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Abstract

Cases occur in which the signal, one is interested in, is superposed with periodic noise.

This work is motivated by the perspective of supporting the Comprehensive Nuclear-Test-

Ban Treaty Organization. During on-site inspections, seismic signals can be measured to

detect aftershocks of an underground nuclear explosion in order to locate the hypocentre

precisely and allow for instance the taking of samples. Aftershocks are weak and can

be masked by signals produced on/above the surface, in particular, periodic ones from

engines. Aftershock signals are profoundly non-periodic, whereas many anthropogenic sig-

nals are mostly periodic. Therefore, the removal of periodic disturbances will increase the

signal-to-noise ratio. We are developing algorithms capable of reducing such disturbances.

The Fourier transform can distinguish between period and non-periodic signals. Periodic

signals can be represented by sums of monofrequent sinusoids – their characterisation and

removal has been proven to work earlier. This work describes and evaluates a procedure

which includes linearly in time changing frequencies, processes a time interval of arbitrary

length and provides the noise-reduced data.

At first, an analytic function is derived for the Hann-windowed discrete spectrum of a sine

with linear frequency shift (LFS), defined by the four parameters amplitude, initial phase,

initial frequency and frequency-change rate. This function is fitted to the complex values

of the magnitude peaks in the spectrum. If successful, the peaks are removed successively

by subtraction of the spectrum of an LFS sine with the corresponding parameters.

The curve progression of (LFS) sines in the spectral domain is illustrated and the influence

of the parameters on the complex spectrum is investigated. The revealed dependencies

can be reverted in the sense that characteristics of the curve progression are extracted

and utilised to estimate the start parameters for the following fitting.

The success of the characterisation and removal is tested with synthetic (LFS) sines,

sometimes superposed on pulse signals or Gaussian white noise. In order to quantita-

tively evaluate the fit results, three measures are introduced: the sum of squared devia-

tions between spectral peak and (LFS) sine, the root-mean-square value of the difference

between reconstructed and original signal in the time domain, and the absolute value

of a four-component vector containing the deviations between input and fit parameters.

However the latter two require the knowledge of the input values, which are not available

if processing real data. Combinations of parameters and different levels of Gaussian white
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noise are used to define the receiver operating characteristic in the form of thresholds for

the first measure.

Then the algorithm is applied to real data. The principal procedure is demonstrated by

adding pure synthetic LFS sines to a real seismic event of a coal mine, the resulting peaks

in the spectrum are precisely fitted and subtracted resulting in minimal changes between

original data and reconstructed ones even if the LFS amplitude is five orders of magnitude

stronger than the event.

In a next step synthetic sounds played via a speaker and measured seismically and acous-

tically are investigated. Fits on narrow peaks are very successful both for acoustic and

seismic measurements and the processed spectrum is reduced down to the background

noise level. For the monofrequent case the peak magnitude is reduced by at least three

orders of magnitude but the reduction factor might be principally unlimited, as indicated

for synthetic superpositions. For sines with a strong LFS, the reduction is limited to 1.5

orders of spectral magnitude, probably caused by slight frequency dependencies in the

transfer function between played signal and its measurement.

For real signals, all peaks which have been fitted successfully are reduced to the level of

the background, but typically several smaller and sometimes even stronger peaks remain.

On the basis of the acoustic signal of a propeller aircraft, the limitation of the described

algorithm regarding peaks at the very margins of a spectrum is demonstrated. The

acoustic data of a main battle tank are processed successfully in the sense of subtracting

most of the strongest peaks. The non-periodic contributions remain in the signal – fitting

to the goal of the work. The acoustic spectra of a helicopter signal recorded at close

distance seem to contain peaks different from the ones of pure sinusoids, probably caused

by second peaks at slightly differing frequencies. If a peak shape does not match the

one of an (LFS) sine, the fit result is not very convincing; thus, strong (pseudo-)periodic

components remain in the signal.

In sum, it is possible to reduce the periodic content of time-series data significantly.

However, the signals of the vehicles analysed contain non-periodic components which

remain in the signal. The achieved reduction of periodic content can increase the signal-

to-noise ratio and therefore the chance to detect aftershock signals in data containing

periodic disturbances.
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Parameters and variables

A0 Amplitude of an (LFS) sine function.

b0 LFS parameter of a an LFS sine function.

b0,r Normalised LFS parameter of an LFS sine function in units of the index,

addressing the discrete spectral values.

d(t),D(ν) Dirac comb in the time and frequency domain respectively.

FErf Theoretical error-function expression for a spectrum of an LFS sine. It does

not include the convolution with the Dirac comb and comprises exactly

two peaks – the one located at positive frequencies and the one located at

negative frequencies (Eq. 2.63).

Fn
Erf Theoretical error-function expression for a spectrum of an LFS sine. It is

the sum of n FErf functions with shifted frequencies in order to compensate

for the omitted convolution with the Dirac comb.

FMono Theoretical expression for a spectrum of a monofrequent sine. It comprises

all components and is exact for all parameter ranges (Eq. 2.29).

FSum Theoretical sum expression for a spectrum of an LFS sine. It comprises all

components and is exact for all parameter ranges (Eq. 2.95).

GWN Level Ratio of the magnitude of the highest value of a peak in the spectrum and

the GWN amplitude.

GWN Seed Seed for the pseudo-random phases utilised to generate an interval of GWN.

h(t),H(ν) Hann window function in the time and frequency domain respectively.

iMax Index of the discrete frequency value at which the strongest spectral mag-

nitude of a peak is located.

N Number of discrete samples used for one spectrum.

ν Continuous frequency variable.
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nFit Number of complex values used in the fit algorithm.

ν0 (Initial) frequency of an (LFS) sine function.

ν0,r Normalised (initial) frequency of an (LFS) sine function in units of the

index, addressing the discrete spectral values.

νMean Mean frequency of an LFS sine in the time interval T and thus the frequency

of the centre of the peak in its spectrum.

νNyquist Nyquist frequency: νNyquist = N/2 ·∆ν.

∆ν Interval between two neighbouring discrete frequencies (resolution in the

frequency domain).

|~pErr| Magnitude of the four-component error vector with the differences between

the input signal and the fit result as entries is a mathematical measure for

the accuracy of the fit.

r(t),R(ν) Rectangle function in the time and frequency domain respectively.

RMS∆ RMS value about the time domain differences between the underlying signal

without sine (typically pure GWN) and the signal after addition, fitting and

subtraction of a sine.

rMax Position of the peak in the magnitude spectrum in units of the frequency

index, but on a continuous scale.

rW Width of a peak in the magnitude spectrum, defined as the difference be-

tween the two frequencies enclosing the peak and fulfilling the condition that

the magnitude at the boundary frequencies has dropped by 50% compared

to the peak value at imax.

S(ν) Fourier spectrum of s(t). It consists of two δ-functions; if only one of them is

utilised, a subscript, Spos, indicates that it is the one located in the positive

frequencies (resp. Sneg in the negative frequencies).

s(t) Time-domain signal of a sine: s(t) = A0 sin(2πν0t+φ0).

Ŝ(ν) Fourier spectrum of ŝ(t). Similar to S(ν), it consists of two summands,

which are addressed with Ŝpos and Ŝneg.

ŝ(t) Time-domain signal of an LFS sine: ŝ(t) = A0 sin
(

2π
(

b0
2 · t+ν0

)

· t+φ0

)

.

∆t Time between two samples in a discrete time series (resolution in the time

domain).

T Duration of the time interval for one spectrum.
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ν Continuous time variable.

φ0 Initial phase of an (LFS) sine function.

χ2 Sum of the nFit squared deviations between the discrete complex values of

the magnitude peak and the values produced by the fit function with the

current set of parameters, normalised by the maximum magnitude of the

peak.

χ2
n Normalised sum of the nFit squared deviations between the discrete complex

values of the magnitude peak and the values produced by the fit function

with the current set of parameters, compensates the trend of χ2 to increase

with more summands.

χ2
Thres(nFit) Threshold for χ2

n, increases with increasing nFit, if χ2
n ≥ χ2

Thres(nFit) the fit

is unsuccessful.

x(t) Time-domain signal.

X(ν) Spectrum of x(t)



18 Parameters and variables



Chapter 1

Introduction

1.1 Motivation

Nuclear weapons are a strong instrument to provoke other states or deter them from

threatening the possessing state. But there is the security dilemma: having nuclear

weapons might be an advantage for the possessing state but if multiple states possess

them, the security is reduced for all because of the disastrous impact of these weapons

should a possessing country be assaulted and revert to their launch. To keep the num-

ber of nuclear weapon states limited and prepare nuclear disarmament, an international

agreement stipulates a stop of the spread of nuclear weapon technology around the globe

and even the obligation to negotiate about disarmament of the existing weapons (Treaty

on the Non-Proliferation of Nuclear Weapons, 1970). To prevent further weapon devel-

opment the Comprehensive Nuclear-Test-Ban Treaty was concluded in 1996.

1.1.1 Types of nuclear weapons

The first nuclear weapons used nuclear fission. The next step in qualitative development

were fusion (hydrogen) bombs. At all times these thermonuclear weapons have been two-

staged: At first a fission process – which is similar to the explosion of a fission bomb – is

used to ignite the second stage of a nuclear fusion. Consequently, without being able to

produce a fission bomb, fusion bombs are not feasible. The fission material in the nuclear

warhead has to have low concentrations of isotopes which either absorb neutrons without

producing new ones or have a too high decay activity which could lead to premature

ignition. These essential prerequisites, combined with further conditions1, greatly reduce

the number of suitable materials for the fission stage of nuclear warheads. By far the

most suitable materials for nuclear fission weapons are certain isotopes of the elements

uranium and plutonium:

1A minimum cross section of fast neutron induced fission, availability or producibility, manageability
like reactivity, storage properties etc.
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235
92U is found as a natural resource at low concentrations. Its half-life is t1/2 = 7.0 · 108 yr

and therefore lower than the one of the isotope with the longest half-time – 238
92U –

with t1/2 = 4.5 ·109 yr, meaning that over the life time of the Earth the isotope con-

centration decreases. Today, its concentration is only 0.72 % in natural uranium. To

use it as fission material for a bomb, it must be enriched to a level of approximately

90 %, which requires sophisticated and energy-intensive processes. The development

of enrichment facilities along with the production of significant amounts of highly

enriched uranium is said to take decades and it is highly unlikely that this can be

achieved clandestinely. However, the bomb design can be comparatively simple.

239
94Pu has a low half-life (t1/2 = 24,000yr), it is therefore literally non-existent in nature.

Nevertheless, it can be bred from natural uranium by neutron absorption in 238
92U

which happens continuously in uranium reactors. For use in weapons the fuel assem-

bly is retained before significant concentrations of 240
94Pu that has a high spontaneous

fission rate are bred. The separation can be done chemically by comparatively sim-

ple means. The bomb design is challenging2 and testing absolutely required before

such a weapon can be deployed.

233
92U is a third material rarely used in atomic bombs. It is bred from 232

90Th and has

a half-life of 160,000 years. Invariably small amounts of 232
92U are produced which

drastically increases the activity (especially γ-decay) making this material hardly

utilisable.

Nuclear tests cannot be scaled arbitrarily due to the underlying chain reaction principle.

The total fissionable mass is limited because the explosion drives it away before it can

be hit by neutrons produced by unpreventable spontaneous fission.3 Downscaling is chal-

lenging because of the exponential energy release with the number of generations before

the material is dispersed. The decision on the order of magnitude, with which energy is

released during the reaction, lies in the kinetics of the last few fission generations. This

makes it extremely difficult to reduce the total energy release by certain factors. A reduc-

tion of the mass of fission material close to the critical mass (which is the absolute lowest

limit) bears the probability that the energy release is insignificant and the bomb fails as

such.

From this it follows that a successful explosion is always accompanied by a minimum

amount of nuclear fission reactions, with the production of a minimum of fission products

and a minimum of energy release. These products and secondary products can be used

2The short half-life, a factor 10,000 shorter than of 235
92U, makes it hard to reach criticality before the

radiation pressure disperses the material. Low concentrations of impurities and a bomb design based on
(hollow sphere) implosion are necessary to overcome these obstacles.

3Thermonuclear weapons can be upscaled arbitrarily because the materials used for the fusion of nuclei
can be stored densely without a chance of self-ignition of a chain reaction.
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to detect nuclear explosions reliably.4

1.1.2 The Comprehensive Nuclear-Test-Ban Treaty Organiza-

tion

Either the extensive enrichment of uranium or the test explosions that are necessary at

least for the implosion bomb design can be used for detection of states on their way

to nuclear weapons. Since decades international treaties are the means to control test-

ing and non-proliferation; one of them is the Partial Nuclear Test Ban Treaty (PTBT)5

from 1963, restricting nuclear explosions to underground ones. It was adopted mainly to

stop the release of fallout responsible for a significant increase of radiation all over the

world. The treaty still allowed underground tests meaning that the advancement of the

weapons could continue. For a comprehensive test ban methods and instruments of ver-

ification were required because of fears of strong strategic disadvantages if testing would

continue clandestinely for one party. It is insufficient to only detect seismic events, but

– because of hundreds of small natural earthquakes every day – to discriminate between

earthquakes and explosions. Scientists developed convincing procedures6 to automati-

cally reject most of the natural events and in 1996, after years of intensive efforts, the

multilateral Comprehensive Nuclear-Test-Ban Treaty (CTBT) was adopted by the United

Nations General Assembly [3]. Since then the Comprehensive Nuclear-Test-Ban Treaty

Organization (CTBTO)7, among other things, builds up and maintains the IMS to ensure

that no successful8 nuclear test is conducted undetected.

The most reliable evidence that an atomic fission took place is the detection of certain

radio isotopes or even ratios of isotope concentrations that can be assigned to a small

geographical area of release. The strongest challenges are underground tests; the main

4E.g. the energy release causes high pressures which under ground will create a cavity and excite
seismic, acoustic or – in water – hydro-acoustic waves. Additionally, radionuclides transported by wind
may be detected. These are not only released from above-ground nuclear explosions but also from
underground tests deeply buried – diffusion and barometric pumping often bring isotopes (especially
noble gases) to the surface. Once released to the atmosphere, few atoms can be enough to indicate a
nuclear explosion [1].

5Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water. It was
signed and ratified by the governments of the Soviet Union, the United Kingdom and the United States
which was the condition for the entry into force on October 10, 1963. Additionally many more states
ratified or acceded the treaty.

6"[...] comparison of teleseismic body-wave and surface-wave amplitudes has empirically been shown
to provide an excellent discriminant. Surface waves from a shallow earthquake with the same body-wave
strength as an explosion are typically 6 to 8 times larger than surface waves from the explosion" [2].

7To be accurate it is the Preparatory Commission for the CTBTO – the treaty did not yet enter
into force since the ratification by China, Egypt, India, Iran, Israel, North Korea, Pakistan and the
United States is still pending [4]. Nonetheless, the treaty already has 183 members (May 2014) and
the preparation of the International Monitoring System (IMS) is almost complete. The IMS measures
non-stop and exercises for on-site inspections (OSIs) are held.

8The prescribed detection threshold is 1 kt TNT equivalent anywhere on Earth. Actually it is around
0.1 kt for most areas [5]. It is very elaborate if not impossible to plan a nuclear explosion on a smaller
scale especially for newcomers.
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method is to detect the explosion via seismic sensors at large distances. Typically multi-

ple measurement stations with multiple sensors each allow the localisation of the source

mostly by onset times with an accuracy of 10-20 km on the whole globe [6].To investigate

uncertainties, e.g. after a state had announced a strong conventional explosion, an OSI

can be conducted in the case of initial suspicion to collect further indications. Using

the seismic data of the IMS to locate the origin of the signal results in an error ellipse

containing an area up to 1,000km2 which is too large to cover it completely with isotope

sampling. Several techniques are developed to further reduce this area [7], [8]. The most

developed one is to set up local arrays of seismic sensors at the surface in the area of inter-

est (up to 1,000km2, Protocol to the CTBT: II.A.3) and to detect and locate aftershock

signals coming from the cavity and its vicinity.9 The problem here is that the signals are

weak – for example they can stem from rocks falling 50 m until they hit the bottom of the

cavity or from relaxation cracks in the surrounding material – and need to propagate 1 km

or more through (different layers of) soil up to the surface where they are to be measured.

Because of their low amplitudes, these signals are very susceptible to disturbances which

can be either anthropogenic or natural. The former is produced by traffic, construction

sites, the mining industry or the like and could even be produced intentionally to mask

the signals to hide the test. Furthermore the inspectors themselves produce noise with

vehicles and helicopters during measurements and maintenance of their sensors. During

the planning of the placement of the seismic sensors, attention is paid to the surround-

ing noise sources to prevent disturbances in advance, but some disturbances will always

reduce the signal-to-noise ratio (SNR) of the data. The reduction of disturbances which

have already been measured is the motivation of this work.

1.1.3 Periodic and broadband signals

The Fourier transform gives the spectrum of a given interval of time-domain data [11].

Periodic signals are superpositions of sine waves in which every sine shows up as a peak

in the spectrum at the frequency of the sine. Non-periodic signals have a broadband

spectrum. Therefore these two classes of signals can be distinguished from each other

in the spectral domain. Examples are shown in Figure 1.1. Many anthropogenic signals

are mostly periodic: Combustion engines run in cycles whereby periodic vibrations occur

by the ignition of the fuel-gas mixture at a certain rate as well as periodic emissions

of fumes at the exhaust opening. Especially the latter produces acoustic excitations

which is of interest because acoustic signals couple to the ground [12]. Consequently even

aircraft signals are measured with seismic sensors buried near-surface. Rotors have a

certain revolution rate; they cut through the air and return to the same location after one

9In solid ground a nuclear explosion will always form a cavity because of the high pressure being the
product of the extremely high energy release. It can vary in size and stability. Typical diameters are
roughly in the order of 60 m [9] (increases with the the third root of the yield [10]).
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Time domain Frequency domain, absolute

Pulsed

Periodic

Figure 1.1: Examples for periodic and broadband signals: The pulsed signal stems
from a firecracker (seismic); the periodic one is synthetic, to see the periodicity easily,
its frequencies are chosen to be integer multiples of each other so they produce the
same form for each period of the fundamental frequency in the time domain. Labels
for the axes are omitted in order to focus the attention on the curve shapes.

revolution.10 The signals of helicopters and propeller aircraft in general produce strong

periodic signals which are commonly measurable with near-surface velocity or acceleration

sensors even in hundreds of meters distance to the source.

1.1.4 Time-varying frequency

A pure sine is a special kind of time-dependent signal. It has a constant amplitude, and

a time varying phase angle. This phase angle implies the frequency and the start phase.

If a sine changes its frequency sufficiently slowly certain properties of the sine remain in

part; for example it still can be distinguished from non-periodic signals in the spectral

domain. Main fields for the occurrence of time-shifting sines are changes in revolution

rates of engines or the change of Doppler shift of moving engines. Figure 1.2 shows an

example for each. The next complexer order of a change to the phase angle is a linear

10Multi-blade rotors produce frequencies of multiples of their revolution rate (because of their super-
posable rotation symmetry), then typically the n-th harmonic is the strongest if n is the number of blades.
Another reason for the occurrence of harmonics is that the excitation usually is not sinusoid.
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Figure 1.2: Sequences of spectra (quadratic time-frequency representation) to
demonstrate changes in periodic signals. The grey scale is logarithmic and propor-
tional to the spectral power density – the brighter the stronger the spectral den-
sity. Vertically limited narrow bright regions indicate periodicity at these frequencies;
timely persistent, they form horizontal lines. If frequencies change in time, lines are
aslant. If a source does not produce perfect sinusoids, harmonics appear, keeping the
same relative distance to each other. Left: a propeller aircraft flying towards the sen-
sor, reaching the point of closest approach at approximately 4 min, then the distance
increases again so that the frequencies at the sensor appear to be lower. Right: a land
vehicle; it is easy to recognise fast changes in the revolution rate of the engine.

frequency change.

1.1.5 About this work

The analysis and subtraction of both the monofrequent sine and the sines with a linear

frequency shift are introduced, described and evaluated in this work. The algorithm

design and the mathematical expression for the monofrequent sine have been developed

before by Jürgen Altmann [13] and during my Diploma thesis [14].

1.2 General usability

The support of OSIs of the CTBTO is only one application. In this work a general method

is analysed to improve time-series data in terms of periodic disturbances. For this purpose

mathematical expressions are derived allowing a fit routine to precisely determine the

parameters representing the disturbances and allowing their subtraction from the data.

That is why in Chapter 6 (real-data analysis) for some events seismic data are processed,

for others acoustic ones; acoustic data can have some advantages like easier producibility,

better SNR or – in older measurements – a higher sampling rate.
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1.3 Related work

The techniques to find repetitions of patterns or, in general, intervals between which the

autocorrelation does not vanish, are called spectral estimation. Beside the autocorrela-

tion the Fourier transform is a common technique to detect periodicities. The underlying

principles are similar (Wiener-Khinchin theorem): The Fourier theory states that every

continuous signal can be composed from sinusoidal functions. If the signal is periodic,

then these sinusoids have the frequency and harmonics of the repetitions in the original

signal. Autocorrelation is the correlation with the input itself. If the signal is regarded

as a sum of sinusoids, then autocorrelation becomes similar to the Fourier analysis which

yields the likeliness of the presence of each sinusoid in the signal. The pure autocorrela-

tion approach is useful if a signal contains few (periodic) signals (each consisting of one

fundamental frequency and possibly its harmonics), otherwise the abundance of peaks is

hard to interpret.11 In this case the autocorrelation function contains one or more peaks

at the periods (and their multiples – depending on the number of repetitions) of these

signals.

The discrete Fourier transform (DFT) separates sampled signals into sinusoids of equidis-

tant frequencies. If a time-domain signal covers N samples then its discrete spectrum gives

one (complex) value each for N/2 sinusoids (frequencies). This method is able to handle

complexer signals but requires the detection of prominent peaks and their harmonics to

assign them to a certain signal.

Main fields of research are techniques to either enhance the autocorrelation approach,

making it feasible for real-data applications, or to increase the spectral resolution in

Fourier spectra below the step size between two discrete values. Our own work uses the

Fourier approach. Nonetheless a short overview on different approaches is given.

1.3.1 Estimators

Estimators are used to provide information about unknown parameters of a statistical

population by the evaluation of (generally random) samples. According to [16, p. 98]:

”Maximum likelihood is the most important and widespread method of es-

timation. Many well-known estimators such as the sample mean, and the

least-squares estimator in regression are maximum likelihood estimators if the

data have a normal distribution. Maximum likelihood estimation generally

provides more efficient (less variable) estimators than other techniques of es-

timation.”

11The abundance of peaks could be assigned to different signals by a subsequent Fourier transform.
This leads to the ”Power Spectral Density”, a common estimation technique similar to the periodogram.
Another technique is the cepstrum: the ”Mel Frequency Cepstral Coefficients” can be used for speech
processing and music-information-retrieval tasks [15].
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In this work the main use is in spectral estimation. At places least-squares regression is

used.

1.3.2 Spectral estimators

Periodic or nearly periodic sequences appear in many disciplines, including astronomy,

meteorology, sonar, machine diagnosis, speech, music and economics. The task of spectral

estimation is to determine the frequencies contained in such sequences. Several spectral

estimators have been developed for different applications. Typically and in contrast to

what is done in this work the signals to be characterised are of a periodic nature and

the noise is the disturbing component. Also usually the phase is of low interest for most

applications whereas here a good fit of the phase is essential for a successful subtraction

of periodic content.

Once frequencies are located – by whatever method – and suppressed, the method could

be repeated until certain requirements are fulfilled or further processing could be applied.

On the one hand, this is done in this work, on the other hand, this is, for instance,

currently used to detect exoplanets [17].12

Techniques for spectral estimation can be classified into two general types [18, p. 195]:

”[Nonparametric techniques, F.G.] do not assume a particular functional form,

but allow the form of the estimator to be determined entirely by the data.

These methods are based on the discrete Fourier transform of either the signal

segment or its autocorrelation sequence. In contrast, parametric [emphasis

added, F.G.] methods assume that the available signal segment has been gen-

erated by a specific parametric model (e.g., a pole-zero or harmonic model).”

1.3.2.1 Nonparametric power-spectrum estimation

If the goal is to find and characterise single sinusoids, this is often called frequency esti-

mation. The periodogram13 may provide a basis, especially if no information about the

signal is available a priori. When applying a periodogram, only the number of samples

must be chosen, which is typically a compromise between desired spectral resolution and

accepted blurring for unstationary signals.

The periodogram is already an estimator for the spectral density and describes a distribu-

tion of (poorly calculated [20, Sec. 5.2]) power as a function of frequency. A power estimate

over a narrow frequency band can be seen as the output power of a narrow-bandpass filter

leading to the filter-bank interpretation of the periodogram [18, p. 213].

12In this regard the least-squares spectral analysis (Lomb-Scargle periodogram) should be mentioned
as a method to handle unevenly spaced samples.

13Let T be the length of the time-domain interval of a signal xT , then the continuous periodogram is
given via Fourier transform by: 1

T |F {xT (t)}|2 [19].
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Aside from problems like spectral leakage, peaks in the periodogram indicate periodic

content. Taking the discrete frequency at a local maximum may be imprecise by up to

±0.5 ∆ν,14 which is insufficient for many applications. More frequency samples can be

gained by zero padding, but this approach requires doubling the number of samples for

the fast Fourier transform (FFT) for each doubling of the frequency resolution and can

thus greatly increase computation effort.

In order to determine the frequency of a peak more precisely and under the condition

that a peak in the magnitude spectrum / periodogram consists of sufficient samples, a

function can be fitted to these samples to find a better frequency approximation in the

abscissa of its maximum.15 Whereas in our work the exact mathematical expression is

used, earlier research worked with approximate functions. In the literature parabolas

are often used [21, 22, 23]; a parabola is the function easiest to calculate, and fitting is

unnecessary (Sec. 4.5.1). Since a Gaussian curve is a parabola in the logarithmic scale,

the Gaussian interpolation reduces to the parabolic interpolation in this scale. In [24] the

two approaches with eleven different window functions are quantitatively compared with

respect to the interpolation error. It is shown that the maximum error for the parabolic

interpolation ranges from 0.234 ∆ν for the pure rectangle window down to 0.0295 ∆ν for

a Gaussian window of 8 σ. The Gaussian interpolation has the same ranking order for

the different window functions but systematically lower maximum errors: 0.167 ∆ν for

the rectangle and 8.69 ·10−5∆ν for the 8-σ Gaussian window. It should be noted that the

errors indicate a dependency on the main lobe width of the window-function spectrum:

for the 8-σ Gaussian window it is 11.41 ∆ν. In general, it can be stressed that the smaller

the maximum frequency error is, the worse is the separability of neighbouring peaks.

Since the Hann window [11, Chap. 9.5] is used throughout this work, its parameters

should be mentioned: the main lobe width is 4 ∆ν, the maximum error for the parabolic

interpolation is 0.0692 ∆ν and 0.0160 ∆ν for the Gaussian one. In this work a varying

number of samples is used for the calculation of parabola parameters to estimate start

values for the subsequent fit, which also uses the values of the peak to fit the exact

mathematical expression. As a consequence, the frequency (and the other parameters)

are without errors.

In [25] the phases of the complex values around the peaks are utilised to determine the

frequency. In this work, a similar, extended approach to estimate the sign of the shifting

parameter and the initial phase for the subsequent fit procedure is used.16

Spectrograms are the visual implementation of a sequence of periodograms. They are

14∆ν is the frequency resolution. ∆ν = 1/T , T = N ·∆t where N is the number of samples in the time
domain and ∆t the time between two samples.

15Typically this means ≥ 3 samples in a spectrum or periodogram. This can be achieved by moderate
zero padding or the application of a window function. In this work the Hann window is used.

16We shall see that the initial phase (φ0) is crucial to avoid the fitting routine from getting stuck in
secondary minima. Therefore I use the estimated value, but I do not rely on this value being the optimum
(Sec. 4.9).
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commonly used if the variability in the spectral characteristics of the signal occurs at a

time scale much larger than the duration of the time interval for one spectrum (T ) [26]. In

this work spectrograms are used to show longer intervals of data and to track frequencies

visually to verify the algorithm. However, they are not used in the process of peak fitting.

In real data small peaks will even occur in noise. Their smoothing or examination and

evaluation before or after application of the DFT is the basis of several techniques in-

cluding the one described in this work. Among others, common types of power-spectrum

estimation with smoothing are:

• The Blackman-Tukey approach to smooth a single periodogram: 1. Estimate the

autocorrelation sequence from the unwindowed data. 2. Window the obtained au-

tocorrelation samples. 3. Compute the DFT of each segment. The disadvantage is

that the resolution is inversely proportional to the maximum lag of the autocorre-

lation. [18, p. 222ff]

• The Welch-Bartlett approach averages multiple periodograms to reduce variance. 1.

Segment the data (with up to 50% overlap). 2. Window each segment. 3. Compute

the DFTs. 4. Accumulate the squared magnitude values. 5. Finally, normalise (with

respect to the number of segments and their lengths). Again, the disadvantage is

that the resolution is inversely proportional to segment length. [18, p. 227ff]

• The Multitaper approach [27]: The same data segment is taken multiple times com-

pletely but each time with a different window (= taper); it is important for these

windows to form an orthonormal set. The DFT is taken for every segment, after-

wards the mean of the power spectra is evaluated. The windowed signals provide

statistically independent estimates of the underlying spectrum which reduces the

variance by the number of tapers without a reduction of the resolution compared

to the pure periodogram. [18, p. 246ff]17

The said methods are compared in [18, Table 5.3, p. 235]. These approaches – to this

point – are not sufficient for the subtraction of sinusoids as no information on the phases

is gained.

There are also several techniques to find, group and track fundamentals and harmonics

available in the literature (e.g. [13], [28]), which could be interesting for future applications

but are beyond this work.

1.3.2.2 Parametric power spectrum estimation

Since they are not used in this work, only a very brief introduction is given on parametric

methods [26]:

17This approach is also used by the widely known Thomson multitaper method (which uses Slepian
baseband filters) and the Capon method. [19]
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”In general, when a parametric model assumption is valid for the data, para-

metric methods are more accurate and more efficient than nonparametric

methods [...].”

[18, p. 195]:

”Since the choice of an inappropriate signal model will lead to erroneous re-

sults, the successful application of parametric techniques, without sufficient a

priori information, is very difficult in practice.”

Parametric approaches assume the underlying stationary stochastic process to have a

certain structure which can be described using a small number of parameters. Autocor-

relation can be used to estimate the coefficients for auto-regression (AR) and moving

average moving average (MA) or the combined ARMA methods which all are kinds of

infinite-impulse response (IIR) filters building up a linear combination of previous values

of the signal and of already processed values.18 To whiten the data, ARMA can be used

to estimate the IIR filter coefficients for notch filters.

The task is the estimation of model parameters describing the stochastic process. Popular

methods of spectrum estimation are based on the linear-algebraic concepts of subspaces

and are therefore called "subspace methods". In [29] it is written:

”Pisarenko [...] first observed that the zeros of the z-transform of the eigen-

vector corresponding to the minimum eigenvalue of the covariance matrix lie

on the unit circle, and their angular positions correspond to the frequencies

of the sinusoids.”

On this basis, the amplitudes are obtained from the autocorrelation relationships of the

observations and the noise strength from the last eigenvalue of the same autocorrelation

matrix. The phases can be determined from the input data by means of standard least-

squares methods after determining the frequencies. According to [19]:

”In a later development it was shown that the eigenvectors might be divided

into two groups, namely, the eigenvectors spanning the signal space and eigen-

vectors spanning the orthogonal noise space. The eigenvectors spanning the

noise space are the ones whose eigenvalues are the smallest and equal to the

noise power. One of the most important techniques, based on the Pisarenko’s

approach of separating the data into signal and noise subspaces is the MUSIC

method [...] and ESPRIT method [...].”

18The ARMA approach is also called pole-zero model because of the rational representation of the
system function (z-transform: zeros are the roots of the numerator, poles of the denominator). For
dynamic modelling also Kalman filters are used [18].
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”Both methods are similar in the sense that they are both eigendecomposition-

based methods which rely on decomposition of the estimated correlation ma-

trix into two subspaces: noise and signal subspace. On the other hand, MUSIC

uses the noise subspace to estimate the signal components while ESPRIT uses

the signal subspace.”

1.4 Thesis overview

This thesis is structured into the following chapters:

1 This chapter motivates this thesis by describing the reason what the algorithm,

developed and evaluated in the following chapters, is meant to be used for.

2 The theory chapter shows ways how usable expressions for the spectrum of sine

functions in discrete spectra are derived (zero and first order of frequency shift).

3 The gained, comprehensive expression for sinusoidal functions is demonstrated with

different sets of parameters to get the feel of the influence of certain parameters to

the curve progression in the magnitude and the phase spectra.

4 The estimation of reasonable start values for the four parameters characterising a

linear-frequency-shift (LFS) sine is essential for a good fit performance. Information

about the properties of these parameters from the shape of a peak in the magnitude

spectrum or from the phase is derived here.

5 In this chapter, fits to artificial spectra are analysed and thresholds for real-data

applications are set. Additionally, the fit performance is demonstrated for the data

of a real seismic event superposed with an artificial LFS sine.

6 Subsequently, in this chapter real data of different sources are processed and the fit

results presented.

7 The final chapter consists of a short summary, a conclusion and an outlook with

recommended future research.

A The appendices give additional information in the areas: error-function approach,

transition of the exact LFS expression to the monofrequent case for a vanishing LFS

parameter, computer run time, and major software extensions.
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Theory

2.1 Introduction

In order to reduce the periodic content in time-series data, sine waves are to be subtracted

from the signal if their parameters are known. Because every sine component produces a

single peak in the spectrum, this is to be done one by one. The knowledge of the param-

eters of a single sine is to be gained by fitting them to its peak in the spectral domain.

The typical approach is to use a fitting algorithm that fits the continuous, theoretical

function to the data with the help of its derivatives with respect to the parameters. In

this work the Levenberg-Marquardt algorithm is used and the theoretical function and

its first derivatives are developed in this chapter.

Beside the sine function itself, three facts need to be taken into account to calculate the

expression for the fit algorithm: [11]

• Real data are gained by analogue-digital converters (ADCs) by sampling the contin-

uous signal with a certain rate;1 thus the data consist of a sequence of equidistant

discrete values. This is represented mathematically by multiplying the continuous

sine function with an equidistant Dirac comb.

• Real signals can only be handled for a finite duration. In addition they can change

over time, whereas the (continuous) Fourier spectrum has no time resolution. Short-

term signals in a long interval of data being transformed will therefore be suppressed,

which is a reason to limit the interval durations to small ones. Mathematically this

means multiplication with a rectangle function. For real data, the interval will

consist of 2n (n ∈ N) samples in order to apply the applied FFT [30].

