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Kapitel 1

Einleitung

1.1 Einführung in die Thematik und Motivation

Die Idee, Anlageportfolios durch quantitative Methoden zusteuern, basiert maßgeblich

auf der grundlegenden Arbeit zur Portfoliotheorie von Harry Markowitz aus dem Jahr

1952. Sein BeitragPortfolio Selection1 beschreibt formal die Vorteilhaftigkeit einer di-

versifizierten Investition, welche durch die Aufteilung der Anlagesumme eines Portfolios

auf verschiedene Anlageobjekte erreicht wird. Aus diesem theoretischen Rahmen leitet

Markowitz ein Modell ab, mit dessen Hilfe ein Investor diejenigen Wertpapiere selektie-

ren kann, die unter Berücksichtigung von Diversifikationseffekten auf Portfolio-Ebene zu

einem optimalen Verhältnis zwischen Rendite und Risiko f¨uhren. Dieses Entscheidungs-

modell zur Bildung eines sogenannten effizienten Portfolios basiert jedoch auf teils sehr

restriktiven Annahmen. Unter anderem wird vorausgesetzt,dass der Investor Kenntnis

über zu erwartende Renditen und deren (Ko-)Varianzen besitzt. In der Realität unterlie-

gen jedoch Erwartungswerte und (Ko-)Varianzen von Wertpapierrenditen im Zeitablauf

starken Schwankungen. Daher ist es für einen Anleger nur schwer möglich, auf Basis

der beobachtbaren Daten verlässliche Prognosen für diese Parameter zu erstellen. Dies

ist problematisch, weil in dem Entscheidungsmodell die optimale Gewichtung der ein-

zelnen Anlagen in einem effizienten Portfolio von den gesch¨atzten Parametern abhängt.

Aus den Ergebnissen mehrerer Studien lässt sich schließen, dass die optimalen Portfo-

liogewichte besonders sensitiv auf Veränderungen der erwarteten Rendite reagieren und

sich somit Schätzfehler bezüglich der Renditeprognose erheblich auf die Effizienz des

Portfolios auswirken (vgl. u. a. Best and Grauer, 1991, Chopra and Ziemba, 1993 sowie

Gohout and Specht, 2007). Das globale Minimum-Varianz Optimierungsmodell ist ein

1Vgl. Markowitz [1952].

1



1.1. EINFÜHRUNG IN DIE THEMATIK UND MOTIVATION 2

sehr intuitiver Ansatz, welcher weniger anfällig für falsch geschätzte Parameter ist als

die klassiche Erwartungswert-Varianz Optimierung.2 Mit Hilfe dieser Methode können

Portfoliogewichte ermittelt werden, die zu einer minimalen Portfolio-Varianz, also einem

geringstmöglichen Risiko führen. Die Optimierung basiert ausschließlich auf Varianzen

und Kovarianzen der Renditen. Erwartete Renditen stellen keinen relevanten Parameter

dar und müssen daher auch nicht geschätzt werden. Die Anwendung dieses Optimie-

rungsmodells auf Aktienportfolios hat in mehreren Studienzu im Vergleich mit unter-

schiedlichen Benchmarks zu verbesserten Ergebnissen gef¨uhrt (vgl. Haugen and Baker,

1991; Jagannathan and Ma, 2003; Clarke et al., 2006 sowie Clarke et al., 2013). Gleich-

wohl hängt die Leistungsfähigkeit des Modells auch hier von einer möglichst verlässli-

chen Schätzung der Varianzen von Renditen einzelner Wertpapiere und deren Kovarian-

zen untereinander maßgeblich ab.

Neben der Optimierung im Allgemeinen spielt die Risikosteuerung im Speziellen eine

wichtige Rolle im Portfoliomanagement. In den vergangenenJahren hat sich der Value-

at-Risk (VaR) in diesem Kontext als ein zentrales Risikomaßin Literatur und Praxis

sowie insbesondere in der Bankenregulierung etabliert. Diese Kennzahl gibt den Ver-

lust einer Risikoposition an, der über eine bestimmte Haltedauer mit einer festgeleg-

ten Wahrscheinlichkeit nicht überschritten wird und lässt sich einfach aus dem Quan-

til der Verlustverteilung ermittelt. Dem Vorteil einer einfachen Anwendung und intuiti-

ven Verständlichkeit dieses Risikomaßes stehen jedoch wesentliche Nachteile gegenüber.

Zum einen handelt es sich bei dem VaR nicht um ein kohärentesRisikomaß, da die Ei-

genschaft der Subadditivtät grundsätzlich nicht gegeben ist.3 Zum anderen liefert er de-

finitionsgemäß keine Informationen darüber, in welcher Höhe ein Verlust zu erwarten

ist, wenn dieser den VaR überschreitet. Diese Schwächen des VaR haben dazu geführt,

dass der Basler Ausschuss für Bankenaufsicht in einem kürzlich veröffentlichen Konsul-

tationspapier zu den Eigenkapitalanforderungen für Positionen des Handelsbuches dem

Expected Shortfall (ES) als neues Risikomaß eine große Bedeutung zukommen lässt (vgl.

2In der Literatur wurden weitere Ansätze für robuste Modelle entwickelt, beispielsweise das Black-
Litterman-Verfahren (Black and Litterman, 1992).

3Der Begriff Subaddivität beschreibt die Eigenschaft, dass das Risiko eines Portfolios kleiner oder gleich
der Summe der Einzelrisiken zu sein hat (vgl. Artzner et al.,1999).
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Basel Committee on Banking Supervision, 2013). Der ES ist definiert durch den erwar-

teten Verlust für die Fälle, in denen er den VaR erreicht oder überschreitet. Neben der

Erfüllung der Anforderungen an ein kohärentes Risikomaß, schließt die Berechnung des

ES auch den extremen linken Rand der Verlustverteilung ein.Es spiegeln sich im ES

somit auch sehr hohe Verluste wider, die mit einer äußerst geringen Wahscheinlichkeit

eintreten können. Sowohl für die Ermittlung des VaR, als auch die des ES können unter-

schiedliche Ansätze verwendet werden. Die klassische parametrische Varianz-Kovarianz

Methode basiert auf der Idee, dass Renditen, und somit auch Verluste, über Varianzen

und Kovarianzen einer Normalverteilung dargestellt werden. So können VaR und ES sehr

einfach über Quantils- und Dichtefunktionen der Normalverteilung ermittelt werden. In

der Literatur wurden zahlreiche weitere parametrische Modelle entwickelt, häufig mit

dem Ziel, Varianzen der Renditen und deren Abhängigkeitenin einem Portfolio im Zeita-

blauf dynamisch zu modellieren. Als populäres Beispiel sind hier sogenannte GARCH-

Modelle zu nennen, die auf der Arbeit von Bollerslev [1986] basieren.4 Demgegenüber

steht das in der Praxis sehr gebräuchliche Modell der Historischen Simulation.5 Bei die-

sem nicht-parametrischen Modell werden historische Renditen einer zu bestimmenden

Periode der Größe nach sortiert. Der VaR lässt sich dann einfach aus dem gewünschten

Quantil dieser Verteilung ablesen. Als dritte Gattung versuchen semi-parametrische Mo-

delle die wesentlichen Vorzüge der parametrischen Modelle (dynamische Modellierung)

und der nicht-parametrischen Modelle (Verzicht auf Verteilungsannahmen) zu verbinden.

Die von Barone-Adesi et al. [1999] entwickelte Gefilterte Historische Simulation ist hier

als gebräuchliches VaR-Modell zu nennen.

Sowohl die Modelle zur Portfoliooptimierung als auch VaR-Modelle werden un-

abhängig von ihrem konkreten Aufbau in der Regel auf Basis von historischen Renditen

parametrisiert. Es stellt sich die Frage, wie weit die Datenhistorie in die Vergangenheit

zurückreichen sollte, damit das jeweilige Modell verlässlich spezifiziert werden kann.

Dabei ist zu beachten, dass statistische Lage-, Streuungs-und Zusammenhangsmaße von

4Hansen and Lunde [2005] liefern einen umfassendenÜberblick über den Einsatz von GARCH-
Modellen zur VaR Prognose.

5Pérignon and Smith [2010] zeigen in einer Studie, dass von 60 analysierten internationalen Banken
73% Historische Simulation als VaR-Modell einsetzen.
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Wertpapier-Renditen sich im Zeitablauf verändern. In derLiteratur finden sich vielfältige

Studien, die Finanzmärkte insbesondere auf Strukturbrüche in Volatilitäten und Korrela-

tionen untersuchen.6 Werden solche Brüche ignoriert, kann dies zu fehlerhaft spezifizier-

ten Modellen führen (vgl. unter anderem Hillebrand, 2005). Die Berücksichtigung von

Strukturbrüchen bei der Auswahl der Datenhistorie ist jedoch ebenso mit Herausforde-

rungen verbunden. So muss sichergestellt sein, dass ein vorliegender Strukturbruch mit

hinreichender Sicherheit erkannt wird. Hierzu wurden in der Literatur verschiedene Ver-

fahren und statistische Tests entwickelt, die in der Lage sind, signifikanteÄnderungen

insbesondere von Streuungs- und Abhängigkeitsmaßen zu identifizieren.7 Zudem kann

zwar eine Verkürzung der Datenhistorie durch die Verschiebung ihres Startpunktes bis zu

dem Zeitpunkt eines Strukturbruchs zu einer weniger verzerrten Datengrundlage führen.

Dieser Vorteil wird allerdings dadurch konterkariert, dass aufgrund der verringerten Da-

tenmenge die Gefahr von signifikanten Schätzfehlern zunimmt.

Die Beurteilung, ob ein Modell zu präzisen VaR-Prognosen führt, erfolgt grundsätz-

lich über die Analyse der Eigenschaften von VaR-Überschreitungen.8 Christoffersen

[1998] entwickelte hierzu grundlegende Hypothesen, die inder Literatur standardmäßig

bei der Entwicklung von Backtests verwendet werden. Intuitiv ist die Hypothese, dass

über eine Periode die tatsächlich gemessene Anzahl an VaR-Überschreitungen nicht si-

gnifikant von der statistisch erwarteten Anzahl abweichen darf. Diese Eigenschaft wird als

Unconditional Coverage bezeichnet. Eine weitere Hypothese bezieht sich auf die Vertei-

lung der VaR-̈Uberschreitungen auf der Zeitachse. Gemäß der sogenannten Independence

Eigenschaft führen korrekte VaR-Prognosen zu im Zeitablauf statistisch unabhängigen

VaR-Überschreitungen, da Abhängigkeiten zu deren gehäuftenAuftreten führen können.

Der dritten und abschließenden Hypothese folgend entsprechen die VaR-̈Uberschreitun-

gen der Conditional Coverage Eigenschaft, wenn sie simultan sowohl die Unconditional

Coverage als auch die Independence Eigenschaften erfüllen. Um evaluieren zu können, ob

6EinenÜberblick liefert Andreou and Ghysels [2009].
7Als Beispiele können hier der Test auf konstante Varianz von Wied et al. [2012a], auf konstante Kova-

rianz von Aue et al. [2009] oder auf konstante Korrelation von Wied et al. [2012b] genannt werden.
8Alternativ können auch Verfahren eingesetzt werden, die ganz allgemein die Prognosefähigkeit eines

Modells über den Abstand eines realisierten Wertes zum prognostizierten Wert untersuchen. Hierzu sei
beispielsweise auf die Arbeit von Giacomini und White [2006] verwiesen.
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die aus Prognosemodellen resultierenden Sequenzen von VaR-Überschreitungen den ge-

nannten Hypothesen entsprechen, wurden in der Literatur verschiedene statistische Tests

entwickelt.9 Verschiedene Studien haben jedoch gezeigt, dass einige dieser Tests lediglich

eine geringe Güte besitzen oder ein fehlerhaftes asymptotisches Verhalten aufweisen.10

Andere Tests wiederum sind sehr komplex und wenig intuitiv.

Daneben vernachlässigen die genannten drei Hypothesen und die in diesem Kontext

entwickelten statistischen Tests die unerwünschte Eigenschaft von VaR-̈Uberschreitun-

gen, dass deren Wahrscheinlichkeit sich im Zeitablauf ändern kann. So ist es möglich,

dass ein Modell VaR-Prognosen generiert, welche sich zu langsam oder in einem zu ge-

ringen Ausmaß an längere, sehr volatile Marktphasen anpassen und vice versa. Diese

Schwankungen können dazu führen, dass VaR-Überschreitungen zeitlich gehäuft auftre-

ten, obwohl sie stochastisch unabhängig voneinander sind. Die Zeitpunkte, an denen ein

Verlust größer ist als der prognostizierte VaR, sollten mithin nicht nur unabhängig, son-

dern auch identisch verteilt sein.

Die vorliegende kumulative Dissertation umfasst fünf in sich abgeschlossene Bei-

träge zu neuen Ansätzen in der Portfoliooptimierung und der Risikosteuerung. Der ers-

te Beitrag der vorliegenden Arbeit (Kapitel 2) befasst sichgrundlegend mit den Ein-

satzmöglichkeiten von statistischen Tests auf eine konstante Kovarianzmatrix sowie auf

konstante Varianzen und paarweise Korrelationen im Rahmender Minimum-Varianz-

Portfoliooptimierung. Es werden Problemfelder bei der Anwendung der Tests heraus-

gearbeitet und diskutiert. Zudem wird evaluiert, ob der Einsatz der Tests zu verbesserten

Risiko-Rendite-Verhältnissen führt. Der darauf folgende Artikel (Kapitel 3) baut auf die-

sen Erkenntnissen auf und erarbeitet Lösungsansätze für die zuvor dargelegten Heraus-

forderungen beim Einsatz von Strukturbruchtests in der Portfoliooptimierung. In diesem

Rahmen wird eine automatisierte Anlagestrategie erarbeitet und deren Leistungsfähigkeit

analysiert. Neben der klassischen Risiko-Rendite-Bertrachtung werden hierbei zusätz-

lich Auswirkungen auf Transaktionkosten untersucht, die für einen Einsatz in der Pra-

9Die Arbeit von Berkowitz et al. [2011] liefert einen̈Uberblick über verschiedene Ansätze für statisti-
sche Tests.

10Vgl. Berkowitz et al. [2011] und Candelon et al. [2011].
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xis von hoher Bedeutung sind. Im Kapitel 4 befasst sich die vorliegende Arbeit mit

der Diskussion der gewünschten Eigenschaften von VaR-Überschreitungen. Dies führt

zu der Entwicklung neuer statistischer Tests, die neben derUnabhängigkeit von VaR-

Überschreitungen explizit auch deren identische Verteilung mit einbeziehen. Diese auf

Monte-Carlo-Simulationen beruhenden Verfahren sind sehrintuitiv, einfach zu imple-

mentieren und besitzen sehr häufig eine überlegene Testg¨ute im Vergleich zu den bis-

lang existierenden Ansätzen. In Kapitel 5 werden parametrische, nicht-paarametrische

und semi-parametrische Modelle zur Schätzung von VaR- undES-Prognosen untersucht.

Der Fokus dieser Analyse liegt dabei auf der Anwendung unterschiedlicher Strategien zur

Bestimmung der Länge einer für die Parametrisierung erforderlichen Datenhistorie. Da-

bei kommen einfache Ansätze, wie beispielsweise rollierende Datenhistorien mit unter-

schiedlichen Längen, aber auch komplexere Methoden, wie Strukturbrüche und Strategie-

Kombinationen zum Einsatz. Der Beitrag des abschließendenKapitels 6 setzt sich eben-

falls mit unterschiedlichen Ansätzen zur Schätzung von VaR- und ES-Prognosen ausein-

ander. Der thematische Schwerpunkt liegt hier auf der multivariaten Portfoliosicht, bei

der ein univariates GARCH-Modell mit statischen und dynamischen Korrelationsmodel-

len kombiniert wird. Es wird der Frage nachgegangen, ob sichdie Präzision der Modelle

erhöht, wenn die Schätzung der Korrelationsmodelle auf einer durch verschiedene Struk-

turbruchtests definierten Datenhistorie beruht. Als Vergleich dient hierbei ein in Theorie

und Praxis sehr häufig verwendetes rollierendes Fenster mit einer festen Länge. Diese

ersetzen regelmäßig die ältesten Daten eines Schätzfensters durch aktuelle und berück-

sichtigen somit implizit zeitliche Parameteränderungen. Aus diesem Grund stellen die

rollierenden Fenster eine herausfordernde Vergleichsmethode dar.

Der folgende Abschnitt gibt einen̈Uberblick über Inhalte und Publikationsdetails der

einzelnen Artikel der vorliegenden kumulativen Dissertation.
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1.2 Publikationsdetails

Neben dieser Einleitung besteht die vorliegende kumulative Dissertation aus fünf in sich

abgeschlossenen Beiträgen zu den Themen Portfoliooptimierung und Risikosteuerung.

Im Folgenden werden die einzelnen Beiträge kurz inhaltlich zusammengefasst sowie

Details zu der Veröffentlichung erläutert.

Beitrag I (Kapitel 2):

On the Application of New Tests for Structural Changes on Global Minimum-

Variance Portfolios.

Autoren:

Dominik Wied, Daniel Ziggel und Tobias Berens

Zusammenfassung:

Die Effizienz eines Minimum-Varianz-Portfolios ist abhängig von einer präzisen

Schätzung der Kovarianz-Matrix, welche der Optimierung zugrunde liegt. Jedoch sind

Abhängigkeitsmaße zwischen den Renditen verschiedener Wertpapiere über längere

Zeiträume typischerweise nicht konstant. Dieser Beitraguntersucht daher die Frage,

ob sich das Verhältnis zwischen Risiko und Rendite eines optimierten Minimum-

Varianz-Portfolios verbessert, wenn bei dessen Konstruktion potenzielle Brüche in

der Kovarianz-Matrix berücksichtigt werden. Die Ergebnisse zeigen, dass ein Test auf

Konstanz der gesamten Kovarianz-Matrix in Teilen zu verbesserten Ergebnissen des

Portfolios führen kann. Dagegen sind paarweise Tests auf konstante Varianzen und

Korrelationen nicht ohne weitere Modifikationen auf die Optimierung eines Portfolios

anwendbar.

Publikationsdetails:

Veröffentlicht in: Statistical Papers, Vol. 54, Issue 4, 2013, pp. 955-975.
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Beitrag II (Kapitel 3):

Automated Portfolio Optimization Based on a New Test for Structural Breaks.

Autoren:Tobias Berens, Dominik Wied und Daniel Ziggel

Zusammenfassung:

Dieser Beitrag präsentiert eine vollständig automatisierte Optimierungsstrategie, welche

die klassische Portfoliotheorie nach Markowitz mit Tests auf eine konstante Kovarianz

kombiniert. Mehrere Studien zeigen, dass die ausschließlich auf der Kovarianz-Matrix

basierende Minimum-Varianz-Portfoliooptimierung bei Aktienportfolios zu sehr guten

Ergebnissen im Vergleich zu verschiedenen anderen Ansätzen führt. Da die Struktur

einer Kovarianz-Matrix von Aktien-Renditen im Zeitablaufzu Brüchen neigt, wird

in diesem Beitrag die Kovarianz-Matrix unter Berücksichtigung der Ergebnisse von

Strukturbruchtests geschätzt. Dabei bestimmen die Bruchpunkte die Länge des der

Schätzung der Kovarianz-Matrix zugrundeliegenden Datenfensters. Darüber hinaus wird

untersucht, ob sich die identifizierten Bruchpunkte dazu eignen, die Zeitpunkte für eine

Re-Optimierung festzulegen. Im Rahmen einer Out-Of-Sample Studie wird die Methodik

auf zwei unterschiedliche Datensätze angewendet und die Ergebnisse hinsichtlich Risiko-

Rendite-Verhältnis sowie Auswirkung auf Transaktionskosten mit unterschiedlichen

Alternativmethoden verglichen. Die Studie zeigt, dass derhier präsentierte Ansatz

im Durchschnitt zu besseren Resultaten führt als gleichgewichtete Portfolios und ein-

fache Minimum-Varianz-Optimierungen ohne die Berücksichtigung von Strukturbrüchen.

Publikationsdetails:

Veröffentlicht in: Acta Universitatis Danubius. Œconomica, Vol. 10, Issue 2, 2014, pp.

241-262.
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Beitrag III (Kapitel 4):

A New Set of Improved Value-at-Risk Backtests.

Autoren:Daniel Ziggel, Tobias Berens, Gregor N.F. Weiß und Dominik Wied

Zusammenfassung:Dieser Beitrag präsentiert eine Gruppe neuer formaler Backtests

für Eigenschaften von VaR-Überschreitungen, welche signifikante Vorteile gegenüber

bislang veröffentlichten Ansätzen aufweisen. Ein neuerTest auf Unconditional Coverage

kann sowohl für einseitiges als auch für zweiseitiges Testen eingesetzt werden, wodurch

die Testgüte deutlich erhöht wird. Daneben wird die gewünschte Eigenschaft von

unabhängigen und identischen VaR-Überschreitungen diskutiert und ein Test vorgestellt,

der explizit auf das Auftreten von zeitlich gehäuften VaR-Überschreitungen testet. Die

Anwendung dieser auf Monte-Carlo-Simulationen basierenden Tests in einer Simula-

tionsstudie liefert in vielen Fällen überlegene Ergebnisse gemessen an vergleichbaren

Tests. Eine abschließende empirische Studie verdeutlichtdie Vorteile der Tests in der

Anwendung auf reale Daten.

Publikationsdetails:

Zur Veröffentlichung eingereicht in: Journal of Banking and Finance; nach erster und

zweiter Begutachtung Aufforderung zur̈Uberarbeitung des Manuskripts und Wieder-

einreichung (revise and resubmit). Ein Extrakt des Artikels wurde in deutscher Sprache

in der Fachzeitschrift Risiko Manager veröffentlicht.11 Der Artikel wurde im Rahmen

der SFB Finanzakademie sowie der 7th InternationalConference on Computational and

Financial Econometrics (CFE 2013) in London präsentiert.

11Ziggel, D., Berens, T., Wied, D., Weiß, G. (2013): Value-at-Risk im Risikomanagement: Der unevalu-
ierte Standard, Risiko Manager, 24/2013, 1 & 7-9.
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Beitrag IV (Kapitel 5):

Estimation Window Strategies for Value at Risk Forecasting.

Autor: Tobias Berens

Zusammenfassung:Im Vergleich zur großen Anzahl unterschiedlicher Modelle zur

Schätzung von VaR- und ES-Prognosen existieren in der finanzwissenschaftlichen Lite-

ratur verhältnismäßig wenige Beiträge zu der Frage, welche Strategie zur Bestimmung

der für die Parametrisierung solcher Modelle erforderlichen Datenfenster zu guten

Ergebnissen führt. Im Rahmen dieses Beitrags werden unterschiedliche Datenfenster-

Strategien auf parametrische, semi-parametrische und nicht-parametrische VaR-Modelle

angewendet. Dabei werden sowohl einfache Modelle wie beispielsweise ein rollierendes

Datenfenster wie auch komplexere Modelle, die auf Tests zurIdentifizierung von

Strukturbrüchen in der Varianz von Wertpapier-Renditen angewendet. Zudem wird

untersucht, wie sich die Kombination einzelner Strategienauf die Prognosefähigkeit der

Modelle auswirkt. Die Evaluierung der VaR-Prognosen erfolgt auf Basis statistischer

Tests der Eigenschaften von VaR-Überschreitungen. Konkret wird getestet, ob diese

der Unconditional Coverage Eigenschaft entsprechen und sowohl unabhängig als auch

identisch verteilt sind. Zusätzlich werden Tests auf korrekte ES-Prognosen und auf

Conditional Predictive Ability durchgeführt. Der Beitrag zeigt, dass die Auswahl der

Strategie zur Bestimmung des Datenfensters zu signifikanten Unterschieden in den VaR-

und ES-Prognosen der VaR-Modelle führt. Dabei ist grunds¨atzlich zu erkennen, dass die

Kombination einzelner Datenfenster-Strategien im Vergleich zu den übrigen Strategien

vorteilhaft ist.
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Beitrag V (Kapitel 6):

Testing for Structural Breaks in Correlations: Does it Impr ove Value-at-Risk

Forecasting?

Autoren:Tobias Berens, Gregor N.F. Weiß und Dominik Wied

Zusammenfassung:

Im Rahmen der Prognose von VaR und ES werden in diesem Beitragdas Constant

Conditional Correlation (CCC) sowie das Dynamic Conditional Correlation (DCC)

Modell mit einem paarweisen Test auf konstante Korrelationen, einem Test auf eine

konstante Korrelationsmatrix sowie einem Test auf eine konstante Kovarianzmatrix

kombiniert. Eine empirische Studie auf Basis multivariater Portfolios analysiert die

Prognosefähigkeit sowohl der modifizierten als auch der einfachen Modelle ohne

Berücksichtigung von Strukturbrüchen. Dabei erfolgt die Bewertung anhand statistischer

Tests der Unconditional Coverage und der Independence Eigenschaft der VaR-̈Uber-

schreitungen sowie der Vorhersagegenauigkeit der ES-Prognosen. Daneben beinhaltet

die Studie ein Vergleich der Ansätze auf Basis aufsichtsrechtlicher Methoden und

der Conditional Predictive Ability. Die Ergebnisse der Untersuchung zeigen, dass die

mit Strukutbruchtests modifizierten Modelle grundsätzlich in der Lage sind, bessere

Prognosen zu generieren.

Publikationsdetails:

Zur Veröffentlichung eingereicht in: Journal of Empirical Finance.



Kapitel 2

On the application of new tests for

structural changes on global

minimum-variance portfolios

Veröffentlicht in:

Statistical Papers, Vol. 54, Issue 4, 2013, pp. 955-975 (zusammen mit Dominik Wied und

Daniel Ziggel).

2.1 Introduction

The mean-variance approach proposed by Markowitz [1952] has become the foundation

of large parts of modern finance theory. Its simplicity and intuitive arrangement cause

its common use in both industry and science. In the beginningit was usually supposed

that the parameters of interest, i.e. expected returns, volatilities and correlations can be

estimated accurately. Nowadays, this assumption is, at least, questionable. As shown in

various works, it is not an appropriate simplification for expected returns in most prac-

tical situations (Chopra and Ziemba, 1993, Kempf and Memmel, 2002, Merton, 1980).

Moreover, it is well known, in particular in empirical finance, that variances and correlati-

ons among many time series cannot be assumed to remain constant over longer periods of

time (Krishan et al., 2009). A good example is the recent financial crisis, in which capital

market volatilities and correlations raised quite dramatically. As a consequence, risk fi-

gures increased significantly as diversification effects were overestimated (Bissantz et al.,

2011a, Bissantz et al., 2011b).

It is well known that the expected return is the most important parameter within

the Markowitz model, cf. e.g. Gohout and Specht [2007]. Chopra and Ziemba [1993] de-

monstrate that, for mean tolerated risk levels, wrong return estimators have an eleven

12
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times larger impact than wrong risk estimators. Best and Grauer [1991] investigate the

sensitivity of mean-variance-efficient portfolios to changes in the means of individual as-

sets. The results state that portfolio weights are extremely sensitive to changes in asset

means and a surprisingly small increase in the mean of a single asset drives half the secu-

rities from the portfolio.

One possible solution to overcome the problem of portfolio weights, which seem over-

ly sensitive to estimation errors of returns, is the usage ofthe global minimum-variance

portfolio at the left-most tip of the mean-variance efficient frontier. This portfolio has

the unique property that portfolio weights are independentof the forecasted or expected

returns on the individual assets as risk is minimized without an expected return input.

Besides the advantage that no returns have to be estimated, the global minimum-variance

portfolio allows the investor a risk optimal strategy. Thisis of special interest as passive

(equity) investing has gained popularity (Clarke et al., 2006). Moreover, the covariance

matrix can usually be estimated and forecasted much more reliable, resulting in an advan-

tage for both practical and theoretical problems (Golosnoyet al., 2011).

In this context, several studies find that mean-variance optimization does not appe-

ar to result in a meaningful diversification improvement over non-optimized portfoli-

os, despite the added complexity. This finding is consistentwith the extensive literature

documenting the puzzling under-performance of global minimum-variance approaches

(Chow et al., 2011). Nevertheless, using historical backtests, Haugen and Baker [1991]

and Clarke et al. [2006] demonstrate that minimum-variancestrategies improve upon their

cap-weighted counterparts by supplying better returns with reduced volatility, suggesting

a latent potential of this approach. In order to open up this potential, the remaining mar-

ket parameters (i.e. correlations and volatilities) have to be modelled time-dependent and

flexible.

One of such methods is the regime switching model. This modelallows the mar-

ket parameters to depend on the market mode which switches among a finite number

of states. In the simplest form, the market could be divided as “bullish” and “bearish”

with very different market parameters. Of course, it is useful to define more intermedia-
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te states between these extremes, cf. e.g. Garcia and Perron[1996]. Zhou and Yin [2003]

develop a continuous-time version mean-variance portfolio selection model with regime

switching and attempt to derive closed-form solutions for both, efficient portfolios and

efficient frontier. Although this approach is promising, the question arises how to define

the states properly. Moreover, market parameters change frequently and are complexly

interwoven. This kind of problem is addressed with control charts in e.g. Golosnoy et al.

[2011]. The present paper makes use of several recently proposed fluctuation tests for

structural changes in the market parameters.

For example, Aue et al. [2009] and Wied et al. [2012b] proposeformal completely

nonparametric tests for unconditional dependence measures. They do not build upon prior

knowledge as to the timing of potential shifts. More precisely, Aue et al. [2009] propose a

test to detect changes in the (multivariate) covariance structure, while Wied et al. [2012b]

present a method to test for changes in the correlation structure between two assets. They

are based on cumulated sums of second order empirical cross moments (in the style of

Ploberger et al., 1989) and reject the null of constant covariance or correlation structure if

these cumulated sums fluctuate too much. A similar fluctuation test for univariate varian-

ces is introduced and applied to financial time series by Wiedet al. [2012a].

In this paper, we investigate if a combination of these new fluctuation tests and the

classical minimum-variance approach improves global minimum-variance portfolios. To

this end, we perform an empirical out-of-sample study and compare the performance of

the resulting portfolios. Moreover, we investigate the resulting portfolio shiftings as a

further quality measure.

The remainder of the paper is organized as follows. In Section 2 we present a sum-

mary of the required theory and introduce the investigated tests for structural breaks. A

description of the empirical analysis is given in Section 3,while the results can be found

in Section 4. Finally, we end with a discussion of the resultsin Section 5 and a conclusion

in Section 6.
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2.2 Methods

In this section, we briefly present the mean-variance approach proposed by Markowitz

[1952] for constructing a portfolio with minimal variance.To this end, we assume that

there ared risky assets with random returns,R1, . . . , Rd, such thatR := (R1, . . . , Rd).

Let µ be the vector of expectations andΣ the covariance matrix ofR which is assumed to

be positively definite (such that there is no risk-free asset). The vectorµ and the matrixΣ

are both assumed to be constant over time.

A portfolio is a mixture of then assets with portfolio weightsa = (a1, . . . , ad) ∈

R
d such thata′1d = 1. In the mean-variance theory we want to solve the optimization

problem

min
a∈Rd

a
′Σa s.t.a′µ = µP, a

′1d = 1, (2.1)

whereµP is a constant chosen by the analyst.

In general, the solution of this problem depends on the valueof µP. However, it is also

possible to solve the problem globally with the weighting vector

amin =
1

1′dΣ
−11d

Σ−11d

which yields the lowest possible variance(1′dΣ
−11d)

−1. In practice, some more assump-

tions ona are often imposed, e.g. the entries ofa have to be nonnegative (such that no

short sales are allowed) or have to be bounded (such that we have maximal limits). In

these cases, the optimization problem (2.1) still has a well-defined solution which can be

calculated or approximated with numerical optimization.

The global minimum-variance portfolio has the unique property that portfolio weights

are independent of the expected returns, which are very difficult to estimate. Hence, this

portfolio relies solely on the covariance matrix which can usually be estimated more ac-

curately.

To get a feasible solution of (2.1) in practice, it is necessary to estimateΣ based on

realizations ofR. If we assumeΣ to be constant over time, it is useful to use the largest
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quantity of data available for estimation. If we, however, make the more realistic assump-

tion thatΣ is subject to structural changes, we have to take these changes into account.

In this paper, we compare two nonparametric approaches for testing for the presence of

structural breaks: The first one by Aue et al. [2009] tests forchanges in the complete ma-

trix. Since they assume throughout their paper that the vector of expectations is equal

to 0, the whole test and the test statistic base on the second-order cross moments. Com-

plementarily to this, the tests proposed by Wied et al. [2012b] and Wied et al. [2012a]

separately test for changes in correlations and variances.Since the covariance matrixΣ

can be written as

Σ(i, j) =
√

Var(Ri) ·
√

Var(Rj) · Cor(Ri, Rj), i, j ∈ {1, . . . , d}, (2.2)

we can thus steer each entry ofΣ separately.

Basically, all three nonparametric tests work in a similar way: Given the null hypo-

thesis of constant covariance matrix, correlation or variance andT realizations ofR these

fluctuation tests compare the successively estimated covariance matrix (transformed into

a vector with the vec-operator), (pairwise) correlation coefficient or (element-wise) va-

riance with the respective value calculated from allT observations. The null hypothesis

is rejected whenever these differences become too large over time. To be more precisely,

the test statistic is a functional, for example the maximum -functional, of the series

P (j) :=
j2

T
(q̂j − q̂T )

′Σ̂−1
q (q̂j − q̂T ),

whereq̂j is the quantity of interest calculated from the firstj observations,̂qT is the quan-

tity of interest calculated from the firstT observations and̂Σq is an estimator (from all

T observations) for the asymptotic covariance matrix ofq̂j under the null. Both expressi-

ons j2

T
andΣ̂−1

q serve for standardization. In particular, withj
2

T
less weight is laid on the

differences at the beginning, where the parameters cannot be well estimated. The expres-

sionΣ̂−1
q captures serial dependence and fluctuations of the time series. The processP (j)

converges against a Gaussian process and thus, in practice we compare the functionals of
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P (j) with the respective quantiles of this functional. In the correlation case, we get

max
2≤j≤T

|
√
P (j)| →d sup

0≤z≤1
|B(z)|

and in the variance case, we get

max
1≤j≤T

|
√

P (j)| →d sup
0≤z≤1

|B(z)|.

In these cases,B(z) is a one-dimensional Brownian bridge with quantiles 1.358 (95%)

and 1.628 (99%).

In the case of a covariance matrix, we have

max
1≤j≤T

|P (j)| →d sup
0≤z≤1

d∑

i=1

(Bi(z))
2,

whered is the number of upper-diagonal elements in the covariance matrix andBi(·) are

independent Brownian bridges. We approximate the quantiles of this limit distribution by

simulating Brownian bridges on a fine grid. For this, the representation of a Brownian

bridge as a limit of a random walk is used. Note that we do not use the “second” approxi-

mation for growingd, which is discussed in Remark 2.1 in Aue et al. [2009], as thisdoes

not seem to be appropriate here (cf. Aue et al., 2009, p. 4064). Based on these simulations,

we obtain 53.583 (95%) and 56.961 (99%) as quantiles for 18 assets.

The tests are basically applicable to financial time series with its specific characte-

ristics such as serial dependence and missing normality. For example, all tests can be

applied if the returns can be modeled by a GARCH process. An important property is

the fact that the location of the possible change points neednot be specified a priori. In

general, these fluctuation tests are sufficiently powerful and Aue et al. [2009] prove con-

sistency of the covariance matrix test against fixed alternatives while Wied et al. [2012b]

and Wied et al. [2012a] obtain local power results against smooth alternatives characteri-

zed by a continuous functiong.

Once the presence of a parameter change is detected, a suitable estimate of its lo-
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cation can be obtained by the statistic proposed in Galeano and Wied [2014] (the origi-

nal idea goes back at least to Vostrikova, 1981), i.e. by the point at whichP (j) (or a

transformation ofP (j)) takes its maximum. For example, in the correlation case we get

k̂ = argmax
2≤j≤T

√
P (j). Since we use these break point estimators in our study, we ha-

ve decided to focus on the maximum-functional instead of considering for example the

Cramér-von Mises functional as e.g. do Aue et al. [2009], equation (2.8).

2.3 Empirical investigation

2.3.1 Data

In order to investigate if a combination of the above mentioned fluctuation tests and the

classical minimum-variance optimization yields reasonable results, we perform an out-

of-sample study and compare the results with several alternative methods. We use two

different data sets. More precisely, we use daily log-returns based on final quotes of 18

sector subindices based on the STOXX EUROPE 600 (total return indices) and log-returns

based on final quotes of 18 stocks (treated as total return indices), which were listed on the

DAX 30 for the period between 01.01.1973 and 30.06.2011 (10044 data points). For the

subindices, data are available for the time span 01.01.1992- 30.06.2011, which equates

to 5087 data points. All data sets are obtained fromThomson Reuters Datastream.

2.3.2 Parameter Estimation

As already mentioned, for a fixed point in time, calculation of the global minimum-

variance portfolio depends only on the estimated covariance matrix. Hence, we compare

the results of several estimation procedures. First, we usethe empirical covariance matrix

given by the last 250/500/1000 data points. For sake of simplicity, we denote combinations

of these empirical estimators and the minimum-variance optimization as plain Markowitz

optimizations. In addition to that, we use the new fluctuation tests. Here, the estimation

procedure is as follows:
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1. Initializei = 1, k = 1000 andm = number of observed returns.

2. Perform the fluctuation test for the data{xi, ..., xk}.

3. If the test rejects the null, definei = l, wherel maximizes the corresponding func-

tional of P (j) and go back to step 2. Otherwise use the data{xp, ..., xk} in or-

der to calculate the empirical estimator of the respective parameter, wherep =

min{i, k − 19}.

4. Setk = k+n, wheren is the number of days between two optimizations. Ifk > m,

stop. Otherwise go back to step 2.

Note that the modificationp = min{i, k − 19} ensures that at least 20 data points

are used for parameter estimation. This proceeding is in line with Wied et al. [2012a]. As

mentioned above, we use the fluctuation tests in two different ways. On the one hand,

we use the test of Aue et al. [2009]. Hence, the procedure provides the covariance matrix

directly. On the other hand, we separately apply the tests proposed by Wied et al. [2012b]

and Wied et al. [2012a]. The resulting covariance matrix is then given by (2.2).

We chooseα = 1% andα = 5% as significance levels for the fluctuation tests. The

choice ofα = 1% is due to the fact that in this case the number of possible false signals

should be relatively small. Nevertheless, several applications show thatα = 5% yields

convincing results in practice (Ziggel and Wied, 2012).

2.3.3 Optimization

In addition to parameter estimation, there are several adjusting screws concerning the op-

timization which have an impact on the results. First, we have to define an interval for

re-optimizations. To this end, we definen = 21, 63 and252, respectively. These choices

correspond to monthly, quarterly and yearly re-optimization. The same intervals will also

be used in order to perform a re-balancing of the equally weighted portfolio which serves

as a benchmark. These frequencies allow us to neglect the problem of sequential testing.

Nevertheless, it would be worthwhile to implement a theoretical analysis for smaller fre-
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quencies about this issue using ideas of Chu et al. [1996] andWied and Galeano [2013],

but this lies beyond the scope of the present paper.

Aside from the interval for re-optimizations, we analyze the impact of some additional

constraints to the portfolio weights. In a first run, we define|ai| ≤ 1, ∀i which particularly

allows for short selling. In the next step, we exclude short selling by requiring0 ≤ ai ≤

1, ∀i.

2.3.4 Miscellaneous

We use several quality criteria in order to judge the performance. Of course, we investigate

the resulting variance. Nevertheless, we also compare the resulting returns and Sharpe-

ratios. To this end, we assume 1.1% as risk free return for thelatter. This corresponds to

the average return of German government bonds with less than3 years to maturity in the

year 2011. Besides, we measure the portfolio turnover in order to draw conclusions for

a usage in practice. In line with DeMiguel et al. [2009], we define the average absolute

change in the weights as

Turnover(R) =
1

TD − 1

TD−1∑

i=1

d∑

j=1

|ai+1,j − ai+,j|,

whereTD is the number of the trading days andd the number of assets. Besides,ai+,j is

the portfolio weight of assetj before a rebalancing or re-optimization at timei+1. In addi-

tion, we callTurnover(A) the absolute amount of changes, that meansTurnover(A) =

Turnover(R) · (TD − 1).

To evaluate the impact of diverging turnovers, we compute adjusted returns and Sharpe-

ratios by including transaction costs. Therefore, we assume a constant relative bid-ask

spreadsc (bid-ask spread divided by bid-ask midpoint) which diminishes the returnR.

To quantify the spread, we have analyzed daily bid and ask quotes of the 18 stocks lis-

ted on the DAX 30 and for all stocks listed on the STOXX EUROPE 600 for the time

span 01.07.2010-30.06.2011. The average relative spread of the analyzed stocks amounts

to 0.15% (DAX) and 0.22% (STOXX). As a simple approximation, we determinesc
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to be 0.2% in both cases. The loss of return due to transaction costs is calculated by

Turnover(A) · sc
2

.

MATLAB R2009b is used for all computations. While the globaloptimization pro-

blem can be solved analytically, numerical optimization methods are necessarily under

additional conditions on the weighting vectora (see Section 2). We perform these me-

thods with the “fmincon” function included in the “Optimization Toolbox”. Since the

usage of just one starting point in the optimization can leadto a local minimum, we use

multiple starting points. More precisely, we use starting points which lie on the boundary

of the feasible region, the equally weighted portfolio and some random starting points.

However, the optimizations have proceeded stable and the starting points have had only

minor impact on the results.

2.4 Results

In this section we present the results of our out-of-sample study which can be found in

Tables 2.1 to 2.8. We start with the dataset including 18 sector subindices based on the

STOXX EUROPE 600. As described in Section 3, the equally weighted portfolios serve

as a benchmark. It is noticeable that the interval for re-balancings has only a negligible

effect on these results. In all cases the p.a. volatility is around 19.2%, while the average

p.a. return is slightly above 8%. Besides, the portfolio turnover is very low and has no

relevant impact on adjusted returns and Sharpe-ratios.

Table 2.1: Results for the Equally Weighted Portfolios - Indices
Results for the equally weighted portfolios including 18 sector subindices based on the STOXX EUROPE
600. Values in brackets include transaction costs.

Interval
Sharpe Ratio Return Volatility

Turnover Turnover
Re-Balancing (R) (A)

21 0.3620 (0.3604) 8.08% (8.05%) 19.29% 0.03 5.66
63 0.3633 (0.3622) 8.07% (8.05%) 19.20% 0.05 3.24
252 0.3638 (0.3633) 8.04% (8.03%) 19.08% 0.10 1.62

The Markowitz optimizations based on the empirical covariance matrix improve upon

the equally weighted portfolios. The average volatility decreases by 3.99% to 5.78%,
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while the return simultaneously increases by 0.1% to 3.04%.Nevertheless, the portfolio

turnover increases by about ten times on average leading to return losses of 0.03% to

0.59%. With respect to the setup options of the plain Markowitz optimizations, the choice

of the days of data history as well as the re-optimization interval has only little impact to

the volatility results. Nevertheless, in terms of returns,turnover and the Sharpe-ratio, the

choice of 1,000 days as the data point history seems to be preferable. Besides, the choice

of the weight limits has a marked effect on the results. The allowance for short selling

reduces the volatility by more than 1% on average.

Table 2.2: Results for the Plain Markowitz Optimizations - Indices
Results for optimizations using the empirical covariance matrix including 18 sector subindices based on the
STOXX EUROPE 600. Values in brackets include transaction costs.

# Data
Interval

Sharpe Ratio Return Volatility
Turnover Turnover

Re-Opt. (R) (A)

Panel A:|ai| < 1

250 21 0.5819 (0.5388) 9.02% (8.43%) 13.61% 0.61 118.53
250 63 0.6283 (0.6013) 9.46% (9.10%) 13.30% 1.14 73.18
250 252 0.5338 (0.5196) 8.51% (8.32%) 13.89% 2.44 38.95

500 21 0.6800 (0.6549) 10.24% (9.90%) 13.44% 0.35 68.29
500 63 0.7014 (0.6852) 10.52% (10.30%) 13.43% 0.69 43.85
500 252 0.6074 (0.5985) 9.66% (9.53%) 14.09% 1.61 25.77

1000 21 0.7295 (0.7144) 11.01% (10.80%) 13.58% 0.22 42.12
1000 63 0.7292 (0.7197) 11.12% (10.99%) 13.74% 0.42 26.63
1000 252 0.6149 (0.6093) 9.98% (9.89%) 14.43% 1.10 17.58

Panel B:0 < ai < 1

250 21 0.5128 (0.5014) 8.56% (8.40%) 14.55% 0.17 33.27
250 63 0.4935 (0.4860) 8.29% (8.18%) 14.57% 0.34 21.99
250 252 0.4754 (0.4715) 8.18% (8.12%) 14.88% 0.81 13.03

500 21 0.5211 (0.5141) 8.68% (8.58%) 14.55% 0.10 20.26
500 63 0.5158 (0.5113) 8.66% (8.59%) 14.65% 0.22 14.07
500 252 0.5142 (0.5110) 8.75% (8.70%) 14.88% 0.59 9.36

1000 21 0.5584 (0.5542) 9.35% (9.29%) 14.77% 0.07 13.08
1000 63 0.5582 (0.5553) 9.41% (9.36%) 14.88% 0.15 9.47
1000 252 0.5618 (0.5597) 9.58% (9.55%) 15.09% 0.44 7.04

By using the test of Aue et al. [2009] in order to estimate the covariance matrix, the

resulting level of volatilities is slightly higher than those of the empirical covariance ma-

trix. Nevertheless, the returns increase by about 2% on average which leads to superior
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Sharpe-ratios. Besides, the turnover is much lower and is reduced by about two thirds

compared to the plain Markowitz optimization approach. Transaction costs reduce the re-

turns by only 0.07% on average. The application of differentsignificance levels (5% and

1%) makes no notable difference in the results. Consideringthe volatility, the choice of 21

days for the re-optimization interval lowers the volatility by about 1% compared to 252

days. Astonishingly, no clear statement can be made with regards to the limits of asset

weights because the results are quite inconclusive. On average, the differences between

both options are negligible. In terms of the returns, the results of the different test and

optimization options are comparable to each other and can belocated between 10.88%

and 11.11%.

Table 2.3: Results for the Markowitz Optimizations in Combination with the Test of
Aue et al. [2009] - Indices
Results for optimizations using the test of Aue et al. [2009]including 18 sector subindices based on the
STOXX EUROPE 600. Values in brackets include transaction costs.

α
Interval

Sharpe Ratio Return Volatility
Turnover Turnover

Re-Opt. (R) (A)

Panel A:|ai| < 1

95% 21 0.6901 (0.6790) 10.77% (10.62%) 14.02% 0.16 30.25
95% 63 0.6750 (0.6681) 10.89% (10.79%) 14.51% 0.30 19.26
95% 252 0.6063 (0.6023) 10.60% (10.54%) 15.67% 0.78 12.52

99% 21 0.7021 (0.6920) 10.97% (10.82%) 14.05% 0.15 29.75
99% 63 0.6936 (0.6865) 11.06% (10.96%) 14.37% 0.30 19.30
99% 252 0.6355 (0.6313) 11.01% (10.95%) 15.60% 0.77 12.33

Panel B:0 < ai < 1

95% 21 0.6658 (0.6628) 11.15% (11.10%) 15.09% 0.05 9.79
95% 63 0.6578 (0.6555) 11.08% (11.04%) 15.17% 0.11 7.32
95% 252 0.6433 (0.6416) 10.99% (10.96%) 15.37% 0.36 5.69

99% 21 0.6747 (0.6714) 11.30% (11.25%) 15.12% 0.05 9.71
99% 63 0.6665 (0.6643) 11.20% (11.16%) 15.15% 0.11 7.24
99% 252 0.6393 (0.6372) 10.96% (10.93%) 15.43% 0.35 5.61

An application of the tests of Wied et al. [2012b] and Wied et al. [2012a] yields favo-

rable results compared to the benchmark of equally weightedportfolios. The results are

however considerably worse with respect to each measured performance indicator com-

pared to the plain Markowitz optimization as well as to the optimization including the
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test of Aue et al. [2009]. High turnovers lead to a substantial loss of returns by 0.35%

on average. Nevertheless, it should be noted that the choiceof the weight limits has a

considerable impact on the resulting volatility. Surprisingly, the more restrictive option of

0 ≤ ai ≤ 1, ∀i shows lower volatilities.

Table 2.4: Results for the Markowitz Optimizations in Combination with the Test of
Wied et al. [2012b] and Wied et al. [2012a] - Indices
Results for optimizations using the tests of Wied et al. [2012b] and Wied et al. [2012a] including 18 sector
subindices based on the STOXX EUROPE 600. Values in bracketsinclude transaction costs.

α
Interval

Sharpe Ratio Return Volatility
Turnover Turnover

Re-Opt. (R) (A)

Panel A:|ai| < 1

95% 21 0.5813 (0.5142) 11.34% (10.16%) 17.61% 1.23 239.12
95% 63 0.5958 (0.5682) 12.33% (11.81%) 18.85% 1.64 104.82
95% 252 0.3728 (0.3629) 8.73% (8.53%) 20.48% 2.50 40.06

99% 21 0.3539 (0.3149) 7.18% (6.51%) 17.17% 0.70 135.93
99% 63 0.4615 (0.4452) 8.96% (8.68%) 17.03% 0.88 56.22
99% 252 0.4075 (0.4029) 8.33% (8.24%) 17.73% 1.10 17.63

Panel B:0 < ai < 1

95% 21 0.3882 (0.3545) 7.28% (6.74%) 15.92% 0.56 108.29
95% 63 0.6144 (0.5953) 10.70% (10.40%) 15.62% 0.95 60.86
95% 252 0.3418 (0.3359) 6.72% (6.62%) 16.44% 1.23 19.61

99% 21 0.4675 (0.4569) 8.82% (8.64%) 16.51% 0.18 35.67
99% 63 0.4900 (0.4831) 9.23% (9.11%) 16.59% 0.36 23.22
99% 252 0.5138 (0.5098) 9.12% (9.06%) 15.62% 0.71 11.35

We continue with the second dataset including the returns of18 stocks, which we-

re listed on the DAX 30 for the time span 01.01.1973 - 30.06.2011. The benchmark of

equally weighted portfolios shows that the re-balancing interval has only very little effect

on the volatility as well as on the return. The volatility amounts to about 18.8%, while the

returns are around 11.4%. Transaction costs are negligible.

