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Preface

Robotics is a fascinating scientific discipline. By developing robots we assemble metal

or plastic parts, wires as well as integrated circuits. Through software, we try to equip

this assembly of lifeless components with a certain degree of apparent autonomy,

which makes it move and interact with our environment. We struggle to convert

basic movements and interactions into useful skills enabling e.g. robust locomotion

on uneven terrain or dexterous manipulation of arbitrary objects. The harder we

struggle, the more exciting becomes the moment, when a robot finally accomplishes

some desired task. The struggle also completely changes our everyday perspective

on how impressively rapid, easy and reliable humans learn and adapt to the various

complex situations in life. Just look at young children starting their first grasping

experiments...

When I started studying electrical engineering at TU Dortmund University, my

plan was to dive into this fascinating world of robotics with all its facets as a robot

developer. While writing these lines I can look back and say the plan seems to have

worked out pretty well so far. It would not have worked out without the continuous

unconditional support and patience of my parents Traudel and Hein-Peter Malzahn, for which

I am deeply grateful.

I also thank Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram for his feedback and

forward-looking strategic debates as well as the freedom to develop my work in the

direction I wanted and to the extent it finally has.

I would like to thank Prof. Dr.-Ing. Dr. h.c. Burkhard Corves, who agreed to review

my thesis as the second examiner. Furthermore I would like to thank Prof. Dr.-Ing.

Peter Krummrich for his valuable comments about my work as well as for being the

third examiner.

Many thanks go to my colleague Anh Son Phung, not only for all the time we spent

working on TUDOR and writing papers together, but also for introducing me into the

Vietnamese cuisine.

A person who deserves many thanks is Jan Braun, who is not only a good friend

to me. He proved to have a lot of patience with my personal impatience in learning

SolidWorks and thought me a lot about mechanical design. He is a reliable source

of valuable feedback on my ideas. This also applies to Johannes Krettek, who, as a

friend, has played a good devil’s advocate so many times.

I am thankful for the friendliness and the comradeship of the remaining staff at

the Institute of Control Theory and Systems Engineering (RST). In particular I would

like to mention Martin Keller and Malte Oeljeklaus for our discussions and their
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comments on my work, Frank Hoffmann for vibrant controversies without resent-

ment, Jürgen Limhoff for the quick assistance with the laboratory hard- and software

infrastructure, Mareike Leber and Gabriele Rebbe for their kind assistance with ad-

ministrative issues.

I am happy to remember sharing experiences in thesis writing with Christian Häger-

ling during our weekly "‘writer’s coffee corner"’.

I would like to thank Arne Nordmann for inspiring conversations during our stud-

ies as well as the Robotics Round Table NRW, which we founded together. The Ro-

botics Round Table NRW brought me into contact with many other fascinating ro-

boticists. One of them is Felix Reinhart from Bielefeld University, with whom I really

enjoyed working together.

It was a pleasure to supervise many students and especially Ribin Balachandran,

Fabian Bürger, Philipp Gorzcak, Alexander Sapadinski, who allowed me to drop some

of my ideas on them.

The last words of gratitude are dedicated to all my friends, who I have not men-

tioned individually by name. They helped me to find distraction and relaxation, but

also understanding when it was needed.

Thank you!
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Nomenclature

The following list explains all abbreviations and symbols used throughout this work.

In general scalar symbols are represented by normal font letters. Vectors are expressed

as bold lower case letters, matrices are indicated by bold upper case letters. If not ob-

vious, coordinate frames of reference are given by leading superscripts to the symbol.

For coordinate transformations the leading superscript indicates the original frame,

while the leading subscript denotes the target frame. Where required, integration

variables are written in Gothic print.

L general beam length

â1...4 coefficients of the hyperbolic solution to the beam deflection

ODE

â5,6 coefficients of the solution to the beam temporal ODE
+ â, − â, + ân, − ân amplitudes of propagating wave and near field components
+a, −a vectors of rightwards and leftwards directed wave components
+a, −a, +an, −an wave variables for the propagating wave and near field com-

ponents

ag vector of gravitational acceleration

C joint referred robot matrix of Coriolis and centrifugal torques

Cε strain referred robot matrix of Coriolis and centrifugal torques

vc camera velocity

cu modal stiffness

Du modal attenuation factor

du modal damping

E Youngs modulus

E unit matrix

aE end effector acceleration

vE end effector velocity

euv image space control error

f1, f2 friction model switching functions

fext external force density

FL load force

fr collision reaction frictional parameter

fu modal force

Fx, Fy, Fz force in x-, y- and z-direction

G(z), G(s) transfer function in s- or z-domain

Gd first order filter for the joint velocity
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Nomenclature

g joint referred robot vector of gravitational torques

gε strain referred robot vector of gravitational torques

g gravitational acceleration

GB beam transfer function

GCVL closed velocity control loop transfer function

Gd oscillation damping admittance

GFIR FIR filter transfer function

GI IR IIR filter transfer function

Gl,
+Gl,

−Gl lumped transfer function

GM motor transfer function

GPD PD controller transfer function

GPI PI controller transfer function

Gr collision reaction admittance

H Heaviside distribution

I joint referred robot inertia matrix

Iε strain referred robot inertia matrix

ui horizontal image coordinate

vi vertical image coordinate

Il lumped inertia

IL payload volume moment of inertia about the bending axis

IM joint rotor and gear moment of inertia

iM motor current

Iz(x) area moment of inertia about the z-axis

Jc image Jacobian matrix

Jr robot Jacobian matrix

kω wave number

kAmp power amplifier gain

Kc visual servoing gain matrix

k+c , k−c Coulomb friction coefficients

kdyn,u dynamic modal gain

kε oscillation damping gain

KI generalized momentum gain

Kr rotational spring stiffness at the joint-link boundary

kl lumped siffness

kM aggregated motor gain

kor collision overreaction gain

kPD PD controller gain

kPI PI controller gain

K̂r normalized version of Kr

kr collision reaction spring parameter

kstat,u static modal gain

Kt translational spring stiffness at the joint-link boundary

K̂t normalized version of Kt

kτ actuator torque constant

kv, k+v , k−v viscous friction coefficients

l1, l2, l3 lengths associated with the 1st, 2nd and 3rd link body
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Nomenclature

Lc hybrid visual servoing interaction matrix

mL payload mass

mr collision reaction inertial parameter

mu modal mass

NFIR number of FIR filter coefficients

nl number of lumped masses

nM gear ratio

nu number of considered modes

pε strain referred generalized momentum

R rotation matrix

rε direct strain residual vector

rp generalized momentum residual vector

s Laplace variable

t time variable
A
B T homogenous coordinate transform from B to A

TCS settling time

td joint velocity filter time constant

tl lag time constant

tPD PD controller time constant

tPI PI controller time constant

Vcc supply voltage

vM Motor amplifier input voltage

w weighting function

dx infinitesimal element of quantity x

x̃ mean deliberated quantity x

x, y, z coordinates along the x-, y- and z-axes

x, y, z x-, y- and z-axes

xs,j location of the j-th strain gauge pair

Y1, Y2 nonlinear regressors for the inverse kinematics

yb half beam thickness

Yε strain referred dynamics regressor matrix

z discrete domain shift operator

Zw lumped wave impedance

αI IR IIR filter exponential discount factor

βL product of kω and L

χε strain referred dynamics parameter vector

δ Dirac distribution

ε vector of measured strains

ε link surface strain

εc collision strain

εex strain measurement extremum

ε f collision free strain

Λ focal length

λ eigenvalue

µ̂x estimated mean for the quantity x
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Nomenclature

µx mean of the quantity x

ν temporal deflection amplitude

Ω transmission matrix

ω frequency

ωl lumped frequency

Φ deflection shape function

Ψ reflection matrix

ρb beam mass per unit length

σx variance of quantity x

∆τ offset between the load torque at the strain gauges and at the

joint

τb, τb,i bending moment, lumped bending moments
+τ̌b, −τ̌b lumped bending torque wave components

τc vector of collision torques

τE joint electrical torque

τF joint friction torque

τJ joint load torque

τM joint mechanical torque

θ vector of joint angles

θb, θb,i bending angle, lumped bending angles
+θ̌b, −θ̌b lumped bending angle wave components

θ̇ε angular velocity commanded for oscillation damping

θε set angle commanded for oscillation damping

θ̇PD angular velocity commanded by the position controller

θ̇r commanded collision reaction angular velocity

θw set angle

ζu logarithmic decrement

Abbreviations and acronyms

AMM Assumed Modes Method

APRBS Amplitude Modulated Pseudo Random Binary Signal

BLDC Brushless Direct Current

ELM Extreme Learning Machine

FEM Finite Eelement Method

FIR Finite Impulse Response

HSV Hue Saturation Value color model

IATE Integral Absolute Time-Weighted Error

IATS Integral Absolute Time-Weighted Strain Surface

IIR Infinite Impulse Response

IMU Inertial Measurement Unit

IR Infra Red

ISS International Space Station

ITER International Thermonuclear Experimental Reactor

MEMS Micro-Electro-Mechanical-System

NRMSE Normalized Root Mean Squared Error

ODE Ordinary Differential Equation
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PID Proportional Integral Derivative

PMD Photonic Mixing Device

RGB-D Red Green Blue - Depth

RMSE Root Mean Squared Error

RS-232 serial data interface standard

TCP/IP Transmission Control Protocol / Internet Protocol

TOF Time Of Flight

TUDOR Technische Universität Dortmund Omnilastic Robot

UDP User Datagram Protocol

USB Universal Serial Bus

WTF Wave Transfer Function
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1
Introduction

"I was up to here in Flexible Frank. [...] I had a bee in my bonnet about the

perfect, all-work household automaton, the general-purpose servant. [...] I

wanted a gadget which could do anything inside the home – cleaning and

cooking, of course, but also really hard jobs, like changing a baby’s diaper

or replacing a typewriter ribbon. [...] I wanted a man and wife to be able to

buy one machine for, oh say about the price of a good automobile [...]. This

meant that you need to cause Flexible Frank to clear the table and scrape

the dishes and load them into the dishwasher only once, and from then on

he could cope with any dirty dishes he ever encountered" Heinlein (1957).

1.1. Motivation

This passage from the novel "The Door Into Summer" by Robert Heinlein written in

1957 represents an early detailed reference to the fascinating anticipation of introdu-

cing robotic assistants in our everyday life. Flexible Frank is the imagination of an

artificial butler that takes care of recurrent, time consuming and annoying tasks of

the daily grind. Heinlein clearly documents that more than half a century ago – even

years before the advent of the first industrial robot in 1961 (Devol 1961) – robot assist-

ants have been envisioned to commonly enter our households to save our valuable

time and to improve quality of life. Since those days the vision steadily enfetters

young and old.

However, still today the cognition and motor skills of robots remain far away from

matching their Science-Fiction ideals. Yet around the turn of the millennium Khatib

et al. (1999) point out that in industrial production "typical operations are composed

of various tasks, some of which are sufficiently structured to be autonomously per-

formed by a robotic system, while many others require skills that are still beyond

current robot capabilities. The introduction of a robot to assist a human [...] will re-

duce fatigue, increase precision, and improve quality; whereas the human can bring

experience, global knowledge and understanding to the execution of task". However,

with today’s conventional robots physical assistance is frequently inconceivable or at

least strongly restricted. The reason is the associated risk potential emerging from

their rigid and precise but also very massive construction.

If in the industrial production a human process specialist can intuitively program

1
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Figure 1.1.: The projected European demography pyramid (a) (Giannakouris 2008) and results

of a survey regarding "public attitudes towards robots" (TNS Opinion and Social 2012) (b).

the robot or adjust an existing program for example by kinesthetic teaching (Billard,

Calinon and Guenter 2006), a costly and time consuming textual programming by a

robotic specialist would become obsolete. While the robot fulfills the demonstrated

task the human worker would be free to organize the subsequent assembly steps or to

instruct additional robots. This idea is called robot farming, where the human worker

acts as a herdsman looking after a herd of manufacturing robots. This way robotic

automation is envisioned to become economically efficient also for small and medium

sized enterprises (SME) and preserves competitiveness of high quality production in

high wage countries (German Federal Ministry of Education and Research 2007).

While the industrial process specialist would be specially trained, robots in do-

mestic environments will inevitably get into contact with untrained interaction part-

ners. In industrialized countries demographers project the emergence of elderly dom-

inated societies in the near future as visible in figure 1.1 (a). From this perspective the

German Federal Ministry of Education and Research (2007) identifies "great oppor-

tunities in the growing market for industrial and service robots, which has doubled

in size over the last ten years". Hence, the conception of human robot cooperation

must not halt in industrial workshops. It will surely enter domestic environments

as well. First robotic lawn mowers, vacuum cleaners and pool or window cleaning

robots slowly begin to explore such markets for a restricted number of low-level tasks

at present time. But still, according to a broad survey conducted by the TNS Opinion

and Social (2012), "all of this is future talk to most Europeans, as very few imagine

that it will soon become commonplace for robots to do housework" (see figure 1.1 (b)).

Today, this more than ever motivates the research efforts all over the world to bring ro-

bots and humans into physical cooperation for high-level tasks. If anyone can "cause"

2



1.1. Motivation

a robotic assistant "to clear the table and scrape the dishes and load them into the dish-

washer only once" by kinesthetic or any other teaching method (Argall et al. 2009),

we finally arrive at a point very close to Heinlein’s vision of Flexible Frank.

Recently Alami et al. (2006); Santis et al. (2008) identified that "safety and depend-

ability are the keys to a successful introduction of robots into human environments".

Moreover, "the first step towards intrinsically safe and dependable design is to reduce

the weight of the moving parts of the robot". Bicchi and Tonietti (2004) propose that

the next step "to increasing the safety level of robot arms interacting with humans is

to intentionally introduce mechanical compliance in the design". It decouples the link

inertia from the effectively larger actuator inertia, which reduces the reflected overall

robot inertia during collisions. Additionally it protects gears and joint-sensors against

external shocks. The insights lead Alami et al. (2006) to formulate an "integrated ap-

proach to the co-design of robots for safe physical interaction with humans, which

revolutionizes the classical approach for designing industrial robots – rigid design for

accuracy, active control for safety – by creating a new paradigm: design robots that

are intrinsically safe and control them to deliver performance". Guizzo and Acker-

man (2012) conclude: "If you want a robot that’s going to deal with an unstructured

environment, it can’t be stiff".

According to Guizzo and Ackerman (2012) within the recent half-decade compan-

ies like ABB, Adept Technology, Barrett Technology, DLR, Kawada Industries, Red-

wood Robotics, Universal Robots and recently Rethink Robotics are developing robot

co-workers to assist humans in SME production lines. They all feature lightweight

structures and intrinsic compliance collocated with the joint actuators. Among the

mentioned examples Universal Robots as well as Rethink Robotics explicitly declare

the robots to be affordable by any small to medium sized enterprise as a main goal.

The rated prices are less than 22 000 USD, which pretty much agrees with Heinlein’s

idea of "one machine for [...] about the price of a good automobile" (Heinlein 1957).

Guizzo and Ackerman (2012) see the key to cutting the costs in giving the robot

through software "the ability to autonomously compensate for its own mechanical

irregularities as well as changes in its environment". This approach waives the need

for costly components by the development of advanced control algorithms. Follow-

ing this paradigm, it is noticeable that recent lightweight robot assistant prototypes

still share one important aspect with conventional robots. It is the strict rigid-link-

design aiming at the preservation of durability and moreover positioning accuracy by

hardware. It appears that the paradigm of affordable robots through sophisticated

software instead of expensive hardware has not yet been driven to the end.

The undesired side effects of intrinsic compliance are structural oscillations and

static deflections. In contrast to a non-collocated distributed elasticity in the robot

links, their attenuation is way simpler from a control point of view, if their origin is

collocated in the actuators as with the examples above. Up to now, the preservation

of link rigidity remains a strong demand, even if it constitutes a substantially time

consuming mechanical design difficulty, which easily inveigles to use pricy novel

materials. Such materials yield lighter structures and allow for less powerful actuators

on one hand, but usually come with a larger ecological footprint during production

on the other hand.

Albeit, Benosman and Le Vey (2004) experience that in large scale industrial pro-
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Figure 1.2.: Simplified schematic of a whisker (a) and an elastic joint-link-module (b).

duction with conventional robots the link mass trimming together with emerging link

elasticity gain importance due to steady reduction of cycle times and increasing accur-

acy specifications. Tao et al. (2006) provide a practical example of a Scara type robot

for wafer handling applications in semiconductor manufacturing. Besides robotics

we find link elasticity being a problem to avoid in the constructions of cherry pickers

(Pridgen et al. 2011), fire rescue turntable ladders (Zimmert, Kharitonov and Sawodny

2008), automobile concrete pumps (Cazzulani et al. 2011) and many other machines.

As a consequence, if the problems associated with link elasticity can be solved in ro-

botics, the developed concepts are supposed to be transferable to the aforementioned

applications as well.

Once the undesired effects of link elasticity are sufficiently compensated, a prom-

ising new perspective is to exploit the intrinsic link compliance for the detection and

sensing of contact forces. Behn et al. (2013) explain that the vibrissae of rodents "can

be moved either passively or actively through alternate contractions of the intrinsic

and extrinsic muscles". This enables the passive detection of contact forces as well

as the tactile scanning of surfaces. Miersch et al. (2011) report that even in murky

water pinnipeds use their whiskers to locate and track the hydrodynamic trails of

their pray. While the species differ in the details, figure 1.2 (a) shows a very basic

schematic of a single whisker with the skin realizing the neural connection as well

as the actuation mechanism composed of extrinsic and intrinsic muscles. For com-

parison, figure 1.2 (b) presents a single joint-link-module of an elastic-link robot with

strain gauges and an electrical motor. The whiskers as well as the arm consist of an

elastic beam, which is actuated on one end. The deflection sensor is mounted close

to this actuator on the beam surface. This identical structural arrangement evokes the

biological inspiration by the whiskers of rodents and pinnipeds. It gives raise to the

hypothesis that the intrinsic link compliance can indeed be exploited for the detection

and sensing of contact forces.

The present thesis approaches the promising and still open research direction con-

cerned with the control of elastic link robots. If the hypothesis is correct, the strong

requirements for link rigidity and the associated challenges can be relaxed and elastic
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link robots may become indistinct from compliant joint robots on the way to the in-

trinsically safe "household automaton [...] about the price of a good automobile"

(Heinlein 1957).

1.2. Related work

The research interest in elastic link robotic arms dates back to the early seventies. At

that time the demands for increased speed and accuracy of robot manipulators as

well as applications of light but long reach robotic manipulators for space applica-

tions were the main driving motivators (Whitney, Book and Lynch 1974). After 40

years of research on the modeling and control of elastic link robots, the booms of

space shuttles (Scott, Gilbert and Demeo 1993) and the remote manipulation systems

installed on the international space station (ISS) (Sawada et al. 2005) are the only

widely visible examples for practically applied elastic link robots in public. Dwivedy

and Eberhard (2006) supplement examples of long reach inspection and nuclear waste

retrieval manipulators. Recently, Dubus, David and Measson (2009) investigated the

application of a long reach elastic link inspection robot for the International Ther-

monuclear Experimental Reactor (ITER). While space manipulators operate in a zero-

gravity environment this one is a rare example for a terrestrial application.

In spite of the potentials outlined in the previous section, the compensation of the

detrimental effects of link elasticity by control algorithms is obviously yet an unsolved

challenge. According to Benosman and Le Vey (2004), "it can be seen that even for the

simple end effector regulation problem, research has been conducted still recently".

Promising results have been achieved with respect to safety and energy efficiency

using elastic joints (Ham et al. 2009), so that one might wonder about the cardinal

differences between joint and link elasticity. The following literature survey yields a

tangible notion of these differences. Therefore it is organized in three subsections.

The first subsection structures available modeling techniques. The second reviews

control challenges and approaches. The third subsection focuses and concludes on

experimental works reported in literature.

Modeling and dynamics analysis

A first literature survey on modeling and control of elastic link robots with 45 con-

tributions between 1975 and 1990 has been carried out by Book (1990). The survey is

written as a "Tutorial Review" and summarizes the additional challenges compared

to the control of purely rigid and elastic joint robots.

Besides the kinetic energy contained in the motion of inertias and the potential en-

ergy due to the posture within the gravitational field, elastic robots store potential

energy in their structural deflection. For elastic joint robots the compliance is spa-

tially concentrated at the actuation mechanism. A spring model collocated with the

actuator suffices to model the equations of motion. Link bending however is gov-

erned by its dispersive distributed nature. This is where the additional challenges

for the modeling and control of elastic link robots originate. The common modeling

approaches in literature aiming at the simulation and control of elastic link robots can

be categorized into three main directions:
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Lumped mass approach: The elastic links are spatially discretized into lumped masses

interconnected by massless spring-damper-elements. The number of lumped

masses trades off accuracy and model complexity. An example for this ap-

proach is given by Konno and Uchiyama (1996) as well as Konno, Uchiyama

and Murakami (1997), who investigate the horizontal motion of a two link ex-

perimental setup. Feliu, Rattan and Brown (1992) realize a controller for a single

massless elastic link with distributed lumped masses. This view on the sys-

tem decouples the influence of the link geometry and the mass properties on

the elastic dynamics. The decoupling enables the load adaptation scheme for a

single link experimental setup under exclusion of gravitational forces proposed

by Feliu, Feliu and Cerrada (1999).

Euler-Lagrange approach: The equations of motion are derived in analogy to rigid ro-

bots based on the energy balance using the Euler-Lagrange formalism. Link

elasticity adds to the potential and the deflection rates contribute to the kinetic

energy. The additional generalized coordinates required to describe the deflec-

tion states are obtained from a modal analysis. The modal analysis provides

eigenfrequencies and deflection shapes. Even with single links analytical solu-

tions to the involved fourth order partial differential equations are feasible only

for a very limited number of simple link geometries and rather basic boundary

conditions. Popular beam configurations are covered in fundamental textbooks

on structural dynamics (Dukkipati and Srinivas 2005; Meirovitch 2001). Ap-

proximate techniques employ generic polynomials, finite element solutions or

empirical data obtained from experiments to assess the assumed relevant eigen-

frequencies as well as a mathematical description of the associated mode shape

functions. The achievable accuracy is determined by the considered number

of assumed modes, the body geometry and validity of the selected boundary

conditions.

Frequency domain approach: Frequency domain techniques are an alternative to the

time domain approaches above. According to Book (1990) the serial and paral-

lel connection of joint as well as both rigid and flexible links is straightforward

using transfer function models. Book and Majette (1983) report that the ex-

tension to transfer matrices generally allows the propagation of the deflection,

bending angle, shearing force and bending moment through entire kinematic

chains. Krauss (2012) recently published an efficient Python implementation of

this approach. Nevertheless, frequency domain transfer matrix methods have

experienced far less attention in the past than the other two approaches. The

reason may be, that many powerful advanced controller design methods require

time domain models. The conversion between the frequency and time domain

models for nonlinear systems is tedious. Detailed analyses provided by Krauss

(2006) as well as Krauss, Book et al. 2010 are still restricted to linear models.

More citations for each category can be found in the extensive literature survey

conducted by Dwivedy and Eberhard (2006), which reviews a total of 433 modeling

papers. As a summary, the first two categories clutch to modeling concepts that are

well established for the concentrated parameter case of conventional rigid robots and
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seek to extend them for distributed parameter systems. Following Meirovitch (2001,

p. 464), both approaches "model distributed-parameter systems as discrete systems,

which amounts to spatial discretization and truncation". The lumped parameter ap-

proach "is more physical in nature, but lacks rigor", while the assumed modes model

"is more abstract, but has a solid mathematical foundation" and "also tends to be

more predictable and accurate". The frequency domain approach also discretizes the

continuous system to a finite series of assumed modes. Book (1990) remarks that the

obtained models are rather inaccurate with respect to the large robot motions, but

mathematically compact and thus attractive for the description of small oscillatory

motions.

In all these common modeling approaches the spatial and modal truncation entails

crucial consequences for the subsequent controller design. A model based controller

may potentially excite the unmodelled eigenfrequencies, which can destabilize the

closed loop. This effect is known as modal spillover (Balas 1978). A cost analysis

may be carried out to reduce model complexity by considering a smaller number of

eigenfrequencies with acceptable degradation of accuracy (Tsujisawa and Book 1989).

However, no theoretical technique exists, that guarantees relief from spillover. This

must be carefully investigated in real experiments.

In order to circumvent the spillover problematic, a few researchers such as Halevi

and Wagner-Nachshoni (2006) have investigated nonlinear infinite dimensional trans-

fer functions. The transfer functions are derived for different sensor and actuator con-

figurations as well as generalized second order boundary conditions at both ends of

a single beam. On this basis a controller is designed by Halevi (2004). The parameter

tuning and stability analysis is carried out with respect to the generalized boundary

conditions. Although very promising the investigations are limited to elastic systems

governed by second order partial differential equations such as vibrations of strings

or torsional or lateral oscillations in rods.

The accuracy of the modeling techniques discussed so far strongly depends on the

knowledge of the boundary conditions for each link in the kinematic chain. The

introductory boundary value problems discussed in fundamental textbooks on struc-

tural dynamics (Dukkipati and Srinivas 2005; Meirovitch 2001) usually consider static

boundary conditions. In real multi-elastic-link robots the boundary conditions of

each individual link already vary with the joint controller parameters as well as the

relative joint configuration. In spite of exponentially growing computation power the

model complexity under consideration of time varying boundaries "can swamp even

large memories" (Book 1990) and render the resulting dynamics equations poorly in-

spectable. That is why most multi-link models such as the one proposed by Luca

and Siciliano (1991) or Chen (2001) argue the replacement of the varying boundary

conditions by fixed approximations.

Beyond the joint configuration dependent time variance, imperfect clamping and

finite drive train stiffness add non-negligible uncertainty to the boundary model.

Backlash may lead to chaotic or at least non-deterministic boundary dynamics. Fi-

nally, payload changes and physical contacts with the environment unpredictably

but drastically and abruptly alter the boundary conditions. Such events must not

destabilize the closed control loop.
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Control approaches

A broad variety of controllers have been investigated in search of a solution to the

oscillation damping and positioning tasks for elastic link arms simultaneously. Ben-

osman and Le Vey (2004) structure a total of 119 papers into control concepts such as

input-output linearization through stable inversion using a state feedback designed

in the frequency and time domain, singular perturbation and sliding mode control,

optimal, robust and adaptive control, feedforward filtering and input shaping.

Identically to rigid robots, the position control objective for elastic link robots is to

perform point-to-point motions or to follow a predefined trajectory. This commonly

implies the actuator torques to be the control inputs and the end effector pose to be

the control output of the plant. However, for elastic link robots this choice of control

inputs and outputs leads to a plant with unstable zero dynamics. The rigid links of

conventional robots cause a control action at the joints to instantaneously affect the

end effector motion. The distributed nature of link elasticity causes the control action

to propagate along the structure with finite speed. As a consequence well known

control concepts from rigid robots such as the computed torque and inverse dynamics

control cannot be applied directly. Luca, Panzieri and Ulivi (1998); Moallem and

Patel (2001); Wang and Vidyasagar (1991) circumvent the difficulties using a method

known as output redefinition, where the actual end effector deflection is replaced by

an artificial control output. The plant with the artificial output shows stable zero

dynamics.

Approaching from the hardware side, oscillations can, at least up to some extend, be

damped passively by using multi-layered link designs with intermediate visco-elastic

layers for energy dissipation or parallel arm structures. Some researchers distribute

additional actuators such as piezo electric ceramic actuators (Khorrami, Zeinoun and

Tome 1993) or dielectric electroactive polymer actuators (Bailey and Ubbard 1985)

along the structure. These devices also show integrated deflection sensing capabilit-

ies. Their arrangement accounts for the distributed nature of the elastic links and they

are controlled to actively stabilize the zero dynamics. Moreover, Konno, Uchiyama

and Murakami (1997) discover in certain joint configurations the modal controllab-

ility through the joint actuators to get lost. In such configurations it might become

infeasible to stabilize or attenuate oscillations of particular modes. The effect does not

occur with elastic joint robots, because of the collocation between the concentrated

elasticity and the actuation mechanism. The distributed actuators mentioned above

can be optimally placed to ensure modal controllability throughout the whole work-

space. However, a practically very inconvenient property of piezo ceramics as well

as dielectric electroactive polymers are the high operating voltages, which necessitate

thorough insulation.

Most researchers use strain gauges as deformation sensors. They are fast, cheap,

operate at low voltages and can be easily glued onto the link surface. An investigation

towards more expensive optical fibers with Bragg gratings as strain sensing device

for increased precision and a larger signal to noise ratio is performed by Franke et al.

(2009).

The strain measurement close to the joint provides stable zero dynamics, which

motivates researchers such as Luo (1993) to directly close proportional and integral
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feedback loops for oscillation damping. In their experiments Luo and Guo (1995) use

a single link in the horizontal plane. Malzahn et al. (2010a) augment the direct pro-

portional feedback for a single link under gravity using feedforward input shaping

filters discussed by Vaughan, Yano and Singhose (2008). The resulting two degree

of freedom control structure joins the individual strengths and alleviates the short-

comings of the feedforward and feedback approaches. Malzahn et al. (2011b) extend

the concept to a multi-link arm under gravity with a more advanced cascaded joint

controller complemented by a jerk minimizing online trajectory planner.

The most promising property of the linear strain feedback is the independence of

any dynamics computation at runtime. Ge, Lee and Zhu (1998) suggest a nonlinear

integral feedback law sharing this property in a purely simulative study. The concept

looks at the dissipation of oscillation energy following a direct Lyapunov synthesis

approach, which avoids a truncation of the arm dynamics and possible spillover ef-

fects.

Experimental studies with this energy based control have emerged simultaneously

and independently by Mansour et al. (2008) as well as within the scope of this thesis

by Franke et al. (2009).

The experiments carried out in a wide workspace and under gravitational influence

reveal an unexpected difficulty with the nonlinear integral feedback law. If any elastic

link passes through a vertical orientation the damping scheme starts a limit cycle. In

the vertical pose the static strain changes the sign, so that an imperfect static strain

cancellation in combination with the integral nature of the concept is suspected to

cause the observed effect. The observation from multiple experiments is, that such

limit cycles do not occur, if link orientations remain on either side of the vertical pose.

Experiments with a backlash free experimental setup allow the exclusion of the gear

backlash as a reason.

While a mathematical proof to this observation is still an open challenge, Malzahn

(2008)1 develops a remedy later published by Franke et al. 2009. The idea is to su-

pervise each link orientation and adapt the sign of the feedback term accordingly.

However, the experiments under gravity indicate that the damping results do not

justify the additional efforts compared to the linear feedback.

The strain measurements close to the joints allow only poor tip position informa-

tion inferred by means of a properly identified dynamics model. Tip sensors provide

accuracy with respect to static configuration and load dependent deflections but in-

troduce unstable zero dynamics into the control system. This gives raise to the fol-

lowing, still open question stated by Book (1990): "how can one combine strain and

tip position sensors to achieve a robust and accurate controller"?

