour is explained by the unreliable high numbedetiected structural
breaks. For the S&P indices there are 29 (1%-level) and 421€¥#) rejections, re-
spectively. The same holds true for the European indicegevhé (1%-level) and 26
(5%-level) rejections occured. This phenomenon can pghteisie explained with the ef-
fect of sequential testing. Wied et al. [2013a] investigdtes issue for a test of constant
correlations. Hence, additional adjustments have to beéechout in order to make this
strategy applicable for practice. However, this modifimasi are not in the scope of the

present paper.

3.6 Conclusion

Our empirical study shows that minimum-variance optimaasignificantly improves
return, volatility, and Sharpe-ratio compared to equakyghted portfolios. Although the
optimizations lead to considerably increased tradingwas, the turnover in connection
with relatively low bid-ask spreads for heavily traded bthgs causes modest transaction
costs. Furthermore, the computation of critical relative-dsk spreads suggests that an
optimization is preferable even under much higher tramsaciosts. However, the study
also reveals the sore point of the optimization setup: Theltg are very sensitive to the
chosen historical time-window and to the reoptimizaticienaal.

To overcome the issue of determining appropriate time-ouws] we use the test of
Aue et al. [2009] for a constant covariance matrix to detécicsural breaks which set
the starting point of a sample. We implement a consistentessdntial advancement of
the promising approach introduced by Wied et lal. [2013b] apply the optimizations
in combination with the test in two different ways. First, wenduct the test and the

optimization after a fixed interval where the rejection of thull sets a new beginning
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point for the time-window. Second, we apply the test on aydhdsis and conduct a
reoptimization only if the test rejects the null. That meahs procedure determines the
length of the time-windows as well as the point in time whéeegortfolio is reoptimized.
Finally, we can conclude that minimum-variance optimizasi in combination with
the test for a constant covariance matrix provides a usgipiach to replace an arbitrary
sample selection for parameter estimation by a procedurehws statistically justified.
Therefore, it can be used as an automated investment systesirdtegic asset alloca-
tions. Besides, there are some more remarkable benefiss, thie system is completely
automated and no expensive funds managers and analystsjaned. Hence, costs could
be decreased significantly. Moreover, the out-of-sampldysshows that there is a good
chance to outperform an equally distributed portfolio de@ger periods of time. Conse-
guently, the approach seems to be an appropriate altegrfatian usage in practice and
in order to overcome the already mentioned weak points efedgtmanaged portfolios.
Nevertheless, the new approach is not suited so resolvenirggtissue yet. To this end,
some modifications considering sequential testing have foesformed. We will use the

results achieved so far as a starting point and take up this ito our future research.
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A New Set of Improved Value-at-Risk

Backtests

Revise and resubmit:
Journal of Banking and Finance (zusammen mit Daniel ZigGe&gor N.F. Weil3 und

Dominik Wied)

4.1 Introduction

Over the last two decades, Value-at-Risk (VaR) has becoeddliacto standard tool for
measuring and managing risk in the financial services imgusefined as the-quantile
of a relevant profit and loss (P/L) distribution wherés regularly set td % or 5%, it is
now widely used by commercial banks and insurers as well &s fautside the financial
industry to assess the risk exposure of single investmedtpartfolioﬂ A simple reason
for this importance of VaR for the financial industry is giviey the fact that under the
1996 Market Risk Amendment to the first Basel Accord, banksevaedowed to employ
internal VaR-models to calculate capital charges for theky investments. Despite its
popularity with practicioners, however, VaR has also neseicriticism from academia
due to its lack of subadditivity [and thus coherence, seerfatet al.| 1999] in case of
non-gaussian P/L distributiolifven more importantly, commentators have blamed VaR
in part for the severity of the recent financial crisis as titustry-wide use of VaR capital

constraints enabled externalities to spread in financiaketgathrough the pricing of risk

!Extensive discussions of the properties of VaR and its upeaatice are given, e.g., by Dowd [1998],
Jorion [2005], and Alexander [2008].

°Note, however, that evidence by Danielsson et al. [2006jtpout the subadditivity of VaR for most
practical applications.

54
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[see Shin, ZOJ_CH.Consequently, both regulators and financial risk manage#s tecently
taken an increased interest in model validation and baiskoés/aR-forecasts.

Despite its importance for bank regulation, VaR-backigstias received relatively
little attention in the financial econometrics literatur@mgpared to the numerous stu-
dies on the estimation and forecasting of VaR. One of the fiirshal statistical back-
tests for VaR was proposed by Kupiec [1995] who tests theesempiof VaR-violations
for the correct number of violations (i.e., unconditionalerage). Christoffersen [1998]
and Christoffersen and Pelletier [2004] extend these fsstof unconditional coverage
by additionally testing for the independence of the seqgeearid/aR-violations yielding
a combined test of conditional coverage. Recently, an rated framework for VaR-
backtesting that includes the previously mentioned teatsproposed by Berkowitz et/al.
[2011]. Further examples of the few backtests for VaR thaisamilable to regulators are
due ta Berkowitz![2001], Engle and Manganelli [2004], Haz805] and Candelon et al.
[2011], although the test of unconditional coverage car@sito be the industry standard
mostly due to the fact that it is implicitly incorporated imet framework for backtesting
internal models proposed by the Basel Committee on Bankupg&ision [1996

In this paper, we propose a new set of backtests for VaR-déstedhat significantly
improve upon existing formal VaR-backtests like, e.g., tleachmark models proposed
by |Christoffersen and Pelletier [2004]. We first restatedbénitions of the unconditio-
nal coverage property and propose a new test of the corredb@uof VaR-exceedances.
Extending the current state-of-the-art, our new test candael for both one-sided and
two-sided testing and is thus able to test separately whatMaR-model is too conser-
vative or underestimates the actual risk exposure. Seswadtress the importance of
testing both for the property of independent as well as tiopgnty of identically distri-
buted VaR-exceedances and propose a simple approach tiogtés both properties.

While it has been noted in previous studies that VaR-viotatishould ideally be i.i.d.,

3Similar arguments in favor of a destabilizing effect of baagulation based on VaR on the economy
are stated by Leippold etlal. [2006] and Basak and Shapit@l[R0

“A review of backtesting procedures that have been proposéiki literature is given by Campbell
[2007].
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standard backtests focus solely on the independence ofcﬂmimnsg In this paper, we
argue that the property of identically distributed VaR-@@ances is of vital importance
to regulators and risk managers. In particular, we showtthditional VaR-backtests that
center around first-order autocorrelation in violationgasses are often not able to de-
tect misspecified VaR-models during calm boom and highlgel bust cycles. The new
test of the i.i.d. property of VaR-violations explicitlydts for the presence of clusters in
VaR-violation processes. This new feature is highly ecocahy relevant as our test for
violation clusters can identify VaR-models that yield inaate risk forecasts when they
are most undesirable: during economic busts and finanesascwhen extreme losses on
investments cluster due to a persistent increase in thélitgleevel. Finally, we also pro-
pose a weighted backtest of conditional coverage that samebusly tests for a correct
number and the i.i.d. property of VaR-violations. Our pregad weighted backtest is in
the spirit of the original backtest of conditional coverdnyeChristoffersen and Pelletier
[2004], but generalizes it by allowing the user to choosentbight with which the test of
unconditional coverage enters the joint test of conditlionaeragg Our newly proposed
set of backtests is simply based on i.i.d. Bernoulli randanmables making them very in-
tuitive and easy to implement. By construction, these tastsmatically keep their level,
even for very small sample sizes as they are often found inbé&adktesting.

We employ our proposed backtests in a simulation study wsargral sets of simula-
ted data that mimic real-life settings in which the simullad@ta violate the unconditional
coverage, i.i.d., and conditional coverage propertiesfterdnt degrees. The performance
of the new tests is compared to classical tests frequendg ustheory and practice as
well as to a recently proposed powerful test. The resulte#@td that our tests significant-
ly outperform the competing backtests in several distiattirggs. In addition, we present
an empirical application of the new tests using a unique getaonsisting of the asset

returns of an asset manager’s portfolios.

5in  fact, previous Markov- and duration-based tests of _ Qbifisrsen [1998],
Christoffersen and Pelletier [2004] amnd Candelon etlal.1120only consider autocorrelation in VaR-
violations as one possible reason why VaR-violations cbeldlustered.

5The approach of weighting the test statistics could alsousygd using classical uc and ind tests
instead of our new uc and iid test. However, we believe thigep#o be the first to explicitly point out the
possibility to generate new tests by means of weighting adidrtests.
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The paper is structured in a similar fashion as the one of®eitk et al. [2011] and is
organized as follows. Sectign 4.2 introduces the notatiefines the properties of VaR-
violations, and describes our new set of backtests. Sddtibavaluates the performance
of the newly proposed backtests as well as several benchpnadedures for backtes-
ting VaR-forecasts in a simulation study. Secfiod 4.4 preseesults from our empirical

application study. Sectidn 4.5 concludes the paper.

4.2 Methodology

In this section, we introduce the notation used throughwipaper, redefine the desirable
properties of VaR-violations that are frequently discdssehe literature and present our

new backtests.

4.2.1 Notation and VaR-Violation Properties

Let {y.};, be a sample of a time serigs corresponding to daily observations of the
returns on an asset or a portfolio. We are interested in thgracy of VaR-forecasts, i.e.,
an estimation of confidence intervals. Following Dumitrestal. [2012], the ex-ante VaR
VaRy;—1(p) (conditionally on an information sét,_,) is implicitly defined byPr(y; <
—VaRy,—1(p)) = p, wherep is the VaR coverage probability. Note that we follow the
actuarial convention of a positive sign for a loss. In p@stithe coverage probabilipyis
typically chosen to be either 1% or 5% (see Christoffers888). This notation implies
that information up to time — 1 is used to obtain a forecast for timeMoreover, we

define the ex-post indicator variahlgp) for a given VaR-forecast'a R, (p) as

0, if y, > —VaRt\t—l(p)§
[t(p> = (4.1)
1, |f Yt < —VaRt|t,1(p).

If this indicator variable is equal tb, we will call it a VaR-violation.

To backtest a given sequence of VaR-violations, Christediz [1998] state three de-
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sirable properties that the VaR-violation process shoakspss. First, the VaR-violations
are said to have unconditional coverage (uc thereaftdrgiptobability of a VaR-violation
is equal top, i.e.,

PIi(p) = 1] = E[L(p)] = p. (4.2)

Second, the independence (ind thereafter) property resjthat the variablé,(p) has to
be independent of,_(p), Vk # 0. Finally, the uc and ind properties are combined via
E[L(p) — p|Q:1] = 0 to the property of conditional coverage (cc thereafterdétail, a
sequence of VaR-forecasts is defined to have correct cc if
{L(p)} "~ Bern(p), Vt. (4.3)

While we agree with the formulation of the cc property, werpaut that the uc and
the ind properties as defined above suffer from some sergstisations. The uc property
requires a test whether the expected coveragdas each day individually. To be pre-
cise, the equatiof®[I;(p) = 1] = E[I;(p)] = p holds only true ifP[I;(p) = 1] = p holds
for all £. However, it is not feasible to verify if this assumption @i®krue for allt indivi-
dually by means of a statistical test of uc. Moreover, it igelikely that the sequence of
VaR-violations is not stationary and that the aciuaéries across different market phases
even if% >, I equalsp for the total sequence. Evidence for this conjecture is didoyn
Escanciano and Pei [2012]. The practical relevance of gatife is demonstrated in our

empirical study (see Sectign #.4). Consequently, we regléfi@ uc property simply as

E

% > It(p)] =p. (4.4)

With respect to the ind property, it is interesting to not& tihe current state-of-the-art
backtests in the financial econometrics literature do noigoon testing the property of
VaR-violations being identically distributed. In factetlsequencé,(p)} could exhibit
clusters of violations while still possessing the propeftyndependence as defined above.

In fact, unexpected temporal occurrences of clustered WaRtions may have several
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potential reasons. On the one hafifl{p) } may be not identically distributed apctould
vary over time. On the other hand,(p) may not be independent df_(p), Vk # 0.
We therefore reformulate the ind property as the i.i.d. prop(i.i.d. thereafter). The

hypothesis of i.i.d. VaR-violations holds true if

{L(p)} "~ Bemn(p), ¥4, (4.5)

wherep is an arbitrary probability. Note that the i.i.d. hypotledbes not deal with the
relative amount of VaR-violations. Hence, if appropriagtayill be replaced by its empi-
rical counterparp (the estimated violation rate) within the respective téstistic, while
it is specified to its desired valye(which is tested later on) within the cc property.

In the following, we describe our new set of backtests thalutles separate tests
for all mentioned properties of VaR-violation processeseWRlocode for all new tests is

provided in ChaptdrA.

4.2.2 A New Test of Unconditional Coverage

At this point, we are interested in testing the null hypothBs[ 1 >""' | I,(p)] = p against
the alternativeE [1 3% | I;(p)] # p. In fact, as we will see later, our new test stati-
stic also allows us to separately test against the altewesdli [1 > | ,(p)] > p and
E [ 37, I,(p)] < p. The most intuitive and commonly used test statistic fortés of

uc is given by (see Christoffersen, 1998):

asy

LRﬁgp = _2 |Og[L(p, 117127 7ITZ)/L(p7 -[17 -[27 ceey ]TL)] ~ X2(1)7 (46)

wherep = —*— n, is the number of violations and, = n — n;. Moreover, we have

ni1+no

L(p; 1, Iy, ... In) = p™ (1 — p)™ (4.7)

and

L(p; I, Is, ..., I,,) = p"™ (1 — p)"°. (4.8)
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Candelon et al.[ [2011] recently introduced an alternatast for the uc hypothesis
using orthonormal polynomials and the GMM test framewor&pmsed by Bontemps
[2006], IBontemps and Meddahi [2005] and Bontemps and Mad@&i.2]. Their test

statistic is given by

Jue = Jee(1) = <% ZMl(di;m) (L), (4.9)

where M, is an orthonormal polynomial associated with a geometstrithution with a
success probability andd; denotes the duration between two consecutive violatiaes [s
Candelon et al., 2011, for more details].

However, both tests suffer from significant drawbacks.tFwghout modifications, it
is not possible to construct one-sided confidence inter@alsh an additional feature, on
the other hand, would be of particular interest to bank regus and risk-averse investors
who are primarily interested in limiting downside risk. Wit is trivial to check whether
a rejection was due to a model being too conservative or nigerwative enough, none
of the existing tests yields one-sided critical valueshis tontext, results from our simu-
lation study illustrate that the power of one-sided tessigsificantly higher. The second
drawback is concerned with the behaviour of the tests irefsgimples. As we deal with
tail forecasts based on binary sequences, the number atiaio$ is comparatively small
and discrete. Hence, ties between the sample test valudhase tbtained from Monte
Carlo simulation under the null hypothesis need to be brokbat means that we have
to ensure that the probability for two equal values of the séatistic for two different
data sets is zero. Christoffersen and Pelletier [2004] gwedo use the Dufour [2006]
Monte Carlo testing technique to break ties between tegegalAs their approach, howe-
ver, is computationally demanding and unnecessarily cexapée propose a different tie
breaking procedure.

We address the latter problem by exploiting an idea used,ngnathers, by
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Podolskij and Ziggel [2009] and propose to use the testssiati
MCS,e =Y I(p) +e (4.10)
t=1

wheree is a continuously distributed random variable with smaliasace that serves to
break ties between test vaItBe@ritical values of the test statistic are computed via Monte
Carlo simulations (MCS) as is done for all other backtestsughout this paper. For fixed
n andp, the distribution of the test statistic is known. We thenwdee a large number of
realizations of the test statistic under the respectivehydothesis and use the resulting
guantile for testing the uc hypothesis. Adding the randonatse ¢ guarantees that the
test exactly keeps its size if the number of Monte Carlo satioihs for obtaining the
critical value tends to infinitQ.Note that without the addition of the random variable
the test statistic would have a discrete distribution andatiopossible levels could be
attained. Additionally, note that the choiceedt not crucial for testing the uc hypothesis.
We noticed in robustness checks that the finite sample peaioces of the tests are not
substantially affected by changes in the distribution a$ long as it remains continuous
with a small, non-zero variance. Consequently, it is intaito use normally distributed
random variables fot. Nevertheless, one needs to assure that the test statisticf 1
violations is smaller then the test statistic foviolations. Followingly, we set ~ 0.001 -
N(0,1) in our simulation study. Finally, it is instructive to seeattour new approach
allows for one-sided and two-sided testing for every dediest level.

Critical values for all our tests are then computed via MGSdad of, e.g., making use
of explicit expressions of the exact or asymptotic distitns. Basically, all test statistics
we consider are given as the sum of a discrete random vaf@dtiermined by Bernoulli
distributed random variables) and a continuous randonalkgiwith known distribution
that is independent from the discrete random variable. Ttvushe one hand, the distri-

butions of the test statistics are uniquely determined k&dfh, andp and additionally it

Podolskij and Ziggel [2009] employ the idea of adding a smatidom variable to a test statistic to
construct a new class of tests for jumps in semimartigaleaisod

8The theoretical foundation of our approach is given by Duf2006] who considers a more general
context and solves this problem by introducing randomizedts according to a uniform distribution.
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is basically useful to consider MCS. On the other hand, dubdacontinuous part, the
test statistics are also continuously distributed. ThisWes from the general fact that, for
a discrete random variable with supportM y and a continuous random variabifesuch

that X andY” are independent,

P(X+Y <a)= ) Pa+Y <aX =2)P(X =x)= Y _ P(Y <a—2)P(X =2).
reEMx zeMx

Thus, the cumulative distribution function &f + Y can be written as a countable sum of

continuous functions so that it is continuous as well. Usingsult from Dufour [2006],

the empirical critical values then yield a test that exak#eps its size if the number of

MCS tends to infinity.

Instead of using MCS, one could basically also derive theteiatribution functions
of the test statistics, although this would indubitably eimbersome task. It would also
be possible to derive asymptotic results if the test stesistre appropriately standardized
and if one imposes additional moment assumptions on thencanis random variable.
For example, a suitably standardized uc test statistic htug% S (Li(p) —p)+ ﬁe.
However, we believe that, although of some interest, sucasgmptotic analysis is not
necessary in our setting. In practiceandp are fixed and by an increasing number of
Monte Carlo repetitions we can get arbitrarily exact catigcalues of the test statistics
in reasonable time. Since one typically deals with a low neinds VaR violations, one
could moreover expect the asymptotic approximation to lg@ljiinaccurate, which is
confirmed by several studies [see, €.Q., Berkowitz et al1P0

Basically, the one-sided version of our new uc test can bardegl as a generalization
of the Basel traffic light approach as described in CampB&07]. The Basel approach
provides a method which can be easily applied. Here 1 ¥hé/aR violations in the last
250 days are counted. The traffic light is green whenever the eumibviolations is less
than5, yellow whenever the number lies betwegand9 and red otherwise. With the
decision rule “Reject the null hypothesis of a valid VaR mogleenever the traffic light

is red” the procedure can be interpreted as a significantdnesact, then the Basel test



4.2. METHODOLOGY 63

statistic is a special case (with = 250, p = 0.01, « < 0.001 ande = 0) of our uc
test statistic. Information concerning the size and povén® Basel test can be found in
Basel Committee on Banking Supervision [1996]. Howeveragltication of this test is
not possible as soon as the input parameters change. Imsbittthat, our new approach

allows, e.g., to increase the sample size or to vary thefgignce level.

4.2.3 A New Test of I.1.D. VaR-Violations

As stated in_Christoffersen [1998], testing solely for eotruc of a VaR-model neglects
the possibility that violations might cluster over time.riGequently, Christoffersen [1998]
propose a test of the violations being independent agamekglicit first-order Markov

alternative. The resulting test statisic is given by:

asy

LR} = =210g[L(Ty; Iy, Iy, o, L) /L(T1: Iy, Ty ooy L)) 9021, (410)

Here, the likelihood functions are given by:

~ n noo n no1
L 1y, Iy o L) = (1 _ $) <$)
Ngo + No1 Ngo + No1

1o ni1 (4.12)
(1 . L) ( Cnu )

10 T 711 N9 + N1y

and
n00+n10
L(y; Iy, Iy, ..., 1) = (1_ +no1in11+ )

n n n n

" N N R (4.13)

no1+nii
( No1 + N1 )
)
Noo + N1 + No1 + N11

wheren,; is the number of observations with valuéollowed by j. Note that this first-
order Markov alternative has only limited power againstegahforms of clustering. Mo-
reover, as shown in Christoffersen and Pelletier [2004$, tist is not suited for several
settings and has a poor behaviour in finite samples. The daesthen be combined with
the test of uc presented in the previous subsection to yitltlitest of cc. Despite the afo-

rementioned shortcomings, however, it is still one of thestricequently used backtests
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in practice [see Candelon et al., 2011].

In a subsequent work, Christoffersen and Pelletier [20@4dduce more flexible tests
which are based on durations between the violations. Theion behind these tests is
that the clustering of violations will induce an excessiventer of relatively short and
long no-hit durations. Under the null hypothesis, the nodrationsD should then be

exponentially distributed with

fexp(D;p) = pe_pDa (414)

whereD is the no-hit duration. In their work, Christoffersen andl&eer [2004] employ
the Weibull and the gamma distribution to test for an exptiaédistribution of the no-hit
durations. Nevertheless, we will only consider the Weibest in our simulation study as
it yields considerably better results than the gamma tesl kaas, 2005]. In addition to
the mentioned tests, the literature on VaR-backtesting ialdudes the standard Ljung-
Box test, the CAViaR test of Engle and Manganelli [2004], ibgression based dynamic
guantile test by Hurlin and Tokpavi [2006] and spectral dgnests. However, the le-
vel of most of these tests is poor for finite samples and tbezadritical values need to
be calculated based on the Dufour Monte Carlo testing tecien{see Berkowitz et al.,
2011).

Recently, Candelon etlal. [2011] introduced a new test for.tid. hypothesis. As des-
cribed above, this test is based on orthonormal polynorareddthe GMM test framework.

The test statistic is given by

Jiia(q) = <\/—% Z M(Ch;ﬁ)) (% Z M((L-;ﬁ)) ' X*(q), (4.15)

where) (d;; p) denotes dg, 1) vector whose components are the orthonormal polynomi-
alsM;(d;;p), for j =1, ..., ¢, evaluated for the true violation rage

To introduce our new test statistic, we first define the sebaits in time on which a
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VaR-violation occurs via
V={t|ll; =1} = (t1, ... tm)- (4.16)

The test statistic for our new i.i.d. hypothesis is then gilg

m

MCSiiam =1+ (n—tn)* + Y (t;i —ti1)’ +e (4.17)

=2

This sum essentially consists of the squared durationsdagtwwo violations. Basi-
cally, the idea behind this test statistic follows the pipte of the Run-Test proposed by
Wald and Wolfowitz [1940]. To be precise, the sum of the sqdalurations between two
violations is minimal if the violations are exactly equatigread across the whole sample
period. If the violations are clustered and occur heaped,silim increases. Just like in
the Run-Test, both systematic and heaped occurences afivitd could be undesirable
in a risk management setting. For example, the process ofW@Rtions could exhibit
an undesirable cyclical or seasonal behaviour that is tetday our new test of the i.i.d.
property as the test statistic tends to its mininHJAt the same time, too large values
of MC'S;am could indicate a clustering of violations indicating a sfgantly bad fit of
the VaR-model in a particular time period. For the purpodéhis study we concentrate
on testing for clustered VaR-violations noting that twoetd testing for both clusters and
cyclical patterns in VaR-violations is straightforward.

Empirically, clustered VaR violations most often occur imae of financial crisis with
high volatility which follows an economically quiet time @vice versa. In the former
case, an initially suitable VaR model becomes inadequaienigs of market turmoil and
increasing volatility. Assuming this, one could use our new. test for detecting times
of crises or volatility clusters. Note that such a test witinlw as long as the VaR model
is not completely correctly specified. On the other hands dlso possible that the VaR
model is suitable for both quiet and volatile times leadio@ ffailure of the test. Due to

this fact, it would be interesting to investigate such a lohtest in more detail and useful

9This feature is of particular interest, e.g., in commoditg aveather risk management.
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to compare or combine an analysis based on the new i.i.dvitse.g. a test for constant
variances as presented. in Wied et al. [2012a]. Howeverjgshige is not in the scope of
the present paper.

As before, we waive a formal derivation of the distributidroar test statistic. Instead,
we obtain the critical values of the test statistic by medna Monte Carlo simulation
(thus inspiring the abbreviatioh/ C'S;;4.,). The simulation is straightforward as only
and p have to be adapted to the specific situation. Note that thieairvalues need to
be simulated separately for each valuerofis we are solely interested in the durations
between the violations and not in the absolute number ofetugé the same continuously
distributed random variableas before to break ties. Again, the choices@nsures the

MCS to yield a valid test. Moreover, the computational coempiy of the test is negligible.

4.2.4 A New Test of Conditional Coverage

We now describe our new test of cc that combines the two new festhe uc and the
i.i.d. property. Starting point is again the standard téstas proposed hy Christoffersen

[1998] which utilizes the test statistic

asy

LR = =210g[L(p; I1, I, ooy ) [ L(TL; Iy, Loy oy 1)) N P (2), (4.18)

and which is based on the first-order Markov alternative idlesd above. In a related
study, Berkowitz et al. [2011] extend their Weibull test fbe i.i.d. property and derive
an alternative test of cc. They postulate a Weibull distrdyufor the duration variabl®
with distribution

h(D;a,b) = a®bD" e~ (@P)" (4.19)

with E[D] = 1/p. Then, the null hypothesis of their test of cc is given by
Hye:b=1a=0p. (4.20)

Using orthonormal polynomials and the GMM test framewor&n@elon et al. [201.1]
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propose a competing test of the cc hypothesis. Their testtatas given by

Jolq) = (ﬁ > s p>) (% > M(d@-;m) % 2(q). (4.21)

Again, M(d;; p) denotes dq, 1) vector whose entries are the orthonormal polynomials
M;(d;;p),forj=1,...q.

To the best of our knowledge, the literature provides no fication of the mentioned
tests in a way that they allow for a weighted influence of thawd i.i.d. components in
the combined test of cc. From the perspective of a risk manhgerever, such a feature
could be highly desirable as more weight could be assignedéaf the components of

the test of cc. Hence, we are interested in a test of the form
MCSeem =a- f(MCS,)+ (1 —a)-g(MCSiyam),0 <a <1, (4.22)

whereq is the weight of the test of uc in the combined cc test. Thedwmstponent of our

new cc test is then given by

(e+>r L)/n—p _ (4.23)

FMCS,) = ‘(MCSUC)/n—p‘ _ L

p

This term measures (in percent) the deviation between theoted and observed pro-
portion of violations. As the general sizesfC'S,. andM C'S;;4., are not the same the
guantities would not be suitably comparable without a statidation. Moreover, the dif-
ference in size varies depending on the setting#{iandp). As the quantities will appear
in one sum, it is necessary to be able to compare them suitably

To allow for a one-sided testing within the uc component,aheve term is multi-
plied by Lisn 7, /n>py OF Lisn 1, m<p)s respectivel@ The intuition behind this is that
the weight of the uc part should be zero if the observed gtyastfon the opposite side”

of the null hypothesis such that it is very unlikely that theeanative is true.

10A one-sided test seems to be useful as it can be consideredy@seaalization of the Basel traffic
light approach and is of particular interest to risk-avénsestors who are primarily interested in limiting
downside risk.
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The second component in the cc tesfin (#.22) is defined as

MCSiigm — 7

r

g(MCSiiqm) = L MCSiam>i}s (4.24)

wherer is an estimator of the expected value of the test statigicS;;, ,,, under the null
hypothesis[(4)5), i.e., faE (M C Sia.m|Ho) =: r (See below and chapter A). The second
component measures the deviation (in percent) betweexpleetd and observed sum of
squared durations. Again, we use random variabtedreak ties. In line with the new uc
and i.i.d. tests, we abstain from a formal derivation of therdbution of our test statistic
and obtain the critical values by means of a Monte Carlo satmr for each combination
of sample size: and weighting factou.

Note that the estimatat is calculated in a prior step before calculating the actual
test statistics and deriving critical values (cf. the psmadie in ). Thus, fod/CS,. .,
the arguments regarding the correctness of the MCS fromnti@eSection 2.2 are also
applicable.

As the weighting factor can be chosen arbitrarily, a natural question to ask isd&ow
should be chosen. On the one hand, small test samples ®0gda®s) and small values
of p (e.g.p = 1%) lead to a small expected number of VaR-violations. In thesses,

a risk manager (or regulator) might be more interested irfktieating the VaR-violation
frequency rather than the i.i.d. property of, for instarardy two or three violations. On
the other hand, large test samples (e.g., 1,000 days) madecalm bull and volatile
bear markets. A VaR-model which is not flexible enough to atlaphese changes may
lead to non-identically distributed VaR-violations whatthe same time yielding a correct
uc. Therefore, risk managers could be inclined to selecieidevel ofa to shift the
sensitivity of the cc test to the test of the i.i.d. propeNipte, as both components of
the test are strictly positive it is ruled out that one crédezould compensate the failing
of the other. Therefore, the choice @fffects solely the sensitivity of the cc test to one
of the components. Nevertheless, the selection of the aptiveighting factora is an

interesting task. Regarded as a mathematical optimizatioblem, one could basically
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find the optimala which minimizes a suitably weighted sum of the type-1 andcetgp
error for a given alternative. However, this mainly teclahissue is not in the scope of

the present paper.

4.3 Simulation Study

To examine the performance of our newly proposed backtedisite samples, we per-

form a comprehensive simulation study in which we comparenaw backtests to se-
veral different benchmarks. These include the classict$ tgroposed by Christoffersen
[1998] and| Christoffersen and Pelletier [2004] becaussdhmpproaches are still ve-
ry frequently used in theory (e.g. by WeilR and Supper, 201R) @ practice (see

Basel Committee on Banking Supervision, 2011). In addjtiwa employ the tests re-
cently proposed by Candelon ef al. [2011] as a benchmarkishowbust properties and
a high power. The relevance of the benchmark tests is engathby the fact that in

recent studies these procedures are applied in paralle] ésg./| Asai et al., 2012 and
Brechmann and Claudia, 2013).

Before starting with the uc tests, we want to point out thatiime required to compute
the critical values is quite short for all applied tests. Hverage calculation times for
p = 0.05 and different values af are presented in Takle 4.1.

With the exception of the Weibull tests, all average calootatimes lie within a cor-
ridor of 0.07 to 4.4 seconds. The longer calculation timehefWeibull tests, which lies
between 25.79 to 27.95 seconds, is due to the required maxilikalihood estimates
of the parameters of the Weibull distribution. However, @oh the calculation times are

critical for applications.
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Table 4.1: Comparison of the Backtests’ Calculation Times
The table presents average calculation times (in secood)d different backtests used in the papepfer
0.05, 10,000 simulations and different valuesrobased on 10 repetitions. All calculations are performed
with Matlab2012a on a standard notebook. Note, the restilig©S;;; are taken over td/CS.... Hence,
the upper bound for a direct calculation®fC'S... is the sum of both single times.

UC Tests
n  LRE" GMM,. MCS,.
252 0.08 1.48 0.07
500 0.12 1.60 0.11
1,000 0.20 1.84 0.20
1,500 0.29 2.06 0.28
2,500 0.45 2.57 0.45
I.I.D. Tests
n LRIW" LRYS  GMM;q MCS;iq
252 0.61 25.79 3.70 1.54
500 0.71 26.31 3.75 1.64
1,000 0.92 26.48 3.89 1.85
1,500 1.10 27.09 4.06 2.06
2,500 1.52 27.93 4.40 2.28
CC-Tests
n LR LR¥* GMM,., MCS..
252 0.68 26.26 1.99 1.58
500 0.78 26.48 2.18 1.63
1,000 1.01 27.13 2.31 1.84
1,500 1.23 27.43 2.43 1.95
2,500 1.66 27.95 2.65 2.29

4.3.1 Tests of Unconditional Coverage

We analyze the performance of the different tests of uc bykstimg 10, 000 samleg
and using different parameter combinationsgpf;, andn to analyze the size and power
of the backtests in more detail. In constrast to obtainioggtions from a parametric VaR

model, we simulate sequences of VaR-violations using tkegkenerating process (DGP)

I, ~Bern(y-p), t=1,...n. (4.25)

Here,~ is a coverage parameter which allows for distinguishingveet null hypothe-
sis and alternatives. To determine the size of the tests,elvéhe coverage parameter

~ = 1.0. For the analysis of the tests’ power, we increase the vaolgirobability and

with this number of repetitions, the standard error of tmeusated rejection probabilites is equal to
ﬁ p(1 — p), wherep is the true rejection probability. That means, the staneéaraor is of orderﬁ. A
similar result holds for the accuracy of the simulated caitvalues, see below.
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sety = 1.1, 1.25, 1.50 and2.00 Each sequencg of simulated VaR-violations is then
backtested using the new upper-taflC'S* and the two-tailed/C'S”, backtest as descri-
bed in Section 4.2]12. To evaluate each test’s power, we ctantipe fraction of simulations
in which the test is rejected (hereafter referred to as tiejecate). Critical values of the
test statistics for different parameterandn are computed using), 000 MC simulations.
Complementing our new backtests, we also apply/tRé&* test of Christoffersen [1998]
and theGM M, test of.Candelon et al. [2011] to the simulated violationussgres and
compare the results of the tests. The results of the sinoulatudy on the performance
of the tests of uc are presented in Tdblg 4.2 and Table 4.3sNptisingly, due to the
fact that the critical values for each of the tests are ddtexdvia simulation, the rejec-
tion frequencies for the setting = 1.0 are close to the nominal size of the tests. With
respect to the power of the uc tests, the results of tR* test, theG M M, test, and the
two-tailed M C'S”. test are very similar. Only in a few cases do the results oGtheN/,,.
test deviate from the rejection rates of th&*“» test and the two-tailed/C'S% testin a
positive or negative direction. However, all of the threalgred two-tailed tests are out-
performed by the one-sided C'S* test in the vast majority of settings. Consequently, in
addition to being of high practical relevance to regulgtorg new one-tailed test of uc

offers an increased test power compared to standard VaRdsas from the literature.

2We calculate but do not report results for the setting: 1 and concentrate on the more practically
relevant scenario of a VaR-model underestimating risk.



Table 4.2: Unconditional Coverage - Size and Power of Teés¥% VaR
The table presents rejection rates obtained by applyingnaitonal coverage tests to 10,000 samples of Bernouflukated VaR-violation sequences. The VaR levéd
set t05%. Results are presented for various sets of sample size®l y-factors which multiplies the probability of a VaR-violati by 1, 1.1, 1.25, 1.5, and 2. The results
for v = 1p correspond to the evaluation of the size of the t&gt~“» andGM M,,. refers to the unconditional coverage tests of Kupiec [128%] Candelon et al. [2011].

MCSE, andM C S refer to the new two-tailed and upper-tail Monte Carlo siatioh based tests. Top results are highlighted in bold type.