• Because of the first two items mentioned the discrete spectrum of a monofrequent

1For instance, the CTBTO samples with 500 Hz when performing on-site inspection exercises. In all
measurements we performed ourselves during the last years we sampled with 10 kHz. Firstly, because we
are interested also in higher frequencies. Secondly, as we usually include microphones, one could listen
to the recorded data and even understand human speech.
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sine does not necessarily consist of two δ functions at the frequency of the sine and its

negative (as would hold for the Fourier transform of the continuous, monofrequent

sine) but depends on the difference between the frequency of the sine and the closest

frequency of the Dirac comb. The bigger this difference is, the bigger the effect

called "spectral leakage" will be. In order to reduce the effect that the small changes

of the frequency of the sine have a strong influence on the shape of the peak in

the spectrum, window functions are used [31]. Here we use the Hann window by

multiplying each interval of data with the corresponding window function before

performing the FFT.

2.1.1 The Levenberg-Marquardt algorithm

The implemented version of the Levenberg-Marquardt algorithm originates from [30].

The Pascal code was ported to C/C++. In general this fit algorithm changes the param-

eter vector of a continuous function along its gradient to find a minimum in the sum

of squared deviations between input values and function values at the same positions.

Strictly speaking, it minimises:

χ2 =
nFit−1
∑

i=0

(ai − fa(i))2

(w(i))2
, (2.1)

where:

• nFit is the number of complex values used.

• ai is the i-th discrete value of the input.

• fa(i) is the value of the continuous function, calculated for the current set of param-

eters and evaluated at the same position as the i-th discrete value.

• w(i) is a weight for the difference produced by the i-th value.

For this work, two adjustments are made:

• During an adaptation from fits in the magnitude spectra to fits in complex numbers,

we decided to handle both – the real and the imaginary part – in the same way like

the magnitude values before, by duplicating the number of samples and placing the

values of the real part in front (indices 0 to (n − 1)) of the values of the imaginary

part (indices n to (2n − 1)), when delivering the input to the fit algorithm. The

continuous fit function is adjusted accordingly.

• The weights for all values are the same, namely the absolute value at the maximum

of the peak in the discrete frequencies.
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The Levenberg-Marquardt algorithm adjusts the step length: Each time the new set of

parameters decreases χ2 compared to the last accepted parameter set, the new set replaces

the last one and the step length is increased. The other way round, if χ2 is not decreased,

the set of parameters is discarded and the step length is decreased. This approach has the

advantage, that the number of iterations is usually manageable while the precision of the

fit result is not limited by the procedure itself. Furthermore, because only the gradients

are used, no second derivatives are needed.

There are two regular termination conditions:

• If 10 consecutive times the χ2 value could not be decreased by decreasing the step

length. Subsequently the comparison of this minimal χ2 with a threshold decides

whether or not the fit was successful (it is assumed that the peak stems from a sine).

• If 120 iteration steps are reached.2

2.2 Variables and general properties

Let ∆t be the time between two discrete samples, then N is the number of samples within

the time interval T :

N =
T

∆t
. (2.2)

∆ν is the interval between two neighbouring discrete frequencies (resolution in the fre-

quency domain); it arises from the sampling rate ∆t and the number of values used (N):

∆ν =
1

T
. (2.3)

The continuous Fourier transform used here is given by [11, Chap. 2.1]:

x(t) ❞ X(ν) =
∫ ∞

−∞
x(t) e−i2πνt dt. (2.4)

Therefore the inverse continuous Fourier transform is:

x(t) =
1

2π

∫ ∞

−∞
X(ν) ei2πνt dν. (2.5)

The δ-function is defined as:

δ(ν) =
∫ ∞

−∞
ei2πνt dt. (2.6)

2This threshold is set to such a high number, that the probability to loose a valid peak is insignificant.
It seems that, if the topography of the parameter space is in such a way that many iteration steps are
necessary, it is very unlikely that the peak was originated by a sinusoid. For further applications it could
be reasonable to reduce the number or to mark the fit as failed if the limit is reached, no matter of the
current χ2.
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With Euler’s formula, eix = cosx+isinx, one derives:

sin(x) =
eix − e−ix

2i
. (2.7)

2.3 Analytical expression of a monofrequent sine in

the frequency domain

The assumption here is that the periodic content does not change during the time interval

used for a single spectrum. This can often at least approximately be fulfilled by limiting

the number of samples used for the discrete Fourier transform. Four components are

required in order to derive the expression needed for the fit algorithm: sine, rectangle,

Hann window and Dirac comb.

2.3.1 Sine

Each such sine has an amplitude A0, a frequency ν0 and an initial phase φ0, its continuous

time course is:

s(t) = A0 sin(2πν0t+φ0). (2.8)

The continuous Fourier transform is gained by insertion of Equation 2.7 into Equation

2.4:

s(t) ❞ S(ν) =
A0

2i

∫ ∞

−∞

(

ei(2πν0t+φ0) − e−i(2πν0t+φ0)
)

· e−i2πνt dt (2.9)

=
A0

2i

(

eiφ0

∫ ∞

−∞
ei2π(ν0−ν)t dt− e−iφ0

∫ ∞

−∞
e−i2π(ν0+ν)t dt

)

(2.10)

With the definition of the δ-function (Eq. 2.6) and swapped term order, it becomes:

S(ν) = i
A0

2

(

δ(ν +ν0)e−iφ0 − δ(ν −ν0)eiφ0
)

(2.11)

2.3.1.1 Symmetry

By separation of Equation 2.11 into real and imaginary part, it becomes obvious that the

real part has mirror symmetry and the imaginary part point symmetry relating to ν = 0.

This is intrinsic to the Fourier transform itself and means that the complete information

is given by either the positive or negative frequencies (including zero) for every real time-

domain signal.

s(t) is symmetric under negation of its parameters: s(A0,ν0,φ0, t) = s(−A0,−ν0,−φ0, t),

the Fourier transform reflects this by having a second peak at negative frequencies. S(ν)
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can be separated in two terms; one where the peak is at a positive frequency, one where

it is at the corresponding negative frequency:

S(ν) = i
A0

2
δ(ν +ν0)e−iφ0

︸                   ︷︷                   ︸

Sneg(ν)

−i
A0

2
δ(ν −ν0)eiφ0

︸                    ︷︷                    ︸

Spos(ν)

= Sneg(ν)+Spos(ν) (2.12)

Sneg(A0,ν0,φ0,ν) = Spos(−A0,−ν0,−φ0,ν) (2.13)

This means that the negative part of the spectrum can be generated by taking the positive

one with negated signs of the parameters. Calculation and implementation effort can be

reduced. This is helpful in the following.

2.3.2 Rectangle function

Let r(t) be the rectangle function from 0 to T, then the Fourier transform can be gained

directly by execution of the integration:

r(t) = Π
(

t

T
− 1

2

)

❞ R(ν) =
∫ T

0
e−i2πνt dt (2.14)

=
1

i2πν

(

1− e−i2πνT
)

(2.15)

2.3.3 Hann window function

The Hann window function consists of one period of a (co-)sine shifted in a way that the

it becomes zero at its sides. The continuous Fourier transform can be deduced from the

transformation of a general sine (Sec. 2.3.1) as the cosine is a phase shifted sine and the

Fourier integral of a constant is the delta function at frequency zero.

h(t) =
1

2
− 1

2
cos

(
2πt

T

)

❞ H(ν) =
1

2
δ (ν)− 1

4
δ (ν +∆ν)− 1

4
δ (ν −∆ν) (2.16)

2.3.4 Dirac comb

Sampling with a certain frequency means that every ∆t one sample is taken; thus the

continuous signal is multiplied with the Shah function III =
∞∑

k=−∞
δ (t−k ·∆t). The factor

∆t can be factored out [31]:

δ(αx) =
δ(x)

|α| (2.17)

leading to:

d(t) =
1

∆t
III
(

t

∆t

)

=
1

∆t

∞∑

k=−∞

δ
(

t

∆t
−k

)

❞ D(ν) = III(∆t ·ν) =
1

∆t

∞∑

k=−∞

δ

(

ν − k

∆t

)

(2.18)
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Figure 2.1: Demonstration of the components used before transformation to the
spectral domain. (a) shows the continuous function with the parameters: A0 = 1.0,
ν0 = 10.5Hz and φ0 = π/8; (b) after application of a rectangle with T = 1.0s; (c) after
application of the Hann window function and finally (d) after discretising with 256
samples in the interval of the rectangle.

With equation 2.3 it is: III (∆t ·ν) = III
(

ν
N∆ν

)

; showing that the whole discrete spectrum

is repeated forever to both sides as a result of sampling.

2.3.5 Plots for demonstration

Figure 2.1 shows the different steps for the continuous function that occur to real data

before its transformation to the spectral domain. Figure 2.2 shows the corresponding

spectra. The sign of the real part is the same for the positive and the negative frequencies

(mirrored at ν = 0), whereas the imaginary part has an inverted sign (point symmetric

with respect to ν = 0).
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Figure 2.2: The spectra of the plots shown in Figure 2.1 (real part blue, imaginary
part red). (a) shows an approximation for the continuous-time Fourier transform of
the monofrequent sine wave (the real peak would be infinitely narrow, furthermore
the amplitudes of the Dirac delta functions are meaningless as they are irregular
distributions and only valid if integrated); (b) after application of a rectangle; (c)
after application of the Hann window function (spectral leakage decreased but peak
width increased). (d) shows the discrete Fourier transform after the data is sampled
(divided by N).
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2.3.6 Convolution of the spectral components

3 The four components introduced above are multiplied in the time domain. To get the

spectrum of the product, the Fourier transform has to be applied to it or the Fourier

transform of the components is calculated and their results are convolved afterwards [32].

Because the result is the same one can choose the path that is easier to perform. Here

the single spectra are convolved.

srht(t) = s(t) · r(t) ·h(t) ·d(t) ❞ SRHD(ν) = S(ν)∗R(ν)∗H(ν)∗D(ν) (2.19)

The convolution is defined as:

(f∗g)(x)
def
=

∫ ∞

−∞
f(y)g(x−y)dy. (2.20)

The convolution of a function consisting of delta functions with a continuous function

thus is accomplished by summing up the continuous function with appropriately shifted

arguments. As three of the four components only consist of delta functions the result will

be a sum of shifted spectra of rectangles R(ν). For the implementation into numerical

applications, however, the infinite sum of the Dirac comb is not suitable; we will see that

the utilisation of summation rules allows the replacement of the sum expression and the

further reduction of summands.

2.3.6.1 Convolution of the rectangle with the dirac comb

At first, Equations 2.18 and 2.15 are convolved:

RD(ν) =̂ R(ν)∗D(ν) =




1

∆t

∞∑

k=−∞

δ

(

ν − k

∆t

)

∗
[

1

i2πν

(

1− e−i2πνT
)]

(2.21)

=
1

2πi

∞∑

k=−∞

1− e−2iπT(ν− k
∆t)

∆t
(

ν − k
∆t

) (2.22)

=
1

2πi

∞∑

k=−∞

1− e−2iπT νe2iπNk

∆t
(

ν − k
∆t

) . (2.23)

Because N,k ∈ N: e2iπNk = 1. As a consequent, the nominator is independent of k. In

the denominator ν∆t = q is substituted and can be replaced by a cotangent expression

3The derivations in the next two subsections (2.3.6 and 2.3.7) are based on the work of Jürgen Altmann.
A publication is in preparation.
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Figure 2.3: Plot of Equation 2.24: The convolution of the rectangle and the Dirac
comb. The parameters are: ∆t = 0.01s, therefore the spectrum has a 100 Hz period-
icity. N = 32, so T = 0.32s. N is given a small number to resolve the high frequency
modulation. Real part is green, imaginary part red.

(partial fraction decomposition):

RD(ν) =
1

2iπ

(

1− e−2iπT ν
)

·
∞∑

k=−∞

1

(q −k)
︸             ︷︷             ︸

1

q
+

∞∑

k=1

1

q −k
+

−1∑

k=−∞

1

q −k
︸           ︷︷           ︸

∞∑

k=1

1
q+k

︸                                ︷︷                                ︸

π cot(πq)

=
1

2i

(

1− e−2iπT ν
)

cot(πν∆t) . (2.24)

Alternatively this can be written as a product (Eq. 2.7):

RD(ν) =
1

2i
e−iπT ν

(

eiπT ν − e−iπT ν
)

︸                  ︷︷                  ︸

=2isin(πT ν)

cot(πν∆t) (2.25)

= e−iπT ν sin(πTν)cot(πν∆t) (2.26)

A plot for demonstration is shown in Figure 2.3.
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2.3.6.2 Complete expression for the spectrum of a monofrequent sine

The next step is to convolve the former result (Eq. 2.24) with the spectrum of the sine.

Taking the symmetry into account (Sec. 2.3.1.1), it is sufficient to take either Sneg or Spos

(Eq. 2.12):

RDSpos(ν)=̂

RD(ν)∗Spos(ν) =
[

1

2i

(

1− e−2iπT ν
)

· cot(πν∆t)
]

∗
[

−i
A0

2
δ(ν −ν0)eiφ0

]

=− A0

4
eiφ0

(

1− e−2iπT (ν−ν0)
)

· cot(π∆t(ν −ν0)) (2.27)

=− i
A0

2
sin(πT (ν −ν0)) · cot(π∆t(ν −ν0))e−i(πT (ν−ν0)−φ0) (2.28)

The negative frequencies are gained by negating the signs of the sine parameters. The

Hann window component (H(ν), Sec. 2.3.3) is taken into account by shifting the frequen-

cies corresponding to Equation 2.19:

RDS∗H =̂ RDSH(A0,ν0,φ0,∆t,T,ν) =

− 1

4
RDSpos

(

A0, ν0, φ0, ∆t, T, ν − 1

T

)

+
1

2
RDSpos

(

A0, ν0, φ0, ∆t, T, ν

)

− 1

4
RDSpos

(

A0, ν0, φ0, ∆t, T, ν +
1

T

)

− 1

4
RDSpos

(

−A0,−ν0,−φ0, ∆t, T, ν − 1

T

)

+
1

2
RDSpos

(

−A0,−ν0,−φ0, ∆t, T, ν

)

− 1

4
RDSpos

(

−A0,−ν0,−φ0, ∆t, T, ν +
1

T

)

(2.29)

= FMono

This expression is called FMono in order to discriminate between different approaches

(namely FErf and FSum). This is how it is implemented in the new version of the evalu-

ation software; it means that only one RDSpos is implemented and called with different

arguments; the derivatives and checks for roots of the cotangent term (following sections)

are much more elementary.

The following equation shows the full expression as it is implemented in the previous

version of the software (Eval6), it results from the insertion of Equation 2.28 into Equation
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2.29 and using that e±iπ = −1.

RDSHEval(A0,ν0,φ0,∆t,T,ν) = (2.30)

i
A0

8

[

sin
(

πT (ν +ν0)
)
(

−cot
(

π
(

∆t(ν +ν0)− 1

N

))

+2cot
(

π∆t(ν +ν0)
)

−cot
(

π
(

∆t(ν +ν0)+
1

N

))
)

· e−i

(

πT (ν+ν0)+φ0

)

−sin
(

πT (ν −ν0)
)
(

−cot
(

π
(

∆t(ν −ν0)− 1

N

))

+2cot
(

π∆t(ν −ν0)
)

−cot
(

π
(

∆t(ν −ν0)+
1

N

))
)

· e−i

(

πT (ν−ν0)−φ0

)]

(2.31)

2.3.7 Implementation

There are some facts that need to be taken into account:

• Whereas in highest-level programming languages (such as Mathematica), the remov-

able singularity (sin(nx)cot(x), Eq. 2.28) can be handled, in C/C++ the function

has to be expanded for arguments very close to that position.

• The Levenberg-Marquardt algorithm needs the first derivatives with respect to the

parameters for the fitting.

2.3.7.1 Taylor-expansion around the cotangent pole

With x = π∆t(ν − ν0), the term: cot(x) = cos(x)
sin(x) has a pole at x = 0.4 This is cancelled

by the multiplication with sin(Nx); nevertheless it crashes implementations in C/C++ and

needs to be expanded. It is ([33], p. 81):

sin(Nx) = N sin(x)cosN−1(x)−
(

N

3

)

sin3(x)cosN−3(x)+

(

N

5

)

sin5(x)cosN−5(x)∓·· ·
(2.32)

Combining it with the fraction for the cotangent term, sin(x) can be reduced and the

exponent of the cos(x) term is increased by one in every summand.

cos(x)
sin(Nx)

sin(x)
= N cosN (x)−

(

N

3

)

sin2(x)cosN−2(x)+

(

N

5

)

sin4(x)cosN−4(x)∓·· ·
(2.33)

4Actually, this singularity is 2π periodical, but for the interval of one spectrum – the interval used in
the implementation – it appears only once.
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The trigonometric functions can then be developed up to second order:5

cos(x)
sin(Nx)

sin(x)
= N

(

1− x2

2

)N

− N(N −1)(N −2)

6
x2

(

1− x2

2

)N−2

+O(x4) (2.34)

The first summand contains beside the constant expression also N times 1 · x2

2 :6

cos(x)
sin(Nx)

sin(x)
≈ N

(

1− x2N

2

)

−N
N2 −3N +2

6
x2 (2.35)

≈ N − 1

6
N
(

N2 +2
)

x2 (2.36)

RDSpos(ν) ≈
ν→ν0

1

2i
A0e−i(πT (ν−ν0)−φ0)

(

N − 1

6
N
(

N2 +2
)

(π∆t(ν −ν0))2
)

(2.37)

This replacement is used if the magnitude of the argument of the cotangent is smaller

than 10−7.

Taylor series and derivation calculations are all uncomplicated and can easily be calculated

by hand or with programmes like Mathematica. In the following these calculations are

not shown in detail.

2.3.7.2 Derivatives with respect to the parameters

Because of the linearity of the derivatives the same partition (positive and negative fre-

quencies) is valid. ξ is a wild-card variable; this is valid for all parameters:

d

dξ
RDS(ν) =

d

dξ
RDSpos(ν)+

d

dξ
RDSneg(ν) (2.38)

where analogously to Equation 2.13, RDSneg is equal to RDSpos with negated signs for

the sine parameters. But because of the inner derivatives of the parameters a sign is

generated for negative frequencies:

d

dξ
RDSpos(A0,ν0,φ0,T,∆t,ν) = − d

dξ
RDSneg(−A0,−ν0,−φ0,T,∆t,ν) (2.39)

If the parameters for the negative frequencies are inserted after the derivation, the negation

of the derived factors must be ensured.

5sin(x) ≈
x→0

x, cos(x) ≈
x→0

(

1− x2

2

)

.

6The first summand is
(

1− x2

2

)

·
(

1− x2

2

)

·
(

1− x2

2

)

· · · · . All combinations are permuted, but as soon

as more than one time the
(

x2

2

)

term is chosen the order of the x dependency will be of x4 or higher.

The second summand is a priori of order x2 therefore only the 1 · 1 · 1 · · · case needs to be taken into
account here.
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For the derivative with respect to the frequency this substitute is used:

x = π∆t(ν −ν0) (2.40)

d

dν0
RDSpos(x) =

1

2
A0πT eiφ0

(

ie−i2xN cot(x)− 1− e−i2xN

2N sin2(x)

)

(2.41)

d

dν0
RDSpos(x) =

x→0
−1

6
A0πT eiφ0(−3N +i2(1+2N2)x+3(N +N2)x2) (2.42)

d

dA0
RDSpos(ν) =

1

A0
RDSpos(ν) (2.43)

d

dφ0
RDSpos(ν) = i RDSpos(ν) (2.44)

In Equation 2.41 both the cotangent and the squared reciprocal sine diverge in the same

order but with opposed signs for small arguments. Therefore, their sum forms a removable

singularity which is dealt with by Taylor series expansion. By feeding the derivative to

Mathematica, Series[], x → 0 and limiting it to the second order, an equivalent to the

approximation given is gained.

2.4 Advancing to the spectrum of a sine with linear

frequency shift

The calculations to be done are the same as for a monofrequent sine except for the sine

term itself; s(t) is expanded by a term changing the frequency linearly in time:

ŝ(A0, b0,ν0,φ0, t) = A0 sin

(

2π

(

b0

2
· t+ν0

)

· t+φ0

)

. (2.45)

An example is shown in Figure 2.4. The spectrum of the continuous time-domain signal

is not shown because it obviously runs through all frequencies if the time interval is

not limited to a certain interval. Analogously to Equation 2.19, the wanted expression

ŜRHD(ν) is therefore assembled as:

ŝrhd(t) = ŝ(t) · r(t) ·h(t) ·d(t) ❞ ŜRHD(ν) = Ŝ(ν)∗R(ν)∗H(ν)∗D(ν). (2.46)
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Figure 2.4: Demonstration of a section of an LFS sine in the time domain with the
parameters: A0 = 1.0, ν0 = 10.5Hz, b0 = 20.0Hz/s, φ0 = π/8.

2.4.1 Spectrum of an LFS sine limited by a rectangle

The consideration of the rectangle function can be done by adaptation of the limits of the

Fourier integral (Eq. 2.4). The spectrum of the sine (Eq. 2.45) limited to the rectangle

from 0 to T (Sec. 2.3.2) is:

ŜR(ν) =̂ Ŝ(ν)∗R(ν) ❞ ŝ(t) ·Π
(

t

T
− 1

2

)

(2.47)

ŜR(ν) =
∫ T

0
A0 sin

(

πb0t2 +2πν0t+φ0

)

e−i2πνt dt. (2.48)

With Equation 2.7 the sine is written as a sum of two exponential functions and anal-

ogously to Section 2.3.1.1 each of the summands can be assigned to form a peak which

is located at positive or negative frequencies. The symmetry allows the calculation to be

done with either the positive or the negative term. In this case it is shown for the positive

one. Because of a slightly different way of calculation the negative one is also shown in

the appendix (Sec. A.1.1).

ŜR(ν) =
A0

2i

∫ T

0
ei(πb0t2+2π(ν0−ν)t+φ0)dt

︸                                    ︷︷                                    ︸

ŜRpos(ν)

−A0

2i

∫ T

0
e−i(πb0t2+2π(ν0+ν)t+φ0)dt

︸                                         ︷︷                                         ︸

ŜRneg(ν)

(2.49)

ŜRpos(ν) =
A0

2i

∫ T

0
cos

(

πb0t2 +2π(ν0 −ν)t+φ0

)

+isin
(

πb0t2 +2π(ν0 −ν)t+φ0

)

dt

(2.50)

With a = πb0, b = π(ν0 −ν), c = φ0:

ŜRpos(ν) =
A0

2i

∫ T

0
cos

(

at2 +2bt+ c
)

+isin
(

at2 +2bt+ c
)

dt (2.51)



2.4 Advancing to the spectrum of a sine with linear frequency shift 45

These are Fresnel integrals. In [34] helpful solutions are given: Equation 7.4.38:

∫

cos
(

ax2 +2bx+ c
)

dx

=

√
π

2a



cos

(

b2 −ac

a

)

C





√

2

aπ
(ax+ b)





+sin

(

b2 −ac

a

)

S





√

2

aπ
(ax+ b)







+const (2.52)

c can be shifted by π
2 or [34, Eq. 7.4.39] can be used directly:

∫

sin
(

ax2 +2bx+ c
)

dx

=

√
π

2a



cos

(

b2 −ac

a

)

S





√

2

aπ
(ax+ b)





−sin

(

b2 −ac

a

)

C





√

2

aπ
(ax+ b)







+const (2.53)

in which [34, Eq. 7.3.1]:

C[z] =
∫ z

0
cos

(
π

2
t2
)

dt (2.54)

and [34, Eq. 7.3.2]:

S[z] =
∫ z

0
sin
(

π

2
t2
)

dt. (2.55)

These can be combined into an error-function expression [34, Eq. 7.3.22]:

C[z]+ iS[z] =
1+ i

2
Erf

[ √
π

2
(1− i)z

]

. (2.56)

The insertion of the solutions for the integrals (Equations 2.52 and 2.53) converts Equation

2.51 into:

ŜRpos(ν) =
A0

2i

√
π

2a





cos

(

b2 −ac

a

)

C





√

2

aπ
(ax+ b)





T

0

+ sin

(

b2 −ac

a

)

S





√

2

aπ
(ax+ b)





T

0

+icos

(

b2 −ac

a

)

S





√

2

aπ
(ax+ b)





T

0

− i sin

(

b2 −ac

a

)

C





√

2

aπ
(ax+ b)





T

0



,

(2.57)
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ŜRpos(ν) =
A0

2i

√
π

2a

(

cos

(
b2 −ac

a

)(

C

[√

2

aπ
(aT + b)

]

−C

[√

2

aπ
b

]

+iS

[√

2

aπ
(aT + b)

]

− iS

[√

2

aπ
b

])

+sin

(
b2 −ac

a

)(

S

[√

2

aπ
(aT + b)

]

−S

[√

2

aπ
b

]

− iC

[√

2

aπ
(aT + b)

]

+iC

[√

2

aπ
b

]))

.

(2.58)

Using Equation 2.56:

ŜRpos(ν) =
A0

2i

√
π

2a

(

cos

(
b2 −ac

a

)(

1+ i

2
Erf

[ √
π

2
(1− i)

√

2

aπ
(aT + b)

]

− 1+ i

2
Erf

[ √
π

2
(1− i)

√

2

aπ
b

])

−i sin

(
b2 −ac

a

)(

1+ i

2
Erf

[ √
π

2
(1− i)

√

2

aπ
(aT + b)

]

− 1+ i

2
Erf

[ √
π

2
(1− i)

√

2

aπ
b

]))

.

(2.59)

The arguments of cosine and sine function are negated, then they can be combined to an

exponential expression:

ŜRpos(ν) =
A0

2i

√
π

2a

1+ i

2
ei ac−b2

a



Erf



(1− i)

√

1

2a
(aT + b)



−Erf



(1− i)

√

1

2a
b







 .

(2.60)

The substitutes are inserted:

ŜRpos(ν) =
A0

4

√

1

2b0
(1− i)e

−iπ(ν0−ν)2

b0
+iφ0

(

Erf

[

(1− i)

√

π

2b0
(b0T +ν0 −ν)

]

−Erf

[

(1− i)

√

π

2b0
(ν0 −ν)

])

. (2.61)

The complete expression without Hann window function and Dirac comb is:

ŜR(ν) = ŜRpos(ν)+ ŜRneg(ν) =
A0

4

√

1

2b0
(1− i)





e
−iπ(ν0−ν)2

b0
+iφ0

(

Erf

[

(1− i)

√

π

2b0
(b0T +ν0 −ν)

]

−Erf

[

(1− i)

√

π

2b0
(ν0 −ν)

])

−e
iπ(ν0+ν)2

b0
−iφ0

(

Erfi

[

(1− i)

√

π

2b0
(b0T +ν0 +ν)

]

−Erfi

[

(1− i)

√

π

2b0
(ν0 +ν)

])

.

(2.62)
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ŜRneg can also be gained by the symmetry (similar to Sec. 2.3.1.1, a proof is given in

Sec. A.1.2):

ŜRneg (A0,ν0,φ0, b0,T,∆t,ν) = ŜRpos (−A0,−ν0,−φ0,−b0,T,∆t,ν) .

The convolution with the spectrum of the Hann window function (H(ν), Sec. 2.3.3) is

conducted by shifts of the ν argument:

ŜR∗H =̂ ŜRH(A0,ν0,φ0, b0,T,∆t,ν) =

− 1

4
ŜR

(

A0,ν0,φ0, b0,T,∆t,ν − 1

T

)

+
1

2
ŜR

(

A0,ν0,φ0, b0,T,∆t,ν

)

− 1

4
ŜR

(

A0,ν0,φ0, b0,T,∆t,ν +
1

T

)

(2.63)

= FErf.

FErf is a name used in the next chapters, it is to be distinguished from FSum. The missing

convolution with the spectrum of the Dirac comb is not conducted as the infinite sum

would remain in the result making it unfeasible to implement in numerical procedures.

As an approximation arbitrary numbers of summands according to this infinite sum can

be added making this equation arbitrarily precise. A short discussion is given in the

appendix (Sec. A.1).

2.4.1.1 Derivatives for the implementation

Similar to Section 2.3.7.2 the derivatives are calculated. This is straightforward usage of

the chain rule. The derivative of the Erf function is:

d

dx
Erf[c ·x] =

2√
π

xe−c2x2

(2.64)
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d

db0
ŜRpos(ν) = i

1

4
A0

1

b2
0

eiφ0
(

(ν −ν0)− e−iπT (2ν−2ν0−b0T )(ν −ν0 + b0T )
)

− 1

2

1

b2
0

(

b0 −2iπ(ν −ν0)2
)

ŜRpos(ν) (2.65)

d

dν0
ŜRpos(ν) = i

A0

2b0
eiφ0(1− e−iπT (2ν−2ν0−b0T ))+ i

2π

b0
(ν −ν0) ŜRpos(ν) (2.66)

d

dφ0
ŜRpos(ν) = i ŜRpos(ν) (2.67)

d

dA0
ŜRpos(ν) =

1

A0
ŜRpos(ν) (2.68)

Regarding an implementation, factoring out ŜRpos which is already evaluated brings an

advantage regarding the calculation effort.

2.4.1.2 Summary for this approach

The presented results are suitable to fit and subtract sines with linearly changing frequen-

cies. Two major disadvantages should be mentioned:

• At this point the convolution with the Dirac comb is missing because its infinite

repetitions of its content would lead to a infinite sum expression (see Sec. 2.3.4)

making it inappropriate for applications. However, the single expression converges

to zero at its sides so as an approximation one could add some of these repetitions

manually in an arbitrary number to compensate the ignored component. A sys-

tematic analysis of the rate of convergence and its dependencies on the parameters

would be necessary to predict how many repetitions are needed to achieve a certain

precision (a brief introduction is given in Sec. A.1.3).

• For b0 → 0 the differences between the error functions for the peaks at the positive

and the negative frequencies (e.g. see Eq. 2.61) also tend to zero and therefore the

complete expression does. This is non-physical and an implementation would be

necessary to switch to the usage of the monofrequent expression if b0,r is below a

certain threshold.

An advantage could be a fast runtime (depending on the added number of repetitions for

the Dirac comb).

In the following section an expression is derived that is complete (including the Dirac

comb) and is valid for all parameter ranges. In comparison to the runtime, an easier

approach is rated as much more important. This expression is used for all applications
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shown later on this work. Nevertheless the FErf approach could outmatch the complete

but slow expression for real applications. An introduction to its application and some

plots demonstrating the mentioned disadvantages are given in the appendix (Sec. A.1

incl. subsections).

2.4.2 Complete expression for the LFS sine

This approach changes the order of calculation for ŜRHD (Eq. 2.46). The convolution of

the rectangle and the Dirac comb is performed first: R(ν)∗D(ν) = RD(ν), this is already

described for the monofrequent sine, Equation 2.24. Like in the approaches above, the

convolution with the spectrum of the Hann window, H(ν), is regarded by summing up

shifted arguments at the very end. We will see that the continuous spectrum of the sine

(Ŝ(ν), Eq. 2.78) does not exclusively consist of Dirac delta functions (in comparison to

S(ν), Eq. 2.11) so its convolution with the also continuous function RD(ν) has to be

performed by solving the integral (Eq. 2.20).

2.4.2.1 The continuous spectrum of an LFS sine

Equation 2.57 can be used with different limits: Instead of a rectangle from 0 to T the

general Fourier transform covers the complete real axis. Again the substitutes a = πb0,

b = π(ν0 −ν) and c = φ0 are used and the evaluation is restricted to positive frequencies:

Ŝpos(ν) =
A0

2i

√
π

2a





cos

(

b2 −ac

a

)

C





√

2

aπ
(ax+ b)





∞

−∞

+ sin

(

b2 −ac

a

)

S





√

2

aπ
(ax+ b)





∞

−∞

+icos

(

b2 −ac

a

)

S





√

2

aπ
(ax+ b)





∞

−∞

− i sin

(

b2 −ac

a

)

C





√

2

aπ
(ax+ b)





∞

−∞



.

(2.69)

The values at infinity are also given in [34]; Equation 7.3.20:

C(x)
x→∞−→ 1

2
, S(x)

x→∞−→ 1

2
(2.70)

and the symmetry relations [34] Equation 7.3.17 are useful:

C[−z] = −C[z],S[−z] = −S[z] (2.71)

leading to:
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Ŝpos(ν) =
A0

2i

√
π

2a





cos

(

b2 −ac

a

)

(C[∞]−C[−∞]+ iS [∞]− iS [−∞])

+sin

(

b2 −ac

a

)

(S [∞]−S[−∞]− iC[∞]+ iC[−∞])



 (2.72)

=
A0

2i

√
π

2a



cos

(

b2 −ac

a

)

(1+ i)+sin

(

b2 −ac

a

)

(1− i)



. (2.73)

The arguments of the trigonometric functions are negated and the imaginary unit i is

factored out for the term with the sine in order to combine them to an exponential

expression:

Ŝpos(ν) =
A0

2i

√
π

2a



cos

(

ac− b2

a

)

(1+ i) + isin

(

ac− b2

a

)

(1+ i)



 (2.74)

=
A0

2i

√
π

2a
(1+ i)e

i
(

−b2

a +c
)

. (2.75)

The expression for the spectrum of a continuous LFS sine for the positive frequencies is

gained by insertion of the substitutes:

Ŝpos(ν) =
A0

2
(1− i)

√

1

2b0
e

−i
π(ν0−ν)2

b0
+iφ0 . (2.76)

The calculation for the negative frequencies is very similar. The result is:

Ŝneg(ν) =
A0

2
(1+ i)

√

1

2b0
e

i
π(ν0+ν)2

b0
−iφ

. (2.77)

Ŝ(ν) = Ŝneg(ν)+ Ŝpos(ν) =
A0

2

√

1

2b0
(1+ i)

(

e
i
π(ν0+ν)2

b0
−iφ − ie

−i
π(ν0−ν)2

b0
+iφ0

)

(2.78)

is the spectrum of a general, LFS sine.

2.4.2.2 Sine with rectangle and Dirac comb

Equation 2.78 has to be convolved with the rectangle and the Dirac comb (Eq. 2.24).

Again either the positive or negative frequencies can be used:

RD(ν)∗ Ŝneg(ν) =
[

1

2i

(

1− e−2iπT ν
)

· cot(πν∆t)
]

∗
[

A0

2

√

1

2b0
(1+ i)e

i
π(ν+ν0)2

b0 e−iφ0

]

.