For example, Kharitonov, Zimmert and Sawodny (2007) propose the use of strain

gauges close to the joint with a gyroscope at the tip. During the past decade cam-

era sensors with fast frame rates and high resolutions became widely available at

low cost, which renders them a promising option as tip sensors. This has motiv-

ated researchers such as Bascetta and Rocco (2006a,b); Dubus, David and Measson

(2009); Jiang, Konno and Uchiyama (2007) to work on the use of cameras as a sensor

for oscillation damping as well. During preparation of this thesis Malzahn, Phung

1The cited thesis narrowly focuses on the experimental investigation of the particular nonlinear in-
tegral feedback. The main result is the sign adaptation to circumvent the observed instability.
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and Bertram (2012c); Malzahn et al. (2010b) contribute experimental results on the

oscillation sensing relying solely on an eye-in-hand camera with a special emphasis

on unstructured and potentially dynamic scenes with varying texture and geometric

structure. Malzahn, Phung and Bertram (2012b) compare three approaches for online

identification of a signal model describing the perceived oscillations. The proposed

method allows to compensate for the sensor delay. Malzahn et al. (2012) aggregate

these works and present the purely camera based oscillation damping using the con-

trol concept explained in chapter 5. While the actual image processing with delay

compensation is beyond the scope of this thesis, chapter 9 includes a brief application

of the camera for end effector positioning.

Experimental studies

Experimental investigations of control concepts are as yet dominated by single link

setups operating in the horizontal plane under exclusion of the variable gravitational

influence. Becedas et al. (2009) propose a generalized PI-controller for a horizontal

single-link setup supported by an air table. Diaz et al. (2010) propose a robustified

variant of the impulse based input shaping technique developed in earlier works of

Singhose (2009). The variant shows an abbreviated filter duration. The increased

robustness results from a numerical optimization, which adapts to changes in the

system dynamics due to varying payload masses.

Publications on multi-elastic-link robots are as yet mostly limited to simulative

studies. They comprise model predictive approaches for up to four-link mechanisms

(Boscariol, Gasparetto and Zanotto 2010). Korayem et al. (2010); Subudhi and Morris

(2009) combine fuzzy approaches with variable structure controllers or neural net-

works. Rong et al. (2010) supplement a PID-controller by an artificial neural network

to form an adaptive controller based on velocity feedback for oscillation damping

with piezo actuators. Benosman and Le Vey 2004 find the reason in "the complexity

of the nonlinear multi-link models, since it is difficult even if not impossible to ap-

ply directly some theoretical closed-loop control strategies, which need closed-form

manipulations of these complex system dynamics".

Along with all the uncertainties associated with the dynamics modeling described

in section 1.2, it is frustrating, tedious and error prone to derive and especially to

identify a holistic dynamics model of a real robot, suited to precisely describe the

structural oscillations along with the static deflections in the entire workspace. In

particular, Book (1984) discusses the complexity and computational burden of a re-

cursive Lagrangian formulation with respect to different mode shape approximations

and compares them to rigid robot models. Theodore and Ghosal (1995) provide sim-

ulations for the model of a multi-link arm in the absence of gravity and compare

the analytical assumed mode method (AMM) with the finite element method (FEM).

The FEM overestimates stiffness which can drive a model based controller unstable.

Their AMM model considers time dependent boundary conditions under simplifying

conditions. Book (1984) supplements the investigation of computational complexity.

Even with today’s available computational power a model of that type most probably

lacks real-time capabilities and such a model would not yet have captured payload

changes and interactions with the environment.
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The complexity and uncertainty aggravate the experimental proofs of concept for

model based controllers, so that researchers argue that contributions in the control

of elastic link robots should intensify experimental works "to keep realism in the

research" (Book 1990). Hu (1993); Tokhi and Azad (2008) collect and picture experi-

mental setups developed all over the world. The works clearly document the dom-

inance of single link experimental setups. Multi-link setups are almost exclusively

operating in the horizontal plane thereby excluding the influence of gravity. Just a

few multi-link setups moving in the vertical plane exist. Two of them are FLEBOT II

and ADAM in the Space Machines Laboratory at Tohoku University as well as ELLA

and ElRob at the Institut für Robotik, Linz University.

The number of publications concerning the exploitation of link elasticity for force

control or contact detection is vanishingly small. Bazaei and Moallem (2011) follow

the output redefinition approach control the tip force of a single link operating in the

horizontal plane. Garcia and Feliu (2000) as well as Garcia, Feliu and Somolinos (2001)

compare implicit and explicit force control schemes as well as collision detection with

a single-link setup and a modified PID framework. So far, neither simulative nor

experimental studies on force control or collision detection are known that consider

elastic link robots under the influence of gravity or with multiple links.

1.3. Contribution and outline

This work is first and foremost driven by the idea that elasticity in the robot links

does not ultimately need to be a problem, which must be avoided by costly and mo-

mentous constructional efforts. The hypothesis formulated in section 1.1 claims, that

link elasticity can be exploited to sense and control contact forces. The work repres-

ents a first experimental study towards this hypothesis. It considers multi-link arms

under gravitational influence. As a prerequisite, the work develops and exemplifies

solutions to the challenges of oscillation damping and position control under the con-

ditions summarized in the previous section. This whole path is visualized in figure 1.3

and reflected by the following outline:

Chapter 2: The preparation of this thesis included the development and installation

of the three degree of freedom elastic link robot named TUDOR along with

the additional external reference sensors. The arm is intentionally designed to

show clearly visible elastic effects, which allows for illustrative evaluations of

the devised control concepts. The chapter introduces the complete experimental

equipment and the communication among all individual units.

Chapter 3: The chapter models and identifies the joint actuators. It describes the

choice and tuning of the cascaded joint angular controllers. The chapter closes

with an experimental evaluation of the control objectives and describes a gener-

alized controller architecture for the unified joint-level integration of all different

oscillation damping control concepts investigated in this work.

Chapter 4: The chapter introduces the mathematical prerequisites of the elastic link

dynamics for the remainder of this work. Supported by experiments, it con-

tributes detailed theoretical analyses of the oscillatory link dynamics of multi-
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Figure 1.3.: Structure of this thesis centered around the motivating hypothesis.

elastic-link arms. The analyses particularly focus on the influences of payload

changes, varying joint configurations and uncertainty in the boundary condi-

tions on the eigenfrequencies as well as mode shapes. The discussion of the

analyses founds the basis for the controller design in the chapters 5 to 7.

Chapter 5: This is the first chapter devoted to oscillation damping control. Uncertain-

ties and unpredictable influences on the complex dynamics of multi-elastic link

robots seem to prevent the practical success of common model based controllers

for simultaneous oscillation damping and end effector positioning so far. This

chapter focuses on the strain based oscillation damping without consideration of

the tip positioning task in first place. It proposes a solution to this sub-challenge

by discussing different direct proportional strain feedback approaches based on

a truncated transfer function model. The concept relies on a minimum amount

of model knowledge and does not compute any dynamics at run-time.

Chapter 6: The second chapter on oscillation damping control uses a lumped para-
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meter model of the elastic link dynamics. It revisits the identification of wave

properties in the lumped structure introduced by O’Connor (2007b). The wave

properties are exploited to an alternative derivation of a damping controller

based on the absorption of emitted and echoed wave components. Again, a min-

imum knowledge of the link dynamics is required at run-time. With a structural

reduction this thesis reveals a very close relation to the proportional oscillation

feedback presented in chapter 5.

Chapter 7: The models and control concepts presented so far all involve discretization

or truncation of the oscillatory elastic link dynamics. Following the concept

of mechanical waves this third chapter on oscillation damping control accepts

the continuous spatial distribution of the elastic properties and introduces the

concept of wave reflection and transmission at junctions as well as boundaries.

The chapter discusses three different variants to shape the wave reflection matrix

at the actuator boundary. Cross-relations to the previously derived controllers

are highlighted.

Chapter 8: This final chapter on oscillation damping control provides an extensive

experimental comparison of the oscillation damping concepts presented in this

work. The experimental results cover the whole workspace of the multi-elastic-

link robot TUDOR and include investigations towards varying payloads, step-

like as well as harmonic external disturbances and damping actions at just a

single actuator.

Chapter 9: With the structural oscillations readily damped, the end effector position-

ing task in this chapter drastically simplifies. Two position control approaches

are presented. The first one is a 3D visual servoing controller implemented with

an eye-in-hand mounted RGB-D camera. The second one employs a data driven

inverse kinematics algorithm. A ball catching scenario with a human thrower

sequentially throwing multiple balls towards the robot serves as a testbed to-

wards the question whether time critical positioning tasks can be accomplished

by an elastic link robot arm with sufficient precision.

Chapter 10: In addition to the inverse kinematics also the dynamics of the elastic link

arm are way simpler to model in the presence of an underlying robust and fast

oscillation damping controller. With this chapter the thesis derives a linear rela-

tion between the measured strain and the joint torques, which allow the damped

strain referred dynamics to be formulated with exactly the same mathematical

structure as the dynamics of conventional rigid robots.

Chapter 11: With the oscillations damped, the end effector position controlled as well

as the identified damped dynamics model at hand, the work finally arrives at

the investigation of the hypothesis about the potentials of link elasticity in robot

arms for collision detection and reaction. The chapter provides collision experi-

ments with blunt and sharp impacts, both carried out with durable and stiff but

also with compliant and fragile objects as well as a human arm.

Chapter 12: The work comes full circle with a concluding discussion about the accom-

plished results and suggests directions for future works.
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2
Experimental Setup

For the experimental evaluation of the theoretical concepts developed in this work, the

three degree of freedom multi-elastic-link robot arm TUDOR (Technische Universität

Dortmund Omnielastic Robot) along with additional external reference sensors has

been developed. The robot is depicted in figure 2.1 (a). The robot links are inten-

tionally designed to be visibly elastic. This simplifies the illustration of oscillation

damping results as well as the compensation of static deflections. This chapter details

the individual components of the experimental setup.

2.1. Joints and links

The robot comprises three brushless DC (BLDC) motors with planetary ceramic gears

and two spring steel blades as elastic links. The equivalent rigid body kinematics

in figure 2.1 (b) shows the joint zero configuration and illustrates the actual robot

dimensions. It defines the coordinate frames of the base, the end effector as well as

the intermediate joints. The first actuator with the joint variable θ1 is installed within

the cylindrical base and rotates the arm structure in the horizontal plane around the

axis 1z. The mechanical connection between the first and second joint is considered

to be the rigid first link of the robot. The second and the third joints have horizontal

axes of rotation with θ2 about 2z and θ3 about 3z. Both actuators are interconnected

via the elastic second link. The elastic third link is mounted at the shaft of the third

actuator. The parameters of the actuators are collected in appendix A.3.

The design criterion for the elastic links was to enable clearly visible structural os-

cillations being easily excited by joint motions and physical interactions. This paves

the way for convenient illustration of the results effected by the proposed control

schemes. The dominant frequencies of each link should reside in the order of mag-

nitude of 10 Hz. Therefore different types of quenched and tempered aluminum as

well as steel blades with varying cross section have been investigated. As a result

spring steel blades with rectangular cross section and the parameters listed in ap-

pendix A.1 are used throughout the thesis. These links provide sufficient fatigue

strength under the repeated bending stresses associated with the targeted oscillation

amplitudes, frequencies and end effector payloads. For the payloads, steel plates with

dimensions 80 mm by 80 mm by 2 mm can be mounted at the end effector. Each plate

adds a payload mass of 100 g.
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Figure 2.1.: Photograph of the multi-elastic-link robot arm TUDOR (a) with equivalent rigid

body kinematics (b) and top view schematic (c) including the strain sensor locations.

The thesis accounts for the effect of gravity on the elastic links. To emphasize the

appearance of this effect, the elastic link area moments of inertia about axes parallel

to the joint 2z-axes are designed to be small. This way the structural oscillations

mainly occur in the vertical 2x-2y plane incorporating the gravity vector. Nevertheless

deviation moments due to the unbalanced mounting of the third joint also cause

smaller torsional and horizontal oscillations of the arm.

2.2. Strain sensors

Strain gauge pairs are applied on the top and bottom surfaces of the elastic links

according to the schematic shown in figure 2.1 (c). Each link carries two pairs of

strain gauges. One pair close and one pair more distant to the preceding joint. The

pairwise installation in connection with a Wheatstone half-bridge circuit allows for

the compensation of temperature dependent strain drift in the measurements. The

sensor parameters are listed in appendix A.4. For simplicity, the notation

ε2 = ε(2xs, 1) and ε3 = ε(3xs, 1) (2.2.1)

is used as a convention in the remainder of this thesis.
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Figure 2.2.: Filter architecture for second order smoothing.

The key difference between elastic link arms that operate under gravity and those

that do not is the presence of configuration and load dependent static deflections.

The static deflections effect non-zero static strain readings, which have to be cancelled

in preparation to oscillation damping control. Otherwise they introduce substantial

steady state positioning and tracking errors or even destabilize an oscillation damping

controller.

There are basically two options to perform static strain cancellation: a model based

or a filter based approach. The static deflection nonlinearly depends on the joint con-

figuration. The transitions between two static deflections due to changes in the joint

motion are dominated by the mechanical actuator time constants. The adaptation

of a model based static strain cancellation to unpredicted load changes as well as to

static strains during contacts with the environment requires fast online identification

and dependable reasoning from a higher cognitive level. A more fundamental limit-

ation of a model based approach arises from the finite accuracy of any model. This

necessitates the implementation of a deadzone around the residual modelling error.

Oscillations with measurements remaining in this deadzone cannot be damped by the

controller.

For low level damping control of the structural oscillations this work therefore pro-

poses a filtering approach. It has no limiting deadzone, it is simpler from a compu-

tational as well as less demanding from a cognitive point of view. It automatically

adapts to varying load conditions. The model based prediction of strain measure-

ments is left for the collision detection and reaction in the chapters 10 and 11.

Highpass filtering of the strain measurements is an obvious first idea for static strain

cancellation. There exist numerous automated filter design algorithms for both finite

impulse reponse filters (FIR) as well as infinite impulse response filters (IIR). Most of

these algorithms compute the filter coefficients based on amplitude gain and cut-off

frequency specifications for the stop- and pass-band. As a result from section 4.7 the

lowest natural frequencies are found to come close to 1 Hz. FIR filters with sharp filter

edges involve a large number of filter coefficients, which increases computational cost

and decreases responsiveness. IIR filters can be desigend with less filter coefficients

at the cost of a more complicated phase characteristic. Large phase shifts aggravate or

even destabilize the oscillation damping control. Phase constraints are more difficult

to set in most automated filter design algorithms. Understanding the relationship

between the typical frequency domain design specifications and the time domain

filtering result requires extensive filter design experience.

The filter design suggested in this work is based on the subtraction of the estimated

static strain signal portion. Besides the static strain cancellation, the availability of this
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Figure 2.3.: Magnitude (a) and (b), phase diagrams (c) and (d) as well as time responses (e)

and (f) of the highpass filters for different design paramters NFIR, αI IR. For the time response

the highpass transfer functions are excited by: H(t − 2s) + 0.5 (t − 2s) with the Heaviside

distribution H. The sampling time is 0.01 s.

estimate is beneficial also for the forward and inverse kinematics modelling discussed

in chapter 9.

Principally, the estimation process represents a lowpass filtering. Two options for

the realization of the lowpass filter are discussed in the following. The first one is the

equally weighted moving average filter with the FIR transfer function:

GFIR =
µ̂ε(z)

ε(z)
=

1

NFIR

NFIR−1

∑
i=0

z−i. (2.2.2)

The only design parameter is the number NFIR of averaged samples. The second op-

tion is an exponentially weighted moving average filter with the IIR transfer function:

GI IR =
µ̂ε(z)

ε(z)
=

αI IR

1 − (1 − αI IR) z−1
. (2.2.3)

The only design parameter is the exponential discount factor αI IR ∈ [0, 1].
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Figure 2.4.: Experimental filtering results for the FIR (a) and the IIR (b) filter with NFIR = 50

and αI IR = 0.02. The sample time of both filters is 0.01 s.

Both filters can estimate the running average of stationary input signals. They lag

behind any trend in the signal. With TUDOR trends emerge during joint motions. To

also remove the trend the same filter can be subsequently applied twice as shown in

figure 2.2. In the case of the IIR filter this is known as double exponential smoothing

or second order smoothing. This is in particular important for the control concepts

with integral strain feedback such as described in chapter 6.

The difference ε̃ = ε − µ̂ε is the actually highpass filtered signal. The transfer func-

tions of the corresponding highpass filter is computed from the differences 1 − GFIR

as well as 1− GI IR. Their Bode diagrams are shown in figure 2.3 (a) to (d) for different

design parameters. The magnitudes show an edge steepness of 40 dB/decade. The

phase shift in the pass band is close to zero for both filters. The IIR filter basically

has smoother magnitude and phase responses, whereas the FIR filter responses both

display a slight ripple in the pass-band.

The time domain response to a step input with superposed linear trend is depicted

in the figures (e) and (f).

It is apparent that a larger number NFIR of averaged samples results in a smoother

signal, but poorer reactiveness and phase shift. Similarly a smaller discount factor

αI IR results in a smoother signal with poorer reactiveness and phase shift.

Experimental results on strain measurements are depicted in figure 2.4. The strain

is measured on the second link. To generate the strain curve the joints follow an
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2.3. Eye in hand camera

input stimulus. The stimulus for each individual joint consists of angle steps with

random amplitude at random time steps. The mean liberated stimulus responses ε̃ for

both filters properly oscillate around zero with comparably fast reactions to changing

operating points. From the figures, the phase shift between the mean liberated signal

ε̃ and the original measurement ε appears marginal. The intended convergence of

the mean liberated signal ε̃ to zero in static scenarios becomes evident in the damped

single step experiments provided in the chapters 5 to 8 of this work.

Both filters have been designed to show basically the same reactiveness. Under this

conditions the IIR filter shows a larger ripple in the estimated mean. In essence, both

filters can be tuned to have equivalent cut-off frequencies or effective filter durations.

Good trade-offs between phase-shift and bandwidth are observed for NFIR = 50 and

αI IR = 0.02. With these settings the occurring phase shifts within the relevant fre-

quency range are acceptable. However, from the experimental results it is found that

the FIR filter practically allows a better trade-off in terms of reactiveness and ripple in

the moving average. That is why the remainder of this work uses FIR variant despite

the larger computational efforts in comparison to the IIR filter.

2.3. Eye in hand camera

The robot can be equipped with an eye in hand camera for visual servoing purpose

as done in section 9.1. The idea is to minimize the relative pose error between an

actual and a desired view of the scene by commanding appropriate joint velocities.

This elegantly allows to position the end effector of an elastic link arm without the

need for an accurate model of the load and configuration dependent static structural

deflections. The exploitation of the already available sensor as a multi purpose sensor

also for oscillation sensing and damping is beyond the scope of this thesis, but has

nevertheless been investigated during preparation of this work. The oscillation re-

construction from unstructured and possibly dynamic scenes has been published by

Malzahn et al. (2010b) as well as Malzahn, Phung and Bertram (2012c), while the com-

pensation of additional delays introduced by the image acquisition and processing are
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Figure 2.5.: RGB-D camera close-view (a). Planar region within a calibration pattern (b).

Average standard deviation of depth measurements (c) evaluated on the pattern at distances

between 0.6 and 6 m to the camera. Fitted polynomial: σz(z) = 0.51z3 − 2.1z2 + 5.12z − 2.18.
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adressed by Malzahn, Phung and Bertram (2012b). The oscillation damping concept

Malzahn, Phung and Bertram (2012b) use, is the one described in section 5.

The eye-in-hand configured camera is the Microsoft Kinect (Freedman et al. 2008)

depicted in figure 2.5 (a). The Kinect integrates a conventional RGB camera with the

infrared (IR) projector and the IR camera as depth (D) sensor in a single housing.

Therefore it is termed to be an RGB-D sensor.

The sensor provides RGB images at a spatial resolution of 640× 480 pixels at a frame

rate of 30 Hz. Each color pixel is augmented by a depth measurement. The depth

measurement principle relies on the projection of a pseudo random structured light

pattern into the scene. The reflected pattern is observed by the IR camera. The per

pixel depth image is computed onboard from the reflected pattern via triangulation.

The camera together with the mechanical mounting and the tracking spheres has an

overall mass of 450 g.

In this work, the effective usable depth range has been determined experimentally

to be within 0.6 to 6.0 m. To obtain this range, the checkerboard pattern visible in

figure 2.5 (b) has been placed at different depths in front of the RGB-D camera per-

pendicular to the optical axis. The depth uncertainty is considered to be the average

standard deviation σz(z) over all depth measurements and 100 sequentially recorded

images per distance step within the planar depth evaluation region indicated in the

figure. The result is plotted against the actual distance z in figure 2.5 (c). Within the

aforementioned effective range the average standard deviation remains below 10 %.

An extrapolation indicates that the uncertainty disproportionally increases beyond

this range.

Alternatives to the use of the Kinect have been considered. A passive stereo camera

setup with comparable accuracy would most probably have a baseline less suitable

for eye-in-hand mounting. Additionally the requirement to search for the correspond-

ences within the image pairs contributes additional error sources. An RGB-D camera

circumvents this issue.

The loss of the scene depth information due to the perspective projection of a con-

ventional camera could have been tackled by software using "structure from motion"

(Oliensis 1999), "depth from focus" (Ens and Lawrence 1993) or "depth from defo-

cus" (Subbarao and Surya 1994) algorithms. Basic techniques are found in textbooks

for example by Hartley and Zisserman (2006) or Wöhler (2013). However, this likely

leads to degradation of the oscillation sensing accuracy due to error propagation in

conjunction with motion reconstruction algorithms applied afterwards.

Data fusion with a motion model incorporating the elastic arm dynamics would

contradict the motivating idea of using the camera to precisely position the end ef-

fector without exact knowledge about the actual link deflections.

Data fusion with a laser scanner would represent the most precise, but also the

most expensive and very bulky alternative.

A technology quite similar to the Kinect is the so-called "Time Of Flight" (TOF)

camera (Hansard et al. 2013). TOF cameras measure the delay of IR light impulses

emitted by a triggered source and reflected by the scene. The depth information is

computed from the known speed of light. The unique measurement range depends

on the trigger frequency. Especially those TOF cameras where the triggered light

impulses are received with Photonic Mixing Devices (PMD) (Xuming Luan 2001) are
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2.4. Reference sensors

very insensitive to disturbing light sources such as direct sunlight. In this regard the

Kinect is restricted to indoor applications. However, the investigation of the camera

based oscillation sensing for an elastic arm in this work is pursued in an indoor

laboratory environment without direct sunlight. Future technology advances similar

to the PMD are assumed to solve disturbing light issues. In the end the low price of

about 100 € and especially the higher spatial resolution render the Kinect to be the

best choice for the purpose of this work.

2.4. Reference sensors

This section details the reference equipment developed and installed to asses training

data as well as ground truth information about the end effector motion and contact

forces.

Inertial measurement unit

TUDOR can be equipped with an inertial measurement unit (IMU). The one used

here is a CHR-6D unit by CH Robotics. It comprises a ADXL335 3-axes accelerometer

and a LPR510AL 3-axes MEMS gyroscope. The main properties of the sensor are

summarized in appendix A.4. The sensor is used as a ground truth reference for the

camera based oscillation reconstruction. The 6D inter-frame camera motion vector

reconstructed by the techniques described by Malzahn, Phung and Bertram (2012c)

represents the finite difference approximation of the camera velocity. Therefore the

IMU is boxed and mounted directly at the end effector of TUDOR underneath the

camera as visible in figure 2.1 (a).

External stereo camera system

With conventional rigid robot arms the measurement of the joint angles and know-

ledge about the link lengths is sufficient to accurately compute the end effector pose

with respect to the robot base frame. In contrast, the forward kinematics modeling

of elastic link robots is complicated by static deflections. Beyond that, the determina-

tion of the end effector pose during oscillations requires a precise model of the elastic

link dynamics. Two aspects motivate the development of an external stereo camera

setup in this work. The first one is the identification of the forward as well as inverse

kinematics models decribed along with the determination of the position accuracy in

chapter 9. The second aspect is the evaluation of the proposed oscillation damping

concepts presented by Malzahn et al. (2011b). The implementation, calibration and

analysis of the setup has been performed within the scope of a supervised thesis by

Mr. Bürger (February 2011).

The stereo camera setup is depicted in figure 2.6. It is a convergent camera con-

figuration mounted close to the walls underneath the laboratory ceiling. The optical

axes point towards the robot base frame. This way a baseline of 3 m is achieved, while

the field of view covers nearly the entire robot workspace.

The two cameras are VRmC-3+ models manufactured by VRmagic. Each camera

has a resolution of 640 × 480 pixels and provides 50 frames per second. A complete
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Figure 2.6.: TUDOR within the laboratory environment with illustration of the stereo camera

field of view and tracking sphere extraction.
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summary of the stereo camera hardware parameters is collected in appendix A.4.

The position measurement is based on the spheres mounted on both sides of the

end effector and visible in figure 2.1 (a) as well as 2.6. One sphere is green. The other

one is red. Therefore the solution to the correspondence problem among the stereo

image pairs is straightforward. The colors further simplify the sphere segmentation.

The segmentation algorithm is a three step process. Similar to histogram back projec-

tion (Swain and Ballard 1990) a normalized Gaussian color model for the spheres is

determined in the first step. The color model is determined for each channel of the

RGB as well as the HSV color space.

The appearance of the sphere colors in the images strongly depends on the proper-

ties of the individual camera sensor as well as the lighting. In the laboratory a mix of

varying daylight and artificial ceiling lighting can be found. The color models for both

cameras are thus semi-automatically calibrated once per recorded image sequence. A

center pixel and an edge pixel are selected for each sphere in a single stereo image

pair. The two selected points per pixel define a circle. All pixels within this circle are

used to compute the Gaussians.

The per-channel Gaussians reflect the probability that a particular channel value

belongs to a sphere pixel. A naive Bayes approach aggregates the individual channel

models and yields a probability estimate for a pixel to belong to either the red or

green sphere. This way the single color image of one camera is transformed into two

probability images, one image for each sphere.

In the second step morphological erosion removes all disturbing pixels in the prob-

ability images. The result of this second step finally serves as seed for the region

growing algorithm (Adams and Bischof 1994) operating on the probability image res-

ults of the first step. The centroid of the region growing output represents the estimate

of the sphere location in the image. A result is exemplified in the zoomed views of

figure 2.6.

The intrinsic and extrinsic stereo camera calibration is done with the checkerboard

pattern visible in figure 2.5 (b) and the Camera calibration toolbox for Matlab based

on the work by Bouguet (2008). For calibration of the stereo camera system with

respect to the robot base frame the robot samples the operating range of the first joint.

The second and third joints are kept in their zero configurations. This way the end

effector moves on a circular trajectory parallel to the 1x-1y-plane. The normal through

the circle center is collinear to the 1z axis. The static deflection of the arm due to its

own weight introduces an offset between the circle and the actual 1x-1y-plane. This

offset is removed based on the known arm length in a vertical arm configuration with

θ = [0◦, 90◦, 0◦]T.

After rectification the position of the segmented spheres with respect to the stereo

camera reference frame is computed via triangulation as discussed by Hartley and

Zisserman (2006, p. 318). The midpoint of the straight line connecting the sphere

centroids is considered to be the end effector position. The tracking of this point

from frame to frame allows the reconstruction of end effector motions such as the one

illustrated in the figures 2.7 (a) to (d).

The high end effector velocity causes the motion blur exemplified in figure 2.7 (e).

It is visible that the first moment of the segmented image regions represents plausible

mean locations of the spheres during the camera integration time.
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Figure 2.7.: Snapshots of a joint step motion from θ = [0◦, 45◦,−45◦]T to θ = [0◦, 135◦, 45◦]T

(a)-(d). Motion blurr observed by the stereo camera and sphere segmentation result (e). Re-

constructed trajectory (f) as well as derived velocity (g) and acceleration (h).

The complete reconstructed end effector trajectory is visible in figure 2.7 (f). The

trajectory segments with higher velocities are indicated by the larger spacing between

the samples. The circular motion close to the trajectory end attributes to the torsional

and horizontal oscillations mentioned in section 2.1.

The high frame rate enables the end effector velocity depicted in figure 2.7 (g)

and the end effector acceleration shown in figure 2.7 (h) to be computed from finite

differences.

The peak velocity of this motion amounts to 5.5 m
s . The maximum absolute accel-

eration is 40 m
s2 .

The end effector localization accuracy amounts to 2 mm. This value is determined

from the theoretical and experimental investigation described in the appendix B.5.

Contact cube

The investigation of concepts to exploit the link flexibility in the context of force

control, collision detection and reaction necessitates a contact device with force and

torque sensing capability to enable ground truth evaluations. The contact cube depic-

ted in figure 2.8 serves as such a device in this work. It is a hollow aluminum cube
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Figure 2.8.: The exploded view of the contact cube (a), top plate (b), side plate (c), side plate

with mounting holes (d), picture of the contact cube with TUDOR (e)

attached to the 6D force/torque sensor. The exploded view in figure 2.8 (a) depicts

holes in two side plates of the cube. They enable the application of additional sur-

face elements to modify the object characteristics such as shape and impedance. The

edge-length of the cube amounts to 300 mm. The measurement range for the vertical

contact force Fz is ±200 N with a resolution of 0.05 N. Further properties are listed in

appendix A.4.

2.5. Communication architecture

A total number of four PC systems is involved in the data acquisition and control

of TUDOR. The communication setup for these computers is illustrated in figure 2.9.

The first PC (xPC) is mounted in the 19" industrial rack with the xPC-Target real-time

operating system by Mathworks. All control algorithms for TUDOR run on this PC.

The fundamental sample time is 0.5 ms. Measurements such as the encoder readings,

motor currents and link strains arrive at the xPC via the main supply cable tree. The

main supply cable tree also includes the power supply and hall sensor cables for the

motors.

Contact torques and forces are sent from the contact cube to the xPC via RS-232.

IMU readings from TUDOR also arrive via RS-232 on a second port.

A console PC serves as programming device for TUDOR. On this PC the controllers

are implemented and uploaded to the xPC. The function library developed in this

work allows sending motion commands, switching operating modes of TUDOR and

downloading measurement data via a TCP/IP connection between the console PC
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Figure 2.9.: Communication setup for TUDOR

and the xPC.

The console PC triggers the stereo image processor PC to start the stereo image

acquisition via UDP.

The image processing for the eye in hand camera is computationally intensive. Most

image processing algorithms are rarely realizable to meet hard real-time constraints.

Frequently the actual computation time is influenced by the scene contents. Thus, the

image processing takes place on the fourth PC under soft real-time conditions. This

PC communicates the information extracted from the image sequences to the xPC

using UDP. The operating system on this image processing system is Ubuntu-Linux.

As a consequence, services running besides the image processing program contribute

to the variance of the delay associated with the extracted information. A method to

compensate this delay is reported by Malzahn, Phung and Bertram 2012b.

All Ethernet connections are realized within a closed network to avoid package loss

and additional delays due to arbitrary network traffic. The characteristic parameters

of the individual computers are collected in appendix A.2.
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3
Joint Dynamics and Control

The thesis follows an independent joint control strategy, where the whole arm is

interpreted as a chain of independent joint link modules. The actuator identification,

controller synthesis and evaluation is explained in the following subsections. The

last subsection abstracts a general controller architecture as a common basis for the

material presented in the subsequent chapters.

3.1. Joint dynamics

The actuators in the joints of TUDOR are brushless DC motors. The power amplifiers

for each actuator ship with integrated PI current controllers using the input voltage

vM as reference. The combined amplifier and current controller dynamics are iden-

tified as a second order system from multiple step responses spread in the whole

operating range as depicted in figure 3.1 (a). The second order system with gain

kamp and cut-off frequency ωamp achieves an average goodness of fit of 86 % accord-

ing to the definition given in appendix B.4. The identified parameters are listed in

appendix A.3.