Significance level: 1%

Significance level: 5%

Significancele10%

yop n LREY  GMM,. MCSY MCS¥ LREY  GMM,. MCSY MCS¥ LREY  GMM,. MCSY MCS¥
252 0.010 0.010 0.009 0.009 0.049 0.049 0.049 0.049 0.100  990.0 0.100 0.100
500 0.011 0.011 0.010 0.010 0.049 0.049 0.050 0.047 0.099  030.1 0.099 0.097
5.00% 1,000 0.010 0.010 0.012 0.012 0.054 0.050 0.055 0.053  .1060 0.099 0.105 0.102
1,500 0.010 0.012 0.009 0.009 0.047 0.052 0.049 0.048 0.098 .0990  0.097 0.101
2,500 0.009 0.009 0.010 0.012 0.048 0.048 0.050 0.051 0.106 .1010  0.102 0.102
252 0.015 0.005 0.015  0.024 0.062 0.059 0.064  0.102 0.111 0.128 0.124  0.178
500 0.022 0.010 0.023  0.036 0.075 0.068 0.080  0.128 0.144 0.133 0.147  0.223
550% 1,000 0.033 0.020 0.034  0.059 0.105 0.099 0.118  0.180 0.195 0.190 0.191  0.289
1,500 0.047 0.030 0.045  0.076 0.134 0.127 0.140 0215 0.227 0.216 0.221  0.345
2,500 0.083 0.055 0.082  0.126 0.201 0.186 0.204  0.306 0.336 0.296 0.310  0.445
252 0.047 0.011 0.045  0.072 0.137 0.120 0.146  0.223 0.203 0.223 0.230  0.338
500 0.089 0.048 0.095 0.143 0.211 0.215 0.240  0.343 0.331 0.331 0.346  0.487
6.25% 1,000 0.197 0.142 0.195 0.281 0.386 0.385 0.408  0.530 0.540 0.535 0530  0.667
1,500 0.342 0.268 0.328  0.423 0.549 0.542 0.560  0.679 0.672 0.666 0.679  0.796
2,500 0.571 0.515 0.569  0.661 0.769 0.762 0.779  0.859 0.873 0.853 0.859  0.922
252 0.196 0.061 0.192  0.269 0.377 0.349 0.396 0518 0.481 0.510 0519  0.651
500 0.418 0.282 0422 0516 0.620 0.614 0.643  0.754 0.746 0.740 0.754  0.852
7.50% 1,000 0.761 0.700 0.769  0.840 0.894 0.898 0.907  0.948 0.951 0.950 0.948  0.975
1,500 0.933 0.898 0.931  0.958 0.978 0.976 0.981  0.992 0.991 0.989 0.992  0.997
2,500 0.996 0.993 0.996  0.998 0.999 1.000 0.999 0.999 1.000 1.000  0.999 1.000
252 0.709 0.447 0.698  0.777 0.859 0.845 0.869  0.922 0.910 0.920 0.922  0.960
500 0.961 0.924 0.961  0.975 0.988 0.988 0.988  0.995 0.996 0.996 0.995  0.998
10.00% 1,000 1.000 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1,500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .0001  1.000
2,500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .0001  1.000
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Table 4.3: Unconditional Coverage - Size and Power of Tek¥% VaR
The table presents rejection rates obtained by applyingnaitonal coverage tests to 10,000 samples of Bernouflukated VaR-violation sequences. The VaR levéd
set to1%. Results are presented for various sets of sample size®l y-factors which multiplies the probability of a VaR-violati by 1, 1.1, 1.25, 1.5, and 2. The results
for v = 1p correspond to the evaluation of the size of the t&gt~“» andGM M,,. refers to the unconditional coverage tests of Kupiec [128%] Candelon et al. [2011].
MCSE, andM C S refer to the new two-tailed and upper-tail Monte Carlo siatioh based tests. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significanaele10%
yep n LREY  GMM,. MCSY MCS¥ LRE?  GMM,. MCS% MCSut LRM?  GMM,. MCS% MCSut
252 0.010 0.012 0.009 0.010 0.051 0.050 0.049 0.050 0.101 030.1 0.100 0.104
500 0.009 0.012 0.010 0.009 0.049 0.052 0.048 0.048 0.073 010.1 0.099 0.096
1.00% 1,000 0.014 0.009 0.012 0.011 0.048 0.050 0.053 0.051 .1050 0.102 0.103 0.107
1,500 0.011 0.009 0.009 0.010 0.050 0.050 0.048 0.051 0.095 .1030 0.101 0.101
2,500 0.010 0.008 0.010 0.011 0.054 0.047 0.052 0.051 0.106 .0990 0.100 0.100
252 0.013 0.017 0.014 0.016 0.049 0.074 0.057 0.066 0.089 0.138 0.109 0.127
500 0.010 0.014 0.015 0.019 0.046 0.054 0.062 0.080 0.082 0.135 0.115 0.148
1.10% 1,000 0.014 0.006 0.013 0.023 0.061 0.058 0.065 0.089 0.097 0.117 0.120 0.166
1,500 0.015 0.010 0.017 0.028 0.069 0.058 0.070 0.102 0.136 0.132 0.127 0.184
2,500 0.016 0.012 0.018 0.036 0.072 0.078 0.083 0.130 0.147 0.151 0.146 0.221
252 0.026 0.029 0.020 0.029 0.058 0.108 0.076 0.111 0.095 0.187 0.134 0.192
500 0.018 0.026 0.027 0.039 0.066 0.072 0.086 0.136 0.115 0.189 0.153 0.234
1.25% 1,000 0.032 0.003 0.039 0.063 0.112 0.119 0.131 0.198 0.164 0.207 0.207 0.310
1,500 0.044 0.027 0.057 0.091 0.141 0.139 0.166 0.253 0.268 0.260 0.260 0.371
2,500 0.082 0.050 0.087 0.134 0.220 0.219 0.232 0.342 0.334 0.335 0.344 0.476
252 0.059 0.060 0.045 0.069 0.094 0.181 0.131 0.192 0.134 0.281 0.206 0.305
500 0.054 0.081 0.072 0.103 0.137 0.160 0.186 0.276 0.220 0.339 0.282 0.406
1.50% 1,000 0.132 0.020 0.159 0.220 0.304 0.297 0.341 0.447 0.377 0.435 0.448 0.580
1,500 0.194 0.140 0.227 0.315 0.401 0.401 0.439 0.562 0.573 0.569 0.563 0.686
2,500 0.374 0.296 0.404 0.506 0.617 0.613 0.641 0.747 0.739 0.737 0.747 0.848
252 0.182 0.194 0.143 0.194 0.238 0.405 0.291 0.401 0.281 0.518 0.405 0.538
500 0.239 0.292 0.292 0.358 0.419 0.437 0.490 0.605 0.542 0.667 0.605 0.721
2.00% 1,000 0.533 0.213 0.583 0.662 0.747 0.749 0.778 0.852 0.810 0.845 0.852 0.914
1,500 0.736 0.665 0.768 0.831 0.888 0.887 0.900 0.941 0.951 0.946 0.941 0.969
2,500 0.944 0.911 0.947 0.969 0.988 0.984 0.987 0.994 0.992 0.993 0.994 0.998
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4.3.2 Tests of the I.I.D. Property

As discussed in Sectidn 4.2.1, a correctly specified VaRehsldould yield i.i.d. viola-
tions. In this part of the simulation study, we analyze thevgoof the new backtests of
i.i.d. VaR-violations using two data generating procesBést, we investigate the power
of our new backtests and competing benchmark tests usirepdept violations. Second,
we repeat this analysis for non-identically distributenl&iion processes. In both settings,
we perform thel/ C'S;,, test and compare its finite sample behavior to that offtRe!"
test of_ Christoffersen [1998], the R¥S' test of Christoffersen and Pelletier [2004] and
the GM M;;, test of_.Candelon et al. [2011].Because clustering implies the occurance
of at least two VaR-violations, the i.i.d. tests are not parfed on samples where this
minimum number is not achieved. To be more prec)sg, , I, > 2 holds true for each
of the samples simulated by the procedures below, whedenotes a simulated VaR-
violation sequence. Basically, each of the utilized testsfeasible under this condition.
Only the LRYS" test statistic cannot be computed for some simulated sanspleaining
two violations (for more details see Candelon et al., 200\ classify these cases rast

rejected

4.3.2.1 Independent VaR-Violations

In the first setting, we generate sequences of dependenviddrions with the degree of
dependence inherent in the violation processes varyingtowe. For each\ and eachn,

we draw10, 000 simulations of

Y = O¢Zy, with o1 = 1 (426)

and

ol =02 +(1—=Nz22,,0<A<1,t>1. (4.27)

13As suggested in Candelon et al. (2011) wegset 3 for p = 5% andq = 5 for p = 1% throughout the
simulation study. Critical values for thel C'S;;, test are obtained as outlined in Secfion4.2.3 using00
MC simulations.
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Besidesz; ~ N(0, 1), Vt. Note, this proceeding requires no pre-phasis in orderltuea
late o. The distribution ofy; is based on the well-known exponentially weighted moving
average (EWMA) type process. This approach allows for ap esgilation of the degree
of dependence by determiningas the single decay factor. To be more precisegntrols
the half-life interval of the observation weights (i.e g ihterval in which the weight of an
observedr? decreases to half its original value) by;(0.5) /log()\). We apply the back-
tests to several different levels afrepresenting half-life intervals of 5, 10, 20, 40, 60,
and 80 days of data. This range of half-life intervals cowgpscal volatility persistence
of asset return seriQ.Table@r shows the half-life intervals and the correspogdi
level used to compute the power of the backtests.

Table 4.4: Half-Life Interval and-Level
The half-life interval is computed bipg(0.5)/log()) and refers to the time interval over which the weight

of an observation decrease to one-half its original valine dorresponding refers to the decay factor of
the EWMA type process of computing.

Half-Life Interval 5 10 20 40 60 80
A 0.8706 0.9330 0.9659 0.9828 0.9885 0.9914
Dependent VaR-violations are ensured by setting a cons&Rtfor alli = 1,... n.

For each decay factoy, the VaR is determined separately by the empiricguantile of
10, 000 random values simulated by Equatién (4.26). The simulatii-Volationsl; are
computed as defined by Equation (4.1).

Tabled 4.5 anfd 4.6 show the results of the power study commggtine independence
property of VaR-violations. We apply each test to 60 differeombinations of covera-
ge probabilityp, decay factor\ and sample size. Together with the three significance
levels of 1%, 5%, and 10%, we thus obtain 180 different sgstin our simulation stu-
dy. In total, theM C'S;;, test outperforms the remaining tests in 104 out of the 180 tes

settings. Compared to the other test methods, this tesepsss a high statistical power

14The EWMA approach can be used for VaR-forecasting purpd?iskiletrics) whereas is typically
set t00.94 for one-day and.97 for one-month forecasts (see Mina et al., 2001). This cpmeds to half-
life intervals of 11 and 23 days. Furthermare, Berkowitzlef2011] estimated variance persistences for
actual desk-level daily P/Ls from several business linemfa large international bank. The determined
values are 0.9140, 0.9230, 0.9882 and 0.9941 which comesjaohalf-life intervals of 8, 9, 58, and 117
days.
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in settings in which the half-life interval is relativelyrige. Furthermore, the superiority
of the M C'S;;4 test increases with the significance level. Th&/ M test shows the best
statistical power in almost one third of the consideredragtt Compared to the remai-
ning tests, the test performs well particularly for hafélintervals up to 20 days and for
small significance levels. For significance level and cayegarobabilityl %, its power is
almost always superior. TheR¢" test yields the best statistical power in 21 out of 150
settings, this is especially true for small samples as veefbaa half-life interval of five
days. This result should be interpreted somewhat cautialis? to the fact that the vast
majority of the top results are concentrated at the verytstadf-life interval of five days.

It is to be expected that theR¢" test performs well in such circumstances, because short
decay intervals lead to frequent occurrences of succe¥aReviolations. Consequently,
the power of this test deteriorates as the decay intervedases. Besides, tHeR](" test
performs surprisingly well for some settings with= 252. However, in these cases the
power decreasesifincreases indicating asymptotic disturbances. A simit@nmmenon
was observed in Berkowitz etlal. [2011]. For none of the 18f&dint settings does the
LRYS test lead to the best statistical power of all analyzed testhods. Furthermore,
for p = 5% and a half-life interval larger than 10 days, the test yieldsatistical power
below its nominal size and shows the undesired behavior@kdsing rejection rates as

the sample size increases.



Table 4.5: 1.1.D. VaR-Violations - Setting 1: Independen¢®wer of Tests - 5% VaR

The table presents rejection rates obtained by applying fesi.i.d. VaR-violations to 10,000 samples of non-indagent VaR-violation sequences simulated by Equation
(4.28). The VaR levepb is set t05%. Results are presented for various sets of sample sizewl half-life intervals which serve as a proxy for the degredependence.
LR, LRYS andG M M;;q refers to the independence tests of Christoffersen [1%2@jistoffersen and Pelletier [2004] and Candelon et all§20M C'S;,q refers to the
new Monte Carlo simulation based test. Top results are igigtdd in bold type.
Half-Life Significance level: 1% Significance level: 5% Siigance level: 10%
Interval n LRmT  LRYS  GMM;q MCSiq LRmer  LRYS  GMM;;q MCS;q LRmeT  LRYS  GMM;q MCSiq
252 0.067 0.005 0.108 0.072 0.146 0.033 0.213  0.220 0.195  0.075 0.270  0.339
500 0.093 0.016 0.186 0.142 0.170  0.081 0.362 0.354 0.224  0.153 0.451  0.499
5 1,000 0.126  0.047 0.308 0.264 0.217 0.160 0.591 0.552 0.308  0.260 0.689  0.695
1,500 0.155  0.077 0.423 0.393 0.325 0.233 0.741 0.684 0.451  0.358 0.823 0.807
2,500 0.308  0.170 0.614 0.611 0.515 0.396 0.905 0.858 0.631  0.535 0.948 0.933
252 0.037 0.005 0.086 0.063 0.104  0.026 0.173  0.188 0.153 0.064 0.227  0.296
500 0.047 0.006 0.143 0.120 0.098 0.038 0.281  0.293 0.145  0.080 0.357  0.423
10 1,000 0.049 0.014 0.214 0.211 0.104  0.065 0.454  0.469 0.168 0.122 0.556  0.612
1,500 0.051  0.021 0.295  0.315 0.151 0.085 0.593 0.600 0.246 0.158 0.695  0.732
2,500 0.096  0.033 0.425  0.503 0.234 0.134 0.775 0.774 0.338  0.223 0.860  0.872
252 0.026 0.005 0.061 0.054 0.084  0.029 0.129  0.149 0.131 0.066 0.176  0.236
500 0.029 0.005 0.095 0.092 0.073 0.029 0.195  0.231 0.112 0.062 0.262  0.340
20 1,000 0.025  0.004 0.135  0.142 0.067 0.027 0.300 0.332 0.119 0.058 0.392  0.460
1,500 0.018  0.005 0.169  0.202 0.077 0.029 0.392 0.438 0.151 0.058 0.494  0.578
2,500 0.034  0.005 0.228  0.327 0.107 0.027 0.536 0.591 0.181 0.055 0.645  0.727
252 0.022 0.005 0.052 0.042 0.077 0.031 0.115  0.128 0.117 0.069 0.162  0.210
500 0.022 0.008 0.079 0.077 0.064  0.030 0.163  0.196 0.103 0.068 0.226  0.297
40 1,000 0.018  0.003 0.095  0.099 0.052 0.024 0.219 0.251 0.103 0.051 0.293  0.363
1,500 0.012  0.002 0.107  0.129 0.060 0.014 0.265 0.307 0.117 0.037 0.354  0.430
2,500 0.017  0.002 0.128  0.180 0.073 0.010 0.324  0.397 0.132 0.025 0.424  0.531
252 0.020 0.008 0.041  0.042 0.071 0.037 0.099 0.130 0.107 0.082 0.141  0.211
500 0.023 0.005 0.085 0.080 0.059 0.032 0.164  0.198 0.095 0.070 0.224  0.297
60 1,000 0.016  0.005 0.093  0.100 0.049 0.024 0.204  0.246 0.098 0.049 0.275  0.350
1,500 0.012  0.003 0.106  0.119 0.063 0.017 0.234  0.280 0.120  0.040 0.314  0.396
2,500 0.016  0.001 0.110  0.146 0.065 0.009 0.269 0.331 0.122 0.026 0.363  0.459
252 0.022 0009 0.032  0.036 0.072 0.041 0.089 0.117 0.107 0.086 0.130  0.200
500 0.020 0.006 0.085 0.083 0.051 0.035 0.167  0.206 0.085  0.073 0.224  0.305
80 1,000 0.016  0.003 0.113  0.119 0.047 0.026 0.224  0.263 0.093 0.057 0.297  0.371
1,500 0.014  0.002 0.113  0.128 0.065 0.021 0.250 0.289 0.122 0.045 0.323  0.400
2,500 0.015  0.003 0.108  0.150 0.065 0.013 0.267 0.323 0.118 0.028 0.350  0.436
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Table 4.6: 1.1.D. VaR-Violations - Setting 1: Independen¢®wer of Tests - 1% VaR

The table presents rejection rates obtained by applying fesi.i.d. VaR-violations to 10,000 samples of non-indagent VaR-violation sequences simulated by Equation
(4.28). The VaR leveb is set t01%. Results are presented for various sets of sample sizewl half-life intervals which serve as a proxy for the degredependence.
LR, LRYS andG M M;;q refers to the independence tests of Christoffersen [1%2@jistoffersen and Pelletier [2004] and Candelon et all§20M C'S;,q refers to the
new Monte Carlo simulation based test. Top results are igigtdd in bold type.
Half-Life Significance level: 1% Significance level: 5% Siigance level: 10%
Interval n LRmT  LRYS  GMM;q MCSiq LRmer  LRYS  GMM;;q MCS;q LRmeT  LRYS  GMM;q MCSiq
252 0.055 0.004 0.068 0.048 0.181  0.035 0.136 0.141 0.237  0.095 0.186 0.226
500 0.065 0.010 0.073 0.047 0.198  0.065 0.152 0.148 0.252  0.132 0.212 0.241
5 1,000 0.114  0.038 0.099 0.055 0.230  0.137 0.211 0.182 0.346  0.224 0.285 0.296
1,500 0.141  0.087 0.116 0.064 0.283  0.219 0.265 0.212 0.388  0.322 0.361 0.328
2,500 0.193  0.179 0.149 0.083 0.384  0.362 0.363 0.255 0.482  0.475 0.470 0.393
252 0.037 0.005 0.076 0.059 0.156  0.034 0.141 0.147 0.217 0.080 0.192  0.227
500 0.039 0.009 0.078 0.051 0.151 0.051 0.156 0.150 0.225  0.104 0.211  0.239
10 1,000 0.064  0.026 0.100 0.058 0.152 0.100 0.205 0.187 0.265  0.173 0.281  0.297
1,500 0.072  0.055 0.111 0.067 0.174  0.161 0.250 0.212 0.266  0.254 0.343 0.327
2,500 0.094  0.117 0.140 0.098 0.236 0.275 0.340 0.273 0.324  0.384 0.453 0.404
252 0.026 0.005 0.084 0.066 0.158  0.031 0.147 0.156 0.227 0.075 0.192  0.237
500 0.028 0.008 0.076 0.052 0.114  0.049 0.144  0.147 0.198 0.099 0.194  0.235
20 1,000 0.040  0.020 0.083 0.067 0.103 0.078 0.173  0.187 0.209 0.137 0.244  0.287
1,500 0.042  0.035 0.098 0.069 0.124  0.113 0.216 0.202 0.192  0.189 0.296  0.320
2,500 0.048  0.071 0.114 0.084 0.149 0.181 0.283 0.258 0.225  0.271 0.380  0.388
252 0.020 0.004 0.079 0.065 0.199  0.027 0.142 0.155 0.266  0.063 0.193 0.238
500 0.023 0.010 0.078 0.070 0.107 0.048 0.135  0.151 0.204  0.093 0.187  0.222
40 1,000 0.031 0.026 0.089 0.068 0.083 0.077 0.154  0.176 0.181 0.136 0.216  0.265
1,500 0.032  0.035 0.087 0.072 0.099 0.099 0.182  0.195 0.156 0.158 0.253  0.295
2,500 0.031  0.050 0.097 0.088 0.119 0.126 0.223  0.238 0.180  0.195 0.308  0.348
252 0.017 0.005 0.077 0.052 0.257  0.026 0.136 0.149 0.330  0.062 0.188 0.230
500 0.024  0.010 0.088 0.074 0.116 0.045 0.142  0.157 0.212 0.095 0.189  0.229
60 1,000 0.031 0.030 0.089 0.073 0.081 0.084 0.155  0.170 0.174  0.135 0.213  0.251
1,500 0.031  0.039 0.092 0.082 0.092 0.095 0.174  0.189 0.143 0.155 0.241  0.280
2,500 0.029  0.052 0.093 0.091 0.109 0.118 0.199  0.218 0.162 0.183 0.277 0.327
252 0.014  0.004 0.064 0.037 0.302  0.025 0.131 0.127 0.374  0.054 0.181 0.204
500 0.023 0.006 0.081 0.071 0.112 0.039 0.135  0.159 0.211 0.084 0.182 0.231
80 1,000 0.030  0.031 0.096 0.083 0.083 0.085 0.157  0.181 0.171 0.135 0211  0.262
1,500 0.027  0.046 0.090 0.088 0.083 0.103 0.163  0.193 0.133 0.159 0.224  0.279
2,500 0.033  0.054 0.097  0.102 0.116  0.118 0.194  0.220 0.175 0.177 0.265  0.315
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4.3.2.2 ldentically Distributed VaR-Violations

The data generating process for the second part of the dioruktudy is given by:

=~
I

(4.28)

S Bern(p + 26), % <t < n.

\

Here, we choosé = Op to analyze the size of a test afid= 0.1p, 0.2p, 0.3p, 0.4p and
0.5p for the power study. This setting leads to variations in trebpbility of obtaining a
VaR-violation between the four equal-sized subsampless€guently, the violations will
occur unequally distributed. Note that the probabilityiaaons are determined in a way
which ensure& (> | ;) = n - p. The setup of this part of the simulation study covers a
realistic scenario in which a VaR-model does not, or noyfuficorporate changes from
calm market phases to highly volatile bear markets or firmcises and vice versa. This
in turn leads to clustered VaR-violations regardless ofjinestion whether the data might
show signs of autocorrelation.

Alternatively, non-stationary VaR-violations could bemdified by splitting a sample
into several subsamples and applying the test for uc to ealobasple. However, this
approach suffers from two main drawbacks. First, for smatisamples the power of uc
tests is relatively low (see Talile 4.2). Second, it remairedaar at which points real data
samples have to be split into two or more subsamples.

Tables 4.7 and 4.8 show the results of the power study coimgethe property of
identically distributed VaR-violations. We apply eachttes50 different combinations of
coverage probability, probability variation factod, and sample size. Furthermore, we
compute rejection rates for significance levels of 1%, 5%, E0?6 which leads to a total

of 150 different test settings.



Table 4.7: 1.1.D. VaR-Violations - Setting 2: Identical Didution - Size and Power of Tests - 5% VaR

The table presents rejection rates obtained by applyirg tesi.i.d. VaR-violations to 10,000 samples of non-ideally distributed VaR-violation sequences simulated by
Equation[(4.2B). The VaR levelis set t05%. Results are presented for various sets of sample siz@s probability variation factor& Results fod = 0p correspond to the
evaluation of the size of the tediR]¢", LR}S" andG M M,;4 refers to the independence tests of Christoffersen [1@98]jstoffersen and Pelletier [2004] and Candelon =t al.
[2011]. M C'S;;4 refers to the new simulation based i.i.d. test. Top resuéhaghlighted in bold type.
Significance level: 1% Significance level: 5% Significancele10%
5 n LRTAT  LRYS  GMM;q MCS;q LRmer  LRYS  GMM;;q MCSiq LRTAT  LRYS  GMM;;,q MCS;q
252 0.010  0.010 0.011 0.010 0.048  0.053 0.049 0.053 0.095 040.1  0.101 0.101
500 0.011  0.010 0.013 0.011 0.050  0.048 0.052 0.048 0.101 950.0  0.102 0.102
Op 1,000 0.009  0.010 0.010 0.008 0.046  0.046 0.046 0.050 0.097 .0960 0.097 0.097
1,500 0.011  0.010 0.010 0.009 0.048  0.045 0.048 0.049 0.099 .0940 0.099 0.099
2,500 0.010  0.009 0.009 0.010 0.051  0.049 0.049 0.051 0.101.1020 0.101 0.101
252 0.011  0.009 0.014 0.009 0.052  0.048 0.058  0.060 0.101 0.094 0.105 0.111
500 0.011  0.009 0.015 0.015 0.050  0.044 0.054  0.068 0.100  0.087 0.102 0.128
0.1p 1,000 0.011  0.006 0.019 0.018 0.048  0.032 0.066  0.074 0.099 0.073 0.116 0.136
1,500 0.009  0.007 0.021 0.020 0.047  0.036 0.071  0.082 0.094  0.076 0.124  0.146
2,500 0.009  0.008 0.021  0.023 0.049  0.037 0.078  0.093 0.100  0.072 0.131 0.170
252 0.015  0.008 0.019 0.015 0.060  0.037 0.068  0.074 0.111 0.075 0.117 0.144
500 0.014  0.005 0.033  0.035 0.057  0.025 0.094  0.124 0.106 0.058 0.147 0.208
0.2p 1,000 0.011  0.002 0.055  0.065 0.049  0.020 0.140  0.190 0.094  0.044 0.204  0.291
1,500 0.011  0.002 0.072  0.090 0.051  0.014 0.177  0.238 0.106 0.033 0.250 0.344
2,500 0.012  0.001 0.096  0.140 0.057  0.008 0.243  0.326 0.111 0.019 0.329 0.452
252 0.015  0.004 0.037 0.030 0.061  0.023 0.105  0.130 0.112 0.053 0.156 0.227
500 0.020  0.003 0.094  0.097 0.061  0.018 0.202  0.258 0.106 0.050 0.275 0.377
0.3p 1,000 0.016  0.003 0212  0.241 0.054  0.024 0.386  0.456 0.106 0.058 0.471 0.579
1,500 0.015  0.005 0.297  0.358 0.063  0.028 0.504  0.591 0.130  0.068 0.593 0.704
2,500 0.022  0.008 0.450  0.549 0.085  0.038 0.697  0.771 0.148 0.075 0.783 0.856
252 0.027  0.001 0.079 0.053 0.080  0.017 0.181  0.209 0.131 0.043 0.240 0.346
500 0.033  0.006 0.273  0.283 0.078  0.049 0.452 0.540 0.125 0.112 0.535 0.664
0.4p 1,000 0.032  0.043 0.613  0.638 0.079  0.164 0.783  0.828 0.140  0.275 0.838 0.894
1,500 0.029 0114 0.781  0.838 0.105  0.284 0.908  0.943 0.181 0.410 0.940 0.971
2,500 0.053  0.248 0.942 0971 0.158  0.482 0.987 0.993 0.250  0.616 0.993 0.997
252 0.041  0.002 0.158 0.113 0.104  0.028 0.317  0.378 0.148  0.074 0.400 0.552
500 0.053  0.040 0.688  0.729 0.109  0.213 0.863  0.944 0.157  0.376 0.915 0.982
0.5p 1,000 0.057  0.436 1.000 1.000 0.124  0.794 1.000 1.000 0.201  0.910 1.000 1.000
1,500 0.061  0.892 1.000 1.000 0.186  0.986 1.000 1.000 0.299  0.998 1.000 1.000
2,500 0.138  1.000 1.000 1.000 0.311  1.000 1.000 1.000 0.425  1.000 1.000 1.000
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Table 4.8: 1.1.D. VaR-Violations - Setting 2: Identical Didution - Size and Power of Tests - 1% VaR
The table presents rejection rates obtained by applyirg tesi.i.d. VaR-violations to 10,000 samples of non-ideally distributed VaR-violation sequences simulated by
Equation[[4.28). The VaR levelis set tol%. Results are presented for various sets of sample siz@esl probability variation factor& Results fory = Op correspond to the
evaluation of the size of the tedtR72¢", LRYS andG M M;;4 refers to the independence tests of Christoffersen [1@38jstoffersen and Pelletier [2004] and Candelon et al.
[2011]. M C'S;;4 refers to the new simulation based i.i.d. test. Top resuéhaghlighted in bold type.

Significance level: 1% Significance level: 5% Significancele10%
5 n LRTAT  LRYS  GMM;q MCS;q LRmer  LRYS  GMM;;q MCSiq LRTAT  LRYS  GMM;;,q MCS;q
252 0.010 0.007 0.010 0.012 0.056 0.042 0.052 0.050 0.108 890.0 0.102 0.103
500 0.009 0.009 0.009 0.011 0.050 0.050 0.048 0.053 0.101 970.0  0.099 0.101
Op 1,000 0.010 0.010 0.009 0.011 0.048 0.046 0.049 0.051 0.100 .0960 0.102 0.101
1,500 0.010 0.010 0.010 0.010 0.047 0.047 0.050 0.052 0.098 .0950 0.100 0.096
2,500 0.009 0.010 0.012 0.011 0.049 0.047 0.050 0.053 0.099 .0980 0.099 0.105
252 0.011  0.008 0.009 0.009 0.054  0.042 0.049 0.050 0.104  0.087 0.099 0.098
500 0.009 0.009 0.009 0.012 0.048 0.047 0.047 0.054 0.097 0.093 0.096 0.103
0.1p 1,000 0.011 0.011 0.012 0.012 0.053 0.049 0.054 0.056 0.102 0.099 0.107 0.113
1,500 0.013  0.009 0.012 0.011 0.053 0.048 0.052  0.059 0.104 0.095 0.102 0.113
2,500 0.013  0.008 0.012 0.013 0.055 0.042 0.056 0.064 0.104 0.088 0.111 0.121
252 0.010 0.007 0.011 0.014 0.052 0.038 0.048 0.056 0.102 0.079 0.097 0.106
500 0.010 0.009 0.011 0.012 0.058  0.042 0.052 0.053 0.105  0.086 0.098 0.105
0.2p 1,000 0.012 0.008 0.015 0.013 0.053 0.041 0.060  0.065 0.107 0.087 0.107 0.126
1,500 0.012 0.007 0.016 0.016 0.056 0.039 0.064 0.082 0.114 0.085 0.122 0.151
2,500 0.013 0.008 0.027  0.031 0.058 0.042 0.094 0.120 0.111 0.087 0.152 0.204
252 0.013 0.006 0.014 0.015 0.057 0.033 0.054 0.060 0.105 0.073 0.102 0.115
500 0.013 0.006 0.017 0.017 0.062 0.033 0.055 0.067 0.110 0.066 0.101 0.124
0.3p 1,000 0.015 0.005 0.022 0.020 0.064 0.034 0.076  0.091 0.123 0.078 0.132 0.173
1,500 0.014 0.008 0.033  0.034 0.063 0.041 0.101 0.143 0.121 0.088 0.168 0.250
2,500 0.017 0.011 0.077  0.090 0.070 0.058 0.193 0.242 0.125 0.119 0.278 0.360
252 0.015 0.005 0.017 0.017 0.063 0.026 0.055 0.070 0.111 0.061 0.104 0.121
500 0.016 0.003 0.023 0.022 0.069 0.023 0.066  0.075 0.114 0.057 0.111 0.145
0.4p 1,000 0.018 0.005 0.038 0.028 0.076 0.035 0.114  0.138 0.139 0.079 0.181 0.253
1,500 0.020 0.014 0.074 0.073 0.074 0.065 0.191  0.257 0.139 0.129 0.280 0.407
2,500 0.021 0.040 0.226  0.259 0.081 0.150 0.424 0.522 0.146 0.251 0.518 0.645
252 0.018 0.001 0.022 0.024 0.069 0.011 0.066 0.081 0.114 0.039 0.108 0.131
500 0.017 0.001 0.031 0.030 0.082 0.014 0.091 0.091 0.132 0.045 0.140 0.164
0.5p 1,000 0.025 0.007 0.079 0.053 0.087 0.051 0.197  0.225 0.157 0.113 0.277 0.377
1,500 0.024 0.032 0.174 0.163 0.085 0.142 0.354  0.487 0.164 0.249 0.467 0.670
2,500 0.027 0.167 0.597  0.694 0.099 0.437 0.822 0.926 0.172 0.602 0.893 0.975
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In total, theM C'S;;, test possesses a high statistical power regarding notigdéy dis-
tributed VaR-violations and its test results are comparablor better than the perfor-
mance of the remaining three approaches for 130 out of thes@&idgs. Particularly for
significance levels of 5% and 10%, it outperforms the conmgetests in almost all cases,
irrespective of the degree of probability variation or séergize. TheGM M test yields
rejection rates which are equal or better than the resultiseo€ompeting models for 30
of the 150 simulation settings. The test particularly aebseits top results for a signifi-
cance level ofi%. The LR]’¢" test is able to match the results of the competing tests in
only seven cases which are restricted to settings in whieh 1% andé = 0.1p. The
results of theL. R%S" test falls short of the performance of the remaining testdrimost all
settings. Finally, it is striking that the power of tfd?7'¢" test and thel R%¢' test signifi-
cantly exceed the nominal size only for large shifts in th&\Waolation probability, i.e.

0 > 0.4p.

4.3.3 Conditional Coverage

Table[4.9 illustrates the behavior of taéC'S,. test considering different levels of the
weighting parametetr. For reasons of space we present results only for a singhenser
combination for each of the two settings. This includes: 1000, a half-life interval of
20 days, andy = 1.25 for setting 1 anch = 1000, 6 = 0.3p, v = 1.25 for setting 2.
Depending on the setting, the VaR probabifityand the significance level, the test yields
the highest rejection rates for valuesadbetween 0.5 and 0.8. This is consistent with our
expectation that the maximum of the statistical power iseadd wher) < a < 1, i.e.,
when the cc test addresses both the uc as well as the i.ijgegpycof the violations. In
the following, we only present the results tor= 0.5.

We continue with a comparison of the size and the power of thieest M C'S,. to
the LR™" test ofl Christoffersen [1998], the R“* test of Christoffersen and Pelletier
[2004] and theGM M. test of Candelon et al. [2011]. For this purpose, we combine
each of the two settings described in Section 4.3.2 witheiased probabilities of a VaR-

violation outlined in Sectioh 4.3.1. Note that we use the-taited uc component. For the
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Table 4.9: Conditional Coverage - Power of the&”'S,.. Test under Different Level of

The table presents rejection rates obtained by applying\liés,.. test to 10,000 samples of non-i.i.d.
distributed VaR-violation sequences. Panel A and B contajection rates for sequences simulated by
Equation [4.2b) and Equatioin (4]128) with an increased timigorobability. The parameter combinations
used for the simulations are described at the top of each.pBme top result for each combination of
VaR level, and significance level is highlighted in bold type

5% VaR 1% VaR
Significance level: Significance level:
a 1% 5% 10% 1% 5% 10%

Panel A:n = 1,000/ v = 1.25 / half-life interval = 20 days

0 0.107 0.294 0.440 0.056 0.171 0.283
0.1 0.123 0.329 0.482 0.053 0.184 0.295
0.2 0.149 0.376 0.535 0.068 0.219 0.337
0.3 0.169 0.449 0.607 0.082 0.232 0.356
0.4 0.231 0.511 0.649 0.106 0.265 0.378
0.5 0.310 0.550 0.664 0.128 0.277 0.372
0.6 0.350 0.545 0.641 0.150 0.289 0.379
0.7 0.366 0.539 0.621 0.144 0.254 0.340
0.8 0.343 0.511 0.604 0.140 0.256 0.330
0.9 0.318 0.468 0.553 0.149 0.264 0.342
1 0.306 0.455 0.536 0.125 0.224 0.300

Panel Bn = 1,000/~ =1.25/6 = 0.3p

0 0.105 0.264 0.393 0.014 0.074 0.151
0.1 0.108 0.290 0.433 0.013 0.081 0.164
0.2 0.124 0.336 0.479 0.015 0.093 0.183
0.3 0.146 0.383 0.548 0.019 0.098 0.192
0.4 0.188 0.453 0.604 0.023 0.121 0.221
0.5 0.232 0.509 0.636 0.036 0.140 0.234
0.6 0.294 0.542 0.657 0.053 0.153 0.236
0.7 0.299 0.519 0.631 0.059 0.158 0.233
0.8 0.285 0.505 0.617 0.067 0.163 0.238
0.9 0.256 0.463 0.570 0.064 0.161 0.236
1 0.239 0.441 0.553 0.064 0.159 0.234

determination of critical values we perform the procedwsexeplained in Section 4.2.4
using10, 000 MC simulations. In line with the settings above, for each boration of~,

9, volatility half-life, andn we repeat the simulation of VaR-violation sequent@$)00
times. We present the results of the simulation study coregran increased probability
of a VaR-violation combined with non-independent occuceeaf violations (setting 1) in
Tables4.70 and 4.11, and combined with non-identicallgribisted violations (setting 2)
in Tablel4.12 anf 4.1

15To save space, we do not present the rejection rates of alipgier combinations. The complete results
are available from the authors upon request.