Compared to the equally weighted portfolios, the results ofthe plain Markowitz opti-

mizations show an improvement again. The average volatility decreases by 2.21%, while

the average return increases by 0.48%. Consequently, the average Sharpe-ratio increases

by about 0.10 points. The portfolio turnover is about six times higher, while transaction

costs decrease the returns by averaged 0.14%. Concerning the setup options, a lower re-
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Table 2.5: Results for the Equally Weighted Portfolios - Stocks
Results for the equally weighted portfolios including 18 stocks listed on the DAX 30. Values in brackets
include transaction costs.

Interval
Sharpe Ratio Return Volatility

Turnover Turnover
Re-Balancing (R) (A)

21 0.5520 (0.5496) 11.50% (11.45%) 18.84% 0.04 18.49
63 0.5475 (0.5464) 11.42% (11.37%) 18.84% 0.07 10.59
252 0.5366 (0.5362) 11.14% (11.13%) 18.70% 0.14 4.90

optimization interval is accompanied by lower volatilities and returns, while the influence

to the Sharpe-ratio is inconclusive. Furthermore, the results show only a little impact of

the choice of the data history and surprisingly the weight limits.

Table 2.6: Results for the Plain Markowitz Optimizations - Stocks
Results for optimizations using the empirical covariance matrix including 18 stocks listed on the DAX 30.
Values in brackets include transaction costs.

# Data
Interval

Sharpe Ratio Return Volatility
Turnover Turnover

Re-Opt. (R) (A)

Panel A:|ai| < 1

250 21 0.6489 (0.6205) 11.39% (10.94%) 15.85% 0.42 181.30
250 63 0.5888 (0.5722) 11.03% (10.75%) 16.87% 0.77 110.70
250 252 0.6413 (0.6334) 12.29% (12.15%) 17.45% 1.56 54.48

500 21 0.6178 (0.6016) 10.89% (10.63%) 15.84% 0.24 103.90
500 63 0.6229 (0.6124) 11.29% (11.13%) 16.37% 0.46 65.59
500 252 0.6578 (0.6527) 12.37% (12.28%) 17.13% 1.04 35.86

1000 21 0.6553 (0.6457) 11.58% (11.42%) 15.99% 0.14 62.10
1000 63 0.6519 (0.6460) 11.65% (11.55%) 16.18% 0.27 39.08
1000 252 0.6861 (0.6824) 12.50% (12.44%) 16.62% 0.67 23.52

Panel B:0 < ai < 1

250 21 0.6567 (0.6435) 11.83% (11.62%) 16.34% 0.20 85.58
250 63 0.6235 (0.6154) 11.56% (11.43%) 16.78% 0.37 53.32
250 252 0.6489 (0.6446) 12.36% (12.28%) 17.35% 0.86 30.11

500 21 0.6345 (0.6264) 11.47% (11.34%) 16.34% 0.13 53.53
500 63 0.6453 (0.6399) 11.75% (11.66%) 16.51% 0.24 34.26
500 252 0.6669 (0.6641) 12.51% (12.46%) 17.10% 0.61 21.33

1000 21 0.6611 (0.6559) 11.93% (11.84%) 16.38% 0.08 34.46
1000 63 0.6568 (0.6538) 11.91% (11.86%) 16.45% 0.15 21.81
1000 252 0.6783 (0.6765) 12.54% (12.51%) 16.86% 0.40 13.93
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The extension by the test of Aue et al. [2009] outperforms theplain Markowitz opti-

mization and results to small improvements of the average returns and Sharpe-ratios. But

in contrast to the application to the subindices dataset, the volatility remains unchanged.

Additionally, the portfolio turnover and hence transaction costs are much lower. There are

just minor changes of the performance measures due to the choice of the setup options

except the re-optimization interval, where the return increases with larger gaps.

Table 2.7: Results for the Markowitz Optimizations in Combination with the Test of
Aue et al. [2009] - Stocks
Results for optimizations using the test of Aue et al. [2009]including 18 stocks listed on the DAX 30.
Values in brackets include transaction costs.

α
Interval

Sharpe Ratio Return Volatility
Turnover Turnover

Re-Opt. (R) (A)

Panel A:|ai| < 1

95% 21 0.6493 (0.6439) 11.74% (11.65%) 16.38% 0.09 36.71
95% 63 0.6602 (0.6565) 11.93% (11.87%) 16.41% 0.16 22.81
95% 252 0.6868 (0.6851) 12.72% (12.69%) 16.91% 0.39 13.66

99% 21 0.6552 (0.6496) 11.85% (11.76%) 16.41% 0.08 35.88
99% 63 0.6632 (0.6600) 11.98% (11.92%) 16.40% 0.16 22.32
99% 252 0.6952 (0.6937) 12.80% (12.77%) 16.82% 0.37 12.90

Panel B:0 < ai < 1

95% 21 0.6588 (0.6553) 11.99% (11.93%) 16.53% 0.06 23.60
95% 63 0.6637 (0.6515) 12.10% (12.06%) 16.57% 0.10 14.45
95% 252 0.6820 (0.6807) 12.65% (12.63%) 16.93% 0.26 9.10

99% 21 0.6623 (0.6585) 12.05% (11.99%) 16.54% 0.05 23.14
99% 63 0.6636 (0.6614) 12.08% (12.04%) 16.54% 0.10 14.21
99% 252 0.6846 (0.6836) 12.64% (12.62%) 16.85% 0.25 8.67

Employing the tests of Wied et al. [2012b] and Wied et al. [2012a], the results show a

slight decrease of the Sharpe-ratio compared to the equallyweighted benchmark portfolio

which is caused by a small improvement of the average return and an increase of the

volatility. However, this approach does not achieve the convincing results of the remaining

optimization methods. This goes along with the highest portfolio turnover and transaction

costs of all alternatives. In line with the corresponding optimization on the basis of the

subindices data, the allowance for short sales leads to a substantial higher volatility on

average.
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Table 2.8: Results for the Markowitz Optimizations in Combination with the Test of
Wied et al. [2012b] and Wied et al. [2012a] - Stocks
Results for optimizations using the tests of Wied et al. [2012b] and Wied et al. [2012a] including 18 stocks
listed on the DAX 30. Values in brackets include transactioncosts.

α
Interval

Sharpe Ratio Return Volatility
Turnover Turnover

Re-Opt. (R) (A)

Panel A:|ai| < 1

95% 21 0.4929 (0.4420) 10.04% (9.12%) 18.14% 0.86 367.74
95% 63 0.4418 (0.4186) 11.74% (11.18%) 24.09% 1.55 221.80
95% 252 0.5128 (0.5033) 14.21% (13.97%) 25.56% 2.76 96.66

99% 21 0.4593 (0.4358) 11.21% (10.69%) 22.01% 0.48 206.76
99% 63 0.4456 (0.4281) 10.56% (10.19%) 21.23% 1.03 147.80
99% 252 0.5524 (0.5464) 12.51% (12.38%) 20.65% 1.45 50.83

Panel B:0 < ai < 1

95% 21 0.5020 (0.4847) 10.52% (10.19%) 18.76% 0.30 130.15
95% 63 0.5463 (0.5324) 10.47% (10.24%) 17.16% 0.65 93.48
95% 252 0.6264 (0.6212) 12.28% (12.19%) 17.86% 1.07 37.59

99% 21 0.4115 (0.4046) 9.52% (9.38%) 20.46% 0.13 56.86
99% 63 0.6377 (0.6314) 11.94% (11.83%) 17.00% 0.29 42.02
99% 252 0.6529 (0.6496) 12.50% (12.44%) 17.46% 0.67 23.38

2.5 Discussion

In line with previous works of Haugen and Baker [1991] and Clarke et al. [2006], our

empirical study supports the finding that plain Markowitz optimized portfolios deliver

superior results in terms of portfolio variance as well as portfolio returns compared to

equally weighted portfolios. On the basis of two different datasets, we show that equally

weighted portfolios are clearly outperformed by this optimization strategy. Moreover, the

benefit of lower volatilities and higher returns is only marginally offset by increasing

transaction costs due to considerable higher portfolio turnovers.

The extension of the plain Markowitz optimization by the test of Aue et al. [2009] leads

to inconclusive results. With respect to the two used datasets, the results show increased

returns and volatilities on average. However, it is remarkable that the portfolio turnover is

much lower compared to the classical optimization. Basically, this is reasoned by the fact
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that the test yields only a few rejections of the null hypothesis of a constant covariance

matrix. For example, a portfolio optimization including the DAX 30 dataset under the

option setup of a 5% significance level and a re-optimizationinterval of 21 days leads to

only four rejections within 10,043 data points.

The small number of rejections might be the result of a lack ofaccuracy of the criti-

cal values in connection to the setup of our study. The critical values are approximated

by simulating Brownian bridges on a fine grid as described in Section 2. However, an

additional simulation study, whose results are available from the authors upon request,

indicates that this approximation does not perform well if the sample size is small. We

simulated the actual critical values ford = 18 by generating standard normal distributed

values and calculating the respective test statistic. For example, for a sample of1, 000 data

points the0.95-quantile is24.20 while the asymptotic critical value is53.58. Probably, a

suitable derivation of finite sample critical values is a non-trivial task because in practi-

ce the underlying distribution of the asset returns is unclear; especially the assumption

of the standard normal distribution is doubtful. Nevertheless, we used this procedure to

show the effect of using critical values that are to some degree more suitable for the finite

samples of our dataset. As a simple and rough approximation we concern a sample size of
⌈
5,087
2

⌉
= 2, 544 for the STOXX EUROPE 600 subindices dataset and

⌈
10,043

2

⌉
= 5, 022

with respect to the DAX 30 dataset. The actual critical values for the0.95-quantile (0.99-

quantile) are estimated to34.77 (36.43) and41.32 (43.40). Applying the test with the

modified critical values leads to a higher number of rejections, e.g. seven instead of four

considering the example above (DAX 30, 5% significance level, 21 days interval). Com-

pared to Table 2.3, the improved results of Table 2.9 show exemplary that the adjustment

of our very simple approach is a step in the right direction. Amore sophisticated proce-

dure for calculating critical values may perform even better.

Certainly, the dates at which the null is rejected are of interest. Returning to the ex-

ample mentioned above (DAX 30, 5% significance level, 21 daysinterval) these dates

are 26.01.1983, 25.07.1989, 05.11.1996, and 19.02.2001 for the critical values based on

the asymptotic analysis. In contrast to that, the dates at which the null is rejected are
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Table 2.9: Results for the Markowitz Optimizations in Combination with the Test of
Aue et al. [2009] - Modified Critical Values
Results for optimizations using the test of Aue et al. [2009]in combination with the modified critical values
including 18 sector subindices based on the STOXX EUROPE 600. Values in brackets include transaction
costs.

α
Interval

Sharpe Ratio Return Volatility
Turnover Turnover

Re-Opt. (R) (A)

Panel A:|ai| < 1

95% 21 0.7886 (0.7744) 11.94% (11.75%) 13.75% 0.20 39.41
95% 63 0.8080 (0.7986) 12.34% (12.21%) 13.91% 0.42 26.63
95% 252 0.6501 (0.6440) 10.61% (10.52%) 14.63% 1.11 17.81

99% 21 0.7724 (0.7591) 11.63% (11.45%) 13.63% 0.19 36.62
99% 63 0.7655 (0.7570) 11.76% (11.64%) 13.93% 0.38 24.06
99% 252 0.6611 (0.6557) 11.05% (10.97%) 15.05% 1.03 16.51

Panel B:0 < ai < 1

95% 21 0.6103 (0.6065) 10.16% (10.10%) 14.84% 0.06 11.37
95% 63 0.6083 (0.6054) 10.19% (10.15%) 14.95% 0.14 8.65
95% 252 0.5799 (0.5776) 9.87% (9.84%) 15.13% 0.44 6.96

99% 21 0.6035 (0.5996) 10.07% (10.01%) 14.86% 0.06 11.55
99% 63 0.6084 (0.6055) 10.21% (10.16%) 14.97% 0.14 8.75
99% 252 0.6146 (0.6126) 10.53% (10.50%) 15.34% 0.40 6.46

28.08.1975, 03.02.1981, 10.10.1986, 13.11.1990, 25.08.1995, 15.02.1999 and 03.12.2001

for the modified critical values based on a sample size of 5,022. Most of these dates seem

to be reasonable. The Latin American debt crisis of the early1980s in combination with

the savings and loan crisis of the 1980s in the United States explain some rejection dates.

Besides, in each case one rejection date corresponds to the German reunification. Finally,

in both cases the last rejection date can be explained by the burst of the dot-com bubble.

Nevertheless, in both cases no change point is detected during the market turmoils of the

financial crisis at the end of the last decade or the current European sovereign-debt crisis.

Hence, it is very likely that the accurate number of changes in the covariance matrix is

somewhat higher.

As described in Section 2.4, the results of the optimizationin combination with the

tests proposed by Wied et al. [2012b] and Wied et al. [2012a] are relatively poor com-

pared to the remaining optimization approaches. This couldbe the result of the special

character of these statistical tests. In contrast to the test for changes in the entire cova-
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riance matrix, the test for changes of variances is applied to each of thed = 18 diffe-

rent time series, whereas the test for changes in correlations is applied to each of the

18(18 − 1)/2 = 153 upper-diagonal elements of the correlation matrix. Due to the high

number of statistical tests, it is very likely that after every re-optimization interval one or

more tests (wrongly) reject the null hypothesis. For example, Table 2.10 and 2.11 show

the number of rejections of the tests including the DAX 30 dataset under the option setup

of a 1% significance level and a re-optimization interval of 21 days.

Table 2.10: Number of rejections - Test of Wied et al. [2012a]
Number of rejections of the null hypothesis of constant volatility for each asset for an optimization using
the test of Wied et al. [2012a] including 18 stocks listed on the DAX 30 under the option setup of 1%
significance level and a test interval of 21 days.

d = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of
Rejections 10 8 7 7 9 13 12 9 8 7 12 3 7 9 9 11 13 7

Table 2.11: Number of rejections - Test of Wied et al. [2012b]
Number of rejections of the null hypothesis of constant correlation for each bivariate combination of the
assets for an optimization using the test of Wied et al. [2012b] including 18 stocks listed on the DAX 30
under the option setup of 1% significance level and a test interval of 21 days.

d = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 5 6 6 8 6 6 6 2 5 6 6 8 5 7 10 11 7
2 0 4 5 8 8 6 10 5 3 5 6 8 5 6 9 7 7
3 0 10 5 9 7 10 4 2 4 5 3 6 8 11 9 7
4 0 6 11 7 8 9 5 7 6 7 4 5 7 7 5
5 0 11 10 6 2 2 4 5 7 5 7 15 9 10
6 0 7 7 6 6 5 9 10 5 6 10 7 11
7 0 8 5 4 5 8 6 6 10 11 8 8
8 0 4 3 4 6 6 3 8 13 7 10
9 0 2 4 6 6 3 4 6 6 4
10 0 3 5 7 1 3 5 4 4
11 0 4 3 4 5 8 7 8
12 0 5 2 9 9 6 6
13 0 3 8 7 8 7
14 0 3 7 7 7
15 0 15 10 9
16 0 13 9
17 0 8
18 0
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In summary, this setup leads to161 rejections of the volatility test and1, 001 rejecti-

ons of the correlation test within431 test intervals in total or 2.7 rejections at each test

interval on average. As a consequence, the data history changes after each interval which

might lead to substantial fluctuations within the covariance matrix and hence an increased

portfolio turnover. Apparently, these large shifts have negative effects on the performance

of the model.

In order to remedy this drawback, it may be advantageous to leave out the test for

changes in the bivariate correlations. Bissantz et al. [2011b] show that the impact of fluc-

tuations and estimation errors is ten times larger for volatilities than for correlations. Con-

sequently, the detection of change points of volatilities is obviously much more important

than the correlation based test. By omitting that test, the number of tests for each interval

is reduced tod = 18. First studies show an improvement into the desired direction. On

average, volatility is reduced by1.29% (STOXX EUROPE 600) and by2.68% (DAX 30).

But the benchmark volatility and Sharpe-ratio levels of theplain Markowitz optimizati-

ons are still not attained. More details are available from the authors upon request. Further

studies of the suggested solution may provide a deeper analysis.

In addition to the investigated strategies, it might be possible to pursue a further

strategy, i.e. to let the fluctuation tests themselves determine reasonable dates for a re-

optimization. To be more precisely, a re-optimization of the portfolio would only be per-

formed if a fluctuation test rejects the null hypothesis. However, in this paper we refused

this further strategy for two different reasons. With respect to the test of Aue et al. [2009],

this strategy suffers from the seldom rejections of the nullhypothesis. We would then re-

optimize very infrequently which is not useful in practice.Regarding the tests proposed

by Wied et al. [2012b] and Wied et al. [2012a], the opposite problem arises, namely the

problem of multiple testing and undesired frequent re-optimizations. Consequently, this

kind of application would require different theoretical adjustments of the procedures.

Surprisingly, the allowance for short selling does not leadto lower volatilities in all

cases (e.g., see Table 2.6). Although it is not intuitive that imposing the constraint of non-

negative portfolio weights leads to an improved efficiency,this finding is in line with the
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empirical study of Jagannathan and Ma [2003]. These authorsargue that constraints for

portfolio weights increase specification error, but can also reduce sampling error. The gain

or loss in efficiency depends on the trade-off between both error types.

Since we employ portfolios consisting of very liquid Germanand European blue chip

stocks, transaction costs are marginal due to the small bid-ask spread of 0.2%. For ex-

ample, assumingTurnover(A) to be100 for the portfolio consisting of the dataset of 18

stocks listed on the DAX 30, the loss of annual log-returns amounts only to0.25%. Howe-

ver, the impact of high turnovers may be significantly higherwhen datasets of less liquid

assets are used. It would be worthwhile for further researchto address a more detailed

analysis of the trade-off between improved volatility and return of an optimized portfolio

on the one side and costs relating to increased portfolio turnover on the other side.

2.6 Conclusion

The aim of this paper is to investigate whether a classical Markowitz mean-variance port-

folio can be improved by the use of change point tests for dependence measures. To the

best of our knowledge, we are the first to apply, on the one hand, the recently proposed

test of Aue et al. [2009] for a constant covariance matrix and, on the other hand, the tests

of Wied et al. [2012b] and Wied et al. [2012a] for constant variances and correlations to

a minimum-variance optimization. We find out that portfoliooptimizations considering

change points of the covariance matrix yield considerable results and outperform plain

Markowitz optimizations in several cases. In conducting the empirical study, we gain

interesting insights in the behavior of these tests in combination with a portfolio optimi-

zation. This allows us to carve out the benefits as well as somechallenging drawbacks of

these new approaches. Moreover, we make some notes which might be helpful to future

works.
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3.1 Introduction

The model by Markowitz [1952] represents a milestone in development of modern techni-

ques concerning portfolio optimization. Nevertheless, itis well known that there are some

serious challenges for the application of optimization techniques to portfolio management

practice. In particular, the error-prone estimation of theexpected returns is crucial for re-

asonable results of the optimization (Best and Grauer, 1991, Chopra and Ziemba, 1993).

The global minimum-variance portfolio approach circumvents this problem. It determi-

nes the portfolio weights independently from expected returns. The optimization depends

solely on the covariance matrix which can be estimated much more reliable than expec-

ted returns (Golosnoy et al., 2011). It leads to a minimum-variance portfolio that lies on

the left-most tip of the efficient frontier. Considering equity portfolios, numerous his-

torical backtests show that minimum-variance optimization provides higher returns and

lower risk compared to capitalization-weighted portfolios (e.g. Haugen and Baker, 1991,

Jagannathan and Ma, 2003, Clarke et al., 2006, Clarke et al.,2013).

33
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However, some crucial challenges remain by this approach. In order to compose an

efficient minimum-variance portfolio a precise estimationof the covariance matrix is es-

sential. Surprisingly, in finance literature and practice the covariance matrix is often esti-

mated on the basis of a constant historical (rolling) time-window of more or less arbitrary

length (e.g. Haugen and Baker [1991]: 24 month; Jagannathanand Ma [2003]: 60 month

and 1260 days; Pojarliev and Polasek [2003]: 800 days; Clarke et al. [2006]: 60 month

and 250 days; DeMiguel et al. [2012]: 250 and 750 days; Behr etal. [2013]: 120 month),

although several studies show that variances and correlations of asset returns are not con-

stant over time (e.g. Longin and Solnik, 1995). To this end, this common approach may

suffer from serious sampling errors.

Besides parameter estimation, the question arises when a rebalancing or a reop-

timization should be performed. In finance literature and inpractice it is common

to choose a fixed reoptimization frequency (e.g. Baltutis and Dockner [2007]: wee-

kly; Lenoir and Tuchschmid [2001] and Clarke et al. [2006]: monthly; Haugen and Baker

[1991]: quarterly; Chan et al. [1999] and Jagannathan and Ma[2003]: annually; MSCI

Minimum Volatility World Index: semi-annually). Usually,previous studies fail to motiva-

te the determination of the frequency in detail despite the fact that portfolio rebalancing is

crucial for portfolio performance. Behr and Miebs [2008] showed that minimum-variance

portfolios are highly sensitive to revision frequencies. Baltutis and Dockner [2007] found

out that under high frequency revision the turnover of the portfolio increased undesirably

not necessarily reducing its realized volatility significantly.

By improving on the naive approach of periodic rebalancing,the financial lite-

rature provides numerous paper dealing with the issue of (optimal) portfolio revisi-

ons. These works proposed rebalancing strategies based on different approaches li-

ke e.g. tolerance bands around the desired target allocation (e.g. Masters, 2003 and

Donohue and Yip, 2003), dynamic programming (Sun et al., 2006), and quadratic heu-

ristics (Markowitz and van Dijk, 2003 and Kritzman et al., 2009)1.

To the best of our knowledge, there are just a few paper using explicitly chan-

1See Sun et al. [2006] and Kritzman et al. [2009] for a discussion of these rebalancing strategies.
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ges in the covariance matrix as a trigger to perform a reoptimization. Baltutis [2009],

Golosnoy and Schmid [2007] and Golosnoy et al. [2011] use control charts for monito-

ring changes in the the covariance matrix and global minimumvariance portfolio weights.

In addition, Baltutis [2009] proposed a concept where an update of the portfolio weights

is based on testing for statistically significant shifts in the covariance matrix which have

already occurred in a realized sample.

In these contexts, we follow Baltutis [2009] by using a statistical test for structu-

ral breaks in the covariance matrix, but apply the recently proposed fluctuation test by

Aue et al. [2009] for a constant covariance matrix to daily asset returns. Additionally,

the break points detected by this test are used not only for automatically inducing dates

for reoptimizations, but also for determining proper samples for parameter estimation.

Wied et al. [2013b] introduce basic concepts of combining the minimum-variance ap-

proach with various fluctuation tests for volatility and dependence measures. Within the

optimization context, they investigated a combination of the fluctuation tests for constant

volatility and for constant correlations (Wied et al., 2012a; Wied et al., 2012b) as well as

a fluctuation test for constancy of the entire covariance matrix (Aue et al., 2009). They

find out that the usage of the test for constancy of the entire covariance matrix is the most

promising approach.

However, despite the demonstrated potential of this approach they point out several

serious drawbacks and challenges which have to be solved in further investigations in

order to make this approach applicable for practitioners. In this paper, we take up these

points and present useful methodological adjustments in order to develop algorithms and

techniques for applications. Furthermore, we discuss the implementation of this new ap-

proach as an automated investment system for strategic asset allocations. Our empirical

study shows that tests for structural breaks in the covariance matrix improve the results of

a global minimum-variance optimization on average.
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3.2 Portfolio Optimization

As the model by Markowitz [1952] is well known, we give only a very brief summary.

It assumes the existence ofd assets with normally distributed returns. Optimal selection

of the portfolio weightsω = (ω1, · · · , ωd) is intended, whereωi is the fraction which is

invested into asseti. For most applications it is required thatωi ≥ 0, which avoids short

selling, and
∑d

i=1 ωi = 1, which ensures an investor to be fully invested. The crucial

parameter for a global minimum-variance optimization is the risk of the portfolio, which

is defined by the varianceσ2
P . Hence, the portfolio weights are determined independently

from expected returns and the optimization depends solely on the covariance matrix. The

resulting portfolio lies on the left-most tip of the efficient frontier. These considerations

result in the following optimization problem:

min σ2
P

s.t.
d∑

i=1

ωi = 1, (3.1)

whereσ2
P = ωΣω′ andΣ is the covariance matrix. Moreover, sometimes the additional

constraintωi ≥ 0, ∀i, is imposed.

As mentioned above, the global minimum-variance optimization depends solely on

the covariance matrix. In this context, however, the question arises which time window

should be used in order to estimate the covariance matrix. Inthe following section, we

present a new approch to tackle this issue.

3.3 Tests for Breaks in the Covariance Structure

Aue et al. [2009] present a nonparametric fluctuation test for a constantd-dimensional

covariance matrix of the random vectorsX1, . . . , XT with Xj = (Xj,1, . . . , Xj,d). The

basic idea of the procedure is to compare the empirical covariance matrix calculated from

the first observations with the one from all observations andto reject the null hypothesis if

this difference becomes too large over time. Denotevech(·) the operator which stacks the
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columns on and below the diagonal of ad × d matrix into a vector andA′ the transpose

of a matrixA. Then, we consider the term

Sk =
k√
T

(
1

k

k∑

j=1

vech(XjX
′
j)−

1

T

T∑

j=1

vech(XjX
′
j)

)
(3.2)

which measures the fluctuations of the estimated covariancematrices calculated by means

of the firstk observations and use the maximum of the results fork = 1, · · · , T . Here, the

factor k√
T

serves for standardization; intuitively it corrects for the fact that the covariance

matrices cannot be well estimated with a small sample size. If the maximum is standar-

dized correctly, the resulting test statistic converges against a well know distribution and

the null of a constant covariance matrix is rejected, if the test statistic is larger than the

respective critical value.

For sake of readability we will not describe the entire test statistic at this point and re-

fer to appendix C or Aue et al. [2009]. Nevertheless, the limit distribution under the null

hypothesis is the distribution of

sup
0≤t≤1

d(d+1)/2∑

l=1

B2
l (t), (3.3)

where(Bl(t), t ∈ [0, 1]), l = 1, . . . , d(d+ 1)/2 are independent Brownian bridges.

The test basically works under mild conditions on the time series under considerati-

on. One does not need to assume a particular distribution such as the normal distribution

and the test allows for some serial dependence which makes itpossible to consider e.g.

GARCH models. Moreover, the test is consistent against fixedalternatives and has con-

siderable power in finite samples. Regarding moments of the random variables, note that

the correct application of the test needs constant expectations. The asymptotic result is de-

rived under the assumption of zero expectation; if we had constant non-zero expectation,

it would be necessary to subtract the arithmetic mean. Whilethis assumption is sufficient-

ly fulfilled for daily return series, the derivation of the asymptotic null distribution also

needs the assumption of finite fourth moments. Theoretically, this assumption could be
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violated (Mandelbrot, 1962). However, in the following, wedo not further consider this

potential problem as this lies beyond our scope.

3.4 Empirical Study

The aim of this empirical study is to compare the out-of-sample performance of a global

minimum-variance optimization combined with the test for aconstant covariance matrix

(hereinafter referred to as covariance-test optimization) to various relevant asset allocati-

on strategies. First, we decide for a equally weighted assetallocation strategy as a natural

benchmark.2 For this, we obtain market values for each of the (sub)indices from Thom-

son Reuters Datastreamand the portfolio weights are rebalanced each 21/63/252 traiding

days, which corresponds approximately to monthly, quarterly and yearly rebalancings.

The benchmark of most interest is the classical global minimum-variance portfolio where

the optimization is based on constant rolling time-windowsfor calculation of the empiri-

cal covariance matrix (hereinafter referred to as plain optimization).

As this study is focused on strategic asset allocation, we use time series from indices

or subindices rather than from single stocks. The pros and cons of active portfolio ma-

nagement are extensively discussed in numerous studies (e.g. Wermers, 2000, Jacobsen,

2011). However, we agree with Sharpe [1991] who pointed out that the return on the

average actively managed dollar will equal the return on theaverage passively managed

dollar. Including costs for the active management it will beeven less. This statement is un-

derpinned by Standard & Poor’s [2012] who showed that 65% of all U.S. large cap equity

funds do not outperform the S&P 500 index over the last five years. Moreover, indices

are much more robust against unsystematic market risks and movements and can easily

be replicated by means of ETFs. Note, as we deal with indices in a strategic asset alloca-

tion environment we can avoid questions arising from large investable sets (compare for

example Michaud, 1989, Bai et al., 2009, Arnold et al., 2013).3 Hence, we apply each of

2We also investigated cap-weighted portfolios. Nevertheless, the results of the equally wighted portfolios
were slightly better. The results for cap-weighted portfolios are available from the authors upon request.

3Furthermore, high-dimensional portfolios can be reduced to managable sizes for example by factor
analysis (Krzanowski, 2000, Hui, 2005).
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these approaches to two samples consisting of five and ten indices, respectively. In detail,

the empirical study is designed as follows:

3.4.1 Data

To carry out the out-of-sample study we compute log-returnsfrom two different datasets.

To avoid undesirable effects, both datasets have to fulfill the requirements of single cur-

rency and uniform time zone. For the first portfolio, we use daily total return quotes from

five stock indices of main European countries that are founding members of the eurozone

(AEX, CAC 40, DAX 30, FTSE MIB, IBEX 35). The quotes cover a period from the

introduction of the Euro at January 1, 1999 to July 31, 2012 leading to 3481 trading days.

For the second portfolio, we used daily total return quotes from the ten S&P 500 sector

subindices (Consumer Discretionary, Consumer Staples, Energy, Financials, Health Care,

Industrials, Information Technology, Materials, Telecommunication Services, Utilities).

This quotes cover the total period provided by S&P starting at the initial publication on

January 1, 1995 to July 31, 2012 leading to 4429 trading days.All quotes are obtained

from Thomson Reuters Datastream.

3.4.2 Parameter Estimation

The optimization of a global minimum-variance portfolio based solely on the covarian-

ce matrix. Consequently, the performance differences between plain optimizations and

covariance-test optimizations are due to the varying length of time-windows for parame-

ter estimation. For the plain optimizations we define constant rolling time-windows of

250, 500 and 1000 trading days. The time-window of the covariance-test optimization is

determined by following procedure:

1. Initializei = 1 andk = 1000.

2. Apply the test of a constant covariance matrix to the data{xi, . . . , xk}.

3. If the test rejects the null, setp = k, otherwise setp = i.
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4. Adjust the time-window byi = min{p, k−126+1} in case of the five-dimensional

portfolio or i = min{p, k − 252 + 1} in case of the ten-dimensional portfolio.

5. Use the data{xi, . . . , xk} for estimating the empirical covariance matrix.

6. Setk = k + n, wheren is the number of trading days between two tests and

optimizations and go back to step 2.

Note, a reliable estimation of the covariance matrix requires a sufficient sample size. To

this end, the modificationsi = min{p, k− 126+1} andi = min{p, k− 252+1} ensure

that the estimation is based on data of the last (half) year, depending on the dimensionality

of the portfolio. As before, we choosen = 21, 63 and252.

The determination of critical values is a crucial issue for the application of the test for

a constant covariance matrix. Aue et al. [2009] approximated critical values by simulating

Brownian bridges on a fine grid. Wied et al. [2013b] showed that this approximation does

not perform well if the sample size is small. In this case, thecritical values are overesti-

mated and hence lead to low numbers of rejections. We take up this point and propose an

alternative approach which is suitable for a practical application of the test. To this end,

we generate d-dimensional standard normal distributed random variables. Then, we apply

the test for a constant covariance matrix to the sample. Thisprocedure is carried out 10000

times. After that, we determine the(1 − α)-quantile of the resulting test statistics as the

critical value. In line with Wied et al. [2013b], we compute the critical values forα = 1%

andα = 5%. Depending on the chosen length of the sample, the critical value varies wi-

thin a relatively wide range. Therefore, regarding the five-dimensional (ten-dimensional)

portfolio, we estimate critical values for 18 (12) different sample sizes which are congru-

ent to time-windows of 126 (250) to 1400 trading days (Table 3.1).

Using these critical values as grid points, we compute critical values for time-windows

of any required length by linear interpolation. Although itseems only to be a small mo-

dification, it leads to a much more realistic determination of the dates where structural

breaks in the covariance matrix occur. Moreover, it allows us to establish an automated

investment strategy, which automatically determines dates for reoptimizations.



3.4. EMPIRICAL STUDY 41

Table 3.1: Critical Values
Critical values for the five and the ten dimensional portfolio estimated by use of a Monte-Carlo-Simulation.

Sample five-dimensional ten-dimensional
Size Portfolio Portfolio

α = 5% α = 1% α = 5% α = 1%

126 4.25 4.63 - -
138 4.39 4.80 - -
150 4.54 4.96 - -
175 4.74 5.19 - -
200 4.92 5.45 - -
225 5.11 5.65 - -
250 5.24 5.84 8.60 8.94
275 5.37 6.01 8.97 9.35
300 5.48 6.10 9.36 9.77
350 5.69 6.41 10.01 10.48
400 5.89 6.68 10.60 11.18
500 6.11 6.99 11.49 12.12
600 6.31 7.25 12.28 13.05
700 6.47 7.41 12.88 13.83
800 6.57 7.52 13.41 14.35
1000 6.76 7.76 14.26 15.27
1200 6.86 7.90 14.95 16.07
1400 6.99 8.12 15.47 16.61

As we have just mentioned, the more precise estimation technique for critical values

allows us to investigate an automated investment system, where the test is performed on

a daily basis and the optimization is conducted only if the test rejects the null. Hence,

an investor does not need to decide for a particular time-window in order to estimate

the covariance matrix and reoptimization interval. Only the significance level has to be

determined in advance. In more detail, we setn = 1 and modify the last step of the

previous procedure as follows:

6. If the test rejects the null, setk = k+63, otherwise setk = k+1. Then go back to

step 2.

By conducting the fluctuation test at each day, clustered rejections are very likely due to

the small changes in the sample. The conditionk = k + 63 in case of a null rejection

assures that the sample for the subsequent test includes an adequate amount of new data.
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3.4.3 Optimization Setup

The portfolio performance is strongly affected by the frequency of reoptimizations. In

line with the test intervals of the previous section, we optimize every 21, 63, and 252

traiding days in the first setting. In this case, the asset weights are reoptimized after each

test, regardless whether the null is rejected or not. Because of the identical intervals,

this procedure allows for a direct comparison between the plain optimization and the

covariance test optimization. In contrast to that, if the constancy of the covariance is tested

on a daily basis, optimizations will be conducted only when astructural break is detected.

In this context, portfolio weights remain unchanged in the sense that no trading takes

place until the test again rejects the null. Hence, the portfolio weights will drift from the

initially determined portfolio weights due to the variation in asset returns. Note, however,

the simulations for the equally weighted portfolios suggest that the rebalancing frequency

is only of minor importance. Besides, we consider two different constraints concerning

the portfolio weights. First, we assume0 ≤ wi ≤ 1, ∀i, which in particular excludes

short selling (hereinafter referred to as long portfolios). In addition to that, we assume

|wi| ≤ 1, ∀i, throughout the second run (hereinafter referred to as short portfolios). The

optimizations are performed by using thefmincon-function ofMATLAB R2012a.4

3.4.4 Performance Measurement

The portfolio performance is analyzed from various perspectives. First of all, the measure-

ment of the risk in terms of volatility takes a prominent partof the evaluation, as portfolio

variances are optimized. Nevertheless, we investigate theimpact on the resulting returns

and the relationship between risk and return in terms of the Sharpe-ratio, too. For its com-

putation we assume1.1% as risk free return which corresponds to the average return of

German goverment bonds with less than 3 years to maturity in 2011.

Reoptimization (and rebalancing) of portfolio asset weights naturally leads to incre-

4Note, we checked the performance of thefmincon-function by means of several examples and com-
parison to thequadprog-function. All results indicate that there are no conversion problems within this
optimization task. Nevertheless, to minimize the risk of detecting local minima, we use an adequate num-
ber of different starting points for the optimization. These starting points include the defined weighting
boundaries as well as the equal weighted portfolio and random weights.
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asing trading volume. Hence, we measure this turnover in absolute and relative Terms.

Following DeMiguel et al. [2009], we define the sum of absolute changes in the weights

as

Turnover(A) =
RD−1∑

i=1

d∑

j=1

|ai+1,j − ai+,j|, (3.4)

whereRD is the number of the reoptimization (rebalancing) days andd the number of

assets. The portfolio weight of assetj before a rebalancing or reoptimization at timei+1

is defined asai+,j. Besides, we callTurnover(R) the average amount of changes at each

RD, that meansTurnover(R) = 1
RD−1

· Turnover(A).

In order to attribute a financial impact to the trading volume, we transform turnover

to transaction costs and analyzes the effects. In line with Wied et al. [2013b] we compu-

te adjusted returns and Sharpe-ratios by subtracting transaction costs from the returnR.

These costs are defined byTurnover(A) · sc
2

where the constant relative bid-ask spreadsc

represents the bid-ask spread divided by bid-ask midpoint.We quantify the spread on the

basis of the average relative bid-ask spread of the stocks listed on the European indices

(5 asset portfolio) and stocks listed on the S&P 500 (10 assetportfolio) for the time-span

August 1, 2011 to July 31, 2012. The spread of the analyzed stocks amounts to about

0.15% (European indices) and about 0.05% (S&P 500). Moreover, we refine this metho-

dology used in Wied et al. [2013b] and introduce critical relative bid-ask spreads. To this

end, consider two portfolio selection methods where a superior method outperforms an

inferior method in terms of Sharpe-ratio (excluding transaction costs) and the absolute

turnovers are different. Then, the critical relative bid-ask spread is defined as the spread at

which for both portfolios the Sharpe-ratios adjusted by transaction costs are equal. In this

context, we use the average Sharpe-ratio of the equally weighted portfolios as benchmark

in order to calculate critical spreads for optimized portfolios.

3.5 Results

In the following, we present the results of the out-of-sample study.
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3.5.1 European Stock Indices Portfolio

We start with the dataset including the five European stock indices. The results of the

equally weighted portfolios are presented in Table 3.2.Volatilities, returns, and Sharpe-

ratios remain in a narrow range and show only small variations due to the rebalancing in-

terval. On average, an annualized return of 3.73% and an annualized volatility of 22.67%

results to a Sharpe-ratio of 0.1161. The low turnover leads to neglectable transaction costs.

Table 3.2: Results for the Equally Weighted European Stock Indices Portfolio
Results for the equally weighted portfolio consisting of the five European stock indices. Interval refers to
the frequency at which a rebalancing is conducted. Values inparentheses refer to Sharpe-ratios and returns
adjusted by transaction costs.

Interval Sharpe Ratio Return Volatility Turnover
p.a. p.a. (R) (A)

21 0.1164 (0.1158) 3.74% (3.73%) 22.70% 0.02 1.83
63 0.1162 (0.1159) 3.74% (3.73%) 22.69% 0.03 1.06
252 0.1155 (0.1154) 3.71% (3.71%) 22.61% 0.04 0.39

Average 0.1161 (0.1157) 3.73% (3.72%) 22.67% 0.03 1.09

As expected, the volatility of the plain optimization portfolios (Tables 3.3 and 3.4,

Panel A) is reduced significantly by averaged 1.08% for the long portfolios. Furthermore,

the portfolio return is improved by 0.61% on average. Nevertheless, the reoptimizations

generate a much higher trading volume and the related transaction costs decrease the re-

turns by 0.02% to 0.15%. The allowance for short selling reduces volatilities even more.

However, compared to the long portfolios, the returns and Sharpe-ratios tend to be lower

and do not even achieve the level of the equally-weighted portfolios on average. Further-

more, the turnover increased by more than two times. Consequently, the average critical

spread is negative. On average, the choice of the time-window length has a bigger impact

to returns and Sharpe-ratios than the choice of the reoptimization interval. Conversely, the

volatility is slightly more affected by the choice of the reoptimization interval.

From a theoretical point of view the allowance for short selling should lead to lower

volatilities because it implies less stringent constraints for the optimization. As shown by

Table 3.3 and 3.4 for example, applying the optimization to financial market data, a loo-

sening of constraints could lead to a less efficient portfolio in some cases. This finding is
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Table 3.3: Results for the Optimized European Stock IndicesPortfolio and0 < ωi < 1
Results for the portfolio consisting of five European stock indices under the constraint0 < ωi < 1. For
Panel A, # Data refers to the sample size used for the optimization. For Panel B and C,α refers to the
significance level for the test for a constant covariance matrix. The interval refers to the frequency at which
optimizations and tests are conducted. Values in parentheses refer to Sharpe-ratios and returns adjusted by
transaction costs.

# Data / Interval Sharpe Ratio Return Volatility Turnover Critical
α p.a. p.a. (R) (A) Spread

Panel A: Plain Optimizations

250
21 0.1687 (0.1615) 4.66% (4.51%) 21.11% 0.17 19.86 1.16%
63 0.1958 (0.1901) 5.27% (5.15%) 21.30% 0.41 15.96 2.24%
252 0.1437 (0.1404) 4.27% (4.20%) 22.09% 1.05 9.41 1.44%

500
21 0.1505 (0.1465) 4.29% (4.20%) 21.18% 0.09 11.19 1.41%
63 0.1664 (0.1633) 4.65% (4.58%) 21.34% 0.22 8.71 2.75%
252 0.1663 (0.1643) 4.70% (4.66%) 21.68% 0.61 5.48 4.82%

1000
21 0.1192 (0.1170) 3.69% (3.64%) 21.71% 0.05 6.19 0.26%
63 0.1168 (0.1151) 3.65% (3.61%) 21.80% 0.12 4.73 0.09%
252 0.1261 (0.1251) 3.88% (3.86%) 22.07% 0.33 2.98 2.28%

Average 0.1504 (0.1470) 4.34% (4.27%) 21.59% 0.34 9.39 1.83%

Panel B: Optimization + Test for a Constant Covariance Matrix

5%
21 0.2127 (0.2028) 5.52% (5.32%) 20.79% 0.23 26.83 1.53%
63 0.2447 (0.2378) 6.23% (6.08%) 20.94% 0.49 19.10 2.93%
252 0.1315 (0.1275) 4.01% (3.92%) 22.13% 1.27 11.47 0.65%

1%
21 0.2167 (0.2074) 5.63% (5.44%) 20.91% 0.21 25.34 1.70%
63 0.2601 (0.2534) 6.59% (6.45%) 21.12% 0.48 18.63 3.40%
252 0.1555 (0.1522) 4.46% (4.39%) 21.63% 1.03 9.31 2.03%

Average 0.2035 (0.1969) 5.41% (5.27%) 21.25% 0.62 18.45 2.04%

Panel C: Optimization + Daily Test for a Constant CovarianceMatrix

5% 1 0.1946 (0.1882) 5.21% (5.07%) 21.10% 0.69 17.82 1.94%
1% 1 0.1301 (0.1261) 3.95% (3.86%) 21.91% 0.66 11.30 0.59%

Average 0.1623 (0.1572) 4.58% (4.47%) 21.51% 0.68 14.56 1.27%

in line with the empirical study of Jagannathan and Ma [2003]who argue that constraints

for portfolio weights increase specification error, but canalso reduce sampling error. The

trade-off between both error types determines the gain or loss in efficiency.

The results of the covariance-test optimizations are presented in Panel B of the Tables

3.3 and 3.4. Considering the long (short) portfolios, the returns increase by 1.07% (0.72%)

while the volatility decrease by 0.34% (0.76%) on average compared to the plain optimi-
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Table 3.4: Results for the Optimized European Stock IndicesPortfolio and|ωi| < 1
Results for the portfolio consisting of five European stock indices under the constraint|ωi| < 1. For Panel
A, # Data refers to the sample size used for the optimization.For Panel B and C,α refers to the significance
level for the test for a constant covariance matrix. The interval refers to the frequency at which optimizations
and tests are conducted. Values in parentheses refer to Sharpe-ratios and returns adjusted by transaction
costs.

# Data / Interval Sharpe Ratio Return Volatility Turnover Critical
α p.a. p.a. (R) (A) Spread

Panel A: Plain Optimizations

250
21 0.0603 (0.0443) 2.33% (2.00%) 20.37% 0.36 42.67 -0.54%
63 0.0766 (0.0647) 2.69% (2.44%) 20.74% 0.83 32.38 -0.51%
252 0.1468 (0.1399) 4.30% (4.15%) 21.79% 2.17 19.54 0.71%

500
21 0.1315 (0.1217) 3.85% (3.65%) 20.92% 0.23 26.98 0.25%
63 0.1399 (0.1325) 4.07% (3.91%) 21.24% 0.53 20.75 0.51%
252 0.1839 (0.1792) 5.11% (5.01%) 21.80% 1.49 13.40 2.36%

1000
21 0.0570 (0.0515) 2.33% (2.21%) 21.51% 0.13 15.38 -1.74%
63 0.0616 (0.0572) 2.44% (2.35%) 21.81% 0.32 12.41 -2.06%
252 0.0870 (0.0841) 3.05% (2.98%) 22.42% 0.96 8.65 -1.69%

Average 0.1050 (0.0972) 3.35% (3.19%) 21.40% 0.78 21.35 -0.30%

Panel B: Optimization + Test for a Constant Covariance Matrix

5%
21 0.1466 (0.1226) 4.03% (3.55%) 20.00% 0.53 62.86 0.19%
63 0.1337 (0.1167) 3.83% (3.49%) 20.45% 1.17 45.64 0.16%
252 0.1360 (0.1284) 4.07% (3.91%) 21.87% 2.40 21.57 0.42%

1%
21 0.1634 (0.1405) 4.37% (3.91%) 20.02% 0.51 59.90 0.32%
63 0.1363 (0.1210) 3.88% (3.56%) 20.36% 1.05 40.82 0.20%
252 0.1497 (0.1436) 4.26% (4.13%) 21.11% 1.88 16.94 0.88%

Average 0.1443 (0.1288) 4.07% (3.76%) 20.64% 1.26 41.29 0.36%

Panel C: Optimization + Daily Test for a Constant CovarianceMatrix

5% 1 0.0928 (0.0793) 3.01% (2.73%) 20.55% 1.40 36.40 -0.27%
1% 1 -0.0192 -(0.0295) 0.67% (0.45%) 22.16% 1.76 29.95 -2.04%

Average 0.0368 (0.0249) 1.84% (1.59%) 21.35% 1.58 33.17 -1.15%

zation portfolios. This leads to an improvement of the average Sharpe-ratio by 0.0531

(0.0393). For both, long and short portfolios, the application of the tests for structural

breaks leads to almost a doubling of the average turnover. Nevertheless, the average cri-

tical spreads are higher compared to the plain optimization. The significance level of 1%

leads to superior returns, whereas the impact of the significance level on the volatility is

inconsistent.
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Panel C of the Tables 3.3 and 3.4 present the results for the covariance-test optimizati-

ons where the test is performed on a daily basis. It is remarkable that the significance level

of 5% leads to much better results compared to a level of 1%. Using 5%, long portfolios

are comparable to the corresponding covariance-test optimizations. With respect to the

short portfolio, this applies also for the volatility, whereas returns and Sharpe-ratios are

worse.

3.5.2 S&P500 Subindices Portfolio

Below, we continue with the results for the portfolio consisting of ten Standard & Poor’s

500 subindices. The results of the equally weighted portfolios are presented in Table 3.5.

On average, a annualized return of 4.99% and an annualized volatility of 20.15% results

to a Sharpe-ratio of 0.1933. As before, the low turnover leads to neglectable transaction

costs.

Table 3.5: Results for the Equally Weighted Standard & Poor’s 500 Subindices Portfolio
Results for the equally weighted portfolio consisting of the ten Standard & Poor’s 500 subindices. Interval
refers to the frequency at which a rebalancing is conducted.Values in parentheses refer to Sharpe-ratios and
returns adjusted by transaction costs.

Interval Sharpe Ratio Return Volatility Turnover
p.a. p.a. (R) (A)

21 0.1916 (0.1912) 4.99% (4.98%) 20.29% 0.03 4.75
63 0.1953 (0.1950) 5.04% (5.03%) 20.16% 0.05 2.89
252 0.1929 (0.1928) 4.96% (4.96%) 20.01% 0.11 1.37

Average 0.1933 (0.1930) 4.99% (4.99%) 20.15% 0.06 3.00

As before, the application of the plain optimization improves the performance mea-

sures significantly (Tables 3.6 and 3.7, Panel A). Compared to the equally weighted port-

folio, the volatility of the long-portfolio decreases by 4.83% whereas the return increases

by 1.03% on average. Transaction costs vary between 0.007% and 0.035%. In contrast to

the European indices portfolio, the allowance for short selling for the S&P500 portfolio

leads to considerable improvements on the long portfolio with respect to volatility, return,

and Sharpe-ratio. This goes along with a rise in averaged relative turnover from 0.21 to

0.56. The critical spreads reach considerably high values.
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Table 3.6: Results for the Optimized Standard & Poor’s 500 Subindices Portfolio and
0 < ωi < 1
Results for the portfolio consisting of ten Standard & Poor’s 500 subindices under the constraint0 < ωi <
1. For Panel A, # Data refers to the sample size used for the optimization. For Panel B and C,α refers to the
significance level for the test for a constant covariance matrix. The interval refers to the frequency at which
optimizations and tests are conducted. Values in parentheses refer to Sharpe-ratios and returns adjusted by
transaction costs.