The torque balance for the actuator yields:

τM = τE − τJ − τF. (3.1.1)

In this equation τM is the mechanical torque actually causing the joint acceleration

θ̈ inversely proportional to the combined rotor and gear inertia IM. The electrical

torque:

τE = nM kτ kAmp vM = kM vM (3.1.2)

is generated from the winding current iM. The high current controller dynamics

compared to the mechanical subsystem enable the closed current loop to be merged

with the motor torque constant kτ and gear ratio nM to yield a mere gain kM. The

joint load torque τJ originates from the arm dynamics as well as external interaction

torques.

For the joint friction τF two different models are used in this work. The first one is

taken from Zeng (1999):

τF = k+v θ̇ +
(

k−v − k+v
)

f1

(

θ̇
)

+ k+c +
(

k−c − k+c
)

f2

(

θ̇
)

, (3.1.3)
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Figure 3.1.: Identification results for the second joint without load. Measured and identified

amplifier step response (a), planned and realized joint angular velocity stimulus with velocity

limits (b), measured and identified joint current plotted over joint velocity (c) and time (d).

with

f1

(

θ̇
)

=

{

0 if θ̇ ≥ 0

θ̇ if θ̇ < 0
(3.1.4)

and

f2

(

θ̇
)

=

{

0 if θ̇ ≥ 0

1 if θ̇ < 0.
(3.1.5)

The parameters k+v and k−v are the velocity-direction dependent viscous friction coef-

ficients while k+c and k−c are the corresponding coulomb friction coefficients. This

model structure is required for the damped dynamics modelling in chapter 10 as well

as detection of collisions between the robot and its environment in chapter 11.

The second and simplified friction model has the form:

τF = kv θ̇, (3.1.6)

where kv is called the symmetric viscous friction coefficient obtained by averaging

over the asymmetric coefficients from equation (3.1.3). In section 3.2 this second fric-

tion model serves the design of the joint angular controllers based on the linear trans-
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fer function model:

GM(s) =
θ(s)

vM(s)
=

kM

s(IMs + kv)
. (3.1.7)

For identification, the velocity controller described in section 3.2 is designed based on

the motor parameters provided by the vendor. The multi-sinus velocity stimulus de-

picted in figure 3.1 (b) excites the joint dynamics. The periodicity allows the noise free

computation of higher order signal derivatives based on Fourier analysis as proposed

by Swevers, Verdonck and Schutter (2007). The stimulus operates in both the upper

and the lower velocity range. The corresponding measured and estimated motor cur-

rents are plotted over the joint velocity in figure 3.1 (c) and over time in figure 3.1 (d).

The asymmetric nature of the coulomb friction is clearly visible. The asymmetry in

the viscous friction is insignificant and justifies the direction independence of the lin-

ear model (3.1.7). The average goodness of fit computed from the motor current iM

on 10 experiments is 89 %. This static result is more than satisfactory against the

background that changes in lubrication and temperature drastically influence these

parameters over time. The parameters for all joints are listed in appendix A.3.

3.2. Joint angular control

The control objective for each joint is the realization of point-to-point movements

without overshoot and vanishing steady state error.

For robotic arms according to Sciavicco and Siciliano (2001) independent joint con-

trol is probably "the simplest control strategy that can be thought of". It interprets

a robot arm as a chain of independent single-input single-output systems (SISO). It

is enabled by the high gear ratios, which reduce coupling forces and torques. In

consequence, coupling effects between the individual systems may be considered as

disturbances.

For the reasons detailed in section 1.2 centralized concepts such as the inverse dy-

namics or computed torque control approach known from rigid robots are difficult

to apply to elastic link robots. Section 1.2 introduces and chapter 4 experimentally

exemplifies the challenges connected with the precise holistic modelling of a multi-

elastic-link robot in realistic manipulation scenarios. It renders the achievable benefit

questionable in comparison to the required mathematical and computational effort.

On the other hand, the analyses show that the natural oscillation frequencies of all

links appear to be measurable with good phase alignment on each of the individual

links. This insight leads to the transfer function model in section 5.1. The independent

joint control strategy fits well with this modelling approach in view of oscillation

damping control of a multi-elastic-link arm.

The independent joint controller described in the following has a cascaded architec-

ture. The cascaded nature simplifies the controller design. At each cascade level the

plant is treated as a second order SISO system. In equivalence to a state feedback the

closed loop dynamcis can be rigorously shaped whereas rejection of disturbances and

nonlinearities improves with each cascade level. The concept is outlined in textbooks

such as Sciavicco and Siciliano (2001) or Schröder (2009).

The innermost cascade level comprises the joint current controller shipped with

the power amplifiers. This controller is a PI type controller, which rejects nonlinear
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3. Joint Dynamics and Control

effects in the electrical part of the plant and compensates for the mutual induction for

instance. Section 3.1 identifies the fast response of the closed current control loop.

The next cascade level is a PI velocity control loop with the transfer function:

GPI =
kPI(tPIs + 1)

s
. (3.2.1)

A sampling frequency of 2 kHz justifies the quasi continuous design. The feedback

is based on numerical derivatives of the incremental encoder readings filtered by

a first order transfer function Gd with a time constant td. The PI controller time

constant tPI cancels the slow mechanical time constant of the motor. This mechanical

time constant tM = θ̇max
τM,max

IM, e f f

kv
includes the effective inertia IM, e f f estimated from the

geometries and masses of the joint as well as attached subsequent bodies in the joint

zero configuration. The gain kPI is tuned according to the symmetrical optimum so

that the closed loop exhibits a damping of DPI = 1/
√

2.

Schröder (2009); Sciavicco and Siciliano (2001) realize the position cascade level by

applying a proportional controller. However, in view of the linear oscillation feedback

proposed in chapter 5, the extension to the PD controller with first order lag element:

GPD =
kPD(tPDs + 1)

tls + 1
(3.2.2)

is advantagous for oscillation damping. The PD time constant tPD is tuned to cancel

the time constant of the first order approximation of the closed velocity loop. The

gain kPD is selected so that the position control loop displays unity gain. A first order

filter with lag time constant tl reduces noise and ensures causality.

A motion planner generates a sinusoidal acceleration profile as detailed by Wenz

(2008, p. 89) for each commanded joint motion. For self-containment the underlying

equations are summarized in the appendix B.6. The profile is continuously differenti-

able of infinite order and elegantly avoids impulsive jerk, which minimizes gear wear.

The absence of impulsive jerk already contributes to a reduced excitation of struc-

tural oscillations. The planner ensures that the controller adheres the acceleration

and velocity limits (see appendix A.3), which becomes apparent in the next section.

3.3. Controller evaluation

Figure 3.2 (a) depicts the joint angle stimulus response of the second joint. During

this experiment TUDOR carries three test mass plates with a total mass of 300 g. All

three joints simultaneously respond to individual stimuli comprising of angle setpoint

steps with random amplitudes at random timesteps. All joints have been operated

with maximum acceleration as well as maximum speed (see appendix A.3).

Figure 3.2 (b) provides a close view on the stimulus response. The close view

illustrates the smooth acceleration phases and the constant velocity phase generated

by the sinusoidal motion planner. The PI velocity controller compensates gravitational

load torques as well as joint friction so that the steady state angular position error

vanishes below the encoder resolution. There is no overshoot. Even at higher zoom

levels disturbances due to the link oscillations are not visible.
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Figure 3.2.: Joint angular position stimulus response (a) with close-up (b), corresponding

velocity profile (c) with close-up (d) along with the electrical motor torque (e), (f) and strain

(g), (h) measured on the second link. The responses are recorded for the second joint with

TUDOR carrying a 300 g payload at maximum speed and acceleration.
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Figure 3.3.: The general independent joint controller architecture developed in this work.

The velocity profile of the stimulus response is depicted in figure 3.2 (c). A close

view is provided in figure 3.2 (d). The velocity profile shows only slight oscillatory

disturbances.

Figure 3.2 (e) depicts the electrical torque produced by the winding current during

the stimulus. Figure 3.2 (f) is the corresponding close view. Besides the larger meas-

urement noise originating from the current readings, the torque signal has clearly

visible harmonic components. They can be interpreted as the action of rejecting dis-

turbances due to the link oscillations before they influence outer cascade levels. The

oscillations are depicted in the figures 3.2 (g) and (h) based on strain measurements.

As a conclusion it may be stated that the joint controller accomplishes the design

objectives.

3.4. General control architecture

The independent joint angular controllers are augmented by the oscillation damp-

ing schemes presented in the chapters 5 to 7. Figure 3.3 illustrates the integration of

the individual damping actions within a general controller architecture. The plant

consists of the motor transfer function (3.1.7) with a controller specific oscillatory dy-

namics representation for the subsequent link connected in series. The oscillations are

superposed by the static strain due to gravity. The strain measurement ε is liberated

from this static signal portion using the technique explained in section 2.2. The mean

liberated measurement ε̃ is fed to the damping controller. Depending on the particu-

lar oscillation damping scheme, additional joint angle feedback may be required. The

cascade level at which the damping action enters the joint controller also varies with

the concept under consideration. Such optional signals are indicated by dashed lines

in the generalized visualization of the controller architecture in figure 3.3.
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4
Elastic Link Dynamics Analysis

The chapter initially introduces the terminology and mathematical relations required

for the remainder of this work. Beyond that, the theoretical analyses and experimental

investigations carried out confirm the notion acquired from the literature survey re-

garding the complexity of the elastic arm dynamics as well as the applicability of

controllers relying on holistic plant models. This chapter constitutes the foundation

of the decisions, which lead to the control strategy proposed in this work.

4.1. Preliminary assumptions

The derivations presented in the remainder of this chapter are based on a set of as-

sumptions, which are summarized in the following.

Assumptions 4.1.1: The elastic links are modeled as Euler-Bernoulli-beams, so that:

(a) . . . the deflections are small in comparison to the beam length,

(b) . . . the neutral fiber has constant length,

(c) . . . the deflections are elastic and reversible so that Hooke’s law applies,

(d) . . . the rotation of a differential beam element is negligible compared to the translation so

that cross sections perpendicular to the neutral fiber remain perpendicular,

(e) . . . the angular distortion of a beam element is small in relation to the transversal bending

deformation,

(f) . . . the beam is uniform and homogenous.

4.2. The equation of motion

Consider the planar differential beam element of infinitesimal length dx sketched in

figure 4.1. In accordance to the rigid body kinematics in figure 2.1 (b) the deflection

of the beam at a time instant t is measured in the preceding joint frame as the y-

coordinate at a location x along the undeflected neutral fiber.
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neutral fiber

dx
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dθb

x

y

τb(x, t)

τb(x, t) + ∂τb(x,t)
∂x dx

Fy(x, t)

Fy(x, t) +
∂Fy(x,t)

∂x dx

fext(x, t)

Figure 4.1.: Undeformed differential beam element (left) and bent differential beam element

(right) with bending moments and forces

From assumption 4.1.1 (a) we find that the bending angle θb corresponds to the first

spatial derivative of the bending curve y(x, t):

θb(x, t) ≈ tan θb(x, t) =
∂y(x, t)

∂x
. (4.2.1)

With assumption 4.1.1 (b) all bent beam fibers are concentric arc segments, such

that a fiber at a distance yb to the neutral fiber is subject to the strain ε(x, t):

ε(x, t) = yb
∂θb(x, t)

∂x
= yb

∂2y(x, t)

∂x2
. (4.2.2)

Based on assumption 4.1.1 (c) Hooke’s law relates the strain ε(x, t) to the bending

moment τb:

τb(x, t) = −EIz(x)

yb
ε(x, t) = −EIz(x)

∂2y(x, t)

∂x2
, (4.2.3)

where E represents the Young’s Modulus and Iz(x) describes the area moment of

inertia about the bending axis. The product EIz(x) is called the beam stiffness.

The assumptions 4.1.1 (d) and (e) are known as the Bernoulli hypotheses (Meir-

ovitch 2001, p. 384). Their validity allows the cross sectional rotary inertia as well as

the shear modulus to be neglected in the beam equations of motion. This way, for

the infinitesimal beam element in figure 4.1 the force balance in the vertical direction

equates to:

Fy(x, t)−
(

Fy(x, t) +
∂Fy(x, t)

∂x
dx

)

+ fext(x, t)dx = ρb(x)dx
∂2y(x, t)

∂t2
. (4.2.4)

Similarly, the moment balance is:

τb(x, t)−
(

τb(x, t) +
∂τb(x, t)

∂x
dx

)

+
1

2
fext(x, t)dx dx + . . .

−
(

Fy(x, t) +
∂Fy(x, t)

∂x
dx

)

dx = 0.

(4.2.5)

The variable ρb(x) denotes the beam mass per unit length, Fy is the inner shearing

force and fext is the external force density function.
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4.3. The general solution

From the infinitesimal perspective, second order terms of dx may be neglected, so

that both balances simplify to:

−∂Fy(x, t)

∂x
+ fext(x, t) = ρb(x)

∂2y(x, t)

∂t2
, (4.2.6)

Fy(x, t) = −∂τb(x, t)

∂x
. (4.2.7)

Using assumption 4.1.1 (f) the area moment of inertia Iz as well as the mass per

unit length ρb becomes constant. Combining equations (4.2.6), (4.2.7) and expressing

the bending moment by the right side of equation (4.2.3) yields the Bernoulli Beam

partial differential equation (PDE):

ρb
∂2 y(x, t)

∂t2
+ EIz

∂4 y(x, t)

∂x4
= fext(x, t). (4.2.8)

Unlike the transversal oscillations of strings, the longitudinal oscillations of rods or

the torsional oscillations of shafts this PDE is fourth order. The consequences become

apparent in chapter 7 for example.

4.3. The general solution

The common approach to solve equation (4.2.8) is to assume a separability of the

spatial and temporal dependances (Dukkipati and Srinivas 2005; Meirovitch 2001):

y(x, t) = Φ(x)ν(t), (4.3.1)

where Φ(x) describes the deflection shape and ν(t) reflects the temporal amplitude.

Consider the harmonic case with fext = 0. The substitution in the PDE (4.2.8) leads

to:

− EIz

ρb

d4 Φ(x)/d x4

Φ(x)
=

d2 ν(t)/d t2

ν(t)
= ω2. (4.3.2)

Note, the dependance on the spatial variable x is collected on the left while the tem-

poral dependance is kept on the right side of the equation. The equality holds for

all times t and 0 ≤ x ≤ L. Hence, the ratios on both sides of the equations must be

constant. This constant is the eigenvalue denoted by ω2. Both sides of equation (4.3.2)

are independent ordinary differential equations (ODE).

The first ODE depends on the spatial variable x. With the introduction of the wave

number kω:

kω = 4

√

ω2 ρb

EIz
, (4.3.3)

it follows:
d4 Φ(x)

d x4
+ k4

ω Φ(x) = 0. (4.3.4)

By substitution of the exponential form Φ(x) = â eλ x in equation (4.3.4) we find the

characteristic equation λ4 + k4
ω = 0. Its roots provide the general solution to the ODE:

Φ(x) = + â e−j kω x + − â e j kω x + + âN e−kω x + − âN e kω x. (4.3.5)
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4. Elastic Link Dynamics Analysis

With the equivalences provided in the appendix B.1, this solution can be rewritten in

terms of hyperbolic functions:

Φ(x) = â1 sinh (kω x) + â2 cosh (kω x) + â3 sin (kω x) + â4 cos (kω x) , (4.3.6)

where:

+ â =
â4 + jâ3

2
, − â =

â4 − jâ3

2
, + âN =

â2 − â1

2
, − âN =

â2 + â1

2
. (4.3.7)

The task of finding the amplitudes âi is called the solution of the boundary value

problem defined by (4.3.4) and a total number of four boundary conditions.

The second ODE depends on the time variable t:

d2 ν(t)

d t2
+ ω2ν(t) = 0. (4.3.8)

The solution has the exponential form ν(t) = a e jλt. The substitution of this form

in equation (4.3.8) leads to the characteristic polynomial λ2 + ω2 = 0 with the roots

λ1,2 = ±
√
−ω2. Hence, with the equivalences provided in appendix B.1 a general

solution to the ODE is:

ν(t) = â5 sin ω t + â6 cos ω t. (4.3.9)

The task of finding the amplitudes â5 and â6 is called the solution to the initial value

problem defined by (4.3.8) and a total of two initial values of ν(t) or its derivatives.

4.4. Special solutions to the boundary value problem

In a number of publications on the control of elastic link robot arms the beams are

considered to be clamped at the joint hub side and free at the tip side. Luca and Si-

ciliano (1991) point out, that "it is more correct to consider mass boundary conditions

representing balance of moment and shearing force" at the other end. In the context

of an elastic link robot it should be noted, that the rigid clamping at the hub implies

a strong disturbance rejection of the joint controller as well as a rigid joint shaft and

link flange. A weak rejection or a flexible shaft is rather reflected by a spring at the

hub.

As a conclusion the boundary value problem discussed in the following is an elastic

beam with a rotary spring support at the hub and a load mass mL as well as a load

τb(x, t)|x=0

−Kr y(x, t)|x=0
Fy(x, t)|x=L

τb(x, t)|x=L
mL

∂2

∂t2 y(x, t)|x=L

IL
∂2

∂t2
∂

∂x y(x, t)|x=L

Figure 4.2.: Free body diagrams for the boundary conditions of a beam with a rotary spring

support at the hub and a load mass and inertia at the tip.
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4.4. Special solutions to the boundary value problem

inertia IL at the tip. This boundary value problem models the situation for a particular

planar link within a kinematic chain of a multi-elastic-link robot arm having only

revolute joints. The influence of gravity is neglected for a moment at this point. The

boundary conditions are illustrated in the free body diagrams of figure 4.2. From

equation (4.3.8) a second order temporal derivative corresponds to a multiplication

by −ω2. Mathematically the boundary conditions are stated as follows:

y(x, t)|x=0 = 0, (4.4.1)

∂y(x, t)

∂x |x=0
=

EIz

Kr

∂2y(x, t)

∂x2 |x=0
, (4.4.2)

∂2y(x, t)

∂x2 |x=L
= − IL

EIz

∂2

∂t2

∂y(x, t)

∂x |x=L
= k4

ω
IL

ρb

∂y(x, t)

∂x |x=L
, (4.4.3)

∂3y(x, t)

∂x3 |x=L
=

mL

EIz

∂2

∂t2
y(x, t)|x=L = −k4

ω
mL

ρb
y(x, t)|x=L . (4.4.4)

The spring stiffness Kr models the elasticity of the link flange as well as the dis-

turbance rejection properties of the joint angular controller. The load represents the

aggregated mass and inertia of subsequent joints and links in the chain including the

payload at the end effector.

The characteristic equation of the boundary value problem is:

kωEIz

Kr
(cos (βL) sinh (βL)− cosh (βL) sin (βL) + . . .

−2kωmL

ρb
sin (βL) sinh (βL)−

2k3
ω IL

ρb
cos (βL) cosh (βL) + . . .

−k4
ω ILmL

ρb
(cos (βL) sinh (βL) + cosh (βL) sin (βL)) ) + . . .

+ mL
kω

ρb
(cos (βL) sinh (βL)− cosh (βL) sin (βL)) + . . .

− IL
k3

ω

ρ
(cos (βL) sinh (βL) + cosh (βL) sin (βL)) + . . .

+ ILmL
k4

ω

ρ2
b

(1 − cos (βL) cosh (βL)) + . . .

+ 1 + cos (βL) cosh (βL) = 0, (4.4.5)

with βL = kω L. The detailed derivation is provided in the appendix B.3.

Under the conditions of a perfectly rigid clamping the characteristic equation re-

duces to:

1 + cosh (βL) cos (βL) + . . .

+ mL
kω

ρb
(cos (βL) sinh (βL)− cosh (βL) sin (βL)) + . . .

− IL
k3

ω

ρb
(cos (βL) sinh (βL) + cosh (βL) sin (βL)) + . . .

+ ILmL
k4

ω

ρ2
b

(1 − cos (βL) cosh (βL)) = 0, (4.4.6)

37



4. Elastic Link Dynamics Analysis

which agrees with the results Luca and Siciliano (1989, 1991) present. Additionally,

the choice IL = mL = 0 results in the characteristic equation of the clamped-free

cantilever found in fundamental textbooks on the mechanics of vibrations (Dukkipati

and Srinivas 2005; Meirovitch 2001).

The characteristic equations (4.4.5) and (4.4.6) represent transcendental equations.

They have an infinite number of roots βL,r, which implies that the beam has an infinite

number of natural frequencies ωr with r = 1, 2, . . . ∞.

From the definition of the wave number kω in equation (4.3.3) the natural frequen-

cies ωr compute to:

ωr = β2
L,r

√

EIz

ρb L4
. (4.4.7)

In turn, from equation (4.3.6) we find a natural mode shape function Φr(x) for

each natural frequency ωr. The mode shape functions represent the set of possible

beam deformations under the given boundary conditions. Since equation (4.3.4) is

homogenous, they can only be determined up to a scale. The normalization derived

in the appendix B.3 ensures that the mode shapes are orthogonal, so that the total

spatial deflection function Φ(x) can be expressed as a linear combination of all mode

shapes. This leads to the absolutely convergent series:

Φ(x) =
nu

∑
u=1

wu Φu(x), with nu → ∞. (4.4.8)

where for the example of a perfectly rigid clamping the weights wu are defined ac-

cording to:

wu =
∫ L

0
ρLΦu(x)Φ(x)dx + mLΦu(x)|x=LΦ(x)|x=L + . . .

+ IL
dΦu(x)

dx |x=L

dΦ(x)

dx |x=L
. (4.4.9)

In practice the weights wu must be identified experimentally. Therefore the dynamic

deflection has to be observed from distributed strain (Garcia, Feliu and Somolinos

2001; Pisoni et al. 1995) or acceleration (Hillsley and Yurkovich 1993) measurements

or directly measured using markers and an external camera sensor (Feliu, Rattan and

Brown 1992; Li and Chen 2002).

4.5. Natural frequencies under varying boundary conditions

One question arising from the previous section asks how the natural frequencies

change with a variation in the boundary conditions. First, a perfectly rigid clamp-

ing is assumed, so that Kr tends to infinity and the characteristic equation (4.4.6) can

be used. The variable parameters in the equation are the total load mass mL as well

as the total load inertia IL normalized by the beam density per unit length ρb. Initial

values for the frequencies are obtained by graphical inspection of the characteristic

equation. The accurate values are determined using Brent’s method (Brent 1972, ch.

4).
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Figure 4.3.: First (a) and second (b) natural frequency of a rigidly clamped beam with varying

ratios of the total load mass mL as well as the total load inertia IL to the beam density per unit

length ρb. The thick lines enclose the frequency regions of the second (black) and third (gray)

link of TUDOR when mounting mass plates with mL between 0 and 0.6 kg and IL from 0 to

3.3 · 10−4 kgm2 at the end effector. Note, that for the second link the third joint-link-module

contributes to the load mass mL and inertia IL.

The figures 4.3 (a) and (b) show the theoretical variation of the first two natural

frequencies ω1 and ω2. It is visible that the frequencies vary drastically if any of the

ratios is below or close to 1. If the load mass or inertia is large, compared to the beam

mass, only slight variations in the frequencies can be observed. The latter situation

converges to the case where the load may be considered to be connected to a massless

spring.

With TUDOR the applied test masses mL at the end effector range from 0 to 600 g.

The associated rotary inertia are between 0 to 3.3 · 10−4 kgm2. The framed regions in

both figures indicate the corresponding frequencies obtained from the characteristic

equation. The black frames belong to the second link which also has the third joint

and link as load. The first frequency 2ω1 ranges from 2.2 Hz to 4.5 Hz. The second

frequency 2ω2 theoretically ranges between 8.6 Hz and 21.8 Hz.

The gray frame belongs to the third link which carries just the test payload. The

first frequency 3ω1 ranges from 4.5 Hz to 20.5 Hz. The second frequency 3ω2 ranges

between 17.2 Hz and 128.2 Hz.

A second question arising from the previous section concerns the boundary condi-

tion at the joint hub. So far perfectly rigid clamping has been assumed. For an elastic

link actuated by a revolute joint this assumption is intuitive regarding the beam de-

flection. However, the situation is different regarding the bending angle. In practice,

at least a moderate compliance in the joints is likely to be observed due to harmonic

gears, long joint shafts, flanges or transmission belts. Reaction torques from the link

oscillations feed back to the joint. The joint controller may have a strong but finite

disturbance rejection capability. Thus, the joint control also introduces certain com-

pliance.

The figure 4.4 depicts the natural frequencies for a variation in the rotary clamping
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Figure 4.4.: First (a) and second (b) natural frequency of a beam with varying clamping stiff-

ness.

stiffness Kr in the characteristic equation (4.4.5). The clamping stiffness is normalized

by the beam stiffness EIz. The underlying scenario is the second link of TUDOR

carrying the third joint and third link as well as a test payload of mL = 0.3 kg and

IL = 1.6 · 10−4 kgm2.

It is visible that the frequencies drop by about 3 Hz in the range of 10−2 1
rad m <

Kr/EIz < 102 1
rad m . This is a change of 99 % for the first and 26 % for the second

frequency. The variation saturates beyond this range.

In view of the boundary conditions a conclusion is that rather stiff elastic links in-

terfere with moderately elastic joints. Furthermore the joint controller can be expected

to have an influence on the actually observed values of the natural frequencies.

4.6. Mode shapes under varying load mass and inertia

The load dependent variation of the natural frequencies is strongly connected with a

change in the normalized mode shapes. Consider the second link of TUDOR carrying

the third joint and third link as well as end effector test masses mL in the range

of 0 to 600 g as load. The clamping is assumed to be perfectly rigid, so that the

characteristic equation (4.4.6) holds. For each test mass it is convenient to normalize

the mode shapes according to equation (B.3.20). The resulting assumed mode shapes

are depicted in figure 4.5.

With increasing load the maximum absolute values of the mode shape functions

grow. This agrees with growing end effector oscillation amplitudes observed in ex-

periments with TUDOR. The difference between subsequent mode shapes shrinks for

larger payloads. This is in accordance with figure 4.3, where the frequency variation

flattens for higher ratios mL/ρb and IL/ρb.

The interpretation of the graphs in the context of elastic link robots is that the

boundary conditions must be well known in order to infer the pose of any point along

the links using a finite approximation of equation (4.4.8). In fact, the computation of

the kinematics already involves knowledge about the arm dynamics.

40



4.7. Frequency measurements
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Figure 4.5.: First (a) and second (b) normalized modeshape for the second link of TUDOR,

which carries the third joint, the third link as well as varying end effector masses as load.

4.7. Frequency measurements

In order to verify the theoretical relations between the load and the natural frequencies

experimentally, a few provisions must be made. The gearboxes of TUDOR’s joints

show a backlash. The joint controllers would display an additional compliance. To

minimize such effects the second link is detached from the second joint and directly

clamped to the robot base. The third joint is mounted to the end of the second link.

To minimize the effect of backlash and to disburden the joint brakes in the case of

deactivated joint controllers, the flange of the third link is rigged with an additional

fixture.

Figure 4.6 (a) shows strain measurement time series. The strain measurement has

been acquired simultaneously on both elastic links of TUDOR during a hammer ex-

citation at the end effector. The strain amplitude on the second link is significantly

larger than on the third link. Both oscillations are slightly damped. The oscillations

last more than a minute. In both measurements the higher order dynamics decay

within one second and the long-lasting predominant lower frequency oscillation is

clearly in phase. The evaluation of the phase information obtained from a Discrete

Fourier Transform (DFT) prove that this is the case up to a frequency range of 20 Hz.

The normalized amplitude spectra depicted in figure 4.6 (b) are computed by a DFT

on the whole time series presented in figure 4.6 (a). It must be noted that all visible

frequency peaks in the measurements of one link are individually present in the spec-

tra obtained on the other link. The peaks at 2.0 Hz and 9.9 Hz are shifted about 1 Hz

leftwards from the theoretical values of the second link with corresponding load. Sim-

ilarly the rather small peak at 6.3 Hz is one 1 Hz larger compared to theoretical first

natural frequency of the third link. The deviations between the actually measured

frequencies and the theoretical ones are presumed to originate from the still imper-

fect clamping, inaccurate knowledge about the rotary inertias, neglected masses such

as the supply cables for the third joint and the sensors. This is plausible against the

background that in this thesis all such influences have been mathematically shown to

reduce the natural frequencies as observed (see fig. 4.3).

From additional measurements it can be summarized that two frequencies are al-
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4. Elastic Link Dynamics Analysis
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Figure 4.6.: Link surface strain time series (a) measured close to the hub on the second (black)

and third (gray) link after a hammer excitation of TUDOR at the end effector. The corres-

ponding spectra are shown in (b). The payload mass is mL = 300 g. The payload inertia is

IL = 1.6 · 10−4 kgm2

ways predominant in the spectra. Their contributions to the oscillation signal power

are orders of magnitude larger than the contribution of the other frequencies. From

the measurements and the theoretical investigations in section 4.6 this work focuses

on a frequency range up to a maximum of 30 Hz with a special emphasis on the two

dominant frequencies further denoted by ω1 and ω2.

Figure 4.7 shows the average, minima and maxima of the two frequencies ω1 and ω2

determined from ten repetitions of a hammer excitation experiment for each payload

with mL between 0 and 0.6 kg as well as the inertia IL between 0 and 3.3 · 10−4 kgm2.

Again, it is visible that the two dominant frequencies are equivalently measur-

able on both elastic links. Even though there is an offset between the actually meas-

ured and the theoretical frequency values, the strong inversely proportional relation

between the load and the frequency as expected from figure 4.3 as well as the fre-

quency range are experimentally validated.

4.8. Impact of backlash under gravity

The provisions made in the previous section are intended to validate the theoretical

relations derived before. However, during operation of TUDOR the second link is

attached to the second joint while the extra fixture to the third joint flange is removed,

so that gear backlash is in effect. The joint controllers designed in section 3.2 are

active. In this work the interplay between the backlash and the link orientation with

respect to gravity has been observed to introduce a significant variance to the natural

frequencies as well as to the intrinsic oscillation damping.

Malzahn et al. (2011a) carry out an initial investigation to this interplay for a single

elastic link of TUDOR with payload. Malzahn et al. (2011b) extent the results to both

links of TUDOR. The main result is depicted in figure 4.8.

The whole operation range of the second and third joint angles θ2 and θ3 has been
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Figure 4.7.: First (a) and second (b) dominant frequencies determined for varying payloads

from strain measurements on the second (solid, gray) and third link (solid, black). The averages,

minima and maxima are obtained from ten hammer excitation experiments per payload. Ad-

ditionally the theoretical values for the first two natural frequencies of the second link (dashed,

black) and the first natural frequeny of the third link (dashed, gray) are shown.

sampled in steps of 10◦. The arm carries a test payload of mL = 0.3 kg and IL =
1.6 · 10−4 kgm2. Figure 4.8 (a) shows the map of the first dominant frequency ω1 for

all sampling points. The frequency ranges between 1.56 Hz and 2.74 Hz.

Figure 4.8 (b) contains a map of the logarithmic decrement ζ1 associated with the

first dominant frequency ω1 for all sampling points. The logarithmic decrement is

estimated using the procedure described in the appendix B.3. The absolute decrement

values range between 0.03 and 1.24.

Both maps describe merely smooth variations of the quantities. Nevertheless, both

diagrams show two equivalent "‘canyons"’ where the frequency as well as the logar-

ithmic decrement drop abruptly. These "‘canyons"’ are found along θ2 + θ3 = 90◦ and

θ2 = 90◦. In those particular joint configurations at least one link is oriented vertically

and moving freely within the backlash limits.

