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Abstract
In a recent paper Dette et al. (2014) introduced optimal design problems for dose

finding studies with an active control. These authors concentrated on regression models
with normal distributed errors (with known variance) and the problem of determining
optimal designs for estimating the smallest dose, which achieves the same treatment
effect as the active control. This paper discusses the problem of designing active-
controlled dose finding studies from a broader perspective. In particular, we consider a
general class of optimality criteria and models arising from an exponential family, which
are frequently used analyzing count data. We investigate under which circumstances
optimal designs for dose finding studies including a placebo can be used to obtain
optimal designs for studies with an active control. Optimal designs are constructed for
several situations and the differences arising from different distributional assumptions
are investigated in detail. In particular, our results are applicable for constructing
optimal experimental designs to analyze active-controlled dose finding studies with
discrete data, and we illustrate the efficiency of the new optimal designs with two
recent examples from our consulting projects.

Keywords and Phrases: optimal designs, dose response, dose estimation, active control

1 Introduction

Dose finding studies are an important tool to investigate the effect of a compound on a
response of interest and have numerous applications in various fields such as medicine, biol-
ogy or toxicology. They are of particular importance in pharmaceutical drug development

1



because marketed doses have to be safe and provide clinically relevant efficacy [see Ruberg
(1995); Ting (2006)]. Most of the literature on statistical methodology for analyzing dose
response studies include placebo as a control group [see Pinheiro et al. (2006); Bretz et al.
(2008), among others]. Numerous authors have worked on the problem of determining opti-
mal designs for dose response experiments with a placebo group because the application of
efficient designs can substantially increase the accuracy of statistical analysis [see Zhu and
Wong (2000); Fedorov and Leonov (2001); Krewski et al. (2002); Wu et al. (2005); Dragalin
et al. (2007); Miller et al. (2007); Bornkamp et al. (2011), among many others].
However, dose response studies including a marketed drug as an active control are becoming
more popular, especially in preparation for an active-controlled confirmatory non-inferiority
trial where the use of placebo may be unethical. Thus, considerable interest on active-
controlled studies has emerged, as documented through the release of several related guide-
lines by regulatory agencies [see ICH (1994), EMEA (2006, 2011), EMEA (2005)]. Recently
Helms et al. (2014a) investigated the finite sample properties of maximum likelihood esti-
mates of the target dose in an active-controlled study, which achieves the same treatment
effect as the active control and Helms et al. (2014b) studied nonparametric estimates for this
quantity.
Despite of these important applications, to our best knowledge, optimal design problems for
active-controlled dose finding studies have only been considered in one paper so far [Dette
et al. (2014)]. These authors investigated optimal designs for estimating the target dose
under the assumption of a normal distribution with known variances. In particular, they
demonstrated the superiority of the optimal designs compared to standard designs used in
pharmaceutical practice. However, this work is restricted to normal distributed responses
with known variances and a special c-optimality criterion and obviously the designs derived in
their paper are not necessarily useful for other applications. Therefore the goal of the present
paper is to investigate optimal design problems for dose finding studies with an active control
from a more general perspective. A first objective is to consider a general class of optimality
criteria. Second, as it will be pointed out in the following paragraph, in many dose finding
trials with an active control the assumption of normal distributed responses is hard to justify,
and we consider exponential families for modeling the distribution of the responses of the new
drug and the active control. This allows in particular to design experiments for controlled
studies with discrete data as they have appeared in the consulting projects described in the
next paragraph. Third, even if the assumption of a normal distribution is justifiable, we
will demonstrate that the estimation of the variances has a nontrivial effect on the optimal
designs for an active-controlled study.
The research in the present paper is motivated by two clinical trial examples where the
assumption of normal distributed responses made by Dette et al. (2014) is hard to justify.
The first example refers to a 24-week, dose-ranging, Phase II study in patients with gouty
arthritis to determine the target dose of a compound in preventing signs and symptoms of
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flares in chronic gout patients starting allopurinol therapy. The study population consists
of male and female patients (age 18 − 80 years) diagnosed with chronic gout as defined
by the American College of Rheumatology preliminary criteria (ACR) and willing to either
initiate allopurinol therapy or having just initiated allopurinol therapy within less than one
month. Approximately 500 patients are screened in order to randomize 440 patients in
approximately 100 centers worldwide. Patients who meet the entry criteria are randomized
to receive either the active comparator or a specific dose of the new compound. The primary
endpoint is the number of flares occurring per subject within 16 weeks of randomization,
which are modeled using a negative binomial distribution for all treatment arms, where the
corresponding probability is modeled by a dose-response relationship between the (single)
dose groups of the new compound and by a constant parameter for the comparator.
The second example is a Phase IIb, multicenter, randomized, double-blind, active-controlled
dose-finding study in the treatment of acute migraine, as measured by the percentage of
patients reporting pain freedom at two hours post-dose. Approximately 500 patients are
randomized worldwide. Patients who meet the entry criteria are randomized to receive
either the active comparator or one dose of the new compound. Once the dose of the new
compound is selected, Phase III studies are conducted to evaluate further the efficacy and
safety of the new compound in the targeted patient population.
In Section 2 we give an introduction to optimal design theory for models with an active con-
trol under general distributional assumptions. In particular we present results, which relate
optimal designs for dose finding studies with a placebo group to optimal designs for models
with an active control. This methodology is used in Section 3 to construct D-optimal designs
for dose finding studies with an active control. In Section 4 we consider the optimal design
problem for estimating the smallest dose, which achieves the same treatment effect as the
active control. In both sections we investigate the effect of the distributional assumption on
the resulting optimal designs. In particular, we show that different distributional assump-
tions (as for example a normal or Poisson distribution used to model continuous or discrete
data) leads to substantial changes in the structure of the optimal designs. The Appendix
contains the proofs of our main results.
For the sake of brevity this paper is restricted to locally optimal designs which require a-
priori information about the unknown model parameters [see Chernoff (1953), Ford et al.
(1992), Fang and Hedayat (2008)]. These designs can be used as benchmarks for commonly
used designs. Moreover, locally optimal designs serve as basis for constructing optimal
designs with respect to more sophisticated optimality criteria, which are robust against a
misspecification of the unknown parameters [see Pronzato and Walter (1985) or Chaloner
and Verdinelli (1995), Dette (1997), Imhof (2001) among others]. Following this line of
research the methodology introduced in the present paper can be further developed to adress
uncertainty in the preliminary information for the unknown parameters.
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2 Modeling active-controlled dose finding studies using
exponential families

Consider a clinical trial, where patients are treated either with an active control (a standard
treatment administered at a fixed dose level) or with a new drug using different dose levels
in order to investigate the corresponding dose response relationship. Given a total sample
size N , we thus allocate n1 and n2 = N − n1 patients to the two treatments. In addition,
we determine the optimal number of different dose levels for the new drug, the dose levels
themselves and the optimal number of patients allocated to each dose level to obtain the
design of the experiment.
More formally, we assume that k different dose levels, say d1, . . . , dk, are chosen in a dose
range, say D ⊂ R+

0 , for the new drug (the optimal number k and the dose levels will be
determined by the choice of the design) and that at each dose level di the experimenter can
investigate n1i patients (i = 1, . . . , k), where n1 =

