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Abstract

We consider compact Grassmann manifolds G/K over the real, complex or quaternionic num-
bers whose spherical functions are Heckman-Opdam polynomials of type BC. From an explicit
integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an
approximation of the Heckman-Opdam polynomials in terms of Bessel functions, with a precise
estimate on the error term. This result is used to derive a central limit theorem for random
walks on the semi-lattice parametrizing the dual of G/K, which are constructed by successive
decompositions of tensor powers of spherical representations of G. The limit is the distribution
of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a
larger continuous set of multiplicity parameters beyond the group cases.
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1 Introduction

For Riemannian symmetric spaces G/K of the compact or non-compact type, there is a well-known
contraction principle which states that under suitable scaling, the spherical functions ¢, of G/K tend
to the spherical functions 1, of the tangent space of G/K in the base point, which is a symmetric
space of the flat type:

i (exp(z/n)) = Pa(2).

See [C] and, for a more recent account, [BO]. This curvature limit, also known as Mehler-Heine
formula, extends to the more general setting of hypergeometric functions associated with root systems,
which converge under rescaling to generalized Bessel functions. This is proven, by a limit transition in
the Cherednik operators, in [dJ]; see also [BO] for a different approach. In the compact rank one case,
the contraction principle is a weak version of the classical Hilb formula for Jacobi polynomials (see
Theorem 8.21.12 of [Sz]), which provides in addition a precise estimate on the rate of convergence.
In this paper, we prove in Theorem 2.4 a Mehler-Heine formula with a precise estimate on the error
term for a certain class of orthogonal polynomials associated with root systems, which in particular
encompasses the spherical functions of compact Grassmannians. This result is a “compact” analogue
of the Theorem 5.4 in [RV], which gives a scaling limit with error bounds for hypergeometric functions



in the dual, non-compact setting. In the second part of the paper, we shall use the Mehler-Heine
formula 2.4 in order to establish a central limit theorem for random walks on the semi-lattice of
dominant weights parametrizing the unitary dual of a compact Grassmannian.

To become more precise, we consider in this paper the compact Grassmannians G, ,(F) = G/K
over one of the (skew-) fields F = R,C,H, with G = SU(p + ¢,F) and K = S(U(q,F) x U(p,F)),
where p > ¢ > 1. Via polar decomposition of G, the double coset space G//K = {KgK : g € G}
may be topologically identified with the fundamental alcove

™
AQ = {x:(xl,...,xq) € R?: 5 2%1 2$2 ZZl'q 20},
with x € Ay being identified with the matrix
cosx —sinz 0
a, = | sinxz cosz 0 . (1.1)
0 0 I,
Here we use the diagonal matrix notation z = diag(z1,...,z4), and the functions sin,cos are un-

derstood component-wise. For details, see Theorem 4.1 in [RR]. The spherical functions of G, ,(F)
can be viewed as Heckman-Opdam polynomials of type BCy, which are also known as multivariable
Jacobi polynomials. They may be described as follows: denote by Fpc (A, k; ) the Heckman-Opdam
hypergeometric function associated with the root system

R=2-BC,={%2¢;,+4e;: 1 <i<qpU{£2e;£2¢;:1<i<j<gq}CRY

with spectral variable A € C¢ and multiplicity parameter k = (k1, k2, k3) € R? corresponding to the
roots £2¢;, £4e; and 2(+e; £ e;). Fix the positive subsystem

Ry ={2¢;,4¢;,1 <i<qjU{2¢; £2e;,1<i<j<g}
and the associated semi-lattice of dominant weights,
Pr={A€(2Z)": A\ > Xy >---> A, >0} (1.2)
Then the set of spherical functions of G, ,(F) is parametrized by Py and given by
oX(az) = Fpo(A+ pp, k(p), iz) = RY(z), A€ Py (1.3)

with multiplicity parameter
k(p) = (d(p — q)/2,(d = 1)/2,d/2), (1.4)
where d = dimgF € {1,2,4} and

q
Pp:% Z kaow = Z(
i=1

aER

(p+q+2—2i)—1)e. (1.5)

|

The functions R are the Heckman-Opdam polynomials associated with the root system R (called
Jacobi polynomials in the following) and with multiplicity k(p), normalized according to Rf(0) = 1.
We refer to [H], [HS], [O2] for Heckman-Opdam theory in general, and to [RR] and the references cited
there for the connection with spherical functions in the compact BC case. Notice that our notion
of Fpc coincides with that of Heckman, Opdam and [R2], [RV], while it differs from the geometric
notion in [RR]. Theorem 4.3 of [RR] corresponds to (1.3).

In Theorem 4.2 of [RR], the product formula for spherical functions of (G, K) was written as a
formula on Ay which could be analytically extended to a product formula for the Jacobi polynomials
R with multiplicity k(p) corresponding to arbitrary real parameters p > 2¢ — 1. This led to three



continuous series of positive product formulas for Jacobi polynomials corresponding to F = R, C,H
and to associated commutative hypergroup structures on Ay; see [J] and [BH] for the notion of
hypergroups. Using a Harish-Chandra-type integral representation for the R, we shall derive the
Mehler-Heine formula 2.4 with a precise asymptotic estimate for the Jacobi polynomials RY in terms
of Bessel functions associated with root system B, on the Weyl chamber

C={z=(z1,...,0¢9) €RY 12y > ... > 2, >0}

This Mehler-Heine formula will be the key ingredient for the main result of the present paper, a
central limit theorem for random walks on the semi-lattice P, which parametrizes the spherical
unitary dual of G/K. To explain this CLT, let us first recall that via the GNS representation, the
spherical functions ¢, A € Py of (G, K), which are necessarily positive definite, are in a one-to-one-
correspondence with the (equivalence classes of) spherical representations (my, Hy) of G, that is those
irreducible unitary representations of G whose restriction to K contains the trivial representation
with multiplicity one, see [F] or Chap. IV of [Hel]. The decomposition of tensor products of spherical
representations into their irreducible components leads to a probability preserving convolution xg
and finally a hermitian hypergroup structure on the discrete set Py ; see [Du] and [K3]. Following e.g.
[BH], [Z], and [V1], we introduce random walks (S%?),,>¢ on Py associated with 4, and derive some
limit theorems for n — co. The main result of this paper will be the CLT 3.15. This CLT implies the
following result for G, ,(F) = G/K.