# Data / Interval Sharpe Ratio Return Volatility Turnover Critical
α p.a. p.a. (R) (A) Spread

Panel A: Plain Optimizations

250
21 0.3037 (0.3013) 5.63% (5.60%) 14.93% 0.12 19.11 2.66%
63 0.3219 (0.3204) 5.93% (5.91%) 15.00% 0.22 11.71 5.53%
252 0.3694 (0.3686) 6.71% (6.70%) 15.19% 0.55 7.15 14.87%

500
21 0.3082 (0.3069) 5.75% (5.73%) 15.09% 0.07 11.42 5.15%
63 0.3138 (0.3128) 5.87% (5.86%) 15.20% 0.15 7.89 8.85%
252 0.3459 (0.3452) 6.46% (6.45%) 15.49% 0.40 5.22 22.09%

1000
21 0.2935 (0.2927) 5.65% (5.64%) 15.51% 0.04 6.65 9.75%
63 0.3050 (0.3044) 5.86% (5.85%) 15.61% 0.09 4.84 18.81%
252 0.3299 (0.3295) 6.34% (6.33%) 15.88% 0.29 3.75 42.64%

Average 0.3213 (0.3202) 6.02% (6.01%) 15.32% 0.21 8.64 14.48%

Panel B: Optimization + Test for a Constant Covariance Matrix

5%
21 0.3027 (0.3003) 5.62% (5.58%) 14.93% 0.12 19.13 2.63%
63 0.3349 (0.3336) 6.12% (6.10%) 15.00% 0.21 11.13 6.50%
252 0.3696 (0.3687) 6.71% (6.70%) 15.19% 0.55 7.10 15.06%

1%
21 0.3088 (0.3066) 5.71% (5.68%) 14.93% 0.11 17.89 2.99%
63 0.3262 (0.3249) 5.99% (5.97%) 14.99% 0.20 10.93 6.23%
252 0.3655 (0.3647) 6.64% (6.63%) 15.16% 0.51 6.69 16.01%

Average 0.3346 (0.3331) 6.13% (6.11%) 15.03% 0.28 12.14 8.24%

Panel C: Optimization + Daily Test for a Constant CovarianceMatrix

5% 1 0.3519 (0.3506) 6.33% (6.32%) 14.88% 0.24 10.16 8.08%
1% 1 0.3667 (0.3657) 6.63% (6.61%) 15.07% 0.30 8.75 10.93%

Average 0.3593 (0.3581) 6.48% (6.46%) 14.98% 0.27 9.45 9.51%

As presented in Tables 3.6 and 3.7 (Panel B), the applicationof the test for a constant

covariance matrix yields to superior results on average. The long portfolio shows only

slight improvements of the return whereas the return of the short portfolio increases by

0.52% on average. Moreover, the volatility decreases by 0.29% for the long and 0.25%

for the short portfolio. Although the average trading volume rises by more than 40% com-
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Table 3.7: Results for the Optimized Standard & Poor’s 500 Subindices Portfolio and
|ωi| < 1
Results for the portfolio consisting of ten Standard & Poor’s 500 subindices under the constraint|ωi| < 1.
For Panel A, # Data refers to the sample size used for the optimization. For Panel B and C,α refers to the
significance level for the test for a constant covariance matrix. The interval refers to the frequency at which
optimizations and tests are conducted. Values in parentheses refer to Sharpe-ratios and returns adjusted by
transaction costs.

# Data / Interval Sharpe Ratio Return Volatility Turnover Critical
α p.a. p.a. (R) (A) Spread

Panel A: Plain Optimizations

250
21 0.4034 (0.3967) 6.83% (6.73%) 14.20% 0.32 51.84 1.63%
63 0.4186 (0.4145) 7.15% (7.09%) 14.45% 0.60 32.32 2.94%
252 0.4960 (0.4935) 8.44% (8.40%) 14.79% 1.53 19.95 6.86%

500
21 0.3952 (0.3911) 6.75% (6.70%) 14.31% 0.20 31.84 2.64%
63 0.3996 (0.3969) 6.92% (6.88%) 14.56% 0.39 21.13 4.31%
252 0.4569 (0.4552) 8.01% (7.99%) 15.13% 1.06 13.75 9.44%

1000
21 0.2944 (0.2921) 5.44% (5.41%) 14.74% 0.11 18.37 2.51%
63 0.3228 (0.3213) 5.92% (5.90%) 14.93% 0.22 11.85 5.46%
252 0.3614 (0.3603) 6.67% (6.66%) 15.42% 0.65 8.45 11.44%

Average 0.3942 (0.3913) 6.90% (6.86%) 14.73% 0.56 23.28 5.25%

Panel B: Optimization + Test for a Constant Covariance Matrix

5%
21 0.4045 (0.3978) 6.84% (6.75%) 14.20% 0.31 51.26 1.66%
63 0.4169 (0.4130) 7.12% (7.07%) 14.45% 0.57 30.68 3.08%
252 0.4953 (0.4929) 8.43% (8.40%) 14.80% 1.54 19.96 6.85%

1%
21 0.3968 (0.3906) 6.74% (6.65%) 14.20% 0.30 48.26 1.70%
63 0.3989 (0.3951) 6.87% (6.81%) 14.46% 0.56 30.16 2.89%
252 0.5013 (0.4989) 8.51% (8.48%) 14.79% 1.47 19.06 7.35%

Average 0.4356 (0.4314) 7.42% (7.36%) 14.48% 0.79 33.23 3.92%

Panel C: Optimization + Daily Test for a Constant CovarianceMatrix

5% 1 0.4763 (0.4727) 7.83% (7.78%) 14.14% 0.67 28.19 4.17%
1% 1 0.4580 (0.4547) 7.70% (7.65%) 14.40% 0.88 25.44 4.45%

Average 0.4672 (0.4637) 7.76% (7.72%) 14.27% 0.77 26.82 4.31%

pared to the plain optimizations, the improvements of the results are not offset by a loss

of return due to transaction costs. However, the critical spreads are somewhat lower com-

pared to the plain optimizations. The choice of the significance level has no substantial

impact to both return and volatility.

Panel C of the Tables 3.6 and 3.7 show the results for the covariance-test optimizations
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where the test is performed on a daily basis and the optimization is conducted only if

the test rejects the null. On average, the results of this approach improve even on the

covariance-test optimizations with a fixed test and reoptimization interval. Furthermore,

the turnover is reduced considerably. In contrast to the first sample, the significance level

has a minor impact on the results. Nevertheless, a level of 5%results in slightly superior

results.

3.5.3 Rejection Dates

In this section we have a closer look at the rejection dates ofthe null. Considering the Eu-

ropean indices dataset as an example, Figure 3.1 presents the dates at which the test for a

constant covariance matrix rejects the null (63 days test interval / 1%-level) in connection

with a trend of variances and covariances.

Figure 3.1: Trend of Variances and Covariances and Dates of Structural Breaks
The Figure shows the trend of the sum of variances and covariances for the European indices dataset over
the time span November 26, 2002 to July 31, 2012 (2481 tradingdays). For each trading day, the sum
results by adding up the entries on and below the diagonal of acovariance matrix. The matrix is computed
on the basis of a rolling 500 trading day time-window. In addition, the points in time at which the test for
a constant covariance matrix rejects the null (structural break) are marked by vertical bars. The tests are
conducted under a setup of a 63 trading days test interval anda 1% significance level.

The chart illustrates that significant changes of variancesand covariances are due to points

in time at which the test rejects the null. Consequently, this procedure leads to consi-

derably improved results with respect to volatility, return, and Sharpe-ratio compared to
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the optimizations with a fixed historical time-window. Figure 3.2 compares exemplary

the performance of an equally weighted portfolio, a plain optimization portfolio, and a

covariance-test optimization portfolio in connection with the dates at which the test for a

constant covariance matrix rejects the null.

Figure 3.2: Portfolio Values
The Figure shows the portfolio values for the European indices dataset over the time span November 26,
2002 to July 31, 2012 (2481 trading days). The portfolio values are based on a rebalancing, reoptimization,
and test interval of 63 trading days and a 500 trading day time-window with respect to the plain optimization.
In addition, the points in time at which the test for a constant covariance matrix rejects the null are marked
by vertical bars. The tests are conducted under a setup of a 63trading days test interval and a 1% significance
level.

The chart reveals that the covariance-test optimization outperforms the equally weighted

portfolio and/or the plain optimization throughout most ofthe time. In particular during

the late phase of the bull market 2006/2007 and the European sovereign-debt crisis be-

ginning in the fall 2009, this new method outperforms the remaining portfolio selection

approaches.

The results of the covariance-test optimization indicate that they are quite sensitive to

the choice of the test and reoptimization interval, whereasthe selected significance level
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plays only a minor role. This finding leads to a strategy, where we apply the test on a

daily basis and conduct a reoptimization only if the test rejects the null. However, this

strategy does not improve upon the covariance-test optimizations for fixed intervals in

most settings. Moreover, the results are even worse for the European indices.

This behaviour is explained by the unreliable high number ofdetected structural

breaks. For the S&P indices there are 29 (1%-level) and 42 (5%-level) rejections, re-

spectively. The same holds true for the European indices where 17 (1%-level) and 26

(5%-level) rejections occured. This phenomenon can plausible be explained with the ef-

fect of sequential testing. Wied et al. [2013a] investigated this issue for a test of constant

correlations. Hence, additional adjustments have to be carried out in order to make this

strategy applicable for practice. However, this modifications are not in the scope of the

present paper.

3.6 Conclusion

Our empirical study shows that minimum-variance optimization significantly improves

return, volatility, and Sharpe-ratio compared to equally weighted portfolios. Although the

optimizations lead to considerably increased trading volumes, the turnover in connection

with relatively low bid-ask spreads for heavily traded bluechips causes modest transaction

costs. Furthermore, the computation of critical relative bid-ask spreads suggests that an

optimization is preferable even under much higher transaction costs. However, the study

also reveals the sore point of the optimization setup: The results are very sensitive to the

chosen historical time-window and to the reoptimization interval.

To overcome the issue of determining appropriate time-windows, we use the test of

Aue et al. [2009] for a constant covariance matrix to detect structural breaks which set

the starting point of a sample. We implement a consistent andessential advancement of

the promising approach introduced by Wied et al. [2013b] andapply the optimizations

in combination with the test in two different ways. First, weconduct the test and the

optimization after a fixed interval where the rejection of the null sets a new beginning
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point for the time-window. Second, we apply the test on a daily basis and conduct a

reoptimization only if the test rejects the null. That means, the procedure determines the

length of the time-windows as well as the point in time where the portfolio is reoptimized.

Finally, we can conclude that minimum-variance optimizations in combination with

the test for a constant covariance matrix provides a usable approach to replace an arbitrary

sample selection for parameter estimation by a procedure which is statistically justified.

Therefore, it can be used as an automated investment system for strategic asset alloca-

tions. Besides, there are some more remarkable benefits. First, the system is completely

automated and no expensive funds managers and analysts are required. Hence, costs could

be decreased significantly. Moreover, the out-of-sample study shows that there is a good

chance to outperform an equally distributed portfolio overlonger periods of time. Conse-

quently, the approach seems to be an appropriate alternative for an usage in practice and

in order to overcome the already mentioned weak points of actively managed portfolios.

Nevertheless, the new approach is not suited so resolve the timing issue yet. To this end,

some modifications considering sequential testing have to be performed. We will use the

results achieved so far as a starting point and take up this topic in our future research.
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4.1 Introduction

Over the last two decades, Value-at-Risk (VaR) has become the de facto standard tool for

measuring and managing risk in the financial services industry. Defined as thep-quantile

of a relevant profit and loss (P/L) distribution wherep is regularly set to1% or 5%, it is

now widely used by commercial banks and insurers as well as firms outside the financial

industry to assess the risk exposure of single investments and portfolios.1 A simple reason

for this importance of VaR for the financial industry is givenby the fact that under the

1996 Market Risk Amendment to the first Basel Accord, banks were allowed to employ

internal VaR-models to calculate capital charges for theirrisky investments. Despite its

popularity with practicioners, however, VaR has also received criticism from academia

due to its lack of subadditivity [and thus coherence, see Artzner et al., 1999] in case of

non-gaussian P/L distributions.2 Even more importantly, commentators have blamed VaR

in part for the severity of the recent financial crisis as the industry-wide use of VaR capital

constraints enabled externalities to spread in financial markets through the pricing of risk

1Extensive discussions of the properties of VaR and its use inpractice are given, e.g., by Dowd [1998],
Jorion [2006], and Alexander [2008].

2Note, however, that evidence by Danı́elsson et al. [2005] points out the subadditivity of VaR for most
practical applications.
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[see Shin, 2010].3 Consequently, both regulators and financial risk managers have recently

taken an increased interest in model validation and backtests of VaR-forecasts.

Despite its importance for bank regulation, VaR-backtesting has received relatively

little attention in the financial econometrics literature compared to the numerous stu-

dies on the estimation and forecasting of VaR. One of the firstformal statistical back-

tests for VaR was proposed by Kupiec [1995] who tests the sequence of VaR-violations

for the correct number of violations (i.e., unconditional coverage). Christoffersen [1998]

and Christoffersen and Pelletier [2004] extend these first tests of unconditional coverage

by additionally testing for the independence of the sequence of VaR-violations yielding

a combined test of conditional coverage. Recently, an integrated framework for VaR-

backtesting that includes the previously mentioned tests was proposed by Berkowitz et al.

[2011]. Further examples of the few backtests for VaR that are available to regulators are

due to Berkowitz [2001], Engle and Manganelli [2004], Haas [2005] and Candelon et al.

[2011], although the test of unconditional coverage continues to be the industry standard

mostly due to the fact that it is implicitly incorporated in the framework for backtesting

internal models proposed by the Basel Committee on Banking Supervision [1996].4

In this paper, we propose a new set of backtests for VaR-forecasts that significantly

improve upon existing formal VaR-backtests like, e.g., thebenchmark models proposed

by Christoffersen and Pelletier [2004]. We first restate thedefinitions of the unconditio-

nal coverage property and propose a new test of the correct number of VaR-exceedances.

Extending the current state-of-the-art, our new test can beused for both one-sided and

two-sided testing and is thus able to test separately whether a VaR-model is too conser-

vative or underestimates the actual risk exposure. Second,we stress the importance of

testing both for the property of independent as well as the property of identically distri-

buted VaR-exceedances and propose a simple approach for testing for both properties.

While it has been noted in previous studies that VaR-violations should ideally be i.i.d.,

3Similar arguments in favor of a destabilizing effect of bankregulation based on VaR on the economy
are stated by Leippold et al. [2006] and Basak and Shapiro [2001].

4A review of backtesting procedures that have been proposed in the literature is given by Campbell
[2007].
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standard backtests focus solely on the independence of the violations.5 In this paper, we

argue that the property of identically distributed VaR-exceedances is of vital importance

to regulators and risk managers. In particular, we show thattraditional VaR-backtests that

center around first-order autocorrelation in violation processes are often not able to de-

tect misspecified VaR-models during calm boom and highly volatile bust cycles. The new

test of the i.i.d. property of VaR-violations explicitly tests for the presence of clusters in

VaR-violation processes. This new feature is highly economically relevant as our test for

violation clusters can identify VaR-models that yield inaccurate risk forecasts when they

are most undesirable: during economic busts and financial crises when extreme losses on

investments cluster due to a persistent increase in the volatility level. Finally, we also pro-

pose a weighted backtest of conditional coverage that simultaneously tests for a correct

number and the i.i.d. property of VaR-violations. Our proposed weighted backtest is in

the spirit of the original backtest of conditional coverageby Christoffersen and Pelletier

[2004], but generalizes it by allowing the user to choose theweight with which the test of

unconditional coverage enters the joint test of conditional coverage.6 Our newly proposed

set of backtests is simply based on i.i.d. Bernoulli random variables making them very in-

tuitive and easy to implement. By construction, these testsautomatically keep their level,

even for very small sample sizes as they are often found in VaR-backtesting.

We employ our proposed backtests in a simulation study usingseveral sets of simula-

ted data that mimic real-life settings in which the simulated data violate the unconditional

coverage, i.i.d., and conditional coverage properties to different degrees. The performance

of the new tests is compared to classical tests frequently used in theory and practice as

well as to a recently proposed powerful test. The results indicate that our tests significant-

ly outperform the competing backtests in several distinct settings. In addition, we present

an empirical application of the new tests using a unique dataset consisting of the asset

returns of an asset manager’s portfolios.

5In fact, previous Markov- and duration-based tests of Christoffersen [1998],
Christoffersen and Pelletier [2004] and Candelon et al. [2011] only consider autocorrelation in VaR-
violations as one possible reason why VaR-violations couldbe clustered.

6The approach of weighting the test statistics could also be pursued using classical uc and ind tests
instead of our new uc and iid test. However, we believe this paper to be the first to explicitly point out the
possibility to generate new tests by means of weighting uc and iid tests.
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The paper is structured in a similar fashion as the one of Berkowitz et al. [2011] and is

organized as follows. Section 4.2 introduces the notation,defines the properties of VaR-

violations, and describes our new set of backtests. Section4.3 evaluates the performance

of the newly proposed backtests as well as several benchmarkprocedures for backtes-

ting VaR-forecasts in a simulation study. Section 4.4 presents results from our empirical

application study. Section 4.5 concludes the paper.

4.2 Methodology

In this section, we introduce the notation used throughout the paper, redefine the desirable

properties of VaR-violations that are frequently discussed in the literature and present our

new backtests.

4.2.1 Notation and VaR-Violation Properties

Let {yt}nt=1 be a sample of a time seriesyt corresponding to daily observations of the

returns on an asset or a portfolio. We are interested in the accuracy of VaR-forecasts, i.e.,

an estimation of confidence intervals. Following Dumitrescu et al. [2012], the ex-ante VaR

V aRt|t−1(p) (conditionally on an information setFt−1) is implicitly defined byPr(yt <

−V aRt|t−1(p)) = p, wherep is the VaR coverage probability. Note that we follow the

actuarial convention of a positive sign for a loss. In practice, the coverage probabilityp is

typically chosen to be either 1% or 5% (see Christoffersen, 1998). This notation implies

that information up to timet − 1 is used to obtain a forecast for timet. Moreover, we

define the ex-post indicator variableIt(p) for a given VaR-forecastV aRt|t−1(p) as

It(p) =





0, if yt ≥ −V aRt|t−1(p);

1, if yt < −V aRt|t−1(p).

(4.1)

If this indicator variable is equal to1, we will call it a VaR-violation.

To backtest a given sequence of VaR-violations, Christoffersen [1998] state three de-
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sirable properties that the VaR-violation process should possess. First, the VaR-violations

are said to have unconditional coverage (uc thereafter) if the probability of a VaR-violation

is equal top, i.e.,

P[It(p) = 1] = E[It(p)] = p. (4.2)

Second, the independence (ind thereafter) property requires that the variableIt(p) has to

be independent ofIt−k(p), ∀k 6= 0. Finally, the uc and ind properties are combined via

E[It(p)− p|Ωt−1] = 0 to the property of conditional coverage (cc thereafter). Indetail, a

sequence of VaR-forecasts is defined to have correct cc if

{It(p)} i.i.d.∼ Bern(p), ∀t. (4.3)

While we agree with the formulation of the cc property, we point out that the uc and

the ind properties as defined above suffer from some serious restrictions. The uc property

requires a test whether the expected coverage isp for each dayt individually. To be pre-

cise, the equationP[It(p) = 1] = E[It(p)] = p holds only true ifP[It(p) = 1] = p holds

for all t. However, it is not feasible to verify if this assumption holds true for allt indivi-

dually by means of a statistical test of uc. Moreover, it is quite likely that the sequence of

VaR-violations is not stationary and that the actualp varies across different market phases

even if 1
n

∑n
t=1 It equalsp for the total sequence. Evidence for this conjecture is found by

Escanciano and Pei [2012]. The practical relevance of this feature is demonstrated in our

empirical study (see Section 4.4). Consequently, we redefine the uc property simply as

E

[
1

n

n∑

t=1

It(p)

]
= p. (4.4)

With respect to the ind property, it is interesting to note that the current state-of-the-art

backtests in the financial econometrics literature do not focus on testing the property of

VaR-violations being identically distributed. In fact, the sequence{It(p)} could exhibit

clusters of violations while still possessing the propertyof independence as defined above.

In fact, unexpected temporal occurrences of clustered VaR-violations may have several
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potential reasons. On the one hand,{It(p)} may be not identically distributed andp could

vary over time. On the other hand,It(p) may not be independent ofIt−k(p), ∀k 6= 0.

We therefore reformulate the ind property as the i.i.d. property (i.i.d. thereafter). The

hypothesis of i.i.d. VaR-violations holds true if

{It(p)} i.i.d.∼ Bern(p̃), ∀t, (4.5)

wherep̃ is an arbitrary probability. Note that the i.i.d. hypothesis does not deal with the

relative amount of VaR-violations. Hence, if appropriate,p̃ will be replaced by its empi-

rical counterpart̄p (the estimated violation rate) within the respective test statistic, while

it is specified to its desired valuep (which is tested later on) within the cc property.

In the following, we describe our new set of backtests that includes separate tests

for all mentioned properties of VaR-violation processes. Pseudocode for all new tests is

provided in Chapter A.

4.2.2 A New Test of Unconditional Coverage

At this point, we are interested in testing the null hypothesisE
[
1
n

∑n
t=1 It(p)

]
= p against

the alternativeE
[
1
n

∑n
t=1 It(p)

]
6= p. In fact, as we will see later, our new test stati-

stic also allows us to separately test against the alternativesE
[
1
n

∑n
t=1 It(p)

]
> p and

E
[
1
n

∑n
t=1 It(p)

]
< p. The most intuitive and commonly used test statistic for thetest of

uc is given by (see Christoffersen, 1998):

LRkup
uc = −2 log[L(p; I1, I2, ..., In)/L(p̄; I1, I2, ..., In)]

asy∼ χ2(1), (4.6)

wherep̄ = n1

n1+n0
, n1 is the number of violations andn0 = n− n1. Moreover, we have

L(p; I1, I2, ..., In) = pn1(1− p)n0 (4.7)

and

L(p̄; I1, I2, ..., In) = p̄n1(1− p̄)n0 . (4.8)
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Candelon et al. [2011] recently introduced an alternative test for the uc hypothesis

using orthonormal polynomials and the GMM test framework proposed by Bontemps

[2006], Bontemps and Meddahi [2005] and Bontemps and Meddahi [2012]. Their test

statistic is given by

Juc = Jcc(1) =

(
1√
m

m∑

i=1

M1(di; p)

)2

asy∼ χ2(1), (4.9)

whereM1 is an orthonormal polynomial associated with a geometric distribution with a

success probabilityp anddi denotes the duration between two consecutive violations [see

Candelon et al., 2011, for more details].

However, both tests suffer from significant drawbacks. First, without modifications, it

is not possible to construct one-sided confidence intervals. Such an additional feature, on

the other hand, would be of particular interest to bank regulators and risk-averse investors

who are primarily interested in limiting downside risk. While it is trivial to check whether

a rejection was due to a model being too conservative or not conservative enough, none

of the existing tests yields one-sided critical values. In this context, results from our simu-

lation study illustrate that the power of one-sided tests issignificantly higher. The second

drawback is concerned with the behaviour of the tests in finite samples. As we deal with

tail forecasts based on binary sequences, the number of violations is comparatively small

and discrete. Hence, ties between the sample test value and those obtained from Monte

Carlo simulation under the null hypothesis need to be broken. That means that we have

to ensure that the probability for two equal values of the test statistic for two different

data sets is zero. Christoffersen and Pelletier [2004] propose to use the Dufour [2006]

Monte Carlo testing technique to break ties between test values. As their approach, howe-

ver, is computationally demanding and unnecessarily complex, we propose a different tie

breaking procedure.

We address the latter problem by exploiting an idea used, among others, by
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Podolskij and Ziggel [2009] and propose to use the test statistic

MCSuc =

n∑

t=1

It(p) + ǫ, (4.10)

whereǫ is a continuously distributed random variable with small variance that serves to

break ties between test values.7 Critical values of the test statistic are computed via Monte

Carlo simulations (MCS) as is done for all other backtests throughout this paper. For fixed

n andp, the distribution of the test statistic is known. We then simulate a large number of

realizations of the test statistic under the respective null hypothesis and use the resulting

quantile for testing the uc hypothesis. Adding the random variable ǫ guarantees that the

test exactly keeps its size if the number of Monte Carlo simulations for obtaining the

critical value tends to infinity.8 Note that without the addition of the random variableǫ,

the test statistic would have a discrete distribution and not all possible levels could be

attained. Additionally, note that the choice ofǫ is not crucial for testing the uc hypothesis.

We noticed in robustness checks that the finite sample performances of the tests are not

substantially affected by changes in the distribution ofǫ as long as it remains continuous

with a small, non-zero variance. Consequently, it is intuitive to use normally distributed

random variables forǫ. Nevertheless, one needs to assure that the test statistic for v − 1

violations is smaller then the test statistic forv violations. Followingly, we setǫ ∼ 0.001 ·

N(0, 1) in our simulation study. Finally, it is instructive to see that our new approach

allows for one-sided and two-sided testing for every desired test level.

Critical values for all our tests are then computed via MCS instead of, e.g., making use

of explicit expressions of the exact or asymptotic distributions. Basically, all test statistics

we consider are given as the sum of a discrete random variable(determined by Bernoulli

distributed random variables) and a continuous random variable with known distribution

that is independent from the discrete random variable. Thus, on the one hand, the distri-

butions of the test statistics are uniquely determined for fixedn andp and additionally it

7Podolskij and Ziggel [2009] employ the idea of adding a smallrandom variable to a test statistic to
construct a new class of tests for jumps in semimartigale models.

8The theoretical foundation of our approach is given by Dufour [2006] who considers a more general
context and solves this problem by introducing randomized ranks according to a uniform distribution.
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is basically useful to consider MCS. On the other hand, due tothe continuous part, the

test statistics are also continuously distributed. This follows from the general fact that, for

a discrete random variableX with supportMX and a continuous random variableY such

thatX andY are independent,

P (X+Y ≤ a) =
∑

x∈MX

P (x+Y ≤ a|X = x)P (X = x) =
∑

x∈MX

P (Y ≤ a−x)P (X = x).

Thus, the cumulative distribution function ofX + Y can be written as a countable sum of

continuous functions so that it is continuous as well. Usinga result from Dufour [2006],

the empirical critical values then yield a test that exactlykeeps its size if the number of

MCS tends to infinity.

Instead of using MCS, one could basically also derive the exact distribution functions

of the test statistics, although this would indubitably be acumbersome task. It would also

be possible to derive asymptotic results if the test statistics are appropriately standardized

and if one imposes additional moment assumptions on the continuous random variable.

For example, a suitably standardized uc test statistic might be 1√
n

∑n
t=1(It(p)− p)+ 1√

n
ǫ.

However, we believe that, although of some interest, such anasymptotic analysis is not

necessary in our setting. In practice,n andp are fixed and by an increasing number of

Monte Carlo repetitions we can get arbitrarily exact critical values of the test statistics

in reasonable time. Since one typically deals with a low number of VaR violations, one

could moreover expect the asymptotic approximation to be highly inaccurate, which is

confirmed by several studies [see, e.g., Berkowitz et al., 2011].

Basically, the one-sided version of our new uc test can be regarded as a generalization

of the Basel traffic light approach as described in Campbell [2007]. The Basel approach

provides a method which can be easily applied. Here, the1% VaR violations in the last

250 days are counted. The traffic light is green whenever the number of violations is less

than5, yellow whenever the number lies between5 and9 and red otherwise. With the

decision rule “Reject the null hypothesis of a valid VaR model whenever the traffic light

is red” the procedure can be interpreted as a significance test. In fact, then the Basel test
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statistic is a special case (withn = 250, p = 0.01, α < 0.001 and ǫ = 0) of our uc

test statistic. Information concerning the size and power of the Basel test can be found in

Basel Committee on Banking Supervision [1996]. However, anapllication of this test is

not possible as soon as the input parameters change. In contrast to that, our new approach

allows, e.g., to increase the sample size or to vary the significance level.

4.2.3 A New Test of I.I.D. VaR-Violations

As stated in Christoffersen [1998], testing solely for correct uc of a VaR-model neglects

the possibility that violations might cluster over time. Consequently, Christoffersen [1998]

propose a test of the violations being independent against an explicit first-order Markov

alternative. The resulting test statisic is given by:

LRmar
iid = −2 log[L(Π̃2; I1, I2, ..., In)/L(Π̃1; I1, I2, ..., In)]

asy∼ χ2(1). (4.11)

Here, the likelihood functions are given by:

L(Π̃1; I1, I2, ..., In) =

(
1− n01

n00 + n01

)n00
(

n01

n00 + n01

)n01

(
1− n11

n10 + n11

)n10
(

n11

n10 + n11

)n11
(4.12)

and

L(Π̃2; I1, I2, ..., In) =

(
1− n01 + n11

n00 + n10 + n01 + n11

)n00+n10

(
n01 + n11

n00 + n10 + n01 + n11

)n01+n11

,

(4.13)

wherenij is the number of observations with valuei followed by j. Note that this first-

order Markov alternative has only limited power against general forms of clustering. Mo-

reover, as shown in Christoffersen and Pelletier [2004], this test is not suited for several

settings and has a poor behaviour in finite samples. The test can then be combined with

the test of uc presented in the previous subsection to yield afull test of cc. Despite the afo-

rementioned shortcomings, however, it is still one of the most frequently used backtests
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in practice [see Candelon et al., 2011].

In a subsequent work, Christoffersen and Pelletier [2004] introduce more flexible tests

which are based on durations between the violations. The intuition behind these tests is

that the clustering of violations will induce an excessive number of relatively short and

long no-hit durations. Under the null hypothesis, the no-hit durationsD should then be

exponentially distributed with

fexp(D; p) = pe−pD, (4.14)

whereD is the no-hit duration. In their work, Christoffersen and Pelletier [2004] employ

the Weibull and the gamma distribution to test for an exponential distribution of the no-hit

durations. Nevertheless, we will only consider the Weibulltest in our simulation study as

it yields considerably better results than the gamma test [see Haas, 2005]. In addition to

the mentioned tests, the literature on VaR-backtesting also includes the standard Ljung-

Box test, the CAViaR test of Engle and Manganelli [2004], theregression based dynamic

quantile test by Hurlin and Tokpavi [2006] and spectral density tests. However, the le-

vel of most of these tests is poor for finite samples and therefore critical values need to

be calculated based on the Dufour Monte Carlo testing technique (see Berkowitz et al.,

2011).

Recently, Candelon et al. [2011] introduced a new test for the i.i.d. hypothesis. As des-

cribed above, this test is based on orthonormal polynomialsand the GMM test framework.

The test statistic is given by

Jiid(q) =

(
1√
m

m∑

i=1

M(di; p̄)

)T (
1√
m

m∑

i=1

M(di; p̄)

)
asy∼ χ2(q), (4.15)

whereM(di; p̄) denotes a(q, 1) vector whose components are the orthonormal polynomi-

alsMj(di; p̄), for j = 1, ..., q, evaluated for the true violation ratēp.

To introduce our new test statistic, we first define the set of points in time on which a
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VaR-violation occurs via

V = {t|It = 1} = (t1, ..., tm). (4.16)

The test statistic for our new i.i.d. hypothesis is then given by

MCSiid,m = t21 + (n− tm)
2 +

m∑

i=2

(ti − ti−1)
2 + ǫ. (4.17)

This sum essentially consists of the squared durations between two violations. Basi-

cally, the idea behind this test statistic follows the principle of the Run-Test proposed by

Wald and Wolfowitz [1940]. To be precise, the sum of the squared durations between two

violations is minimal if the violations are exactly equallyspread across the whole sample

period. If the violations are clustered and occur heaped, this sum increases. Just like in

the Run-Test, both systematic and heaped occurences of violations could be undesirable

in a risk management setting. For example, the process of VaR-violations could exhibit

an undesirable cyclical or seasonal behaviour that is detected by our new test of the i.i.d.

property as the test statistic tends to its minimum.9 At the same time, too large values

of MCSiid,m could indicate a clustering of violations indicating a significantly bad fit of

the VaR-model in a particular time period. For the purposes of this study we concentrate

on testing for clustered VaR-violations noting that two-tailed testing for both clusters and

cyclical patterns in VaR-violations is straightforward.

Empirically, clustered VaR violations most often occur in atime of financial crisis with

high volatility which follows an economically quiet time and vice versa. In the former

case, an initially suitable VaR model becomes inadequate intimes of market turmoil and

increasing volatility. Assuming this, one could use our newi.i.d. test for detecting times

of crises or volatility clusters. Note that such a test will work as long as the VaR model

is not completely correctly specified. On the other hand, it is also possible that the VaR

model is suitable for both quiet and volatile times leading to a failure of the test. Due to

this fact, it would be interesting to investigate such a kindof test in more detail and useful

9This feature is of particular interest, e.g., in commodity and weather risk management.
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to compare or combine an analysis based on the new i.i.d. testwith e.g. a test for constant

variances as presented in Wied et al. [2012a]. However, thisissue is not in the scope of

the present paper.

As before, we waive a formal derivation of the distribution of our test statistic. Instead,

we obtain the critical values of the test statistic by means of a Monte Carlo simulation

(thus inspiring the abbreviationMCSiid,m). The simulation is straightforward as onlyn

andp have to be adapted to the specific situation. Note that the critical values need to

be simulated separately for each value ofm as we are solely interested in the durations

between the violations and not in the absolute number of it. We use the same continuously

distributed random variableǫ as before to break ties. Again, the choice ofǫ ensures the

MCS to yield a valid test. Moreover, the computational complexity of the test is negligible.

4.2.4 A New Test of Conditional Coverage

We now describe our new test of cc that combines the two new tests for the uc and the

i.i.d. property. Starting point is again the standard test of cc as proposed by Christoffersen

[1998] which utilizes the test statistic

LRmar
cc = −2 log[L(p; I1, I2, ..., In)/L(Π̃1; I1, I2, ..., In)]

asy∼ χ2(2), (4.18)

and which is based on the first-order Markov alternative described above. In a related

study, Berkowitz et al. [2011] extend their Weibull test forthe i.i.d. property and derive

an alternative test of cc. They postulate a Weibull distribution for the duration variableD

with distribution

h(D; a, b) = abbDb−1e−(aD)b , (4.19)

with E[D] = 1/p. Then, the null hypothesis of their test of cc is given by

H0,cc : b = 1, a = p. (4.20)

Using orthonormal polynomials and the GMM test framework, Candelon et al. [2011]
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propose a competing test of the cc hypothesis. Their test statistic is given by

Jcc(q) =

(
1√
m

m∑

i=1

M(di; p)

)T (
1√
m

m∑

i=1

M(di; p)

)
asy∼ χ2(q). (4.21)

Again,M(di; p) denotes a(q, 1) vector whose entries are the orthonormal polynomials

Mj(di; p), for j = 1, ..., q.

To the best of our knowledge, the literature provides no modification of the mentioned

tests in a way that they allow for a weighted influence of the ucand i.i.d. components in

the combined test of cc. From the perspective of a risk manager, however, such a feature

could be highly desirable as more weight could be assigned toone of the components of

the test of cc. Hence, we are interested in a test of the form

MCScc,m = a · f(MCSuc) + (1− a) · g(MCSiid,m), 0 ≤ a ≤ 1, (4.22)

wherea is the weight of the test of uc in the combined cc test. The firstcomponent of our

new cc test is then given by

f(MCSuc) =

∣∣∣∣
(MCSuc)/n− p

p

∣∣∣∣ =
∣∣∣∣
(ǫ+

∑n
t=1 It)/n− p

p

∣∣∣∣ . (4.23)

This term measures (in percent) the deviation between the expected and observed pro-

portion of violations. As the general sizes ofMCSuc andMCSiid,m are not the same the

quantities would not be suitably comparable without a standardization. Moreover, the dif-

ference in size varies depending on the setting (i.e.n andp). As the quantities will appear

in one sum, it is necessary to be able to compare them suitably.

To allow for a one-sided testing within the uc component, theabove term is multi-

plied by 1{∑n
t=1

It/n≥p} or 1{∑n
t=1

It/n≤p}, respectively.10 The intuition behind this is that

the weight of the uc part should be zero if the observed quantity is “on the opposite side”

of the null hypothesis such that it is very unlikely that the alternative is true.

10A one-sided test seems to be useful as it can be considered as ageneralization of the Basel traffic
light approach and is of particular interest to risk-averseinvestors who are primarily interested in limiting
downside risk.
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The second component in the cc test in (4.22) is defined as

g(MCSiid,m) =
MCSiid,m − r̂

r̂
· 1{MCSiid,m≥r̂}, (4.24)

wherer̂ is an estimator of the expected value of the test statisticMCSiid,m under the null

hypothesis (4.5), i.e., forE(MCSiid,m|H0) =: r (see below and chapter A). The second

component measures the deviation (in percent) between the expected and observed sum of

squared durations. Again, we use random variablesǫ to break ties. In line with the new uc

and i.i.d. tests, we abstain from a formal derivation of the distribution of our test statistic

and obtain the critical values by means of a Monte Carlo simulation for each combination

of sample sizen and weighting factora.

Note that the estimator̂r is calculated in a prior step before calculating the actual

test statistics and deriving critical values (cf. the pseudocode in ). Thus, forMCScc,m,

the arguments regarding the correctness of the MCS from the end of Section 2.2 are also

applicable.

As the weighting factora can be chosen arbitrarily, a natural question to ask is howa

should be chosen. On the one hand, small test samples (e.g., 250 days) and small values

of p (e.g.p = 1%) lead to a small expected number of VaR-violations. In thesecases,

a risk manager (or regulator) might be more interested in backtesting the VaR-violation

frequency rather than the i.i.d. property of, for instance,only two or three violations. On

the other hand, large test samples (e.g., 1,000 days) may include calm bull and volatile

bear markets. A VaR-model which is not flexible enough to adapt to these changes may

lead to non-identically distributed VaR-violations whileat the same time yielding a correct

uc. Therefore, risk managers could be inclined to select a lower level ofa to shift the

sensitivity of the cc test to the test of the i.i.d. property.Note, as both components of

the test are strictly positive it is ruled out that one criteria could compensate the failing

of the other. Therefore, the choice ofa affects solely the sensitivity of the cc test to one

of the components. Nevertheless, the selection of the optimal weighting factora is an

interesting task. Regarded as a mathematical optimizationproblem, one could basically
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find the optimala which minimizes a suitably weighted sum of the type-1 and type-2

error for a given alternative. However, this mainly technical issue is not in the scope of

the present paper.

4.3 Simulation Study

To examine the performance of our newly proposed backtests in finite samples, we per-

form a comprehensive simulation study in which we compare our new backtests to se-

veral different benchmarks. These include the classical tests proposed by Christoffersen

[1998] and Christoffersen and Pelletier [2004] because these approaches are still ve-

ry frequently used in theory (e.g. by Weiß and Supper, 2013) and in practice (see

Basel Committee on Banking Supervision, 2011). In addition, we employ the tests re-

cently proposed by Candelon et al. [2011] as a benchmark showing robust properties and

a high power. The relevance of the benchmark tests is emphasized by the fact that in

recent studies these procedures are applied in parallel (see, e.g., Asai et al., 2012 and

Brechmann and Claudia, 2013).

Before starting with the uc tests, we want to point out that the time required to compute

the critical values is quite short for all applied tests. Theaverage calculation times for

p = 0.05 and different values ofn are presented in Table 4.1.

With the exception of the Weibull tests, all average calculation times lie within a cor-

ridor of 0.07 to 4.4 seconds. The longer calculation time of the Weibull tests, which lies

between 25.79 to 27.95 seconds, is due to the required maximum likelihood estimates

of the parameters of the Weibull distribution. However, none of the calculation times are

critical for applications.
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Table 4.1: Comparison of the Backtests’ Calculation Times
The table presents average calculation times (in seconds) for the different backtests used in the paper forp =
0.05, 10,000 simulations and different values ofn based on 10 repetitions. All calculations are performed
with Matlab2012a on a standard notebook. Note, the results of MCSiid are taken over toMCScc. Hence,
the upper bound for a direct calculation ofMCScc is the sum of both single times.

UC Tests
n LRkup

uc GMMuc MCSuc

252 0.08 1.48 0.07
500 0.12 1.60 0.11

1,000 0.20 1.84 0.20
1,500 0.29 2.06 0.28
2,500 0.45 2.57 0.45

I.I.D. Tests
n LRmar

iid LRwei
iid GMMiid MCSiid

252 0.61 25.79 3.70 1.54
500 0.71 26.31 3.75 1.64

1,000 0.92 26.48 3.89 1.85
1,500 1.10 27.09 4.06 2.06
2,500 1.52 27.93 4.40 2.28

CC-Tests
n LRmar

cc LRwei
cc GMMcc MCScc

252 0.68 26.26 1.99 1.58
500 0.78 26.48 2.18 1.63

1,000 1.01 27.13 2.31 1.84
1,500 1.23 27.43 2.43 1.95
2,500 1.66 27.95 2.65 2.29

4.3.1 Tests of Unconditional Coverage

We analyze the performance of the different tests of uc by simulating10, 000 samples11

and using different parameter combinations forp, γ, andn to analyze the size and power

of the backtests in more detail. In constrast to obtaining violations from a parametric VaR

model, we simulate sequences of VaR-violations using the data generating process (DGP)

It ∼ Bern(γ · p), t = 1, ..., n. (4.25)

Here,γ is a coverage parameter which allows for distinguishing between null hypothe-

sis and alternatives. To determine the size of the tests, we set the coverage parameter

γ = 1.0. For the analysis of the tests’ power, we increase the violation probability and

11With this number of repetitions, the standard error of the simulated rejection probabilites is equal to
1

100

√
p(1− p), wherep is the true rejection probability. That means, the standarderror is of order 1

100
. A

similar result holds for the accuracy of the simulated critical values, see below.
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setγ = 1.1, 1.25, 1.50 and2.00.12 Each sequenceIt of simulated VaR-violations is then

backtested using the new upper-tailMCSut
uc and the two-tailedMCStt

uc backtest as descri-

bed in Section 4.2.2. To evaluate each test’s power, we compute the fraction of simulations

in which the test is rejected (hereafter referred to as rejection rate). Critical values of the

test statistics for different parametersp andn are computed using10, 000MC simulations.

Complementing our new backtests, we also apply theLRkup
uc test of Christoffersen [1998]

and theGMMuc test of Candelon et al. [2011] to the simulated violation sequences and

compare the results of the tests. The results of the simulation study on the performance

of the tests of uc are presented in Table 4.2 and Table 4.3. Notsurprisingly, due to the

fact that the critical values for each of the tests are determined via simulation, the rejec-

tion frequencies for the settingγ = 1.0 are close to the nominal size of the tests. With

respect to the power of the uc tests, the results of theLRkup
uc test, theGMMuc test, and the

two-tailedMCStt
uc test are very similar. Only in a few cases do the results of theGMMuc

test deviate from the rejection rates of theLRkup
uc test and the two-tailedMCStt

uc test in a

positive or negative direction. However, all of the three analyzed two-tailed tests are out-

performed by the one-sidedMCSut
uc test in the vast majority of settings. Consequently, in

addition to being of high practical relevance to regulators, our new one-tailed test of uc

offers an increased test power compared to standard VaR-backtests from the literature.

12We calculate but do not report results for the settingγ < 1 and concentrate on the more practically
relevant scenario of a VaR-model underestimating risk.
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Table 4.2: Unconditional Coverage - Size and Power of Tests -5% VaR
The table presents rejection rates obtained by applying unconditional coverage tests to 10,000 samples of Bernoulli simulated VaR-violation sequences. The VaR levelp is
set to5%. Results are presented for various sets of sample sizesn andγ-factors which multiplies the probability of a VaR-violation by 1, 1.1, 1.25, 1.5, and 2. The results
for γ = 1p correspond to the evaluation of the size of the test.LRkup

uc andGMMuc refers to the unconditional coverage tests of Kupiec [1995]and Candelon et al. [2011].
MCStt

uc andMCSut
uc refer to the new two-tailed and upper-tail Monte Carlo simulation based tests. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
y · p n LRkup

uc GMMuc MCStt
uc MCSut

uc LRkup
uc GMMuc MCStt

uc MCSut
uc LRkup

uc GMMuc MCStt
uc MCSut

uc

252 0.010 0.010 0.009 0.009 0.049 0.049 0.049 0.049 0.100 0.099 0.100 0.100
500 0.011 0.011 0.010 0.010 0.049 0.049 0.050 0.047 0.099 0.103 0.099 0.097

5.00% 1,000 0.010 0.010 0.012 0.012 0.054 0.050 0.055 0.053 0.106 0.099 0.105 0.102
1,500 0.010 0.012 0.009 0.009 0.047 0.052 0.049 0.048 0.098 0.099 0.097 0.101
2,500 0.009 0.009 0.010 0.012 0.048 0.048 0.050 0.051 0.106 0.101 0.102 0.102

252 0.015 0.005 0.015 0.024 0.062 0.059 0.064 0.102 0.111 0.128 0.124 0.178
500 0.022 0.010 0.023 0.036 0.075 0.068 0.080 0.128 0.144 0.133 0.147 0.223

5.50% 1,000 0.033 0.020 0.034 0.059 0.105 0.099 0.118 0.180 0.195 0.190 0.191 0.289
1,500 0.047 0.030 0.045 0.076 0.134 0.127 0.140 0.215 0.227 0.216 0.221 0.345
2,500 0.083 0.055 0.082 0.126 0.201 0.186 0.204 0.306 0.336 0.296 0.310 0.445

252 0.047 0.011 0.045 0.072 0.137 0.120 0.146 0.223 0.203 0.223 0.230 0.338
500 0.089 0.048 0.095 0.143 0.211 0.215 0.240 0.343 0.331 0.331 0.346 0.487

6.25% 1,000 0.197 0.142 0.195 0.281 0.386 0.385 0.408 0.530 0.540 0.535 0.530 0.667
1,500 0.342 0.268 0.328 0.423 0.549 0.542 0.560 0.679 0.672 0.666 0.679 0.796
2,500 0.571 0.515 0.569 0.661 0.769 0.762 0.779 0.859 0.873 0.853 0.859 0.922

252 0.196 0.061 0.192 0.269 0.377 0.349 0.396 0.518 0.481 0.510 0.519 0.651
500 0.418 0.282 0.422 0.516 0.620 0.614 0.643 0.754 0.746 0.740 0.754 0.852

7.50% 1,000 0.761 0.700 0.769 0.840 0.894 0.898 0.907 0.948 0.951 0.950 0.948 0.975
1,500 0.933 0.898 0.931 0.958 0.978 0.976 0.981 0.992 0.991 0.989 0.992 0.997
2,500 0.996 0.993 0.996 0.998 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000

252 0.709 0.447 0.698 0.777 0.859 0.845 0.869 0.922 0.910 0.920 0.922 0.960
500 0.961 0.924 0.961 0.975 0.988 0.988 0.988 0.995 0.996 0.996 0.995 0.998

10.00% 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1,500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2,500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4.3: Unconditional Coverage - Size and Power of Tests -1% VaR
The table presents rejection rates obtained by applying unconditional coverage tests to 10,000 samples of Bernoulli simulated VaR-violation sequences. The VaR levelp is
set to1%. Results are presented for various sets of sample sizesn andγ-factors which multiplies the probability of a VaR-violation by 1, 1.1, 1.25, 1.5, and 2. The results
for γ = 1p correspond to the evaluation of the size of the test.LRkup

uc andGMMuc refers to the unconditional coverage tests of Kupiec [1995]and Candelon et al. [2011].
MCStt

uc andMCSut
uc refer to the new two-tailed and upper-tail Monte Carlo simulation based tests. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
y · p n LRkup

uc GMMuc MCStt
uc MCSut

uc LRkup
uc GMMuc MCStt

uc MCSut
uc LRkup

uc GMMuc MCStt
uc MCSut

uc

252 0.010 0.012 0.009 0.010 0.051 0.050 0.049 0.050 0.101 0.103 0.100 0.104
500 0.009 0.012 0.010 0.009 0.049 0.052 0.048 0.048 0.073 0.101 0.099 0.096

1.00% 1,000 0.014 0.009 0.012 0.011 0.048 0.050 0.053 0.051 0.105 0.102 0.103 0.107
1,500 0.011 0.009 0.009 0.010 0.050 0.050 0.048 0.051 0.095 0.103 0.101 0.101
2,500 0.010 0.008 0.010 0.011 0.054 0.047 0.052 0.051 0.106 0.099 0.100 0.100

252 0.013 0.017 0.014 0.016 0.049 0.074 0.057 0.066 0.089 0.138 0.109 0.127
500 0.010 0.014 0.015 0.019 0.046 0.054 0.062 0.080 0.082 0.135 0.115 0.148

1.10% 1,000 0.014 0.006 0.013 0.023 0.061 0.058 0.065 0.089 0.097 0.117 0.120 0.166
1,500 0.015 0.010 0.017 0.028 0.069 0.058 0.070 0.102 0.136 0.132 0.127 0.184
2,500 0.016 0.012 0.018 0.036 0.072 0.078 0.083 0.130 0.147 0.151 0.146 0.221

252 0.026 0.029 0.020 0.029 0.058 0.108 0.076 0.111 0.095 0.187 0.134 0.192
500 0.018 0.026 0.027 0.039 0.066 0.072 0.086 0.136 0.115 0.189 0.153 0.234

1.25% 1,000 0.032 0.003 0.039 0.063 0.112 0.119 0.131 0.198 0.164 0.207 0.207 0.310
1,500 0.044 0.027 0.057 0.091 0.141 0.139 0.166 0.253 0.268 0.260 0.260 0.371
2,500 0.082 0.050 0.087 0.134 0.220 0.219 0.232 0.342 0.334 0.335 0.344 0.476

252 0.059 0.060 0.045 0.069 0.094 0.181 0.131 0.192 0.134 0.281 0.206 0.305
500 0.054 0.081 0.072 0.103 0.137 0.160 0.186 0.276 0.220 0.339 0.282 0.406

1.50% 1,000 0.132 0.020 0.159 0.220 0.304 0.297 0.341 0.447 0.377 0.435 0.448 0.580
1,500 0.194 0.140 0.227 0.315 0.401 0.401 0.439 0.562 0.573 0.569 0.563 0.686
2,500 0.374 0.296 0.404 0.506 0.617 0.613 0.641 0.747 0.739 0.737 0.747 0.848

252 0.182 0.194 0.143 0.194 0.238 0.405 0.291 0.401 0.281 0.518 0.405 0.538
500 0.239 0.292 0.292 0.358 0.419 0.437 0.490 0.605 0.542 0.667 0.605 0.721

2.00% 1,000 0.533 0.213 0.583 0.662 0.747 0.749 0.778 0.852 0.810 0.845 0.852 0.914
1,500 0.736 0.665 0.768 0.831 0.888 0.887 0.900 0.941 0.951 0.946 0.941 0.969
2,500 0.944 0.911 0.947 0.969 0.988 0.984 0.987 0.994 0.992 0.993 0.994 0.998
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4.3.2 Tests of the I.I.D. Property

As discussed in Section 4.2.1, a correctly specified VaR-model should yield i.i.d. viola-

tions. In this part of the simulation study, we analyze the power of the new backtests of

i.i.d. VaR-violations using two data generating processes. First, we investigate the power

of our new backtests and competing benchmark tests using dependent violations. Second,

we repeat this analysis for non-identically distributed violation processes. In both settings,

we perform theMCSiid test and compare its finite sample behavior to that of theLRmar
iid

test of Christoffersen [1998], theLRwei
iid test of Christoffersen and Pelletier [2004] and

theGMMiid test of Candelon et al. [2011].13 Because clustering implies the occurance

of at least two VaR-violations, the i.i.d. tests are not performed on samples where this

minimum number is not achieved. To be more precise,
∑n

t=1 It ≥ 2 holds true for each

of the samples simulated by the procedures below, whereIt denotes a simulated VaR-

violation sequence. Basically, each of the utilized tests are feasible under this condition.