∑k
i=1 n1i denotes the number of patients

treated with the new drug. The optimal numbers n1i, more precisely the optimal proportions
n1i/n1, will be determined by the choice of the design. The corresponding responses at
dose level di are modeled as realizations of independent real valued random variables Yij
(j = 1, . . . , n1i, i = 1, . . . , k). Similarly, the responses of patients treated with the active
control are modeled as realizations of independent real valued random variables Z1, . . . , Zn2 ,
where the two samples corresponding to the new drug and active control are assumed to be
independent. For the statistical analysis we further assume that the random variables Zj
and Yij have distributions from an exponential family, where the distributions of the latter
depend on the corresponding dose levels di, that is

f1(y|di, θ1) :=
∂P Yi1

θ1

∂ν
(y) = exp{cT1 (di, θ1)T1(y)− b1(di, θ1)}h1(y), (2.1)

f2(z|θ2) :=
∂PZ1

θ2

∂ν
(z) = exp{cT2 (θ2)T2(z)− b2(θ2)}h2(z). (2.2)

Here ν denotes a σ-finite measure on the real line, θ1 ∈ Θ1 ⊂ Rs1 , θ2 ∈ Θ2 ⊂ Rs2 are unknown
parameters and we use common terminology for exponential families [see for example Brown
(1986)]. In particular, the functions c1 : D×Θ1 → R`1 , b1 : D×Θ1 → R, c2 : Θ2 → R`2 and
b2 : Θ2 → R are assumed to be twice continuously differentiable where ∂c1

∂θ1
, ∂c2
∂θ2
6= 0 and T1

and T2 denote `1- and `2- dimensional statistics defined on the corresponding sample spaces.
Additionally, the functions h1 and h2 are assumed to be positive (and measurable).
Throughout this paper let κ be a variable indicating whether a patient receives the new drug
(κ = 0) or the active control (κ = 1) and denote

X = (D × {0}) ∪ {(C, 1)} (2.3)
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as the design space of the experiment, where D is the dose range for the new drug, C the
dose level of the active control and the second component of an experimental condition
(d, κ) ∈ X determines the treatment (κ = 0, 1). Straightforward calculation shows that the
Fisher information at the point (d, κ) ∈ X is given by the matrix

I((d, κ), θ) =

(
I{κ = 0}I1(d, θ1) 0

0 I{κ = 1}I2(θ2)

)
, (2.4)

where 0 denotes a matrix of appropriate dimension with all entries equal to 0, θ = (θT1 , θ
T
2 )T ∈

Θ1 × Θ2 ⊂ Rs1+s2 is the vector of all parameters, I{κ = 0} is the indicator function of the
event {κ = 0} and the matrices I1 and I2 are the Fisher information matrices of the two
models (2.1) and (2.2), that is

I1(d, θ1) = E
[( ∂

∂θ1
log f1(Y |d, θ1)

)( ∂

∂θ1
log f1(Yi1|di, θ1)

)T]
I2(θ2) = E

[( ∂

∂θ2
log f2(Z|θ2)

)( ∂

∂θ2
log f2(Z1|θ2)

)T]
. (2.5)

where the random variables Y and Z have densities f1(y|d, θ1) and f2(z|θ2) defined by (2.1)
and (2.2), respectively. Note that the Fisher information in (2.4) is block diagonal because
of the independence of the samples, as different patients are either treated with the new drug
or the active control. The following examples illustrate the general terminology.

Example 2.1 In order to demonstrate the different structures of the Fisher information
arising from different distributions of the exponential family we consider several examples.

(a) Dette et al. (2014) investigated normal distributed responses with known variances
σ2
1 and σ2

2 for the new drug and the active control, respectively. For the expectation
of the response of the new drug at dose level d they assumed a nonlinear regression
model, say η(d, ϑ), where ϑ = (ϑ0, . . . , ϑs), while it is assumed to be equal to µ for
the active control. If the variances are not known and have to be estimated from the
data, we have θ1 = (ϑ0, . . . , ϑs, σ

2
1), θ2 = (µ, σ2

2) for the parameters in models (2.1)
and (2.2), respectively. Standard calculations show that the Fisher information at a
point (d, κ) ∈ X is given by (2.4), where

I1(d, θ1) =

(
1
σ2
1
( ∂
∂ϑ
η(d, ϑ))( ∂

∂ϑ
η(d, ϑ))T 0

0 1
2σ4

1

)
, I2(θ2) =

(
1
σ2
2

0

0 1
2σ4

2

)
. (2.6)

(b) As motivated by the examples in Section 1, it might be more reasonable to consider
a different distribution than a normal distribution in (2.1) and (2.2) to model discrete
data. Assume, for example, a negative binomial distribution with parameter r1 ∈ N for
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the number of failures and a function π(d, θ1) ∈ (0, 1) for the probability of a success of
the new drug (at dose level d) and parameters r2 ∈ N, µ ∈ (0, 1) for the active control.
Then we have θ2 = µ and the Fisher information matrix is given by (2.4), where

I1(d, θ1) =
r1(

∂
∂θ1
π(d, θ1))(

∂
∂θ1
π(d, θ1))

T

π2(d, θ1)(1− π(d, θ1))
, I2(θ2) =

r2
µ2(1− µ)

. (2.7)

Here the parameters r1, r2 ∈ N for the number of failures are assumed to be known.

(c) Alternatively, in the case of a binary response we may use a Bernoulli distribution,
where π(d, θ1) ∈ (0, 1) and µ ∈ (0, 1) denote the probability of success for the new
drug and the active control, respectively. In this case we have θ2 = µ and the Fisher
information matrix is given by (2.4), where

I1(d, θ1) =
( ∂
∂θ1
π(d, θ1))(

∂
∂θ1
π(d, θ1))

T

π(d, θ1)(1− π(d, θ1))
, I2(θ2) =

1

µ(1− µ)
.

(d) For a Poisson distribution, the parameters for the distribution of the responses corre-
sponding to the new drug and the active control are given by a function of the dose
level, say λ(d, θ1) > 0, and a parameter µ > 0, respectively. In this case we have θ2 = µ

and the Fisher information matrix is given by (2.4), where the two non-vanishing blocks
are defined by

I1(d, θ1) =
( ∂
∂θ1
λ(d, θ1)(

∂
∂θ1
λ(d, θ1))

T

λ(d, θ)
, I2(θ2) =

1

µ
. (2.8)

Throughout this paper we consider approximate designs in the sense of Kiefer (1974), which
are defined as probability measures with finite support on the design space X in (2.3).
Therefore, an experimental design is given by

ξ =

(
(d1, 0) . . . (dk, 0) (C, 1)

w1 . . . wk wk+1

)
, (2.9)

where w1, . . . , wk+1 are positive weights, such that
∑k+1

i=1 wi = 1. Here, wi denotes the
relative proportion of patients treated at dose level di (i = 1, . . . , k) or the active control
(i = k + 1). If N observations can be taken, a rounding procedure is applied to obtain
integers n1i (i = 1, . . . , k) and n2 from the not necessarily integer valued quantities wiN
(i = 1, . . . , k + 1) [see Pukelsheim and Rieder (1992)]. Thus, the experimenter assigns
n11, . . . , n1k and n2 patients to the dose levels d1, . . . dk of the new drug and the active
control, respectively. In the following discussion we will determine optimal designs, which
also optimize the number k of different dose levels. It turns out that for the models considered
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here the optimal designs usually allocate observations at less than 5 dose levels. Note that
in practice the number k of different dose levels is in the range of 4 − 7 and rarely larger
than 10.
The information matrix of an approximate design ξ of the form (2.9) is defined by the
(s1 + s2)× (s1 + s2) matrix

M(ξ, θ) =

∫
X
I((d, κ), θ)dξ(d, κ) =

(
(1− ωk+1)M1(ξ̃, θ1) 0

0 ωk+1I2(θ2).