1.1 Theorem. Let (my, Hy) be a non-trivial spherical representation of G associated with A € P, \{0}.
Let uy € Hy be K-invariant with ||uy||l2 = 1. For each n € N, decompose the n-fold tensor power
(2™ HP™) into its finitely many irreducible unitary components

(7‘1’%’”, Hf?’n) = (EB T s @ H.rn)

where the components are counted with multiplicities. Consider the orthogonal projections pr, :
H?’" — H. and a Py-valued random variable X,, » with the finitely supported distribution

D o, (W MIE 6, € MY(Py)

Tn
with the point measures 0,, at 7,. Then, for n — oo,

Xn,/\
m(A) - vn

tends in distribution to

q
dpd,p(x) _ C;’; . H m?(P*q+1)71 ) H (3712 . m?)d . e—(x§+...+z§)/2 de € Ml(C), (1.6)
j=1

1<i<j<q

which is the distribution of a Laguerre ensemble on C. The modified variance parameter m(X\) > 0 is
quadratic in A and given explicitly in Lemma 3.6 below.

For ¢ = 1, the CLT 3.15 has a long history as a CLT for random walks on Z, whose transition
probabilities are related to product linearizations of Jacobi polynomials. This includes random walks
on the duals of SU(2) and (SO(n),SO(n — 1)) in [ER] and [G]. See also [V1] for further one-
dimensional cases. For ¢ > 2 our results are very closely related to the work [CR] of Clerc and
Roynette on duals of compact symmetric spaces. For a survey on limits for spherical functions and
CLTs in the non-compact case for ¢ = 1 we refer to [V3].



2 A Mehler-Heine formula

In this section we derive a Mehler-Heine formula for the Jacobi polynomials R (A € Py ), describing
the approximation of these polynomials in terms of Bessel functions with a precise error bound. Our
result will be based on Laplace-type integrals for the Jacobi polynomials and the associated Bessel
functions, where we treat the group cases with integers p > ¢ as well as the case p € R with p > 2¢—1
beyond the group case. The integral representation for R} below is a special case of a more general
Harish-Chandra integral representation for hypergeometric functions Fpe in [RV]. To start with, let
us introduce some notation:

Let Hy(F) = {x € M,(F) : 2* := 7" = z} denote the space of Hermitian matrices over F, and
denote by A(z) the determinant of x € Hy(F), which may be defined as the product of (right)
eigenvalues of z. We mention that for F = H, this is just the Moore determinant, which coincides
with the Dieudonné determinant if z is positive semi-definite, see e.g [A]. On H,(F), we consider the
power functions

Ax(a) :== Ag(a) ™2 A (@) T A (a)M, A e CY (2.1)

with the principal minors A, (a) = det((a;j)1<i j<r) of the matrix a = (a;;)1<i,j<q € Hq(F), see [FK].
We introduce the matrix ball B, := {w € M,(F) : w*w < I}, where A < B means for matrices
A, B € M,(F) that B — A is (strictly) positive definite. On B,, we define the probability measures

dmy,(w) = A = ww)PY*Ydw € MY(B,), (2.2)

Kpd/2

with p € R, p > 2¢ — 1. Here dw is the Lebesgue measure on the ball B,

1
vi=d(q— 5) +1
and
Kpd/2 = / AT — w*w)PY?*7 dw. (2.3)
Bq

According to Theorem 2.4 of [RV], the Heckman-Opdam hypergeometric function Fpc (A, k(p), )
with A € C?, z € R? and k(p) as in (1.4) has the following integral representation for p € R with
p>2q—1:
FacO b)) = [ Anpyalos(usw))dmy (w)du (2.4
ByxUo(q,F)

where Uy(q, F) denotes the identity component of U(g,F) and
gz (u,w) = v~ (cosh z + w*sinh 2)(cosh z + sinh 2 w)u.

It is easily checked that Uy(q,F) may be replaced by U(g,F) in the domain of integration. Notice
further that z — g, (u,w) extends to a holomorphic function on C?. As the principal minors A, (a)
are polynomial in the entries of a € H,(IF), it follows that = + Ay /2(g.(u,w)) extends to a holomor-
phic function on C? for each A € Py. In view of relation (1.3), this leads to the following integral
representation for the Jacobi polynomials RY:

2.1 Proposition. Let p € R with p > 2¢—1 and k(p) = (d(p—q)/2,(d—1)/2,d/2) with d € {1,2,4}.
Then the Jacobi polynomials RY, X € Py, have the integral representation

R (z) = / Ay /2 (giz(u, w)) dmy(w)du — for x € Ag (2.5)
By xU(q,F)

with
Giz (U, w) = u_l(cosg +w*ising)(cosz +isinzw)u.