Only theLRwei
iid test statistic cannot be computed for some simulated samples containing

two violations (for more details see Candelon et al., 2011).We classify these cases asnot

rejected.

4.3.2.1 Independent VaR-Violations

In the first setting, we generate sequences of dependent VaR-violations with the degree of

dependence inherent in the violation processes varying over time. For eachλ and eachn,

we draw10, 000 simulations of

yt = σtzt, with σ1 = 1 (4.26)

and

σ2
t = λσ2

t−1 + (1− λ)z2t−1, 0 ≤ λ ≤ 1, t > 1. (4.27)

13As suggested in Candelon et al. (2011) we setq = 3 for p = 5% andq = 5 for p = 1% throughout the
simulation study. Critical values for theMCSiid test are obtained as outlined in Section 4.2.3 using10, 000
MC simulations.
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Besides,zt ∼ N(0, 1), ∀t. Note, this proceeding requires no pre-phasis in order to calcu-

lateσ. The distribution ofyt is based on the well-known exponentially weighted moving

average (EWMA) type process. This approach allows for an easy regulation of the degree

of dependence by determiningλ as the single decay factor. To be more precise,λ controls

the half-life interval of the observation weights (i.e., the interval in which the weight of an

observedσ2 decreases to half its original value) bylog(0.5)/log(λ). We apply the back-

tests to several different levels ofλ representing half-life intervals of 5, 10, 20, 40, 60,

and 80 days of data. This range of half-life intervals coverstypical volatility persistence

of asset return series.14 Table 4.4 shows the half-life intervals and the corresponding λ

level used to compute the power of the backtests.

Table 4.4: Half-Life Interval andλ-Level
The half-life interval is computed bylog(0.5)/log(λ) and refers to the time interval over which the weight
of an observation decrease to one-half its original value. The correspondingλ refers to the decay factor of
the EWMA type process of computingσt.

Half-Life Interval 5 10 20 40 60 80
λ 0.8706 0.9330 0.9659 0.9828 0.9885 0.9914

Dependent VaR-violations are ensured by setting a constantVaR for all i = 1, . . . , n.

For each decay factorλ, the VaR is determined separately by the empiricalp-quantile of

10, 000 random values simulated by Equation (4.26). The simulated VaR-violationsIt are

computed as defined by Equation (4.1).

Tables 4.5 and 4.6 show the results of the power study concerning the independence

property of VaR-violations. We apply each test to 60 different combinations of covera-

ge probabilityp, decay factorλ and sample sizen. Together with the three significance

levels of 1%, 5%, and 10%, we thus obtain 180 different settings in our simulation stu-

dy. In total, theMCSiid test outperforms the remaining tests in 104 out of the 180 test

settings. Compared to the other test methods, this test possesses a high statistical power

14The EWMA approach can be used for VaR-forecasting purposes (RiskMetrics) whereasλ is typically
set to0.94 for one-day and0.97 for one-month forecasts (see Mina et al., 2001). This corresponds to half-
life intervals of 11 and 23 days. Furthermore, Berkowitz et al. [2011] estimated variance persistences for
actual desk-level daily P/Ls from several business lines from a large international bank. The determined
values are 0.9140, 0.9230, 0.9882 and 0.9941 which correspond to half-life intervals of 8, 9, 58, and 117
days.
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in settings in which the half-life interval is relatively large. Furthermore, the superiority

of theMCSiid test increases with the significance level. TheGMM test shows the best

statistical power in almost one third of the considered settings. Compared to the remai-

ning tests, the test performs well particularly for half-life intervals up to 20 days and for

small significance levels. For significance level and coverage probability1%, its power is

almost always superior. TheLRmar
iid test yields the best statistical power in 21 out of 150

settings, this is especially true for small samples as well as for a half-life interval of five

days. This result should be interpreted somewhat cautiously due to the fact that the vast

majority of the top results are concentrated at the very short half-life interval of five days.

It is to be expected that theLRmar
iid test performs well in such circumstances, because short

decay intervals lead to frequent occurrences of successiveVaR-violations. Consequently,

the power of this test deteriorates as the decay interval increases. Besides, theLRmar
iid test

performs surprisingly well for some settings withn = 252. However, in these cases the

power decreases ifn increases indicating asymptotic disturbances. A similar phenomenon

was observed in Berkowitz et al. [2011]. For none of the 180 different settings does the

LRwei
iid test lead to the best statistical power of all analyzed test methods. Furthermore,

for p = 5% and a half-life interval larger than 10 days, the test yieldsa statistical power

below its nominal size and shows the undesired behavior of decreasing rejection rates as

the sample size increases.
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Table 4.5: I.I.D. VaR-Violations - Setting 1: Independence- Power of Tests - 5% VaR
The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-independent VaR-violation sequences simulated by Equation
(4.26). The VaR levelp is set to5%. Results are presented for various sets of sample sizesn and half-life intervals which serve as a proxy for the degreeof dependence.
LRmar

iid , LRwei
iid andGMMiid refers to the independence tests of Christoffersen [1998],Christoffersen and Pelletier [2004] and Candelon et al. [2011]. MCSiid refers to the

new Monte Carlo simulation based test. Top results are highlighted in bold type.

Half-Life Significance level: 1% Significance level: 5% Significance level: 10%
Interval n LRmar

iid
LRwei

iid
GMMiid MCSiid LRmar

iid
LRwei

iid
GMMiid MCSiid LRmar

iid
LRwei

iid
GMMiid MCSiid

252 0.067 0.005 0.108 0.072 0.146 0.033 0.213 0.220 0.195 0.075 0.270 0.339
500 0.093 0.016 0.186 0.142 0.170 0.081 0.362 0.354 0.224 0.153 0.451 0.499

5 1,000 0.126 0.047 0.308 0.264 0.217 0.160 0.591 0.552 0.308 0.260 0.689 0.695
1,500 0.155 0.077 0.423 0.393 0.325 0.233 0.741 0.684 0.451 0.358 0.823 0.807
2,500 0.308 0.170 0.614 0.611 0.515 0.396 0.905 0.858 0.631 0.535 0.948 0.933

252 0.037 0.005 0.086 0.063 0.104 0.026 0.173 0.188 0.153 0.064 0.227 0.296
500 0.047 0.006 0.143 0.120 0.098 0.038 0.281 0.293 0.145 0.080 0.357 0.423

10 1,000 0.049 0.014 0.214 0.211 0.104 0.065 0.454 0.469 0.168 0.122 0.556 0.612
1,500 0.051 0.021 0.295 0.315 0.151 0.085 0.593 0.600 0.246 0.158 0.695 0.732
2,500 0.096 0.033 0.425 0.503 0.234 0.134 0.775 0.774 0.338 0.223 0.860 0.872

252 0.026 0.005 0.061 0.054 0.084 0.029 0.129 0.149 0.131 0.066 0.176 0.236
500 0.029 0.005 0.095 0.092 0.073 0.029 0.195 0.231 0.112 0.062 0.262 0.340

20 1,000 0.025 0.004 0.135 0.142 0.067 0.027 0.300 0.332 0.119 0.058 0.392 0.460
1,500 0.018 0.005 0.169 0.202 0.077 0.029 0.392 0.438 0.151 0.058 0.494 0.578
2,500 0.034 0.005 0.228 0.327 0.107 0.027 0.536 0.591 0.181 0.055 0.645 0.727

252 0.022 0.005 0.052 0.042 0.077 0.031 0.115 0.128 0.117 0.069 0.162 0.210
500 0.022 0.008 0.079 0.077 0.064 0.030 0.163 0.196 0.103 0.068 0.226 0.297

40 1,000 0.018 0.003 0.095 0.099 0.052 0.024 0.219 0.251 0.103 0.051 0.293 0.363
1,500 0.012 0.002 0.107 0.129 0.060 0.014 0.265 0.307 0.117 0.037 0.354 0.430
2,500 0.017 0.002 0.128 0.180 0.073 0.010 0.324 0.397 0.132 0.025 0.424 0.531

252 0.020 0.008 0.041 0.042 0.071 0.037 0.099 0.130 0.107 0.082 0.141 0.211
500 0.023 0.005 0.085 0.080 0.059 0.032 0.164 0.198 0.095 0.070 0.224 0.297

60 1,000 0.016 0.005 0.093 0.100 0.049 0.024 0.204 0.246 0.098 0.049 0.275 0.350
1,500 0.012 0.003 0.106 0.119 0.063 0.017 0.234 0.280 0.120 0.040 0.314 0.396
2,500 0.016 0.001 0.110 0.146 0.065 0.009 0.269 0.331 0.122 0.026 0.363 0.459

252 0.022 0009 0.032 0.036 0.072 0.041 0.089 0.117 0.107 0.086 0.130 0.200
500 0.020 0.006 0.085 0.083 0.051 0.035 0.167 0.206 0.085 0.073 0.224 0.305

80 1,000 0.016 0.003 0.113 0.119 0.047 0.026 0.224 0.263 0.093 0.057 0.297 0.371
1,500 0.014 0.002 0.113 0.128 0.065 0.021 0.250 0.289 0.122 0.045 0.323 0.400
2,500 0.015 0.003 0.108 0.150 0.065 0.013 0.267 0.323 0.118 0.028 0.350 0.436
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Table 4.6: I.I.D. VaR-Violations - Setting 1: Independence- Power of Tests - 1% VaR
The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-independent VaR-violation sequences simulated by Equation
(4.26). The VaR levelp is set to1%. Results are presented for various sets of sample sizesn and half-life intervals which serve as a proxy for the degreeof dependence.
LRmar

iid , LRwei
iid andGMMiid refers to the independence tests of Christoffersen [1998],Christoffersen and Pelletier [2004] and Candelon et al. [2011]. MCSiid refers to the

new Monte Carlo simulation based test. Top results are highlighted in bold type.

Half-Life Significance level: 1% Significance level: 5% Significance level: 10%
Interval n LRmar

iid
LRwei

iid
GMMiid MCSiid LRmar

iid
LRwei

iid
GMMiid MCSiid LRmar

iid
LRwei

iid
GMMiid MCSiid

252 0.055 0.004 0.068 0.048 0.181 0.035 0.136 0.141 0.237 0.095 0.186 0.226
500 0.065 0.010 0.073 0.047 0.198 0.065 0.152 0.148 0.252 0.132 0.212 0.241

5 1,000 0.114 0.038 0.099 0.055 0.230 0.137 0.211 0.182 0.346 0.224 0.285 0.296
1,500 0.141 0.087 0.116 0.064 0.283 0.219 0.265 0.212 0.388 0.322 0.361 0.328
2,500 0.193 0.179 0.149 0.083 0.384 0.362 0.363 0.255 0.482 0.475 0.470 0.393

252 0.037 0.005 0.076 0.059 0.156 0.034 0.141 0.147 0.217 0.080 0.192 0.227
500 0.039 0.009 0.078 0.051 0.151 0.051 0.156 0.150 0.225 0.104 0.211 0.239

10 1,000 0.064 0.026 0.100 0.058 0.152 0.100 0.205 0.187 0.265 0.173 0.281 0.297
1,500 0.072 0.055 0.111 0.067 0.174 0.161 0.250 0.212 0.266 0.254 0.343 0.327
2,500 0.094 0.117 0.140 0.098 0.236 0.275 0.340 0.273 0.324 0.384 0.453 0.404

252 0.026 0.005 0.084 0.066 0.158 0.031 0.147 0.156 0.227 0.075 0.192 0.237
500 0.028 0.008 0.076 0.052 0.114 0.049 0.144 0.147 0.198 0.099 0.194 0.235

20 1,000 0.040 0.020 0.083 0.067 0.103 0.078 0.173 0.187 0.209 0.137 0.244 0.287
1,500 0.042 0.035 0.098 0.069 0.124 0.113 0.216 0.202 0.192 0.189 0.296 0.320
2,500 0.048 0.071 0.114 0.084 0.149 0.181 0.283 0.258 0.225 0.271 0.380 0.388

252 0.020 0.004 0.079 0.065 0.199 0.027 0.142 0.155 0.266 0.063 0.193 0.238
500 0.023 0.010 0.078 0.070 0.107 0.048 0.135 0.151 0.204 0.093 0.187 0.222

40 1,000 0.031 0.026 0.089 0.068 0.083 0.077 0.154 0.176 0.181 0.136 0.216 0.265
1,500 0.032 0.035 0.087 0.072 0.099 0.099 0.182 0.195 0.156 0.158 0.253 0.295
2,500 0.031 0.050 0.097 0.088 0.119 0.126 0.223 0.238 0.180 0.195 0.308 0.348

252 0.017 0.005 0.077 0.052 0.257 0.026 0.136 0.149 0.330 0.062 0.188 0.230
500 0.024 0.010 0.088 0.074 0.116 0.045 0.142 0.157 0.212 0.095 0.189 0.229

60 1,000 0.031 0.030 0.089 0.073 0.081 0.084 0.155 0.170 0.174 0.135 0.213 0.251
1,500 0.031 0.039 0.092 0.082 0.092 0.095 0.174 0.189 0.143 0.155 0.241 0.280
2,500 0.029 0.052 0.093 0.091 0.109 0.118 0.199 0.218 0.162 0.183 0.277 0.327

252 0.014 0.004 0.064 0.037 0.302 0.025 0.131 0.127 0.374 0.054 0.181 0.204
500 0.023 0.006 0.081 0.071 0.112 0.039 0.135 0.159 0.211 0.084 0.182 0.231

80 1,000 0.030 0.031 0.096 0.083 0.083 0.085 0.157 0.181 0.171 0.135 0.211 0.262
1,500 0.027 0.046 0.090 0.088 0.083 0.103 0.163 0.193 0.133 0.159 0.224 0.279
2,500 0.033 0.054 0.097 0.102 0.116 0.118 0.194 0.220 0.175 0.177 0.265 0.315
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4.3.2.2 Identically Distributed VaR-Violations

The data generating process for the second part of the simulation study is given by:

It =





i.i.d.∼ Bern(p− 2δ), 1 ≤ t ≤ n
4
;

i.i.d.∼ Bern(p+ δ), n
4
< t ≤ n

2
;

i.i.d.∼ Bern(p− δ), n
2
< t ≤ 3n

4
;

i.i.d.∼ Bern(p+ 2δ), 3n
4
< t ≤ n.

(4.28)

Here, we chooseδ = 0p to analyze the size of a test andδ = 0.1p, 0.2p, 0.3p, 0.4p and

0.5p for the power study. This setting leads to variations in the probability of obtaining a

VaR-violation between the four equal-sized subsamples. Consequently, the violations will

occur unequally distributed. Note that the probability variations are determined in a way

which ensuresE (
∑n

t=1 It) = n · p. The setup of this part of the simulation study covers a

realistic scenario in which a VaR-model does not, or not fully, incorporate changes from

calm market phases to highly volatile bear markets or financial crises and vice versa. This

in turn leads to clustered VaR-violations regardless of thequestion whether the data might

show signs of autocorrelation.

Alternatively, non-stationary VaR-violations could be identified by splitting a sample

into several subsamples and applying the test for uc to each subsample. However, this

approach suffers from two main drawbacks. First, for small subsamples the power of uc

tests is relatively low (see Table 4.2). Second, it remains unclear at which points real data

samples have to be split into two or more subsamples.

Tables 4.7 and 4.8 show the results of the power study concerning the property of

identically distributed VaR-violations. We apply each test to 50 different combinations of

coverage probabilityp, probability variation factorδ, and sample sizen. Furthermore, we

compute rejection rates for significance levels of 1%, 5%, and 10% which leads to a total

of 150 different test settings.
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Table 4.7: I.I.D. VaR-Violations - Setting 2: Identical Distribution - Size and Power of Tests - 5% VaR
The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-identically distributed VaR-violation sequences simulated by
Equation (4.28). The VaR levelp is set to5%. Results are presented for various sets of sample sizesn and probability variation factorsδ. Results forδ = 0p correspond to the
evaluation of the size of the test.LRmar

iid ,LRwei
iid andGMMiid refers to the independence tests of Christoffersen [1998],Christoffersen and Pelletier [2004] and Candelon et al.

[2011].MCSiid refers to the new simulation based i.i.d. test. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
δ n LRmar

iid
LRwei

iid
GMMiid MCSiid LRmar

iid
LRwei

iid
GMMiid MCSiid LRmar

iid
LRwei

iid
GMMiid MCSiid

252 0.010 0.010 0.011 0.010 0.048 0.053 0.049 0.053 0.095 0.104 0.101 0.101
500 0.011 0.010 0.013 0.011 0.050 0.048 0.052 0.048 0.101 0.095 0.102 0.102

0p 1,000 0.009 0.010 0.010 0.008 0.046 0.046 0.046 0.050 0.097 0.096 0.097 0.097
1,500 0.011 0.010 0.010 0.009 0.048 0.045 0.048 0.049 0.099 0.094 0.099 0.099
2,500 0.010 0.009 0.009 0.010 0.051 0.049 0.049 0.051 0.101 0.102 0.101 0.101

252 0.011 0.009 0.014 0.009 0.052 0.048 0.058 0.060 0.101 0.094 0.105 0.111
500 0.011 0.009 0.015 0.015 0.050 0.044 0.054 0.068 0.100 0.087 0.102 0.128

0.1p 1,000 0.011 0.006 0.019 0.018 0.048 0.032 0.066 0.074 0.099 0.073 0.116 0.136
1,500 0.009 0.007 0.021 0.020 0.047 0.036 0.071 0.082 0.094 0.076 0.124 0.146
2,500 0.009 0.008 0.021 0.023 0.049 0.037 0.078 0.093 0.100 0.072 0.131 0.170

252 0.015 0.008 0.019 0.015 0.060 0.037 0.068 0.074 0.111 0.075 0.117 0.144
500 0.014 0.005 0.033 0.035 0.057 0.025 0.094 0.124 0.106 0.058 0.147 0.208

0.2p 1,000 0.011 0.002 0.055 0.065 0.049 0.020 0.140 0.190 0.094 0.044 0.204 0.291
1,500 0.011 0.002 0.072 0.090 0.051 0.014 0.177 0.238 0.106 0.033 0.250 0.344
2,500 0.012 0.001 0.096 0.140 0.057 0.008 0.243 0.326 0.111 0.019 0.329 0.452

252 0.015 0.004 0.037 0.030 0.061 0.023 0.105 0.130 0.112 0.053 0.156 0.227
500 0.020 0.003 0.094 0.097 0.061 0.018 0.202 0.258 0.106 0.050 0.275 0.377

0.3p 1,000 0.016 0.003 0.212 0.241 0.054 0.024 0.386 0.456 0.106 0.058 0.471 0.579
1,500 0.015 0.005 0.297 0.358 0.063 0.028 0.504 0.591 0.130 0.068 0.593 0.704
2,500 0.022 0.008 0.450 0.549 0.085 0.038 0.697 0.771 0.148 0.075 0.783 0.856

252 0.027 0.001 0.079 0.053 0.080 0.017 0.181 0.209 0.131 0.043 0.240 0.346
500 0.033 0.006 0.273 0.283 0.078 0.049 0.452 0.540 0.125 0.112 0.535 0.664

0.4p 1,000 0.032 0.043 0.613 0.638 0.079 0.164 0.783 0.828 0.140 0.275 0.838 0.894
1,500 0.029 0.114 0.781 0.838 0.105 0.284 0.908 0.943 0.181 0.410 0.940 0.971
2,500 0.053 0.248 0.942 0.971 0.158 0.482 0.987 0.993 0.250 0.616 0.993 0.997

252 0.041 0.002 0.158 0.113 0.104 0.028 0.317 0.378 0.148 0.074 0.400 0.552
500 0.053 0.040 0.688 0.729 0.109 0.213 0.863 0.944 0.157 0.376 0.915 0.982

0.5p 1,000 0.057 0.436 1.000 1.000 0.124 0.794 1.000 1.000 0.201 0.910 1.000 1.000
1,500 0.061 0.892 1.000 1.000 0.186 0.986 1.000 1.000 0.299 0.998 1.000 1.000
2,500 0.138 1.000 1.000 1.000 0.311 1.000 1.000 1.000 0.425 1.000 1.000 1.000
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Table 4.8: I.I.D. VaR-Violations - Setting 2: Identical Distribution - Size and Power of Tests - 1% VaR
The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-identically distributed VaR-violation sequences simulated by
Equation (4.28). The VaR levelp is set to1%. Results are presented for various sets of sample sizesn and probability variation factorsδ. Results forδ = 0p correspond to the
evaluation of the size of the test.LRmar

iid ,LRwei
iid andGMMiid refers to the independence tests of Christoffersen [1998],Christoffersen and Pelletier [2004] and Candelon et al.

[2011].MCSiid refers to the new simulation based i.i.d. test. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
δ n LRmar

iid
LRwei

iid
GMMiid MCSiid LRmar

iid
LRwei

iid
GMMiid MCSiid LRmar

iid
LRwei

iid
GMMiid MCSiid

252 0.010 0.007 0.010 0.012 0.056 0.042 0.052 0.050 0.108 0.089 0.102 0.103
500 0.009 0.009 0.009 0.011 0.050 0.050 0.048 0.053 0.101 0.097 0.099 0.101

0p 1,000 0.010 0.010 0.009 0.011 0.048 0.046 0.049 0.051 0.100 0.096 0.102 0.101
1,500 0.010 0.010 0.010 0.010 0.047 0.047 0.050 0.052 0.098 0.095 0.100 0.096
2,500 0.009 0.010 0.012 0.011 0.049 0.047 0.050 0.053 0.099 0.098 0.099 0.105

252 0.011 0.008 0.009 0.009 0.054 0.042 0.049 0.050 0.104 0.087 0.099 0.098
500 0.009 0.009 0.009 0.012 0.048 0.047 0.047 0.054 0.097 0.093 0.096 0.103

0.1p 1,000 0.011 0.011 0.012 0.012 0.053 0.049 0.054 0.056 0.102 0.099 0.107 0.113
1,500 0.013 0.009 0.012 0.011 0.053 0.048 0.052 0.059 0.104 0.095 0.102 0.113
2,500 0.013 0.008 0.012 0.013 0.055 0.042 0.056 0.064 0.104 0.088 0.111 0.121

252 0.010 0.007 0.011 0.014 0.052 0.038 0.048 0.056 0.102 0.079 0.097 0.106
500 0.010 0.009 0.011 0.012 0.058 0.042 0.052 0.053 0.105 0.086 0.098 0.105

0.2p 1,000 0.012 0.008 0.015 0.013 0.053 0.041 0.060 0.065 0.107 0.087 0.107 0.126
1,500 0.012 0.007 0.016 0.016 0.056 0.039 0.064 0.082 0.114 0.085 0.122 0.151
2,500 0.013 0.008 0.027 0.031 0.058 0.042 0.094 0.120 0.111 0.087 0.152 0.204

252 0.013 0.006 0.014 0.015 0.057 0.033 0.054 0.060 0.105 0.073 0.102 0.115
500 0.013 0.006 0.017 0.017 0.062 0.033 0.055 0.067 0.110 0.066 0.101 0.124

0.3p 1,000 0.015 0.005 0.022 0.020 0.064 0.034 0.076 0.091 0.123 0.078 0.132 0.173
1,500 0.014 0.008 0.033 0.034 0.063 0.041 0.101 0.143 0.121 0.088 0.168 0.250
2,500 0.017 0.011 0.077 0.090 0.070 0.058 0.193 0.242 0.125 0.119 0.278 0.360

252 0.015 0.005 0.017 0.017 0.063 0.026 0.055 0.070 0.111 0.061 0.104 0.121
500 0.016 0.003 0.023 0.022 0.069 0.023 0.066 0.075 0.114 0.057 0.111 0.145

0.4p 1,000 0.018 0.005 0.038 0.028 0.076 0.035 0.114 0.138 0.139 0.079 0.181 0.253
1,500 0.020 0.014 0.074 0.073 0.074 0.065 0.191 0.257 0.139 0.129 0.280 0.407
2,500 0.021 0.040 0.226 0.259 0.081 0.150 0.424 0.522 0.146 0.251 0.518 0.645

252 0.018 0.001 0.022 0.024 0.069 0.011 0.066 0.081 0.114 0.039 0.108 0.131
500 0.017 0.001 0.031 0.030 0.082 0.014 0.091 0.091 0.132 0.045 0.140 0.164

0.5p 1,000 0.025 0.007 0.079 0.053 0.087 0.051 0.197 0.225 0.157 0.113 0.277 0.377
1,500 0.024 0.032 0.174 0.163 0.085 0.142 0.354 0.487 0.164 0.249 0.467 0.670
2,500 0.027 0.167 0.597 0.694 0.099 0.437 0.822 0.926 0.172 0.602 0.893 0.975
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In total, theMCSiid test possesses a high statistical power regarding non-identically dis-

tributed VaR-violations and its test results are comparable to or better than the perfor-

mance of the remaining three approaches for 130 out of the 150settings. Particularly for

significance levels of 5% and 10%, it outperforms the competing tests in almost all cases,

irrespective of the degree of probability variation or sample size. TheGMM test yields

rejection rates which are equal or better than the results ofthe competing models for 30

of the 150 simulation settings. The test particularly achieves its top results for a signifi-

cance level of1%. TheLRmar
iid test is able to match the results of the competing tests in

only seven cases which are restricted to settings in whichp = 1% andδ = 0.1p. The

results of theLRwei
iid test falls short of the performance of the remaining tests inalmost all

settings. Finally, it is striking that the power of theLRmar
iid test and theLRwei

iid test signifi-

cantly exceed the nominal size only for large shifts in the VaR-violation probability, i.e.

δ ≥ 0.4p.

4.3.3 Conditional Coverage

Table 4.9 illustrates the behavior of theMCScc test considering different levels of the

weighting parametera. For reasons of space we present results only for a single parameter

combination for each of the two settings. This includesn = 1000, a half-life interval of

20 days, andγ = 1.25 for setting 1 andn = 1000, δ = 0.3p, γ = 1.25 for setting 2.

Depending on the setting, the VaR probabilityp, and the significance level, the test yields

the highest rejection rates for values ofa between 0.5 and 0.8. This is consistent with our

expectation that the maximum of the statistical power is achieved when0 < a < 1, i.e.,

when the cc test addresses both the uc as well as the i.i.d. property of the violations. In

the following, we only present the results fora = 0.5.

We continue with a comparison of the size and the power of the cc testMCScc to

the LRmar
cc test of Christoffersen [1998], theLRwei

cc test of Christoffersen and Pelletier

[2004] and theGMMcc test of Candelon et al. [2011]. For this purpose, we combine

each of the two settings described in Section 4.3.2 with increased probabilities of a VaR-

violation outlined in Section 4.3.1. Note that we use the two-tailed uc component. For the
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Table 4.9: Conditional Coverage - Power of theMCScc Test under Different Level ofa
The table presents rejection rates obtained by applying theMCScc test to 10,000 samples of non-i.i.d.
distributed VaR-violation sequences. Panel A and B containrejection rates for sequences simulated by
Equation (4.26) and Equation (4.28) with an increased violation probability. The parameter combinations
used for the simulations are described at the top of each panel. The top result for each combination ofa,
VaR level, and significance level is highlighted in bold type.

5% VaR 1% VaR

Significance level: Significance level:
a 1% 5% 10% 1% 5% 10%

Panel A:n = 1, 000 / γ = 1.25 / half-life interval = 20 days

0 0.107 0.294 0.440 0.056 0.171 0.283
0.1 0.123 0.329 0.482 0.053 0.184 0.295
0.2 0.149 0.376 0.535 0.068 0.219 0.337
0.3 0.169 0.449 0.607 0.082 0.232 0.356
0.4 0.231 0.511 0.649 0.106 0.265 0.378
0.5 0.310 0.550 0.664 0.128 0.277 0.372
0.6 0.350 0.545 0.641 0.150 0.289 0.379
0.7 0.366 0.539 0.621 0.144 0.254 0.340
0.8 0.343 0.511 0.604 0.140 0.256 0.330
0.9 0.318 0.468 0.553 0.149 0.264 0.342
1 0.306 0.455 0.536 0.125 0.224 0.300

Panel B:n = 1, 000 / γ = 1.25 / δ = 0.3p

0 0.105 0.264 0.393 0.014 0.074 0.151
0.1 0.108 0.290 0.433 0.013 0.081 0.164
0.2 0.124 0.336 0.479 0.015 0.093 0.183
0.3 0.146 0.383 0.548 0.019 0.098 0.192
0.4 0.188 0.453 0.604 0.023 0.121 0.221
0.5 0.232 0.509 0.636 0.036 0.140 0.234
0.6 0.294 0.542 0.657 0.053 0.153 0.236
0.7 0.299 0.519 0.631 0.059 0.158 0.233
0.8 0.285 0.505 0.617 0.067 0.163 0.238
0.9 0.256 0.463 0.570 0.064 0.161 0.236
1 0.239 0.441 0.553 0.064 0.159 0.234

determination of critical values we perform the procedure as explained in Section 4.2.4

using10, 000 MC simulations. In line with the settings above, for each combination ofγ,

δ, volatility half-life, andn we repeat the simulation of VaR-violation sequences10, 000

times. We present the results of the simulation study concerning an increased probability

of a VaR-violation combined with non-independent occurrence of violations (setting 1) in

Tables 4.10 and 4.11, and combined with non-identically distributed violations (setting 2)

in Table 4.12 and 4.13.15

15To save space, we do not present the rejection rates of all parameter combinations. The complete results
are available from the authors upon request.
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Table 4.10: Conditional Coverage - Setting 1: Independence- Power of Tests - 5% VaR
The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-independent VaR-violation sequences simulated by Equation (4.26) with an increased
violation probability. The VaR levelp is set to5%. Results are presented for various sets of sample sizesn, γ-factors which increase the probability of a VaR-violation, and
decay intervals which serve as a proxy for the degree of dependence.LRmar

cc , LRwei
cc andGMMcc refers to the cc tests of Christoffersen [1998], Christoffersen and Pelletier

[2004] and Candelon et al. [2011].MCScc refers to the new simulation based test. Top results are highlighted in bold type.

Decay Significance level: 1% Significance level: 5% Significance level: 10%
Interval p n LRmar

cc LRwei
cc GMMcc MCScc LRmar

cc LRwei
cc GMMcc MCScc LRmar

cc LRwei
cc GMMcc MCScc

252 0.052 0.028 0.044 0.093 0.103 0.088 0.212 0.237 0.193 0.154 0.318 0.344
500 0.059 0.033 0.063 0.150 0.128 0.108 0.287 0.340 0.208 0.177 0.415 0.463

10 5.50% 1,000 0.074 0.047 0.107 0.251 0.166 0.142 0.435 0.493 0.231 0.218 0.571 0.613
1,500 0.104 0.061 0.183 0.371 0.199 0.168 0.558 0.613 0.280 0.256 0.686 0.721
2,500 0.152 0.095 0.360 0.565 0.290 0.226 0.767 0.783 0.377 0.331 0.857 0.860

252 0.204 0.109 0.060 0.235 0.302 0.222 0.364 0.457 0.433 0.307 0.488 0.555
500 0.353 0.259 0.144 0.417 0.493 0.429 0.565 0.661 0.599 0.526 0.693 0.762

10 7.50% 1,000 0.591 0.524 0.387 0.704 0.747 0.693 0.825 0.878 0.804 0.770 0.893 0.929
1,500 0.795 0.708 0.669 0.886 0.878 0.847 0.939 0.967 0.915 0.899 0.970 0.984
2,500 0.946 0.909 0.932 0.985 0.979 0.961 0.994 0.998 0.988 0.980 0.997 0.999

252 0.096 0.060 0.047 0.128 0.160 0.142 0.227 0.285 0.258 0.215 0.335 0.382
500 0.127 0.083 0.052 0.182 0.218 0.178 0.285 0.372 0.306 0.253 0.418 0.486

20 6.25% 1,000 0.179 0.137 0.096 0.299 0.318 0.264 0.438 0.539 0.393 0.345 0.572 0.651
1,500 0.272 0.191 0.175 0.451 0.403 0.343 0.575 0.680 0.486 0.437 0.699 0.776
2,500 0.409 0.300 0.388 0.678 0.591 0.475 0.771 0.853 0.666 0.577 0.856 0.907

252 0.142 0.119 0.094 0.166 0.201 0.212 0.280 0.308 0.289 0.290 0.385 0.404
500 0.156 0.124 0.075 0.189 0.234 0.219 0.289 0.366 0.314 0.287 0.404 0.471

40 6.25% 1,000 0.200 0.174 0.098 0.267 0.329 0.292 0.399 0.490 0.399 0.367 0.525 0.604
1,500 0.279 0.216 0.150 0.372 0.399 0.354 0.495 0.597 0.473 0.445 0.618 0.700
2,500 0.397 0.301 0.289 0.552 0.571 0.460 0.669 0.765 0.643 0.552 0.775 0.838

252 0.223 0.224 0.256 0.220 0.310 0.374 0.458 0.406 0.416 0.466 0.546 0.535
500 0.173 0.175 0.193 0.224 0.252 0.288 0.391 0.395 0.335 0.369 0.486 0.505

80 5.50% 1,000 0.129 0.124 0.149 0.217 0.215 0.207 0.357 0.394 0.275 0.277 0.456 0.502
1,500 0.122 0.104 0.139 0.223 0.194 0.183 0.343 0.401 0.253 0.248 0.446 0.510
2,500 0.126 0.092 0.142 0.250 0.219 0.163 0.376 0.454 0.278 0.223 0.483 0.557

252 0.278 0.249 0.218 0.292 0.336 0.348 0.423 0.449 0.413 0.417 0.513 0.542
500 0.326 0.294 0.220 0.362 0.404 0.388 0.473 0.540 0.474 0.452 0.577 0.633

80 7.50% 1,000 0.491 0.477 0.313 0.564 0.625 0.614 0.676 0.764 0.685 0.681 0.770 0.837
1,500 0.696 0.626 0.478 0.713 0.789 0.762 0.821 0.874 0.839 0.821 0.888 0.919
2,500 0.908 0.874 0.807 0.927 0.957 0.937 0.966 0.981 0.970 0.960 0.982 0.991
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Table 4.11: Conditional Coverage - Setting 1: Independence- Power of Tests - 1% VaR
The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-independent VaR-violation sequences simulated by Equation (4.26) with an increased
violation probability. The VaR levelp is set to1%. Results are presented for various sets of sample sizesn, γ-factors which increase the probability of a VaR-violation, and
decay intervals which serve as a proxy for the degree of dependence.LRmar

cc , LRwei
cc andGMMcc refers to the cc tests of Christoffersen [1998], Christoffersen and Pelletier

[2004] and Candelon et al. [2011].MCScc refers to the new simulation based test. Top results are highlighted in bold type.

Decay Significance level: 1% Significance level: 5% Significance level: 10%
Interval p n LRmar

cc LRwei
cc GMMcc MCScc LRmar

cc LRwei
cc GMMcc MCScc LRmar

cc LRwei
cc GMMcc MCScc

252 0.038 0.017 0.093 0.094 0.140 0.066 0.198 0.191 0.335 0.128 0.273 0.266
500 0.047 0.023 0.092 0.091 0.174 0.081 0.201 0.191 0.274 0.144 0.267 0.274

10 1.10% 1,000 0.044 0.037 0.023 0.088 0.158 0.129 0.194 0.227 0.242 0.210 0.303 0.313
1,500 0.051 0.066 0.025 0.094 0.180 0.167 0.220 0.253 0.275 0.264 0.343 0.359
2,500 0.057 0.120 0.042 0.125 0.194 0.271 0.304 0.304 0.326 0.383 0.457 0.426

252 0.072 0.031 0.154 0.162 0.216 0.109 0.291 0.297 0.455 0.186 0.377 0.380
500 0.127 0.059 0.177 0.202 0.341 0.147 0.327 0.343 0.466 0.220 0.402 0.436

10 1.50% 1,000 0.167 0.113 0.034 0.229 0.367 0.244 0.314 0.426 0.467 0.340 0.441 0.528
1,500 0.225 0.210 0.048 0.288 0.439 0.366 0.413 0.518 0.568 0.476 0.553 0.619
2,500 0.350 0.418 0.116 0.424 0.606 0.600 0.575 0.672 0.728 0.694 0.712 0.771

252 0.069 0.040 0.141 0.135 0.182 0.104 0.245 0.238 0.380 0.168 0.317 0.312
20 500 0.067 0.034 0.118 0.130 0.214 0.093 0.231 0.233 0.311 0.154 0.297 0.316

1.25% 1,000 0.074 0.051 0.023 0.128 0.207 0.133 0.219 0.282 0.289 0.207 0.329 0.377
1,500 0.080 0.078 0.023 0.150 0.212 0.178 0.247 0.321 0.327 0.259 0.375 0.423
2,500 0.107 0.141 0.038 0.194 0.277 0.284 0.324 0.403 0.409 0.389 0.466 0.526

252 0.129 0.085 0.183 0.183 0.227 0.158 0.273 0.271 0.387 0.213 0.336 0.335
500 0.099 0.064 0.135 0.144 0.230 0.124 0.228 0.233 0.307 0.183 0.294 0.306

40 1.25% 1,000 0.091 0.072 0.041 0.146 0.212 0.146 0.209 0.271 0.285 0.213 0.311 0.356
1,500 0.095 0.089 0.035 0.148 0.206 0.172 0.221 0.302 0.312 0.247 0.334 0.397
2,500 0.111 0.126 0.044 0.190 0.273 0.248 0.273 0.377 0.380 0.341 0.397 0.491

252 0.243 0.192 0.296 0.296 0.342 0.273 0.373 0.374 0.470 0.329 0.424 0.427
500 0.139 0.105 0.167 0.174 0.226 0.172 0.244 0.244 0.277 0.243 0.307 0.307

80 1.10% 1,000 0.109 0.103 0.085 0.135 0.198 0.190 0.242 0.236 0.278 0.263 0.330 0.321
1,500 0.088 0.101 0.074 0.128 0.178 0.178 0.233 0.248 0.277 0.250 0.330 0.339
2,500 0.077 0.098 0.068 0.138 0.182 0.183 0.222 0.266 0.260 0.257 0.320 0.364

252 0.263 0.209 0.302 0.316 0.355 0.289 0.385 0.388 0.480 0.344 0.442 0.441
500 0.198 0.141 0.217 0.234 0.316 0.209 0.308 0.313 0.386 0.267 0.367 0.378

80 1.50% 1,000 0.195 0.151 0.095 0.222 0.318 0.243 0.285 0.352 0.384 0.304 0.378 0.440
1,500 0.213 0.172 0.078 0.242 0.351 0.272 0.296 0.417 0.464 0.351 0.409 0.507
2,500 0.313 0.288 0.102 0.331 0.515 0.432 0.407 0.560 0.621 0.528 0.538 0.658
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Table 4.12: Conditional Coverage - Setting 2: Identical Distribution - Size and Power of Tests - 5% VaR
The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-identically distributed VaR-violation sequences simulated by Equation (4.28) with
an increased violation probability. The VaR levelp is set to5%. Results are presented for various sets of sample sizesn andγ-factors which increase the probability of a
VaR-violation, and probability variation factorsδ. The results forδ = 0p correspond to the evaluation of the size of the test.LRmar

cc , LRwei
cc andGMMcc refers to the cc tests

of Christoffersen [1998], Christoffersen and Pelletier [2004] and Candelon et al. [2011].MCSiid refers to the new simulation based test. Top results are highlighted in bold.

Significance level: 1% Significance level: 5% Significance level: 10%
δ p n LRmar

cc LRwei
cc GMMcc MCScc LRmar

cc LRwei
cc GMMcc MCScc LRmar

cc LRwei
cc GMMcc MCScc

252 0.010 0.010 0.009 0.011 0.049 0.049 0.051 0.051 0.093 0.099 0.103 0.100
500 0.010 0.010 0.008 0.011 0.048 0.053 0.046 0.051 0.105 0.103 0.098 0.100

0p 5.00% 1,000 0.011 0.009 0.010 0.011 0.052 0.046 0.053 0.052 0.104 0.100 0.105 0.098
1,500 0.011 0.009 0.009 0.011 0.049 0.047 0.052 0.053 0.098 0.101 0.102 0.102
2,500 0.010 0.009 0.009 0.012 0.052 0.049 0.049 0.054 0.101 0.097 0.100 0.102

252 0.016 0.008 0.004 0.011 0.061 0.044 0.046 0.065 0.115 0.086 0.096 0.124
500 0.019 0.015 0.005 0.015 0.066 0.056 0.045 0.078 0.129 0.105 0.108 0.148

0.1p 5.50% 1,000 0.020 0.016 0.006 0.021 0.082 0.068 0.058 0.103 0.138 0.129 0.123 0.186
1,500 0.030 0.021 0.008 0.033 0.092 0.084 0.071 0.125 0.154 0.148 0.151 0.218
2,500 0.036 0.034 0.011 0.048 0.129 0.107 0.106 0.174 0.198 0.181 0.209 0.281

252 0.147 0.073 0.008 0.103 0.280 0.193 0.220 0.330 0.431 0.296 0.372 0.442
500 0.309 0.230 0.028 0.180 0.488 0.442 0.399 0.501 0.622 0.569 0.589 0.659

0.1p 7.50% 1,000 0.609 0.563 0.151 0.464 0.802 0.775 0.733 0.801 0.868 0.855 0.864 0.902
1,500 0.847 0.808 0.407 0.733 0.932 0.928 0.896 0.942 0.962 0.961 0.961 0.976
2,500 0.979 0.974 0.853 0.958 0.996 0.993 0.994 0.997 0.997 0.998 0.998 0.999

252 0.038 0.010 0.003 0.043 0.100 0.048 0.095 0.166 0.193 0.096 0.187 0.258
500 0.061 0.027 0.012 0.101 0.151 0.097 0.174 0.291 0.252 0.169 0.308 0.419

0.3p 6.25% 1,000 0.112 0.066 0.051 0.237 0.273 0.188 0.348 0.492 0.373 0.285 0.508 0.634
1,500 0.199 0.113 0.114 0.402 0.367 0.281 0.515 0.670 0.477 0.402 0.670 0.779
2,500 0.374 0.236 0.306 0.667 0.617 0.456 0.765 0.873 0.710 0.593 0.864 0.929

252 0.017 0.002 0.014 0.088 0.045 0.023 0.177 0.260 0.105 0.060 0.298 0.382
500 0.024 0.029 0.165 0.477 0.068 0.115 0.602 0.733 0.134 0.209 0.733 0.824

0.5p 5.50% 1,000 0.039 0.180 0.778 0.892 0.105 0.414 0.947 0.963 0.161 0.561 0.967 0.981
1,500 0.063 0.429 0.951 0.980 0.148 0.682 0.992 0.995 0.230 0.791 0.997 0.998
2,500 0.117 0.775 0.999 1.000 0.259 0.911 1.000 1.000 0.347 0.953 1.000 1.000

252 0.137 0.044 0.022 0.206 0.256 0.148 0.320 0.469 0.418 0.240 0.478 0.589
500 0.306 0.199 0.125 0.491 0.493 0.408 0.618 0.759 0.628 0.532 0.756 0.853

0.5p 7.50% 1,000 0.621 0.541 0.491 0.849 0.805 0.772 0.918 0.961 0.871 0.856 0.965 0.983
1,500 0.864 0.794 0.820 0.974 0.939 0.924 0.987 0.996 0.965 0.959 0.996 0.999
2,500 0.984 0.973 0.991 1.000 0.996 0.993 1.000 1.000 0.999 0.998 1.000 1.000
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Table 4.13: Conditional Coverage - Setting 2: Identical Distribution - Size and Power of Tests - 1% VaR
The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-identically distributed VaR-violation sequences simulated by Equation (4.28) with
an increased violation probability. The VaR levelp is set to1%. Results are presented for various sets of sample sizesn andγ-factors which increase the probability of a
VaR-violation, and probability variation factorsδ. The results forδ = 0p correspond to the evaluation of the size of the test.LRmar

cc , LRwei
cc andGMMcc refers to the cc tests

of Christoffersen [1998], Christoffersen and Pelletier [2004] and Candelon et al. [2011].MCSiid refers to the new simulation based test. Top results are highlighted in bold.

Significance level: 1% Significance level: 5% Significance level: 10%
δ p n LRmar

cc LRwei
cc GMMcc MCScc LRmar

cc LRwei
cc GMMcc MCScc LRmar

cc LRwei
cc GMMcc MCScc

252 0.009 0.008 0.010 0.009 0.046 0.041 0.048 0.051 0.175 0.083 0.101 0.102
500 0.011 0.012 0.009 0.010 0.061 0.052 0.050 0.053 0.115 0.098 0.094 0.105

0p 1.00% 1,000 0.012 0.011 0.009 0.010 0.048 0.053 0.048 0.050 0.091 0.102 0.098 0.100
1,500 0.010 0.009 0.011 0.008 0.042 0.046 0.048 0.052 0.101 0.096 0.098 0.101
2,500 0.010 0.009 0.011 0.010 0.047 0.046 0.051 0.050 0.093 0.097 0.103 0.104

252 0.012 0.007 0.014 0.016 0.056 0.043 0.064 0.066 0.211 0.090 0.122 0.124
500 0.012 0.007 0.013 0.018 0.082 0.043 0.058 0.065 0.153 0.092 0.106 0.125

0.1p 1.10% 1,000 0.015 0.008 0.006 0.012 0.062 0.041 0.038 0.066 0.110 0.086 0.090 0.128
1,500 0.013 0.009 0.006 0.015 0.059 0.043 0.039 0.071 0.125 0.090 0.095 0.134
2,500 0.013 0.011 0.005 0.015 0.069 0.050 0.041 0.078 0.142 0.102 0.099 0.145

252 0.029 0.014 0.053 0.053 0.124 0.074 0.152 0.158 0.385 0.140 0.247 0.247
500 0.055 0.015 0.050 0.073 0.257 0.071 0.167 0.203 0.394 0.128 0.233 0.309

0.1p 1.50% 1,000 0.095 0.037 0.002 0.084 0.283 0.129 0.120 0.259 0.387 0.221 0.241 0.408
1,500 0.148 0.081 0.001 0.097 0.355 0.217 0.155 0.343 0.528 0.335 0.317 0.488
2,500 0.251 0.222 0.006 0.170 0.563 0.445 0.269 0.506 0.708 0.576 0.457 0.646

252 0.013 0.007 0.027 0.026 0.073 0.048 0.098 0.097 0.269 0.095 0.171 0.168
500 0.021 0.007 0.023 0.036 0.129 0.040 0.097 0.116 0.225 0.082 0.152 0.198

0.3p 1.25% 1,000 0.028 0.008 0.002 0.039 0.115 0.047 0.062 0.146 0.185 0.096 0.141 0.238
1,500 0.031 0.015 0.002 0.050 0.124 0.065 0.078 0.188 0.234 0.125 0.171 0.293
2,500 0.046 0.033 0.006 0.093 0.188 0.122 0.129 0.285 0.312 0.203 0.253 0.413

252 0.007 0.003 0.022 0.019 0.054 0.022 0.082 0.077 0.212 0.055 0.141 0.133
500 0.011 0.004 0.029 0.029 0.087 0.025 0.102 0.105 0.167 0.059 0.161 0.176

0.5p 1.10% 1,000 0.010 0.006 0.008 0.060 0.062 0.037 0.119 0.183 0.117 0.088 0.219 0.272
1,500 0.012 0.023 0.012 0.127 0.068 0.087 0.190 0.321 0.133 0.163 0.327 0.450
2,500 0.010 0.082 0.109 0.439 0.077 0.238 0.551 0.700 0.162 0.365 0.715 0.807

252 0.025 0.009 0.055 0.059 0.125 0.051 0.162 0.170 0.380 0.105 0.256 0.262
500 0.058 0.011 0.075 0.094 0.258 0.060 0.206 0.224 0.394 0.111 0.279 0.332

0.5p 1.50% 1,000 0.091 0.033 0.006 0.150 0.293 0.118 0.199 0.366 0.395 0.201 0.339 0.493
1,500 0.149 0.092 0.011 0.250 0.352 0.234 0.290 0.518 0.521 0.352 0.457 0.641
2,500 0.263 0.258 0.046 0.458 0.569 0.474 0.500 0.735 0.719 0.605 0.674 0.829



4.4. EMPIRICAL APPLICATION 88

Regarding both settings, theMCScc test yields the best rejection rates for the vast

majority of test settings. To be precise, theMCScc test shows similar or better results

compared to the competing tests in 157 out of 180 parameter combinations for setting 1

and 116 out of 150 parameter combinations for setting 2. Withrespect to setting 1, the

LRmar
cc test and theGMMcc test achieve or exceed the rejection rates of theMCScc test

in some cases in which the nominal VaR-level is set to 1%. Thisis especially true for

theLRmar
cc test for small samples and significance level10%. Nevertheless, as described

above, the power mostly decreases ifn increases indicating asymptotic disturbances. The

LRwei
cc test does not achieve top rejection rates for any of the parameter combinations.

Regarding setting 2, and parameter combinations for which the VaR-violation probability

variation parameter is set toδ = 0.1p, theLRmar
uc test shows some superior results. In

many cases, the rejection rates of theGMMcc test show evidence of a good performance,

but only in very few cases does it yield top results. For none of the reported parameter

combinations does theLRwei
cc test lead to results above the rejection rates of the remaining

tests.

4.4 Empirical Application

To investigate the behavior of the new set of backtests and toillustrate their usefulness in

a realistic risk management setting, we perform an empirical study using actual returns

on a set of managed portfolios.

4.4.1 Data and Forecasting Scheme

We apply the new tests to a unique data set provided by a Germanasset manager.16 The

data set consists of 5,740 daily log-returns for each of fourportfolios and covers a time

period of 22 years (January 1, 1991 to December 31, 2012). While we exclude weekend

days from our sample, it is not possible to easily eliminate holidays as well, because the

portfolio assets are invested internationally and non-business days differ widely across

16Due to confidentiality reasons, the asset manager wishes to remain anonymous.
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the countries in our sample. To this end, we add the returns ofthese days (e.g., accrued

interest) to the next trading day. Table 4.14 presents summary statistics for the portfolio

log-returns we use in our empirical study.

