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ABSTRACT 

Hepatitis C virus (HCV) often causes persistent infection, and is an important factor in the 
etiology of fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). There are no preventive 
or therapeutic vaccines available against HCV. Treatment strategies of HCV infection are 
likely to improve with recently discovered direct antiviral agents (DAAs). However, a propor-
tion of patients still progress to liver failure and/or HCC despite having been cured of the in-
fection. Thus, there is a need for early diagnosis and therapeutic modalities for HCV related 
end stage liver disease prevention. HCV genome does not integrate into its host genome, and 
has a predominantly cytoplasmic life cycle. Therefore, HCV mediated liver disease progres-
sion appears to involve indirect mechanisms from persistent infection of hepatocytes. Study-
ing the underlying mechanisms of HCV mediated evasion of immune responses and liver dis-
ease progression is challenging due to the lack of a naturally susceptible small animal model. 
We and other investigators have used a number of experimental systems to investigate the 
mechanisms for establishment of chronic HCV infection and liver disease progression. HCV 
infection modulates immune systems. Further, HCV infection of primary human hepatocytes 
promotes growth, induces phenotypic changes, modulates epithelial mesenchymal transition 
(EMT) related genes, and generates tumor initiating stem-like cells (TISCs). HCV infection 
also modulates microRNAs (miRNAs), and influences growth by overriding normal death 
progression of primary human hepatocytes for disease pathogenesis. Understanding these ob-
servations at the molecular level should aid in developing strategies for additional effective 
therapies against HCV mediated liver disease progression.  
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INTRODUCTION 

Hepatitis C virus (HCV) is an enveloped 
virus with a ~ 9.6 kb single-stranded RNA 
genome (Choo et al., 1989), a member of the 
Flaviviridae family and genus Hepacivirus. 
HCV genome encodes a single polyprotein 

which is processed co-translationally into 
three structural and seven nonstructural (NS) 
polypeptides (Grakoui et al., 1993; Tanji et 
al., 1994; Ali et al., 2011). HCV core protein 
forms the capsid, which is surrounded by a 
lipid bilayer containing the envelope glyco-
proteins, E1 and E2 on the external surface. 
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These envelope glycoproteins are responsi-
ble for initiation of infection in a host cell. 
The nonstructural (NS) proteins coordinate 
the intracellular processes of the virus life 
cycle. 

HCV is a major cause of chronic liver 
disease, with an estimated 180 million peo-
ple infected worldwide. An important thera-
peutic advancement was achieved with the 
recent discovery of potent direct acting anti-
viral agents (DAAs) against HCV (Casey 
and Lee, 2013; Au and Pockros, 2014). Sev-
eral clinical trials have shown various com-
binations of agents, including interferon-free 
regimens, to be highly effective in the clear-
ance or sustained viral response (SVR) of 
chronic hepatitis C infection. However, sig-
nificant challenges remain in deploying 
modern antivirals for patients with asymp-
tomatic HCV infection and must be sought 
through screening programs. HCV infection 
particularly affects persons of low socio-
economic status who have less access to 
health care. The very high cost of HCV 
treatment may also contribute to delays in 
patients being treated. 

Majority of the infected patients (approx-
imately 80 %) develop chronic infection and 
are at high risk for end stage liver disease 
progression to cirrhosis and hepatocellular 
carcinoma (HCC). HCC is a common cancer 
worldwide and accounts for ~5.6 % of all 
cancers. It is the fifth common cancer in the 
world and the third common cause of cancer 
death (Bosch et al., 2004; Sherman, 2010). 
The incidence of HCC is rising precipitous-
ly, primarily as a result of the increasing 
prevalence of chronic HCV infection (Kan-
wal et al., 2011) and fatty liver disease in the 
United States (Nordenstedt et al., 2010; 
Zhang and Friedman, 2012). Liver fibrosis is 
strongly associated with HCC, since approx-
imately 80-90 % of HCC cases are arising in 
cirrhotic livers (Seitz and Stickel, 2006; Lok 
et al., 2009). HCC development is also 
linked to alcoholic cirrhosis (Fattovich et al., 
2004), nonalcoholic steatohepatitis (NASH) 
(Ascha et al., 2010). HCV does not integrate 
into its host genome and has a cytoplasmic 

life cycle (Moradpour et al., 2007). HCC, 
therefore, must involve several indirect 
mechanisms including the interplay between 
HCV and host cell genes/proteins for patho-
logical consequences. In addition, HCV in-
duces epithelial to mesenchymal transition 
(EMT) state that is known as important ele-
ment in cancer progression (Bose et al., 
2012b). This review will discuss recent ad-
vances in HCV research with a focus on es-
tablishment of chronicity and liver disease 
progression. 