Table 4.10: Conditional Coverage - Setting 1: Independemmver of Tests - 5% VaR

The table presents rejection rates obtained by applyingsts to 10,000 samples of non-independent VaR-violatignesgces simulated by Equatidn (4.26) with an increased
violation probability. The VaR levep is set t05%. Results are presented for various sets of sample sizedactors which increase the probability of a VaR-violatiand
decay intervals which serve as a proxy for the degree of depere LR2*", LRY* andG M M. refers to the cc tests df Christoffersen [1998], Christsiéa and Pelletier
[2004] and Candelon etlal. [2011}/ C'S... refers to the new simulation based test. Top results ardigigad in bold type.
Decay Significance level: 1% Significance level: 5% Signifeealevel: 10%
Interval p n LRT™  LRY  GMMee MCSec LRTe™  LRY  GMMee MCSee LR LRY  GMMee MCSee
252 0.052  0.028 0.044  0.093 0.103  0.088 0.212  0.237 0.193  0.154 0.318  0.344
500 0.059  0.033 0.063  0.150 0.128  0.108 0.287  0.340 0.208  0.177 0.415  0.463
10 5.50% 1,000 0.074  0.047 0.107 0.251 0.166  0.142 0.435  0.493 0231  0.218 0.571  0.613
1,500 0.104  0.061 0.183 0.371 0.199  0.168 0.558  0.613 0.280  0.256 0.686  0.721
2,500 0.152  0.095 0.360  0.565 0290  0.226 0.767  0.783 0.377  0.331 0.857  0.860
252 0.204  0.109 0.060  0.235 0.302  0.222 0.364  0.457 0.433  0.307 0.488  0.555
500 0.353  0.259 0.144  0.417 0.493  0.429 0.565  0.661 0.599  0.526 0.693  0.762
10 7.50% 1,000 0.591  0.524 0.387 0.704 0.747  0.693 0.825  0.878 0.804  0.770 0.893  0.929
1,500 0.795  0.708 0.669  0.886 0.878  0.847 0.939  0.967 0.915  0.899 0.970  0.984
2,500 0.946  0.909 0.932 0.985 0979  0.961 0.994  0.998 0.988  0.980 0.997  0.999
252 0.096  0.060 0.047 0.128 0.160  0.142 0.227  0.285 0.258  0.215 0.335  0.382
500 0.127  0.083 0.052  0.182 0.218  0.178 0.285  0.372 0.306  0.253 0.418  0.486
20 6.25% 1,000 0.179  0.137 0.096 0.299 0.318  0.264 0.438  0.539 0.393  0.345 0.572  0.651
1,500 0272  0.191 0.175 0.451 0.403  0.343 0.575  0.680 0.486  0.437 0.699  0.776
2,500 0.409  0.300 0.388 0.678 0.591  0.475 0.771  0.853 0.666  0.577 0.856  0.907
252 0.142  0.119 0.094  0.166 0201  0.212 0.280  0.308 0.289  0.290 0.385  0.404
500 0.156  0.124 0.075  0.189 0.234  0.219 0.289  0.366 0.314  0.287 0.404  0.471
40 6.25% 1,000 0.200  0.174 0.098 0.267 0.329  0.292 0.399  0.490 0.399  0.367 0.525  0.604
1,500 0279  0.216 0.150 0.372 0.399  0.354 0.495  0.597 0.473  0.445 0.618  0.700
2,500 0.397  0.301 0.289  0.552 0.571  0.460 0.669  0.765 0.643  0.552 0.775  0.838
252 0.223  0.224 0.256 0.220 0.310  0.374 0.458 0.406 0.416  0.466 0.546 0.535
500 0.173  0.175 0.193  0.224 0.252  0.288 0.391  0.395 0.335  0.369 0.486  0.505
80 5.50% 1,000 0.129  0.124 0.149 0.217 0.215  0.207 0.357  0.394 0.275  0.277 0.456  0.502
1,500 0.122  0.104 0.139  0.223 0.194  0.183 0.343  0.401 0.253  0.248 0.446  0.510
2,500 0.126  0.092 0.142  0.250 0219  0.163 0.376  0.454 0.278  0.223 0.483  0.557
252 0.278  0.249 0.218  0.292 0.336  0.348 0.423  0.449 0.413  0.417 0.513  0.542
500 0.326  0.294 0.220 0.362 0.404  0.388 0.473  0.540 0.474  0.452 0.577  0.633
80 7.50% 1,000 0.491  0.477 0.313 0.564 0.625  0.614 0.676  0.764 0.685  0.681 0.770  0.837
1,500 0.696  0.626 0.478 0.713 0.789  0.762 0.821  0.874 0.839  0.821 0.888  0.919
2,500 0.908  0.874 0.807  0.927 0.957  0.937 0.966  0.981 0.970  0.960 0.982  0.991
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Table 4.11: Conditional Coverage - Setting 1: Independemmver of Tests - 1% VaR

The table presents rejection rates obtained by applyingsts to 10,000 samples of non-independent VaR-violatignesgces simulated by Equatidn (4.26) with an increased
violation probability. The VaR levep is set to1%. Results are presented for various sets of sample sizedactors which increase the probability of a VaR-violatiand
decay intervals which serve as a proxy for the degree of depere LR2*", LRY* andG M M. refers to the cc tests df Christoffersen [1998], Christsiéa and Pelletier
[2004] and Candelon etlal. [2011}/ C'S... refers to the new simulation based test. Top results ardigigad in bold type.
Decay Significance level: 1% Significance level: 5% Signifeealevel: 10%
Interval p n LR LRY GMMc. MCSe LR LRY GMMce MCSece LR™  LRY GMMce MCSee
252 0.038  0.017 0.093  0.094 0.140  0.066 0.198 0.191 0.335  0.128 0.273 0.266
500 0.047  0.023 0.092 0.091 0.174  0.081 0.201 0.191 0.274  0.144 0.267  0.274
10 1.10% 1,000 0.044  0.037 0.023 0.088 0.158  0.129 0.194  0.227 0.242  0.210 0.303  0.313
1,500 0.051  0.066 0.025 0.094 0.180  0.167 0.220  0.253 0.275  0.264 0.343  0.359
2,500 0.057  0.120 0.042 0.125 0.194 0271 0.304 0.304 0.326  0.383 0.457 0.426
252 0.072  0.031 0.154  0.162 0.216  0.109 0.291  0.297 0.455  0.186 0.377 0.380
500 0.127  0.059 0.177  0.202 0.341  0.147 0.327  0.343 0.466  0.220 0.402 0.436
10 1.50% 1,000 0.167  0.113 0.034 0.229 0.367  0.244 0.314  0.426 0.467  0.340 0.441  0.528
1,500 0.225  0.210 0.048 0.288 0.439  0.366 0.413  0.518 0.568  0.476 0.553  0.619
2,500 0.350  0.418 0.116  0.424 0.606  0.600 0.575  0.672 0.728  0.694 0712 0771
252 0.069  0.040 0.141 0.135 0.182  0.104 0.245 0.238 0.380  0.168 0.317 0.312
20 500 0.067  0.034 0.118  0.130 0.214  0.093 0.231  0.233 0.311  0.154 0.297  0.316
1.25% 1,000 0.074  0.051 0.023 0.128 0.207  0.133 0.219  0.282 0.289  0.207 0.329  0.377
1,500 0.080  0.078 0.023  0.150 0212 0178 0.247  0.321 0.327  0.259 0.375  0.423
2,500 0.107  0.141 0.038 0.194 0.277  0.284 0.324  0.403 0.409  0.389 0.466  0.526
252 0.129  0.085 0.183 0.183 0.227  0.158 0.273 0.271 0.387  0.213 0.336 0.335
500 0.099  0.064 0.135 0.144 0230  0.124 0.228  0.233 0.307 0.183 0.294 0.306
40 1.25% 1,000 0.091  0.072 0.041 0.146 0212  0.146 0.209  0.271 0.285  0.213 0.311  0.356
1,500 0.095  0.089 0.035 0.148 0206  0.172 0.221  0.302 0.312  0.247 0.334  0.397
2,500 0.111  0.126 0.044  0.190 0.273  0.248 0.273  0.377 0.380  0.341 0.397  0.491
252 0.243  0.192 0.296 0.296 0.342 0273 0.373  0.374 0.470  0.329 0.424 0.427
500 0.139  0.105 0.167 0.174 0.226  0.172 0.244  0.244 0.277  0.243 0.307 0.307
80 1.10% 1,000 0.109  0.103 0.085 0.135 0.198  0.190 0.242 0.236 0278  0.263 0.330 0.321
1,500 0.088  0.101 0.074 0.128 0.178  0.178 0.233  0.248 0.277  0.250 0.330  0.339
2,500 0.077  0.098 0.068 0.138 0.182  0.183 0.222  0.266 0.260  0.257 0.320  0.364
252 0.263  0.209 0.302 0.316 0.355  0.289 0.385  0.388 0.480  0.344 0.442 0.441
500 0.198  0.141 0.217 0.234 0.316  0.209 0.308 0.313 0.386  0.267 0.367 0.378
80 150% 1,000 0.195  0.151 0.095 0.222 0.318  0.243 0.285  0.352 0.384  0.304 0.378  0.440
1,500 0213  0.172 0.078 0.242 0351 0272 0.296  0.417 0.464  0.351 0.409  0.507
2,500 0.313  0.288 0.102 0.331 0.515  0.432 0.407  0.560 0.621  0.528 0.538  0.658
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Table 4.12: Conditional Coverage - Setting 2: Identicakiibsition - Size and Power of Tests - 5% VaR
The table presents rejection rates obtained by applyingsts to 10,000 samples of non-identically distributed Wadation sequences simulated by Equation (4.28) with
an increased violation probability. The VaR leyels set t05%. Results are presented for various sets of sample sizesl y-factors which increase the probability of a
VaR-violation, and probability variation factofis The results fos = 0p correspond to the evaluation of the size of the tegt*", LR¥** andG M M... refers to the cc tests
of|Christoffersein|[1998], Christoffersen and Pelléti€d02] and Candelon et al. [2011}/ C'S;;4 refers to the new simulation based test. Top results ardigigad in bold.

Significance level: 1%

Significance level: 5%

Significancele10%

5 P n LR™  LRYS  GMMee MCSec LR LRY GMMc. MCSec LR LRY GMMce MCSece
252 0.010 0.010 0.009 0.011 0.049 0.049 0.051 0.051 0.093 990.0 0.103 0.100
500 0.010 0.010 0.008 0.011 0.048 0.053 0.046 0.051 0.105 030.1 0.098 0.100
0Op 5.00% 1,000 0.011 0.009 0.010 0.011 0.052 0.046 0.053 0.052  .1040 0.100 0.105 0.098
1,500 0.011 0.009 0.009 0.011 0.049 0.047 0.052 0.053 0.098 .1010 0.102 0.102
2,500 0.010 0.009 0.009 0.012 0.052 0.049 0.049 0.054 0.101 .0970 0.100 0.102
252 0.016  0.008 0.004 0.011 0.061 0.044 0.046 0.065 0.115 0.086 0.096  0.124
500 0.019  0.015 0.005 0.015 0.066 0.056 0.045 0.078 0.129 0.105 0.108  0.148
0.1p 550% 1,000 0.020 0.016 0.006 0.021 0.082 0.068 0.058  0.103 0.138 0.129 0.123  0.186
1,500 0.030 0.021 0.008  0.033 0.092 0.084 0.071  0.125 0.154 0.148 0.151  0.218
2,500 0.036 0.034 0.011  0.048 0.129 0.107 0.106  0.174 0.198 0.181 0.209  0.281
252 0.147  0.073 0.008 0.103 0.280 0.193 0.220 0.330 0.431 0.296 0.372  0.442
500 0.309  0.230 0.028 0.180 0.488 0.442 0.399 0.501 0.622 0.569 0.589  0.659
0.1p 7.50% 1,000 0.609  0.563 0.151 0.464 0.802  0.775 0.733 0.801 0.868 0.855 0.864 0.902
1,500 0.847  0.808 0.407 0.733 0.932 0.928 0.896 0.942 0.962 0.961 0.961  0.976
2,500 0.979  0.974 0.853 0.958 0.996 0.993 0.994 0.997 0.997 0.998 0.998  0.999
252 0.038 0.010 0.003  0.043 0.100 0.048 0.095  0.166 0.193 0.096 0.187  0.258
500 0.061 0.027 0.012  0.101 0.151 0.097 0.174  0.291 0.252 0.169 0.308  0.419
0.3p 6.25% 1,000 0.112 0.066 0.051 0.237 0.273 0.188 0.348  0.492 0.373 0.285 0.508  0.634
1,500 0.199 0.113 0.114  0.402 0.367 0.281 0.515  0.670 0.477 0.402 0.670  0.779
2,500 0.374 0.236 0.306  0.667 0.617 0.456 0.765  0.873 0.710 0.593 0.864  0.929
252 0.017 0.002 0.014  0.088 0.045 0.023 0.177  0.260 0.105 0.060 0.298  0.382
500 0.024 0.029 0.165  0.477 0.068 0.115 0.602  0.733 0.134 0.209 0.733  0.824
0.5p 5.50% 1,000 0.039 0.180 0.778 0.892 0.105 0.414 0.947  0.963 0.161 0.561 0.967  0.981
1,500 0.063 0.429 0.951  0.980 0.148 0.682 0.992  0.995 0.230 0.791 0.997  0.998
2,500 0.117 0.775 0.999  1.000 0.259 0.911 1.000 1.000 0.347 0.953 1.000 1.000
252 0.137 0.044 0.022  0.206 0.256 0.148 0.320  0.469 0.418 0.240 0.478  0.589
500 0.306 0.199 0.125  0.491 0.493 0.408 0.618  0.759 0.628 0.532 0.756  0.853
0.5p 7.50% 1,000 0.621 0.541 0.491 0.849 0.805 0.772 0.918  0.961 0.871 0.856 0.965  0.983
1,500 0.864 0.794 0.820 0.974 0.939 0.924 0.987  0.996 0.965 0.959 0.996  0.999
2,500 0.984 0.973 0.991  1.000 0.996 0.993 1.000 1.000 0.999 0.998 1.000 1.000
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Table 4.13: Conditional Coverage - Setting 2: Identicakiibsition - Size and Power of Tests - 1% VaR
The table presents rejection rates obtained by applyingsts to 10,000 samples of non-identically distributed Wadation sequences simulated by Equation (4.28) with
an increased violation probability. The VaR leyels set to1%. Results are presented for various sets of sample sizesl y-factors which increase the probability of a
VaR-violation, and probability variation factofis The results fos = 0p correspond to the evaluation of the size of the tegt*", LR¥** andG M M... refers to the cc tests
of|Christoffersein|[1998], Christoffersen and Pelléti€d02] and Candelon et al. [2011}/ C'S;;4 refers to the new simulation based test. Top results ardigigad in bold.

Significance level: 1% Significance level: 5% Significancele10%

5 P n LR™  LRYS  GMMee MCSec LR LRY GMMc. MCSec LR LRY GMMce MCSece
252 0.009 0.008 0.010 0.009 0.046 0.041 0.048 0.051 0.175 830.0 0.101 0.102
500 0.011 0.012 0.009 0.010 0.061 0.052 0.050 0.053 0.115 980.0 0.094 0.105
0p 1.00% 1,000 0.012 0.011 0.009 0.010 0.048 0.053 0.048 0.050  .0910 0.102 0.098 0.100
1,500 0.010 0.009 0.011 0.008 0.042 0.046 0.048 0.052 0.101 .0960 0.098 0.101
2,500 0.010 0.009 0.011 0.010 0.047 0.046 0.051 0.050 0.093 .0970 0.103 0.104
252 0.012 0.007 0.014 0.016 0.056 0.043 0.064  0.066 0.211  0.090 0.122 0.124
500 0.012 0.007 0.013  0.018 0.082  0.043 0.058 0.065 0.153  0.092 0.106 0.125
0.1p 1.10% 1,000 0.015  0.008 0.006 0.012 0.062 0.041 0.038 0.066 0.110 0.086 0.090 0.128
1,500 0.013 0.009 0.006  0.015 0.059 0.043 0.039  0.071 0.125 0.090 0.095  0.134
2,500 0.013 0.011 0.005  0.015 0.069 0.050 0.041  0.078 0.142 0.102 0.099  0.145
252 0.029 0.014 0.053 0.053 0.124 0.074 0.152  0.158 0.385  0.140 0.247 0.247
500 0.055 0.015 0.050  0.073 0.257  0.071 0.167 0.203 0.394  0.128 0.233 0.309
0.1p 1.50% 1,000 0.095  0.037 0.002 0.084 0.283  0.129 0.120 0.259 0.387 0.221 0.241 0.408
1,500 0.148  0.081 0.001 0.097 0.355  0.217 0.155 0.343 0.528  0.335 0.317 0.488
2,500 0.251  0.222 0.006 0.170 0.563  0.445 0.269 0.506 0.708  0.576 0.457 0.646
252 0.013 0.007 0.027 0.026 0.073 0.048 0.098 0.097 0.269  0.095 0.171 0.168
500 0.021 0.007 0.023  0.036 0.129  0.040 0.097 0.116 0.225  0.082 0.152 0.198
0.3p 1.25% 1,000 0.028 0.008 0.002 0.039 0.115 0.047 0.062  0.146 0.185 0.096 0.141  0.238
1,500 0.031 0.015 0.002  0.050 0.124 0.065 0.078  0.188 0.234 0.125 0.171  0.293
2,500 0.046 0.033 0.006  0.093 0.188 0.122 0.129  0.285 0.312 0.203 0.253  0.413
252 0.007 0.003 0.022 0.019 0.054 0.022 0.082 0.077 0.212  0.055 0.141 0.133
500 0.011 0.004 0.029 0.029 0.087 0.025 0.102  0.105 0.167 0.059 0.161  0.176
0.5p 1.10% 1,000 0.010 0.006 0.008 0.060 0.062 0.037 0.119  0.183 0.117 0.088 0.219  0.272
1,500 0.012 0.023 0.012 0.127 0.068 0.087 0.190 0.321 0.133 0.163 0.327  0.450
2,500 0.010 0.082 0.109  0.439 0.077 0.238 0.551  0.700 0.162 0.365 0.715  0.807
252 0.025 0.009 0.055  0.059 0.125 0.051 0.162  0.170 0.380  0.105 0.256 0.262
500 0.058 0.011 0.075  0.094 0.258  0.060 0.206 0.224 0.394  0.111 0.279 0.332
0.5p 1.50% 1,000 0.091 0.033 0.006  0.150 0.293 0.118 0.199  0.366 0.395 0.201 0.339  0.493
1,500 0.149 0.092 0.011  0.250 0.352 0.234 0.290  0.518 0.521 0.352 0.457  0.641
2,500 0.263 0.258 0.046  0.458 0.569 0.474 0.500  0.735 0.719 0.605 0.674  0.829
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Regarding both settings, theC'S,. test yields the best rejection rates for the vast
majority of test settings. To be precise, theC'S,.. test shows similar or better results
compared to the competing tests in 157 out of 180 parametebioations for setting 1
and 116 out of 150 parameter combinations for setting 2. VWé#ipect to setting 1, the
LR test and the< M M., test achieve or exceed the rejection rates ofth€S.. test
in some cases in which the nominal VaR-level is set to 1%. Eh&specially true for
the LR test for small samples and significance lei@l. Nevertheless, as described
above, the power mostly decreases ificreases indicating asymptotic disturbances. The
LR"* test does not achieve top rejection rates for any of the petemecombinations.
Regarding setting 2, and parameter combinations for winelVaR-violation probability
variation parameter is set 0= 0.1p, the LR]*" test shows some superior results. In
many cases, the rejection rates of th&/ M. test show evidence of a good performance,
but only in very few cases does it yield top results. For nohthe reported parameter
combinations does theR“¢ test lead to results above the rejection rates of the renmini

tests.

4.4 Empirical Application

To investigate the behavior of the new set of backtests aildistrate their usefulness in
a realistic risk management setting, we perform an empisicaly using actual returns

on a set of managed portfolios.

4.4.1 Data and Forecasting Scheme

We apply the new tests to a unique data set provided by a Geassat manag.The

data set consists of 5,740 daily log-returns for each of fmirtfolios and covers a time
period of 22 years (January 1, 1991 to December 31, 2012)leWie exclude weekend
days from our sample, it is not possible to easily eliminatkdays as well, because the

portfolio assets are invested internationally and nonrass days differ widely across

®Due to confidentiality reasons, the asset manager wishesrtain anonymous.
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the countries in our sample. To this end, we add the returisese days (e.g., accrued

interest) to the next trading day. Table 4.14 presents sugnstatistics for the portfolio

log-returns we use in our empirical study.

Table 4.14: Summary Statistics
Summary statistics of the portfolio data set used for theigogbapplication of the\/ C'S andG M M tests.
The data set consists of 5,740 log-returns for each of thedorifolios covering a period from January 1,
1991 to December 31, 2012. Mean Return p.a. and \Volatilay gre annualized with 250 days.

Portfolio 1 2 3 4

Minimum -2.691% -3.086% -3.473% -2.805%
5% quantile -0.651% -0.531% -0.657% -0.638%
Median Return  0.016% 0.011% 0.016% 0.016%
Mean Return  0.025% 0.020% 0.026% 0.027%
95% quantile  0.657% 0.564% 0.683% 0.648%
Maximum 3.705% 2.683% 3.621% 3.745%

\olatility 0.417% 0.369% 0.426% 0.425%
Skewness -0.133 -0.467 -0.300 0.083

Kurtosis 6.67 8.94 6.85 7.80

Mean Return p.a. 6.24% 4.95% 6.43% 6.84%
Volatility p.a. 6.59% 5.84% 6.73% 6.71%
Maximum Drawdown -23.46% -24.51% -23.80% -24.62%

The summary statistics in Talile 4114 show evidence of thalstylized facts of returns
on financial assets. In addition to having negligible (daihean returns, the portfolio re-
turns exhibit signs of typical properties like negativewskd and leptokurtic asset returns
indicating fat tails particularly on the downside. Nevettss, overall portfolio risk over
the complete sample period appears to be only moderate dasneed by the estimates
of the (unconditional) return series volatility with allup portfolios having significant
positive annualized returns.

We calculate the one-day VaRs for each portfolio by the uswvofdifferent VaR-
models. First, we choose standard historical simulatiothasnost widely used model
in practice (see Pérignon and Smith, 2010). This concegutrags no particular distribu-
tion of the returns. The VaR is rather estimated solely basedistorical returns. For
each VaR-estimation, we use the value of the 1% and 5% qeanftihe las250 data
points as an estimate for the portfolio’s VaR. Second, weleyngp GARCH(1,1) process

as a parametric model to forecast the VaR using the estincatatditional variance of the
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GARCH model. Compared to historical simulation, the GARCHd®l is more flexible
because it accounts for autocorrelations in the returresevariances. We choose the
simple GARCH(1,1) model rather than more sophisticated GARnodel specifications
because Hansen and Luhde [2005] show that the GARCH(1,1ghmdtard to beat in
terms of volatility forecasting accuracy. For the sake afdicity, we fit the GARCH
parameter for each portfolio separately to the total sarople, 740 Iog-return@ The
next-day VaR is then calculated simply by the quantile of enrad distribution with a
zero mean and the standard deviation forecasted by the GARGde! on the basis of
the last 250 log-returns. Figure 4.1 plots the daily poitfobturns together with the cor-
responding VaR-forecasts of the historical VaR and the GAR@del. In addition to the
time-varying volatility of the returns, the charts illuste the differences in the forecasts
of the unconditional historical VaR approach and the coowl#i GARCH model. Howe-
ver, it can be seen for both models that the VaR-violationster to some degree during
certain subsamples.

After calculating the VaR-violation sequenégp), we validate the VaR-estimation
by making use of the new set 8f C'S tests to compute p-values and check the uc, i.i.d.
and cc hypotheses separately. With respect ta\ties.,. test, we use the two-tailed uc
component and opt for a weighting factorof= 0.5. For comparison purposes, we addi-
tionally present p-values of the uc, i.i.d., and cc versibthe GM M test as the results
of our simulation study indicate that the set(@#/ ) tests is a suitable benchmark. Mo-
reover, we repeat our analysis for four separate time periear the first time period, we
include 5,740 log-returns of the whole available time splm(ary 1, 1991 - December
31, 2012). We then focus on the volatility shift from the Higholatile bear market at the
later stage of the dotcom-bubble burst (250 log-returnsfAgril 16, 2002 to March 31,
2003) to the early stage of the subsequent calm bull marké& I@&y-returns from April
1, 2003 to March 15, 2004). Additionally, we apply the testthie 500 log-returns of the
combination of the latter two periods from April 16, 2002 taidh 15, 2004.

170f course, this procedure does not comply to the principleudfof-sample forecasting. Nevertheless,
as we focus on the performance of the backtests, the issugtiafally fitting the GARCH parameters to
the data is not relevant for the purpose of this study.



Figure 4.1: Returns, VaR-Forecasts, and VaR-Violations
The figure presents returns, VaR-forecasts, and VaR-ieolafor the four portfolios considering a VaR-level of 1%aR/forecasts are plotted with lines whereas the dashes

at the bottom of the charts mark the days on which a VaR-vaiaiccurs.
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4.4.2 Results

The results of applying the backtests to the total period dat are shown in Table 4]15.

Table 4.15: Empirical Application - Total Period
The table contains Violation Ratios (i.e., VaR-violatiseduency divided by the number of VaR-forecasts)
of the total period consisting of 5,490 VaR-forecasts fahgaortfolio (17.12.1991 to 31.12.2012). In addi-
tion, the table contains p-values for the unconditionakrage testd3/CSY, (lower tail), M CS“ (upper
tail), M CS%, (two tailed), anda M M., for the i.i.d. testsV/ C'S;;4 andG M M;4, and for the conditional
coverage test8/CS.. andGM M,.. The extensions *, **, and *** indicate statistical signifioce at the
10%, 5%, and 1% level.

VaR Model Historical VaR GARCH approach
Portfolio 1 2 3 4 1 2 3 4

Panel A: 5% VaR

Viol. Ratio 5.43% 5.37% 5.50% 5.66% 4.37% 4.12% 4.54% 4.12%
MCSk, 0.923 0.901 0.956 0.987 0.013** 0.001***  0.054* 0.001***
MCS¥E 0.077* 0.099* 0.044** 0.013** 0.987 0.999 0.946 0.999
MCSLL, 0.155 0.197 0.088* 0.025** 0.025** 0.002***  0.108 0.002%**
GM Myc 0.133 0.221 0.091* 0.035** 0.025** 0.002***  0.107 0.002***
MCS;iq 0.000***  0.000***  0.000***  0.000*** 0.014** 0.000***  0.001**  0.001***
GMM;;q 0.000***  0.000***  0.000***  0.000*** 0.005***  0.001*** 0.0 05***  0.004***
MCSec 0.000***  0.000***  0.000***  0.000*** 0.002***  0.000*** 0.0 00***  0.000***
GMMecc 0.001***  0.000***  0.001**  0.001*** 0.002**  0.001** 0.0 04***  0.001***

Panel B: 1% VaR

Viol. Ratio 1.20% 1.22% 1.35% 1.35% 1.53% 1.48% 1.46% 1.33%
MCSk, 0.924 0.949 0.994 0.992 1.000 1.000 0.999 0.994
MCS¥E 0.076* 0.052* 0.006***  0.008*** 0.000***  0.001***  0.001***  0.006***
MCSLL 0.151 0.103 0.012%*  0.016*** 0.000***  0.001**  0.001***  0013**
GM My 0.124 0.114 0.020** 0.020** 0.002***  0.003***  0.005***  0.@6**
MCS;iq 0.022** 0.007***  0.003***  0.003*** 0.130 0.204 0.578 0.057
GMM;;q 0.022** 0.007***  0.004***  0.006*** 0.439 0.012** 0.311 0.9**
MCSec 0.019** 0.006***  0.001***  0.001*** 0.004***  0.009***  0.02 6** 0.011**
GMMecc 0.034** 0.017** 0.008***  0.006*** 0.019** 0.019** 0.051* 0.022**

First, we compute the VaR-violation ratios of each portddior each VaR-forecasting
method and the nominal VaR levels of 5% and 1%. We define thewlRtion ratio as
the VaR-violation frequency divided by the number of VaReftasts. Both the historical
VaR and the GARCH approach lead to VaR-violation ratios Whdeviate from the no-
minal VaR level of 5% and 1% to some degree. The p-values obtieetailed)/C'SY,
andM C'S* tests indicate that each of these deviations are statlgtsignificant. Howe-
ver, some of the p-values yielded by the two-tailed’S”. and theG M M,,.. tests remain
above the 10% significance level.

The M C'S;;4 test and th& M M;;, test reject the i.i.d. hypothesis for the violation se-
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guences generated by the historical simulation VaR-mautehk 5% and 1% VaR level.
We expect a large sample like ours that consists of 22 yeatatafto suffer significantly
from the stylized facts of financial returns (i.e., serieglo$olute or squared returns show
profound serial correlation, volatility appears to varyeotime, and extreme returns ap-
pear in clusters). Consequently, an inflexible and uncandit VaR-model like historical
simulation should lead to non-i.i.d. VaR-violations. Haxg the p-values for the more
flexible GARCH model suggest clustered VaR-violations dahthe 5% VaR level. The-
se findings are confirmed by significant p-values obtainedifen\/C'S.. andGM M,
tests.

The test results for the bear and the bull market as well ashimrcombination of
both market phases are reported in Tablel4.16. We restaqirdsentation of the results
to the VaR level of 5%, because it vividly illustrates theeets of a shift from a bear to
a bull market. The differences in the VaR-violation rati@tvizeen the bear and the bull
market are significant. On average, for the bear market 8terical VaR approach yields
VaR-violations in 8.45% of the days whereas for the bull neautke ratio amounts to
1.70%. Consequently, for both the bear and the bull marketptvalues of the relevant
one-sided and the two-sided C'S,. tests as well as th& M M,,. test are statistically
significant in the vast majority of cases. With respect todbmbined 500 trading days
sample, the underestimated VaR of the bear market and threstveated VaR of the
bull market compensate each other and lead to an averageiv&on ratio of 5.08%.
Because this is very close to the nominal VaR level of 5%, @hli@ad backtests imply a
correct uc. This result underpins our redefinition of the tapprty, because the backtests
show no significant p-values although the probability foraRWiolation is not equal to
the nominal levep for all dayst.

The i.i.d. tests show a remarkable behavior. Because the@kARodel accounts for
autocorrelated volatility, it can be assumed that the VaiRations are less dependent
compared to the VaRs estimated with historical simulat@onsequently, the p-values
regarding the GARCH model during the bear market and therbatket separately are

statistically significant in only four out of twelve cases.
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Table 4.16: Empirical Application - Bear, Bull, and Bear +IBJarket
For each portfolio, the table contains Violation Ratiog.(inumber of VaR-violations divided by VaR-
forecasts) of the bear market period (250 VaR-forecasta f£6.04.2002 to 31.03.2003), the bull market
period (250 VaR-forecasts from 01.04.2003 to 15.03.2G0%) the combination of the bear and bull market
period (500 VaR-forecasts from 16.04.2002 to 15.03.20D48.VaR level is set to 5%. In addition, the ta-
ble contains the corresponding p-values for the unconditicoverage test&/ C'S%, (lower tail), M C S
(upper tail),M C S (two tailed), and=M M,,., for the i.i.d. tests\/ C'S;;4 andGM M;;4, and for the con-
ditional coverage test&/ C'S.. andGM M... The extensions *, ** and *** indicate statistical signifioce
at the 10%, 5%, and 1% level.

VaR Model Historical VaR GARCH(1,1)
Portfolio 1 2 3 4 1 2 3 4

Panel A: Bear Market / 5% VaR

Viol. Ratio 7.60% 7.60% 8.40% 9.20% 8.80% 8.00% 9.20% 8.80%
MCS, 0.967 0.964 0.988 0.998 0.995 0.982 0.998 0.995
MCSut 0.033** 0.036** 0.012** 0.002*** 0.005***  0.018*  0.002***  0.005***
MCStE 0.065* 0.073* 0.023** 0.004*** 0.011** 0.036**  0.003**  0010**
GM Myc 0.131 0.120 0.050* 0.019** 0.040** 0.064* 0.017** 0.045**
MCS;iq 0.000***  0.008***  0.025** 0.010** 0.033** 0.047*  0.207 0051*
GMM;;q 0.000***  0.005***  0.042** 0.010** 0.078* 0.197 0.819 0.256
MCScce 0.001**  0.005***  0.007***  0.003*** 0.006***  0.015** 0.015* 0.007***
GM M. 0.014** 0.037** 0.044** 0.020** 0.039** 0.090* 0.048** 0.a8*

Panel B: Bull Market / 5% VaR

Viol. Ratio  1.20% 2.00% 1.20% 1.60% 1.60% 2.80%  1.60% 1.60%
MCSk, 0.001**  0.007**  0.001**  0.004*** 0.002%*  0.046*  0.004**  0.004**
MCSut 0.999 0.993 0.999 0.996 0.998 0.954  0.996 0.996
MCSt 0.003**  0.013"  0.001***  0.007** 0.004**  0.093*  0.007**  0.008***
GM Mye 0.001**  0.007**  0.001**  0.001*** 0.004**  0.080*  0.003***  0.004**
MCS;iq 0.424 0.545 0.428 0.204 0.259 0540  0.255 0.258
GMM;;q 0.657 0.634 0.659 0.787 0.770 0.643  0.757 0.761
MCSec 0.044*  0.095*  0.044*  0.025* 0.040%  0.237  0.036*  0.035
GM Me, 0.003**  0.013"  0.003**  0.003*** 0.003** 0193  0.005%*  0.004***

Panel C: Bear + Bull Market / 5% VaR

Viol. Ratio 4.40% 4.80% 4.80% 5.40% 5.20% 5.40% 5.40% 5.20%
MCSY. 0.269 0.404 0.457 0.687 0.580 0.666 0.684 0.591
MCSut 0.731 0.596 0.543 0.313 0.420 0.334 0.316 0.409
MCStE, 0.538 0.807 0.914 0.627 0.841 0.668 0.633 0.818
GM Myc 0.666 0.932 0.923 0.681 0.702 0.542 0.542 0.684
MCS;iq 0.003***  0.034** 0.004**  0.001*** 0.003***  0.116 0.005**  0.003***
GMM;;q 0.001***  0.007***  0.003***  0.001*** 0.003***  0.160 0.003***  0.005***
MCSec 0.003***  0.112 0.009***  0.004*** 0.012** 0.306 0.011** 0.a3*
GM M. 0.007***  0.030** 0.014** 0.010** 0.014** 0.374 0.024** 0.a8*

These results are contrasted by the p-values for the sanieswthe bear and bull
market are combined. Here, the i.i.d. tests attain p-vdletsv the 1% level of significan-
ce in six out of eight cases. This result could be due to thgelahift in the VaR-violation
ratio. Only the p-values for portfolio two reveal no signéice which can be explained by

a smaller drop of the violation ratio from the bear to the loodirket compared to the re-
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maining portfolios. This outcome demonstrates the netyesttesting the independence
as well as the identical distribution hypothesis using agrdu test. Finally, the results

of the cc tests reflect the implications of the correspondimgnd i.i.d. tests.

4.5 Conclusion

Comparatively little attention has been paid in the literato the development of proper
tools for backtesting VaR-forecasts. This paper provitieset main contributions to the
issue of backtesting the performance of VaR-models. Riarstextend the discussion of
the desirable properties of violations originating fromaarect VaR-model and restate
the uc property of a VaR-violation process. Furthermoresiress the need to require the
VaR-violations to be identically distributed to adequetahcktest models across different
market phases. Second, we propose a new set of backtedissthzR-violation proces-
ses for uc, the i.i.d. property as well as cc. Compared taiagistandard approaches,
these backtests contain new desirable features like diee-tasting for uc and a test for
cc that allows for different weightings of the uc and i.i.dr{s. The new backtesting proce-
dures are based on i.i.d. Bernoulli random variables obthby Monte Carlo simulation
techniques and are very intuitive. Third, we perform a satioh study using generated
VaR-violation samples that specifically violate the ucgdi,iand cc property to different
controllable degrees. Compared to existing classical sae-of-the-art backtests, the
new backtests outperform these benchmarks in severahdistttings. In addition, we
use the new backtests in an empirical application study. M#éyahe backtests to return
samples of calm boom and highly volatile bust cycles. Thaiokd results demonstrate
the need for a backtest that accounts for non-identicaiributed VaR-violations and,
moreover, support the reformulation of the uc hypotheses.