Table 4.14: Summary Statistics
Summary statistics of the portfolio data set used for the empirical application of theMCS andGMM tests.
The data set consists of 5,740 log-returns for each of the four portfolios covering a period from January 1,
1991 to December 31, 2012. Mean Return p.a. and Volatility p.a. are annualized with 250 days.

Portfolio 1 2 3 4

Minimum -2.691% -3.086% -3.473% -2.805%
5% quantile -0.651% -0.531% -0.657% -0.638%

Median Return 0.016% 0.011% 0.016% 0.016%
Mean Return 0.025% 0.020% 0.026% 0.027%
95% quantile 0.657% 0.564% 0.683% 0.648%

Maximum 3.705% 2.683% 3.621% 3.745%
Volatility 0.417% 0.369% 0.426% 0.425%
Skewness -0.133 -0.467 -0.300 0.083
Kurtosis 6.67 8.94 6.85 7.80

Mean Return p.a. 6.24% 4.95% 6.43% 6.84%
Volatility p.a. 6.59% 5.84% 6.73% 6.71%

Maximum Drawdown -23.46% -24.51% -23.80% -24.62%

The summary statistics in Table 4.14 show evidence of the usual stylized facts of returns

on financial assets. In addition to having negligible (daily) mean returns, the portfolio re-

turns exhibit signs of typical properties like negative skewed and leptokurtic asset returns

indicating fat tails particularly on the downside. Nevertheless, overall portfolio risk over

the complete sample period appears to be only moderate as evidenced by the estimates

of the (unconditional) return series volatility with all four portfolios having significant

positive annualized returns.

We calculate the one-day VaRs for each portfolio by the use oftwo different VaR-

models. First, we choose standard historical simulation asthe most widely used model

in practice (see Pérignon and Smith, 2010). This concept assumes no particular distribu-

tion of the returns. The VaR is rather estimated solely basedon historical returns. For

each VaR-estimation, we use the value of the 1% and 5% quantile of the last250 data

points as an estimate for the portfolio’s VaR. Second, we employ a GARCH(1,1) process

as a parametric model to forecast the VaR using the estimatedconditional variance of the
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GARCH model. Compared to historical simulation, the GARCH model is more flexible

because it accounts for autocorrelations in the return series’ variances. We choose the

simple GARCH(1,1) model rather than more sophisticated GARCH model specifications

because Hansen and Lunde [2005] show that the GARCH(1,1) model is hard to beat in

terms of volatility forecasting accuracy. For the sake of simplicity, we fit the GARCH

parameter for each portfolio separately to the total sampleof 5,740 log-returns.17 The

next-day VaR is then calculated simply by the quantile of a normal distribution with a

zero mean and the standard deviation forecasted by the GARCHmodel on the basis of

the last 250 log-returns. Figure 4.1 plots the daily portfolio returns together with the cor-

responding VaR-forecasts of the historical VaR and the GARCH model. In addition to the

time-varying volatility of the returns, the charts illustrate the differences in the forecasts

of the unconditional historical VaR approach and the conditional GARCH model. Howe-

ver, it can be seen for both models that the VaR-violations cluster to some degree during

certain subsamples.

After calculating the VaR-violation sequenceIt(p), we validate the VaR-estimation

by making use of the new set ofMCS tests to compute p-values and check the uc, i.i.d.

and cc hypotheses separately. With respect to theMCScc test, we use the two-tailed uc

component and opt for a weighting factor ofa = 0.5. For comparison purposes, we addi-

tionally present p-values of the uc, i.i.d., and cc version of theGMM test as the results

of our simulation study indicate that the set ofGMM tests is a suitable benchmark. Mo-

reover, we repeat our analysis for four separate time periods. For the first time period, we

include 5,740 log-returns of the whole available time span (January 1, 1991 - December

31, 2012). We then focus on the volatility shift from the highly volatile bear market at the

later stage of the dotcom-bubble burst (250 log-returns from April 16, 2002 to March 31,

2003) to the early stage of the subsequent calm bull market (250 log-returns from April

1, 2003 to March 15, 2004). Additionally, we apply the tests to the 500 log-returns of the

combination of the latter two periods from April 16, 2002 to March 15, 2004.

17Of course, this procedure does not comply to the principle ofout-of-sample forecasting. Nevertheless,
as we focus on the performance of the backtests, the issue of optimally fitting the GARCH parameters to
the data is not relevant for the purpose of this study.
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Figure 4.1: Returns, VaR-Forecasts, and VaR-Violations
The figure presents returns, VaR-forecasts, and VaR-violations for the four portfolios considering a VaR-level of 1%. VaR-forecasts are plotted with lines whereas the dashes
at the bottom of the charts mark the days on which a VaR-violation occurs.
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4.4.2 Results

The results of applying the backtests to the total period data set are shown in Table 4.15.

Table 4.15: Empirical Application - Total Period
The table contains Violation Ratios (i.e., VaR-violation frequency divided by the number of VaR-forecasts)
of the total period consisting of 5,490 VaR-forecasts for each portfolio (17.12.1991 to 31.12.2012). In addi-
tion, the table contains p-values for the unconditional coverage testsMCSlt

uc (lower tail),MCSut
uc (upper

tail), MCStt
uc (two tailed), andGMMuc, for the i.i.d. testsMCSiid andGMMiid, and for the conditional

coverage testsMCScc andGMMcc. The extensions *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level.

VaR Model Historical VaR GARCH approach
Portfolio 1 2 3 4 1 2 3 4

Panel A: 5% VaR

V iol. Ratio 5.43% 5.37% 5.50% 5.66% 4.37% 4.12% 4.54% 4.12%
MCSlt

uc 0.923 0.901 0.956 0.987 0.013** 0.001*** 0.054* 0.001***
MCSut

uc 0.077* 0.099* 0.044** 0.013** 0.987 0.999 0.946 0.999
MCStt

uc 0.155 0.197 0.088* 0.025** 0.025** 0.002*** 0.108 0.002***
GMMuc 0.133 0.221 0.091* 0.035** 0.025** 0.002*** 0.107 0.002***

MCSiid 0.000*** 0.000*** 0.000*** 0.000*** 0.014** 0.000*** 0.00 1*** 0.001***
GMMiid 0.000*** 0.000*** 0.000*** 0.000*** 0.005*** 0.001*** 0.0 05*** 0.004***

MCScc 0.000*** 0.000*** 0.000*** 0.000*** 0.002*** 0.000*** 0.0 00*** 0.000***
GMMcc 0.001*** 0.000*** 0.001*** 0.001*** 0.002*** 0.001*** 0.0 04*** 0.001***

Panel B: 1% VaR

V iol. Ratio 1.20% 1.22% 1.35% 1.35% 1.53% 1.48% 1.46% 1.33%
MCSlt

uc 0.924 0.949 0.994 0.992 1.000 1.000 0.999 0.994
MCSut

uc 0.076* 0.052* 0.006*** 0.008*** 0.000*** 0.001*** 0.001*** 0.006***
MCStt

uc 0.151 0.103 0.012*** 0.016*** 0.000*** 0.001*** 0.001*** 0.013**
GMMuc 0.124 0.114 0.020** 0.020** 0.002*** 0.003*** 0.005*** 0.026**

MCSiid 0.022** 0.007*** 0.003*** 0.003*** 0.130 0.204 0.578 0.057*
GMMiid 0.022** 0.007*** 0.004*** 0.006*** 0.439 0.012** 0.311 0.019**

MCScc 0.019** 0.006*** 0.001*** 0.001*** 0.004*** 0.009*** 0.02 6** 0.011**
GMMcc 0.034** 0.017** 0.008*** 0.006*** 0.019** 0.019** 0.051* 0.022**

First, we compute the VaR-violation ratios of each portfolio for each VaR-forecasting

method and the nominal VaR levels of 5% and 1%. We define the VaR-violation ratio as

the VaR-violation frequency divided by the number of VaR-forecasts. Both the historical

VaR and the GARCH approach lead to VaR-violation ratios which deviate from the no-

minal VaR level of 5% and 1% to some degree. The p-values of theone-tailedMCSlt
uc

andMCSut
uc tests indicate that each of these deviations are statistically significant. Howe-

ver, some of the p-values yielded by the two-tailedMCStt
uc and theGMMuc tests remain

above the 10% significance level.

TheMCSiid test and theGMMiid test reject the i.i.d. hypothesis for the violation se-
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quences generated by the historical simulation VaR-model for the 5% and 1% VaR level.

We expect a large sample like ours that consists of 22 years ofdata to suffer significantly

from the stylized facts of financial returns (i.e., series ofabsolute or squared returns show

profound serial correlation, volatility appears to vary over time, and extreme returns ap-

pear in clusters). Consequently, an inflexible and unconditional VaR-model like historical

simulation should lead to non-i.i.d. VaR-violations. However, the p-values for the more

flexible GARCH model suggest clustered VaR-violations onlyfor the 5% VaR level. The-

se findings are confirmed by significant p-values obtained fortheMCScc andGMMcc

tests.

The test results for the bear and the bull market as well as forthe combination of

both market phases are reported in Table 4.16. We restrict the presentation of the results

to the VaR level of 5%, because it vividly illustrates the effects of a shift from a bear to

a bull market. The differences in the VaR-violation ratios between the bear and the bull

market are significant. On average, for the bear market the historical VaR approach yields

VaR-violations in 8.45% of the days whereas for the bull market the ratio amounts to

1.70%. Consequently, for both the bear and the bull market, the p-values of the relevant

one-sided and the two-sidedMCSuc tests as well as theGMMuc test are statistically

significant in the vast majority of cases. With respect to thecombined 500 trading days

sample, the underestimated VaR of the bear market and the overestimated VaR of the

bull market compensate each other and lead to an average VaR-violation ratio of 5.08%.

Because this is very close to the nominal VaR level of 5%, all applied backtests imply a

correct uc. This result underpins our redefinition of the uc property, because the backtests

show no significant p-values although the probability for a VaR-violation is not equal to

the nominal levelp for all dayst.

The i.i.d. tests show a remarkable behavior. Because the GARCH model accounts for

autocorrelated volatility, it can be assumed that the VaR-violations are less dependent

compared to the VaRs estimated with historical simulation.Consequently, the p-values

regarding the GARCH model during the bear market and the bullmarket separately are

statistically significant in only four out of twelve cases.
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Table 4.16: Empirical Application - Bear, Bull, and Bear + Bull Market
For each portfolio, the table contains Violation Ratios (i.e., number of VaR-violations divided by VaR-
forecasts) of the bear market period (250 VaR-forecasts from 16.04.2002 to 31.03.2003), the bull market
period (250 VaR-forecasts from 01.04.2003 to 15.03.2004),and the combination of the bear and bull market
period (500 VaR-forecasts from 16.04.2002 to 15.03.2004).The VaR level is set to 5%. In addition, the ta-
ble contains the corresponding p-values for the unconditional coverage testsMCSlt

uc (lower tail),MCSut
uc

(upper tail),MCStt
uc (two tailed), andGMMuc, for the i.i.d. testsMCSiid andGMMiid, and for the con-

ditional coverage testsMCScc andGMMcc. The extensions *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% level.

VaR Model Historical VaR GARCH(1,1)
Portfolio 1 2 3 4 1 2 3 4

Panel A: Bear Market / 5% VaR

V iol. Ratio 7.60% 7.60% 8.40% 9.20% 8.80% 8.00% 9.20% 8.80%
MCSlt

uc 0.967 0.964 0.988 0.998 0.995 0.982 0.998 0.995
MCSut

uc 0.033** 0.036** 0.012** 0.002*** 0.005*** 0.018** 0.002*** 0.005***
MCStt

uc 0.065* 0.073* 0.023** 0.004*** 0.011** 0.036** 0.003*** 0.010**
GMMuc 0.131 0.120 0.050* 0.019** 0.040** 0.064* 0.017** 0.045**

MCSiid 0.000*** 0.008*** 0.025** 0.010** 0.033** 0.047** 0.207 0.051*
GMMiid 0.000*** 0.005*** 0.042** 0.010** 0.078* 0.197 0.819 0.256

MCScc 0.001*** 0.005*** 0.007*** 0.003*** 0.006*** 0.015** 0.01 5** 0.007***
GMMcc 0.014** 0.037** 0.044** 0.020** 0.039** 0.090* 0.048** 0.048**

Panel B: Bull Market / 5% VaR

V iol. Ratio 1.20% 2.00% 1.20% 1.60% 1.60% 2.80% 1.60% 1.60%
MCSlt

uc 0.001*** 0.007*** 0.001*** 0.004*** 0.002*** 0.046** 0.00 4*** 0.004***
MCSut

uc 0.999 0.993 0.999 0.996 0.998 0.954 0.996 0.996
MCStt

uc 0.003*** 0.013** 0.001*** 0.007*** 0.004*** 0.093* 0.007*** 0.008***
GMMuc 0.001*** 0.007*** 0.001*** 0.001*** 0.004*** 0.080* 0.003*** 0.004***

MCSiid 0.424 0.545 0.428 0.204 0.259 0.540 0.255 0.258
GMMiid 0.657 0.634 0.659 0.787 0.770 0.643 0.757 0.761

MCScc 0.044** 0.095* 0.044** 0.025** 0.040** 0.237 0.036** 0.035**
GMMcc 0.003*** 0.013** 0.003*** 0.003*** 0.003*** 0.193 0.005*** 0.004***

Panel C: Bear + Bull Market / 5% VaR

V iol. Ratio 4.40% 4.80% 4.80% 5.40% 5.20% 5.40% 5.40% 5.20%
MCSlt

uc 0.269 0.404 0.457 0.687 0.580 0.666 0.684 0.591
MCSut

uc 0.731 0.596 0.543 0.313 0.420 0.334 0.316 0.409
MCStt

uc 0.538 0.807 0.914 0.627 0.841 0.668 0.633 0.818
GMMuc 0.666 0.932 0.923 0.681 0.702 0.542 0.542 0.684

MCSiid 0.003*** 0.034** 0.004*** 0.001*** 0.003*** 0.116 0.005*** 0.003***
GMMiid 0.001*** 0.007*** 0.003*** 0.001*** 0.003*** 0.160 0.003*** 0.005***

MCScc 0.003*** 0.112 0.009*** 0.004*** 0.012** 0.306 0.011** 0.013**
GMMcc 0.007*** 0.030** 0.014** 0.010** 0.014** 0.374 0.024** 0.018**

These results are contrasted by the p-values for the sample where the bear and bull

market are combined. Here, the i.i.d. tests attain p-valuesbelow the 1% level of significan-

ce in six out of eight cases. This result could be due to the large shift in the VaR-violation

ratio. Only the p-values for portfolio two reveal no significance which can be explained by

a smaller drop of the violation ratio from the bear to the bullmarket compared to the re-
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maining portfolios. This outcome demonstrates the necessity of testing the independence

as well as the identical distribution hypothesis using a powerful test. Finally, the results

of the cc tests reflect the implications of the correspondinguc and i.i.d. tests.

4.5 Conclusion

Comparatively little attention has been paid in the literature to the development of proper

tools for backtesting VaR-forecasts. This paper provides three main contributions to the

issue of backtesting the performance of VaR-models. First,we extend the discussion of

the desirable properties of violations originating from a correct VaR-model and restate

the uc property of a VaR-violation process. Furthermore, westress the need to require the

VaR-violations to be identically distributed to adequately backtest models across different

market phases. Second, we propose a new set of backtests thattest VaR-violation proces-

ses for uc, the i.i.d. property as well as cc. Compared to existing standard approaches,

these backtests contain new desirable features like one-tailed testing for uc and a test for

cc that allows for different weightings of the uc and i.i.d. parts. The new backtesting proce-

dures are based on i.i.d. Bernoulli random variables obtained by Monte Carlo simulation

techniques and are very intuitive. Third, we perform a simulation study using generated

VaR-violation samples that specifically violate the uc, i.i.d., and cc property to different

controllable degrees. Compared to existing classical and state-of-the-art backtests, the

new backtests outperform these benchmarks in several distinct settings. In addition, we

use the new backtests in an empirical application study. We apply the backtests to return

samples of calm boom and highly volatile bust cycles. The obtained results demonstrate

the need for a backtest that accounts for non-identically distributed VaR-violations and,

moreover, support the reformulation of the uc hypotheses.

As a natural extension of our work, one could think of multivariate versions of our

newly proposed backtests which would need to take into account possible correlations in

VaR-violations across assets and time. As this issue lies beyond the scope of the present

work, we will address it in our future research.



Kapitel 5

Estimation Window Strategies for Value

at Risk Forecasting

5.1 Introduction

Today, the Value at Risk (VaR) is the de facto standard tool for risk management in the

financial services industry. Because of the high relevance of this risk measure, numerous

parametric, semi-parametric, and non-parametric models for VaR-estimation and forecas-

ting have been developed over the last two decades. All of these approaches estimate VaR-

forecasts directly or indirectly on the basis of a sample of historical asset-returns. This

leads to the question of how to determine the appropriate in-sample size for generating

out-of-sample VaR-forecasts. This is not a trivial task, because it is well known that the

volatility of asset returns varies over time and is subject to occasional structural breaks.1

In particular, structural shifts may lead to significant biases in the parameter estimation

of forecasting models. The aim of this study is to investigate whether different estimation

window strategies lead to significant divergences in the VaRand ES forecasting accuracy.

In addition, we analyze whether more sophisticated estimation window strategies outper-

form simple strategies like rolling or expanding windows. To this end, we analyze the

characteristics of a comprehensive set of strategies in thecontext of various parametric,

semi-parametric, and non-parametric VaR models.

Several studies deal with the issue of misspecified forecasting models. Among

others, Hillebrand [2005] show that neglecting changes in financial time series can

yield to overestimated persistence in conditional volatility parameters. Furthermore,

1For a comprehensive overview of structural breaks in financial time series see Andreou and Ghysels
[2009]
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Pesaran and Timmermann [2004] and Pesaran et al. [2006] find out that structural breaks

can affect the accuracy of financial time series forecasts. Andreou and Ghysels [2003]

states that failure to recognize the presence of structuralbreaks can have devastating and

costly effects on financial risk management tools like VaR and Expected Shortfall (ES).

Estimation window strategies used in the finance literatureare often limited to ex-

panding windows, which include all available data preceding the forecasting time point,

and rolling windows characterized by a moving interval of a more or less arbitrary fixed

length. By nature, these strategies do not explicitly account for any changes in the in-

sample data. To this end, Pesaran and Timmermann [2007] discuss the usage of the date

for which a structural break is identified as a starting pointfor the determination of an esti-

mation window. The appealing idea behind this strategy is toexclude historical data from

the estimation sample which significantly differ from the more recent data. However, the

employment of structural break tests for estimation windowdetermination suffers from

two serious drawbacks. First, the limited number of observations of a reduced sample size

leads to an increased variance of the parameter estimates and hence to forecast errors. To

this end, Pesaran and Timmermann [2007] analyze a trade-offbetween biased estimates

and forecast error variance. They concluded that it can be useful to use pre-break data for

parameter estimation. Second, Pesaran and Timmermann [2007] emphasize that the over-

all outcome crucially depends on how well the location of thebreak point is estimated by

a statistical test. To overcome the difficulties of specifying an appropriate estimation win-

dow size, Pesaran and Timmermann [2007] and Clark and McCracken [2009] propose to

combine forecasts from models estimated on different samples. The strategy of combi-

ning forecasts is based on the seminal paper of Bates and Granger [1969]. Timmermann

[2006] provide a comprehensive overview over the forecast combination literature and

discusses the pros and cons of this approach. In brief, he argues that pooling forecasts can

lead to diversification gains which make it attractive to employ combinations rather than

rely on a single model.

Compared to the vast amount of papers on volatility and VaR models, the finance lite-

rature provides relatively few comparisons of estimation window strategies in this context.
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Focusing on volatility forecasting ability, Brownlees et al. [2012] compared several con-

ditional volatility models estimated on different estimation window lengths. The results of

this study indicate that the expanding window strategy gives a better forecasting accuracy

compared to relatively long rolling windows of eight and four years. With respect to out-

of-sample VaR-forecasting performance, Kuester et al. [2006] analyze different classical

and sophisticated VaR models considering rolling windows of 1,000, 500, and 250 days.

They stated that although less parameterized models seem tobenefit from smaller sample

sizes, general conclusions about model performance as the window length decreases can-

not be made. Halbleib and Pohlmeier [2012] present empirical evidence from assessing

the out-of-sample performance and robustness of VaR beforeand during the recent finan-

cial crisis with respect to the choice of sampling windows. They show that using a two

year sampling window is sufficient before the crisis, while during the crisis the estimation

window should also incorporate information on past extremeevents. A deeper insight into

estimation window strategies is provided by Rapach and Strauss [2008] and Rapach et al.

[2008]. They investigate the forecasting accuracy of conditional volatility models accom-

modating structural breaks as well as forecast combinations of different volatility models

or estimation windows. They find that combining forecasts often yields more accurate

forecasts compared to a simple expanding window benchmark approach. The results for

models estimated on window sizes determined by structural breaks are ambiguous. Ac-

commodating structural breaks in exchange rate return variance often improves volatility

forecasts while the same strategy for stock indices returnsdoes not.

This paper is most related to the works of Rapach and Strauss [2008] and Rapach et al.

[2008] but contributes to the literature by several important improvements and extensions.

First, to the best of our knowledge, this is the only study that analyzes the impact of diffe-

rent estimation window strategies including structural breaks and forecast combinations

explicitly on forecasting common risk measures like VaR andthe ES rather than volatili-

ty. These strategies are investigated in a context of a comprehensive model set including

different parametric as well as semi-parametric and non-parametric forecasting approa-

ches. For parametric models, predicting VaR and ES is formally related to forecasting
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variance (see Section 5.2.1). Nevertheless, while the evaluation of variance forecasting is

based on the entire loss distribution, the accuracy of VaR and ES forecasts depends on

the specific shape characteristics of its lower left tail. Therefore, results from evaluating

variance forecasting performance cannot generally be usedto assess VaR and ES fore-

casting capability. In addition, semi- and non-parametricVaR and ES models are not or

only indirectly related to variance forecasting. To measure VaR-forecasting accuracy we

use powerful statistical tests of the unconditional coverage and i.i.d. properties of VaR-

violations proposed by Ziggel et al. [2013], while the ES forecasts are evaluated by the

test of McNeil and Frey [2000]. In addition, we compare the estimation window approa-

ches by employing the conditional predictive ability (CPA)test of Giacomini and White

[2006]. Second, the results of this study are very robust. The result evaluation of all related

papers mentioned above suffer from the serious drawback that they are obtained by apply-

ing different approaches to just a few or in most cases one fixed out-of-sample period. But

it is very likely that different out-of-sample periods leadto different results and conclu-

sions. To this end, we perform the risk forecasts to a large number of different randomly

selected samples of stock returns. Third, for individual forecasts and forecast combinati-

ons we use relatively small rolling estimation window sizesof 125, 250, 500, and 1,000

trading days which are very frequently used in theory and particularly in practice.2 This

is contrary to Rapach and Strauss [2008] and Rapach et al. [2008] who determine rolling

estimation samples from about three to more than ten years.

The results of our empirical study reveal that the selectionof the estimation window

strategy leads to significant performance differences. Each of the evaluated estimation

window strategies has its advantages and disadvantages. However, the usage of forecast

combinations seems to be the preferable estimation window strategy, because it shows

good results in most analyzed settings and backtests. The results reveal that applying com-

binations leads to more conservative VaR-forecasts and reduces the undesired occurrence

of clustered VaR-violations on average.

The remainder of the paper proceeds as follows. In Section 5.2, we briefly review

2Basel Committee on Banking Supervision [2005] requires that the choice of the historical observation
period for calculating VaR is constrained to a minimum length of one year.
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the VaR-forecasting models and, additionally, present theestimation window strategies in

detail. Section 5.3 describes the data set and the backtestsused in this empirical study.

The results are discussed in Section 5.4. Section 5.5 concludes.

5.2 VaR-Models and Estimation Window Strategies

We apply different estimation window strategies to a set of parametric, semi-parametric,

and non-parametric VaR-forecasting models. In this section, we quickly describe the theo-

retical background of the VaR models and explain the application of the estimation win-

dow strategies.

5.2.1 A Short Review of VaR-Forecasting Models

The VaR-forecasts provided by each of the models described in the following are estima-

ted on the basis of a series of log-returnsrt = log(Pt/Pt−1), wherePt denotes the quote

of an asset at timet = (0, 1, . . . , T ). Following the Market Risk Amendment proposed by

the Basel Committee on Banking Supervision [2005], we estimate 1-day ahead (k = 1)

and 10-day ahead (k = 10) VaR-forecasts. The100(1− p)% confidence level of the VaR

is set top = 0.05 andp = 0.01. As the Value-at-Risk does not fulfill the requirements

of a coherent risk measure (see Artzner et al., 1999), we alsoestimate the ES which is

generally defined asESp(X) = E[X|X ≤ V aRp(X)].3

• Normal Distribution

We start with the simplest parametric model based on the assumption of nor-

mal distributed returns. We include this model because Starica et al. [2005] and

Rapach and Strauss [2008] find out that a simple approach based on the average

of the squared returns often achieves good results comparedto conditional mo-

dels if this model is estimated on a relatively small moving window. They argue

3The terms ES and Conditional-Value-at-Risk (CVaR) are often used synonymously, although the latter
is defined asCV aRp(X) = E[X |X < V aRp(X)]. Note that if the loss distribution is continuous, the ES
is equal to the CVaR. The ES differs from the CVaR in the case ofdiscontinuities in the loss distribution.
In general, the relationship is defined byCV aR ≤ ES ≤ V aR. For further details see Acerbi and Tasche
[2002].
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that this moving average model is a convenient way of capturing a conditionally

homoskedastic process with relatively frequent breaks. Let σt denote the standard

deviation of the log-returnsrt. If the simplistic but popular assumption is made

that asset returns follow a normal distribution, the 1-day VaR-forecasts are given

by V aRp
t+1 = σtz(p), wherez is the quantile of the standard normal distribution.

In line with the stylized facts of asset returns (see McNeil et al., 2005, p. 117), we

assume the expected daily returns to be zero while the empirical standard deviation

σt is estimated on the log-returns of different estimation windows. Thek-day ahead

forecasts for forecasting periodsk > 1 are computed byV aRt+k = V aRt+1 ·
√
k.

The ES is calculated byESp
t+1 = σt

φ(z(p))
p

for the 1-day ahead forecast and by

ESp
t+k = ESp

t+1 ·
√
k for thek-day ahead forecast withk > 1, whereφ denotes the

density of the distribution.

• Exponentially Weighted Moving Average

The very popular Exponential Weighted Moving Average (EWMA) approach, also

used in theRiskMetricsframework, explicitly accounts for time-varying and auto-

correlated volatility of asset returns. Considering an estimation window including

m log-returns from timet − m + 1 to time t, the EWMA model estimates the

next-day variance bŷσ2
t+1 = (1 − λ)

∑m+1
i=0 λir2t−i = λσ̂2

t + (1 − λ)rt. The decay

factorλ is usually set to 0.94 and 0.97 for 1-day and one-month ahead volatility

forecasts, respectively (see RiskMetrics Group, 1996). However, to investigate the

impact of different estimation window strategies, we applydecay factors determi-

ned byλ = eln(0.001)/m. The 1-day VaR-forecasts are given byV aRt+1 = σ̂t+1z(p)

while thek-day ahead forecasts for forecasting periodsk > 1 are computed by

V aRt+k = V aRt+1 ·
√
k. The ES is calculated byESp

t+1 = σ̂t+1
φ(z(p))

p
for the 1-

day ahead forecast and byESp
t+k = ESp

t+1 ·
√
k for thek-day ahead forecast with

k > 1, whereφ denotes the density of the distribution.

• GARCH(1,1)

The GARCH model of Bollerslev [1986] and its variants are very frequently used
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to forecast the volatility of asset returns. In contrast to the EWMA model, GARCH

models accommodate the fact that the long-run average variance of asset returns

tends to be relatively stable over time. Hansen and Lunde [2005] compare the vo-

latility forecasting accuracy of a large range of differentGARCH models. They

find out that the simple GARCH(1,1) is not significantly outperformed by any

of its more complex counterparts. Therefore in this empirical study we select the

GARCH(1,1) model. The log-return of an asset is modelled byrt = σ̇tǫt, where

ǫt ∼ i.i.d. N(0, 1). Then the 1-day forecast of the asset return variance is denoted

by σ̇2
t+1 = ω + αr2t + βσ̇2

t , whereα + β < 1 andω = σ̇2(1 − α − β). The uncon-

ditional, or long-run average, variance is denoted byσ̇2. The k-day ahead forecasts

of the variance fork > 1 are given byσ̇2
t+k = kσ̇2 +

∑k
j=1(α + β)j−1(σ̇2

t+1 − σ̇2).

The k-day ahead VaR-forecasts are determined byV aRt+k = σ̇t+kz(p). The k-day

ahead ES forecast is given byESp
t+k = σ̇t+k

φ(z(p))
p

, whereφ denotes the density of

the distribution.

• GJR-GARCH(1,1)

The GARCH(1,1) model described above is symmetric in that sense that it does not

distinguish between positive and negative return shocks. However, numerous stu-

dies evidenced that asset returns and conditional volatility are negatively correlated

(for an overview see Bekaert and Wu, 2000). To accommodate this typical cha-

racteristic, we employ the GJR-GARCH(1,1) model of Glostenet al. [1993]. This

variance forecasting approach modifies the classical GARCH(1,1) model in a way

that not only the size but also the direction of a shockǫt has an impact to the volati-

lity forecast. The 1-day ahead volatility forecast provided by the GJR-GARCH(1,1)

model is given bỹσ2
t+1 = ω + (α + γIt)r

2
t + βσ̃2

t , whereIt is an indicator variable

equaling one ifǫt < 0. The computation of k-day ahead volatilities and forecastsof

VaR and ES are identical to the GARCH(1,1) model.

• Historical Simulation

As a non-parametric VaR model, the Historical Simulation (HS) approach assumes
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no particular distribution of the returns. Due to its simplicity it is easy to imple-

ment and very frequently used in practice. In a survey of international banks’ VaR

disclosures, Pérignon and Smith [2010] find out that 73 percent of these banks use

HS for VaR-forecasting purposes. Therefore, the impact of different estimation win-

dow strategies to the VaR-forecasting accuracy of HS is of high interest particularly

for practitioners. For each 1-day ahead VaR-forecast, we use the lastm log-returns

and arrange it in increasing order. Depending on the desiredVaR confidence le-

vel, the corresponding percentile of the historical returns is used as VaR-forecast

by V aRp
t+1 = Percentile

{
{rt−i}m−1

i=0 , 100p
}

. The k-day ahead VaR-forecasts for

k > 1 are calculated by the same procedure. Here,V aRt+k based on the percentile

of m−k+1 returns calculated byrt+1:k =
∑k

j=1 rt+j . The k-day ahead ES forecast

is determined byESp
t+k = 1

p·(m−k+1)
·∑m−k+1

i=1 rt+1:k · 1(rt+1:k ≤ V aRp
t+k), where

1(·) denotes the indicator function returning a 1 if a loss exceeds the VaR, and zero

otherwise.

• Filtered Historical Simulation

The non-parametric HS model has the advantage of not requiring any assump-

tions concerning the distribution of the asset returns but fails to accommoda-

te conditional time-varying volatility. Exactly the opposite holds true for pa-

rametric GARCH models. The semi-parametric Filtered Historical Simulation

(FHS) model of Barone-Adesi et al. [1999] combines the benefits of both mo-

dels. We estimate the 1-day ahead volatility forecastσ̄t+1 using the GARCH(1,1)

model as described above. For calculating VaR and ES forecasts, we follow

Christoffersen [2009]. By multiplying the volatility forecast by the percentile of

the standardized residuals we calculate the 1-day ahead VaR-forecast asV aRt+1 =

σ̄t+1Percentile
{
{ǫt−i}m−1

i=0 , 100p
}

. To determine the k-step ahead VaR-forecast,

we drawk random numbers from a discrete uniform distribution from 1 to m.

Each drawn number from this distribution determines a historical standard resi-

dual ǫi,k obtained by estimating the GARCH(1,1) model on the log-returns of the

estimation window. The return for the first day of the k-day holding period is cal-
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culated byr̄t+1 = σ̄t+1ǫ1,k. Then, the return̄rt+1 is used to update the volatili-

ty for day two of the holding period̄σt+2. The return of day twōrt+2 is then

again given by the multiplication of the updated volatilityand the second drawn

standardized residual. This process is repeated until a return sequence of length

k is constructed. This return sequence sums up to a hypothetical future return

r̄t+1:k =
∑k

j=1 r̄t+j. By repeating this procedureL = 10000 times, we obtain

10,000 hypothetical future returns̄rl,t+1:k. Again, the k-step ahead VaR-forecast

is then given byV aRp
t+k = Percentile

{
{r̄l,t+1:k}Ll=1, 100p

}
. The 1-day ahead

ES forecast is determined byESp
t+1 = σ̄t+1

1
p·m ·

∑m
i=1 ǫt+1 · 1(ǫt+1 ≤ V aRp

t+1),

where1(·) denotes the indicator function returning a 1 if a loss exceeds the VaR,

and zero otherwise. The k-day ahead ES forecast fork > 1 is calculated by

ESp
t+k = 1

p·L ·∑L
l=1 r̄l,t+1:k · 1(r̄l,t+1:k ≤ V aRp

t+k).

5.2.2 Estimation Window Strategies

In the following, we explain the different estimation window strategies used in this em-

pirical study. As explained in detail in Section 5.3, each sample used in this empirical

study for the 1-day ahead VaR-forecasts includesT = 3000 trading days, where the out-

of-sample forecasting period comprises 2,000 trading dayst = [1001, . . . , 3000]. This in

turn leads to a maximum in-sample size of 1,000 days for the first out-of-sample VaR-

forecast for the dayt = 1001.4

• Expanding Window

The expanding window strategy includes the entire dataset of the sample available

at timet. That means that the sizemexp of the expanding estimation window starts at

1,000 trading days for forecasting VaR for dayt = 1001 and expands by one more

observation per day. The last VaR-forecast estimated fort = 3000 is then based on

the estimation window consisting of 2999 returns. Because the starting point of an

4The specifications of the total sample and the out-of-samplesizes relate to the 1-day ahead VaR-
forecast periodk = 1. Note that in case of the longer forecasting periodk > 1, the total sample includes
3000 + k − 1 trading days and we calculate 2,000 VaR-forecasts corresponding to the cumulated returns{∑k

j=1
r1000+j , . . . ,

∑k

j=1
r2999+j

}
.
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expanding estimation window is fixed tot = 1, this strategy neglects the occurrence

of structural breaks which may lead to biased VaR estimations. However, using the

longest available data history minimizes the forecast error variance. In line with

Rapach and Strauss [2008] and Rapach et al. [2008] the expanding window strategy

serves as a benchmark model in the context of this study.

• Rolling Window

The rolling window strategy based on an estimation sample ofa fixed sizemrol. For

each new VaR-forecast estimation, the return of the dayt is added to the sample

while the return of the dayt−mrol is excluded. This strategy is frequently used in

finance research as well as by practitioners, because removing older observations

from the sample reduces potential biases in the VaR estimation caused by structural

breaks and, therefore, leads to flexible adjustments of the forecasting model to time-

varying volatility. We employ rolling estimation windows of 125, 250, 500, and

1,000 trading days which covers a broad range of data historyfrom approximately

one half to four years.

• Structural Breaks

The aim of the structural break strategy is to minimize the estimation biases resul-

ting from significant changes in the volatility of an estimation sample. To detect

structural breaks in the volatility, we perform the fluctuation test for constant va-

riances of Wied et al. [2012a] to the daily log-returns. Basically, this test can be

regarded as a one-dimensional special case of the test for a constant covariance

structure of Aue et al. [2009]. Since this test is non-parametric, difficulties asso-

ciated with parametric model selection, model fitting and parameter estimation are

avoided. We test whether the varianceV ar(Xt) of a sequence of random variables

(Xt, t = 1, . . . , T ) is constant over time. In detail, we test the null hypothesis

H0 : V ar(Xt) = σ2∀t ∈ {1, . . . , T}

against the alternative

H1 : ∃t ∈ {1, . . . , T − 1} : V ar(Xt) 6= V ar(Xt + 1)
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for a constantσ2. The test statistic is given by

QT (X) = max
1≤j≤T

∣∣∣∣D̂
j√
T
([V ar X ]j − [V ar X ]T )

∣∣∣∣→ sup
z∈[0,1]

|B(z)|, (5.1)

whereB(z) is a one-dimensional Brownian Bridge. The scalarD̂ is needed for

the asymptotic null distribution and mainly captures the long-run-dependence and

the fluctuations resulting from estimating the expected value. The fluctuation of the

empirical variances is measured bymax
1≤j≤T

|([V ar X ]j − [V ar X ]T )|. The weighting

factor j√
T

scales down deviations for smallj because the[V ar X ]j are more vo-

latile at the beginning of the sample. For more formal details see Appendix B and

Wied et al. [2012a]. To estimate the point of time where a change of the variance

occurs, we employ a procedure based on Galeano and Wied [2014]. Within the total

sample including all observations preceding the forecast day t + 1 we identify the

data point where the test statistic takes its maximum. If this maximum is equal to

or above the critical value, the null of a constant variance is rejected.5 The locati-

on of the maximum serves as a natural estimator of a so called dominating change

point. At this point we split the sample into two parts and search for possible change

points again in the latter part of the sample. The procedure stops if the test statistic

remains below the critical value.

Basically, we use the latest date where a structural break isdetected as the starting

point for the estimation sample. However, Pesaran and Timmermann [2007] point

out that using only the observations over the post-break period to estimate a VaR

model need not be optimal in terms of forecasting performance. Although this ap-

proach yields unbiased forecast estimations, too small sample sizes could lead to

increased forecast error variances. To overcome the trade-off between bias and fo-

recast error variance, we limit the sample size to a minimum of 125 days which

corresponds to the minimum rolling window size. Consequently, the size of the

5The limit distribution ofQT (X) is well known (see Billingsley, 2009) and its quantiles provide an
asymptotic test. We follow Wied et al. [2012a] who find out that the test works well by using a critical value
of 1.358 corresponding to a significance level of 5%.
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estimation window using the structural break strategy can vary between 125 days

and the length of the expanding window. The test for structural breaks and hence

the adjustment of the length of the estimation sample is performed on a daily basis.

• Combinations

Generally, a single dominant estimation window strategy which mini-

mizes VaR-forecasting errors cannot be identified ex ante. Therefore,

Pesaran and Timmermann [2007] and Clark and McCracken [2009] propose

that it can be useful to combine VaR-forecast estimated on different sample sizes.

Timmermann [2006] provide an overview of arguments for combining forecasts.

One of the main arguments is that individual forecasts may bevery differently

affected by non-stationarities such as structural breaks.Some estimation window

strategies may lead to quick adaptations while others do not, but lead to more pre-

cisely estimated parameters. As mentioned in Section 5.1, strategies based on the

detection of structural breaks suffer from severe drawbacks, too. Consequently, it is

possible that across periods with varying volatility, combinations of forecasts based

on estimation window strategies representing different degrees of adaptability

will outperform forecasts based on individual estimation window strategies. Each

combination described below is computed by the simple equal-weighted average

of the respective VaR-forecasts. Alternatively, Timmermann [2006] discuss several

distinct techniques to determine optimal combination weights. However, he pointed

out that simple combination schemes such as equal-weighting have widely been

found to dominate estimations of optimal weights because optimization approaches

tend to suffer from serious estimation errors. In the spiritof Rapach et al. [2008],

we employ the following combinations:

Mean All. This combination includes the total set of estimation window strategies

consisting of the expanding window, the rolling windows of 125, 250, 500, and

1,000 days, and the windows determined by the structural break test.

Mean All ex Structural Breaks. This combination excludes VaR-forecasts based on
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estimation windows determined by the structural break test. It is easier to implement

because no statistical test for significant changes of the volatility has to be applied.

Mean Rolling Windows. This combination includes rolling windows of 125, 250,

500, and 1,000 days. Compared to the previous combinations it should be more

flexible concerning estimations biased from structural breaks.

Mean Long Short. This combination averages the VaR-forecasts based on the long

sized expanding windows and the short sized rolling windowsof 125 days. These

sample sizes correspond to very stable and very flexible VaR-forecast estimations,

respectively.

Trimmed Mean All / Trimmed Mean All ex Structural Breaks / Trimmed Mean Rol-

ling Windows. For calculating each of these combinations, the minimum and maxi-

mum individual VaR-forecast is excluded from the respectivemean all, mean all ex

structural breaks, andmean rolling windowscombination.

5.3 Data and Backtesting

In the following we describe the data used in the empirical study. Furthermore, we explain

the backtests which are used to evaluate and compare the performance of the distinct

estimation window strategies.

5.3.1 Data

For the empirical study we compute daily log-returns by using total return quotes of com-

panies listed on the German stock index DAX on June 30, 2013. We limit the selection

to those 14 companies which provide a complete data history from January 1, 1973 to

June 30, 2013 consisting of 10,370 log-returns. Zero returns caused by weekends and

holidays are excluded from the data set. All quotes are obtained fromThomson Reuters

Financial Datastream. Tabel 5.1 reports the summary statistics for each of the 14 time-

series. Almost all stocks show significant positive annualized returns, but also an annua-
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Table 5.1: Summary Statistics
Summary statistics of the data set used for the empirical study. The data set consists of 10,370 log-returns
for each of the 14 stocks taken out of the DAX covering a periodfrom January 1, 1973 to June 30, 2013.
Mean p.a. and volatility p.a. are annualized with 250 days.

Company Allianz BASF Bayer
Beiers

BMW
Commerz- Deutsche

-dorf Bank Bank

Minimum -15.678% -12.924% -18.432% -13.423% -15.985% -28.248% -18.072%
5% Quantile -2.773% -2.352% -2.449% -2.292% -2.787% -3.120% -2.695%
Median 0.008% 0.021% 0.021% 0.008% 0.014% 0.000% 0.011%
Mean 0.034% 0.044% 0.041% 0.043% 0.046% -0.008% 0.021%
95% Quantile 2.758% 2.382% 2.456% 2.465% 2.924% 3.041% 2.675%
Maximum 19.273% 12.690% 32.305% 16.101% 13.518% 19.459% 22.304%
Volatility 1.892% 1.541% 1.631% 1.579% 1.842% 2.119% 1.863%
Skewness 0.245 -0.137 0.419 -0.041 -0.023 -0.174 0.135
Ex. Kurtosis 10.423 5.889 20.867 8.065 5.941 13.199 12.064

Mean p.a. 8.49% 10.98% 10.13% 10.63% 11.48% -2.01% 5.29%
Volatility p.a. 29.92% 24.36% 25.78% 24.97% 29.12% 33.50% 29.46%

Company
Deutsche

E.ON Linde
Munich

RWE Siemens
Thyssen-

Lufthansa Re Krupp

Minimum -15.209% -13.976% -14.131% -21.673% -15.823% -16.364% -16.586%
5% Quantile -3.106% -2.349% -2.276% -2.835% -2.305% -2.543% -2.996%
Median 0.005% 0.019% 0.010% 0.006% 0.017% 0.014% 0.017%
Mean 0.026% 0.033% 0.040% 0.044% 0.030% 0.032% 0.028%
95% Quantile 3.274% 2.362% 2.443% 3.047% 2.361% 2.546% 3.046%
Maximum 16.394% 15.886% 12.855% 16.528% 14.256% 16.601% 16.789%
Volatility 2.036% 1.567% 1.534% 1.931% 1.509% 1.688% 1.933%
Skewness -0.033 -0.133 -0.094 -0.342 0.070 -0.135 -0.064
Ex. Kurtosis 4.332 7.353 5.925 9.959 7.666 8.768 5.234

Mean p.a. 6.47% 8.27% 10.03% 11.08% 7.43% 8.05% 7.08%
Volatility p.a. 32.19% 24.78% 24.26% 30.53% 23.86% 26.69% 30.57%

lized volatility well above 20%. In line with the stylized facts of financial time series (see

McNeil et al., 2005), the excess kurtosis reveals fat tails of the log-return distributions. In

addition, the majority of the time series are negatively skewed.

To obtain generalizable and robust results, we randomly select three different sub-

samples from each of the 14 samples under the condition that there are no more than

1,000 overlapping days with respect to two subsamples of thesame series. In sum, this

leads to 42 subsamples consisting of 3,000 trading days for the 1-day-ahead forecasts and

3,009 trading days for the 10-day-ahead forecasts. With respect to each of these subsamp-

les, we generate 2,000 out-of-sample forecasts. Consequently, the results of our study are

less biased than results obtained by restricting the samples to a particular period or mar-

ket phase. Table 5.2 reports the subsample selection details. The table illustrates that the
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Table 5.2: Subsample Selection
The table shows the 42 subsamples selected for the empiricalstudy. From each of the 14 different samples,
we select three different subsamples consisting of 3,000 trading days for the 1-day-ahead forecasts (3,009
trading days for the 10-day-ahead forecasts) under the condition that there are no more than 1,000 overlap-
ping days. The dates refer to the 1-day-ahead forecasts. Forthe 10-day-ahead forecasts, nine days have to
be added at the end of the subsample.

Company
Sample 1 Sample 2 Sample 3

from to from to from to

Allianz 09/11/1979 04/08/1991 08/05/1986 06/17/1998 09/07/1994 07/18/2006
BASF 07/09/1976 01/07/1988 09/02/1982 05/13/1994 04/07/1997 02/04/2009
Bayer 04/27/1982 12/30/1993 10/24/1990 09/30/2002 07/09/1998 04/29/2010
Beiersdorf 05/19/1975 11/14/1986 08/27/1985 06/23/1997 01/21/1991 12/18/2002
BMW 10/01/1975 03/31/1987 11/06/1980 06/25/1992 03/10/1986 01/12/1998
Commerzbank 08/01/1991 07/02/2003 12/22/1995 10/29/2007 12/23/1999 10/06/2011
Deutsche Bank 01/14/1981 09/02/1992 01/06/1992 11/26/2003 01/22/2001 10/29/2012
Deutsche Lufthansa 01/08/1979 07/23/1990 10/29/1992 09/22/2004 02/02/1998 11/23/2009
E.ON 03/09/1979 09/21/1990 04/07/1988 03/06/2000 11/17/1994 09/25/2006
Linde 11/08/1985 09/04/1997 11/17/1994 09/25/2006 08/31/2001 06/14/2013
Munich Re 10/28/1975 04/27/1987 09/25/1981 05/26/1993 05/19/2000 02/27/2012
RWE 02/06/1979 08/21/1990 06/16/1988 05/18/2000 03/02/1998 12/21/2009
Siemens 05/18/1977 11/15/1988 09/26/1983 06/21/1995 03/19/1992 02/16/2004
ThyssenKrupp 04/25/1973 10/23/1984 03/21/1984 12/18/1995 10/30/1990 10/04/2002

subsamples cover a broad range of different market phases, for example the calm period

in the mid-1990s or the highly volatile markets of the recentfinancial crisis.

5.3.2 Backtesting

We evaluate the VaR-forecasting accuracy depending on different estimation window stra-

tegies by applying the backtest framework recently proposed by Ziggel et al. [2013]. This

new approach tests for the unconditional coverage property(uc thereafter) as well as for

the property of i.i.d. VaR-violations. The set of backtestsis directly based on i.i.d. Ber-

noulli random variables and uses Monte Carlo simulation techniques. Results from a si-

mulation study indicate that these backtests significantlyoutperform competing backtests

in several distinct settings. In addition to the evaluationof the VaR-forecasting accuracy

for each estimation window strategy individually, we are interested in a comparison bet-

ween distinct approaches. To this end, we employ the conditional predictive ability (CPA)

test of Giacomini and White [2006]. This test of VaR-forecasting accuracy is derived un-

der the assumption of data heterogeneity rather than stationarity and can be applied to

the comparison between different estimation techniques and (finite) estimation windows.

We follow Rapach et al. [2008] and choose the expanding window strategy as a bench-
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mark because it uses all data available at timet and therefore minimizes the forecast error

variance.

• Test of Unconditional Coverage

We define the indicator variableIt(p) for a given VaR-forecastV aRt|t−1(p) as

It(p) =





0, if rt ≥ V aRt|t−1(p);

1, if rt < V aRt|t−1(p),

(5.2)

whereIt(p) = 1 indicates a VaR-violation. Considering the two-sided uc backtest

of Ziggel et al. [2013], we test the null hypothesisE
[
1
T

∑T
t=1 It(p)

]
= p against

the alternativeE
[
1
T

∑T
t=1 It(p)

]
6= p. In addition, this test allows for directional

testing, i.e. we can also test against the alternativesE

[
1
T

∑T
t=1 It(p)

]
≥ p and

E

[
1
T

∑T
t=1 It(p)

]
≤ p. The simple and intuitive test statistic is given by

MCSuc = ǫ+
T∑

t=1

It(p), (5.3)

whereǫ ∼ 0.001 ·N(0, 1) is a random variable that serves to break ties between test

values and therefore guarantees that the test exactly keepsits size. For fixedT and

p, critical values of the test statistic are computed via Monte Carlos simulation. We

generate violation sequences by drawingl = 10000-timesT random variables with

distributionÎj,t(p) ∼ Bern(p), t = 1, ..., T, j = 1, ..., l. Then, we calculatel test

statistics by Equation (5.3) and compute the respective quantile of the test statistics

corresponding to a significance level of 5%.

• Test of I.I.D. VaR-Violations

If a VaR model is properly fitted, the resulting VaR-violations are independent and

identically distributed (i.i.d.). The hypothesis of i.i.d. VaR-violations holds true if

{It(p̃)} i.i.d.∼ Bern(p̃), ∀t, wherep̃ is an arbitrary probability. First, we define the

set of points in time on which a VaR-violation occurs viaV = {t|It = 1} =

(t1, ..., tm), wherem =
∑T

t=1 It(p). Following Ziggel et al. [2013], the test statistic
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for testing the i.i.d. hypothesis is then given by

MCSiid,m = ǫ+ t21 + (T − tm)
2 +

m∑

i=2

(ti − ti−1)
2, (5.4)

whereǫ ∼ 0.001·N(0, 1) is a random variable that serves to break ties. This backtest

is based on the idea that the sum of the squared durations between two violations is

minimal if the violations are exactly equally spread acrossthe whole sample period.