We next turn to the Bessel functions which will show up in the Mehler-Heine formula. They are
given in terms of Bessel functions of Dunkl type which generalize the spherical functions of Cartan
motion groups; see [dJ] and [O1] for a general background. We denote by JZ the Bessel function which
is associated with the rational Dunkl operators for the root system B, = {*e;, £e;+e; : 1 <i < j < ¢}
and multiplicity k = (k1, k2) corresponding to the roots +e; and +e; & e;. We shall be concerned
with multiplicities which are connected as follows to the BC, multiplicities k(p) from (1.4):

k= (ki,kz2) with ki1 =k(p)1 +k(p)2 =d(p —q+1)/2 = 1/2; ko = k(p)s = d/2.
For such k on B,, we use the notion
@l(z) := JP(2,i)), xeC, \eC.

It is well-known that for integers p > ¢, the ¢} are the spherical functions of the Euclidean symmetric
spaces Go/K, where K = S(U(p,F) x U(¢q,F)) and Gy = K x M, ,(F) is the Cartan motion group
associated with the Grassmannian G, ,(IF). Hereby the double coset space Go//K is identified with
the Weyl chamber C such that € C corresponds to the double coset of (I, x Iy, (Ip—q.2)) € Go,
and in this way, K-biinvariant functions on Gy may be considered as functions on C. Two functions
¥ and @l coincide if and only if A and p are in the same Weyl group orbit. Finally, the bounded
spherical functions are exactly those @7 with A € C. The Bessel functions @3 with d = dimgR and
not necessarily integral parameter p are closely related to Bessel functions on the symmetric cone
of positive definite ¢ x g-matrices over F, see Section 4 of [R1]. It has been shown there that for
p > 2q — 1, they have a positive product formula which generalizes the product formula in the Cartan
motion group cases and leads to a commutative hypergroup structure on the Weyl chamber C.

2.2 Lemma. For p € R with p > 2q — 1, the Bessel functions ¢} with A € RY have the following
integral representation:

oL (x) z/ / etftetr(wzud) g (w)du. (2.6)
By U(q,IF)

Proof. This follows readily from Egs. (3.12) and (4.4) in [R1]; see also Proposition 5.3 of [RV]. O

2.3 Remark. There are finitely many geometric cases which are not covered by the range p €
]2¢ — 1, 00[, namely the indices p € {¢,q + 1,...,2¢ — 1}. In these cases, the Jacobi polynomials RY
and the Bessel functions @} both admit interpretations as spherical functions and have an integral
representation similar to that above, by the following reasoning: According to Lemma 2.1 of [R2], the
measure m, € M*(B,) with p € N, p > 2q¢ is just the pushforward measure of the normalized Haar
measure on U(p,F) under the mapping

v oguog, with op = <O Iy ) € M, ).
(p—a)xq
For p € {¢,q+1,...,2¢ — 1}, we now define the measure m, € Ml(Bq) in the same way as a
pushforward measure of the Haar measure on U(p,F). (But in contrast to the case p > 2¢, it will not
have a Lebesgue density in these cases). From the integral representations (3.3) and (4.4) of [R1] for
the Bessel functions, as well as Theorem 2.1 of [RV] and relation (1.3) between Jacobi polynomials
and hypergeometric functions, one obtains that the integral representations of Proposition 2.1 and
Lemma 2.2 extend to the case p € {¢,q+1,...,2p — 1}.

We shall now compare the integral representations of Proposition 2.1 and Lemma 2.2, which will
lead to the following quantitative Mehler-Heine (or Hilb-type) formula.

2.4 Theorem. There exist constants C1,Co > 0 such that for allp € {q,q+1,...,2¢—1}U]2¢—1, 0|,
all A € Py, and x € Ay,

IRE () — @P(x)] < Cy - a2hy - eC27M,



Thus in particular,
- C
|RfL/\(£) —@Y(x)] < O eC2iM/m 0 for n— oo. (2.7)
n n

Notice that the estimate of Theorem 2.4 is uniform in p, a fact which was to our knowledge so far not
even noticed in the rank-one case. We conjecture that the statement of this theorem remains correct

for p € [g, o0

Proof. We only consider the case p > 2qg — 1 where the proof is based on Proposition 2.1 and Lemma
2.2. By the previous remark, the cases p =q,q+1,...,2¢ — 1 can be treated in the same way. Notice
that it suffices to check uniformity in p for p > 2g — 1.

We substitute w — u*w* in the integral (2.6) and obtain

o¥(z) = / e Retrw Wiz ud) gy (w)du.
By xU(q,F)
Denoting the trace of the upper left r x r-block of a g X ¢g-matrix by tr,, we have

q
Retr(u*w*zul) = Z (zw)™ + W)Uy + Ay

|
M° e

[tr(u* ((zw)* + zw)u) — try_1 (u*((zw)* + zw)u)] - Ar/2

\3
Il

|
M=

b (" ((2w)” + zw)u) - (A — A1) /2

r=1

with Agy1 := 0. Hence

q
HORY| T et ™ £ o Ao 2 g (1) s,
By xU(q,F) r—=1

Furthermore, by Proposition 2.1,

q

Ri(z) = / H A (gin (u, w)) A=A 40/2 dim (w) du.
ByxU(q,F) 1

Telescope summation yields the well-known estimate

S(max(‘al‘7~'~7|aq|a|bl| |b ‘ Z|ar7 (8

for ai,...,aq,b1,...,by € C. We thus obtain
| RS () — 3(1)] (2.8)

< / M(z,u,w, \) - ‘Ar(gm(u,w))(/\r_’\*“)/2
By xU(gq,F)

MQ

r=1

_ ei~t7-r(u*((iw)*_i_tw)u)‘()w—)w-+1)/2‘ dm,,(w)du

with
M(x,u,w,\) := max (1, max \Ar(gm(u,w))()‘rf)‘r+1)/2|q71).