While the link moves within the backlash limits the translational degree of freedom

at this end is still fixed. Simultaneously the rotational degree can be considered to

be free, similar to a simply supported beam. Once the link hits a backlash limit

the boundary conditions instantly alter. For more horizontal link orientations gravity

pulls the link to one end of the backlash limit. In such a case the imperfect clamping is

still present with less impact. Frequent transitions between the boundary conditions

may occur after an excitation and the underlying physics is very challenging to model.

In fact, presumably because of the energy dissipation during percussions with the

limits, the backlash causes an increased intrinsic structural damping.

Two approaches to deal with the situation are conceivable. The first one would be

to use more expensive gears without backlash, such as harmonic gears. The second

approach is to design a robust controller which dampens the oscillations in spite of

the backlash and the varying plant parameters. This work aims at the latter solution.
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Figure 4.8.: Maps of the first dominant frequency ω1 (a) as well as the logarithmic decrement

ζ1 (b) in dependance on the joint angles θ2 and θ3 acquired from strain measurements on the

second link with an end effector payload of mL = 0.3 kg and IL = 1.6 · 10−4 kgm2.

4.9. Conclusions for elastic link robots

As one major contribution of this work, this chapter summarizes a theoretical analysis

of a broad range of practically relevant impact factors on the oscillatory dynamics of

multi-elastic-link robots in terms of eigenfrequencies and mode shape functions. All

theoretical investigations are supported by experiments. The impact factors include

payload changes, varying operating points throughout the whole robot workspace as

well as uncertain knowledge about the required boundary conditions for each link.

Boundary value problems for beams admit exact analytical solutions for a limited

number of examples only. Mostly the examples are restricted to very basic boundary

conditions as well as homogenous and uniform beams, such that stiffness and mass

properties are constant along the beam length. With more complicated geometries

and boundary conditions approximate methods such as the Rayleigh Ritz approach,

Galerkin’s method or numerical finite element techniques have to be applied (Dukkip-

ati and Srinivas 2005; Meirovitch 2001). The exact as well as most approximate solu-

tions to the boundary value problem usually result in a transcendental characteristic

equation. This equation must be solved numerically, which leads to an infinite num-

ber of natural frequencies along with their mode shapes. The actual spatio-temporal

deflection function is thus expressed as the infinite sum of the individual modes. In

practice, only a limited number of so called assumed modes can be considered. The

mode shapes can only be determined up to a scale. A proper orthogonalization, nor-

malization and scaling has to be found to relate the assumed modes to the true beam

deflection. A variation in the boundary conditions requires the frequency computa-

tion and the entire mode shape determination to be redone.

At this point it is worth discussing the implications associated with these properties

of the boundary value problem for the practical control of general multi-elastic-link

robots. In order to precisely compute the dynamic pose of a point along the structure

based on a finite number of assumed modes, a boundary value problem of type (4.3.4)

must be solved for each beam. The boundary conditions are generally governed by

the mass, geometry and relative configuration of the subsequent links. Note that the
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4.9. Conclusions for elastic link robots

inertia of all subsequent bodies have to be expressed with respect to the tip bending

axis using the parallel axis theorem. As also pointed out by Luca and Siciliano (1991),

the load inertia IL in general varies with the robot joint configuration. This way the

mode shape functions become a function of time, which contradicts equation (4.3.1).

Based on the knowledge of the joint values and under the assumption of compar-

ably slow changes or piecewise constant boundary conditions, an idea could be to

recompute the natural frequencies online. This process is computationally involved

and difficult to implement under the hard real-time constraints required for control.

Alternatively a direct mapping from the joint configuration to the natural frequen-

cies and mode shapes in the sense of figure 4.8 would be conceivable. However, this

approach is limited to inspection robots. If the elastic link robot is intended to per-

form manipulation tasks, such as Pick-and-Place, the varying and possibly a priori

unknown payload mass and payload inertia may significantly influence the boundary

conditions on each link. During physical contact with the environment or physical

human robot interaction the impedance of the contact point may impose arbitrary

unknown boundary conditions to the robot.

The uncertainties in the boundary conditions lead to poorly calibrated orthogonal-

ity relations. This renders the model based decoupling of modes infeasible. A con-

troller based on a finite order model at runtime is likely to excite the wrong modeled

or even unmodeled oscillations modes. Similarly, observers suffer from the poor de-

coupling of the individual modes and most probably provide insufficient estimates.

This effect is called modal spillover and is illustrated in more detail for example by

Vepa (2010, p. 338).

Under the painted circumstances and constraints it seems questionable whether it

is practically feasible to realize a stabilizing centralized controller for a multi-elastic-

link robot that dampens structural oscillations and precisely positions the end effector

based on a single holistic plant model including payloads and contact boundary con-

ditions.

Against this background it seems more convenient to follow a divide-and-conquer

strategy. First a decentralized controller modifies the system dynamics of each indi-

vidual link to virtually increase the apparent link damping in a wide frequency range.

Such controllers are proposed in chapters 5 to 7. They are set free from the actual end

effector positioning task and attenuate oscillations originating from the joint motions

as well as external excitations and a variety of boundary conditions. On top of that an

outer end effector control loop such as the ones presented in chapter 9, minimizes the

pose error in the presence of joint configuration and load dependent static deflections

due to gravity. Both controller stages ensure nominal plant dynamics. Deviations

from this nominal dynamics are exploited in order to investigate the potentials of

elastic link robots for planned as well as accidental physical contacts between the

robot and the environment as proposed in chapter 11.
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5
Proportional Oscillation Feedback

This is the first out of four subsequent chapters devoted to oscillation damping con-

trol. The oscillation damping control concept proposed here is based on a straightfor-

ward extension of the modal analysis presented in the previous chapter. The physical

relations are converted into a truncated series of transfer functions superposed by a

nonlinear static component.

5.1. Link transfer function model

Motivated by the workspace sampling results illustrated in figure 4.8 the parameters

of the truncated transfer function model vary but are considered to be quasi static

for a given joint configuration θ0. The model structure together with the parameter

range paves the way for the synthesis of the decentralized linear oscillation feedback

controller in section 5.2. Malzahn et al. (2011b) provide an initial derivation of the

model structure. Nevertheless, a more elaborate derivation is given in the following.

Modal parameters

From the results in section 4.7 it is known that the oscillations of each individual

link can be perceived on the other links in the chain under preservation of phase

alignment. Therefore the whole arm structure is interpreted as a chain of joint-link-

modules. Each joint-link-module virtually possesses all perceivable oscillation modes

as if they were actually obtained as solutions of the modal analysis for the particular

link.

The module consists of a series connection of the joint transfer function (3.1.7) and

a nonlinear transfer function capturing the oscillatory dynamics for the connected vir-

tual elastic link. Due to the high gear ratios a feedback from the elastic link dynamics

to the joint model can be assumed to be inconsequentially small. The joint-link-

modules are therefore treated independently.

The nonlinear elastic link transfer function model has the joint angle θ as input and

the strain measured close to the hub as output. Consider the beam partial differential

equation (4.2.8) augmented by the effects of viscous and mass proportional damping

effects summarized in the damping coefficient kd:

EIz
∂4 y(x, t)

∂x4
+ kd

∂

∂t
y(x, t) + ρb

∂2 y(x, t)

∂t2
= fext(x, t). (5.1.1)

46



5.1. Link transfer function model

For simplicity of derivation but without loss of generality the elastic link is assumed

to be rigidly clamped at the hub with quasi static load mass and load inertia as

discussed in section 4.4.

Equation (5.1.1) is multiplied by a particular shape function Φu and integrated over

the link length:

∫ L

0
Φu(x) EIz

∂4 y(x, t)

∂x4
dx +

∫ L

0
Φu(x) kd

∂

∂t
y(x, t)dx + . . .

+
∫ L

0
Φu(x) ρb

∂2 y(x, t)

∂t2
dx =

∫ L

0
Φu(x) fext(x, t)dx. (5.1.2)

Using the series expansion derived in the appendix B.3 the solution y(x, t) has the

form:

y(x, t) =
∞

∑
u=1

Φu(x) νu(t). (5.1.3)

Exploiting the orthonormality of modes enables the definition of so called modal

parameters from the individual summands of equation (5.1.2). The first summand

yields the modal stiffness cu:

cu =
∫ L

0
Φu(x) EIz

∂4 Φu(x)

∂x4
dx, (5.1.4)

the second summand is the modal damping du:

du =
∫ L

0
Φu(x) kd Φu(x)dx, (5.1.5)

the third summand is the modal mass mu:

mu =
∫ L

0
Φu(x) ρbΦu(x)dx (5.1.6)

and the modal force fu computes to:

fu =
∫ L

0
Φu(x) fext(x, t)dx. (5.1.7)

With the modal parameters the partial differential equation (5.1.1) transforms to a set

of independent modal ordinary differential equations:

mu
d2νu(t)

dt2
+ du

dνu(t)

dt
+ cu νu(t) = fu(t). (5.1.8)

In analogy to equation (5.1.3) the strain measured at a sensor location xs can be

written as:

ε(xs, t) = yb

∞

∑
u=1

d2

dx2
Φu(x)|xs

νu(t), (5.1.9)

with

εu(xs, t) = yb
d2

dx2
Φu(x)|xs

νu(t), (5.1.10)
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Figure 5.1.: Qualitative illustration of the bending moment distribution (thick black, top), shear-

ing force distribution (thick black, center) and shearing force density distribution (thick black,

bottom) together with the individual contributions of the mass density (dashed gray), load force

(dash-dotted gray) as well as the constant bending moment (dashed black).

so that the modal amplitude νu computes to:

νu(t) =
1

yb
d2

dx2 Φu(x)|xs

εu(xs, t). (5.1.11)

This way the modal differential equations can be expressed in terms of the modal

strain at the sensor location:

mu
d2εu(xs, t)

dt2
+ du

dεu(xs, t)

dt
+ cu εu(xs, t) = yb

d2

dx2
Φu(x)|xs

fu(t). (5.1.12)

Force density distribution

Up to this point only the homogenous case fext = 0 has been considered. The external

force density function fext(x, t) includes contributions of the static configuration de-

pendent load forces and moments due to gravity as well as the moments imposed by

the joints or contacts with the environment.

The external moment distribution τext(x) for 0 ≤ x ≤ L is a result of external

influences that have not been incorporated in the boundary conditions depicted in
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5.1. Link transfer function model

figure 4.2. By inspection of the figure the distribution can be written as the balance

about the joint axis:

τext(x) = (τM + τL (θ0)) H (x) + . . .

+ g w(θ0)

(

ρb
x2

2
− mL (x − L) H(x − L) + x mL H (x)

)

. (5.1.13)

The resulting distribution is shown in the top of figure 5.1. The weight function w(θ0)
scales the gravitational acceleration g according to the link unit x-direction ex with

respect to the gravitational acceleration vector ag. The gravitational load moment

τL(θ0) scales analogously with the joint configuration.

The function H(x) is the Heaviside function. It approximates the domain restric-

tions and enables the application of distribution theory to compute the derivatives of

τext. The first derivative yields the force distribution Fext(x) as depicted in the center

of figure 5.1:

Fext(x) = (τM + τL (θ0)) δ (x) + g w(θ0) ( ρb x + mL (H (x)− H (x − L))) , (5.1.14)

where δ(x − xg) denotes the Dirac distribution. The second derivative yields the force

density distribution fext(x) shown in the bottom of figure 5.1:

fext(x) = (τM + τL (θ0))
dδ (x)

dx
+ gw(θ0) (ρb + mL (δ (x)− δ (x − L))) . (5.1.15)

The mechanical torque τM provided by the joint can be replaced by:

τM(t) = IM θ̈(t). (5.1.16)

Transfer function

Equation (5.1.14) can be split into a static and a dynamic part. At a sensor location

xs the first part including the load mass mL, the load moment τL as well as the mass

per unit length ρb constitutes the static part for a given joint configuration θ0. The

dynamic part depends on the joint acceleration θ̈(t).
With this insight the combination of the modal strain differential equation (5.1.12)

and the modal force equation (5.1.7) yields the modal transfer function after Laplace

transformation for vanishing initial conditions:

εu(xs, s) =
kdyn,u s2

s2 + 2Duωu s + ω2
u

θ(s) +
kstat,u(θ0)

s2 + 2Duωu s + ω2
u

, (5.1.17)

where the dynamic modal gain kdyn,u is:

kdyn,u =
yb

mu

d2

dx2
Φu(x)|xs

IM

∫ L

0
Φu(x) δ(x)dx (5.1.18)

and the static modal gain kstat,u computes to:

kstat,u(θ0) =
yb

mu

d2

dx2
Φu(x)|xs

∫ L

0
Φu(x)

(

τL (θ0)
dδ (x)

dx
+ . . .

+ gw(θ0)

(

ρb + mL

(

δ (x)− δ (x − L)
)

)

)

dx. (5.1.19)
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5. Proportional Oscillation Feedback

The attenuation factor Du is related to the logarithmic decrement ζu as well as the

modal damping du and mass mu properties:

Duωu =
1

2

du

mu
= −ζu. (5.1.20)

From the equations (5.1.4) and (5.1.6) along with equation (4.3.2) it can be verified that

the frequency ωu replaces the modal mass and stiffness according to:

ωu =

√

cu

mu
. (5.1.21)

Finally, with equation (5.1.9) the total beam transfer function can be written in the

form:

ε(xs, s) = θ(s) s2
nω

∑
u=1

kdyn,u

s2 + 2Duωu s + ω2
u
+

nω

∑
u=1

kstat,u(θ0)

s2 + 2Duωu s + ω2
u

. (5.1.22)

The dimension of this transfer function is theoretically infinite. Practically only a finite

number nω of oscillation modes can be taken into account for the controller synthesis

and analysis.

Provided that the configuration dependent static strains εstat can be removed by

appropriate filtering, the remaining dynamic strain transfer function GB(s) is charac-

terized by:

GB(xs, s) =
εdyn(xs, s)

θ(s)
= s2

nω

∑
u=1

kdyn,u

s2 + 2Duωu s + ω2
u

. (5.1.23)

This transfer function model serves as a basis for the synthesis of the controller

described in the next section.

5.2. Controller synthesis

The assumption of a perfect static strain cancellation renders the remaining plant

dynamics entirely linear. Thus, the Evans root locus may be used to design a pro-

portional strain feedback for the series connection of the cascaded joint controller

and remaining beam transfer function (5.1.23). Motivated by the observations in sec-

tion 4.7 the beam model GB(s) in the root locus analysis combines the predominant

eigenfrequencies of all links together. This way the controller is designed to also damp

the oscillations due to inter-link couplings.

The proportional strain feedback discussed here is strongly related to the work

reported by Luo (1993); Luo and Guo (1995). The authors introduce the concept of

so called A-dependent operators to proof the stability of a proportional as well as

integral strain feedback for a single link in the horizontal plane. In their experiments

the joint angle is left uncontrolled in the first place. In a second step it is controlled by

a single loop PID controller with the actuator input voltage as set value. In contrast to

that, this work operates with a multi-link arm under gravity and chooses the extended

cascaded joint controller from section 3.2 complemented by the jerk minimizing online

trajectory planner provided in appendix B.6. The set value is the amplifier voltage

proportional to the actuator electrical current.
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Figure 5.2.: Evans root locus for the proportional oscillation feedback at the position controller

summation point (a) with close view (b), at the summation point of the velocity controller (c)

with close view (d) as well as the power amplifier input (e) with close view (f). The poles and

zeros on the imaginary axis originate from the beam transfer function GB(xs, s).
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5. Proportional Oscillation Feedback

In this chapter, the proportional strain feedback is considered. The integral feedback

is discussed within the scope of chapter 6.

The cascaded structure enables the investigation of the three different feedback

insertion points indicated in figure 3.3: at the position controller input, velocity con-

troller input and at the amplifier voltage input. Figure 5.2 exemplifies the root locus

computed from each of the insertion points to the strain output. The left column

depicts overviews of the whole root locus, while the right column provides the cor-

responding close-ups to the complex pole and zero pairs on the imaginary axis. They

originate from the flexible beam transfer function (5.1.23).

For the feedback insertion point at the position controller input (see figure 5.2 (b)),

the flexible beam poles reside in the stable left-half plane. However, they show poor

damping while approaching the origin of the complex s-plane.

For the feedback insertion point at the velocity controller input (see figure 5.2 (d))

the beam poles move to the left and one pole pair finally joins the real axis. This way,

with increasing feedback gain, we observe a slightly decreasing dominant frequency

and a significantly improving damping.

The insertion point at the voltage input (see figure 5.2 (f)) shows a similar behaviour

compared to the insertion point at the velocity input. However, the lowest beam

eigenfrequency rapidly approaches the origin of the complex s-plane. The path of

this pole pair leads through regions of poor damping.

In summary the insertion point at the velocity controller is most advantageous in

terms of achievable shift of the elastic link poles towards regions of higher damping

in the complex s-plane. The control law is:

θ̇ε = −kε ε̃(xs, t). (5.2.1)

In all three overview plots (left column of figure 5.2) it is visible that a complex

pole pair tends to the right half of the complex s-plane with increasing feedback gain.

This pole pair originates from the PD position controller. The strain feedback gain

is therefore upper bounded to preserve closed loop stability. Nevertheless, the pole

pair possesses a higher eigenfrequency and experiences additional damping due to

the low-pass characteristics of the remaining plant poles. Moreover, it shapes the root

locus of the considered elastic link pole pairs and keeps them in the left half plane.

The critical drawback behind the presented controller synthesis arises from the re-

striction to a finite number of oscillatory modes. As already mentioned in section 1.2,

there exists no technique that guarantees stability with respect to the neglected eigen-

frequencies.

The closed loop dynamics including the elastic link poles could be more generally

influenced with full state feedback control. However, a practically important merit of

the control concept is the simplicity of tuning.

Changes in the plant parameters as observed in figure 4.8 marginally distort the

root locus but the general root locus geometry does not alter for a broad range of

parameter variations. For a more tangible explanation of this fact, consider the already

small natural damping to be negligible. In this case, the complex poles and zeros

belonging to the beam transfer function are exactly located on the imaginary axis.

A variation to the natural frequencies due to payload changes, physical contacts or

altered joint configurations results in a vertical scaling of the root locus only. Increased
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5.3. Controller evaluation
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Figure 5.3.: Time series the joint angle (a), angular velocity (b), link strain (c) and motor current

(d) measured on the second joint link module during twenty repetitions (solid light gray) of

a point-to-point motion from θ = [0◦, 0◦, 0◦]T to θ = [0◦, 45◦,−45◦]T. The first repetition

is highlighted (solid black). For comparison the graphs show the same experiment without

damping (dashed gray).

oscillation amplitudes due to additional payloads act as additional gain and vary the

closed loop poles along the root locus branches. Therefore, stability with respect to

the considered modes is preserved and robustness to plant variations is accomplished.

5.3. Controller evaluation

Starting with small values, the single vibration feedback gain for each joint-link-

module can be tuned even manually without any explicit beam dynamics model being

available. For the experiments provided in chapter 8 the gains are tuned through auto-

mated and constrained hardware in the loop optimization using sequential quadratic

programming. The gains are constrained to have an upper bound. This ensures closed

loop stability. The cost function to minimize is the integral time weighted absolute

strain surface criterion (see B.4).

Figure 5.3 exemplifies damping results obtained with the proportional strain feed-

back on TUDOR. The small difference between the graphs of each repetition evid-

ences the repeatability of the experiments. The damping action performed by the
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5. Proportional Oscillation Feedback

actuator can be seen in the overshoot of the angular response, which is absent in the

undamped case. Similarly, Figure 5.3 (b) illustrates the damping action as a brief

motion reversal right before the deflections vanish. The accomplished rapid damping

is clearly visible in the strain measurements 5.3 (c). Malzahn and Bertram (2013, at

0:36 min) provide an online available video comprising oscillation damping results

with the proportional strain feedback at the velocity cascade level.
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6
Lumped Parameter Wave Echo Control

This is the second out of four subsequent chapters devoted to oscillation damping

control. The transfer function model in chapter 5 is based on a truncated series of

transfer functions. As outlined in section 1.2 lumped parameter models constitute

a widely applied alternative. O’Connor (2007b) investigates the wave-like propaga-

tion of motions and forces in serial open chains consisting of an arbitrary number

of lumped masses interconnected through linear springs. Since it circumvents issues

with neglected higher order modes, the concept is promising and relevant for the

scope of this thesis. Up to now, it has been mainly studied in simulations or with

single link setups under exclusion of gravitational effects (O’Connor et al. 2009). As

one contribution, this work applies it to a multi-link experimental setup with gravity.

In the following, the theory is briefly revisited and transferred to the equivalent de-

scription with rotary springs, which is more illustrative in the context of elastic link

robots. The theory leads to the lumped parameter wave echo controller originally

proposed by O’Connor. As a second contribution the chapter performs a structural

reduction of the control scheme and reveals the close relation to the control approach

presented in the previous chapter.

6.1. Wave properties in a lumped mass model

A chain of mass elements connected by rotary springs is depicted in figure 6.1.

The relation between the bending angle θb, i at the i-th spring and the bending angle

θb, i+1 at the next spring in the chain is described by the transfer function Gl(s):

θb, i+1(s) = Gl(s) θb, i(s) (6.1.1)

motor

encoder

spring
element

mass
element

θb, 0
θb, 1 θb, 2 θb, 3

θb, nl

Figure 6.1.: Illustration of the lumped mass approximation of a single joint link module.
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6. Lumped Parameter Wave Echo Control

and consequently:

θb, i+nl
= G

nl
l θb, i, (6.1.2)

where nl is the integer number of lumped masses considered.

The equation of motion for a lumped spring mass system is characterized by the

lumped inertia Il and a spring stiffness kl:

Il θ̈b, i(t) = kl (θb, i−1(t)− 2 θb, i(t) + θb, i+1(t)), (6.1.3)

which after Laplace transformation and rearrangement yields the quadratic equation

in Gl(s):

G2
l (s)−

(

2 +
s2

ω2
l

)

Gl(s) + 1 = 0, (6.1.4)

where ωl =
√

kl
Il

. The quadratic equation has the two solutions +Gl(s) and −Gl(s):

+Gl(s) = 1 +
1

2
(s/ωl)

2 − (s/ωl)

√

1 + (s/2ωl)
2 , (6.1.5)

−Gl(s) = 1 +
1

2
(s/ωl)

2 + (s/ωl)

√

1 + (s/2ωl)
2 . (6.1.6)

Note, that the first solution (6.1.5) is causal, while the other one (6.1.6) shows an

acausal phase lead. A closer look reveals two symmetries between both solutions.

The first one is a spatial symmetry mathematically expressed by the inverse:

+Gl(s) =
−G−1

l (s), −Gl(s) =
+G−1

l (s) , (6.1.7)

meaning that the elastic dynamics are reciprocal. The second symmetry is temporal:

+Gl(−s) = −Gl(s),
−Gl(−s) = +Gl(s). (6.1.8)

The combination of both symmetries leads to:

+Gl(s) =
+G−1

l (−s), −Gl(s) =
−G−1

l (−s) , (6.1.9)

which gives the physical interpretation of the acausality in the transfer functions from

the perspective of propagating motion waves. Looking from the left towards the right

end of the beam a motion propagating along the structure in the viewing direction

at finite speed appears causal. An observed acausal bending motion propagates in

the opposite direction and must have been initiated at a distal location previously in

time. Consequently the bending angle θb, i of an i-th spring-beam-element consists of

two components:

θb, i(s) =
+Gl(s) C1, i(s) +

−Gl(s) C2, i(s) , (6.1.10)

with the functions C1, i(s) and C2, i(s) to be further specified, while the motion wave

caused by a source on the left side of the link and propagating rightwards within the

structure is given as +θ̌b, i(s) =
+Gl(s)C1, i(s). Vice versa −θ̌b, i(s) =

−Gl(s)C2, i(s) cor-

responds to the motion wave propagating leftwards within the structure, originating

from the right side of the link, so that:

θb, i(s) =
+θ̌b, i(s) +

−θ̌b, i(s) . (6.1.11)
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6.2. Wave absorption

This superposition relation analogously exists for the velocity as well as bending mo-

ment propagation in the lumped structure:

θ̇b, i =
+ ˇ̇θb, i +

− ˇ̇θb, i , (6.1.12)

τb, i =
+τ̌b, i +

−τ̌b, i . (6.1.13)

Exploiting the reciprocity relation (6.1.7) enables the simplified notation +Gl(s) =
−G−1

l (s) = Gl(s), where only the causal transfer function is used in different direc-

tions of propagation. This defines C1, i(s) and C2, i(s) in (6.1.10) as:

C1, i(s) =
+θ̌b, i−1(s) and C2, i(s) =

−θ̌b, i+1(s) , (6.1.14)

which yields:

θb, i(s) = Gl(s)
+θ̌b, i−1(s) + Gl(s)

−θ̌b, i+1(s) , (6.1.15)

or equivalently:

θb, i(s) = Gl(s)
+θ̌b, i−1(s) + G−1

l (s) −θ̌b, i−1(s) . (6.1.16)

O’Connor (2007b) calls Gl(s) the wave transfer function (WTF).

6.2. Wave absorption

The wave echo control concept described in the following goes back to a series of

papers by O’Connor (O’Connor 2007a,b; O’Connor and Donogh 1998; O’Connor et

al. 2009). Even though the synthesis is based on the discrete representation of the

elastic link provided in section 6.1, the controller derived with the gained insights

finally waives the need for an online computation of a truncated or discretized plant

dynamics model. It focuses on measurements at the interface between the actuation

mechanism and the elastic structure.

Given a point-to-point motion task with goal θw, the idea behind the wave echo

controller is to launch a motion wave of +θ̌b, 0 and then to absorb the echoed wave

component −θ̌b, 0 to damp the induced oscillations. The question now is, what wave

amplitude +θ̌b, 0 the actuator should launch in order to precisely arrive at the de-

sired goal with all oscillations being completely attenuated. To answer this question,

O’Connor (2007a) assumes free boundary conditions at the link end opposite to the

actuator. At the "free end" he provides an intuition for a total reflection of the incom-

ing wave component +θ̌nl
by introduction of virtual masses beyond the n-th mass,

which mirror the physical plant. The wave echo −θ̌nl
is equal to the incoming wave,

but propagating in the opposite direction. Once the wave echo arrives at the actuator,

the unit gain of the transfer function Gl(s) leads to +θ̌b,0 = −θ̌b,0 at steady state. The

actuator should thus launch the wave component +θ̌b, 0 = 1
2 θw. This way the actuator

is commanded to move half the desired distance. The wave echo −θ̌b,0 coming back to

the actuator is computed by means of equation (6.3.5) and added to the commanded

value. Ideal joint position controller dynamics assumed, the actuator absorbs the wave

echo and arrives at the goal without residual oscillations.
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6. Lumped Parameter Wave Echo Control

6.3. Wave component separation

Equally to the continuous wave variables, the left- and rightwards propagating wave

components in (6.1.11) to (6.1.13) cannot be measured directly. To implement the wave

echo controller it is required to extract them from physical measurements.

Consider a bending wave +θ̌b, 0(s) being launched by the actuator (i = 0) according

to:
+θ̌b, 0(s) = θb, 0(s)− −θ̌b, 0(s). (6.3.1)

The motion of the neighboring mass element with i = 1 computes to:

θb, 1 = +θ̌b, 1(s) +
−θ̌b, 1(s) = Gl(s)

+θ̌b, 0(s) + G−1
l (s)−θ̌b, 0(s), (6.3.2)

which is rearranged to obtain the echo −θ̌b, 0(s) to the launched wave +θ̌b, 0(s):

−θ̌b, 0(s) = Gl(s)
(

θb, 1 − Gl(s)
+θ̌b, 0(s)

)

. (6.3.3)

The result eliminates −θ̌b, 0(s) in equation (6.3.1):

+θ̌b, 0(s) =
θb, 0(s)− Gl(s) θb, 1

1 − G2
l (s)

, (6.3.4)

which is the separated rightwards propagating wave component expressed in the

physically measurable variables θb, 0 and θb, 1 at the actuator-link-interface. The echoed

wave motion −θ̌b, 0 is obtained analogously by plugging result (6.3.4) back into equa-

tion (6.3.3):

−θ̌b, 0(s) = Gl
θb, 1(s)− Gl(s) θb, 0

1 − G2
l (s)

. (6.3.5)

The required physical measurements are the motor angle θb,0 as well as the angle of

a first spring element θb,1. It is one measurement on each side of the interface between

the actuator and the elastic structure. With both measurements the launched wave

component +θ̌b, 0 as well as the echoed wave component −θ̌b, 0 can be reconstructed at

any time instant using relations (6.3.4) and (6.3.5).

However, the exact WTFs obtained as the solutions of 6.1.4 are hard to implement

for real-time control. It is not rational and has fractional order. O’Connor (2007b)

discusses different approximations such as "a combination of Bessel functions" or the

"convolution with a suitably truncated impulse response" but finally applies the linear

underdamped second order transfer function:

Gl(s) ≈
ω2

l

s2 + ωl s + ω2
l

. (6.3.6)

6.4. Lumped wave impedance

Using the approximation (6.3.6) to the WTF, O’Connor et al. (2009) observe a steady

state error arising during fast point-to-point motions in experimental results with

a single link setup under exclusion of gravitational influence. The authors discuss
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6.5. Controller reduction

different alternatives to alleviate the steady state error for this particular scenario.

They arrive at the reconstruction of the returning wave component at the actuator

from joint angle and link bending torque measurements to be the best solution. Again,

this is one physical measurement on each side of the interface between the actuator

and the elastic structure. They define a wave impedance Zw such that:

θ̇b, i =
τb, i

Zw
(6.4.1)

and

θ̇b, i =
+τ̌b, i

Zw
−

−τ̌b, i

Zw
. (6.4.2)

The negative sign in equation (6.4.2) can be understood from the convention that the

rightwards propagating angular bending velocity is counted positively, while the left-

wards propagating angular bending velocity is counted negatively. This also aggrees

with the propagating wave amplitudes in the continuous case, as seen from the matrix

elements in equation (7.1.5). With this definition it can be verified from (6.1.13) and

addition that:
+τ̌b, i =

1

2

(

τb, i + θ̇b, i Zw

)

(6.4.3)

and symmetrically

−τ̌b, i =
1

2

(

τb, i − θ̇b, i Zw

)

. (6.4.4)

Similarly equation (6.1.12) yields:

+ ˇ̇θb, i =
1

2

(

τb, i

Zw
+ θ̇b, i

)

, (6.4.5)

while:
− ˇ̇θb, i =

1

2

(

τb, i

Zw
− θ̇b, i

)

. (6.4.6)

The echoed angular wave component is then obtained from (6.4.6) after integration:

−θ̌b, 0(t) =
1

2

(

θb, 0(t)−
∫

τb, 1(t)

Zw
dt

)

. (6.4.7)

6.5. Controller reduction

For control, the bending moment τb, 1 is replaced by the mean liberated strain meas-

urements ε̃ close to the joint hub using equation (4.2.2), so that in the Laplace domain

the approximation of the echoed wave component used as feedback θε becomes:

θε(s) =
−θ̌b, 0(s) =

1

2

(

θ(s)− kε

s
ε(xs, s)

)

, (6.5.1)

where the gain kε computes to:

kε = − EIz

yb Zw
. (6.5.2)
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Figure 6.2.: Block scheme of the discrete wave echo control scheme (a) with reduction steps

(b) and (c).