(2.79)



2.4 Advancing to the spectrum of a sine with linear frequency shift 51

To avoid the later convolution with the cotangent, it is replaced by:

cot(z) =
cos(z)

sin(z)
=

1
2

(

eiz +e−iz
)

1
2i(e

iz − e−iz)
= i

1+e−2iz

1− e−2iz
, (2.80)

which leads to:

RD(ν) =
1

2i

(

1− e−2iπT ν
)

· cot(πν∆t) =
1

2

(

1− e−2iπN∆tν
)

· 1+e−2iπν∆t

1− e−2iπν∆t
. (2.81)

The bracket in combination with the denominator forms the geometric series ([33], p. 19):

1− zN

1− z
=

N−1∑

k=0

zk. (2.82)

Temporarily z = e−2iπν∆t is substituted:

RD(ν) =
1

2

(

1− zN
)

· 1+e−2iπν∆t

1− z
=

1

2

(

1+e−2iπν∆t
)N−1∑

k=0

e−2ikπν∆t

=
1

2





N−1∑

k=0

e−2ikπν∆t +
N−1∑

k=0

e−2i(k+1)πν∆t





=
1

2

N−1∑

k=0

k+1∑

l=k

e−2ilπν∆t (2.83)

=
1

2





N−1∑

k=0

e−2ikπν∆t +
N∑

k=1

e−2ikπν∆t





=
1

2



1+e−i2πNν∆t +2
N−1∑

k=1

e−i2πkν∆t



 . (2.84)

Because it is less computational work to do, Equation 2.84 will be used in the implemen-

tation section. For the convolution to be done here, it is reasonable to reduce the terms

with ν dependencies (Eq. 2.83).
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With C = A0
4

√
1

2b0
(1+ i) the convolution (Eq. 2.79) is performed:

ŜRDneg(ν) = C ·




N−1∑

k=0

k+1∑

l=k

e−2ilπν∆t



∗
[

e
i
π(ν+ν0)2

b0
−iφ0

]

(2.85)

=
∫ ∞

−∞

N−1∑

k=0

k+1∑

l=k

Ce
−2ilπµ∆t+i

π(ν−µ+ν0)2

b0
−iφ0 dµ (2.86)

=
∫ ∞

−∞

N−1∑

k=0

k+1∑

l=k

Ce
i π
b0

(µ2+(−2l∆tb0−2ν−2ν0)µ)e
i π
b0

(ν2+ν2
0+2νν0)−iφ0 dµ. (2.87)

The last exponential factor is µ independent. Completing the square and substituting

ρ = (−l∆tb0 −ν −ν0) leads to:

ŜRDneg(ν) =
N−1∑

k=0

k+1∑

l=k

Ce
i π
b0

(ν2+ν2
0+2νν0−ρ2)−iφ0 ·

∫ ∞

−∞
e

i π
b0

(µ+ρ)2

dµ (2.88)

It is the complex Gaussian integral (b,c ∈ R):7

∫ ∞

−∞
aeib(x−c)2

dx =
(−1)

1
4 a

√
π√

b
(2.89)

and thus:

ŜRDneg(ν) =
N−1∑

k=0

k+1∑

l=k

Ce
i π
b0

(ν2+ν2
0+2νν0−ρ2)−iφ0 ·

√

ib0. (2.90)

C and ρ are inserted, ŜRDneg(ν) can be calculated similarly:

ŜRDneg(ν) = i
1

4
·A0 · e−iφ0 ·

N−1∑

k=0

k+1∑

l=k

e−iπl∆t(l∆tb0+2ν+2ν0) (2.91)

ŜRDpos(ν) =− i
1

4
·A0 · e iφ0 ·

N−1∑

k=0

k+1∑

l=k

e iπl∆t(l∆tb0−2ν+2ν0) (2.92)

ŜRD(ν) = ŜRDpos(ν)+ ŜRDneg(ν) (2.93)

where

ŜRDneg(A0,ν0, b0,φ0,ν) =̂ ŜRDpos(−A0,−ν0,−b0,−φ0,ν). (2.94)

The complete spectrum results by convolving this result with the spectrum of the Hann

window (Eq. 2.19); an example for single summands and the complex sum is given in

Figure 2.5.

7Can also be solved if represented as combination of Fresnel integrals; [33, p. 718]
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Figure 2.5: Example plot of the summands and the sum corresponding to the appli-
cation of the Hann window function, shown are the respective magnitudes. N = 512,
∆t = (1/N)s, thus T = 1.0s and ∆ν = 1.0Hz; A0 = 1.0, ν0 = 200.0Hz, φ0 = 0.0 and
b0 = 10.0Hz/s. Colour codes for the summands: green: ν − 1/T , red: ν + 1/T , blue: ν.
The sum of the three complex summands is given in black.

ŜRD∗H =̂ ŜRDH(A0,ν0,φ0, b0,T,∆t,ν) =

− 1

4
ŜRDpos

(

A0, ν0, φ0, b0, ∆t, T, ν − 1

T

)

+
1

2
ŜRDpos

(

A0, ν0, φ0, b0, ∆t, T, ν

)

− 1

4
ŜRDpos

(

A0, ν0, φ0, b0, ∆t, T, ν +
1

T

)

− 1

4
ŜRDpos

(

−A0,−ν0,−φ0,−b0, ∆t, T, ν − 1

T

)

+
1

2
ŜRDpos

(

−A0,−ν0,−φ0,−b0, ∆t, T, ν

)

− 1

4
ŜRDpos

(

−A0,−ν0,−φ0,−b0, ∆t, T, ν +
1

T

)

= FSum (2.95)

This expression contains all components of the theoretical function thus it is perfectly

accurate and precise. For large N it takes some computational effort especially if numerous

values (for bigger b0) are fitted or a complete theoretical spectrum with some 1,000 values

is calculated. For the implementation used for this work, the latter is accelerated by

calculating the FFT of the time-domain signal of that sine.

2.4.3 Implementation

As mentioned above computation effort can be reduced by avoiding the same calculation

done multiple times; it is reasonable to solve the inner sum of Equation 2.92 analogously



54 Theory

to Equation 2.84 by extracting the summands occurring twice:

ŜRDpos = −i
1

4
·A0eiφ0

N−1∑

k=0



eiπk∆t(k∆tb0−2ν+2ν0) +eiπ(k+1)∆t((k+1)∆tb0−2ν+2ν0)



 (2.96)

= −i
1

4
·A0eiφ0



1+2
N−1∑

k=1

eiπk∆t(k∆tb0−2ν+2ν0) +eiπN∆t(N∆tb0−2ν+2ν0)



 . (2.97)

2.4.3.1 Derivatives

As mentioned above (Sec. 2.3.7.2): When using the expressions for the positive frequencies

to calculate the derivatives and then utilise the symmetry to gain the ones for the negative

frequencies, the sign must be changed because of the inner derivative of the parameter

(which is always −1).

d

dA0
ŜRDpos =

ŜRDpos

A0
(2.98)

d

dν0
ŜRDpos = π∆tA0eiφ0

(
N−1∑

k=1

keiπk∆t(k∆tb0−2ν+2ν0) +
N

2
eiπN∆t(N∆tb0−2ν+2ν0)

)

(2.99)

d

db0
ŜRDpos =

1

4
π∆t2A0eiφ0

(

2
N−1∑

k=1

k2∆t2eiπk∆t(k∆tb0−2ν+2ν0) +N2eiπN∆t(N∆tb0−2ν+2ν0)

)

(2.100)

d

dφ0
ŜRDpos = i ŜRDpos (2.101)

2.4.3.2 Substitutes for an efficient implementation

Every expression used more than once should be calculated in advance.8

The colours mark different levels where a certain value can be calculated; green is a

marker for values that need to be calculated only once per spectrum: τ = π∆t, blue

marks parameter dependency: d = 2(ν0 − ν), β = ∆tb0, r = 1
4A0eiφ0 and red values have

to be calculated every summation step: κ = eikτ(kβ+d). In a second step the following

8i is not treated as a factor, as its implementation consists of setting the value as imaginary part of a
number.
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parameters are calculated: ǫ = eiNτ(Nβ+d), q = 2τ , p = τ∆t, leading to:

ŜRDpos = −i r



1+2
N−1∑

k=1

κ+ ǫ



 (2.102)

d

dA0
ŜRDpos =

ŜRDpos

A0
(2.103)

d

dν0
ŜRDpos = r



2q
N−1∑

k=1

kκ+Nqǫ



 (2.104)

d

db0
ŜRDpos = r



2p
N−1∑

k=1

k2κ+N2pǫ



 (2.105)

d

dφ0
ŜRDpos = i ŜRDpos. (2.106)

2.5 Further Remarks

Beneath the monofrequent approach (Sec. 2.3.7), the equations given in the last section

(Sec. 2.4.3.2) are the ones implemented and used for any application described in the

following chapters. Nevertheless some additional insights in these calculations are infor-

mative – like alternative representations or the limit case for b0 → 0 – and given in the

appendix (Sec. A.2).
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Chapter 3

Evaluation of the expressions

3.1 Introduction

3.1.1 Number of samples per spectrum

In this work a very easy implementation of the Fast Fourier Transform is used ([30], ported

from Pascal to C/C++) requiring the number of samples used to calculate a spectrum to

be N = 2n with n ∈ N+. For this work a few hundred up to several thousand samples are

typically used. The number must not be too small: The following considerations will fail

if N is chosen to be ≤ 2 for example.

3.1.2 Periodogram and Hann window normalisation

The peak height in a spectrum should represent the power in a certain frequency band. In

particular, for a stationary signal it should be independent of N . A representation fulfilling

this requirement is called periodogram [18, p. 212ff]. Additionally the multiplication

with the Hann window function decreases the time domain values. This "energy loss" is

approximately compensated by dividing the values (in the time domain before or in the

frequency domain after the FFT) by the area under the Hann function. Therefore, all

functions derived in Chapter 2 are multiplied with

fNorm =

√
3
8

N
(3.1)

in the implemented procedure.

3.1.3 Coordinate transformation to unitless numbers

In general the curve progression in a spectrum (resp. the values in the array of the discrete

Fourier transform) depends on the number of discrete values used for the DFT and the

density of samples with respect to the progression of the signal in the time domain but
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is independent of the absolute time and sampling rate.1 This means that scaling in the

time domain is allowed as long as the frequency domain is adapted accordingly. For the

next sections it is reasonable to divide all frequency variables by ∆ν and thus all time

variables by T , the proof that this scaling combination is allowed is done in Equation 3.2.

The major advantage is that the parameters ν0 and b0 become independent of the DFT

specific parameter ∆ν. Another advantage is that dependencies with respect to the dis-

crete raster become easily observable.

Let r be the "continuous index" in the frequency domain. The available discrete values are

located at r = i ·∆ν with i ∈ N | 0 ≤ i < N .2 A certain frequency can be located anywhere

between two discrete values: The digits before the decimal point now give the information

between which ones it is located exactly. The digits after the decimal point describe how

far it is to the closest discrete frequency.

The following transformed variables are used (it is: ∆ν ·T = 1 (Eq. 2.3)):

• ν0,r = ν0
∆ν

• Because the unit of b0 is frequency per time it has to be divided by ∆ν
T = (∆ν)2 →

b0,r = b0
(∆ν)2 .

• Division of the comb of discrete frequencies by ∆ν leads to: i · ∆ν/∆ν = i so the

scale of the index becomes identical to the one of the frequency (r ≡ ν).

• The time tq = t
T generally runs from 0 to 1.

The transformation is shown for the sine (Eq. 2.45) and the rectangle (Eq. 2.15); the Hann

window function (Eq. 2.16) and the Dirac comb (Eq. 2.18) are transformed analogously

to the rectangle – all their t dependencies are divided by T , transforming to tq.

s ·h =̂ sh(A0, b0,ν0,φ0,T, t) = A0 sin

(

2π

(

ν0 +
b0

2
· t
)

· t+φ0

)

·Π
(

t

T
− 1

2

)

= A0 sin

(

2π

(

ν0,r +
b0,r

2
· tq

)

tq +φ0

)

·Π
(

tq − 1

2

)

= sh(A0, b0,r,ν0,r,φ0,1, tq) (3.2)

The mean frequency (and consequently the maximum of the peak in the continuous spec-

trum) is located at rMax = (ν0,r + b0,r/2). We shall see that peaks in the magnitude spectra

are symmetric with respect to the values left and right if rMax ∈ N.

1E.g. the pure values (the amplitudes in a time series) are the same both if a sine with 10 Hz is
sampled with 100 Hz and if a sine with 1 MHz is sampled with 10 MHz. Therefore the same applies to its
spectrum as long as it is transformed with the same number of samples.

2In this work an implementation of the DFT from [30] is used. The negative frequencies are located
above the positive ones (indices run from 0 to N

2 for the positive frequencies; from N
2 +1 to N −1 for the

negative frequencies).
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For artificial signals such as the ones in this chapter the DFT parameters can be chosen in

such a way that ∆ν = 1Hz by setting ∆t = 1
N s, in this case the values of the transformed

and untransformed parameters are the same anyway.

3.2 Curve progression and parameter dependencies

3.2.1 Some plots for demonstration

Some examples are shown to demonstrate the continuous curve progression of the FSum

expression and the values that are available if the DFT is performed on an array of values

calculated from an LFS sine with the same parameters. The plots are limited to the

peak in the magnitude spectrum (at positive frequencies) and the surrounding.3 Figure

3.1 illustrates the magnitude spectrum of a sine fulfilling the property for a symmetric

peak (ν0,r +b0,r/2 ∈ N). The ordinate presents the magnitude values |A| of the spectrum,

the division by N clarifies that the proportionality to the number of samples used for the

DFT is cancelled (Parsevals’ theorem). Figure 3.2 shows phase spectra:4 The topmost one

belongs to the magnitude spectrum of the previous figure. But also the one in the middle

has the same magnitude spectrum because swapping the begin and end frequencies of a

time interval keeps the mean frequency the same and does not even change the spectral

magnitude. Because of the strong progression between two neighbouring discrete values in

the phase spectrum, the symmetry in the discrete values is clearly visible here (compared

to the magnitude spectrum, Fig. 3.3). The sine of the last plot is shifted by 0.5 Hz to the

right; the discrete points are no longer symmetric.

Figure 3.3 shows two examples demonstrating the influence of b0 on the spectra. The

bigger |b0| gets, the broader the peak in the magnitude spectrum becomes and the smaller

the oscillations caused by spectral leakage become. In the phase spectra, bigger |b0| make

the blue line to be wrapped more often because of the standardisation to [π;−π[.

The phases of the complex spectral values bear valuable information e.g. about the sign

of the start value for b0 (will be used in Sec. 4.6.2) and to estimate the start value for

φ0 (Sec. 4.9) but it is very sensitive to small changes of ν0 and b0 (e.g. see Fig. 3.2).

The next two sections (Sec. 3.2.2 and 3.2.3) show a few systematic plots revealing useful

dependencies for the subsequent start parameter estimation.

3ν0 is the frequency at the beginning of the time interval. For b0 , 0Hz/s the end frequency after the
time interval T is different. The peak has its maximum at the mean frequency in T . As mentioned in
Section 3.1.3, in these examples ∆ν is chosen to be 1Hz. Because T = 1

∆ν it is 1s and the mean frequency
simply is ν0 +0.5 b0.

4Note that the phases of the complex values vary – there are N phase values in a spectrum with N
samples – and are not identical to the initial phase φ0 of the sine. In the following sections the influence
of the initial phase parameter φ0 on the phases of the complex values is demonstrated and used for start
value estimation later on.
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b0 10.0 Hz/s

∆ν 1.0 Hz

Figure 3.1: Magnitude spectrum of FSum with the given parameters. Here and in
the following figures the blue dots show the values known by DFT, the red line shows
the continuous function FSum.
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Left: the spectrum after time inver-
sion (not exactly: the φ0 is not set
to the end phase of the previous ex-
ample, but this would only give a
constant offset):

A0 1.0
ν0 210.0 Hz
φ0 0.0 rad
b0 −10.0 Hz/s

∆ν 1.0 Hz

The magnitude spectrum is the
same as in Figure 3.1.
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Left: spectrum with slightly differ-
ent start frequency ν0 is 200.5Hz,
the other parameters stay the same
(b0 is positive).

Figure 3.2: Plots of the phases of complex spectra.
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Figure 3.3: Magnitude and phase spectra with two more peak widths. Left column:
A0 = 1.0, ν0 = 200.0Hz, φ0 = 0.5π, b0 = 2.0Hz/s, ∆ν = 1.0Hz. Right column: the same
but with b0 = 18.0Hz/s.
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3.2.2 Details on the spectrum of monofrequent sines

Like before, in the following figures parameters are chosen in such a way that ∆ν = 1Hz,

so the discrete frequencies lie exactly on integer values of ν (see Sec. 3.1.3). This also

means that the frequency with a value of (N/2)Hz is also the Nyquist frequency νNyquist,

behind which the negative frequencies begin; further behind 2 ·νNyquist = N the spectrum

is repeated completely. A few more frequencies behind that point are shown here for

clarity.

Figure 3.4 shows some interesting facts:

• At the positions of the peak (a), the phases flip three times with exactly π (b)-(d).

This behaviour is unique for b0 = 0, for broader peaks the phase changes between

two discrete values become smaller (or broader which is the same because of the

wrapping to a 2π wide range), see the following section.

• (c) and (d) show the spectrum corresponding to peak located at the positive respec-

tively negative frequencies; their sum is (b). In the separated plots the phases are

constant except for the three values at the peak itself and a single π jump exactly

N/2 points (half of a spectrum) behind the peak.

• The initial phase of the sine, φ0, contributes linearly to the phases of the complex

values:5 Because ν0 is chosen to be exactly between two discrete values, the phase

spectrum (c) does only consist of the values φ0 and φ0 +π (resp. −φ0 and −φ0 +π

for (d)).

• (c) and (d) merge smoothly into (b) corresponding to their magnitude spectra:

Each magnitude peak is symmetric with monotonous increase/decrease meaning

that its weight in the superposition decreases. From some point the weight of the

neighbouring peak gets stronger. At the frequencies: 16±n ·32Hz and 0±n ·32Hz

the magnitudes are equal and so the resulting phase is zero because the phase angles

have inverted signs at the same absolute value.

Figure 3.5 (a), (b) shows the behaviour of the spectrum if ν0 is exactly on a discrete

frequency. (a) shows the magnitude spectrum with a linear ordinate scale (for reasons of

comparability to Fig. 3.4 (a), the following figures have a logarithmic scale), so spectral

leakage is hard to see here in general. Anyway, the discrete values (except for the three

values of the peaks) lie in the zeros, which is the reason for the random phases (numerical

errors) shown in (b).6 Generally changes in ν0 shift the continuous curve through the

5Equations 2.91 and 2.92 show that φ0 does only rotate the spectrum in the complex plane linearly.
6The samples for plotting the continuous function are obviously gained without ever hitting

νPlot sample = n · ∆ν, where discontinuities occur. Otherwise, the phase of the complex value 0 + i · 0
would show the same noisy behaviour at frequencies on the raster like the discrete values that are taken
exactly at the points meeting this condition. This could have happened already for the plots on the last
figure (Fig. 3.4) as the curve progression is the same (shifted by 0.5 ∆ν).
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raster of discrete frequencies: A comparison of Figure 3.4 (b), and 3.5 (c) shows that the

progression of the continuous phase (red curve) has the same progression but is shifted

by 0.5 ∆ν. Figure 3.5 shows a plot done for ν0 very slightly shifted off the raster making

the phases of the discrete values balancing right on a drop by π.

(d) is a demonstration of the influence of N on the phase spectrum; the curve progression

is very similar. The Nyquist frequency is half of the spectrum above (c) so the distance to

the right between the peak at positive and negative frequencies is reduced. The difference

to the left remains the same because the spectral resolution and the frequency of the peak

remain. This results in periodic repetitions of regions looking the same as before (e.g.

25-39 Hz).

Note that the height of the highest discrete value of a peak in the magnitude spectrum

depends considerably on the distance between ν0 and the closest frequency of the raster.

This fact will be picked up in the upcoming chapters.
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Figure 3.4: (a) gives the absolute values of FSum with the parameters: A0 = 1.0, ν0 =
5.5Hz, φ0 = π/8, b0 = 0.0Hz/s, N = 32, ∆t = (1/N)s; (b) the phase, (c) the phase if only
the peak for positive frequencies is taken, (d) respectively with negative frequencies.
Note that the spectrum is periodic with period 32∆ν.
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Figure 3.5: (a) gives the absolute values of FSum with the parameters: A0 = 1.0,
ν0 = 5.0Hz, φ0 = π/8, b0 = 0.0Hz/s, N = 32, ∆t = (1/N)s; (b) the phase, (c) the phase if
ν0 = 5.000000001, (d) is like (c) with N = 16. Note that in (b) the values are caused
by numerical noise for magnitudes that should be exactly zero.
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3.2.3 Linear frequency shift

In this section only positive b0 are shown, which simplifies the pairwise comparison. In-

verting the sign of b0 just inverts the curve progression with respect to ν (see Fig. 3.2;

the peak in the negative frequencies has inverted signs for the parameters, so every plot

shown here for a complete spectrum is also an example for a negative b0).

Figure 3.6 shows the spectrum of an LFS sine (FSum) for symmetric peaks (because

∆ν = 1Hz, the mean frequency ν0 +1/2 ·b0/∆ν is integer and thus on the raster of discrete

frequencies: n · ∆ν; n ∈ N). (a) shows its magnitude spectrum. First of all one can

observe that the magnitudes never become zero (in contrast to the case when b0 = 0,

for ν0 = n · ∆ν, Fig. 3.5 (a)). However, the continuous spectrum indicates that spectral

leakage is significant (with growing b0 the sidelobe peaks get relatively smaller while the

peak itself broadens, see magnitude spectra in Fig. 3.3). (b) shows the phase spectrum,

the spectra at the bottom are shown for reasons of clarity: (c) contains only the peak at

positive frequencies, (d) has a different phase in order to shift most of the values closer

to zero to avoid the wrapping at ±π. It is important to notice that the phase is never

really constant, behind the three peak values the phase smoothly merges into a plateau.

Comparing (c) and (d) also illustrates that the progression does not change if the phase

parameter is changed; φ0 acts just like an offset to the phases (already mentioned in the

last section).

Figure 3.7 shows two more examples of phase spectra for larger b0. Because of the small N

(= 32) one can easily recognise how the phase spectra superpose: The phases are weighted

with their magnitudes; no matter whether the surrounding peaks of the negative spectrum

are present or not, the curve progression close to the peak at positive frequencies looks

very similar (compare e.g. (a) and (b) at ±6Hz).

The larger b0 becomes the slower the decrease in the change of the phases gets (see Fig.

3.7 (c), (d)). Because the phases are 2π periodic, one can add or subtract an arbitrary

integer multiple of 2π. Thus, in (a), one can take the three phases of the discrete values

around the first peak (5.0, 6.0, 7.0Hz) and subtract 2π, analogously 2π can be added to

the phases around the peak in the negative frequencies (behind N/2); the result is shown

in Figure 3.8 (a). The phase spectrum below (fig. 3.7 (c)) is treated in the same manner

and is shown in Figure 3.8 (b). If the peaks become broader, multiples of 2 π are required

to unfold the peak in the phase spectra and the following rule is applied for positive b0:

Subtract multiples of 2 π as long as it is smaller than the previous value and as long as the

difference to the previous value is smaller than π. For negative b0 all signs are negated.

For the subsequent values the complete rule can be inverted meaning that with differences

≤ π the phase unfolds similar until it asymptotically reaches the same constant value as

previous to the peak. In this way the broad peek, which was already shown in Figure 3.3,

is unfolded (c). (d) includes the same spectrum, but here the inversion is omitted – no
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matter the actual value, (for positive b0) multiples of 2 π are subtracted as long as the

current value is smaller than its precursor. The phase continues to drop monotonously

to reach asymptotically the constant slope: 2π per ∆ν.7 The property, that the phase

spectrum (of a peak in the magnitude spectrum) can be unfolded to form a single peak

whose direction depends on the sign of the b0 and that grows with increasing |b0| will be

important to gain the start values (Chap. 4).

7This means that (for a pure LFS sine signal) around a peak in the magnitude spectrum two neigh-
bouring values never have small phase differences. Note that in magnitude spectra, even equal values can
occur by the combination of ν0,r and b0,r if the theoretical maximum of the peak is exactly between two
discrete frequencies.
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Figure 3.6: (a) gives the absolute values of FSum with the parameters: A0 = 1.0,
ν0 = 4.75Hz, φ0 = π/8, b0 = 0.5Hz/s, N = 32, ∆t = (1/N)s; (b) the phase, (c) the phase
if only the peak at positive frequencies is used, (d) is like (c) but with φ0 = 9/8π.
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Figure 3.7: (a) gives the phase of FSum with the parameters: A0 = 1.0, ν0 = 4.75Hz,
φ0 = π, b0 = 2.0Hz/s, N = 32, ∆t = (1/N)s; (b) the phase if only the peak at positive
frequencies is used, (c) and (d) are the same but with b0 = 8.0Hz/s.
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Figure 3.8: Utilisation of the 2π periodicity of the phases of complex values; partially
unwrapped phases of the first N values (dashed lines): (a) and (b) is equivalent to
(a) and (c) in Figure 3.7. (c) is an example of the phase spectrum with a large b0

(= 18Hz/s, A0 = 1.0, ν0 = 200.0Hz, φ0 = 0.5π, N = 512, ∆t = (1/N)s) shown in Figure
3.3. (d) shows what it looks like if the phase is not reversed at the frequency of the
peak in the magnitude spectrum.
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Chapter 4

Start values for the sine fitting

4.1 Introduction

For a successful fit good start values for the parameters of the sine expression are required.

These have to be estimated from the (complex) spectrum. In the same way as time-domain

signals superpose linearly, spectra do. Assuming a typical spectrum, the highest values of

a peak are the least influenced by noise or the tails of other peaks, so it is reasonable to

evaluate the strongest values of the strongest peaks first. This must be balanced against

the fact that the influence of noise statistically becomes less the more values are included

in the evaluation.

It is reasonable to begin with the start value for b0, because all the other parameters

depend on this one: The amplitude corresponds to the power in a peak; the peak width

is needed to estimate the spectral values contributing to the peak and therefore need to

be summed up. By construction, the frequency is taken at the beginning of the interval,

whereas the maximum of the peak is at the mean frequency, so again the width is necessary

to determine ν0. Finally, the phase strongly depends on the parameters, as shown in the

preceding chapter (Chap. 3).

In order to systematically construct test data Gaussian white noise (GWN) will be utilised.

Its implementation is described at first.

4.2 Gaussian white noise

Later on, the start value estimation must be proven to be stable with respect to noise.

For this reason, different levels of Gaussian white noise GWN will be added to the data of

a pure sine. The fit will be performed to the strongest values of the peak. In this section

it will be shown that the magnitude of a peak is not only proportional to the amplitude

of the sine, A0, but is also a function of the linear frequency shift b0 (and on a small scale

even of ν0). It is reasonable to conduct the evaluation with frequency independent noise
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that is roughly adjustable to a certain magnitude with respect to the peak height of the

sine.

The GWN for the time domain is created by filling an array with complex values of

the same magnitude but random phases and transforming it via inverse fast Fourier

transform (IFFT) without subsequent multiplication with an inverse window function.

Consequently, the spectral density is constant but the phases are random.

For all signals in this work the FFT is applied after multiplication with a window function.

In order to get a comparable spectrum of the GWN, the time domain array is multiplied

with the Hann window function before the application of the FFT. Because the applica-

tion of the Hann window function causes each spectral value to become a weighted sum

including its direct neighbours (Sec. 2.3.3), the resulting magnitude for this value depends

on the phase relations among these three summands. Therefore, the resulting magnitude

spectrum is not perfectly flat but fluctuates with a fixed maximum magnitude.1

4.2.1 Adaptation of the noise level to achieve a fixed ratio to

the peak height

In order to analyse the influence of noise, its strength should be adjusted relatively to the

peak magnitude of the spectrum of an LFS sine. For this the dependency of the peak

height on the various parameters has to be estimated at least.

The peak height in the magnitude spectrum is obviously proportional to A0 (cf. Eq. 2.95).

Thus, as the dependency on this parameter is known, it does not need to be analysed any

further. The same argument is valid for the initial phase φ0: For a single peak, φ0 causes

rotations of the values in the complex plane and does not change the magnitude spectrum

(cf. Eq. 2.11). The N dependency is removed by the periodogram normalisation. The

dependencies on the parameters b0,r and ν0,r are shown in Figure 4.1 (a). Larger values

for |b0,r| cause the power of a sine to be spread over more spectral values, reducing the

height of each. ν0,r determines the peak position on the raster of discrete frequencies,

causing the spectral leakage to distribute more or less power into side lobes. Its influence

is reduced with increasing |b0,r| (Sec. 3.2.3). Because of the symmetry with respect to the

sign of b0,r, the negative values can be joined to the positive ones, resulting in plot (b).

The adaptation does not need to be of high quality which is why a function for a rough

compensation is gained from a simple exponential fit:

A(b0,r) = A0 ·0.32 ·Exp[−0.061 · |b0,r|]+0.091. (4.1)

1One could be confused by the way the spectrum of GWN is gained here: An artificial spectrum
is created and transformed to the time domain, only to transform it back to the frequency domain.
The detail is: Only for the second application of the FFT a window function is used, therefore the two
transformations do not cancel each other.
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This equation gives a roughly adjusted amplitude for the GWN. In the b0,r range shown

here, the adjustment reduces the variation of the peak magnitudes from a ratio of around

6.0 to 1.3.2 The compensation is implemented in such a way that the noise amplitude

can be adjusted for each value of the linear frequency shift so that the factor between the

highest value of the peak and the noise background is roughly constant.3

The adaptation is demonstrated in Figure 4.2. Here, three examples are given; the ratio

between the level of the GWN and the highest value of the peak is roughly the same,

independent of the number of samples used or the amount of the linear frequency shift.4

The initially mentioned influence of the Hann window function on the GWN is clearly

visible; without the Hann window, the level of the GWN would be constant (except for

regions with significant overlap with the values of the peak).

2The value of 6.0 results from a comparison of a spectrum with |b0,r| = 100 (magnitude of 0.07) with
b0,r = 0 (magnitude of 0.42). 1.3 is the strongest quotient of the fit function and the values (|b0,r| = 100:
0.09/0.07).

3A detail to keep the statement given in this work consistent with the implementation in our evaluation
software: To get the real amplitude of the GWN, the function A(b0,r), Equation 4.1, is additionally divided

by
√

8
3N . This includes two factors: Firstly, the general normalisation used in this work (namely the

periodogram and the Hann window, Sec. 3.1.2). Secondly, the inversion of an additional normalisation
(by the division by

√
N , in the function SetGWN()).

4The magnitude of the generator spectrum is constant at a certain value A. The resulting spectrum
is the same but convolved with the spectrum of the Hann window function, meaning that each spectral
value is divided by 2.0 and becomes superposed with a quarter of each of its two neighbouring values.
Depending on the three phases, the resulting magnitude value is in the range [0.0;A]. Therefore, the
upper limit A can still be used to describe the level of noise.
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Figure 4.1: Spectra of pure sine functions are generated with the given parameters.
14 values for the frequency (4 fixed, 10 random) and 205 values for the linear frequency
shift (5 fixed, 200 random) are combined, resulting in 2,870 plot points. The scattering
for small values of |b0,r| is the result of spectral leakage. (a) depicts the magnitude
of the spectral value at iMax (the highest value of a peak) as a function of the linear
frequency shift b0,r. (b): The symmetry allows the forming of the absolute value for
b0,r. The fitted function (Eq. 4.1) is illustrated in green.
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Figure 4.2: Demonstration of the magnitude adaption for Gaussian white noise
added to the LFS sine: The level parameter is set to 10%, which means that the
strongest magnitude values of the noise should roughly be 0.1 · |A[iMax]|. The mantissa
holds no frequency values because for all the plots the data is illustrated to νNyquist,
that is 512Hz for the black and the red lines and 4,096Hz for the green line. The
green and the red line have the same linear frequency shift so their peak height is
the same; nonetheless the green peak appears to be narrower because of the increased
frequency density. A comparison of the red and black line demonstrates that the same
seed for the random numbers is used.
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4.3 The peak width

There is no obvious definition for the width of a peak as it stretches infinitely; nevertheless

it is a fundamental property of a peak, which will be used repeatedly. In this work, the

peak width is defined as the difference between the two frequencies enclosing the peak and

fulfilling the condition that the magnitude at the boundary frequencies has dropped by

50% compared to the peak value at imax. This choice of the full width at half maximum

is relatively arbitrary. The function will be fitted to the spectral values in this range.

Setting this threshold to lower levels would increase the number of values for the fit,

possibly increasing its quality. But the additional values are of lower magnitude and will

be more strongly influenced by noise and potential neighbouring peaks, thereby reducing

the fit quality.

Typically, in the discrete magnitude spectrum, the frequency values at which the mag-

nitude has dropped below 50% have to be interpolated. A linear interpolation between

the value below and above this threshold gives the virtual continuous index values (r,

Sec. 3.1.3) for the left (r0.5 left) as well as the right (r0.5 right) passages through the thresh-

old value. The peak width is:

rW = r0.5 right − r0.5 left (4.2)

In addition to the inaccuracy produced by the linear interpolation, another error occurs

when determining the 50% level: The magnitude at imax depends on ν0,r; this dependency

is illustrated in Figure 4.3. Its strong influence on narrow peaks suggests a compensation

for a b0 estimation from the peak width, whereas its decrease with increasing |b0,r| allows

a simpler approach for broader peaks.
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Figure 4.3: Plots demonstrating the peak width (Eq. 4.2) as a function of b0,r. (b) is
a detail of (a) illustrating that for small |b0,r| the peak width depends on its position
with respect to the raster of discrete frequencies. Variation of ν0,r shifts the magnitude
peak linearly on the frequency axis, leading to periodically fulfilled symmetry relations
which is clarified by the demonstration of three examples: Red: ν0,r = 256.0, green:
ν0,r = 256.25 and black: ν0,r = 256.5 (for b0,r = 0, the two extreme cases have already
been shown: Fig. 3.4 (a) demonstrates the broadest possible peak with its maximal
influence of the spectral leakage (black), whereas Fig. 3.5 (a) comprises the narrowest
peak with vanishing sidelobes (red)).

4.4 Interim remark on start value determination

During the development of this algorithm a sign flaw occurred in a deviation, leading

to a more unstable behaviour of the fit routine. This could be compensated by using

exceptionally good estimates for the start values. For this reason, additional effort was

invested, making the start-value estimation much complexer. As we shall see later, the

fit – assuming the correct equations are implemented – is very stable and most of this

additional effort is of reduced usefulness. Additionally, the old approach estimates the

parameters by evaluating only the strongest three values of a peak; approaches using a

flexible number of values are much more robust when applied to noisy data. For real data,

the old and complexer approach performs better only for small values of |b0,r|, that is for

narrow peaks. Nevertheless, since these complexer procedures were already implemented

and since they increase the accuracy, they are still used in the final algorithm. Considering

that the description of the procedures is interminable and they are at the same time only

used for narrow peaks, they are briefly explained in subsections where needed.
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4.5 The parabola approach

Figure 4.4 shows three examples with different values of b0. A Gaussian function and

a parabola are fitted to the highest magnitude values. One can see that the Gaussian

fit models the highest magnitude values significantly better. Nonetheless, the parabola

is used in the following because a direct calculation of its parameters – without another

non-linear fit – is possible and the deviation is compensated for afterwards.