=1,...,q



We now investigate A, (g:z (u, U)))()"‘_’\T“)/2 more closely. As x,u,w run through compacta, we obtain
that uniformly in =, u, w,
Giw(u,w) = u" (cosz + w*i sinz)(cosz + isinzw)u
=u (I, + whiz + O(2?)) (I, +izw + O(x?))u
=1, +u t(izw + w*iz)u + O(z?),

and thus
Ar(gz(u,w)) = 1+ tr, (u™" (izw + w*iz)u) + O(z?). (2.9)
Using the power series for In(1 + z), we further have
Ay (gin (u, w))Ar=Ar+1)/2 = oxp [(Ar = Arg1)/2 - In(1 + try (u™ ' (izw + wriz)u) + O(z?))]
=exp [(Ar — Ary1)/2 - tr (u™ ' (izw + w¥iz)u) + O(2?) - (A — Ag1)].

Notice that y := v~ (izw + w*iz)u is skew-Hermitian, that is y* = —y. Therefore tr,.(y) = —tr.(y),
which implies that Re(tr,(y)) = 0. It follows that

| A (gia (1, w)) A=A 02] = exp [(Ar = Ap1)/2 - Re(tr, (y) + O(%))] = ePrmdren) 060,

Note that these considerations apply for all fields F = R, C, H. It follows that there exists a constant
C3 > 0 (independent of x,u,w, \) such that

M(z,u,w,\) < eCariM for all x € Ap, A€ Pr,ueU(q,F), w e B,.
From this inequality we obtain by the mean value theorem that for all x € Ag and A € Py,
Ay (g (u, w))Ar—Are1)/2 _ girtre (u ((@w) " zw)u)- (Ar=Ar41)/2
< eCamid _ 1 < ng%)\leC”%)‘l.
These estimates together with (2.8) imply the assertion. O

2.5 Example (The rank one case). For ¢ = 1 the Jacobi polynomials R% associated with root system
BCy = {+£e1,+2e;} are classical one-variable Jacobi polynomials in trigonometric parametrization.

For integers p, the associated Grassmannians are the projective spaces P,(FF). For the details, recall

B) (

that the classical Jacobi polynomials R with the normalization R\ )(1) =1 are given by

ReA(2) = sFi(a+B+n+1,—na+1;(1—12)/2) (2.10)
where n € Z,, o, 8 > —1. Tt is easily derived from the example on p. 17 of [O2] that

R} () = R}y (cos 2z) (2.11)

for A € 2Z, with

a=(dp-2)/2, B=(d-2)/%
see also Section 5 of [RR]. In the rank one case, the U(1,F) integral in representation (2.5) cancels
by invariance of A under unitary conjugation. Thus (2.5) reduces to

1
Kpd/2

for A € Z,, p > 1. In particular, if F = R, then d = 1 and By = [-1,1]. Thus

RY(x) =

/ ((cosz +wisinz)(cosz + isingcw))/\/2 (1 = |w|?)UP=D/2=E gy

1 1
RP/2=1=1/2) (cos 21) = — (cosz +itsinz)?™(1 —¢2)P=3)/2 gt
p/2



If F=C, then d =2 and B; = {z € C: |z| < 1}. Using polar coordinates z = te‘’, one obtains
e : ; n
RP=10) (cos 22) = —/ / ((cosz + ite? sinz)(cosx +ite"? sino:))2 (1 — t3)P~2¢t dtd.
kp

The quaternionic case can be treated in a similar way. These formulas are just special cases of a well-
known Laplace-type integral representation for Jacobi polynomials with general indices a > > —1/2;
see e.g. Section 18.10 of [OLBC].

Let us finally mention that the Mehler-Heine formula 2.4 corresponds to Theorem 8.21.12 of [Sz]
and that in the case of rank two (¢ = 2), the Jacobi polynomials of type BC were first studied by
Koornwinder [K1], [K2].

3 Random walks on the dual of a compact Grassmannian and
on P,

Recall that for integers p > ¢ the functions ¢y = ¢4, X € P, form the spherical functions of the
compact Grassmannians G/K = G, ,(F). As functions on G, they are positive-definite. In other
words, the Jacobi polynomials (RY)xcp, are just the hypergroup characters of the compact double
coset hypergroups G//K = Ag. We now recapitulate the associated dual hypergroup structures on
P+.

3.1 Dual hypergroup structures on P. As mentioned in the introduction, there is a one-to-one cor-
respondence between the set of (positive definite) spherical functions of G/K, which is parametrized
by Py, and the spherical unitary dual of G/K, i.e. the set Gx of all equivalence classes of irreducible
unitary representations (m, H) of G whose restriction to K contains the trivial representation with
multiplicity one. Here a representation (7, H) € G x and its spherical function ¢, are related by

on(z) = (u, m(x)u) for z€G

with some K-invariant vector u € H with [Jull = 1, which is determined uniquely up to a complex
constant of absolute value 1.
Now consider A, 4 € P, with associated spherical functions ¢y, ¢, and the corresponding represen-

tations (mx, Hy), (7, Hy,) € @K with K-invariant vectors ux,u,. The tensor product (my @ ., Hy ®
H,) is a finite dimensional unitary representation of G which decomposes into a finite orthogonal sum

(GrTh = T\ @ Ty, OpHy = Hy @ H,)

of irreducible unitary representations (7, H k) where some of them may appear several times. Consider
the orthogonal projections py, : Hy ® H,, — Hk Then the vectors pi(u) ® u,) € Hk are k-invariant,

and for py(ux ® u,) # 0, we obtain (1w, Hy) € Gx, ie., (14, Hy,) is equal to some (7, H,), T € P;.
Moreover, for g € G,

