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Abstract

This thesis presents research results on the deformation of elastic shells, especially concerning
buckling and wrinkling instabilities. The theoretical description of such deformations is used
to develop methods of shape analysis, which serve to infer material properties from simple
experimental observations of deformed shells.

When an initially spherical shell is deflated, two successive instabilities can typically be
observed. In a first buckling transition, an axisymmetric dimple appears. It grows with
proceeding deflation and acquires a polygonal shape in a secondary buckling transition. The
onset of the first instability is well known. Here, we draw a complete picture of axisymmetric
buckled shapes from the onset to a fully collapsed state, where opposite sides of the shell are in
contact. Furthermore, it is shown that the stability of buckled shapes with respect to further
spontaneous deflation depends decisively on whether the interior shell volume is prescribed
(buckled shapes are stable), the pressure difference is fixed (shapes are unstable and collapse
immediately after the onset) or the deflation is controlled by osmosis (intermediate between
the former cases). For the description of axisymmetric buckled shapes, we use two approaches:
firstly non-linear shell theory and secondly a simple analytic model proposed originally by
Pogorelov. The secondary buckling instability has so far only been observed in simulations and
experiments. Here, we provide a theoretical explanation and analyse its onset quantitatively. A
compressive circumferential stress in the vicinity of the dimple edge is identified as the driving
force of the secondary buckling transition. Using the stability equations for shallow shells, we
derive a critical circumferential stress which leads to wrinkles along the dimple edge, similar to
the Euler buckling of straight rods.

Subsequently, we introduce a model for capsules that are created from liquid drops by an
interfacial reaction and hang from a capillary. The interior liquid can be removed by suction
through the capillary, which usually leads to wrinkling of the capsule membrane. The theoretical
model is applied to completely characterise the elastic moduli of the membrane by an analysis
of the capsule contour and wrinkle wavelength detected in experimental images. A test on two
different capsule systems, polymerised polysiloxane capsules and bubbles coated with a layer
of the protein hydrophobin, proves the concept of the proposed elastometry method. In the
analysis of the hydrophobin capsule, we find an interesting non-linear elastic response which can
be attributed to the molecular structure of the proteins consisting of a hard core and a softer
shell. This motivates the development of a custom elasticity model based on the microscopic
view of a bead-spring model including steric repulsions and can in part explain the experimental
results of the hydrophobin capsule.

iii



Kurze Zusammenfassung

Die vorliegende Arbeit préasentiert Forschungsergebnisse zur Deformation elastischer Schalen,
insbesondere zu Instabilitdten wie Einbeulung und Faltenbildung. Die theoretische Beschreibung
solcher Deformationen wird benutzt um Methoden der Formanalyse zu entwickeln, welche dazu
dienen aus einfachen experimentellen Beobachtungen deformierter Schalen deren Materialeigen-
schaften abzuleiten.

Wird das innere Volumen einer urspriinglich runden Schale reduziert, so konnen typischerweise
zwei Instabilitditen nacheinander beobachtet werden. In einem ersten Ubergang bildet sich eine
achsensymmetrische Beule. Im weiteren Verlauf wéichst diese an und nimmt nach einem zweiten
Ubergang eine polygonale Form an. Das Einsetzen der ersten Instabilitéit ist wohl bekannt. Wir
zeichnen hier ein vollsténdiges Bild achsensymmetrisch eingebeulter Formen vom anfénglichen
Einbeulen bis zum vollig kollabierten Zustand, in welchem sich die gegeniiberliegenden Seiten
der Schale beriihren. Aulerdem wird gezeigt, dass die Stabilitdt der eingebeulten Form beziiglich
weiterer spontaner Volumenreduktion sehr davon abhéngt, ob das Volumen der Schale vorgegeben
ist (gebeulte Formen sind stabil), die Druckdifferenz fest ist (Formen sind instabil und kollabieren
sofort nach der Einbeulung) oder ob die Deformation durch Osmose gesteuert wird (Verhalten
liegt zwischen den vorigen Féllen). Zur Beschreibung der achsensymmetrisch eingebeulten
Form werden zwei Modelle verwendet: zum einen nicht-lineare Schalentheorie, zum anderen ein
einfaches analytisches Modell welches urspringlich von Pogorelov vorgeschlagen wurde. Die
zweite Instabilitdt wurde bisher nur in Simulationen und Experimenten beobachtet. Hier liefern
wir eine theoretische Erklarung und analysieren quantitativ ihr Einsetzen. Eine kompressive
Spannung in der Umgebung des Beulenrandes wird als die treibende Kraft hinter der zweiten
Instabilitat identifiziert. Unter Verwendung der Stabilitatsgleichungen flacher Schalen leiten wir
eine kritische Spannung her bei welcher sich entlang des Beulenrandes Falten ausbilden, dhnlich
zur Eulerschen Knicklast gerader Stébe.

Anschlieflend wird ein Modell fiir elastische Kapseln eingefiihrt, welche durch eine Grenzfla-
chenreaktion aus einem Fliissigkeitstropfen erzeugt werden und an einer Kapillare héngen. Durch
die Kapillare kann die innere Fliissigkeit abgesaugt werden, was iiblicherweise zu Faltenbildung
auf der Kapselmembran fiihrt. Das theoretische Modell wird benutzt, um durch eine Analyse der
Kapselkontur und der Wellenldnge der Falten die elastischen Moduln der Membran vollstandig
aus experimentellen Bildern zu bestimmen. Ein Test an zwei unterschiedlichen Kapselsystemen,
polymerisierte Polysiloxan Kapseln sowie Blédschen die mit einer Lage des Proteins Hydrophobin
ummantelt sind, belegt die prinzipielle Funktionsweise der vorgestellten Elastometrie-Methode.
Bei der Analyse der Hydrophobin-Kapseln finden wir ein interessantes nicht-linear elastisches
Verhalten, welches der molekularen Struktur bestehend aus einem harten Kern und einer
weicheren Schale zugeschrieben werden kann. Dies motiviert die Entwicklung eines eignen
Elastizitdtsmodells auf Basis eines Federmodells, welches die sterischen Wechselwirkungen der
Kerne mit beriicksichtigt und die experimentellen Ergebnisse der Hydrophobin-Kapsel teilweise
erkldren kann.
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Chapter 1

Introduction

1.1. Elastic shells ...

An elastic shell is a sheet of elastic material or a thin-walled elastic structure which is curved
in its undeformed state. To have a simple picture in mind, one could think of a rubber balloon
as a paradigmatic example for an elastic shell. Because of its small thickness, the shell can
be regarded as a quasi two-dimensional surface, which facilitates its mathematical description.
Often, shells are closed and contain some medium. They are then also termed elastic capsules.

Being elastic means that a body can be deformed by external loads, but will restore its initial
state (the so called reference state) if the loads are released. The larger the loads, the larger
will be the deformation in most cases. This elastic behaviour can be contrasted to viscous
behaviour: Viscous media can also be deformed by external loads — the larger the load, the
quicker the configuration change — and will keep a deformed shape if the loads are released. A
third class of material behaviour is plasticity. An ideal plastic material does not deform when
the loads are small, but when a certain yield stress is exceeded it begins to deform irreversibly.
Elementary examples are rubber for an elastic material, water or honey for viscous media and
modelling clay for a plastic material.

In a continuum mechanics perspective, the internal stress in an elastic body depends on
the strain (which is a measure of the local deformation, stretch or compression) [83]. We can
consider a body being composed of individual particles, which are cross-linked in the elastic
case: The “neighbourhoods” of the particles are fixed, two particles next to each other are
also next to each other in the deformed body. In viscous media, however, the stresses depend
on the strain rate, that is, the temporal derivative of the strains [84]. The neighbourhoods
between the particles are not fixed, they can flow. In general media, the stresses depend on
both strain and strain rate [53]. These media can be either solid-like (restoring their initial
state) or fluid-like (staying in a deformed state). Shells can be constructed from both solid
and fluid materials. Vesicles, for example, are composed of lipid bilayer membranes that are
two-dimensional fluids and have received a lot of attention [117]. In this thesis, however, we
will deal only with solid-like, elastic shell materials whose viscosity can be neglected.

The second distinctive property of elastic shells is that they are curved in their reference
configuration, which is different from elastic plates which are planar in their reference state.
This has an important impact on the deformability of shells and plates: Curved shells are often
harder to deform than flat plates, a phenomenon called geometry-induced rigidity [85,131]. To
understand this effect we must take into account that thin sheets can be bent much easier
than stretched. This can be quantified in terms of an elastic energy: Stretch and compression
involve a large amount of elastic energy that scales linearly with the shell thickness H, while
the bending energy scales with H3 and is thus very small for thin shells. Since elastic bodies
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a)

Figure 1.1.: Deformations of a) a paper sheet and b) a paper sphere. The sheet can be deformed
isometrically in a smooth way by rolling it, or non-smoothly by creasing it. However, the sphere
cannot be deformed isometrically in a smooth way because of its geometry-induced rigidity: All
possible isometric deformations of the sphere contain creases.

tend to minimise their stored elastic energy, they prefer configurations in which they are less
stretched and compressed, but they do not refuse to bend. Infinitely thin bodies are therefore
preferably deformed isometrically, i.e. without any compression and stretching at all. An
isometric deformation conserves the metric of the surface: Any curve drawn on the surface
keeps its length during the deformation. As a consequence of Gauss’ Theorema egregium, an
isometric deformation implies that the Gaussian curvature of the surface does not change [4].

Such isometric deformations are possible for planar sheets; however, no general result is
known when a curved surface can be deformed isometrically [4]. There are surfaces, such as
spheres or ellipsoids, which cannot be deformed isometrically in a smooth way. Shells of these
shapes are rigid because of their geometry: As no isometric deformations are possible, any
deformation involves a costly stretch/compression contribution to the elastic energy.

We can get an intuitive feeling for isometric deformations by imagining that the body is made
of paper, which cannot really be stretched without tearing. A planar sheet of paper, see fig. 1.1
a), can be smoothly rolled to a cylinder, which is a deformation that involves only bending,
but no stretching. More complex isometric deformations arise when we are allowed to crease
the paper [39] or to crumple it [137]. Creases are singularities with infinitely large curvature,
and would imply an infinitely large bending energy. In reality the infinite energy is avoided by
breakage of the paper fibres at the creases or by allowing the sheet to stretch in the vicinity of
the crease [141,142]. However, when we try to deform a paper sphere isometrically, we will find
that it is not possible to do this in a smooth way. We need to introduce creases, for example a
circular crease limiting a region that is mirror-inverted, see fig. 1.1 b).

This strong coupling between geometry and mechanics makes shells particularly interesting.
Two elastic shells with the same thickness and material properties can behave very differently
under external loads, just because they are differently shaped.

1.2. ...and where to find them

Elastic shells are ubiquitous in our environment. On the macroscale we can find them in
architecture and engineering, for example as roof structures, where they are preferably used
because of their geometry-induced rigidity: Domes and arches are more stable than flat
structures. Other examples from everyday life are egg shells, beach balls, beverage cans, tyres,
plastic packages, ...the list could grow arbitrarily long. On the microscale, there are natural
shells like red blood cells [40], virus capsids [20,94] or pollen grains [72] whose mechanical
properties have gained a lot of attention in recent years. Artificial microcapsules have numerous
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applications in today’s industries, for example in food technologies, chemical industry and
pharmacy [52,148]. They can be used to encapsulate a substance that is to be released later on:
In carbon-less copy paper, for example, dye-filled microcapsules get crushed by the mechanical
force of a pencil and release the dye, perfume-filled capsules can be used in detergents to make
the laundry smell nice over a long time span, and in delivery-and-release systems capsules are
used to administer drugs. These are only some of the abundant applications of microcapsules,
which are present in many products, but often not in the awareness of the customers.

Synthetic capsules can be produced by various methods [93,147]. A common approach starts
with droplets or bubbles which are embedded in another fluid phase. These droplets or bubbles
are coated with an elastic membrane by an interfacial reaction: There are surfactants that
can be added to the ambient fluid phase, which adsorb to the droplet’s or bubble’s surface
and can form crosslinked networks, for example by polycondensation reactions or by radical
reactions induced by irradiation of ultraviolet light [114]. Instead of droplets and bubbles, solid
colloidal particles can also be used as templates for the capsule production. Charged colloids
can be coated with a layer of oppositely charged polyelectrolytes (polymers with many charged
groups). Interestingly, a charge reversal of the coated colloid can be achieved, which gives rise
to a layer-by-layer technique: Further layers of polyelectrolytes, with alternating charges, can
be deposited on the template until a desired shell thickness is reached. Finally, the template
particle is dissolved [41].

1.3. Deformations of shells

Elastic shells can be deformed by external loads. For example, they can be stretched with
optical tweezers, compressed between plates or indented by point forces [46]. Closed shells can
be inflated and deflated, for example by osmosis, or deformed in shear flow or by centrifugal
forces in a spinning drop apparatus [9,12]. Any deformation can be used to probe the mechanical
properties of the shell. When there are theoretical calculations of the deformation available,
a comparison between experiments and theory can be used to infer the elastic properties
(measured by the elastic moduli) of the shell. This is the basic idea of a shape analysis, and we
will encounter several examples in this thesis.

We will look mainly at deformations which follow from compressive loads. This kind of
deformation is typically much more interesting than simple tensional loads because there are
many possible deformation paths, and instabilities like buckling and wrinkling can occur. A
simple example is the deformation of a thin elastic rod or spring: When tensional loads are
applied to its ends, it simply stretches. But when compressive loads are exerted, the rod first
contracts longitudinally and buckles into an arched configuration when a critical compression
is reached. This buckling instability is well known since Leonhard Euler’s mathematical
treatment [43] and is easy to test by disassembling the nearest available ballpoint pen to obtain
its spring and compress it between one’s fingers.

The physics governing this phenomenon has already been mentioned above: It is the fact
that thin structures are much easier to bend than to stretch or compress. By assuming an
arched shape, the compressed rod can (nearly) restore its original length, thus reducing the
compression energy at the expense of acquiring some additional bending energy.

Similar buckling instabilities can be observed when shells and plates are compressed. Buckling
instabilities are interesting for physicists, especially theorists, because they can lead to a rich
bifurcation behaviour, for example in the deflation of spherical shells as investigated in the
author’s diploma thesis [151]. The shape bifurcations and metastable shapes can explain the
polymorphism often seen in soft matter systems, amongst others in gel-phase vesicles that
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a)

Figure 1.2.: The first and second buckling transition of a spherical shell can be observed on the macro-
and microscale: a) a deflated plastic ball of diameter 5cm, b) two microcapsules of diameter 2.5 pm
(left, image taken from ref. [116]) and 5 um (right, image taken from ref. [113]).

buckle into specific shapes [111]. For engineers, however, buckling is mostly undesirable because
it represents a failure path by which a structure loses its stability. Shell buckling is especially
“catastrophic” because the buckled shape typically supports significantly less load than the
unbuckled one [135]. As a result, the shell collapses completely in a loud bang when the external
load is increased beyond the critical load at which buckling sets in.

1.4. OQOutline of this thesis

In this thesis, we investigate several shells that are exposed to compressive stresses. The first
example is a spherical shell that is deflated and goes through various shapes until it is completely
empty. Two distinct buckling phenomena will be discussed in chapters 2 and 4: In the first
buckling transition, a uniformly compressed shell changes to a buckled configuration, which has
essentially the shape of a sphere with mirror-inverted spherical cap. This “dimple” acquires a
polygonal shape in a secondary buckling transition, see fig. 1.2. Both transitions are examples
of stress focusing [141], where an elastic structure concentrates its deformation energy along
lines or in points instead of spreading it uniformly over its surface.

Between these two chapters on spherical shells there is chapter 3 focusing on the compression
of flat plates and shallow shells. Originally, this research was meant to be auxiliary to explain
the secondary buckling of spherical shells. However, two questions were encountered which
have an importance on their own: Firstly, how does a plate buckle when it is compressed only
over a small localised region (and not over its whole area), and secondly, how is wrinkling of
thin sheets related to buckling?

Finally, in chapter 5, we discuss capsules that are produced by interfacial reactions from
pendant drops or rising bubbles attached to a capillary. This setup is frequently used by
physical chemists who are working on new shell materials [1,42,68,119]. In order to facilitate
the determination of the elastic properties of the newly synthesised capsule membrane, we
develop a shape analysis based on the deflation of the capsules by suction through the capillary.
We provide a proof-of-concept study that this shape analysis, in combination with an analysis
of the wrinkles that generically form in the course of the deflation, can be used to infer all
elastic moduli of the enclosing membrane. Motivated by the results on a capsule consisting of a
protein layer, we develop an elasticity model based on the microscopic view of beads with hard
cores and spring interactions and analyse its impact on the capsule deflation.

All these problems are solved using shell theory. The equations of shell theory seem to be
best handled with finite element methods when they are applied in general. Here, however, we
only consider special cases with simple geometry that allow some analytic treatment or lead to
one-dimensional problems in which an ordinary differential equation must be solved numerically.



Chapter 2

Axisymmetric buckling of spherical shells

Abstract — In this chapter we present the basics of non-linear shell theory for axisym-
metric shells. Shape equations are derived from an elastic energy functional, which are
then used to compute the deflated shapes of spherical shells, including buckled shapes
that are completely collapsed and have opposite sides in contact. The buckled shapes
which exhibit an axisymmetric dimple can also be approximated by an analytic model
proposed by Pogorelov, which is reviewed here and compared to the exact numerical
results. A detailed analysis of the geometry shows that the curvature of the dimple
edge can be used as an indicator for the bending stiffness in experiments. We conclude
this chapter by a discussion of the stability of the buckled shapes with respect to
further growth of the dimple. Striking differences are found between the three load
cases where either the volume difference of the shell is fixed, the pressure difference
between the inside and outside is fixed or the shell is deflated by osmosis.

Published material — Parts of this chapter are reproduced with modifications from the
author’s publications [152], (© 2011 by the American Physical Society, [155], © 2014
by IOPscience, [156], with kind permission of The European Physical Journal (EPJ),
and [157], reproduced by permission of The Royal Society of Chemistry. Parts of the
theoretical background in sections 2.2.1 to 2.2.4 have already been presented in the
author’s Diploma thesis [151].

2.1. Introduction

The elastic deformation of spherical shells has been analysed for various deformation means
using different shell theories. Soft microcapsules can be deformed by shear flow [8-10, 12,
47,48,73,139], rotation [106], point forces [55,102,128,130,132,150] or interactions with flat
plates [23,55,56,80,101,102,128]. A comparison of experimental results with the appropriate
theoretical models allows for a characterisation of the capsule materials in terms of the elastic
moduli, see ref. [46] for a recent review.

Here we will discuss the deformation that occurs upon volume reduction or an applied pressure
difference. In microcapsule experiments, the volume reduction can be achieved by osmosis
through a semipermeable capsule membrane, drying, or chemical reactions [18,45,51,97,98,100,
113,116,127,150], while experiments on macroscopic shells necessitate an outlet incorporated in
the shell wall [15,24].

When a spherical shell is deflated, it first contracts uniformly at small pressure differences.
A stability analysis shows that this prebuckled shape becomes unstable at a critical pressure
peb. The stability analysis can be conducted for the full spherical shape [79] or for a shallow
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deflection:

inward | outward
neutral

Figure 2.1.: Initial postbuckling shapes of spherical shells under normal pressure. Differences in the
wavelength of the buckling pattern are due to different elastic moduli: Smaller bending stiffnesses
result in smaller wavelengths. a) Plot of the normal deflection of Hutchinson’s result for a shallow
segment [69,79]. b) Experimental observation by Carlson et al. using a wax mandrel inside the
shell to limit the maximum indentation of the dimples, image taken from ref. [24]. c¢) Numerical
simulation of the same setup, image taken from ref. [103]. d) Monte Carlo simulation (at practically
vanishing temperature) with a large compression rate in which the shell is trapped in a metastable
state, image taken from ref. [138].

segment of the shell [69,103], with identical results for p.,. The buckling mode has the shape
of an oscillatory normal deflection — in fact, there exist many degenerate modes, all of them
with wavelengths small compared to the shell radius [103]. The existence of a multitude of
degenerate modes complicates the discussion of the initial post-buckling behaviour, because
the modes interact with each other when the critical pressure is exceeded. The actual energy
minimum is a linear combination of the critical modes, which was calculated by Hutchinson for
shallow segments [69] and Koiter for full spheres [79] and is plotted in fig. 2.1 a). It consists of
small dimples, arranged in a hexagonal mesh.