As a natural extension of our work, one could think of multisge versions of our
newly proposed backtests which would need to take into atqmassible correlations in
VaR-violations across assets and time. As this issue liggrakthe scope of the present

work, we will address it in our future research.



Kapitel 5

Estimation Window Strategies for Value

at Risk Forecasting

5.1 Introduction

Today, the Value at Risk (VaR) is the de facto standard toofifk management in the
financial services industry. Because of the high relevantei®risk measure, numerous
parametric, semi-parametric, and non-parametric modeldR-estimation and forecas-
ting have been developed over the last two decades. All séthpproaches estimate VaR-
forecasts directly or indirectly on the basis of a sampleisfdnical asset-returns. This
leads to the question of how to determine the appropriatample size for generating
out-of-sample VaR-forecasts. This is not a trivial taskgéaese it is well known that the
volatility of asset returns varies over time and is subjeai¢casional structural breaﬂs.
In particular, structural shifts may lead to significantdgia in the parameter estimation
of forecasting models. The aim of this study is to invesggalhether different estimation
window strategies lead to significant divergences in the 8a&ES forecasting accuracy.
In addition, we analyze whether more sophisticated esiimatindow strategies outper-
form simple strategies like rolling or expanding windows. this end, we analyze the
characteristics of a comprehensive set of strategies iodhtext of various parametric,
semi-parametric, and non-parametric VaR models.
Several studies deal with the issue of misspecified forgmpsnhodels. Among

others,| Hillebrand|[2005] show that neglecting changes narftial time series can

yield to overestimated persistence in conditional vatgtiparameters. Furthermore,

'For a comprehensive overview of structural breaks in firertohe series see Andreou and Ghysels
[2009]
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Pesaran and Timmermann [2004] and Pesaran et al.|[2006]dirttat structural breaks
can affect the accuracy of financial time series forecastslrdou and Ghysels [2003]
states that failure to recognize the presence of strudbweaks can have devastating and
costly effects on financial risk management tools like VaR Brpected Shortfall (ES).

Estimation window strategies used in the finance literatwesoften limited to ex-
panding windows, which include all available data precgdire forecasting time point,
and rolling windows characterized by a moving interval of @renor less arbitrary fixed
length. By nature, these strategies do not explicitly antdor any changes in the in-
sample data. To this end, Pesaran and Timmermann|[2007jsdiskhe usage of the date
for which a structural break is identified as a starting pfunthe determination of an esti-
mation window. The appealing idea behind this strategy extude historical data from
the estimation sample which significantly differ from themmoecent data. However, the
employment of structural break tests for estimation windtatermination suffers from
two serious drawbacks. First, the limited number of obderaa of a reduced sample size
leads to an increased variance of the parameter estimatdsane to forecast errors. To
this end/ Pesaran and Timmermann [2007] analyze a tradeetffeen biased estimates
and forecast error variance. They concluded that it can RiLi® use pre-break data for
parameter estimation. Second, Pesaran and Timmermann] [@0@hasize that the over-
all outcome crucially depends on how well the location ofltheak point is estimated by
a statistical test. To overcome the difficulties of specifyan appropriate estimation win-
dow size| Pesaran and Timmermann [2007]land Clark and M&Eng@009] propose to
combine forecasts from models estimated on different sasndlhe strategy of combi-
ning forecasts is based on the seminal paper of Bates an@&rd®69]. Timmermann
[2006] provide a comprehensive overview over the forecastlination literature and
discusses the pros and cons of this approach. In brief, lnestbat pooling forecasts can
lead to diversification gains which make it attractive to éggombinations rather than
rely on a single model.

Compared to the vast amount of papers on volatility and VaBetsy the finance lite-

rature provides relatively few comparisons of estimatiamdow strategies in this context.
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Focusing on volatility forecasting ability, Brownlees &t[2012] compared several con-
ditional volatility models estimated on different estimoatwindow lengths. The results of
this study indicate that the expanding window strategygavbetter forecasting accuracy
compared to relatively long rolling windows of eight and fgeears. With respect to out-
of-sample VaR-forecasting performance, Kuester et aD@2@nalyze different classical
and sophisticated VaR models considering rolling windot,000, 500, and 250 days.
They stated that although less parameterized models seeemédit from smaller sample
sizes, general conclusions about model performance asitioew length decreases can-
not be made. Halbleib and Pohimeier [2012] present empiesdence from assessing
the out-of-sample performance and robustness of VaR bafat&uring the recent finan-
cial crisis with respect to the choice of sampling windowisey show that using a two
year sampling window is sufficient before the crisis, whileidg the crisis the estimation
window should also incorporate information on past extrenents. A deeper insight into
estimation window strategies is provided by Rapach andiS$rE2008] and Rapach et al.
[2008]. They investigate the forecasting accuracy of comaial volatility models accom-
modating structural breaks as well as forecast combinatddifferent volatility models
or estimation windows. They find that combining forecastermfyields more accurate
forecasts compared to a simple expanding window benchnpgumtoach. The results for
models estimated on window sizes determined by structuealds are ambiguous. Ac-
commodating structural breaks in exchange rate returanesi often improves volatility
forecasts while the same strategy for stock indices retdmes not.

This paper is most related to the works of Rapach and Stra088] and Rapach etlal.
[2008] but contributes to the literature by several impartenprovements and extensions.
First, to the best of our knowledge, this is the only study #malyzes the impact of diffe-
rent estimation window strategies including structuraais and forecast combinations
explicitly on forecasting common risk measures like VaR #reES rather than volatili-
ty. These strategies are investigated in a context of a celmgmisive model set including
different parametric as well as semi-parametric and naaspatric forecasting approa-

ches. For parametric models, predicting VaR and ES is fdymelated to forecasting
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variance (see Section 5.2.1). Nevertheless, while theiatiah of variance forecasting is
based on the entire loss distribution, the accuracy of ValRE® forecasts depends on
the specific shape characteristics of its lower left tailefEfiore, results from evaluating
variance forecasting performance cannot generally be ttsedsess VaR and ES fore-
casting capability. In addition, semi- and non-parameéfa® and ES models are not or
only indirectly related to variance forecasting. To measvaR-forecasting accuracy we
use powerful statistical tests of the unconditional cogerand i.i.d. properties of VaR-
violations proposed by Ziggel etlal. [2013], while the ESeftasts are evaluated by the
test of McNeil and Frey [2000]. In addition, we compare theneation window approa-
ches by employing the conditional predictive ability (CRA%t of. Giacomini and White
[2006]. Second, the results of this study are very robust.résult evaluation of all related
papers mentioned above suffer from the serious drawbatkiyaare obtained by apply-
ing different approaches to just a few or in most cases ond bxe-of-sample period. But
it is very likely that different out-of-sample periods letddifferent results and conclu-
sions. To this end, we perform the risk forecasts to a largebas of different randomly
selected samples of stock returns. Third, for individua¢éasts and forecast combinati-
ons we use relatively small rolling estimation window sipé4.25, 250, 500, and 1,000
trading days which are very frequently used in theory andiqadarly in practiceQ This

is contrary to Rapach and Strauss [2008] and Rapach et 8i8]2tho determine rolling
estimation samples from about three to more than ten years.

The results of our empirical study reveal that the seleabioine estimation window
strategy leads to significant performance differenceshEddhe evaluated estimation
window strategies has its advantages and disadvantage&vdn the usage of forecast
combinations seems to be the preferable estimation windiategy, because it shows
good results in most analyzed settings and backtests. Shikgeeveal that applying com-
binations leads to more conservative VaR-forecasts anetestthe undesired occurrence
of clustered VaR-violations on average.

The remainder of the paper proceeds as follows. In SeCi@nvee briefly review

ZBasel Committee on Banking Supervision [2005] requirestti@choice of the historical observation
period for calculating VaR is constrained to a minimum léngftone year.
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the VaR-forecasting models and, additionally, presenéstination window strategies in
detail. Sectioh 5]3 describes the data set and the backisstisin this empirical study.
The results are discussed in Secfion 5.4. Se€tidn 5.5 adeslu

5.2 VaR-Models and Estimation Window Strategies

We apply different estimation window strategies to a setashmetric, semi-parametric,
and non-parametric VaR-forecasting models. In this secti@ quickly describe the theo-
retical background of the VaR models and explain the apjpdicaf the estimation win-

dow strategies.

5.2.1 A Short Review of VaR-Forecasting Models

The VaR-forecasts provided by each of the models describdteifollowing are estima-
ted on the basis of a series of log-returps= log(P,/P,_,), whereP, denotes the quote
of an assetattime= (0,1, ..., 7). Following the Market Risk Amendment proposed by
the|Basel Committee on Banking Supervision [2005], we est#ni-day ahead:(= 1)
and 10-day ahead: (= 10) VaR-forecasts. The00(1 — p)% confidence level of the VaR
is set top = 0.05 andp = 0.01. As the Value-at-Risk does not fulfill the requirements
of a coherent risk measure (see Artzner et al., 1999), weesBmate the ES which is

generally defined a&8'S,(X) = E[X|X < VaR,(X)]

e Normal Distribution
We start with the simplest parametric model based on thengsson of nor-
mal distributed returns. We include this model becauseicatat al. [2005] and
Rapach and Strauss [2008] find out that a simple approacld lmas¢he average
of the squared returns often achieves good results comparednditional mo-

dels if this model is estimated on a relatively small movingdow. They argue

3The terms ES and Conditional-Value-at-Risk (CVaR) areroftsed synonymously, although the latter
is defined a®®VaR,(X) = E[X|X < VaR,(X)]. Note that if the loss distribution is continuous, the ES
is equal to the CVaR. The ES differs from the CVaR in the casgdisgfontinuities in the loss distribution.
In general, the relationship is defined 6 aR < ES < VaR. For further details see Acerbi and Tasche
[2002].
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that this moving average model is a convenient way of capguai conditionally
homoskedastic process with relatively frequent breaksoleenote the standard
deviation of the log-returns;. If the simplistic but popular assumption is made
that asset returns follow a normal distribution, the 1-daRMorecasts are given
by VaRy , = 0,z(p), wherez is the quantile of the standard normal distribution.
In line with the stylized facts of asset returns (see McNedl2(2005, p. 117), we
assume the expected daily returns to be zero while the esapstiandard deviation
o Is estimated on the log-returns of different estimationdeiws. Thek-day ahead
forecasts for forecasting periods> 1 are computed by aR;., = VaR.41 - Vk.
The ES is calculated bysy,, = at@ for the 1-day ahead forecast and by
ES!., = ES!,, - Vk for thek-day ahead forecast with> 1, wheres denotes the

density of the distribution.

e Exponentially Weighted Moving Average
The very popular Exponential Weighted Moving Average (EWMfaproach, also
used in theRiskMetricsframework, explicitly accounts for time-varying and auto-
correlated volatility of asset returns. Considering ammestion window including
m log-returns from time — m + 1 to time ¢, the EWMA model estimates the
next-day variance by?,, = (1 — A\) 3. ' Nir?2 . = A62 + (1 — )7y The decay
factor \ is usually set to 0.94 and 0.97 for 1-day and one-month aheladility
forecasts, respectively (see RiskMetrics Group, 1996jvéver, to investigate the
impact of different estimation window strategies, we apgédgay factors determi-
ned by) = "(0000/m The 1-day VaR-forecasts are given By R, = 6,,12(p)
while the k-day ahead forecasts for forecasting periéds- 1 are computed by
VaR, x = VaRyy, - Vk. The ES is calculated bfS?,, = 4,4, 2% for the 1-

p

day ahead forecast and B5?,, = ES?,, - Vk for the k-day ahead forecast with

k > 1, where¢ denotes the density of the distribution.

e GARCH(1,1)
The GARCH model of Bollerslev [1986] and its variants areyvieequently used
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to forecast the volatility of asset returns. In contrastim EWMA model, GARCH
models accommodate the fact that the long-run averageneariaf asset returns
tends to be relatively stable over time. Hansen and Lund@qR€ompare the vo-
latility forecasting accuracy of a large range of differ&@ARCH models. They
find out that the simple GARCH(1,1) is not significantly oufpemed by any
of its more complex counterparts. Therefore in this emalirstudy we select the
GARCHY(1,1) model. The log-return of an asset is modelled-by &;¢;, where
e ~ i.i.d. N(0,1). Then the 1-day forecast of the asset return variance isteeéno
by 67, = w+ arf + B67, wherea + 3 < 1 andw = ¢*(1 — a — 8). The uncon-
ditional, or long-run average, variance is denotedbyThe k-day ahead forecasts
of the variance fok > 1 are given by}, = ko” + Zle(a + B) (o2, — 67).
The k-day ahead VaR-forecasts are determinetf &, = 7,12(p). The k-day
ahead ES forecast is given B5;, , = de@, where¢ denotes the density of

the distribution.

e GJR-GARCH(1,1)
The GARCH(1,1) model described above is symmetric in thass¢hat it does not
distinguish between positive and negative return shocksvader, numerous stu-
dies evidenced that asset returns and conditional vayegite negatively correlated
(for an overview see Bekaert and Wu, 2000). To accommodagetythical cha-
racteristic, we employ the GJR-GARCH(1,1) model of Glosteal. [1993]. This
variance forecasting approach modifies the classical GAR@)model in a way
that not only the size but also the direction of a shedkas an impact to the volati-
lity forecast. The 1-day ahead volatility forecast proddey the GJR-GARCH(1,1)
model is given bys?, | = w + (o + vI;)r} + o7, wherel, is an indicator variable
equaling one it, < 0. The computation of k-day ahead volatilities and forecabts

VaR and ES are identical to the GARCH(1,1) model.

e Historical Simulation

As a non-parametric VaR model, the Historical Simulatio®)tdpproach assumes
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no particular distribution of the returns. Due to its sinofiyi it is easy to imple-
ment and very frequently used in practice. In a survey ofriv@gonal banks’ VaR
disclosures, Pérignon and Smith [2010] find out that 73g@rof these banks use
HS for VaR-forecasting purposes. Therefore, the impacift#rént estimation win-
dow strategies to the VaR-forecasting accuracy of HS isgif mterest particularly
for practitioners. For each 1-day ahead VaR-forecast, weheslastrn log-returns
and arrange it in increasing order. Depending on the deMa#t confidence le-
vel, the corresponding percentile of the historical resushused as VaR-forecast
by VaRYy,, = Percentile {{r,_;}]"5", 100p}. The k-day ahead VaR-forecasts for
k > 1 are calculated by the same procedure. HEeR,, ., based on the percentile
of m —k+1 returns calculated by, 1., = Zle ri+j. The k-day ahead ES forecast
is determined by2S?,, = ——L— - S s e < VaR?P,,), where
1(-) denotes the indicator function returning a 1 if a loss exsebd VaR, and zero

otherwise.

¢ Filtered Historical Simulation

The non-parametric HS model has the advantage of not reguamy assump-
tions concerning the distribution of the asset returns hils fto accommoda-
te conditional time-varying volatility. Exactly the opptes holds true for pa-
rametric GARCH models. The semi-parametric Filtered Histd Simulation
(FHS) model of Barone-Adesi etial. [1999] combines the b&nefi both mo-
dels. We estimate the 1-day ahead volatility forecast using the GARCH(1,1)
model as described above. For calculating VaR and ES fdasecag follow
Christoffersen|[2009]. By multiplying the volatility foocast by the percentile of
the standardized residuals we calculate the 1-day aheaddvaBast a3 aR;,, =
i1 Percentile {{e_;}1"5", 100p}. To determine the k-step ahead VaR-forecast,
we draw £k random numbers from a discrete uniform distribution fromoInt.
Each drawn number from this distribution determines a hisaib standard resi-
duale; ;, obtained by estimating the GARCH(1,1) model on the log+retwof the

estimation window. The return for the first day of the k-daydg period is cal-
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culated byr,;1 = o:11€1%. Then, the returr,,; is used to update the volatili-
ty for day two of the holding period,,,. The return of day twa,, is then
again given by the multiplication of the updated volatilggd the second drawn
standardized residual. This process is repeated untiluanresequence of length
k is constructed. This return sequence sums up to a hypahétitire return
Teath = Z?zl T.+j. By repeating this procedure = 10000 times, we obtain
10,000 hypothetical future returns,. ... Again, the k-step ahead VaR-forecast
is then given byVaRy,, = Percentile {{F11x}~,, 100p}. The 1-day ahead
ES forecast is determined WySY,, = ;115 - D00 € - e < VaRy,),
wherel(-) denotes the indicator function returning a 1 if a loss exsdhéd VaR,

and zero otherwise. The k-day ahead ES forecasttfor 1 is calculated by

p _ 1 L = = P
ESt+k — oL’ Zl:l Tltd1:k 1(7"l,t+1:k < VaRt+k)-

5.2.2 Estimation Window Strategies

In the following, we explain the different estimation windstrategies used in this em-
pirical study. As explained in detail in Section 5.3, eaclmpke used in this empirical
study for the 1-day ahead VaR-forecasts inclufies 3000 trading days, where the out-
of-sample forecasting period comprises 2,000 trading day$1001, . .., 3000]. This in
turn leads to a maximum in-sample size of 1,000 days for tisé dut-of-sample VaR-

forecast for the day = 1001

e Expanding Window
The expanding window strategy includes the entire datddbtesample available
at timet. That means that the size&**? of the expanding estimation window starts at
1,000 trading days for forecasting VaR for day 1001 and expands by one more
observation per day. The last VaR-forecast estimated f08000 is then based on

the estimation window consisting of 2999 returns. Becahsestarting point of an

4The specifications of the total sample and the out-of-sarsiales relate to the 1-day ahead VaR-
forecast period = 1. Note that in case of the longer forecasting period 1, the total sample includes
3000 + k£ — 1 trading days and we calculate 2,000 VaR-forecasts cornepg to the cumulated returns

k k
Zj:l 710004355 - -+ » ijl 72999+ (-
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expanding estimation window is fixedte= 1, this strategy neglects the occurrence
of structural breaks which may lead to biased VaR estimatiblowever, using the
longest available data history minimizes the forecastraeramiance. In line with
Rapach and Strauss [2008] and Rapach et al. [2008] the exyganohdow strategy

serves as a benchmark model in the context of this study.

¢ Rolling Window
The rolling window strategy based on an estimation sampéefiaed sizen"'. For
each new VaR-forecast estimation, the return of the ddsyadded to the sample
while the return of the day— m™ is excluded. This strategy is frequently used in
finance research as well as by practitioners, because ramolder observations
from the sample reduces potential biases in the VaR esbmatiused by structural
breaks and, therefore, leads to flexible adjustments otitee&sting model to time-
varying volatility. We employ rolling estimation windowd @25, 250, 500, and
1,000 trading days which covers a broad range of data histony approximately

one half to four years.

e Structural Breaks
The aim of the structural break strategy is to minimize theregion biases resul-
ting from significant changes in the volatility of an estimatsample. To detect
structural breaks in the volatility, we perform the fluctoattest for constant va-
riances of Wied et al. [2012a] to the daily log-returns. BaBy, this test can be
regarded as a one-dimensional special case of the test fonstamt covariance
structure of Aue et all [2009]. Since this test is non-pataicedifficulties asso-
ciated with parametric model selection, model fitting anchpeeter estimation are
avoided. We test whether the variaricer(X;) of a sequence of random variables
(Xy, t=1,...,T)is constant over time. In detail, we test the null hypothesis
Hy: Var(X,) =0Vt €{1,...,T}
against the alternative

H1 dt e {1,,T— 1} : VCLT(Xt) # VCLT(Xt + 1)
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for a constant2. The test statistic is given by

Qr(X) = mag, DLT ([Var X]; = [Var X]r)| = s |BE)L 61)
where B(z) is a one-dimensional Brownian Bridge. The scalais needed for
the asymptotic null distribution and mainly captures theglwun-dependence and
the fluctuations resulting from estimating the expectedearl he fluctuation of the
empirical variances is measured@c%:cT |([Var X]; — [Var X]r)|. The weighting
factor ﬁ scales down deviations for smallbecause thél ar X|,; are more vo-
latile at the beginning of the sample. For more formal dstsde Appendik]B and
Wied et al. [2012a]. To estimate the point of time where a geaof the variance
occurs, we employ a procedure based on Galeano and Wied][20itHin the total
sample including all observations preceding the forecagt d- 1 we identify the
data point where the test statistic takes its maximum. # thaximum is equal to
or above the critical value, the null of a constant variam;c&ejecte(H The locati-
on of the maximum serves as a natural estimator of a so catletinéting change
point. At this point we split the sample into two parts and-skdor possible change

points again in the latter part of the sample. The procediogssf the test statistic

remains below the critical value.

Basically, we use the latest date where a structural bredétected as the starting
point for the estimation sample. However, Pesaran and Timaen [200/7] point
out that using only the observations over the post-brealogé¢o estimate a VaR
model need not be optimal in terms of forecasting perforrmaAéthough this ap-
proach yields unbiased forecast estimations, too smalpkasizes could lead to
increased forecast error variances. To overcome the tfidetween bias and fo-
recast error variance, we limit the sample size to a miniméihi2®d days which

corresponds to the minimum rolling window size. Consedyetite size of the

5The limit distribution of Q1 (X) is well known (see Billingsley, 2009) and its quantiles pdavan
asymptotic test. We follow Wied et al. [2012a] who find outtttiee test works well by using a critical value
of 1.358 corresponding to a significance level of 5%.
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estimation window using the structural break strategy Gy between 125 days
and the length of the expanding window. The test for stradtoreaks and hence

the adjustment of the length of the estimation sample iop@xEd on a daily basis.

e Combinations

Generally, a single dominant estimation window strategy ictvh mini-
mizes VaR-forecasting errors cannot be identified ex antberé&fore,
Pesaran and Timmermann_[2007] and Clark and McCracken [2@6pose
that it can be useful to combine VaR-forecast estimated fiardnt sample sizes.
Timmermann|[2006] provide an overview of arguments for commg forecasts.
One of the main arguments is that individual forecasts maydyg differently
affected by non-stationarities such as structural bre@kse estimation window
strategies may lead to quick adaptations while others doubiead to more pre-
cisely estimated parameters. As mentioned in Se€tidn Gdtegies based on the
detection of structural breaks suffer from severe drawbacdo. Consequently, it is
possible that across periods with varying volatility, conabions of forecasts based
on estimation window strategies representing differergreles of adaptability
will outperform forecasts based on individual estimatiandow strategies. Each
combination described below is computed by the simple eeajhted average
of the respective VaR-forecasts. Alternatively, Timmenm{006] discuss several
distinct techniques to determine optimal combination WwesgHowever, he pointed
out that simple combination schemes such as equal-wegghtine widely been
found to dominate estimations of optimal weights becausienigation approaches
tend to suffer from serious estimation errors. In the spifiRapach et al. [2008],

we employ the following combinations:

Mean All This combination includes the total set of estimation windtrategies
consisting of the expanding window, the rolling windows @51 250, 500, and

1,000 days, and the windows determined by the structurakitest.

Mean All ex Structural Breakgd his combination excludes VaR-forecasts based on
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estimation windows determined by the structural break biesteasier to implement

because no statistical test for significant changes of thaility has to be applied.

Mean Rolling WindowsThis combination includes rolling windows of 125, 250,
500, and 1,000 days. Compared to the previous combinatisi®uld be more

flexible concerning estimations biased from structuraakse

Mean Long ShortThis combination averages the VaR-forecasts based owige |
sized expanding windows and the short sized rolling windofs25 days. These
sample sizes correspond to very stable and very flexible fdagtast estimations,

respectively.

Trimmed Mean All / Trimmed Mean All ex Structural Breaks hiried Mean Rol-
ling Windows For calculating each of these combinations, the minimudraaxi-
mum individual VaR-forecast is excluded from the respeatean all mean all ex

structural breaksandmean rolling windowgombination.

5.3 Data and Backtesting

In the following we describe the data used in the empiricadgtFurthermore, we explain
the backtests which are used to evaluate and compare tharmparfce of the distinct

estimation window strategies.

5.3.1 Data

For the empirical study we compute daily log-returns by gsatal return quotes of com-
panies listed on the German stock index DAX on June 30, 20XE3liMit the selection
to those 14 companies which provide a complete data historg lanuary 1, 1973 to
June 30, 2013 consisting of 10,370 log-returns. Zero reteaused by weekends and
holidays are excluded from the data set. All quotes are obtafromThomson Reuters
Financial DatastreamTabel5.1 reports the summary statistics for each of themd-t

series. Almost all stocks show significant positive anragalireturns, but also an annua-
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Table 5.1: Summary Statistics
Summary statistics of the data set used for the empiricdlysflhe data set consists of 10,370 log-returns
for each of the 14 stocks taken out of the DAX covering a pefioth January 1, 1973 to June 30, 2013.
Mean p.a. and volatility p.a. are annualized with 250 days.

. Beiers Commerz-  Deutsche
Company Allianz BASF Bayer _dorf BMW Bank Bank
Minimum -15.678%  -12.924%  -18.432% -13.423% -15.985% 228% -18.072%
5% Quantile -2.773% -2.352% -2.449% -2.292% -2.787% -3420 -2.695%
Median 0.008% 0.021% 0.021% 0.008% 0.014% 0.000% 0.011%
Mean 0.034% 0.044% 0.041% 0.043% 0.046% -0.008% 0.021%
95% Quantile 2.758% 2.382% 2.456% 2.465% 2.924% 3.041%  5%67
Maximum 19.273%  12.690%  32.305%  16.101%  13.518% 19.459% .30220
\olatility 1.892% 1.541% 1.631% 1.579% 1.842% 2.119% 19863
Skewness 0.245 -0.137 0.419 -0.041 -0.023 -0.174 0.135
Ex. Kurtosis 10.423 5.889 20.867 8.065 5.941 13.199 12.064
Mean p.a. 8.49% 10.98% 10.13% 10.63% 11.48% -2.01% 5.29%
\olatility p.a. 29.92% 24.36% 25.78% 24.97% 29.12% 33.50% 9.48%
Company I_Duef;Jr:asltr:\Z‘:l E.ON Linde Muggh RWE Siemens Thﬁjs;_
Minimum -15.209%  -13.976% -14.131% -21.673% -15.823% 366% -16.586%
5% Quantile -3.106% -2.349% -2.276% -2.835% -2.305% -2643 -2.996%
Median 0.005% 0.019% 0.010% 0.006% 0.017% 0.014% 0.017%
Mean 0.026% 0.033% 0.040% 0.044% 0.030% 0.032% 0.028%
95% Quantile 3.274% 2.362% 2.443% 3.047% 2.361% 2.546% 6304
Maximum 16.394%  15.886%  12.855%  16.528%  14.256% 16.601% .78%606
\olatility 2.036% 1.567% 1.534% 1.931% 1.509% 1.688% 1933
Skewness -0.033 -0.133 -0.094 -0.342 0.070 -0.135 -0.064
Ex. Kurtosis 4.332 7.353 5.925 9.959 7.666 8.768 5.234
Mean p.a. 6.47% 8.27% 10.03% 11.08% 7.43% 8.05% 7.08%
\olatility p.a. 32.19% 24.78% 24.26% 30.53% 23.86% 26.69% 0.53%

lized volatility well above 20%. In line with the stylizeddes of financial time series (see
McNeil et al., 2005), the excess kurtosis reveals fat tdith@log-return distributions. In
addition, the majority of the time series are negativelysie

To obtain generalizable and robust results, we randombcsdhree different sub-
samples from each of the 14 samples under the condition hieat tare no more than
1,000 overlapping days with respect to two subsamples o$dinge series. In sum, this
leads to 42 subsamples consisting of 3,000 trading daykéattday-ahead forecasts and
3,009 trading days for the 10-day-ahead forecasts. Witlertdo each of these subsamp-
les, we generate 2,000 out-of-sample forecasts. Constgube results of our study are
less biased than results obtained by restricting the sanpla particular period or mar-

ket phase. Table 5.2 reports the subsample selectiongi€kai table illustrates that the
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Table 5.2: Subsample Selection
The table shows the 42 subsamples selected for the em@tizhl. From each of the 14 different samples,
we select three different subsamples consisting of 3,Gling days for the 1-day-ahead forecasts (3,009
trading days for the 10-day-ahead forecasts) under thettmmthat there are no more than 1,000 overlap-

ping days. The dates refer to the 1-day-ahead forecastsh&di0-day-ahead forecasts, nine days have to
be added at the end of the subsample.

Company Sample 1 Sample 2 Sample 3
from to from to from to

Allianz 09/11/1979  04/08/1991 08/05/1986  06/17/1998 DA/O94  07/18/2006
BASF 07/09/1976  01/07/1988 09/02/1982  05/13/1994 048%71 02/04/2009
Bayer 04/27/1982  12/30/1993 10/24/1990  09/30/2002 0188  04/29/2010
Beiersdorf 05/19/1975  11/14/1986 08/27/1985  06/23/1997 1/2101991  12/18/2002
BMW 10/01/1975  03/31/1987 11/06/1980  06/25/1992 03/18619 01/12/1998
Commerzbank 08/01/1991  07/02/2003 12/22/1995  10/29/2007 12/23/1999  10/06/2011
Deutsche Bank 01/14/1981  09/02/1992 01/06/1992  11/28/200 01/22/2001  10/29/2012
Deutsche Lufthansa 01/08/1979  07/23/1990 10/29/1992 2(®IR4 02/02/1998  11/23/2009
E.ON 03/09/1979  09/21/1990 04/07/1988  03/06/2000 118941 09/25/2006
Linde 11/08/1985  09/04/1997 11/17/1994  09/25/2006 0211 06/14/2013
Munich Re 10/28/1975  04/27/1987 09/25/1981  05/26/1993 193000 02/27/2012
RWE 02/06/1979  08/21/1990 06/16/1988  05/18/2000 03/®B19 12/21/2009
Siemens 05/18/1977  11/15/1988 09/26/1983  06/21/1995 oHe2 02/16/2004
ThyssenKrupp 04/25/1973  10/23/1984 03/21/1984  12/1&199 10/30/1990  10/04/2002

subsamples cover a broad range of different market phasesxdmple the calm period

in the mid-1990s or the highly volatile markets of the redavdncial crisis.

5.3.2 Backtesting

We evaluate the VaR-forecasting accuracy depending ogrdiif estimation window stra-
tegies by applying the backtest framework recently propgdiseZiggel et al.[[2013]. This
new approach tests for the unconditional coverage progectyhereafter) as well as for
the property of i.i.d. VaR-violations. The set of backtdstdirectly based on i.i.d. Ber-
noulli random variables and uses Monte Carlo simulatiohnepes. Results from a si-
mulation study indicate that these backtests significanitperform competing backtests
in several distinct settings. In addition to the evaluatibthe VaR-forecasting accuracy
for each estimation window strategy individually, we arterested in a comparison bet-
ween distinct approaches. To this end, we employ the camditpredictive ability (CPA)
test of.Giacomini and White [2006]. This test of VaR-foreaasg accuracy is derived un-
der the assumption of data heterogeneity rather than statip and can be applied to
the comparison between different estimation techniqudgfamte) estimation windows.

We follow Rapach et al/ [2008] and choose the expanding winskoategy as a bench-
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mark because it uses all data available at tirapd therefore minimizes the forecast error

variance.

e Test of Unconditional Coverage

We define the indicator variablg(p) for a given VaR-forecast a Ry, (p) as

0, if ry > VaRy,—1(p);
Ii(p) = (5.2)
17 if e < VCLRt‘tfl(p),

wherel;(p) = 1 indicates a VaR-violation. Considering the two-sided uckibest
of lZiggel et al. [2013], we test the null hypotheﬁls{% Zthl ]t(p)] = p against
the alternativel [% ST [t(p)] # p. In addition, this test allows for directional
testing, i.e. we can also test against the alternaﬂﬁl%é Zthl ]t(p)] > p and

E [% Zle I; (p)] < p. The simple and intuitive test statistic is given by

MCS,e=e+ Y L(p), (5.3)

t=1

wheree ~ 0.001- N(0, 1) is a random variable that serves to break ties between test
values and therefore guarantees that the test exactly ksegize. For fixed” and

p, critical values of the test statistic are computed via MdDarlos simulation. We
generate violation sequences by drawing 10000-timesT random variables with
distribution; ,(p) ~ Bern(p), t = 1,...,T, j = 1,...,1. Then, we calculaté test
statistics by Equation (5.3) and compute the respectivatjaaf the test statistics

corresponding to a significance level of 5%.

e Test of I.I.D. VaR-Violations
If a VaR model is properly fitted, the resulting VaR-violat®are independent and
identically distributed (i.i.d.). The hypothesis of i.i."daR-violations holds true if
{L,(p)} & Bern(p), Vt, wherep is an arbitrary probability. First, we define the
set of points in time on which a VaR-violation occurs Wia= {t|/;, = 1} =

(t1, ..., tm), wherem = 3. I,(p). Following Ziggel et al. [2013], the test statistic
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for testing the i.i.d. hypothesis is then given by

m

MCSiiam =€+ 1+ (T —t) + > _(ti —ti1), (5.4)

=2

wheree ~ 0.001-N(0, 1) is a random variable that serves to break ties. This backtest
is based on the idea that the sum of the squared durationséetwo violations is
minimal if the violations are exactly equally spread actbgswhole sample period.

If the violations are clustered, this sum increases. Agaapbtain critical values

by Monte Carlo simulations for fixed andm. Similar to the uc test, we generate
VaR-violation sequences by simulatihg: 10000-timesT random variablesfj,t(p)
under the conditioEtT:1 ft(p) = m. Then, we calculatktest statistics by Equation
(5.4) and set the 95% quantile of the test statistics as thieatvalue corresponding

to a significance level of 5%. This critical value correspeital the one-sided test

for clustered VaR-violations.

e Expected Shortfall Backtesting
To backtest the ES, we measure the average of the absoluttioes between the
ES forecast and the realized shortfall in case of a VaR-tt@mialn addition, we
apply the test of McNeil and Frey [2000] which evaluates theamof the diffe-
rences between the realized shortfall and the ES in the ¢as¥aiR-violation. The
average error should be zero. The backtest is a one-sideajeaast the alternative
hypothesis that the residuals have mean greater than zerthe expected shortfall

is underestimated on average.

e Conditional Predictive Ability
For backtesting the 1-day ahead VaR-forecasts, we follomtdSeet al. [[2013]
and assume an asymmetric linear (tick) loss functtbmof order p defined as
Ly(ers1) = (p — Lewr < 0))er, Whereeyyy = 1 — VaRy), | and1(:) is an
indicator function equal to one & ., < 0 and zero otherwise. The null hypothesis
of equal conditional predictive ability claims that the @mitsample loss difference

between two models follows a martingale difference segeienbe test statistic is
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defined as

T-1 ! T-1
CPA=T <T—1 ZItEDt+1> 0! <T—1 ZItEDt+1> (5.5)

t=1 t=1

where T is the sample siz€D is the loss difference between the two modé]s+

(1, £D,) is an instrument that helps predicting differences in fastperformance
between the two models, aftlis a matrix that consistently estimate the variance
of Z,LD, .. We reject the null hypothesis of equal unconditional prtrae abilitg/

whenevelCPA > x7.,_,, wherex?,,_ is the(1—p)-quantile of ay7. distributiory

5.4 Results

In the following, we present and discuss the results of oysigoal study with respect to

the uc and i.i.d. property, the ES forecast accuracy, anddhditional predictive ability.

5.4.1 Unconditional Coverage

We start with the evaluation of the uc properties of the d#fife estimation window strate-
gies. Tables 513 arid 5.4 present the VaR-violation ratibs;lware computed by dividing
the actual number of VaR-violations by the total number 60B,VaR-forecasts. To eva-
luate the robustness of the results, the table additionafigrts the standard deviation of
the VaR-violation ratios across the 42 subsamples. Befoatyaing the VaR-violation
ratios of the different estimation window strategies inadleit should be noted that ob-
viously not only the application of different VaR models laiso the selection of the
estimation window strategy leads to significant differenicethe results. Figufe 5.1 illus-
trates the ranges between the minimum and the maximum \MalRtian ratio resulting

from different estimation window strategies.