PA(9)¢ul9) = (un @ uy, (Ma @) (g)ur © uy)
- Z(pk(u,\ ® uy), Te(g) Pr(uxr @ uy)
k

= 3" Ipk(ur © ) [3r, (9)

k

with >, [lpe(ur ® u,)||3 = 1. For A\, u, 7 € Py we now define ¢y ,,.» > 0 as ||pg(ur @ u,)||3, whenever
(%, H) = (7, H;) appears above with a positive part, and 0 otherwise. For A, ;1 € P, we define the
probability measure

Ox*dp Op = Caprds € M'(Py) (3.1)

TEPL



with finite support. By its very construction, this convolution can be extended uniquely in a weakly
continuous, bilinear way to a probability preserving, commutative, and associative convolution on the
Banach space M, (Py) of all bounded, signed measures on Py. Moreover, as all spherical functions
are R-valued in our specific examples, the contragredient representation of any element in Gk is
the same representation, i.e., the canonical involution .* on Py = Gk is the identity. In summary,
(Myp(Py), *a,p) is & commutative Banach-*-algebra with the complex conjugation p*(A) = u(A) as
involution. Moreover, (Py,*q,) becomes a so-called hermitian hypergroup in the sense of Dunkl,
Jewett and Spector; see [Du], [J], [BH].

The Haar measure on this hypergroup, which is unique up to a multiplicative constant, is the
positive measure w = >, p h(A)dx with

_ 1
h(X) = C,\,l,\,o = /GSO?\(Q) dg = dim Hy’

where the first two equations follow from general hypergroup theory (see [J]) and the last one from
the theory of Gelfand pairs (see e.g. [F]).
The coeflicients cy ,,~ of the convolution *4, on P, are related to the unique product linearization

P pp _ D
R)\ Ru - § : Cxp,7 R‘r

TEP,

of the Jacobi polynomials RY. It is clear by our construction that for integers p > ¢, all ¢y, - are
nonnegative with - _cp cxpr = 1.

Clearly, as R%(0) =1 for all A, the normalization also holds for all real p € ¢, c0[. We conjecture
that actually all ¢y, are nonnegative for all p € [g, oo or at least for all p € [2¢g — 1, c0l.

Suppose that for fixed p € [g, 00] the linearization coefficients cy , . are all nonnegative. Then
equation (3.1) defines a commutative discrete hypergroup structure (Py, *4,,) with the convolution

5>\ *d,p 6# = Z C)\,M,T(ST c Ml(PJ,-)

TEP,

of point measures. For instance, in the rank one case of Example 2.5 the linearization coefficients
¢, are explicitly known and nonnegative for all p > 1 as the product linearization coefficients of
the associated one-dimensional Jacobi polynomials.

We next introduce certain random walks on P4, i.e., time-homogeneous Markov chains on P,
whose transition probabilities are given in terms of the product linearizations coefficients cy ,, » for
some fixed p € [g,00[. This concept even works, under a suitable restriction, in the case where some
of the ¢y ;- are negative. To describe the restriction, we fix p € [g, oo[ and define the set

PY:={XePy:cyuyr>0 forall p,7ePy}

as well as
M) (Py):={veM"'(Py): supp v C PV}

We shall call probability measures v € M, (P, ) admissible.

Clearly, for integers p > ¢, as well as for ¢ = 1 we have MZ} (P,) = M*(Py). Unfortunately, it seems
difficult to find further examples. To illustrate the problem, consider the measure 61 0,....0) € M LPy)
for ¢ > 2 and p € [g, 00[. The explicit Pieri-type formula (6.4) of [D] then leads to a concrete product
linearization formula for RY ~R€1’07_”’0). It can be easily derived from [D] that for all ¢ > 2, p € [g, o],
and all A # p, we have ¢y (1,0,....0),, > 0 as desired. However, we are so far not able to check from [D]
that cy (1,0,...,0),» = 0 holds, which would be necessary for 6,9, .. 0) € M;(P+).



3.2 Random walks on Py. As before, we fix d = 1,2,4 and p € [g, 00o[. We also fix an admissible prob-
ability measure v = 3 p,d, € M} (Py), and consider a time-homogencous Markov chain (Sg%),>o
in discrete time on P, starting at time 0 in the origin 0 € P and with transition probability

P(SHP, = 7| 847 = \) = (W44, \)({7}) (A7 € Py, neN),

where

Vikgp Oy = Z(ZpﬂcA,M,T)éT € MY(P,).

T p

Such Markov-chains are called random walks on (Py,*4,) associated with v. It is well-known and
can be easily checked by induction that for all n the n-fold convolution power v := Vkqp...%qplV €
M?'(P,) exists, and that v(™) is just the distribution Pga.p of SEP.

In view of the central limit theorem 1.1, we give an interpretation of these convolution powers 5§\n)
for integers p > ¢ and A € Py with A # 0 in terms of representation theory. We expect that this
result is well-known, but we do not know an explicit proof in the literature.

3.3 Lemma. Let (my, Hy) be the non-trivial irreducible unitary representation of G associated with
A € Pi, A # 0 and with a K-invariant vector uy € Hy with ||ull2 = 1. For each n € N, decompose
the n-th tensor power (ﬂ')\ H® ™) into its irreducible components

(=" HY™) = (D e D H-) (3.2)

Tn Tn

and consider the orthogonal projections p., : H;&” — H, . Then for alln € N,
5 = =2 e, (5 30,

Proof. We proceed by induction. In fact, the case n = 1 is trivial. For n — n + 1, we start with
(3.2) and the associated orthogonal projections p;, : Hf)’” — H,_ . We now decompose the products
T, ® my and obtain

(= HE ) = (P, @ ) B Hr, @ Hy)) = (B (D 7 )- D (ED i) )-

Tn Tn Tn  Hk,n Tn  Hk,n

Notice that here the sum €9, €, . corresponds to the sum P, ., of the lemma with n 41 instead

- . A ®, +1
of n. We now consider the orthogonal projections p,, . : Hy™"" — Hy, . Then

Pr, (™) = ¢ |lpr, (W) 2 - i,

where |c¢| = 1, and thus

1 5
WS DB = 1P (r, (W) @ ur) 3

®,
= lIpr, (X ™3 1P, (ur,, @ un)lI3.

||p,uk n

This fact, the assumption of our induction and the definition of the convolution now readily imply
the assertion of the lemma for n + 1. O

We shall prove below that under a natural moment condition on a probability measure v &€
M*'(Py), the C-valued random variables ﬁSﬁ’p converge in distribution for n — oco. In order to

identify the limit distribution u = u(d,p,v) € M'(C) in this central limit theorem, we need some
further preparations.