This buckling mode is unstable, which means that the dimples grow spontaneously if the
pressure is prescribed [69,79]. In experiments, the buckling mode can only be observed when it
is stabilised against an endless growth of the dimples. This was achieved in ref. [24] by placing
a solid sphere (termed “wax mandrel”) inside the shell, with a small gap between shell and wax
mandrel, thus limiting the depth of the dimples. The observation is in qualitative agreement
with Koiter’s and Hutchinson’s theoretical results, see fig. 2.1 b). In simulations, similar shapes
can be observed, for example by including a repulsive potential in the simulations mimicking
the wax mandrel [103], or when the simulation is trapped in a metastable state with many
dimples [113,138,140]. In the latter case, the shell can leave the metastable state by additional
iterations or manually added perturbations, and finally ends up in a shape with only a single
dimple.

In the conclusions of his extensive investigations of the buckling of spherical shells [79], Koiter
reckoned that the shapes with many small dimples “play a vital role in the triggering of the
buckling phenomenon, and that the shell returns to a configuration of rotational symmetry in a
slightly more advanced post-buckling stage”. This hypothesis is confirmed by the aforementioned
simulations and by experiments, in which shapes with a single dimple are usually observed
[45,113,116,150].

In the following sections we will therefore concentrate on axisymmetric buckled shapes, which
seem to be most relevant in practice. They are modelled in two different approaches. The
first model is based on finite strain shell theory, from which equations for the deformed shape
can be derived. Shape equations of similar non-linear shell theories have been analysed by
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numerical methods, and were shown to have a large solution space which is usually presented
in bifurcation diagrams [14,62,78]. The shape equations used in this thesis have already been
described in the author’s diploma thesis [151] and a subsequent publication [152], where rich
bifurcation diagrams have been obtained. Here, we focus on the most relevant shapes with a
single dimple and extend the investigations to bowl-like shapes with opposite sides in contact.

The second model for axisymmetric buckled shapes is an approximate analytic model proposed
by Pogorelov [107]. Linear shell theory can be used to describe buckled shapes which are close
to an isometric deformation of the sphere, where a spherical cap is mirror-inverted. Upon this
basis, Pogorelov constructed an energy functional for the buckled shape and minimised it with
calculus of variations. We summarise his derivation of the resulting shape and compare his
analytic results to our numerical solutions of the shape equations.

The two models provide a numerical and an approximate analytic description of axisymmetric
buckled shapes with one dimple. The curvature of the dimple edge is a good indicator of
the shell’s bending stiffness, and we provide scaling laws that can be used to interpret the
results of microcapsule experiments and eventually determine the bending stiffness from a
shape analysis. Furthermore, the stability of the buckled shapes will be discussed, which is
very different depending on whether the volume or pressure is prescribed. Apart from that, the
accurate descriptions of the axisymmetric buckled shapes are essential for the discussion of the
secondary buckling transition in chapter 4, where the dimple loses its axisymmetry. Analysing
the numerical and analytic solutions, we get a hint for the physical mechanism of the secondary
buckling transition: We observe a region of compressive hoop stress, which is located in the
inner neighbourhood of the dimple edge, just in the place where the secondary buckling occurs
in experiments and simulations.

2.2. Shape equations for shells of revolution

The first model of axisymmetric shells is based on finite strain shell theory [89,108]. A set
of shape equations, whose solutions describe deformed axisymmetric shapes, shall be briefly
derived in the present section. We consider shells with very thin walls, so that the shell is
virtually two-dimensional, and in the following we will model it as a two-dimensional continuum.
This approach differs from most textbooks on the theory of plates and shells [89,96,124,125,135],
which derive the equations for the truly two-dimensional midsurface of a shell by descending
from three-dimensional elasticity. While being general, deductive and mathematically precise,
the descend from three dimensions necessitates prior knowledge of the whole three-dimensional
elasticity theory. Our approach is less complete, but considerably faster and we can get a good
overview over all the “ingredients” of the theory.

We will work with a fully non-linear shell theory. The only approximation comes with the
elastic strain-energy function, which will have a simple quadratic form. This Hookean law is
restricted to small strains; many other strain-energy functions have been proposed, like the
Mooney-Rivlin law for rubber, which are suitable for larger strains [11,49,50, 58, 89]. However,
the strains in the deformed shapes will remain quite small even after buckling, which justifies
that we prefer the generic Hookean elasticity to a specialised large-strain elasticity.

Our discussion is valid for general shells of revolution, subjected to a normal pressure. Shells
with spherical reference shape are a special case. The restriction to axisymmetric and torsionless
deformations simplifies the analysis, because the principal directions of curvatures and stress
are obvious from the geometry. This spares us the discussion of shear terms.
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2.2.1. Geometry and deformation

Let us start with a description of the geometrical setup. In elasticity theory, we have to
distinguish between the reference configuration and the deformed configuration of the elastic
body. In this section, the reference configuration is free of stresses; this condition will be relaxed
in the subsequent chapters.

The midsurface of the reference shape is parametrised in polar cylindrical coordinates (rg, o)
with an arc length coordinate sg ranging from 0 to Ly and a circumferential angle ¢q € [0, 27),
see fig. 2.2 a). We define a slope angle ¢y by the two relations

d’l"o dZo

— = cos and — =siny, 2.1

350 Yo 20 Yo (2.1)

see fig. 2.2 b), which permits simple calculation of the principal curvatures of the midsurface.

These are found in meridional (so-) and circumferential (¢g-) direction, respectively, and read
sin ’(ﬂo

dyo
KSOZd—SO and Ky, = o (2.2)

In the example of a spherical reference configuration with radius Ry, the parametrisation is
explicitly given by ro(so) = Rpsin(so/Ro) and zo(so) = —Rp cos(so/Rp), where the arc length
so ranges from 0 to Ly = mRy. The slope angle then reads ¢y = s¢/Rp, and the principal
curvatures reduce to kg, = Ky, = 1/Rp.

The index 0 of the symbols introduced so far indicates that they describe the reference
configuration. The midsurface of the deformed configuration is described analogously without
the indices 0. Specifically, its shape is determined by the functions r(s), z(s) which are to be
determined. The geometrical relations (2.1) and (2.2) also hold for the deformed midsurface
when all indices 0 are omitted, i.e.

dr dz _dy

. sin
— = cos 1, gzsmz/), ks = — and f%:—w.

2.
ds ds T (2:3)

Upon deformation, the midsurface undergoes stretching and bending. We define the stretches
in meridional and circumferential direction as

As =ds/dsg and A, =r1/r0, (2.4)

respectively. The function s(sg) defined in this context determines the position s at which a
shell element originally located at sy can be found after deformation; it must be determined as a
part of the solution. These stretches measure the ratio of deformed length to undeformed length
of material fibres oriented along the meridional and circumferential direction, respectively. With
“material fibres” we do not imply that the elastic material is composed of individual fibres; we
still consider it as a two-dimensional continuum. But it is a useful conception to imagine virtual

a) 20 b) z c)
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Figure 2.2.: Parametrisation of the
Do axisymmetric midsurface in the a) ref-
o r dsg erence configuration and b) deformed
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configuration. c¢) Definition of the
slope angle in the reference configura-
tion.
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fibres in the material, like pencil lines that are drawn on the shell. The strains that correspond
to the stretches are centred around 0 and are defined as

es=As—1 and e, =A,— 1. (2.5)
To measure the change in curvature, the bending strains
Ko =MXks —Rsy and Ky, = A, Ky — Ko (2.6)

are defined [89,108]. They are more suited for the use in shell theory than simple curvature
differences Aks = ks — ks, because they are, in a sense, energy conjugate to the bending
moments, see eq. (2.10) below. For example, consider a uniform expansion of the spherical shell,
where we do not expect any bending energy or bending moments: The curvature difference
Akgs =1/R —1/Rq does not vanish in this case, but the correct strains K, and K, do. This is,
however, a very subtle difference. In ref. [4] it is argued that it can be neglected, because the
calculation of the bending energy needs to be accurate only for deformations with very small
stretching, i.e. if A = A, = 1. Otherwise, the much larger stretching energy conceals the small
mistakes in the anyway small bending energy. Here, however, we keep the full form (2.6) of the
bending strains.

2.2.2. Finite strain elasticity

To deform an elastic shell, a certain amount of work is required. For hyperelastic materials, this
work is stored in the deformed shape as an elastic energy, and so we have energy conservation.
There exists a surface energy density wg(es, €y, Ks, K,,) which measures the elastic energy that
is stored in an infinitesimal patch of the membrane divided by the area that this patch takes in
the undeformed configuration.

Several functions for the surface energy density wg have been proposed to model various
membrane materials [11,49,50,58,89], which show different large-strain behaviour. For small
strains, they all can be reduced to Hooke’s law [89],

1
wg(es, ey, K, Ky) = 5T 12 (€2 +2vee, + ei) + §EB (K2 +2vK, K, + Ki,) .20

Wstretch Whend

The two-dimensional Young modulus Esp, the two-dimensional Poisson ratio! v and the bending
stiffness Ep are material constants. Their physical interpretation will be discussed below in
section 3.2 in the framework of linear elasticity theory.

Our motivation to write down the energy density (2.7) is that it is the simplest form
which satisfies several conditions. The energy function should be symmetric with respect
to interchanging the indices s and ¢, so that the described material is isotropic (in its two
dimensions). It must have a minimum at e, = e, = Ky = K, = 0, so that the elastic
tensions will always tend to restore the undeformed state. The simplest function to realise
these requirements is a positive definite quadratic form like (2.7). We explicitly check that it is
positive definite, because this limits the admissible range of the Poisson ratio v. The stretching
part of the energy density, for example, can be written as

1 _Esp 1,, Eap e
— 2 1—v2 27 1—v2 s
Wstretch = (637 ew) (1 EZD 1 Ezg ) < ) (28)

V1207 21,2 o

1The two-dimensional Poisson ratio has different properties than the Poisson ratio from three-dimensional
elasticity, which we denote as v3p to avoid ambiguity.
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and is positive definite if the eigenvalues of the matrix are positive. It is a standard calculation
which shows that the eigenvalues are 1 = Fop/2(1 — v) and pe = Eap/2(1 + v). They are
both positive if the two-dimensional Poisson ratio is limited to —1 < v < 1. This coincides with
the result of ref. [11] which is based on the investigation of isotropic tension, and is in contrast
to the admissible range for the three-dimensional Poisson ratio —1 < v3p < 1/2, see ref. [83].

In classical shell theory it is assumed that the shell consists of a (three-dimensional) elastic
material that is homogeneous and isotropic. In the three-dimensional Hookean law, its elasticity
is described by the Young modulus F and Poisson ratio vsp [83]. Then, the two-dimensional
elastic moduli, which are to be used in the energy density (2.7), can be expressed in terms of E,
vsp and the shell thickness Hy [135]:

EH}

Eop = EH, = d Ep=—F——>.
2D 0, V=1UVp an B 121 - 12

(2.9)

Of course, v inherits the allowable range (—1,1/2) from v3p in this case. The two-dimensional
Hookean law introduced in (2.7), where v € (—1, 1), is thus more general; but values of v larger
than 1/2 can only be realised with elastic materials that are not isotropic (in three dimensions)
but have different elastic properties in normal direction. In such a more general case, the
bending stiffness E' is an autonomous parameter. The Poisson ratio for bending, which appears
in the bending part wpenq of wg, can then differ from the Poisson ratio for stretching used in
the stretching part wstreten. An example would be the Helfrich bending energy for vesicles [149],
which corresponds to wpenq from (2.7) with ¥ = 1 and simple curvature differences Axg and
Ak, in place of the bending strains K and K. However, we do not consider such models here.

From considerations of virtual displacements [151] or by descend from three-dimensional
elasticity [89], it can be shown that the meridional stress and bending moment derive from the
energy density via the constitutive relations

1 Jwsg FEop 1 | dws
TSZE Oey - 1,V2E(€s+ue¢) and ms = —

1
—2 = Fp— (K, K,), (2.10
X, 0K, B>\<p( +v so) ( )

and analogous for the circumferential (or hoop) stress and moment, 7, and m,,, when all indices
s and @ are interchanged. In our formalism that is based on the minimisation of an elastic
energy functional, the stresses and moments are simply defined in terms of derivatives of the
surface energy density. One could say that they are just abbreviations for these derivatives that
occur in the calculus of variations below. But they have also a mechanical interpretation, as
shown in fig. 2.4 below.

Stresses are forces per length. The factors 1/, in (2.10) occur because wg is measured per
unit area of the undeformed configuration, and dwg/0e; is then a force per unit length of the
undeformed configuration. Since the perimeter changes by the factor A, upon deformation, 7
as defined above is measured per unit length of the deformed configuration. This is the correct
definition for the Cauchy stresses.

It is a legitimate question why we retain all the non-linearities in the shell theory, but use a
simple Hookean energy density. When the energy density (2.7) is interpreted as a series expansion
up to order 0(52) (where the strains are of order e; = O(¢)), then the Hookean constitutive
relations (2.10) are accurate only to linear order in ¢, and the prefactors 1/\; = 1+ O(e) in
(2.10) could be neglected (shorthand notation with ¢ € {s,¢}). However, we want to have
an energy functional at hand from which the shell theory and the shape equations follow by
calculus of variations, because this allows us to discuss the stability of the shapes. When we
retain all the non-linearities, our shape equations are fully consistent with the energy functional.

10
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2.2.3. Derivation of equilibrium equations

The deformed configuration of the shell must satisfy equilibrium
conditions, which can be derived by minimising the potential and
elastic energy. The “ingredients” for the calculus of variations are just
geometrical relations from section 2.2.1 and the constitutive relations
in the form Jwg/des = A\,7s and Owg /0K, = A,m, (and analogous
in p-direction).

We consider a variation of the deformed shape (r(s), z(s)) by normal Figure 2.3.: Variation
and tangential displacements du and dv, see fig. 2.3, of the deformed shape

(g;) = <_Slcrclﬁ w) Su+ <$§$> sv. (2.11)

This leads to a variation of the elastic energy U = [wgdA4y (note that the energy density is
measured per undeformed surface area element dAg = 27rg dsg),

L

0 owg Jwg Jwg Owg
U= [ dso2 5es 5 5K, + VS s, L 2.12
v /0 %0 Mo{aes T B, 2T oK, O T aR, *"} (212)

Furthermore, we assume that the normal pressure difference p(s) that is applied to the shell
(with p > 0 corresponding to an internal overpressure) is generated by a reservoir which has
a potential energy P, the so-called load potential [89]. The variation of the load potential
is obviously dP = [ —pdudA since the normal displacement du must work against the force
—pdA. The surface element of the deformed surface is given by dA = 27rds = 27rAg dsg, and
we obtain

Lo
P = / dsg {—2mrAspdu}. (2.13)
0

If the pressure p is constant over the whole shell surface, then the load potential is explicitly
given by

Lo
P =—pV with the volume V = /71’7“2 dz = / 7r?2 (s0) dso (2.14)
0

(a prime denotes from now on a derivative with respect to sg). In appendix A.1 it is shown
that this choice reproduces the variation (2.13); and the pressure p can be interpreted as a
Lagrange multiplier that controls the shell volume V. The existence of a load potential is not
essential to the derivation of the equilibrium equations. If the external forces on the shell are
not conservative, a load potential does not exist. In this case, equation (2.13) is the amount of
virtual work done by the variations and can still be used in the following steps. This covers, for
example, the case of viscous traction when the shell is suspended in hydrodynamic flow, where
in addition to pdu a term ps dv must be included in (2.13), with ps being the tangential force
density exerted on the shell surface.

The variations must be written in terms of du and dv to deduce the equilibrium equations. In
appendix A.1 it is shown how the variations of the strains de; and JK; are expressed in terms
of du and dv. With the geometric relations from section 2.2.1 and integration by parts, the
total variation of the energy reduces to

L

0 1d(rq) cos 1d(r7s)
5 P = d 2 )\s 5 shvs - - (5 e sq — —
(U+P) /0 S0 27 {u|:7’l€ + Tk p+r ds]-l- U[ . Te + Ksq —

(2.15)
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b)

COIIIpI'eSSiOIl

. —38
tension 1\\

bending
moment

r

Figure 2.4.: a) Stresses and moments acting on a section of a shell. At the opposite faces, they point
in opposite direction. The stresses 7, and 7, act normal to the cross-section (i.e. tangential to the
midsurface); the transverse shear stress g acts tangential to the cross-section but for symmetry
reasons only on faces normal to the s-direction. The bending moments are trying to rotate the faces.
b) The origin of the bending moments, here at the simpler example of a bent plate: When a plate is
bent (without stretching the midsurface), inner layers (red) are compressed and outer layers (blue)
are stretched. This stress couple gives the bending moment.

where the transverse shear stress g was introduced by rq = m, cosp—d(rms)/ds. The boundary
terms from the integration by parts vanish for spherical shells, see appendix A.1.

For the equilibrium configuration, the first variation of the total energy must vanish for
arbitrary du and dv, and so we have the equilibrium equations

1 d(rq)
0= shs - -
Tsks + Tpkyp p—i—r 1s
0= COST/}TVJ + Ksq — 1d(rr,) (2.16)
r ds
0=q+ 1d(rms) cos® .

r ds T

They coincide with those presented in ref. [108] except for the sign convention of ¢; and they
are equivalent to equations (L.12) - (L.15) of ref. [89] if the traction force pr, the external stress
couple ! and the non-classical terms ¢ and M,, are set to zero there.?

Instead of calculus of variations, force and torque balances can also be used to derive the
equilibrium equations [89,108]. In that approach, the physical interpretation of the stresses
and bending moments becomes clearer; figure 2.4 a) shows on which sides the stresses and
bending moments are pulling and twisting. If one considers the finite thickness of a bent plate
or shell, one finds a stress variation across the thickness of the shell, where “stress” now refers
to the components of the three-dimensional stress tensor [83]. This originates in the different
compression and stretch of inner and outer layers, see fig. 2.4 b). Our two-dimensional stresses
Ts, T, and g are simply the averages of the corresponding components of the three-dimensional
stress over the shell thickness. The bending moments m, and m,, on the other hand, are the
first moments of the stress distribution across the thickness with respect to the midsurface.

2.2.4. Shape equations and their numerical solution

There are three groups of equations that determine the deformed shape of a shell: geometric
relations from section 2.2.1, constitutive relations (2.10) and equilibrium equations (2.16).

2When comparing, note that in ref. [89] all quantities are referred to the reference shape, for example stresses
are measured per unit length of the undeformed shape.
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2.2. SHAPE EQUATIONS FOR SHELLS OF REVOLUTION

Among them are differential equations, which can be rearranged to form the shape equations

' (50) = As COS P, T2(80) = As <T<p — 75 cosp + /isq> ,
r
2/(s0) = Assin, m(s0) = As (%Tm cos ¢ — q> : (2.17)
/ _ / o q
P (50) = AsHg, q (50) =X (7"357_5 — RpTyp — ; cos 1 +p> .

The equations in the left column follow from (2.3), the others from (2.16) when the derivatives
with respect to s are replaced by derivatives with respect to so by d/dsg = A;d/ds, see (2.4).
Using sg as the independent variable has the advantage that its integration interval [0, Lo] is
known, whereas the arc length coordinate s runs up to an unknown deformed contour length L.

In order to close the system of shape equations, all functions appearing on the right-hand
side must be expressed in terms of the basic functions r, z, ¥, 75, ms and ¢. This is achieved by
the geometric and constitutive relations that have not already been used for (2.17), rearranged
in the set

7. r
Ae =1 =) Ny = —v(Ap — 1) +1, Ay = —,
( ) ¥ Eap A = 1) Y
1 o
KS:Ef)\meS—l/KW _I:(W:w7
T
K. . (2.18)
joo — s ¥ sy __sing
s )\s ’ ® r ’
EQD 1 1
ﬂp:1—1/275(()\@_1)—’_”()\5_1))7 mga:EB*(Ktp-i-VKs).

As

A problem arises when the right hand sides of (2.17) and (2.18) must be evaluated at the
poles so = 0 or sg = Lg of a closed shell, where r = ry = 0 and some terms are ill-defined as
ratios of two vanishing quantities. We can evaluate those terms analytically using L’Hdopital’s
rule and symmetry arguments, see appendix A.2, which gives

E2D / p
)\s:)\ = =0y :/\s(*_ ss)a
® EQD—TS(l—I/) q 2 Ko 7

o= ey T

@ Ep (1 + l/) As ’
at so = 0 and sqg = Lg. With these expressions, the right-hand side of the shape equations can
be evaluated numerically at s = 0 and sy = Lg without problems.