 
EVASION OF INNATE/ADAPTIVE 

IMMUNE RESPONSES BY HCV 

IFN response 
HCV infection is sensed by multiple in-

nate immune pathways, but often not cleared 
by immune responses, resulting in a chronic 
infection. HCV blocks the IFN response 
pathway by several mechanisms. HCV 
NS3/4A utilizes its protease domain to 
cleave key innate immune signaling adaptor 
proteins, effectively inactivating viral RNA 
detection program (Horner, 2014). HCV 
NS3/4A protein cleaves MAVS and TRIF 
(Baril et al., 2009; Li et al., 2005b; Lin et al., 
2006; Loo et al., 2006; Meylan et al., 2005; 
Li et al., 2005a), and can alter RIG-I and 
TLR signaling pathway. Hepatocytes persis-
tently infected with HCV and treated with 
IFN-α, PKR kinase is activated (Kang et al., 
2009a) for translational suppression of host 
mRNAs, including ISGs, and antiviral func-
tions of IFN (Garaigota and Chisari, 2009). 
Several HCV proteins have been implicated 
as regulators of the IFN response pathway. 
Expression of HCV proteins blocks IFN sig-
naling at the level of the JAK/STAT path-
way (Heim et al., 1999; Raychoudhuri et al., 
2011), and impairs IRF-7 nuclear localiza-
tion through its NS5A protein (Raychoud-
huri et al., 2010; Chowdhury et al., 2014). 

IFI6 is a type I ISG and plays a critical 
role in the regulation of apoptosis. IFI6 is 
strongly associated with the immune system, 
but its antiviral effects are not well known. 
Our recent (unpublished) experimental find-
ings suggest co-localization of HCV co-
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receptors during HCV entry are compro-
mised by IFI6 mediated disruption of kinase 
function, thereby inhibiting HCV at the point 
of entry. 

 
Cytokine response 

A relationship between the activation of 
genes involved in the IL-6 signaling pathway 
and the development of HCC has been ob-
served (Zekri et al., 2009). An increase of the 
β-2 microglobulin in serum level as well as 
IL-6 level was observed among HCV infect-
ed HCC patients. Weakening of the immune 
system, due to IL-6, may be responsible for a 
more severe progression of HCC and the hy-
perexpression of β-2 microglobulin (Tang et 
al., 2008). HCV core protein attenuates IL-6 
stimulated acute-phase response, and con-
tributes to impaired innate immunity for viral 
persistence (Malaguarnera et al., 2000; Ait-
Goughoulte et al., 2010). TNF-α plays di-
verse roles, including in the inflammatory 
processes, in HCV infection (Saito et al., 
2006). HCV may actively contribute to the 
fibrogenic process via the paracrine effect of 
IL-8 secreted by infected hepatocytes (Koike 
and Moriya, 2005). 

 
Autophagy 

Autophagy is a process of degradation of 
cytoplasmic materials, including damaged 
organelles and long-lived proteins, in the 
cells for the maintenance of cellular homeo-
stasis. During autophagy, the double-
membrane vesicles, called autophagosome, 
engulf the cytoplasmic materials and fuse 
with the lysosome for degradation. Autopha-
gy has been identified as a component of the 
innate immune system against viral infec-
tion. We were the first to demonstrate that 
HCV induces autophagy in immortalized 
human hepatocyte (Ait-Goughoulte et al., 
2008). Subsequently, HCV subgenomic re-
plicon and infection were shown to induce 
autophagy in hepatoma cells (Sir et al., 2008; 
Dreux et al., 2009; Mizui et al., 2010). Au-
tophagy proteins (Beclin-1, Atg4B, Atg5 and 
Atg12) are required for initiation of HCV 
replication (Dreux et al., 2009) and contrib-

ute to the effective production of virus parti-
cles (Tanida et al., 2009). Recently, we have 
shown that knockdown of autophagy pro-
teins in HCV infected hepatocytes enhance 
interferon signaling pathway and induces 
apoptosis (Shrivastava et al., 2011). HCV 
mediated autophagy may promote infectious 
virus particle production and evade innate 
immune response for establishment of per-
sistent infection (Shrivastava et al., 2011; 
Shrivastava and Ray, 2014). 