4.5.1 Parabola calculation

The parameters are calculated with the objective of minimising the sum of squared devi-

ation.5 The expression for the parabola is:

y = α ·x2 +β ·x+γ (4.3)

Then the error of the i-th value is:

ei = yi − (α ·x2
i +β ·xi +γ) (4.4)

The latter expression is squared and summed up for all values. The derivatives with re-

spect to the parameters must be zero (minimise deviation) so three equations with three

parameters can be used to calculate the best values easily.6 For most of the upcom-

ing applications, the transformation to the vertex form is advantageous, providing the

appropriate parameters:

y = a(x+ b)2 + c (4.5)

Applied to data in Figure 4.4, −b represents the frequency of the vertex and c its value;

a is a measure of the width of the parabola.

5The template for the implementation can be found in [35].
6Squaring causes summands with powers of x up to four which can become big for high frequencies

(x is the frequency, or to be exact it is the frequency in units of ∆ν as the fit is done in the index space).
To avoid summing up values with strongly different magnitudes, in this approach an offset is added in
the form of a reduction of each frequency value (by the frequency of the maximum iMax) and therefore
this calculation is centred around zero. Concluding, the result is transformed into the vertex form and
the offset is added.
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N ∆t ∆ν A0 ν0 b0 φ0 # Fit values
(a) 128 1/N 1.0 1.0 14.75Hz 18.105Hz/s π/8 9
(b) 128 1/N 1.0 1.0 14.75Hz 4.000Hz/s π/8 4
(c) 128 1/N 1.0 1.0 14.75Hz 0.000Hz/s π/8 3

Figure 4.4: Magnitude spectra: Fit of a Gaussian function (orange, dashed) and
a parabola (green, dashed). Red: The continuous function FSum, blue: the discrete
points. Especially in (b) the Gaussian curve fits significantly better to the data.
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4.6 Start value for b0

According to the definition of the peak width (Sec. 4.3), the range of magnitude values

at discrete frequencies within rW is chosen and the parabola parameters a, b and c are

determined. ac = a/c can be understood as the ”normalised curvature” and is used to

estimate |b0,r|.7 Figure 4.5 shows ac as a function of the input |b0,r| for synthetic data

without noise. For |b0,r| ≤ 5.0 a parabola is fitted to the data, for larger |b0,r| an exponen-

tial fit is done with the objective of minimising the deviation for the logarithmic values,

in order to get a good result, especially for small values of ac. This is reasonable because

of the small slope for big |b0,r| and the small absolute value for ac in that region. Since

ac is known and the start parameter for |b0,r| is to be estimated, the equations in Figure

4.5 are inverted, including the threshold values distinguishing the equations used:

|b0,r| =







0.0 ac > 0.4509

±
√

ac−γ
α

+ β2

4α2 − β
2α

=
√

64.50−143.05 ·ac +0.11302 0.4509 ≥ ac > 0.2840

exp
(

lnac−d
g

)

= exp(−0.5001 · lnac +1.0596) ac ≤ 0.2840

The value of 0.2840 is used as the inverted threshold (|b0,r| = 5.0, Fig. 4.5) to decide which

curve is to be used.8 This approach is appropriate for broad peaks because it includes all

spectral values within the peak width and thus should be reasonably robust with respect

to noise. It was demonstrated, that the influence of the peak position on the raster of

discrete frequencies on the peak width increases with decreasing |b0,r| (Fig. 4.3). The

next section describes an approach for compensating this effect.

4.6.1 A more accurate approach for small peak widths

If rW (Eq. 4.2) is ≤ 4.0, a different approach to estimate the start value for |b0,r| is used

in order to compensate the increasing influence of the spectral leakage for decreasing

|b0,r|. For narrow peaks, Figure 4.3 (b) shows that two curves are modulated: Mainly, a

quadratic increase of the peak width with |b0,r| is observable. Additionally, a modulation

with a triangle wave of decreasing amplitude is visible. The latter (as opposed to the

former) depends on the position of the peak on the raster of discrete frequencies (see the

7The parabola parameter a is proportional to the amplitude, which is not useful. A norm height
would be more suitable. As this is not available, the vertex height of the parabola proves to be the best
alternative. Therefore a is divided by c for this application.

8It shall be described that for narrow peaks a different approach is used but just in case that ac > 0.4509
occurs, b0,r is set to zero to avoid invalid solutions (negative value under the square root in the middle
equation) within the implementation. This case could occur since the two calculations are different: if
the peak width is so wide that the parabola approach is used, the subsequent determination of parabola
parameters could principally produce a big value for ac.
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If |b0,r| ≤ 5.0: aPoly
c = α · |b0,r|2 +β · |b0,r|+γ

α = −0.0069906 ±2.274 ·10−4 (3.253%)
β = 0.00158009 ±7.594 ·10−4 (48.06%)
γ = 0.450834 ±1.761 ·10−3 (0.3905%)

If |b0,r| > 5.0: ln(aExp
c ) = d+g · (ln(|b0,r|))

d = 2.11879 ±2.995 ·10−3 (0.1414%)
g = −1.99964 ±7.950 ·10−4 (0.03976%)
aExp

c = ed · |b0,r|g

Figure 4.5: Normalised parabola curvature versus normalised LFS parameter. 3,564
spectra of sines are generated by combination of 11 × ν0,r ∈ [199.5;201.0], 54 × b0,r ∈
[−100.0;100.0] and 6 × φ0 ∈ [0;2π]. A0 = 1.0, N = 1,024, T = (1/N)s → ∆ν = 1.0Hz.
According to the peak width (Sec. 4.3), the magnitude values of each peak are eval-
uated to obtain the parameters of a parabola (Sec. 4.5.1). The continuous coloured
lines belong to the two functions which are fitted to the curve progression. The errors
of the fit parameters are gained by GnuPlot (standard error of the regression).
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Parameter Fit results
m 33.503 ± 0.255 (0.76%)
a -64.792 ± 0.416 (0.64%)
b -0.39657 ± 0.03252 (8.2%)

Table 4.1: Fit results for the function: |b0,r|(rcorr
W ) =

√

m · rcorr
W +a+ b.

different curves in Fig. 4.3 (b)). By evaluating the degree of asymmetry of a peak, a

correction to the real position of the peak (rMax) can be estimated.

The difference between the magnitude values of the two neighbours closest to the peak is

calculated and normalised by a division by the magnitude of the maximum value itself:

dNorm
Mag =

|A[imax−1]|− |A[imax+1]|
|A[imax]| . (4.6)

Since the positions on the discrete raster lie equidistantly, dNorm
Mag is a periodic function

with respect to shifting the peak on the frequency axis. Furthermore, with an increasing

peak width the two neighbours tend to become equal – meaning that

dNorm
Mag −−−−−−→

|b0,r|→∞
0. (4.7)

These two properties are exactly the ones needed to approximately compensate the tri-

angle modulation by linear addition of the correction:

rcorr
W = rW

(

1.0−xScale · |dNorm
Mag |

)

. (4.8)

For synthetic data, all parameters except for xScale are known and thus it can be deter-

mined by rewriting the Equation 4.8: xScale = 5.9746.9

Finally, the quadratic increase of |b0,r| with increasing rcorr
W has to be handled. For real

data the |b0,r| parameter is unknown, so – compared to Figure 4.3 – the axes are swapped

and a square-root function is fitted. Table 4.1 gives the fit results. Consequently, |b0,r| is

set to

|b0,r| =
√

33.503 rcorr
W −64.792−0.39657 (4.9)

if rcorr
W > 1.9386 or, if otherwise, to |b0,r| = 0.0 in order to avoid imaginary solutions.10

9The scaling is independent of the parameters, but for the sake of completeness, the following parame-
ters are used: N = 1,024, ∆t = 0.1 · (1/N)s, therefore: ∆ν = 10.0Hz, ν0 = 100.25 ·∆ν, φ0 = 0.0, A0 = 50.0,
b0 is systematically varied in steps of 2.0Hz/s, in the range of [0.0Hz/s;1,000.0Hz/s]. The value of xScale

was gained before the analysis was performed with transformed coordinates (Sec. 3.1.3), for b0,r, this
corresponds to a step size of 0.02 and a range of [0.0;10.0]. For the 501 values the mean value for xScale

(according to Equation 4.8) is gained.
10This is an additional case demanding |b0,r| = 0.0. This is not in conflict with the description given

in the last section (Sec. 4.6): there, the parabola parameters are analysed, whereas here, the peak width
(Sec. 4.3) is evaluated. Typically, both follow the same trend, but to avoid invalid solutions or even
software crashes, this condition is double-checked.
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Figure 4.4 indicates that the parabola fit in order to estimate the mean frequency of a

peak is imprecise for narrow peaks. With the estimated value for |b0,r| and a quantitative

measure for the symmetry of the peak dNorm
Mag , a corrected position of the peak is gained

by a parabola fit:11

rcorr
Max = (−0.026793 |b0,r|2 +0.055348 |b0,r|−0.63619) dNorm

Mag + iMax, (4.10)

which will be useful when estimating the start value for ν0,r. The correction to the discrete

iMax amounts to tenths of ∆ν.

4.6.2 The sign of b0

In Section 3.2.3 (p. 67), it was described that the slope of the phase as a function of

frequency is exactly π/∆ν at the mean frequency of the LFS sine. Furthermore, it was

demonstrated that the slope of the surrounding values deviates the more from that value,

the bigger |b0,r| gets. And finally, that the sign of b0,r determines the sign of the deviation

of the slope. Because the phases are 2π periodic, it is somehow absurd to discuss whether

the slope is greater than π. But, assuming the slope is always in the range of π, π

can be subtracted, leading to a rather flat curve, where it is meaningful to analyse its

progression. This is demonstrated in Figure 4.6: Starting with the phase of the strongest

value in the magnitude spectrum (at imax), the two differences to the neighbouring values

are taken and averaged. π is subtracted and the result is a point-symmetric curve with

the important property that the sign of the value is the same as the sign of the b0 used

to create the spectrum. Random parameter combinations are used; (a) is without noise

and limited to a range of b0,r = ±30. For this case, this works reliably. In (b), 20% GWN

is added; the spreading of the values can lead to the wrong sign: The black dots have a

low absolute value by themselves, especially for large values of |b0,r|, and thus a relatively

small amount of noise can change the three phases of the spectral values at the maximum

in such a way that the wrong sign would be assumed (the cloud of black dots extends to

both sides of the zero line). In the section referred to above and especially in Figure 3.8,

one can see: The farther one veers away from the maximum, the greater the difference in

the slope of π/∆ν becomes. Thus, for broader peaks, it is absolutely advisable to include

more values. In the same way, differences between the neighbour and the following next-

neighbour values are taken: π is subtracted and the average is plotted. This yields the

red and finally the green values in (b).

Since a correct estimation of the sign for b0 is crucial for the fitting, relatively more

effort is put into its reliability. In order to estimate the most probable sign of b0, all

values in the range of the peak width rW (Sec. 4.3) are taken into account. Each phase

difference between two neighbouring values is weighted by division by the magnitude of

11The relative errors are: quadratic term: ±0.025%, linear term: ±0.39%, constant term: ±0.23%.
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the respective outermost value. These differences are added (with inverted signs for the

results gained from the right side of the peak) and finally, the sign of this sum is used as

a reliable estimation of the sign of b0.
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Figure 4.6: (a) demonstrates the mean of the two differences between the phases
at iMax−1 and iMax as well as between iMax and iMax+1 as a function of the input
b0,r. 10 random frequencies (100.0 ≤ ν0,r ≤ 120.0) × 10 random phases (0 ≤ φ0 < 2π)
× 100 random linear shifts (−30 ≤ b0,r ≤ 30) are combined (10,000 dots). The sign
of their values is the same as the sign of b0,r. Analogously, the values for (b) are
generated. Here the range for 54 random |b0,r| is enlarged to (−100 ≤ b0,r ≤ 100),
additionally, Gaussian white noise with a relative level of 0.2 is superposed. The
black dots are similar values to the ones in (a). If one more step to each side is taken
into account (namely the phase difference between neighbours of the maximum and
their neighbours) and the mean is taken, the red dots occur. Green is again one
step further and therefore the mean value from six differences. For narrow peaks this
means too many values are evaluated – the outer values are dominated by noise –
which is why the green points spread greatly for small values of b0,r.
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4.7 Start value for ν0

If the condition allowing for the employment of the parabola parameters is met (rW > 4.0),

then the vertex of the parabola (parameter b) is utilised as an estimation for the maximum

of the peak in the magnitude spectrum and rMax is set to −b (Sec. 4.5.1). Otherwise, for

narrow peaks, the spectral-leakage corrected rcorr
Max (Eq. 4.10) is used to estimate the start

value for the frequency:

νStart
0,r = rMax − 1

2
bStart
0,r (4.11)

4.8 Start value for A0

Parseval’s theorem can be interpreted as: the total energy contained in the time-domain

signal summed across all of time T is equal to the total energy of its spectrum summed

across all of its frequency components [11, Sec. 8.12].12 Consequently, all magnitude

values in the spectrum should be considered ideally. But if the data consist of more input

than just a single sine, the lower the magnitude of a value is, the more will noise and

other signals contribute. Like before, it makes sense to focus on the highest values. In

this work, the magnitudes of the highest three values are summed up as a basis for the

spectral power of a peak.13 The broader the peak is, the relatively less of its power is

considered in this approach. 30 ν0 × 500 b0 values (up to |b0,r| = 300) were calculated

and used to fit expressions to their progress (similar to Fig. 4.5). In Figure 4.7 a small

fraction of these values and the fitted function are illustrated.14

Figure 4.8 depicts the corrected values versus the real b0,r values. Ideally, all values are

1.0, instead the error is less +3 % or -5 %. However, this is absolutely sufficient for the

robust fit parameter A0.

12If a window function is used, this holds at least approximately if the spectrum is additionally nor-
malised by the window integral, see Section 3.1.2.

13Due to the character of the Hann window, there are always at least three high values (Sec. 2.3.3 or
Fig. 3.2.2). The estimation accuracy for broader peaks could probably be increased if more values were
included. The parabola parameter c (Eq. 4.5) seems to be particularly promising. But since no single
case could be found in which an improved start value for the amplitude improved the fit result and (at
most) only a few iteration steps could be avoided, a further optimization is not pursued.

14Firstly, the range for |b0,r| is limited to 30, secondly, only every seventh value is represented in order
to limit the amount of dots in the figure. (Seven is chosen because it is coprime to 30 and 300. Thus,
one can be sure that every b0 and ν0 value shows up if it is combined systematically)
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If b0,r ≤ 10.0: AStart
0,Poly = a · |b0,r|2 + b · |b0,r|+ c

a = −0.00188999 ±4.733 ·10−5 (2.505%)
b = 0.0102338 ±4.997 ·10−4 (4.883%)
c = 0.796579 ±1.255 ·10−3 (0.1576%)

If b0,r > 10.0: AStart
0,Exp = d · |b0,r|g

d = 1.96502 ±3.978 ·10−3 (0.2024%)
g = −0.435508 ±7.114 ·10−4 (0.1634%)

Figure 4.7: The sum of the magnitudes of the three highest values |AiMax−1| +
|AiMax

| + |AiMax+1| is plotted versus the input parameter b0,r. 500 b0,r values
(∈ [0.0;300.0]) and 30 ν0,r values (∈ [100.0;120.0]) are combined for the fit (for all
combinations, the sine input A0 = 1.0 and φ0 = π/2, N = 1,024). For b0,r ≤ 10.0 a
polynomial of second degree is fitted, for greater values an exponential decline.
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Figure 4.8: This plot demonstrates the estimated start parameter AStart
0 as a func-

tion of |b0,r|. The corrected start values for AStart
0 (Fig. 4.7) are normalised by division

by their corresponding input A0.
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4.9 Start value for φ0

4.9.1 Parabolic phase fit

In Chapter 3 (esp. Fig. 3.8 (d)) it was demonstrated that a realignment of the phases can

lead to a monotonous, smooth progression with the slope continuously changing from 0

to 2π/∆ν (or vice versa, depending on the sign of b0). At the point where the frequency

is exactly ν0, the slope is 1π/∆ν. An example in which a straight line with the slope

1π/∆ν is subtracted from the phase spectrum is given in Figure 4.9. The easiest way how

this can be achieved is by adding (or subtracting) π to every second value. In this figure

the phase at iMax is subtracted from the phase spectrum for clarity.15 Beginning with

the value for iMax, the nearest values to the sides are decreased by 2π if the difference

is bigger than π (resp. increased by 2π if smaller than −π). This is represented by the

blue lines. By comparing the altered values with the original phase progression one can

see that the altered curve is smooth. For bigger values of b0,r the smooth interval can be

used to fit a parabola to it: The position of the vertex may be used to determine ν0, its

width to determine b0 (see also 4.6.2). The phase may be determined by the height of the

vertex. Therefore, the slope of the phases may also be appropriate to find all the start

parameters except for A0.

In this work, only the phase is estimated by the above mentioned approach because fitting

a parabola to the magnitude values is more reliable; the phases are very susceptible to

noise and other superposed signals and, in particular, this approach fails for b0 ≈ 0 (see

Fig. 4.9 (c)).16

A parabola cannot represent the real shape of the curve progression: for positive b0 the

slope of the phases increases from 0 to 2π/∆ν (vice versa for neg. b0), so to the left and

right of the peak it becomes asymptotically constant (e.g. see Fig. 3.8 (d)). Subtraction

of a line with with the slope 1π/∆ν does not change this behaviour. Per definition, a

parabola has a linear increase of the slope. Therefore, the fit will contain a systematic

error; its suppression is described in the following.

1. A line may be added to a parabola only to result in another parabola. Therefore,

the addition of π to every second phase value is omitted. This was done only for

the plots in Figure 4.9 to clarify the ansatz.

2. Beginning with the phase closest to rMax (usually close to or exactly the same as

iMax: the location of the local magnitude maximum in the given spectrum) the

15In doing so the φ0 dependency is eliminated. The phase parameter φ0 contributes linearly to all
phases in a peak (if the peak at negative frequencies is neglected, otherwise they superpose, Fig. 3.4 (b)).

16The mentioned approach could be used as a second, very sensitive way to estimate the start param-
eters. In the future multiple approaches may be implemented in parallel to increase the start parameter
quality, potentially reducing computational effort during the fitting.
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i− iMax

Plot A0 ν0/Hz b0/(Hz/s) φ0/◦ ∆ν/Hz ∆t/ms
(a) 1.0 30.3 20.0 0.0 1.0000 0.9766
(b) 1.0 30.3 −1.1 0.0 1.0000 0.9766
(c) 1.0 100.0 0.0 30.0 0.9766 1.0000

Figure 4.9: Spectra with N = 1,024 samples; the abscissa depicts the frequencies
in units of the value index after subtraction of iMax. The magnitude (right axis) is
illustrated in black, it is normalised to the magnitude at iMax. The red lines represent
the phase (left axis); the blue lines represent the phase after the application of the
realignment as described in the text. The green dots show the phase, with the phase
at the magnitude maximum subtracted, in the region without phase jumps, where
admissible (in (a) and (b)), a parabola is fitted.
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phases to the sides are aligned by addition of ±n 2π (n ∈ N) in such a way that they

monotonously rise to the sides.17

3. The fit is done as described in Section 4.5.1. The line with a slope of 1π/∆ν

ignored (item 1.) is now considered by adding π in Equation 4.3 to the linear

progression: β → Norm[β +π].18 Subsequently, it is transformed to the vertex form

y = a(x+ b)2 + c.

4. Assuming the slope in the direct vicinity to rMax is at a constant 1π/∆ν, the adap-

tion to the raster is done by linear interpolation:19

φTemp = c− (rMax −⌊rMax +0.5⌋) ·π (4.12)

5. Finally, a linear b0 dependency is compensated. The derivation of the following

equation is shown in Figure 4.10. Corresponding to the freedom to add n ·2π to the

phase, the axis intercept is reduced to smaller values:20

φStart
0 =







φTemp +0.784523 · bStart
0,r +0.878841 if bStart

0,r > 0

φTemp +0.784221 · bStart
0,r +2.255041 if bStart

0,r ≤ 0

(4.13)

The axis intercept for either one of the cases results in approximately π minus the

axis intercept of the other one.

For signals without noise, this works well as demonstrated in Figure 4.11. In the ideal

case, the points would lie on a line through the origin with slope 1.0.

4.9.2 An approach for small |b0,r|
In Figure 4.9 it is demonstrated that the parabola approach as described above (Sec. 4.9.1)

fails for narrow peak widths. This subsection gives a brief description of the procedure

used in this case.

One can use the phase at iMax to estimate the one at rMax, using the slope of the phase

here. Especially for small |b0,r| values, the slope (phase shift per ∆ν) varies and a parabola

17They can also be aligned to monotonously falling. However, this does not change the result.
18Arbitrary multiples of ±2π can be added to the phase without changing the mathematical meaning.

In this context the Norm[φ] function limits the range of φ to ]−π;π].
19The Gaussian bracket (or ”floor”) gives the largest previous integer to rMax (0.5 is added to round

off correctly, the common ”rounding” function includes this correction). This is subtracted from rMax

itself, meaning that only the digits after the decimal point remain. As r is the ”continuous index” of
the frequency scale, this is the direct measure for the deviation of the rMax from the raster of discrete
frequencies.

20When looking at figure 4.10, the y-intercepts appear to be identical or at most have an insignificant
difference. However, the phase values of the ordinate may be limited to a range of 2π, thus, in relation,
the difference in the y-intercepts is not at all insignificant.
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If b0,r < 0.0: φStart
0 = φTemp − (m · bStart

0,r + b)
m = −0.784523 ±5.679 ·10−5 (0.007239%)
b = 24.2539 ±3.437 ·10−3 (0.01417%)

If b0,r > 0.0: φStart
0 = φTemp − (k · bStart

0,r + l)
k = −0.784221 ±8.541 ·10−5 (0.01089%)
l = 22.8777 ±4.011 ·10−3 (0.01753%)

Figure 4.10: Plot demonstrating the linear dependency of φTemp on b0,r. A0 = 1.0,
φ0 = 0.0, ∆ν = 1.0Hz, N = 1,024; 8 ν0,r values are combined with 50 b0,r values within
intervals of a width of 5.0 at four different regions. Because of the freedom to add
n · 2π to φTemp, the right alignment of these values would be a lengthy process. One
could write a procedure for this task but I rely on the linearity. Firstly, the b0,r

values were chosen so contiguous that no hidden dependency should remain unrecog-
nised. Secondly, a second package for each linear fit was used, exhibiting excellent
correspondence to the fit curve progression. Thirdly, subsequent tests confirmed the
correctness. Utilising packages allows the usage of few different alignments for sev-
eral values. Both lines are plotted in both fit intervals to demonstrate their parallel
curve progression. In this representation the intercepts appear to be similar, but their
difference is significant.
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Figure 4.11: The estimated phases are plotted versus the input φ0. For this purpose,
11 φ0, 18 b0,r (|b0,r| ≤ 100.0) and 11 ν0,r values are combined to generate 2,178 spectra
of sines. If the peak width (Sec. 4.3) results in more than four values representing a
peak, the described parabola approach is used to estimate the phase.

can be fitted to this progression (see Fig. 4.6 for small positive or negative b0,r values).

Due to the symmetry, only positive values are evaluated, the fit ranges from 0 < b0,r < 8.

The result is a function for the local slope mloc:

mloc(|b0,r|) = a · |b0,r|2 + b · |b0,r|+ c with:

a = −0.0114008 ±8.113 ·10−6 (0.07116%)

b = 0.137131 ±6.478 ·10−5 (0.04724%)

c = −3.14773 ±1.176 ·10−4 (0.003736%)

The deviation between the closest discrete frequency and the estimated peak location is

(analogous to Eq. 4.12)

rdiff = rMax −⌊rMax +0.5⌋ (4.14)

The phase at rMax can be estimated by linear interpolation:

φrMax
= φiMax

+ rdiff ·mloc. (4.15)

Analogously to Equation 4.13, the start value for φ0 is gained by compensating for the

linear dependency on b0,r:

φTemp2 = m · b0,r + b (4.16)
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Figure 4.12: Plots demonstrating the estimation and fitting behaviour for the phase
parameter under the influence of noise. The input value is fixed at φ0 = 0.0, 15 values
for b0,r and 11 values for ν0,r are chosen randomly and combined (resulting in 132
dots). (a) 5% Gaussian white noise; (b): 20%.

with

m = −0.768408 ±1.157 ·10−3 (0.1506%)

b = 23.4881 ±2.019 ·10−2 (0.08596%).

This approach was developed before the parabola one (Sec. 4.9.1) in which two linear

fits are applied depending on the sign of b0,r. Here, one common fit is conducted and a

correction with respect to the sign of b0 is performed subsequently. This is less accurate

but sufficient for the small range of |b0,r| this approach covers.

φStart
0 = φrMax

−φTemp2 +







−0.428352 if bStart
0,r > 0

0.286399 if bStart
0,r ≤ 0

(4.17)

4.9.3 Subsequent phase adaptation

Figure 4.12 shows examples for the start parameter estimation and results of actual fitting

of φ0 with two levels of Gaussian white noise. One can see that this approach is highly

vulnerable to noise. Ideally, all values should be centred at (0.0;0.0), because the phases

of all input sines are zero. Two results should be pointed out: Firstly, even for low levels

of noise the estimated phases are likely to differ from the input ones and these differences

seem to have no impact on the fit result (if the fitted φ0 is , 0.0, one could expect an
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alignment along the line through the origin with slope 1.0). Secondly, the fitted values

are likely to be remarkably different from the input values.

The parameter φ0 is the initial phase of the sine function in the time domain, whereas the

start parameter estimation can only be performed in the spectral domain, which includes

the complete data interval. Small changes of either ν0 or b0 will hardly change the first

period in the time domain, but, if the spectral domain is fitted, especially the peripheric

regions in the time domain will change. The higher the level of noise, the less precise

these parameters will be estimated and therefore the more the phase is going to change

during the fitting process, regardless of how well the start value fits to the estimated set

of the other start parameters.

To better understand this this behaviour, it was analysed how the start phase influences

the fit result by taking a GWN level of 20% and the estimated start values as described

in this chapter. Additionally, the fixed phases n · 2π
8 , n ∈ N, [0 ≤ n ≤ 7] are also used

as start phases. 56,144 fits were analysed and the estimated phase did not perform any

better than the equidistantly distributed ones. Figure 4.13 includes three examples for

fitting and LFS-sine removal, demonstrating different effects: (a) shows the fit with the

least difference with respect to the RMS∆ value of the pure noise before the sine has been

added and the RMS∆ value after the sine has been added, fitted and subtracted.21 This is

desirable for all fit results. (b) illustrates a very common behaviour: The complex values

of the noise add to the ones of the sine in such a way that the sum is similar to a sine with

different parameters. The fit algorithm cannot discriminate between the contributions

from the LFS sine and the GWN and, by minimising χ2, will result in the parameters for

their superposition to produce the corresponding spectral peak. Consequently, if a sine

with these parameters is subtracted, it will leave a notch in the spectrum (particulars of

notches are given in Sec. 5.6). Finally, (c) reveals the reason for these plots being shown

in the section about start phase estimation: The fit result is very different from the start

parameters:22

AInput
0 AStart

0 AResult
0 νInput

0 νStart
0 νResult

0 bInput
0 bStart

0 bResult
0

1.0 0.84496 −0.62886 200.500 199.764 171.198 66.124 70.984 132.931

21In order to quantify the influence of the LFS-sine subtraction on the data (in anticipation of Section
5.2.1.1) the RMS∆ value is used as a measure for the energy difference between the original signal and
the signal after subtraction of a (LFS) sine. For artificial signals, the signal without (LFS) is known and
can be compared with the signal after a (LFS) sine is added, fitted and subtracted. These two signal are
subtracted and the root mean square (RMS) value is determined in the time domain; ideally it would be
zero.

22For the sake of completeness, but with little usefulness: φFit
0 = 4.2112, φInput

0 = 5.2679, φStart
0 = 0.9457.

Because of the difference between input parameters and fit results, the statement that the phase is wrong
by only φInput

0 − φFit
0 = 1.0567 is wrong; multiples of 2π lie between them (compare phase swapping

for broad peaks, e.g. Fig. 3.3). A0 has become negative; this indicates, that the poorly estimated
phase is compensated for by decreasing the amplitude through zero and up to its negative value. It
also demonstrates the ability of the algorithm to evolve parameters systematically to values far from the
starting ones.
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Figure 4.13 and, in addition, Figure 4.14 show the LFS sine components for these fits

and demonstrate what a wrong start phase can induce:23 If the phase is close to being

maximally wrong, then the χ2 (Sec. 2.1.1) value at the first iterations is very high, even

higher than without any sine function at all. Whatever parameters the gradient drives

the algorithm to, they will most likely be accepted as an improvement because the χ2

value is likely to decrease. Multiple acceptances in a row increase the step size of the

algorithm by orders of magnitude. Therefore, the algorithm may perform long steps in

the four-dimensional parameter space and subsequently end up in a secondary minimum –

with very different parameters from the estimated ones.

A solution is to pin down the fitting algorithm at the best local χ2 minimum which can be

found with reasonable effort. For this, a first step is introduced in which four phases are

tested: The first is the one that is estimated like before; furthermore, successively π/2, π

and 3/2π are added. Within the peak width, the complex values for sines with these phases

(and the conventionally estimated other three parameters) are calculated and subtracted

from the spectrum at hand. The sine producing the lowest sum of squared values, φbest,

in this range should have the best set of parameters of the four sets. Assuming a smooth

topology, the resolution is improved by repeating this procedure with additional phase

variations: Centred between this best phase so far and its two neighbours (in this case the

ones at φbest ±π/2) two additional nodes are calculated and again φbest is set to the phase

producing the lowest sum of squared values. With each repetition two sets of parameters

need to be calculated for each duplication of the resolution. In this work the process stops

after two more halvings so that the best 16th part of the phase cycle is selected.24 In sum,

the additional effort yields the need to calculate FSum for all discrete values within the

peak width rW (Sec. 4.3) for eight phases.25 The calculation of the pure values is less

computational effort than if the derivatives are included. According to a rough estimate

this additional effort is in the range of six iteration steps and thus quite high.26

23Note that, in opposition to the statement in Sec. 2.1.1, the maximum number of iterations is 400
here.

24Showing another plot with e.g. φStart
0 versus φInput

0 is dispensable: the differences between the input
and the start values of ν0 and b0 are typically big enough to alter the phase spectrum of the input values
compared to the start values significantly (the phase shift per ∆ν is up to π, e.g. Sec. 3.2). It is important
for the start phase to fit to the other start parameters in order to begin the fit procedure with a low χ2.
The potentially big difference between φStart

0 and φInput
0 is unproblematic and gets cancelled out during

iteration.
25Four steps on the whole circle yields a resolution of a 1/4 circle, then twice with halved angles each

further doubling the resolution.
26For future applications, one could introduce a parameter to decide whether this phase testing is

reasonable; e.g. for low levels of noise the introduced estimation approach works very well, therefore
a peak-height-above-noise level could be estimated and used with a threshold. Another approach could
include the evaluation of the parabola fit quality in the phase spectrum (presumably based on a threshold
for the RMS value of the difference between the parabola and the real values).
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Figure 4.13: LFS sines superposed with GWN (20%) in the spectral domain.
Turquoise: underlying sine, green: fitted sine, blue: input data (sum of noise and
sine), red: data after peak subtraction, black: pure noise. (a) shows the best fit with
the lowest RMS∆ value (0.0116) of the difference between the pure noise (black) and
the data after addition, fitting and subtraction of a sine (red), indicating that the
data remains highly unchanged. (b) is still successfully fitted, but the manipulation
of the underlying data is quite strong. By comparing the red and the black curve pro-
gression, one can see obvious deviations: The fitting procedure leaves a deep notch in
the spectrum, (RMS∆ = 0.531). (c) shows the most improper of all fits, its RMS∆

value is 0.785 when the fit is stopped unsuccessful after 400 iterations (Fig. 4.14 shows
additional plots).
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Figure 4.14: Additional plots to the spectra exhibited in Figure 4.13 (c). (a) illus-
trates the three sine functions: the start values are represented by the red line, the fit
results by the green and the input values are given in black. The three start values for
A0, ν0 and b0 are neither good, nor exceedingly bad. (b) shows the complex spectrum
(zoomed in): For the sake of clarity only the start and input curves are given, pointing
out the reason for a very high χ2 at the beginning of the fit. The start value for φ0

causes most of the values to have negated signs in comparison to the input spectrum.
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4.10 Conditions for failure

The correct estimation of the width of a peak is the more challenging, the higher the level

of noise becomes in combination with big values of |b0,r|. Figure 4.15 shows one example

where the start-value-estimation algorithm fails completely: Because of the high level of

GWN, the superposed signal shows deep notches and the algorithm sets the borders of

the peak width (Sec. 4.3, 50% decrease in magnitude to the sides of iMax) very close

to the maximum (see red marked region in (b)). Additionally, the extreme peak width

induces a very small slope. Combined with an unfortunate superposition with the noise,

the parabola calculation (Sec. 4.6) results in an inverted sign for the parabola orientation

ac for b0. When the parabola opens upward the peak is per se skipped in the sense that

no attempt to fit is done.
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(b)

N ∆t ∆ν A0 ν0 b0 φ0

8,192 1/N 1.0 1.0 2,000.125Hz −1,495.605Hz/s 0.0

Figure 4.15: Example for a spectrum where the start parameter estimation fails.
(a) shows the complete spectrum, (b) is zoomed to the peak (interval marked with a
bar), eleven complex values were used around the absolute maximum (the rightmost
peak of the red values). The values given are the input parameters. Due to the fact
that the start value estimation fails, no fit results are shown.



Chapter 5

Fit results with synthetic sines

5.1 Introduction

This chapter quantitatively evaluates the performance of the Levenberg-Marquardt algo-

rithm (Sec. 2.1.1) fitting the parameters of the derived continuous equation for an LFS

sine (FSum, Eq. 2.95) with the start parameters as described in the last chapter. Real

signals tend to be complex and the exact parameters of supposed LFS sines are unknown.