Next, boundary conditions for the shape equations must be defined. From the geometry of
spherical shells, it is obvious that r(0) = r(Lg) = 0, otherwise the shell would have a gap. The
z coordinate does not appear on the right hand side of the shape equations; thus the system is
invariant with respect to a movement along the z axis. For simplicity, we choose z(0) = 0 in
the numerical routines; the value z(Lg) is then unknown a priori. The slope angle must satisfy
¥(0) = 0 and 9(Lg) = 7, so that the shell has no kinks at the poles, which would result in an
infinite curvature and an infinite bending energy. The last boundary conditions concern the
transverse shear stress, ¢(0) = ¢(Lg) = 0. These conditions are necessary so that the term ¢/r
in the last of the shape equations does not diverge at the poles, see also appendix A.2. The
case of a transverse shear stress diverging at the poles corresponds to an applied external point
force [151] and will not be discussed here. To summarise, the boundary conditions are

r(0) =0, 2(0)=0, %(0)=0, ¢0)=0 at the south pole
and r(Lo) =0, ¥(Lo)=m, q(Lo)=0 at the north pole.

(2.19)

/ /
Ks = T, =mg =0

(2.20)
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CHAPTER 2. AXISYMMETRIC BUCKLING OF SPHERICAL SHELLS

There are seven boundary conditions to a system of siz first-order 2
differential equations, which produces some complications. To see why
this is a problem, we must discuss how the shape equations will be solved
numerically on the interval so € [0, Ly]. The technique employed here is
called parallel shooting or shooting to a fitting point [14,109]. We have
seen that there are removable singularities in the shape equations at the
end points of this interval. It is numerically impracticable to integrate into
a removable singularity; therefore we split the integration interval in two,
I, =[0,Lo/2] and Iy = [Lo/2, Lo]. The first interval will be integrated
in forward direction, from 0 to Ly/2, and the second one in backward Figure 2.5.: Parallel
direction, from Lg to Ly/2, so that we integrate in both intervals away shooting method
from the singularity (see fig. 2.5).

At both starting points of integration, 0 and Lo, initial values for the six basic functions
r, z, ¥, Ts, ms and ¢ must be specified so that the numerical integrator, e.g. a Runge-Kutta
method, can start. The boundary conditions (2.20) provide some of these values; the other
values must be guessed, they are free and are called the shooting parameters. In total, there are
five shooting parameters: 75(0), ms(0), 2(Lo), 7s(Lo) and ms(Lo).

At Lo/2, where the two solutions meet, we must enforce continuity conditions for the six
basic functions f = (r, 2,9, 75, ms, q) of the shape equations. We denote the two solutions as
f1(s0) on the interval I1 and f,(sg) on Iy. The residual R = f,(Lo/2) — f5(Lo/2) measures
how much the continuity conditions are violated. It is a function of the shooting parameters,
and its root must be searched by varying the shooting parameters. But since the residual has
siz components and there are only five shooting parameters, the system is overdetermined. This
is the problem caused by the surplus boundary condition.

Astonishingly, we find that the overdetermined system does have a solution, i.e. all six
components of the residual can be made zero by adjusting the five shooting parameters. An
explanation of this phenomenological result was offered in the author’s diploma thesis [151],
and also published in [152]. There, the calculus of variations differs from our formulation here
in that the variations dr and v of the radial coordinate and slope angle were used instead of
ou and dv. This results in equilibrium equations that reproduce the first two of (2.16), but the
last equilibrium equation is replaced by an algebraic relation for the transverse shear stress,

shoot 2

g = —7, tant + %pco;/)' (2.21)
lengths, volumes and curvatures pressure and energy
F=r/Ry, Z=2z/Ro p= Rop/E2p
V =V/R3, Fk;=Royk; U =U/Esp R?
tensions bending moments
7i =7i/Fap, §=q/Ep m; = m;/Ro Eap
elastic moduli bending strains
B =1, Ep=FEp/R:Esp K =R K;

Table 2.1.: Overview of reduced variables for spherical shells (indices i € {s, p}). Adapted from the
author’s diploma thesis [151].
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2.2. SHAPE EQUATIONS FOR SHELLS OF REVOLUTION

max

Ry 0 R —Ro 0 Roe -Ry 0 R —Ro 0 R

Figure 2.6.: Buckled shapes of a spherical shell. Shown are parametric plots of the shell contour
(r(so0), 2(s0)), which are coloured according to the energy density wg. The pressure was adjusted so
that the deflated shells have a volume of V/Vy = 0.98,0.9,0.7,0.5 (from left to right) and the elastic
moduli are Eg = 0.0001 and v = 1/3.

It can be easily verified that this expression satisfies the differential equilibrium equations (2.16).
Let us assume that we have adjusted the shooting parameters so that the first five components
of the residual vanish. The algebraic relation (2.21) then asserts that also the last component
of the residual vanishes, because ¢ is expressed in terms of continuous functions and must be
continuous, too. So the continuity condition for ¢ (or the last component of the residual) may be
dropped, and we finally arrive at five continuity conditions which can be satisfied by adjusting
five shooting parameters. In principle, the differential equation for ¢ could be dropped from
the shape equations (2.17), because ¢ can be calculated from (2.21) in each integration step.
This, however, would lead to numerical problems due to the (removable) singularity in (2.21) at
points where ¢ = /2.

For a numerical solution of the shape equations, it is advantageous to introduce dimensionless
quantities. To this end, we choose R as the length unit and E5p as the tension unit, which
results in the reduced quantities summarised in table 2.1. In the shape equations, all dimensional
quantities can then be replaced by the dimensionless ones, and Ry and Esp are set to 1. Of
special importance is the reduced bending stiffness. For thin shells of isotropic three-dimensional
material, see (2.9), it reads
. Egp H? 1

FEp = = = 2.22
B R% EQD 12(1 — 1/2)R(2) YEVK ( )

and is the inverse of the Foppl-von-Kdrmdn-number vypyk. It is independent of the Young
modulus; in fact, the value of the Young modulus does not enter the non-dimensional shape
equations at all. The reduced bending stiffness and the Poisson ratio are the only material
properties in the shape equations and completely govern the shape of the shell.

Now, the system (2.17) can be solved numerically. The parallel shooting method can be
improved by using a multiple shooting method [122] for both shoots 1 and 2 in fig. 2.5, which
enhances the convergence. The numerical code calculates shapes for successively changed
pressure p < 0 using parameter tracing. Figure 2.6 presents some typical solutions of the shape
equations. The largest strains occurring in the plotted shapes are around A, ~ 0.05. This
justifies the usage of Hookean elasticity, which is valid only for small strains.

2.2.5. Shape equations for self-contacting shapes

For very large deflation, the original shape equations (2.17) predict self-intersecting shapes, see
fig. 2.7 on the left, which is clearly unacceptable. We want to replace these self-intersecting
shapes by configurations where the opposite sides of the shell are in contact with each other. An
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h

Figure 2.7.: Shell configurations with opposite
sides in contact, to replace self-intersecting
shapes. The region of self-contact is assumed
to be a spherical cap of radius R, limited by

r the coordinates sg = s1 and s2. The two sides
meeting there are allowed to have constant
meridional stretches A1 and A2, respectively.

)

exact solution to this problem seems very hard to find, because the constraint of no intersection
is difficult to handle in the variational analysis of the elastic energy functional. However, an
approximate model can easily be constructed and yields plausible results.

In this approach, see fig. 2.7, the complete shape consists of a region of self-contact which is
connected to a free region. In the free region, the only external force is the pressure p, and its
shape is therefore determined by the usual shape equations (2.17). Additional contact forces
may act on the self-contacting region, and so its shape is not a solution of the shape equations.
Motivated by the shape of the self-intersecting configurations, we assume that the contact
region can be modelled as a spherical cap, see fig. 2.7. This is a reasonable approach because
the parts that are in contact are then deformed nearly isometrically, which is energetically
favourable.

In the spherical cap of radius R, a region sg € [0, s1] (termed region 1) around the south
pole meets a region sg € [s2, Lg] (region 2) around the north pole. In addition, the two regions
may suffer an in-plane deformation described by constant meridional stretches As(sg) = A1
in region 1 and As(sg) = A2 in region 2. These two stretches may be different, but they are
not independent. They must satisfy the constraint A;s1 = Aa(Lo — $2) which ensures that the
deformed arc lengths of regions 1 and 2 are equal (see fig. 2.7 for the positions of s; and ss).
Thus, the deformation of regions 1 and 2 is completely described by the four parameters R, s1,
so and Ay in this simplified model.

To derive an explicit parametrisation of the shape in the region of self-contact, we notice
that the deformed arc length s is given by s(sp) = A1sg in region 1. The spherical cap with
radius R is then parametrised by

r(s0) = Rsin (So;q) ,  2(s0) = Rcos (801;\1) and  Y(sp) = —8(};\1 (2.23)

on 0 < sp < s1. We eventually choose sq instead of s as the coordinate because this facilitates
the connection with the free region. The strains are then given by

r R sin(spA1/R)
Ao =\, and A, = — = 2 2HS0A/T) 2.24
! an @ To RO SIH(S()/R()) ( )

Since the curvature of region 1 is nearly inverted, ks = k, = —1/R, the bending strains read
Ky = Asks — ksy = =M /R—1/Ry and K, = —\,(s0)/R—1/Ry. (2.25)

From Hooke’s law (2.10) the stresses and moments in region 1 can now be evaluated.

The shape, strains and stresses of region 2 can be derived analogously, based on the arc length
s(s0) = [Lo — S0]A2 that is now measured from the north pole on. The final parametrisation is
then

MW—Rm(WS$W>,AW—Rm%MW;ﬁﬂ7 wm:-&%$@+m
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R sin([Lo — so|A2/R)
Ro Sin(SO/Ro) ’
KSZ)\Q/R—l/Ro, K¢=A¢(So)/R—1/Ro

As = A1, A, = (2.26)

on sy < 8¢9 < Lg. It should be noted that there is a sign change in the first terms of the bending
strains, because the curvature of region 2 is not inverted; it only changes from 1/Rg to 1/R.

The free part of the shell is governed by the force balance with the pressure p as the only
external force. Therefore, the original system of shape equations (2.17) can be used to calculate
the shape of the free part when appropriate boundary conditions are used. The shape equations
are six coupled first-order differential equations, which are integrated from sy = s1 to sy with a
shooting method. There are, thus, six initial conditions at the starting point of integration,
plus the four parameters R, s1, so and A of the self-contacting region. That are, in total, ten
shooting parameters which can be chosen to enforce continuity conditions at the junction of the
free and self-contacting region. We select the functions 7, z, ¥, 75 and m for which continuity
conditions are imposed at the end points s; and ss of the integration interval, which are ten
conditions in total,

r(s1) = Rsin(s1A\1/R), r(s2) = Rsin(s1A1/R),
z(s1) = Rcos(s1A1/R), z(s2) = Rcos(s1A1/R),
Y(s1) = —s1M /R, Y(s2) = —51)\1/R+7r
ms(sy) = Es <—)\1 T A 1+V> . mg(s2) = Lo <)\2 T2 1 —H/)
/\<p1 R Ro )\SOQ R Ro
with  Ay1 = Rsin(s1A1/R)/Rgsin(s1/Ry), Ap2 = Rsin(s1A1/R)/Rysin(s2/Ro).

Thus, the only quantity for which no continuity condition is imposed is the transverse shear
stress ¢. In our current formulation, we have no expression for ¢ in the self-contacting region.
In principle, the equilibrium equations (A.10) can be used to determine the transverse shear
stress g(sg), along with the tangential and normal force densities ps(sop) and p,(so) (which may
be non-constant in the contacting region since the simple hydrostatic pressure is supplemented
by contact forces exerted from region 1 onto region 2 and vice versa). We do not carry out this
analysis here, but there is some evidence that ¢ will indeed have a discontinuity at s; and so: In
the numerical solutions it can be observed that the derivative m/(so) is discontinuous at s; and
s9, and this results according to the last of the stability equations (2.16) in a discontinuity in g.
This is a very typical behaviour for shells which are in contact with an obstacle, for example
with a rigid wall, see ref. [4] section 14.6. A discontinuity in the transverse shear stress is, by
virtue of the first of the equilibrium equations (2.16), related to an external normal pressure
pr that contains a Dirac §-function. This divergence is smoothed out over a length scale of
the shell’s thickness when a refined shell theory, which considers effects from the finite shell
thickness, is used [4].

Numerical solutions of the proposed model for self-contacting shapes can be obtained with
the parallel shooting method described above. The same nondimensionalisation as before can
be used, see table 2.1. Solutions for the same elastic parameters as used in fig. 2.6 show that
the strains stay relatively small, even when the shell is heavily deflated with V/V, &~ 0.002:
Then the maximum strain is around Ag ~ 0.008.
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2.3. Analytic model for buckled spherical shells

Before discussing the behaviour of spherical shells upon deflation in detail in section 2.4, we will
first develop an approximate, analytic model for buckled shapes. This approach was proposed by
Pogorelov [107], we summarise his reasoning here and analyse his results. The approximations
that will be introduced in the mathematical formulation are satisfied if the dimple has a small
but finite size, and for small reduced bending stiffnesses Fp < 1.

The basic idea is that for small bending stiffness, the shape of the axisymmetric dimple will
be close to an isometric deformation of the sphere: a shape where a spherical cap is mirror
inverted (see fig. 2.8, grey lines). As it is isometric to the sphere, this shape is free of stretching.
For vanishing bending stiffness, Ep = 0, this shape has therefore vanishing elastic energy.
However, the bending strain at the edge of the inverted cap is infinitely large, which gives rise
to infinitely large bending energy for Ep > 0. Thus, switching from EFp = 0 to Ep > 0, the
sharp edge of the dimple has to be smoothed out.

In order to describe the deformation from the isometric shape to the final smooth shape, we
follow the ideas of Pogorelov and introduce displacements u(sg) and v(sg) in - and z-direction,
respectively, see fig. 2.8. Assuming that v and v are small, we use linear shell theory to calculate
the bending and stretching energies in the final shape. This technique is quite remarkable
because it enables us to describe large deformations with linear shell theory by choosing not
the undeformed shape as reference state, but the isometric buckled shape.

First, there are geometric relations for isometric deformations of spheres, which are obtained
by mirror reflection of a spherical cap, see fig. 2.8 a). The resulting dimple is characterised by
its opening angle «, from which we can calculate the dimple radius rp, depth h and volume
difference AV =V, — V. For later use, we already introduce a first order approximation in «,
since we will assume that the dimple is small compared to Ry. The exact and approximated
relations then read

rp = Rosina ~ aRy, h = Ry— Rycosa ~a’Ry/2 and

AV =2h*1(3Ry — h)/3 ~ ma* R} /2. (2.28)

In order to evaluate the elastic energies in the final shape, we split it into different regions which
are investigated separately. We define the inner neighbourhood G; and outer neighbourhood G,
of the dimple edge (see fig. 2.8) as the regions in which the displacements (u,v) are significant.
This is only the case in a narrow strip to both sides of the dimple edge, see (2.35) below.
Outside these regions, the displacements are negligible; these regions are referred to as G (for
the rest of the dimple) and G; (for the rest of the undeformed part).

The elastic energies that we have to evaluate consist of the bending needed to invert the
curvature in G, and the bending and stretching due to the displacements in G; and G,. The
uniform compressive strains in G; and G9, which result from the negative inner pressure and
which are already present in the spherical (prebuckled) shape, are neglected. This is justified if

a) b)

Figure 2.8.: Midsurface geometry in the
analytic model. a) Isometric deformation,

20 \L20 where a spherical cap of radius rp and
oh depth h is mirror inverted. b) The final
shape (green line) differs from the isomet-

D ric shape by small displacements (u, v).

18
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the pressure is small. The pressure in a buckled shell is of the order of the classical buckling
pressure [83,135] pe, = —4v/Eap Ep/R%, which can be written according to table 2.1 in the
dimensionless form pep, = —4\/@. Conclusively, the assumption is satisfied for small reduced
bending stiffnesses Fp.

The bending energy in Gs is readily written down. From the spherical shape to the isometric
deformed shape, the curvatures change from 1/Rg to —1/Ry, thus giving bending strains
K, = K, = —2/Ry, where the stretches in the definition (2.6) are neglected. The energy
density (2.7) is integrated over the area of the inverted spherical cap. We neglect that the area
of the dimple should be reduced by the area of G; since we assume that G; is much smaller
than G, and hence the area of Gy is A(Gg) = 27rhRy ~ ma?R3. Thus, the bending energy in
G5 reads

Up(Gs) = %EB /G dA{K? + 20K K, + K2} = 4ra’Ep(1 + v). (2.29)
2

In the region G,, the deformation energy is governed by the displacements u(sp) and v(sgp)
(where so is the undeformed arc length). From “graphic considerations” [107] Pogorelov
concludes that a meridian will not stretch or compress very much: es &~ 0. Using the nonlinear
shape equations, it was checked that this assumption holds, even for quite large dimples,
if the Poisson ratio is not too large and the reduced bending stiffness is small. However,
this approximation is probably the most inaccurate one introduced in the Pogorelov model,
but necessary to advance analytically. The stretching of circumferential fibres results in the
strain e, = u(so)/ro(s0) = u(so)/rp, see eq. (2.5), where the approximation holds if G, is
sufficiently narrow. The integration of the stretching energy is performed over the area element
dAg = 21rpdsy with s € [0,¢]. Here the arc length coordinate was centred around the dimple
edge and runs up to a point € where the displacements have decayed sufficiently to be neglected.
The stretching energy of the outer neighbourhood is thus given by?

1 Esp 5 mEsp / 2
o - = . 2.
Us(Go) = 51— 2 /GD e, dAg A=v%)5 Jo u(s0)” dso (2.30)

Pogorelov approximates the bending strains as K = v”(sg) and K, = v'(so)/aRy. In the
integral of the bending energy, a term v’(sg)v”(sg) occurs, which can be readily integrated to
v'(80)?/2, and we need to specify boundary conditions for the displacement v to proceed. We
require the dimple to have a horizontal tangent at the dimple edge sop = 0, hence —v'(0) =
sina &~ «a. At the other end sy = ¢, the displacement shall have decayed and we enforce
v(e) =v'(e) = 0. The resulting expression for the bending energy is

Up(Go) = WEBTD/ v (50)* dsog — TaEpvrp/Ro. (2.31)
0

In total, the elastic energy of the outer neighbourhood G, is therefore given by

WEQDU(S())z }

™D
—nraEgr—. 2.32
(1 — y2)rD e BVR ( )

€
U(Go) = / dsg {WEBTDU/I(80)2 +
0 0
Analogously, the elastic energy of the inner neighbourhood G;j can be calculated. The
stretching energy is the same as for the outer neighbourhood. The bending strains have to be
modified because we have to take into account that the curvature of the inverted cap is already

31n ref. [107] the prefactor of the integral is wrong, but the results presented there are correct.
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inverted, and we get K, = v"(s0) —2/Ry and K, = —v'(s9)/aRo — 2/Ro. The resulting elastic
energy of the inner neighbourhood is given by

0 2
E
U(Gi) _ / dso {WEBTDUH(S())Q + 71'2Du(80)} _ 47TaEB(1 + V)T7D —i—ﬂ'aEBVT—D (2.33)

—e (1 —Z/Q)TD RO RO.

The integrand coincides with the result (2.32) for the outer neighbourhood; only the constant
terms differ.

To find the functions u(sg) and v(sg) which represent the final shape, we have to minimise
the functional of total elastic energy with respect to u and v. During the variation v — u + du
and v — v + dv we keep the parameters a, h, rp and AV of the isometric shape constant.
Since the volume change due to u and v can be neglected (compared to the large AV due to
the isometric deformation), this corresponds to a variation at constant shell volume, and we do
not need to introduce a Lagrange multiplier controlling the volume. As the integrals in the
elastic energies of the inner and outer neighbourhood are identical, we expect a symmetric
shape of the dimple, with an odd function u(sp) and an even function v(sg). It is thus sufficient
to determine the solution on the interval so € [0,¢] by minimising (2.32).