The block scheme for the control law (6.5.1) is illustrated in figure 6.2 (a). With

the intermediate step illustrated in figure 6.2 (b) the control law may be simplified to

yield the block scheme sketched in figure 6.2 (c). The controller turns out to be an

integral strain feedback at the position cascade level:

θε(s) =
−θ̌b, 0(s) = −kε

s
ε(xs, s) , (6.5.3)

with the initial position controller gains halfed. The differentiation of control law

(6.5.3) with respect to time or the repetition of the reduction steps based on equa-

tion 6.4.6 equivalently yield:

θ̇ε(s) =
− ˇ̇θb, 0(s) = −kε ε(xs, s) . (6.5.4)

Strikingly, this equation is identical to (5.2.1). The main difference to the proportional

feedback covered in chapter 5 is the division of the joint motion controller gains by

two. Obviously, the tuning of the strain feedback kε depends on the gains determined

for the joint motion controller. This is intuitively plausible, since a lower gain motion

controller already complies to the echoed wave component, which is actually part of

the physical coupling treated as a disturbance in section 3.2.

A purely torque based wave echo controller can be realized on the basis of equa-

tion 6.4.4 and oscillation rate measurements obtained from a gyroscope. However,

experiments show the practical limitation in the case of TUDOR. Since the joints are

current controlled but not truly torque controlled, the joint friction deteriorates the

achievable damping and position accuracy.

O’Connor et al. (2009) selects the wave impedance Zw to be 2√
k m

. In the present

thesis, the complete gain kε is tuned through the same automated hardware in the

loop optimization procedure already explained in section 5.3.

Since the proportional strain feedback at the velocity cascade level is already eval-

uated in chapter 5, figure 6.3 depicts the results obtained from twenty repetitions of

a point-to-point maneuver using the integral control law 6.5.1 at the position cascade

level.
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Figure 6.3.: Time series the joint angle (a), angular velocity (b), link strain (c) and motor current

(d) measured on the second joint link module during twenty repetitions (solid light gray) of

a point-to-point motion from θ = [0◦, 0◦, 0◦]T to θ = [0◦, 45◦,−45◦]T and the integral control

law 6.5.1. The first repetition is highlighted (solid black). For comparison the graphs show the

same experiment without damping (dashed gray).

6.6. Controller evaluation

O’Connor et al. (2009) move away from the WTF approximation (6.3.6) in favor of

equation (6.5.3) to alleviate steady state positioning errors in the absence of gravity.

However, from the joint angle in figure 6.3 (a) it is apparent, that in the presence

of static deflections due to gravity the integration of the imperfectly mean liberated

strain reintroduces the steady state positioning errors. This also explains the differ-

ence in the joint currents for the damped and undamped case visible in figure 6.3 (d).

In section 5.3 the damping action of the proportional strain feedback has been ob-

served in the form of a motion reversal. In contrast, figure 6.3 (b) illustrates the

damping action for the integral strain feedback to consist of a second acceleration

phase, which reminds of feedforward input shapers discussed by Singer, Singhose

and Seering (1999). In spite of the steady state error growing with each repetition,

the light gray curves in figure 6.3 (c) evidence an ideally repeatable damping res-

ult comparable to the proportional strain feedback discussed in chapter 5. Malzahn,

Balachandran and Bertram (2013) provide an online available video of the damping

results.
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7
Spatially Continuous Wave Echo Control

This is the third out of four subsequent chapters devoted to oscillation damping con-

trol. In this work, the controllers derived in the chapters 5 and 6 have been shown

to be structurally equivalent. However, the derivations involve either a spatial dis-

cretization or a modal truncation. While the neglecting higher order dynamics can

theoretically endanger the closed loop stability as already discussed in section 1.2, the

lumped parameter view focuses on bending angles and torques. It neglects shear-

ing forces and transversal deflections. The theory of spatially continuous mechanical

waves provides an alternative way to incorporate all effects of the elastic link dy-

namics without truncation or discretization. The controller derived in the following

is based on the active modification of the boundary conditions at the actuator side

of the links. Parts of this chapter have been previously published by Malzahn and

Bertram (2014).

7.1. Continuous wave variables

The theory starts with a reinterpretation of the general exponential solution (4.3.5) to

the boundary value problem. Again, the whole arm is seen as a chain of independent

joint-link-modules. Similar to chapter 6, the oscillations at any point along a link are

considered to result from the superposition of mechanical wave components. How-

ever, the wave components consist of propagating components accompanied by near

fields. This way equation (4.3.5) is redefined as follows:

y (x) = +a + −a + +aN + −aN. (7.1.1)

The wave variables
+a = + â e−jkωx and −a = − â ejkωx (7.1.2)

denote the components of the forward and backward propagating waves. Analog-

ously
+aN = + âN e−kω x and −aN = − âN ekωx (7.1.3)

are termed the attenuating near field wave components emerging at both link ends.

The wave components are grouped into the vectors:

+a =
[

+a, +aN

]T
and −a =

[−a, −aN

]T
, (7.1.4)
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7.2. Reflection and transmission at junctions and boundaries

and the deflection y, bending angle θb, bending moment τb and shearing force Fy can

be expressed in terms of the wave variables in the compact matrix form:















y
1

kω

∂y
∂x

1
EIk2

ω
τb

1
EIk3

ω
Fy















=















1 1 1 1

−j −1 j 1

−1 1 −1 1

j −1 −j 1















[

+a

−a

]

. (7.1.5)

7.2. Reflection and transmission at junctions and boundaries

A travelling wave +a reaching a junction or a boundary splits into a reflected wave

component −a and a transmitted wave component +b. The reflected component −a

computes to:
−a = Ψ

+a. (7.2.1)

The generally complex valued matrix Ψ is called the reflection matrix. The transmitted

wave component +b computes to:

+b = Ω
+a. (7.2.2)

The generally complex valued matrix Ω is called the transmission matrix. Note, in the

case of the transversal oscillations of strings, the longitudinal oscillations of rods or the

torsional oscillation of shafts near field components do not exist. The reflection and

transmission would be governed just by a reflection and a transmission factor which

corresponds to the top left elements of the matrices Ψ and Ω. For beam bending the

matrix form implies that travelling bending waves arriving at boundaries or junctions

may evoke new travelling wave components. Moreover travelling wave components

can be converted into near field components and vice versa.

Consider a launched wave +a, which passes a constraining junction or support

at x = 0. At this point the wave splits into a reflected wave component −a and a

transmitted wave component +b. The deflection at this location is characterized by:

−y(x) = +a + −a + +aN + −aN, x ≤ 0, (7.2.3)

+y(x) = +b + +bN, x ≥ 0. (7.2.4)

Following Mace (1984), the imposed constraints are modeled as the rotational and

translational stiffnesses K̂r and K̂t.

Assuming continuity in the deflection variables:

+y|x=0 = −y|x=0 as well as ∂+y(x, t)/∂x|x=0 = ∂−y(x, t)/∂x|x=0 (7.2.5)

and exploiting the first two rows of equation (7.1.5) in terms of −a, +a and +b results

in:
[

1 1

−j −1

]

+a +

[

1 1

j 1

]

−a =

[

1 1

−j −1

]

+b. (7.2.6)

Next, the equilibrium of the bending torques and forces is assumed, so that:

K̂r θb|x=0 = +τb|x=0 − −τb|x=0 and K̂t y|x=0 = − fy|x=0 − + fy|x=0. (7.2.7)
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7. Spatially Continuous Wave Echo Control

Both expressions can be reformulated using the bottom two rows along with the top

right 2-by-2 submatrix of equation (7.1.5):

[−1 1

j −1

]

+a +

[−1 1

−j 1

]

−a =

[−1 1

j −1

]

+b +

[

jKr Kr

Kt Kt

]

+b, (7.2.8)

where the normalized stiffnesses

Kt =
K̂t

EI k3
ω

and Kr =
K̂r

EI kω
(7.2.9)

abbreviate the notation.

The reflection matrix (7.2.1) and the transmission matrix (7.2.2) allow for the elim-

ination of −a and +b. After rearrangement the reflection and transmission matrix are

expressed in terms of the boundary stiffnesses:

Ω = E + ηt Ct − ηr Cr, Ψ = ηt Ct + ηr Cr, (7.2.10)

with:

Ct =

[

j j

1 1

]

, Cr =

[−j −1

j 1

]

, ηt =
Kt

4 − (1 + j)Kt
, ηr =

Kr

4 + (1 − j)Kr
. (7.2.11)

The normalized stiffnesses Kr and Kt are the characteristic parameters of the reflec-

tion and transmission matrices at boundaries and junctions of beams. The controller

described in section 7.4 makes use of this relation.

7.3. Near field contribution

Without natural damping the absolute value of the travelling waves persists along the

whole beam. The near field wave components are special to bending waves and do not

exist in the case of the transversal oscillations of strings, the longitudinal oscillations

of rods or the torsional oscillation of shafts. It becomes apparent in the previous

section, that the absence of near field components would facilitate the analyses and it

is worth investigating the share of the near fields in the overall oscillation.

The absolute value of the near field components attenuates with the constant 1/kω,

so that for sufficiently long links and higher natural frequencies the near field com-

ponents can be neglected. To give a tangible example, consider the absolute value of

the near field component emerging at one end of a single TUDOR link body. At the

opposite link end this absolute value drops to about 70 % for ω = 1 Hz and down to

10 % for ω = 30 Hz. Obviously, the near field components substantially contribute to

the deflections over the whole link length and in the frequency range of interest.

To give a graphical notion, figure 7.1 shows the contribution of all wave variables for

the first two theoretical frequencies on the second link of TUDOR. This link carries

the third joint, the third link as well as the end effector payload. The case of no

end effector payload is visible in the figures 7.1 (a) and (b). The case with mL =
0.6 kg and IE = 3.3 · 10−4 kgm2 is displayed in figures 7.1 (c) and (d). The load

configuration corresponds to the lower and upper bounds already discussed with the

aid of figure 4.5.
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Figure 7.1.: Normalized travelling wave and near field wave components without (top) and

with (bottom) tip load (mL = 0.6 kg and IE = 3.3 · 10−4 kgm2).

It is clearly visible that the near field components significantly contribute to the

shape function of the first two modes. Only for the first frequency the near field com-

ponent −aN is inconsequentially small. This is effected by the boundary conditions

at the load end. As a conclusion for TUDOR, the near field components must not

be neglected in the spatially continous wave model just by implication. It may be

even argued, whether the near fields play the most important role in the comparat-

ively short links. This would agree with the vanishing dispersion observed for the

dominant frequencies in section 4.7.

7.4. Reflection matrix shaping

With an elastic-link robot at least one actuated joint is attached to each link. The joint

can be controlled to actively shape the boundary conditions at this particular end.

Equation (7.2.11) models the constraints at junctions and boundaries by translational

and rotational stiffnesses Kt and Kr. These stiffnesses characterize the reflection and

transmission of wave components at such points.

In the present work the robot comprises revolute joints. Therefore the translational
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(d) reflection matrix entry for varying complex stiffnesses Kr.

stiffness Kt at all joints can be assumed to be large. The application of l’Hopital’s rule

to ηt for a real valued constant Kt in expression (7.2.11) yields:

ηt ≈ lim
Kt→∞

Kt

4 − (1 + j)Kt
= lim

Kt→∞

1

−(1 + j)
=

1√
2

e−j 5
4 π, (7.4.1)

so that the reflection and transmission matrices at the joint location solely depend

on the rotational stiffness Kr:

Ω =





j Kr

4+Kr(1−j)
+

1−j
2

Kr
4+Kr(1−j)

− 1+j
2

− j Kr

4+Kr(1−j)
+

−1+j
2 − Kr

4+Kr(1−j)
+

1+j
2



 , (7.4.2)

Ψ =





− j Kr

4+Kr(1−j)
− 1+j

2 − Kr
4+Kr(1−j)

− 1+j
2

j Kr

4+Kr(1−j)
+

−1+j
2

Kr
4+Kr(1−j)

+
−1+j

2



 . (7.4.3)

The idea is to develop an oscillation feedback control law which augments the

independent joint angle controller described in section 3.2 and actively shape the

reflected rotational stiffness K̂r with respect to the mean liberated strain measurement

ε̃(xs, t).
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7.4. Reflection matrix shaping

If the strain gauges are applied very close to the joint hub, the gravity liberated net

bending torque at the joint can be approximated with negligible error:

−τ̃b|x=0 − +τ̃b|x=0 ≈ EIz

yb
ε̃|x=xs

. (7.4.4)

The rotational stiffness K̂r relates this expression to the bending angle θb|x=0 at the

joint:

K̂r θb|x=0 =
EIz

yb
ε̃|x=xs

. (7.4.5)

The rearrangement of (7.4.5) with θε = θb|x=0 using the normalized rotational stiff-

ness Kr introduced in (7.2.9) and inserting the definition of kω from (4.3.3) yields the

generic form of the oscillation damping control law:

θε =
1

Kr
√

ω

1

yb

4

√

EIz

ρb
ε̃|x=xs

. (7.4.6)

Note, that this generic control law is frequency dependent and, by principle, it is

set free from the boundary conditions at the opposite link end as well as the actual

oscillation excitation source. No critical model truncation is involved.

The design objective is to find the rotational stiffness Kr, which modifies the trans-

mission and reflection matrices, so that excited oscillations vanish as fast as possible.

A straight forward idea is to demand absolutely no wave reflection to take place at

the joint. Mathematically this is equivalent to a singular reflection matrix Ψ, which

requires:

det Ψ =
Kr(−1 + j)

4 + Kr(1 − j)
= 0 (7.4.7)

and consequently Kr = 0. Looking at (7.4.6), this implies an infinite gain controller,

which is practically infeasible to realize. However, the obtained result is intuitively

plausible. A controlled joint that does not act against the external torque admits to be

driven back and absorbs any incoming wave components.

Figure 7.2 shows the absolute values of the individual elements of Ψ for varying

normalized stiffnesses Kr. The graphs suggest a closer view at the three emphasized

characteristic choices of Kr.

A finite gain controller with Kr = −2 causes the reflection coefficient Ψ1,1 to vanish.

In the absence of near fields or in the case of negligible near field components this

would be a highly desired situation. Travelling wave components arriving at the joint

do not initiate a reflected travelling wave. The total reflection matrix becomes:

Ψ =

[

0 −j

−1 −1 + j

]

(7.4.8)

If near field components are not negligible an incoming wave is converted into a

near field component while reaching near field components from the opposite end

also start new reflected propagating waves. The associated control law (7.4.6) results

in:

θε = − 1√
ω

1

2 yb

4

√

EIz

ρb
ε̃|x=xs

, (7.4.9)
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which consists of a frequency dependent gain.

Another remarkable choice is Kr = −2j, for which the reflection matrix computes

to:

Ψ =

[−(1 + j) −1

j 0

]

(7.4.10)

and shows vanishing near field reflection. Looking at the normalized wave compon-

ents illustrated in figure 7.1, it can be expected that the control law:

θε = − 1

2j
√

ω

1

yb

4

√

EIz

ρb
ε̃|x=xs

(7.4.11)

significantly reduces structural oscillations. Moreover the temporal derivative com-

putes to:

θ̇ε = −
√

ω

2 yb

4

√

EIz

ρb
ε̃|x=xs

. (7.4.12)

A comparison with the previously introduced control law (5.2.1) allows the inter-

pretation of (7.4.12) to be a frequency adaptive generalization of the proportional

strain feedback presented in chapter 5. However, the frequency adaption is hard to

realize in practice. An explicit online frequency estimation is likely too slow and by

nature gets constantly more difficult with increasing damping success.

The most promising choice is the complex valued stiffness Kr = − (j + 1). It yields

the reflection matrix:

Ψ =

[−1 0

0 −1

]

, (7.4.13)

which causes both, incoming propagating waves as well as near field components,

to be directly reflected with the opposite sign. In the absence of natural damping,

which is implied by the real valued wave number kω, incoming and reflected waves

destructively interfere. A conversion between reflected propagating waves and near

field components is inhibited. The insertion into the generic control law (7.4.6) yields

after rearrangement:

θε = − 1

(1 + j)
√

ω

1

yb

4

√

EIz

ρb
ε̃|x=xs

= − 1
√

jω
kε ε̃|x=xs

, (7.4.14)

which is the Fourier domain transfer function of a so-called half-integrator and a gain:

kε =
1√
2 yb

4

√

EIz

ρb
. (7.4.15)

In comparison to the transfer function of the commonly known full-integrator 1
jω , the

slope of the logarithmic frequency magnitude is half as steep. The constant phase

angle of the half-integrator is also half the phase angle of the full-integrator.

Flotow and Schäfer (1986) report that feeding back the tip deflection to the actuator

control torque leads to the similar half-differentiator as a wave based controller. Using

strain feedback at the velocity cascade level also leads to the half-differentiator:

θ̇ε = −jω
1

(1 + j)
√

ω

1

yb

4

√

EIz

ρb
ε̃|x=xs

= −
√

jω kε ε̃|x=xs
. (7.4.16)
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Figure 7.3.: Bode diagram with magnitude (a) as well as phase (b) of the half-integrator and

its approximations.

Neither of these controllers can be exactly realized by means of standard linear

transfer elements.

7.5. Approximation of the half-integrator

Flotow and Schäfer (1986); Podlubny et al. (2002) approximate the behavior of the

half-differentiator by Lattice hardware circuits. More recently Takyar and Georgiou

(2007) discuss different software approximations of the half-integrator such as RC

ladders and the Padé approximation. While the half-differentiator has an acausal

phase lead by nature, a shifted version of the 5th order Padé approximation by Takyar

and Georgiou (2007) is employed to realize the causal half-integrator in the present

thesis:

P5, 5(s) =
1√
∆s

ŝ5 + 55ŝ4 + 330ŝ3 + 462ŝ2 + 165ŝ1 + 11

11ŝ5 + 165ŝ4 + 462ŝ3 + 330ŝ2 + 55ŝ1 + 1
≈ 1√

s
, (7.5.1)

with ŝ = s
∆s and ∆s being the frequency shift factor introduced for better approxima-

tion in the frequency range of interest as shown in figure 7.3.
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Figure 7.4.: Half-integrator damping results. Time series the joint angle (a), angular velocity

(b), link strain (c) and motor current (d) measured on the second joint link module during

twenty repetitions (solid light gray) of a point-to-point motion from θ = [0◦, 0◦, 0◦]T to θ =

[0◦, 45◦,−45◦]T. The first repetition is highlighted (solid black). For comparison the graphs

show the same experiment without damping (dashed gray).

7.6. Controller evaluation

Oscillation damping results with the half-integrator wave reflection controller are ex-

emplified in figure 7.4. Equally to chapters 5 and 6 the gain kε has been automatically

tuned through the hardware in the loop optimization reported in section 5.3. The time

series presented in the figure are very similar to those observed with the proportional

strain feedback in chapter 5. The damping action is observed as an overshoot in the

joint angle in figure 7.4 (a) and a corresponding motion reversal in the joint angular

velocity in figure 7.4 (b). The slim distribution of the measurements of all twenty

repetitions indicate a high repeatability of the damping result without steady state

positioning error. The rapid damping evidenced through the strain measurements

presented in figure 7.4 (c). The evolution of the joint current in figure 7.4 (d) also

reminds of the proportional feedback results in figure 5.3 (d).
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8
Experimental Damping Comparison

This is last out of four subsequent chapters devoted to oscillation damping control.

Chapter 5 discusses the proportional strain feedback at different cascade levels of the

independent joint motion controller designed in chapter 3. From the root locus ana-

lysis carried out in chapter 5, the proportional feedback at the velocity cascade level

is identified to be the best choice. Chapter 6 identifies wave properties in chains of

lumped mass-spring-systems. The derivations arrive at the same damping controller

structure at velocity cascade level and alternatively propose an integral feedback at

position level. A more precise modeling perspective in terms of continuous propagat-

ing waves and near fields leads to fractional order feedback laws in chapter 7. With

the following sections the work contributes an experimental comparison of the pro-

portional strain feedback at the velocity cascade level along with the integral as well

as half-integral strain feedback at the position cascade level.

8.1. Experiment design

The oscillation damping results provided in the chapters 5 to 7 are based on the

automated hardware in the loop optimization of the oscillation damping gains with

respect to the integral absolute time weighted strain surface criterion (see B.4) for

the particular point-to-point motion from θ = [0◦, 0◦, 0◦]T to θ = [0◦, 45◦,−45◦]T. The

accomplished results provided in these chapters represent a principal proof of concept

for the synthesized controllers.

Tuning gains for a single motion task may be adequate for a few low-level tasks

in industrial mass production. However, a robot is actually expected to be equally

functional in the whole workspace and arbitrary motions within that workspace. The

experiments presented in this chapter are therefore carried out around as well as in

between of the operating points illustrated and indexed in figure 8.1. Among all

operating points 3 and 5 are special. The straight vertical pose in operating point

3 maximizes the effect of joint backlash. The straight horizontal pose in operating

point 5 maximizes the effect of gravity.

All joint motions are performed with a maximum speed of 60 deg/s as well as

a maximum acceleration of 200 deg/s2. The basic payload is mL = 300 g. All ex-

periments in this chapter are repeated 20 times. The results are given as mean and

standard deviation over all repetitions. The medium step motion indexed by 06 cor-
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experiment index:operating points:

1

2

3

4

5

small
steps

medium
steps

large
steps

1 2:06

32:07

3 4:08

4 5:09

31:10

3 5:11

5 2:12

TUDOR

1:        +01

2:        +02

3:        +03

4:        +04

5:        +05 [0◦, 5◦, 5◦]T
[0◦, 5◦, 5◦]T
[0◦, 5◦, 5◦]T
[0◦, 5◦, 5◦]T
[0◦, 5◦, 5◦]T

Figure 8.1.: Operating points and experiment naming.

responds to the experiment employed in the chapters 5 to 7. The gains tuned for this

case remain fixed for all experiments throughout the present chapter.

The comparison criteria applied in the sections 8.2 and 8.3 are the maximum abso-

lute strain amplitude max (|ε̃2|) measured on the second joint-link-module, the strain

settling time TCS(ε̃2) (see B.4) for the same strain measurement as well as the spectral

amplitude |F (ω1)| at the first dominant eigenfrequency. The integral absolute time

weighted strain surface IATS(ε2) may be understood to be information provided by

the maximum strain amplitude as well as settling time aggregated in a single integral

criterion. It penalizes strain overshoots as well as long lasting oscillations.

The impact of the damping action on the joint positioning is judged by the joint

angle settling time TCS(θ2) (see B.4) as well as the integral absolute time weighted

angular error IATE(θ2) (see B.4).

8.2. Whole workspace step responses

For the oscillation damping control concepts under consideration the performance in

the whole workspace is assessed from small, medium and large scale point-to-point

motions. The small motions range five degrees in the second and third joint starting

from the five operating points visible in the left of figure 8.1. The medium steps

are point-to-point motions between neighboring operating points. The large steps

from 1 to 3 as well as from 3 to 5 just skip the operating point in between. The

motion from 5 to 2 is the largest step, which also passes the straight vertical arm

pose. This means, that the static load torque along with the static strain changes sign.

The inclusion of this scenario is important against the background, that Franke et al.

(2009) discovered such a sign change to cause stability problems in some damping

approaches.

All metrics are normalized to the corresponding values of the undamped case. Con-

sequently their values are given in percent. Since the undamped oscillations can last
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Figure 8.2.: Damping metrics in the whole workspace with the robot carrying a payload of

mL = 300 g.

for minutes, the strain settling time TCS(ε̃2) is normalized by the fixed time horizon

of ten seconds.

For the small motions all three control schemes succeed to significantly reduce

the maximum strain amplitude as visible in figure 8.2 (a). For medium and large

motions this reduction becomes rather insignificant for the proportional and integral

feedback. Only the half-integrator scheme reliably keeps the amplitude about 75 %

of the undamped case. The results with the integral concept spread wider than the

results obtained with the other two schemes.

Figure 8.2 (b) evidences that all three control approaches drastically and reliably

reduce the strain settling times throughout the whole workspace. The proportional

feedback as well as the half-integrator feedback are almost equal. Strikingly, the

integral feedback performs significantly worse during the small motions than the

other two.

The inspection of the relative spectral amplitude of the dominant eigenfrequency

in figure 8.2 (c) shows only inconsequential differences between the individual ap-

proaches. The spectral amplitude drops below 10 % for the small motions. A reduced
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Figure 8.3.: Damping metrics for experiment 06 with varying payloads.

damping effect can be observed for experiment 07 and 11. With the experiment 07

the motion target is the straight vertical pose where backlash has a maximum impact

so that damping actions cannot develop their full effect. Experiment 11 stops at the

straight horizontal pose, where the actuators have to operate under the largest load.

On average, the integral time weighted strain surface in figure 8.2 (d) is equival-

ently minimized by all three controllers. However, the integral feedback exhibits very

irregular results.

Looking at the joint angle metrics in figures 8.2 (e) and (f) reveals that the damping

actions have the least impact on the joint motion augmented by the proportional

feedback at the velocity cascade level. The strongest impact is observed with the full

integral feedback at the position controller level.

8.3. Varying payloads

The robustness assessment of the three oscillation damping controllers with respect

to varying payloads bases on the point-to-point motion experiment 06. While the
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8.4. Disturbance rejection

gains are tuned and fixed for the default payload of mL = 300 g using three test mass

plates, the investigated payload variation ranges from zero to six test mass plates

so that mL ∈ {0 g, 100 g, 200 g, 300 g, 400 g, 500 g, 600 g}. Again, all metrics are

normalized to the corresponding values of the undamped case, just as described in

the previous section.

Figure 8.3 (a) shows that a relative reduction in the maximum strain amplitude be-

comes increasingly significant with larger payloads. This is also observed from the

spectral amplitude of the first dominant eigenfrequency in the graph 8.3 (c). The max-

imum strain amplitude as well as the spectral amplitude of the first eigenfrequency

are slightly increased by the damping action for payload masses of 0 g and 100 g.

This can be understood as an over reactive damping behavior, due to the fixed gains

tuned for a payload of mL = 300 g.

Nevertheless, except for zero payload all three damping controllers accomplish an

almost constant abbreviation of the settling time by about 80 % as visible in fig-

ure 8.3 (b).

At zero payload the relative reduction of the settling time appears less because

of the normalization to 10 s. A result of 50 % is equivalent to 5 seconds already

incorporating the actual point-to-point motion taking a little less than 2 seconds.

The relative decrease of the integral time weighted strain surface presented in fig-

ure 8.3 (d) is significant for all three damping approaches. As with the metrics before,

the damping action becomes increasingly significant with growing payload masses.

In summary all three control schemes robustly damp oscillations for a wide range of

payloads.

Looking at the joint angle metrics in figure 8.3 (e) and (f), the conclusion to be

drawn is identical to the experiments with constant payload but varying operating

points in the whole robot workspace. The proportional strain feedback operating

at the velocity controller level affects the joint motion way less than the other two

approaches operating at the position cascade level. The full integral feedback shows a

drastically spread distribution around the average metric values. The reason for that

is the aggregation of imperfectly cancelled static strains.

8.4. Disturbance rejection

The previous two sections considered the joint motion to be the only source of oscilla-

tions excited in the link structure. Interactions between the robot and the environment

are another practically relevant source of oscillations. Their exact amplitude as well

as location of action along the structure is commonly unknown. The disturbance may

be impulsive, step-like or even periodical.

Periodic excitation

The periodic disturbance is generated using a DC motor attached to the robot end

effector as depicted in figure 8.4 (a). The DC motor carries an unbalanced load. The

deviative reaction moments excite the oscillations at the motor frequency of rotation.

This frequency is manually tuned close to resonance with the first dominant eigenfre-

quency by adjusting the motor input voltage.
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Figure 8.4.: Experimental setups to generate periodic (a)-(b) and step-like disturbances (c)-(d).

In all experiments the arm resides in the horizontally stretched out joint zero config-

uration, which represents the maximum load configuration for the actuators. During

the first two seconds of each repetition the oscillation damping gain is zero. After ap-

proximately two seconds the gains are set to the default ones tuned in the chapters 5

to 7.

Figure 8.5 shows the time series of strain measurements (a) and (b) as well as joint

angular velocity measurements (c) and (d) for the proportional strain feedback as well

as the half-integrator controller. Experimental results with the full integral feedback

at the joint position cascade level are omitted here. The excited oscillations are large

enough to interfere with the static strain cancellation. The interference accumulates

in the integral control law and introduces a drift in the joint angle, so that results are

not comparable to the other control approaches.

The close to resonance strain amplitude is equally visible in the left of figures 8.5 (a)

and (b). In spite of the large gear ratios, the strong oscillations also affect the joint

angles. During the first two seconds in figures 8.5 (c) and (d) the cascaded independ-

ent joint controllers have to visibly compensate for the strong oscillations.

With the activation of the oscillation damping, the strain amplitude abruptly drops

from close to 400 µm/m to approximately 100 µm/m. The half-integrator achieves

a slightly smaller strain amplitude in figure 8.5 (b) compared to the proportional

feedback in figure 8.5 (a) with apparently the same effort as visible in figures 8.5 (c)

and (d).
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Figure 8.5.: Harmonic disturbance results.

The twenty repetitions of each experiment vary in the timing. In every repetition

the damping controller gets activated in a different oscillation phase. This melts the

individual repetitions drawn as gray graphs in figure 8.5. Nevertheless the graphs

prove the reliable repeatability of the damping results irrespective of the initial phase.

Malzahn and Bertram (2013, at 0:48 min) demonstrate the periodic disturbance ex-

periment in an online available video. The video shows the excitation at a constant

frequency as well as a frequency sweep.

Disturbance steps

The rejection of step-like disturbances is investigated using a net attached to the end

effector in operating point 5 as visible in figure 8.4 (b). The net with fixture has a

mass of 120 g. Besides the net, the end effector initially carries no load. The step-like

disturbances are generated by manually dropping an additional test mass of 600 g into

the net. The height from the initial test mass position to the net bottom amounts to

approximately 50 cm. The manual experiment execution is the reason for the temporal

misalignment between the graphs of different repetitions as well as irregularities in

the excitation amplitude.

Again, the results for the full integral strain feedback are omitted, because the

momentous and potentially growing steady state error practically disqualifies the ap-

proach.
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Figure 8.6.: Step disturbance results.

The strain measurements in the figures 8.6 (a) and (b) evidence rapid attenuation

of the excited oscillations as well as the static strain due to the additional payload.

Similar to the periodic disturbance rejection the figures 8.6 (c) and (d) indicate, that

the half-integrator controller seems to require less effort in terms of joint motion to

achieve the oscillation damping. The proportional strain feedback controller appears

to comply more under the external disturbance. In summary, the proportional feed-

back as well as the half-integrator control properly dampen the oscillations within

about two seconds.

8.5. Damping with a single actuator

The frequency measurements in section 4.7 show that the dominant eigenfrequencies

of each individual link are measurable on the other link in the chain under preser-

vation of phase alignment. This leads to the corollary that each joint can damp the

oscillations of the whole arm structure. In order to prove that, experiment 06 repeated

twenty times with the damping gains for the second joint-link-module set to zero and

only the third joint employed for damping the oscillations.

Figure 8.7 (a) and (b) show the resulting strain measurements on the second joint-

link-module, whereas figure 8.7 (c) and (d) display the angular velocity measurements

including the damping actions on the third joint-link-module.
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Figure 8.7.: Results with only the third actuator performing damping actions. The arm carries

a payload of mL = 300 g

Of course, the damping result achieved with a single actuator cannot compete with

the results obtained using both actuators. Nevertheless the damping improvements

with both, the proportional feedback as well as the half-integrator feedback are clearly

visible. The half-integrator accomplishes the superior damping among the two con-

cepts.