10



3.4 Bessel convolutions on C' and Laguerre ensembles. As described in Section 2, the Bessel functions
@4 with A € C' make up the set of bounded spherical functions of the Euclidean symmetric space
Go/K with K = U(p,F) x U(¢,F) and Gy = K x M, 4(F). Thus in the notion of [BH] and [J],
the chamber C = G, //K with the associated double coset convolution 4, is a commutative double
coset hypergroup with the functions @} as (bounded) hypergroup characters. We now introduce the
probability measures

q
dpap(x) = c;;) . H x;l(p_(ﬁ_l)_l . H (z2 — x?)d e~ (@it HeD)/2 g (3.3)

j=1 1<i<j<q

on the Weyl chamber C', with the normalization constant

q
— 1)—1 (2 2
cap= [ TLafo 0 T =y et gy
(ot

1<i<j<q

The measure pg, € M'(C) is well-known in the random matrix theory of so-called Laguerre- or
B-ensembles as it is the distribution of the singular values of a M, ,(IF)-valued random variable whose
reals and imaginary parts of all entries are i.i.d. and standard normally distributed. This fact is
well-known; it can also be derived from the Haar measure of the double coset hypergroups (C, 4 ;)
in Section 4.1 of [R1]. Moreover, having this group-theoretic interpretation in mind, one easily ob-
tains the following well-known relation from the Fourier transform of a multivariate standard normal
distribution:

| B doayo) = OT 02 por dec 34
C

see Propos. XV.2.1 of [FK] or [V2]. This identification of the spherical Fourier-transform of pg, will
be essential in the following for the central limit theorem.

The probability measure pq, appears in the CLT below as limit up to some scaling parameter
0% = 02(v,p,d), which admits an interpretation as a variance parameter. For the description of o2,
we need the so-called moment functions on (Pj,%4,) up to order two. For the general theory of
such moment functions and their applications to limit theorems for random walks on hypergroups we
refer to Ch. 7 of [BH], [Z], and references there. The moment functions are characterized by additive
functional equations similar to the multiplicative ones for hypergroup characters. They are usually
defined in terms of (partial) derivatives with respect to the spectral variables at the identity character.
In our examples, the identity corresponds to x = 0 € C'. This motivates the following definition.

3.5 Definition. Let p € [g, 00| be fixed. For k,I =1,...,q we define the moment functions my, my :
P, — R of the first and second order by

0 o
meA) =i g Ra@)| o and - mig() = - Ral)|

Let us collect some properties of these moment functions.
3.6 Lemma. (1) Forallk,l=1,...,q withk #1 and all X € Py, mg(X) = my 1 (A) =0.

(2) The functions my i are independent of k =1,...,q, and the function m:=mi1: Py - R isa
quadratic polynomial of the form

1 <& 1
m(\) = D s (A = A1) (s — Asg1) + 3 > be(Ar = Arta)

r,s=1 r=1

with suitable coefficients ay s, by. In particular, m(0) = 0.

11



(3) For all \,7 € Py, [p md(0x*ap d-) =m(A) +m(r).

Proof. The Jacobi polynomials Ry(z) are invariant under the Weyl group of type B acting in the
variable z. In particular, Rx(z1,...,24) is even in each z;, and this gives part (1). Moreover, as
Ry(x1,...,14) is invariant under permutations of the x;, the function my j is independent of k. We
now study m := my ; more closely. We start with the case p > 2¢ — 1. In this case we obtain from
the integral representation (2.5) that

82
m(A :—/ — (A i (U, W
== 1 e 38 (Brvalaial o)

- dmy,(w)du (3.5)

with the power function

q
Ay y2(gia (u,w)) = TT Ar(gia(u,w))Pr=A+0/2 0 with Agp =0

<Z i (A,-(gm(u, w))) |m:0'(/\r - /\r+1))2 (3.6)

2 Aplauwy| =1
ax% 2/2\Giz (U, W om0 = 4 2 8x1
1. 92
520 o (Ao | - (= A

Formulas (3.5) and (3.6) now imply that m is a quadratic polynomial as claimed, with linear terms

b, = /B a—Q (ln Ar(gix(u,w))ﬂ dmy(w)du.

2
JxU(eF) 071 v=0

The coefficients a, s are obtained from the Taylor expansion (2.9) of A, (g;z(u, w)). They are given by
Uy 1= / try (U (W Py + Py - w)u) - trg(u (w* Py + Pr - w)u) dmp(w)du (3.7

By xU(q,F)
with the diagonal matrix P; := diag(1,0,...,0) € M, (F). This proves that m is a quadratic polyno-

mial for p > 2¢q — 1. The case p > ¢ follows by analytic continuation.
Finally, for the proof of part (3) we observe that for \,7 € Py,

82
md(0x g, 0;) = — —
P+ ( A *d,p ) P+ 8‘7}%

(], part i)
321 +

= 52 (B )

Ry () ’zzo d(0x *d,p 6r)(K)

o m(A) + m(T).