During the minimisation we have to impose a constraint on u and v, because the energy
functional was set up under the assumption of vanishing (or negligible) meridional strain e, = 0.
The final solution must satisfy this condition, which can be written as

u'(s0) + av'(sg) + %v’(so)2 =0. (2.34)
Furthermore, the variation has to respect the boundary conditions, which are evident from
geometrical considerations: u(0) = 0 so that the shell is not ripped apart at the dimple edge,
v'(0) = —a for a horizontal tangent at the dimple edge, and u(e) = v(e) = v'(e) = 0 because
the displacements must have decayed at sg = €.
The number of parameters in the problem can be greatly reduced with a suitable nondimen-
sionalisation by introducing characteristic length and energy scales. Inspection of the integrand
in (2.32) and the constraint (2.34) shows that the substitutions

dv - 1/4 [ Rorp /2
so = &80, u=¢a’u, o oW with £= [Ep(1—17)] () (2.35)
S0 «

with a typical arc length scale & prove useful. For small Ep < 1, the length scale £ < Ry is also
small, which shows that the regions G; and G, are indeed narrow strips as announced when
they were defined above. The substitutions lead to a dimensionless form of the energy (2.32),

Eqp B3

m, (2.36)

g
U(G,) = Ug /Od§0 {@'(50)% + (50)°} + C with Ug = ma®?r}{*R}/*

where the constant terms are gathered in C and Ug is the energy scale. Using the geometric
relations (2.28), the scaling parameters &, Ue, and a can be expressed as functions of the elastic
moduli, the shell radius Ry, and the reduced volume difference AV/Vy (or alternatively the
reduced volume V/V, with V =V, — AV'). Inverting the exact geometric relations is possible
but quite elaborate, and is best handled with a computer algebra system. This results in the
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2.3. ANALYTIC MODEL FOR BUCKLED SPHERICAL SHELLS

scaling factors

a = arccos <2 cos (; |:7T + arctan \/ (Vo / V) — 1})) ,

sin o 1/4 B34 (2:37)
£ =Ry o [EB(l—l/Q)] and ngﬂEgDR(Q)\/cﬁsina ﬁ.

Starting from the the first-order approximations for the geometric relations, simpler scaling
parameters are obtained,

g AV /4 ~ 1/4 By R (8. AV\*/!
az<3VO) , E~Ro[Ep(1-1v)]"", Ug%ﬂ(l_iyz)?/‘l <3EBV0) , (2.38)

which will be useful for further analytic calculations. We must keep in mind that they are only
accurate for small dimples, i.e. for AV < Vj.

Both the arc length scale £ and the energy scale Ug emerge from the competition of stretching
and bending energies in (2.32) (under the constraint (2.34)): & gives the typical arc length size
of the neighbourhoods G; and G, and U gives the typical energy of the buckled configuration.
In the literature, this Foppl-von-Karman length scale is often written as £ ~ v/ RgHy, the
geometric average of shell radius and thickness [83]. The final result for the Pogorelov buckling
energy, which is obtained after minimisation of the total energy with respect to u and v will
differ from Ug only by a numerical prefactor, see eq. (2.44) below.

For the minimisation of the total energy, the integral in eq. (2.36) has to be minimised. Note
that the limit € of the integral has been rescaled, too, according to € = ££. Following Pogorelov,
we consider the case of small Ep, where & — oo because £ — 0 according to (2.37) and (2.38).
Thus our task for the calculus of variations is to minimise the functional

ﬂwwp:Amd%{w2+ﬁ} (2.39)

subjected to the constraint (2.34) which reads

1
U+w+?f:0 (2.40)

in rescaled variables and with boundary conditions
u(0) =0, w(0)=-1, u(co)=0, w(oco)=0. (2.41)

Pogorelov solved the constrained variational problem analytically. His results for the min-
imising functions u(5p) and w(sp) are presented in appendix B. These functions are defined
piecewise, due to some simplifications, on two intervals Sy € [0,0) and Sy € [0,00), where the
optimal choice for ¢ is oy = 1.24667. The minimal value of the functional is found to be
Jmin = 1.15092.

Now we can switch back from the rescaled quantities to physical quantities in order to analyse
the features of Pogorelov’s model, plot solutions and compare them to our results from the
nonlinear shape equations. The rescaling of the displacements u and v describing the shape is
obviously given by (2.35). We also have to take into account that the origin of sy was shifted
to the dimple edge. In the coordinate system of the nonlinear shape equations, the origin of
so starts at the south pole of the capsule, and the dimple edge (of the isometric deformation)
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CHAPTER 2. AXISYMMETRIC BUCKLING OF SPHERICAL SHELLS

is located at sp = aRy. When comparing these solutions, the functions from the Pogorelov
model must be shifted.

The displacements u(sg) and v(sp) can be used to plot the deformed shape and to calculate
further properties, like curvatures and tensions. With the strain definitions e; = 0 and
ey, = u/rp we see that the maximum strain scales like e, ~ (EgAV/V;)'/4. This shows again
that the strains remain small throughout the deformation if the reduced bending stiffness Ep is
small, see also fig. 2.9 a) where the reduced tension To /Esp ~ e, is plotted. From the strains
we obtain the stresses with the Hookean law (2.10),

Esp u(sg—sp)
Te=1_3 - and Ty =vT, (2.42)

in linearised form, i.e. the prefactors 1/A; have been omitted. The definitions of the bending
strains imply curvatures

. —1/Ro +v"(s0 — sp), S0 < Sp and k. — —1/Ro 4+ v'(so — sp)/aRy, so < sp
s 1/Ro +v"(s0 — sp), S0 > Sp L 1/Ro +v'(so — sp)/aRy, S0 > Sp
(2.43)
The total elastic energy is obtained by adding U(Gs) + U(G,) + U(G;). We see that the
constant terms cancel each other, and only the integral terms of U(G;) and U(G,) survive.
Each integral gives JminUes. Our final result for the elastic energy of an axisymmetric buckled
shell with a given volume difference is

8\**  Ewnp - AV
Upog = 2JminUs = 270 Jmin | = — =  (Ep=— R2. 2.44
Pog ¢ T <3) (1_V2)1/4< B%> 0 ( )

Here, the simplified scaling factors (2.38) are used and so this result is valid only for small
volume differences.

2.4. Buckled shapes of deflated spherical shells

With the shape equations and the Pogorelov model, we have two models at hand to calculate the
shape of a deflated spherical shell. In the author’s diploma thesis [151], the shape equations were
analysed in detail, and a rich bifurcation behaviour was found, see also ref. [152]. Various solution
branches with axisymmetric buckled and crumpled shapes were found and traced, but the shape
with a single dimple was found to have the least elastic energy and therefore represents the
ground state of the deflated shell. This is in accordance with experiments [15,45,97,98,113,116],
simulations [112,113,138,140] and some analytic estimates [112,138] which are based on a short
account of Pogorelov’s model given by Landau and Lifshitz [83].

From eq. (2.44) it can be easily seen that shapes with one dimple are energetically favourable
to shapes with several, say N, dimples. When we impose a volume difference AV, the elastic
energy of a shape with one dimple is U; ~ (E’B AV)3/4 in reduced units. If the volume is
divided into N smaller dimples, each contributes (Ep AV /N)3/* to the total elastic energy
Unx ~ N(Eg AV/N)3/* ~ N'/* The smallest elastic energy is thus assumed by the shape with
only N =1 dimple.

Strictly speaking, this justification is only valid when the internal volume of the shell is
prescribed, and not, for example, when the pressure exerted on the shell is prescribed and
the shell volume adjusts itself. For this pressure-controlled case, however, it was shown in
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2.4. BUCKLED SHAPES OF DEFLATED SPHERICAL SHELLS

the author’s diploma thesis that shapes with a single dimple are still preferred to shapes with
two dimples. For the case of osmotically induced buckling discussed below, where neither the
internal shell volume nor the pressure difference is prescribed, we will provide an argument in
section 2.5.4 asserting that shapes with a single dimple are the energetical ground state also for
buckling under osmosis.

Therefore, we focus the discussion of the results in the following on the most relevant shape
with one axisymmetric dimple.

2.4.1. Solutions of the shape equations and the analytic model

For the shape equations, solutions can be obtained numerically for given elastic moduli E and
v, and the pressure p can be adjusted to meet a given shell volume. Solutions of the Pogorelov
model are obtained by proper rescaling of the dimensionless functions u and w; they depend
on the shell volume and elastic moduli because the rescaling parameters do. In the Pogorelov
model, the same length and tension units (Ry and Esp, respectively) as in the shape equations
are used for the plots that are presented here.

Figure 2.9 compares typical solutions of the shape equations and analytic model. The
circumferential stress 7, is quite consistent in both models, but there are considerable deviations
in the meridional stress 75 which can be attributed to Pogorelov’s strong simplification of
vanishing meridional strain e; = 0. We see a characteristic region of strong circumferential
compression that is located in the inner neighbourhood of the dimple edge, in which the models
even agree quantitatively. In the outer neighbourhood of the dimple edge, a corresponding
region of strong hoop stretch is present. A simple explanation why hoop compression arises in
the inner neighbourhood and stretch in the outer neighbourhood of the dimple edge is evident
from fig. 2.8 b): Upon smoothing of the dimple edge, the inner neighbourhood Gj is displaced
horizontally to the left, and the outer neighbourhood G, to the right. Thus, the circumferential
fibres of the inner neighbourhood are compressed and those of the outer neighbourhood are
stretched. The compressive peak of the hoop stress will form the basis for our explanation of the
secondary buckling transition, where the dimple loses its axisymmetry by wrinkles appearing in
this compressive region.

Both models also agree very well concerning the curvatures and the shape. Due to the
piecewise definitions of the displacements in the Pogorelov model, the meridional curvature
ks is discontinuous; but nevertheless it approximates the exact numerical result of the shape

a) b) c)
0015} ‘ N\ ] Y AU
0.010 - ms/Eop | /N 3 1(; i
0000 | N A\ Y
B 4 L
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~0.010 | 0
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S0 / Ry S0 / Ry ="

Figure 2.9.: Comparison of the shape equations and analytic model. The solutions for a) tensions, b)
curvatures and c) the shape are plotted for the shape equations (continuous lines) and Pogorelov
model (dashed lines), with parameter values AV/Vy = 0.05, Ep = 107°, v = 1/3. The vertical lines
in a), b) and the close-up of c) indicate the position of the dimple edge sp and sp £ ominé.
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Figure 2.10.: a) Elastic energy U(V) of the axisymmetric buckled shapes for the shape equations (red
and orange points with light red and orange interpolation) and Pogorelov model (dashed line), and
for the spherical shapes Uspn(V) (blue line). The elastic moduli are Ep = 10~* and v = 1/3. In the
inset, the critical volume of classical buckling Vi, according to (2.49) and of the first buckling Vit
are marked. b) To resolve the beginning of the buckled solution branch better, the energy difference
between buckled and spherical shapes is plotted. The pictograms included in the diagrams are plots
of the shape according to the shape equations.

equations accurately. The agreement of the shape is even more striking. Only in the close-up,
deviations between the two models can be recognised. The characteristic curvature peak at the
dimple edge may serve as the foundation for a very rudimentary shape analysis, which will be
further discussed in section 2.4.2.

Now, let us turn to the comparison of the elastic energies of the deformed shapes, from which
the bifurcation behaviour can be deduced. First of all, there is the trivial (spherical) solution
branch, which can be handled analytically. If the deformed shell is a sphere with radius R, the
strains are uniform and homogeneous, es = e, = R/Ry — 1 = (V/V;)}/3 — 1, and the bending
strains vanish. The elastic energy density (2.7) must be integrated over the undeformed surface
with area 47 RZ, which gives the elastic energy

Esp

Usph:47r1_y

R2 [(V/Vo)l/3 1% (2.45)

This function of the reduced shell volume V/Vj is plotted in fig. 2.10 a), blue line, and increases
rapidly with decreasing volume.

The classical shell theory shows that the spherical shape becomes unstable at the classical
buckling pressure p., = —4EHZ/R2,/12(1 — 12) (see, for example, refs. [124,135]), which can
be expressed in the two-dimensional elastic moduli via (2.9) as

VELE E .
Deb = —4% = —4}%} Eg. (2.46)
0

This pressure corresponds to a classical buckling volume V.},, which can be obtained through
the pressure-volume relation of the spherical solution branch,
Vo) 2/3
— , 2.47
(%) (2.47)

v\ /3
—) -1
(%)

_ OUgppn 9 Eop 1

ov ].—I/RO
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2.4. BUCKLED SHAPES OF DEFLATED SPHERICAL SHELLS

see (2.56) below where we show that p = U /OV, which is related to a Legendre transformation.
Inverting this relation between p and V results in

3 3

174 Esp )3 ( 1_y) ( 1_y>‘
—_ = — A 1E4/1—2pR, =8(14+4/1—-2pR , 2.48
Vo <pR0(1 — l/) Ptio EQD Pt EQD ( )

where the minus sign in the first expression must be taken in order to ensure the limit V — 1
for p — 0, and the simplification in the last step can be accomplished by multiplying the
expression with (1 + ,/72)3/(1 4 ,/7-%)3. Inserting p = pep, finally gives the classical buckling

volume -
Ve, 1 \/1 . .
== - +2(1 — F ~1-6(1—-v)\/FE 2.4
Vo (2 + 1 + ( I/) B) 6( V) B, ( 9)

where the approximation in the last step holds for small Ej, see also ref. [112]. This volume is
marked in the energy diagram fig. 2.10.

The energy of a buckled solution of the shape equations can be calculated by numerical
integration of the surface energy density, U = [ 2mnrwgdsg. The data points for numerical
solutions of the shape equations are shown in fig. 2.10 a). As this solution branch is very close
to the spherical solution branch at the beginning, fig. 2.10 b) contains a modified presentation,
where the energy difference between buckled and spherical shapes is plotted as a function of
the volume.

At the classical buckling volume V,;, the buckled solution branch separates from the spherical
branch. At first, it runs to the right and lies at slightly higher energies than the spherical
solution branch. These shapes correspond to unstable energy maxima and have the form
of a sphere with a flattened pole, see the pictograms in fig. 2.10 b). After a turning point,
the buckled branch crosses the spherical branch at a volume Vi4, where the dimple is well
developed. From there on, the axisymmetric buckled configuration is energetically favourable
to the spherical shape, representing the global energy minimum.

The spherical shape is still metastable between Vi4 and Vi, and represents a local energy
minimum. Koiter’s stability analysis [79] suggests that the buckling transition of real (imperfect)
shells occurs somewhere in this region, depending on the severity of the imperfections. For
a perfect shell, an energy barrier must be overcome if the buckling shall occur before V. It
is not clear how the height of the barrier could be determined. If the shell is constrained to
axisymmetric shapes all along the path from spherical to buckled, the energy barrier may be
read off from fig. 2.10 b). But such a constraint is not very natural; and transition states that are
non-axisymmetric as obtained in the post-buckling analysis of Koiter [79] and Hutchinson [69],
see fig. 2.1, are likely to have a lower energy barrier and play a more important role. For
V < Vi, the spherical branch is unstable and buckles spontaneously without energy barrier.

Note that there also exists a metastable region of the buckled solution branch, between
Vist and the turning point, see fig. 2.10 b). Bifurcation theory [92] assures that the solution
branch represents local minima in this region, and changes into a maximum or saddle point
at the turning point. The metastable region is relevant when a shell is re-inflated; the shell
can stay on the buckled branch beyond Vi, but has to fall back to the spherical branch when
it reaches the turning point of the buckled one. This bifurcation scenario with metastable
spherical and buckled branches below and above Vig, respectively, is typical for a discontinuous
shape transition.

The elastic energy U,og derived in the Pogorelov model, eq. (2.44), is also plotted in the
bifurcation diagram fig. 2.10 a). For volumes smaller than Vi, it agrees well with the data
points from the shape equations. Deviations start to develop for large deformations (V' < 0.8Vj),
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which is obviously due to the assumption of small dimples in the Pogorelov model. For shapes
with too small dimples, V' > Vi4, the model is also inaccurate, for two reasons. Firstly, it
was assumed that the neighbourhood of the dimple which is deformed, G; and G, is narrow.
For too small dimples, this condition is not satisfied since the size of the inner neighbourhood
becomes as large as the dimple itself. Secondly, for shapes with small dimples, the pre-buckling
deformation (that is, the uniform contraction due to the negative inner pressure) cannot be
neglected as it has been done in the Pogorelov model. This is also the reason why the tensions
7, and 7, do not reach the correct limits far away from the dimple edge, see fig. 2.9 a), but
show a small offset.

However, the inset in fig. 2.10 suggests that the Pogorelov model can be successfully used
to calculate the first buckling volume Vig by setting Upog = Uspn. Doing so using (2.44) and
(2.45), we obtain for small AV/Vj the critical volume difference for the first buckling,

Avlst

_ 6J4/5 (1— V)4/5 E3/5
Vo

min (1 B V2)1/5 B - (250)

Pog

The limitation to small AV/V; allowed us to approximate the volume-dependent term of (2.45)
as (V/Vo)'/3 =1 = (1 - AV/Vp)Y/3 —1 =~ —AV/3V} in the derivation of this result. Thus, the
volume difference of first buckling has a different scaling law than that of the classical buckling,
AVigt [V ~ EN’%/5 on the one hand and AV, /Vh ~ Eg2 on the other, cf. (2.49).

2.4.2. Edge curvature as an indicator for the bending stiffness

As smaller bending stiffnesses allow sharper bends in the elastic shell, we expect the meridional
curvature at the dimple edge, Kcgge = maxs, ks, to depend sensitively on Ep. Accordingly, this
curvature represents an adequate observable to infer the reduced bending stiffness, e.g. from
microscopy images in experiments on microcapsules.

The theoretical foundation for this very simple shape analysis can be derived from the
analytic model or from the numerical results of the shape equations. Figure 2.9 b) shows that
the meridional curvature of the Pogorelov model assumes its maximum at sp = sp4 (that is
the limit sg — sp with sg > sp). The curvature function is given by (2.43) with the exact
rescalings (2.37) and the non-dimensional solution (B.1), and we obtain at spy the value

1 1 a?
RO Ro Omin sin «

[Ep(1—v?)] V", (2.51)

1
Rio + U”(O+) =

Redge =

where « is a function of the shell volume, see (2.37). For small reduced bending stiffnesses,
which is equivalent to large edge curvatures, this is a power law Kegge ~ E~];1/ 4 /Ry, as observed
in ref. [138]. The leading order dependence on the volume difference can be obtained by using
the simplified geometric relation o ~ (AV/Vp)'/4, see (2.38), which results in

1AVt
Redge ™~ Rio <‘/0> EB (252)

for small Eg and small AV.

To verify these expressions for the edge curvature, the shape equations were solved for reduced
volumes of V/Vy = 0.9,0.8,0.7,0.6 and 0.5 for a large range of bending stiffnesses Ep. From
the solutions, the edge curvature was obtained by numerical maximisation of k(sg). Figure 2.11
a) shows a comparison of the results from the shape equations (data points) and the Pogorelov
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Figure 2.11.: Curvature of the dimple edge as a function of the reduced bending stiffness (double
logarithmic), for different shell volumes. The dots are results from the shape equations, with v = 1/3.
In a), the lines are the predictions (2.51) of the analytic model, and in b) the lines are power law fits
to the data points from the shape equations, see tab. 2.2. The grey area in the upper left corner is
not suitable for an analysis of the edge curvature because the dimple edge becomes polygonal here.
The pictograms in a) show shapes of the Pogorelov model and in b) solutions of the shape equations.

model (2.51) (continuous lines). Surprisingly, the results match excellently for large volume
differences over the whole range of Ep. This achievement is in part due to the exact scaling
parameters (2.37) that are used in (2.51); if the simplified scaling parameters (2.38) are used,
the results do not match satisfactorily. However, several simplifications have been introduced
in the Pogorelov model which become inaccurate for large dimples, and the surprising match
seems to be a matter of chance — the pictograms in fig. 2.11 indeed show considerable deviations
in the shape at large dimples and large bending stiffnesses.

For small volume differences, the results of the analytic model and the shape equations match
only for small reduced bending stiffnesses, see the blue line in fig. 2.11 a). The pictograms
included in the diagram suggest a reason for the deviations at large Ep. For large bending
stiffnesses, the dimple edge is not a sharp bend, but has a relatively small curvature. The
deviations between the isometric shape and the final shape are then relatively large, so that the
assumptions of small displacements u and v and narrow regions G; and G, become more and
more inaccurate with increasing Ep.