8.6. Discussion

First of all, it has to be observed that all three investigated damping control concepts

robustly attenuate structural oscillations under the applied changes in payload as well

as altered operating points.

The full-integral feedback at the position cascade level suffers from steady state

errors growing over time. The clearly wider standard deviations of the metrics com-

pared to the other approaches evidence an unsatisfactory smaller repeatability. The

reason is the imperfect static strain cancellation frequently charging and discharging

the feedback integrator state. Any practically implemented model of the static strain

only has finite accuracy. Thus, the imperfection would also occur if the static strain

cancellation would have been performed using a model based approach. As a conclu-

sion, full-integral strain feedback is not recommended for elastic link robots operating
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under gravity.

The half-integrator at the position cascade level as well as the proportional strain

feedback at the velocity cascade level show very similar results. Both control meth-

ods demand for no explicit model knowledge about the actual link dynamics. They

feature just a single additional controller gain per joint-link-module to be tuned. The

dampen oscillations irrespective of their excitation source.

The half-integrator requires the least efforts to reject external disturbances, the pro-

portional strain feedback has the smallest impact on the actual joint positioning. With

the damping results being almost equal to the half-integrator, the proportional feed-

back is therefore the favored oscillation damping controller in the remainder of this

thesis. Nevertheless, the half-integrator concept would produce equivalent results

with respect to the remaining chapters of this thesis. In this regard, the compensation

of the first undesired effect associated with the intentionally introduced link elasticity,

namely the structural oscillations, is accomplished for the scope of this thesis.
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With the structural oscillations readily damped, the forward and inverse kinematics

modeling simplifies. A reconstruction of the end effector location based on a trun-

cated series of oscillation modes or a finite number of lumped parameters may be

omitted. It is sufficient to focus on the compensation of the static deflections in order

to accurately position the end effector.

The oscillation damping controllers derived in chapters 5 to 7 waive the need for

any dynamics model at runtime. It is consistent and desirable to investigate an end

effector positioning approach, which relinquishes any additional modeling compared

to conventional robots. Section 9.1 follows this paradigm using the eye-in-hand moun-

ted camera detailed in section 2.3.

Alternatively, the forward and inverse kinematics have to be modelled under con-

sideration of the static configuration and load dependent deflections in order to posi-

tion the end effector. In comparison to conventional robots the additional static strains

estimated in section 2.2 are required. The data-based load estimation and kinematics

presented in section 9.2 are originally developed for TUDOR and published by Phung

et al. (2011a). Continuatively, Malzahn, Phung and Bertram (2012a) demonstrate the

positioning speed and accuracy of the inverse kinematics with integrated oscillation

damping through the realization of the ball catching task detailed in section 9.3.

9.1. Visual servoing

Visual servoing controllers with an eye-in-hand mounted camera minimize the rel-

ative pose error between a current view and a goal view of the scene. Today visual

servoing is a well understood topic in literature. An early tutorial is given by Hutchin-

son, Hager and Corke (1996). A decade later Chaumette and Hutchinson (2006, 2007)

summarize fundamental concepts and also provide an introduction to more advanced

visual servoing techniques. Visual servoing controllers are categorized as position

based visual servoing controllers (PBVS) or image based visual servoing controllers

(IBVS). PBVS also known as 3D visual servoing controllers use the image information

to explicitly estimate the camera poses and infer the control error with respect to a co-

ordinate frame of reference. In IBVS or 2D visual servoing the control error is directly

formulated in the 2D image space. Hybrid concepts exist, which are basically IBVS

approaches involving a partial pose estimate or measurement. While the concepts
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have their individual merits and shortcomings, they all operate on the pure basis of

differential robot kinematics. This is a beneficial property for the end effector control

of elastic link robots. The visual servoing controller commands a camera velocity vc,

which may be interpreted as a relative direction towards the goal rather than a partic-

ular absolute metric path to the goal. Outside kinematically singular configurations

the inverse of the end effector referred robot Jacobian EJr(θ) transforms the relative

camera motion vector into the joint space:

θ̇ = EJ−1
r (θ) vc (9.1.1)

In the joint space the direction of the rotations θ̇ computed for the individual joints

from the rigid body differential kinematics pretty well agrees with the elastic case

almost irrespective of the static deflections.

Visual servoing control law

TUDOR has three actuated degrees of freedom. The present work employs a hybrid

IBVS concept augmented by the depth readings of the RGB-D sensor to control the

translational degrees of freedom of the end effector.

Using a number of point features extracted from the camera images, the classical

IBVS control law is:

vc = −Kc J†
c (ui, vi, ∆z) euv. (9.1.2)

Therein vc =
[

vcx, vcy, vcz

]T
denotes the commanded translational camera velocity

vector. The controller gain matrix Kc is chosen to be positive and diagonal. The

pairwise error between image point features extracted in the goal view and their

correspondences in the image of the current view is euv. J†
c (ui, vi, ∆z) represents the

pseudoinverse of the image feature Jacobian Jc(u, v, ∆z). The image feature Jacobian

Jc(ui, vi, ∆z) consists of one column for each considered camera degree of freedom

and two rows per point feature correspondence. In the present case the reduced image

Jacobian for a single point feature computes to:

Jc(ui, vi, ∆z) =

[

Λ
∆z , 0, − ui

∆z

0, Λ
∆z , − vi

∆z

]

, (9.1.3)

where Λ is the focal length known from a camera calibration, ui and vi are the hori-

zontal and vertical image coordinates of the point feature, ∆z is the distance between

the camera coordinate frame and the scene point represented by the point feature.

The Jacobian (9.1.3) provides two coupled equations per point feature. With respect

to the three degrees of freedom controllable with TUDOR, classical IBVS requires at

least two image features to be extracted for end effector control. In the general case

of 6 degrees of freedom, a minimum of three features are required.

With a conventional monocular camera the distance ∆z is unknown. IBVS control

concepts "traditionally" involve an online estimation or use approximations. The RGB-

D sensor used in this work already provides distance measurements. Point features

are usually extracted from the images with subpixel accuracy. A depth value can be

assigned to each such 2D features by interpolation of the depth measurements. With
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Figure 9.1.: Visual servoing experiment. Goal view (a) observed with the eye-in-hand camera

and polyhedral configurations of goal and starting poses expressed in the robot base frame

(b).

the depth for each point feature being available a decoupled control law is applied by

replacing the Jacobian with the interaction matrix Lc:

Lc(∆z) =





Λ
∆z , 0, 0

0, Λ
∆z , 0

0, 0, 1



 . (9.1.4)

With this interaction matrix a single image point feature with associated scene depth

is mathematically sufficient to control the considered translational degrees of freedom

using the control law:

vc = −Kc L−1
c (∆z) [eu, ev, ez]

T. (9.1.5)

Increased robustness against image distortions and measurement noise as well as

outliers can be achieved by using multiple point features. Nevertheless, the control

law (9.1.5) is suitable to demonstrate the potentials of visual servoing controllers in

the presence of static configuration and load dependent link deflections.

Experiments on pose repeatability and error dynamics

In visual servoing a goal pose is taught to the robot by virtue of an image capturing

the view of the scene at the desired location. The associated performance metric is

the pose repeatability. It describes the ability of the robot to repeatedly return to

this view. ISO 9283 (1999) defines the repeatability in terms of the translational end

effector degrees of freedom to be the radius of the sphere enclosing all actual poses

attained from the same direction. The sphere centroid is the center of mass of all

actual poses. The limited degrees of freedom do not allow to follow ISO 9283 (1999)

in all details, but the following investigation is motivated by the standard.

In the present work the repeatability is assessed using the stereo camera system

detailed in section 2.4. The visual servoing controller is used to center the black

square pattern on a white ground within the image. The square pattern is visible in
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Figure 9.2.: Transitions from the eight start configurations towards the goal pose (a) and close

up to the goal pose (b) with actual poses attained during all 480 experiments.

figure 9.1 (a). The centroid of the black square provides the single image point feature

required to control all three translatory degrees of freedom. The goal view is attained

from a total of eight different start poses. ISO 9283 (1999) suggest the start poses to be

the corners of a cuboid around the goal pose. In this work, the start poses locate the

square pattern close to the image corners. Four poses are as close as possible to the

square pattern. The other four are located as distant as feasible from the pattern. In

the workspace these start poses form the corners of a polyhedron, which is the largest

emulation of the cuboid feasible with TUDOR.

Figure 9.1 (b) depicts the location of the goal pose with camera viewing direction,

the utilized start poses as well as the polyhedron enclosing the considered workspace

volume. The experiments beginning at each starting point are repeated with payloads

of 0 g, 200 g and 400 g in addition to the eye-in-hand camera. With the camera the

maximum payload adds to 850 g. All experiments are repeated 20 times.

Figure 9.2 (a) depicts single realizations of transitions from all individual start poses

towards the goal pose. The curves represent the case of 0 g and 400 g additional pay-

load. The start poses are remembered in the joint space without additional payload.

The altered static deflections in the start poses due to the additional payload become

visible as the displacement between the rectangles and crosses in the figure. Never-

theless, all end effector trajectories equivalently converge to the goal pose.

Figure 9.2 (b) is a close view on the goal pose. The crosses represent the attained

actual poses of all 480 experiments and the enclosing sphere. Note, that ISO 9283

(1999) just investigates the repeatability under identical load conditions and a single

approaching direction. A few outliers render the radius to be 14 mm, while 90 % of

the measured errors are smaller than 8 mm. The average pose error amounts to only

4 mm. These values are less than 10 % of the static deflection already introduced by

the additional payload mass.

Beyond the steady state positioning error, figure 9.3 (a) illustrates the transient dy-

namics of the workspace error. The corresponding image space error is depicted in

figure 9.3 (b). The workspace error as well as the image space error both smoothly
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Figure 9.3.: Error dynamics in the workspace (a) as well as the image space (b).

converge. Malzahn et al. (2011d) demonstrate the tracking of a moving square pattern

in an online available video, which complements the results provided in this thesis.

9.2. Data based kinematics

Phung et al. (2011a) compare linear regression, local linear model trees, multi-layer

perceptron (MLP) networks as well as radial basis function networks for learning the

forward and inverse kinematics of the multi-elastic-link robot arm TUDOR. Based

on this comparison, the Levenberg-Marquardt algorithm is applied here to obtain

parameters of MLP networks through nonlinear regression. Following a divide and

conquer approach, separate networks are used to learn a payload estimator, the for-

ward kinematics as well as the inverse kinematics. Phung et al. (2011a) show that this

strategy simplifies the learning task and improves the inverse kinematics accuracy.

Training data

The training data set is recorded using the stereo-camera setup introduced in sec-

tion 2.4. The robot joint space is sampled in 10◦ increments between 0◦ and 180◦ for

joint two as well as between −90◦ and 90◦ for joint three. Payloads range between

0 g and 400 g. The payloads are varied in 100 g steps. In the resulting 1805 static

poses, the joint values θ2 and θ3, the settled strain measurements ε2, ε3 as well as the

end-effector position BxE and BzE are recorded.

Forward kinematics

With TUDOR the elastic deflections dominantly occur in the vertical plane and are

independent of the joint variable θ1. Regarding the forward kinematics this allows to

model just the two end effector coordinates BxE and BzE for ByE = 0 in terms of the

joint angles θ2 and θ3 as well as the link strains ε2 and ε3. The full actual end effector

pose is obtained from a rotation by an angle θ1 about axis Bz ≡ 1z.

The data set is divided into 70 % for training, 15 % for validation and the remaining

15 % as test data to estimate the generalization error. The number of neurons is
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limited to a hundred. The winning forward kinematics MLP network for BxE and BzE

comprises a single hidden layer with eight perceptrons.

While the strain measurements are directly applied as inputs to the network, the

joint angles are transformed into the nonlinear regressors cos(θ2), sin(θ2), cos(θ2 +
θ3), sin(θ2 + θ3). These regressors appear as the original regressors in the analytical

forward kinematics of the equivalent rigid arm. In particular for BzE Phung et al.

(2011a) demonstrate that these nonlinear regressors drastically improve the model

accuracy compared to the original features θ2 and θ3. The root mean squared error on

the unseen testing data set including varying payloads reduces from 4.17 mm in BxE

and 5.84 mm in BzE to 1.76 mm in BxE and 1.36 mm in BzE.

Load estimation

A MLP with a single hidden layer as well as 10 perceptrons is employed for the load

estimation. This way TUDOR operates as a weighing machine. The inputs to the

network are the joint angles θ2 and θ3 as well as the strains ε2 and ε3. The data sets

with 0, 200, 300 and 400 g are used to train the network. The root mean squared

training error (RMSE) computed over all joint space samples amounts to 5.7 g. The

generalization RMSE is determined for the unseen 100 g payload and amounts to

9.3 g. This is less than 10 % of the used payload increments.

Figure 9.4 (a) visualizes the estimated payload for each data point against ground

truth. For some data points a drastical increase in the estimation error is visible. A

visualization of the normalized RMSE (NRMSE, see B.4) against the orientation of the

second and third link in the figures 9.4 (b) and 9.4 (c) provides a plausible explana-

tion for this observation. The NRMSE for the training as well as the testing data set

disproportionally increases the more any of the two links aligns with the gravitation

vector. The full alignment occurs for θ2 = 90◦ and θ2 + θ3 = 90◦. The alignment min-

imizes the static deflections due to gravity, which aggravates the estimation principle

based on the weighing machine.

Nevertheless, outside of such joint configurations, the payload estimation is con-

sidered as accurate for the purpose of this work.

Multimodel inverse kinematics

The inverse kinematics with respect to the first joint angle θ1 is equivalent to rigid

robots. From the experiences gained during forward kinematics learning, the end

effector coordinates BxE and BzE are converted into the nonlinear regressors:

Y1 = atan2

(

BxE,B zE

)

, (9.2.1)

Y2 = asin





l2
3 − (Bx2

E +B z2
E + l2

2)

2l2

√

Bx2
E +B z2

E



 . (9.2.2)

These expressions appear in the closed-form inverse kinematics of the equivalent rigid

arm. The atan2-function represents the two argument arc tangent defined on [−π; π].
A testing result for a trained inverse kinematics MLP network using the coordin-

ates BxE and BzE as well as the estimated payload for the input and the joint angles
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Figure 9.4.: Load estimation results with seen and unseen payloads (a). NRMSE for the load

model computed from all payloads and plotted against θ2 (b) and θ2 + θ3 (c).

θ2, θ3 as outputs, is illustrated in figure 9.5 (a). The data partitioning is identical to the

forward kinematics learning. Remapping the computed joint angles into the work-

space using the corresponding strain measurements in conjunction with the learned

forward kinematics results in the RMSE of 20.6 mm for the BxE and 24.3 mm for BzE.

This poor remapping is obtained even with the nonlinear regressors.

For serial chain robot arms the inverse kinematics is generally ambiguous. With

TUDOR the ambiguity with respect to the first joint is identical to rigid robots. Re-

garding the second and third joint, some poses are only reachable in the elbow-up

configuration, while other poses can only be approached in the elbow-down pose.

The corresponding part of the workspace is highlighted as uni-solution area in fig-

ure 9.5 (b). A third class of poses may be attained in both configurations, which

introduces another ambiguity in the inverse kinematics solution. The corresponding

workspace region is indicated as the multi-solution area in figure 9.5 (b).

The remedy to diminish the remapping error is to learn separate networks for the

elbow-up and elbow-down postures. Therefore, the training data is split into two

subsets. One subset for θ3 > 0◦ and the other for θ3 ≤ 0◦.

For each given target pose, the inverse kinematic models output two alternative

joint configurations. The ambiguity is resolved in two steps. Solutions are discarded,

if they are outside the joint limits, otherwise the solution that is closer to the current
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Figure 9.5.: Remapped positions using a single neural network for the inverse kinematics

model (a). Workspace samples as well as uni- and multi-solution areas for the inverse kin-

ematics model (b). Distribution of reference and remapped positions for the model with

θ3 > 0◦ (c), θ3 ≤ 0◦ (d) and the multi-model (e).

joint configuration is selected.

The testing results for the individual submodels are shown in the figures 9.5 (c)

and (d). The outliers correspond to poses, which are not reachable with the particular

submodel. Figure 9.5 (e) represents the remapping result for the obtained multi-model

with ambiguity resolution. The combined multi-model achieves a remapping RMSE

of 2.6 mm in both the BxE and BzE. This value is close to the measurement accuracy

of the stereo camera as well as the absolute accuracy of many conventional robots.

9.3. Ball catching

In industrial production robots are required to perform tasks in a given cycle time

with a predefined precision. Enabling TUDOR to catch multiple balls, which are

sequentially but irreproducibly thrown by a human, is a graspable demonstration of

the general feasibility to perform such tasks with an elastic link robot in practice.

Scenario

The ball catching scenario is illustrated in figure 9.6 (a). A human consecutively

throws soft balls towards TUDOR. The distance between TUDOR and the thrower

is about 6 meters. The RGB-D camera used for visual servoing is mounted to the

wall behind the thrower. The thrown balls are detected based on the background
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Figure 9.6.: Ball Catching Scenario (a) and RGB-D sensor to robot calibration (b).

subtraction algorithm explained by Frese et al. (2001). It is assumed that the ball is

the only moving object within a distance of 4.5 m from the RGB-D sensor. The ball

trajectory is tracked and predicted in the successively recorded image sequences by

an extended Kalman filter. The tracking algorithm is also taken from Frese et al. 2001,

who use a wide baseline stereo camera setup instead of the Kinect. The intersection

between the predicted ball trajectory and the planar workspace of TUDOR visible in

figure 9.6 (a) is intended to be the ball intercept location. Once the predicted intercept

location falls into the robot workspace, the error covariances of the extended Kalman

filter are constantly supervised. If they are sufficiently small, the intercept location is

passed to the inverse kinematics algorithm, which commands the robot to intercept

the ball with the net mounted at the end effector. The diameter of the ball is 9 cm.

The diameter of the net amounts to 18 cm.

The balls already present in the net constitute an additional payload increasing with

each successful catching operation. Furthermore, the previously caught balls behave

as pendulums and induce disturbances at the end effector in response to any arm

motion. The inverse kinematics has to compensate for the additional load, while the

oscillation damping has to attenuate the motion induced oscillations as well as the

disturbances readily in time to successfully catch the next approaching ball.

RGB-D Sensor to Robot Calibration

The calibration of coordinate transformation W
B T between the robot base frame and

the wall-mounted RGB-D sensor is performed by sampling the operating range of the

second joint with θ1 = θ3 = 0◦.

A solid disc is inserted into the net used to catch the thrown balls. The camera

perceives the disc as a circular region of uniform depth readings. This region is

segmented through thresholding based on a manually given seed. The centroid of

the segment during the i-th sample step provides the coordinates of the end-effector

location Wpi in the RGB-D sensor frame.

All end effector coordinates recorded during the sampling procedure are considered

to be located on the perimeter of a circular plane. Figure 9.6 (b) depicts the recorded

samples in addition to the circle fitted to these points. The RMSE of this circle fit

is 4.82 cm and therefore below the experimentally determined depth measurement
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9. End Effector Control

accuracy of the RGB-D sensor at this distance (see figure 2.5 (c)).

The center of the fitted circle constitutes the origin WoB of the robot base frame with

respect to the wall-mounted camera. The z-axis WzB of the robot base frame is the

unit vector in parallel to the connection from WoB to the end effector location Wp6 in

the straight vertical posture with [θ1, θ2, θ3]
T = [0◦, 90◦, 0◦]T, where the arm is nearly

undeformed.

An initial estimate W ŷB of the y-axis RyB is the normal to the circular plane through

the circle center. The cross product WyB × WzB determines the x-axis WxB. Sub-

sequently WyB = WzB × WxB yields the orientation of the robot base frame as a right-

handed trihedron W
B R = [WxB, WyB, WzB].

Catching results

A sequence of images recorded by the wall-mounted RGB-D sensor during a ball

catching experiment is illustrated in figure 9.7.

Figure 9.7 (a) sketches the boundaries of the reachable workspace. The picture

captures the instant after a first ball has been caught and right before a second ball

is thrown. The black circle marks the predicted intercept location, which for each

throw is initialized at the robot base. A history of previously sensed ball positions

as well as the updated intercept location are shown in figure 9.7 (b). It is visible

in figure 9.7 (c), that the inertia causes the previously caught ball in the net, to lag

behind the expedited end effector. In figure 9.7 (d) the robot finally positions the net

at the correctly predicted intercept location properly in time and catches the ball. The

success rate is larger than 66 %, provided that the ball trajectory intersects the robot

workspace. Malzahn et al. (2011c) provide an online available video demonstrating

the ball catching experiments with and without the active vibration damping.

90



9.3. Ball catching
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Figure 9.7.: Sequence of images captured by the wall-mounted RGB-D sensor during a ball

catching experiment.
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Damped Dynamics Modelling

As a final step before exploiting link elasticity for sensing contact forces, the work

contributes two analytical real-time capable models for the remaining damped arm

dynamics in this chapter. Parts of this chapter have been previously published by

Malzahn, Reinhart and Bertram (2014).

The first model explains the joint currents. The second one models the per link

strain measurements. Both models are derived and also related to each other through

the investigation of the load torque distribution in the links. Mathematically the

model equations share exactly the same structure. A data-driven neural network

models the same outputs without any prior structural knowledge about the dynamics.

The data driven model works on exactly the same input/output data as the analytical

models and provides a benchmark for them. All models are efficiently identified using

linear regression techniques and validated by experiments with multiple payloads

under gravitational influence.

10.1. Motor current model

Consider the motor torque balance given in equation (3.1.1) using the nonlinear fric-

tion model for τF (3.1.3). The vector τJ = τL|x=0 collects the load torques the robot

arm bodies and contact torques τc exert on the individual joints according to:

τ J − τc = I(θ)θ̈+ C(θ, θ̇)θ̇+ g(θ). (10.1.1)

Therein I describes the symmetric positive definite robot inertia matrix. The matrix

C includes the Coriolis and centrifugal terms. The vector g represents the load torque

due to gravity.

At first, consider τc = 0. The expressions for the mechanical torque τM, the friction

torque τF as well as the load torque τJ in equation (10.1.1) are all linear in their

parameters. For parameter identification from experimental data equation (3.1.1) can

be rearranged to form the linear regression problem:

iM = Yi(θ, θ̇, θ̈) χi. (10.1.2)

The motor currents iM are measurable at each individual joint. The regressor Yi

only incorporates measurable joint angles and their derivatives. The vector χi is the

minimal set of identifiable base dynamics parameters. Khalil and Dombre (2004)
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

linkrigid clamping

τ

x [m]

τL(x) τρ(x) τF(x) ττ(x)

∆τ(xs)

Figure 10.1.: The load torque distribution τL(x) along a link (gray bar) can be expressed as the

superposition of the three components τρ, τF as well as ττ.

describes two symbolic and one numerical approach for finding the base parameters.

This work follows the numerical approach analyzing the space span by the columns

of Yi and solves equation (10.1.2) using a linear least-squares technique.

10.2. Link strain model

The derivation of a model for the link strains is based on the question for the differ-

ence between the load torque τL(x) "seen" at each individual joint shaft τJ = τL(0)
and the load torque τL(xs) causing the strain measured at a strain gauge position xs

along the link attached to this particular joint shaft. Equation (4.2.2) relates the link

surface strain ε and load torque. With assumption 4.1.1 (f) the parameters of this

relation become constant.

For a load free cantilever with the mass density per unit length ρb the bending

torque originates from the weight of the link itself. The associated torque distribution

τρ(x) computes to:

τρ(x) = ρb
L2

2EIz

(

1 − 2
( x

L

)

+
( x

L

)2
)

. (10.2.1)

Consider a constant load force FL acting at the tip of a single massless cantilever.

For a robot link the load force reflects the weight of subsequent links, a payload or

contact force. The corresponding torque distribution τF(x) computes to:

τF(x) = FL
L

EIz

(

1 −
( x

L

))

. (10.2.2)

In robotic links a constant bending torque τb may arise at the tip due to the weights

of distal links and payloads or as a result from a contact situation. For the massless

cantilever the associated torque distribution ττ(x) is constant along the link:

ττ(x) = τb. (10.2.3)

Based on assumption 4.1.1 (e) the individual components (10.2.1) to (10.2.3) may be

superposed as illustrated in figure 10.1:

τL(x) = τρ(x) + τF(x) + ττ(x). (10.2.4)
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10. Damped Dynamics Modelling

The relation models the load conditions for any link member in the kinematic chain

of a robot arm.

The torque τL(0) exerted on a single joint differs from the torque τL(xs) causing the

strain on a subsequent link in a distance xs by ∆τ:

∆τ = τL(0)− τL(xs) =
ρb(xs)

EIz(xs)

(

L xs −
1

2
x2

s

)

+
FL

EIz(xs)
xs. (10.2.5)

For any particular strain sensor, the first summand is constant. The load force FL

governs the second summand. This force remains the same for any configuration of

the subsequent links. Thus, in the presence of a constant payload and in the absence

of external contact forces, the difference ∆τL is constant as well.

Under this condition there exists a linear mapping between the strain ε measured

at a location xs along the link and the load torque τJ = τL(0) acting on the joint shaft.

Combining equations (4.2.3) and (10.2.5) the mapping is:

τJ =
EIz(xs)

yb(xs)
ε(xs) + ∆τ. (10.2.6)

Due to the linearity of this mapping the effect of link motions on the perceived

surface strain can be described in analogy to equation (10.1.1) using exactly the same

mathematical structure:

ε(xs) = Iε(θ)θ̈+ Cε(θ, θ̇)θ̇+ gε(θ). (10.2.7)

where the subscript ε indicates the reference to the strain measurements. A linear

regression problem equivalent to equation (10.1.2) can be formulated with respect to

the link strains:

ε = Yε(θ, θ̇, θ̈) χε, (10.2.8)

The key difference between the equations (10.1.2) and (10.2.8) is that the latter ex-

cludes the joint parameters, most importantly the joint friction. Joint friction torques

cannot be measured directly. They have to be observed. The parameters of equa-

tion (3.1.3) frequently vary over time due to temperature dependances, changes in

lubrication, wear and tear (Bona and Indri 2005). A link strain referred dynamics

model such as equation (10.2.7) assesses the actual mechanical load set free from the

joint friction. The links with the applied strain gauges resemble load side torque

sensors.

Malzahn (2013) contributed the Matlab code written to derive the dynamics in sym-

bolic form and to automatically generate real-time compatible Simulink code as a

generic module to the Robotics Toolbox by Corke (2011).

10.3. Data-driven reference model

In the field of machine learning a broad variety of general purpose techniques for

non-linear function approximation exist. An analytical model is generally preferred

for control. Nevertheless, the capability of available data driven techniques to ap-

proximate arbitrary nonlinear functions without prior structural knowledge provides

a benchmark for the analytical models.
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10.4. Identification

This work applies feedforward neural networks within a learning scheme known

from Huang, Zhu and Siew (2004) as Extreme Learning Machine (ELM). The data

driven reference model describes the same dynamics structure with identical inputs

and outputs as the analytical joint current as well as the link strain models derived

before, but it uses "problem agnostic" input features.

Within the ELM scheme the input weights and biases are randomly drawn from

a normal distribution. They nonlinearly project the inputs into a single high dimen-

sional hidden layer with sigmoidal activation functions. After normalization of the

input/output data the actual training is restricted to the read-out layer and consists

of simple offline linear regression. The denormalization is performed online.

The good generalization properties together with the fact that training any ELMs

comes down to a linear regression task outweighs the increased number of required

hidden neurons compared to other feedforward network types (Huang, Zhu and Siew

2006). A total of 100 neurons are used for both the current as well as the strain models

in this work.

10.4. Identification

Excitation signal

The design of optimal excitation signals for the identification of the robot dynamics

parameters is well studied in literature (Armstrong 1989). For example, band lim-

ited periodic sinusoidal signals parameterized by finite Fourier series elegantly allow

for computation of higher order measurement derivatives even in the presence of

noise (Swevers, Verdonck and Schutter 2007). The Fourier coefficients can be tuned

according to trajectory optimization criteria such as the condition numbers and sin-

gular values of the regression matrices developed in earlier works (Presse and Gautier

1993).

In the following amplitude-modulated pseudo-random binary (APRBS) stimuli (see

Isermann and Münchhof (2011, p. 174)) serve as excitation signals for the analytical

as well as the data driven models. APRBS are generic stimuli for the identification

of nonlinear systems. They are well suited for training the ELM reference networks

and result in good condition numbers and smallest singular values of the regression

matrices Yi and Yε.

Experiment design

This chapter focuses on the damped dynamics modeling of the elastic links. Without

loss of generality the first joint is therefore kept at zero position. During data ac-

quisition an individual stimulus is simultaneously applied to each of the other two

position controlled joints.

For each individual payload between mL ∈ {0 g, 100 g, 200 g, 300 g, 400 g} a total

of 10 stimulus responses with a duration of 80 s are recorded at 100 Hz. The data

is subsampled to 20 Hz and randomly split into 50 % for identification and 50 %

for validation. The joint angle amplitude modulation bandwidth is one Hertz. The

amplitudes equally cover the entire joint operating range. The maximum planned
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Figure 10.2.: Joint angles in (a) and (b) along with angular velocities in (c) and (d) as well as

accelerations in (e) and (f) exemplified for two joint stimulus responses recorded at the second

and third actuator.

acceleration is 200 deg/s2. The maximum planned speed is 70 deg/s. For both

joints figure 10.2 exemplifies a stimulus response from the training and one from

the validation data set.

The analytical models as well as the ELM reference share the same inputs and out-

puts. The inputs are [θ2, θ3, θ̇2, θ̇3, θ̈2, θ̈3]
T. The velocities are obtained from numerical

differentiation and filtering with a first order filter and a cut-off frequency of 80 Hz.

The accelerations are obtained from a subsequent numerical differentiation filtering

of the velocity signal with a cut-off frequency of 20 Hz.

The outputs are either the actuator currents iM = [iM,2, iM,3]
T for the current re-

ferred model (10.1.2) or the strains measured close to the joint hubs on the elastic

links ε = [ε21, ε31]
T for the strain referred model (10.2.8).
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Figure 10.3.: Error histograms (gray) with 150 bins for the current models (left) and the strain

models (right) obtained from the validation data set combining all payloads. Estimated normal

distributions are indicated by the black curves.

10.5. Validation

In the first validation step the model errors obtained from the validation data set are

combined for all payloads and visualized in the histograms provided in figure 10.3. It

can be seen, that the distributions for the analytical as well as the data-driven reference

model are well described by normal distributions. The statement holds for the motor

currents as well as the per link strains. The normal distributions show a close to zero

mean. The standard deviation of the data-driven model and the analytical model are

almost equal. The data-driven models generally show a stronger error discretization,

which results in higher Gaussian amplitudes and wider spacing between populated

bins.

The modeling error can be interpreted as a bias free purely random variable. This

indicates that the derived model structure properly explains all significant determin-

istic effects of the damped arm dynamics with different payloads. The data-driven

reference models exhibit equivalent error statistics as the analytical models, which

supports this implication.

Table 10.1 separately collects the identification and validation results on all mod-

els for each individual payload. The listed metrics are the root mean squared error

(RMSE) aggregated on both dimensions of the model output along with the associated

standard deviation σE and the goodness of fit metric (see B.4).

Regarding the current models the goodness of fit metrics for the analytical model

identification basically range around 60 %. On average, the data-driven model shows
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10. Damped Dynamics Modelling

Table 10.1.: Identification results for the analytical (AN) as well as the data-driven model

(ELM) with payloads mL = 0 . . . 400 g.