 
Complement 

The complement system is one of the vi-
tal effectors in the innate immune system for 
targeting and eliminating infected cells and 
invading microorganisms, including free vi-
rus particles (Mollnes et al., 2002; Gasque, 
2004; Kim and Song, 2006). HCV escapes 
the complement response by regulating com-
plement components. HCV proteins suppress 
C3/C4 complement expression (Mazumdar 
et al., 2012; Banerjee et al., 2011), and at-
tenuates membrane attack complex (MAC)-
mediated microbicidal activity by suppress-
ing C9 expression (Kim et al., 2013). To 
avert damage from excessive complement 
activation and MAC formation, host cells 
express membrane-bound regulators of com-
plement activation (RCA) proteins, including 
CD46, CD55 and CD59, to limit these pro-
cesses (Hourcade et al., 2000; Williams et 
al., 2003; Pangburn et al., 2008). HCV core 
protein enhances transcription and surface 
expression of DAF/CD55 in infected hepato-
cytes and promotes incorporation onto ma-
ture HCV particles (Mazumdar et al., 2013). 
HCV also incorporates CD59 and protects 
against complement mediated lysis (Amet et 
al., 2012; Ejaz et al., 2012). DAF/CD55 ex-
pression has been associated with comple-
ment dependent cytolysis (CDC), antibody 
dependent cell cytolysis (ADCC), and NK 
cell function (Finberg et al., 1992; Bellone et 
al., 2012; Kim et al., 2014). The strategies 
adopted by HCV to modulate complement 
pathways imply a significant advantage for 
survival of chronically infected hepatocytes, 
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enhancing viral fitness in establishing chro-
nicity and liver disease promotion. 

 
Dendritic cell, NK cell, and T cell functions 

HCV can have an inhibitory effect on an-
tigen presenting cells, resulting in reduction 
of antigen-specific T-cell activation. These 
effects may contribute to the overall low lev-
el of immunogenicity of HCV observed in 
chronically infected patients (Saito et al., 
2008). HCV has an inhibitory role on ca-
thepsin S-mediated major histocompatibility 
complex (MHC) class II maturation, which 
may contribute to weak immunogenicity of 
viral antigens in chronically infected humans 
(Kim et al., 2012). Further, HCV has been 
shown to attenuate interferon induced MHC 
class I expression and decreases CD8+ T cell 
effector functions (Kang et al., 2014). HCV 
disables a key receptor ligand (MICA/B) in 
infected hepatocytes, inhibiting the ability of 
infected cells to respond to stimuli from NK 
cells to positively regulate complement syn-
thesis (Kim et al., 2014). Reduced NK cell 
function may also contribute to the emer-
gence of HCC in chronic liver disease. NK 
cells induce apoptosis in cells that have ei-
ther down-regulated MHC class I expression 
or up-regulated stress-induced ligands (Kim 
et al., 2014). Broad and potent T cell re-
sponses (Neumann-Haefelin and Thimme 
2013), and a rapid induction of neutralizing 
antibody responses help in virus clearance 
(Osburn, 2014). 

 
Antibody response 

In contrast to CD8+T cells, viral escape 
is likely not a major determinant of HCV 
specific CD4+ T cell failure (Fleming et al., 
2010; Fuller et al., 2010). This is in agree-
ment with the observation that HCV specific 
CD4+ T cell responses are very weak and 
dysfunctional in chronic infection and also in 
agreement with the concept that HCV specif-
ic CD4+ T cells primarily have a helper 
function rather than strong direct antiviral 
activity. Although, HCV specific neutraliz-
ing antibodies exist in infected patients, the 
virus often escapes from humoral immune 

response by multiple mechanisms inhibiting 
evolution of viral quasispecies and display 
mutations within targeted epitopes (Farci et 
al., 1996; von Hahn et al., 2007; Dowd et al., 
2009; Di Lorenzo et al., 2011). Most neutral-
izing antibodies show little cross-neutrali-
zation of heterologous viral strains; thus, 
identification of neutralizing antibodies with 
broad cross-neutralizing activity is an im-
portant prerequisite for the use of neutraliz-
ing antibodies in prophylactic or therapeutic 
vaccination strategies. In addition, HCV par-
ticles are protected though interaction of en-
velope glycoproteins with lipoproteins (Ma-
zumdar et al., 2011) and scavenger receptor 
B1 (Scarselli et al., 2002; Bartosch et al., 
2003) in facilitating virus entry into mamma-
lian cells. 

The important roles of viral escape in 
evasion from the neutralizing antibody re-
sponse have been supported from study per-
formed in patients who underwent liver 
transplantation (Fafi-Kremer et al., 2010). 
Reinfection of the liver graft included only 
few viral quasispecies that were present in 
the explanted liver. The quasispecies that 
established reinfection were resistant to ho-
mologous neutralizing antibodies, indicating 
viral escape, while the viral quasispecies that 
were lost after transplantation were sensible 
to neutralization by homologous antibodies. 
A HCV candidate vaccine phase I clinical 
trial was conducted at the Saint Louis Uni-
versity Vaccine and Treatment Evaluation 
Unit with the recombinant E1 and E2 glyco-
proteins in human volunteers, and suggested 
modest immunogenicity (Frey et al., 2010; 
Ray et al., 2010; Meyer et al., 2011; Ray, 
2011). A different study aimed to elicit HCV 
specific T cells using a recombinant adenovi-
ral vector strategy in a phase I study in hu-
man healthy volunteers (Barnes et al., 2012). 
The results suggested generation of broad, 
long-lasting, and functional T cell responses. 
The protective nature of these responses 
against HCV exposure remains to be under-
stood. 
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HCV INFECTION AND METABOLIC 
DISORDERS 