For the shape analysis of experiments, it might be favourable to work with more accurate
relations between Kedge and Ep than (2.51). These can be obtained from fitting the data points
of the shape equations with power laws, see (2.52),

AV L
Eb 2.53
‘70 ) B> ( )

HedgeRO =cC (
where the exponent b can be expected to be close to —1/4 and the prefactor ¢ will be weakly
volume dependent. By taking the logarithm on both sides of (2.53) we see that a simple linear
regression can be used on the data points consisting of tuples (In Ep, In keqge). The results for
these fits are shown in fig. 2.11 b) and the numerical values of the fit parameters b and ¢ are
summarised in tab. 2.2. For the fits with V' > 0.7V{ not all available data points have been
used, because points with large Ep deviate too much from the power law behaviour. The data
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reduced Volume V/Vy  prefactor ¢ exponent b FEp-range used for the fit
0.9 1.355 £0.009 —0.2480 £ 0.0008 3.0-107° to 1-1073
0.8 1.517 £ 0.007 —0.2405 4+ 0.0006 6.0-107° to 4-1073
0.7 1.691 £0.004 —0.2315 % 0.0003 9.0-107° to 5-1073
0.6 1.808 £ 0.007 —0.2271 4+ 0.0006 1.1-107% to 1-1072
0.5 1.898 +0.010 —0.2247 £ 0.0008 1.4-107% to 1-1072

Table 2.2.: Fit parameters (estimated value & standard error) for different shell volumes according to
the model (2.53). The last column indicates the data range used for the fits.
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Figure 2.12.: Sections through a buckled shell at different angles and offsets from the axis of symmetry.
The leftmost column shows in black the contour of a buckled shell (with V' = 0.5V, EB =10"2 and
v = 1/3). The coloured shapes in the other columns are sections through the shell as indicated by the
straight coloured lines. The image in the bottom right corner shows a section of an Epon-embedded
aminoplast microcapsule (taken from [110]). An unambiguous assignment to one of the plotted
sections (or other sections of capsules with less volume) is not possible.

28



2.5. STABILITY DISCUSSION FOR DIFFERENT LOAD CASES

-1.5

~ —2.01

5

':?c Figure 2.13.: Experimental verification of the
§ =251 edge curvature scaling. Jose et al. analysed two
= datasets of buckled siloxane microcapsules with

different shell thicknesses with confocal micro-

scopy (see the inset). The radius of curvature

depends on the volume difference as expected

from (2.52), and the data points have been fitted

In(AV/ V) with a power law 1/Kedge ~ AV /4 (straight
lines). Images adapted from ref. [71].

|
g
o
L

points used for the fit are also indicated in tab. 2.2; and the fits are very accurate within these
Ep-ranges. For small volume differences, the fitted exponent b agrees best with our expectation
—1/4.

The range of admissible E is also restricted by the results of chapter 4. There, it is shown
that the dimple edge acquires a polygonal shape for very small reduced bending stiffnesses so that
the curvature of the rim cannot be analysed any more. This is the case if V/Vj <1 — 3706E 5,
see (4.9) below. The corresponding region in the Kedge (E B) diagram, obtained by inserting
this threshold volume into (2.51), is shaded grey in fig. 2.11.

The results just presented can help researchers interpret their experiments and deduce the
shell’s reduced bending stiffness, if they are able to measure the radius of curvature at the
dimple edge. This is a challenging task because it requires imaging the cross section of the
buckled shell. It can be achieved, in the case of microcapsules, by confocal microscopy [45,51,95]
or by cutting a microcapsule that is embedded in some elastic gel [110]. However, attention
must be paid to the position and orientation of the (real or virtual) section through the shell,
because this directly affects the measured edge curvature. As a guide for experimenters, fig. 2.12
shows the morphology of cross sections at different angles and offsets from the axis of symmetry
for a buckled shell. A reconstruction of the reduced volume or the edge curvature based on
one single section seems impossible. For example, if the rightmost shape in the bottom row
is interpreted as a section along the axis of symmetry, one would conclude that the reduced
volume is much smaller and the edge curvature much larger than the actual values (which can
only be determined from the black shapes in the leftmost column).

Recently, a group of experimenters tested the proposed procedure [71] which the author had
published in ref. [152]. High resolution confocal microscopy was used to measure the radius of
curvature at the dimple edge. Their results confirm the Kegge ~ AV1/4 dependence of the edge
curvature on the volume reduction, see fig. 2.13, and the values for Eg determined from the
power law fits are in reasonable agreement with those obtained directly from measuring the
thickness-to-radius-ratio [71].

2.5. Stability discussion for different load cases

Already in the early investigations of shell buckling, evidence was found that buckled shapes
are unstable with respect to further dimple growth when the load (i.e. the pressure difference)
has a fixed value [79,83]. To see this, first recall our sign conventions: For deflation, V' < Vj,
the load parameter p is negative and corresponds to the internal underpressure in the shell;
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—p is consequently the value of the external overpressure. On the buckled solution branch, an
anomalous pressure-volume-relation with dV'/dp < 0 has been found [79,83]. Upon further
deflation (dV < 0) it follows that dp > 0, and so the shell can bear smaller loads |p| for growing
dimples. The classical buckling pressure p.p, is thus an upper bound for the load which a shell
can withstand.

From this it can be concluded that “shell buckling is always disastrous” [135] in the sense
that the stable state after buckling has a very large deformation. This behaviour is called
snap-through buckling, and we will see that the final shape is so extremely deformed that the
opposite sides of the shell (the regions around the two poles) are in contact.

This instability has also consequences for experiments because even small, unavoidable,
imperfections have a large impact on the critical buckling load [69,79]. For example, Carlson
et al. report in ref. [24] buckling pressures of high quality, electropolished shells that are at
maximum 86% of the theoretical value.

In the next sections we will discuss the stability of the buckled configurations in the cases
(i) prescribed volume, (ii) prescribed pressure difference between inside and outside and (iii)
osmotic pressure, which is equivalent to an externally pressurised shell that encloses a fixed
amount of an ideal gas. Experimentally, these cases can be realised by different setups. For (i)
volume control, we can fill a (non-permeable) shell with a given amount of an incompressible
liquid. (ii) Pressure control corresponds to a shell that is empty inside and pressurised externally.
In experiments with microcapsules, the case of (iii) osmotic pressure is frequently met; here, a
shell material that is permeable for the solvent medium is required, and an osmotic pressure
can be exerted by different osmolyte concentrations inside and outside the shell.

2.5.1. Stability of buckled shapes under pressure and volume control

The shape equations (2.17) have been derived from a variational analysis of an energy functional,
and very general theorems about the stability of the solution branches exist [92]. A solution
of the shape equations is only stable if it represents a local minimum of the energy functional
(and not a maximum or saddle point). Mathematically, this is related to the second variation
of the energy functional: If it has negative eigenvalues, the solution is unstable because there
exists a deformation mode which lowers the elastic energy in second order.

The variational problem from which the shape equations have been derived admits two
interpretations. On the one hand, it can be considered as an unconstrained minimisation of
the enthalpy H[r,p|] = U[r] — pV[r] (the functionals depend on the parametrisation r(sg) of
the deformed shape). This corresponds to a prescribed pressure difference p that acts on the
shell, and we call it “mechanical pressure control”. On the other hand, it can be interpreted as
a constrained minimisation of the energy functional U[r] under the constraint that the volume
functional V[r| equals some given value. This case is termed “volume control” and leads, by
the theory of Lagrange multipliers, to the same shape equations. The parameter p is then just
a Lagrange multiplier which controls the shell volume. In both interpretations, the same shapes
are calculated as solutions of the shape equations, but the stability requirements differ.

In the unconstrained problem, solutions are stable (i.e. stable under mechanical pressure
control) if all eigenvalues of the second variation of the enthalpy functional H are positive. In
ref. [92], Maddocks discusses the stability of solution branches in a distinguished bifurcation
diagram which uses the bifurcation parameter (p in our case) as the ordinate and the derivative
—0pH as the abscissa. In our case, —0,H = V, see (2.55) below, and this distinguished
bifurcation diagram is just the V(p) diagram of fig. 2.14 a). Maddocks rigorously shows that
a stable solution branch has a positive slope 9V /dp > 0 in the bifurcation diagram. So the
branches A and C/C’ in fig. 2.14 are possible candidates for branches that are stable under
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mechanical pressure control. However, 9V /dp > 0 is only a necessary criterion for stability
under mechanical pressure control, not a sufficient one. The H(p) diagram, see fig. 2.14 b),
suggests that the branches C and C’ are stable; C’ seems to be the global enthalpy minimum
over a large pressure range.

A further result from ref. [92] concerns the principle of exchange of stability at a simple fold,
that is, a point with a vertical tangent in the V' (p) diagram like the point where branch B meets
C. At such points, one eigenvalue of the second variation crosses zero. Maddocks even specifies
the direction in which the eigenvalue crosses zero: In a fold that opens to the left, as in the case
where branches B and C meet, the higher lying branch has one more negative eigenvalue than
the lower branch. In our case, where we assume that branches C and C’ are stable and have
consequently no negative eigenvalues, we can conclude that branches B and A have precisely
one negative eigenvalue, and are both unstable under mechanical pressure control.

The bifurcation behaviour under mechanical pressure control can thus be summarised as
follows. When a spherical shell is loaded with a negative internal pressure it remains spherical
for small magnitudes of the load, because the spherical branch is the global enthalpy minimum.
At a critical pressure p., the branch C’ (consisting of buckled shapes with self-contact) crosses
the spherical branch in the H(p) diagram. Beyond this pressure, branch C’ is the global energy
minimum. Although it is energetically preferable for the shell to change from the spherical into
a fully buckled shape at p., this will not happen spontaneously because both branches are local
energy minima, and an energy barrier must be overcome. The point where spontaneous buckling
is possible is at p.p, the classical buckling pressure. Here, the spherical solution branch becomes
unstable, and the shell will “fall” from the spherical branch onto the branch C’ where it is
nearly completely collapsed (see pictograms in fig. 2.14 b). Remarkably, the absolute value of p.
is much smaller than that of p.,, for the elastic moduli of fig. 2.14 approximately p. = 0.12pcy,,
see also (2.59) below. The buckling behaviour under mechanical pressure control is thus similar
to that under volume control as discussed in section 2.4.1, with the important difference that
the first stable states after buckling are completely collapsed with opposite sides in contact.
The buckled shapes of branch B, with a dimple of small to medium size, are not accessible
with mechanical pressure control; and the shapes of branch C with large dimples but without
self-contact are only reachable by exploiting the metastability of this branch upon re-inflation.
The same qualitative behaviour holds for all bending stiffnesses that were under consideration,
from Fp = 1075 to 1072, This is a fairly large investigated range, and no indication was found
that the behaviour would change for smaller or larger bending stiffnesses.

Maddocks also discusses the stability of the solution branches in the constrained problem. He
calls branches that are stable in the constrained problem “c-stable”, and in our case this means
“stable under volume control”. The stability under volume control is a weaker condition than
stability under mechanical pressure control, because only for volume-preserving modes must
be checked whether they lead to a second order energy decrease. Maddocks shows in [92] that
(i) all “stable” (stable under mechanical pressure control) branches are also “c-stable” (stable
under volume control), and (ii) the branches that are “c-stable” but not “stable” are those with
precisely one negative eigenvalue and negative slope in the distinguished bifurcation diagram
(the V(p) diagram).

Since we have seen that branches A and B have precisely one negative eigenvalue of the
second variation of the enthalpy functional and B has a negative slope 9,V < 0, we can conclude
that branch B is stable under volume control, but A is not. C and C’ are, of course, also stable
under volume control. This coincides with our previous results in section 2.4.1 which have been
drawn from the U (V') diagram alone.

Branch B, which contains the buckled shapes with small to medium sized dimples that
are frequently observed in microcapsule experiments, see fig. 1.2 b) for example and refs.
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Figure 2.14.: Bifurcation diagrams: a) volume-pressure relation, b) enthalpy as a function of the
pressure, c¢) elastic energy as a function of the volume. The continuous blue line represents the
spherical solution branch, the other coloured lines represent buckled solution branches A, B, C and C’
according to the pictograms, and the dashed green lines in a) and ¢) represent self-intersecting shapes.
The insets of the energy diagrams show the differences between buckled and spherical branches. On
the right, schematic diagrams clarify how the solution branches lie with respect to each other. The
elastic moduli are Ez = 107% and v = 1/3, but he same qualitative behaviour has been obtained
for all bending stiffnesses under consideration, from Ez = 107° to 1072, see also ref. [152]. The
spherical solution branch has been plotted according to the analytic results (2.45) and (2.48).
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[45,97,98,113,116], has thus a very interesting property: It changes from stable to unstable
when the pressure is controlled instead of the volume. In real experiments, something between
pressure and volume control is usually achieved, and then one part of branch B is stable, and
the other part unstable. This will be discussed in the next section.

We conclude the discussion of stability under pressure and volume control by establishing a
link (in form of a Legendre transformation) between the three bifurcation diagrams shown in
fig. 2.14. The function H(p) stems from the functional H[r,p|] = U[r] — pV[r] by inserting the
numerical solutions r(p) of the shape equations for a given pressure p, i.e.

H(p) =Ulr(p)] — pV[r(p)]. (2.54)

When we take the derivative with respect to p, we must consider that the shape changes by dr
when the pressure is changed by dp. We thus obtain

= Vi) = Vi), (2.59)

where we use 6U — pdV = 0 because the shape equations were derived from this condition.
This result connects the V(p) diagram, fig. 2.14 a), to the H(p) diagram, fig. 2.14 b). Now, the
function U (V) is obtained as U = H + pV, or more precisely as

uv)=HpV)) +p(V)V, (2.56)

where p(V') is the inverse function of V(p). We recognise that the energy U (V) is the Legendre
transformation of the enthalpy H(p), just like in thermodynamics [22] from where our notation
is adopted. Consequently, it follows that dU/dV = p and that H is also the Legendre transform
of U.

The Mazwell construction known from thermodynamics [22] can therefore be applied to the
V(p) and p(V) diagram in order to construct the critical pressure p. and volume Vi4 of the
buckling transition. They are defined as the points in the energy diagrams H(p) and U(V),
respectively, where the buckled solution branch crosses the spherical one. In the V(p) diagram,
this means that the critical pressure p. is positioned so that the shaded areas in fig. 2.14 a)
have equal size. The critical volume Vi can be constructed analogously, with equal enclosed
areas between the horizontal line Vg and the spherical and buckled branches.

2.5.2. Enthalpy landscape for mechanical pressure control

The instability of buckled shapes under mechanical pressure control can be explained by
considering the energy landscape during the buckling process. The “reaction coordinate” that
describes the progress of the buckling is AV = V;; — V| and for the model of the elastic energy
of the buckled shapes we take the Pogorelov energy Upgg(AV) ~ AV3/4 ) see (2.44). For
mechanical pressure control, a term —pV = —p(Vy — AV') must be added to obtain the total
enthalpy

H(AV) = Upog(AV) + pAV + const. (2.57)

This results in a function H(AV) ~ AV3/4 — |p|AV (because p is negative, with const set
to zero) as plotted in fig. 2.15. For sufficiently small internal pressure (red line in fig. 2.15),
the shell tends to AV — oo in order to minimise its energy after an energy barrier has been
overcome, for example by manually indenting the shell. This model is, of course, over-simplified
because it relies on the Pogorelov model that is inaccurate for too large dimples. The shell
cannot reach AV > Vj, and even before there will be additional terms in the elastic energy
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H(AV)

Figure 2.15.: Enthalpy landscape for buckling under
mechanical pressure control for different values of the
internal pressure. The shell can reside in the boundary

Y DPe minimum at AV = 0 or AV = Vj, corresponding
= U "/0 AV to the spherical shape or the fully collapsed shape,

O P <Ppe respectively. The boundary minima are separated by

VAR an enthalpy maximum which represents the energy
barrier that has to be overcome to induce buckling.

Pu

caused by the constraint of no self-intersection. However, we can conclude from the energy
landscape that the shell collapses completely under mechanical pressure control, and takes its
place in the boundary minimum at AV = V} in the enthalpy landscape. Pogorelov’s model is
also inaccurate for too small dimples, see the discussion of fig. 2.10. For the energy landscape,
this has the effect that the energy barrier is always present, even if p exceeds the critical
buckling threshold pcp,, which should not be the case. Apart from that minor point, the enthalpy
landscape is qualitatively correct for |p| < |peb|, i-e. for all three lines plotted in fig. 2.15.

In the discussion of the bifurcation diagrams in the previous section, the critical pressure
p. was defined as the point where the spherical solution branch and the collapsed solution
branch C’ cross in the enthalpy diagram. This condition of equal enthalpies of the spherical and
collapsed configuration corresponds in the picture of the enthalpy landscape to the condition
that the two boundary minima at AV =0 and AV = Vj are on equal level, see the blue line in
fig. 2.15. Thus, solving the equation H(0) = H(V;) for the pressure p gives the critical pressure

EapEY*

o= =2 64y B
b Ro(1— v2)1/4

(2.58)

Notably, this critical pressure p, ~ —E‘%/ * has a different scaling than the classical buckling
pressure pep, ~ —E}B/ 2, see eq. (2.46), and is thus much smaller for small reduced bending
stiffnesses.

Another critical pressure p,, is reached when the right boundary minimum vanishes. That
happens when the maximum of the H(AV)-function lies at AV = Vj, that is, when H' (V) = 0.
From this equation we obtain that p, has the same scaling as p., but with a different prefactor:
Pu = Pe + 3/4. In the bifurcation diagrams of fig. 2.14 a) and b), this upper critical pressure
corresponds to the point where the buckled branch turns around, i.e. where branches B and C
meet. Between p. and p,, the spherical shape is the global energy minimum and the buckled
shape is metastable, and above p,,, only the spherical equilibrium shapes exists.

From the simple model (2.57), we can also obtain the magnitude of the energy (or enthalpy)
barrier, which can be of interest when considering fluctuating shells to see whether the fluctu-
ations can drive the shell from the spherical into the buckled shape. The maximum value of
the function H(AV) is pressure dependent, and of special interest is the energy barrier at the
critical pressure p.. The general and special result are

E3L B, 9 g1/ By R EY*
and  Hparr(pe) = 16 9374 Jmin™ mv

27
Hbarr(p) = ?J4 ™ (259)

BT (—p)3Ro(1 - v?)
respectively.
We checked with our numerical results the accuracy of p. and Hparr(pe) over a large range of

3/4
B

bending stiffnesses, from Eg = 2-107° to 1072, and found that the scaling laws ~ E3/" are
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Figure 2.16.: Critical pressures and energy barrier derived from the enthalpy landscape. a) The
analytic results for the critical pressures pep, pe and p, (lines) are in good agreement with numeric
results from the shape equations (red and blue dots). Experimental results (black squares, from
ref. [24]) and finite-temperature Monte Carlo simulations (grey triangles, from ref. [104]) for the
buckling pressure lie between pc, and p,. b) Temperature dependence of the buckling pressure.
Our analytic estimate (blue line) is an upper bound for the simulation results (grey triangles) from
ref. [104]. The inset shows the energy barrier that has to be overcome by the thermal fluctuations
according to the analytic approximation (2.59) (blue line) and numeric results from the shape
equations (dots).

correct, see fig. 2.16 a) and inset in b). Even the prefactors are in reasonable agreement with
the numerical results, despite the over-simplicity of the enthalpy landscape.

The energy barrier (2.59) can be overcome, for instance, by thermal fluctuations. As a
consequence, the actual buckling pressure pr at finite temperatures will be smaller in magnitude
than the classical threshold pcp, as observed in Monte Carlo simulations in ref. [104]. Ignoring
the renormalisation of elastic constants at finite temperature discussed in this reference for the
moment, we can estimate the condition for thermally activated buckling as Hpar(pr) = kBT
Solving this equation for the pressure pr we find

3 5, (T hin Eon S 3( w4, E 13
pr T mint/2D Ymin~2D g _ 2 T min B ) (260)
2kpT (1 — 12) 4 \2(1—v?) kT /7K

The latter form was obtained by using the definition (2.22) of Ep and YrvK, and can be
compared to the simulation results of ref. [104] where a dependence of the buckling pressure
on the parameter Ep/kpT/Yrx is reported. The deficiency of the enthalpy landscape that
the energy barrier does not vanish at p = p1, leads to the unphysical result that values of the
thermal buckling pressure |pr| > |peb| are possible according to (2.60). If we assume that the
energy barrier at the classical buckling pressure can be overcome spontaneously even at zero
temperature, the final result for the thermal buckling pressure is

4 1/3
PT _ min [1, 3 < ™ min Es > 1 . (2.61)

Deb 4 \2(1 = v?) kpT\/7rvk

This function is plotted in fig. 2.16 b) in comparison with the Monte Carlo simulation results of
ref. [104]. The assumption that the barrier at p., can be overcome spontaneously is equivalent
to the assumption that dimples of depth A ~ Hj can form spontaneously (at any temperature),
which has also been used in the Landau-Lifshitz derivation of the classical buckling pressure [83].
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2.5.3. Buckling under osmosis or with an enclosed ideal gas

Many deformation experiments with microcapsules are based on osmosis [45,51,116] or similar
mechanisms [97,98,113]. In this approach, some of the enclosed medium diffuses through
the semi-permeable capsule membrane because of a concentration gradient between the inside
and outside. The osmosis tends to decrease the concentration gradient, and the deflation of
the capsule stops when the concentrations in the inside and outside are sufficiently equalised.
This is an important difference to mechanical pressure control, where the deflation only stops
when the opposite sides of the capsule are in contact and the capsule volume is virtually zero.
Osmotic pressure control rather resembles the case of volume control because the capsule has a
preferred osmotic volume.