SFor details of backtesting multi-day ahead VaR-forecasts,Giacomini and White [2006].



Table 5.3: Unconditional Coverage - VaR-Violation RatidsPay Ahead Forecasts
For each VaR model and each estimation window strategyattie teports the VaR-violation ratios averaged over theuh8amples. The VaR-violation ratio is calculated by
dividing the actual number of VaR-violations by the totahmer of 2,000 1-day ahead VaR-forecasts. The values in btsieke the standard deviation of the VaR-violation
ratio across the 42 subsamples. For each VaR model, VaBtiginlratios printed in bold are closest to the nominal Vaklle

S1INSs3d v's

Normal

Estimation Window Strategy Distr. EWMA GARCH G(AséR(’:—H HS Fll’t_‘eerd

5%VaR

Expanding Window 5.60%  (2.30%)  4.53%  (0.90%)  4.43%  (0.72%)4.43%  (0.66%)  6.82%  (2.54%)  5.60%  (0.92%)
Rolling Window 125 days 474%  (0.55%) 4.83%  (0.51%) 4.79%  (0.46%)  5.23%  (0.38%)  6.06%  (0.38%)  6.12%  (0.28%)
Rolling Window 250 days 478%  (0.61%)  4.48%  (0.53%)  4.60% .46%) 4.80%  (0.49%)  591%  (0.52%)  5.77%  (0.34%)
Rolling Window 500 days 497%  (0.85%)  4.34%  (0.53%)  4.55%  (0.56%)  4.63%  (0.57%)  6.10% 73®W) 5.58%  (0.45%)
Rolling Window 1,000 days 512%  (1.20%)  4.41%  (0.60%)  4.45%(0.66%)  4.50%  (0.65%)  6.18%  (1.23%)  5.53%  (0.63%)
Structural Breaks Window 456%  (0.87%)  4.41%  (0.64%)  4.40%(0.68%)  4.44%  (0.72%) 5.54%  (0.83%) 5.40%  (0.59%)
Comb. Mean All 458%  (0.89%)  4.27%  (0.53%)  4.39%  (0.59%) 8%4 (0.58%)  5.59%  (0.95%) 5.41%  (0.46%)
Comb. Mean All ex SB 4.63% (0.93%) 4.27% (0.55%) 4.43% (0.58% 4.51% (0.56%) 5.68% (1.02%) 5.48% (0.44%)
Comb. Mean Rolling Windows 4.58% (0.75%) 4.34% (0.49%) %45 (0.55%) 4.58% (0.54%) 5.60% (0.73%) 5.51% (0.38%)
Comb. Long Short 4.68% (1.23%) 4.27% (0.64%) 4.49% (0.56%) .64% (0.53%) 5.78% (1.41%) 5.62% (0.53%)
Comb. Trimmed Mean All 4.65% (0.85%) 4.31% (0.52%) 4.44%  5990) 4.48% (0.59%) 5.67% (0.85%) 5.49% (0.52%)
Comb. Trimmed Mean All ex SB 4.76% (0.88%) 4.33% (0.53%) %49 (0.56%) 4.53% (0.55%) 5.85% (0.94%) 5.54% (0.48%)
Comb. Trimmed Mean Rolling Windows 4.73% (0.75%) 4.39% 195 4.50% (0.54%) 4.61% (0.55%) 5.81% (0.67%) 5.58% (0.40%)
Average 4.80% 4.40% 4.49% 4.60% 5.89% 5.59%

1%VaR

Expanding Window 254%  (1.29%)  1.73%  (0.44%) 1.48%  (0.34%)1.44%  (0.34%)  1.71%  (0.93%) 1.14%  (0.29%)
Rolling Window 125 days 1.83%  (0.29%) 1.66%  (0.27%)  1.70% .29%) 1.98%  (0.30%)  1.99%  (0.27%)  2.02%  (0.24%)
Rolling Window 250 days 1.81%  (0.35%) 157%  (0.26%)  1.66% .2%06) 1.70%  (0.30%)  1.70%  (0.23%) 159%  (0.20%)
Rolling Window 500 days 1.99%  (0.41%) 1.63%  (0.26%)  1.58% .29%) 1.60%  (0.29%)  1.62%  (0.29%) 1.38%  (0.19%)
Rolling Window 1,000 days 2.21%  (0.68%)  1.67%  (0.30%)  1.53%(0.34%)  1.52%  (0.35%) 159%  (0.47%)  1.24%  (0.26%)
Structural Breaks Window 1.79%  (0.46%)  1.58%  (0.28%)  1.51%(0.33%)  1.53%  (0.33%) 153%  (0.45%)  1.36%  (0.31%)
Comb. Mean All 1.78%  (0.46%) 153%  (0.27%) 1.46%  (0.24%)  1.47%  (0.28%) 1.37%  (0.39%)  1.25%  (0.20%)
Comb. Mean All ex SB 1.80%  (0.46%)  1.52%  (0.27%)  1.48%  (0p4% 1.49%  (0.31%)  1.39%  (0.41%) 127%  (0.20%)
Comb. Mean Rolling Windows 1.75% (0.37%) 1.52% (0.23%) 1.52% (0.23%) 1.54% (0.28%) 1.44% 32%) 1.34% (0.18%)
Comb. Long Short 1.79% (0.60%) 1.46% (0.33%) 1.49% (0.28%) 1.55% (0.32%) 1.47% (0.60%) 1.34% 25%h)
Comb. Trimmed Mean All 1.82% (0.46%) 1.56% (0.26%) 1.49% 2%00) 1.48% (0.27%) 1.41% (0.34%) 1.25% (0.20%)
Comb. Trimmed Mean All ex SB 1.86% (0.47%) 1.56% (0.24%) %52 (0.26%) 1.51% (0.28%) 1.46% (0.37%) 1.28% (0.20%)
Comb. Trimmed Mean Rolling Windows 1.85% (0.36%) 155%  Bew} 1.55% (0.25%) 1.58% (0.28%) 1.57% (0.31%) 1.39% (0.17%)
Average 1.91% 1.58% 1.54% 1.57% 1.56% 1.37%

Vi1



Table 5.4: Unconditional Coverage - VaR-Violation Ratid€)-Day Ahead Forecasts
For each VaR model and each estimation window strategyattie teports the VaR-violation ratios averaged over theuh8amples. The VaR-violation ratio is calculated by
dividing the actual number of VaR-violations by the totahmer of 2,000 10-day ahead VaR-forecasts. The values ifkkéisiare the standard deviation of the VaR-violation
ratio across the 42 subsamples. For each VaR model, VaBtiginlratios printed in bold are closest to the nominal Vaklle

S1INSs3d v's

B Normal GJR- Filtered
Estimation Window Strategy Distr. EWMA GARCH GARCH HS Hs

5%VaR

Expanding Window 572%  (2.37%)  4.72%  (1.13%)  4.90%  (1.40%)4.86%  (1.45%)  7.16% = (2.91%)  6.23%  (1.77%)
Rolling Window 125 days 506%  (1.26%)  5.45%  (1.36%)  525%  (1.41%) 5.68%  (1.47%) 8.19% 66@) 7.03%  (3.52%)
Rolling Window 250 days 480%  (1.00%) 5.02%  (1.30%) 4.98%  (1.17%)  5.19%  (1.20%)  6.94%  (0.80%)  6.50%  (2.54%)
Rolling Window 500 days 507%  (1.13%)  4.71%  (1.16%)  4.86% .26%)  5.03%  (1.29%)  6.62%  (0.98%)  6.45%  (2.44%)
Rolling Window 1,000 days 524%  (1.41%)  4.62%  (1.04%)  4.79%(1.20%)  4.84%  (1.25%)  6.53%  (1.49%)  6.38%  (1.99%)
Structural Breaks Window 462%  (1.18%)  4.76%  (1.09%)  4.68%(1.16%)  4.74% = (1.27%)  6.34%  (1.29%)  6.28%  (1.95%)
Comb. Mean All 471%  (1.08%)  4.63%  (1.11%)  4.74%  (1.20%) 6%8 (1.27%) 6.20%  (1.18%)  6.17%  (2.02%)
Comb. Mean All ex SB 4.80% (1.14%) 4.65% (1.13%) 4.78% (1.22% 4.90% (1.29%) 6.27% (1.24%) 6.16% (2.05%)
Comb. Mean Rolling Windows 4.74% (1.05%) 4.80% (1.20%) %79 (1.22%) 4.96% (1.28%) 6.28% (0.93%) 6.28% (2.25%)
Comb. Long Short 4.86% (1.43%) 4.69% (1.15%) 4.94% (1.32%) .06% (1.37%) 6.70% (1.74%) 6.29% (2.22%)
Comb. Trimmed Mean All 4.75% (1.07%) 4.65% (1.10%) 4.78% 23%) 4.87% (1.30%) 6.28% (1.09%) 6.28% (2.03%)
Comb. Trimmed Mean All ex SB 4.90% (1.13%) 4.67% (1.13%) %85 (1.24%) 4.95% (1.31%) 6.45% (1.22%) 6.31% (2.07%)
Comb. Trimmed Mean Rolling Windows 4.85% (1.05%) 4.86%  4%3 4.88% (1.25%) 4.99% (1.29%) 6.53% (0.87%) 6.38% (2.29%)
Average 4.93% 4.79% 4.86% 5.00% 6.65% 6.36%

1%VaR

Expanding Window 250%  (1.41%)  1.87%  (0.64%) 1.91%  (0.75%)1.83%  (0.75%)  2.04%  (1.34%) 1.72%  (0.74%)
Rolling Window 125 days 212%  (0.75%)  2.25%  (0.80%)  2.17% .74%)  2.38% = (0.81%)  4.52%  (0.49%)  2.64%  (1.72%)
Rolling Window 250 days 1.91%  (0.69%)  2.04%  (0.72%)  1.99% .61%) 2.07%  (0.65%)  2.97%  (0.62%)  2.10%  (1.22%)
Rolling Window 500 days 211%  (0.72%)  1.90%  (0.67%)  1.86% .6%%0) 1.94%  (0.62%)  2.39%  (0.63%) 1.81%  (1.08%)
Rolling Window 1,000 days 2.20%  (0.81%)  1.84%  (0.66%)  1.86%(0.68%) 1.84%  (0.67%) 2.03%  (0.83%) 1.74%  (0.94%)
Structural Breaks Window 1.83%  (0.76%) 1.84%  (0.66%) 1.73%  (0.62%) 1.75%  (0.68%)  2.24%  (0.88%) 1.79%  (0.93%)
Comb. Mean All 1.88%  (0.68%) 1.80%  (0.64%) 1.83%  (0.59%) 1%8 (0.61%) 2.00%  (0.73%) 1.73%  (0.88%)
Comb. Mean All ex SB 1.93%  (0.69%) 1.82%  (0.66%)  1.86%  (0B1% 1.87%  (0.62%)  2.06%  (0.77%) 1.77%  (0.90%)
Comb. Mean Rolling Windows 1.87% (0.67%) 1.88% (0.65%) %87 (0.61%) 1.91% (0.62%) 2.27% (0.61%) 1.84% (1.03%)
Comb. Long Short 1.99% (0.82%) 1.79% (0.64%) 1.95% (0.67%) 1.95% (0.67%) 2.31% (1.09%) 1.92% 95%h)
Comb. Trimmed Mean All 1.88% (0.70%) 1.83% (0.66%) 1.83% 5900) 1.81% (0.63%) 2.09% (0.68%) 1.80% (0.95%)
Comb. Trimmed Mean All ex SB 1.97% (0.70%) 1.86% (0.66%) %88 (0.61%) 1.90% (0.64%) 2.17% (0.73%) 1.84% (0.97%)
Comb. Trimmed Mean Rolling Windows 1.94% (0.69%) 1.92% €@ 1.94% (0.61%) 1.99% (0.66%) 2.50% (0.61%) 1.91% (1.09%)
Average 2.01% 1.90% 1.90% 1.93% 2.43% 1.89%

GT1
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Figure 5.1: Differences in VaR-violation Ratios Dependomgthe Estimation Window
Strategy

For each forecast horizon, VaR level, and VaR model, thedighows the range between the minimum and
the maxiumum VaR-violation ratio resulting from differesgtimation window strategies. The individual
VaR-violation ratios are averaged over the 42 subsamplésgefeturns of stocks listed on the DAX as
described in Table5.2.
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The dynamic VaR models EWMA, GARCH, GJR-GARCH and filterestdvical simula-
tion attribute a higher weighting to more recent returnsr€fore, differences in the VaR-
violation ratio due to estimation window strategies tenbeésomewhat lower compared
to the static models employing a normal distribution anddnisal simulation. Neverthe-
less, even for such dynamic VaR models the results illustiet importance of selecting
a proper estimation window.

As an example, for each VaR model, Figured 5.2 [and 5.3 shawnseof the Alli-
anz stock for the period 9 July 1998 to 18 July 2006 and theesponding 1-day ahead
VaR-forecasts at the 5% VaR level. The VaR-forecasts amnatgd by using a selection
of different estimation window strategies. The figures desti@ate that even for dyna-
mic VaR models, the selection of an estimation window stpatean lead to differences
of several percentage points for the next day VaR-foregastjcularly during volatile
markets.

Tables 5.5 t§ 517 present the rejection rates for the tweesahd one-sided uc back-
tests. For each model and each estimation window strategygfection rate is compu-
ted by the number of rejections divided by the total numbepeformed uc tests. The
VaR-violation ratios of the expanding window strategy eeccéhe nominal VaR level and
consequently indicate an underestimation of VaR, excepgh&dynamic parametric EW-
MA, GARCH, and GJR-GARCH models at the 5% VaR level. Addittiy the high level
of the standard deviations of the VaR-violation ratios asrthe 42 subsamples indicates
a lack of robustness in the results. The expanding windowaw selatively high rejection
rates of the two-tailed uc test for almost all models at the\&R level in comparison to
the competing estimation window strategies. For the 1% éa#llthe rejection rates are

more heterogeneous.
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Figure 5.2: VaR-Forecasts and VaR-Violations (1/2)
The returns are computed by using total return quotes odiddlifor the period 9 July 1998 to 18 July 2006.
VaR-forecasts are estimated by the normal distributionBWWMA, and the GARCH model at th&% VaR
level. For each estimation window strategy, VaR-forecasésshown with lines in different colors. The
dashes at the bottom of the charts mark the data points whé&R-aiolation occurs.
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Figure 5.3: VaR-Forecasts and VaR-Violations (2/2)
The returns are computed by using total return quotes oaAdlifor the period 9 July 1998 to 18 July
2006. VaR-forecasts are estimated by the GIR-GARCH, thertgal simulation, and the filtered historical
simulation model at theé% VaR level. For each estimation window strategy, VaR-fosézare shown with
lines in different colors. The dashes at the bottom of thetstraark the data points where a VaR-violation
occurs.
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Table 5.5: Unconditional Coverage - Two-Sided Test
For each VaR model and each estimation window strategyatle teports rejection rates of the two-sided
uc tests. The rejection rate is computed by the number aftiejes divided by the total number of performed
uc tests. The rejection rates in bold are closest to thefgignce level of the test.

Estimation Window Strategy ngirSrI:aI EWMA GARCH GCAg‘gert_H HS F"ﬁrsed Average

5%VaR / 1-Day Ahead Forecasts

Expanding Window 64.3% 45.2% 33.3% 31.0% 76.2% 45.2% 49.2%
Rolling Window 125 days 14.3% 7.1% 7.1% 2.4% 50.0% 66.7% 24.6%
Rolling Window 250 days 9.5% 23.8% 9.5% 4.8% 45.2% 31.0% 20.6%
Rolling Window 500 days 26.2% 31.0% 16.7% 21.4% 57.1% 19.0% 8.6%
Rolling Window 1,000 days 47.6% 35.7% 33.3% 26.2% 59.5% 26.2 38.1%
Structural Breaks Window 35.7% 31.0% 28.6% 33.3% 38.1% 66.7 30.6%
Comb. Mean All 45.2% 35.7% 31.0% 26.2% 42.9% 9.5% 31.7%
Comb. Mean All ex SB 50.0% 42.9% 31.0% 23.8% 42.9% 16.7% 34.5%
Comb. Mean Rolling Windows 33.3% 26.2% 28.6% 21.4% 33.3% 16.7% 26.6%
Comb. Long Short 52.4% 45.2% 28.6% 11.9% 47.6% 26.2% 35.3%
Comb. Trimmed Mean All 45.2% 28.6% 31.0% 26.2% 38.1% 16.7% .0%1
Comb. Trimmed Mean All ex SB 38.1% 35.7% 28.6% 23.8% 47.6%  4®l. 32.5%
Comb. Trimmed Mean Rolling Windows 26.2% 28.6% 23.8% 23.8% 2.9% 21.4% 27.8%
Average 37.5% 32.1% 25.5% 21.2% 47.8% 25.6%

1%VaR / 1-Day Ahead Forecasts

Expanding Window 81.0% 78.6% 52.4%  40.5% 64.3% 11.9% 54.8%
Rolling Window 125 days 95.2% 69.0% 76.2% 100.0% 97.6% 97.6% 89.3%
Rolling Window 250 days 88.1% 73.8% 83.3% 81.0% 85.7% 81.0% 2.1%
Rolling Window 500 days 90.5% 73.8% 64.3% 66.7% 73.8% 28.6% 6.3%
Rolling Window 1,000 days 88.1% 73.8% 52.4% 45.2% 61.9% %6.7 56.3%
Structural Breaks Window 81.0% 66.7% 59.5% 61.9% 54.8% %0.5 60.7%
Comb. Mean All 78.6% 54.8% 35.7% 45.2% 35.7% 14.3% 44.0%
Comb. Mean All ex SB 78.6% 57.1% 47.6% 47.6% 38.1% 19.0% 48.0%
Comb. Mean Rolling Windows 81.0% 57.1% 54.8% 61.9% 452%  8%3. 54.0%
Comb. Long Short 71.4% 40.5% 47.6% 57.1% 54.8% 26.2% 49.6%
Comb. Trimmed Mean All 81.0% 59.5% 47.6% 45.2% 38.1% 16.7% .0%8
Comb. Trimmed Mean All ex SB 83.3% 66.7% 52.4% 52.4% 50.0%  3%A. 53.2%
Comb. Trimmed Mean Rolling Windows 95.2% 61.9% 64.3% 59.5% 4.3% 33.3% 63.1%
Average 84.1% 64.1% 56.8% 58.8% 58.8% 32.6%

5%VaR / 10-Day Ahead Forecasts

Expanding Window 71.4% 40.5% 52.4% 57.1% 73.8% 54.8% 58.3%
Rolling Window 125 days 42.9% 52.4% 45.2% 54.8% 100.0% 85.7% 63.5%
Rolling Window 250 days 28.6% 45.2% 40.5% 50.0% 92.9% 73.8% 55.2%
Rolling Window 500 days 35.7% 35.7% 50.0% 47.6% 71.4% 73.8% 2.4%
Rolling Window 1,000 days 52.4% 31.0% 42.9% 40.5% 61.9% 59.5% 48.0%
Structural Breaks Window 54.8% 40.5% 38.1% 50.0% 66.7% 59.5% 51.6%
Comb. Mean All 45.2% 33.3% 45.2% 50.0% 57.1% 71.4% 50.4%
Comb. Mean All ex SB 47.6% 33.3% 42.9% 50.0% 57.1% 69.0% 50.0%
Comb. Mean Rolling Windows 33.3% 38.1% 42.9% 42.9% 59.5%  2%6. 48.8%
Comb. Long Short 57.1% 31.0% 45.2% 45.2% 73.8% 76.2% 54.8%
Comb. Trimmed Mean All 42.9% 33.3% 45.2% 45.2% 57.1% 69.0% 48.8%
Comb. Trimmed Mean All ex SB 42.9% 33.3% 42.9% 47.6% 59.5%  0%9. 49.2%
Comb. Trimmed Mean Rolling Windows 35.7% 47.6% 40.5% 47.6% 3.8% 73.8% 53.2%
Average 45.4% 38.1% 44.1% 48.4% 69.6% 70.1%

1%VaR / 10-Day Ahead Forecasts

Expanding Window 78.6% 76.2% 66.7% 66.7% 71.4% 66.7% 71.0%
Rolling Window 125 days 81.0% 78.6% 78.6% 83.3% 100.0% 76.2% 82.9%
Rolling Window 250 days 78.6% 76.2% 78.6% 76.2% 100.0% 71.4% 80.2%
Rolling Window 500 days 83.3% 78.6% 73.8% 73.8% 97.6% 61.9% 78.2%
Rolling Window 1,000 days 83.3% 81.0% 71.4% 66.7% 78.6% %6.7 74.6%
Structural Breaks Window 66.7% 69.0% 61.9% 61.9% 92.9% 61.9% 69.0%
Comb. Mean All 76.2% 73.8% 73.8% 71.4% 76.2% 66.7% 73.0%
Comb. Mean All ex SB 73.8% 71.4% 76.2% 73.8% 76.2% 71.4% 73.8%
Comb. Mean Rolling Windows 83.3% 81.0% 73.8% 73.8% 88.1%  7%6. 77.8%
Comb. Long Short 66.7% 76.2% 76.2% 73.8% 81.0% 73.8% 74.6%
Comb. Trimmed Mean All 73.8% 76.2% 71.4% 66.7% 78.6% 66.7% .2%2
Comb. Trimmed Mean All ex SB 73.8% 76.2% 71.4% 73.8% 83.3%  3%4. 73.8%
Comb. Trimmed Mean Rolling Windows 76.2% 81.0% 76.2% 73.8% 7.6% 69.0% 79.0%

Average 76.6% 76.6% 73.1% 72.0% 86.3% 67.9%
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Table 5.6: Unconditional Coverage - One-Sided Test/ Lovedr T
For each VaR model and each estimation window strategy,atble reports rejection rates of the lower
tail uc tests. The rejection rate is computed by the numbeejettions divided by the total number of
performed uc tests. The rejection rates in bold are cloedhettests’ significance level of 5%.

- Normal GJR- Filtered
Estimation Window Strategy Distr. EWMA GARCH GARCH HS HS Average
5%VaR / 1-Day Ahead Forecasts
Expanding Window 26.2% 45.2% 45.2% 38.1% 19.0% 7.1% 30.2%
Rolling Window 125 days 16.7% 11.9% 9.5% 0.0% 0.0% 0.0% 6.3%
Rolling Window 250 days 11.9% 28.6% 21.4% 9.5% 0.0% 0.0% 11.9%
Rolling Window 500 days 23.8% 42.9% 33.3% 26.2% 0.0% 0.0% 0%1.
Rolling Window 1000 days 28.6% 42.9% 35.7% 35.7% 2.4% 0.0% 224
Structural Breaks Window 35.7% 40.5% 38.1% 35.7% 7.1% 4.8% 27.0%
Comb. Mean All 40.5% 45.2% 35.7% 31.0% 7.1% 0.0% 26.6%
Comb. Mean All ex SB 40.5% 52.4% 35.7% 28.6% 7.1% 0.0% 27.4%
Comb. Mean Rolling Windows 40.5% 35.7% 35.7% 26.2% 2.4% 0.0% 23.4%
Comb. Long Short 40.5% 52.4% 33.3% 23.8% 9.5% 0.0% 26.6%
Comb. Trimmed Mean All 38.1% 42.9% 33.3% 31.0% 2.4% 0.0% 4.6
Comb. Trimmed Mean All ex SB 33.3% 45.2% 33.3% 33.3% 2.4% 0.0% 24.6%
Comb. Trimmed Mean Rolling Windows 26.2% 33.3% 31.0% 26.2% .09 0.0% 19.4%
Average 31.0% 39.9% 32.4% 26.6% 4.6% 0.9%
1%VaR / 1-Day Ahead Forecasts
Expanding Window 0.0% 0.0% 0.0% 0.0% 11.9% 0.0% 2.0%
Rolling Window 125 days 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Rolling Window 250 days 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Rolling Window 500 days 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Rolling Window 1000 days 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.4%
Structural Breaks Window 0.0% 0.0% 0.0% 0.0% 4.8% 0.0% 0.8%
Comb. Mean All 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.4%
Comb. Mean All ex SB 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.4%
Comb. Mean Rolling Windows 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Comb. Long Short 0.0% 0.0% 0.0% 0.0% 9.5% 0.0% 1.6%
Comb. Trimmed Mean All 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.4%
Comb. Trimmed Mean All ex SB 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Comb. Trimmed Mean Rolling Windows 0.0% 0.0% 0.0% 0.0% 0.0% .09 0.0%
Average 0.0% 0.0% 0.0% 0.0% 2.7% 0.0%
5%VaR / 10-Day Ahead Forecasts
Expanding Window 31.0% 28.6% 35.7% 38.1% 11.9% 7.1% 25.4%
Rolling Window 125 days 23.8% 16.7% 21.4% 16.7% 0.0% 28.6% 17.9%
Rolling Window 250 days 21.4% 21.4% 23.8% 23.8% 0.0% 19.0% 18.3%
Rolling Window 500 days 21.4% 28.6% 26.2% 26.2% 2.4% 16.7% 20.2%
Rolling Window 1000 days 28.6% 26.2% 31.0% 31.0% 4.8% 9.5% 21.8%
Structural Breaks Window 40.5% 31.0% 31.0% 35.7% 4.8% 9.5% 25.4%
Comb. Mean All 31.0% 26.2% 31.0% 31.0% 0.0% 19.0% 23.0%
Comb. Mean All ex SB 31.0% 26.2% 31.0% 28.6% 2.4% 16.7% 22.6%
Comb. Mean Rolling Windows 26.2% 26.2% 31.0% 28.6% 0.0% %9.0 21.8%
Comb. Long Short 38.1% 26.2% 26.2% 21.4% 7.1% 16.7% 22.6%
Comb. Trimmed Mean All 33.3% 31.0% 31.0% 28.6% 0.0% 14.3% 0%3.
Comb. Trimmed Mean All ex SB 28.6% 28.6% 26.2% 28.6% 0.0% %A.3 21.0%
Comb. Trimmed Mean Rolling Windows 23.8% 23.8% 31.0% 26.2% .09 19.0% 20.6%
Average 29.1% 26.2% 28.9% 28.0% 2.6% 16.1%
1%VaR / 10-Day Ahead Forecasts
Expanding Window 4.8% 4.8% 0.0% 2.4% 16.7% 7.1% 6.0%
Rolling Window 125 days 2.4% 0.0% 0.0% 0.0% 0.0% 11.9% 2.4%
Rolling Window 250 days 2.4% 0.0% 0.0% 0.0% 0.0% 7.1% 1.6%
Rolling Window 500 days 2.4% 2.4% 4.8% 0.0% 0.0% 9.5% 3.2%
Rolling Window 1000 days 4.8% 2.4% 7.1% 0.0% 4.8% 7.1% 4.4%
Structural Breaks Window 4.8% 2.4% 2.4% 4.8% 9.5% 0.0% 4.0%
Comb. Mean All 2.4% 4.8% 2.4% 0.0% 0.0% 9.5% 3.2%
Comb. Mean All ex SB 2.4% 4.8% 2.4% 0.0% 2.4% 9.5% 3.6%
Comb. Mean Rolling Windows 4.8% 2.4% 2.4% 2.4% 0.0% 7.1% 3.2%
Comb. Long Short 4.8% 4.8% 0.0% 0.0% 4.8% 7.1% 3.6%
Comb. Trimmed Mean All 2.4% 2.4% 0.0% 4.8% 0.0% 7.1% 2.8%
Comb. Trimmed Mean All ex SB 2.4% 2.4% 0.0% 2.4% 0.0% 4.8% 2.0%
Comb. Trimmed Mean Rolling Windows 2.4% 2.4% 2.4% 2.4% 0.0% .1% 2.8%
Average 3.3% 2.7% 1.8% 1.5% 2.9% 7.3%
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Table 5.7: Unconditional Coverage - One-Sided Test / Uppér T
For each VaR model and each estimation window strategy,atble reports rejection rates of the upper
tail uc tests. The rejection rate is computed by the numbeejettions divided by the total number of
performed uc tests. The rejection rates in bold are cloedhettests’ significance level of 5%.

- Normal GJR- Filtered
Estimation Window Strategy Distr. EWMA GARCH GARCH HS HS Average

5%VaR / 1-Day Ahead Forecasts
Expanding Window 40.5% 9.5% 2.4% 0.0% 61.9% 50.0% 27.4%
Rolling Window 125 days 2.4% 2.4% 0.0% 7.1% 76.2% 90.5% 29.8%
Rolling Window 250 days 4.8% 2.4% 0.0% 2.4% 54.8% 50.0% 19.0%
Rolling Window 500 days 14.3% 0.0% 0.0% 4.8% 69.0% 31.0% 19.8%
Rolling Window 1000 days 31.0% 0.0% 0.0% 0.0% 59.5% 38.1% 491,
Structural Breaks Window 7.1% 0.0% 0.0% 2.4% 33.3% 26.2% 11.5%
Comb. Mean All 11.9% 0.0% 2.4% 0.0% 38.1% 21.4% 12.3%
Comb. Mean All ex SB 14.3% 0.0% 0.0% 0.0% 45.2% 26.2% 14.3%
Comb. Mean Rolling Windows 7.1% 0.0% 0.0% 0.0% 40.5% 21.4% 11.5%
Comb. Long Short 21.4% 0.0% 0.0% 0.0% 42.9% 35.7% 16.7%
Comb. Trimmed Mean All 16.7% 0.0% 2.4% 0.0% 47.6% 26.2% 15.5%
Comb. Trimmed Mean All ex SB 14.3% 0.0% 2.4% 0.0% 47.6% 31.0% 15.9%
Comb. Trimmed Mean Rolling Windows 9.5% 0.0% 0.0% 0.0% 52.4% 31.0% 15.5%
Average 15.0% 1.1% 0.7% 1.3% 51.5% 36.8%

1%VaR / 1-Day Ahead Forecasts
Expanding Window 83.3% 83.3% 57.1% 52.4% 57.1% 19.0% 58.7%
Rolling Window 125 days 97.6% 88.1% 92.9% 100.0% 97.6% 1%0.0 96.0%
Rolling Window 250 days 90.5% 78.6% 95.2% 90.5% 90.5% 83.3% 8.1%
Rolling Window 500 days 95.2% 88.1% 71.4% 76.2% 88.1% 47.6% 7.8%
Rolling Window 1000 days 88.1% 85.7% 61.9% 57.1% 61.9% 26.2% 63.5%
Structural Breaks Window 81.0% 83.3% 59.5% 69.0% 61.9% 5.2 66.7%
Comb. Mean All 83.3% 64.3% 61.9% 57.1% 45.2% 21.4% 55.6%
Comb. Mean All ex SB 81.0% 71.4% 61.9% 52.4% 52.4% 21.4% 56.7%
Comb. Mean Rolling Windows 90.5% 66.7% 76.2% 69.0% 61.9%  7%95. 66.7%
Comb. Long Short 73.8% 50.0% 64.3% 71.4% 50.0% 40.5% 58.3%
Comb. Trimmed Mean All 83.3% 76.2% 69.0% 59.5% 47.6% 21.4% .5%9
Comb. Trimmed Mean All ex SB 85.7% 78.6% 66.7% 64.3% 59.5%  2%6. 63.5%
Comb. Trimmed Mean Rolling Windows 95.2% 78.6% 73.8% 76.2% 9.0% 50.0% 73.8%
Average 86.8% 76.4% 70.1% 68.9% 64.8% 41.4%

5%VaR / 10-Day Ahead Forecasts
Expanding Window 45.2% 14.3% 26.2% 28.6% 61.9% 52.4% 38.1%
Rolling Window 125 days 23.8% 38.1% 28.6% 52.4% 100.0% 57.1% 50.0%
Rolling Window 250 days 11.9% 26.2% 21.4% 33.3% 95.2% 61.9% 41.7%
Rolling Window 500 days 19.0% 19.0% 23.8% 28.6% 76.2% 64.3% 8.5%
Rolling Window 1000 days 33.3% 9.5% 16.7% 19.0% 64.3% 52.4% 32.5%
Structural Breaks Window 19.0% 19.0% 11.9% 16.7% 66.7% 57.1% 31.7%
Comb. Mean All 16.7% 9.5% 16.7% 21.4% 59.5% 61.9% 31.0%
Comb. Mean All ex SB 19.0% 7.1% 14.3% 21.4% 59.5% 61.9% 30.6%
Comb. Mean Rolling Windows 14.3% 21.4% 16.7% 21.4% 71.4%  9%1. 34.5%
Comb. Long Short 26.2% 9.5% 23.8% 26.2% 66.7% 61.9% 35.7%
Comb. Trimmed Mean All 19.0% 14.3% 19.0% 21.4% 64.3% 59.5% .9%2
Comb. Trimmed Mean All ex SB 19.0% 9.5% 16.7% 21.4% 64.3% %9.5 31.7%
Comb. Trimmed Mean Rolling Windows 14.3% 26.2% 16.7% 26.2% 6.2% 61.9% 36.9%
Average 21.6% 17.2% 19.4% 26.0% 71.2% 59.5%

1%VaR / 10-Day Ahead Forecasts
Expanding Window 76.2% 76.2%  66.7% 66.7% 59.5% 64.3% 68.3%
Rolling Window 125 days 83.3% 81.0% 78.6% 83.3% 100.0% 71.4% 82.9%
Rolling Window 250 days 76.2% 78.6% 78.6% 76.2% 100.0% 66.7% 79.4%
Rolling Window 500 days 83.3% 78.6% 71.4% 78.6% 97.6% 57.1% 77.8%
Rolling Window 1000 days 88.1% 78.6% 69.0% 69.0% 76.2% 59.5% 73.4%
Structural Breaks Window 66.7% 76.2% 66.7% 66.7% 85.7% 64.3% 71.0%
Comb. Mean All 73.8% 76.2% 76.2% 73.8% 78.6% 61.9% 73.4%
Comb. Mean All ex SB 76.2% 76.2% 76.2% 73.8% 78.6% 64.3% 74.2%
Comb. Mean Rolling Windows 78.6% 78.6% 78.6% 73.8% 95.2%  9%1. 77.8%
Comb. Long Short 71.4% 73.8% 76.2% 76.2% 83.3% 71.4% 75.4%
Comb. Trimmed Mean All 71.4% 76.2% 76.2% 73.8% 78.6% 66.7% .8%3
Comb. Trimmed Mean All ex SB 76.2% 78.6% 76.2% 73.8% 85.7%  9%l. 75.4%
Comb. Trimmed Mean Rolling Windows 81.0% 78.6% 78.6% 78.6% 00.0% 61.9% 79.8%
Average 77.1% 77.5% 74.5% 74.2% 86.1% 64.1%

Regarding the rolling window strategy and the 5% VaR, the -Vaiation ratio of
the historical simulation and the filtered historical siatidn models exceed the nominal

VaR level significantly while the ratios of the remaining netslare around or below 5%.



5.4. RESULTS 123

For the 1% VaR level, the VaR-violation ratios of all modeke®ed the nominal level
on average. For the 1-day ahead forecast the standardidesiaif the results tend to
increase with the length of the rolling window, whereas tBeday ahead forecasts do
not show a similar trend. With the exception of the normatrdistion VaR model, larger
moving samples tend to estimate VaR more conservativelypeoad to short windows.
Consequently, the averaged rejection rates of the tweetaihd the upper-tail uc backtests
decrease as the size of the rolling windows increases.

In most of the cases, the structural breaks strategy lead®te conservative VaR-
forecasts compared to the rolling and the expanding windoategyy, irrespective of the
VaR level and the forecasting horizon. This result is parfjected in higher lower-tail
and lower upper-tail uc test rejection rates. However, weetailed uc test rejection rates
are neither significantly better nor significantly worsentiiae competing strategies.

The averaged VaR-violation ratios of the combination efyegs indicate that pooling
forecasts leads to more conservatively estimated VaR:#&ste compared to the compe-
ting strategies. Interestingly, the VaR-violation ratddshe combinations are consistently
lower than the mean of their respective component ratiasekample, the violation ratios
considering 1-day ahead forecasts of the normal distobhwaR model and the 1%VaR
for the 125-day rolling window and the expanding window ai&46 and 5.60%, respec-
tively, which amounts to an average of 5.17%. The violatatiorof the corresponding
combinatiormean long shoris significantly lower with 4.68%. On average, the combina-
tion mean allshows the lowest VaR-violation ratio of all combinatioraséigies. However,
the ratio tends to increase as the number of combination coenis decreases. This also
applies to the trimmed combinations, where the ratios aghtyy higher compared to
their non-trimmed counterparts. These findings are largahfirmed by the results of the

uc backtests and hold true for both VaR levels and both fetdwarizons.