)
(2.10)

Here, the s1 × s1 matrix M1(ξ̃, θ1) and the s2 × s2 matrix I2(θ2) are given by

M1(ξ̃, θ1) =

∫
D
I1(d, θ1)dξ̃(d), (2.11)

and (2.5), respectively, and

ξ̃ =

(
d1 . . . dk
w̃1 . . . w̃k

)
(2.12)

denotes the design (on the design space D) for the new drug, which is induced by the design
ξ in (2.9) defining the weights w̃i = wi

1−wk+1
, i = 1, . . . , k.

If observations are taken according to an approximate design it can be shown (assuming
standard regularity conditions) that the maximum likelihood estimators θ̂1, θ̂2 in models
(2.1) and (2.2) are asymptotically normal distributed, that is

√
N
(
(θ̂T1 , θ̂

T
2 )T − (θT1 , θ

T
2 )T
) D−→ N (0,M−1(ξ, θ))

as N−→∞, where the symbol D−→ denotes convergence in distribution. Dette et al. (2008)
considered dose finding studies including a placebo group and showed by means of a sim-
ulation study that the approximation of the variance of θ̂ = (θ̂T1 , θ̂

T
2 )T by 1

N
M−1(ξ, θ) is

satisfactory for total sample sizes larger than 25. As typical clinical dose finding trials have
sample sizes in the range of 200 − 300 [see for example Bornkamp et al. (2007)], it is rea-
sonable to use this approximation also for active-controlled studies. Consequently, optimal
designs maximize an appropriate functional of the information matrix defined in (2.10).
In order to discriminate between competing designs we consider in this paper Kiefer’s φp-
criteria [see Kiefer (1974) or Pukelsheim (2006)]. To be precise, let p ∈ [−∞, 1) and K ∈
R(s1+s2)×t denote a matrix of full column rank t. Then a design ξ∗ is called locally φp-optimal
for estimating the linear combination KT θ in a dose response model with an active control,
if KT θ is estimable by the design ξ∗, that is, KT θ ∈ Range(M(ξ∗, θ)), and ξ∗ maximizes the
functional

φp(ξ) =
(1

t
tr(KTM−(ξ, θ)K)−p

) 1
p (2.13)
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among all designs for which KT θ is estimable, where tr(A) and A− denote the trace and a
generalized inverse of the matrix A, respectively. Note that the cases p = 0 and p = −∞
correspond to the D- and E-optimality criterion, that is φ0(ξ) = det(KTM−(ξ, θ)K)−

1
t and

φ−∞(ξ) = λmin((KTM−(ξ, θ)K)−1). An application of the general equivalence theorem [see
Pukelsheim (2006), chapter 7.19 and 7.21, respectively] to the situation considered in this
paper yields immediately the following result.

Lemma 2.1 If p ∈ (−∞, 1), a design ξ∗ with KT θ ∈ Range(M(ξ∗, θ)) is locally φp-optimal
for estimating the linear combination KT θ in a dose response model with an active control
if and only if there exists a generalized inverse G of the information matrix M(ξ∗, θ), such
that the inequality

tr
(
I((d, κ), θ)GK(KTM−(ξ∗, θ)K)−p−1KTGT

)
− tr(KTM−(ξ∗, θ)K)−p ≤ 0 (2.14)

holds for all (d, κ) ∈ X . If p = −∞, a design ξ∗ with KT θ ∈ Range(M(ξ∗, θ)) is locally φ−∞-
optimal for estimating the linear combination KT θ if and only if there exist a generalized
inverse G of the information matrix M(ξ∗, θ) and a nonnegative definite matrix E ∈ Rt×t

with tr(E) = 1, such that the inequality

tr
(
I((d, κ), θ)GK(KTM−(ξ∗, θ)K)−1E(KTM−(ξ∗, θ)K)−1KTGT

)
−λmin((KTM−(ξ∗, θ)K)−1) ≤ 0

(2.15)
holds for all (d, κ) ∈ X . Moreover, there is equality in (2.14) (p > −∞) and (2.15)
(p = −∞) for all support points of the design ξ∗.

In the following discussion we assume that either p = −1 or that the matrix K is a block
matrix of the form

K =

(
K11 0

0 K22

)
∈ R(s1+s2)×(t1+t2) (2.16)

with elements K11 ∈ Rs1×t1 , K22 ∈ Rs2×t2 , t1 + t2 = t. Roughly speaking, the choice
p = −1 or a blockdiagonal structure of the matrix K in (2.16) leads to a separation of
the parameters from models (2.1) and (2.2) in the corresponding optimality criterion. As a
consequence optimal designs for dose finding studies with an active control can be obtained
from optimal designs for dose finding studies including a placebo group, which maximize the
criterion

φ̃p(ξ̃) =
( 1

t1
tr(KT

11M
−
1 (ξ̃, θ1)K11)

−p
) 1

p (2.17)

in the class of all designs ξ̃ for which KT
11θ1 is estimable, i.e. KT

11θ1 ∈ Range(M1(ξ̃, θ1)).
Throughout this paper these designs are called φ̃p-optimal for estimating the parameter
KT

11θ1 in the dose response model (2.1). The proof can be found in the Appendix.
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Theorem 2.1 Assume p ∈ [−∞, 1), that the matrix K is given by (2.16) and that

ξ̃∗p =

(
d∗1 . . . d∗k
w̃∗1 . . . w̃∗k

)
(2.18)

is a locally φ̃p-optimal design for estimating KT
11θ1 in the dose response model (2.1). Then

the design

ξ∗p =

(
(d∗1, 0) . . . (d∗k, 0) (C, 1)

w∗1 . . . w∗k w∗k+1

)

is locally φp-optimal for estimating KT θ in the dose response model with an active control,
where the weights are given by

w∗k+1 =
1

1 + ρp
, w∗i =

ρp
1 + ρp

w̃∗i (i = 1, . . . , k), (2.19)

and

ρp =
(tr((KT

22I
−
2 (θ2)K22)

−p))1/(p−1)

(tr((KT
11M

−
1 (ξ̃∗p , θ1)K11)−p))1/(p−1)

(2.20)

(the case p = −∞ is interpreted as the corresponding limit).

In the case p = −1 a more general statement is available without the restriction to block
matrices of the form (2.16). The proof is obtained by similar arguments as presented in the
proof of Theorem 2.1 and therefore omitted.