Dilute solutions of osmotically active particles can be treated like ideal gases [22], and we will
see that the case of osmosis is mathematically equivalent to the case where a shell containing
an ideal gas is deflated by means of an external pressure. In this example, which is perhaps
intuitively more accessible than osmosis, we can anticipate the same effect: The shell will not
collapse fully after buckling as in the case of mechanical pressure control without internal gas,
because the internal gas requires the shell volume to remain finite. Or in other words: When
the shell buckles under an external pressure, the decreasing volume available to the internal gas
increases the internal pressure (according to the ideal gas equation), which eventually balances
the external pressure.

The stability of buckled shapes for these two load scenarios can be analysed when we use
adequate energy diagrams, where the energy contains not only the elastic energy stored in the
shell, but also the free energy of the solutions of osmotically active particles or ideal gases. The
shapes themselves must be the same as computed before, because the force density applied
to the shell wall is again a spatially constant normal pressure p. So we do not have to solve
the shape equations anew; the same data set of computed shapes as used for the bifurcation
diagrams in fig. 2.14 can be used to draw the appropriate stability diagrams for osmotically
induced buckling or buckling with an enclosed ideal gas.

Now, let us establish the appropriate energy functional that is to be minimised in the case of
osmosis, which is depicted in fig. 2.17. The osmotic free energy of the inner and outer solution
is given by [90]

Foy = —kpTNiyIn (;}B z\‘z/n> — kpTNexIn <A§’3 V}‘VXV> . (2.62)
In this expression, kg is the Boltzmann constant, T the temperature of the solutions, e = exp(1)
the Euler number, Ag = h/+/2mmkpT the thermal de Broglie wavelength with Planck constant
h and particle mass m. Ny, and Ngy are the numbers of osmotically active particles inside and
outside the shell, respectively, V' is the volume inside the shell and Vex — V' the volume outside
the shell. It is assumed that the osmotically active particles cannot diffuse through the shell
wall, so that Ny, is fixed during the deflation. Furthermore, the temperature T is considered to

Figure 2.17.: Buckling by osmosis (left) or under
pressure control with an internal gas (right). Both
cases are mathematically equivalent and lead to
the same results concerning the stability of buckled
shapes.
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affect only the ideal solutions; we do not incorporate fluctuations in the elastic shell that are
due to a finite temperature [104].

If we assume V <« Vi, the second logarithm in F,s can be expanded, In(Vex — V) =
In Vo — V/Vix, and the expression simplifies to

kTN,
F.. = —kpTNyInV 4 B Tex

EV + const(T, Vex, Nin, Nex)- (2.63)
Vex

All terms that do not depend on V' are gathered in const. They do not influence our analysis
because they are fixed when we are minimising the total energy functional with respect to the
shape of the shell, which only has an influence on V in (2.63). The osmotic pressure difference
can be derived from this equation by pos = —0Fos/0V = kpT(Nin/V — Nex/Vex). The first
term in this expression represents the internal pressure, and pex = kT Nex/Vex the external
pressure which also occurs in (2.63) as the prefactor of the term linear in V.

Let us pretend for the moment that the shape of the shell can be changed without any elastic
energy, so that F,g is the only free energy contribution of the system. Then we just have to
minimise (2.63) with respect to V, which results in V = Nj, Vo /Nex. So the desired state of
the system is that the concentration of osmotically active particles is identical in the inside and
outside of the capsule. Thus, if the osmotic terms dominate the energy of the system, a precise
volume control is possible by adjusting the external osmolyte concentration. Specifically, there
are no problems with snap-through behaviour as in the case of mechanical pressure control with
an empty capsule interior.

The total energy functional accounts for the elastic energy of the deformed shell and the free
energies of the solutions, and reads

G=U+Fy=U—kgTNinlnV + peV. (2.64)

In this functional, U and V depend on the shape of the shell, and its variation is §G =
0U + (0Fos/OV )6V = 6U — pos0V . Thus, the same equilibrium equations (2.16) are obtained,
with p = pos = kT Nin/V — pex as the pressure that is exerted on the shell.

In the case of a shell containing an ideal gas, fig. 2.17 on the right, the same energy functional
is obtained. The internal gas has a free energy Fgos = —kgT NinInV, where N, is now the
number of gas atoms. According to the ideal gas equation pV = NkgT, the prefactor can also
be written as kpT Ni, = pinV with an internal gas pressure p;,. For isothermal processes, the
left-hand side of the equation is constant during the deflation, and we may choose the initial
state as the reference, where the shell volume is Vjj and the internal pressure equal to some
ambient pressure p,, and so we have Fgns = —p,VpInV. For the applied external pressure
Pex, an energy contribution pexV must be included, which corresponds in the simple setup of
fig. 2.17 to the potential energy change of the weight that generates the pressure. The total
energy functional is thus G = U — p, Vo In V + pe, V', which is of the same form as (2.64). Note
that in the undeformed configuration, the force balance requires pex = p,. The buckling of
spherical shells with an internal ideal gas has in part been studied numerically in ref. [91].

A large set of solutions of the shape equations has already been computed to generate the
bifurcation diagrams in fig. 2.14, and these shapes can be used to plot the adequate bifurcation
diagram for osmotically induced buckling. They are available as separate files that contain the
pressure p for which they have been calculated, the parametrisation 7(sg) of the shape and
the numerically integrated volume V' and elastic energy U. The bifurcation parameter in the
present case is the external (osmotic) pressure pex = kpT Nex/Vex, because this quantity can be
changed in experiments by changing the concentration of osmotically active particles outside
the shell, and its value can be obtained from the available data as pex = kgT Nin/V — p when a
value for kT Ni, is chosen.
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Figure 2.18.: Bifurcation diagrams for osmotically induced buckling or buckling under pressure control
with an internal gas. The diagrams were created from the same data set used for fig. 2.14 (with
E‘B = 1074, v =1/3 and kT Nin = —peb Vo), and the colour code of the different branches is also
the same. In comparison with fig. 2.14 a) and b) it should be noted that p and pex have different
signs, and that a part of the orange branch B is stable now. The thick grey line in the background
of subfigure b) represents the analytic result (2.69) derived below.

Figure 2.18 shows the resulting bifurcation diagrams; in a) the energy diagram G(pex) and
in b) the reduced volume V(pex)/Vo. The latter one is related to Maddock’s distinguished
bifurcation diagram, since —d,. .G = —V/, and his stability discussion can be applied to the
V (pex) diagram when the minus sign is kept in mind. From both bifurcation diagrams it is
evident that, compared to mechanical pressure control without internal gas, some of the buckled
shapes are stabilised. To illustrate this, the same colour code for the different branches as in
fig. 2.14 is used, i.e. a data point that is orange in fig. 2.14 is also orange in fig. 2.18. Specifically,
the buckled shape at the critical external pressure pex . is now an orange one, with a medium
large dimple, and not one with opposite sides in contact.

There are two critical external pressures: pex corresponding to the point where the buckled
and spherical branches cross in the energy diagram and pey ch corresponding to the classical
buckling threshold where the buckled branch separates from the spherical one. Again, the
threshold pex . where buckling becomes energetically favourable (but is only accessible by
overcoming an energy barrier, see the inset in fig. 2.18 b) is much smaller than the classical
threshold pex c, where the spherical branch loses its stability. The latter value can be calculated

as
kBT Ni, kBT Niy Esyp kpT Niy ~
ey = B2 4 6(1—p) BN 2.65

DPex,cb Vs Pch Vo + < Ro + ( V) Vo ) B ( )

see (2.46) and (2.49), where the approximation holds for small Ep.

The amount how much of the orange branch B is stabilised depends on the choice of kgT Ny,.
Our numerical investigations have shown that the larger this value, the larger is the stabilised
part when pey is the control parameter. In the limit N;, — 0, where there are no osmotically
active particles (or gas particles) enclosed in the shell, the original behaviour for mechanical
pressure control is recovered in which the whole branch B is unstable and the first buckled
shape after the instability is a self-contacting one. In the limit F3p — 0 on the other hand,
where the osmotic terms dominate the enthalpy (2.64), we obtain a precise volume control with
V = NinVex/Nex as shown above. Then, the whole branch B is stable. Therefore, buckling
under osmotic pressure interpolates between buckling under volume control and buckling under
mechanical pressure.
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2.5.4. Enthalpy landscape for osmosis

The stabilising effect of an internal medium or osmolyte concentration on shapes with medium
large dimples can be explained with an enthalpy landscape similar to the case of mechanical
pressure control discussed in section 2.5.2. When we consider the appropriate energy functional
for osmosis or pressure control with an internal gas, a term ~ —InV must be added to the
enthalpy landscape (2.57) of mechanical pressure control. It penalises small volumes and
therefore prevents the shell from going to AV — V4 by replacing the boundary minimum at
AV =V, by a divergence. The total (free) enthalpy reads

G(AV) = Upog(AV) — pex AV — kT Ny In(Vo — AV) (2.66)

and has the qualitative shape as plotted in fig. 2.19, continuous line. The global enthalpy
minimum is assumed at a finite AV that depends on the elastic moduli, the external pressure
Pex and the internal particles kT N;j,. This qualitatively explains why an internal gas or
internal osmotically active particles prevent the full collapse of the shell and stabilise buckled
shapes with medium volume reduction (parts of branch B).

Based on this simple model, we can also justify why buckled shapes with a single dimple
are usually observed in osmosis based buckling experiments, and not shapes with multiple
indentations. As argued before in the introduction of section 2.4, buckled shapes with a single
dimple are favourable if the internal volume of the shell is fixed. When we consider shapes with
two dimples, the volume reduction AV of the shell is divided between the two dimples which
have AV/2 each. According to the Pogorelov model, the elastic energy of a double buckled
shell is thus Upog 2(AV) = 2Upog(AV/2) = 24 . Upoe(AV), where the last equation holds
because Upog ~ AV?3/4 Thus, for given volume difference it is energetically unfavourable to
create multiple dimples [112].

Now we have to clarify how this translates to the free enthalpy G(pex) for osmotic pressure
control where a change of variables from AV to pey is necessary. The branch with a single
dimple has a free enthalpy

G(pex) = IIAll‘;l [Upog(AV) — pex AV — kgT Nip In(Vy — AV)] = HAll‘;l [f(AV] pex)] (2.67)

for osmosis. A function f(AV,pex) was defined here to simplify the notation. To obtain the
enthalpy of the symmetrically buckled branch we just change Upog to Upog 2 in this expression,
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Figure 2.19.: a) Free enthalpy landscape for buckling under osmosis. The enthalpy minimum lies at
finite AV, hence the shell does not collapse completely. For shapes with two dimples (dashed curve),
the enthalpy is larger, and thus two dimples are energetically less favourable. b) The numerical
solutions of the shape equations confirm that the solution branch with two dimples (dashed grey)
lies at higher energies than the branch with a single dimple (orange).
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which results in
Ga(pex) = min [ F(AV, pex) + (2174 = 1) Upg(AV)] (2.68)

The additional term (21/ 4_ 1) Upog(AV) is positive for all AV. The volume-dependent enthalpy
function whose minimum we are searching is thus shifted to higher values, see fig. 2.19 a),
dashed line. As a consequence, the stationary shape that resides in the minimum is shifted to a
higher enthalpy when there are two dimples on the shell instead of one; and also the transition
states at the enthalpy maximum lie at higher enthalpy. This result is confirmed by the enthalpy
diagram fig. 2.19 b) that was generated from the shape equations.

Let us find the enthalpy minimum analytically so that we can give recommendations to
experimenters how they should choose the concentrations of osmotically active particles inside
and outside the shell in order to stabilise buckled shapes of a desired volume reduction. The
condition for an extremum of the free enthalpy is

kBTNin

= G/(AV) = Upoy(AV) = pes + —22 200
0 G( V) UPog( V) p +%—AV

ksTNi | 31,4 ExpEY* AV
X — -6 Jmin — o0 | T . 2.69
T Pe= T Ay T Ro(1— )4 \ Wy (2.69)

This relation matches the numerical results with a striking accuracy, see the bifurcation diagram
fig. 2.18 b), grey line. Because the free enthalpy landscape is based on the approximate Pogorelov
model, which is inaccurate for large dimples, we would expect our analytic estimate also to
become inaccurate for large AV. But this is not the case. For large AV, the position of the
free enthalpy minimum is primarily determined by the competition of the terms —pe, AV and
—kpT Nin In(Vy — AV) in (2.66); the elastic energy Upog plays a subordinate role. Indeed, the
approximation pex = kT Nin/(Vo — AV'), where the elastic contribution is completely neglected,
is in good agreement with the numerical pressure-volume-relation for AV 2 0.5. Neglecting
the elastic contribution in (2.69) is justified for small Ep (and not too small AV) because
kT Nin/Vo = O(pep) ~ E;ﬂ and the elastic term is ~ ~%/4.

To obtain buckled capsules, we must ensure that the external osmotic pressure is close to the
classical threshold (2.65), Pex = Pex,cb, S0 that the shell can buckle spontaneously. Inserting
this into (2.69) and solving for the interior osmolyte concentration yields

3/4 B4 1/4 =
Ny $n (3% o B ()"~ a8V
kpT— = E . (2.70)
Vo 1+6(1 — )V Ep — Vo/ (Vo — AV)

This expression simplifies considerably when only the leading order in Ep is retained. The
value of kT Ny, influences the external pressure pex o needed to induce buckling, see (2.65).
For both values, the simplified results in leading order are

Nin Vo Exp /- Vo Eop /=
kT g (20 ) 222 /5 A peep m A0 22 5 2.71
LaTA (AV ) Ry V7'B G Pexeb BRL TR TV BB (2.71)

The external osmotic pressure has been introduced as pex = kT Nex/Vex, and so both results
can be directly translated into concentrations of osmotically active particles inside and outside

the shell. The classical buckling pressure p., = —4\/@E2D /Ry occurs as the relevant scale
in (2.71). If we want to get buckled shapes with AV = V{/2, for example, we should choose
kBT Nin/Vo = —peb and kpT Nex /Vox = —2pcp in osmosis based experiments. These are exactly
the values used to draw fig. 2.18, and the inset in fig. 2.18 b) confirms that the buckling at the
classical threshold indeed results in a shape close to V' = V;/2.
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2.5.5. Applications of the results on osmotic buckling

Equation (2.69) can form the basis for measurements of the external osmotic pressure by using
elastic capsules as pressure sensors. The capsules must be “calibrated” in the sense that their
elastic properties, size and internal osmolyte concentration are known. If they are embedded in
a bath with a larger, unknown osmolyte concentration and buckle consequently, their volume
difference can be measured and inserted into (2.69) to obtain pex or the external osmolyte
concentration Neyx/Vex = Pex/kpT. The volume measurement could be achieved through a
microscopy image analysis, in the simplest version by measuring the shell depth d and original
radius Ry (see fig. 2.20) and using the geometrical relations (2.28) of the isometric buckled
shapes to obtain AV/Vy = (1 — d/2Ro)*(2 + d/2Ry)/2. While the pex(AV) relation (2.69) is
very precise, this AV (d) relation introduces some errors, but figure 2.20 shows that these errors
are only significant for d < Ro/2.

Vice versa, eq. (2.69) or the resulting relation for pey as a function of d/Ry, see fig. 2.20, can
be used to determine the capsule’s material parameters by fitting experimental data for d/Ry
at different external osmotic pressures pey. Specifically, eq. (2.69) can be used to determine

the parameter combination EQDE%/ 4 /Ry and the number Ny, of enclosed osmotically active
particles. In combination with the analysis of the maximal edge curvature of buckled shapes
proposed in section 2.4.2, which allows to determine the reduced bending modulus Eg, both
elastic moduli and the internal osmotic pressure can be obtained from relatively simple shape
analyses of osmotically pressurised shells. To this end, accurate measurements of the external
osmotic pressure and images of cross-sections along the axis of symmetry of the shells must be
provided.

A test of such an analysis was performed using the data published in ref. [51] for polyelectrolyte
capsules with radius Ry = 2 - 107%m and wall thickness Hy = 2 - 108 m. The polyelectrolyte
capsules were deflated osmotically, by adding poly(styrene sulfonate, sodium salt) (PSS) to the
exterior solution. The osmotically active particles are the counter-ions surrounding the PSS
molecules, and they exert an external osmotic pressure pex on the capsules. In the experiments,
the values of pex were measured with a vapour pressure osmometer. In view of the few available
data points which can be obtained from the confocal microscopy capsule images in ref. [51], we
use the value for the shear modulus of the shell material G = 500 MPa given in ref. [51], which
corresponds to a Young modulus of £ = 1500 MPa if v = 0.5. Using also the measured values
for capsule radius and thickness this leads to Eap = 30 N/m and Ep =1.11-107°. Inside the
capsule we also expect a certain concentration of ions, because the capsule was fabricated from
polyelectrolytes. This gives rise to a nonzero but unknown value of kgT'Nj, which serves as the
only fitting parameter in (2.69).

The value for G obtained in ref. [51] might be questionable because its determination relied on
a measurement of the buckling pressure using the classical buckling pressure |pcb|, see eq. (2.46).
This determination assumes a vanishing internal osmolyte concentration, i.e. kT Nj, =~ 0 in eq.
(2.65) and, moreover, the classical buckling pressure (2.65) only represents an upper bound for
the buckling pressure. In fig. 2.16 a) it is shown that real imperfect shells buckle already at
considerably weaker pressures. As already pointed out, values for Eop and Epg could also be
obtained from a shape analysis, in principle, if shape images for more external osmotic pressures
Pex Were available.

From five confocal microscopy images, figs. 2 (b) and (c) in ref. [51], the ratio d/Ry was
measured. An uncertainty arises because one cannot be sure if the cross-sections imaged by
the confocal microscopy cut through the centre of the capsules and if they are oriented along
the axis of symmetry of the capsules. For each image, the external osmotic pressure was given
in ref. [51]. The resulting data points are plotted in fig. 2.20 b), together with the fit using
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Figure 2.20.: Using a buckled shell as an osmotic pressure sensor: From a measurement of the depth
d and original shell radius Ro, the external osmotic pressure pex can be determined. a) The data
points are generated from the data set already used in figs. 2.14 and 2.18, with Eg = 1074, v = 1/3
and kT Nin = —pcb Vo, and the solid line represents the analytic approximation (2.69). b) Analysis
of experimental results published in ref. [51]. The data points from the experiments are fitted using
eq. (2.69) with kgT Nin as fitting parameter. The open points were excluded from the fit because
the experimental images looked conspicuous that they may not represent centred cross-sections.

eq. (2.69). For the fit parameter we obtained kT Ny, = 5.4 - 1072 J, which corresponds to an
internal osmotic pressure (in the undeformed state) of pi, o = kT Nin/Vo = 1.6 - 10° Pa and
to a concentration of Ny, /Vy = 65mol/m3. Equation (2.69) describes the experimental results
with reasonable accuracy.