5.4.2 1.1.D. VaR-Violations

The results of the i.i.d. backtest are presented in TableV8eBstart with an evaluation of

the backtest results for the 1-day ahead forecasts. As tedeeted, the rejection rates of
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Table 5.8: I.1.D. VaR-Violations - Backtest Rejections
For each VaR model and each estimation window strategy,aie reports rejection rates of the i.i.d.
backtest for the 1-day and 10-day ahead forecast horizahshen5% and 1% VaR level. The rejection
rate is computed by the number of rejections divided by tke tmimber of performed i.i.d. backtests. The
rejection rates in bold are closest to the significance lef/te test.

Normal

A . GJR- Filtered
Estimation Window Strategy Distr. EWMA GARCH GARCH HS HS Average
5%VaR / 1-Day Ahead Forecasts
Expanding Window 95.2% 95.2% 33.3% 33.3% 97.6% 42.9% 66.3%
Rolling Window 125 days 83.3% 31.0% 38.1% 38.1% 95.2% 47.6% 55.6%
Rolling Window 250 days 85.7% 50.0% 40.5% 33.3% 92.9% 45.2% 7.9%
Rolling Window 500 days 95.2% 73.8% 42.9% 28.6% 97.6% 45.2% 3.9%
Rolling Window 1,000 days 97.6% 90.5% 40.5% 33.3% 95.2% %5.2 67.1%
Structural Breaks Window 95.2% 81.0% 45.2% 47.6% 97.6% %9.5 71.0%
Comb. Mean All 92.9% 71.4% 33.3% 26.2% 92.9% 40.5% 59.5%
Comb. Mean All ex SB 92.9% 71.4% 33.3% 21.4% 92.9% 28.6% 56.7%
Comb. Mean Rolling Windows 92.9% 54.8% 35.7% 26.2% 90.5% 35.7% 56.0%
Comb. Long Short 90.5% 66.7% 35.7% 23.8% 92.9% 23.8% 55.6%
Comb. Trimmed Mean All 95.2% 69.0% 33.3% 28.6% 92.9% 40.5% .9%9
Comb. Trimmed Mean All ex SB 90.5% 69.0% 31.0% 26.2% 90.5% 28.6% 56.0%
Comb. Trimmed Mean Rolling Windows 92.9% 61.9% 31.0% 21.4% 92.9% 31.0% 55.2%
Average 92.3% 68.1% 36.4%  29.9% 94.0% 39.6%
1%VaR / 1-Day Ahead Forecasts
Expanding Window 88.1% 78.6% 19.0% 16.7% 88.1% 19.0% 51.6%
Rolling Window 125 days 66.7% 4.8% 11.9% 23.8% 33.3% 7.1% 24.6%
Rolling Window 250 days 76.2% 21.4% 28.6% 11.9% 76.2% 9.5% .3%7
Rolling Window 500 days 78.6% 50.0% 21.4% 14.3% 83.3% 28.6% 6.0%
Rolling Window 1,000 days 90.5% 66.7% 19.0% 21.4% 83.3% 8.6 51.6%
Structural Breaks Window 83.3% 52.4% 31.0% 19.0% 78.6% 5.7 50.0%
Comb. Mean All 73.8% 47.6% 19.0% 7.1% 71.4% 9.5% 38.1%
Comb. Mean All ex SB 71.4% 42.9% 19.0%  7.1% 69.0% 7.1% 36.1%
Comb. Mean Rolling Windows 71.4% 33.3% 19.0% 9.5% 66.7% 9.5% 34.9%
Comb. Long Short 76.2% 405% 11.9% 9.5% 69.0% 4.8% 35.3%
Comb. Trimmed Mean All 78.6% 45.2% 21.4% 9.5% 69.0% 19.0% 5%0.
Comb. Trimmed Mean All ex SB 71.4% 47.6% 19.0% 7.1% 69.0% 9.5% 37.3%
Comb. Trimmed Mean Rolling Windows 73.8% 31.0% 19.0% 7.1% 73.8% 14.3% 36.5%
Average 76.9% 43.2% 20.0% 12.6% 71.6% 15.6%
5%VaR / 10-Day Ahead Forecasts
Expanding Window 100% 100% 100% 100% 100% 100% 100%
Rolling Window 125 days 100% 100% 100% 100% 100% 100% 100%
Rolling Window 250 days 100% 100% 100% 100% 100% 100% 100%
Rolling Window 500 days 100% 100% 100% 100% 100% 100% 100%
Rolling Window 1,000 days 100% 100% 100% 100% 100% 100% 100%
Structural Breaks Window 100% 100% 100% 100% 100% 100% 100%
Comb. Mean All 100% 100% 100% 100% 100% 100% 100%
Comb. Mean All ex SB 100% 100% 100% 100% 100% 100% 100%
Comb. Mean Rolling Windows 100% 100% 100% 100% 100% 100% 100%
Comb. Long Short 100% 100% 100% 100% 100% 100% 100%
Comb. Trimmed Mean All 100% 100% 100% 100% 100% 100% 100%
Comb. Trimmed Mean All ex SB 100% 100% 100% 100% 100% 100% 100%
Comb. Trimmed Mean Rolling Windows 100% 100% 100% 100% 100% 00% 100%
Average 100% 100% 100% 100% 100% 100%
1%VaR / 10-Day Ahead Forecasts
Expanding Window 100.0% 100.0% 100.0% 95.2% 100.0% 100.0% 9.2%
Rolling Window 125 days 100.0% 100.0% 100.0% 97.6% 100.0% 0.(a 99.6%
Rolling Window 250 days 100.0% 100.0% 100.0% 97.6% 100.0% .6%7 99.2%
Rolling Window 500 days 100.0% 100.0% 97.6% 97.6% 100.0%  6%7. 98.8%
Rolling Window 1,000 days 100.0% 100.0% 97.6% 97.6% 100.0% 97.6% 98.8%
Structural Breaks Window 97.6% 95.2% 97.6% 92.9%  100.0% 100.0% 97.2%
Comb. Mean All 97.6% 97.6% 97.6% 92.9%  100.0% 97.6% 97.2%
Comb. Mean All ex SB 97.6% 97.6% 95.2% 95.2% 100.0% 100.0% 97.6%
Comb. Mean Rolling Windows 100.0% 100.0% 100.0% 95.2% 1%0.0 100.0% 99.2%
Comb. Long Short 100.0% 97.6% 100.0% 97.6% 97.6%  100.0% 98.8%
Comb. Trimmed Mean All 100.0%  95.2% 100.0% 92.9%  100.0% 100.0% 98.0%
Comb. Trimmed Mean All ex SB 100.0% 97.6% 100.0% 92.9%  100.0% 97.6% 98.0%
Comb. Trimmed Mean Rolling Windows 100.0% 100.0% 100.0% 2%95.  100.0% 100.0% 99.2%
Average 99.5% 98.5% 98.9% 95.4% 99.8% 99.1%




5.4. RESULTS 125

the dynamic models are significantly lower compared to tagcsbhormal distribution and
historical simulation models. Depending on the VaR modw,impact of the different
estimation window strategies to the rejection rates of thektest is very specific. With
respect to the normal distribution model, almost all estiomawindow strategies show
rejection rates around 90%. Despite the fact that very siodimg windows of 125 and
250 days lead to slight improvements, our results conttaldéfindings of Starica et al.
[2005] and Rapach and Strauss [2008] who state that a simppteach based on the ave-
rage of the squared returns often achieves good resultsarehpo conditional models
if this model is estimated on a relatively small moving wind@s mentioned in Section
B.2.1, the decay factor of the EWMA model is usually set to 0.94 for 1-day volatility
forecasts which means that 99.9% of the information the rnoskes for the volatility
estimation are contained in the last 112 days of historie#.dOur results support this
setting, because the smallest rolling window of 125 dayklgithe lowest rejection rates.
Considering the GARCH and the GJR-GARCH models, the comibimatragegies tend
to outperform the remaining strategies. With respect toedepable length of a rolling
window, no clear conclusions can be made. The rejectios fatehe historical simulati-
on model are on a very high level compared to the dynamic VaRetsopirrespective of
the estimation window strategy. However, applying comtiamestrategies leads to slight
improvements. The results of the semi-parametric filteistbhical simulation model are
comparable to those of the GARCH-type models. Again, thect&n rates are impro-
ved by applying combinations, where the combinatioean long shorteads to the best
performance.

Regarding the 10-day ahead forecasts, the i.i.d. hypatiesimost consistently re-
jected for all of the combinations of VaR models and estioratvindow strategies. Multi-
day ahead forecasts are generally vulnerable to depend®avidlations. For example, a
large negative return shock of a single day has an impactosutesequent 10-day-period
losses. Itis very unlikely that a model is able to adjust @RMorecast quickly enough to
accommodate this single shock. Consequently, the signifloas of one day can cause

two or more subsequent VaR-violations.
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5.4.3 Expected Shortfall

With respect to the ES, Tables 5.9 and 5.10 report the avatagmute deviations and the
rejection rates of the backtestof McNeil and Frey [2000]. bggin with the evaluation
of the ES results corresponding to the 1-day ahead VaRdstecFocusing the absolute
deviations, the rolling window strategy outperforms thenpeting strategies on average.
Dependent on the individual VaR model, for the 5% VaR therpgtirolling window size
varies between 125 and 250 days. For the 1% VaR, rolling wisdaf 250 days con-
sistently provide the smallest absolute deviations. Theb&Sktest of McNeil and Frey
[2000] is a one-sided test concerning the simple mean ofé¢k@mtions rather than abso-
lute deviations. The differences in the rejection ratefiefitacktests due to the estimation
window strategy are relatively small. However, for bothlgped VaR levels of 5% and
1%, the expanding window strategy and the combinati@an long shorstrategy leads
to slightly lower rejection rates compared to the compesingtegies.

Considering the 10-day ahead forecasts, the evaluatidgreaddtimation window stra-
tegies leads to conclusions which are fairly similar to théay ahead forecasts, albeit
the differences between the different settings are lessfiignt. However, the selection
of the proper VaR model has a larger impact to the forecastegracy than the chosen

estimation window strategy, irrespective of the VaR levehe forecast horizon.

5.4.4 Conditional Predictive Ability

The results for the CPA test are reported in Tables|5.11 aiffi 5.

The rolling window strategy significantly improve on the bemark strategy of ex-
panding windows only when less-parameterized approadteethie normal distribution,
EWMA, and historical simulation models are applied. Foral-@head forecasts of the
normal distribution and the historical simulation mod#ie proportion where the rolling
window is preferred tends to increase as the length of th@gahindows decreases whi-
le for the GARCH, GJR-GARCH and the filtered historical siatidn the opposite holds

true. The 10-day ahead forecasts show no similar trend.
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Table 5.9: Expected Shortfall - 1-Day Ahead Forecast
The table reports average absolute deviations of the ESegaction rates of the ES backtest for the 1-day
ahead forecasts and the 5% and 1% VaR level. The averageidbdeliation is calculated as the average
of the absolute deviations between the ES forecast and #lieed shortfall in case of a VaR-violation.
The rejection rate is computed by the number of rejectiowidd by the total number of performed ES
backtests. For each VaR model, the smallest average abstdutation is printed in bold. The rejection
rates in bold are closest to the significance level of the test

Estimation Window Strategy Nsirsrzal EWMA GARCH Gi\IJ:lF\(’Z-H HS Fllt:rsed Average

5% VaR

Average Absolute Deviation

Expanding Window 0.651% 0.562% 0.455% 0.457% 0.173% 0.076% 0.396%
Rolling Window 125 days 0.785% 0.673% 0.439% 0.410% 0.235% 0.133% 0.446%
Rolling Window 250 days 0.585%  0.433% 0.465% 0.470% 0.089% 0.068% 0.352%
Rolling Window 500 days 0.594% 0.503% 0.466% 0.460%0.069%  0.061% 0.359%
Rolling Window 1,000 days 0.688% 0.567% 0.451% 0.445% 0437 0.074% 0.394%
Structural Breaks Window 0.762% 0.609% 0.457% 0.431% 9476 0.097% 0.422%
Comb. Mean All 0.672% 0.540% 0.447% 0.423% 0.124% 0.072% 8B
Comb. Mean All ex SB 0.680% 0.537% 0.442% 0.423% 0.115% 0071 0.378%
Comb. Mean Rolling Windows 0.655% 0.515% 0.453% 0.434%  ©H9 0.072% 0.371%
Comb. Long Short 0.668% 0.516% 0.439% 0.420% 0.126% 0.070% 0.373%
Comb. Trimmed Mean All 0.669% 0.549% 0.444% 0.425% 0.131% 07%% 0.382%
Comb. Trimmed Mean All ex SB 0.672% 0.545% 0.440% 0.425% P40 0.071% 0.377%
Comb. Trimmed Mean Rolling Windows 0.649% 0.524% 0.454%  39% 0.103% 0.073% 0.374%
Average 0.672% 0.544% 0.450% 0.435% 0.129% 0.078%

Backtest Rejections

Expanding Window 92.9% 97.6% 73.8% 66.7% 16.7% 0.0% 57.9%
Rolling Window 125 days 97.6%  90.5% 95.2% 97.6% 0.0% 0.0% 63.5%
Rolling Window 250 days 97.6% 95.2% 95.2% 95.2% 0.0% 0.0% 63.9%
Rolling Window 500 days 97.6% 95.2% 88.1% 90.5% 2.4% 0.0% 62.3%
Rolling Window 1,000 days 95.2% 95.2% 83.3% 83.3% 4.8% 0.0% 60.3%
Structural Breaks Window 92.9% 92.9% 88.1% 90.5% 9.5% 0.0% 62.3%
Comb. Mean All 97.6%  90.5% 85.7% 88.1% 0.0% 0.0% 60.3%
Comb. Mean All ex SB 97.6% 92.9% 88.1% 78.6% 0.0% 0.0% 59.5%
Comb. Mean Rolling Windows 97.6%  90.5% 88.1% 90.5% 0.0% 0.0% 61.1%
Comb. Long Short 92.9% 90.5% 90.5% 78.6% 2.4% 0.0% 59.1%
Comb. Trimmed Mean All 97.6% 95.2% 85.7% 88.1% 0.0% 0.0% 61.1%
Comb. Trimmed Mean All ex SB 97.6% 92.9% 85.7% 83.3% 0.0% 0.0% 59.9%
Comb. Trimmed Mean Rolling Windows 97.6% 90.5% 85.7% 92.9% .09 0.0% 61.1%
Average 96.3% 93.0% 87.2% 86.4% 27%  0.0%
1% VaR

Average Absolute Deviation

Expanding Window 2.038% 1.980% 1.831% 1.804% 2.006% 1.774% 1.905%
Rolling Window 125 days 2.094% 2.146% 1.833% 1.811% 2.426% .957% 2.045%
Rolling Window 250 days 1.902% 1.719% 1.714% 1.589% 1.503% 1.342% 1.628%
Rolling Window 500 days 1.982% 1.871% 1.742% 1.722% 1.707% .554%% 1.763%
Rolling Window 1,000 days 2.021% 1.923% 1.775% 1.755% 893 1.735% 1.867%
Structural Breaks Window 2.063% 2.016% 1.805% 1.789% 2@51 1.885% 1.968%
Comb. Mean All 2.114% 1.977% 1.833% 1.798% 2.187% 1.829% 56240
Comb. Mean All ex SB 2.121% 1.980% 1.813% 1.786% 2.190% 2808 1.950%
Comb. Mean Rolling Windows 2.083% 1.927% 1.793% 1.767%  2O5 1.750% 1.896%
Comb. Long Short 2.148% 2.013% 1.809% 1.745% 2.160% 1.761% .939%
Comb. Trimmed Mean All 2.077% 1.956% 1.813% 1.790% 2.140% 834% 1.935%
Comb. Trimmed Mean All ex SB 2.092% 1.954% 1.799% 1.771% »Aa1  1.807% 1.922%
Comb. Trimmed Mean Rolling Windows 2.017% 1.927% 1.782%  48% 1.912% 1.716% 1.850%
Average 2.058% 1.953% 1.796% 1.759% 2.049% 1.750%

Backtest Rejections

Expanding Window 92.9% 97.6% 73.8% 66.7% 19.0% 0.0% 58.3%
Rolling Window 125 days 97.6%  90.5% 95.2% 97.6% 0.0% 0.0% 63.5%
Rolling Window 250 days 97.6% 95.2% 95.2% 95.2% 0.0% 0.0% 63.9%
Rolling Window 500 days 97.6% 95.2% 88.1% 90.5% 2.4% 0.0% 62.3%
Rolling Window 1,000 days 95.2% 95.2% 85.7% 83.3% 4.8% 0.0% 60.7%
Structural Breaks Window 92.9% 92.9% 88.1% 92.9% 7.1% 0.0% 62.3%
Comb. Mean Al 97.6%  90.5% 85.7% 88.1% 0.0% 0.0% 60.3%
Comb. Mean All ex SB 97.6% 92.9% 88.1% 81.0% 0.0% 0.0% 59.9%
Comb. Mean Rolling Windows 97.6%  90.5% 88.1% 90.5% 0.0% 0.0% 61.1%
Comb. Long Short 92.9% 90.5% 85.7% 76.2% 2.4% 0.0% 57.9%
Comb. Trimmed Mean All 97.6% 95.2% 83.3% 88.1% 0.0% 0.0% 60.7%
Comb. Trimmed Mean All ex SB 97.6% 92.9% 85.7% 83.3% 0.0% 0.0% 59.9%
Comb. Trimmed Mean Rolling Windows 97.6% 90.5% 85.7% 90.5% 0.0% 0.0% 60.7%

Average 96.3% 93.0% 86.8% 86.4% 27%  0.0%
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Table 5.10: Expected Shortfall - 10-Day Ahead Forecast
The table reports average absolute deviations of the ESejection rates of the ES backtest for the 10-day
ahead forecasts and the 5% and 1% VaR level. The averageidbdeliation is calculated as the average
of the absolute deviations between the ES forecast and #lieed shortfall in case of a VaR-violation.
The rejection rate is computed by the number of rejectiowidd by the total number of performed ES
backtests. For each VaR model, the smallest average abstdutation is printed in bold. The rejection
rates in bold are closest to the significance level of the test

Normal

A . GJR- Filtered
Estimation Window Strategy Distr. EWMA GARCH GARCH HS HS Average
5% VaR
Average Absolute Deviation
Expanding Window 2.004% 1.833% 1.684% 1.657% 2.515% 1.069% 1.794%
Rolling Window 125 days 2.315% 2.069% 1.690% 1.628%1.628%  0.968% 1.717%
Rolling Window 250 days 2.055% 1.762% 1.756% 1.783% 2.464% 1.380% 1.867%
Rolling Window 500 days 1.993% 1.854% 1.700% 1.681% 2.439% 1.222% 1.815%
Rolling Window 1,000 days 2.104% 1.951% 1.666% 1.635% 2.563% 1.106% 1.838%
Structural Breaks Window 2.247% 1.982% 1.719% 1.684% 2489 1.047% 1.811%
Comb. Mean All 2.078% 1.877% 1.673% 1.625% 2.316% 1.028% 1.766%
Comb. Mean All ex SB 2.095% 1.887% 1.681% 1.645% 2.305% 2038 1.775%
Comb. Mean Rolling Windows 2.077% 1.846% 1.691% 1.664% 6244 1.066% 1.798%
Comb. Long Short 2.161% 1.847% 1.681% 1.677% 2.045% 1.003% 736%
Comb. Trimmed Mean All 2.065% 1.897% 1.676% 1.647% 2.327% 043% 1.776%
Comb. Trimmed Mean All ex SB 2.087% 1.918% 1.682% 1.668% 226 1.030% 1.775%
Comb. Trimmed Mean Rolling Windows 2.050% 1.859% 1.696% 23% 2.395% 1.089% 1.802%
Average 1.819% 1.891% 1.692% 1.671% 1.724% 1.084%
Backtest Rejections
Expanding Window 78.6% 85.7% 85.7% 83.3% 61.9% 45.2% 73.4%
Rolling Window 125 days 85.7%  83.3% 83.3% 88.1% 71.4% 71.4% 80.6%
Rolling Window 250 days 85.7%  83.3% 83.3% 83.3% 69.0% 59.5% 77.4%
Rolling Window 500 days 85.7% 85.7% 85.7% 85.7% 69.0% 50.0% 7.0%
Rolling Window 1,000 days 88.1% 85.7% 85.7% 85.7% 59.5% 45.2% 75.0%
Structural Breaks Window 81.0% 83.3% 83.3% 81.0% 71.4% 45.2% 74.2%
Comb. Mean All 81.0% 85.7% 85.7% 83.3% 64.3% 47.6% 74.6%
Comb. Mean All ex SB 78.6% 85.7% 85.7% 83.3% 66.7% 52.4% 75.4%
Comb. Mean Rolling Windows 85.7% 85.7% 85.7% 83.3% 71.4%  8%A. 77.8%
Comb. Long Short 81.0% 85.7%  83.3% 81.0% 64.3% 50.0% 74.2%
Comb. Trimmed Mean All 83.3% 85.7%  83.3% 83.3% 66.7% 50.0% 75.4%
Comb. Trimmed Mean All ex SB 83.3% 85.7% 85.7% 83.3% 64.3% 4%2. 75.8%
Comb. Trimmed Mean Rolling Windows 85.7% 85.7% 83.3% 88.1% 3.8% 52.4% 78.2%
Average 83.3% 85.2% 84.6% 84.1% 67.2% 52.0%
1% VaR
Average Absolute Deviation
Expanding Window 5.963% 5.834% 5.641% 5.703% 6.161% 5.689% 5.832%
Rolling Window 125 days 6.176% 6.243% 5.443% 5.524% 7.542% .74B% 6.113%
Rolling Window 250 days 5.780% 5.293% 5.254% 5.297% 4.068%  5.421% 5.186%
Rolling Window 500 days 5.929% 5.620% 5.404% 5.389% 5.042% .69B% 5.513%
Rolling Window 1,000 days 5.828% 5.871% 5.484% 5.438% 3461 5.850% 5.705%
Structural Breaks Window 6.118% 5.980% 5.434% 5.500% 843 5.757% 5.922%
Comb. Mean All 6.125% 5.947% 5.461% 5.571% 6.896% 5.797% 6680
Comb. Mean All ex SB 6.140% 5.998% 5.424% 5.495% 6.925% 8460 5.957%
Comb. Mean Rolling Windows 6.123% 5.850% 5.430% 5502%  BB3 5.753% 5.831%
Comb. Long Short 6.200% 5.984% 5.377% 5.504% 6.645% 5.640% .892%
Comb. Trimmed Mean All 6.112% 5.923% 5.464% 5.567% 6.549% 78@% 5.899%
Comb. Trimmed Mean All ex SB 6.086% 5.899% 5.431% 5.472% ®63 5.783% 5.868%
Comb. Trimmed Mean Rolling Windows 6.028% 5.811% 5.369% 15% 5.781% 5.773% 5.696%
Average 5.950% 5.865%  5.432% 5.490% 5.918% 5.727%
Backtest Rejections
Expanding Window 78.6% 85.7% 85.7% 83.3% 61.9% 45.2% 73.4%
Rolling Window 125 days 83.3% 83.3% 83.3% 88.1% 71.4% 69.0% 79.8%
Rolling Window 250 days 85.7%  83.3% 83.3% 83.3% 71.4% 57.1% 77.4%
Rolling Window 500 days 85.7% 85.7% 85.7% 85.7% 69.0% 50.0% 7.0%
Rolling Window 1,000 days 88.1% 85.7% 85.7% 85.7% 59.5% 45.2% 75.0%
Structural Breaks Window 78.6% 83.3% 83.3% 81.0% 71.4% 45.2% 73.8%
Comb. Mean All 81.0% 85.7% 85.7% 83.3% 64.3% 47.6% 74.6%
Comb. Mean All ex SB 81.0% 85.7% 85.7% 83.3% 66.7% 50.0% 75.4%
Comb. Mean Rolling Windows 85.7% 85.7% 85.7% 81.0% 73.8% 57.1% 78.2%
Comb. Long Short 83.3% 85.7%  81.0% 81.0% 66.7% 50.0% 74.6%
Comb. Trimmed Mean All 83.3% 85.7% 83.3% 83.3% 66.7% 50.0% AR5
Comb. Trimmed Mean All ex SB 83.3% 85.7% 85.7% 83.3% 64.3% 0%0. 75.4%
Comb. Trimmed Mean Rolling Windows 85.7% 85.7% 85.7% 85.7% 3.8% 52.4% 78.2%
Average 83.3% 85.2% 84.6% 83.7% 67.8% 51.5%
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Table 5.11: Conditional Predictive Ability - 1-Day AheadrEoasts
For the 1-day ahead forecasts, the table reports the piopsdf CPA tests where an alternative estimation
strategy is preferred compared to the expanding windowegtyawhich serves as the benchmark. The
significance level is set to 5%. For each VaR model, the residilthe best alternative estimation window
strategy are printed in bold.

5% VaR 1% VaR
Expanding Alternative Expanding Alternative
Window Indifferent Strategy Window  Indifferent Strategy
VaR-Model Alternative Strategy Preferred Preferred Rref Preferred
Normal Rolling Window 125 days 0.0% 19.0% 81.0% 0.0% 28.6% A7
Distribution Rolling Window 250 days 0.0% 19.0% 81.0% 2.4% 6.2% 71.4%
Rolling Window 500 days 7.1% 31.0% 61.9% 0.0% 47.6% 52.4%
Rolling Window 1,000 days 31.0% 23.8% 45.2% 16.7% 38.1% 9%5.2
Structural Breaks Window 7.1% 40.5% 52.4% 4.8% 40.5% 54.8%
Comb. Mean All 0.0% 11.9% 88.1% 0.0% 7.1% 92.9%
Comb. Mean All ex SB 0.0% 11.9% 88.1% 0.0% 4.8% 95.2%
Comb. Mean Rolling Windows 0.0% 14.3% 85.7% 2.4% 16.7% 81.0%
Comb. Long Short 0.0% 9.5% 90.5% 0.0% 7.1% 92.9%
Comb. Trimmed Mean All 0.0% 16.7% 83.3% 2.4% 14.3% 83.3%
Comb. Trimmed Mean All ex SB 0.0% 11.9% 88.1% 2.4% 11.9% 85.7%
Comb. Trimmed Mean Rolling Windows 0.0% 16.7% 83.3% 2.4% 0%0. 78.6%
EWMA Rolling Window 125 days 0.0% 23.8% 76.2% 0.0% 45.2% %4.8
Rolling Window 250 days 0.0% 21.4% 78.6% 0.0% 40.5% 59.5%
Rolling Window 500 days 0.0% 23.8% 76.2% 2.4% 42.9% 54.8%
Rolling Window 1,000 days 0.0% 28.6% 71.4% 0.0% 40.5% 59.5%
Structural Breaks Window 0.0% 40.5% 59.5% 2.4% 47.6% 50.0%
Comb. Mean All 0.0% 11.9% 88.1% 0.0% 28.6% 71.4%
Comb. Mean All ex SB 0.0% 11.9% 88.1% 0.0% 28.6% 71.4%
Comb. Mean Rolling Windows 0.0% 16.7% 83.3% 0.0% 38.1% 61.9%
Comb. Long Short 0.0% 9.5% 90.5% 0.0% 21.4% 78.6%
Comb. Trimmed Mean All 0.0% 11.9% 88.1% 0.0% 33.3% 66.7%
Comb. Trimmed Mean All ex SB 0.0% 14.3% 85.7% 0.0% 38.1% 61.9%
Comb. Trimmed Mean Rolling Windows 0.0% 19.0% 81.0% 0.0% 1%8. 61.9%
GARCH Rolling Window 125 days 26.2% 73.8% 0.0% 14.3% 83.3% 492.
Rolling Window 250 days 28.6% 71.4% 0.0% 23.8% 73.8% 2.4%
Rolling Window 500 days 19.0% 78.6% 2.4% 14.3% 78.6% 7.1%
Rolling Window 1,000 days 26.2% 64.3% 9.5% 11.9% 78.6% 9.5%
Structural Breaks Window 23.8% 71.4% 4.8% 19.0% 73.8% 7.1%
Comb. Mean All 4.8% 85.7% 9.5% 4.8% 81.0% 14.3%
Comb. Mean All ex SB 7.1% 85.7% 7.1% 7.1% 78.6% 14.3%
Comb. Mean Rolling Windows 16.7% 76.2% 7.1% 11.9% 76.2% %1.9
Comb. Long Short 9.5% 85.7% 4.8% 2.4% 90.5% 7.1%
Comb. Trimmed Mean All 7.1% 83.3% 9.5% 9.5% 78.6% 11.9%
Comb. Trimmed Mean All ex SB 9.5% 83.3% 7.1% 7.1% 81.0% 11.9%
Comb. Trimmed Mean Rolling Windows 11.9% 83.3% 4.8% 16.7% .873 9.5%
GJR-GARCH Rolling Window 125 days 38.1% 61.9% 0.0% 42.9% 1%/, 0.0%
Rolling Window 250 days 19.0% 81.0% 0.0% 21.4% 73.8% 4.8%
Rolling Window 500 days 21.4% 76.2% 2.4% 14.3% 76.2% 9.5%
Rolling Window 1,000 days 11.9% 81.0% 7.1% 9.5% 76.2% 14.3%
Structural Breaks Window 21.4% 78.6% 0.0% 14.3% 78.6% 7.1%
Comb. Mean All 4.8% 83.3% 11.9% 0.0% 88.1% 11.9%
Comb. Mean All ex SB 4.8% 81.0% 14.3% 4.8% 78.6% 16.7%
Comb. Mean Rolling Windows 9.5% 76.2% 14.3% 7.1% 88.1% 4.8%
Comb. Long Short 11.9% 78.6% 9.5% 9.5% 85.7% 4.8%
Comb. Trimmed Mean All 4.8% 85.7% 9.5% 7.1% 83.3% 9.5%
Comb. Trimmed Mean All ex SB 4.8% 81.0% 14.3% 4.8% 83.3% 11.9%
Comb. Trimmed Mean Rolling Windows 4.8% 85.7% 9.5% 2.4% 9.5 7.1%
Historical Rolling Window 125 days 0.0% 26.2% 73.8% 0.0% %4. 38.1%
Simulation Rolling Window 250 days 0.0% 19.0% 81.0% 0.0% 598. 40.5%
Rolling Window 500 days 7.1% 31.0% 61.9% 9.5% 57.1% 33.3%
Rolling Window 1,000 days 28.6% 14.3% 57.1% 11.9% 54.8% %3.3
Structural Breaks Window 4.8% 42.9% 52.4% 7.1% 52.4% 40.5%
Comb. Mean All 0.0% 4.8% 95.2% 0.0% 21.4% 78.6%
Comb. Mean All ex SB 0.0% 4.8% 95.2% 0.0% 19.0% 81.0%
Comb. Mean Rolling Windows 0.0% 7.1% 92.9% 0.0% 31.0% 69.0%
Comb. Long Short 0.0% 4.8% 95.2% 0.0% 19.0% 81.0%
Comb. Trimmed Mean All 0.0% 7.1% 92.9% 0.0% 23.8% 76.2%
Comb. Trimmed Mean All ex SB 0.0% 7.1% 92.9% 0.0% 23.8% 76.2%
Comb. Trimmed Mean Rolling Windows 0.0% 7.1% 92.9% 0.0% %8.1 61.9%
Filtered Rolling Window 125 days 26.2% 73.8% 0.0% 35.7% 4.3 0.0%
Historical Rolling Window 250 days 26.2% 73.8% 0.0% 21.4% .878 4.8%
Simulation Rolling Window 500 days 16.7% 83.3% 0.0% 16.7% 698 4.8%
Rolling Window 1,000 days 19.0% 76.2% 4.8% 9.5% 88.1% 2.4%
Structural Breaks Window 31.0% 69.0% 0.0% 28.6% 69.0% 2.4%
Comb. Mean All 7.1% 85.7% 7.1% 9.5% 81.0% 9.5%
Comb. Mean All ex SB 4.8% 85.7% 9.5% 2.4% 88.1% 9.5%
Comb. Mean Rolling Windows 9.5% 88.1% 2.4% 7.1% 85.7% 7.1%
Comb. Long Short 4.8% 85.7% 9.5% 9.5% 88.1% 2.4%
Comb. Trimmed Mean All 4.8% 85.7% 9.5% 11.9% 76.2% 11.9%
Comb. Trimmed Mean All ex SB 7.1% 81.0% 11.9% 2.4% 85.7% 11.9%

Comb. Trimmed Mean Rolling Windows 9.5% 90.5% 0.0% 16.7% 678. 4.8%
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Table 5.12: Conditional Predictive Ability - 10-Day AheadrEcasts
For the 10-day ahead forecasts, the table reports the piropoof CPA tests where an alternative estimation
strategy is preferred compared to the expanding windowegtyawhich serves as the benchmark. The
significance level is set to 5%. For each VaR model, the residilthe best alternative estimation window
strategy are printed in bold.