The metabolic syndrome is a constella-
tion of problems that includes insulin re-
sistance, obesity, hepertension, and hyper-
lipidemia. Increasingly, components of the 
metabolic syndrome are being linked to vari-
ous forms of cancer with respect to both in-
creased risk of disease and worsened out-
come. HCV induced insulin resistance im-
pairs antiviral effect of interferon (El-Zayadi 
and Anis, 2012). Possible explanations for 
the unique association between insulin re-
sistance and HCV infection may be related 
to differences in the clinical course of liver 
inflammation and fibrosis, or in the mode of 
TNF-receptor activation or cleavage (Joyce 
et al., 2009). Marked increases in both 
sTNFR1 and sTNFR2 were demonstrated in 
HCV-diabetic patients (Shintani et al., 2004). 
Insulin resistance, a link among chronic 
HCV infection, TNF-α, and type 2 diabetes 
(T2D) possibly exists in the correlation with 
liver disease (Knobler et al., 2003; Sheikh et 
al., 2008; Ray et al., 1998; Ghosh et al., 
2000; Saito et al., 2006; Bose and Ray, 
2014). 

We have reported that HCV infection up-
regulates serine phosphorylation of insulin 
receptor substrate-1 and impairs the down-
stream Akt/protein kinase B signaling path-
way for insulin resistance (Banerjee et al., 
2008) via mTOR/S6K1 pathway (Bose et al., 
2012a). Insulin resistance is paradoxically 
associated within a reduced ability of insulin 
signaling to inhibit glucose production, 
whereas insulin-stimulated lipogenesis is en-
hanced in the liver and two forkhead tran-
scription factors, FoxO1 and FoxA2 to play 
important roles in this process. HCV can dif-
ferentially modulate activation of forkhead 
transcription factors and insulin induced 
metabolic gene expression (Banerjee et al., 
2010b; Bose et al., 2014). 

Insulin resistance and subsequent hyper-
insulinemia are highly associated with fatty 
liver disease and are important risk factors 
for the progression of fibrosis in chronic 
hepatitis C (Sheikh et al., 2008; Banerjee et 

al., 2010a; Ortiz et al., 2002). Hepatitis C 
resembles non-alcoholic steatohepatitis 
(NASH) in numerous features from metabol-
ic aspect, such as the presence of steatosis, 
serum dyslipidemia, and oxidative stress in 
the liver (Bugianesi et al., 2004). Steatosis is 
prevalent with HCV genotype 3 infection 
and correlates with the level of HCV replica-
tion (Adinolfi et al., 2013; Roingeard, 2013). 
HCV related steatosis predicts an advanced 
liver disease and a more rapid progression of 
fibrosis, as well as an increased risk of de-
velopment of HCC. Viral fatty liver may not 
impact on response to therapy, while meta-
bolic steatosis does (Negro, 2012). Similarly, 
viral insulin resistance may not reduce the 
rate of response to therapy to the same extent 
that metabolic insulin resistance does. 

 
Micro RNAs 

Micro RNAs (miRNAs) constitute a class 
of ~18-22 nucleotides long non-coding 
RNAs and play a crucial role in the regula-
tion of gene expression. Deregulation of 
miRNA occurs frequently in a variety of dis-
eases, including liver (Roberts et al., 2011). 
The major targets and functions of specific 
miRNAs vary under different physiological 
or pathological conditions and in different 
cell types. Several RNA viruses interact di-
rectly with cellular miRNAs in modulating 
viral genome replication (Cullen, 2013a; 
Conrad and Niepmann, 2014). The liver spe-
cific miR-122 is required for efficient HCV 
replication. HCV binds two molecules of this 
liver-specific miR-122 resulting in a novel, 
unprecedented up-regulation of the viral ge-
nome (Jopling et al., 2005). Sequestration of 
miR-122 in HCV-infected cultured cells or 
in livers of infected chimpanzees leads to a 
dramatic loss of infectious virus without 
emergence of resistant virus (Lanford et al., 
2010). A phase 2 study using miR-122 an-
tagonist (miravirsen) indicated effective anti-
HCV activity (Janssen et al., 2013). Other 
miRNAs, such as miR-199a*, let-7b, miR-
196 and miR-448, physically interact with 
HCV RNA and suppress the viral replica-
tion. HCV infection can alter miRNA ex-
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pression profile of the host cell in facilitating 
escape from immune system (Shrivastava et 
al., 2013b; Cullen, 2013b). We have previ-
ously shown that miR-130a expression is up-
regulated in HCV infected cells, and facili-
tates virus replication by inhibiting interfer-
on-induced transmembrane protein IFITM1 
(Bhanja Chowdhury et al., 2012). HCV in-
fection suppresses miR-181c expression by 
down-regulating transcription factor C/EBP-
β and promotes HOXA1 expression, which 
subsequently upregulates STAT3 and 
STAT5 expression (Mukherjee et al., 2014). 
In addition, exogenous expression of miR-
181c restricts HCV replication by binding 
with E1 and NS5A. 