Recently, a group of experimenters also suggested to use microcapsules as osmotic pres-
sure sensors [74]. In their approach, capsules with different interior osmolyte concentrations
c1,C2,C3,. .. are prepared using a microfluidic device and immersed in a solution whose osmolyte
concentration cey is to be determined. When very thin shells are used, those with ¢; < cox are
deflated and buckle consequently. The external osmolyte concentration can thus be estimated
to lie between two values ¢; < cex < ¢;j if type ¢ capsules are found to buckle and type j capsules
are found to be undeformed (or slightly inflated). Based on the presented theoretical description,
their procedure could be extended and could possibly work with less different internal osmolyte
concentrations ¢; when an analysis of the volume according to (2.69) is incorporated.
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Chapter 3

Buckling and wrinkling of plates and shallow shells

Abstract — The following chapter focuses on instabilities of flat plates and plates
with a weak initial curvature upon in-plane compression. These instabilities involve
out-of-plane deflections and are termed buckling (if the wavelength of the deflection
pattern is large) or wrinkling (if the wavelength is small). The calculation of such
instabilities is based on the small strain elasticity of shallow shells, which is introduced
first. In contrast to the large-strain shell theory of the last chapter, we now include
shear components and formulate the theory with Cartesian tensors. The derived
stability equations are then applied to three setups: (i) a narrow, infinitely long
rectangular plate with simply supported edges under a compression 7, and tension 7,
which wrinkles over its whole width, (ii) an infinitely large plate subject to a uniform
tension 7, and a parabolic stress 7, that is locally compressive, on which localised
wrinkles form, and (iii) the previous setup with the difference that the plate has
an initial weak curvature in y direction. The ultimate goal is to use the buckling
criterion of the third setup to explain the secondary buckling of spherical shells, where
the dimple loses its axisymmetry by wrinkles developing under a locally compressive
stress.

Published material — Parts of sections 3.3.2 and 3.3.3 are reproduced with modifica-
tions from the author’s publications [155], © 2014 by IOPscience and [156], with kind
permission of The European Physical Journal (EPJ).

3.1. Introduction and motivation

The axisymmetric buckling transition of spherical shells, which we investigated in the previous
chapter, is one example of an instability that is driven by a trade-off between compression and
bending energy. The uniformly contracted configuration of a deflated spherical shell stores a
large amount of compression energy, which can be released by buckling out of the symmetric
shape. The small dimensionless bending stiffness Ep ~ HZ/R3, see (2.22), causes the amount
of bending energy stored in the buckled shape to be much less than the amount of compression
energy that could be released. So the total elastic energy that is stored in the deformed
configuration can be lowered by buckling. This is the basic mechanism behind all buckling and
wrinkling phenomena.

An even simpler, quasi one-dimensional example is the buckling of a slender rod under axial
compression, which was considered two-and-a-half centuries ago by Leonard Euler [43]. If the
compressive axial force exceeds a critical force, the initially straight rod of length L buckles [83],
i.e. it assumes a curved configuration with a sinusoidal transverse deflection with wavelength
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Figure 3.1.: From buckling to wrinkling: a) Euler-Buckling of a bar under axial compression with
longest possible wavelength (side view). b) Top view of a buckled rectangular plate with simply
supported edges under compression in z-direction, with a wavelength comparable to the width L, of
the plate [124]. ¢) Wrinkling of a plate under compression in z-direction and tension in y-direction
with shorter wavelength A depending on the bending stiffness Ep, width L, and tension 7, [26]. In
the colour plots, red indicates an upward deflection and blue a downward deflection; green is neutral.

A = 2L, see fig. 3.1 a). The critical force can be calculated as F, = 72EI/L?, where I is the
second moment of area of the rod’s cross section.

Things get more involved, compared to the Euler buckling of rods, when the elastic bodies are
(quasi) two-dimensional plates and shells because then the geometry plays a very important role.
In the books of Timoshenko [124,125], the buckling of plates under compressive in-plane stresses
with various geometries and boundary conditions is investigated. An important difference to
the Euler buckling of rods is the wavelength of the buckling pattern. Whereas rods buckle in a
mode with largest possible wavelength, plates with simply supported edges typically buckle in
a wavelength comparable to the width of the plate, see fig. 3.1 b).

More recently, the wrinkling of surfaces has received a lot of attention, which is essentially the
same as buckling but with relatively short wavelengths, see fig. 3.1 ¢), although the distinction
between the terms buckling and wrinkling is vage and not clearly defined in the literature. It
has been observed and analysed in many different geometries, for example for rectangular strips
being stretched [26,27], sheared [143-145], compressed [30] or subjected to inhomogeneous
growth like in plant leafs [88], circular sheets [33,34] which are placed on water drops [64,65,75]
or pressed into hemispherical moulds [67], pressurised shells that are indented [129,130,132],
elastic tubes that are bent [121] and for many more setups, see [86] for a recent review.

The mechanism behind wrinkling is the same as for buckling: Compressive strains can
be traded for energetically more favourable bending strains. However, the wavelength in
the case of wrinkling is much shorter than for buckling, which can be achieved in three
different ways: (i) applying a tensional stress in the direction perpendicular to the compressive
stress [26,27,33,34,130], (ii) attaching the elastic membrane to a liquid or soft elastic substrate
[35,59,75,87] and (iii) by using curved elastic membranes instead of flat ones [47,48]. The overall
explanation is that high wrinkle amplitudes are rendered energetically unfavourable by these
three effects. Thus, the excess length of the material that was deposited in the buckling pattern
must then be deposited in a pattern with smaller amplitude. This is a purely geometrical
problem, and can be achieved by using smaller wavelengths, thus turning the buckling pattern
into a wrinkling pattern.

Interestingly, there are several setups where elastic membranes do wrinkle, although the
applied external loads are not compressive, but tensional or shearing. The term tensional
wrinkles appearing occasionally in this context is a bit misleading, since a compression in one
direction is still the responsible stress for wrinkling; the tension in the other direction rather
controls the wrinkle wavelength and compression threshold. Figure 3.2 shows three examples
that can be observed in everyday life, for example when handling cloths or foils, but which
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Figure 3.2.: Three examples of wrinkling under external tension or shear. a) Rectangular strip with
clamped short edges and free long edges under uniaxial stretch [26], b) a square with free edges
under diagonal tension applied to two corners (in the experimental image, the other two corners are
fixed and also under slight tension) [143], ¢) rectangular strip with simply supported edges under
shear stress [143]. The experimental images are taken from the cited references.

are quite challenging for the physical intuition. In fig. 3.2 a), a rectangular strip is under a
tension 7, > 0 and the long edges are free. Near the short edges, there is a tension 7, > 0
because the membrane “wants to contract” according to the Poisson effect, but is hindered
from contraction because the short edges are clamped. An analysis of the stress field then
shows that there is a compression 7, < 0 far away from the short edges [27], which leads to the
observed wrinkling. The setup of fig. 3.2 b) is perhaps more intuitive to understand. Here, a
quadratic membrane is stretched along the diagonals, which leads to a compression along the
other diagonal near the centre. The occurrence of compression can be understood by imagining
that a large hole is in the centre the square, so that the membrane only consists of four narrow
strips along the sides of the original square. When this square is stretched along one diagonal
it will deform into a rhombus, see the inset in fig. 3.2 b), and the two free corners will move
to the centre. In the complete square, the free corners will thus push the interior material,
leading to compression and consequently wrinkling. Figure 3.2 c¢) shows that a shear stress
exerted on a rectangular membrane also leads to wrinkling. The reason is that the pure shear
stress can be expressed as compression and tension if the coordinate system is rotated by 45°
as we will see below. Intuitively, this becomes clear by considering a small quadratic part of
the membrane. Upon shearing, the square will deform into a rhombus, as in the previous case,
with one diagonal stretched and the other compressed. The wrinkles are oriented along the
direction of the tensional stress, i.e. in a 45° angle as shown in fig. 3.2 ¢).

So far, buckling and wrinkling are mostly handled separately from a theoretical point of
view. Whereas a buckling analysis usually involves a stability analysis of the Foppl-von-Karman
equations (for planar membranes) or the shallow shell equations (for curved membranes) to
obtain the critical load and the complete buckling pattern [124,135], many investigations of
wrinkling rely on energy considerations with an ansatz for a sinusoidal wrinkling pattern whose
wavelength can then be determined [26,144]. A recent attempt to model the crossover between
buckling and wrinkling has been presented in refs. [33,34] for the Lamé setup (an annular sheet
under axisymmetric tensile loads), where a distinction between a near-threshold (NT) regime
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and a far-from-threshold (FFT) regime has been drawn. In the NT regime, the critical buckling
load is only slightly exceeded so that a stability analysis of the Foppl-von-Karman equations is
appropriate, but in the FFT regime it is assumed that the compressive stress has been fully
released by the well developed wrinkles.

Below, we will present a very simple study of a rectangular strip that explains the transition
from buckling (with large wavelength) to wrinkling (with small wavelength). The whole analysis
is based on a stability analysis of the Foppl-von-Karman equations and the transition from
buckling to wrinkling is driven completely by the magnitude of the tensional stress along the
wrinkles (perpendicular to the compressive stress that cause the wrinkles).

In many real cases, the wrinkled region is not limited by the boundaries of the membrane,
see fig. 3.2 a) and b) for example, leading to partly wrinkled membranes [121]. Such behaviour
is seen when a membrane is compressed only locally and not over its whole width. In classical
tension field theory [121,144], the stress field for planar deformation is calculated, and then
it is assumed that regions with compressive stresses wrinkle and the compressive stresses are
released to zero. We will approach this problem by using a parabolic stress profile that is locally
compressive and conduct a stability analysis without the above mentioned assumptions. Our
analysis shows that the wrinkles indeed limit themselves to the compressive region (with a
slight overhang to the sides), and that the same scaling laws for the critical compression and
wavelength as obtained for membranes with clamped edges hold.

Apart from the purely theoretical interest evoked above, this chapter also fulfils a practical
purpose. In the previous chapter we saw that in a buckled shell a region of strong hoop
compression exists along the inner side of the dimple edge, see fig. 2.9. In numerical simulations
and in experiments with microcapsules, it has been observed that wrinkles develop in this region
upon sufficient deflation, so that the dimple loses its axisymmetry and acquires a polygonal
shape. The threshold for this secondary buckling will be calculated from the simple model with
a parabolic, locally compressive stress mentioned above.

3.2. Small strain elasticity theory for shallow shells

In this chapter we consider the stability of elastic plates and shallow shells which are compressed
(at least in one direction). A plate is by definition a sheet of elastic material which is flat in
its reference configuration. It can be conveniently parametrised with Cartesian coordinates
(z,y) for the plane of the plate, and its deformed image by a height profile w(z,y). A shallow
shell, on the other hand, is a curved plate, i.e. its reference configuration already has a small
curvature. A shallow shell above the z-y-plane is also parametrised by the plane Cartesian
coordinates. As long as the shell is shallow, we can neglect the complication that z and y are no
arc length coordinates [135], or in other words, the metric of the shallow shell is approximately
flat. The formulations of plate theory and shallow shell theory are thus very similar to each
other and will be presented below.

According to the conventions of the finite strain shell theory used in chapter 2, the coordinates
for the reference shape should rather read (zo,yo), but we omit the indices “0” for two reasons.
Firstly, we are mainly concerned with linear elasticity theory in this chapter and describe the
deformation with displacement fields, as usual in linear theory, rather than a function x(x¢) as
typical for non-linear theory [126]. Secondly, we apply the results to cases where the reference
configuration of the plate or shell is an approximation to an already deformed configuration.

In the small strain theory of shallow shells, there are two important differences to the large
strain shell theory of chapter 2. On the one hand, there are some simplifications due to the
smallness of the strains, e.g. the 1/); factors in the constitutive law (2.10) can be neglected.
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On the other hand, the principal axes of deformation are not along the directions of the
parametrisation, so that we get additional shear and twist terms. The theory will therefore be
presented in terms of 2 x 2 Cartesian tensors.

3.2.1. Tensors of strain and bending

We counsider a shallow shell with a reference shape described by the height profile z(z,y), whose
initial curvatures can be approximated by
02z 0%z 0%z
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This reference state is deformed by small displacements w, v, w (in z, y and z direction,
respectively). According to the Donnel-Mushtari-Vlasov (DMV) shell theory [96], the strains
and bending strains induced by the displacement field are given by
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These strain-displacement relations are approximate, because only three selected non-linear
terms are included and others have been omitted. They are justified if the displacements
are approximately perpendicular to the midsurface of the shell, which is the case for shallow
shells [96, 135].

We can arrange these components in tensor form,

K, K
e= (" fw and K= v v, (3.3)
Eey Ey Ky K,y
to define the strain tensor and bending tensor, respectively. Both tensors are symmetric and
since they are Cartesian tensors, we do not have to distinguish between co- and contravariant
components.

From the definition of the bending strains in (3.2), it is clear that they measure the curvature
change of the shallow shell, see fig. 3.3. The principal components K, and K, are therefore
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Figure 3.3.: The basic deformations of a shallow shell, illustrated for a plate. The grey shape is the
reference configuration, the green shape the deformed configuration. For the shear deformation, a
new coordinate system (n, ), the principal axes system, is introduced along the diagonals.
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very similar to the non-linear bending strains (2.6). The new component K, measures the
“twist” of the shallow shell.

The strain tensor describes the change of the metric of the shell’s midsurface, that is, the
length change of a line element ds that is deformed to ds. This information is obtained from
the strain tensor by multiplying it with the undeformed line element ds = (dz,dy)T from the
left and the right:

1
dsTeds = o (ds® —ds?). (3.4)

In ref. [4], this relation is called the fundamental property of the strain tensor.

To get a feeling for the different components of the strain tensor, let us consider some simple
cases of strain at the example of a plate under in-plane deformation. Since the strain tensor
is symmetric, it can be diagonalised at any point by a principal axis transformation. In the
general case, the principal axes will vary from point to point. After rotating the coordinate
system so that the strain tensor is diagonal at one specific material point, it is not diagonal at
the other material points. For now we will pick special deformations where the strain tensor is
constant over the whole membrane, which can also be interpreted as zooming in so close that
we cannot see the variations of the strain tensor across the membrane anymore.

When a plate is stretched in z- and y-direction, the strain tensor is diagonal,

€= (56” fy) . (3.5)

A line element ds = (dx, 0) changes its quadratic length according to (3.4) to ds® = (2¢,+1)ds?.
Thus, the material fibres oriented in z-direction get stretched by a factor A\, = /2e, + 1 (and
analogously in y-direction). The rather cumbersome relation between strains and stretches,
gi = (A —1)/2 and \; = /2¢; + 1, simplifies for small strains g; < 1: Then we simply get
g; = A; — 1 in leading order (with ¢ € {z,y}). In the finite strain shell theory of chapter 2, we
worked mainly with the stretches \;, but also introduced the engineering strains e; = \; — 1
in (2.5). The strains ¢; introduced here are called the Green-Lagrange strains, and they are
identical to the engineering strains within the accuracy of the small-strain theory discussed
here.

The off-diagonal elements of the strain tensor are also called the shear components. A shear
deformation which produces a strain tensor with vanishing diagonal elements is shown in fig. 3.3
and is described by the displacement fields © = vy and v = 0. This gives a strain tensor of

€= (7(}2 762> . (3.6)

With (3.4), we see that line elements along the z- and y-axes are unchanged in length. The
principal axes of the shear strain tensor are along the vectors e, = (1, 1)7/v/2 and e =
(—1,1)7/v/2. A rotation of the coordinate system by /4 therefore diagonalises the strain

tensor,
diag (€ 0\ [~/2 0 . 1 /1 -1

This means that the membrane is stretched in 7-direction by A, = /T 4+~ and compressed in
&-direction by A\¢ = /1 —~, which is visualised in fig. 3.3 by the deformed image (green) of
a diagonal square (grey) in the reference state. That demonstrates that a shear deformation
can be described by tension and compression in a suitable coordinate system, and explains the
shear wrinkles presented in fig. 3.2 c).
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a)

TE,
b) v Figure 3.4.: Interpretation of the stress tensor. a) The force F' exerted

Ty on a curve I’ by the neighbouring material (shaded) is determined by
y €y % the integral over the stress tensor, see eq. (3.8), here in the case of a
ARG horizontally stretched membrane. b) The force density on a vertical
line element is Te; = (72, Tyz), with a shear stress Ty, and a normal

z stress 7. For a horizontal line element we have Tey = (Tzy, 7y).

3.2.2. Stresses and bending moments

In the finite strain shell theory of chapter 2 we introduced stresses and bending moments as
derivatives of a surface energy density. To understand the concept of stresses a bit better, we
will now explain their mechanical relevance as force densities.

The fundamental relation for the (two-dimensional) stress tensor T is that the force F' which
acts on a curve [ is given by the line integral

F:/Tnds with T = (Tz Tmy), (3.8)
r

Tyx Ty

where n is the (unit) normal to the curve I'. To be precise, the material lying in n-direction
next to the curve exerts this force on the material lying on the opposite side of the curve, see
fig. 3.4.

Unlike the stress-tensor in three-dimensional elasticity, the two-dimensional stress tensor
is not necessarily symmetric [96, 135]. However, in this thesis we are only concerned with
special and approximate cases where T is symmetric, i.e. 7,, = 75,. This is guaranteed for
shells with vanishing bending stiffness, spherical shells, shells with a flat reference state (plates),
approximately for shallow shells, and for deformations without shearing (e.g. axisymmetric
deformations of axisymmetric shells as in chapter 2).

The bending moments already introduced in the finite strain shell theory are now also written
in tensor form, including an off-diagonal element,

m= (= ). (3.9)

Myy my

In our shallow shell theory, m is also symmetric. The off-diagonal element is associated to the
twist (see fig. 3.3) of the shell. As explained before, the bending moments arise because of
variations of the (three-dimensional) stress across the thickness of the shell. However, we skip
this discussion because it necessitates the knowledge of three-dimensional elasticity theory.

3.2.3. Small strain elasticity theory

As in the finite strain shell theory, the stresses and bending moments can be related to the
strains and bending strains by an elastic energy density wg(€,T). The centrepiece of this
argument is the principle of virtual work [96,135]. Let us assume that the shallow shell is in a
configuration with strain tensor €, bending strain tensor K, stress tensor T and moment tensor
m. When the strains and bending strains are now altered by virtual displacements de and dm,
this additional deformation has to work against the stresses and bending moments that are
present in the shell, thus increasing the stored elastic energy.
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For a diagonalised stress tensor, the change of the stretching energy density is dwstretch =
Ty 0€y + T¢ de¢, where we denote the principal axes with  and §. This equation is just the
continuum version of the basic law “work equals force times distance”. It can be transferred to
non-diagonal stress tensors by writing it in a manifestly invariant form, dwgretcn = Tt (7 0€).
Similarly, the change of the energy density due to the bending moments and virtual bending
strains is Tr (m 0K, which can be derived by taking the thickness of the shell into account [151].
Thus, the total energy change due to the virtual displacements is

0ws = Tpley + 2Tyl gy + Tybey + My d Ky + 2myy 0 Ky + my0 K, (3.10)

in component notation for non-diagonal tensors.

In order to derive the general constitutive relations it remains to specify an explicit form
of the strain-energy-function wg. The Hookean energy density (2.7) in the principal axes
system can be generalised to non-diagonal strain tensors by the observation that terms like
637 +2ve,ec + eg in the principal axes system can be written as Tr (62) +2v Det €, which expands
to €2 + 2ue,e, + 55 +2(1 - V)E-Ziy for non-diagonal tensors. The complete Hookean energy
density function thus reads

1 Esp
T 21— 12

1
+5Es (K2 420K, Ky +¢e,+2(1-v)K2,)

ws (2 + 2veqzey + €5+ 2(1 —v)er,)

Ty

(3.11)

which reproduces the literature result, see for example ref. [135], p. 341.
From (3.10) and (3.11), the general constitutive relations of small strain elasticity can be
deduced,

Ows Esp dws
(Ehal el w G L) Ma = oo = Ep(Ka +vK,),
T xT
0 E 0
Ty = e = ey + vey), m, = 5= = Ep(K, +VK,), (3.12)
y Yy
1 (9’(1}3 EQD 1 (9’(1)3
Ty — S = T &z, zy = 5 = FEp(1— KI :
Try 2 ey 1+VE y Mzy 2 0K, B( V) Koy

In contrast to the finite strain constitutive relations (2.10), these equations do not contain the
1/\; prefactors anymore since they represent order effects, 1/A; = 1+ O(g;).

3.2.4. Examples and further elastic moduli

Now we will explore the behaviour of an elastic plate in different deformation modes: Uniaxial
stress, isotropic stress and shear stress, see fig. 3.5. This allows us to interpret the role of the
Young modulus and Poisson ratio. We will define the shear modulus and area compression
modulus, which are frequently met in the literature.