5% VaR 1% VaR
Expanding Alternative Expanding Alternative
Window Indifferent Strategy Window  Indifferent Strategy
VaR-Model Alternative Strategy Preferred Preferred Rref Preferred
Normal Rolling Window 125 days 14.3% 66.7% 19.0% 11.9% 81.0% 7.1%
Distribution Rolling Window 250 days 7.1% 54.8% 38.1% 9.5% 6.6 23.8%
Rolling Window 500 days 16.7% 52.4% 31.0% 9.5% 69.0% 21.4%
Rolling Window 1,000 days 14.3% 54.8% 31.0% 2.4% 76.2% 21.4%
Structural Breaks Window 7.1% 61.9% 31.0% 4.8% 69.0% 26.2%
Comb. Mean All 4.8% 54.8% 40.5% 7.1% 59.5% 33.3%
Comb. Mean All ex SB 4.8% 57.1% 38.1% 11.9% 54.8% 33.3%
Comb. Mean Rolling Windows 7.1% 61.9% 31.0% 11.9% 57.1% %1.0
Comb. Long Short 4.8% 45.2% 50.0% 2.4% 66.7% 31.0%
Comb. Trimmed Mean All 9.5% 50.0% 40.5% 9.5% 64.3% 26.2%
Comb. Trimmed Mean All ex SB 4.8% 54.8% 40.5% 9.5% 57.1% 33.3%
Comb. Trimmed Mean Rolling Windows 7.1% 54.8% 38.1% 11.9% A% 31.0%
EWMA Rolling Window 125 days 19.0% 69.0% 11.9% 19.0% 69.0% 9%
Rolling Window 250 days 19.0% 66.7% 14.3% 11.9% 73.8% 14.3%
Rolling Window 500 days 9.5% 71.4% 19.0% 11.9% 76.2% 11.9%
Rolling Window 1,000 days 9.5% 69.0% 21.4% 14.3% 71.4% 14.3%
Structural Breaks Window 7.1% 73.8% 19.0% 11.9% 73.8% 14.3%
Comb. Mean All 11.9% 61.9% 26.2% 7.1% 76.2% 16.7%
Comb. Mean All ex SB 11.9% 59.5% 28.6% 7.1% 78.6% 14.3%
Comb. Mean Rolling Windows 14.3% 61.9% 23.8% 9.5% 76.2% %A.3
Comb. Long Short 9.5% 59.5% 31.0% 9.5% 71.4% 19.0%
Comb. Trimmed Mean All 11.9% 66.7% 21.4% 9.5% 73.8% 16.7%
Comb. Trimmed Mean All ex SB 9.5% 64.3% 26.2% 9.5% 76.2% 14.3%
Comb. Trimmed Mean Rolling Windows 16.7% 61.9% 21.4% 9.5% 276 14.3%
GARCH Rolling Window 125 days 16.7% 83.3% 0.0% 19.0% 81.0% 09%0.
Rolling Window 250 days 14.3% 83.3% 2.4% 14.3% 83.3% 2.4%
Rolling Window 500 days 7.1% 78.6% 14.3% 0.0% 90.5% 9.5%
Rolling Window 1,000 days 11.9% 78.6% 9.5% 0.0% 95.2% 4.8%
Structural Breaks Window 2.4% 83.3% 14.3% 2.4% 88.1% 9.5%
Comb. Mean All 4.8% 85.7% 9.5% 0.0% 88.1% 11.9%
Comb. Mean All ex SB 4.8% 85.7% 9.5% 2.4% 83.3% 14.3%
Comb. Mean Rolling Windows 4.8% 85.7% 9.5% 2.4% 83.3% 14.3%
Comb. Long Short 9.5% 83.3% 7.1% 9.5% 85.7% 4.8%
Comb. Trimmed Mean All 7.1% 88.1% 4.8% 2.4% 92.9% 4.8%
Comb. Trimmed Mean All ex SB 7.1% 85.7% 7.1% 0.0% 90.5% 9.5%
Comb. Trimmed Mean Rolling Windows 7.1% 85.7% 7.1% 4.8% 8.7 9.5%
GJR-GARCH Rolling Window 125 days 19.0% 73.8% 7.1% 28.6% 089. 2.4%
Rolling Window 250 days 14.3% 78.6% 7.1% 14.3% 83.3% 2.4%
Rolling Window 500 days 9.5% 78.6% 11.9% 7.1% 85.7% 7.1%
Rolling Window 1,000 days 9.5% 76.2% 14.3% 2.4% 92.9% 4.8%
Structural Breaks Window 0.0% 90.5% 9.5% 2.4% 85.7% 11.9%
Comb. Mean All 11.9% 73.8% 14.3% 0.0% 85.7% 14.3%
Comb. Mean All ex SB 9.5% 81.0% 9.5% 4.8% 81.0% 14.3%
Comb. Mean Rolling Windows 7.1% 81.0% 11.9% 7.1% 83.3% 9.5%
Comb. Long Short 2.4% 88.1% 9.5% 16.7% 71.4% 11.9%
Comb. Trimmed Mean All 7.1% 76.2% 16.7% 0.0% 85.7% 14.3%
Comb. Trimmed Mean All ex SB 7.1% 73.8% 19.0% 0.0% 88.1% 11.9%
Comb. Trimmed Mean Rolling Windows 11.9% 76.2% 11.9% 0.0% .5%0 9.5%
Historical Rolling Window 125 days 21.4% 71.4% 7.1% 40.5% .598 0.0%
Simulation Rolling Window 250 days 23.8% 66.7% 9.5% 14.3% 296 9.5%
Rolling Window 500 days 21.4% 61.9% 16.7% 14.3% 73.8% 11.9%
Rolling Window 1,000 days 21.4% 64.3% 14.3% 16.7% 69.0% %4.3
Structural Breaks Window 16.7% 61.9% 21.4% 14.3% 61.9% %3.8
Comb. Mean All 11.9% 59.5% 28.6% 7.1% 69.0% 23.8%
Comb. Mean All ex SB 9.5% 64.3% 26.2% 4.8% 71.4% 23.8%
Comb. Mean Rolling Windows 11.9% 66.7% 21.4% 9.5% 76.2% %4.3
Comb. Long Short 7.1% 61.9% 31.0% 7.1% 64.3% 28.6%
Comb. Trimmed Mean All 9.5% 64.3% 26.2% 9.5% 73.8% 16.7%
Comb. Trimmed Mean All ex SB 7.1% 64.3% 28.6% 7.1% 73.8% 19.0%
Comb. Trimmed Mean Rolling Windows 11.9% 69.0% 19.0% 9.5% 0%l 9.5%
Filtered Rolling Window 125 days 38.1% 57.1% 4.8% 33.3% 4.3 2.4%
Historical Rolling Window 250 days 16.7% 76.2% 7.1% 28.6% .089 2.4%
Simulation Rolling Window 500 days 14.3% 76.2% 9.5% 14.3% .698 7.1%
Rolling Window 1,000 days 4.8% 83.3% 11.9% 7.1% 81.0% 11.9%
Structural Breaks Window 9.5% 83.3% 7.1% 14.3% 81.0% 4.8%
Comb. Mean All 7.1% 81.0% 11.9% 9.5% 81.0% 9.5%
Comb. Mean All ex SB 9.5% 81.0% 9.5% 7.1% 85.7% 7.1%
Comb. Mean Rolling Windows 9.5% 83.3% 7.1% 7.1% 85.7% 7.1%
Comb. Long Short 16.7% 76.2% 7.1% 23.8% 71.4% 4.8%
Comb. Trimmed Mean All 4.8% 85.7% 9.5% 11.9% 81.0% 7.1%
Comb. Trimmed Mean All ex SB 4.8% 85.7% 9.5% 7.1% 85.7% 7.1%

Comb. Trimmed Mean Rolling Windows 9.5% 81.0% 9.5% 9.5% %3.3 7.1%
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Similar to the rolling windows, for the 1-day ahead foresaste structural breaks
strategy outperforms the expanding windows in the settivigge the normal distribution,
EWMA, and historical simulation models are used. Regarthed.0-day ahead forecasts,
determining the estimation windows by structural breaksteand to be preferable for all
VaR models, except for the filtered historical simulatiopraach.

The conditional predictive ability of the combination sé&gies is at least as good
as, and in most cases better than, the expanding windovegyrakgain, this applies in
particular for the simple VaR models. The results of the G&% tlo not reveal that one of
the different combination approaches are clearly supétiowever, the proportion where
the expanding window strategy is outperformed by trimmechlmioations tends to be

slightly smaller compared to their plain counterparts.

5.5 Conclusion

Compared to the large number of VaR-forecasting modelsqsegin the literature, the-
re are relatively little contributions to the question ofialhestimation window strategy
is preferable to forecast common risk measures like VaR &dTk this end, we per-
form an empirical study on the basis of returns of German thue stocks where thirteen
different estimation window strategies are applied to ao$eif seven different parame-
tric, semi-parametric, and non-parametric VaR modelssé&hstrategies include simple
approaches like expanding windows and rolling windows &edent lengths as well as
a more complex model that determines the length of an estmatindow by using a
test for detecting structural breaks in the variance oftastern series. In addition, we
investigate combination strategies where the VaR-fote@dseveral different models are
pooled. We evaluate the VaR-forecasts of the different@ggres by backtesting the uc
and the i.i.d. properties of VaR-violations, the ES foréicasaccuracy, and the conditio-
nal predictive ability.

The empirical study provides several interesting resWs.demonstrate that not on-

ly the application of different VaR models but also the seétecof the estimation win-
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dow strategy leads to significant differences in the resGssidering the uc property of
VaR-violations, the VaR-forecasts estimated by usingdlieng window strategy become
more conservative as the size of the rolling windows in@ea€ompared to the expan-
ding and rolling window strategies, using structural bresgdts leads to a lower number
of VaR-violations on average over all VaR models. Interggyj, the VaR-violation ratio
of forecast combinations are lower than the mean of theividdal component ratios.
Considering the i.i.d. property of VaR-violations, sharstling windows are preferable
for simple VaR models like normal distribution and EWMA. Witespect to the remai-
ning VaR models, forecast combinations show lower rejectaies than the competing
strategies. Focusing on the average absolute deviatitwede the ES forecasts and the
realized shortfalls in case of a VaR-violation, the rollimmppdow strategy outperforms the
competing strategies on average. However, the differendée rejection rates of the sta-
tistical ES backtests caused by different estimation winslimategies are relatively small.
The comparison of the expanding windows as the benchmaategir to the remaining
strategies by the CPA test reveals that rolling windows dkasehe structural break stra-
tegy are preferable when less-parameterized VaR modelgpgieed. The combination
strategies have an equal or better CPA compared to the exgganthdow benchmark in
the vast majority of settings. In summary, although eacimegiton window strategy has
its own strengths, the usage of forecast combinations seebesthe preferable estima-
tion window strategy, because it shows convincing resualt®0st settings and for most

backtests and has less weaknesses compared to the rensgphogches.



Kapitel 6

Testing for Structural Breaks In
Correlations: Does it Improve

Value-at-Risk Forecasting?

Zur Ver offentlichung eingereicht in:

Journal of Empirical Finance (zusammen mit Gregor N.F. Waifl Dominik Wied).

6.1 Introduction

It has become a stylized fact in the analysis of financial rtadlata that correlations bet-
ween asset returns are time-varying. Bollerslev et al. §] 9&re among the first to stress
the importance of accounting for dynamic covariances iarimdtional asset pricing. Fur-
ther empirical evidence for time-varying asset correlais found by Longin and Solnik
[1995] and Ang and Bekaert [2002] who show that correlatibagveen international
equity markets increased over time and were higher in thh haatility regimes of
bear marketg.ln response to these findings, studies in the field of finaresahome-
trics in recent years have tried to model the dynamics intasseslations. Most notably,
Engle [2002] proposed the Dynamic Conditional Correla{ip€C) model that combi-
nes the flexibility of univariate generalized autoregnessionditional heteroskedasticity
(GARCH) models but at the same time circumvents the negdssiistimate a large num-
ber of parameters. Hillebrand [2005] showes that neglgaiructural breaks in the data

generating parameters of the conditional variance of GARQbdlels causes substanti-

1Evidence of correlations changing over time is also founBéNetier [2006] and Colacito et al. [2011].
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al estimation errors. As the finance literature still lackstudy dealing with the impact
of structural parameter changes on the estimation of dymawmnirelation models, it is
an interesting question whether models accommodatingdioelation shifts are able to
outperform a standard dynamic correlation model.

In this paper, we investigate the question whether the aahsbnditional correlation
(CCC) model ot Bollerslev [1990] and the DCC model introdiiby|Engle [2002] and
Engle and Sheppard [ZC@JE)re economically significantly outperformed with respect t
their VaR and ES forecasting accuracy by CCC and DCC modetbiced with recently
proposed tests for structural breaks in a) the pairwiseetairons, b) the correlation ma-
trix and c) the covariance matrix of asset returns to yieldtao§seven candidate models
with a diverse range of modeling erxibiIiQy\\/lore precisely, we modify the plain CCC
and DCC benchmark models by combining them with the pairtgsefor constant cor-
relations of Wied et al. [2012b], the test for a constanteatron matrix ot Wied|[2012],
and the test for a constant covariance matrix of Aue et aDSIj}% The motivation for
choosing these three tests lies in the fact that they areamangetric and do not impose
restrictive assumptions on the structure of the time séesonduct a horse race of these
models and compare their out-of-sample forecasting acgurg using ten-dimensional
portfolios composed of international blue-chip stocksspite the benefits of the DCC
model, the inclusion of the classical CCC model of Bollerglie990] in this study is use-
ful for several reasons. First, contrary to the DCC modead, @CC model allows for a
pairwise test for structural breaks in correlatiQrSecond, a simple CCC model that ac-
counts for structural breaks in correlations could yielcthparable accurate VaR-forecasts
without imposing too strict assumptions on the dynamic biemaf correlations over ti-
me. Third, the empirical literature is ambiguous about thegarative performance of

CCC and DCC models. For example, Santos et al. [2013] find ionapcehensive VaR

2See also Tse and Tsui [2002].

3As the focus of our paper lies on the modeling of the dynammidsé dependence structure between
assets, we do not consider structural breaks in the asgetgiriate volatilities. For a review of methods
used for forecasting stock return volatility, see Poon arah@er|[2003]. Structural breaks in volatility are
examined, for example, by Rapach and Strauss [2008].

4As we will explain later, the test of constant pairwise ctatiens cannot be combined with the DCC
model. Therefore, only seven instead of eight models argpaoed in our study.

5See Section 614 (3) for more details.
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predictive ability comparison study that the performarafes CCC and a DCC model are
comparable. Additionally, the results of their study iradethat the generalization of the
DCC model proposed hy Cappiello et al. [2006] does not leahyosignificant improve-
ments. Consequently, we abstain from implementing moréistpated versions of the
DCC model in this empirical study. The model performancestseased by performing
formal backtests of VaR- and Expected Shortfall (ES)- fasts using the unconditional
coverage test of Kupiec [1995], the CAViaR based test of &agld Manganelli [2004]
and Berkowitz et al. [201 1], the ES backtest of McNeil andyH2900], the conditional
predictive ability (CPA) test of Giacomini and White [200é&hd a backtest procedure
based on the Basel guidelines for backtesting internal fsode

The contributions of our paper are numerous and importargt, ve propose the
use of tests for structural breaks in correlations and ¢anees together with static and
dynamic correlation-based models for forecasting the VARsset portfolios. Second,
to the best knowledge of the authors, this study presentfirdteempirical analysis of
the question whether static and dynamic correlation-b&s&3models can be improved
by additionally testing for structural breaks in corradas. Third, in a risk management
context we empirically test which of the tests for structiwr@aks (pairwise correlations,
correlation matrix and covariance matrix) is best suiteccpturing significant changes
in the correlations on financial assets.

The paper proceeds as follows. In Sectionl 6.2, we quicklyerevhe standard
GARCH(1,1) model we use as marginal models in our study. bti@#6.3, we discuss
the multivariate dependence models as well as the testsfictgral breaks in correlations
used in our empirical study. Sectibn 6.4 presents the dataatiines the test procedure
of our empirical study. The results of the empirical studg presented in Sectidn 6.5.

Sectior6.b concludes.
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6.2 Univariate GARCH Model

GARCH-type models (see Bollerslev, 1986) have become tHaate standard for descri-
bing the univariate behaviour of financial returns in a dyitasetting. The GARCH(1,1)
model has been found to be the model of choice in the litezgdaee Hansen and Lunde,
2005). Consequently, in the empirical study we opt for tiepte GARCH(1,1) as the
standard model to forecast the volatility of the univariai@rginals.

Let r,, denote the log-return of an assdi = 1,...,n) attimet (¢t = 0,1,...,7).

Then the GARCH(1,1) process is defined by

Tti = it €y (6.1)
€i = Oti%ti (6.2)
UtQ,z‘ = ap,; + al,ieil,z’ + ﬁl,iail,z’ (6.3)

whereay; > 0 anday,; > 0, 31; > 0 ensures a positive value of/q., and wide-sense
stationarity requires; ; + 4, ; < 1. Along the lines of Bollerslev and Wooldridge [1992],
the innovations; ; follow a strict white noise process from a Student’s t dmttion with
mean0, a scale parameter df, andv > 2 degrees of freedom. After estimating the
parameters of the univariate GARCH models with, for exampiaximum likelihood,
one-step-ahead forecasts for the conditional varianeesiarulated from equatiof (6.3)

for each of the: assets in a portfolio separately via plug-in estimation of

0252+1,i = Qo t 0‘1,2‘5?,2‘ + ﬁl,iaiz'- (6.4)

6.3 Multivariate Dependence Models

In the following, the dependence models used in the empsicay are discussed. The
selection includes five models employing statistical témtshe occurrence of structural
breaks in the dependence structure and, for benchmarkimgpges, the classical CCC-

and DCC-GARCH models.
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6.3.1 General Setup of Correlation-Based Dependence Modgel

The general definition of a multivariate GARCH model withdar dependence can be
written as

re =+ 51° 2, (6.5)

wherer, is a (o x 1) vector of log returnsy, is a (» x 1) vector of[E(r,) which we assume
to be constant, am§£,}/2 is the Cholesky factor of a positive definite conditional @ov
riance matrix>; which corresponds to the varianeg in the univariate GARCH model.
Furthermore, the innovatioris correspond ta; ; of the univariate GARCH process and
are assumed to come from a Student’s t distribution as destabove. The conditional

covariance matrix;; can be expressed as
Et = DtPtDt (66)

whereD; is a (n x n) diagonal volatility matrix with the univariate conditiahstandard
deviationsc,; derived from [(6.B) as its diagonal entries aRd = [p;;;] is a (@ x n)
positive definite correlation matrix wheye,;; = 1 and|p,,;;| < 1. From this it follows

that the off-diagonal elements are defined as

[Et]ij = 0¢,i0¢,jPt,ijs N

Our empirical study examines the one-step-ahead prediciio/alue-at-Risk and Ex-
pected Shortfall. As we assume to be constant, the prediction solely depends on the
forecast of the conditional covariance matbix,; = D;,1P;.1D,;.,. Note that in our
case, estimation of the univariate variances takes plameebestimating the correlation
matrices. For this reason and since the forecasts of uatearariances are identical for all
examined dependence models, divergences in the perfoensdhaR- and ES-prediction

thus depend only on the selected model to forecast the abaelmatrixp, ;.
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6.3.2 Constant and Dynamic Conditional Correlation Models

The Constant Conditional Correlation GARCH model by Balley [1990] constitutes a
basic concept to specify the dependence structure of a datarset, since the conditional
correlations are assumed to be constant over timeXlLée the conditional covariance
matrix in a CCC-GARCH(1,1) process at timeCorresponding to equatioris (6.5) and
(6.8), the one-step-ahead forecast of the conditionalr@wvee matrix can be obtained by
a plug-in estimation ot, . ; = D, P.D, ;. The correlation matrixf. is assumed to be
constant over time and its entries can be estimated withritiereetic mean of products
of the standardized residuals; [see Bollerslev, 1990, for details]. Herg, = €t,i6;i1,
whered, ; is the (plug-in-) estimated conditional standard deviatiased on[(6]3) and
€. = 1, — [i. Dy is determined by the univariate conditional varianoéjsm ob-
tained from [(6.4) which are estimated by the plug-in methidue simplification of a
constant dependence structure makes the model quite eastirttate, in particular for
high-dimensional portfolios. Due to its relatively simplesign and its lasting popularity
in the financial industry, we use the CCC-GARCH model as auibeinchmark. Further-
more, in contrast to the DCC model, the CCC model is combeaiith the pairwise test
for constant correlations of Wied et al. [2012b].

Several studies starting with the seminal work by Longin Sothik [1995] show that
correlations of asset returns are not constant over timerefbre, as a generalization
of the CCC model, Engle [2002] and Engle and Sheppard [20fjgse the Dynamic
Conditional Correlation (DCC) GARCH model which allows ttenditional correlation
matrix to vary over time. The conditional covariance maisidecomposed into conditio-
nal standard deviations and a correlation matrixvia= D, P, D,. The correlation matrix

P, is assumed to be time-varying and is defined as

P=Q Q" (6.7)
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The time-varying character of the DCC-GARCH model is impdeted by

Qi=(1—a—3)Q+ alz-12 ) + BQi-1. (6.8)

Qr is a diagonal matrix composed of the square root of the dialggdaments of), andQ

is the unconditional covariance matrix of the innovatiens ;. The DCC parameters have
to satisfya < 1, # < 1 anda + 8 < 1. The one-step-ahead forecast of the conditional
covariance matrix can then be obtained as a plug-in estmoétd, ., = Dy 1P,y 1Dy 1.
Here, D, is determined by the univariate conditional varianegs, ; obtained from
(6.4) and the conditional correlation matri%,; is determined byQ;,; = (1 — o —
B)Q+a(zzl)+pQ, derived from[[6.B). For details concerning the (maximukelihood)

estimation ofP;, we refer to Engle [2002].

6.3.3 Tests for Structural Breaks in Correlations

In general, correlation based GARCH models can be extengedlidwing for structu-
ral breaks in the dependence measure. We employ three Isepespiosed tests to detect
structural breaks i as well as in®: and reestimaté after each change point. The basic
motivation for using these tests is the fact that we want tmmkwhich data of the past we
can use for estimating the correlation or covariance matdixhree tests basically have
the same structure: One compares the successively esliqedatities (bivariate correla-
tions, correlation matrix, covariance matrix) with the esponding quantities estimated
from the whole sample and rejects the null of no-change ifdifference becomes too
large over time. All three tests work under mild conditiomstbe time series which ma-
kes them applicable to financial data. They are nonparatatthe sense that one does
not need to assume a particular distribution such as a speojiula model or the normal
distribution. Moreover, the tests allow for some serial@tggence such that it is possible
to apply the test on, for example, GARCH models. Principallgak-sense stationarity
is required for applying the fluctuation tests. While thidufilled in GARCH models

under certain conditions, conditional heteroscedagtmight be a problem for the cor-
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relation tests as the tests might reject the null too ofterciicumvent this problem, one
can apply some kind of pre-filtering on the data. One potedtawback is the fact that
it is a necessary condition to have finite fourth moments &ivihg the asymptotic null

distributions of the tests. While there is some evidencedbaond moments do exist in
financial return data, the existence of finite fourth momentoubtful. Nevertheless, we
consider the fluctuation test to be applicable on returnsedls km the following, we will

shortly present each test together with its respectivedistfibutions.

6.3.3.1 Pairwise test for constant correlation

Wied et al. [2012b] propose a fluctuation test for constavdiate correlations. The test
compares the successively estimated bivariate corralagefficients with the correlation

coefficient from the whole sample. The test statistic is igivg

(6.9)

D max —~—|p; — prl,
2<G<T /T

whereD is an estimator described|in Wied et al. [2012b] that castaezial dependence
and fluctuations of higher moments and serves for standsdioiz Also, the facto%
serves for standardization, meaning that it compensatdisddact that correlations are in
general better estimated for larger time series. The nplbthesis of constant correlation
is rejected for too large values of the test statistic. Stheecorrelation test is designed for
a bivariate vector, we control each entry of the populatiometation matrix separately
with this test. That means, we determine for each entry sgglgnwvhich data is used for its
estimation. Under the null hypothesis of constant con@athe test statistic converges
to supy<.<; |B(z)|, where B is a one-dimensional standard Brownian bridge. Under a

sequence of local alternatives, the test statistic coegeagainstup,. -, |B(z) +C(z)

where(C is a deterministic function.
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6.3.3.2 Test for a constant multivariate correlation matrix

Wied [2012] proposes an extension of the bivariate colelaest to ad-dimensional
correlation matrix. The test statistic in this case is raimilar to the former case with

the difference that one does not just consider one deviation

|Ia] - pAT‘a

but the sum over all “bivariate deviations”, that means,

AZ‘] Az'

Py — P -

19',;@'#] VT
Also, the estimatoD is calculated differently. While the bivariate test usesmkl-based
estimator, the multivariate test uses a block bootstramastr, see Wied [2012] for de-
tails. Under the null hypothesis of a constant correlati@trir, the test statistic converges
t0 supy<,<; o0 V2| By(2)|, where(By(z), » € [0,1]),i = 1,...,d(d — 1)/2 are inde-
pendent standard Brownian bridges. Under local alterestiwe have convergence results

that are similar to the ones with the former test.

6.3.3.3 Test for a constant multivariate covariance matrix

Aue et al. [2009] present a nonparametric fluctuation tesafeonstant-dimensional
covariance matrix of the random vectaks, ..., Xy with X; = (X;,,...,X,4). Let

vech(-) denote the operator which stacks the columns on and belowlify®nal of a
d x d matrix into a vector and let’ be the transpose of a matrik At first, we consider

the term

. j T
7 1 1
S, = —= E vech(X; X)) g vech(X; X)) |,
J /_T<J ! l ! l)

=1 =1

for 1 < j < T, which measures the fluctuations of the estimated covariaratrices. He-
re, the factor\/% again serves for standardization for the same reasons asxebabove.
The test statistic is then defined@ax;<j<r SJ’.ES]-, whereF is an estimator which has

the same structure as in the bivariate correlation test sug@scribed in more detail in
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Aue et al. [2009]. The limit distribution under the null hythesis is the distribution of

d(d+1)/2

where(B;(z),z € [0,1]),i = 1,...,d(d + 1)/2 are independent Brownian bridges.

Aue et al. [2009] show that the test is consistent againsd fateernatives. Note that
the application of the test requires the assumption of emiéirst moments of the random
vectors of the time series. The asymptotic result is denwader the assumption of zero
expectation; if we had constant non-zero expectation, itld/dbe necessary to subtract
the arithmetic mean calculated from all observations fromdriginal data which does

not change the asymptotic distribution.

6.4 Data and Test Procedure

Our empirical study is designed as follows:

(1) Data and portfolio composition: We compute log returns by using daily total return
quotes of stocks listed on the indices AEX, DAX30, CAC40, EIS80, IBEX35,
and the S&P500. With respect to each of the six stock indweshuild a portfolio
consisting of ten equal weighted assets which possess ghedtimarket values on
June 30, 2012 and meet the requirement of a complete datayhiShe data set for
each of the portfolios contains log returns4b70 trading days (we exclude non-
trading days from our sample). The quotes cover a period thenautumn of 1992 to
June 30, 2012. All quotes are obtained frohomson Reuters Financial Datastream

Table[6.1 presents summary statistics for the log-retuireach portfolio.

The annualized volatility of the (unconditional) portillog-returns ranges from
18.33% to 23.98% while all six portfolios show significantsgiive annualized re-
turns above 12%. Furthermore, the summary statistics shalerece of leptokurtic

portfolio returns indicating fat tails.

(2) Univariate modeling: To forecast the volatility of each asset in each portfolidaat
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3)

Table 6.1: Summary Statistics
Summary statistics of the data set used for the empiricdysfithe data set consists of 4,970 (unconditional)
log-returns for each of the six portfolios covering a peffiam the autumn 1992 to June 30, 2012. Mean
Return p.a. and Volatility p.a. are annualized with 250 days

Portfolio
AEX CAC DAX FTSE IBEX S&P

Minimum -8.914% -9.342% -9.650% -8.514% -8.929% -8.780%
5% Quantile -1.886% -2.135% -2.379% -1.700% -2.102% -19872
Mean Return 0.049% 0.049% 0.051% 0.057% 0.052% 0.061%
Median Return 0.085% 0.086% 0.123% 0.063% 0.089%  0.080%
95% Quantile 1.853% 2.094% 2.211% 1.740% 2.136% 1.856%
Maximum 8.123% 11.285% 11.947% 9.392% 12.329% 10.990%
\olatility 1.250% 1.396% 1.517% 1.159% 1.381% 1.236%
Skewness -0.186 0.077 -0.217 -0.066 -0.023 0.046
Excess Kurtosis 5.471 5.300 5.291 5.893 5.363 6.713
Mean Returnp.a. 12.24%  12.20% 12.73% 14.25% 12.91% 15.21%
Volatility p.a. 19.76% 22.07% 23.98% 18.33% 21.84%  19.55%

freedom of the marginals are held to be constant at 15.

t+1, GARCH(1,1) models are fitted to a moving time window consgsof thel, 000
preceding log returns. The use of a moving time window,0f0 days is common in
the literature and is in line with, e.g., McNeil et al. [20GG}d Kuester et al. [2006].
Next, a one-step-ahead volatility forecast, ; is computed by the use of the esti-

mated GARCH parameters), a; and; according to[(6.4). Furthermore, degrees of

Testing for structural breaks and multivariate modeling: The correlationg’. and

P, of the plain CCC and DCC models are fitted to a sample congistirihe stan-
dardized residuals obtained from the univariate GARCHetiion. Therefore, the
sample includes a moving time-window of 1,000 trading dags@ding the forecast
dayt + 1. We opt for a moving time window rather than for a fixed timexdow,

because a fixed time-window does not account for any chamg#seicorrelation
structure. As a second alternative, an expanding time-avincbuld be used which
is determined by a fixed starting point and a moving end. Hewewve do not use
such a time-window, because the weighting of more receatfdathe parameter fit-
ting decreases when the time-window increases over tinmriolusion, the moving

time-window approach allows the estimated parameter togdand therefore it is a
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benchmark which is hard to beat.

The estimation of the CCC and DCC parameters in combinatitmeach of the three
different tests for structural breaks is designed as f@ldsmilar to Wied|[2013], we
apply the structural break tests to the standardized ralsidy; of a moving time-
window of a constant length at each point in titmédere,z;; = ét,i&;}, whereo, ;

is the (plug-in-) estimated conditional standard deviatiased on[(6]3) anél; =

ry, — f1;. For the purpose of this study, the time-window consist$,0f)0 trading
days preceding the forecast day- 1. In order to decide at which point in time a
possible change occurs we use an algorithm based on GaledWiad [2014]. First,
within the sample ofl, 000 trading days we identify the data point at which the test
statistic takes its maximum. If this maximum is equal to oo\abthe critical value,
the null of a constant correlation/covariance is rej:QtErdthis case, the data point is
a natural estimator of a so called dominating change poetofd, at this point we
split the sample into two parts and search for possible ahpomts again in the latter
part of the sample. The procedure stops if no new change godigtected. Finally,
the constant correlation coefficieRt and the time-varying correlation coefficieRt
are estimated on the basis the standardized residuals disarsple, which starts
at the day of the latest detected change point and ends at. dde sample size
for estimatingP is limited to [100, ..., 1,000]. Because we perform the tests on a
daily basis, the nominal significance level might not beia&d. Following Wied
[2013], we do not address this topic within this study as wepdy use the decisions
of the tests in an explorative way. Note that in case of thdiegamn of the pairwise
test for constant correlations this procedure is conduictedach of the off-diagonal
elements of the correlation matrix. Because the resultibgamples for each element
are typically of different lengths, the estimation of DCQguaeters is not feasible.

Therefore, this test is only applied in combination with @&C model.

5The critical values are computed for a significance level%ff6r each of the three structural break
tests. We also tested a setup including a significance I&igoHowever, the forecasting results tend to be
slightly worse. With respect to the test for a constant dati@n matrix, we use a bootstrap approximation
for a normalizing constant in order to approximate the adgtigplimit distribution of the test statistic. In
line with|Wied [2012], we chos&99 bootstrap replications.
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Concerning the test for a constant covariance matrix, Ak ¢2009] approximate
asymptotic critical values by simulating Brownian bridgesa fine grid. Wied et al.
[2013b] show that for a small sample size this approach leadensiderably overe-
stimated critical values and hence to very infrequent tejes. To this end, based on
Wied et al. [2013b], we simulate d-dimensional samplesaridgard normal distribu-
ted random variables representing00 trading days. This sample size corresponds
to the size of the moving time-window as explained abovee#iftat, we compute the
test statistic for the sample. We repeat this proceddre00 times. Finally, we deter-
mine the critical value by computing the 95%-quantile of tegulting test statistics.
In addition, we verify whether the asymptotic critical veduused for the pairwise
test for constant correlation and the test for a constametadion matrix are suitable
for finite samples including, 000 trading days. To this end, we obtain critical va-
lues based on the procedure explained above and compagddhteg corresponding
asymptotic critical values. As shown in Tablel6.2, in costtta the differences for the
test for a constant covariance matrix, the differencesespanding to the two tests
for constant correlations are in an acceptable range.
Table 6.2: Critical Values
The table shows asymptotic and empirical critical valuesife pairwise test for constant correlation, for the

test for a constant correlation matrix, and for the test foomastant covariance matrix at the 5% significance
level. Values in bold are used for the empirical study.

Testfor Constant Correlation Constant Correlation Cantstavariance

(pairwise) (Matrix) (Matrix)
Asymptotic Critical Values 1.358 23.124 20.740
Empirical Critical Values 1.324 25.793 14.265

(4) Simulations: For calculating VaR and ES, we do not use analytical methatisib
mulations as it is done, e.g., by Giot and Laurent [2003] afekdnder and Sheedy
[2008]. For each of the: assets in a portfolio and for each dgyK = 100, 000

random simulatiorEEof Student’s t-distributed log returm*éf), e ,rt(,’j) are generated

Giot and Laurent[2003] state that the choice of 100,000 kitians provides accurate estimates of the
guantile.
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by use of the mean;, the univariate volatility forecast,, ;, the correlation matrix
P as estimated by the models described in Section 6.3, andetirees of freedom
v. = 1519 Then, the simulated log returns for the individual portbadissets are ag-

gregated to 100,000 portfolio log returns.

(5) Estimation of VaR and ES: The daily VaR at tha 00(1 — «)% confidence level is
given by thea-quantile of the simulated portfolio log returns. To an&yhe effect
of different levels of significance on the quality of our mtsdeisk estimates, we
seta = 0.05 anda = 0.01 and compare the results for the VaR-estimates with the

realized portfolio losses in order to identify VaR-exceasuks.

As the Value-at-Risk is not in general coherent, we alsorese the portfolios’ Ex-

pected Shortfalls which are given by

ES.(X) = E[X|X < VaR.(X)). (6.10)

For dayt + 1, we determine thdé’S, by computing the mean of the simulated log

returns below the estimatédu R, for that day.

(6) Backtesting and performance measurementThe performances of the different
models are evaluated by applying appropriate backtestb®VdR- and ES- fore-
casts. Since the univariate volatility forecasts for eatcthe VaR models are equal.
Hence, differences in VaR-forecasts and VaR-violations aaly result from diffe-
rences in the estimated correlations. We employ the comynasdd test of Kupiec
[1995] to evaluate whether the observed number of VaR-tr@ia is consistent with
the expected frequency (unconditional coverage). In additve take a look at the
distribution of the VaR-violations. The day on which a VaRtation occurs should
be unpredictable, i.e., the violation-series should fellomartingale difference pro-

cess. To this end, we perform the CAViaR-Test of Engle andddaelli [2004] and

8We choose a fixed because the estimation of degrees of freedom leading t@pst@pes particularly
at the tails of a distribution is not a trivial task and is nothe focus of this paper. However, setting- 15
corresponds to Santos et al. [2013] who estimate a range tof 19 degrees of freedom for estimating the
VaR of several multivariate portfolios by using a DCC-GARGtddel.
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Berkowitz et al.|[[2011]. The test is based on the idea thatteansformation of the
variables available when VaR is computed should not be letec with the current

violation. Consider the autoregression
Iy =a+ Z Brrdi—r + Z Bokg(Li—ks L—k—1, -+ Ry Re—pp—1, - -+ ) + 4. (6.11)
k=1 k=1

In line with|Berkowitz et al.|[2011], we set(l; s, [y 1, - , Ri—p, Ry—p—1,- ) =
VaR;_;.1 andn = 1. The null hypothesis of a correctly specified model with =
Bar = 0 is tested with a likelihood ratio test. The test statistiasymptoticallyy?
distributed with two degrees of freedom. Berkowitz etiaD12] evaluate the finite-
sample size and power properties of various different VaBktests by conducting a
Monte Carlo study where the return generating processdsaaex on real life data.
They find that the CAViaR-test shows a superior performaooepared to competing

models.

The Expected Shortfall is backtested with the test of Mcled Frey [2000]. This
test evaluates the mean of the shortfall violations, ite,deviation of the realized
shortfall against the ES in the case of a VaR-violation. TWerage error should be
zero. The backtest is a one-sided test against the altesrfagpothesis that the re-
siduals have mean greater than zero or, equivalently, bieaexpected shortfall is

systematically underestimated.

The backtests described above are designed to evaluatedinaey of a single mo-
del. Since we are also interested in a comparison betweepettiermances of the
correlation models we additionally employ the conditiopegdictive ability (CPA)
test of . Giacomini and White [2006]. This interval forecassttis derived under the
assumption of data heterogeneity rather than stationanitycan be applied to the
comparison between nested and non nested models as welloag aifferent esti-

mation techniques and (finite) estimation windows. We felidantos et al. [2013]
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and assume an asymmetric linear (tick) loss functiasf order« defined as

Lo(er1) = (a—1(egq < 0))epyr, (6.12)

wheree;; = 141 — VaR,+1. The null hypothesis of equal conditional predictive
ability claims that the out-of-sample loss difference besgw two models follows a

martingale difference sequerice.

In addition to the statistical backtests, we assess themmeaince of the models from
a practitioner’s point of view. According to the frameword foacktesting internal
models proposed by the Basel Committee on Banking Supernv[4096], we mea-
sure the number of VaR-violations on a quarterly basis uiegnost recent twelve
months of data. To be more precisely, we count the numbeptdtions after every 60
trading days using the data of the most recent 250 trading. d&lg sum up the VaR-
violations for each intervdll, . .., 250], [61,...,310], ..., [3,721,...,3,970]. This
procedure leads to 63 results of one-year VaR-violatiogueacies. Then, we follow
McNeil et al. [2005] and compute the average absolute diserey between obser-
ved and expected numbers of VaR-violations. We abstain frsimg the calculation
of capital requirements according to the Basel guidelinevaluate the performance
of the different models. Da Veiga etial. [2011] find that usingdels which unde-
restimate the VaR lead to low capital charges because thientysenalty structure
for excessive violations is not severe enough. For thisorgage consider the capital

requirement not to be an appropriate performance measure.