If the violations are clustered, this sum increases. Again,we obtain critical values

by Monte Carlo simulations for fixedT andm. Similar to the uc test, we generate

VaR-violation sequences by simulatingl = 10000-timesT random variableŝIj,t(p)

under the condition
∑T

t=1 Ît(p) = m. Then, we calculatel test statistics by Equation

(5.4) and set the 95% quantile of the test statistics as the critical value corresponding

to a significance level of 5%. This critical value corresponds to the one-sided test

for clustered VaR-violations.

• Expected Shortfall Backtesting

To backtest the ES, we measure the average of the absolute deviations between the

ES forecast and the realized shortfall in case of a VaR-violation. In addition, we

apply the test of McNeil and Frey [2000] which evaluates the mean of the diffe-

rences between the realized shortfall and the ES in the case of a VaR-violation. The

average error should be zero. The backtest is a one-sided test against the alternative

hypothesis that the residuals have mean greater than zero, i.e., the expected shortfall

is underestimated on average.

• Conditional Predictive Ability

For backtesting the 1-day ahead VaR-forecasts, we follow Santos et al. [2013]

and assume an asymmetric linear (tick) loss functionL of order p defined as

Lp(et+1) = (p − 1(et+1 < 0))et+1, whereet+1 = rt+1 − V aRp
t+1 and1(·) is an

indicator function equal to one ifet+1 < 0 and zero otherwise. The null hypothesis

of equal conditional predictive ability claims that the out-of-sample loss difference

between two models follows a martingale difference sequence. The test statistic is
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defined as

CPA = T

(
T−1

T−1∑

t=1

ItLDt+1

)′

Ω̂−1

(
T−1

T−1∑

t=1

ItLDt+1

)
(5.5)

where T is the sample size,LD is the loss difference between the two models,It =

(1,LDt) is an instrument that helps predicting differences in forecast performance

between the two models, and̂Ω is a matrix that consistently estimate the variance

of ItLDt+1. We reject the null hypothesis of equal unconditional predictive ability

wheneverCPA > χ2
T,1−p, whereχ2

T,1−p is the(1−p)-quantile of aχ2
T distribution.6

5.4 Results

In the following, we present and discuss the results of our empirical study with respect to

the uc and i.i.d. property, the ES forecast accuracy, and theconditional predictive ability.

5.4.1 Unconditional Coverage

We start with the evaluation of the uc properties of the different estimation window strate-

gies. Tables 5.3 and 5.4 present the VaR-violation ratios, which are computed by dividing

the actual number of VaR-violations by the total number of 2,000 VaR-forecasts. To eva-

luate the robustness of the results, the table additionallyreports the standard deviation of

the VaR-violation ratios across the 42 subsamples. Before analyzing the VaR-violation

ratios of the different estimation window strategies in detail, it should be noted that ob-

viously not only the application of different VaR models butalso the selection of the

estimation window strategy leads to significant differences in the results. Figure 5.1 illus-

trates the ranges between the minimum and the maximum VaR-violation ratio resulting

from different estimation window strategies.

6For details of backtesting multi-day ahead VaR-forecasts,see Giacomini and White [2006].
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Table 5.3: Unconditional Coverage - VaR-Violation Ratios -1-Day Ahead Forecasts
For each VaR model and each estimation window strategy, the table reports the VaR-violation ratios averaged over the 42 subsamples. The VaR-violation ratio is calculated by
dividing the actual number of VaR-violations by the total number of 2,000 1-day ahead VaR-forecasts. The values in brackets are the standard deviation of the VaR-violation
ratio across the 42 subsamples. For each VaR model, VaR-violation ratios printed in bold are closest to the nominal VaR level.

Estimation Window Strategy
Normal

EWMA GARCH
GJR-

HS
Filtered

Distr. GARCH HS

5%VaR

Expanding Window 5.60% (2.30%) 4.53% (0.90%) 4.43% (0.72%) 4.43% (0.66%) 6.82% (2.54%) 5.60% (0.92%)
Rolling Window 125 days 4.74% (0.55%) 4.83% (0.51%) 4.79% (0.46%) 5.23% (0.38%) 6.06% (0.38%) 6.12% (0.28%)
Rolling Window 250 days 4.78% (0.61%) 4.48% (0.53%) 4.60% (0.46%) 4.80% (0.49%) 5.91% (0.52%) 5.77% (0.34%)
Rolling Window 500 days 4.97% (0.85%) 4.34% (0.53%) 4.55% (0.56%) 4.63% (0.57%) 6.10% (0.73%) 5.58% (0.45%)
Rolling Window 1,000 days 5.12% (1.20%) 4.41% (0.60%) 4.45%(0.66%) 4.50% (0.65%) 6.18% (1.23%) 5.53% (0.63%)
Structural Breaks Window 4.56% (0.87%) 4.41% (0.64%) 4.40%(0.68%) 4.44% (0.72%) 5.54% (0.83%) 5.40% (0.59%)
Comb. Mean All 4.58% (0.89%) 4.27% (0.53%) 4.39% (0.59%) 4.48% (0.58%) 5.59% (0.95%) 5.41% (0.46%)
Comb. Mean All ex SB 4.63% (0.93%) 4.27% (0.55%) 4.43% (0.58%) 4.51% (0.56%) 5.68% (1.02%) 5.48% (0.44%)
Comb. Mean Rolling Windows 4.58% (0.75%) 4.34% (0.49%) 4.45% (0.55%) 4.58% (0.54%) 5.60% (0.73%) 5.51% (0.38%)
Comb. Long Short 4.68% (1.23%) 4.27% (0.64%) 4.49% (0.56%) 4.64% (0.53%) 5.78% (1.41%) 5.62% (0.53%)
Comb. Trimmed Mean All 4.65% (0.85%) 4.31% (0.52%) 4.44% (0.59%) 4.48% (0.59%) 5.67% (0.85%) 5.49% (0.52%)
Comb. Trimmed Mean All ex SB 4.76% (0.88%) 4.33% (0.53%) 4.49% (0.56%) 4.53% (0.55%) 5.85% (0.94%) 5.54% (0.48%)
Comb. Trimmed Mean Rolling Windows 4.73% (0.75%) 4.39% (0.51%) 4.50% (0.54%) 4.61% (0.55%) 5.81% (0.67%) 5.58% (0.40%)

Average 4.80% 4.40% 4.49% 4.60% 5.89% 5.59%

1%VaR

Expanding Window 2.54% (1.29%) 1.73% (0.44%) 1.48% (0.34%)1.44% (0.34%) 1.71% (0.93%) 1.14% (0.29%)
Rolling Window 125 days 1.83% (0.29%) 1.66% (0.27%) 1.70% (0.29%) 1.98% (0.30%) 1.99% (0.27%) 2.02% (0.24%)
Rolling Window 250 days 1.81% (0.35%) 1.57% (0.26%) 1.66% (0.25%) 1.70% (0.30%) 1.70% (0.23%) 1.59% (0.20%)
Rolling Window 500 days 1.99% (0.41%) 1.63% (0.26%) 1.58% (0.29%) 1.60% (0.29%) 1.62% (0.29%) 1.38% (0.19%)
Rolling Window 1,000 days 2.21% (0.68%) 1.67% (0.30%) 1.53%(0.34%) 1.52% (0.35%) 1.59% (0.47%) 1.24% (0.26%)
Structural Breaks Window 1.79% (0.46%) 1.58% (0.28%) 1.51%(0.33%) 1.53% (0.33%) 1.53% (0.45%) 1.36% (0.31%)
Comb. Mean All 1.78% (0.46%) 1.53% (0.27%) 1.46% (0.24%) 1.47% (0.28%) 1.37% (0.39%) 1.25% (0.20%)
Comb. Mean All ex SB 1.80% (0.46%) 1.52% (0.27%) 1.48% (0.24%) 1.49% (0.31%) 1.39% (0.41%) 1.27% (0.20%)
Comb. Mean Rolling Windows 1.75% (0.37%) 1.52% (0.23%) 1.52% (0.23%) 1.54% (0.28%) 1.44% (0.32%) 1.34% (0.18%)
Comb. Long Short 1.79% (0.60%) 1.46% (0.33%) 1.49% (0.28%) 1.55% (0.32%) 1.47% (0.60%) 1.34% (0.25%)
Comb. Trimmed Mean All 1.82% (0.46%) 1.56% (0.26%) 1.49% (0.25%) 1.48% (0.27%) 1.41% (0.34%) 1.25% (0.20%)
Comb. Trimmed Mean All ex SB 1.86% (0.47%) 1.56% (0.24%) 1.52% (0.26%) 1.51% (0.28%) 1.46% (0.37%) 1.28% (0.20%)
Comb. Trimmed Mean Rolling Windows 1.85% (0.36%) 1.55% (0.23%) 1.55% (0.25%) 1.58% (0.28%) 1.57% (0.31%) 1.39% (0.17%)

Average 1.91% 1.58% 1.54% 1.57% 1.56% 1.37%
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Table 5.4: Unconditional Coverage - VaR-Violation Ratios -10-Day Ahead Forecasts
For each VaR model and each estimation window strategy, the table reports the VaR-violation ratios averaged over the 42 subsamples. The VaR-violation ratio is calculated by
dividing the actual number of VaR-violations by the total number of 2,000 10-day ahead VaR-forecasts. The values in brackets are the standard deviation of the VaR-violation
ratio across the 42 subsamples. For each VaR model, VaR-violation ratios printed in bold are closest to the nominal VaR level.

Estimation Window Strategy
Normal

EWMA GARCH
GJR-

HS
Filtered

Distr. GARCH HS

5%VaR

Expanding Window 5.72% (2.37%) 4.72% (1.13%) 4.90% (1.40%) 4.86% (1.45%) 7.16% (2.91%) 6.23% (1.77%)
Rolling Window 125 days 5.06% (1.26%) 5.45% (1.36%) 5.25% (1.41%) 5.68% (1.47%) 8.19% (0.66%) 7.03% (3.52%)
Rolling Window 250 days 4.80% (1.00%) 5.02% (1.30%) 4.98% (1.17%) 5.19% (1.20%) 6.94% (0.80%) 6.50% (2.54%)
Rolling Window 500 days 5.07% (1.13%) 4.71% (1.16%) 4.86% (1.26%) 5.03% (1.29%) 6.62% (0.98%) 6.45% (2.44%)
Rolling Window 1,000 days 5.24% (1.41%) 4.62% (1.04%) 4.79%(1.20%) 4.84% (1.25%) 6.53% (1.49%) 6.38% (1.99%)
Structural Breaks Window 4.62% (1.18%) 4.76% (1.09%) 4.68%(1.16%) 4.74% (1.27%) 6.34% (1.29%) 6.28% (1.95%)
Comb. Mean All 4.71% (1.08%) 4.63% (1.11%) 4.74% (1.20%) 4.86% (1.27%) 6.20% (1.18%) 6.17% (2.02%)
Comb. Mean All ex SB 4.80% (1.14%) 4.65% (1.13%) 4.78% (1.22%) 4.90% (1.29%) 6.27% (1.24%) 6.16% (2.05%)
Comb. Mean Rolling Windows 4.74% (1.05%) 4.80% (1.20%) 4.79% (1.22%) 4.96% (1.28%) 6.28% (0.93%) 6.28% (2.25%)
Comb. Long Short 4.86% (1.43%) 4.69% (1.15%) 4.94% (1.32%) 5.06% (1.37%) 6.70% (1.74%) 6.29% (2.22%)
Comb. Trimmed Mean All 4.75% (1.07%) 4.65% (1.10%) 4.78% (1.23%) 4.87% (1.30%) 6.28% (1.09%) 6.28% (2.03%)
Comb. Trimmed Mean All ex SB 4.90% (1.13%) 4.67% (1.13%) 4.85% (1.24%) 4.95% (1.31%) 6.45% (1.22%) 6.31% (2.07%)
Comb. Trimmed Mean Rolling Windows 4.85% (1.05%) 4.86% (1.24%) 4.88% (1.25%) 4.99% (1.29%) 6.53% (0.87%) 6.38% (2.29%)

Average 4.93% 4.79% 4.86% 5.00% 6.65% 6.36%

1%VaR

Expanding Window 2.50% (1.41%) 1.87% (0.64%) 1.91% (0.75%) 1.83% (0.75%) 2.04% (1.34%) 1.72% (0.74%)
Rolling Window 125 days 2.12% (0.75%) 2.25% (0.80%) 2.17% (0.74%) 2.38% (0.81%) 4.52% (0.49%) 2.64% (1.72%)
Rolling Window 250 days 1.91% (0.69%) 2.04% (0.72%) 1.99% (0.61%) 2.07% (0.65%) 2.97% (0.62%) 2.10% (1.22%)
Rolling Window 500 days 2.11% (0.72%) 1.90% (0.67%) 1.86% (0.65%) 1.94% (0.62%) 2.39% (0.63%) 1.81% (1.08%)
Rolling Window 1,000 days 2.20% (0.81%) 1.84% (0.66%) 1.86%(0.68%) 1.84% (0.67%) 2.03% (0.83%) 1.74% (0.94%)
Structural Breaks Window 1.83% (0.76%) 1.84% (0.66%) 1.73% (0.62%) 1.75% (0.68%) 2.24% (0.88%) 1.79% (0.93%)
Comb. Mean All 1.88% (0.68%) 1.80% (0.64%) 1.83% (0.59%) 1.81% (0.61%) 2.00% (0.73%) 1.73% (0.88%)
Comb. Mean All ex SB 1.93% (0.69%) 1.82% (0.66%) 1.86% (0.61%) 1.87% (0.62%) 2.06% (0.77%) 1.77% (0.90%)
Comb. Mean Rolling Windows 1.87% (0.67%) 1.88% (0.65%) 1.87% (0.61%) 1.91% (0.62%) 2.27% (0.61%) 1.84% (1.03%)
Comb. Long Short 1.99% (0.82%) 1.79% (0.64%) 1.95% (0.67%) 1.95% (0.67%) 2.31% (1.09%) 1.92% (0.95%)
Comb. Trimmed Mean All 1.88% (0.70%) 1.83% (0.66%) 1.83% (0.59%) 1.81% (0.63%) 2.09% (0.68%) 1.80% (0.95%)
Comb. Trimmed Mean All ex SB 1.97% (0.70%) 1.86% (0.66%) 1.88% (0.61%) 1.90% (0.64%) 2.17% (0.73%) 1.84% (0.97%)
Comb. Trimmed Mean Rolling Windows 1.94% (0.69%) 1.92% (0.66%) 1.94% (0.61%) 1.99% (0.66%) 2.50% (0.61%) 1.91% (1.09%)

Average 2.01% 1.90% 1.90% 1.93% 2.43% 1.89%
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Figure 5.1: Differences in VaR-violation Ratios Dependingon the Estimation Window
Strategy
For each forecast horizon, VaR level, and VaR model, the figure shows the range between the minimum and
the maxiumum VaR-violation ratio resulting from differentestimation window strategies. The individual
VaR-violation ratios are averaged over the 42 subsamples oflog-returns of stocks listed on the DAX as
described in Table 5.2.
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The dynamic VaR models EWMA, GARCH, GJR-GARCH and filtered historical simula-

tion attribute a higher weighting to more recent returns. Therefore, differences in the VaR-

violation ratio due to estimation window strategies tend tobe somewhat lower compared

to the static models employing a normal distribution and historical simulation. Neverthe-

less, even for such dynamic VaR models the results illustrate the importance of selecting

a proper estimation window.

As an example, for each VaR model, Figures 5.2 and 5.3 show returns of the Alli-

anz stock for the period 9 July 1998 to 18 July 2006 and the corresponding 1-day ahead

VaR-forecasts at the 5% VaR level. The VaR-forecasts are estimated by using a selection

of different estimation window strategies. The figures demonstrate that even for dyna-

mic VaR models, the selection of an estimation window strategy can lead to differences

of several percentage points for the next day VaR-forecast,particularly during volatile

markets.

Tables 5.5 to 5.7 present the rejection rates for the two-sided and one-sided uc back-

tests. For each model and each estimation window strategy, the rejection rate is compu-

ted by the number of rejections divided by the total number ofperformed uc tests. The

VaR-violation ratios of the expanding window strategy exceed the nominal VaR level and

consequently indicate an underestimation of VaR, except for the dynamic parametric EW-

MA, GARCH, and GJR-GARCH models at the 5% VaR level. Additionally, the high level

of the standard deviations of the VaR-violation ratios across the 42 subsamples indicates

a lack of robustness in the results. The expanding windows show relatively high rejection

rates of the two-tailed uc test for almost all models at the 5%VaR level in comparison to

the competing estimation window strategies. For the 1% VaR level the rejection rates are

more heterogeneous.
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Figure 5.2: VaR-Forecasts and VaR-Violations (1/2)
The returns are computed by using total return quotes of Allianz for the period 9 July 1998 to 18 July 2006.
VaR-forecasts are estimated by the normal distribution, the EWMA, and the GARCH model at the5% VaR
level. For each estimation window strategy, VaR-forecastsare shown with lines in different colors. The
dashes at the bottom of the charts mark the data points where aVaR-violation occurs.
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Figure 5.3: VaR-Forecasts and VaR-Violations (2/2)
The returns are computed by using total return quotes of Allianz for the period 9 July 1998 to 18 July
2006. VaR-forecasts are estimated by the GJR-GARCH, the historical simulation, and the filtered historical
simulation model at the5% VaR level. For each estimation window strategy, VaR-forecasts are shown with
lines in different colors. The dashes at the bottom of the charts mark the data points where a VaR-violation
occurs.
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Table 5.5: Unconditional Coverage - Two-Sided Test
For each VaR model and each estimation window strategy, the table reports rejection rates of the two-sided
uc tests. The rejection rate is computed by the number of rejections divided by the total number of performed
uc tests. The rejection rates in bold are closest to the significance level of the test.

Estimation Window Strategy
Normal

EWMA GARCH
GJR-

HS
Filtered

Average
Distr. GARCH HS

5%VaR / 1-Day Ahead Forecasts

Expanding Window 64.3% 45.2% 33.3% 31.0% 76.2% 45.2% 49.2%
Rolling Window 125 days 14.3% 7.1% 7.1% 2.4% 50.0% 66.7% 24.6%
Rolling Window 250 days 9.5% 23.8% 9.5% 4.8% 45.2% 31.0% 20.6%
Rolling Window 500 days 26.2% 31.0% 16.7% 21.4% 57.1% 19.0% 28.6%
Rolling Window 1,000 days 47.6% 35.7% 33.3% 26.2% 59.5% 26.2% 38.1%
Structural Breaks Window 35.7% 31.0% 28.6% 33.3% 38.1% 16.7% 30.6%
Comb. Mean All 45.2% 35.7% 31.0% 26.2% 42.9% 9.5% 31.7%
Comb. Mean All ex SB 50.0% 42.9% 31.0% 23.8% 42.9% 16.7% 34.5%
Comb. Mean Rolling Windows 33.3% 26.2% 28.6% 21.4% 33.3% 16.7% 26.6%
Comb. Long Short 52.4% 45.2% 28.6% 11.9% 47.6% 26.2% 35.3%
Comb. Trimmed Mean All 45.2% 28.6% 31.0% 26.2% 38.1% 16.7% 31.0%
Comb. Trimmed Mean All ex SB 38.1% 35.7% 28.6% 23.8% 47.6% 21.4% 32.5%
Comb. Trimmed Mean Rolling Windows 26.2% 28.6% 23.8% 23.8% 42.9% 21.4% 27.8%

Average 37.5% 32.1% 25.5% 21.2% 47.8% 25.6%

1%VaR / 1-Day Ahead Forecasts

Expanding Window 81.0% 78.6% 52.4% 40.5% 64.3% 11.9% 54.8%
Rolling Window 125 days 95.2% 69.0% 76.2% 100.0% 97.6% 97.6% 89.3%
Rolling Window 250 days 88.1% 73.8% 83.3% 81.0% 85.7% 81.0% 82.1%
Rolling Window 500 days 90.5% 73.8% 64.3% 66.7% 73.8% 28.6% 66.3%
Rolling Window 1,000 days 88.1% 73.8% 52.4% 45.2% 61.9% 16.7% 56.3%
Structural Breaks Window 81.0% 66.7% 59.5% 61.9% 54.8% 40.5% 60.7%
Comb. Mean All 78.6% 54.8% 35.7% 45.2% 35.7% 14.3% 44.0%
Comb. Mean All ex SB 78.6% 57.1% 47.6% 47.6% 38.1% 19.0% 48.0%
Comb. Mean Rolling Windows 81.0% 57.1% 54.8% 61.9% 45.2% 23.8% 54.0%
Comb. Long Short 71.4% 40.5% 47.6% 57.1% 54.8% 26.2% 49.6%
Comb. Trimmed Mean All 81.0% 59.5% 47.6% 45.2% 38.1% 16.7% 48.0%
Comb. Trimmed Mean All ex SB 83.3% 66.7% 52.4% 52.4% 50.0% 14.3% 53.2%
Comb. Trimmed Mean Rolling Windows 95.2% 61.9% 64.3% 59.5% 64.3% 33.3% 63.1%

Average 84.1% 64.1% 56.8% 58.8% 58.8% 32.6%

5%VaR / 10-Day Ahead Forecasts

Expanding Window 71.4% 40.5% 52.4% 57.1% 73.8% 54.8% 58.3%
Rolling Window 125 days 42.9% 52.4% 45.2% 54.8% 100.0% 85.7% 63.5%
Rolling Window 250 days 28.6% 45.2% 40.5% 50.0% 92.9% 73.8% 55.2%
Rolling Window 500 days 35.7% 35.7% 50.0% 47.6% 71.4% 73.8% 52.4%
Rolling Window 1,000 days 52.4% 31.0% 42.9% 40.5% 61.9% 59.5% 48.0%
Structural Breaks Window 54.8% 40.5% 38.1% 50.0% 66.7% 59.5% 51.6%
Comb. Mean All 45.2% 33.3% 45.2% 50.0% 57.1% 71.4% 50.4%
Comb. Mean All ex SB 47.6% 33.3% 42.9% 50.0% 57.1% 69.0% 50.0%
Comb. Mean Rolling Windows 33.3% 38.1% 42.9% 42.9% 59.5% 76.2% 48.8%
Comb. Long Short 57.1% 31.0% 45.2% 45.2% 73.8% 76.2% 54.8%
Comb. Trimmed Mean All 42.9% 33.3% 45.2% 45.2% 57.1% 69.0% 48.8%
Comb. Trimmed Mean All ex SB 42.9% 33.3% 42.9% 47.6% 59.5% 69.0% 49.2%
Comb. Trimmed Mean Rolling Windows 35.7% 47.6% 40.5% 47.6% 73.8% 73.8% 53.2%

Average 45.4% 38.1% 44.1% 48.4% 69.6% 70.1%

1%VaR / 10-Day Ahead Forecasts

Expanding Window 78.6% 76.2% 66.7% 66.7% 71.4% 66.7% 71.0%
Rolling Window 125 days 81.0% 78.6% 78.6% 83.3% 100.0% 76.2% 82.9%
Rolling Window 250 days 78.6% 76.2% 78.6% 76.2% 100.0% 71.4% 80.2%
Rolling Window 500 days 83.3% 78.6% 73.8% 73.8% 97.6% 61.9% 78.2%
Rolling Window 1,000 days 83.3% 81.0% 71.4% 66.7% 78.6% 66.7% 74.6%
Structural Breaks Window 66.7% 69.0% 61.9% 61.9% 92.9% 61.9% 69.0%
Comb. Mean All 76.2% 73.8% 73.8% 71.4% 76.2% 66.7% 73.0%
Comb. Mean All ex SB 73.8% 71.4% 76.2% 73.8% 76.2% 71.4% 73.8%
Comb. Mean Rolling Windows 83.3% 81.0% 73.8% 73.8% 88.1% 66.7% 77.8%
Comb. Long Short 66.7% 76.2% 76.2% 73.8% 81.0% 73.8% 74.6%
Comb. Trimmed Mean All 73.8% 76.2% 71.4% 66.7% 78.6% 66.7% 72.2%
Comb. Trimmed Mean All ex SB 73.8% 76.2% 71.4% 73.8% 83.3% 64.3% 73.8%
Comb. Trimmed Mean Rolling Windows 76.2% 81.0% 76.2% 73.8% 97.6% 69.0% 79.0%

Average 76.6% 76.6% 73.1% 72.0% 86.3% 67.9%
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Table 5.6: Unconditional Coverage - One-Sided Test / Lower Tail
For each VaR model and each estimation window strategy, the table reports rejection rates of the lower
tail uc tests. The rejection rate is computed by the number ofrejections divided by the total number of
performed uc tests. The rejection rates in bold are closest to the tests’ significance level of 5%.

Estimation Window Strategy
Normal

EWMA GARCH
GJR-

HS
Filtered

Average
Distr. GARCH HS

5%VaR / 1-Day Ahead Forecasts

Expanding Window 26.2% 45.2% 45.2% 38.1% 19.0% 7.1% 30.2%
Rolling Window 125 days 16.7% 11.9% 9.5% 0.0% 0.0% 0.0% 6.3%
Rolling Window 250 days 11.9% 28.6% 21.4% 9.5% 0.0% 0.0% 11.9%
Rolling Window 500 days 23.8% 42.9% 33.3% 26.2% 0.0% 0.0% 21.0%
Rolling Window 1000 days 28.6% 42.9% 35.7% 35.7% 2.4% 0.0% 24.2%
Structural Breaks Window 35.7% 40.5% 38.1% 35.7% 7.1% 4.8% 27.0%
Comb. Mean All 40.5% 45.2% 35.7% 31.0% 7.1% 0.0% 26.6%
Comb. Mean All ex SB 40.5% 52.4% 35.7% 28.6% 7.1% 0.0% 27.4%
Comb. Mean Rolling Windows 40.5% 35.7% 35.7% 26.2% 2.4% 0.0% 23.4%
Comb. Long Short 40.5% 52.4% 33.3% 23.8% 9.5% 0.0% 26.6%
Comb. Trimmed Mean All 38.1% 42.9% 33.3% 31.0% 2.4% 0.0% 24.6%
Comb. Trimmed Mean All ex SB 33.3% 45.2% 33.3% 33.3% 2.4% 0.0% 24.6%
Comb. Trimmed Mean Rolling Windows 26.2% 33.3% 31.0% 26.2% 0.0% 0.0% 19.4%

Average 31.0% 39.9% 32.4% 26.6% 4.6% 0.9%

1%VaR / 1-Day Ahead Forecasts

Expanding Window 0.0% 0.0% 0.0% 0.0% 11.9% 0.0% 2.0%
Rolling Window 125 days 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Rolling Window 250 days 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Rolling Window 500 days 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Rolling Window 1000 days 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.4%
Structural Breaks Window 0.0% 0.0% 0.0% 0.0% 4.8% 0.0% 0.8%
Comb. Mean All 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.4%
Comb. Mean All ex SB 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.4%
Comb. Mean Rolling Windows 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Comb. Long Short 0.0% 0.0% 0.0% 0.0% 9.5% 0.0% 1.6%
Comb. Trimmed Mean All 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.4%
Comb. Trimmed Mean All ex SB 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Comb. Trimmed Mean Rolling Windows 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Average 0.0% 0.0% 0.0% 0.0% 2.7% 0.0%

5%VaR / 10-Day Ahead Forecasts

Expanding Window 31.0% 28.6% 35.7% 38.1% 11.9% 7.1% 25.4%
Rolling Window 125 days 23.8% 16.7% 21.4% 16.7% 0.0% 28.6% 17.9%
Rolling Window 250 days 21.4% 21.4% 23.8% 23.8% 0.0% 19.0% 18.3%
Rolling Window 500 days 21.4% 28.6% 26.2% 26.2% 2.4% 16.7% 20.2%
Rolling Window 1000 days 28.6% 26.2% 31.0% 31.0% 4.8% 9.5% 21.8%
Structural Breaks Window 40.5% 31.0% 31.0% 35.7% 4.8% 9.5% 25.4%
Comb. Mean All 31.0% 26.2% 31.0% 31.0% 0.0% 19.0% 23.0%
Comb. Mean All ex SB 31.0% 26.2% 31.0% 28.6% 2.4% 16.7% 22.6%
Comb. Mean Rolling Windows 26.2% 26.2% 31.0% 28.6% 0.0% 19.0% 21.8%
Comb. Long Short 38.1% 26.2% 26.2% 21.4% 7.1% 16.7% 22.6%
Comb. Trimmed Mean All 33.3% 31.0% 31.0% 28.6% 0.0% 14.3% 23.0%
Comb. Trimmed Mean All ex SB 28.6% 28.6% 26.2% 28.6% 0.0% 14.3% 21.0%
Comb. Trimmed Mean Rolling Windows 23.8% 23.8% 31.0% 26.2% 0.0% 19.0% 20.6%

Average 29.1% 26.2% 28.9% 28.0% 2.6% 16.1%

1%VaR / 10-Day Ahead Forecasts

Expanding Window 4.8% 4.8% 0.0% 2.4% 16.7% 7.1% 6.0%
Rolling Window 125 days 2.4% 0.0% 0.0% 0.0% 0.0% 11.9% 2.4%
Rolling Window 250 days 2.4% 0.0% 0.0% 0.0% 0.0% 7.1% 1.6%
Rolling Window 500 days 2.4% 2.4% 4.8% 0.0% 0.0% 9.5% 3.2%
Rolling Window 1000 days 4.8% 2.4% 7.1% 0.0% 4.8% 7.1% 4.4%
Structural Breaks Window 4.8% 2.4% 2.4% 4.8% 9.5% 0.0% 4.0%
Comb. Mean All 2.4% 4.8% 2.4% 0.0% 0.0% 9.5% 3.2%
Comb. Mean All ex SB 2.4% 4.8% 2.4% 0.0% 2.4% 9.5% 3.6%
Comb. Mean Rolling Windows 4.8% 2.4% 2.4% 2.4% 0.0% 7.1% 3.2%
Comb. Long Short 4.8% 4.8% 0.0% 0.0% 4.8% 7.1% 3.6%
Comb. Trimmed Mean All 2.4% 2.4% 0.0% 4.8% 0.0% 7.1% 2.8%
Comb. Trimmed Mean All ex SB 2.4% 2.4% 0.0% 2.4% 0.0% 4.8% 2.0%
Comb. Trimmed Mean Rolling Windows 2.4% 2.4% 2.4% 2.4% 0.0% 7.1% 2.8%

Average 3.3% 2.7% 1.8% 1.5% 2.9% 7.3%
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Table 5.7: Unconditional Coverage - One-Sided Test / Upper Tail
For each VaR model and each estimation window strategy, the table reports rejection rates of the upper
tail uc tests. The rejection rate is computed by the number ofrejections divided by the total number of
performed uc tests. The rejection rates in bold are closest to the tests’ significance level of 5%.

Estimation Window Strategy
Normal

EWMA GARCH
GJR-

HS
Filtered

Average
Distr. GARCH HS

5%VaR / 1-Day Ahead Forecasts

Expanding Window 40.5% 9.5% 2.4% 0.0% 61.9% 50.0% 27.4%
Rolling Window 125 days 2.4% 2.4% 0.0% 7.1% 76.2% 90.5% 29.8%
Rolling Window 250 days 4.8% 2.4% 0.0% 2.4% 54.8% 50.0% 19.0%
Rolling Window 500 days 14.3% 0.0% 0.0% 4.8% 69.0% 31.0% 19.8%
Rolling Window 1000 days 31.0% 0.0% 0.0% 0.0% 59.5% 38.1% 21.4%
Structural Breaks Window 7.1% 0.0% 0.0% 2.4% 33.3% 26.2% 11.5%
Comb. Mean All 11.9% 0.0% 2.4% 0.0% 38.1% 21.4% 12.3%
Comb. Mean All ex SB 14.3% 0.0% 0.0% 0.0% 45.2% 26.2% 14.3%
Comb. Mean Rolling Windows 7.1% 0.0% 0.0% 0.0% 40.5% 21.4% 11.5%
Comb. Long Short 21.4% 0.0% 0.0% 0.0% 42.9% 35.7% 16.7%
Comb. Trimmed Mean All 16.7% 0.0% 2.4% 0.0% 47.6% 26.2% 15.5%
Comb. Trimmed Mean All ex SB 14.3% 0.0% 2.4% 0.0% 47.6% 31.0% 15.9%
Comb. Trimmed Mean Rolling Windows 9.5% 0.0% 0.0% 0.0% 52.4% 31.0% 15.5%

Average 15.0% 1.1% 0.7% 1.3% 51.5% 36.8%

1%VaR / 1-Day Ahead Forecasts

Expanding Window 83.3% 83.3% 57.1% 52.4% 57.1% 19.0% 58.7%
Rolling Window 125 days 97.6% 88.1% 92.9% 100.0% 97.6% 100.0% 96.0%
Rolling Window 250 days 90.5% 78.6% 95.2% 90.5% 90.5% 83.3% 88.1%
Rolling Window 500 days 95.2% 88.1% 71.4% 76.2% 88.1% 47.6% 77.8%
Rolling Window 1000 days 88.1% 85.7% 61.9% 57.1% 61.9% 26.2% 63.5%
Structural Breaks Window 81.0% 83.3% 59.5% 69.0% 61.9% 45.2% 66.7%
Comb. Mean All 83.3% 64.3% 61.9% 57.1% 45.2% 21.4% 55.6%
Comb. Mean All ex SB 81.0% 71.4% 61.9% 52.4% 52.4% 21.4% 56.7%
Comb. Mean Rolling Windows 90.5% 66.7% 76.2% 69.0% 61.9% 35.7% 66.7%
Comb. Long Short 73.8% 50.0% 64.3% 71.4% 50.0% 40.5% 58.3%
Comb. Trimmed Mean All 83.3% 76.2% 69.0% 59.5% 47.6% 21.4% 59.5%
Comb. Trimmed Mean All ex SB 85.7% 78.6% 66.7% 64.3% 59.5% 26.2% 63.5%
Comb. Trimmed Mean Rolling Windows 95.2% 78.6% 73.8% 76.2% 69.0% 50.0% 73.8%

Average 86.8% 76.4% 70.1% 68.9% 64.8% 41.4%

5%VaR / 10-Day Ahead Forecasts

Expanding Window 45.2% 14.3% 26.2% 28.6% 61.9% 52.4% 38.1%
Rolling Window 125 days 23.8% 38.1% 28.6% 52.4% 100.0% 57.1% 50.0%
Rolling Window 250 days 11.9% 26.2% 21.4% 33.3% 95.2% 61.9% 41.7%
Rolling Window 500 days 19.0% 19.0% 23.8% 28.6% 76.2% 64.3% 38.5%
Rolling Window 1000 days 33.3% 9.5% 16.7% 19.0% 64.3% 52.4% 32.5%
Structural Breaks Window 19.0% 19.0% 11.9% 16.7% 66.7% 57.1% 31.7%
Comb. Mean All 16.7% 9.5% 16.7% 21.4% 59.5% 61.9% 31.0%
Comb. Mean All ex SB 19.0% 7.1% 14.3% 21.4% 59.5% 61.9% 30.6%
Comb. Mean Rolling Windows 14.3% 21.4% 16.7% 21.4% 71.4% 61.9% 34.5%
Comb. Long Short 26.2% 9.5% 23.8% 26.2% 66.7% 61.9% 35.7%
Comb. Trimmed Mean All 19.0% 14.3% 19.0% 21.4% 64.3% 59.5% 32.9%
Comb. Trimmed Mean All ex SB 19.0% 9.5% 16.7% 21.4% 64.3% 59.5% 31.7%
Comb. Trimmed Mean Rolling Windows 14.3% 26.2% 16.7% 26.2% 76.2% 61.9% 36.9%

Average 21.6% 17.2% 19.4% 26.0% 71.2% 59.5%

1%VaR / 10-Day Ahead Forecasts

Expanding Window 76.2% 76.2% 66.7% 66.7% 59.5% 64.3% 68.3%
Rolling Window 125 days 83.3% 81.0% 78.6% 83.3% 100.0% 71.4% 82.9%
Rolling Window 250 days 76.2% 78.6% 78.6% 76.2% 100.0% 66.7% 79.4%
Rolling Window 500 days 83.3% 78.6% 71.4% 78.6% 97.6% 57.1% 77.8%
Rolling Window 1000 days 88.1% 78.6% 69.0% 69.0% 76.2% 59.5% 73.4%
Structural Breaks Window 66.7% 76.2% 66.7% 66.7% 85.7% 64.3% 71.0%
Comb. Mean All 73.8% 76.2% 76.2% 73.8% 78.6% 61.9% 73.4%
Comb. Mean All ex SB 76.2% 76.2% 76.2% 73.8% 78.6% 64.3% 74.2%
Comb. Mean Rolling Windows 78.6% 78.6% 78.6% 73.8% 95.2% 61.9% 77.8%
Comb. Long Short 71.4% 73.8% 76.2% 76.2% 83.3% 71.4% 75.4%
Comb. Trimmed Mean All 71.4% 76.2% 76.2% 73.8% 78.6% 66.7% 73.8%
Comb. Trimmed Mean All ex SB 76.2% 78.6% 76.2% 73.8% 85.7% 61.9% 75.4%
Comb. Trimmed Mean Rolling Windows 81.0% 78.6% 78.6% 78.6% 100.0% 61.9% 79.8%

Average 77.1% 77.5% 74.5% 74.2% 86.1% 64.1%

Regarding the rolling window strategy and the 5% VaR, the VaR-violation ratio of

the historical simulation and the filtered historical simulation models exceed the nominal

VaR level significantly while the ratios of the remaining models are around or below 5%.
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For the 1% VaR level, the VaR-violation ratios of all models exceed the nominal level

on average. For the 1-day ahead forecast the standard deviations of the results tend to

increase with the length of the rolling window, whereas the 10-day ahead forecasts do

not show a similar trend. With the exception of the normal distribution VaR model, larger

moving samples tend to estimate VaR more conservatively compared to short windows.

Consequently, the averaged rejection rates of the two-tailed and the upper-tail uc backtests

decrease as the size of the rolling windows increases.

In most of the cases, the structural breaks strategy leads tomore conservative VaR-

forecasts compared to the rolling and the expanding window strategy, irrespective of the

VaR level and the forecasting horizon. This result is partlyreflected in higher lower-tail

and lower upper-tail uc test rejection rates. However, the two-tailed uc test rejection rates

are neither significantly better nor significantly worse than the competing strategies.

The averaged VaR-violation ratios of the combination strategies indicate that pooling

forecasts leads to more conservatively estimated VaR-forecasts compared to the compe-

ting strategies. Interestingly, the VaR-violation ratiosof the combinations are consistently

lower than the mean of their respective component ratios. For example, the violation ratios

considering 1-day ahead forecasts of the normal distribution VaR model and the 1%VaR

for the 125-day rolling window and the expanding window are 4.74% and 5.60%, respec-

tively, which amounts to an average of 5.17%. The violation ratio of the corresponding

combinationmean long shortis significantly lower with 4.68%. On average, the combina-

tionmean allshows the lowest VaR-violation ratio of all combination strategies. However,

the ratio tends to increase as the number of combination components decreases. This also

applies to the trimmed combinations, where the ratios are slightly higher compared to

their non-trimmed counterparts. These findings are largelyconfirmed by the results of the

uc backtests and hold true for both VaR levels and both forecast horizons.

5.4.2 I.I.D. VaR-Violations

The results of the i.i.d. backtest are presented in Table 5.8. We start with an evaluation of

the backtest results for the 1-day ahead forecasts. As to be expected, the rejection rates of
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Table 5.8: I.I.D. VaR-Violations - Backtest Rejections
For each VaR model and each estimation window strategy, the table reports rejection rates of the i.i.d.
backtest for the 1-day and 10-day ahead forecast horizons and the 5% and 1% VaR level. The rejection
rate is computed by the number of rejections divided by the total number of performed i.i.d. backtests. The
rejection rates in bold are closest to the significance levelof the test.

Estimation Window Strategy
Normal

EWMA GARCH
GJR-

HS
Filtered

Average
Distr. GARCH HS

5%VaR / 1-Day Ahead Forecasts

Expanding Window 95.2% 95.2% 33.3% 33.3% 97.6% 42.9% 66.3%
Rolling Window 125 days 83.3% 31.0% 38.1% 38.1% 95.2% 47.6% 55.6%
Rolling Window 250 days 85.7% 50.0% 40.5% 33.3% 92.9% 45.2% 57.9%
Rolling Window 500 days 95.2% 73.8% 42.9% 28.6% 97.6% 45.2% 63.9%
Rolling Window 1,000 days 97.6% 90.5% 40.5% 33.3% 95.2% 45.2% 67.1%
Structural Breaks Window 95.2% 81.0% 45.2% 47.6% 97.6% 59.5% 71.0%
Comb. Mean All 92.9% 71.4% 33.3% 26.2% 92.9% 40.5% 59.5%
Comb. Mean All ex SB 92.9% 71.4% 33.3% 21.4% 92.9% 28.6% 56.7%
Comb. Mean Rolling Windows 92.9% 54.8% 35.7% 26.2% 90.5% 35.7% 56.0%
Comb. Long Short 90.5% 66.7% 35.7% 23.8% 92.9% 23.8% 55.6%
Comb. Trimmed Mean All 95.2% 69.0% 33.3% 28.6% 92.9% 40.5% 59.9%
Comb. Trimmed Mean All ex SB 90.5% 69.0% 31.0% 26.2% 90.5% 28.6% 56.0%
Comb. Trimmed Mean Rolling Windows 92.9% 61.9% 31.0% 21.4% 92.9% 31.0% 55.2%

Average 92.3% 68.1% 36.4% 29.9% 94.0% 39.6%

1%VaR / 1-Day Ahead Forecasts

Expanding Window 88.1% 78.6% 19.0% 16.7% 88.1% 19.0% 51.6%
Rolling Window 125 days 66.7% 4.8% 11.9% 23.8% 33.3% 7.1% 24.6%
Rolling Window 250 days 76.2% 21.4% 28.6% 11.9% 76.2% 9.5% 37.3%
Rolling Window 500 days 78.6% 50.0% 21.4% 14.3% 83.3% 28.6% 46.0%
Rolling Window 1,000 days 90.5% 66.7% 19.0% 21.4% 83.3% 28.6% 51.6%
Structural Breaks Window 83.3% 52.4% 31.0% 19.0% 78.6% 35.7% 50.0%
Comb. Mean All 73.8% 47.6% 19.0% 7.1% 71.4% 9.5% 38.1%
Comb. Mean All ex SB 71.4% 42.9% 19.0% 7.1% 69.0% 7.1% 36.1%
Comb. Mean Rolling Windows 71.4% 33.3% 19.0% 9.5% 66.7% 9.5% 34.9%
Comb. Long Short 76.2% 40.5% 11.9% 9.5% 69.0% 4.8% 35.3%
Comb. Trimmed Mean All 78.6% 45.2% 21.4% 9.5% 69.0% 19.0% 40.5%
Comb. Trimmed Mean All ex SB 71.4% 47.6% 19.0% 7.1% 69.0% 9.5% 37.3%
Comb. Trimmed Mean Rolling Windows 73.8% 31.0% 19.0% 7.1% 73.8% 14.3% 36.5%

Average 76.9% 43.2% 20.0% 12.6% 71.6% 15.6%

5%VaR / 10-Day Ahead Forecasts

Expanding Window 100% 100% 100% 100% 100% 100% 100%
Rolling Window 125 days 100% 100% 100% 100% 100% 100% 100%
Rolling Window 250 days 100% 100% 100% 100% 100% 100% 100%
Rolling Window 500 days 100% 100% 100% 100% 100% 100% 100%
Rolling Window 1,000 days 100% 100% 100% 100% 100% 100% 100%
Structural Breaks Window 100% 100% 100% 100% 100% 100% 100%
Comb. Mean All 100% 100% 100% 100% 100% 100% 100%
Comb. Mean All ex SB 100% 100% 100% 100% 100% 100% 100%
Comb. Mean Rolling Windows 100% 100% 100% 100% 100% 100% 100%
Comb. Long Short 100% 100% 100% 100% 100% 100% 100%
Comb. Trimmed Mean All 100% 100% 100% 100% 100% 100% 100%
Comb. Trimmed Mean All ex SB 100% 100% 100% 100% 100% 100% 100%
Comb. Trimmed Mean Rolling Windows 100% 100% 100% 100% 100% 100% 100%

Average 100% 100% 100% 100% 100% 100%

1%VaR / 10-Day Ahead Forecasts

Expanding Window 100.0% 100.0% 100.0% 95.2% 100.0% 100.0% 99.2%
Rolling Window 125 days 100.0% 100.0% 100.0% 97.6% 100.0% 100.0% 99.6%
Rolling Window 250 days 100.0% 100.0% 100.0% 97.6% 100.0% 97.6% 99.2%
Rolling Window 500 days 100.0% 100.0% 97.6% 97.6% 100.0% 97.6% 98.8%
Rolling Window 1,000 days 100.0% 100.0% 97.6% 97.6% 100.0% 97.6% 98.8%
Structural Breaks Window 97.6% 95.2% 97.6% 92.9% 100.0% 100.0% 97.2%
Comb. Mean All 97.6% 97.6% 97.6% 92.9% 100.0% 97.6% 97.2%
Comb. Mean All ex SB 97.6% 97.6% 95.2% 95.2% 100.0% 100.0% 97.6%
Comb. Mean Rolling Windows 100.0% 100.0% 100.0% 95.2% 100.0% 100.0% 99.2%
Comb. Long Short 100.0% 97.6% 100.0% 97.6% 97.6% 100.0% 98.8%
Comb. Trimmed Mean All 100.0% 95.2% 100.0% 92.9% 100.0% 100.0% 98.0%
Comb. Trimmed Mean All ex SB 100.0% 97.6% 100.0% 92.9% 100.0% 97.6% 98.0%
Comb. Trimmed Mean Rolling Windows 100.0% 100.0% 100.0% 95.2% 100.0% 100.0% 99.2%

Average 99.5% 98.5% 98.9% 95.4% 99.8% 99.1%
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the dynamic models are significantly lower compared to the static normal distribution and

historical simulation models. Depending on the VaR model, the impact of the different

estimation window strategies to the rejection rates of the backtest is very specific. With

respect to the normal distribution model, almost all estimation window strategies show

rejection rates around 90%. Despite the fact that very shortrolling windows of 125 and

250 days lead to slight improvements, our results contradict the findings of Starica et al.

[2005] and Rapach and Strauss [2008] who state that a simple approach based on the ave-

rage of the squared returns often achieves good results compared to conditional models

if this model is estimated on a relatively small moving window. As mentioned in Section

5.2.1, the decay factorλ of the EWMA model is usually set to 0.94 for 1-day volatility

forecasts which means that 99.9% of the information the model uses for the volatility

estimation are contained in the last 112 days of historical data. Our results support this

setting, because the smallest rolling window of 125 days yields the lowest rejection rates.

Considering the GARCH and the GJR-GARCH models, the combination stragegies tend

to outperform the remaining strategies. With respect to a preferable length of a rolling

window, no clear conclusions can be made. The rejection rates for the historical simulati-

on model are on a very high level compared to the dynamic VaR models, irrespective of

the estimation window strategy. However, applying combination strategies leads to slight

improvements. The results of the semi-parametric filtered historical simulation model are

comparable to those of the GARCH-type models. Again, the rejection rates are impro-

ved by applying combinations, where the combinationmean long shortleads to the best

performance.

Regarding the 10-day ahead forecasts, the i.i.d. hypothesis is almost consistently re-

jected for all of the combinations of VaR models and estimation window strategies. Multi-

day ahead forecasts are generally vulnerable to dependent VaR-violations. For example, a

large negative return shock of a single day has an impact on ten subsequent 10-day-period

losses. It is very unlikely that a model is able to adjust its VaR-forecast quickly enough to

accommodate this single shock. Consequently, the significant loss of one day can cause

two or more subsequent VaR-violations.
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5.4.3 Expected Shortfall

With respect to the ES, Tables 5.9 and 5.10 report the averageabsolute deviations and the

rejection rates of the backtest of McNeil and Frey [2000]. Webegin with the evaluation

of the ES results corresponding to the 1-day ahead VaR-forecasts. Focusing the absolute

deviations, the rolling window strategy outperforms the competing strategies on average.

Dependent on the individual VaR model, for the 5% VaR the optimal rolling window size

varies between 125 and 250 days. For the 1% VaR, rolling windows of 250 days con-

sistently provide the smallest absolute deviations. The ESbacktest of McNeil and Frey

[2000] is a one-sided test concerning the simple mean of the deviations rather than abso-

lute deviations. The differences in the rejection rates of the backtests due to the estimation

window strategy are relatively small. However, for both analyzed VaR levels of 5% and

1%, the expanding window strategy and the combinationmean long shortstrategy leads

to slightly lower rejection rates compared to the competingstrategies.

Considering the 10-day ahead forecasts, the evaluation of the estimation window stra-

tegies leads to conclusions which are fairly similar to the 1-day ahead forecasts, albeit

the differences between the different settings are less significant. However, the selection

of the proper VaR model has a larger impact to the forecastingaccuracy than the chosen

estimation window strategy, irrespective of the VaR level or the forecast horizon.

5.4.4 Conditional Predictive Ability

The results for the CPA test are reported in Tables 5.11 and 5.12.

The rolling window strategy significantly improve on the benchmark strategy of ex-

panding windows only when less-parameterized approaches like the normal distribution,

EWMA, and historical simulation models are applied. For 1-day ahead forecasts of the

normal distribution and the historical simulation models,the proportion where the rolling

window is preferred tends to increase as the length of the rolling windows decreases whi-

le for the GARCH, GJR-GARCH and the filtered historical simulation the opposite holds

true. The 10-day ahead forecasts show no similar trend.
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Table 5.9: Expected Shortfall - 1-Day Ahead Forecast
The table reports average absolute deviations of the ES and rejection rates of the ES backtest for the 1-day
ahead forecasts and the 5% and 1% VaR level. The average absolute deviation is calculated as the average
of the absolute deviations between the ES forecast and the realized shortfall in case of a VaR-violation.
The rejection rate is computed by the number of rejections divided by the total number of performed ES
backtests. For each VaR model, the smallest average absolute deviation is printed in bold. The rejection
rates in bold are closest to the significance level of the test.