ELM AN ELM AN ELM AN ELM AN ELM AN

mL [g] 0 100 200 300 400
current models

Identification
RMSE [A] 0.11 0.12 0.16 0.19 0.13 0.17 0.20 0.22 0.22 0.24
σE [A] 0.07 0.07 0.11 0.10 0.09 0.08 0.13 0.12 0.15 0.14
fit [%] 71.02 69.32 57.99 53.36 69.19 38.60 62.97 59.36 63.53 61.28

Validation
RMSE [A] 0.15 0.13 0.20 0.19 0.23 0.22 0.23 0.22 0.28 0.26
σE [A] 0.10 0.08 0.16 0.11 0.23 0.12 0.14 0.13 0.46 0.16
fit [%] 58.92 63.96 50.13 55.65 47.62 52.75 54.50 54.78 40.21 56.96

strain models

Identification
RMSE [µm/m] 12.19 13.11 18.15 19.93 24.86 28.30 28.48 31.83 47.65 53.77
σE [µm/m] 14.22 16.04 18.60 20.63 30.76 33.44 30.22 34.61 62.20 67.19
fit [%] 92.26 91.44 90.40 89.41 87.16 85.83 87.71 86.03 80.07 78.05

Validation
RMSE [µm/m] 17.76 14.92 26.72 25.77 28.86 27.73 33.36 32.36 57.27 54.71
σE [µm/m] 21.84 17.44 40.54 32.45 32.11 27.85 34.92 32.97 78.35 69.44
fit [%] 88.30 90.59 82.02 84.59 86.58 87.75 85.28 85.88 76.02 77.78

larger values compared to the analytical model. The situation changes on the valida-

tion data set. Here the analytical model shows 5 % larger values in proportion to the

data-driven model. Similarly the data-driven model shows an improved identification

fit metric compared to the analytical model. In the case of the strain measurements

this improvement approximately amounts to insignificantly meager 2 %. The ana-

lytical model exhibits the equivalent 2 % improvement compared to the data-driven

model on the validation data set.

These consistent reciprocal goodness of fit results on the identification and val-

idation data sets may indicate a moderate overfitting of the data-driven model. A

reduction of the number of hidden neurons provides a remedy. Nevertheless, this

indication is inconsiderable especially with respect to the current models. Here the

data-driven as well as the analytical model consistently stay away from the 80 %

threshold. Values above the threshold commonly suggest that a model well explains

the signal standard deviation.

A closer look at the time series reveals an answer to that observation. A time

slice of a validation result is exemplified in figure 10.4 (a) and (b). During the first

seconds, where the motors are at rest, the motor currents incorporate substantial

noise. During this period the analytical model chatters between two discrete values.

The data-driven model completely ignores the higher signal dynamics and predicts a

motor current with a clearly visible offset to the measurement. Either model errors

effect the comparatively low goodness of fit values.

Once the joint stimulus motion starts, the chattering of the analytical model stops.

The model responses acceptably agree with the measurements.

The chattering in the analytical model obviously originates from the nonlinear

switching functions in the friction model (3.1.3). The alternative choice of continu-
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Figure 10.4.: Example validation result for the motor currents measured in the second (a) and

third (b) joint for mL = 400 g.

ously differentiable switching functions does not make a difference. The remedy to

the chattering is the reduction of the friction model to a single direction independent

viscous friction term. On the other hand, the drastically poorer explanation of the

dynamic motor currents during the stimulus motions leads to even lower goodness

of fit values with this approach.

The analytical strain models reach well above the goodness of fit metric threshold

of 80 % during identification as well as validation. Individual evaluations even reach

90 %. Only for mL = 400 g it drops slightly below the threshold. A time slice of a

validation result with mL = 400 g is thus exemplified in figure 10.5.

The responses of the analytical model as well as the data-driven model almost

coincide. Both models match the static strain without any chattering during rest.

In total the models tightly track the measurements. Imperfect oscillation damping

sporadically raises a modeling error. Examples for the imperfect oscillation damping

can be seen in figure 10.5

The imperfect oscillation damping is visible in figure 10.5 (a) and (b) around t =
30 s . Heavier payloads effect that strain peaks during fast motion reversals are par-

99



10. Damped Dynamics Modelling

0 5 10 15 20 25 30 35 40
−1000

−500

0

500

1000

(a)

0 5 10 15 20 25 30 35 40
−400

−200

0

200

400

(b)

measurement ELM

ε 2
[µ

m
/

m
]

ε 3
[µ

m
/

m
]

t [s]

analytical

Figure 10.5.: Example validation result for the strains measured on the second (a) and third

(b) link for mL = 400 g.

tially explained by the models. This becomes visible around second 23 as well as 27

for instance.

10.6. Discussion

With this chapter the work contributes a linear relation between the joint torques τ J as

well as the load torque τL(xs) effecting the strain at a strain sensor location xs. On the

basis of the inner loop oscillation damping controller, the oscillatory link dynamics

are negligible. This way the derived theory suggests that the joint referred dynamics

as well as the link strain dynamics of a damped multi-elastic-link robot arm can be

modeled using the identical mathematical structure known from conventional rigid

robots.

The zero centered Gaussian shaped modeling error histograms computed from

extensive dynamics identification experiments including different payloads together

with the slight superiority over the nescient data-driven model validate the theory.
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10.6. Discussion

The identified analytical model is valid to explain the pivotal deterministic portion of

the strain measurements. The figures 10.4 and 10.5 emphasize that the RMSE as well

as the standard deviations presented in table 10.1 are indeed just a small fraction of

the de facto appearing signal ranges.

Equivalent statements hold for the joint current models, even though they have to

be gently alleviated. The key difference between the equations (10.1.2) and (10.2.8) is

that equation (10.1.2) includes the joint friction parameters. Tribology is a very broad

topic. In this work the friction model (3.1.3), which is widely used in robotics, has

been selected because it covers broad range of friction effects and fits into the effi-

cient linear regression framework. More sophisticated friction models, which include

phenomena such as Stribeck friction or hysteretic effects may improve the achievable

results at the cost of parameter non-linearity and aggravated identification. Note that

the friction parameters likely vary over time due to temperature dependance, wear

and tear as well as changes in lubrication (Bona and Indri 2005). Additionally the

gears show backlash. All these impact factors deteriorate the modeling accuracy. The

investigation of the individual impacts of these influence factors is a challenging topic

for future works.

The link strain models are set free from the joint friction, so that the applied strain

gauges directly operate as load side torque sensors. The derived models can be ap-

plied in real-time control such that the proposed modeling technique paves the way

for online payload estimation aiming at onward load adaptation for the inner loop os-

cillation damping controller. A further research direction is the development of direct

force control concepts.
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11
Collision Detection and Reaction

The biological inspiration by the whiskers of rodents and pinnipeds in section 1.1 con-

tributes a major motivation of the present work. It gives reasons for the hypothesis

that the intrinsic link compliance can be exploited to sense contact forces between the

robot and its environment, once the undesired oscillations and deflections have been

sufficiently compensated. The end effector control in the presence of varying static

deflections presented in chapter 9, the oscillation damping evaluated in chapter 8

along with the evident accuracy of the identified damped arm dynamics in chapter 10

strongly confirm these prerequisites to be fulfilled. The way has been paved to invest-

igate the validity of the initial hypothesis in this chapter. The following sections apply

the real-time capable damped dynamics model for the detection of accidental colli-

sions and supplement fast reaction strategies. The reaction strategies are extended to

allow intentional physical human robot interaction.

11.1. Collision detection and isolation

The collision detection is realized by the computation of an appropriate residual sig-

nal. This section introduces and discusses two such residuals.

Direct Strain Residual

The identified strain referred damped dynamics model computes an expectation for

the strain measurements at each time step. Unexpected collisions between the ro-

bot and its environment cause a discrepancy between the expectation and the actual

measurement. A quantitative measure of discrepancy is the direct strain residual:

rε = ε − Iε(θ)θ̈− Cε(θ, θ̇)θ̇− gε(θ). (11.1.1)

The residual vector rε indicates a collision, if the absolute value of any element exceeds

a predefined threshold. The directional information is contained in the sign of the

particular elements. The link involved in the collision can be determined as the last

link in the kinematic chain showing the threshold violation.

The major difficulty of this straightforward residual design lies in the requirement

of the joint angular acceleration to be available. In this work the joint angular accel-

eration is computed through double differentiation of the encoder readings. The res-
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11.1. Collision detection and isolation

ulting amplified noise level deteriorates the detection sensitivity and makes a strong

low-pass filtering necessary. The low-pass reduces the detection reactiveness.

Generalized momentum based residual

The alternative technique proposed by Luca and Mattone (2004) and extended by

Luca and Mattone (2005); Luca et al. (2006) circumvents the computation of the second

order derivatives. It is based on the generalized momentum p of the robot arm, which

is defined as the product of the robot inertia matrix and the joint velocity vector.

As a modification to the original approach the linear relation (10.2.6) is applied in

order to define the strain based equivalent to the generalized momentum:

pε = Iε(θ)θ̇. (11.1.2)

The derivation of the strain based generalized momentum residual based on this

equation is analogous to the one from Luca and Mattone (2005), except that it uses

the strain referred equivalents of the inertia matrix Iε, Coriolis matrix Cε as well as

gravitational load vector gε. A well-known property of the robot dynamics equations

is the skew symmetry of the expression:

İε(θ)− 2Cε(θ, θ̇) = −
(

İε(θ)− 2Cε(θ, θ̇)
)T

. (11.1.3)

Using the symmetry of İε(θ), it allows to write:

İε(θ) = Cε(θ, θ̇) + CT
ε (θ, θ̇). (11.1.4)

The temporal derivative of the generalized momentum (11.1.2) yields:

ṗε = ε + CT
ε (θ, θ̇)θ̇− gε(θ). (11.1.5)

In addition to equation (11.1.2), a second option to compute the generalized mo-

mentum is the integration of (11.1.5), which incorporates the actual strain measure-

ments. The acceleration free generalized momentum based residual is thus defined

as the difference between both options:

rp = KI

[

pε −
∫ t

0
ε + CT

ε (θ, θ̇)θ̇− gε(θ)dt− pε(0)

]

, (11.1.6)

where KI is a positive diagonal gain matrix.

In the case of a collision, the strain measurement ε is the nominal collision free

strain measurement ε f superposed by the collision strain εc. Assuming pε(0) = 0 the

residual shows the first order dynamics:

ṙp = −KI rp + KI εc. (11.1.7)

Each row in rp can be expressed as the output of a transfer function of type:

rp,i =
KI,i

s + KI,i
εc,i. (11.1.8)
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Figure 11.1.: Generalized momentum residual histogram with 75 bins computed on the whole

validation data set described in section 10.5. Estimated gaussian distribution (solid black) as

well as six sigma detection thresholds (dashed black).

From this transfer function the residual may be interpreted as the strain measurement

filtered by a first order filter. Most importantly, the residual involves numerical in-

tegration, but it is stationary for static contacts and drops back to zero for vanishing

collision strain. This is crucial for the residual based collision reaction in section 11.2.

The isolation of the collided link works identically to the direct strain residual rε dis-

cussed before. Again, the absolute residual values indicate whether a collision has

occurred, while the sign carries the directional information.

The cut-off frequencies are tunable through KI and trade off the detection reactive-

ness and noise sensitivity. Compared to the low-pass filtering required for the direct

strain alternative, the absence of a second order numerical derivative enables larger

cut-off frequencies on behalf of an improved detection reactiveness. Therefore, the

generalized momentum based collision detection is employed in this work.

Tuning thresholds

Next to the measurement noise, the dynamics model accuracy dominates the tuning

of the residual thresholds and hence, the collision detection sensitivity. Figure 11.1

shows the histograms for the generalized momentum based residual. The histograms

are computed on the whole validation data set as described in section 10.5. It includes

the results for all test payloads between 0 g and 400 g.

Both histograms are well approximated by the estimated Gaussians. Only the his-

togram for the third joint-link module shows a slightly irregular error accumulation

around −1.3 µm/m. The detection thresholds are chosen to be six times the standard

deviation identified from the Gaussian distribution estimated on each residual. This

way, the irregular error accumulation of the third joint-link-module does not have any

practical impact on the collision detection.

Luca and Mattone (2004) propose an adaptive thresholding technique for collision

detection. It has been successfully applied to conventional rigid link and elastic joint

robots. The transfer to the elastic link case is left for future investigations.
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Figure 11.2.: Integration of the collision reaction scheme into the independent joint controllers

at the velocity controller level (a) and network illustration of the interaction between collision

reaction and oscillation damping (b).

11.2. Collision reaction

The idea behind the collision reaction is to generate a joint motion command, which

limits hazardous effects of the impact in the post collision phase. With an elastic link

robot simultaneously the oscillation damping has to be properly maintained during

the evasive maneuver.

Reaction admittance

Luca et al. (2006) perform the collision reaction on a torque controller level. In this

work the collision reaction is integrated into the existing general controller architec-

ture described in section 3.2. The integration can be elegantly done on the velocity

controller level for each individual joint. This is visible in figure 11.2 (a), which repres-

ents an extended extract of figure 3.3. The integration also reduces the effect of joint

friction on the reactive motion. At the instant of a collision detection, the nominal

reference θ̇PD to the velocity controller is replaced by the reaction velocity θ̇r.

Expression (4.2.3) transforms the residual, which is a low-pass filtered copy of

the collision strain εc, into the equivalent collision torque τc acting on the joint-link-

module. The relationship between the commanded collision reaction velocity θ̇r and

this collision torque τc is defined by introduction of the generic reaction admittance

Gr:

Gr(s) =
θ̇r(s)

rp(s)
=

kor

mr s + fr + kr/s
. (11.2.1)

Therein mr, fr and kr are the inertial, resistive and capacitive components. The gain

kor can be tuned to generate an overreactive retreat maneuver in the case of a detected

collision by choosing kor > 1.
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11. Collision Detection and Reaction

During the post collision phase the total input to the velocity controlled joint-link-

module GCVL originates from two branches of the network diagram 11.2 (b). It is

driven by two sources: the residual source with the effort variable rp in the upper

branch as well as the oscillation source with the effort ε − µε in the lower branch. The

reaction admittance Gr as well as the damping admittance Gd convert the efforts into

the flow variables θ̇r and θ̇d, which add to the velocity controller input flow.

Even though a collision inevitably excites oscillations on one hand and strong os-

cillations yield non-zero residuals on the other hand, both branches can be seen as

decoupled from each other. The oscillation feedback with damping admittance Gd

has been shown to stably suppress oscillations irrespective of their origin. The resid-

ual is stationary during contact and vanishes with the collision strain. Thus, with a

stable reaction admittance Gr, the stability of the total damped system with integrated

collision reaction is plausible.

Reaction strategies

A variety of reaction strategies are considerable. Three choices are exemplified with

the multi-elastic-link arm TUDOR in this work.

Just stop: The simplest reaction strategy is to just stop all motions by commanding

θ̇r = 0.

Reflex behavior: The directional information encoded in the sign of the residual is em-

ployed to implement an escaping reflex behavior. This is achieved by choosing

small inertial mr and friction fr parameters, while the spring constant kr is set

to zero. With this setting the robot mimics a small mass gliding on a low fric-

tion surface and colliding with a presumably larger mass. As a result the robot

bounces back from any collision point. An overreaction gain kor > 1 amplifies

this behavior.

Physical interaction mode: During a physical interaction such as a kinesthetic teaching

scenario, the human operator desires to easily reconfigure the arm. This can be

achieved by setting the overreaction gain kor = 1 and the spring constant kr = 0.

The inertial mr and friction fr parameters are tuned to provide a convenient

haptic feedback to the operator. This tuning however depends on the particular

task to be taught as well as the individual user preferences.

11.3. Experimental results

This section provides experimental results for the collision detection and reaction for

blunt as well as sharp impacts and physical interaction with a human. Additional

results are provided in appendix C. The experiments utilize the force sensing contact

cube described in subsection 2.4.
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Figure 11.3.: Collision detection and reaction results for blunt impacts with the contact cube.

Photograph illustrating the commanded pose (a) as well as the collision instant (b) and the

rest position after collision reaction using the admittance-strategy (c). Time evolution of the

second joint angle (d) and angular velocity (e) for the different reaction strategies along with

the normal force Fz at the contact cube, the current (g), the residual (h) and the strain (i)

belonging to the second joint.

Blunt impacts with the contact cube

The first collision detection and reaction experiments are blunt direct collisions with

the contact cube introduced in subsection 2.4. Figure 11.3 (a) illustrates the com-

manded robot goal pose θ = [0◦, 150◦, 60◦]T with the contact cube put aside. The

robot starts in the joint configuration θ = [0◦, 45◦, −45◦]T while the contact cube is

placed in the path as visible in figure 11.3 (b).

If the collision detection is deactivated the joint controller continues to minimize the

joint angle position error after the contact. This is visible for the second joint angle in

figure 11.3 (d), the angular velocity not settling in 11.3 (e) and the steadily increasing

motor current in 11.3 (g). The joint angle indeed reaches the commanded value, while

the elastic link strain depicted in figure 11.3 (i) constantly increases with the contact

force provided in figure 11.3 (f).

Using the stop-strategy the angular velocity immediately drops to zero. A small
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Figure 11.4.: Collision detection and reaction results for sharp impacts with a balloon placed as

compliant object on the contact cube. Snapshots applying the stop-strategy (top row) as well as

the admittance strategy (second row) before (left column), during (center column) and after

(right column) the instant of collision. Angle (a) and angular velocity (b) for the second joint

along with the normal force measured at the contact cube (c).

overshoot followed by a quick undershoot in the corresponding velocity graph 11.3 (e)

are visible right after the collision. They attribute to the oscillation damping, which

suppresses repeated bounces against the cube. The residual belonging to the second

joint is drawn in figure 11.3 (h). After the impact it reaches a steady state value indic-

ating the persistence of the contact situation. The curves for the contact force 11.3 (f)

as well as the strain 11.3 (i) settle at a constant level.

The admittance-strategy causes the robot to move back from the cube to the rest

position depicted in figure 11.3 (c). Equivalent to the stop-strategy the oscillation

damping action is clearly visible in the joint angular velocity signal 11.3 (e). After the

retreat maneuver the residual 11.3 (h) and the contact force 11.3 (f) come back to zero.

From the force measurement at the cube the total contact duration is determined to

be 10 ms.

The maximum absolute force measured at the cube is 1.90 N and equal for both the
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11.3. Experimental results

stop- as well as the admittance-strategy. With 0.17 N the steady state contact force

using the stop-strategy is just about 8 % of the maximum contact force.

Sharp impacts with a balloon

In view of the oscillatory dynamics investigated in chapter 4, the contact reflects

a sudden change to unknown boundary conditions. The contact cube is a rather

rigid body. Experiments with a balloon placed on the contact cube demonstrate the

behavior of the oscillation damping as well as the surrounding collision detection and

reaction scheme during contact with a compliant object.

Results with blunt impacts and no collision detection, using the stop- as well as the

admittance-strategy are provided in the appendix C.1. In this subsection the effective-

ness of the collision detection and reaction with an elastic link robot is demonstrated

in figure 11.4 based on sharp impacts with the balloon. The sharp impacts are realized

with screw fixed to the end effector. The screw has been manually sharpened using a

drill machine and a file.

The top row of figure 11.4 makes it clearly visible that just stopping all joint motions

indeed limits but does not minimize the consequences of an impact. The robot does

not crash into the contact cube, but the screw bursts the balloon. The blast excites link

oscillations as visible in figure 11.4 (c). In contrast, the reflex strategy immediately

causes the robot to reverse the joint motion, which saves the balloon.

Malzahn and Bertram (2013, at 2:37 min) provide an online available video with

this experiment.

Physical interaction with a human

In this experiment the robot is commanded to continuously move between the two

joint configurations θ = [0◦, 45◦, −45◦]T and θ = [0◦, 135◦, 45◦]. Figure 11.5 (a)

collects the joint angles and figure 11.5 (b) the joint angular velocity for this exper-

iment. While performing the task the residuals for both links are zero as visible in

figure 11.5 (c). At second 5.17 a human has entered the robot workspace and inter-

rupts the performed task by blocking the robots way as shown in figure 11.6 (d). This

is equivalent to the experiments on blunt impacts presented in subsection C.1. The ab-

solute residuals in both links impulsively increase driving the reflex-strategy to move

the robot back immediately. The robot comes to rest at second 5.80 in a distance to

the actual contact point as illustrated in figure 11.6 (e). After that, the robot switches

to interaction mode. As an alternative to the more cautious reflex-strategy the stop-

strategy could have been chosen to directly start the interaction with the robot at the

location of task interruption.

At second 7.02 the human touches the robot as depicted in figure 11.6 (f) and guides

the robot to the new pose depicted in figure 11.6 (g). The interaction mode admits

to do this with just a fingertip at the end effector. Measurements with a force meter

show that the required force is less than 1 N. The manual guidance causes irregular

changes in the per link residuals with high frequency content. The reflected admit-

tance nevertheless filters this input and yields a smooth joint motion.
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Figure 11.5.: Measurements for the joint angles (a), joint velocities (b) and residuals (c) during

physical human-robot-interaction. The marked time instants correspond to the snapshots

presented in figure 11.6 (d)-(o).

In the next step multiple contacts occur. The generalized momentum based ap-

proach yields decoupled residuals for each link and isolates the individual contacts

as long as the contact force vector has a component normal to the preceding links.

This allows for independent contact reactions on each link. To demonstrate this, the

human places another finger at the end of the second link and reverses the inter-

action force exerted at the end effector around second 9.83. The action results in a

reconfiguration from the elbow-up to the elbow-down pose shown in figure 11.6 (h).

Back in the elbow-up pose (see figure 11.6 (i)), an impulsive interaction force at

the end effector is directed in parallel to the third link. This way, the human shoves

the robot without significantly altering the relative configuration between the second

and third joint as visible in figure 11.6 (j). The impulsive interaction is visible in the

residual for the second joint only.

A short time after the shove the robot comes to rest at the joint configuration shown

in figure 11.6 (k). The distance travelled in response to the shove can be arbitrarily ad-

justed to the human’s requests in a broad range through the virtual friction modeled
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11. Collision Detection and Reaction

in the interaction admittance.

The transition between the figures 11.6 (k) and (l) supplements the previous demon-

stration of the contact isolation. The robot can not only be guided by a contact at the

end effector, but also by pushing at the end of the second link. The figures 11.6 (k)

and (l) exemplify the reconfiguration between the elbow-up and elbow-down pose in

the other half of the robot workspace. The shove from figure 11.6 (n) to (o) mirrors

the previous example. Finally figure 11.6 (o) illustrates the interaction by grasping

the second arm in the vicinity of the strain gauges close to the joint.

Malzahn and Bertram (2013, at 3:47 min) provide an online available video with

this experiment.

11.4. Discussion

The chapter experimentally demonstrates the collision detection and reaction with

a multi-elastic-link robot arm under gravitational influence. This way, it puts the

biological inspiration drawn from the whiskers of rodents and pinnipeds into real

practice.

The experimental results demonstrate different reaction strategies. Each presen-

ted strategy has its merits and shortcomings. During constrained collisions the stop

strategy would mean that a person or object will remain clamped between the robot

and the constraining surface. Any contact force would persist and potentially exper-

ienced as a threat to a human. The alternative reflex behavior causes the robot to

bounce back from any collision point. While the balloon experiment descriptively

demonstrates the improved sensitivity of this approach, the challenge is to tune the

parameters of bouncing behavior. Consider a service robot carrying a cup of coffee.

If the escape motion is too dynamic, the robot would spill the coffee or cause new

collisions. Furthermore, after the danger of collision is successfully averted, the robot

should finish the originally given task.

The appropriate strategy selection and tuning is a challenging research direction,

which involves higher level cognition, situation awareness and reasoning performed

by the robot.

With this chapter the present work proves for the first time the practical feasibility to

provide the required low level functionalities for such higher level decision processes

with a multi-elastic-link robot arm. Up to now this has only been achieved with

elastic joint robots. It ennobles intrinsic link elasticity from "just a problem" to a

factual opportunity for physical interaction between the robot and its environment.
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Link elasticity is frequently considered an undesired effect in the mechanical design of

robot arms and comparable machines. The driving motivation behind this work ori-

ginates from the contrary perspective of exploiting the intrinsic compliance to grant

elastic link robots force sensing capabilities and to simultaneously reduce the over-

all arm masses. The underlying hypothesis proposes that link elasticity is not ne-

cessarily just a problem, which degrades positioning accuracy and prolongs settling

times. The thesis contributes new theoretical concepts confirmed by extensive exper-

imental results in the fields of oscillation damping and end effector positioning for

a multi-elastic-link arm in the presence of load and joint configuration dependent

static deflections under gravity. On top of that, the work practically demonstrates the

general feasibility of detecting and reacting to external contact forces with a multi-

elastic-link robot operating under gravity. The contact scenarios include unpredicted

or accidental collisions between the robot and the environment as well as intentional

contacts for physical human robot interaction. A guideline, which summarizes the

major steps required to deploy the techniques developed in this thesis, is provided in

appendix D.

Experimental setup and arm dynamics

Multi-elastic-link robots operating under gravitational influence, which allow to test

devised modeling and control algorithms in real experiments, are very rare. There-

fore, the work starts from scratch with the development of an experimental setup. The

complete experimental system consists of the three degree of freedom robot TUDOR

along with external sensory equipment to assess the true end effector position and

contact forces as reference.

The work comprises a comprehensive literature review and contributes an investig-

ation towards the sensitivity of the plant dynamics with respect to joint configuration

and payload changes, the effect of backlash and imperfect link clamping as well as

generally unknown boundary conditions during physical contacts with the environ-

ment. The theoretical investigation is supported by extensive experiments.

With the gained insights the present work proposes a decentralized control archi-

tecture. The kinematic chain is subdivided into independent joint link modules, for

which joint angular and oscillation damping controllers are individually tuned.
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12. Conclusion and Outlook

Oscillation damping control

Three different approaches for strain based oscillation damping are investigated. All

three approaches are set free from a computation of the plant dynamics at runtime or

the explicit knowledge of all boundary conditions.

The first proposed oscillation damping controller utilizes a truncated model of the

oscillatory dynamics and is devised using the root locus method applied to the lin-

earized plant. The second approach has originally been proposed by O’Connor and

identifies wave propagation properties in a lumped parameter model. This thesis

contributes a unified view on both approaches by revealing their identical controller

structure with minor differences in the parameter tuning. The third proposed con-

trol approach considers the distributed nature as well as continuous wave dynamics

of elastic beams and waives the need for any truncation or discretization. Structural

similarities with the previous approaches suggest that it represents a frequency ad-

aptive generalization of these schemes. A thorough theoretical investigation with the

objective of deriving a global unified view on wave based controllers for elastic link

robots is a promising future research direction.

The work contributes the derivation, practical application and comparison of the

individual oscillation damping concepts at different levels within the underlying cas-

caded joint angular controller. As a conclusion the oscillation damping controllers

operating on the velocity level prove to be most robust with respect to imperfect static

strain cancellations in the presence of gravitational influences and joint friction. At

the same time they have the least impact on the overall joint positioning behavior.

As a concluding remark, full integral strain feedback laws for elastic-link robots un-

der gravitational influence are definitely not recommended. Imperfect static strain

cancellations yield growing steady state errors and deteriorate repeatability.

All presented concepts effect a rapid decay of structural oscillations induced by joint

accelerations and step-like or periodic disturbances, even near resonance. All these

results are robust to the backlash present in the gears. Of course, more homogenous

experimental results can be expected throughout the entire workspace, if backlash can

be eliminated by hardware.

This thesis focuses on multi-elastic-link arms, which predominantly oscillate in a

single plane. Future research should be concerned with the extension of the presented

oscillation damping controllers to multiple planes of oscillation. A major challenge

to solve in this case is to maintain the controllability of the oscillatory degrees of

freedom. One option is to avoid uncontrollable joint configurations in analogy to

kinematic singularities. In contrast, it should be asked and investigated, if an elastic

link robot with multiple planes of oscillations can be designed without the existence of

such configurations. In fact, the present work already illustrates that a single joint link

module can be used to dampen oscillations in distant joint-link-modules. Exploiting

inter module couplings could be a key.

End effector position control

With the readily damped oscillations, the divide and conquer strategy to the control

of elastic link robot arms already pays off in regard to the end effector positioning.
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Only the static deflections remain to be compensated in comparison to conventional

arms. The thesis presents two methods to solve the end effector positioning task. The

first approach is a visual servoing technique, which preserves the idea of relying on

only marginal model knowledge during the controller design. Well established visual

servoing control schemes minimize the relative pose error between a current and a

desired view of the scene. To approach the goal view they command the direction

of rotation for each individual joint through the differential robot kinematics. The

work demonstrates the sufficiency of the differential kinematics approximation for

the elastic link arm TUDOR on the basis of the equivalent rigid robot Jacobian.

In spite of the elegance and minimal modeling efforts associated with the visual

servoing approach, a shortcoming is the dependance of the control result on the actual

scene structure, which has to be adequately rich in visual features. This motivates the

second positioning concept proposed in this work. It is based on the data driven

learning of the forward and inverse kinematics along with a payload estimator using

MLP neural networks. The key to obtain precise models is to transform the original

input features into nonlinear features using the regressors known from the analytical

rigid body forward and inverse kinematics. In the case of the inverse kinematics the

estimated payload is an additional aggregated feature.

A conventional six degree of freedom robot arm usually provides up to sixteen solu-

tions for a given pose within the dexterous workspace. The ambiguity is resolved by

selecting the feasible solution being the closest to the current joint configuration. Sim-

ilar to that the ambiguity resolution in the inverse kinematics of TUDOR is achieved

by the multi-model approach, in which one dedicated model is trained for the elbow-

up and elbow-down postures.

The work exemplifies the speed and accuracy of the kinematics model in conjunc-

tion with the underlying oscillation damping controller by realizing ball catching ex-

periments with a multi-elastic-link robot arm. The balls are sequentially but irrepro-

ducibly thrown by a human. The robot intercepts the ball with a net at the piercing

point of the ball trajectory with the robot workspace.

Since the successful experiments contribute a major step regarding point-to-point

maneuvers, future works should be dedicated to extensions for precise trajectory con-

trol of multi-elastic-link arms under gravity. Looking at the actually rather imprecise

human motion apparatus it becomes apparent that a lot of human skills emerge from

learned and continuously adapted perception-action-mappings working in a feed-

forward sense. From this inspiration, it can be expected that the augmentation of the

controllers devised in this work by suitable feed-forward schemes leads to fruitful

results. Additionally, the work has proven that the link strains as well as the joint

angles carry the required information to compute the forward and inverse kinemat-

ics. Since analytical solutions are favorable, investigations to derive them should be

pushed forward in this direction by continuing research.

Collision detection and physical interaction

The oscillation damping and the end effector positioning address the originally un-

desired challenges associated with link elasticity. The accomplished results finally

allow for the investigation of the suspected potentials in this thesis. The conducted
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investigations reveal a linear relationship between the damped link strains and the

joint load torques. The main difference originates from the friction present in the

joints. In the absence of friction, the link strains could be directly transformed into

the actuator electrical torques and vice versa. The linear mapping is valid in the whole

workspace for a constant given payload.