6.5 Results

In this section, the results of our empirical study are dised focusing on the specified

aspects mentioned in the introduction of this paper.

9For a detailed description of the test statistic, see Giagicamd White [2006]
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6.5.1 Total Number of VaR Violations

We start the discussion of our results with the analysis ef ttal number of VaR-
violations. A key requirement with regard to VaR-forecagtmodels is that the actual
number of VaR-violations should match the expected numéated to the selected-
guantile. For each of the different models, we compute thRe-Valation ratio by divi-
ding the actual number of VaR-violations by the total numbeB,970 VaR-forecasts.
Furthermore, we apply the unconditional coverage test gfié&ti[1995] to test the null
hypothesis of a correctly specified model. The results grerted in Tablé 6]3.

With respect to Panel A, the average VaR-violation ratiosea = 5% anda = 1%
qguantiles (hereinafter referred to as 5% VaR and 1% VaR) atrtout.924% and 1.231%,
respectively, which is close to the corresponding nomirg \evels. In the vast majority
of settings, the average VaR-violation ratio of the modetsuding tests for structural
breaks are closer to the nominal VaR levels than the correlpg ratios of the plain
models. The p-values of the unconditional coverage testugfié&c [1995] are reported
in Panel B. For the 5% VaR, in only a very few cases the p-vatwedelow the 10%
threshold for statistical significance and, therefores idifficult to derive conclusions.
For the 1% VaR, the models including the test for a constametadion matrix show less

significant p-values than the remaining approaches.

6.5.2 Distribution of VaR Violations

The total number of VaR-violations is not an exhaustiveeciain to evaluate the fit of
the analyzed dependence models, because it gives no indiediout the distribution of
the VaR-violations. Among others, Longin and Solnik [20@&]well as Campbell et al.
[2002] show that in particular in volatile bear markets etations tend to increase. Con-
sequently, in times where an effective risk management & meeded, inflexible depen-
dence models may not be able to adequately adapt to chantfes dependence struc-
ture. This could lead to the undesired occurrence of cladt®aR-violations which in

turn could lead to disastrous losses. To this end, we perfbenCAViaR-based backtest
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Table 6.3: Results Value-at-Risk
For each portfolio and for the 5% and 1% VaR, the table show3/#R-Violation Ratio (i.e., number of
VaR-violations divided by VaR-forecasts) and the p-valfegsthe unconditional coverage testlof Kupiec
[1995], and the CAViaR based test of Engle and Manganel{2@nd Berkowitz et al! [2011]. *, **, and
*** indicate statistical significance at the 10%, 5%, and I&¢dls.

Model  Test AEX CAC DAX FTSE IBEX S&P Average
Panel A: VaR-Violation Ratio
no Test 5.592% 5.189%  5.390% 4509% 4.811%  5.264% 5.126%
cce Correlation (pairwise)  5.239% 4.962% 5.063% 4.584%  4.811%.861% 4.920%
o Correlation (Matrix) 5.088% 4.786%  4.912% 4.383%  4.761% 558% 4.748%
g Covariance (Matrix) 5.340% 5.063% 5.315% 4.509% 4.786% 618 4.979%
X
0 no Test 5.315% 5.063% 5.038% 4.307% 4.912%  5.013% 4.941%
DCC Correlation (Matrix) 5.214% 4811% 5.038% 4.232%  4.786% 718% 4.798%
Covariance (Matrix) 5.315% 5.013% 5.365% 4.433% 4.811% 118 4.958%
no Test 1.713% 1.209% 1.159% 1.385% 1.335%  1.259% 1.343%
cce Correlation (pairwise)  1.310% 1.008% 1.259% 1.360%  1.335%.134% 1.234%
o Correlation (Matrix) 1.335% 0.957% 1.159% 1.234%  1.234% 033% 1.159%
g Covariance (Matrix) 1.486% 1.033% 1.184% 1.360%  1.335% 084 1.251%
X
- no Test 1.461% 1.134% 1.108% 1.234% 1.310% 1.134% 1.230%
DCC Correlation (Matrix) 1.285% 0.982% 1.234% 1.259%  1.234% 083% 1.180%
Covariance (Matrix) 1.360% 1.033% 1.259% 1.259%  1.310% 084 1.222%
Panel B: p-Value UC Test
no Test 1.000 1.000 1.000 0.149 1.000 1.000
cce Correlation (pairwise)  1.000 1.000 1.000 0.224 1.000 1.000
o Correlation (Matrix) 1.000 1.000 1.000 0.069* 1.000 0.196
g Covariance (Matrix) 1.000 1.000 1.000 0.149 1.000 1.000
X
0 no Test 1.000 1.000 1.000 0.040**  1.000 1.000
DCC Correlation (Matrix) 1.000 1.000 1.000 0.023**  1.000 1.000
Covariance (Matrix) 1.000 1.000 1.000 0.095* 1.000 1.000
no Test 0.000***  0.200 0.327 0.021**  0.044* 0.114
cce Correlation (pairwise)  0.061* 0.962 0.114 0.031**  0.044**0.408
04 Correlation (Matrix) 0.044** 0.785 0.327 0.152 0.152 0.837
g Covariance (Matrix) 0.004***  0.837 0.258 0.031**  0.044* 80O
X
- no Test 0.006***  0.408 0.500 0.152 0.061* 0.408
DCC Correlation (Matrix) 0.084* 0.911 0.152 0.114 0.152 0.603
Covariance (Matrix) 0.031** 0.837 0.114 0.114 0.061* 0.500
Panel C: p-Value CAViaR Test
no Test 0.032** 0.070*  0.005*** 0.011** 0.117 0.064*
cce Correlation (pairwise)  0.017** 0.124 0.164 0.090* 0.131 318
04 Correlation (Matrix) 0.341 0.208 0.225 0.156 0.186 0.794
g Covariance (Matrix) 0.044** 0.076*  0.044** 0.012**  0.074* 0.143
X
© no Test 0.088* 0.136 0.014** 0.035**  0.170 0.123
DCC Correlation (Matrix) 0.018** 0.176 0.435 0.097* 0.146 0739
Covariance (Matrix) 0.011** 0.075* 0.034** 0.045**  0.118 o]
no Test 0.466 0.527 0.232 0.213 0.565 0.664
cce Correlation (pairwise)  0.920 0.289 0.884 0.372 0.424 0.825
04 Correlation (Matrix) 0.441 0.181 0.833 0.849 0.239 0.625
S Covariance (Matrix) 0.521 0.434 0.808 0.350 0.403 0.787
X
- no Test 0.794 0.615 0.473 0.526 0.694 0.450
DCC Correlation (Matrix) 0.891 0.216 0.542 0.360 0.262 0.789
Covariance (Matrix) 0.898 0.419 0.853 0.762 0.351 0.581

of Engle and Manganelli [2004] and Berkowitz et al. [2011jammalyze the performance

of the models used in our empirical study.
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The results of the CAViaR test are presented in Panel C oEl@aBl. Considering the
5% VaR, the p-values for the plain models fall short of the 18#%éshold for statistical si-
gnificance in five (CCC) and three (DCC) out of six cases. BbinCCC and DCC model
are improved by the test for a constant correlation mataxlileg to zero and two rejecti-
ons of the null hypothesis, respectively. The pairwisefastonstant correlations shows
less rejections than the plain CCC model, too, while the fsa constant covariance
matrix does not lead to any improvements. With respect td #e/aR, the CAViaR test
does not lead to any statistically significant results.

In addition to the statistical tests, we evaluate the perésrce of the different VaR-
forecasting models from a perspective which is more relewvapractical terms. As ex-
plained in sectiof 614, we follow the Basel guidelines fockiasting internal models
and count the number of VaR-violations after every 60 trgdiays using the data of the
preceding 250 trading days. Based on the resulting 63 qlyaMaR-violation frequen-
cies, we compute average absolute discrepancies of VdRtweios which are presented

in Table[6.4.

Table 6.4: Average Absolute Discrepancy of VaR-Violations
Based on the framework for backtesting internal models @sed by the
Basel Committee on Banking Supervision [1996], we count tloenber of violations on a quarterly
basis (every 60 trading days) using the most recent yeartfa8ithg days) of data. We then sum up the
VaR-violations for each intervdl, . .., 250], [61,...,310], ..., [3,721,...,3,970]. This procedure leads
to 63 results of one-year VaR-violation frequencies. Theetashows the average absolute discrepancy
between observed and expected numbers of VaR-violations.

Model  Test AEX CAC DAX FTSE IBEX S&P Average
noTest 6.008 4.770 6.119 4.198 4.421 5.262 5.130
cce Correlation (pairwise) 5.278 3.722 5.389 3.754 4.103 4.357 4.434
@ Correlation (Matrix) 5.056 3.706 5.151 3.802 3.897 4.024 272.
g Covariance (Matrix) 6.135 4.310 5.659 4.421 4.421 4.865 68.9
=
o noTest 5.738 4563 5421 4119 4.468 4.754 4.844
DCC Correlation (Matrix) 5.563 3.992 5.389 4.135 3.992 4.421 582.
Covariance (Matrix) 6.056 4.357 5548 4.087 4.405 4.675 541.8
noTest 2437 1278 1611 2198 2.119 1.897 1.923
cce Correlation (pairwise) 1.817 1.214 1.881 2.087 1.865 1.643 1.751
x Correlation (Matrix) 2.008 1.262 1.706 1.770 1.817 1.437 667.
g Covariance (Matrix) 2.183 1.151 1.786 2.151 2.024 1.659 23.8
X
- noTest 1.929 1.183 1421 2.056 2.008 1.690 1.714
DCC Correlation (Matrix) 1.833 1.214 1913 2.087 1.817 1.627 749.
Covariance (Matrix) 1.976 1.214 1.849 1960 1.817 1.579 337

We start with the discrepancies for the 5% VaR. The CCC moaodetombination
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with structural break tests show lower average absolutzefsincies compared to their
plain counterpart. In particular, the CCC model in comboratvith the test for a constant
correlation matrix leads to less clustered VaR-violatidrigere are only small differences
in the average absolut discrepancies of the DCC based mddegever, the models
which include the test for a constant correlation matrix iaye slightly on the plain
DCC. Continuing with the results for the 1% VaR, the averdgsohute discrepancies of
the plain CCC and DCC models are outperformed by the modetsiating for structural
breaks. Again, the models including the test for a constarretation matrix show the
lowest discrepancies on average.

Because the (averaged) absolute discrepancies of qyaveR-violation frequency
is a highly aggregated performance measure, we analyzeffdaseof the application
of tests for structural breaks by taking a detailed view at WaR-forecasts and VaR-
violations for the 5% VaR using the CAC40 portfolio as an epln@ To illustrate the
differences in the behaviour of the analyzed approachgsy&$ 6.1 td 613 show the port-
folio returns and corresponding daily VaR-forecasts of @@C and DCC based mo-
dels. Comparing the VaR-forecasts of the plain CCC and th€ Dfdel, there are just
small differences in the VaR-forecasts observable. Raatily at the high volatility peri-
ods around the data points 1,500 and 3,000, the forecadte @€C model are slightly
more conservative than the CCC forecasts. Conversely, #fieforecasts of the DCC
model during the calm period around the data point 1,000layletly lower compared to
the CCC model. The VaR-forecasts of the models accountingtfoctural breaks devia-
te from the plain CCC forecasts in the same direction as th€ BCecasts do, but to a
markedly larger extent. This applies in particular to botbdels including the tests for
constant correlations. The same pattern is observabladardmparison of the plain DCC
model and its structural break counterparts, but the devisbetween the VaR-forecasts

of these models are smaller compared to the CCC based models.

OFor the remaining portfolios we provide the same figures quest. However, these charts follow
similar patterns.
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Figure 6.1: VaR-Forecasts and VaR-Violations for the CCGdglaModels (1/2)

The figure presents returns, VaR-forecasts, and VaR-ieolsfor the CAC40 portfolio atv = 5%. VaR-

forecasts are shown with lines and the dashes at the bottdheafharts mark the data points where a

VaR-violation occurs.
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Figure 6.2: VaR-Forecasts and VaR-Violations for the CCGdglaModels (2/2)
The figure presents returns, VaR-forecasts, and VaR-ieolsfor the CAC40 portfolio atv = 5%. VaR-
forecasts are shown with lines and the dashes at the bottdheafharts mark the data points where a
VaR-violation occurs.
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The figure presents returns, VaR-forecasts, and VaR-ieolsfor the CAC40 portfolio atv = 5%. VaR-
forecasts are shown with lines and the dashes at the bottdheafharts mark the data points where a

Figure 6.3: VaR-Forecasts and VaR-Violations for the DCGd8aModels

VaR-violation occurs.
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We continue with the Basel based periodically computatiova®-violation frequen-
cies. Figuré 64 illustrates the number of VaR-violationsac60 trading day basis using
the data of the most recent 250 trading days for the CAC40gart The VaR-violation
frequency of the plain CCC and DCC models deviate from thaired level in particular
during four specific periods:

a) at the later stage of the dot-com bubble between the datts30 (October 28, 1999)
and 1,150 (June 27, 2001);

b) at the bear market after the burst of the dot-com bubbletlz®/11 attacks between
the data points 1,450 (August 30, 2002) and 1,690 (Augus20ad3);

c) at the economic recovery between the data points 1,810143a 29, 2004) and 2,410
(May 30, 2006);

d) and at the financial crisis between the data points 2,7¢@{@r 24, 2007) and 3,250
(September 11, 2009).

Turning to period a), the numbers of VaR-exceedances of ldia £CC and DCC
models are far too low. The implementation of the structbrabk tests results in VaR-
forecasts which are less conservative to some degree areddieemore accurate. Con-
sequently, the additional use of these tests leads to atredwd the extent by which the
violation frequency falls short of the expected level. Imtast, during periods b) and d),
the plain models show far too many exceedances, whereasihieen of VaR-violations
of the structural break test models are significantly lowars applies particularly to the
models in combination with the tests for constant corretetiwhose daily VaR-forecasts
are distinctly more conservative. However, during the cstiock markets of period c), the
daily VaR-forecasts of the different models show hardly different results. Neverthe-
less, the plain CCC and DCC models show a slightly lower degfeisk-overestimation

compared to the remaining approaches.
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Figure 6.4: Quarterly VaR-Violations
The chart shows the number of VaR-violations for the CAC4ffpto at « = 5% on a quarterly basis
(every 60 trading days) using the most recent year (250rtgedthys) of data. The chart at the top shows the
results of the CCC based models. The chart at the bottom shewssults of the DCC based models. The
horizontal grey lines mark the expected number of VaR-viotes.
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6.5.3 Expected Shortfall

In addition to the measurement of the Value-at-Risk, weusatalthe different risk-models
with respect to their accuracy in forecasting Expected &ilbrTo this end, we compare
the models on the basis of the deviation of the realized ftlosigainst the ES in the case
of a VaR-violation. Furthermore, we apply the backtest ofNdid and Frey|[2000]. The
results are presented in Tables|6.5 6.6. Overall, theedashortfall of the models
show only small deviations from the ES which ranges freth20 to 0.02 percentage
points for the 5% VaR and-0.34 to 0.01 percentage points for the 1% VaR, whereas a
negative deviation indicates a risk underestimation. @amaog the 5% VaR, the average
absolute deviation of the plain CCC model is undercut by theadions of its counterparts
accounting for structural breaks, in particular by the CC@dsi including the pairwise
test for constant correlations. Regarding the DCC moddy, the test for a constant co-
variance matrix outperforms the plain model. With respedihe 1% VaR, none of the
structural break models yield lower average absolute tiemsthan the plain CCC and
DCC approaches. The results of the one-sided ES backtestNand Frey|[2000]
does not lead to any further significant conclusions. Theléasls to p-values rejecting
the null hypothesis at a significance level of 10% for the mgjof portfolios and there-
fore indicate that all models tend to underestimate the E8aBse there are only small
differences in the number of rejections it is difficult to iderconclusions from this back-

test.
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Table 6.5: Results Expected Shortfall - 5% VaR
For each portfolio and for the 5% VaR, the table shows the ntegrected Shortfall in case of a VaR-
violation, the mean realized shortfall in the case of a VéRation, the difference between the mean ES
and the mean realized shortfall, and the p-value of the latkfi McNeil and Frey [2000]. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1%seve

Exp.

Actual

Model Test Shortfall  Shortfall Dev. p-Value
no Test -2.66% -2.82% -0.16%  0.002***
cce Correlation (pairwise) -2.69% -2.81% -0.12%  0.022**
Correlation (Matrix) -2.65% -2.78% -0.13%  0.011**
ﬁ Covariance (Matrix) -2.68% -2.81% -0.14%  0.008***
<
no Test -2.71% -2.85% -0.14%  0.008***
DCC Correlation (Matrix) -2.71% -2.81% -0.10% 0.036**
Covariance (Matrix) -2.69% -2.81% -0.12%  0.020**
no Test -3.07% -3.12%  -0.05%  0.192
cce Correlation (pairwise) -3.11% -3.10% 0.01% 0.578
Correlation (Matrix) -3.15% -3.13%  0.02% 0.635
g Covariance (Matrix) -3.13% -3.12% 0.01% 0.579
O
no Test -3.11% -3.11%  0.00% 0.485
DCC Correlation (Matrix) -3.16% -3.13%  0.02% 0.648
Covariance (Matrix) -3.14% -3.12% 0.02% 0.628
no Test -3.45% -3.53% -0.09% 0.093*
cce Correlation (pairwise) -3.37% -3.49% -0.12%  0.047**
Correlation (Matrix) -3.41% -3.51% -0.10% 0.076*
é Covariance (Matrix) -3.41% -3.50% -0.09%  0.094*
a
no Test -3.48% -3.56% -0.08% 0.123
DCC Correlation (Matrix) -3.35% -3.47%  -0.12%  0.047*
Covariance (Matrix) -3.43% -3.49% -0.06% 0.178
no Test -2.57% -2.76% -0.20%  0.000***
cce Correlation (pairwise) -2.54% -2.70% -0.16%  0.002***
w Correlation (Matrix) -2.55% -2.71% -0.16%  0.002***
<£ Covariance (Matrix) -2.55% -2.74%  -0.19%  0.000***
T
no Test -2.60% -2.77% -0.18%  0.001***
DCC Correlation (Matrix) -2.56% -2.75% -0.19%  0.000***
Covariance (Matrix) -2.56% -2.73% -0.17%  0.001***
no Test -2.99% -3.13% -0.15%  0.008***
cce Correlation (pairwise) -3.01% -3.11% -0.11%  0.032**
Correlation (Matrix) -3.01% -3.12% -0.11%  0.033**
3 Covariance (Matrix) -3.04% -3.15% -0.11%  0.038**
0
no Test -3.02% -3.09% -0.07% 0.105
DCC Correlation (Matrix) -3.04% -3.12% -0.08%  0.088*
Covariance (Matrix) -3.04% -3.12% -0.08%  0.080*
no Test -2.62% -2.75% -0.12%  0.012*
cce Correlation (pairwise) -2.68% -2.77% -0.08%  0.083*
Correlation (Matrix) -2.66% -2.76% -0.10%  0.055*
93 Covariance (Matrix) -2.70% -2.79%  -0.09% 0.061*
%]
no Test -2.65% -2.76% -0.11%  0.022*
DCC Correlation (Matrix) -2.71% -2.78% -0.07% 0.110
Covariance (Matrix) -2.68% -2.77% -0.09% 0.066




6.5. RESULTS 160

Table 6.6: Results Expected Shortfall - 1% VaR
For each portfolio and for the 1% VaR, the table shows the ntegrected Shortfall in case of a VaR-
violation, the mean realized shortfall in the case of a VéRation, the difference between the mean ES
and the mean realized shortfall, and the p-value of the latkfi McNeil and Frey [2000]. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1%seve

Exp. Actual

Model Test Shortfall  Shortfall Dev. p-Value
no Test -3.65% -3.76% -0.11% 0.153
cce Correlation (pairwise) -3.56% -3.80% -0.24% 0.019**
Correlation (Matrix) -3.58% -3.79%  -0.21%  0.040**
& Covariance (Matrix) -3.60% 3.77% -0.17%  0.074*
<
no Test -3.61% -3.76% -0.15%  0.084*
DCC Correlation (Matrix) -3.51% -3.76% -0.25%  0.019**
Covariance (Matrix) -3.60% -3.81% -0.21%  0.040**
no Test -4.00% -3.99%  0.01% 0.544
cce Correlation (pairwise) -3.74% -3.84% -0.11% 0.254
Correlation (Matrix) -3.72% -3.84% -0.13% 0.223
2 Covariance (Matrix) -3.79% -3.87% -0.08% 0.315
]
no Test -3.86% -3.86%  0.00% 0.487
DCC Correlation (Matrix) -3.73% -3.85% -0.11% 0.251
Covariance (Matrix) -3.79% -3.86% -0.08% 0.322
no Test -4.64% -4.92%  -0.28%  0.043**
cce Correlation (pairwise) -4.44% -4.68% -0.24% 0.070*
Correlation (Matrix) -4.47% -4.74%  -0.27%  0.059*
é Covariance (Matrix) -4.45% -4.78%  -0.34%  0.023**
o
no Test -4.55% -4.82%  -0.27%  0.052*
DCC Correlation (Matrix) -4.40% -4.67% -0.27%  0.049**
Covariance (Matrix) -4.45% -4.68% -0.23% 0.076*
no Test -3.52% -3.68% -0.15%  0.051*
cce Correlation (pairwise) -3.46% -3.59% -0.13%  0.082*
W Correlation (Matrix) -3.47% -3.60% -0.13% 0.092*
& Covariance (Matrix) -3.45% -3.64% -0.19% 0.017**
L
no Test -3.55% -3.67% -0.12% 0.114
DCC Correlation (Matrix) -3.47% -3.61% -0.15%  0.050*
Covariance (Matrix) -3.44% -3.62% -0.17%  0.028*
no Test -3.62% -3.83% -0.20%  0.037**
cce Correlation (pairwise) -3.82% -3.94% -0.12% 0.155
Correlation (Matrix) -3.72% -3.89% -0.18%  0.062*
N Covariance (Matrix) -3.79% -3.92% -0.13% 0.123
e}
no Test -3.73% -3.89% -0.17% 0.106
DCC Correlation (Matrix) -3.75% -3.89% -0.14% 0.106
Covariance (Matrix) -3.78% -3.88% -0.10% 0.199
no Test -3.51% -3.76% -0.25%  0.023**
cce Correlation (pairwise) -3.52% -3.75% -0.23%  0.046**
Correlation (Matrix) -3.47% -3.76% -0.29%  0.023**
% Covariance (Matrix) -3.43% -3.70% -0.28%  0.016**
n
no Test -3.55% -3.83% -0.28%  0.019**
DCC Correlation (Matrix) -3.54% -3.76%  -0.22%  0.055*

Covariance (Matrix) -3.42% -3.67% -0.25%  0.027*
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6.5.4 Comparison of Conditional Predictive Ability

The statistical tests used above are designed to evalwa&ppropriateness of an indivi-
dual model rather than directly comparing the forecastouyieacy between different VaR
models. To provide a ranking of the analyzed forecastingagmghes, we additionally per-
form the CPA test of Giacomini and White [2006]. Tahles 6.d[&®B report the results
of the CPA test. With respect to the results of the 5% VaR dleashown in Panel A,
the plain CCC model is clearly outperformed by each appr@acbunting for structural
breaks. The comparison between the different tests foctstral breaks indicate that the
pairwise test for constant correlations of Wied etlal. [26]1i& preferred in this setting.
The results of the comparison of the plain DCC models witltagnterparts including
structural breaks are ambiguous. Only the DCC model in coatlmn with the test for
a constant covariance matrix slightly improves the coodai predictive ability. Further-
more, the CCC model in combination with the pairwise testdonstant correlations
outperforms the plain DCC-model. Considering the 1% VaRllevPanel B, the results
of the plain CCC model and the CCC model including structbrabks are comparable

while the plain DCC model outperforms the correspondingcstiral break approaches.

6.6 Conclusion

The aim of this paper was to examine the question whetherdRe ®nd ES- forecasting
accuracy of plain CCC and DCC models can be improved by théeimgntation of re-
cently proposed tests for structural breaks in covariaandscorrelations. To this end, we
perform an empirical out-of-sample study by using ten-disienal portfolios composed
of international blue-chip stocks. In addition to the pl@@C and the DCC benchmarks,
we modify these models by combining them with the pairwise e constant correlati-
ons of \Wied et al. [2012b], the test for a constant correfatiatrix of Wied [2012], and

the test for a constant covariance matrix of Aue et al. [2009]



Table 6.7: Results CPA-Test - 5% VaR
The table shows the results of a comparison between the CEO@R models and their counterparts including tests foicstinal breaks based on the CPA-test. The results
indicate how often a forecasting model is preferred whenyépgpit to each of the six different portfolios. The modelsnped in bold yield a statistically significant better
performance.

Statistically Significant Results

Model 1 Model 2 Model 1 Model 2

Model 1 Model 2 Preferred  Preferred Preferred Preferredndlﬁerent
CccC DCC 0 6 0 3 3
CCC CCC + Correlation Test (pairwise) 1 5 0 3 3
CCcC CCC + Correlation Test (Matrix) 1 5 0 1 5
CCC CCC + Covariance Test (Matrix) 2 4 0 2 4
CCC DCC + Correlation Test (Matrix) 2 4 0 2 4
CCcC DCC + Covariance Test (Matrix) 1 5 0 3 3
CCC + Correlation Test (Matrix) CCC + Correlation Test (pairwise) 2 4 0 1 5
CCC + Covariance Test (Matrix) = CCC + Correlation Test (Matri 1 5 0 0 6
CCC + Covariance Test (Matrix) CCC + Correlation Test (pairwise) 1 5 0 1 5
DCC CCC + Correlation Test (pairwise) 3 3 1 2 3
DCC CCC + Correlation Test (Matrix) 3 3 0 0 6
DCC CCC + Covariance Test (Matrix) 5 1 0 0 6
DCC DCC + Correlation Test (Matrix) 3 3 1 1 4
DCC DCC + Covariance Test (Matrix) 2 4 1 1 4
DCC + Correlation Test (Matrix) DCC + Covariance Test (Matrix) 2 4 0 2 4

NOISNTONOD 99
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Table 6.8: Results CPA-Test - 1% VaR
The table shows the results of a comparison between the CEO@R models and their counterparts including tests foicstinal breaks based on the CPA-test. The results
indicate how often a forecasting model is preferred whenyépgpit to each of the six different portfolios. The modelsnped in bold yield a statistically significant better
performance.

Statistically Significant Results

Model 1 Model 2 Model 1 Model 2

Model 1 Model 2 Preferred  Preferred Preferred Preferredndlﬁerent
CccC DCC 0 6 0 4 2
CccC CCC + Correlation Test (pairwise) 3 3 1 0 5
CCcC CCC + Caorrelation Test (Matrix) 3 3 1 0 5
CCC CCC + Covariance Test (Matrix) 3 3 0 1 5
CcCcC DCC + Correlation Test (Matrix) 3 3 1 0 5
CCcC DCC + Covariance Test (Matrix) 2 4 1 1 4
CCC + Correlation Test (Matrix)  CCC + Correlation Test (pége) 2 4 0 0 6
CCC + Correlation Test (Matrix) CCC + Covariance Test (Matrix) 4 2 0 1 5
CCC + Covariance Test (Matrix)  CCC + Correlation Test (p&eay 2 4 0 0 6
DCC CCC + Correlation Test (pairwise) 5 1 1 0 5
DCC CCC + Caorrelation Test (Matrix) 5 1 1 0 5
DCC CCC + Covariance Test (Matrix) 5 1 3 0 3
DCC DCC + Correlation Test (Matrix) 5 1 2 0 4
DCC DCC + Covariance Test (Matrix) 5 1 2 0 4
DCC + Correlation Test (Matrix) DCC + Covariance Test (Matrix) 2 4 0 2 4

NOISNTONOD 99

€97



6.6. CONCLUSION 164

In order to evaluate the accuracy of the VaR-forecasts, welwtt the unconditio-
nal coverage test of Kupiec [1995] and the CAViaR based teEngle and Manganelli
[2004] and Berkowitz et all [2011]. The results of both backs indicate that testing for
constant correlations can lead to a more accurate conditmverage and less depen-
dent VaR-violations. Evaluating the accuracy of the ES bsfgpming the backtest of
McNeil and Frey|[2000] leads to no clear conclusion whetlpgyang tests for structural
breaks are beneficial or not. Additionally, we compare theddaoonal predictive ability
of the models using the test of Giacomini and White [2006]e Tésults show that the
extension of a plain CCC model by tests for structural bréakds to an equally or better
unconditional predictive ability while it seems hard to telain DCC model.

To get a deeper insight into the characteristics of the diffemodels, we change from
the statistical backtest perspective towards a backtegthw of relevance in regulato-
ry practice. To this end, we perform a backtest proceduredas the Basel guidelines
for backtesting internal models. On a quarterly basis, wasuee the number of VaR-
violations within the most recent one-year period and eaalthe absolute discrepancies
from the expected VaR-violation frequency. The plain CCQleids clearly outperformed
by its counterparts modified by structural break tests,q@aérly by the test for a con-
stant correlation matrix. However, the results with respeche DCC models are more

ambiguous.



Anhang A

Pseudocode

A.1 Test of Unconditional Coverage

(i) Generate the violation sequence resulting from the eskereturns and the corre-

sponding VaR forecasts by

Ii(p) =
0, else

(i) Draw [ + 1 random variables by
€j ~ N(0,1)-0.001, j =1,....0 + 1.
(i) Calculate the test statistic for the observed viaatsequence by

MCSuc = €41 T Z ]z

i=1

(iv) Simulate violation sequences by drawikimesn random variables with distribu-
tion

fj,i(P) ~Bemn(p), i=1,..,n, j=1,..,1

(v) Calculate the test statistic for each simulated violagequence by
M@Squ =€ + Z ]A'Z'J’, j = 1, ey l.
i=1
(vi) Sort the resulting values of the simulated statiﬂﬁ&]Sw in descending order.
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A.2. TEST OF THE I.1.D. PROPERTY 166

(vii) Compute the quantiles for the desired significancelend compare the test statistic

for the observed violation sequence to the resulting alitralues.

A.2 Testofthe I.I1.D. Property

() Generate the violation sequence resulting from the deskreturns and the corre-

sponding VaR forecasts by

L, if y; < VaR;—1(p);
Ii(p) =
0, else

(ii) Calculate the sum of observed VaR violations by

=1
(i) Identify the time indexes where an observed VaR viatoccurred by
V=Aill; =1} = (t1, ..., tr).
(iv) Draw![ + 1 random variables by
¢j ~ N(0,1)-0.001, j =1,...1+ 1.

(v) Calculate the test statistic for the observed violaequence by

m

MC’Siid,m = t% —+ (TL — tm)2 + Z(ts — t5_1)2 + €1+1-

s=2
(vi) Simulate violation sequences by drawikimesn random variables with distribu-
tion

fz‘,j(p) ~Ber(p),i=1,..,n, j=1,..1,
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under the condition that.!, I, ; = m, V j.
(vii) For each simulated violation sequence, identify teedf time indexes of the viola-
tions by
Vi =A{tlLij = 1} = (tj1, s tjom)-
(viii) Calculate the test statistic for the simulated vitda sequences by

Mbsiid,m,j = t?,l + (n — tj,m>2 + Z(tms — f}jvsfl)z + €.

s=2

(ix) Sort the resulting values of the simulated statigti€'S,,4,,,, ; in descending order.

(x) Compute the quantile for the desired significance lemdl@ompare the test statistic

for the observed violation sequence to the resulting alitralue.
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A.3 Test of Conditional Coverage

() Simulate violation sequences by drawiiimesn random variables with distribu-
tion

fz‘,j(p) ~Ber(p),i=1,..,n,j=1,..1,

under the condition that."_, I;; > 1, V ;.

(i) For each simulated violation sequence, identify thiecdéime indexes of the viola-

tions by

Vi = {t|Ls =1} = (Fj1, s jm)-
(ii) Draw [ + 1 random variables by
¢j ~ N(0,1)-0.001, j=1,...,1 + 1.
(iv) Calculate the violation frequency of each of the sintetbsequences

n
mj: E Ii,j-
i=1

(v) Definem = (my,...,my) and setn,,;, = max(2, min(m)) andm,,,, = max(m)

for the lower and upper bound of possible VaR violation freagies.

(vi) For eachk = Munin, Mumintt, - - -, Mmaz, SiMmulate violation sequences by drawing

[*-timesn random variables with distribution
Lij(k/n) ~Ber(k/n), i=1,...,n, j=1,..,1"

under the condition thgt'"_, I, ;(k/n) = k, ¥ j.

(vii) For k£ and each simulated violation sequence, identify the seit# indexes of the
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violations by

Vi = {Lixllije = 1} = (L1, - L)

(viii) For eachk, calculatery, an estimator fo2 (M C'Sq x| Ho), by

l* k
1 e
3 (B T+ D).

j=1

(ix) Calculate the test statistic for each violation sequegesimulated in step (i) by

MACYSCC,k,j = CLf(MACYSucvj) + (1 — CL)g(MACYSMd’kJ), 0 S a S 1,

where
. <€j+2?:1]z‘> /n—p
f(MCSuc,j) = ,
p
and
- MCSiid,k,'—Tk = .
g(MCSiian;) = - : ) 1{MCSiid,k,j2Tk}’ k= Z L.
=1

(x) Sort the resulting values of the simulated stati3fi¢'S..., ; in descending order.
(xi) Compute the quantile for the desired significance level

(xii) Generate the violation sequence resulting from theeobed returns and the corre-

sponding VaR forecasts by

1, if Y; < VaRi\i_l(p);
Li(p) =
0, else

(xiii) Calculate the sum of observed VaR violations by

m = i Ii-
i=1
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(xiv) ldentify the set of time indexes where an observed Vaikation occurred by
V=Atll; =1} = (t, ... tm).

xv) If m & [Mmin, Mmini1s - - - Mmae), determiner,, by repeating steps (vi) to (viii)

where Kk is replaced by m.

(xvi) Calculate the test statistic for the observed vialatsequence by

MCSeen =af(MCSy) + (1 —a)g(MCSiigm),0 <a<1,

where

f(MCSuc) _ <€l+1 + Eln]:?l [Z)/n —D

)

and
MCSMd’m - T

T'm

g(MCSiiam) =

UL |
T H{MCSiig,m>rm}

(xvii) Compare the test statistic for the observed violasequence to the critical value.



Anhang B

Test for Constant Variances

The test statistic of the test for constant variances of Wheal. [2012a] is given by

Qr(X) = maz |D

1<j<T

([Var X]; — [Var X]7)|,

8

where )
l
1 —2 =
2 . 2
[Var X], E X; (7 ;1 XZ) =X, — (X))

is the empirical variance from the firsbbservations. Furthermore,
D =(1-2X7)"Y(Dy)~?

is a scalar with

and
X, — Xrp

L—|z|, |z|>1
k’([[’) = )

0, otherwise

Yo = VT.

For technical assumptions and proofsisee Wied et al. [2012a]
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Anhang C

Test for Constant Covariances

Forl =0,...,[log(T)], leto;; ando, » be matrices withi(d + 1)/2 columns and” — !
rows such that the columns contain certain products (coenuooy component) of the
one-dimensional marginal time series. Concretely, if thtees on and below the diagonal
of ad x d matrix are numbered from = 1,...,d(d + 1)/2 such that corresponds to

one pair(i, j), 1 < 4,5 < d, it holds that the-th column ofs, ; is equal to the vector
(XlJrl,i : Xl+1,j7 cee 7XT,i : XT,j)

and that the-th column ofo; 5 is equal to the vector
(X1 X, X - X))

Define 3, as the empirical covariance matrix of, ando;». Then, we introduce the

quantity

Do) N
Y =Yg+2 (1 — 7) 2
’ 2 [log(7)]

=1
which is an estimator for the covariance matrix%fthat captures fluctuations in higher
moments and serial dependence and thus also serves foastenation. The test statistic
is then the maximum over quadratic forms, i.e.

Ar = max S,’CZA]*lSk.

1<k<T
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