Estimation Window Strategy
Normal

EWMA GARCH
GJR-

HS
Filtered

Average
Distr. GARCH HS

5% VaR

Average Absolute Deviation

Expanding Window 0.651% 0.562% 0.455% 0.457% 0.173% 0.076% 0.396%
Rolling Window 125 days 0.785% 0.673% 0.439% 0.410% 0.235% 0.133% 0.446%
Rolling Window 250 days 0.585% 0.433% 0.465% 0.470% 0.089% 0.068% 0.352%
Rolling Window 500 days 0.594% 0.503% 0.466% 0.460% 0.069% 0.061% 0.359%
Rolling Window 1,000 days 0.688% 0.567% 0.451% 0.445% 0.137% 0.074% 0.394%
Structural Breaks Window 0.762% 0.609% 0.457% 0.431% 0.176% 0.097% 0.422%
Comb. Mean All 0.672% 0.540% 0.447% 0.423% 0.124% 0.072% 0.380%
Comb. Mean All ex SB 0.680% 0.537% 0.442% 0.423% 0.115% 0.071% 0.378%
Comb. Mean Rolling Windows 0.655% 0.515% 0.453% 0.434% 0.094% 0.072% 0.371%
Comb. Long Short 0.668% 0.516% 0.439% 0.420% 0.126% 0.070% 0.373%
Comb. Trimmed Mean All 0.669% 0.549% 0.444% 0.425% 0.131% 0.075% 0.382%
Comb. Trimmed Mean All ex SB 0.672% 0.545% 0.440% 0.425% 0.109% 0.071% 0.377%
Comb. Trimmed Mean Rolling Windows 0.649% 0.524% 0.454% 0.439% 0.103% 0.073% 0.374%

Average 0.672% 0.544% 0.450% 0.435% 0.129% 0.078%

Backtest Rejections

Expanding Window 92.9% 97.6% 73.8% 66.7% 16.7% 0.0% 57.9%
Rolling Window 125 days 97.6% 90.5% 95.2% 97.6% 0.0% 0.0% 63.5%
Rolling Window 250 days 97.6% 95.2% 95.2% 95.2% 0.0% 0.0% 63.9%
Rolling Window 500 days 97.6% 95.2% 88.1% 90.5% 2.4% 0.0% 62.3%
Rolling Window 1,000 days 95.2% 95.2% 83.3% 83.3% 4.8% 0.0% 60.3%
Structural Breaks Window 92.9% 92.9% 88.1% 90.5% 9.5% 0.0% 62.3%
Comb. Mean All 97.6% 90.5% 85.7% 88.1% 0.0% 0.0% 60.3%
Comb. Mean All ex SB 97.6% 92.9% 88.1% 78.6% 0.0% 0.0% 59.5%
Comb. Mean Rolling Windows 97.6% 90.5% 88.1% 90.5% 0.0% 0.0% 61.1%
Comb. Long Short 92.9% 90.5% 90.5% 78.6% 2.4% 0.0% 59.1%
Comb. Trimmed Mean All 97.6% 95.2% 85.7% 88.1% 0.0% 0.0% 61.1%
Comb. Trimmed Mean All ex SB 97.6% 92.9% 85.7% 83.3% 0.0% 0.0% 59.9%
Comb. Trimmed Mean Rolling Windows 97.6% 90.5% 85.7% 92.9% 0.0% 0.0% 61.1%

Average 96.3% 93.0% 87.2% 86.4% 2.7% 0.0%

1% VaR

Average Absolute Deviation

Expanding Window 2.038% 1.980% 1.831% 1.804% 2.006% 1.774% 1.905%
Rolling Window 125 days 2.094% 2.146% 1.833% 1.811% 2.426% 1.957% 2.045%
Rolling Window 250 days 1.902% 1.719% 1.714% 1.589% 1.503% 1.342% 1.628%
Rolling Window 500 days 1.982% 1.871% 1.742% 1.722% 1.707% 1.554% 1.763%
Rolling Window 1,000 days 2.021% 1.923% 1.775% 1.755% 1.993% 1.735% 1.867%
Structural Breaks Window 2.063% 2.016% 1.805% 1.789% 2.251% 1.885% 1.968%
Comb. Mean All 2.114% 1.977% 1.833% 1.798% 2.187% 1.829% 1.956%
Comb. Mean All ex SB 2.121% 1.980% 1.813% 1.786% 2.190% 1.808% 1.950%
Comb. Mean Rolling Windows 2.083% 1.927% 1.793% 1.767% 2.053% 1.750% 1.896%
Comb. Long Short 2.148% 2.013% 1.809% 1.745% 2.160% 1.761% 1.939%
Comb. Trimmed Mean All 2.077% 1.956% 1.813% 1.790% 2.140% 1.834% 1.935%
Comb. Trimmed Mean All ex SB 2.092% 1.954% 1.799% 1.771% 2.111% 1.807% 1.922%
Comb. Trimmed Mean Rolling Windows 2.017% 1.927% 1.782% 1.745% 1.912% 1.716% 1.850%

Average 2.058% 1.953% 1.796% 1.759% 2.049% 1.750%

Backtest Rejections

Expanding Window 92.9% 97.6% 73.8% 66.7% 19.0% 0.0% 58.3%
Rolling Window 125 days 97.6% 90.5% 95.2% 97.6% 0.0% 0.0% 63.5%
Rolling Window 250 days 97.6% 95.2% 95.2% 95.2% 0.0% 0.0% 63.9%
Rolling Window 500 days 97.6% 95.2% 88.1% 90.5% 2.4% 0.0% 62.3%
Rolling Window 1,000 days 95.2% 95.2% 85.7% 83.3% 4.8% 0.0% 60.7%
Structural Breaks Window 92.9% 92.9% 88.1% 92.9% 7.1% 0.0% 62.3%
Comb. Mean All 97.6% 90.5% 85.7% 88.1% 0.0% 0.0% 60.3%
Comb. Mean All ex SB 97.6% 92.9% 88.1% 81.0% 0.0% 0.0% 59.9%
Comb. Mean Rolling Windows 97.6% 90.5% 88.1% 90.5% 0.0% 0.0% 61.1%
Comb. Long Short 92.9% 90.5% 85.7% 76.2% 2.4% 0.0% 57.9%
Comb. Trimmed Mean All 97.6% 95.2% 83.3% 88.1% 0.0% 0.0% 60.7%
Comb. Trimmed Mean All ex SB 97.6% 92.9% 85.7% 83.3% 0.0% 0.0% 59.9%
Comb. Trimmed Mean Rolling Windows 97.6% 90.5% 85.7% 90.5% 0.0% 0.0% 60.7%

Average 96.3% 93.0% 86.8% 86.4% 2.7% 0.0%
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Table 5.10: Expected Shortfall - 10-Day Ahead Forecast
The table reports average absolute deviations of the ES and rejection rates of the ES backtest for the 10-day
ahead forecasts and the 5% and 1% VaR level. The average absolute deviation is calculated as the average
of the absolute deviations between the ES forecast and the realized shortfall in case of a VaR-violation.
The rejection rate is computed by the number of rejections divided by the total number of performed ES
backtests. For each VaR model, the smallest average absolute deviation is printed in bold. The rejection
rates in bold are closest to the significance level of the test.

Estimation Window Strategy
Normal

EWMA GARCH
GJR-

HS
Filtered

Average
Distr. GARCH HS

5% VaR

Average Absolute Deviation

Expanding Window 2.004% 1.833% 1.684% 1.657% 2.515% 1.069% 1.794%
Rolling Window 125 days 2.315% 2.069% 1.690% 1.628% 1.628% 0.968% 1.717%
Rolling Window 250 days 2.055% 1.762% 1.756% 1.783% 2.464% 1.380% 1.867%
Rolling Window 500 days 1.993% 1.854% 1.700% 1.681% 2.439% 1.222% 1.815%
Rolling Window 1,000 days 2.104% 1.951% 1.666% 1.635% 2.563% 1.106% 1.838%
Structural Breaks Window 2.247% 1.982% 1.719% 1.684% 2.189% 1.047% 1.811%
Comb. Mean All 2.078% 1.877% 1.673% 1.625% 2.316% 1.028% 1.766%
Comb. Mean All ex SB 2.095% 1.887% 1.681% 1.645% 2.305% 1.038% 1.775%
Comb. Mean Rolling Windows 2.077% 1.846% 1.691% 1.664% 2.446% 1.066% 1.798%
Comb. Long Short 2.161% 1.847% 1.681% 1.677% 2.045% 1.003% 1.736%
Comb. Trimmed Mean All 2.065% 1.897% 1.676% 1.647% 2.327% 1.043% 1.776%
Comb. Trimmed Mean All ex SB 2.087% 1.918% 1.682% 1.668% 2.264% 1.030% 1.775%
Comb. Trimmed Mean Rolling Windows 2.050% 1.859% 1.696% 1.723% 2.395% 1.089% 1.802%

Average 1.819% 1.891% 1.692% 1.671% 1.724% 1.084%

Backtest Rejections

Expanding Window 78.6% 85.7% 85.7% 83.3% 61.9% 45.2% 73.4%
Rolling Window 125 days 85.7% 83.3% 83.3% 88.1% 71.4% 71.4% 80.6%
Rolling Window 250 days 85.7% 83.3% 83.3% 83.3% 69.0% 59.5% 77.4%
Rolling Window 500 days 85.7% 85.7% 85.7% 85.7% 69.0% 50.0% 77.0%
Rolling Window 1,000 days 88.1% 85.7% 85.7% 85.7% 59.5% 45.2% 75.0%
Structural Breaks Window 81.0% 83.3% 83.3% 81.0% 71.4% 45.2% 74.2%
Comb. Mean All 81.0% 85.7% 85.7% 83.3% 64.3% 47.6% 74.6%
Comb. Mean All ex SB 78.6% 85.7% 85.7% 83.3% 66.7% 52.4% 75.4%
Comb. Mean Rolling Windows 85.7% 85.7% 85.7% 83.3% 71.4% 54.8% 77.8%
Comb. Long Short 81.0% 85.7% 83.3% 81.0% 64.3% 50.0% 74.2%
Comb. Trimmed Mean All 83.3% 85.7% 83.3% 83.3% 66.7% 50.0% 75.4%
Comb. Trimmed Mean All ex SB 83.3% 85.7% 85.7% 83.3% 64.3% 52.4% 75.8%
Comb. Trimmed Mean Rolling Windows 85.7% 85.7% 83.3% 88.1% 73.8% 52.4% 78.2%

Average 83.3% 85.2% 84.6% 84.1% 67.2% 52.0%

1% VaR

Average Absolute Deviation

Expanding Window 5.963% 5.834% 5.641% 5.703% 6.161% 5.689% 5.832%
Rolling Window 125 days 6.176% 6.243% 5.443% 5.524% 7.542% 5.749% 6.113%
Rolling Window 250 days 5.780% 5.293% 5.254% 5.297% 4.068% 5.421% 5.186%
Rolling Window 500 days 5.929% 5.620% 5.404% 5.389% 5.042% 5.697% 5.513%
Rolling Window 1,000 days 5.828% 5.871% 5.484% 5.438% 5.761% 5.850% 5.705%
Structural Breaks Window 6.118% 5.980% 5.434% 5.500% 6.743% 5.757% 5.922%
Comb. Mean All 6.125% 5.947% 5.461% 5.571% 6.896% 5.797% 5.966%
Comb. Mean All ex SB 6.140% 5.998% 5.424% 5.495% 6.925% 5.760% 5.957%
Comb. Mean Rolling Windows 6.123% 5.850% 5.430% 5.502% 6.331% 5.753% 5.831%
Comb. Long Short 6.200% 5.984% 5.377% 5.504% 6.645% 5.640% 5.892%
Comb. Trimmed Mean All 6.112% 5.923% 5.464% 5.567% 6.549% 5.780% 5.899%
Comb. Trimmed Mean All ex SB 6.086% 5.899% 5.431% 5.472% 6.536% 5.783% 5.868%
Comb. Trimmed Mean Rolling Windows 6.028% 5.811% 5.369% 5.415% 5.781% 5.773% 5.696%

Average 5.950% 5.865% 5.432% 5.490% 5.918% 5.727%

Backtest Rejections

Expanding Window 78.6% 85.7% 85.7% 83.3% 61.9% 45.2% 73.4%
Rolling Window 125 days 83.3% 83.3% 83.3% 88.1% 71.4% 69.0% 79.8%
Rolling Window 250 days 85.7% 83.3% 83.3% 83.3% 71.4% 57.1% 77.4%
Rolling Window 500 days 85.7% 85.7% 85.7% 85.7% 69.0% 50.0% 77.0%
Rolling Window 1,000 days 88.1% 85.7% 85.7% 85.7% 59.5% 45.2% 75.0%
Structural Breaks Window 78.6% 83.3% 83.3% 81.0% 71.4% 45.2% 73.8%
Comb. Mean All 81.0% 85.7% 85.7% 83.3% 64.3% 47.6% 74.6%
Comb. Mean All ex SB 81.0% 85.7% 85.7% 83.3% 66.7% 50.0% 75.4%
Comb. Mean Rolling Windows 85.7% 85.7% 85.7% 81.0% 73.8% 57.1% 78.2%
Comb. Long Short 83.3% 85.7% 81.0% 81.0% 66.7% 50.0% 74.6%
Comb. Trimmed Mean All 83.3% 85.7% 83.3% 83.3% 66.7% 50.0% 75.4%
Comb. Trimmed Mean All ex SB 83.3% 85.7% 85.7% 83.3% 64.3% 50.0% 75.4%
Comb. Trimmed Mean Rolling Windows 85.7% 85.7% 85.7% 85.7% 73.8% 52.4% 78.2%

Average 83.3% 85.2% 84.6% 83.7% 67.8% 51.5%
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Table 5.11: Conditional Predictive Ability - 1-Day Ahead Forecasts
For the 1-day ahead forecasts, the table reports the proportions of CPA tests where an alternative estimation
strategy is preferred compared to the expanding window strategy which serves as the benchmark. The
significance level is set to 5%. For each VaR model, the results of the best alternative estimation window
strategy are printed in bold.

5% VaR 1% VaR
Expanding

Indifferent
Alternative Expanding

Indifferent
Alternative

Window Strategy Window Strategy
VaR-Model Alternative Strategy Preferred Preferred Preferred Preferred

Normal Rolling Window 125 days 0.0% 19.0% 81.0% 0.0% 28.6% 71.4%
Distribution Rolling Window 250 days 0.0% 19.0% 81.0% 2.4% 26.2% 71.4%

Rolling Window 500 days 7.1% 31.0% 61.9% 0.0% 47.6% 52.4%
Rolling Window 1,000 days 31.0% 23.8% 45.2% 16.7% 38.1% 45.2%
Structural Breaks Window 7.1% 40.5% 52.4% 4.8% 40.5% 54.8%
Comb. Mean All 0.0% 11.9% 88.1% 0.0% 7.1% 92.9%
Comb. Mean All ex SB 0.0% 11.9% 88.1% 0.0% 4.8% 95.2%
Comb. Mean Rolling Windows 0.0% 14.3% 85.7% 2.4% 16.7% 81.0%
Comb. Long Short 0.0% 9.5% 90.5% 0.0% 7.1% 92.9%
Comb. Trimmed Mean All 0.0% 16.7% 83.3% 2.4% 14.3% 83.3%
Comb. Trimmed Mean All ex SB 0.0% 11.9% 88.1% 2.4% 11.9% 85.7%
Comb. Trimmed Mean Rolling Windows 0.0% 16.7% 83.3% 2.4% 19.0% 78.6%

EWMA Rolling Window 125 days 0.0% 23.8% 76.2% 0.0% 45.2% 54.8%
Rolling Window 250 days 0.0% 21.4% 78.6% 0.0% 40.5% 59.5%
Rolling Window 500 days 0.0% 23.8% 76.2% 2.4% 42.9% 54.8%
Rolling Window 1,000 days 0.0% 28.6% 71.4% 0.0% 40.5% 59.5%
Structural Breaks Window 0.0% 40.5% 59.5% 2.4% 47.6% 50.0%
Comb. Mean All 0.0% 11.9% 88.1% 0.0% 28.6% 71.4%
Comb. Mean All ex SB 0.0% 11.9% 88.1% 0.0% 28.6% 71.4%
Comb. Mean Rolling Windows 0.0% 16.7% 83.3% 0.0% 38.1% 61.9%
Comb. Long Short 0.0% 9.5% 90.5% 0.0% 21.4% 78.6%
Comb. Trimmed Mean All 0.0% 11.9% 88.1% 0.0% 33.3% 66.7%
Comb. Trimmed Mean All ex SB 0.0% 14.3% 85.7% 0.0% 38.1% 61.9%
Comb. Trimmed Mean Rolling Windows 0.0% 19.0% 81.0% 0.0% 38.1% 61.9%

GARCH Rolling Window 125 days 26.2% 73.8% 0.0% 14.3% 83.3% 2.4%
Rolling Window 250 days 28.6% 71.4% 0.0% 23.8% 73.8% 2.4%
Rolling Window 500 days 19.0% 78.6% 2.4% 14.3% 78.6% 7.1%
Rolling Window 1,000 days 26.2% 64.3% 9.5% 11.9% 78.6% 9.5%
Structural Breaks Window 23.8% 71.4% 4.8% 19.0% 73.8% 7.1%
Comb. Mean All 4.8% 85.7% 9.5% 4.8% 81.0% 14.3%
Comb. Mean All ex SB 7.1% 85.7% 7.1% 7.1% 78.6% 14.3%
Comb. Mean Rolling Windows 16.7% 76.2% 7.1% 11.9% 76.2% 11.9%
Comb. Long Short 9.5% 85.7% 4.8% 2.4% 90.5% 7.1%
Comb. Trimmed Mean All 7.1% 83.3% 9.5% 9.5% 78.6% 11.9%
Comb. Trimmed Mean All ex SB 9.5% 83.3% 7.1% 7.1% 81.0% 11.9%
Comb. Trimmed Mean Rolling Windows 11.9% 83.3% 4.8% 16.7% 73.8% 9.5%

GJR-GARCH Rolling Window 125 days 38.1% 61.9% 0.0% 42.9% 57.1% 0.0%
Rolling Window 250 days 19.0% 81.0% 0.0% 21.4% 73.8% 4.8%
Rolling Window 500 days 21.4% 76.2% 2.4% 14.3% 76.2% 9.5%
Rolling Window 1,000 days 11.9% 81.0% 7.1% 9.5% 76.2% 14.3%
Structural Breaks Window 21.4% 78.6% 0.0% 14.3% 78.6% 7.1%
Comb. Mean All 4.8% 83.3% 11.9% 0.0% 88.1% 11.9%
Comb. Mean All ex SB 4.8% 81.0% 14.3% 4.8% 78.6% 16.7%
Comb. Mean Rolling Windows 9.5% 76.2% 14.3% 7.1% 88.1% 4.8%
Comb. Long Short 11.9% 78.6% 9.5% 9.5% 85.7% 4.8%
Comb. Trimmed Mean All 4.8% 85.7% 9.5% 7.1% 83.3% 9.5%
Comb. Trimmed Mean All ex SB 4.8% 81.0% 14.3% 4.8% 83.3% 11.9%
Comb. Trimmed Mean Rolling Windows 4.8% 85.7% 9.5% 2.4% 90.5% 7.1%

Historical Rolling Window 125 days 0.0% 26.2% 73.8% 0.0% 61.9% 38.1%
Simulation Rolling Window 250 days 0.0% 19.0% 81.0% 0.0% 59.5% 40.5%

Rolling Window 500 days 7.1% 31.0% 61.9% 9.5% 57.1% 33.3%
Rolling Window 1,000 days 28.6% 14.3% 57.1% 11.9% 54.8% 33.3%
Structural Breaks Window 4.8% 42.9% 52.4% 7.1% 52.4% 40.5%
Comb. Mean All 0.0% 4.8% 95.2% 0.0% 21.4% 78.6%
Comb. Mean All ex SB 0.0% 4.8% 95.2% 0.0% 19.0% 81.0%
Comb. Mean Rolling Windows 0.0% 7.1% 92.9% 0.0% 31.0% 69.0%
Comb. Long Short 0.0% 4.8% 95.2% 0.0% 19.0% 81.0%
Comb. Trimmed Mean All 0.0% 7.1% 92.9% 0.0% 23.8% 76.2%
Comb. Trimmed Mean All ex SB 0.0% 7.1% 92.9% 0.0% 23.8% 76.2%
Comb. Trimmed Mean Rolling Windows 0.0% 7.1% 92.9% 0.0% 38.1% 61.9%

Filtered Rolling Window 125 days 26.2% 73.8% 0.0% 35.7% 64.3% 0.0%
Historical Rolling Window 250 days 26.2% 73.8% 0.0% 21.4% 73.8% 4.8%
Simulation Rolling Window 500 days 16.7% 83.3% 0.0% 16.7% 78.6% 4.8%

Rolling Window 1,000 days 19.0% 76.2% 4.8% 9.5% 88.1% 2.4%
Structural Breaks Window 31.0% 69.0% 0.0% 28.6% 69.0% 2.4%
Comb. Mean All 7.1% 85.7% 7.1% 9.5% 81.0% 9.5%
Comb. Mean All ex SB 4.8% 85.7% 9.5% 2.4% 88.1% 9.5%
Comb. Mean Rolling Windows 9.5% 88.1% 2.4% 7.1% 85.7% 7.1%
Comb. Long Short 4.8% 85.7% 9.5% 9.5% 88.1% 2.4%
Comb. Trimmed Mean All 4.8% 85.7% 9.5% 11.9% 76.2% 11.9%
Comb. Trimmed Mean All ex SB 7.1% 81.0% 11.9% 2.4% 85.7% 11.9%
Comb. Trimmed Mean Rolling Windows 9.5% 90.5% 0.0% 16.7% 78.6% 4.8%
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Table 5.12: Conditional Predictive Ability - 10-Day Ahead Forecasts
For the 10-day ahead forecasts, the table reports the proportions of CPA tests where an alternative estimation
strategy is preferred compared to the expanding window strategy which serves as the benchmark. The
significance level is set to 5%. For each VaR model, the results of the best alternative estimation window
strategy are printed in bold.

5% VaR 1% VaR
Expanding

Indifferent
Alternative Expanding

Indifferent
Alternative

Window Strategy Window Strategy
VaR-Model Alternative Strategy Preferred Preferred Preferred Preferred

Normal Rolling Window 125 days 14.3% 66.7% 19.0% 11.9% 81.0% 7.1%
Distribution Rolling Window 250 days 7.1% 54.8% 38.1% 9.5% 66.7% 23.8%

Rolling Window 500 days 16.7% 52.4% 31.0% 9.5% 69.0% 21.4%
Rolling Window 1,000 days 14.3% 54.8% 31.0% 2.4% 76.2% 21.4%
Structural Breaks Window 7.1% 61.9% 31.0% 4.8% 69.0% 26.2%
Comb. Mean All 4.8% 54.8% 40.5% 7.1% 59.5% 33.3%
Comb. Mean All ex SB 4.8% 57.1% 38.1% 11.9% 54.8% 33.3%
Comb. Mean Rolling Windows 7.1% 61.9% 31.0% 11.9% 57.1% 31.0%
Comb. Long Short 4.8% 45.2% 50.0% 2.4% 66.7% 31.0%
Comb. Trimmed Mean All 9.5% 50.0% 40.5% 9.5% 64.3% 26.2%
Comb. Trimmed Mean All ex SB 4.8% 54.8% 40.5% 9.5% 57.1% 33.3%
Comb. Trimmed Mean Rolling Windows 7.1% 54.8% 38.1% 11.9% 57.1% 31.0%

EWMA Rolling Window 125 days 19.0% 69.0% 11.9% 19.0% 69.0% 11.9%
Rolling Window 250 days 19.0% 66.7% 14.3% 11.9% 73.8% 14.3%
Rolling Window 500 days 9.5% 71.4% 19.0% 11.9% 76.2% 11.9%
Rolling Window 1,000 days 9.5% 69.0% 21.4% 14.3% 71.4% 14.3%
Structural Breaks Window 7.1% 73.8% 19.0% 11.9% 73.8% 14.3%
Comb. Mean All 11.9% 61.9% 26.2% 7.1% 76.2% 16.7%
Comb. Mean All ex SB 11.9% 59.5% 28.6% 7.1% 78.6% 14.3%
Comb. Mean Rolling Windows 14.3% 61.9% 23.8% 9.5% 76.2% 14.3%
Comb. Long Short 9.5% 59.5% 31.0% 9.5% 71.4% 19.0%
Comb. Trimmed Mean All 11.9% 66.7% 21.4% 9.5% 73.8% 16.7%
Comb. Trimmed Mean All ex SB 9.5% 64.3% 26.2% 9.5% 76.2% 14.3%
Comb. Trimmed Mean Rolling Windows 16.7% 61.9% 21.4% 9.5% 76.2% 14.3%

GARCH Rolling Window 125 days 16.7% 83.3% 0.0% 19.0% 81.0% 0.0%
Rolling Window 250 days 14.3% 83.3% 2.4% 14.3% 83.3% 2.4%
Rolling Window 500 days 7.1% 78.6% 14.3% 0.0% 90.5% 9.5%
Rolling Window 1,000 days 11.9% 78.6% 9.5% 0.0% 95.2% 4.8%
Structural Breaks Window 2.4% 83.3% 14.3% 2.4% 88.1% 9.5%
Comb. Mean All 4.8% 85.7% 9.5% 0.0% 88.1% 11.9%
Comb. Mean All ex SB 4.8% 85.7% 9.5% 2.4% 83.3% 14.3%
Comb. Mean Rolling Windows 4.8% 85.7% 9.5% 2.4% 83.3% 14.3%
Comb. Long Short 9.5% 83.3% 7.1% 9.5% 85.7% 4.8%
Comb. Trimmed Mean All 7.1% 88.1% 4.8% 2.4% 92.9% 4.8%
Comb. Trimmed Mean All ex SB 7.1% 85.7% 7.1% 0.0% 90.5% 9.5%
Comb. Trimmed Mean Rolling Windows 7.1% 85.7% 7.1% 4.8% 85.7% 9.5%

GJR-GARCH Rolling Window 125 days 19.0% 73.8% 7.1% 28.6% 69.0% 2.4%
Rolling Window 250 days 14.3% 78.6% 7.1% 14.3% 83.3% 2.4%
Rolling Window 500 days 9.5% 78.6% 11.9% 7.1% 85.7% 7.1%
Rolling Window 1,000 days 9.5% 76.2% 14.3% 2.4% 92.9% 4.8%
Structural Breaks Window 0.0% 90.5% 9.5% 2.4% 85.7% 11.9%
Comb. Mean All 11.9% 73.8% 14.3% 0.0% 85.7% 14.3%
Comb. Mean All ex SB 9.5% 81.0% 9.5% 4.8% 81.0% 14.3%
Comb. Mean Rolling Windows 7.1% 81.0% 11.9% 7.1% 83.3% 9.5%
Comb. Long Short 2.4% 88.1% 9.5% 16.7% 71.4% 11.9%
Comb. Trimmed Mean All 7.1% 76.2% 16.7% 0.0% 85.7% 14.3%
Comb. Trimmed Mean All ex SB 7.1% 73.8% 19.0% 0.0% 88.1% 11.9%
Comb. Trimmed Mean Rolling Windows 11.9% 76.2% 11.9% 0.0% 90.5% 9.5%

Historical Rolling Window 125 days 21.4% 71.4% 7.1% 40.5% 59.5% 0.0%
Simulation Rolling Window 250 days 23.8% 66.7% 9.5% 14.3% 76.2% 9.5%

Rolling Window 500 days 21.4% 61.9% 16.7% 14.3% 73.8% 11.9%
Rolling Window 1,000 days 21.4% 64.3% 14.3% 16.7% 69.0% 14.3%
Structural Breaks Window 16.7% 61.9% 21.4% 14.3% 61.9% 23.8%
Comb. Mean All 11.9% 59.5% 28.6% 7.1% 69.0% 23.8%
Comb. Mean All ex SB 9.5% 64.3% 26.2% 4.8% 71.4% 23.8%
Comb. Mean Rolling Windows 11.9% 66.7% 21.4% 9.5% 76.2% 14.3%
Comb. Long Short 7.1% 61.9% 31.0% 7.1% 64.3% 28.6%
Comb. Trimmed Mean All 9.5% 64.3% 26.2% 9.5% 73.8% 16.7%
Comb. Trimmed Mean All ex SB 7.1% 64.3% 28.6% 7.1% 73.8% 19.0%
Comb. Trimmed Mean Rolling Windows 11.9% 69.0% 19.0% 9.5% 81.0% 9.5%

Filtered Rolling Window 125 days 38.1% 57.1% 4.8% 33.3% 64.3% 2.4%
Historical Rolling Window 250 days 16.7% 76.2% 7.1% 28.6% 69.0% 2.4%
Simulation Rolling Window 500 days 14.3% 76.2% 9.5% 14.3% 78.6% 7.1%

Rolling Window 1,000 days 4.8% 83.3% 11.9% 7.1% 81.0% 11.9%
Structural Breaks Window 9.5% 83.3% 7.1% 14.3% 81.0% 4.8%
Comb. Mean All 7.1% 81.0% 11.9% 9.5% 81.0% 9.5%
Comb. Mean All ex SB 9.5% 81.0% 9.5% 7.1% 85.7% 7.1%
Comb. Mean Rolling Windows 9.5% 83.3% 7.1% 7.1% 85.7% 7.1%
Comb. Long Short 16.7% 76.2% 7.1% 23.8% 71.4% 4.8%
Comb. Trimmed Mean All 4.8% 85.7% 9.5% 11.9% 81.0% 7.1%
Comb. Trimmed Mean All ex SB 4.8% 85.7% 9.5% 7.1% 85.7% 7.1%
Comb. Trimmed Mean Rolling Windows 9.5% 81.0% 9.5% 9.5% 83.3% 7.1%
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Similar to the rolling windows, for the 1-day ahead forecasts the structural breaks

strategy outperforms the expanding windows in the settingswhere the normal distribution,

EWMA, and historical simulation models are used. Regardingthe 10-day ahead forecasts,

determining the estimation windows by structural break tests tend to be preferable for all

VaR models, except for the filtered historical simulation approach.

The conditional predictive ability of the combination strategies is at least as good

as, and in most cases better than, the expanding window strategy. Again, this applies in

particular for the simple VaR models. The results of the CPA test do not reveal that one of

the different combination approaches are clearly superior. However, the proportion where

the expanding window strategy is outperformed by trimmed combinations tends to be

slightly smaller compared to their plain counterparts.

5.5 Conclusion

Compared to the large number of VaR-forecasting models proposed in the literature, the-

re are relatively little contributions to the question of which estimation window strategy

is preferable to forecast common risk measures like VaR and ES. To this end, we per-

form an empirical study on the basis of returns of German bluechip stocks where thirteen

different estimation window strategies are applied to a setof of seven different parame-

tric, semi-parametric, and non-parametric VaR models. These strategies include simple

approaches like expanding windows and rolling windows of different lengths as well as

a more complex model that determines the length of an estimation window by using a

test for detecting structural breaks in the variance of asset return series. In addition, we

investigate combination strategies where the VaR-forecasts of several different models are

pooled. We evaluate the VaR-forecasts of the different approaches by backtesting the uc

and the i.i.d. properties of VaR-violations, the ES forecasting accuracy, and the conditio-

nal predictive ability.

The empirical study provides several interesting results.We demonstrate that not on-

ly the application of different VaR models but also the selection of the estimation win-
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dow strategy leads to significant differences in the results. Considering the uc property of

VaR-violations, the VaR-forecasts estimated by using the rolling window strategy become

more conservative as the size of the rolling windows increases. Compared to the expan-

ding and rolling window strategies, using structural breaktests leads to a lower number

of VaR-violations on average over all VaR models. Interestingly, the VaR-violation ratio

of forecast combinations are lower than the mean of their individual component ratios.

Considering the i.i.d. property of VaR-violations, short rolling windows are preferable

for simple VaR models like normal distribution and EWMA. With respect to the remai-

ning VaR models, forecast combinations show lower rejection rates than the competing

strategies. Focusing on the average absolute deviations between the ES forecasts and the

realized shortfalls in case of a VaR-violation, the rollingwindow strategy outperforms the

competing strategies on average. However, the differencesin the rejection rates of the sta-

tistical ES backtests caused by different estimation window strategies are relatively small.

The comparison of the expanding windows as the benchmark strategy to the remaining

strategies by the CPA test reveals that rolling windows as well as the structural break stra-

tegy are preferable when less-parameterized VaR models areapplied. The combination

strategies have an equal or better CPA compared to the expanding window benchmark in

the vast majority of settings. In summary, although each estimation window strategy has

its own strengths, the usage of forecast combinations seemsto be the preferable estima-

tion window strategy, because it shows convincing results in most settings and for most

backtests and has less weaknesses compared to the remainingapproaches.
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Zur Ver öffentlichung eingereicht in:

Journal of Empirical Finance (zusammen mit Gregor N.F. Weißund Dominik Wied).

6.1 Introduction

It has become a stylized fact in the analysis of financial market data that correlations bet-

ween asset returns are time-varying. Bollerslev et al. [1988] were among the first to stress

the importance of accounting for dynamic covariances in international asset pricing. Fur-

ther empirical evidence for time-varying asset correlations is found by Longin and Solnik

[1995] and Ang and Bekaert [2002] who show that correlationsbetween international

equity markets increased over time and were higher in the high volatility regimes of

bear markets.1 In response to these findings, studies in the field of financialeconome-

trics in recent years have tried to model the dynamics in asset correlations. Most notably,

Engle [2002] proposed the Dynamic Conditional Correlation(DCC) model that combi-

nes the flexibility of univariate generalized autoregressive conditional heteroskedasticity

(GARCH) models but at the same time circumvents the necessity to estimate a large num-

ber of parameters. Hillebrand [2005] showes that neglecting structural breaks in the data

generating parameters of the conditional variance of GARCHmodels causes substanti-

1Evidence of correlations changing over time is also found byPelletier [2006] and Colacito et al. [2011].

133
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al estimation errors. As the finance literature still lacks astudy dealing with the impact

of structural parameter changes on the estimation of dynamic correlation models, it is

an interesting question whether models accommodating for correlation shifts are able to

outperform a standard dynamic correlation model.

In this paper, we investigate the question whether the constant conditional correlation

(CCC) model of Bollerslev [1990] and the DCC model introduced by Engle [2002] and

Engle and Sheppard [2001]2 are economically significantly outperformed with respect to

their VaR and ES forecasting accuracy by CCC and DCC models combined with recently

proposed tests for structural breaks in a) the pairwise correlations, b) the correlation ma-

trix and c) the covariance matrix of asset returns to yield a set of seven candidate models

with a diverse range of modeling flexibility.3 More precisely, we modify the plain CCC

and DCC benchmark models by combining them with the pairwisetest for constant cor-

relations of Wied et al. [2012b], the test for a constant correlation matrix of Wied [2012],

and the test for a constant covariance matrix of Aue et al. [2009].4 The motivation for

choosing these three tests lies in the fact that they are nonparametric and do not impose

restrictive assumptions on the structure of the time series. We conduct a horse race of these

models and compare their out-of-sample forecasting accuracy by using ten-dimensional

portfolios composed of international blue-chip stocks. Despite the benefits of the DCC

model, the inclusion of the classical CCC model of Bollerslev [1990] in this study is use-

ful for several reasons. First, contrary to the DCC model, the CCC model allows for a

pairwise test for structural breaks in correlations.5 Second, a simple CCC model that ac-

counts for structural breaks in correlations could yield comparable accurate VaR-forecasts

without imposing too strict assumptions on the dynamic behavior of correlations over ti-

me. Third, the empirical literature is ambiguous about the comparative performance of

CCC and DCC models. For example, Santos et al. [2013] find in a comprehensive VaR

2See also Tse and Tsui [2002].
3As the focus of our paper lies on the modeling of the dynamics in the dependence structure between

assets, we do not consider structural breaks in the assets’ univariate volatilities. For a review of methods
used for forecasting stock return volatility, see Poon and Granger [2003]. Structural breaks in volatility are
examined, for example, by Rapach and Strauss [2008].

4As we will explain later, the test of constant pairwise correlations cannot be combined with the DCC
model. Therefore, only seven instead of eight models are compared in our study.

5See Section 6.4 (3) for more details.
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predictive ability comparison study that the performancesof a CCC and a DCC model are

comparable. Additionally, the results of their study indicate that the generalization of the

DCC model proposed by Cappiello et al. [2006] does not lead toany significant improve-

ments. Consequently, we abstain from implementing more sophisticated versions of the

DCC model in this empirical study. The model performance is assessed by performing

formal backtests of VaR- and Expected Shortfall (ES)- forecasts using the unconditional

coverage test of Kupiec [1995], the CAViaR based test of Engle and Manganelli [2004]

and Berkowitz et al. [2011], the ES backtest of McNeil and Frey [2000], the conditional

predictive ability (CPA) test of Giacomini and White [2006]and a backtest procedure

based on the Basel guidelines for backtesting internal models.

The contributions of our paper are numerous and important. First, we propose the

use of tests for structural breaks in correlations and covariances together with static and

dynamic correlation-based models for forecasting the VaR of asset portfolios. Second,

to the best knowledge of the authors, this study presents thefirst empirical analysis of

the question whether static and dynamic correlation-basedVaR-models can be improved

by additionally testing for structural breaks in correlations. Third, in a risk management

context we empirically test which of the tests for structural breaks (pairwise correlations,

correlation matrix and covariance matrix) is best suited for capturing significant changes

in the correlations on financial assets.

The paper proceeds as follows. In Section 6.2, we quickly review the standard

GARCH(1,1) model we use as marginal models in our study. In Section 6.3, we discuss

the multivariate dependence models as well as the tests for structural breaks in correlations

used in our empirical study. Section 6.4 presents the data and outlines the test procedure

of our empirical study. The results of the empirical study are presented in Section 6.5.

Section 6.6 concludes.
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6.2 Univariate GARCH Model

GARCH-type models (see Bollerslev, 1986) have become the de-facto standard for descri-

bing the univariate behaviour of financial returns in a dynamic setting. The GARCH(1,1)

model has been found to be the model of choice in the literature (see Hansen and Lunde,

2005). Consequently, in the empirical study we opt for the simple GARCH(1,1) as the

standard model to forecast the volatility of the univariatemarginals.

Let rt,i denote the log-return of an asseti (i = 1, . . . , n) at timet (t = 0, 1, . . . , T ).

Then the GARCH(1,1) process is defined by

rt,i = µi + ǫt,i (6.1)

ǫt,i = σt,izt,i (6.2)

σ2
t,i = α0,i + α1,iǫ

2
t−1,i + β1,iσ

2
t−1,i (6.3)

whereα0,i > 0 andα1,i ≥ 0, β1,i ≥ 0 ensures a positive value ofσ2
t,i, and wide-sense

stationarity requiresα1,i+β1,i < 1. Along the lines of Bollerslev and Wooldridge [1992],

the innovationszt,i follow a strict white noise process from a Student’s t distribution with

mean0, a scale parameter of1, andν > 2 degrees of freedom. After estimating the

parameters of the univariate GARCH models with, for example, maximum likelihood,

one-step-ahead forecasts for the conditional variances are simulated from equation (6.3)

for each of then assets in a portfolio separately via plug-in estimation of

σ2
t+1,i = α0,i + α1,iǫ

2
t,i + β1,iσ

2
t,i. (6.4)

6.3 Multivariate Dependence Models

In the following, the dependence models used in the empirical study are discussed. The

selection includes five models employing statistical testsfor the occurrence of structural

breaks in the dependence structure and, for benchmarking purposes, the classical CCC-

and DCC-GARCH models.
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6.3.1 General Setup of Correlation-Based Dependence Models

The general definition of a multivariate GARCH model with linear dependence can be

written as

rt = µt + Σ
1/2
t Zt (6.5)

wherert is a (n×1) vector of log returns,µt is a (n×1) vector ofE(rt) which we assume

to be constant, andΣ1/2
t is the Cholesky factor of a positive definite conditional cova-

riance matrixΣt which corresponds to the varianceσ2
t in the univariate GARCH model.

Furthermore, the innovationsZt correspond tozt,i of the univariate GARCH process and

are assumed to come from a Student’s t distribution as described above. The conditional

covariance matrixΣt can be expressed as

Σt = DtPtDt (6.6)

whereDt is a (n × n) diagonal volatility matrix with the univariate conditional standard

deviationsσt,i derived from (6.3) as its diagonal entries andPt = [ρt,ij ] is a (n × n)

positive definite correlation matrix whereρt,ii = 1 and |ρt,ij | < 1. From this it follows

that the off-diagonal elements are defined as

[Σt]ij = σt,iσt,jρt,ij , i 6= j.

Our empirical study examines the one-step-ahead prediction of Value-at-Risk and Ex-

pected Shortfall. As we assumeµt to be constant, the prediction solely depends on the

forecast of the conditional covariance matrixΣt+1 = Dt+1Pt+1Dt+1. Note that in our

case, estimation of the univariate variances takes place before estimating the correlation

matrices. For this reason and since the forecasts of univariate variances are identical for all

examined dependence models, divergences in the performance of VaR- and ES-prediction

thus depend only on the selected model to forecast the correlation matrixPt+1.
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6.3.2 Constant and Dynamic Conditional Correlation Models

The Constant Conditional Correlation GARCH model by Bollerslev [1990] constitutes a

basic concept to specify the dependence structure of a givendata set, since the conditional

correlations are assumed to be constant over time. LetΣt be the conditional covariance

matrix in a CCC-GARCH(1,1) process at timet. Corresponding to equations (6.5) and

(6.6), the one-step-ahead forecast of the conditional covariance matrix can be obtained by

a plug-in estimation ofΣt+1 = Dt+1PcDt+1. The correlation matrixPc is assumed to be

constant over time and its entries can be estimated with the arithmetic mean of products

of the standardized residualsẑt,i [see Bollerslev, 1990, for details]. Here,ẑt,i = ǫ̂t,iσ̂
−1
t,i ,

whereσ̂t,i is the (plug-in-) estimated conditional standard deviation based on (6.3) and

ǫ̂t,i = rti − µ̂i. Dt+1 is determined by the univariate conditional variancesσ2
t+1,i ob-

tained from (6.4) which are estimated by the plug-in method.The simplification of a

constant dependence structure makes the model quite easy toestimate, in particular for

high-dimensional portfolios. Due to its relatively simpledesign and its lasting popularity

in the financial industry, we use the CCC-GARCH model as a useful benchmark. Further-

more, in contrast to the DCC model, the CCC model is combinable with the pairwise test

for constant correlations of Wied et al. [2012b].

Several studies starting with the seminal work by Longin andSolnik [1995] show that

correlations of asset returns are not constant over time. Therefore, as a generalization

of the CCC model, Engle [2002] and Engle and Sheppard [2001] propose the Dynamic

Conditional Correlation (DCC) GARCH model which allows theconditional correlation

matrix to vary over time. The conditional covariance matrixis decomposed into conditio-

nal standard deviations and a correlation matrix viaΣt = DtPtDt. The correlation matrix

Pt is assumed to be time-varying and is defined as

Pt = Q∗−1
t QtQ

∗−1
t . (6.7)
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The time-varying character of the DCC-GARCH model is implemented by

Qt = (1− α− β)Q̄+ α(zt−1z
T
t−1) + βQt−1. (6.8)

Q∗
t is a diagonal matrix composed of the square root of the diagonal elements ofQt andQ̄

is the unconditional covariance matrix of the innovationszt−1,i. The DCC parameters have

to satisfyα ≤ 1, β ≤ 1 andα + β < 1. The one-step-ahead forecast of the conditional

covariance matrix can then be obtained as a plug-in estimator of Σt+1 = Dt+1Pt+1Dt+1.

Here,Dt+1 is determined by the univariate conditional variancesσ2
t+1,i obtained from

(6.4) and the conditional correlation matrixPt+1 is determined byQt+1 = (1 − α −

β)Q̄+α(ztz
T
t )+βQt derived from (6.8). For details concerning the (maximum-likelihood)

estimation ofPt, we refer to Engle [2002].

6.3.3 Tests for Structural Breaks in Correlations

In general, correlation based GARCH models can be extended by allowing for structu-

ral breaks in the dependence measure. We employ three recently proposed tests to detect

structural breaks inP as well as inΣ and reestimateP after each change point. The basic

motivation for using these tests is the fact that we want to know which data of the past we

can use for estimating the correlation or covariance matrix. All three tests basically have

the same structure: One compares the successively estimated quantities (bivariate correla-

tions, correlation matrix, covariance matrix) with the corresponding quantities estimated

from the whole sample and rejects the null of no-change if thedifference becomes too

large over time. All three tests work under mild conditions on the time series which ma-

kes them applicable to financial data. They are nonparametric in the sense that one does

not need to assume a particular distribution such as a specific copula model or the normal

distribution. Moreover, the tests allow for some serial dependence such that it is possible

to apply the test on, for example, GARCH models. Principally, weak-sense stationarity

is required for applying the fluctuation tests. While this isfulfilled in GARCH models

under certain conditions, conditional heteroscedasticity might be a problem for the cor-
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relation tests as the tests might reject the null too often. To circumvent this problem, one

can apply some kind of pre-filtering on the data. One potential drawback is the fact that

it is a necessary condition to have finite fourth moments for deriving the asymptotic null

distributions of the tests. While there is some evidence that second moments do exist in

financial return data, the existence of finite fourth momentsis doubtful. Nevertheless, we

consider the fluctuation test to be applicable on returns as well. In the following, we will

shortly present each test together with its respective nulldistributions.

6.3.3.1 Pairwise test for constant correlation

Wied et al. [2012b] propose a fluctuation test for constant bivariate correlations. The test

compares the successively estimated bivariate correlation coefficients with the correlation

coefficient from the whole sample. The test statistic is given by

D̂ max
2≤j≤T

j√
T
|ρ̂j − ρ̂T |, (6.9)

whereD̂ is an estimator described in Wied et al. [2012b] that captures serial dependence

and fluctuations of higher moments and serves for standardization. Also, the factor j√
T

serves for standardization, meaning that it compensates for the fact that correlations are in

general better estimated for larger time series. The null hypothesis of constant correlation

is rejected for too large values of the test statistic. Sincethe correlation test is designed for

a bivariate vector, we control each entry of the population correlation matrix separately

with this test. That means, we determine for each entry separately which data is used for its

estimation. Under the null hypothesis of constant correlation, the test statistic converges

to sup0≤z≤1 |B(z)|, whereB is a one-dimensional standard Brownian bridge. Under a

sequence of local alternatives, the test statistic converges againstsup0≤z≤1 |B(z)+C(z)|,

whereC is a deterministic function.



6.3. MULTIVARIATE DEPENDENCE MODELS 141

6.3.3.2 Test for a constant multivariate correlation matrix

Wied [2012] proposes an extension of the bivariate correlation test to ad-dimensional

correlation matrix. The test statistic in this case is rather similar to the former case with

the difference that one does not just consider one deviation

|ρ̂j − ρ̂T |,

but the sum over all “bivariate deviations”, that means,

∑

1≤i,j≤p,i 6=j

k√
T

∣∣ρ̂ijk − ρ̂ijT
∣∣ .

Also, the estimator̂D is calculated differently. While the bivariate test uses a kernel-based

estimator, the multivariate test uses a block bootstrap estimator, see Wied [2012] for de-

tails. Under the null hypothesis of a constant correlation matrix, the test statistic converges

to sup0≤z≤1

∑d(d−1)/2
i=1 |Bi(z)|, where(Bi(z), z ∈ [0, 1]), i = 1, . . . , d(d − 1)/2 are inde-

pendent standard Brownian bridges. Under local alternatives, we have convergence results

that are similar to the ones with the former test.

6.3.3.3 Test for a constant multivariate covariance matrix

Aue et al. [2009] present a nonparametric fluctuation test for a constantd-dimensional

covariance matrix of the random vectorsX1, . . . , XT with Xj = (Xj,1, . . . , Xj,d). Let

vech(·) denote the operator which stacks the columns on and below thediagonal of a

d × d matrix into a vector and letA′ be the transpose of a matrixA. At first, we consider

the term

Sj =
j√
T

(
1

j

j∑

l=1

vech(XlX
′
l)−

1

T

T∑

l=1

vech(XlX
′
l)

)
,

for 1 ≤ j ≤ T , which measures the fluctuations of the estimated covariance matrices. He-

re, the factor j√
T

again serves for standardization for the same reasons as described above.

The test statistic is then defined asmax1≤j≤T S ′
jÊSj , whereÊ is an estimator which has

the same structure as in the bivariate correlation test and is described in more detail in
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Aue et al. [2009]. The limit distribution under the null hypothesis is the distribution of

sup
0≤z≤1

d(d+1)/2∑

i=1

B2
i (z),

where(Bi(z), z ∈ [0, 1]), i = 1, . . . , d(d+ 1)/2 are independent Brownian bridges.

Aue et al. [2009] show that the test is consistent against fixed alternatives. Note that

the application of the test requires the assumption of constant first moments of the random

vectors of the time series. The asymptotic result is derivedunder the assumption of zero

expectation; if we had constant non-zero expectation, it would be necessary to subtract

the arithmetic mean calculated from all observations from the original data which does

not change the asymptotic distribution.

6.4 Data and Test Procedure

Our empirical study is designed as follows:

(1) Data and portfolio composition: We compute log returns by using daily total return

quotes of stocks listed on the indices AEX, DAX30, CAC40, FTSE100, IBEX35,

and the S&P500. With respect to each of the six stock indices,we build a portfolio

consisting of ten equal weighted assets which possess the highest market values on

June 30, 2012 and meet the requirement of a complete data history. The data set for

each of the portfolios contains log returns of4, 970 trading days (we exclude non-

trading days from our sample). The quotes cover a period fromthe autumn of 1992 to

June 30, 2012. All quotes are obtained fromThomson Reuters Financial Datastream.

Table 6.1 presents summary statistics for the log-returns of each portfolio.

The annualized volatility of the (unconditional) portfolio log-returns ranges from

18.33% to 23.98% while all six portfolios show significant positive annualized re-

turns above 12%. Furthermore, the summary statistics show evidence of leptokurtic

portfolio returns indicating fat tails.

(2) Univariate modeling: To forecast the volatility of each asset in each portfolio atday
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Table 6.1: Summary Statistics
Summary statistics of the data set used for the empirical study. The data set consists of 4,970 (unconditional)
log-returns for each of the six portfolios covering a periodfrom the autumn 1992 to June 30, 2012. Mean
Return p.a. and Volatility p.a. are annualized with 250 days.