Notice that the last equality follows from part (1) and Rx(0) = 1. O
3.7 Example (The rank one case). For ¢ = 1, the moment function m is given by

AA+dp+d—2)

27.%).
o (r e 22)

m(A) =

In fact, this can be easily derived from the definition of m and the explicit formulas for the classical
Jacobi polynomials in (2.10) and (2.11). Moreover, it can be also derived from the proof of part (2)
of the preceding lemma and a direct elementary computation of a;,; and b; for ¢ = 1 there.

12



We shall need the following variant of Lemma 3.6(2) on the growth of m for p € [¢, ool:
3.8 Lemma. Forallz €R?, A€ Py and k,l=1,...,q,

o o?
— < P < A2
‘aka/\(x)‘ Shand | R @) < 4

In particular, m(\) < A\? for A € P,.

Proof. Let again W denote the Weyl group of type BC,;. We introduce the normalized W-invariant
orbit sums

— 1 )
M = W) Ne Py,
/\((E) |WA‘ MEZW)\G ) +

Then the Jacobi polynomials RY can be written as linear combinations of such orbit sums. It follows
from the considerations in Section 11 of [M] that for non-negative multiplicity values, the expansion
coeflicients are all non-negative. That is,

b —~
R)\ = E C)\#M#
pREP L :u<

with
C)\u:Ciu ZO, ZCA#:]..

u<A

Here < denotes the dominance order on Py given by p < A<= > pu; <> X\ forr=1,...,q.
We have

8wkM/\(x) = i Z 1K€ (s >7 a$kIlM)\(‘T) = T Z M€ (n, >
WA LEW.A (WA HEW.A

Notice that |pug| < Ak < A; for each p € WA. We thus obtain, independently of x € Ay,

Further, if p € Py with g < A, then p3 < Ay and therefore

00, BR(2)| < Y el @, My(@)] <D exum < i

B HEA

In the same way,
|81k811R§($)‘ < Z c)\M|a$kawlMM(x)| < Z c/\ulj'% < )‘%
n<A H<A

O

We also need some further properties of the moment function m. We here have to restrict our
attention to the case p € {¢,q¢+1,...,2¢ — 1}U]2¢ — 1, 00[. We shall assume this restriction from now
on. We expect that the results below are also valid for all p € [g, oo].

3.9 Lemma. (1) The matriz A = (ars)rs=1,..q4 € My(R) is positive definite.
(2) For all X € P\ {0}, m(\) > 0.
(3) There exists a constant Cy > 0 such that for all X € Py, C1\2 < m()\).

13



Proof. For the proof of (1), we first consider the case p €]2¢ — 1, oo[ and conclude from the definition
of the a, s in the proof in Lemma 3.6 that A is symmetric, and that for all 7 € R,

q

2
7TAr = / (Z T - trp(u* (w* Py 4+ le)u)) dmy,(w)du
BqXU(q,F) r=1

where the functions
(w,u) = tr. (v (WP + Prw)u), By xU(¢,F) = R,

are linearly independent for r = 1,...q. This shows that 77Ar > 0 for all 7 € R? with 7 # 0 as
claimed. The case of integers p > ¢ can be handled in a similar way by using a modified version of
integral representation (3.7) for a, s which is based on Remark 2.3 instead of Proposition 2.1.

For the proof of part (2) we proceed as in the proof of Lemma 3.8 and write

R;/D\ = Z C)\MM# with Cap >0, cxn >0, Z Cap = 1.
HEPL:u<A <A

Thus for A € Py \ {0},

m\) = -2 Ry(2)| o= > o N >0

pEPL:pn< |W,U,| TEW L

For the proof of part (3), we use (1) and write m(\) as
m\) = ATAX — ")

with some positive definite matrix A and some b € RY. We thus find constants ¢,d > 0 such that
m(A) —cA? > 0 holds for all A\ € Py with \; > d. As there are only finitely many A € Py with \; < d,
we conclude from part (2) that there exists some C; > 0 with m(\) — cA? > 0 for all A € P, with
A #0. O

3.10 Remark. The nonnegativity of m(\) in Lemma 3.9(2) can be easily established directly. In
fact, assume that m(A) < 0 for some A € P,. Then the Taylor formula

m(A\ .
Ry(z)=1- #(xf + .4 al)+O(|z]3)
implies that Ry(z) > 1 for some z close to 0, and thus by the Weyl group invariance of Ry, for some
x € Ag. But this contradicts the fact that [|[Ry||co < 1 on Ag, which is a consequence of Proposition

2.1. However, we have no different proof for the strict positivity of m(\) for A # 0 than the one given
in Lemma 3.9(2) .

We next use the moment function m in order to define a modified variance of measures v € M*(P})
depending on the underlying convolution 4 ,. This modified variance will appear in the CLT below.

3.11 Definition. Let v € M'(Py) be a probability measure with finite second moments, meaning
that -y cp, A2v({\}) < co. Then the modified second moment o2 := 02(v) of v is defined as

o= Y mAr({A}).

XEP,

Notice that by Lemmata 3.6 and 3.9, o2 is finite and non-negative where o2 = 0 holds precisely for
Vv = (50.
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3.12 Lemma. Let v € M'(P,) be a probability measure with finite second moments and modified
variance 02 > 0. Then the spherical Fourier transform

Fr:RT - R with Fv(zx) = Z R (x) - v({\})
AEP,

is twice continuously differentiable on RY with

Fv(0) =1, VFv(0)=0, and Hesse matric D*(Fv)(0) = —o? - I,.