 
INFLAMMATION, FIBROSIS/  

CIRRHOSIS, HEPATOCELLULAR 
CARCINOMA 

Inflammation 
An inflammatory process resulting from 

infection and/or tissue damage is an early 
defense mechanism during which striking 
changes in protein synthesis occur mainly in 
the liver. Inflammatory cells and mediators 
are found frequently in the local environment 
of tumors, and inflammation is considered a 
hallmark of cancer (Hanahan and Weinberg, 
2011). Kupffer cells are resident macrophag-
es in the liver and play a pivotal role in trig-
gering inflammation during liver diseases 
(Zimmermann et al., 2012). HCV infection is 
sensed by pattern recognition receptors 
(PRRs) on Kupffer cells and modulates in-
flammatory responses (Liaskou et al., 2012). 
Our recent results demonstrated that mono-
cyte-derived human macrophages (THP-1) 
incubated with cell culture grown HCV en-
hance the secretion of IL-1β/IL-18 into cul-
ture supernatants (Shrivastava et al., 2013a). 
A similar cytokine release was observed 
from peripheral blood mononuclear cells 
(PBMCs) derived primary human macro-
phages and Kupffer cells upon incubation 
with HCV. Macrophage cell line (THP-1) 
incubated with HCV led to caspase-1 activa-
tion and release of proinflammatory cyto-
kines. HCV induces pro-IL-1β and pro-IL-18 

synthesis via the NF-κB signaling pathway 
in macrophages, although consequence of 
these proinflammatory cytokine syntheses in 
liver pathogenesis remains to be elucidated. 

 
Fibrosis 

Hepatocellular injury followed by in-
flammation and activation of the innate im-
mune system may lead to early stage liver 
fibrosis, resulting in hepatic stellate cell 
(HSC) activation (Hernandez-Gea and 
Friedman, 2011). Activated HSCs are both 
signaling and target cells for a great variety 
of stimulatory and inhibitory fibrogenic cy-
tokines and growth factors. Hepatic fibrosis 
affects a large number of people worldwide, 
and contributes to the processes and path-
ways involved in malignant transformation. 
In fibrotic tissues, myofibroblasts accumu-
late and secrete an excessive amount of col-
lagen that is deposited as fibers, thereby 
compromising organ function and leading to 
its failure. Quiescent stellate cells undergo 
activation to adopt myofibroblast morpholo-
gy and secrete type I collagen, the principal 
matrix protein responsible for the develop-
ment of liver fibrosis, cirrhosis and cancer 
progression (Kang et al., 2011; Zhang and 
Friedman, 2012). 

Stellate cells produce growth factors, in-
cluding interleukin 6, hepatocyte growth fac-
tor, and Wnt ligands, fostering an environ-
ment for hepatocyte proliferation (Friedman, 
2008a, b). Similarly, hepatic myofibroblasts 
can enhance growth and migration of malig-
nant hepatocytes, at least partially through 
platelet-derived growth factor (PDGF) and 
transforming growth factor-β (TGF-β) medi-
ated mechanisms (van Zijl et al., 2009). 
TGF-ß signaling are highly dependent on 
extracellular matrix (ECM) interactions. 
TGF-ß is directly recruited to the ECM by 
latent TGF-ß binding protein (LTBPs), 
which have affinity for both TGF-ß and 
ECM fibrils. When bound to LTBP, TGF-ß 
are unable to signal. This suggests that ac-
cumulation of ECM would lead to increased 
proliferation and decreased apoptosis, be-
cause TGF-ß signaling would be suppressed. 
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However, LTBPs contain multiple proteinase 
sensitive sites, and cleavage of those sites by 
MMPs leads to the release of TGF-ß (Todo-
rovic and Rifkin, 2012). In the setting of in-
flammation or increased migratory potential, 
elevated MMP activity can liberate seques-
tered TGF-ß. Fibrotic ECM, containing more 
sequestered TGF-ß, would release greater 
amounts of the cytokine. This could antago-
nize oncogenesis by inhibiting proliferation 
and promoting apoptosis. HCV core upregu-
lates the expression of TGF-β (Torre et al., 
1994; Taniguchi et al., 2004), and NS5A 
modulates TGF-β signaling through interac-
tion with TGF-β receptor I (Shin et al., 
2005). Another study showed that different 
thresholds of Smad3 activation control TGF-
β responses in hepatocytes and that liver 
cancer-derived HCV core protein, by de-
creasing Smad3 activation, switches TGF-β 
growth inhibitory effects to tumor-promoting 
responses (Matsuzaki et al., 2007). HCV 
core also triggers the production of both 
TGF-β2 and VEGF proteins through multi-
ple pathways (Battaglia et al., 2009). As 
HCV infected livers progress from chronic 
hepatitis to cirrhosis and/or HCC, 
pSmad3L/PAI-1 increases with fibrotic stage 
and necroinflammatory grade; pSmad3C/p21 
decreases (Choi and Hwang, 2006). HCV 
infected hepatocytes release TGF-ß1 and 
other profibrogenic factors that differentially 
modulate expression of several key genes 
that can activate HSCs in liver fibrosis 
(Schulze-Krebs et al., 2005). CD81 protein, a 
key entry coreceptor for HCV, is highly ex-
pressed in HSCs (Mazzocca et al., 2002) and 
HCV E2 protein can directly interact with 
CD81 on HSC surface, inducing fibrogenic 
effects on HSCs (Mazzocca et al., 2005). 
Therefore, it is possible that chronic inflam-
mation associated with HCV infection shifts 
hepatocytic TGF-β signaling from tumor 
suppression to fibrogenesis, accelerating liv-
er fibrosis and increasing the risk of HCC. 