Theorem 2.2 Assume that KT = (KT
11, K

T
22) ∈ Rt×(s1+s2) with KT

11 ∈ Rt×s1 , KT
22 ∈ Rt×s2

and let ξ̃∗−1 denote the φ̃−1-optimal design for estimating the parameter KT
11θ1 in the dose

response model (2.1). Then the design ξ∗−1 defined in Theorem 2.1 is locally φ−1-optimal for
estimating KT θ in the dose response model with an active control.

The final result of this section considers the special case p = 0. The result is a direct
consequence of Theorem 2.1 considering the limit p→ 0 and observing that the quantity ρp
defined in (2.20) satisfies limp→0 ρp = t1

t2
.

Corollary 2.1 Assume that the matrix K is given by (2.16) and let ξ̃∗0 denote the locally
D-optimal design of the form (2.18) for estimating the parameter KT

11θ1 in the dose response
model (2.1), which maximizes det((KT

11M
−
1 (ξ̃, θ1)K11)

−1) in the class of all designs for which
KT

11θ1 is estimable. Then the design

ξ∗θ =

(
(d∗1, 0) . . . (d∗k, 0) (C, 1)
t1

t1+t2
w̃∗1 . . . t1

t1+t2
w̃∗k

t2
t1+t2

)
(2.21)
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Figure 1: The inequality (2.14) of the equivalence theorem. Left panel: D-optimal design for
estimating KT θ in the dose response model with an active control. Middle panel and right
panel: optimal design for prediction and D-optimal design in the model (2.1).

is locally D-optimal for estimating the parameter KT θ in the dose response model with an
active control.

Remark 2.1 The assumption of a block matrix K in Theorem 2.1 and Corollary 2.1 can
not be omitted. Consider for example the case of a binomial distribution and a Michaelis-
Menten model π(d, θ1) = ϑ1d

ϑ2+d
for the dose response relationship of the new drug. Assume

that one is interested in two functionals of the model parameters: (i) The estimation of the
distance between the effect of the active control, say θ2, and the effect of the new drug at
a special dose level d0, i.e. π(d0, θ1), and (ii) the difference between θ2 and the maximum
effect of the new drug, i.e. ϑ1. In this case the matrix K is given by

K =

(
− d0
ϑ2+d0

ϑ1d0
(ϑ2+d0)2

1

−1 0 1

)T

.

Consider exemplarily the choice D = [0, 50], ϑ1 = 0.5, ϑ2 = 2, θ2 = 0.4 and d0 = 5. The
locally D-optimal design for estimating KT θ in the dose response model with an active
control allocates 36% and 32% of the patients to the dose levels 0.93 and 50 of the new drug
and 32% of the patients to the active control, respectively. The corresponding function (2.14)
of the equivalence theorem is shown in the left panel of Figure 1 for the case κ = 0. In the
case κ = 1 this function reduces to the constant 0 for all d ∈ D. In the situation where no
active control is available one could look at the problem designing the experiment for a most
efficient estimation of π(d0, θ1). This corresponds to the matrix K11 = ( d0

ϑ2+d0
,− ϑ1d0

(ϑ2+d0)2
)T

and the locally optimal design is a one point design which treats 100% of the patients with
the dose level d0 = 5. On the other hand the locally D-optimal design for estimating θ1
allocates 50% of the patients to each of the dose levels 1.15 and 50. The corresponding
inequalities of the equivalence theorem are shown in the middle and right panel of Figure
1. Obviously the locally D-optimal design for estimating KT θ in the dose response model
with an active control can not be derived from these designs and an assumption of the type
(2.16) is in fact necessary to obtain Theorem 2.1.
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3 D-optimal designs for the Michaelis-Menten and EMAX
model

In this section we determine some D-optimal designs for dose finding studies with an active
control under different distributional assumptions. We assume that the dependence on the
dose of the new drug is either described by the Michaelis-Menten model ϑ1d

ϑ2+d
, or the EMAX

model ϑ0 + ϑ1d
ϑ2+d

, where the dose range is given by the interval [L,R] ⊂ R+
0 . These models

are widely used when investigating the dose response relationship of a new compound, such
as a medicinal drug, a fertilizer, or an environmental toxin. Note that in the case where the
function describes a probability, one requires some restrictions on the parameters. For exam-
ple, if π(d, θ1) = ϑ1d

ϑ2+d
is the probability of a success for the negative binomial distribution in

Example 2.1(b), we implicitly assume ϑ1R
ϑ2+R

< 1 in the following discussion. In other models
similar assumptions have to be made and we do not mention these restrictions explicitly for
the sake of brevity. In the following, x ∨ y denotes the maximum of x, y ∈ R.

Theorem 3.1 (Michaelis-Menten model)

(a) If the distributions of the responses corresponding to the new drug and active control are
normal with parameters ( ϑ1d

ϑ2+d
, σ2

1) and (µ, σ2
2), respectively, then the locally D-optimal

design for the dose response model with an active control allocates 30% of the patients
to each of the dose levels L ∨ ϑ2R

2ϑ2+R
and R of the new drug and 40% to the active

control.

(b) In the case of negative binomial distributions with probabilities π(d, θ) = ϑ1d
ϑ2+d

and µ
the locally D-optimal design for the dose response model with an active control allocates
33.3% of the patients to each of the dose levels L and R of the new drug and 33.3% to
the active control.

(c) In the case of binomial distributions with probabilities π(d, θ) = ϑ1d
ϑ2+d

and µ the locally
D-optimal design for the dose response model with an active control allocates 33.3% of

the patients to each of the dose levels L ∨ ϑ2R+3ϑ22−ϑ2
√

9R2−8R2ϑ1+18Rϑ2−8Rϑ1ϑ2+9ϑ22
4ϑ1ϑ2−4R+4Rϑ1−6ϑ2 and

R of the new drug and 33.3% to the active control.

(d) If Poisson distributions with parameters λ(d, θ1) = ϑ1d
ϑ2+d

and µ are used in (2.1) and
(2.2), the locally D-optimal design for the dose response model with an active control
allocates 33.3% of the patients to each of the dose levels L ∨ ϑ2R

3ϑ2+2R
and R of the new

drug and 33.3% to the active control.

The proof of Theorem 3.1 is a direct consequence of Corollary 2.1, if the locally D-optimal
designs for model (2.1) are known. For example, in the case of a normal distribution it
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follows from Rasch (1990) that the D-optimal design for the Michaelis-Menten model has
equal masses at the points L ∨ ϑ2R

2ϑ2+R
and R and Corollary 2.1 yields part (a) of Theorem

3.1. In the other cases the D-optimal designs for model (2.1) are not known and the proof
can be found in the Appendix.
It is also worthwhile to note that the differences of the D-optimal designs derived under dif-
ferent distributional assumptions can be substantial. For example if the design space is [0, R]

with a large right boundary R, the non trivial dose level for the new drug is approximately
ϑ2 and ϑ2/2 under the assumption of a normal and Poisson distribution, respectively. We
will now give the corresponding results for the EMAX model. The proof follows by similar
arguments as given in the proof of Theorem 3.1 and is therefore omitted.