One cannot but rely on the parameters returned by the algorithm and has to accept that

some peaks remain in a spectrum and others, such as small peaks which look like noise,

are subtracted. Real signals will be treated in Chapter 6. In order to allow a quantitative

analysis of fits with comparison of the fitted with the original parameters and a statis-

tical evaluation, this chapter uses synthetic signals. Their input parameters are varied

(systematically and randomly) and the fit performance is documented. A spectrum of a

LFS sine superposed with GWN (Sec. 4.2) is defined by many parameters:

• In general, the spectral parameters are: T , ∆t and N , for which T = N · ∆t. For

synthetic signals, the ∆t can be chosen to be (1/N)s according to the coordinate

transform (Sec. 3.1.3). Therefore, the number of parameters can be reduced to

a single one, here N is chosen. It stipulates the number of values of a spectrum

without influencing any general property. The smaller the N , the more likely it

is to find a peak located at a region where the corresponding peak located within

the negative frequencies contributes significantly, which cannot be handled by the

start parameter estimation procedure and therefore can indeed influence the fitting

performance.1

• The GWN parameters are: The level (relative to the amplitude of a LFS sine,

Sec. 4.2.1) and the seed number of the pseudo-random noise for the phase.

1The FSum expression includes both types of contribution, the one from the peak located within the
negative frequencies, as well as the one from the infinite repetitions of peaks. The issue described here
exclusively applies to the start-value estimation.
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• The LFS sine parameters are: A0, ν0,r, b0,r and φ0. A0 can be neglected and is

mainly set to 1.0 in this work. φ0 is the initial phase of the LFS sine and contributes

linearly to the rotation angle of the complex values in the spectrum of this LFS

sine. In a signal with GWN it determines whether the values of the peak superpose

constructively or destructively. Therefore, varying the φ0 is somewhat similar to

varying the seed of the GWN.2 Thus, if the phase dependency of superpositions of

(LFS) sines and GWN is to be analysed, it is reasonable to combine both, the seed

and the φ0, although in limited numbers.

→ In order to keep the number of calculations manageable, for most of the evaluations

shown in this chapter, the parameters ν0,r, b0,r, φ0 and GWN seeds are combined

systematically.

5.2 Parameters for the quantitative evaluation

5.2.1 For known input parameters

5.2.1.1 The RMS∆ value

This measure was used in the last sections to sort the examples. RMS∆ is the RMS value

of the difference between the underlying signal without LFS sine (here the GWN) and

the signal after addition, fitting and subtraction of an LFS sine in the time domain. This

is reasonable as it represents exactly what the intention of this work is: The subtraction

of an LFS sine without the manipulation of the underlying signal.3

5.2.1.2 The four-component error vector

The error vector consists of the four differences between the parameters of the fit result

and the ones of the input signal as components. Its magnitude is a mathematical measure

for the accuracy of the fit: How close are the values, reproduced by the fit algorithm,

to the input values? Rough scale factors have to be identified to render comparable

2For a certain GWN seed, all values of the noise are determined; changing the seed (pseudo-) ran-
domly sets completely new phases. The GWN can show combinations of neighbouring phases which –
in combination with different LFS sines with similar peak positions – produce superpositions, which are
more often hard to fit for the algorithm than other combinations no matter the φ0 parameter. In contrast,
φ0 acts like an offset to the phases of the LFS sine spectrum; changing its value does not necessarily
influence the quality of the superposition with the underlying signal.

3The disadvantage of the RMS∆ measure is its dependencies on the LFS parameters. Firstly, it
is proportional to A0, which is cancelled here by setting A0 = 1.0. Secondly, for a fixed GWN level,
the actual amplitude of the GWN is a function of |b0,r| (Sec. 4.2.1). For increasing values of |b0,r|,
the absolute power in the signal decreases, resulting in lower RMS∆ values and leading to a superior
evaluation to fits of smaller |b0,r| and similar quality. In principle, an additional division by the RMS
value of the pure GWN signal could be used to avoid a scaling with the peak width. Instead of excluding
these dependencies, the following plot shows this elementary measure; the upcoming plots will use the
more suitable one: |~pErr|.
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Difference Factor

∆A0 = AFit
0 −AInput

0
5.0/AInput

0

∆φ0 = Norm[φFit
0 −φInput

0 ] 2/π

∆ν0 = νFit
0 −νInput

0 1.0

∆b0 = bFit
0 − bInput

0 0.5

Table 5.1: Calculation specifications for the components of the error vector. The
factors weight the components in order to adapt the influence of each component
on the overall result equally. ∆φ0 is normalised to the range ] − π;π], otherwise the
subtraction of similar values could lead to big results (e.g. for φFit

0 = 0.99π and

φInput
0 = −0.99π).

parameters (e.g. the amplitude may have any order of magnitude – therefore the same

is true for the difference – whereas the phase is always on the same scale). Figure 5.1

shows the input values subtracted from the resulting fit values; the sorting is from bad to

good with respect to the RMS∆.4 One can see the ranges of the deviations; the derived

scaling factors are given in Table 5.1. The factors are chosen in such a way that most of

the values are below 1.0. The accuracy of a single fit can be described with the Euclidean

norm of the difference vector:

|~pErr| = 0.5

√
√
√
√
√

(

5.0 ·∆A0

AInput
0

)2

+(2/π ·∆φ0)2 +(∆ν0,r)2 +(2.0 ·∆b0,r)2 (5.1)

The factor 0.5 provides for the mean of the values under the root. Therefore, the result

should be as small as possible and, in case it approaches 1.0, the fitting might have failed.

5.2.2 For unknown input parameters: χ2
n

In real applications, one does not know the pure underlying signal and the approaches

described above are not available. Instead, the only information available on the peak

lies in the (complex spectral) values that are used to perform the fit. As described in

Section 2.1.1, χ2 is the value used internally by the Levenberg-Marquardt algorithm to

evaluate whether or not an iteration step improves the parameters. χ2 is evaluated in the

spectral range comprising the values the fitting is applied to; for very small peaks these

are only three or four complex values, for broad peaks their number can be in the order

of 100. Because χ2 (already normalised by the spectral magnitudes) consists of a sum, it

4An annotation to this figure: The plots (b) to (d) show a split, meaning that (at least for these 51,040
combinations) as soon as one of these parameters evolves to far the others will follow. This behaviour
makes sense: At this GWN level (20 %), the peak is still pretty well located at the mean frequency. If
e.g. b0 increases, the peak gets broader, making the ν0 decrease to keep the mean frequency. For φ0 one
can assume that the phase at the begin of the time interval changes if the other parameters change, in
order to retain the best fit.
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Figure 5.1: : Deviations (fit result minus input value) for the four parameters.
16 × ν0, 29 × b0 (|b0,r| ≤ 20.0), 11 × φ0, 10 × GWN Seed are combined, resulting in
51,040 points. The entries are sorted by RMS∆; from left to right the fitting results
improve. On the ordinates the deviations (fit result minus input value) for the four
parameters are plotted.
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is reasonable to divide it by the number of complex values n in order yield comparable

results for different fits:
χ2

n
= χ2

n (5.2)

The probability of the fit producing quite a good χ2 value if the underlying signal does

not contain an LFS sine is noteworthy. The distinction between false-positive and false-

negative is crucial; adjusting the receiver-operating characteristic is an important task

and described later on.

5.2.3 Comparison of the parameters

Figure 5.2 (a) shows a histogram comparing the RMS∆ with the |~pErr| (for all input

LFS sines: A0 = 1.0): In the lower left both parameters indicate a successful fit; if the

fitted LFS sine parameters were exactly the same as the input parameters the result

would inevitably be |~pErr| = RMS∆ = 0.0. For most fits both parameters are similar,

therefore a kind of diagonal line from the zero point to the right top is formed by the

data. Nonetheless, the deviation can be quite significant.5 Two groups of parameter

constellations are interesting: A high RMS∆ and, at the same time, a low |~pErr| (right,

bottom) and vice versa. The former consists of cases where parameters are reproduced

well while even small parameter changes produce significant signal variation.6 The latter

is the other way around.

Figure 5.2 (b) contains the same data as (a), but compares |~pErr| with χ2
n, the parameter

which will also be available for real data. Both parameters tend to correspond to each

other, but with a high variance. Two cases are likely to occur: short vectors (good

reproduction of the input parameters) and quite bad χ2
n (conformity of data and fit

function) at the same time and vice versa. Figure 5.3 includes similar plots for different

levels of noise and with double-logarithmic scale in order to give an overview about the

ranges of the parameters. Additionally, N was changed, without noteworthy influence

on the outcome. (a) demonstrates that the fit always ends in the right minimum and

that the subtraction removes the LFS sine completely. The procedure is implemented

with double precision in floating-point variables. The deviations of the results are in the

same order of magnitude as the numerical resolution (≈ 16 decimal digits).7 Figure 5.4

5Two examples: For a given |~pErr| of 0.5, the RMS∆ value can be in the range of 0.2 − 0.5 or for a
given RMS∆ = 0.2 the |~pErr| can be anything between close to perfect and up to 0.5, which indicates a
poor result.

6One could ask whether one parameter is particularly responsible and whether a different scaling of
the components of error vector would lead to more consistency. But there are indications that constant
factors could be insufficient to describe the parameter dependencies. For example: if b0 or ν0 are slightly
different from the input ones, the period lengths in the time domain do not match with the ones of
the input signal. If the T is long or the local frequency is high, the phase deviation can locally lead
to constructive superpositions instead of reductions of amplitudes which can result in significantly high
values of RMS∆.

7The horizontal lines which are visible in Figure 5.3 (a), in all probability, stem from the numerical
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Figure 5.2: Comparison of evaluation parameters. The same data as in Figure
5.1 are plotted in the form of two dimensional histogram over 51,040 values. Grey
scale: The number of entries in a certain χ2

n/|~pErr| bin. Ordinate: |~pErr| (Eq. 5.1),
Abscissa: (a) RMS∆, (b) χ2

n. E.g. the worst result in (a) (RMS∆ = 0.70, ordinate:
|~pErr| = 0.88) occurs once, the highest number of occurrences is 455 at RMS∆ = 0.14,
|~pErr| = 0.175.
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illustrates a typical fit for a pure LFS sine. Beyond the sixteenth digit of the fit result

basically random digits follow. For non-pure LFS sine signals several examples of spectra

are demonstrated in the upcoming sections.

The given plots provide an insight in the typical range of χ2
n values if an LFS sine with

different levels of noise is fitted. Before the receiver operating characteristic can be set,

the false-positive rate needs to be analysed as well.

resolution, that is they represent the steps between two values of a certain parameter.
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Figure 5.3: For three different GWN Level: (a): 0.0, (b): 0.1, (c): 0.5, the combi-
nations of 16 × ν0, 29 × b0, 6 × φ0, 5 × GWN Seed values are illustrated for N = 1,024
samples (for GWN Level = 0 the seed variation is replaced by a quintupling of each en-
try to keep the plot comparable to the other ones), resulting in 13,920 samples each.
Grey scale: The number of entries in a certain χ2

N/|~pErr| bin. For (c), 642 values are
discarded because no reasonable start values could be gained.
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∆t = (1/N)s → ∆ν = 1.0Hz (it follows that ν0 =̂ ν0,r and b0 =̂ b0,r). The start-value-
estimation procedure decided that 21 complex values lie within the peak width; the
fitting ends after 53 iterations with χ2

n = 7.92 · 10−29. Beyond the Nyquist frequency
(128Hz) the negative frequencies are arranged. Especially the phase spectrum (top)
suggests that the remaining signal mainly consists of random numbers.



112 Fit results with synthetic sines

5.3 Receiver operating characteristic

In order to investigate the problem of false positives, the algorithm is applied to spectra

generated from pure, Hann-windowed Gaussian white noise.8 The analysis of the fit

results will allow for the determination of thresholds or conditions if a certain proportion

of false positives is to be allowed. Figure 5.5 shows the proportion of false positives as a

function of χ2
n. In order to obtain comparable statistics the results of different numbers

of spectra (with varying GWN seed numbers) are merged in such a way that the same

number of spectral values (in each case 4,096 for the positive frequencies) are taken into

account in the form of one set. Five sets for each N are generated to demonstrate the

degree of variation. This plot provides an overview of the progression. The table shows

how many local maxima were evaluated and gives an insight on the spreading of numbers.

It also shows that approximately N/8 local maxima occur.9 Keeping in mind that only

N/2 values form the positive-frequency spectrum analysed, this means on average every

fourth spectral magnitude value is counted as a local maximum.

Figure 5.6 illustrates that the threshold for χ2
n should be chosen based on the number

of values used for the fit; for example: If the threshold for χ2
n is chosen to be 0.01, then

7 % of all fits with 4 values are counted as successfully fitted, but also 43 % of all local

maxima with 3 values. Thus, for big values literally no false positives would occur. For

three different percentages of allowed false positives the dependency of χ2
n thresholds on

the number of used complex values is given in Figure 5.7. Using this curve progression

one can set different thresholds for every number (or range of numbers) of values used; the

corresponding function is called χ2
Thres(nFit). In the program code, this is implemented

as a lookup table with the values shown in Figure 5.7. For bigger numbers, the values in

between two points are interpolated linearly.

Analogously, thresholds are set for the monofrequent approach (Sec. 2.3.7). Because of

the limited peak width, single values are sufficient:

False-positive proportion χ2
Thres(nFit)

1 % 0.00356

2 % 0.00610

5 % 0.01173

Plots similar to the ones in Figure 5.5 are given in appendix A.3.

8This analysis lives on the effect, that using a window function on GWN values results in local maxima
in the spectrum due to superposition of sines: Every value in the spectrum without a window function
could be considered as the spectrum of a sine function. Applying the Hann-window function implies a
convolution with three δ functions at the same and the direct neighbouring positions, so every single
resulting spectral value is influenced by its direct neighbours, resulting in a spiky magnitude spectrum.
Without the window function the GWN magnitude spectrum would be perfectly even without any local
maxima‘and therefore useless for this approach.

9A maximum is counted as valid if the magnitude drops below 50% to both sides (Sec. 4.3); the smaller
the N , the relatively more spectral values are close to the borders of the spectrum where this condition
may not be fulfilled.
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Figure 5.5: Summed histogram of the χ2
n outcome from fits to local maxima in

spectra of pure Gaussian white noise (for each spectrum the GWN seed is changed):
Green: 5 sets, each consisting of a single spectrum with 8,192 samples, blue: 5 sets,
each consisting of 8 spectra with 1,024 samples, red: 5 sets, each consisting of 64
spectra with 128 samples. The abscissa shows the quality of the fit: χ2

n discretised into
200 steps between the extremes. The ordinate holds the proportion of how many fits
have a certain χ2

n or better, normalised to the number of local maxima. E.g. one can
see that 30% of the local maxima are fitted with a χ2

n = 0.1 or better. Local maxima
where the algorithm failed to estimate start values are assigned an artificial χ2

n: The
maximum value plus one increment step, therefore the proportion value jumps to 1
right after the biggest valid χ2

n value, indicating the proportion of non-fitted maxima.
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Figure 5.6: This plot shows the same data as Figure 5.5, but here the 15 sets are
combined to a single input and separated respectively classified by the number of
complex values that are taken into account for the fits. The proportion refers to the
overall number of fits performed within e respective class. (a) full scale, (b) zoomed
in to the lowest 10 %. Intercepts with horizontal lines give reasonable χ2

n thresholds
to allow a certain rate of false positives for each line width. E.g. for an intended
proportion of 0.02, these thresholds are: For three complex values: 2.3 · 10−4, four:
5.6 ·10−3, five: 0.0132 and so forth. The three curves implemented in the software are
plotted in Figure 5.7.
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n values are demonstrated (see Fig. 5.6).

5.4 Further potential issues

5.4.1 The LFS sine spectrum modified by underlying signals

We have seen that, as soon as there is more than one (LFS) sine in the data, the spectral

values are superposed. It is likely that this superposition with the underlying signal

modifies the sine in a way that the fitted sine parameters are slightly different from the

original ones. As described (Sec. 4.9.3), the subtraction is likely to leave a notch in

the underlying signal.The more complex values are used for the fit, the smaller is the

chance that the sum with the underlying signal forms a fittable sine (consistent with

monotonically increase of χ2
Thres(nFit), Fig. 5.7). Therefore, a bigger number of values

used in a fit reduces the mean power taken from the signal by mistake.

5.4.1.1 The sine spectrum modified by neighbouring sines

The spectrum of a sine typically has contributions not only at its mean frequency but

spreads infinitely to both sides.10 As soon as there is more than one sine in the data

the spectral values are superposed as described above. The algorithm fits (and subtracts)

multiple sines one by one starting with the one with the highest magnitude. So the

10The only exception is: b0 = 0 and ν0 is an integer multiple of ∆ν (see Figure 3.5 (a), (b)).



116 Fit results with synthetic sines

current fit can be superposed with contributions of other sines (plus remains from non-

ideal fits/subtractions of higher peaks done before). In general, this problem is the same

as above (sines superposed with GWN noise) but peaks of other sines are typically in

the same order of magnitude and if they get too close the peaks merge completely. As

described in Section 2.3.3, the Hann-window function causes even the smallest peaks to

have a maximum consisting of at least three high values. Therefore, any other sine within

approximately 3 ∆ν influences a peak significantly. A reasonable solution to this problem

is fitting the sum of multiple sines to such superposed peaks. First steps could be done

relatively easily by starting with two monofrequent sines.11 This could be sufficient for

a case that appears frequently: A spectrum consists mainly of two series of sines and

a few of the respective harmonics lie close to each other. As this work is mainly about

the linearly time-shifting sine, this is not treated here. In contrast, the case of two LFS

sines is most probable very complicated: At least two more parameters (2 × b0) need to

be fitted and the start value estimation is expected to be intractable as the slopes of the

phases are functions of b0, so an approach with a relative phase as fit parameter should

not work out. This seems to be a complicated field for additional research.

Just as an example, one special case is introduced in the following.

5.4.1.2 Opposing sines

The magnitude spectrum is the same whether a sine with a certain start frequency and

shift, ending at a certain frequency (after interval time T ), or a sine with exactly this

end frequency and the inverted shift is used; the difference exists exclusively in the phase

(Fig. 3.2). Figure 5.8 shows a superposition of two opposing sines in the time domain

(a) and the resulting magnitude spectrum (b); for comparison the spectrum of the single

sines is shown in red. By construction, both the time-domain signal and the peak in the

spectral domain, are symmetric; the smooth single spectra add up to a rippled combined

spectrum due to the phase. The sine parameters are chosen in such a way so that the

time domain has a point symmetry in the origin, therefore the spectrum has to be purely

real (Fig. 5.9). By this construction, the sines have the same real part and negated

imaginary part. As the combined spectrum shows a (rippled) peak similar to a single one

it is interesting to see how the peak-fitting algorithm behaves here. Figure 5.10 shows the

results. Due to the point symmetry the original curve (black) approaches zero at 0 Hz

and at the Nyquist frequency (512 Hz). Note that the ripples cause the algorithm to fit

11The fitting of two monofrequent sines at once has been pioneered by Jürgen Altmann ([36]).
Monofrequent-sine fits were performed in the magnitude spectra, implying that only two parameters
(A0 and ν0) were fitted. The two phase parameters were gained later by evaluation of the phase at imax

and the degree of asymmetry of the neighbouring magnitude values (to some extent similar to Sec. 4.9.2).
In order to fit two peaks at once, a relative phase difference is needed, because the magnitude spectrum
depends strongly on the phases, as the superposition can be from constructive to destructive. There-
fore, the fitting required five values in the magnitude spectrum, potentially bearing issues concerning the
number of degrees of freedom versus the number of values.
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only 17 complex values (according to rW, Sec. 4.3). Nonetheless, the algorithm has no

chance to find a satisfactory result due to the fact that the imaginary part vanishes which

cannot be achieved by FSumwith b0 , 0.12 Regardlessly of the invalidity of the fit result

the subtraction is done for demonstration with the expected bad result (red curve).

12The real part of the spectrum of a single sine vanishes if, and only if the time-domain signal is point
symmetric. This is the case if the frequency is a multiple of ∆ν and the phase is n · π. If the phase
is shifted by π/2 then the signal becomes mirror symmetric and the imaginary part of the spectrum
vanishes. As described in Section 3.2.3, a b0 , 0 results in phase changes per ∆ν different than π, which
in turn means that it is impossible to create a single spectrum with either real or imaginary part equals
zero. Consequently, a broad peak in one single complex plane is not fittable by a single sine in principle.
However, in this section two sines are added, both have non-vanishing real parts but exactly negated
ones.
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Figure 5.8: Sum of two opposing LFS sines. Parameters: N = 1,024, ∆t = (1/N)s,
from this follows that ∆ν = 1Hz and T = 1s. (a): The complete interval in the time
domain. (b): Middle part of the magnitude spectrum, the red curve shows the spectra
of the single sines for comparison.
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Figure 5.9: (a) Phase and magnitude spectrum of the signal shown in Figure 5.8,
(b) shows the same signal but by real and imagniary part; the real part is in the order
of numerical errors (64 bit, double precision).
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5.5 A real signal superposed with synthetic sines

Before analysing completely real signals with periodic disturbances, synthetic sines are

superposed with a real signal: This signal is a coal-mine-induced event in the area of

Hamm-Herringen, Germany ([37])13 acting as a model for a substantially non-periodic

aftershock signal (Fig. 5.11). It is superposed with artificial sine functions of different

frequencies, amplitudes and phases as an example for periodic disturbances. The sampling

rate for these data is 200 Hz and the segment length is 15 s; all examples will be performed

with 1,024 samples containing the centre part of the signal.

5.5.1 First example

The signal of Figure 5.11 is superposed with a single sine;14 the input parameters and fit

results are shown in Figure 5.12. 1,024 samples are used for the FFT, then a sine is fitted

to the highest maximum. In this example, the algorithm stops after 39 iterations with:

χ2
n = 7.646 ·10−4, the number of complex values used for this fit is N = 28.

By applying the inverse FFT, the signal is restored with very few changes (b); the strongest

changes occur at the beginning of the time interval in the order of 5 % peak-to-peak,

referred to the maximum of the event. In this case a few more plots are given: Figure 5.13

(a) shows the deviation between the original signal and the signal after the sine is added,

fitted and subtracted in the time domain. By performing the subtraction, everything

of the original signal disappears: What remains is an added sine and a subtracted one

with slightly differing parameters, where a subtraction is nothing else than an addition

with a phase-shifted sine. However, the result can only consist of the sum of two pure

LFS sines. The magnitude spectrum is shown in (b); real and imaginary part in (c). A

test is performed:15 The green line shows the result when another fit is applied to the

remaining spectrum; as expected this fit fails completely. Nonetheless, it is subtracted

here for demonstration; the result is shown in red.

5.5.2 Bigger amplitudes

The sine of the example above is increased in amplitude, while the procedure remains

the same. Two examples for the factors 100 and 104 are demonstrated in Figure 5.14. In

the spectra one can see fluctuations in the regions where the spectra of the LFS sine and

13Data kindly provided by Monika Bischoff and Sebastian Wehling-Benatelli (Institut für Geologie,
Mineralogie und Geophysik; Ruhr-Universität Bochum). Measured: 1. February 2007, 19:18:28 UTC
during the "HAMNET" acquisition period. Location depth is 1,056 m, distance between source and
sensor 1,441 m, Mercalli intensity: -0.48, vertical component of a 3D-velocity sensor.

14An example of a real signal containing a seismic event and mains hum is briefly described and
published on a poster [38].

15The spectrum (b) looks similar to other spectra with a broad peak; unique though is the pronounced
asymmetry of its flanks. The question arises: What happens if the algorithm is run on these data?
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Figure 5.11: Test signal from a coal-mine-induced event. (a) shows the time-domain
signal of the 1,024 samples which will be superposed with artificial sines to test the
algorithm. (b) is the magnitude spectrum of the same signal.
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A0 ν0 b0 φ0

Input 50.0µm/s 10.0 Hz 2.0 Hz/s 1.0rad
Fit result 49.9964µm/s 9.999311 Hz 2.000154 Hz/s 1.01019rad

black Original signal
green Signal superposed with sine

red After subtraction of the sine
blue Sine with the parameters of the fit result

Figure 5.12: Test signal from a coal-mine-induced event superposed with an artificial
LFS sine. (a) and (b) illustrate the time domain; both plots contain two signals
according to their scale. (c) shows all four spectra in a logarithmic plot.
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Figure 5.13: Test signal from a coal-mine-induced event superposed with an artificial
LFS sine. (a) shows the difference of the time-domain signals: The original data minus
the data after sine addition, fitting and subtraction (the difference between the two
curves is given in Fig. 5.12 (b)). The black curve in (b) and (c) is the corresponding
spectrum. Additionally, the green curve is the result of a peak fit to this result, red
is the difference (black curve minus green one).
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the underlying signal are in the same order of magnitude. Although both curves have a

smooth magnitude spectrum, their phases fluctuate strongly, causing ripples if added. In

all other regions the spectrum of the signal dominates, so the sum spectrum shows the

respective smoothness.

The superposition is achieved by adding two complex values: As long as the sine is

considerably stronger than the other signal, a further amplitude increase does not change

the phase significantly. Therefore, no significant changes of the shape of the difference

signal can be expected, as long as the fitting and subtraction quality is sufficient to

lower the sine peak below the level of the superposed signal. Figure 5.15 compares three

examples of different amplitudes: The χ2
n becomes better – pretty much in the same way

the amplitude increases: χ2
n contains the squared differences; for every amplitude increase

by a factor 100, χ2
n decreases approximately by a factor of 104. On the one hand the fit

quality increases, on the other hand relatively more has to be subtracted to reach the

same level of remaining signal.

To conclude: There is no such thing as a proportionality of the amplitude of the sine

and the error that remains in the data. As long as the peak of the sine is clearly higher

than the underlying signal, the deviation is more or less the same. Instead, the biggest

contribution to RMS∆ stems from a notch which is likely to remain in the spectrum after

subtraction of the sine. Its ”size” depends mainly on the phase spectrum of the underlying

signal (in the range of the fitted values, Sec. 4.3) in combination with the sine parameters

– with very little influence of the amplitude (as shown in Fig. 5.15).

5.5.3 Bigger linear frequency shift

5.5.3.1 Positive shift

This example demonstrates the performance of the algorithm, if the added sine has a very

strong linear frequency shift. The parameters and results are given in Figure 5.16; further

fit properties are: χ2
n = 1.6530 · 10−9 after 38 iterations; 211 complex values are used,

centred at index 261. As described, the sampling rate is 200 Hz, 1,024 samples are used in

the FFT, therefore the frequency increases from 10 Hz to 10Hz+16.0Hz/s ·5.12s = 91.92Hz

in the chosen time interval. (a) and (b) demonstrate that the deviations from the original

signal are low and in the same order as the narrower peaks in the last section (RMS∆ =

1.48781 · 10−7). By this procedure, smaller magnitude values are altered relatively more

than big ones; this is reasonable as for the χ2 parameter in the fit procedure, the squared

differences, which are all weighted the same, are minimised.

5.5.3.2 Negative shift

As a last example, the former one is shown with an inverted time course of the sine: The

frequency decreases from 91.92 Hz to 91.92Hz − 16.0Hz/s · 5.12s = 10.0Hz in the chosen
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Figure 5.14: Test signal from a coal-mine-induced event superposed with an artificial
LFS sine. (a) and (b) illustrate the same original and restored signal as Figure 5.12
(b) but with the sine amplitude increased by a factor of 100 resp. 104. (c) and (d)
show the corresponding spectra (similar to Fig. 5.12 (c)).
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1 39 28 7.6462 ·10−4 1.85684 ·10−7

100 39 28 7.5283 ·10−8 1.91219 ·10−7

104 32 28 7.5271 ·10−12 1.91246 ·10−7

Figure 5.15: Similar to Figure 5.13 (a) the deviations between the reconstructed
and the original signal are shown. The curves are pretty much the same.

time interval. The parameters and results are given in Figure 5.17, further fit properties

are: χ2
n = 1.7713 · 10−9 after 37 iterations; again 211 complex values are used, centred

at index 261. The deviations from the original signal (RMS∆ = 9.7122 · 10−9) are sig-

nificantly lower than in the inverted case, even though the χ2
n value is slightly worse.

This variation depends on the current superposition with respect to the phase spectra

(Sec. 5.2).
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A0 ν0 b0 φ0

Input 5.0mm/s 10.0 Hz 16.0 Hz/s 1.0rad
Fit result 4.9999981mm/s 9.9999912 Hz 16.000002413 Hz/s 1.000096rad

black Original signal
green Signal superposed with sine

red After subtraction of the sine
blue Sine with the parameters of the fit result

Figure 5.16: (a) shows the time-domain signal of the original signal and after sine
addition, fitting and subtraction. (b) shows the difference between the two signals.
(c) shows all four spectra, just like in the former example.
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Fit result 5.00000114mm/s 91.920000779 Hz -16.000000231 Hz/s 0.99999343rad

black Original signal
green Signal superposed with sine

red After subtraction of the sine
blue Sine with the parameters of the fit result

Figure 5.17: (a) shows the time-domain signal of the original signal and after sine
addition, fitting and subtraction. (b) shows the difference between the two signals.
(c) shows all four spectra, just like in the former example.
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5.6 Notches and sums of sinusoids with the same fre-

quency

In multiple situations in this and the last chapter, an effect termed ”notches” occurred

in the remaining spectra after sine subtractions. Here an analysis of this phenomenon is

given.16

By fitting sine parameters to superposed spectra, the algorithm tends to subtract more

power (not mandatorily equal to a bigger A0) than the power of the pure sine contained.

As a consequence, notches show up in the remaining spectrum. These notches can be

interpreted as missing frequencies, needed to compose the original spectrum.17 If the

fit is ”very” successful18 notches appear in the spectrum but never spikes. The reason

comes from the nature of superposing a sine, i.e. every signal in the time interval can

be interpreted as a sum of sines, and one can imagine that one of these sines has the

same frequency as the sine which was added to the signal. Sines with the same frequency,

but possibly of different amplitude and phase, are summed up to another sine with this

frequency, but with a different amplitude and phase. No matter if the sines sum up

constructively or destructively, it will be their sum that is handed over to the fit function.

If the superposition is destructive, the fit algorithm converges to a set of parameters with

an A0 which is smaller than the one of the sine, which was added to the signal, and

produces a notch in the spectrum. The other way round, for a constructive superposition,

the fitted A0 is bigger than the input one – likewise producing a notch in the spectrum.

The fact that multiple sines with the same frequency sum up to another sine with this

frequency is important because signals are often reflected and interfere with themselves.19

If the conditions for the superposition change over T , the signal may exhibit strong

frequency dependencies for the investigated magnitudes, which can complicate the general

16It turned out that this phenomenon may be unintuitive and people may think that these notches are
errors of the fitting algorithm and that there should be equivalent ”spikes” remaining in the spectra in
other cases. In order to clear up this misconception, this small section describes the problem in detail
and with more examples.

17Imagine the spectrum of a sequence of equal rectangular pulses. The spectrum would consist of a
fundamental frequency and its harmonics. In order to match the constant parts of the rectangle, each
higher harmonic is used to suppress the sine shape of the lower ones. If one harmonic would be removed,
of course its frequency goes missing. As a consequence, this wave would not suppress the shapes of the
lower frequency sines and higher harmonics would be adjusted to suppress oscillations not present in the
signal. As a result, these oscillations would be visible in the time-domain signal – in form of a sine with
exactly the missing frequency. That is what happens with the notches: They produce the wavy shape of
the inverse-transformed data (e.g. Fig. 5.15) and typically slightly reduce the peak-to-peak value of the
underlying event.

18A fit is successful mainly if χ2
n < χ2

Thres(nFit). If the sine has a big amplitude and the χ2
n value is

barely sufficient but not superb, it can happen that not the complete power of the peak is subtracted and
thus, a peak at this frequency can remain in the spectrum. This is different from the notch phenomenon
which occurs even for ”perfect” fits.

19E.g. a microphone in a certain height over the ground used to measure air-vehicle sound also records
the waves that were reflected from the surface. For seismic measurements additional superpositions occur:
E.g. the boundary surfaces of different soil layers can cause reflections.
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analysis of the signal. However for this work it is important to note that the peak shape

does not change by interference with itself, the algorithm would be applied to this sum

signal and return the resulting amplitude and phase. On the contrary, in the next section

(Sec. 6.5) cases are discussed which can negatively influence the fit progression.

Notches become apparent especially for narrow peaks. Figure 5.18 shows the fit results

when a monofrequent sine is added to a flat region in the ”HammNet” spectrum and φ0

is varied. It can be observed that the notches proceed similarly if π is added to φ0. In

this case, the signals are superposed very similarly – a phase shift by π is the same as an

inverted sign of A0 – this, in turn, can be interpreted as a sine addition in the one case,

in the other it is a subtraction. Because of the high amplitude of the sine, the underlying

broad-band signal can be neglected in the region of the peak and so both fits are virtually

the same. This results in very similar χ2
n values as well as in the cases where one fitted

amplitude is slightly higher or slightly lower than the input amplitude of 5.0000000 mm/s.

In every case a notch is produced.20

If this procedure leaves notches in the spectra, one could raise the question whether

common notch filters can perform comparably in removing certain peaks. In [39] we

demonstrate an example in which the result of the application of highly adjusted Black-

man finite-impulse response (FIR) filters is compared with the one the fit procedure for

monofrequent sines produces. It seems that both approaches produce suitable results, in

which the FMono approach reconstructs the spectrum better, but as we are not trained in

analysing seismic signals, we do not want to assess the changes done to the time-domain

signal.21 One has to keep in mind that, in order to manipulate the underlying signal as

little as possible, the peak width and its location need to be estimated as accurately as

possible. Additionally it might be reasonable the adjust the ”amplitude” of the filter.

This indicates that – without the phase – well estimated parameters are required for a

precise filter application. Filtering cannot replace the fit algorithm, at most it is a kind

of substitute for the subtraction part: without precise characterization the removal will

be in- or overcomplete.

20If the correct parameters were set by hand, no notch would occur because the spectra of signals
sum up linearly and therefore, a subtraction of exactly the same signal, which was input before, would
perfectly reconstruct the underlying signal.

21For broader peaks, the notch filters would have to suppress wider frequency bands, increasing the
width of the notches, whereas, for the FSum approach, the notch depths are typically reduced (e.g. in
comparison of Fig. 5.12 (c) with the plots in Fig. 5.18). The probability for the complex values within the
peak width of the LFS sine to superpose consistently with the ones of the underlying signal is smaller when
more values are taken into account. In the future, systematic parameter variations could be evaluated in
order to quantify the mean power loss of a signal per subtracted sine. Figure 5.15 indicates that (at least
for strong peaks) it is essentially independent from A0. The examples given in Fig. 5.18 show narrow
notches with depths of 0.5−1.0 orders of magnitude.
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Figure 5.18: Part of the HammNet spectrum superposed with monofrequent sines
(ν0 = 40.0Hz) with different phases (top left in the plots). The phases in the right
column are shifted by π compared to the left ones; each peak produces a similar notch.



Chapter 6

Analysis of real data

6.1 Introduction

In this chapter, sine subtractions from longer time intervals of data are demonstrated.