Fibrosis is defined by changing the 
amount and composition of ECM compo-
nent, which contribute to tumorigenesis. In-
tegrin family of transmembrane receptors 

contributes to increase deposition of fibrillar 
collagen type I and III, as well as fibronectin 
in hepatic fibrosis. In addition to the fibrillar 
collagens, other ECM molecules including 
laminin, fibronectin, and several nonfibrillar 
collagens may also amplify carcinogenic 
signaling. Although these proteins are in rel-
atively low abundance compared to the fi-
brillar collagens, their potential function as 
growth factor receptor ligands could amplify 
their carcinogenic impact. Increased ECM 
may stimulate integrin signaling in hepato-
cyte. Integrins promote growth and survival 
by activating phosphoinositide 3 kinase 
(PI3K) and mitogen-activated protein kinase 
(MAPK) signaling cascade (Cox et al., 
2010), thereby enhancing the growth and 
survival of precancerous cells. The correla-
tion of collagen expression, integrin expres-
sion and tumorigenicity is studied in human 
and animal HCC specimens (Lee et al., 
2009; Lai et al., 2011). Other mechanisms 
for integrin-mediated tumorigenesis are in-
creased migration (Fransvea et al., 2009; Fu 
et al., 2010) and survival through anti-
apoptotic signaling (Zhang et al., 2002). In 
tumor cell lines, overexpression of integrin 
B1 actually leads to growth arrest, attributed 
to up-regulation of the cyclin-dependent ki-
nase inhibitor p21 and p27. In addition, hu-
man HCC samples have decreased expres-
sion of integrin B3, and its overexpression in 
a human HCC cell line leads to apoptosis 
(Wu et al., 2009). 

Interestingly, cell tracing studies have 
shown that a significant portion of these my-
ofibroblasts arise from the conversion of epi-
thelial cells through an EMT process (Iwano 
et al., 2002). Hepatocytes can undergo EMT 
and contribute significantly to liver fibrosis 
(Figure 1). Indeed, lineage-tracing in trans-
genic mice also indicates that hepatocytes 
undergo EMT during CCl4 induced liver fi-
brosis (Zeisberg et al., 2007). Interestingly, 
hepatocytes derived from cirrhotic livers also 
display characteristics of EMT, which has 
implications for the progression to HCC 
(Nitta et al., 2008). We have shown that pri-
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Figure 1: Pathways associated with fibrogenic potential of hepatic stellate cells 

 
 
mary human hepatocytes infected in vitro 
with cell culture grown HCV display mor-
phological and molecular alterations sugges-
tive of EMT, and display an extended life 
span (Bose et al., 2012b). Similar observa-
tions have been noted in continuous cell 
types (Akkari et al., 2012; Wilson et al., 
2012; Conti et al., 2013; Iqbal et al., 2014). 
EMT type II has been linked to escape from 
senescence and apoptosis, which suggest a 
role in epithelial cell growth promotion. 
Among HCV proteins, core and NS5A are 
suggested to induce EMT (Akkari et al., 
2012; Quan et al., 2014). EMT is likely to 
play a major mechanism in tumor progres-
sion, local invasion, metastasis, and thera-
peutic resistance; and is linked to the devel-
opment of stem-like properties by cancer 
cells (Mani et al., 2008; Thiery et al., 2009). 