Theorem 3.2 (EMAX-model)

(a) If the distribution of responses corresponding to the new drug and active control are
normal distributions with parameters (ϑ0 + ϑ1d

ϑ2+d
, σ2

1) and (µ, σ2
2), respectively, then the

locally D-optimal design for the dose response model with an active control allocates
22.2% of the patients to each of the dose levels L, d∗ = R(L+ϑ2)+L(R+ϑ2)

(L+ϑ2)+(R+ϑ2)
and R of the

new drug and 33.3% to the active control.

(b) In the case of negative binomial distributions with probabilities π(d, θ) = ϑ0 + ϑ1d
ϑ2+d

and µ, the locally D-optimal design for the dose response model with an active control
allocates 25% of the patients to each of the dose levels L, d∗ and R of the new drug
and 25% to the active control, where d∗ is the solution of the equation

2
d−L + 2

d−R −
ϑ0+ϑ1−1

d(ϑ0+ϑ1−1)+(ϑ0−1)ϑ2 −
2(ϑ0+ϑ1)

ϑ0(ϑ2+d)+ϑ1d
− 1

ϑ2+d
= 0

(c) In the case of binomial distributions with probabilities π(d, θ) = ϑ0 + ϑ1d
ϑ2+d

and µ, the
locally D-optimal design is of the same form as described in part (b), where d∗ is the
solution of the equation

2
d−L + 2

d−R −
ϑ0+ϑ1−1

d(ϑ0+ϑ1−1)+(ϑ0−1)ϑ2 −
ϑ0+ϑ1

ϑ0(ϑ2+d)+ϑ1d
− 2

ϑ2+d
= 0.

(d) If Poisson distributions with parameters λ(d, θ1) = ϑ0 + ϑ1d
ϑ2+d

and µ are used in (2.1)
and (2.2), respectively, then the locally D-optimal is of the same form as described in
part (b), where

d∗ = ϑ2
4m(L)m(R)−ϑ1(Lm(R)+Rm(L))−ϑ0

√
κ

−4m(L)m(R)−ϑ1ϑ2(m(R)+m(L))+(ϑ1+ϑ0)
√
κ

and κ = ((ϑ2 + L)m(R) + (ϑ2 + R)m(L))2 + 12(ϑ2 + L)(ϑ2 + R)m(R)m(L), m(d) =

ϑ0ϑ2 + ϑ1d+ ϑ0d.

Example 3.1 Under the assumption of a normal distribution, Dette et al. (2014) deter-
mined a D-optimal design for the EMAX dose response model ignoring the effect caused by

12



estimating the variance. It follows from Theorem 4 in Dette et al. (2014) that the locally
D-optimal design allocates 26.6% of the patients to the dose levels L, d∗, R of the new drug
and 20% to the active control, respectively, where d∗ is defined in 3.2(a). Theorem 3.2 above
shows that the design which accounts for the problem of estimating the variances uses the
same dose levels but allocates 13.3% more patients to the active control.

Example 3.2 In this example we discuss D-optimal designs for the two clinical trials con-
sidered in Section 1.

(a) We first consider the gouty arthritis example. The primary endpoint is modeled by
a negative binomial distribution with parameters r1 and π(d, θ1) = ϑ0 + ϑ1d

ϑ2+d
for the

new drug and parameters r2 and θ2 for the comparator. The dose range is [0, 300]mg
and we obtained from the clinical team the following preliminary information for the
unknown parameters: ϑ0 = 0.26, ϑ1 = 0.73, ϑ2 = 10.5, σ1 = 0.05 and θ2 = 0.9206,
σ2 = 0.05. In addition, r1 = r2 = 10 are fixed. The D-optimal design is obtained from
Theorem 3.2 and depicted in the upper part of Table 1. It allocates 25% of all patients
to the active control and 25% of the patients to the dose levels 0, 8.23, 300mg of the
new drug, respectively. The standard design actually used in this study allocates 14.3%

of the patients to the dose levels 25, 50, 100, 200, 300mg of the new drug and 28.5% of
the patients to the active control. To compare these designs we also show in the last
column of Table 1 the D-efficiency

effD(ξ, θ) =
Φ0(ξ, θ)

Φ0(ξ∗D, θ)
∈ [0, 1], (3.1)

where ξ∗D is the locally D-optimal design. We observe that in this example an optimal
design improves the standard design substantially. We also observe that the differences
between the D-optimal designs calculated under a different distributional assumption
are rather small. For this example, the D-optimal design calculated under the assump-
tion of a normal distribution has efficiency 0.98 in the model based on the negative
binomial distribution.

(b) We now consider the acute migraine example, which measured the percentage of pa-
tients reporting pain freedom at two hours post-dose. We assume a binomial distribu-
tion for this example. The probabilities of success are π(d, θ1) = ϑ0 + ϑ1d

ϑ2+d
for the new

compound (where the dose level varies in the interval [0, 200]mg) and θ2 for the active
control. The sample sizes are n1 = 517 and n2 = 100 and the preliminary informa-
tion obtained from the clinical team is given by ϑ0 = 0.098, ϑ1 = 0.2052, ϑ2 = 12.3,

σ1 = 0.05 and θ2 = 0.2505, σ2 = 0.05. The locally D-optimal designs under a normal
and binomial distribution assumption are listed in the lower part of Table 1. The
design actually used for this study allocated 21, 5, 7, 10, 10, 11, 10, 10% of the patients
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distribution D-optimal design effD

normal
(0,0) (9.81,0) (300,0) (C,1)

22.2% 22.2% 22.2% 33.3%
0.25

negative binomial
(0,0) (8.23,0) (300,0) (C,1)
25% 25% 25% 25%

0.11

normal
(0,0) (10.95,0) (200,0) (C,1)

22.2% 22.2% 22.2% 33.3%
0.84

binomial
(0,0) (9.05,0) (200,0) (C,1)
25% 25% 25% 25%

0.86

Table 1: D-optimal designs in the two clinical trials discussed in Section 1 under different distribu-
tional assumptions. Upper part: gouty arthritis example; lower part: acute migraine example. The
last column shows the efficiencies of the designs, which were actually used in the study.

to the dose levels 0, 2.5, 5, 10, 20, 50, 100, 200mg of the new drug and 16% of the pa-
tients to the active control, respectively. The second column of Table 1 displays its
efficiencies relative to the proposed designs and again a substantial improvement can
be observed under both distributional assumptions. For this example, the D-optimal
design calculated under the assumption of a normal distribution has also efficiency 0.98

in the model based on the binomial distribution.