The mathematical structure of the joint referred arm dynamics known from con-

ventional rigid robots can be directly applied to describe the strain referred damped

arm dynamics. As a consequence, collision detection and reaction schemes origin-

ally developed for rigid and elastic joint robots may be straightly applied to damped

elastic link robots. The work verifies these findings in illustrative experiments includ-

ing blunt and also sharp collisions with intrinsically compliant or fragile objects as

well as a human arm. A stopping and a reflex behavior is implemented as reaction

strategy to detected collisions. Both strategies are shown to visibly reduce the harm

potential of an unforeseen impact situation with a variety of contact impedances.

Beyond the detection and reaction to accidental collisions the work demonstrates

how the force sensing capabilities may be extended to switch the robot into a back-

drivable mode. This enables intentional physical human robot interaction such as

kinesthetic teaching of frequently varying tasks by a non-robotic specialist.

A consequential next step for future work is to take advantage of the force sensing

capabilities evidenced in this work for analytical payload identification. This will help

to automatically adapt the collision detection scheme and to even improve the oscil-

lation damping as well as end effector positioning results. The controllers proposed

in the present work enable ongoing research to be engaged with the development of

direct and hybrid force controllers with a multi-elastic-link robot.

Conclusion

Within the big picture of the affordable and intrinsically safe "household automaton

[...] about the price of a good automobile" (Heinlein 1957) it must be humbly kept in

mind, that TUDOR is a three degree of freedom multi-elastic-link robot with oscilla-

tions taking place mainly in the vertical plane. While short- and mid-term research

directions are given above, long-term research must spawn elastic link robots arms

with six to seven degrees of freedom and strive for the realization of practically relev-

ant robotics tasks.

The contributed concept of the present work follows a divide-and-conquer strategy in that it

separates the control objectives of low-level joint control, oscillation damping and finally end

effector positioning as well as collision detection and reaction.

The results achieved and exemplified with TUDOR strongly confirm that it is in-

deed feasible to have a lightweight robot with intrinsic force sensing capabilities by

relaxing the persistently strong demands for robot link stiffness. The commonly un-

desired link elasticity is intentionally and visibly introduced in the structure of TU-

DOR. The devised control algorithms alleviate the detrimental effects and successfully

exploit the potentials. This confirms:

Link elasticity is not ultimately "just a problem".
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A
Hardware Parameters

This appendix summarizes the hardware properties of all important components of

TUDOR as well as the sorrounding reference systems detailed in chapter 2.

A.1. Elastic links

The elastic links are spring steel blades with rectangular cross section.

parameter symbol unit link 1 link 2 link 3

length lB mm 0 430 410

width bB mm 0 15 15

height 2 yb mm 0 4 4

density ρb 103kg/m3 7.8 7.8

Youngs modulus E 109 N/m2 200 200

A.2. Computer systems

All employed computer systems are standard desktop PCs (compare figure 2.9).

parameter unit xPC console stereo cam eye in hand

operating

system

xPC Target Win XP Win XP Ubuntu 12.04

LTS

type TL-

Electronic

CL41xx

DELL Opti-

plex 755

DELL Opti-

plex GX280

DELL Opti-

plex 755

CPU name Intel Pen-

tium 4

Intel Core 2

E6650

Intel Pen-

tium 4

Intel Core 2

Duo E6750

CPU clock GHz 3.8 2.33 2.66

RAM MB 2048 2048 2048 3072

RAM clock MHz 533 400 266 800
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A.3. Actuators

parameter symbol unit actuator 1 actuator 2 actuator 3

model EC-max 40 EC-max 40 EC-max 30

overall length lM mm 185.3 198.8 150.9

Ø motor dM mm 40 40 30

Ø gear dG mm 52 52 32

gear ratio nM 156:1 230:1 246:1

gear backlash deg <1 <1 <1

rotor and gear

inertia∗
IM 10−6 kgm2 9.19 9.41 0.82

pos. viscous

friction∗
k+v 10−5 Nms/rad 2.21 1.86 0.26

neg. viscous

friction∗
k−v 10−5 Nms/rad 2.11 1.86 0.23

pos. coulomb

friction∗
k+c 10−3 Nm 0.46 3.34 1.49

neg. coulomb

friction∗
k−c 10−3 Nm 7.25 1.15 2.40

torque con-

stant

kτ 10−3 Nm/A 44.8 44.8 12.9

joint ranges deg [−170, 180] [−14, 192] [−102, 102]
maximum

speed

deg/s 184 125 146

max. contin-

ous current

A 3.95 3.95 2.85

max. intermit-

tent current

A 11.85 11.85 8.55

max. contin-

ous torque

Nm 30 30 6

max. intermit-

tent torque

Nm 45 45 7.5

encoder resol-

ution

1/rev. 500 500 500

amplifier

gain∗
kamp A/V 1.39 1.39 1.39

amplifier cut-

off frequency∗
ωamp Hz 833 833 833

mass∗ kg 0.5410 1.6680 0.5885

Parameters marked with an asterisk (∗) have been experimentally identified within

this work (see section 3.1). All other parameters are taken from the vendor’s

datasheets. Joint ranges, maximum joint speeds as well as continuous and

intermittent torques are referred to the gear output.
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A.4. Sensors

Strain sensors

The strain sensors applied in this work are FAE-12S-35-S6E-P type strain gages man-

ufactured by Vishay Precision Group. The measurement amplifiers are GSV-1L by

ME-Messsysteme GmbH.

parameter symbol unit value

sensing element foil-gage

alloy constantan

carrier material polyamide

total gage length mm 5.61

total gage width mm 2.67

active gage length mm 3.18

gage resistance Ω 350 ± 0.2%

creep compensation 8.5

temperature compensation 10−6/◦C 10.8

Inertial measurement unit

The inertial measurement sensor is a CHR-6D unit consists of a LPR510AL 3-axes

MEMS rotation rate sensor as well as a ADXL335 3-axes accelerometer. It ships with

a 32 bit ARM Cortex processor operating at 64 Mhz.

parameter symbol unit value

supply voltage V 3.3

resolution bit 16

gyroscope range ◦/s ±400

acceleromenter range 9.81m
s ±3

mass g 1.5

FIR cutoff frequency Hz [10, 140]

Stereo camera system

The stereo camera system comprises of two VRmC-3+ cameras manufactured by

VRmagic. Both are equipped with a wide angle lens.
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parameter symbol unit value

horizontal resolution px 638

vertical resolution px 478

horizontal pixel size µm 6

vertical pixel size µm 6

pixel clock MHz [5, 26.6]

frame rate Hz 50

length mm 27.0

width mm 36.0

height mm 36.0

focal length mm 4.2

shutter rolling

Contact cube

The 6D force/torque sensor of type FT Gamma manufactured by ATI constitutes the

core of the contact cube described in section 2.4.

parameter symbol unit value

mass g 225

range Fx, Fy N ±65

range Fz N ±200

range τx, τy Nm ±5

range τz Nm ±5

resolution Fx, Fy N ±1/40

resolution Fz N ±1/20

resolutionτx, τy Nm ±1/667

resolution τz Nm ±1/667
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B
Mathematical Definitions and Derivations

This appendix contains mathematical definitions and derivations to support the ma-

terial provided in this work. It is intended to render the document self-contained.

B.1. Equivalences of trigonometric, hyperbolic and

exponential functions

The general solution of the mode shape ODE can be written using exponential or

hyperbolic functions. The derivation of their equivalence as well as the transformation

between the corresponding coefficients requires knowledge about the mathematical

relationship between:

• . . . trigonometric and exponential functions:

e j x = cos(x) + j sin(x) , (B.1.1)

e− j x = cos(x)− j sin(x) , (B.1.2)

ey+ j x = ey (cos(x) + j sin(x)) , (B.1.3)

sin(x) =
e j x − e− j x

j2
, (B.1.4)

cos(x) =
e j x + e− j x

2
; (B.1.5)

• . . . trigonometric and hyperbolic functions:

sin(x) = − j sinh( j x) , (B.1.6)

cos(x) = cosh( j x) , (B.1.7)

sinh(x) = − j sin( j x) , (B.1.8)

cosh(x) = cos( j x) ; (B.1.9)

(B.1.10)
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• . . . hyperbolic and exponential functions:

ex = cosh(x) + sinh(x) , (B.1.11)

e−x = cosh(x)− sinh(x) , (B.1.12)

sinh(x) =
ex − e−x

2
, (B.1.13)

cosh(x) =
ex + e−x

2
. (B.1.14)

B.2. Derivatives of general solutions to the boundary value

problem

The derivation of particular solutions to the elastic beam boundary value problem

requires the spatial derivatives of the general solution.

• In the hyperbolic notation the derivatives are:

Φ(x) = â1 sinh (kω x) + â2 cosh (kω x) + . . .

+ â3 sin (kω x) + â4 cos (kω x) ,
(B.2.1)

dΦ(x)

dx
= kω (â1 cosh (kω x) + â2 sinh (kω x) + . . .

+ â3 cos (kω x)− â4 sin (kω x)) ,

(B.2.2)

d2Φ(x)

dx2
= k2

ω (â1 sinh (kω x) + â2 cosh (kω x) + . . .

− â3 sin (kω x)− â4 cos (kω x)) ,

(B.2.3)

d3Φ(x)

dx3
= k3

ω (â1 cosh (kω x) + â2 sinh (kω x) + . . .

− â3 cos (kω x) + â4 sin (kω x)) .

(B.2.4)

• In the exponential notation the derivatives compute to:

Φ(x) = + â e− j kω x + − â e j kω x + + ân e−kω x + − ân e kω x, (B.2.5)

dΦ(x)

dx
= kω

(

− j + â e− j kω x + j − â e j kω x − + ân e−kω x + − ân e kω x
)

, (B.2.6)

d2Φ(x)

dx2
= k2

ω

(

−1 + â e− j kω x − − â e j kω x + + ân e−kω x + − ân e kω x
)

, (B.2.7)

d3Φ(x)

dx3
= k3

ω

(

j + â e− j kω x − j − â e j kω x − + ân e−kω x + − ân e kω x
)

. (B.2.8)

B.3. Characteristic equation of the boundary value problem

This section derives the characteristic equation of the boundary value problem defined

in section 4.4. The boundary conditions are given in the equations (4.4.1) to (4.4.4).
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B.3. Characteristic equation of the boundary value problem

The first boundary condition (4.4.1) together with the general solution to the bound-

ary value problem (4.3.6) yields:

Φ(x)|x=0 = â4 + â2 = 0 ⇔ â4 = −â2. (B.3.1)

From the second boundary condition (4.4.1) and the derivatives (B.2.2) as well as

(B.2.3) â3 computes to:

â3 =
2EIzkω

kr
â2 − â1 . (B.3.2)

With these results the equations (B.2.1) to (B.2.4) simplify to:

Φ(x) = â1

(

sinh (kω x)− sin (kω x)
)

+ . . .

+ â2

(

cosh (kω x) +
2EIzkω

kr
sin (kω x)− cos (kω x)

)

,
(B.3.3)

dΦ(x)

dx
= kω

(

â1

(

cosh (kω x)− cos (kω x)
)

+ . . .

+ â2

(

sinh (kω x) +
2EIzkω

kr
cos (kω x) + sin (kω x)

)

)

,

(B.3.4)

d2Φ(x)

dx2
= k2

ω

(

â1

(

sinh (kω x) + sin (kω x)
)

+ . . .

+ â2

(

cosh (kω x)− 2EIzkω

kr
sin (kω x) + cos (kω x)

)

)

,

(B.3.5)

d3Φ(x)

dx3
= k3

ω

(

â1

(

cosh (kω x) + cos (kω x)
)

+ . . .

+ â2

(

sinh (kω x)− 2EIzkω

kr
cos (kω x)− sin (kω x)

)

)

.

(B.3.6)

The coefficient â2 can now be expressed solely in terms of â1 by combining bound-

ary condition (4.4.3) with the results (B.3.4) and (B.3.5):

â2 =

(

ρb

(

sin
(

βL

)

+ sinh
(

βL

)

)

+ ILk3
ω

(

cos
(

βL

)

− cosh
(

βL

)

)

)

· . . .

·
(

2
EIz

kr

(

kωρb sin
(

βL

)

+ ILk4
ω cos

(

βL

)

)

+ . . .

− ρb

(

cosh
(

βL

)

+ cos
(

βL

)

)

+ . . .

+ ILk3
ω

(

sinh
(

βL

)

+ sin
(

βL

)

)

)−1

â1. (B.3.7)

In combination with the simplified expressions (B.3.3) and (B.3.6) the fourth bound-
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ary condition (4.4.4) finally yields the characteristic equation:

kωEIz

Kr

(

cos
(

βL

)

sinh
(

βL

)

− cosh
(

βL

)

sin
(

βL

)

+ . . .

−2kωmL

ρb
sin
(

βL

)

sinh
(

βL

)

− 2k3
ω IL

ρb
cos

(

βL

)

cosh
(

βL

)

+ . . .

−k4
ω ILmL

ρb

(

cos
(

βL

)

sinh
(

βL

)

+ cosh
(

βL

)

sin
(

βL

))

) + . . .

+ mL
kω

ρb

(

cos
(

βL

)

sinh
(

βL

)

− cosh
(

βL

)

sin
(

βL

))

+ . . .

− IL
k3

ω

ρ

(

cos
(

βL

)

sinh
(

βL

)

+ cosh
(

βL

)

sin
(

βL

))

+ . . .

+ ILmL
k4

ω

ρ2
b

(

1 − cos
(

βL

)

cosh
(

βL

))

+ . . .

+ 1 + cos
(

βL

)

cosh
(

βL

)

= 0, (B.3.8)

where βL = kω L.

Orthogonality of modes and normalization

Consider two solutions yu(x, t) and yv(x, t) to the boundary value problem with the

conditions (4.4.1) to (4.4.4). The associated natural frequencies are ωu and ωv. In

search for a convenient normalization and orthogonality relations, the beam equation

of motion (4.2.8) is written for the case ρext(x, t) = 0:

− EIz
d4yu(x)

dx4
= ρbω2

u yu(x), (B.3.9)

where the result of equation (4.3.8) allows to omit the time argument.

The two solutions yu(x) and yv(x) are joined by multiplication of (B.3.9) with yv.

The integration over the beam length yields:

−
∫ L

0
EIz yv(x)

d4yu(x)

dx4
dx =

∫ L

0
ρbω2

u yv(x)yu(x)dx, (B.3.10)

The idea for the derivation of the orthogonality relations is to level the derivative

orders of yu(x) and yv(x) on the left side of this equation. This is done with two steps

of integration by parts. The first step yields:

−
∫ L

0
EIz yv(x)

d4yu(x)

dx4
dx = −

(

EIz yv(x)
d3yu(x)

dx3

)∣

∣

∣

∣

∣

L

0

+ . . .

+
∫ L

0
EIz

dyv(x)

dx

d3yu(x)

dx3
dx. (B.3.11)
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B.3. Characteristic equation of the boundary value problem

The second integration step is performed on the new integral:

∫ L

0
EIz

dyv(x)

dx

d3yu(x)

dx3
dx = −

(

EIz
dyv(x)

dx

d2yu(x)

dx2

)∣

∣

∣

∣

∣

L

0

+ . . .

−
∫ L

0
EIz

d2yv(x)

dx2

d2yu(x)

dx2
dx. (B.3.12)

At this point the derivative orders are levelled in the integrand. The boundary

conditions (4.4.1) and (4.4.4) simplify the first summand of the first step (B.3.11):

−
(

EIz yv(x)
d3yu(x)

dx3

)∣

∣

∣

∣

∣

L

0

= −mLω2
u yv(x)|x=L yu(x)|x=L . (B.3.13)

Assuming the clamping to be very stiff, the boundary condition (4.4.2) tends to zero.

Together with boundary condition (4.4.3) first summand of the second step simplifies

to:

−
(

EIz
dyv(x)

dx

d2yu(x)

dx2

)∣

∣

∣

∣

∣

L

0

= −ILω2
u

dyv(x)

dx |x=L

dyu(x)

dx |x=L
. (B.3.14)

Insertion of (B.3.13) and (B.3.14) in (B.3.9) results in:

∫ L

0
ρbω2

u yv(x)yu(x)dx = −ILω2
u

dyv(x)

dx |x=L

dyu(x)

dx |x=L
+ . . .

− mLω2
u yv(x)|x=L yu(x)|x=L . (B.3.15)

An analogous result is obtained by writing (B.3.9) in terms of yv and following the

same steps as before:

∫ L

0
ρbω2

v yu(x)yv(x)dx = −ILω2
v

dyu(x)

dx |x=L

dyv(x)

dx |x=L
+ . . .

− mLω2
v yu(x)|x=L yv(x)|x=L . (B.3.16)

The subtraction of both equations yields:

(

ω2
u − ω2

v

)

(

∫ L

0
ρb yv(x)yu(x)dx + . . .

+ IL
dyu(x)

dx |x=L

dyv(x)

dx |x=L
+ mL yu(x)|x=L yv(x)|x=L

)

= 0. (B.3.17)

For u 6= v this can only be satisfied if:

∫ L

0
ρb yv(x)yu(x)dx + IL

dyu(x)

dx |x=L

dyv(x)

dx |x=L
+ . . .

+ mL yu(x)|x=L yv(x)|x=L = δuv, (B.3.18)
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where

δuv =

{

1 u = v

0 u 6= v
. (B.3.19)

This implies the orthogonality of the natural modes yu(x) and yv(x). Therefore

equation (B.3.18) is known as the orthogonality relation. From the characteristic equa-

tion the mode shapes can only be computed up to scale. The orthogonality relation

implies to normalize to mode shapes to satisfy:

∫ L

0
ρb y2

u(x)dx + IL

(

dyu(x)

dx

)2

|x=L

+ mL y2
u(x)|x=L = 1. (B.3.20)

The interpretation of this result yields that the natural modes form an orthonormal

basis of all possible dynamic deflections y(x, t). In other words: any dynamic deflec-

tion y(x, t) can be expressed by a linear combination of the infinite number of modes.

The linear coefficients are the temporal amplitudes νu:

y(x, t) =
∞

∑
u=1

Φu(x) νu(t). (B.3.21)

Adding:

ω2
u

(

IL
dyu(x)

dx |x=L

dyv(x)

dx |x=L
+ . . . + mL yu(x)|x=L yv(x)|x=L

)

(B.3.22)

to both sides of equation (B.3.10) yields:

−
∫ L

0
EIz yv(x)

d4yu(x)

dx4
dx + . . .

+ ω2
u ( IL

dyu(x)

dx |x=L

dyv(x)

dx |x=L
+ mL yu(x)|x=L yv(x)|x=L ) = . . .

+ ω2
u (
∫ L

0
ρb yv(x)yu(x)dx + IL

dyu(x)

dx |x=L

dyv(x)

dx |x=L
+ mL yu(x)|x=L yv(x)|x=L ) ,

(B.3.23)

so that:

−
∫ L

0
EIz yv(x)

d4yu(x)

dx4
dx + . . .

+ ω2
u ( IL

dyu(x)

dx |x=L

dyv(x)

dx |x=L
+ mL yu(x)|x=L yv(x)|x=L ) = ω2

u δuv. (B.3.24)

After rearranging the combination of equations (B.3.13) and (B.3.14) to replace the

right of (B.3.10) yields:

−
∫ L

0
EIz

d2yv(x)

dx2

d2yu(x)

dx2
dx = ω2

u δuv. (B.3.25)

The equations (B.3.24) and (B.3.25) are known as the companion orthogonality re-

lations (Meirovitch 2001).
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Figure B.1.: Measured oscillation strain signal with envelope defined by the logarithmic decre-

ment (a). Close-up with detected and refined extremal values used to identify the logartihmic

decrement (b).

Logarithmic decrement estimation

The logarithmic decrement is estimated from a measured oscillation signal such as

the one depicted in figure B.1 (a) applying a two-step procedure. The first step is a

detection of the extrema εex of the normalized and mean liberated oscillation strain

signal visible in figure B.1 (a). The extrema are initialized based on the signal fre-

quency as indicated by the circles and refined by a absolute maximum search on a

window around these initial locations. According to:

ζ̄1 =
1

nk

nK−1

∑
k=1

1

t(k + 1)− t(k)
ln

|εex(k)|
|εex(k + 1)| (B.3.26)

the found extremal points provide an initial guess ζ̄1 for the decrement. In the

second step this initial guess along with the first absolute extremum |ε|ex(1) initialize

a Levenberg-Marquardt curve fit of a decaying exponential function. The curve fit

yields the final estimate ζ1.

B.4. Performance metrics

Throughout the thesis different performance metrics are used to evaluate and com-

pare control concepts as well as modeling techniques. Their definitions are summar-

ized in this section.

Normalized Root Mean Squared Error

The root mean squared error between a quantity x and its reference xre f normalized by

the error standard deviation yields the normalized root mean squared error (NRMSE).

The NRMSE is given in percent:

NRMSE(x) = 100
‖x − xref‖
‖x − x̄ref‖

[%] . (B.4.1)
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The goodness of fit

The goodness of fit metric used in this work is defined as one minus the normalized

root mean squared error (1 − NRMSE) and given in in percent:

fit(x) = 100 − NRMSE , [%] . (B.4.2)

The goodness of fit reflects the percentage of the standard deviation in a reference

signal xre f explained by the model. A model that achieves a goodness of fit value

above 80 % is commonly accepted as a good model.

Integral of absolute time weighted error

The integral of absolute time weighted error (IATE) computes to:

IATE(x, t) =
∫ t

0
t
∣

∣x(t)− xre f (t)
∣

∣ dt . (B.4.3)

It penalizes errors that persist for a longer period more than initial errors.

Integral absolute time weighted strain surface

The integral absolute time weighted strain surface computes to:

IATS(x, t) =
∫ t

0
t |ε(t)| dt . (B.4.4)

It may be understood as the IATE with x = ε and xre f = 0.

Settling time

The strain settling time TCS is the time elapsed until the error x − xre f resides within

a given band. Again, in the case of strain based oscillations measurements x = ε,

whereas xre f = 0. For joint angles an error band of 0.01 degrees is used. The error

band for strain based oscillations measurements amounts to 15 µm/m.

B.5. Stereo camera accuracy

The theoretical accuracy of the stereo camera setup is approximated within a su-

pervised thesis by Bürger (February 2011). The conservative assumption is that the

tracking object centers are localized in the images with integer pixel accuracy. A

single pixel covers a field of view with a pyramidal volume. At any point within the

robot workspace the pyramidal volumes of the two cameras intersect. The intersection

volume is enclosed by a cuboid, with the edges parallel to the stereo camera reference

frame. The edge lengths of the cuboid represent the approximated localization error.

The computed errors along the x- and z-axes of the stereo camera frame are visual-

ized by isometric lines in figure B.2. Within the workspace of TUDOR the conservative

approximation of the absolute accuracy amounts to 3.5 to 4.5 mm along the x-axis and

3 to 8 mm along the z-axis. Despite sensor noise and segmentation errors the tracking
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B.5. Stereo camera accuracy

Figure B.2.: Conservative theoretical approximation of the stereo camera absolute accuracy

determined by Bürger (February 2011). Isolines of the absolute error in mm along the x-

coordinate (left) and the z-coordinate (right) referred to the stereo camera frame.
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Figure B.3.: Results of experimental precision evaluation at the center (black) and at the border

(gray) of the TUDOR workspace along the x-axis (a), y-axis (b) and z-axis (c) of the stereo

camera system.

object centers are detected with subpixel accuracy. Hence, the practically observed

error is smaller.

For the experimental evaluation of the measurement accuracy the tracking spheres

are mounted on a slider attached to a vertical rail of 1.50 m length. The rail is placed

in the center and at a distance of 0.85 m to the center along the 1x-axis. In the latter

position the rail is tangent to the robot workspace. The slider is shifted in 50 mm

steps from 300 to 1500 mm above the floor. At each step 100 images are recorded.

The orientation of the rail is not perfectly aligned with the axes of the stereo camera

frame. Nevertheless the detected locations of the tracking spheres are supposed to

lie on a straight line. The mean errors as well as the standard deviation between the

measurements and the fitted straight line model are depicted in figure B.3. It is visible

that inside the workspace of TUDOR the error remains within a 2 mm band for all

degrees of freedom. Only outside the workspace the error in the z-direction grows

out of this band.
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B.6. Joint acceleration profile

The motion of each joint used with TUDOR is planned using the sinusoidal accel-

eration profile described in Wenz 2008, p. 89. A motion is subdivided into three

acceleration segments. Consider a point-to-point motion with zero initial and final

acceleration. The profile is given by:

θ̈ =















θ̈max sin2
(

π
t1

t
)

, 0 ≤ t ≤ t1

0, t1 ≤ t ≤ t2

−θ̈max sin2
(

π
t3−t2

(t − t2)
)

, t2 ≤ t ≤ t3.

. (B.6.1)

The corresponding velocity profile is:

θ̇ =






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
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C
Supplemental Collision Experiments

In addition to the experimental collision detection results provided in section 11.3 this

appendix complements blunt impacts with the balloon, sharp impacts with a stiff but

fragile object as well as sharp collisions with a human arm.

C.1. Blunt impacts with a compliant object

Prior to the sharp collision impacts presented with the balloon in section 11.3 blunt

collision experiments are carried out. During blunt impacts the balloon remains un-

damaged, even without collision detection. However, an emerging strong deformation

of the balloon is clearly observed in the top right photograph and in the force level

measured at the contact cube in figure C.1 (c). The strong deformation as well as

the increasing force level is absent when the stop strategy is used (center row, right

photograph). Without collision detection, the force level grows until the joint angles

reach the commanded position as visible in figure C.1 (a).

The velocity measurements for the case with no collision detection as well as the

stop strategy being enabled show a short sequence of significant over- and undershoot

right after the collision time instant. Such a sequence is not observed with the blunt

impacts on the rigid contact cube in figure 11.3 (e). It originates from the compliance

of the balloon.

The effect of the admittance strategy is illustrated in the bottom row of photographs

in figure C.1. Remarkably, in this case there is hardly any difference visible in the

blunt impact measurements depicted in the figures C.1 (a) to (b), when compared

with the corresponding sharp impact results sensor readings in figure 11.4.

Malzahn and Bertram (2013, at 2:10 min) published an online available video with

this experiment.

C.2. Sharp impacts with a fragile object

Compared to the balloon, the Christmas sphere is a rather stiff object.

Without collision detection, the link with the sharpened screw penetrates the Christ-

mas sphere. It is visible in the top right photograph of figure C.2 that at t ≈ 1.57 s

the end effector already went right through the Christmas sphere. Finally it hits the
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C. Supplemental Collision Experiments
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Figure C.1.: Collision detection and reaction results for blunt impacts with a balloon placed

as compliant object on the contact cube. Snapshots in the absence of any collision detection

(top row), with the stop-strategy (second row) as well as the admittance strategy (third row)

before (left column), during (center column) and after (right column) the moment of collision.

Angle (a) and angular velocity (b) for the second joint along with the normal force measured

at the contact cube (c).
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C.3. Sharp impacts on a human arm
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Figure C.2.: Collision detection and reaction results for sharp impacts with a Christmas ball

placed as fragile object on the contact cube.

contact cube. At this moment, a second impact is visible in the force readings of fig-

ure C.2 (b). With some delay, the Christmas sphere starts burst asunder. Individual

debris begin to lift into the air.

Just as before, the joint angles reach the targeted position, while the robot links

absorb the contact force in their deflections.

Identical to the sharp impact experiments with the balloon, the reflex strategy saves

the Christmas sphere. The measurements provided in the figures C.2 (a) to (c) are

very similar to those observed with the balloon in figure 11.4. As a major difference,

the spheres are made from rather thick glass. Thus, they are sturdy enough to also

survive the impacts when the stop strategy is applied.

Malzahn and Bertram (2013, at 3:02 min) published an online available video of this

experiment.
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Figure C.3.: Collision detection and reaction results for sharp impacts with a human arm.

C.3. Sharp impacts on a human arm

The results obtained from the collision experiments with the balloon as well as the

Christmas sphere confirm a significant reduction of the harm potential associated

with the sharpened screw at the end effector. The results are convincing enough to

give a demonstration where the sharp collisions are effected with a human arm. Of

course, the reflex strategy is used in this scenario.

Figure C.3 shows photographs and measurements recorded during this experiment.

The sequence of measurements for the second joint angle and joint angular velocity

are equivalent to those obtained during the other collision experiments before. The

residual r2 is visible in figure C.3 (c). It instantly grows and indicates the collision

right after the contact.

This way, the collision is rapidly detected and injuries to the human are properly

averted. Malzahn and Bertram (2013, at 3:23 min) published an online available video

with three repetitions of this experiment.
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D
Steps to Deploy the Techniques

The following guideline summarizes the major steps required to deploy the tech-

niques developed in this work.

Initial situation: The arm hardware as well as the reference sensors are set up

and ready for operation.

1. Actuator identification and control: The actuator vendor commonly provides

datasheets with good initial values for all parameters required to implement the

controller design used in this work. With the tuned controller, the values for the

individual initial parameters can be verified or refined by additional identification

experiments, as done in this work.

chapter: sensors: parameters per joint-link-module: #

3 current sensors, encoders IM, kM, kv, kPI , tPI , td, kPD, tPD, tl 9

2. Oscillation damping: For oscillation damping the work suggest to proportion-

ally feed the mean liberated strain measurements back to the velocity controller

cascade level for each individual joint-link-module. Therefore, the FIR based high

pass filter for mean liberation is tuned (see 2.2) for the desired frequency range.

Next, the proportional feedback gains kε are determined in two steps. The first

step is a careful manual tuning with determination of the stability limit kε, max.

The second step is the automated hardware in the loop optimization of the gains

as described in section 5.3.

chapters: sensor: parameters per joint-link-module: #

2.2, 5 strain sensor NFIR, kε, kε, max 3

3. Kinematics learning: In order to determine the weights of the data based

kinematics models, end effector positions must be recorded together with static

strains and joint angles by sampling the whole workspace with different payload

masses.

chapter: sensors: parameters per joint-link-module: #

9.2 strain gauges, encoders, weights for the forward kinematics,

external tip position inverse kinematics and

sensor (stereo camera) load estimation network
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D. Steps to Deploy the Techniques

4. Damped dynamics identification: A set of APRBS stimuli for each joint is

applied to the arm. During stimulus execution the joint angles, velocities and

strains are recorded. The symbolic dynamics model of the equivalent rigid arm

is derived. It is reduced to the robot base dynamics parameters and brought into

the regression form (10.2.8). The identified base parameters are rewritten to yield

the strain referred inertia and Coriolis matrix as well as the vector of gravitational

strain load.

chapter: sensors: parameters per joint-link-module: #

10 encoders, strain

sensors

base dynamics parameters ≤ 11

5. Collision detection: The known damped arm dynamics allow the computa-

tion of the strain referred generalized momentum based residual. In order to

reliably detect contacts without false positives the detection thresholds for each

joint-link-module are determined from a statistical analysis of the strain referred

generalized momenta computed on the dynamics identification data sets.

chapter: sensors: parameters per joint-link-module: #

11.1 encoders, strain

sensors

kI, i, detection thresholds (pos. and neg.) 3

6. Collision reaction: The collision reaction strategy is implemented as gen-

eric reaction admittance defined by a second order transfer function. A set of

parameters for this transfer function defines one particular reaction strategy. For

each joint-link-module, the parameters encode the virtual inertial characteristic,

damping and spring stiffness of the reaction behavior augmented by an addi-

tional overreaction gain to realize fast reflex reactions. The parameters are found

empirically and are affected by the haptic preferences of the user, who performs

the tuning.

chapter: sensor: parameters per joint-link-module: #

11.2 strain sensors mr, fr, kr, kor 4
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