Portfolio
AEX CAC DAX FTSE IBEX S&P

Minimum -8.914% -9.342% -9.650% -8.514% -8.929% -8.780%
5% Quantile -1.886% -2.135% -2.379% -1.700% -2.102% -1.872%
Mean Return 0.049% 0.049% 0.051% 0.057% 0.052% 0.061%
Median Return 0.085% 0.086% 0.123% 0.063% 0.089% 0.080%
95% Quantile 1.853% 2.094% 2.211% 1.740% 2.136% 1.856%
Maximum 8.123% 11.285% 11.947% 9.392% 12.329% 10.990%
Volatility 1.250% 1.396% 1.517% 1.159% 1.381% 1.236%
Skewness -0.186 0.077 -0.217 -0.066 -0.023 0.046
Excess Kurtosis 5.471 5.300 5.291 5.893 5.363 6.713

Mean Return p.a. 12.24% 12.20% 12.73% 14.25% 12.91% 15.21%
Volatility p.a. 19.76% 22.07% 23.98% 18.33% 21.84% 19.55%

t+1, GARCH(1,1) models are fitted to a moving time window consisting of the1, 000

preceding log returns. The use of a moving time window of1, 000 days is common in

the literature and is in line with, e.g., McNeil et al. [2005]and Kuester et al. [2006].

Next, a one-step-ahead volatility forecastσt+1,i is computed by the use of the esti-

mated GARCH parametersα0, α1 andβ1 according to (6.4). Furthermore, degrees of

freedom of the marginals are held to be constant atνc = 15.

(3) Testing for structural breaks and multivariate modeling: The correlationsPc and

Pt of the plain CCC and DCC models are fitted to a sample consisting of the stan-

dardized residuals obtained from the univariate GARCH estimation. Therefore, the

sample includes a moving time-window of 1,000 trading days preceding the forecast

day t + 1. We opt for a moving time window rather than for a fixed time-window,

because a fixed time-window does not account for any changes in the correlation

structure. As a second alternative, an expanding time-window could be used which

is determined by a fixed starting point and a moving end. However, we do not use

such a time-window, because the weighting of more recent data for the parameter fit-

ting decreases when the time-window increases over time. Inconclusion, the moving

time-window approach allows the estimated parameter to change and therefore it is a
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benchmark which is hard to beat.

The estimation of the CCC and DCC parameters in combination with each of the three

different tests for structural breaks is designed as follows. Similar to Wied [2013], we

apply the structural break tests to the standardized residuals ẑt,i of a moving time-

window of a constant length at each point in timet. Here,ẑt,i = ǫ̂t,iσ̂
−1
t,i , whereσ̂t,i

is the (plug-in-) estimated conditional standard deviation based on (6.3) and̂ǫt,i =

rti − µ̂i. For the purpose of this study, the time-window consists of1, 000 trading

days preceding the forecast dayt + 1. In order to decide at which point in time a

possible change occurs we use an algorithm based on Galeano and Wied [2014]. First,

within the sample of1, 000 trading days we identify the data point at which the test

statistic takes its maximum. If this maximum is equal to or above the critical value,

the null of a constant correlation/covariance is rejected.6 In this case, the data point is

a natural estimator of a so called dominating change point. Second, at this point we

split the sample into two parts and search for possible change points again in the latter

part of the sample. The procedure stops if no new change pointis detected. Finally,

the constant correlation coefficientPc and the time-varying correlation coefficientPt

are estimated on the basis the standardized residuals of a subsample, which starts

at the day of the latest detected change point and ends at dayt. The sample size

for estimatingP is limited to [100, . . . , 1, 000]. Because we perform the tests on a

daily basis, the nominal significance level might not be attained. Following Wied

[2013], we do not address this topic within this study as we simply use the decisions

of the tests in an explorative way. Note that in case of the application of the pairwise

test for constant correlations this procedure is conductedfor each of the off-diagonal

elements of the correlation matrix. Because the resulting subsamples for each element

are typically of different lengths, the estimation of DCC parameters is not feasible.

Therefore, this test is only applied in combination with theCCC model.

6The critical values are computed for a significance level of 5% for each of the three structural break
tests. We also tested a setup including a significance level of 1%. However, the forecasting results tend to be
slightly worse. With respect to the test for a constant correlation matrix, we use a bootstrap approximation
for a normalizing constant in order to approximate the asymptotic limit distribution of the test statistic. In
line with Wied [2012], we chose199 bootstrap replications.
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Concerning the test for a constant covariance matrix, Aue etal. [2009] approximate

asymptotic critical values by simulating Brownian bridgeson a fine grid. Wied et al.

[2013b] show that for a small sample size this approach leadsto considerably overe-

stimated critical values and hence to very infrequent rejections. To this end, based on

Wied et al. [2013b], we simulate d-dimensional samples of standard normal distribu-

ted random variables representing1, 000 trading days. This sample size corresponds

to the size of the moving time-window as explained above. After that, we compute the

test statistic for the sample. We repeat this procedure10, 000 times. Finally, we deter-

mine the critical value by computing the 95%-quantile of theresulting test statistics.

In addition, we verify whether the asymptotic critical values used for the pairwise

test for constant correlation and the test for a constant correlation matrix are suitable

for finite samples including1, 000 trading days. To this end, we obtain critical va-

lues based on the procedure explained above and compare these to the corresponding

asymptotic critical values. As shown in Table 6.2, in contrast to the differences for the

test for a constant covariance matrix, the differences corresponding to the two tests

for constant correlations are in an acceptable range.

Table 6.2: Critical Values
The table shows asymptotic and empirical critical values for the pairwise test for constant correlation, for the
test for a constant correlation matrix, and for the test for aconstant covariance matrix at the 5% significance
level. Values in bold are used for the empirical study.

Test for Constant Correlation Constant Correlation Constant Covariance
(pairwise) (Matrix) (Matrix)

Asymptotic Critical Values 1.358 23.124 20.740
Empirical Critical Values 1.324 25.793 14.265

(4) Simulations: For calculating VaR and ES, we do not use analytical methods but si-

mulations as it is done, e.g., by Giot and Laurent [2003] and Alexander and Sheedy

[2008]. For each of then assets in a portfolio and for each dayt, K = 100, 000

random simulations7 of Student’s t-distributed log returnsr(k)t1 , . . . , r
(k)
tn are generated

7Giot and Laurent [2003] state that the choice of 100,000 simulations provides accurate estimates of the
quantile.
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by use of the meanµt, the univariate volatility forecastσt+1,i, the correlation matrix

P as estimated by the models described in Section 6.3, and the degrees of freedom

νc = 15.8 Then, the simulated log returns for the individual portfolio assets are ag-

gregated to 100,000 portfolio log returns.

(5) Estimation of VaR and ES: The daily VaR at the100(1 − α)% confidence level is

given by theα-quantile of the simulated portfolio log returns. To analyze the effect

of different levels of significance on the quality of our models’ risk estimates, we

setα = 0.05 andα = 0.01 and compare the results for the VaR-estimates with the

realized portfolio losses in order to identify VaR-exceedances.

As the Value-at-Risk is not in general coherent, we also estimate the portfolios’ Ex-

pected Shortfalls which are given by

ESα(X) = E[X|X ≤ V aRα(X)]. (6.10)

For dayt + 1, we determine theESα by computing the mean of the simulated log

returns below the estimatedV aRα for that day.

(6) Backtesting and performance measurement:The performances of the different

models are evaluated by applying appropriate backtests on the VaR- and ES- fore-

casts. Since the univariate volatility forecasts for each of the VaR models are equal.

Hence, differences in VaR-forecasts and VaR-violations can only result from diffe-

rences in the estimated correlations. We employ the commonly used test of Kupiec

[1995] to evaluate whether the observed number of VaR-violations is consistent with

the expected frequency (unconditional coverage). In addition, we take a look at the

distribution of the VaR-violations. The day on which a VaR-violation occurs should

be unpredictable, i.e., the violation-series should follow a martingale difference pro-

cess. To this end, we perform the CAViaR-Test of Engle and Manganelli [2004] and

8We choose a fixedν because the estimation of degrees of freedom leading to proper shapes particularly
at the tails of a distribution is not a trivial task and is not in the focus of this paper. However, settingν = 15
corresponds to Santos et al. [2013] who estimate a range of 10to 19 degrees of freedom for estimating the
VaR of several multivariate portfolios by using a DCC-GARCHmodel.
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Berkowitz et al. [2011]. The test is based on the idea that anytransformation of the

variables available when VaR is computed should not be correlated with the current

violation. Consider the autoregression

It = α +
n∑

k=1

β1kIt−k +
n∑

k=1

β2kg(It−k, It−k−1, · · · , Rt−k, Rt−k−1, · · · ) + ut. (6.11)

In line with Berkowitz et al. [2011], we setg(It−k, It−k−1, · · · , Rt−k, Rt−k−1, · · · ) =

V aRt−k+1 andn = 1. The null hypothesis of a correctly specified model withβ1k =

β2k = 0 is tested with a likelihood ratio test. The test statistic isasymptoticallyχ2

distributed with two degrees of freedom. Berkowitz et al. [2011] evaluate the finite-

sample size and power properties of various different VaR-backtests by conducting a

Monte Carlo study where the return generating processes arebased on real life data.

They find that the CAViaR-test shows a superior performance compared to competing

models.

The Expected Shortfall is backtested with the test of McNeiland Frey [2000]. This

test evaluates the mean of the shortfall violations, i.e., the deviation of the realized

shortfall against the ES in the case of a VaR-violation. The average error should be

zero. The backtest is a one-sided test against the alternative hypothesis that the re-

siduals have mean greater than zero or, equivalently, that the expected shortfall is

systematically underestimated.

The backtests described above are designed to evaluate the accuracy of a single mo-

del. Since we are also interested in a comparison between theperformances of the

correlation models we additionally employ the conditionalpredictive ability (CPA)

test of Giacomini and White [2006]. This interval forecast test is derived under the

assumption of data heterogeneity rather than stationarityand can be applied to the

comparison between nested and non nested models as well as among different esti-

mation techniques and (finite) estimation windows. We follow Santos et al. [2013]
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and assume an asymmetric linear (tick) loss functionL of orderα defined as

Lα(et+1) = (α− 1(et+1 < 0))et+1, (6.12)

whereet+1 = rt+1 − V aRα,t+1. The null hypothesis of equal conditional predictive

ability claims that the out-of-sample loss difference between two models follows a

martingale difference sequence.9

In addition to the statistical backtests, we assess the performance of the models from

a practitioner’s point of view. According to the framework for backtesting internal

models proposed by the Basel Committee on Banking Supervision [1996], we mea-

sure the number of VaR-violations on a quarterly basis usingthe most recent twelve

months of data. To be more precisely, we count the number of violations after every 60

trading days using the data of the most recent 250 trading days. We sum up the VaR-

violations for each interval[1, . . . , 250], [61, . . . , 310], . . . , [3, 721, . . . , 3, 970]. This

procedure leads to 63 results of one-year VaR-violation frequencies. Then, we follow

McNeil et al. [2005] and compute the average absolute discrepancy between obser-

ved and expected numbers of VaR-violations. We abstain fromusing the calculation

of capital requirements according to the Basel guidelines to evaluate the performance

of the different models. Da Veiga et al. [2011] find that usingmodels which unde-

restimate the VaR lead to low capital charges because the current penalty structure

for excessive violations is not severe enough. For this reason, we consider the capital

requirement not to be an appropriate performance measure.

6.5 Results

In this section, the results of our empirical study are discussed focusing on the specified

aspects mentioned in the introduction of this paper.

9For a detailed description of the test statistic, see Giacomini and White [2006]
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6.5.1 Total Number of VaR Violations

We start the discussion of our results with the analysis of the total number of VaR-

violations. A key requirement with regard to VaR-forecasting models is that the actual

number of VaR-violations should match the expected number related to the selectedα-

quantile. For each of the different models, we compute the VaR-violation ratio by divi-

ding the actual number of VaR-violations by the total numberof 3,970 VaR-forecasts.

Furthermore, we apply the unconditional coverage test of Kupiec [1995] to test the null

hypothesis of a correctly specified model. The results are reported in Table 6.3.

With respect to Panel A, the average VaR-violation ratios for theα = 5% andα = 1%

quantiles (hereinafter referred to as 5% VaR and 1% VaR) amount to 4.924% and 1.231%,

respectively, which is close to the corresponding nominal VaR levels. In the vast majority

of settings, the average VaR-violation ratio of the models including tests for structural

breaks are closer to the nominal VaR levels than the corresponding ratios of the plain

models. The p-values of the unconditional coverage test of Kupiec [1995] are reported

in Panel B. For the 5% VaR, in only a very few cases the p-valuesare below the 10%

threshold for statistical significance and, therefore, it is difficult to derive conclusions.

For the 1% VaR, the models including the test for a constant correlation matrix show less

significant p-values than the remaining approaches.

6.5.2 Distribution of VaR Violations

The total number of VaR-violations is not an exhaustive criterion to evaluate the fit of

the analyzed dependence models, because it gives no indication about the distribution of

the VaR-violations. Among others, Longin and Solnik [2001]as well as Campbell et al.

[2002] show that in particular in volatile bear markets correlations tend to increase. Con-

sequently, in times where an effective risk management is most needed, inflexible depen-

dence models may not be able to adequately adapt to changes inthe dependence struc-

ture. This could lead to the undesired occurrence of clustered VaR-violations which in

turn could lead to disastrous losses. To this end, we performthe CAViaR-based backtest
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Table 6.3: Results Value-at-Risk
For each portfolio and for the 5% and 1% VaR, the table shows the VaR-Violation Ratio (i.e., number of
VaR-violations divided by VaR-forecasts) and the p-valuesfor the unconditional coverage test of Kupiec
[1995], and the CAViaR based test of Engle and Manganelli [2004] and Berkowitz et al. [2011]. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% levels.

Model Test AEX CAC DAX FTSE IBEX S&P Average

Panel A: VaR-Violation Ratio

5%
V

aR

CCC

no Test 5.592% 5.189% 5.390% 4.509% 4.811% 5.264% 5.126%
Correlation (pairwise) 5.239% 4.962% 5.063% 4.584% 4.811%4.861% 4.920%
Correlation (Matrix) 5.088% 4.786% 4.912% 4.383% 4.761% 4.559% 4.748%
Covariance (Matrix) 5.340% 5.063% 5.315% 4.509% 4.786% 4.861% 4.979%

DCC
no Test 5.315% 5.063% 5.038% 4.307% 4.912% 5.013% 4.941%
Correlation (Matrix) 5.214% 4.811% 5.038% 4.232% 4.786% 4.710% 4.798%
Covariance (Matrix) 5.315% 5.013% 5.365% 4.433% 4.811% 4.811% 4.958%

1%
V

aR

CCC

no Test 1.713% 1.209% 1.159% 1.385% 1.335% 1.259% 1.343%
Correlation (pairwise) 1.310% 1.008% 1.259% 1.360% 1.335%1.134% 1.234%
Correlation (Matrix) 1.335% 0.957% 1.159% 1.234% 1.234% 1.033% 1.159%
Covariance (Matrix) 1.486% 1.033% 1.184% 1.360% 1.335% 1.108% 1.251%

DCC
no Test 1.461% 1.134% 1.108% 1.234% 1.310% 1.134% 1.230%
Correlation (Matrix) 1.285% 0.982% 1.234% 1.259% 1.234% 1.083% 1.180%
Covariance (Matrix) 1.360% 1.033% 1.259% 1.259% 1.310% 1.108% 1.222%

Panel B: p-Value UC Test

5%
V

aR

CCC

no Test 1.000 1.000 1.000 0.149 1.000 1.000
Correlation (pairwise) 1.000 1.000 1.000 0.224 1.000 1.000
Correlation (Matrix) 1.000 1.000 1.000 0.069* 1.000 0.196
Covariance (Matrix) 1.000 1.000 1.000 0.149 1.000 1.000

DCC
no Test 1.000 1.000 1.000 0.040** 1.000 1.000
Correlation (Matrix) 1.000 1.000 1.000 0.023** 1.000 1.000
Covariance (Matrix) 1.000 1.000 1.000 0.095* 1.000 1.000

1%
V

aR

CCC

no Test 0.000*** 0.200 0.327 0.021** 0.044** 0.114
Correlation (pairwise) 0.061* 0.962 0.114 0.031** 0.044** 0.408
Correlation (Matrix) 0.044** 0.785 0.327 0.152 0.152 0.837
Covariance (Matrix) 0.004*** 0.837 0.258 0.031** 0.044** 0.500

DCC
no Test 0.006*** 0.408 0.500 0.152 0.061* 0.408
Correlation (Matrix) 0.084* 0.911 0.152 0.114 0.152 0.603
Covariance (Matrix) 0.031** 0.837 0.114 0.114 0.061* 0.500

Panel C: p-Value CAViaR Test

5%
V

aR

CCC

no Test 0.032** 0.070* 0.005*** 0.011** 0.117 0.064*
Correlation (pairwise) 0.017** 0.124 0.164 0.090* 0.131 0.313
Correlation (Matrix) 0.341 0.208 0.225 0.156 0.186 0.794
Covariance (Matrix) 0.044** 0.076* 0.044** 0.012** 0.074* 0.143

DCC
no Test 0.088* 0.136 0.014** 0.035** 0.170 0.123
Correlation (Matrix) 0.018** 0.176 0.435 0.097* 0.146 0.397
Covariance (Matrix) 0.011** 0.075* 0.034** 0.045** 0.118 0.370

1%
V

aR

CCC

no Test 0.466 0.527 0.232 0.213 0.565 0.664
Correlation (pairwise) 0.920 0.289 0.884 0.372 0.424 0.825
Correlation (Matrix) 0.441 0.181 0.833 0.849 0.239 0.625
Covariance (Matrix) 0.521 0.434 0.808 0.350 0.403 0.787

DCC
no Test 0.794 0.615 0.473 0.526 0.694 0.450
Correlation (Matrix) 0.891 0.216 0.542 0.360 0.262 0.789
Covariance (Matrix) 0.898 0.419 0.853 0.762 0.351 0.581

of Engle and Manganelli [2004] and Berkowitz et al. [2011] toanalyze the performance

of the models used in our empirical study.
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The results of the CAViaR test are presented in Panel C of Table 6.3. Considering the

5% VaR, the p-values for the plain models fall short of the 10%threshold for statistical si-

gnificance in five (CCC) and three (DCC) out of six cases. Both,the CCC and DCC model

are improved by the test for a constant correlation matrix leading to zero and two rejecti-

ons of the null hypothesis, respectively. The pairwise testfor constant correlations shows

less rejections than the plain CCC model, too, while the testfor a constant covariance

matrix does not lead to any improvements. With respect to the1% VaR, the CAViaR test

does not lead to any statistically significant results.

In addition to the statistical tests, we evaluate the performance of the different VaR-

forecasting models from a perspective which is more relevant in practical terms. As ex-

plained in section 6.4, we follow the Basel guidelines for backtesting internal models

and count the number of VaR-violations after every 60 trading days using the data of the

preceding 250 trading days. Based on the resulting 63 quarterly VaR-violation frequen-

cies, we compute average absolute discrepancies of VaR-violations which are presented

in Table 6.4.

Table 6.4: Average Absolute Discrepancy of VaR-Violations
Based on the framework for backtesting internal models proposed by the
Basel Committee on Banking Supervision [1996], we count thenumber of violations on a quarterly
basis (every 60 trading days) using the most recent year (250trading days) of data. We then sum up the
VaR-violations for each interval[1, . . . , 250], [61, . . . , 310], . . . , [3, 721, . . . , 3, 970]. This procedure leads
to 63 results of one-year VaR-violation frequencies. The table shows the average absolute discrepancy
between observed and expected numbers of VaR-violations.

Model Test AEX CAC DAX FTSE IBEX S&P Average

5%
V

aR

CCC

no Test 6.008 4.770 6.119 4.198 4.421 5.262 5.130
Correlation (pairwise) 5.278 3.722 5.389 3.754 4.103 4.357 4.434

Correlation (Matrix) 5.056 3.706 5.151 3.802 3.897 4.024 4.272
Covariance (Matrix) 6.135 4.310 5.659 4.421 4.421 4.865 4.968

DCC
no Test 5.738 4.563 5.421 4.119 4.468 4.754 4.844

Correlation (Matrix) 5.563 3.992 5.389 4.135 3.992 4.421 4.582
Covariance (Matrix) 6.056 4.357 5.548 4.087 4.405 4.675 4.854

1%
V

aR

CCC

no Test 2.437 1.278 1.611 2.198 2.119 1.897 1.923
Correlation (pairwise) 1.817 1.214 1.881 2.087 1.865 1.643 1.751

Correlation (Matrix) 2.008 1.262 1.706 1.770 1.817 1.437 1.667
Covariance (Matrix) 2.183 1.151 1.786 2.151 2.024 1.659 1.825

DCC
no Test 1.929 1.183 1.421 2.056 2.008 1.690 1.714

Correlation (Matrix) 1.833 1.214 1.913 2.087 1.817 1.627 1.749
Covariance (Matrix) 1.976 1.214 1.849 1.960 1.817 1.579 1.733

We start with the discrepancies for the 5% VaR. The CCC modelsin combination
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with structural break tests show lower average absolute discrepancies compared to their

plain counterpart. In particular, the CCC model in combination with the test for a constant

correlation matrix leads to less clustered VaR-violations. There are only small differences

in the average absolut discrepancies of the DCC based models. However, the models

which include the test for a constant correlation matrix improve slightly on the plain

DCC. Continuing with the results for the 1% VaR, the average absolute discrepancies of

the plain CCC and DCC models are outperformed by the models accounting for structural

breaks. Again, the models including the test for a constant correlation matrix show the

lowest discrepancies on average.

Because the (averaged) absolute discrepancies of quarterly VaR-violation frequency

is a highly aggregated performance measure, we analyze the effects of the application

of tests for structural breaks by taking a detailed view at the VaR-forecasts and VaR-

violations for the 5% VaR using the CAC40 portfolio as an example.10 To illustrate the

differences in the behaviour of the analyzed approaches, Figures 6.1 to 6.3 show the port-

folio returns and corresponding daily VaR-forecasts of theCCC and DCC based mo-

dels. Comparing the VaR-forecasts of the plain CCC and the DCC model, there are just

small differences in the VaR-forecasts observable. Particularly at the high volatility peri-

ods around the data points 1,500 and 3,000, the forecasts of the DCC model are slightly

more conservative than the CCC forecasts. Conversely, the VaR-forecasts of the DCC

model during the calm period around the data point 1,000 are slightly lower compared to

the CCC model. The VaR-forecasts of the models accounting for structural breaks devia-

te from the plain CCC forecasts in the same direction as the DCC forecasts do, but to a

markedly larger extent. This applies in particular to both models including the tests for

constant correlations. The same pattern is observable for the comparison of the plain DCC

model and its structural break counterparts, but the deviations between the VaR-forecasts

of these models are smaller compared to the CCC based models.

10For the remaining portfolios we provide the same figures on request. However, these charts follow
similar patterns.
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Figure 6.1: VaR-Forecasts and VaR-Violations for the CCC Based Models (1/2)
The figure presents returns, VaR-forecasts, and VaR-violations for the CAC40 portfolio atα = 5%. VaR-
forecasts are shown with lines and the dashes at the bottom ofthe charts mark the data points where a
VaR-violation occurs.
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Figure 6.2: VaR-Forecasts and VaR-Violations for the CCC Based Models (2/2)
The figure presents returns, VaR-forecasts, and VaR-violations for the CAC40 portfolio atα = 5%. VaR-
forecasts are shown with lines and the dashes at the bottom ofthe charts mark the data points where a
VaR-violation occurs.

−0.10

−0.05

0.00

0.05

0.10

CCC−GARCH vs. CCC−GARCH + Test for Constant Correlation (Matrix)

Data Point

R
et

ur
ns

 a
nd

 V
aR

−
F

or
ec

as
ts

lll l ll l lll llll lll l ll ll l llllll ll ll l l l ll ll ll llll lllll l l llllllllllllllll ll lll l lllllllll l l l l lll ll ll l l lll lll l l lllllll l l ll lll l llllllllll ll l lllll ll l l lllll lllllllll l l l ll l l lll l l l llll l lllll ll l lll ll l ll llllllll l l l lll ll

lll l ll l lll l l lll l ll ll l llllll ll ll l l l l ll l ll l lll ll l llll llll lllllll l lllllllllll l l ll l llll l l l l ll l ll l l lll lll l l lllllll l l ll ll llllllllll ll l lllll ll lllll llllllll l l l ll l lll l l llll llll ll l lll l l l llllll l l l l ll ll

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

Returns
CCC−GARCH
CCC−GARCH + Test for Constant Correlation (Matrix)

−0.10

−0.05

0.00

0.05

0.10

CCC−GARCH vs. CCC−GARCH + Test for Constant Covariance (Matrix)

Data Point

R
et

ur
ns

 a
nd

 V
aR

−
F

or
ec

as
ts

lll l ll l lll llll lll l ll ll l llllll ll ll l l l ll ll ll llll lllll l l llllllllllllllll ll lll l lllllllll l l l l lll ll ll l l lll lll l l lllllll l l ll lll l llllllllll ll l lllll ll l l lllll lllllllll l l l ll l l lll l l l llll l lllll ll l lll ll l ll llllllll l l l lll ll

lll l ll l lll llll l lll l ll ll l llllll ll ll l l l l ll l ll ll ll ll llll lllllll lll l llllllllllllllll l lll l ll llll l l l l lll l ll l l lll lll l l lllllll l l ll lll llllllllll ll l lllll ll lllll llllllll l l l ll l lll l l l llll llll ll l lll l l l llllll l l l l ll ll

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

Returns
CCC−GARCH
CCC−GARCH + Test for Constant Covariance (Matrix)



6.5. RESULTS 155

Figure 6.3: VaR-Forecasts and VaR-Violations for the DCC Based Models
The figure presents returns, VaR-forecasts, and VaR-violations for the CAC40 portfolio atα = 5%. VaR-
forecasts are shown with lines and the dashes at the bottom ofthe charts mark the data points where a
VaR-violation occurs.
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We continue with the Basel based periodically computation of VaR-violation frequen-

cies. Figure 6.4 illustrates the number of VaR-violations on a 60 trading day basis using

the data of the most recent 250 trading days for the CAC40 portfolio. The VaR-violation

frequency of the plain CCC and DCC models deviate from the required level in particular

during four specific periods:

a) at the later stage of the dot-com bubble between the data points 730 (October 28, 1999)

and 1,150 (June 27, 2001);

b) at the bear market after the burst of the dot-com bubble andthe 9/11 attacks between

the data points 1,450 (August 30, 2002) and 1,690 (August 11,2003);

c) at the economic recovery between the data points 1,810 (January 29, 2004) and 2,410

(May 30, 2006);

d) and at the financial crisis between the data points 2,770 (October 24, 2007) and 3,250

(September 11, 2009).

Turning to period a), the numbers of VaR-exceedances of the plain CCC and DCC

models are far too low. The implementation of the structuralbreak tests results in VaR-

forecasts which are less conservative to some degree and therefore more accurate. Con-

sequently, the additional use of these tests leads to a reduction of the extent by which the

violation frequency falls short of the expected level. In contrast, during periods b) and d),

the plain models show far too many exceedances, whereas the number of VaR-violations

of the structural break test models are significantly lower.This applies particularly to the

models in combination with the tests for constant correlations whose daily VaR-forecasts

are distinctly more conservative. However, during the calmstock markets of period c), the

daily VaR-forecasts of the different models show hardly anydifferent results. Neverthe-

less, the plain CCC and DCC models show a slightly lower degree of risk-overestimation

compared to the remaining approaches.
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Figure 6.4: Quarterly VaR-Violations
The chart shows the number of VaR-violations for the CAC40 portfolio at α = 5% on a quarterly basis
(every 60 trading days) using the most recent year (250 trading days) of data. The chart at the top shows the
results of the CCC based models. The chart at the bottom showsthe results of the DCC based models. The
horizontal grey lines mark the expected number of VaR-violations.
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6.5.3 Expected Shortfall

In addition to the measurement of the Value-at-Risk, we evaluate the different risk-models

with respect to their accuracy in forecasting Expected Shortfall. To this end, we compare

the models on the basis of the deviation of the realized shortfall against the ES in the case

of a VaR-violation. Furthermore, we apply the backtest of McNeil and Frey [2000]. The

results are presented in Tables 6.5 and 6.6. Overall, the realized shortfall of the models

show only small deviations from the ES which ranges from−0.20 to 0.02 percentage

points for the 5% VaR and−0.34 to 0.01 percentage points for the 1% VaR, whereas a

negative deviation indicates a risk underestimation. Concerning the 5% VaR, the average

absolute deviation of the plain CCC model is undercut by the deviations of its counterparts

accounting for structural breaks, in particular by the CCC model including the pairwise

test for constant correlations. Regarding the DCC model, only the test for a constant co-

variance matrix outperforms the plain model. With respect to the 1% VaR, none of the

structural break models yield lower average absolute deviations than the plain CCC and

DCC approaches. The results of the one-sided ES backtest of McNeil and Frey [2000]

does not lead to any further significant conclusions. The test leads to p-values rejecting

the null hypothesis at a significance level of 10% for the majority of portfolios and there-

fore indicate that all models tend to underestimate the ES. Because there are only small

differences in the number of rejections it is difficult to derive conclusions from this back-

test.
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Table 6.5: Results Expected Shortfall - 5% VaR
For each portfolio and for the 5% VaR, the table shows the meanExpected Shortfall in case of a VaR-
violation, the mean realized shortfall in the case of a VaR-violation, the difference between the mean ES
and the mean realized shortfall, and the p-value of the backtest of McNeil and Frey [2000]. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels.

Model Test
Exp. Actual

Dev. p-Value
Shortfall Shortfall

A
E

X

CCC

no Test -2.66% -2.82% -0.16% 0.002***
Correlation (pairwise) -2.69% -2.81% -0.12% 0.022**
Correlation (Matrix) -2.65% -2.78% -0.13% 0.011**
Covariance (Matrix) -2.68% -2.81% -0.14% 0.008***

DCC
no Test -2.71% -2.85% -0.14% 0.008***
Correlation (Matrix) -2.71% -2.81% -0.10% 0.036**
Covariance (Matrix) -2.69% -2.81% -0.12% 0.020**

C
A

C

CCC

no Test -3.07% -3.12% -0.05% 0.192
Correlation (pairwise) -3.11% -3.10% 0.01% 0.578
Correlation (Matrix) -3.15% -3.13% 0.02% 0.635
Covariance (Matrix) -3.13% -3.12% 0.01% 0.579

DCC
no Test -3.11% -3.11% 0.00% 0.485
Correlation (Matrix) -3.16% -3.13% 0.02% 0.648
Covariance (Matrix) -3.14% -3.12% 0.02% 0.628

D
A

X

CCC

no Test -3.45% -3.53% -0.09% 0.093*
Correlation (pairwise) -3.37% -3.49% -0.12% 0.047**
Correlation (Matrix) -3.41% -3.51% -0.10% 0.076*
Covariance (Matrix) -3.41% -3.50% -0.09% 0.094*

DCC
no Test -3.48% -3.56% -0.08% 0.123
Correlation (Matrix) -3.35% -3.47% -0.12% 0.047**
Covariance (Matrix) -3.43% -3.49% -0.06% 0.178

F
T

S
E

CCC

no Test -2.57% -2.76% -0.20% 0.000***
Correlation (pairwise) -2.54% -2.70% -0.16% 0.002***
Correlation (Matrix) -2.55% -2.71% -0.16% 0.002***
Covariance (Matrix) -2.55% -2.74% -0.19% 0.000***

DCC
no Test -2.60% -2.77% -0.18% 0.001***
Correlation (Matrix) -2.56% -2.75% -0.19% 0.000***
Covariance (Matrix) -2.56% -2.73% -0.17% 0.001***

IB
E

X

CCC

no Test -2.99% -3.13% -0.15% 0.008***
Correlation (pairwise) -3.01% -3.11% -0.11% 0.032**
Correlation (Matrix) -3.01% -3.12% -0.11% 0.033**
Covariance (Matrix) -3.04% -3.15% -0.11% 0.038**

DCC
no Test -3.02% -3.09% -0.07% 0.105
Correlation (Matrix) -3.04% -3.12% -0.08% 0.088*
Covariance (Matrix) -3.04% -3.12% -0.08% 0.080*

S
&

P

CCC

no Test -2.62% -2.75% -0.12% 0.012**
Correlation (pairwise) -2.68% -2.77% -0.08% 0.083*
Correlation (Matrix) -2.66% -2.76% -0.10% 0.055*
Covariance (Matrix) -2.70% -2.79% -0.09% 0.061*

DCC
no Test -2.65% -2.76% -0.11% 0.022**
Correlation (Matrix) -2.71% -2.78% -0.07% 0.110
Covariance (Matrix) -2.68% -2.77% -0.09% 0.066
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Table 6.6: Results Expected Shortfall - 1% VaR
For each portfolio and for the 1% VaR, the table shows the meanExpected Shortfall in case of a VaR-
violation, the mean realized shortfall in the case of a VaR-violation, the difference between the mean ES
and the mean realized shortfall, and the p-value of the backtest of McNeil and Frey [2000]. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels.

Model Test
Exp. Actual

Dev. p-Value
Shortfall Shortfall

A
E

X

CCC

no Test -3.65% -3.76% -0.11% 0.153
Correlation (pairwise) -3.56% -3.80% -0.24% 0.019**
Correlation (Matrix) -3.58% -3.79% -0.21% 0.040**
Covariance (Matrix) -3.60% -3.77% -0.17% 0.074*

DCC
no Test -3.61% -3.76% -0.15% 0.084*
Correlation (Matrix) -3.51% -3.76% -0.25% 0.019**
Covariance (Matrix) -3.60% -3.81% -0.21% 0.040**

C
A

C

CCC

no Test -4.00% -3.99% 0.01% 0.544
Correlation (pairwise) -3.74% -3.84% -0.11% 0.254
Correlation (Matrix) -3.72% -3.84% -0.13% 0.223
Covariance (Matrix) -3.79% -3.87% -0.08% 0.315

DCC
no Test -3.86% -3.86% 0.00% 0.487
Correlation (Matrix) -3.73% -3.85% -0.11% 0.251
Covariance (Matrix) -3.79% -3.86% -0.08% 0.322

D
A

X

CCC

no Test -4.64% -4.92% -0.28% 0.043**
Correlation (pairwise) -4.44% -4.68% -0.24% 0.070*
Correlation (Matrix) -4.47% -4.74% -0.27% 0.059*
Covariance (Matrix) -4.45% -4.78% -0.34% 0.023**

DCC
no Test -4.55% -4.82% -0.27% 0.052*
Correlation (Matrix) -4.40% -4.67% -0.27% 0.049**
Covariance (Matrix) -4.45% -4.68% -0.23% 0.076*

F
T

S
E

CCC

no Test -3.52% -3.68% -0.15% 0.051*
Correlation (pairwise) -3.46% -3.59% -0.13% 0.082*
Correlation (Matrix) -3.47% -3.60% -0.13% 0.092*
Covariance (Matrix) -3.45% -3.64% -0.19% 0.017**

DCC
no Test -3.55% -3.67% -0.12% 0.114
Correlation (Matrix) -3.47% -3.61% -0.15% 0.050*
Covariance (Matrix) -3.44% -3.62% -0.17% 0.028**

IB
E

X

CCC

no Test -3.62% -3.83% -0.20% 0.037**
Correlation (pairwise) -3.82% -3.94% -0.12% 0.155
Correlation (Matrix) -3.72% -3.89% -0.18% 0.062*
Covariance (Matrix) -3.79% -3.92% -0.13% 0.123

DCC
no Test -3.73% -3.89% -0.17% 0.106
Correlation (Matrix) -3.75% -3.89% -0.14% 0.106
Covariance (Matrix) -3.78% -3.88% -0.10% 0.199

S
&

P

CCC

no Test -3.51% -3.76% -0.25% 0.023**
Correlation (pairwise) -3.52% -3.75% -0.23% 0.046**
Correlation (Matrix) -3.47% -3.76% -0.29% 0.023**
Covariance (Matrix) -3.43% -3.70% -0.28% 0.016**

DCC
no Test -3.55% -3.83% -0.28% 0.019**
Correlation (Matrix) -3.54% -3.76% -0.22% 0.055*
Covariance (Matrix) -3.42% -3.67% -0.25% 0.027**
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6.5.4 Comparison of Conditional Predictive Ability

The statistical tests used above are designed to evaluate the appropriateness of an indivi-

dual model rather than directly comparing the forecasting accuracy between different VaR

models. To provide a ranking of the analyzed forecasting approaches, we additionally per-

form the CPA test of Giacomini and White [2006]. Tables 6.7 and 6.8 report the results

of the CPA test. With respect to the results of the 5% VaR quantile shown in Panel A,

the plain CCC model is clearly outperformed by each approachaccounting for structural

breaks. The comparison between the different tests for structural breaks indicate that the

pairwise test for constant correlations of Wied et al. [2012b] is preferred in this setting.

The results of the comparison of the plain DCC models with itscounterparts including

structural breaks are ambiguous. Only the DCC model in combination with the test for

a constant covariance matrix slightly improves the conditional predictive ability. Further-

more, the CCC model in combination with the pairwise test forconstant correlations

outperforms the plain DCC-model. Considering the 1% VaR level in Panel B, the results

of the plain CCC model and the CCC model including structuralbreaks are comparable

while the plain DCC model outperforms the corresponding structural break approaches.

6.6 Conclusion

The aim of this paper was to examine the question whether the VaR- and ES- forecasting

accuracy of plain CCC and DCC models can be improved by the implementation of re-

cently proposed tests for structural breaks in covariancesand correlations. To this end, we

perform an empirical out-of-sample study by using ten-dimensional portfolios composed

of international blue-chip stocks. In addition to the plainCCC and the DCC benchmarks,

we modify these models by combining them with the pairwise test for constant correlati-

ons of Wied et al. [2012b], the test for a constant correlation matrix of Wied [2012], and

the test for a constant covariance matrix of Aue et al. [2009].
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Table 6.7: Results CPA-Test - 5% VaR
The table shows the results of a comparison between the CCC and DCC models and their counterparts including tests for structural breaks based on the CPA-test. The results
indicate how often a forecasting model is preferred when applying it to each of the six different portfolios. The models printed in bold yield a statistically significant better
performance.

Statistically Significant Results

Model 1 Model 2
Model 1 Model 2 Model 1 Model 2

Indifferent
Preferred Preferred Preferred Preferred

CCC DCC 0 6 0 3 3
CCC CCC + Correlation Test (pairwise) 1 5 0 3 3
CCC CCC + Correlation Test (Matrix) 1 5 0 1 5
CCC CCC + Covariance Test (Matrix) 2 4 0 2 4

CCC DCC + Correlation Test (Matrix) 2 4 0 2 4
CCC DCC + Covariance Test (Matrix) 1 5 0 3 3

CCC + Correlation Test (Matrix) CCC + Correlation Test (pairwise) 2 4 0 1 5
CCC + Covariance Test (Matrix) CCC + Correlation Test (Matrix) 1 5 0 0 6
CCC + Covariance Test (Matrix) CCC + Correlation Test (pairwise) 1 5 0 1 5

DCC CCC + Correlation Test (pairwise) 3 3 1 2 3
DCC CCC + Correlation Test (Matrix) 3 3 0 0 6
DCC CCC + Covariance Test (Matrix) 5 1 0 0 6

DCC DCC + Correlation Test (Matrix) 3 3 1 1 4
DCC DCC + Covariance Test (Matrix) 2 4 1 1 4

DCC + Correlation Test (Matrix) DCC + Covariance Test (Matrix) 2 4 0 2 4
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Table 6.8: Results CPA-Test - 1% VaR
The table shows the results of a comparison between the CCC and DCC models and their counterparts including tests for structural breaks based on the CPA-test. The results
indicate how often a forecasting model is preferred when applying it to each of the six different portfolios. The models printed in bold yield a statistically significant better
performance.

Statistically Significant Results

Model 1 Model 2
Model 1 Model 2 Model 1 Model 2

Indifferent
Preferred Preferred Preferred Preferred

CCC DCC 0 6 0 4 2
CCC CCC + Correlation Test (pairwise) 3 3 1 0 5
CCC CCC + Correlation Test (Matrix) 3 3 1 0 5
CCC CCC + Covariance Test (Matrix) 3 3 0 1 5

CCC DCC + Correlation Test (Matrix) 3 3 1 0 5
CCC DCC + Covariance Test (Matrix) 2 4 1 1 4

CCC + Correlation Test (Matrix) CCC + Correlation Test (pairwise) 2 4 0 0 6
CCC + Correlation Test (Matrix) CCC + Covariance Test (Matrix) 4 2 0 1 5
CCC + Covariance Test (Matrix) CCC + Correlation Test (pairwise) 2 4 0 0 6

DCC CCC + Correlation Test (pairwise) 5 1 1 0 5
DCC CCC + Correlation Test (Matrix) 5 1 1 0 5
DCC CCC + Covariance Test (Matrix) 5 1 3 0 3

DCC DCC + Correlation Test (Matrix) 5 1 2 0 4
DCC DCC + Covariance Test (Matrix) 5 1 2 0 4

DCC + Correlation Test (Matrix) DCC + Covariance Test (Matrix) 2 4 0 2 4
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In order to evaluate the accuracy of the VaR-forecasts, we conduct the unconditio-

nal coverage test of Kupiec [1995] and the CAViaR based test of Engle and Manganelli

[2004] and Berkowitz et al. [2011]. The results of both backtests indicate that testing for

constant correlations can lead to a more accurate conditional coverage and less depen-

dent VaR-violations. Evaluating the accuracy of the ES by performing the backtest of

McNeil and Frey [2000] leads to no clear conclusion whether applying tests for structural

breaks are beneficial or not. Additionally, we compare the conditional predictive ability

of the models using the test of Giacomini and White [2006]. The results show that the

extension of a plain CCC model by tests for structural breaksleads to an equally or better

unconditional predictive ability while it seems hard to beat plain DCC model.

To get a deeper insight into the characteristics of the different models, we change from

the statistical backtest perspective towards a backtest which is of relevance in regulato-

ry practice. To this end, we perform a backtest procedure based on the Basel guidelines

for backtesting internal models. On a quarterly basis, we measure the number of VaR-

violations within the most recent one-year period and evaluate the absolute discrepancies

from the expected VaR-violation frequency. The plain CCC model is clearly outperformed

by its counterparts modified by structural break tests, particularly by the test for a con-

stant correlation matrix. However, the results with respect to the DCC models are more

ambiguous.



Anhang A

Pseudocode

A.1 Test of Unconditional Coverage

(i) Generate the violation sequence resulting from the observed returns and the corre-

sponding VaR forecasts by

Ii(p) =





1, if yi < V aRi|i−1(p);

0, else.

(ii) Draw l + 1 random variables by

ǫj ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(iii) Calculate the test statistic for the observed violation sequence by

MCSuc = ǫl+1 +
n∑

i=1

Ii.

(iv) Simulate violation sequences by drawingl-timesn random variables with distribu-

tion

Îj,i(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l.

(v) Calculate the test statistic for each simulated violation sequence by

ˆMCSuc,j = ǫj +
n∑

i=1

Îi,j, j = 1, ..., l.

(vi) Sort the resulting values of the simulated statistiĉMCSuc,j in descending order.
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(vii) Compute the quantiles for the desired significance level and compare the test statistic

for the observed violation sequence to the resulting critical values.

A.2 Test of the I.I.D. Property

(i) Generate the violation sequence resulting from the observed returns and the corre-

sponding VaR forecasts by

Ii(p) =





1, if yi < V aRi|i−1(p);

0, else.

(ii) Calculate the sum of observed VaR violations by

m =
n∑

i=1

Ii.

(iii) Identify the time indexes where an observed VaR violation occurred by

V = {i|Ii = 1} = (t1, ..., tm).

(iv) Draw l + 1 random variables by

ǫj ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(v) Calculate the test statistic for the observed violationsequence by

MCSiid,m = t21 + (n− tm)
2 +

m∑

s=2

(ts − ts−1)
2 + ǫl+1.

(vi) Simulate violation sequences by drawingl-timesn random variables with distribu-

tion

Îi,j(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l,
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under the condition that
∑n

i=1 Îi,j = m, ∀ j.

(vii) For each simulated violation sequence, identify the set of time indexes of the viola-

tions by

V̂j = {tj|Îi,j = 1} = (tj,1, ..., tj,m).

(viii) Calculate the test statistic for the simulated violation sequences by

ˆMCSiid,m,j = t2j,1 + (n− tj,m)
2 +

m∑

s=2

(tj,s − tj,s−1)
2 + ǫj .

(ix) Sort the resulting values of the simulated statistiĉMCSiid,m,j in descending order.

(x) Compute the quantile for the desired significance level and compare the test statistic

for the observed violation sequence to the resulting critical value.
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A.3 Test of Conditional Coverage

(i) Simulate violation sequences by drawingl-timesn random variables with distribu-

tion

Îi,j(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l,

under the condition that
∑n

i=1 Îi,j > 1, ∀ j.

(ii) For each simulated violation sequence, identify the set of time indexes of the viola-

tions by

V̂j = {t̂j|Îj,i = 1} = (t̂j,1, ..., t̂j,m).

(iii) Draw l + 1 random variables by

ǫj ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(iv) Calculate the violation frequency of each of the simulated sequences

m̂j =

n∑

i=1

Îi,j.

(v) Definem̂ = (m̂1, ..., m̂l) and setm̂min = max(2,min(m̂)) andm̂max = max(m̂)

for the lower and upper bound of possible VaR violation frequencies.

(vi) For eachk = m̂min, m̂min+1, . . . , m̂max, simulate violation sequences by drawing

l∗-timesn random variables with distribution

Ĩi,j(k/n) ∼ Bern(k/n), i = 1, ..., n, j = 1, ..., l∗,

under the condition that
∑n

i=1 Ĩi,j(k/n) = k, ∀ j.

(vii) For k and each simulated violation sequence, identify the set of time indexes of the
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violations by

Ṽj,k = {t̃j,k|Ĩi,j,k = 1} = (t̃j,1, ..., t̃j,k).

(viii) For eachk, calculaterk, an estimator forE(MCSiid,k|H0), by

rk =
1

l∗
·

l∗∑

j=1

(
t̃2j,1 + (n− t̃j,k)

2 +

k∑

s=2

(t̃j,s − t̃j,s−1)
2

)
.

(ix) Calculate the test statistic for each violation sequence simulated in step (i) by

ˆMCScc,k,j = af( ˆMCSuc,j) + (1− a)g( ˆMCSiid,k,j), 0 ≤ a ≤ 1,

where

f( ˆMCSuc,j) =

∣∣∣∣∣∣

(
ǫj +

∑n
i=1 Îi

)
/n− p

p

∣∣∣∣∣∣
,

and

g( ˆMCSiid,k,j) =
ˆMCSiid,k,j − rk

rk
· 1{ ˆMCSiid,k,j≥rk}, k =

n∑

i=1

Îi,j.

(x) Sort the resulting values of the simulated statistiĉMCScc,k,j in descending order.

(xi) Compute the quantile for the desired significance level.

(xii) Generate the violation sequence resulting from the observed returns and the corre-

sponding VaR forecasts by

Ii(p) =





1, if yi < V aRi|i−1(p);

0, else.

(xiii) Calculate the sum of observed VaR violations by

m =

n∑

i=1

Ii.
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(xiv) Identify the set of time indexes where an observed VaR violation occurred by

V = {t|Ii = 1} = (t1, ..., tm).

(xv) If m /∈ [m̂min, m̂min+1, . . . , m̂max], determinerm by repeating steps (vi) to (viii)

where k is replaced by m.

(xvi) Calculate the test statistic for the observed violation sequence by

MCScc,m = af(MCSuc) + (1− a)g(MCSiid,m), 0 ≤ a ≤ 1,

where

f(MCSuc) =

∣∣∣∣
(ǫl+1 +

∑n
i=1 Ii)/n− p

p

∣∣∣∣ ,

and

g(MCSiid,m) =
MCSiid,m − rm

rm
· 1{MCSiid,m≥rm}.

(xvii) Compare the test statistic for the observed violation sequence to the critical value.



Anhang B

Test for Constant Variances

The test statistic of the test for constant variances of Wiedet al. [2012a] is given by

QT (X) = max
1≤j≤T

∣∣∣∣D̂
j√
T
([V ar X ]j − [V ar X ]T )

∣∣∣∣ ,

where

[V ar X ]l =
1

l

l∑

i=1

X2
i −

(
1

l

l∑

i=1

Xi

)2

=: X
2

l − (X l)
2

is the empirical variance from the firstl observations. Furthermore,

D̂ = (1− 2XT )
−1(D̂1)

−1/2

is a scalar with

D̂1 =
1

T

T∑

i=1

Û ′
i Ûi + 2

T∑

j=1

k

(
j

γT

)
1

T

T−j∑

i=1

Û ′
i Ûi+j

and

Ûl =



X2

l −X
2

T

Xl −XT


 ,

k(x) =





1− |x|, |x| > 1

0, otherwise

,

γn =
√
T .

For technical assumptions and proofs see Wied et al. [2012a].
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Anhang C

Test for Constant Covariances

For l = 0, . . . , [log(T )], let σl,1 andσl,2 be matrices withd(d + 1)/2 columns andT − l

rows such that the columns contain certain products (component by component) of the

one-dimensional marginal time series. Concretely, if the entries on and below the diagonal

of a d × d matrix are numbered fromc = 1, . . . , d(d + 1)/2 such thatc corresponds to

one pair(i, j), 1 ≤ i, j ≤ d, it holds that thec-th column ofσl,1 is equal to the vector

(Xl+1,i ·Xl+1,j, . . . , XT,i ·XT,j)

and that thec-th column ofσl,2 is equal to the vector

(X1,i ·X1,j , . . . , XT−l,i ·XT−l,j) .

Define Σ̂l as the empirical covariance matrix ofσl,1 and σl,2. Then, we introduce the

quantity

Σ̂ = Σ̂0 + 2

[log(T )]∑

l=1

(
1− l

[log(T )]

)
Σ̂l

which is an estimator for the covariance matrix ofSk that captures fluctuations in higher

moments and serial dependence and thus also serves for standardization. The test statistic

is then the maximum over quadratic forms, i.e.

ΛT = max
1≤k≤T

S ′
kΣ̂

−1Sk.
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