4 Optimal designs for estimating the target dose

In this section we investigate the problem of constructing locally optimal designs for esti-
mating the treatment effect of the active control and the target dose, that is the smallest
dose of the new compound which achieves the same treatment effect as the active control.
For this purpose we consider a dose range of the form D = [L,R] and introduce the notation

Eθ1 [Yij|di] = η(di, θ1) (j = 1, . . . , n1i, i = 1, . . . , k) (4.1)

Eθ2 [Zi] = ∆ (i = 1, . . . , n2) (4.2)

for the expected values of responses corresponding to the new drug (for dose level di) and
the active control, respectively. We assume (for simplicity) that the function η in (4.1) is
strictly increasing in d ∈ D and that d∗(θ) = η−1(∆, θ1), is an element of the dose range
D = [L,R] for the new drug. Note that the expectation ∆ in (4.2) is a function of the
s2-dimensional parameter θ2, say ∆ = k(θ2). Consequently, a natural estimate of d∗ is
given by d̂∗ = d∗(θ̂) = η−1(∆̂, θ̂1), where ∆̂ = k(θ̂2) and θ̂ = (θ̂T1 , θ̂

T
2 )T denotes the vector

of the maximum likelihood estimates of the parameter θ1 and θ2 in models (2.1) and (2.2),
respectively. Standard calculations show that the variance of this estimator is approximately
given by

Var(d∗(θ̂)) ≈ 1
N
ψ(ξ, θ), (4.3)
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where the function ψ is defined by

ψ(ξ, θ) = 1
1−ωk+1

( ∂
∂θ1
d∗(θ))TM−

1 (ξ̃, θ1)(
∂
∂θ1
d∗(θ)) + 1

ωk+1
( ∂
∂θ2
d∗(θ))T I−2 (θ2)(

∂
∂θ2
d∗(θ2)), (4.4)

ξ̃ denotes the design for the new drug induced by the design ξ, see (2.18), andM−
1 (ξ̃, θ1) and

I−2 (θ2) are generalized inverses of the information matricesM1(ξ̃, θ1) and I2(θ2), respectively.
Following Dette et al. (2014), we call a design ξ∗AC locally AC-optimal design (for Active
Control) if ∂

∂θ1
d∗(θ) ∈ Range(M1(ξ̃, θ1)), ∂

∂θ2
d∗(θ) ∈ Range(I2(θ2)) and if ξ∗AC minimizes

the function ψ(ξ, θ) among all designs satisfying this estimability condition. Note that
the criterion (4.4) corresponds to a φ−1-optimal design for estimating the parameter KT θ

in a dose response model with an active control, where the matrix K is given by K =(
( ∂
∂θ1
d∗(θ))T , ( ∂

∂θ2
d∗(θ))T

)T . In particular, Theorem 2.2 is applicable and locally AC-optimal
designs can be derived from the corresponding optimal designs for model (2.1). The following
result provides an alternative representation of the criterion (4.4) in the case s2 = 1. As
a consequence the design ξ̃ required in Theorem 2.2 is a locally c̃-optimal design in model
(2.1) for a specific vector c̃, i.e. the design minimizing c̃TM−

1 (ξ̃, θ1)c̃, where c̃ = ∂
∂θ1
η(d∗, θ1).

Theorem 4.1 In the case s2 = 1, the function in (4.4) can be represented as

ψ(ξ, θ) =
( ∂
∂θ2
d∗(θ))2

( ∂
∂θ2
k(θ2))2

{
1

1−wk+1
( ∂
∂θ1
η(d∗, θ1))

TM−
1 (ξ̃, θ1)(

∂
∂θ1
η(d∗, θ1)) + ( ∂

∂θ2
k(θ2))

2 I
−
2 (θ2)

wk+1

}
.

In the following discussion we determine locally AC-optimal designs for several nonlinear
regression models accounting for an active control by minimizing the criterion (4.4).

4.1 Some explicit results for two-dimensional models

In this section we present some examples illustrating different structures of locally AC opti-
mal designs. For this purpose we consider the situation where the Fisher information matrix
I1(d, θ1) defined in (2.5) is of the form

I1(d, θ1) =

(
f(d, θ1)f

T (d, θ1) 0

0 Σ(θ1)

)
∈ Rs1×s1 (4.5)

where f(d, θ1) = (f1(d, θ1), f2(d, θ1))
T denotes a two-dimensional vector and Σ(θ1) a (s1 −

2)× (s1 − 2) matrix, which does not depend on the dose level. By Theorem 2.2 the locally
AC-optimal design can be determined from the design ξ̃∗ which minimizes the expression

c̃TM−
1 (ξ̃, θ1)c̃ (4.6)
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in the class of all designs defined on the dose range D for the new drug, where the vector
is given by c̃ = ( ∂

∂θ1
d∗(θ))T . Because of the block structure of the Fisher information in

(4.5) (with a lower block not depending on the dose level) we may assume without loss of
generality that s1 = 2, that is

M1(ξ̃, θ1) =

∫
D
f(d, θ1)f

T (d, θ1)dξ̃(d). (4.7)

By Elfving’s theorem [see Elfving (1952)] a design ξ̃∗ with weights w̃∗i at the points d∗i (i =

1, . . . , k) minimizes the expression (4.6) if and only if there exists a constant γ > 0 and
ε1, . . . , εk ∈ {−1, 1}, such that the point γc̃ is a boundary point of the Elfving set

R = conv
{
εf(d, θ1) | d ∈ D, ε ∈ {−1, 1}

}
(4.8)

and the representation γc̃ =
∑k

i=1 εiw̃
∗
i f(d∗i , θ1) is valid. Note that R = conv{C ∪ (−C)},

where the curve C is defined by C = {f(d, θ1) | d ∈ D}. The structure of the Elfving set R
depends sensitively on the distributional assumptions and we now consider several examples
in the Michaelis-Menten model.

Example 4.1
Assume that the dependence on the dose in model (2.1) is described by the Michaelis-Menten
model, then the vector f in (4.7) has the form v(d, θ1)(

d
ϑ2+d

,− ϑ1d
(ϑ2+d)2

)T , where the function
v varies with the distributional assumption.

(a) In the case of normal distributed responses we have v(d, θ1) = 1 and it follows by
an obvious generalization of Theorem 4.1, that we have to consider a c̃-optimal de-
sign problem in model (2.1), where the vector c̃ is now given by c̃ = ∂

∂ϑ
η(d∗, ϑ) =

( d∗

ϑ2+d∗
,− ϑ1d∗

(ϑ2+d∗)2
)T . From the left panel of Figure 2 we observe that the line {γc̃| γ > 0}

intersects the boundary of the Elfving set R at some point C ∪ (−C), whenever
L ≤ x∗ ≤ d∗ < R, where

x∗ = L ∨
√
2R2ϑ2+(

√
2−1)Rϑ22

2R2+4Rϑ2+ϑ22
.

A typical situation is shown for the vector c̃2 in the left panel of Figure 2 for ϑ1 =

ϑ2 = 2,D = [0.1, 50]. Consequently, Elfvings theorem shows that a one-point design
minimizes (4.6) in this case. An application of Theorem 2.2 yields that the locally AC-
optimal design which allocates σ1

σ1+σ2
100% of the patients to dose level d∗ = η−1(∆, ϑ)

for the new drug and the remaining patients to the active control. On the other hand,
if L < d∗ ≤ x∗ < R, the line {γc̃| γ > 0} does not intersect the set C ∪ (−C) at
the boundary of the Elfving set R and the situation is more complicated. A typical
situation for this case is shown for the vector c̃1 and the locally AC-optimal design
allocates ρω̃1100%, ρω̃2100% of the patients to dose levels x∗ and R of the new drug,
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where ρ =
√
δσ1√

δσ1+σ2
and the remaining patients to the active control, where

ω̃1 = v(R,θ1)R(R−d∗)(ϑ2+x∗)2
v(R,θ1)R(R−d∗)(ϑ2+x∗)2+v(x∗,θ1)x∗(x∗−d∗)(ϑ2+R)2

, (4.9)

ω̃2 = 1− ω̃1, δ = c̃TM−1
1 (ξ̃∗, θ1)c̃ and d∗ = η−1(∆, θ1).