 
Hepatocellular carcinoma 

Activated HSCs and myofibroblasts may 
directly support hepatic tumorigenesis and 
invasion of primary tumors (Kalluri and 
Zeisberg, 2006). Desmoplasia or cancer as-
sociated fibrosis is the growth of fibrous or 
connective tissue that usually occurs around 
a malignant neoplasm, causing dense fibrosis 
around the tumor (Kang et al., 2011; Zhang 
and Friedman, 2012; Yaqoob et al., 2012; 
Liu et al., 2013). Several studies have identi-

fied cells resembling activated stellate cells 
associated with the liver progenitor cell 
niche, suggesting that these cells may pro-
vide paracrine signals that promote stem cell 
expansion (Greenbaum and Wells, 2011). 
The nature of these paracrine signals, and the 
mechanisms underlying the supportive role 
of HSCs in stem cell expansion, are currently 
unknown and of intense interest. Intercellular 
signaling networks exist between tumors and 
tumor-associated fibroblasts. Tumor secre-
tion of PDGF and TGF-β causes to changes 
in ECM composition and organization 
through stimulating myofibroblast activation. 
In addition, hepatic stellate cells secrete 
more angiopoietin 1 when activated (Taura 
et al., 2008), facilitating an angiogenic mi-
lieu that is supportive of tumor growth. 

Tumors may signal to surrounding stro-
ma. For example, elevated hedgehog signal-
ing has been associated with liver injury in 
mice and humans (Jung et al., 2008; Lees et 
al., 2005), and promotes liver regeneration 
(Ochoa et al., 2010). Hedgehog signaling 
from tumors to the stromal microenviron-
ment may be responsible for promoting tu-
mor progression (Yauch et al., 2008). Since 
hedgehog signaling may induce EMT, the 
tumorigenic effect of hedgehog could be 
mediated by increased myofibroblast activa-
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tion and fibrosis (Omenetti et al., 2008; Syn 
et al., 2009; Philips et al., 2011). 

Increased stromal stiffness precedes and 
accompanies fibrosis in chronic liver disease 
(Georges et al., 2007; Yin et al., 2007), and 
elevated liver stiffness is associated with en-
hanced risk of HCC (Masuzaki et al., 2008). 
Stromal stiffness increases activation of stel-
late cells (Wells, 2008) and portal fibroblasts 
(Li et al., 2007), creating a positive feedback 
loop that continues to promote fibrosis. 
Stromal stiffness is regulated in part by ma-
trix metalloproteinases (MMPs) and their 
inhibitors, but MMPs can regulate cell pro-
liferation independently of their effects on 
stromal stiffness. Although MMPs degrade 
the stroma, they paradoxically increase HSC 
proliferation, liver growth, and tumor pro-
gression (Theret et al., 2001; Nishio et al., 
2003; Zhou et al., 2006). 

HCC diagnosed in cirrhotic and non-
cirrhotic livers may display different imag-
ing and pathological attributes such as size, 
differentiation, and encapsulation (Bran-
catelli et al., 2002). When associated with 
NAFLD, HCC is often moderately or well 
differentiated and occurs as solitary large 
mass (Regimbeau et al., 2004; Bugianesi et 
al., 2002). HCC with mild or no fibrosis may 
share these characteristics (Yasui et al., 
2011; Kawada et al., 2009; Iannaccone et al., 
2007). Similarly, HCC complicating the 
metabolic syndrome and arising in non-
fibrotic livers often remains well differenti-
ated despite a larger size (Paradis et al., 
2009). Deregulation of the Wnt/β-catenin 
pathway has little role in the development of 
HCC associated with the metabolic syn-
drome in the absence of significant liver fi-
brosis (Paradis et al., 2009). 

Alcoholic liver disease (ALD) is the 
most common cause of HCC, accounting for 
approximately one-third of all HCC cases 
(Morgan et al., 2004). Alcohol abuse has 
synergistic effects with other risk factors for 
the development of HCC, such as infection 
with HBV or HCV, diabetes and obesity 
(Hassan et al., 2002; Loomba et al., 2010). 