Proof. As v has finite second moments, we conclude form Lemma 3.8 that for all k,l =1,...,q, the
series
> v((AD)- 2 g (@), Y v\ al RY ()
Oz M7 Orr0x;
AEPy AEPy

converge uniformly with respect to € R9. This implies that Fr(x) is twice continuously differentiable
on RY, and the partial derivatives commute with the summation. The derivatives at x = 0 are now
obtained by Lemma 3.6. O

We now turn to random walks (S%P),~q on (Py,*.,) associated with some admissible v €
M) (Py). Tt is well-known (see e.g. Section 7.3 of [BH]) that the additive functional equation for
m in Lemma 3.6(3) leads to relations between the modified variance of v and random walks associ-

ated with v.

3.13 Lemma. (1) For all vy,v; € M}(Py) with finite second moments, the measure vy %4, Vo €
M*Y(Py) has also finite second moments, and

o2 (vy *qp v2) = 0% (1) + 02 ().

(2) Let (SEP)n>0 be a random walk on (Py, *q,) associated with the measure v € M} (Py) with finite

second moments. Then, for all integers n > 0, the expectation of m(SEP) satisfies E(m(S%P)) =
no?(v), and the process (m(SEP) — no?(v)))n>o s a martingale with respect to the canonical
filtration of (SEP),>o.

Proof. Part (1) follows easily from Lemma 3.6(3); c.f. Section 7.3.7 of [BH]. Moreover, the first
assertion of (2) follows from (1) by induction. For the proof of the second statement in (2) we refer
to Proposition 7.3.19 of [BH]. O

3.14 Lemma. For a €]0,00[, define the finite set K, := {\ € Py : A\ < a}. Let (S4P),>0 be
a random walk on (Py,*qyp) as described above associated with some admissible v € M) (Py) with

finite second moments. Then, for each ¢ > 0 there exists some a > 1 such that for all n € N,
P(S97 ¢ K ji,) < c.

Proof. By Lemma 3.9, we find ¢ > 0 with m()\) > ¢\} for A € Py. Therefore, m(\) > cA? > ca®n for
all A € Py \ K /., and all n. Hence,
m(SEr)) a’n o2

E(
P(S%P ¢ K f.) < P(m(S%4P) > ca’n) < aZn = —5-=

with the finite modified variance o2. This implies the claim. O
We are now ready to prove the main result of this section:

3.15 Theorem. Letp € {q,q+1,...,2¢g—1}U|2¢g—1,00[. andv € M]} (Py) be an admissible probability
measure with v # 8y and with finite second moments. Let 0 €]0, 00| be the modified modified variance
of v, and (SEP),>0 be a random walk on (Py,*4,) associated with v. Then S&P/v/no? converges in
distribution to the distribution pq, € M*(C) of a Laguerre ensemble in C.
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Proof. Fix x € C. Let n € N be large enough such that x/\/n € Ag. By Section 3.2, S%P has
the distribution (™. We thus obtain from the multiplicativity of the spherical Fourier transform
of probability measures on (P4, *q,), Lemma 3.12, the qualitative Taylor formula, and from the
properties of the moment functions in Lemma 3.6 that for n — oo,

0.2

E(Rggo(w/Vi) = (Frla/va)" = (1= (@3 +...a2) + o(1/n))" (3.5)

N e—(m§+...mz)a2/2.

Now fix € > 0. By Lemma 3.14, there is so a > 0 such that for all n € N, P(S4? ¢ K jra) <€
We now conclude from the Mehler-Heine formula 2.4 that for all A € K 5., that is, A € P, with
)\1 S a\/ﬁ,

[RY (/) = 5/ V/n)| < Cr-aihy - MV < ¢

whenever n is sufficiently large. As |Rf (z//n)| <1 and |@} (z/y/n)| < 1, we thus have

|E(Rgg(@/V) = B(@ggs(/v/))|

< B(|Rggo @/ V) = Ggan @/ V)| - Lygtrerc .y ) + 2 PISE” & K i)
< 3e

for n sufficiently large. Together with (3.8) and the identity o2, (z) = ¢} (cz) for ¢ > 0 and z,y € C,
this implies that for all z € C,

T B, (@) = lim B(F,, (o/Vomn)

= lim E(Rgar(z/Vo?n)) = e @it +wg)/2,
n— 0o n

From this limit, equation (3.4) and Levy’s continuity theorem for the spherical Fourier transform on

the double coset hypergroup (C,e4,) (see e.g. Section 4.2 of [BH]), we now infer that S»?/vo2n

converges in distribution to pg ), as claimed. O

Theorem 1.1 in the introduction is an immediate consequence from Theorem 3.15 and Lemma 3.3.
We also remark that the methods of the preceding proof lead with some additional technical effort
to rates of convergence in the CLT; see [G], [V1] for the rank one case.

We finish this paper with a strong law of large numbers; it follows easily from the preceding
properties of the moment function m, in combination with strong laws of large numbers for random
walks on commutative hypergroups in Section 7.3 of [BH] and in [Z].

3.16 Theorem. Let v € M}(Py) be admissible with with finite second moments, and let (S4P),50
be an associated random walk on (Py,%*q,). Then for all e > 1/2, S, /n® — 0 almost surely.

Proof. Consider first the hypergroup case with an integer p > ¢. By Lemmata 3.6 and 3.9, all
conditions of Theorem 7.3.26 in [BH] are satisfied for the time-homogeneous random walk (S%?),,>,
the sequence (7, := n?®),,>1, and the moment function m instead of ms in [BH]. This theorem now
yields that m(S%P)/n?¢ tends to 0 almost surely, and Lemma 3.9 proves the claim. An inspection of
the details in the proof of Theorem 7.3.26 in [BH] shows that this theorem is also available for all p
and admissible v € MI}(P+) which proves the theorem in general. O
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