C

-C

1

~

2
C

~

C

-1.0 -0.5 0.5 1.0

-0.2

-0.1

0.1

0.2

-C

C

-15 -10 -5 5 10 15

-6

-4

-2

2

4

6

Figure 2: The Elfving set (4.8) in model (2.1), where the expected response is given by the
Michaelis-Menten model. Left panel: normal distribution. Right panel: Negative-binomial
distribution.

(b) As a further example consider the Michaelis Menten model for the probability of a
negative binomial distributed response. We have s1 = 2, s2 = 1, π(d, θ1) = ϑ1d

ϑ2+d
, c̃ =

∂
∂θ1
η(d∗, θ1) = r1

ϑ1d∗
(−ϑ2+d∗

ϑ1
, 1)T and the function v is given by v(d, θ1) =

√
r1(d+ϑ2)3

d2ϑ21(d(1−ϑ1)+ϑ2)
.

A corresponding Elfving set is depicted in the right panel of Figure 2 for ϑ1 =

1, ϑ2 = 0.5,D = [0, 10] and the locally AC-optimal design is always supported at
three points. A straightforward calculation shows that the locally AC-optimal design
allocates ρω̃1100%, ρω̃2100% of the patients to the dose levels L, R for the new drug,

where ρ =
δθ22−
√

(1−θ2)δθ22r2
δθ22−(1−θ2)r2

and the remaining patients to the active control, where

ω̃1 = v(R,θ1)R(R−d∗)(ϑ2+L)2
v(R,θ1)R(R−d∗)(ϑ2+L)2+v(L,θ1)L(d∗−L)(ϑ2+R)2

, (4.10)

ω̃2 = 1− ω̃1 δ = c̃TM−1
1 (ξ̃∗, θ1)c̃ and d∗ = η−1(∆, θ1).

(c) Consider now the Michaelis Menten model for binomial distributed responses. We have

s1 = 2, s2 = 1, π(d, θ1) = ϑ1d
ϑ2+d

, c̃ = ∂
∂θ1
π(d∗, θ1) and v(d, θ1) =

√
(d+ϑ2)2

dϑ1(d(1−ϑ1)+ϑ2) . The
corresponding Elfving set is depicted in the left panel of Figure 3 for ϑ1 = 1, ϑ2 =

0.1,D = [0.02, 2] and we have to distinguish three different cases. We observe that the
line {γc̃| γ > 0} intersects the boundary of the Elfving set R at some point C ∪ (−C)

if and only if L ≤ x∗1 ≤ d∗ ≤ x∗2 ≤ R, where

x∗1 = L ∨ ϑ2(1−
√

1−π(R,θ1))

2ϑ1−1+
√

1−π(R,θ1)
, x∗2 = R ∧ ϑ2(1+

√
1−π(R,θ1))

2ϑ1−1−
√

1−π(R,θ1)
.

A typical situation is shown for the vector c̃1 in the left panel of Figure 3. Consequently,
the same arguments as in the previous examples show that in this case the locally

17



AC-optimal design allocates ρ100% of the patients to the dose level d∗ of the new

drug, where ρ =
δ−
√
δ(1−θ2)θ2

δ−(1−θ2)θ2 and the remaining patients to the active control, where
δ = c̃TM−1

1 (ξ̃∗, θ1)c̃ and d∗ = η−1(∆, θ1).
On the other hand, if L < d∗ ≤ x∗1, the locally AC-optimal design allocates ρω̃11100%,
ρ(1−ω̃11)100% of the patients to dose levels x∗1 and R of the new drug and the remaining
patients to the active control, where ω̃11 is of the form (4.9) with x∗ = x∗1. A typical
situation is shown for the vector c̃2. The case L ≤ x∗2 ≤ d∗ ≤ R corresponds to the
vector c̃3. Here the locally AC-optimal design allocates ρω̃21100%, ρ(1 − ω̃21)100% of
the patients to dose levels x∗2 and R of the new drug and the remaining patients to the
active control, where with L = x∗2 ω̃21 is of the form (4.10) and d∗ = η−1(∆, θ1).
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Figure 3: The Elfving set (4.8) in model (2.1), where the expected response is given by the
Michaelis-Menten model. Left panel: binomial distribution. Right panel: Poisson distribu-
tion.

(d) Finally we consider the case of Poisson distributed responses. We have s1 = 2, s2 =

1, λ(d, θ1) = ϑ1d
ϑ2+d

, v(d, θ1) = 1
/√

ϑ1d
ϑ2+d

and by Theorem 4.1 we have to solve a c̃-

optimal design problem with c̃ = ∂
∂θ1
λ(d∗, θ1) = ( d∗

ϑ2+d∗
,− ϑ1d∗

(ϑ2+d∗)2
)T . It is easy to see

that the line {γc̃| γ > 0} intersects the boundary of the Elfving set R at some point
C ∪ (−C) if and only if L ≤ x∗ ≤ d∗ < R, where x∗ = L ∨ Rϑ2

3R+4ϑ2
(see the right panel

of Figure 3 for ϑ1 = 2.5, ϑ2 = 1.5,D = [0.02, 10] and the vector c̃2). Consequently,
the same arguments as in the previous examples show that in this case the locally
AC-optimal design allocates ρ100% of the patients to dose levels d∗ of the new drug,
where ρ =

√
δ√

δ+
√
θ2

and the remaining patients to the active control, where δ = d∗ϑ1
ϑ2+d∗

and d∗ = λ−1(∆, θ1).

On the other hand, if L < d∗ ≤ x∗ < R, the locally AC-optimal design allocates
ρω̃1100%, ρ(1 − ω̃1)100% of the patients to dose levels x∗ and R of the new drug
and the remaining patients to the active control, where ω̃1 is of the form (4.9) with
δ = ( ∂

∂θ1
η(d∗, θ1))

TM−
1 (ξ̃∗, θ1)(

∂
∂θ1
η(d∗, θ1)). A typical situation is shown for the vector

c̃1 in the right panel of Figure 3.
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4.2 Locally AC-optimal designs in the EMAX model

Explicit expressions for the AC-optimal designs in the EMAX model are very complicated
and for the sake of brevity and better illustration we conclude this paper discussing AC-
optimal designs for the two data examples from Section 1.
We begin with the gouty arthritis clinical trial where we use the same prior information as in
Example 3.2. AC-optimal designs under the assumption of a normal and negative binomial
distribution can be found in the upper part of Table 2. For example under the assumption of
normal distributed endpoints, the AC-optimal design allocates almost half of the patients to
the dose level 101.06mg and the rest to the active control. In order to compare the standard
design introduced in Example 3.2 we display in the right column the efficiency

effAC(ξ, θ) =
ψ(ξ∗AC, θ)