For this purpose, sequences of complex spectra are generated from the data that shall

be cleaned from periodic disturbances. Yet, no spectra-overarching analysis is provided,

and the single spectra are processed separately.1 For each time interval, the spectrum

is calculated and the locations of the local maxima (the peaks) of the magnitude are

extracted. These are sorted by amplitude (in decreasing order) and again processed one

by one: the start values are estimated and if the subsequent fit is successful, an (LFS)

sine with the fit parameters is subtracted from the single, complex spectrum.2 If all

peaks in all spectra are processed, the sequence can be transformed back into the time

domain. Much effort was spent to make the processing run automatically and provide

clear presentations of the outcomes.

6.1.1 Description of the final algorithm for removal of (LFS)

sines

In the implementation some measures have been taken. It turned out that for sequences

of real spectra additional constraints are productive and have been implemented. For

instance, if the mean frequency (νMean = ν0,r + b0,r/2) of the fitted parameters is located

outside the interval of fitted data (the peak width, Sec. 4.3), the result is categorically

marked as failed fit and no sine is subtracted.

1An optimised algorithm should use fit results of at least one spectrum and expect a similar sine in
the neighbouring time intervals. Checking for consistency can also help to discard false positives that
occur in just one spectrum.

2For the generation of a complete spectrum via FSum (Eq. 2.95) the computation effort is quite high: A
spectrum consists of N values and each one is calculated by summing up approximately 6N trigonometric
terms. Instead, a sine with the corresponding parameters is generated in the time domain and in the
usual way transformed with Hann window via FFT.
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For the sake of completeness it should be mentioned, that in this chapter, the maximum

peak width is limited to rW ≤ 100; peaks estimated to be even broader are excluded.3

Beside these rarely occurring, easily handled cases, four important, additional measures

are described in this section.

6.1.1.1 A special approach for small peak widths

Admittedly, the FSum expression can handle monofrequent sines but it has one parameter

(b0) more than the FMono expression. The probability, that the underlying signal / the

noise fits well to the spectrum of a certain sine by chance if very few spectral values

are used, is considerably higher if one more fit parameter is available. This fact leads

to an increased rate of false positives for the FSum expression compared to FMono (see

also Sec. A.3). Lowering the χ2
Thres(nFit) (Fig. 5.6), however, leads to an increased false-

negative rate; the better approach is to use FMono in the case of narrow peaks. On the

other hand, small values of |b0,r| can also produce narrow peaks.4 Therefore a categorical

approach, namely the usage of FMono for each narrow peak, is not reasonable. Instead,

in the case where the start-parameter estimation suggests to use three complex values for

the fit, the following sequence is carried out:

• The FMono fit is done.

• The FSum fit with three parameters is done with its strict χ2
Thres(nFit = 3).

• The FSum fit with one added value to the right is done with the weaker threshold

for nFit = 4.

• This is done with an additional value to the left analogously.

For any fit fulfilling its specific threshold criterion, the resulting χ2
n value is divided by its

individual threshold. The lowest value indicates the best result and an LFS or monofre-

quent sine with these parameters is subtracted.

As described in Section 3.2.2, depending on the position of the ν0 on the raster of dis-

crete frequencies, a monofrequent sine can have three or four strong magnitude values.

Therefore, if four complex values are chosen by the start parameter estimator both – the

monofrequent as well as the FSum– expressions are fitted to these four points. Again, the

one with the better relative ratio (χ2
n/χ2

Thres(nFit)) is chosen.

3This is not a hard limit for b0; instead it excludes really flat regions in the spectra. This condition
means: If a local maximum is detected within a region, where it takes more than 100 spectral values for
the magnitude to drop below 50%, then this region is not expected to be a valid peak. This case occurred
in very few spectra in regions of pure noise. Its computation time for a single peak was in the order of
2 min (same hardware as in Sec. A.4).

4The peak width of narrow peaks depends not only on b0,r but also on the position of the mean
frequency of the peak on the raster of discrete frequencies (Fig. 4.1 shows that the narrowest peak for
|b0,r| = 5 has approximately the same width as the broadest monofrequent peak).
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6.1.1.2 Avoidance of fit results for much broader peaks than expected

In rare cases, the fit was performed successfully starting with few complex values – which

suggests a narrow peak – but ends up with a very high value for |b0|. With increasing

|b0,r| the magnitude of the peak drops (Sec. 4.2.1), thus sets of parameters with high

values for A0 and |b0,r| can be observed. The subtraction of the corresponding broad and

strong peaks from the spectrum, in which only few data points fit, causes the surrounding

values to increase in magnitude much above the original ones, yielding a marked increase

of power in the spectrum. Such a case should be avoided by all means. If this fit result

was correct, its peak should fit on its whole width. Therefore, if the fitted b0 does not fit

to the estimated peak width, the fit is rerun with a higher number of complex values.5 An

example of a broad peak, where a narrow peak width is estimated, was shown in Figure

4.15; if the start value estimation did not fail, then this case would have been a typical

example of the described situation. If this fit was successful, it would have been repeated

with a corrected peak width corresponding to the fitted b0.6

6.1.1.3 Uncovering of hidden peaks

If a peak is subtracted, its complete spectrum is subtracted. Significant changes occur for

the values of the peak and the surrounding. Within these values new peaks might occur or

peaks, which could not be fitted successfully before, might now be subtractable. The safest

way is to restart the complete procedure for the remaining spectrum after the subtraction

of the single peak has been performed. This approach is very time consuming.7 Due to

the monotonous decrease of magnitude of an LFS-sine peak, its subtraction manipulates

the values of the spectrum the less, the more distantly they lie from the centre of the peak.

Assuming that this manipulation becomes insignificant at a certain (relative) magnitude,

it is more sensible to analyse only a small spectral interval again. It was presented

(Sec. 4.3) that the strength of the decrease of magnitude is basically a function of |b0,r|.
Briefly, the following steps are performed to roughly estimate the interval of spectral

values in which the peak analysis should be repeated – this is similar to the estimation of

5The implementation is: if: |b0,r| > 2.5 ·nFit, then: overwrite the left (Ll) and right (Lr) limits of the
peak with Ll,r = rmax ∓|b0,r|/2.5. Subsequently, the fit is repeated. This is not optimised at all and the
value of 2.5 is chosen mostly arbitrarily after the analysis of failures and the understanding that extreme
cases should be avoided.

6The left and right limits of the fitted interval is set to rMax ± b0,r/2.5 before the fitting is repeated.
If and only if this last fit is successful, an LFS sine with the current set of parameters is subtracted.

7In this chapter the χ2
Thres(nFit) are set to allow 5 % false positives. If a spectrum consists of 4,096

magnitude values (at positive frequencies) and approximately every fourth is a peak (Sec. 5.3), then there
are around 50 subtractions in each spectrum if it consists only of noise. For signals containing different
fundamental frequencies with several harmonics, this number can drastically increase. Assuming that 50
peaks, which will be successfully fitted, are equally distributed in a list of 1,000 peaks in total, then a
restart is performed after every fit of one of the 50 successful fits, meaning there will be one late restart
for every early restart. Thus, the average number of fits between two restarts will approximately lie at
half of the complete number, namely 500. Consequently, for 50 restarts, the computational effort will be
25 times higher compared to the procedure without restarts.
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the peak-width parameter (Sec. 4.3), but does not need to be precise.

A linear dependency of |b0,r| on the width of the interval that should be re-analysed, wre,

is assumed (in accordance with Fig. 4.3 (a)):8

wre = ore + sre · |b0,r|. (6.1)

In order to find the margins of the range to be re-analysed, it is assumed that the value

has to fall below the maximum divided by a certain factor f re (fictitiously, irrespectively

of the actual spectral background).9 Systematically, the full width at a certain f re (by

analogy to full width at half maximum (FWHM)) is gained as a function of |b0,r| (the

plots and fits are not shown here; the procedure is very similar to the ones used for the

start value estimation, Sec. 4.3). It allows the derivation of the offset parameter:

ore = 1.803 ·Exp
[

0.7531 · log10[f re]
]

−2.321 (6.2)

and of the slope:

sre = 0.07373 · log10[f re]+0.7570. (6.3)

All peaks located in the interval imax ± Round[0.5 · wre] which are still to be processed

or have been processed unsuccessfully are erased from the list of (LFS) sine candidates.

Within this interval, the new magnitude values are calculated and peaks are detected

and added to the list. Finally the modified list is sorted by amplitude and processing

continues with the strongest peak.

For all spectra analysed in this chapter, the factor is f re = 104.10

6.1.1.4 Reconstruction of the time-domain signal

As mentioned in Section 6.1, longer time intervals are analysed in this chapter, for this

purpose sequences of spectra are processed. A longer time interval is apportioned into

multiple short ones, according to the chosen number of samples per FFT (N). The

application of the Hann-window function sets the first sample of each time interval zero

before a FFT is performed; thus, after inverse FFT and even after the application of

8The deviations from linear behaviour for small |b0,r| (Fig. 4.3 (b)) are ignored here because this
interval estimation may be imprecise.

9The complete algorithm proceeds without knowledge of parameters inherent in the data. This should
not be changed for this small optimisation; therefore the estimation of a value for a parameter such as
the general background of a spectrum is not introduced, even if it could somewhat optimise the length
of the re-analysed interval, e.g. for low SNRs the interval being re-processed could be reduced because it
is unlikely that peaks become valid in the vicinity of the peak if the band of frequencies is dominated by
the underlying signal.

10Two examples: For |b0,r| = 0, wre = 35.40, thus the range [imax − 18; imax + 18] is re-analysed.
wre(|b0,r| = 30) = 65.40.
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the inverted window function, this first value would remain zero.11 If multiple intervals

would be recombined, the result would show periodically missing samples. Furthermore,

the window function decreases the weights for the outer-most values, giving the most

weight to the middle. A particular reason for using considerable overlap is the trend of

the errors (stemming from the notches after sine subtraction) to increase to the margins

of the time interval (e.g. figures in Sec. 5.5). By merging spectra and suppressing their

outermost values, this effect can be reduced strongly. In this chapter each single spectrum

overlaps by 25 % with its precursor. Thus, in the sequence plots, the time shift between

two beginnings of subsequent spectra is given by:

∆TSpect = 0.75 ·N ·∆t. (6.4)

If transformed back to the time domain, the overlapping parts are weighted in such a

way that the amplitudes of the last spectrum decrease linearly and the amplitudes of the

current spectrum increase in the same way over the time of overlap. Thus the preceding

spectrum is faded out in the same way as the next spectrum is faded in, keeping the

proportions right.

6.1.2 Real, measured data

Real, measured data are a composition of real signals with real environment background

noise (and noise produced in the measurement system) as well as manipulations caused

by the involved hardware and its transfer functions. Ideally, one tries to separate all

these manipulators from each other and study their characteristics independently. For

the purpose of this work, the background signals themselves are not evaluated in a way

that, for example, the amplitude is used to draw conclusions about properties of its source;

instead, if certain properties (namely periodic components) are given in the data, the data

are manipulated and ideally, the given background is left as it is.

Important requirements are:

• the signal is sampled equidistantly,12

• the transfer function is independent from the frequency. Otherwise, the FSum ap-

proach could fail for b0 , 0Hz/s. It is assumed that the recorded value is proportional

11This is an issue only concerning the first value. The annulment of the window function for other
values is unproblematic: For these numbers of samples per FFT, the calculation precision at every point
is significantly higher than the range of weights resulting from the Hann-window function. Even at 8,192
samples the precision is several orders of magnitude higher than the quotient between the highest (1.0)
and the lowest (1.47 ·10−7) non-zero value of the weight function – except for the first sample which will
always be zero.

12In our measurement systems there is a slight drift of the time base, on the order of 10−5 relative,
that does not matter over the time periods considered.
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to the voltage at the ADC which itself is proportional to the actual physical quantity

taken up by the respective sensor.13

6.1.3 Seismic and acoustic data

Even though the work is motivated by subtracting periodic noise from seismic signals,

most of the following examples use acoustic data. It is much easier to find or generate

periodic acoustic than seismic signals.14 If acoustic signals couple to the ground, a signifi-

cant amount of energy is reflected or absorbed causing the SNR to be considerably higher

in acoustic data. Typically, compared to acoustic signals, seismic signals are complexer in

the time domain (mainly because of reflections at soil-layer boundaries15, additional seis-

mic wave types16 or, for surface waves in a layered medium, even a significant influence

of dispersion); mainly, they show multiple arrivals of an event, caused by the multiple

propagation paths and different propagation speeds of the wave types. However, the cor-

responding spectra remain relatively simple; the mentioned effects influence the spectral

amplitudes and phases, but the frequencies stay the same.17

As described in section 5.6, the interference between the directly measured signal and

signals propagating along indirect paths can be destructive or constructive, depending on

the differences of their path and wave lengths. The self-interfered signal will show time

dependent variations in its magnitude if either the relative path length or the frequency

changes significantly within T ; both cases are not covered by the algorithm.

The present approach works with all kinds of data, including the acoustic or seismic ones,

recorded in our group. Because of the better SNR most of the evaluated signals shown in

the following sections stem from acoustic measurements.

13To be precise: The transfer functions in principle have no influence on the fitting procedure, as long
as their frequency dependency is insignificant within the peak width of a single peak. If a sine had a
high frequency shift and the transfer functions would have a strong frequency dependency, then of course
the fit quality would decrease because of a missed requirement: in this model the amplitude of the sine
is expected to be constant within T . It will be argued that this requirement is most likely not fulfilled
adequately for some situations (Sec. 6.2.2.3).

14One can use a sound card with a speaker and play a simple audio file. Beneath possible non-linearities
in the transfer function of the hardware, a weak disadvantage of acoustic signals is the fluid propagation
medium: the speed of sound (measured on the ground) can be time dependent (e.g. wind). Acoustic
waves excite seismic waves if hitting surfaces – but with reduced amplitudes. The direct excitation of
strong periodic seismic waves is more complicated; typically, special devices are operated, like vibrator
trucks or smaller plate vibrators.

15The seismic-wave propagation depends on many factors, among others the kind, porosity and layering
of the soil, the groundwater level etc. [40, Chap. 9]. Changes in the wave speeds between different layers,
reflect and refract the wave.

16Compressional and shear waves, surface waves (Rayleigh, Love waves), [40, Chap. 2].
17Signals may become complicated if the interfering sines change their frequencies independently, e.g.

if one propagation path hits a moving reflector (not moving exactly parallel to the source-sensor axis),
it becomes Doppler-shifted and the superposed spectrum consists of doubled peaks, which can cause the
algorithm to fail. A changing angle of incidence and fixed reflecting surfaces can cause the same problems
(e.g. a geophone in layered soil and an overflight as signal source).
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6.1.4 Number of samples per spectrum

The number of values forming a peak in the frequency domain increases quadratically

with the number of samples of the Fourier transform: For a bigger number, the elapsed

time T is longer, meaning that the end frequency has evolved farther away from the start

frequency. In addition, the resolution in the frequency domain increases linearly with N ,

so more values are available in a given frequency interval.

As long as there are no significant changes of the frequency higher than to the first order,

there are two arguments for a high number of samples: Firstly, the algorithm for broad

peaks is to be tested with priority, therefore challenging conditions (with high values of

b0,r) are preferable. Secondly, the peaks have to be well separated; for this a suitable

spectral resolution is required.

The precondition that the signal is sufficiently homogeneous usually is appropriately ful-

filled if the time interval per spectrum is less than 1 s. Our standard sampling rate is

10 kHz, so it is reasonable to perform these evaluations with N = 8,192 samples.

6.1.5 False-positive rate

In the following evaluations 5 % false-positive fits are accepted (this means: in a spectrum

of Gaussian white noise 5 % of all peaks are classified as originated by sines and subtracted,

Sec. 5.3). As a consequence, many peaks will be subtracted (will be best visible in

the plots of the fit results or the theoretical spectra, e.g. 6.2). Reasonable limits and

conditions could be thought of for sorting out candidates for sines and to strongly reduce

this percentage. Their implementation would result in more parameters that had to be

described and motivated which would go beyond the scope of this thesis. Ideas are listed

in Chapter 7. To demonstrate the performance of the fit algorithm this rate of 5 % false

positives is accepted. Furthermore, the cursory analysis of the influence of sporadically

subtracted erroneous (LFS) sines from data shows that the resulting modifications seem

to be insignificant to non-periodic events in the data.18

6.2 Synthetic signals in a real environment

As a first step for the evaluation of real signals, sound files of (multiple) LFS sines are

played via sound card and speaker. The main advantage is, that the input parameters

are known and comparable with the fit results. For this purpose, a small procedure was

18We are not trained in analysing seismic wave forms. Details might get lost, but by visual inspection
the worst case that happened is: a decrease in the order of a few percent of the peak-to-peak value in
the time domain at the time of an event accompanied by small additional oscillations increasing to the
margins of the time interval, see e.g. Fig. 5.12 (b) in Sec. 5.5. The small decrease of the peak amplitude
in the time domain can hardly be seen. If multiple subtractions are performed within the frequency range
of the (broadband) underlying signal the effect increases.
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Initial Initial Sweep Sweep Resulting
# Start End frequency phase Amplitude duration limit b0

/s /s /Hz /rad integer /s /Hz Hz/s

1 0.0 110.0 150.0 0.0 5 ·105 n/a n/a 0.0
2 10.0 80.0 160.0 0.0 5 ·105 n/a n/a 0.0
3 20.0 90.0 180.0 0.0 5 ·105 n/a n/a 0.0
4 30.0 100.0 500.0 0.0 5 ·105 n/a n/a 0.0
5 0.0 110.0 1,000.0 0.0 5 ·105 10.0 0.0 −100.0
6 50.0 110.0 2,000.0 0.0 5 ·105 100.0 1,500.0 −5.0
7 20.0 110.0 500.0 0.0 5 ·105 50.0 1,500.0 20.0
8 0.0 50.0 500.0 0.0 5 ·105 50.0 700.0 4.0
9 20.0 60.0 1,000.0 0.0 5 ·105 n/a n/a 0.0

Table 6.1: Sine properties of the analysed sound file (Sweep4.cmd). The amplitude
values are chosen to be high numbers to minimise discretisation effects and avoid noise
production by strong amplification (the highest possible number is 223, this number
should not be exceeded even if all sines sum up constructively). The real amplitude is
determined by the volume setting of the hardware amplifier used which was adjusted
subjectively to a quite high level which, on the contrary, was not too annoying for
the environment. Important in this column would be the relative differences, but
all amplitudes are the same. The ”sweep duration” is the duration until the LFS
parameters are reset to their initial values in contrast to the duration in which this
LFS sine is played (”Start” − ”End”). b0 is not an input value but results from:
(”Sweep limit”−”Frequency”)/”Sweep duration”.

written for the Eingabe software which produces sound files in the RIFF/WAVE format.

For the experiments described below, the sampling rate of the played files is 44,100Hz

with 24 bits per value. The measured signal of one of the files is analysed in the following

and its input information is given in Table 6.1. The procedure was written in haste in

the field after a day of measurements on the last evening of a measurement campaign in

order to run the experiment the next morning. Two mistakes were made:

1. The sweep-duration parameter did not work: there are no resets of the frequency

to its start value when the sweep-limit frequency is reached.19

2. There is no local time for each sine i.e. all sines propagate from the beginning of

the sound file with the parameters given.20

These experiments could be repeated but, as the created file includes all properties of the

intended file, the data are used here. The mistakes were described to allow a connection

of the following plots with the input parameters shown in Table 6.1.

19E.g. sine #5 decreases from 1 kHz through 0 Hz to "negative" frequencies, in effect increasing for the
next 100 s to more than 5 kHz. The measurement is done at 10 kHz with a low-pass filter at 3 kHz. That
the amplitude does not decrease sharply at this frequency is a consequence of the not very steep filter
characteristic. The ”reflection” at 5 kHz, the Nyquist frequency, is caused by aliasing.

20E.g. sine #7 should start after 20 s with 500 Hz and 0 phase. Instead, because of the mistake, at
the time of its onset, its frequency increased already for 20 s according to the slope given by the sweep
duration and the νend parameters. Thus, the start frequency is not the intended one.
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As mentioned above, these sweeps are analysed with N = 8,192 samples per spectrum for

two reasons: Firstly a good spectral resolution is required to separate the monofrequent

sines with 150, 160 and 180 Hz (Table 6.1). Secondly, this analysis should demonstrate the

behaviour of the fitting algorithm if confronted with broad peaks; the number of complex

values used for a fit grows quadratically with N (Sec. 6.1.3). One instructive example:

For 8,192 samples, T is 0.8192 s and ∆ν = 1/T = 1.22Hz. Sine #5 has a b0 = −100Hz/−100s,

in units of ∆ν/T (Sec. 3.1.3) it is b0,r = −67.11. For 1,024 samples with T = 0.1024s and

∆ν = 9.77Hz it was just b0,r = −1.05. The first one represents a very broad peak, whereas

the second one could even be fitted acceptably with the monofrequent approach.

6.2.1 The seismic data

The experiment was conducted near Münster (Westphalia) from the 13th to the 17th of

May 2013.21 The data processed in this section were measured by a geophone buried

15 cm under the grass of surface.22

Figure 6.1 shows a sequence of 194 magnitude spectra implying 120 s of data (time on

the mantissa). The complete frequency range (0 − 5,000Hz, 4,096 frequency values) is

plotted on the ordinate; the density of spectral values is accordingly high; especially small

peaks (horizontal lines if the frequency is constant), consisting of very few strong values,

are barely visible. Nonetheless, it gives an overview of the complete processed data. The

magnitudes of the spectral values of the soil velocity are given in the grey scale: With five

orders of magnitude almost the full range is presented.23 (a) demonstrates the original

data. Bright lines stem from sines: The nine sines of the played sound file are visible as

well as mains hum with all its harmonics at odd multiples of 50Hz. (b) shows the same

plot after (LFS) sines have been fitted and subtracted.

Figure 6.2 gives details on the fits. (a) is the sequence of the subtracted spectra. (b) is a

different illustration: Each subtracted sine is represented by a circle (under the condition

that its amplitude is at least 10−4 times the strongest of all amplitudes) at the mean

frequency of the peak (ν0 +0.5 · b0/∆ν).24 The colour codes stand for the different paths

the fit procedure can take: Black circles indicate that the estimated peak width includes

at least four complex values and the fit with the FSum expression was successful. If the

fit results in a |b0,r| much broader than expected, it is rerun with more complex values

21At the same experiment, aircraft signal were measured. For information on the measurement, see
[41]. A more detailed publication by Mattes Liebsch is in preparation. Some more details related to
aircraft measurements are given in Section 6.3.

22Vertical geophone #15 Sensor Nederland SM-6, eigenfrequency: 4.5 Hz, sensitivity: ≈ 26V/m/s, fac-
tor of amplification: 100, connected to channel #21 of a 4-box combination of Data Translation DT

9841 ADCs, sampling frequency 10 kHz, cut-off frequency 4.53 kHz.
23Within these five orders of magnitude all significant values are presented. Showing the full scale is

not conducive: By chance arbitrarily small values can occur, reducing the resolution on a logarithmic
scale of the grey scale likewise arbitrarily.

24Again, this limitation of visualised results is reasonable to focus on the strongest peaks with the
highest impact on the signal.
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(Sec. 6.1.1.2), this case is shown in purple. The other colours (explained in the figure

margin) mark the different outcomes for narrow peaks (Sec. 6.1.1.1); in most cases the

monofrequent approach (FMono) produces the best result.25 The amplitude is given in the

diameter (also here with logarithmic scaling), so bigger circles have a higher relevance.

One can see that many sines are subtracted. They mainly are aligned along straight

horizontal lines, according to the mains hum. Figure 6.3 is a small cut-out and gives a

detailed view of the found sines. At positions where lines cross each other the results

tend to become worse or the algorithm even fails. Although the probability of a failure

increases, the 550 Hz line shows that a crossing line does not necessarily make the algo-

rithm fail (around 20 s both sines are subtracted in two stages, Sec. 6.1.1.3); on the other

hand the fit for the same sine (at around 31 s) can fail even if no other lines are close.

6.2.1.1 Single-sine tracking

The list of fit results can be analysed and sets of parameters can be assigned to a certain

evaluation sequence in order to get deeper insights respectively. Presently, this is done by

hand – however, with the support of assistant suggestions.26 Figure 6.4 shows two of the

sequences of sines in separate plots. In order to get the frequency plot in a good resolution,

the linear slope is subtracted by fitting a straight line to the mean frequencies. Its slope

is in good agreement with, on the one hand, the b0 values of each spectrum, on the other

hand with the input parameters in Table 6.1. The time when a specific frequency is passed

is not easily accessible because of the fast change with time and unknown time delays in

the chain of signal production and measurement; therefore, the agreement between the

actual input and fitted frequency is not evaluated. This effect is even stronger for the

phase parameter.

In (a) two classes of outliers can be seen: First of all, there are two b0 values close to zero,

these are probably wrong picks: especially the third circle (at 05:47:22.5) seems to belong

to the peak of sine #2,27 which should have a constant frequency of 160.0 Hz. Another

25Because of the low χ2
n threshold for FSum as a result of one fit parameter more compared to FMono

(Sec. 6.1.1.1), green circles are very rare in general.
26A note for the software users: The procedure (Extract Single Line (Seq), Eingabe: Menu:

6.66.1) allows the extraction of fit parameters for single peaks from the file containing all fit results.
After one set of parameters is chosen for a certain spectrum, the position of the next peak is interpolated
and the parameters of the best fitting set of the next spectrum is suggested. Additionally it shows the
two next neighbours to both sides and allows further scrolling through all sets if the suggestion is not
accepted. Returning to previous spectra is possible. If certain parameters (mean frequency, amplitude,
b0 or χ2

n) fit, they are highlighted. Note that wrongly picked fit results typically have the lowest impact
on the mean frequency – compared to other parameters – because the mean frequency itself is the basis
for the suggestion of the next peak to pick. Other parameters (like b0) can have strongly different values
compared to their last pick; if the mean frequency of their peak matches the expected one, it will be
suggested to the user if no better matching peak is available.

27The ochre colour indicates that it was originally proposed to be fitted with three complex values,
meaning this peak is very narrow. The best result is gained after fitting four values (one is added to the
right). The exact mean frequency of the corresponding fit result is 160.106Hz which matches sine #2
(further fit results: b0 = 2.2661Hz/s, χ2

n = 0.00516).
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Figure 6.1: Seismically measured synthetic sines played via loudspeaker. To give
an overview, the complete frequency interval over the complete time (universal time,
coordinated (UTC)) over which this experiment was conducted is shown. LFS sines
are visible as sloped lines. (a) before subtraction of peaks, (b) afterwards.
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Figure 6.2: Additional spectrograms for Figure 6.1. (a) shows the subtracted spec-
tra, (b) the amplitudes of the fitted sines and the types of fitting which led to the
shown results. These plots show the whole range of the measurement; for better
visibility a part of it is extracted in Figure 6.3.
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Figure 6.3: Small cut-out of Figure 6.2 (b). 50 Hz and odd multiples as well as the
beginning of the monofrequent-sine triplet (150, 160 and 180 Hz, onsets at different
times) show up as horizontal strings. Two lines with a slope are shown: One with a
low positive slope starting with around 500 Hz and one with a strong negative slope
which passes 0 Hz and continues with a positive slope, this one shows up as the black
”V”.



146 Analysis of real data

b0 outlier is at (approx.) 05:47:42. It is fitted with b0 = −123.79Hz/s; here already the

start value was wrong: bStart
0 = −100.48Hz/s. Obviously, the width was estimated fairly

well but the procedure that determines the sign of b0 failed. As described in Section

4.6.2, the sign is calculated from small, systematic deviations from a slope of π per ∆ν in

the phase spectrum. With a low probability the sign estimation can fail, and afterwards

it is virtually impossible for the algorithm to get to the right values by iterating. It is

interesting that even with this failure in the start values the algorithm ends at a point

where the χ2
n value meets the threshold.28

It is not surprising that in (a) all fits were done to more than four complex values because

of the big frequency shift per time which results in broad peaks (purple circles indicate a

prior run with a lower peak width, Sec. 6.1.1.1). Whereas, in (b), the peaks are narrow

and in many cases three values are proposed to be used for the fit. In this case the fit is

repeated three more times with the linearly-changing frequency expression (Sec. 6.1.1.1):

once with the same three values and a very strict χ2
Thres(nFit = 3) and with one more value

added to the left or the right. The colours of the circles show that, after comparing the

four fit results, the FSum expression outmatches the monofrequent expression by fit-result

comparison in every spectrum, except for one. This makes sense as the sine changes

linearly in time and an added value increases the χ2
n threshold. The mentioned single

deviation (05:48:41) is fitted with the monofrequent approach and is not wrongly picked;

its frequency is 1,563.49 Hz and therefore not very close to a harmonic of the mains hum.

It is more likely that the underlying noise consists of just those values, which, by chance,

superpose with the sine in such a way, that the FMono approach, boosted by its lower

threshold for χ2
n, produces a better result than the FSum approach.29

Inexplicable is the predomination of the right-hand-side added values in comparison to

the left-hand-side added ones.30

28 Fit details: 50 complex values are fitted, resulting in χ2
Thres = 0.642. After 120 iterations it returns

with: χ2
n = 0.329. As the algorithm rarely gets to satisfactory results after reaching the limit of 120

iterations one should think about classifying its result under this condition as false (this has also been
mentioned in Sec. 2.1.1).

29If cases like this appeared more often, the procedure ranking the results to compare the fits should
be revised.

30Probably, this is a result by chance: For other sequences, this imbalance vanishes or shows the
inverted direction (e.g. Fig. 6.17).
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Figure 6.4: A pair of tracked sines, each with a plot of the fitted b0 and one with
the mean frequency (in order to get a good resolution, a linear progression is assumed
and subtracted), different time intervals. Top: The sine with the strongest increase
of the frequency (sine #5). Bottom: The sine with the negative b0 (sine #6). The
equations for the subtracted lines are: (a): 100.07Hz/s · t+33.81Hz. (b): −5.0021Hz/s ·
t+1,742.78Hz. In contrast to the fits above, in plots like these, the circle radius gives
the χ2

n value. The smaller the circle, the better the fit.
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6.2.2 The acoustic data

Analogously to the seismic signal of the last section (Sec. 6.2.1) a microphone signal

measured 6.5cm above ground is presented here.31 This is the same measurement (at the

same time, but a different channel of the ADC). Because the signal is produced acoustically

by a speaker suspended by a crane and thus uncoupled from the ground and the SNR

is much better than the one for the seismic sensors, consequently, the following figures

show that the peaks in the spectrum are orders of magnitude above the underlying noise.

This clarity makes this example appropriate for discussing additional effects, resulting in

a series of supplementary plots and descriptions compared to the last section. Initially

and in analogy to the seismic data, Figure 6.5 (a) demonstrates the sequence of spectra

of the original data. Because of the good SNR, vertical lines are visible at the beginnings

and ends of some (LFS) sines. These stem from spectra the periodic signals ends within

the time interval T .32 Figure 6.6 firstly shows the lines described in Table 6.1. Secondly,

weak additional lines are visible which seem to be linked to the intended lines as they are

most likely linear combinations of the main ones. The additional frequencies are probably

produced by non-linearities in the speaker, the amplifier or even the digital-analogue

converter (DAC) in the laptop computer used to play the RIFF/WAVE files. Thirdly,

mains hum with low amplitude can be observed (best visible at frequencies of around

1,400−2,000Hz).

The horizontal lines are subtracted very successfully. Figure 6.6 indicates the same for the

fastest linearly changing frequency, but a comparison with Figure 6.5 (b) makes clear that

on the one hand the sines are fitted and subtracted successfully, but on the other hand

not the complete power of the peak is subtracted (this phenomenon will be discussed

in Sec. 6.2.2.3). The broadband excitations at the beginnings and ends of the sweeps

remain in the signal which is reasonable as the algorithm is not designed to handle these

cases. Because of their strong amplitude they also mask the underlying LFS-sine signals,

preventing the fitting of other peaks. This phenomenon shows up in the dark vertical

lines in Figure 6.6 (a).

6.2.2.1 Single sine tracking

Analogously to the tracked sines for the seismic data, the same two lines are presented

for the acoustical measurement in Figure 6.7. For both lines every single sine is fitted

31Microphone BK6, Brüel & Kjæer 4198, sensitivity: 0.0519V/Pa, factor of amplification: 60, con-
nected to channel #30 of the same 4-box combination of Data Translation DT 9841 ADCs as for
seismic measurement, sampling frequency 10 kHz, cut-off frequency 3.0 kHz.

32Ending a signal is like multiplying it with another, shorter rectangle (additional to the rectangle
limiting the time interval to T ). As shown in Section 2.3.2 the Fourier transform of a rectangle is a sinc
function; its width (in the spectral domain) is determined by the length of the rectangle (in the time
domain). The shorter the rectangle, the wider the sinc function that is convolved, often resulting in strong
broadband excitation around the current frequency of the (LFS) sine. More information concerning this
issue will be given in Section 6.2.2.3.
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Figure 6.5: Acoustically measured synthetic sines played via loudspeaker (in analogy
to Fig. 6.5). (a) shows the spectrum before subtraction of peaks, (b) afterwards.
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Figure 6.6: Additional spectrograms for Figure 6.5. (a) shows the sum of the
subtracted spectra, (b) the amplitudes of the fitted (LFS) sines and the types of
fitting which led to the shown results. In order to warrant transparency, the range of
magnitudes in (b) is limited to four orders of magnitude which is much less than in
figure (a) where considerably more results are shown.
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Sine #5 Sine #6

b0 / (Hz/s) νRed
Mean / Hz b0 / (Hz/s) νRed

Mean / Hz

Seismic 100.07±9.19* 0.000±0.876* −5.002±0.452** 0.0000±0.0485**

Acoustic 100.040±0.344 0.0000±0.0683 −5.0018±0.0342 0.00000±0.00625

Table 6.2: Summarised results of the acoustic and seismic peak tracking of the
sines #5 and #6 (seismic: Fig. 6.4, acoustic: Fig. 6.7), with programmed b0 of
exactly 100.0Hz/s and -5.0 Hz/s, respectively. Since for νMean the linear progression is
subtracted it is called νRed

Mean and varies around zero. The errors are the standard-
deviation values. The peaks that are obviously wrongly picked are excluded here (*
means one excluded peak, ** three excluded peaks) – they should not be included in a
statistical evaluation as they do not represent the precision of the fit algorithm. In the
seismic data the mains hum contributed significantly – its peaks are fitted successfully
but do not belong to the LFS sine, whose peaks were intended to be tracked. These
peaks are not an error of the picking suggestion algorithm because these peaks are at
the right frequencies. It might be up to the user (or to an additional algorithm) to
decide whether a peak belongs to the mains hum or to the tracked sine. In this case it
would be simple to decide on the basis of b0 – the discrimination between b0 ≈ 100Hz/s

and b0 ≈ 0Hz/s was unproblematic – but for sines with low LFS or even monofrequent
sines, additional parameters to classify the peak would be necessary. In order to avoid
this, the peaks remain in the tracked sequence in this work, but are rejected for the
statistical evaluation.

precisely and reliably. In comparison to the same tracked peaks in the seismic data (Fig.