Oncogenic potential of HCV proteins 
Highly conserved HCV core protein is 

related to the induction of liver steatosis in 
transgenic mice and in HCV infected pa-
tients (Moradpour et al., 1996; Rouille et al., 
2006; Barba et al., 1997). HCV core protein 
is involved in apoptotic changes, glucose and 
lipid metabolism, and malignant transfor-
mation. Among many interactions with cel-
lular factors, HCV core has been shown to 
induce ROS production via interaction with 
heat shock protein Hsp60 (Kang et al., 
2009), and modulates expression of the tu-
mor suppressor protein p53 (Ray et al., 1997; 
Lu et al., 1999), p73 (Alisi et al., 2003) and 
pRb (Cho et al., 2001). Core also inhibits the 
expression of the cyclin-dependent kinase 
(CDK) inhibitor p21/Waf (Wang et al., 
2002). p21 is a transcriptional target of p53 
and blocks the cyclin/CDK complexes in-
volved in cell cycle control and tumor for-
mation. Core induces activation of the 
Raf1/MAPK pathway (Hayashi et al., 2000), 
protects cells from serum starvation and 
growth arrest and drives cells into prolifera-
tion. HCV core also activates the Wnt/β-
catenin pathway, which controls cell prolif-
eration, DNA synthesis and cell-cycle pro-
gression (Fukutomi et al., 2005). We have 
shown that HCV core protein acts as a posi-
tive regulator in AR signaling, providing fur-
ther insight into oncogenic potential in the 
development of HCC in HCV infected indi-
viduals (Kanda et al., 2008). HCV core pro-
tein behaves as a positive regulator in andro-
gen receptor signaling and enhances the ex-
pression of VEGF in hepatocytes (Hassan et 
al., 2009). HCV NS2 also retains p53 into 
the cytoplasm, although the mechanism is 
not well understood (Bittar et al., 2013). A 
direct role of HCV NS3 was reported in the 
neoplastic transformation of hepatocytes in 
vivo and in vitro (Sakamuro et al., 1995). 
The NS3 protein also forms complexes with 
p53, and inhibits p21 promoter activity (He 
et al., 2003). HCV NS5A protein interacts 
with various signaling pathways including 
cell cycle/apoptosis (Kasprzak and Adamek, 
2008) in host cells and shares some signaling 
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targets with core protein. NS5A is recog-
nized as a transcriptional activator for many 
target genes (Kato et al., 1997). Transcrip-
tion factor IID activities are modified by 
NS5A in the suppression of p53-dependent 
transcriptional transactivation and apoptosis 
(Lan et al., 2002; Majumder et al., 2001). 
NS5A also interacts with pathways, such as 
Bcl2 (Chung et al., 2003), phosphatidylinosi-
tol 3-kinase (PI3-K) (He et al., 2002), 
Wnt/beta catenin signaling (Park et al., 
2009), and mTOR (Peng et al., 2010) to acti-
vate cell proliferation signaling and inhibits 
apoptosis. HCV polymerase NS5B forms a 
cytoplasmic complex with Rb in infected 
cells (Munakata et al., 2007). NS5B depend-
ent down-regulation of Rb leads to activation 
of E2F-dependent transcription and increases 
cell proliferation. The interaction of the 
NS5B with Rb results in the degradation of 
Rb and activates the MAD2 promoter (Mu-
nakata et al., 2005). Thus, infection with 
HCV may lead to a loss of host-cell genomic 
stability due to deregulation of Rb pathway. 
The integrity of Rb appears to be important 
in the normally quiescent hepatocytes, as 
liver-specific loss of Rb may promote ectop-
ic cell-cycle entry, aberrant ploidy and neo-
plastic transformation (Machida et al., 2009). 

 
CONCLUSIONS 

HCV remains a major cause of cirrhosis, 
liver failure and HCC despite recent dra-
matic advances in antiviral treatment. Some 
patients may experience progression of liver 
disease or HCC despite viral clearance. 
Trace amounts of HCV RNA from success-
fully treated patients can be infectious 
(Veerapu et al., 2014). We do not know the 
long-term efficacy of treatment with the new 
generation of DAAs, particularly with inter-
feron-free regimens; and generation of po-
tential resistant virus (Di Bisceglie et al., 
2014; Poveda et al., 2014). Thus, it is im-
portant to understand the underlying mecha-
nisms of interferon mediated and interferon 
free DAA mediated clearance of chronic 
HCV infection. Safety profile of DAAs with 

side effects, especially in patients with ad-
vanced liver fibrosis is also an important 
point for consideration (D’Ambrosio and 
Colombo, 2013). The treatment may not 
work well upon repeated reinfection, espe-
cially among the drug addicts. An effective 
vaccine against multiple genotypes along 
with DAAs will be most appropriate to com-
bat HCV infection. While there is evidence 
of a strong link between chronic HCV infec-
tion, fibrosis/cirrhosis, and HCC, how HCV 
promotes the disease processes is under in-
tense investigation. HCV causes persistent 
infection, although the viral genome does not 
integrate into the host cell genome. Somatic 
cells have the ability to become pluripotent 
cells when transiently exposed to strong 
stimuli that they would not normally experi-
ence in their living environments (Obokata et 
al., 2014a). This reprogramming does not 
require nuclear transfer or genetic manipula-
tion (Obokata et al., 2014b). Primary human 
hepatocytes, when infected in vitro with cell 
culture grown HCV, display an extended life 
span, and morphological and molecular al-
terations suggestive of epithelial-mesenchy-
mal transition (EMT) state and tumor initiat-
ing stem cell (TISC) generation (Figure 2). 
This may promote to fibrosis/cirrhosis and 
HCC, and needs investigations to unveil the 
underlying mechanisms and overlaps in de-
veloping appropriate therapeutic modalities. 
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Figure 2: Hypothesis for HCV induced fibrosis/cirrhosis and HCC in chronically infected liver 
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