ψ(ξ, θ)
∈ [0, 1], (4.11)

where ψ(ξ, θ) is defined in (2.13) and ξ∗AC is the locally AC-optimal design. For example,

distribution AC-optimal design effAC

normal
(101.06, 0) (C, 1)

49.99% 50.01%
0.66

negative binomial
(5.44, 0) (300, 0) (C, 1)

7.6% 35.6% 56.8%
0.48

normal
(35.739, 0) (C, 1)

49.99% 50.01%
0.48

binomial
(0, 0) (200, 0) (C, 1)

7.34% 41.95% 50.71%
0.47

Table 2: AC-optimal designs in the two examples from section 1 under different distributional
assumptions. Upper part: gouty arthritis example, with target dose d∗ = 100mg; lower part: acute
migraine example, with target dose d∗ = 35.6mg. The last column shows the efficiencies of the
designs, which were actually used in the study.

the efficiency of the standard design for estimating the target dose under the assumption of
a normal or negative binomial distribution is 66% and 48%, respectively.
The second trial is the one in treating migraine and again we use the prior information from
Example 3.2. AC-optimal designs for normal and binomial distributed responses can be
found in the lower part of Table 2. The efficiencies of the standard design are given by 48%

and 47% under the assumption of a normal and binomial distribution, respectively.
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5 Conclusions

In this paper the optimal design problem for active controlled dose finding studies is consid-
ered. Sufficient conditions are provided such that the optimal design for a dose finding study
with no active control can also be used for the model with an active control. Our results
apply to general optimality criteria and distributional assumptions. In particular they are
applicable in models with discrete responses, which appeared recently in two of our consult-
ing projects. In several examples it is demonstrated that the optimal designs may depend
sensitively on the distributional assumptions. In the clinical trials under consideration these
differences were less visible for D-optimal designs. However, in the problem of estimating the
target dose (i.e. the smallest dose of the new compound which achieves the same treatment
effect as the active control), the differences are more substantial, and an optimal design
calculated under a ”wrong” distributional assumption (i.e. a normal distribution) might be
inefficient, if it used in a different model (i.e. a Binomial model).
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6 Appendix: proofs

Proof of Theorem 2.1. Assume that the matrix K is a blockdiagonal matrix of the form
(2.16). Observing the representations (2.10), (2.16) and noting that the expression KTGK

is independent of the choice of the generalized inverse of the matrix M(ξ, θ), we obtain

KTM−(ξ, θ)K =

 (1− wk+1)
−1KT

11M
−
1 (ξ̃, θ1)K11 0

0 w−1k+1K
T
22I
−
2 (θ2)K22

 .

In the case p 6= 0,−∞ this gives for the criterion φp in (2.13) the representation

φp(ξ) =
(1

t

t∑
i=1

λ−pi (KTM−(ξ, θ)K)
) 1

p (5.1)

=
(1

t

{
(1− wk+1)

p

t1∑
i=1

λ−pi (KT
11M

−
1 (ξ̃, θ1)K11

)
+ wpk+1

t2∑
i=1

λ−pi (KT
22I
−
2 (θ2)K22)

}) 1
p

=
((1− wk+1)

pt1
t

(φ̃p(ξ̃))
p +

wpk+1

t
tr((KT

22I
−
2 (θ2)K22)

−p)
) 1

p
,

where λ1(A), . . . , λn(A) denote the eigenvalues of a matrix A, t = t1 + t2 and the function
φ̃p is defined in (2.17).
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Now it is easy to see that the function φp is an increasing function of φ̃p(ξ̃). Consequently,
the locally φp-optimal design problem for the dose response model with an active control
can be solved by determining a design ξ̃∗p which maximizes the criterion (2.17) in a first
step. If φ∗ = φ̃p(ξ̃

∗
p) = maxξ̃ φ̃p(ξ̃) denotes the optimal value for this criterion, it remains

to maximize the function φp in (5.1) with respect to the weight wk+1 assigned to the active
control, which gives the expression (2.19) and proves the assertion for the case p 6= 0,−∞.
The remaining cases p = 0 and p = −∞ are proved similarly and the details are omitted for
the sake of brevity. �

Proof of Theorem 3.1 The proof of part (a) has been given in Section 3. For the
remaining cases we restrict ourselves to the case of the Poisson distribution for which the
Fisher information in model (2.1) is given by

I1(d, θ1) =
d

ϑ1(ϑ2 + d)

 1 − ϑ1
ϑ2+d

− ϑ1
ϑ2+d

ϑ21
(ϑ2+d)2

 (5.2)

[see equation (2.8)]. All other cases are treated similary. By Corollary 2.1 the D-optimal
design can be obtained from the D-optimal design ξ̃∗ in a regression model with Fisher
information (5.2). If M1(ξ̃, θ1) =

∫
D I1(d, θ1)dξ̃(d) denotes an information matrix of a design

ξ̃ in this model, then ξ̃∗ is D-optimal if and only if the inequality tr(I1(d, θ1)M−1
1 (ξ̃∗, θ1)) ≤ 2

holds for all d ∈ D (see Lemma 2.1). Moreover, there must be equality at the support points
of the design ξ̃∗. It is easy to see that this inequality is equivalent to an inequality of the form
P3(d) ≤ 0 where P3 is a polynomial of degree 3 with P (0) < 0. A straightforward argument
now shows that ξ̃∗ has exactly two support points d∗1 > 0 and d∗2 = R. Consequently, the
D-optimal design ξ̃∗1 for the regression model with information matrix (5.2) has equal masses
at the points d∗1 and R, where d∗1 maximizes the function

f(d) =
R(R− d)2d

4(R + ϑ2)3(ϑ2 + d)3

in the interval [L,R], that is d∗1 = L ∨ ϑ2R
3ϑ2+2R

. The assertion now follows by an application
of Corollary 2.1, observing that t1 = 2, t2 = 2 in the case under consideration.

Proof of Thorem 4.1 Note that ∆ = k(θ2) and that the dose level d∗(θ) = η−1(∆, θ1)

can be defined as the (unique) solution of the equation F (d, θ) = k(θ2) − η(d, θ1) = 0 with
respect to d. Consequently, the implicit function theorem shows that the function θ → d∗(θ)
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is differentiable with respect to θ with gradient given by

(
( ∂
∂θ1
d∗(θ))T , ∂

∂θ2
d∗(θ)

)T
= −

(
∂
∂d
F (d, θ)

∣∣∣
d=d∗(θ)

)−1(− ( ∂
∂θ1
η(d, θ1))

T , ∂
∂θ2
k(θ2)

)T ∣∣∣
d=d∗(θ)

,

which implies (comparing the second components)−
(
∂
∂d
F (d, θ)

∣∣∣
d=d∗(θ)

)−1
= ∂

∂θ2
d∗(θ)

/
∂
∂θ2
k(θ2).

Altogether this gives for the first component

( ∂
∂θ1
d∗(θ))T =

(
∂
∂d
F (d, θ)

∣∣∣
d=d∗(θ)

)−1
( ∂
∂θ1
η(d∗, θ1))

T = −
∂
∂θ2
d∗(θ)

∂
∂θ2
k(θ2)

( ∂
∂θ1
η(d∗, θ1))

T

and the result follows from the representation (2.13).
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