6.4) no obvious outliers are picked or fits converged to secondary minima.

For signals of real sources with unknown emissions of noise, quantitative evaluations

of the fitted parameters are difficult if not impossible. In contrast, the played sound

files contain sines with at best linearly with the time changing frequencies. The mean

frequency of the peaks, νMean, should be constant after subtraction of a fitted straight

line and the b0 should be constant anyway. Table 6.2 gives measures for the deviation

from the straight line respectively from the constant value. Obviously, fits in the acoustic

data are significantly more precise. The ratio of standard-deviation values reaches from

approximately 8 for νRed
Mean of sine #6 to more than 25 for b0 of sine #5. It is presumed

that the better SNR of the acoustic data is mainly responsible for this discrepancy.

6.2.2.2 RMS values in the time domain

RMS values were calculated in the time domain over intervals of 0.5 s.33 Plots of these

slowly sampled data give a measure for the progression of the power content. Figure

33Note that the measure RMS∆ introduced in Section 5.2.1.1 is the RMS value of the difference between
the underlying signal without (LFS) sine and the signal after addition, fitting and subtraction of an (LFS)
sine in the time domain. For real signals this measure is not available and only the pure RMS value of a
time-domain signal can be specified.
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Figure 6.7: A pair of tracked sines in the acoustic spectra (analogously to Fig.
6.4), each with a plot of the fitted b0 and one with the mean frequency after a linear
progression is assumed and subtracted. The line equations are: (a): 100.04Hz/s · t +
34.32Hz. (b): −5.0018Hz/s · t + 1,742.73Hz. The smaller the circle, the better the
fit. For broad peaks the number of fitted values nFit is greater than 4, meaning that
exclusively the FSum approach is used, therefore only black circles are present in (a).
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Figure 6.8: Time course of RMS values calculated from 0.5 s data intervals. During
the sweeps the mean RMS value is reduced to the level of times with background noise
only (first and last seconds in the shown interval). The spectra in which a single sine
begins or ends, and thus this sine is not subtracted, show up as peaks. Colour codes:
black: original signal, green: subtracted signal, red: signal after subtraction.

6.8 shows the three progressions: the original data (black), the sum of the subtracted

(LFS) sines (green, gained from the inverse FFT of Fig. 6.6 (a)) and the processed data

(red, corresponding to Fig. 6.5 (b)). The original curve shows steps as (LFS) sines are

switched on or off. In addition, in some parts, the black curve shows a complex behaviour,

which is likely to demonstrate a consequence of the characteristic of the speaker: in the

interval of approximately 05:47:12 - 05:47:18 sine #5 decreases in frequency from 1 kHz.

The RMS value increases slightly but more than linearly: the speaker seems to produce

lower frequencies with higher efficiency. A kind of notch follows: typically the generated

power of speakers collapses for very low frequencies, depending on the membrane size.

In the following interval, the sine frequency increases again, which mirrors the described

behaviour. However, an abrupt and lasting increase in the RMS amplitude is visible at

05:47:22: this stems from the onset of sine #2 (160 Hz). For frequencies well above 1 kHz,

the speaker characteristic seems to decrease very slowly. After 05:47:30 the steps in the

RMS amplitude can be used to identify onsets and ends of additional (LFS) sines.

The red line illustrates that in regions where no switching takes place, the processed data

is approximately on the same background level as the data before and after the sound

file is played, that is the (LFS) sines have been completely removed. Spikes occur at

regions where at least one sine is not satisfactorily subtracted because one (LFS) sine,

when switched on or off, does not last over the full time interval of one spectrum; this

is analysed in Section 6.2.2.4. In this example the simulated periodic disturbances have

been removed very well and the RMS amplitude is reduced by approximately one order

of magnitude.
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6.2.2.3 Imperfect peak subtraction

Figure 6.9 (a) shows the lower 1,500 Hz of a single spectrum (the 46th, starting at

05:47:33.00). This time period is chosen because here the played sound file contained

relatively low frequencies, allowing a plot with a good resolution on the ν axis. All

the sines of the audio file are fitted successfully and subtracted accordingly. The broad

peak centred at 1,325.059Hz is subtracted with a χ2
n = 5.1 ·10−4 which is three orders of

magnitude below its threshold.

By visual inspection, one can question this fit result: Although a reduction of 1.5 orders

of magnitude has been achieved, the red curve is not as low as the surrounding. Could

it be possible that the values for the fit parameters are not the optimal ones? Could it

be possible that the start values make the algorithm run into secondary minima while

minimising χ2? If it were possible to find a set of parameters that – by subtraction of

the corresponding sine – reduces the remaining spectral power more strongly than the

fit result does, it would indicate that the algorithm has run into a secondary minimum.

In order to analyse this issue, the LFS-sine parameters are systematically varied, the

corresponding sines are subtracted and the remaining power in the frequency interval

dominated by the peak, in this case 1,281Hz−1,373Hz, is determined.

Firstly, a reasonable step length for each parameter needs to be estimated. Since FSum

is proportional to A0, this parameter can be determined independently from the other

parameters and is even left out in this case; the value used for A0 is the fitted one.34

The most influential parameter on the curve progression is b0, as it defines the curve

progression of the phase spectrum (Fig. 3.8). Finally, ν0 defines the position of the peak

(Sec. 3.2.3).

If the fit algorithm runs into secondary minima, a combination of the latter two mentioned

parameters should be the reason. To get an overview about the dependency strengths, one

can set three of the parameters to their fit results and only vary the remaining one, in order

to evaluate the spectral power after subtraction of an LFS sine with this set of parameters.

Intersections through the four dimensional space and the variation parameters are given

in Figure 6.10. If the steps between the values are chosen densely enough, the resulting

curve is smooth. One can designate the values at which a threshold for the mean spectral

magnitude in the interval of interest is passed, in this case it is a threshold for the mean of

the magnitude values in the mentioned frequency range; it is reached at 1.5 times of the

value gained by the set of fitted parameters. Combined with the demand that at least at

two steps the values should be below this threshold, a rough estimation for the maximum

step length for the variation of this parameter is possible. Table 6.3 shows these step

34The sum of squared magnitudes of differences of complex spectral values is to be minimised. In polar
coordinates, for fixed magnitudes, each single difference becomes the smaller, the better their phases
match. Therefore, the magnitude values, proportional to A0, can be treated independently from the
other parameters.
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Figure 6.9: A typical small data interval of the acoustic measurement of the audio
file. (a) shows a magnitude spectrum, (b) and (c) the time domain, the colour codes
are: black: the original data, green: the subtracted signal, red: the result. In (b), the
green line mostly masks the black one because the (LFS) sines are fitted very well.
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Parameter Step length Start End Fit result Unit
∆ν 0.01 1,283.0 1,285.0 1,284.1630 Hz
∆φ 0.1 30.0 41.0 36.6659 ◦

∆b0 0.001 99.5 100.0 99.8435 Hz/s

Figure 6.10: Intersections through the four-dimensional parameter space tested:
three parameters are fixed at the fit optimums, one is varied: black: ν0, green: b0,
red: φ0. The step length and the start and end values are given in the table. Addi-
tionally, for each variation the exact fit result for the respective parameter is included,
ensuring that the best result of the fit algorithm is part of every curve. The ordinate
contains the mean magnitude value (of the spectral range: 1,281Hz−1,373Hz) after
the subtraction of an LFS sine with the current set of parameters. In order to allow a
combined graphic, the abscissa is normalised: between zero and one the range given
by the start and end values is displayed. The curves are extended to the left by the
same range (abscissa values −1 to 0) to demonstrate how the curves continue – es-
pecially in the case of b0, where the values at the regular margins become constant
or even decrease again; this plot demonstrates that no similar minimum is close. The
horizontal line is at 1.5 times the value produced by the set of fitted parameters; it is
used to determine a minimum step size for each of the three parameters (Tab. 6.3).
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Parameter Fit result Step length Start End Unit No. steps
∆A0 0.025499 - - - Pa 1
∆ν 1,284.1630 0.04 1,282.0 1,286.0 Hz 102
∆φ 36.6659 4.0 0.0 356.0 ◦ 90
∆b0 99.8435 0.1 99.7 100.3 Hz/s 8

Table 6.3: Combination information to subtract the broad peak in Figure 6.9 (a)
without fitting. The values of the fit result are appended to the lists of values that
are to be combined.

lengths, the parameter intervals and additionally the original fit results.

With given step lengths, the parameter intervals are critical because having long intervals

strongly increases the number of combinations. Although the input is known (it is the

sound file), this information can only be used partly – the precision of the hardware

and software responsible for playing the file is unknown, therefore the current frequency

can only be estimated and the phase is probably indeterminable at all. But, as the b0

parameter should be constant in time, it can be strongly limited (Fig. 6.7 (a) shows

that b0 is fairly constant). φ0 should include its complete range. ν0 remains as a slightly

unclear parameter, therefore the most values are used for this one.35

The mean magnitudes of a total of 73,440 combinations are compared: The set of parame-

ters, reducing the power best in this frequency interval, is exactly the fitted one. The only

potential explanation I have for this result – that the best-fitting theoretical curve does

not fully coincide with the real peak – is a slight frequency dependency of the transfer

function between the sound file on the computer and the measured data that becomes

the more relevant the higher |b0,r| is. A precise LFS sine is input to the sound card – but

it seems to be changed after re-recording.36 This does not seem to be a problem of the

fit algorithm.

6.2.2.4 Abruptly ending (LFS) sines

Figure 6.11 illustrates the effect of hard transitions between presence and absence of

signals. The spectrum (a) presents two broad peaks stemming from the convolution of

the (LFS) sines with the DFT of the rectangle limiting the periodic signal to the time

before (approx.) 05:49:01.37 These cannot be handled by the fitting algorithm: fits finish

35If it should be the case, that the best set of parameters is not covered in this analysis, it is prob-
ably beyond the limits of the ν0 parameter even though there is no indication if one plots or sorts the
combination results.

36Where in the chain DAC – amplifier – speaker – sensor – ADC the distortion occurs is unclear. In
Section 6.2.2.2 it was noted that the amplitude of the speaker decreases with increasing frequencies. This
of course deforms the shape of the peak, distorts its symmetry and is likely to reduce the fit quality.
However, this has not yet been analysed and is beyond the scope of this work.

37Sine #1 is visible in both spectra: Fig. 6.11 (a), where it is broadened by the convolution with an
additional sinc function (additionally to the limiting the time interval for the spectrum), and Fig. 6.9
(a), where the peak is narrow as typical for monofrequent sines.
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with a high χ2
n, so the peaks remain in the signal.38

In the preceding spectra of the sequence all (LFS) sine signals are subtracted. In the

following spectrum this signal is no longer present. Thus after inverse transformation to

the time domain one expects a short interval in which the sweep signal is still present.

This is shown in Figures (b) and (c). The ramp is a result of the linear fading of spectra

after inverse transformation (Sec. 6.1.1.4). One can also observe that the time domain

looks similar at both margins indicating that the (LFS) sines are subtracted without

obvious changes of the data. Intervals like this cause the RMS values (Fig. 6.8) to show

peaks.

38The χ2
n/χ2

Thres(nFit) ratios for the ending (LFS) sines are: sine #1: 7.02, sine #6: 6.30, sine #7:
1.29.
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Figure 6.11: An analoguous structure but different time than in Figure 6.9: In this
time interval three sines end simultaneously (at 150 Hz, 1,451 Hz and 2,697 Hz (not
visible)). (b) and (c) show the transients between spectra in the time domain (grey
bars indicate the intervals of single, overlapping spectra). At around 05:49:00.57 the
inversely transformed data of the spectrum shown in (a) – in which all three sines are
not subtracted (see also: Fig. 6.6 (a)) – fade in. Again the colour codes are: black:
the original data, green: the sum of the subtracted sines, red: the result.
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6.3 Single-engine propeller aircraft

One expects nuclear test explosions to be conducted in very rural areas with limited

infrastructure. Main sources of anthropogenic noise could be: Traffic on through roads,

aeroplanes and quarry blasts (the latter even for distances of hundreds of kilometres

and probably far outside of the inspected area).39 If an explosion should be conducted

clandestinely, provisions could have been made. Related to this work, these could include

construction or earth-moving sites and increased traffic of all kinds. Additional sources

of noise might stem from the inspectors themselves: an area of up to 1,000km2 is to be

covered with sensors which have to be set up and maintained on a daily basis. For these

purposes off-road vehicles will be operated. Furthermore, different kinds of flights will be

undertaken by helicopters and small aircraft e.g. for visual inspections of the destination

area or airborne gamma spectroscopy and aeromagnetic field mapping [42].

Typically, small surveillance aircraft are propeller driven, producing primarily periodic

noise; the same holds for helicopters. In this example the overflight of a single-engine

propeller aircraft is processed.40

The signal was measured on the 16th of May 2013 at 10:56 UTC south-east of the airport

Münster-Osnabrück,41 Germany, with a Brüel & Kjæer 4198 microphone.42 The aircraft

is a PIPER PA-28R-180 Cherokee Arrow [43] at an altitude of about 300 m.

Figure 6.12 gives an overview of the data and their processing results. First of all: These

data seem to have strong contributions of low frequencies, showing up in the sequences

as an irregular bright line for the smallest frequencies.43 Most probably, gusting winds

with fluctuations slower than 1∆ν are responsible for the low-frequency contributions.

Since the fitting procedure can handle any frequency without exceptions, even the direct

current (DC) value could be fitted and subtracted. However, the start-value-estimation

procedure is not capable of handling this case. Firstly, for small frequencies the problem

becomes similar to the one of neighbouring sines because the peak at negative frequencies

merges into the one at positive frequencies. Secondly, for very small frequencies (and in

particular the DC value) the procedure would estimate wrong peak widths because it does

not wrap to the other side of the data array (to negative frequencies), ending the peak

39Quarry blasts or the like produce pulsed signals whose shape can be similar to those of aftershock
signals. The typical approach is to locate their origin and discard the corresponding time intervals from
further investigations if the origin lies outside of the area of interest.

40Multiple-engine propeller aircraft have rotors with similar but typically most of the time slightly
different revolution rates. Their signals could be used to analyse double peaks for instance – as this
feature is not yet included, a single-engine propeller aircraft is chosen intentionally.

41IATA airport code: FMO, GPS coordinates of the measurement site: latitude: 52◦ 7′ 16′′ N, longitude:
7◦ 36′ 16′′ E, altitude: 105.8 m, located approximately 4 km from the end of and in line with the runway
so aircraft passed nearly vertically above the sensors.

42Membrane height above ground: 6.5 cm. In this measurement, this sensor is connected to channel
#32 of a 4-box combination of Data Translation DT 9841 ADCs with: home-built amplifiers, sampling
frequency 10 kHz, cut-off frequency 3 kHz.

43The microphone is specially suited for outdoor applications and low-frequency measurements.



6.3 Single-engine propeller aircraft 161

at the first index (= 0Hz). Such a peak is discarded from processing if the magnitude of

the 0-Hz value is not smaller than 50% of the maximal one. In particular, a DC peak

will be discarded. If low-frequency peaks are successfully fitted and subtracted here, it

means that the peak was centred at 1∆ν at the very least. For these reasons most of the

lowest-frequency peaks are not subtracted (best visible in the missing bright dots at the

lower margin of the theoretical spectrogram in (b)). Their high magnitudes also explain

the rare times with strong RMS-value reduction respectively the very low reduction at all

other times (c).

Figure 6.13 shows details of one of the few cases when a peak at low frequencies is sub-

tracted.44 One harmonic series is marked – in all probability it belongs to the revolution

rate of the propeller – here, peaks with an even index tend to be stronger. This indicates

that a nearly symmetric state is reached in half of the time of one revolution, indicating

that this aircraft is equipped with a two-blade propeller. Most of the strong peaks of the

rotor series are subtracted, the remaining ones are low in magnitude or show an unusual

shape.45 (b) and (c) illustrate that most of the signal (including the strong, low-frequency

variation) is subtracted.

44Fit details: After 46 iterations, the mean frequency is 1.77 Hz, b0 = 5.54Hz/s, χ2
n = 1.64 · 10−3 at

χ2
Thres(nFit = 4) = 8.61 ·10−3.
45The peak at 328 Hz (multiple 18 of the fundamental frequency of 18.26Hz) has two shoulders which

could indicate that there are closely neighbouring sines (the higher one at 1/5 of maximum could have
influenced the peak shape). The shape is also unusual for the peak at 438 Hz: it is too narrow at the
top to be fitted successfully – even a monofrequent sine has three to four strong values caused by the
convolution with the spectrum of the Hann window (Sec. 2.3.3 and 3.2.2); in addition, it seems too broad
at its flanks.
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Figure 6.12: Evaluation of a propeller aircraft. The subplots are analogous to the
former examples: (a) includes the subtracted peaks, (b) the three sequences of spectra:
sum of subtracted sines, processed and original, (c) the corresponding RMS values
(black: Original data, red: sum of subtracted sines, green: processed data).
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Figure 6.13: The data of a short time interval of Figure 6.12 at 10:56:37.25. (a)
shows the lower frequencies of the 62th spectrum with one marked harmonic series,
note the low-frequency fit centred at 1.77 Hz. The peaks mentioned in the main text
(328Hz and 438Hz) are marked with vertical dashed lines. (b) and (c) present a
small interval of the time domain. Colour codes: black: original data, green: sum of
subtracted sines, red: processed data.
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6.4 Main battle tank

We fortunately have access to seismic and acoustic data of passing military vehicles. These

data had been measured between 1989 and 2001 by the Bochum Verification Project

(BVP) which is continued as the Group Physics and Disarmament at TU Dortmund in

which this work has been done. Ground vehicle noise and vibration are a second source of

disturbing signals expectable during OSI. In particular on military ground tracked vehicles

may be used. Compared to wheeled vehicles, tracked ones have an additional strong source

of periodic noise: Beside the engine in general, the interlocking of the driven cogwheels

into the track produces a second fundamental frequency and harmonics. And the rolling

of the wheels over the track elements with corresponding variable forces to the ground

produces seismic vibration at these frequencies directly.46

In Amersfoort (1992) the BVP together with several partner scientists from NATO and

WTO countries measured the seismic and acoustic emissions of military vehicles. Here,

an example of a Leopard-1 tank driving with 11.161 m/s on a straight road (paved with

smooth asphalt) is analysed at a distance of 11.78 m from the designated middle of the

lane.47 The acoustic spectra consist mainly of two fundamental frequencies and their

respective harmonics, stemming from the exhaust and the track-drive. 4,096 samples

corresponding to 0.5622s are used for each spectrum as a compromise between spectral

and time resolution.

Figure 6.14 gives an overview about the complete time interval that is analysed: (a) shows

the (LFS) sines that are subtracted. One can see that the amplitudes are highest around

11:58:19. At this time the tank had passed the sensor. This matches the visible change

of the Doppler shift: The horizontal lines progress like an negated arctangent, caused by

the source during its linear trajectory moving towards, passing and moving away from the

sensor. Since the tank signals are strongest at low frequencies and for the sake of clarity

(b) shows the lower 500 Hz of the sequences of the spectra: before (bottom) and after

subtraction (middle) of sines. Like before, the theoretical spectrum (top row) is the sum

of the subtracted sines and the sum of the two top spectra is equal to the bottom one.

(c) demonstrates the RMS values as a measure of the power in the data. Two times are

marked by vertical lines: Here the factor for the reduction of power by sine subtraction

is minimal and maximal, respectively. The sequence of theoretical spectra (b, top) is

especially suitable for understanding the curve progression of the RMS values. When

the former has many bright dots, much power is subtracted. The spectrum marked first

(at 11:58:17.8) contains some of the strongest peaks even after the subtraction of sines,

46Wheeled vehicles can also produce a second series of peaks caused by a coarse the tyre profile, but
with much lower amplitude [44], [23].

47The experiment is described and evaluated with regard to vehicle classification in [44]. File:
AME10215.DA6, Microphone BK3, Brüel & Kjæer 4188, with preamplifier 2639, height above ground:
20cm, channel #13 ADC Microstar DAP 2400/5, sampling frequency 7,286 Hz, cut-off frequency 300 Hz.
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νMean/Hz A0/(m/s) ν0/Hz b0/(Hz/s) φ0/rad χ2
n χ2

Thres nFit No. iterations
19.31 0.0346 10.46 31.47 3.275 0.025 0.029 6 70

217.24 0.0977 190.68 94.48 3.840 0.089 0.094 12 100

Table 6.4: Fit details for the two broad peaks visible in Figure 6.16 (a). Both peaks
are close to rejection (χ2

n close to their thresholds).

the spectrum and the corresponding time-domain interval are given in Figure 6.15. The

spectrum with the strongest decrease of energy (at 11:58:22.75) is not the one with the

most subtracted peaks but here most of the strongest peaks are subtracted (Fig. 6.16).

This one is also interesting because of the subtraction of two broader peaks.48 Based on

the source of the signal one would not expect strong changes in the frequency, therefore

both of these two peaks can be categorised as wrong positives; their fit results are given

in Table 6.4.

Figure 6.17 tracks a single peak: whereas the change of Doppler shift is evident in the

ν0 plot, on the basis of b0 the change of Doppler shift is not apparently visible. At the

correct time two adjacent negative values indicate the right behaviour, but later on the

spreading of the values is in the same order of magnitude. For the two picks, a consistency

check is conducted: the LFS parameter are estimated by the differences between peak

frequencies and the time between the two. The results are: −2.18Hs/s and −3.52Hs/s; the

corresponding values shown in the top figure are: b0 = −2.43Hs/s and b0 = −6.57Hs/s.49

This matches as roughly as the other b0 values spread. For a comprehensive evaluation not

enough values are available. The last set of parameters in the plots is probably wrongly

picked, a gap should have been chosen instead.

Most of the strong peaks in the spectra are subtracted successfully but also many remain.

Superpositions of harmonics of the two series occur which are likely to form peaks that

cannot be separated and fitted with the expression for a single sine. Especially, the

spectrum shown in Figure 6.15 contains peaks with no obvious distortion while having a

strong magnitude. During this time, the tank is close to the sensor and the superposition

conditions of different sources change most strongly. One can speculate whether this could

be caused by the superposition of sources with the same frequency – this tank has two

tracks and two exhausts. Changing the position of the tank changes the differences of

lengths of the propagation paths between the sources and the sensor.

48Taking a very close look at the column of this spectrum (Fig. 6.14) shows the abnormal broadness
of the two peaks.

49E.g. the difference between the red circles (11:58:18.5) is −1.23Hz/T, T = 4,096/7,286Hz, therefore it
is −2.18Hs/s.
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Figure 6.14: Evaluation of a tank passing a sensor. The subplots are analogous to
the former examples: (a) includes the subtracted peaks, (b) the three sequences of
spectra: sum of subtracted sines, processed and original, (c) the corresponding RMS
values (black: original data, red: sum of subtracted sines, green: processed data).
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Figure 6.15: Example for a spectrum and the reconstructed time interval with the
lowest reduction of energy (see Fig. 6.14 (c), at 17.75 s). (a): spectrum, (b): time
domain of the original signal (black) and the sum of subtracted ones (green). (c): the
remaining signal (red).
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Figure 6.16: Another example for a spectrum and the reconstructed time interval
(similar to Figure 6.15) with the strongest reduction of energy (see Fig. 6.14 (c), at
23.75 s). Colours as in Fig. 6.15. In (a), two exceedingly broad peaks are marked
with dashed lines.
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Figure 6.17: Similar to the sound file evaluation, a single peak is tracked. Top: b0,
bottom: Mean frequency. If no peak is found that is likely to belong to this tracked
sequence or if the fit failed, there is no circle for the corresponding time.

6.5 Helicopters

During the last years we measured several helicopter signals.50 Their spectra consist

mainly of two strong harmonic series of sinusoids, stemming from the main and the

tail rotor, respectively. At the beginning we thought that these two strong series make

these signals ideal for performing periodic-noise suppression. This section introduces the

challenge: The single peaks seem to be different from the ones of pure sinusoids producing

worse fit results than for example the propeller aircraft. For the 5% false positives rate

used in this chapter, the majority of fits fails at the corresponding threshold for χ2
n. If

one allows their subtraction anyway, the result serves its purpose and the peak is reduced

significantly. An increase of the false-positive rate could reduce the periodic content

successfully, but the impact on the underlying signals is unknown. This should be the

subject of future research. An interesting question is: What are these peaks based upon?

One example serves as a demonstration of the issue; this one is chosen because of a

well observable course of events. Figure 6.18 gives an overview about data and the fit

results of a helicopter mainly standing on its pad in approximately 20m distance to the

50Published results of the processing of another helicopter signal can be found in [45]. The FMono

expression was applied exclusively. In order to get mainly successful fits even in times of frequency shifts,
less data samples per seismic spectrum (N = 1,024) were used, resulting in blurred neighbouring peaks
which remained in the spectra consequently.
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sensor.51 At around 11:44:57 the operation-revolution rate of the rotors is reached and

the state remains stationary until it takes off at around 11:45:40. Subsequently, it climbs

with increasing distance to the microphone close to the ground and thus frequencies are

down-shifted.

The single spectrum in Figure 6.19 covers approximately 0.8s at a time when the signal

should be stationary. Nonetheless, at least two series of sines can be identified with very

similar fundamental frequencies. Within the first harmonics, two respective frequencies

are still close enough that the summed-up peak can be fitted by an LFS or a monofrequent

sine within the threshold for χ2
n. The more the frequencies split up, the more the peak

shape changes and the worse the fit result becomes. If the signal consisted mainly of these

two series, at some point the frequencies would diverge enough to fit them separately. But

in these data, the spectrum at high frequencies fades into an unsteadily spiky, relatively

flat progression (b). Concluding, spectra like these cannot be treated by the algorithm in

its current form.

6.5.1 A brief first analysis

The investigation of these signals is beyond the scope of this work, however it may be

interesting to understand how they are produced.

Typically helicopters have two strong series of sines, produced by the main and the tail

rotor. Helpful is a typical revolution rate and the ratio between the two. For this type

of helicopter at 100% the main rotor does 395 rpm (6.58Hz) while the tail rotor does

3,584 rpm (59.7Hz, marked in the spectra by red bars) [47]. Assuming that the main rotor

blades are fully identical, theoretically, the fundamental frequency should be at four times

the rotor revolution rate: νmain = 26.33Hz. Since the sequence of spectra (Fig. 6.18 (a))

shows intervals with literally no changes, longer (than the 0.8192s for a single spectrum)

time intervals can be used to generate high-resolution spectra: increasing the number

of samples per FFT increases the spectral resolution, while averaging magnitude spectra

statistically reduces the noise stemming from non-periodic contributions. Figure 6.20 is

calculated with N = 32,768 samples and three averaged magnitude spectra overlapping by

50% (the interval used is marked by a red bar in Figure 6.18 (a)). In (a) the revolution rate

is marked (1/4 of the rotor blade frequency), the strong ratio of magnitudes between both

indicate the high symmetry of the blades. The peaks produced by the main rotor broaden

with increasing frequency. (b) shows the same spectrum but up to higher frequencies: the

power of the single harmonics contribute to broader frequency bands, decreasing their

51Rescue helicopter EC 135 D-HOFF alias Christoph 8. Measured during an experiment mainly con-
ducted to evaluate the coupling of acoustic signals to the ground. A description of the site and the
measurements is given in [46]. UTC is used. Sensor: Sennheiser KE-4-211-2 microphone, sampling
frequency 10 kHz, sensitivity 10 mV/Pa, frequency range 20Hz − 20kHz, cut-off frequency 3 kHz. It is
placed on the surface and assigned to channel #21 of a 3-box combination of Data Translation DT

9841 ADCs.
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magnitude. This is consistent with the visual observation in the sequence (Fig. 6.18 (a))

and the two series marked in black in Figure 6.19 and explains the fit results.

The fenestron tail rotor has irregular angles between its blades, so the fundamental fre-

quency should be the same as the revolution rate. A corresponding series with low mag-

nitude is marked in the spectra at multiples of roughly 60Hz. Interestingly the tail rotor

signal seems to be observable for a longer duration after the take-off indicating a strongly

different directional characteristic. Additionally every second harmonic is stronger and

the eighth is strong in particular. During this time, the fitting works better, although it

is unclear if this is a result of the disappearance of the other lines or of the changed noise

emission angle during the flight.

One can speculate about the reasons for two strong series with very similar frequencies.

If both have the same stationary origin, they cannot be produced by the rotation of the

blades.52 If the double peaks result from the Doppler effect, a different source of their

sounds must be assumed.53

52One could think of a locally moving medium with a different effective speed of sound compared to the
system in which the measurement takes place. Since the sound is measured from the side, there are blades
moving towards the sensor while others move away (and some pass orthogonally, without Doppler shift).
However, the same number of blade-passes per time occurs at both sides, so the produced frequencies
must be the same.

53Assuming the blades themselves would produce noise with a certain frequency (e.g. by vibration),
this frequency could be changed by the Doppler effect produced by rotation for both directions – and for
the continuous region in between. Besides, this additional source should produce another series of sines,
since the revolution rate remains. It should be unlikely that these frequencies are very slightly different
to integer multiples of each other what is observed here (the swashplate is no reasonable explanation as
it should work with the same revolution frequency).
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Figure 6.18: Sequence of spectra (8,192 samples per spectrum) of the signal of a
helicopter which is most of the time stationary. (a) magnitude spectrum; the time
interval covering the three averaged spectra for Figure 6.20 is marked in red. (b)
demonstrates that very few sines are subtracted. The peaks within the lowest 50Hz
are fitted reliably, thinning out rapidly with in creasing frequency and already at
150Hz peaks are subtracted only sporadically.
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Figure 6.19: Single spectrum of Figure 6.18 (the 24th of 138, at 11:45:00, during
stationarity). The first 500 magnitude values of are presented in (a), the following
500 values in (b). Three harmonic series are marked, the black ones have very close
fundamental frequencies. One can see that the magnitude of the peaks decreases and
they become broader with increasing frequency.
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Figure 6.20: High-resolution, averaged spectrum of the helicopter; it is assumed
that the signal was stationary during the time interval marked in Figure 6.18 when
the helicopter was standing on its pad. Three overlapping (50%) power spectra with
32,768 samples each are calculated and averaged. Here the fundamental frequency,
equalling the revolution rate, is visible and its series is marked with green triangles.
The symmetry between the four rotor blades is high, therefore mainly the quadrupled
frequency and its integer multiples are present (marked in (b)) while the magnitude
at the revolution rate and its non-quadruple harmonics is very low. Additionally, the
tail rotor revolution rate series is marked in red.



6.6 Conclusion on real data applications 175

6.6 Conclusion on real data applications

Synthetic sounds played by a computer and a speaker allow a comparison between the

theoretical signal and the fit results, since the input parameters are known in principle.

Narrow peaks have been processed very successfully both for acoustic and seismic mea-

surements, with the seismic data being strongly superposed with mains hum increasing

the probability for a failed fit. The processed spectrum is reduced down to the background

noise level, so that only a lower threshold for the reduction factor can be derived: it is at

least three orders of magnitude. For narrow and monofrequent peaks – where the transfer

function is constant – the factor might be principally unlimited, as indicated for synthetic

superpositions in Section 5.5.

The broadest peaks analysed in this measurement correspond to b0,r = −67.11 (b0 =

−100.0Hz/s), here the peak magnitudes are reduced by 1.5 orders of magnitude only. Per-

haps a slight frequency dependency in the transfer function between played and recorded

LFS-sine signals leads to deviations from the theoretical function for an LFS sine, thus

decreasing the fit quality. Nonetheless, the RMS value of the signal is reduced by one

order of magnitude down to the level of the background at times when no sounds were

played.

The mean frequency and the LFS parameter of two sines – one with a strong linear

frequency shift and one with a small one – have been tracked over several spectra for

both, the acoustic and seismic signals. The fitted parameters are consistent with the

theoretical ones, where the standard deviation for the acoustic signal is roughly one order

of magnitude smaller than for the seismic signal. This is most probably a result of the

sixfold better SNR.

For the signals of vehicles, the peaks have been too narrow to observe the deviations

mentioned for broad peaks. All peaks that have been fitted successfully are reduced to

the level of the background, but typically several smaller and sometimes even stronger

peaks remain.

Real sources, which do not produce exclusively periodic noise, are not conducive to quan-

tifying the fit performance, for instance by the ratio of RMS before and after processing.

The optimal result is a complete removal of periodic components and simultaneously no

manipulation of the non-periodic content. Since the ratio of the two is unknown, there is

no quantitative measure for the degree of achieving the goal. However, one can use the

RMS value to find out to what extent a signal is changed during processing.

If the data are dominated by (even single) strong peaks which remain in the data, the

factor of RMS-value reduction will be small – independent of the number of successfully

subtracted peaks. This phenomenon was strongly pronounced for the acoustic data of the

propeller aircraft – here, the signals contain very low frequencies for which the start-value

estimation fails. The reduction factor of the RMS amplitude ranges from insignificant to
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more than 5.

The acoustic data of a main battle tank have been processed successfully in general. Most

of the highest peaks have been subtracted. Strong non-periodic contributions remain in

the signal, however, so that the RMS amplitude of the signal was reduced by a factor of

approximately 3.

If a peak shape does not match the one of a single (LFS) sine, the probability of a

successful fit is small (even though sometimes by chance the χ2
n-threshold requirement

may be met) and thus, the chance of the peak remaining in the data is high. This

was demonstrated for helicopter signals, where one can speculate about the reasons; by

visual inspection of spectra it seems that at least two harmonic series with very similar

fundamental frequencies dominate the spectrum.

The improvement of the procedure with regard to the evaluation of these insights is left

for future work.



Chapter 7

Summary and conclusion

This work presents the derivation of an analytic expression for the discrete complex spec-

trum of a sine, the frequency of which can change with time linearly. The expression

includes sampling, a limited duration and the Hann window function. With the first

derivatives and well-estimated start parameters, the Levenberg-Marquardt algorithm is

used to fit the parameters of such an LFS sine to single peaks in spectra. The FSum expres-

sion can easily be implemented in typical programming languages. A major disadvantage

for applications is the computation effort: on a single core of an Intel i5 processor at

3.1GHz the current implementation requires 0.5µs per fitted value, per sample within the

time interval of the spectrum and per iteration step. The processing time for a typical

signal is on the order of days per minute of data.

Methods for the evaluation of the fit results are introduced by the systematic analysis

of synthetic signals. The fit quality respectively the precision of the fitted parameters

increases with decreasing noise to the point where the errors of the fit result are as small

as the numeric precision, for example, 10−15 relative with double-precision variables.

For certain ratios of acceptable false-positive fits to pure GWN, peak-width-dependent

thresholds for the application to real data are gained.

In order to test the performance of the fitting procedure, artificial (LFS) sines are added to

real signals that are non-periodic. It is demonstrated that sines with arbitrary parameters

(including the amplitude, within the limits of the numerical precision) are fitted and

subtracted successfully.

For completely real signals, the performance strongly depends on the data. We played

sound files containing (LFS) sines with different parameters during our measurements

and recorded the acoustic and seismic signals. Fits of narrow peaks have been very

successfully both for acoustic and seismic measurements and the processed spectrum

is reduced down to the background noise level. For the monofrequent case the peak

magnitude is reduced by at least three orders of magnitude but the reduction factor

might be principally unlimited, as indicated for synthetic superpositions. The broadest

peak is reduced by 1.5 orders of magnitude only. Here, a slight frequency dependency
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in the transfer function between played and recorded LFS-sine signals may have led to

deviations from the theoretical function for an LFS sine, thus decreasing the fit quality.

For real signals, all peaks which have been fitted successfully are reduced to the level of

the background, but typically several smaller and sometimes even stronger peaks remain.

Since the ratio of periodic to non-periodic noise is unknown, there is no quantitative

measure for the degree of periodic-noise removal. However, one can use the RMS value

to find out to what extent a signal is changed during processing.

On the basis of the acoustic signal of a propeller aircraft, the limitation of the current

implementation of the algorithm regarding peaks at the very margins of a spectrum has

been demonstrated. The acoustic data contain dominating low-frequency contributions

which – in most instances – remain in the signal and thus lead to small factors of RMS-

value reduction.

The acoustic data of a main battle tank have been processed successfully in general. Most

of the highest peaks have been subtracted. The strong non-periodic contributions remain

in the signal – fitting to the goal of the work. The RMS amplitude of the signal has been

reduced by a factor of approximately 3.

The acoustic spectra of a helicopter signal recorded at close distance seem to contain

peaks different from the ones of pure sinusoids. The processing results become worse for

increasing frequencies of the harmonics as the divergence of the peaks increases. If a peak

shape does not match the one of a single (LFS) sine, the probability of a successful fit is

small (even though sometimes by chance the χ2
n-threshold requirement may be met) and

thus, the chance of the peak remaining in the data is high.

This work continues the field of research of the working group Physics and Disarmament

at the chair Experimentelle Physik III of TU Dortmund. It was started in the 1990s in

the frame of the BVP to find peaks and series of harmonics in power spectra with the

objective of pattern recognition for vehicles [23]. This was the motivation to derive the

expression of a monofrequent sine in the discrete spectrum; it was applied to the spectral

magnitude. Later on, periodic noise was seen in a different context as a disturbance. In

order to remove it by subtraction, the exact characterisation of the peaks in the complex

spectrum is required. One task of my Diploma thesis was the improvement of the algo-

rithm by inclusion of the phase parameter in the fit procedure [14, 39]. For signals of

moving vehicles, it turned out that this approach was insufficient to handle cases when

the frequency changes within the time used for one spectrum, often by the change of the

Doppler shift when the sensor is passed. After the monofrequent expression, the next step

is a linearly in the time shifting frequency; its derivation and evaluation is described in

this work. Whether or not it will make sense to advance to higher orders is unknown, but

it is doubtful whether it would be of great practical use.

The expression derived and applied in this work is an ideally adjusted filter for arbitrary
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LFS sines. For synthetic signals it works very precisely and can reproduce signals on

a level which is unattainable for notch filters. For all peaks that are not produced by

pure (LFS) sines, the fit performance drops, sometimes strongly. This is impressively

demonstrated for a helicopter signal measured at close distance. The peaks of other real

sources are fitted and subtracted mainly successfully.

With regard to the primary motivation of this work, one can state that it is possible

to reduce the periodic content of time-series data significantly. However, the signals

of the vehicles analysed contain non-periodic components which remain in the signal –

but retaining such components for the detection of weak impulsive events has been the

goal. With the described procedure, noise of vehicles can be reduced but not completely

removed. It will not allow the detection of smallest aftershock signals next to a busy

motorway or the like. Nonetheless, it can increase the SNR.

In order to solve the problems that have been observed and to optimize and improve the

procedure, several directions seem promising for future research:

• Line tracking over several spectra

If it is obvious, that a lasting (LFS) sine is in the data, one could selectively increase

(weaken) the χ2 thresholds for very small frequency bands where the mean frequency

of the sine is extrapolated in surrounding spectra. The processing of spectra should

not be exclusively one by one but a progression to former and future times should be

allowed as soon as a systematic behaviour is recognised. In this context it could even

be possible to decrease the general threshold and therefore reduce false positives and

false negatives in one approach simultaneously (this would extend the procedure of

[21] to the LFS).

• Searching for harmonics

The sources of the signals, in which periodic noise should be subtracted, typically

consist of fundamental frequencies with several harmonics. Similar to the former

item, one could think about weakening the threshold for members of series of sines.

Cepstra (the inverse Fourier transform of the logarithm of the magnitude spectrum

with logarithmically scaled frequency) could be used to get and track fundamental

frequencies.

• Fitting of neighbouring sines

The adaption of the fitting algorithm to include two (or even multiple) sines that

contribute to one peak should not cause any problems at all. In contrast, estimating

start values would be challenging. If runtime is not a big deal then systematic

variations of the phases (similar to Sec. 4.9.3) could be a first approach.1

1First attempts for the case of two monofrequent sines were done by [36]. The fitting was performed
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• Simultaneous fit of multiple peaks

The magnitudes of peaks decrease monotonously to their sides but their influence on

each other can still be significant even if the peaks are well separated and each fit is

successful. In this work this fact has been met by processing the peaks in descending

order of their magnitudes. This is reasonable but could be improved: close peaks

could be merged to form a longer frequency band in which multiple peaks are fitted

at once. The challenge of estimating start values is omitted if the fit results of the

single peak fits are used. This approach would overcome the problem of mutual

influences completely because the algorithm would fit the sum of (LFS) sines to

all peaks instead of trying to fit a single (LFS) sine to one peak with superposed

contributions from others. If fitting long intervals with many fit parameters will

be unstable, the intervals could be limited artificially and only the innermost peaks

could be subtracted. Then smaller overlapping intervals would be utilised in order

to process long ones.

• Threshold adjustment for very broad peaks

The threshold for χ2
n should probably be adjusted for large numbers of complex

values the FSum is fitted to. At the moment the argument is: A certain amount

of false positives in Gaussian white noise is acceptable. Because of a decreasing

probability that a broad peak is found in noise, the threshold is weakened strongly

with the number of values. With the meaning of the χ2
n parameter in mind – it is

the mean of squared relative deviations between given values and fitted ones – it

could be reasonable to think about an absolute weakest threshold.

• Improving start values

Even more effort could be put into the start-value estimation. Its benefit is to be de-

termined since the current state works reliably with few exceptions and it is unlikely

that the fit will not end up in the primary minimum. However, a higher accuracy

could reduce computation effort and maybe further avoid exceptions. An easy im-

provement would be an iteration of the start-parameter determination mainly via

the amplitude and peak width: The start parameters could be estimated in the de-

scribed way and then used in a second run – the estimated amplitude would be an

improved value compared to the magnitude value at imax which is used to estimate

the peak width. Subsequently, a more precise peak width could improve all further

estimations since they depend on this value.

within the magnitude spectrum – in principle, this means the reduction of the set of fit parameters by
the phase – and included an additional parameter for the relative phase difference between the two sines.
This was necessary to address the fact that the peak shape strongly depends on the signs of the complex
values of the summed sines. This approach was feasible because of the simple progression of the phases
of the complex values of a monofrequent sine (Sec. 3.2.2). For broader peaks the slope of the phases
depends on b0 which makes this approach invalid.
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Additionally, an approach to provide start values for peaks at very low frequencies

(≈ 1∆ν down to zero) could be useful as they can strongly contribute.

• Reducing computation effort

Many improvements could be worth an analysis. The maximum number of iterations

for a single peak fit could be adjusted. The FSum expression could be analysed

with the aim to further reduce the number of summands. It could be possible

that a reduction similar to the FFT is feasible (even though the roots of unity are

not equally spaced around the unit circle in FSum). Additional criteria to reduce

the number of sine candidates and thus the number of fit procedure calls could

be implemented. Especially, a background criterion to reject peaks with a low

amplitude should be promising if limited knowledge about the data to be processed

is available (e.g. the mean spectral magnitude background during calm periods).

With even more knowledge about the data, a threshold for the maximum peak width

could avoid fits with high nFit (e.g. if only aircraft at high altitudes are expected,

it can be assumed that no broad peaks will occur). Additionally, a more efficient

FFT (with pre-set angular-function values for the used N) – could accelerate this

part by a factor of at least 10; compared to the calculation effort for the fitting in

the current implementation however, this improvement should be of minor benefit.

• Higher orders of frequency shift

Cases occur in which the frequency of a sine changes with time more strongly than

linearly. In Section A.2.2 it is argued that finite-sum expressions should exist also

for higher orders of the frequency shift. For each additional order, an additional

parameter would occur in the expression for a sine the frequency of which changes

quadratically, cubically etc. with time. One can doubt whether a fit could be stable

with real data, but this would need to be investigated.
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Appendix A

Appendix

A.1 The FErf approach – First applications and con-

cluding words

A.1.1 Spectrum of an LFS sine limited by a rectangle for neg-

ative frequencies

This calculation can be done in analogy to the one in Section 2.4.1. Nonetheless, some

signs are different, requiring the use of different symmetries compared to the approach

described before.

ŜRneg(ν) =
A0

2i

∫ T

0
−cos

(

−πb0t2 −2π(ν0 +ν)t−φ0
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(A.1)

ŜRneg(ν) =
A0

2i

∫ T

0
−cos

(

πb0t2 +2π(ν0 +ν)t+φ0

)

+isin
(

πb0t2 +2π(ν0 +ν)t+φ0

)

dt

(A.2)

With a = πb0, b = π(ν0 +ν), c = φ0

ŜRneg(ν) =
A0

2i

∫ T

0
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(

at2 +2bt+ c
)
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Use Equations 2.52 and 2.53
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Symmetry relation (Abramowitz 1964: Equation 7.3.18):

C[iz] = iC[z],S[iz] = −iS[z] (A.6)
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With Equation 2.56
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The cosine and sine expressions can be combined to one exponential expression:
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With:

Erfi(z) = −iErf(iz) (A.10)
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Undo substitutes:
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A.1.2 Proof of symmetry

The expression for a peak which is located at positive frequencies must be equal to the

expression for a peak which is located at negative frequencies with negated signs for all

LFS sine parameters and vice versa (Sec. 2.3.1.1):
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Figure A.1: Plots of the complex error function along a line through zero with slope
−1 in the complex plane. Red: f(x) = Re

[

Erf[(1− i)x]
]

, green: f(x) = Im
[

Erf[(1− i)x]
]

,

blue: f(x) = Abs
[

Erf[(1− i)x]
]

.

With Equation A.10:
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= ŜRpos ( A0, ν0, φ0, b0,T,∆t,ν)

Figure A.1 illustrates the curve progression of the error function.

A.1.3 Next neighbours

Without inclusion of the Dirac comb, FErf consists of two peaks (at negative and positve

frequencies) and converges monotonously to zero. The spectrum is incomplete with regard

to the tails of peaks located at periodically repeating positions on the frequency scale

(n · N · ∆ν, n ∈ N, Fig. 2.3). The Dirac comb is impractical to implement in software,

but an arbitrary number of repetitions is elementary, with the disadvantage of increasing

computation effort. The actual number of repetitions increases with an increasing demand

for precision. Furthermore, it is essential to understand the influences of the spectral and

LFS sine parameters on the strength of the tails of peak in repeated spectra.
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1. The influence of b0: Firstly, the bigger the |b0,r| the slower the amplitude decreases to

the sides (Fig. 4.3 (a)). Secondly, the smaller the |b0,r| the more does the theoretical

centre frequency of a peak (rMax) with respect to the raster of discrete frequencies

(Eq. 4.14) influence the amplitude decrease (Fig. 4.3 (b)).

2. The influence of the peak position: Due to the monotonous convergence, in general,

one can say that the peak is the more influenced by neighbouring peaks the closer

the peaks are (the less discrete spectral values lie between them) – this depends on

the location of the peak within the complete range of discrete spectral values (in

comparison to the effect described above) and is a small scale influence from one

peak to the closest peak of the ”next spectrum” (the next repetition according to

the Dirac comb). The closer this neighbouring peak is, the farther the second next

one will be.1

3. The influence of N : Adding more and more neighbours will decrease the influence

on the position of the peak in a single spectrum (3rd item) but a long scale influence

will remain: In every spectrum there are exactly two peaks, counting this as one

unit, then the next unit is exactly N points away – that means that the smaller the

N is, the more neighbours must be taken into account to reach a certain precision

if all the other parameters remain unchanged. In other words: The less points a

single spectrum consists of the closer the neighbouring spectra are and the stronger

their influence is because the amount of points between the peaks is less.2

For the following consideration two aspects need to be taken into account:

• The function FErf includes exactly the two peaks of a single spectrum: One at

negative and one at positive frequencies.

• The fitting is done to the peak in the positive frequencies.

The mean frequency determines the location of the peak within the N/2 values of

the positive spectrum. FErf considers all peaks located within the spectral range

[−νNyquist;νNyquist]. The bigger the frequency is, the closer the peak gets to the peak

in the neighbouring spectrum to the right which is not considered. This means that

(depending on the N) the mean frequency of a peak decides if this influence is small

1Each spectrum consists of two peaks (at positive and negative frequencies), the bigger the mean
frequency is, the more the peaks move outwards (towards ±νNyquist). The more outwards the peaks are,
the closer they are with regards to the closest peak within the next repetition of the spectrum (due to
the Dirac comb) and the bigger the distance to the second closest peak becomes. To include the complete
Dirac comb: Increasing ν0 decreases the distance to every odd multiple peak and increases the distance
to every even multiple peak.

2Interestingly, with respect to the computation effort, this is inverse to the FSum approach: The
calculation of FSum is proportional to N , but here, the bigger the N , the less repetitions of spectra need
to be taken into account to achieve a certain precision (actually, it is inverse proportional).
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(small frequencies) or disastrous high (if the frequency is close to νNyquist). This

asymmetry comes mainly from the fact that for small frequencies the influence of the

peak at negative frequencies increases – but it is already included in FErf. In contrast, for

high frequencies the real data are influenced strongly by the peak of the next neighbour

to the right whereas the theoretical function does not contain this influence. That

means that adding the neighbouring spectrum to the right is by far the most important

improvement and a solution of the 2nd effect in the list of dependencies. This is done by:

F1
Erf(ν) = FErf(ν)+FErf (ν −N∆ν) (A.18)

F1
Erf(ν) (Eq. A.18) considers all peaks within the frequencies range: [−νNyquist,3 ·νNyquist].

That means that with F1
Erf(ν) at least N/2 spectral values form a kind of buffer to the

next non-considered peak.3 The next step is to add a repetition to the left (smaller than

−νNyquist), restoring the asymmetry in considered peaks; it makes sense to use an odd

number of neighbours to improve the theoretical function (the 3rd item). E.g. the next

improvement is:

F3
Erf(ν) = F1

Erf(ν)+FErf (ν −2N∆ν)+FErf (ν +N∆ν) (A.19)

In general:

Fn
Erf(ν) = Fn−2

Erf (ν)+FErf (ν − (n−1)N∆ν)+FErf (ν +(n−2)N∆ν) (A.20)

The 1st item in the list of dependencies concern the individual parameters b0 and ν0 and

therefore are not considerable in advance (except the expected signals are known).

In a series of plots the some examples for fits with different numbers of considered peaks

are given. For reasons of compatibletly, the parameters used here are the same as in Figure

5.4. Figure A.2 illustrates the fit result if one ”spectrum” is added behind the νNyquist:

F1
Erf (Eq. A.18).4 Figure A.3 shows the same for F31

Erf. Naturally the start parameters are

the same in both examples.

A.1.4 The error-function approach for small LFS parameters

The implemented FErf expression becomes invalid for |b0,r| → 0 (Eq. 2.63). Figure A.4

shows how the fit algorithm behaves if the signal consists of a pure, monofrequent sine.

3To be exact: For the fitting, there is one peak to the left (at least N/2 points) and even two peaks
(at least N points) to the right that are considered. For the subtraction both peaks (at negative and
positive frequencies) are edited so here is one peak (at least N/2 points) to each side taken into account.

4The start values are different to the ones for the FSum approach. This analysis has been done at an
earlier stage of the software. The start value estimation was typically more precise for pure LFS sine
spectra but much more susceptible to superposed signals in general.
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Figure A.2: Real and imaginary part of the LFS sine spectrum after fit and sub-
traction of the approximated error-function expression with one next neighbour (F1

Erf,
Eq. A.18). N = 256, ∆ν = 1.0Hz. Number of iterations: 37, χ2 = 4.95 ·10−14, sample
rate: 500.0 Hz, so behind the Nyquist frequency (250.0 Hz) the negative frequencies
are shown.
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Figure A.3: Similar content to Figure A.2: Real and imaginary part of the LFS sine
spectrum after fit and subtraction of the approximated error-function expression with
31 next neighbours (F3

Erf1, Eq. A.20 with n = 31). N = 256, ∆ν = 1.0Hz. Number of
iterations: 47, χ2

n = 3.29 ·10−21, sample rate: 500 Hz.
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The parameters of the sine are chosen in such a way, that no spectral leakage occurs.5

Therefore, the basic FErf function (without additional summands to compensate for the

omitted Dirac comb) is sufficient. Consequently, the subtraction leaves the peak at neg-

ative frequencies basically unchanged.6 For the subtraction of a spectrum with the fitted

parameters, the magnitude of the peak is reduced only by five orders of magnitude (com-

pared to the example given in Fig. A.3 this is a bad result, in particular because one

would expect it to be better because no next neighbours are needed). The magnitude of

the values around the peak is increased by orders of magnitude compared to the original

spectrum. On the one hand, this parameter set should work perfectly because no leak-

age comes from any other peak, on the other hand fitting has to fail because FErf in its

implemented form is invalid for |b0,r| → 0. Additionally, the figure includes the difference

spectra if subtractions are done without fitting but with given parameters. Except for b0,

the parameters are chosen to be exactly the ones that are used to generate the spectrum.

It is reasonable that the smaller b0 gets, the better the result becomes. But for b0,r < 10−7,

the result becomes worse because of numerical errors. For even smaller values of b0,r the

decrease of peak amplitude becomes as small as two orders of magnitude with simulta-

neous increase of the rest of the spectrum to the same level. For b0,r < 10−14, strange

rectangles limiting the regions of strong magnitude increase occur. From b0,r = 10−17 on,

the result is as good as the numerical precision allows. This varying behaviour is not

investigated any further. It needs to be noted that the fit result is likely to become er-

ratic where the numerical problems begin. For applications one should switch to a series

expansion or the FMono approach before b0,r is as low as 10−7.

A.1.5 Brief conclusion

The values calculated with the FErf approach are not exact but can reach an ever increasing

precision with adding more and more neighbours (in real instances this is limited by the

numerical precision of the floating point type implementation). This approach needs less

computation effort for big N (no summing up N elements); for most cases in real data

F1
Erf(ν) should be precisely enough. That is why this way is presented here although the

exact calculation is shown afterwards. One disadvantage is the divergence for b0 → 0; a

threshold could be set to switch to the monofrequent approach (Eq. 2.29) where necessary.

5Except for three points for each of the peaks at positive and negative frequencies the magnitude
should be exact zero – for floating-point variables with double precision after performing an FFT with
N = 128 samples, around 10−14 is a realistic magnitude for ”zero”.

6The FErf function includes the negative frequencies at the mathematically correct location: Left from
the positive ones (Sec. A.1.3). As usual, the array holding the FFT data arranges the negative frequencies
behind the positive ones. So internally a complete spectrum is in the index range of [0;N − 1]. If the
algorithm calculates the negative frequencies, it inserts large values for the frequency instead of negative
ones. This fact does not matter with respect to the other approaches (FMono and FSum) as they are
periodically. For the FErf approach the effect is typically cancelled by adding odd numbers of ”additional
spectra” to the FErf (Sec. A.1.3)
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Figure A.4: The spectrum of a monofrequent sine with its frequency (ν0) on the
raster of discrete frequencies and the same after the FErf with different parameters is
subtracted (N = 128, ∆ν = 1.0Hz, thus the value of b0 equals the one of b0,r). Two
curves are contained in all plots: the FFT of the monofrequent sine before (light blue)
and after (black) the fitted spectrum is subtracted. The other, coloured curves show
this difference for the FErf function with the exact values for the input parameters:
A0, ν0 and φ0, but with different b0 – its values are given at the right margin. Further
fit details: number of iterations: 74, χ2

n = 9.23 ·10−11.
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A.2 Sum approach for the monofrequent sine

As a check for consistency, Equation 2.84 (rectangle and Dirac comb) is convolved with

Equation 2.11 (monofrequent sine):

SRD(ν) = RD(ν)∗S(ν)

=




1

2



1+e−i2πNν∆t +2
N−1∑

k=1

e−i2πkν∆t







∗
[

i
A0

2

(

δ(ν +ν0)e−iφ0 − δ(ν −ν0)eiφ0
)]

,

(A.21)

leading to:

SRD(ν) = i
A0

4



e−iφ0



1+e−i2πN(ν+ν0)∆t +2
N−1∑

k=1

e−i2πk(ν+ν0)∆t





−eiφ0



1+e−i2πN(ν−ν0)∆t +2
N−1∑

k=1

e−i2πk(ν−ν0)∆t







. (A.22)

The second half of this equation represents the peak centred at positive frequencies. This

is the same as the limit of Equation 2.97 for b0 → 0:

ŜRDpos
b0→0
= − i

1

4
·A0eiφ0



1+2
N−1∑

k=1

eiπk∆t(−2ν+2ν0) +eiπN∆t(−2ν+2ν0)



 (A.23)

=− i
1

4
·A0eiφ0



1+e−i2πN(ν−ν0)∆t +2
N−1∑

k=1

e−i2πk(ν−ν0)∆t



 . (A.24)

This means that it does not matter whether one takes the LFS sine with a time-shifting

rate equal to zero or directly uses the monofrequent sine.

A.2.1 Additional observation

SRDpos(ν) = −i
1

4
·A0eiφ0



1+e−i2πN(ν−ν0)∆t +2
N−1∑

k=1

e−i2πk(ν−ν0)∆t



 (A.25)

SRDpos(ν) = −i
1

4
·A0eiφ0





N∑

k=1

e−i2π(k−1)(ν−ν0)∆t +
N∑

k=1

e−i2πk(ν−ν0)∆t



 (A.26)

With ∆t = 1
N∆ν

SRDpos(ν) = −i
1

4
·A0eiφ0





N∑

k=1

ei2π k−1
N

ν0
∆ν

︸         ︷︷         ︸

qk

·e−i2π k−1
N

ν
∆ν +

N∑

k=1

ei2π k
N

ν0
∆ν · e−i2π k

N
ν

∆ν



 (A.27)
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For integer values of ν/∆ν, the sum expression can be written as the DFT of qk = ei2π k−1
N

ν0
∆ν

which is itself rotated equidistantly on the unity circle and only depends on the frequency

of the input sine.

A.2.2 Interpretation of the sum result

Theoretically an expression like this has to exist because:

• The result has be be periodic because of the Dirac comb.

→ The result must be expressible by sinusoidal functions (resp. exponential functions

with imaginary exponents) with frequencies of this periodicity and integer multiples.

• Because the time domain is discretised, the information between two data samples

is neglected, which means that the absolute information is limited to N complex

values.

• By Fourier theory this can be expressed by N values (coefficients of an orthogonal

set of functions) in the spectral domain.7

→ No matter how complex the function in the time domain is, there should always be

a sum expression consisting of up to N independent sinusoids (e.g. N/2 sines and

N/2 cosines) in the frequency domain being able to represent that function. The

difficulty seems to be the determination of the Fourier coefficients.

A.2.3 Comparing the expressions

Two different expressions for the monofrequent RDSpos(ν) expressions have been derived.

Equation A.24 with a finite sum and Equation 2.27 with a product of trigonometric

functions, both are equalised and their coefficients are reduced:

i



1+e−i2πN(ν−ν0)∆t +2
N−1∑

k=1

e−i2πk(ν−ν0)∆t



=
(

1− e−2iπN(ν−ν0)∆t
)

· cot(π∆t(ν −ν0)) .

(A.28)

The substitution: x = π∆t(ν −ν0) can be used in all arguments. Furthermore and similar

to Equation 2.26 the following identities are used:

1+e−i2Nx = 2cos(Nx)e−iNx and 1− e−i2Nx = i2sin(Nx)e−iNx (A.29)

cos(Nx)+eiNx
N−1∑

k=1

e−i2kx = sin(Nx) · cot(x) (A.30)

7Rather it is expressed by N complex values but with redundant information (the negative frequencies
can be gained by utilisation of symmetry relations, Sec. 2.3.1.1).
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N−1∑

k=1

ei(−2kx+Nx) = sin(Nx) · cot(x)− cos(Nx) (A.31)

This should be valid for N ≥ 2. Therefore this equation provides an infinite number

of trigonometric identities which in parts I have never seen somewhere. Of course it is

quite special, nonetheless it might help at some point. With Euler’s equation (Eq. 2.7) it

becomes:

N−1∑

k=1

cos(−2kx+Nx)+ i
N−1∑

k=1

sin(−2kx+Nx) = sin(Nx) · cot(x)− cos(Nx). (A.32)

This can be divided into real and imaginary part.

A.2.3.1 Imaginary part

N−1∑

k=1

sin(−2kx+Nx) = 0 (A.33)

This basic equation means that the summation of pairs of sines with inverted signs is

zero.

A.2.3.2 Real part

N−1∑

k=1

cos(−2kx+Nx) = sin(Nx) · cot(x)− cos(Nx) (A.34)

I have no demonstrative description for this equation but checked its correctness for N ≤ 4.

A.2.4 Further formulations
N−1∑

k=1

e−i2kx =
sin(Nx) · cot(x)− cos(Nx)

eiNx
(A.35)

N−1∑

k=1

cos(−2kx)+i
N−1∑

k=1

sin(−2kx) =
(

sin(Nx)·cot(x)−cos(Nx)
)

·
(

cos(−Nx)+isin(−Nx)
)

(A.36)

A.2.4.1 Real part

N−1∑

k=1

cos(−2kx) =
(

sin(Nx) · cot
(

x
)

− cos(Nx)
)

· cos(−Nx) (A.37)

N−1∑

k=1

cos(2kx) = sin(Nx) · cos(Nx) · cot(x)− cos2(Nx) (A.38)

leading to:
N−1∑

k=1

cos(2kx) = cos2(Nx) · (tan(Nx) · cot(x)−1), (A.39)
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or:
N−1∑

k=1

cos(2kx) = cos2(Nx) ·



sin(Nx)

cos(Nx)

cos(x)

sin(x)
−1



, (A.40)

or:
N−1∑

k=1

cos(2kx) =
1

2
sin(2Nx)

cos(x)

sin(x)
− cos2(Nx). (A.41)

A.2.4.2 Imaginary part

N−1∑

k=1

sin(−2kx) =
(

sin(Nx) · cot(x)− cos(Nx)
)

· sin(−Nx) (A.42)

N−1∑

k=1

sin(2kx) = sin2 (Nx) · cot(x)− cos(Nx) · sin(Nx) (A.43)

N−1∑

k=1

sin(2kx) =
1

2
(1− cos(2Nx)) · cot(x)− 1

2
sin(2Nx) (A.44)

One could use: cot(x
2 ) = sin(x)

1−cos(x) ; y = 2x, then some kind of symmetry occurs:

2
N−1∑

k=1

sin(ky) = sin(y)




1− cos(Ny)

1− cos(y)
− sin(Ny)

sin(y)



. (A.45)

A.3 The thresholds for χ2
n for the monofrequent ap-

proach

The FMono expression (Eq. 2.29) has one parameter less than the FSum one (Eq. 2.95).

Therefore, if the data consist only of noise, the probability for a fit producing a χ2
n below

a certain value is lower than for the FSum. Accepting the same rate of false-positives, the

threshold must be adapted.

For the sake of consistency the same spectra are used as for the LFS sine (Sec. 5.3): 320

spectra with 128 samples, 40 with 1,024 and 5 with 8,192. 15,580 local maxima are

evaluated by discretising χ2
n into intervals, counting their frequencies, summing them up

from zero to the current χ2
n value and dividing each value by the total number. This is

shown in Figure A.5. The following thresholds for false positives are extracted:

1% 0.0035584

2% 0.0060959

5% 0.0117342
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Figure A.5: These plots are generated analogously to the ones in Figure 5.6: The
ordinate shows the proportion of fits within spectra consisting of pure GWN with
regard to their χ2

n. (a) full scale, (b) zoomed in to the lowest 10%.
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A.4 Computer run time

The run time of the fitting algorithm is approximately proportional to:

• the number nFit of complex values the function is fitted to,

• the number of iterations,

• N (for FSum).

In order to measure the duration of the fit, the system time is gained before and after

the fitting. The difference is divided by the three proportionalities, which should result

in a constant value. Two facts should be mentioned: Firstly, there are some calculations

that are done exactly once for each fit (like the start-value estimation) and act like an

offset to the number of iterations; this is not taken into account here. Secondly, the

utilized GetSystemTimeAsFileTime() function provided by Microsoft returns quantised

values with step lengths depending on the operating system. The computer used here

is an Intel i5-3450 (3.10 Ghz, 64 bit, 4 GB RAM, 64 bit Windows 7 Enterprise); the

minimal time resolution is 15.6µs. This quantisation effects the result most strongly if

the fit duration is short which mainly occurs for small N . Here it even occurs that the

same time is returned before and after the fitting, therefore the difference appears as zero.

In the same way as in Section 5.3 (but with different seeds) spectra of GWN were produced

and the fitting algorithm passed through the local maxima in the magnitude spectrum.

Figure A.6 contains the resulting durations. This evaluation is done without the system-

atic phase variation for the start value estimation of φ0 (Sec. 4.9.3), otherwise the time

for the calculations done once per fit would increase significantly. The mean normalised

time is 0.5µs. Deductively, the time that is required to fit one peak can be estimated by

the product: 0.5µs × n × no. iterations × N . One example for the propeller aircraft: the

mean number of complex values used per peak is 10.36; the mean number of iterations is

89.33, N = 8,192. Thus the mean time to process a single peak is 3.8 s. With 1,360 peak

fits per spectrum, it takes 1.4 h to process one spectrum. 96 spectra are in the sequence,

meaning that the processing of 1.0min of input aircraft data takes 5.7d of computation

time on a single core of that PC. This estimated duration fits to the real run time of

several days.
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Figure A.6: Time used to fit one peak, divided by the proportionalities described
in the text, segmented by the number of FFT samples, red: N = 128 (4,989 peaks),
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shows the share of the peaks that take the respective duration. The increases and
decreases are mainly produced by the quantisation of the utilized operating-system
function. Because N contributes strongly, the variations decrease with increasing N .
Zeroes occur either if the start value estimation failed (left), or if the duration is
actually zero by quantisation (right).
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A.5 Major extensions added to our software

A.5.1 Evaluation

• Software porting The Pascal program Eval68 developed by the BVP was ported

into C/C++ (in large parts already as part of my diploma thesis). Because of the

continuous growing of the program there was a need to restructure the code, switch

to object-oriented programming (still in progress) and avoid simple global variables.

• Command file – recording

For the existing mode of running the program using input from a command (.CMD)

file instead of input from the console a command (CMD)-record mode was imple-

mented. Every input given via console can be saved in a ASCII file (including

comments to every line) allowing the user to redo the same or – after editing the

file – a modified operation without further input.

• Command file – metaprogramming layer

Parameters can be set and used within a command file. Parameters can hold multi-

ple entries such as value ranges, random numbers, strings or the files of a specified

directory; they can also depend on each other. If parameters with multiple entries

are given, the evaluation is repeated with all combinations of entries.

• Command file – plot raster

When marking a series and its harmonics in the plot of a spectrum it is recorded

when the CMD-record mode is active.

• Fit-result files

A container type is used to save the arbitrary numbers of fit results in arbitrary

numbers of spectra (this is the basis for plots like Fig. 6.2 (b)).

• Single sine tracking

Support for the user to extract a single sequence of fits (see footnote in Sec. 6.2.1.1).

A.5.2 Measurement

• Measurement program

A measurement program addressing the Data Translation systems was developed

in C/C++, in part on the basis of the existing Pascal program Mess6.

• Long measurement files

Recent measurements ran over longer time periods and the events were to be classi-

fied in a global context (e.g. for the Gorleben experiments the times of blasts, at the

8The basic structure of the software is described in [48] at 1994 levels.
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airport the overflights of the planes). The preambles now contain the microseconds

since January 1, 1970 00:00 hours UTC.

Measurements can cover many gigabytes of data, saved in blocks of 512 MB each;

the evaluation program now is able to handle any measurement length and provides

all services across data file borders throughout the measurement.

• Data recording software (in strong collaboration with Jürgen Altmann)

New ADC converters (DT 9841) were bought and run during the measurements.

The four independent devices can be synchronised to the same clock. Programs for

input and transfer for the signal processors were written using Texas Instruments

Code Composer. The basic concept for the software could be ported from Pascal

code. For programming the communication via USB with the analog-digital systems

a library provided by DATA Translation was available.

• Converters for different file types

In order to evaluate data of other than our measurements, conversions were needed

for files with a different byte order, ASCII- or compressed files into our binary format

with its header.

A.5.3 Visualisation

• Absolute time labels

All time axis can be set to UTC.

• Compression of data for sequences of spectra

In order to find periodic content in large measurements (in parts up to 180 sensors

and two weeks of measurement), multiple sequences can be plotted in one figure,

additionally the number of displayed dots can be reduced drastically by combining

values [49].

A.5.4 Algorithm

• Error-function for complex values

This is needed for the implementation of the FErf approach.

• Sequence-of-spectra processing

The procedure described in this work was implemented. This includes: the start

value estimation; the FSum, FErf and FMono expressions, their derivatives and, as

the case may be, Taylor expansions; the criteria for fit result evaluation; the recon-

struction of the time-domain signal.
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• FIR filter kernels

A procedure to apply FIR filter kernels was already developed in the former Eval6

program, this was ported into C/C++. A procedure was added to create FIR filter

kernels of practically all combinations of low, and high passes (and thus band and

notch filters) based on instructions given in [50].

• Function generator

A function generator was implemented to create artificial time-domain files for analy-

sis purposes with pre- and postambles (*.dm6) and audio files (uncompressed *.wav)

to be played at experiments to excite acoustic waves.
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