For uniaxial stress, see fig. 3.5 a), the only non-vanishing stress component is 7,. In small
strain elasticity (3.12), it follows from 7, = 0 that €, = —ve,, i.e. the membrane contracts in
y-direction when it stretches in z-direction, and the ratio of the strains is €, /e, = —v. If v =1,
the area of the membrane is preserved upon deformation. Negative Poisson ratios characterise
auzetic materials, which were believed not to exist for a long time! but have been found, e.g. in

1Landau and Lifshitz write “There are no substances known for which v < 0, i.e. which would expand
transversely when stretched longitudinally.” [83]
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a) |:] b) c) Figure 3.5.: Three states of membrane stress: a)
= Uniaxial stress, where the membrane elongates
( e Ao |—> - ) in one direction and contracts in the other,
\A ] —>;y b) isotropic stress with uniform expansion of
=== a4 induc
- / Tay the membrane, c¢) shear stress inducing a shear
E

deformation.

folded structures and re-entrant foams, see ref. [57] for a recent review. We can further see from
the linear Hookean law that
Esp

=13 (62 — V%) = Eopea, (3.13)

so that the Young modulus is the proportionality constant between stress and strain for uniaxial
stress.

Isotropic stress, see fig. 3.5 b), is characterised by equal normal stresses in z- and y-direction,
T, = Ty = T, and results in a uniform stretch (or compression), e, = €, = €. The plate changes
its surface area from Ay in the reference state to A = Az A Ag = (1 + 2¢) A in the deformed
state. Thus, the area change is AA = 24y, and the relation between stress and strain reads

= Kop=l  with Kop= 22
1,5 "y M o0y

T= (3.14)
where the area compression modulus or area dilatation modulus Kop was defined, which serves
as the proportionality constant between stress and normalised area difference for isotropic
stress.

Finally, a pure shear stress 7., with 7, = 7, = 0 induces a shear deformation, see fig. 3.5 c).
In our discussion of shear deformations, we saw with (3.6) that the shear component of the
strain tensor equals half the shear angle, €,,, = v/2. With Hooke’s law (3.12) we get

Esp

STERTE (3.15)

Tey = GQD’}/ with GQD =
where Gop is called the surface shear modulus.

3.2.5. Stability equations for plates and shallow shells

In the previous sections we covered the basis to examine the equilibrium and stability of shallow
shells. These investigations are based on an energy functional, whose first and second variation
produces equilibrium and stability equations, and the third and fourth variation give information
about the behaviour after the onset of instability.

As in the previous sections, we consider a shallow shell with a reference shape described by
the height profile z(x,y). This reference state is, however, not the undeformed or unstressed
state: We assume that the shell is subjected to in-plane stresses (7., 7, and 7,,), bending
moments (my, m, and mg,) and a normal pressure p. We do not make any assumptions on
the origin of these stresses, they may be produced by a preceding elastic deformation (linear or
non-linear), thermal expansion, inhomogeneous growth [88] or swelling [77], residual stresses
after plastic deformation [88], or anything that satisfies the equilibrium conditions presented
below. This general framework is necessary in order to capture the specific case analysed in
sections 3.3.2 and 3.3.3, because the parabolic stress state analysed there does not satisfy the
compatibility conditions of plate theory [135].
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To analyse the stability of this reference state, we perturb it by small displacements u, v,
w (in z, y and z direction, respectively), which are all of order O(§). The elastic energy of
the shell will change due to this perturbation. If a displacement field which lowers the elastic
energy exists, the given state is unstable.

According to (3.2), these displacements lead to strains and bending strains. The strains are
non-linear only in the field w, which is justified because shallow shells are close to flat plates
and are therefore much easier to deflect perpendicular to its surface than in-plane [135], so that
|w| > ful, |v].

The total energy variation can be written as a surface integral

AU = /dA {wstretch + Whend + wext} (316)

over the energy densities

1 Esp
21— 2

1
Whend = My Ky + 2mipy Koy +my K, + 5EB (K2 +2vK, K, +2(1 - v)KZ,)

Wstretch = Tz€x + 2Ta:y5$y + Tyfy + (Ei + 2V5I5y + 5‘12/ + 2(1 — V)Eiy)

(3.17)

Wext = pW.

The terms in Wstretch and wpenqa Which are linear in the strains (7., m, K, etc.) account for
the presence of stresses and moments in the reference configuration: It is the work (density)
required to create the perturbation u, v, w against the present stresses and moments, cf. (3.10).
The quadratic terms measure the work done on the shell due to the additional stresses and
moments that develop upon the perturbation, cf. (3.11), and wey is the work done on the
external system that provides the pressure p.

We sort the energy functional by different orders of the displacement fields, AU = AU®) +
AU + AUB) + AUW where AU™ = O(6™). Analysis of the variations of different order
then yields equilibrium equations, stability equations and information about post-buckling
behaviour, i.e. the evolution of the amplitude of the buckling or wrinkling pattern after the loss
of stability.

In the first variation we collect all terms linear in u, v and w. It reads

AUD — /dA{u [—02Tz — OyTay] + v [—0yTy — 0rTay)
+w [—nﬂz — 2Ry Tay — KyTy + aimz + 20,0y Mgy + 8§my + p} } (3.18)
after integration by parts has been used. Boundary terms of the integration by parts are

omitted since they only contribute to the boundary conditions, not to the differential equations
themselves. Linear stability requires the contents of the three square brackets to vanish,

01y | OTay =0, ory + 07y =0, and
ox dy y or (3.19)
0%m, Pmyy  0?m ’

2 Y =0
Ox2 + Oxdy + Oy? tp=0

—KgTy — 2KzyToy — KyTy +

which reproduces the ordinary equilibrium equations for shallow shells (see ref. [96], p. 360, or
ref. [135], p. 526; only the sign conventions differ).
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The second variation contains all quadratic terms, including terms mixing different fields.
Integration by parts can be used to write the integrand in a symmetric form. This results in

Hyy I:Iuv ﬁuw u
AU?) :/dA (w,v,w) | Hyw Hypo How v with (3.20)
ﬁwu va Aww w

N 1 Eop o 1=V, o A 1 Esp 2 1
Huu = —= (ax + 9 ay) 5 H’U’U = —= — y2 (8y +

21— 12 21 V”)’ ﬁ“”zfifmaay’
Hyw = %1]5_‘2]; [0 (ke + vEy) + (1 = 1)0skay], Hupuw = —% 1]5_‘232 (K + vhy )0z + (1 — v)KayOy]
2 - % 1]22?/2 [0y (ky + vEz) + (1 — V)Onkay], Huwo = —% 11212?/2 [(Ky +vh2)By + (1 = v)ayOa],
Hoyw = %EBA2 - % (Txai + 2753y 0;0y + Ty(‘?;) + % lE_2D2 (H,i + kg ky + /{z +2(1— l/)liiy) .

Note that terms like 0, k5 w are to be understood as 0, [kqyw], so that the derivative operator
acts also on the function w to which the operator is applied; A = 92 + 5‘2 is the Laplace operator.
It can be shown with integration by parts that the 3 x 3 matrix operator H is self-adjoint.
Therefore, it has an eigenbasis and is positive definite if all its eigenvalues are positive. When
the lowest eigenvalue falls below zero, H is not positive definite and, thus, a deformation mode
exists which lowers the elastic energy. This is exactly the critical point where buckling or
wrinkling can occur. We can thus find the critical point by setting ﬁ(u,v,w)T = (0,0,0)T.
These three equations are equivalent to

orV  ory orY  ary
0= —" 7Y 0= L4 d 3.21
Ox * oy’ Oy * Ox an (3.21)
0%w ow 0%w
EBAQw:Tx82+ Twya + T yaZ—i—/ﬁm()—i—Zi@gj (1)—1—/@7'() (3.22)

We introduced the additional stresses, which are of the same form as Hooke’s law,

Eop Eop Eop
Tél) = m (5;1) + V&'?(Jl)) 5 7—151) = m (Eél) + ng(cl)) 5 ;g:}/) = 1 +u g(cly)’ (323)

and depend on the strains 5" = 9,u — ki w, 53(,1) = 0yv — Kyw and sily) = (Oyu+0,v)/2 — Kgyw
which are the linearised versions of (3.2).
The in-plane stability equations (3.21) are of the same form as the in-plane equilibrium

equations. Their general solution is

L0 0 o 0% (3.24)

T oy?’ T T B2 Toy " dzdy
with an arbitrary function ¢(x,y) which is called the Airy stress function or stress potential
[83,96,135]. With any choice of ¢(z,y), the in-plane stability equations are satisfied, but there
are additional conditions on ¢ because the stresses must be compatible with Hooke’s law (3.23).
The strains can be expressed in terms of the stress function and in terms of the displacements,

1 (82(,75 52(;5) _ 5(1) ou

Eap Oy e s Ty Y
1 (0% a2¢ L o

0
_1 +v 82¢) o 5(1) 1
EQD axay S 2
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As the strains are derivatives of the displacements, they must satisfy certain integrability
conditions. We can find these conditions, also known as compatibility conditions [135], by

eliminating the in-plane displacements u and v from (3.25) using the combination 8,35;1) +02e{M —

289581,5502. Simplifying this term with the left hand sides of (3.25) results in A2¢/FEsp. Using
the right hand sides of (3.25), we see that the term equals —9; (k,w) — 03 (kyw) + 20,0y (Kzyw),
which can be further simplified by inserting the curvature definitions (3.1). So eventually
we have derived A%¢ = —Esp (k0jw — 262y 0,0yw + ky03w). This equation and eq. (3.22)
determine the fields w(z,y) and ¢(z,y). Introducing the stress potential in (3.22) gives the
complete set of stability equations,

1 0w 0w 0w
A% = —hp—— + 2y —— — Ky ——
Esp ¢ & oy? tan Y 0x0y Y a2 (3.26)
EpAiw =T, 78211) + 27, 73210 +7 —azw + K @ — 2K ngb K @ .

B T 02 Woxoy Y oy? T oy? Woroy Y02’

In ref. [135], similar stability equations are given on p. 570, with the only difference that the
reference shape there is assumed to have principal curvatures along the x and y coordinate
lines. Our equations are a bit more general; however, we will apply them only to simple cases
where kg, = 0 anyway.

The stability equations are a set of partial differential equations which are linear and
homogeneous. The curvatures x; and stresses 7; are known functions of x and y at the time we
want to solve the stability equations; they characterise the reference state whose stability is
investigated. Boundary conditions must be specified for w and ¢. In section 3.3 it turns out
that the boundary value problem has a solution only for special choices of the functions x;
and 7;. Let us assume that at least one of these functions depends on a parameter g, with the
interpretation that for increasing ¢ the load on the shallow shell increases. At a critical value
qe, & solution of (3.26) exists; this is the point where the shell loses its stability. The solution
and the actual value ¢, can, in most cases, only be found numerically.

The solution of the stability equations determines the shape of the buckling or wrinkling
pattern when the instability sets in. Once it is found, it can be desirable to evaluate the energy
functional (3.20) in order to check that AU®?) < 0 for ¢ > g.. For this purpose we re-write
(3.20) in terms of w and ¢ which results in

2 2 2 2 2 2
@) _ w 2, 0w 0*w 0*w 0°¢ o’¢ 0%
AU /dA2 {EBA w — +2mwyaxay ﬁy—axQ .

wa — QngyaTay — Tya—y2 — Ry By
(3.27)
Evaluating the integrand for ¢ > ¢. with solutions (w, ¢) found for ¢ = g, is an approximation,
analogous to the first-order perturbation theory of quantum mechanics.

As the stability equations are homogeneous, the amplitude of the buckling pattern is arbitrary,
in a mathematical sense. In practice, we have to take into account higher order terms in the
elastic energy for large amplitudes. From these higher order terms, we may also obtain the
bifurcation behaviour. The higher order energy contributions are evaluated for a deformation
mode (w, ¢) which is a solution of the stability equations (3.26).

The third variation vanishes due to symmetry restrictions in our applications. For complete-
ness, however, it is given here:

1 0%w 0%¢ Ow 8%¢  0%w 029
3 — = 2277 _ 7
AU 2 /dA v { 0x? Oy? + 26x8y Oxdy  Oy? Ox2 } ' (3.28)

It is obtained from the 0(53) terms in (3.16) and has been simplified with integration by parts,
introduction of the Airy stress function and by using (3.21). The third variation vanishes if
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the stability problem has the following symmetry. From (3.26) it is clear that if (w,¢) is a
solution of the stability equations, then (—w, —¢) also is. If the shallow shell has a symmetry so
that the (w, ¢) and (—w, —¢@) patterns are equivalent, we can expect AU (w, ¢) = AU (—w, —¢).
Since AU®) (—w, —¢) = —AU®) (w, ¢) we can conclude that the third variation (and all odd
variations) vanish: AU®) = 0. This is the case for many plate buckling problems (with p = 0),
since a buckling in +z-direction is essentially the same as a buckling in —z-direction, and
typically results in a pitchfork bifurcation as shown in section 3.3.3. For a spherical cap, on
the other hand, it is a great difference if the dimple buckles inward or outward; and the third
variation cannot vanish. Eventually, this leads to a more catastrophic buckling behaviour, see
ref. [135], p. 565 for a general discussion.
For the fourth variation of the energy we obtain

2
1 FE ow\ 2 ow >
U(4) _ 2D vw ow
A 81—V2/dA [(ax) (83/) ] ' (3:29)

Evidently, this term is positive and will limit the amplitude of the buckling (or wrinkling)
pattern.

3.3. Applications to the buckling and wrinkling of plates and
shallow shells

3.3.1. Rectangular plate with simply supported edges

As a first example we consider the buckling and wrinkling of an initially flat plate, see fig. 3.6.
It shall have a rectangular geometry with a width L, and a length L, > L,, for simplicity
we only consider the limit L, — oo so that the wavelength of the buckling pattern can take
any value and is not quantised by boundary conditions in x-direction. Along the edges y =0
and y = L, of the plate, we impose the boundary conditions that these edges shall be simply
supported, that is, the displacements must vanish at the boundary. The plate is in a stressed
state with a compression 7, < 0 and a tension 7,. There shall be no shear stress, bending
moment or external pressure.

We will see that the buckling wavelength is considerably affected by the tension 7,, which is
confirmed by a simple scaling law. Let us assume that the buckling pattern is a periodic normal
deflection with amplitude W}, wavelength A in z-direction and wavelength 2L, in y-direction, so
that the boundary conditions are met and one bulge spans the whole width L,. This buckling
pattern leads to the following energy densities:

e Bending occurs mainly in z-direction and costs wpenq ~ EBKi ~ Ep (WO/)\Q)?.

e In z-direction, compression is released and brings the energy reduction Weompress ~ Tz€z ~
7.(Wo /)2, which is negative because 7, < 0.

e In y-direction, the plate stretches against 7,, which costs Wstreten ~ Tyey ~ Ty(WQ / Ly)Q.
By the onset of the buckling, the elastic energy (per area) of the plate therefore changes by

W we we
Awg ~ Ep—2 47,2 47, =2 (3.30)
A A2 e

55



CHAPTER 3. BUCKLING AND WRINKLING OF PLATES AND SHALLOW SHELLS

Ty

—_ : : Figure 3.6.: Rectangular plate under compression and
Ty = ( ( ) ( ) | L, tension. The plate has a width of L, and is infinitely
= i large in z-direction. A compression 7, < 0 and a
Y * ‘ * * tension 7, are applied, which lead to a buckling or
) wrinkling pattern of wavelength A, indicated by the

x  simply supported edges dark red curves.

t11

which must be negative in case of an energetically favourable buckling. This is equivalent to
demanding a minimum magnitude of the compression 7,

Ep >\2>

Awg <0 & 71, <— ( +7y— (3.31)
N T

When the compression is gradually increased, the mode for which —7, is minimal buckles first.
The condition 97, /90X = 0 determines the critical wavelength A. and critical stress 7. = 7,,(A¢),

1/4
EpL? VE
e ~ < B y) and 7, ~ 2V 2TV (3.32)

Ty L,

We see that the wrinkle wavelength gets smaller for increasing 7,. In refs. [26,27], similar
estimates of the energy contributions were presented, and the same critical wavelength was
derived.

In the following, the problem just presented shall be solved properly by means of the stability
equations of shallow shells. First of all, we note that the imposed stress satisfies the equilibrium
equations (3.19), and so the problem is well-posed. The stability equations (3.26) simplify
considerably for flat plates, where all curvatures x; vanish: In this case, the two partial
differential equations for w and ¢ decouple. As we are primarily interested in the shape w(z,y)
of the wrinkling pattern and not in the stress potential ¢(x,y), it is sufficient to solve the single
equation
0*w 0*w

2,
EBA w = Tzw +Ty87y2,

(3.33)
i.e. the second stability equation of (3.26) with x; = 0 and 7,, = 0. It must be solved with
the boundary conditions for simply supported edges, 0 = w(z, yo) = 8511)(:3, Yo) at yo = 0 and
Yo = Ly, which state that the edge is not deflected and moment free [83,135].

A separation ansatz w(z,y) = W (y) sin(kz) with wavenumber k& = 27 /) leads to an ordinary
differential equation for the amplitude function W (y),

W (y) — (;2 + 2k2> W (y) + <k4 + ;”31#) W(y) = 0. (3.34)

We choose W(y) ~ sin(my/L,) as an ansatz that conforms the boundary conditions. This
corresponds to one bulge in y-direction, and it can be shown that this mode becomes unstable
first (in comparison to several oscillations in y-direction). Inserting the ansatz into (3.34) shows
that it satisfies the differential equation if

1 m 7r27y w2 2
Tx:*ﬁ <EBL4+ 72 > *QEBﬁ*EBk . (3.35)
Y y Y
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Figure 3.7.: Behaviour of a plate under compres-
sion in z-direction and tension in y-direction,
according to the results (3.36). Shown are the
critical compression |7, .| (red line) and the
wavelength A of the buckling pattern (blue
line) as a function of the transversal tension
Ty. The insets show three-dimensional views of
the buckled plate for 7, -+ —7*Ep /L2, 7, =0
and 7y, > n°Ep/L3.

This is the critical value of 7, for which a solution of the stability equations exists; and the
second variation of the energy functional has an eigenvalue that becomes negative at this 7.
We are interested in the mode that becomes unstable first, hence we must minimise —7, with
respect to k. The condition 9y7, = 0 is met for k = (1 + TyLz/WzEB)1/47T/Ly, which yields a
critical wavelength and associated critical tension

TyL2 1/ 2m2Ep TyL2
Ae=2L, [ 1+ Y and T, = — 1+ 4/1+ v, (3.36)

m2Ep Lz m2Ep

These results are plotted in fig. 3.7, and there are several limits that are relevant. First
of all, we see that both functions are only defined for 7, > —n%Fp /Li If 7, is negative,
i.e. compressive, and approaches this limit, the wavelength A, — oo diverges. This value for 7,
is the critical value for Euler-buckling in y-direction, where the plate buckles only in y-direction
(see the inset in fig. 3.7). Secondly, the buckling pattern at 7, = 0 has A = 2L,, so that the
bulges have a quadratic base area. This case is discussed in more detail in ref. [124]. Finally, we
can investigate the limit 7, > 7*Ep/L?, which is equivalent to very small bending stiffnesses
Ep — 0. The results (3.36) then simplify to

4
16m2E52\ " AT?EpT
Aer | ———4 and Ty~ —— L. (3.37)
T, ’ L2
Yy Yy

These are the same scaling laws as estimated above, and this version of A, coincides exactly
with the results of Cerda and Mahadevan [26].

In addition to the literature results [26], we were able to derive the critical compressive stress
and have retraced the transition from buckling (at small transversal tension) to wrinkling (at
large transversal tension). The basic mechanism is the same in both cases: The compressive
stress is reduced by deforming the plate out of plane.

3.3.2. Infinite plate under local compression

In many systems, the wrinkled regions of a membrane are not limited by clamped or supported
borders, but arise from the circumstance that only certain regions of the membrane exhibit
compressive stresses. In classical tension field theory [121,144] it is assumed that the wrinkles
end at the boundaries of the compressed regions and that the compressive stress in these regions
is collapsed to zero (or a small value according to the Euler buckling load) as a consequence of
the wrinkling.

Here, we develop an alternative model for such localised wrinkling and buckling, which is
comparable to the model of the previous section. This time, the plate shall be infinitely large

57



CHAPTER 3. BUCKLING AND WRINKLING OF PLATES AND SHALLOW SHELLS

PAAA LRt

> : I Ty >0
| >
: /R ) (A A : =
I A €
I | T <0 Figure 3.8.: Infinite plate under a parabolic
: _ stress profile 7, (y) and tension 7,,. The stress in
L Lo : = > z-direction is locally compressive (in the light
:sz_ I I Ty >0 red region) and will lead, beyond a threshold,
: l _{ l ‘{ l _J_ l _{ l 1—‘ to wrinkles of wavelength A and effective width
Leg.

in both x and y direction. In y-direction, a spatially constant tension and in z-direction a
parabolic stress profile is applied:

7(z,y) = —7o(1 — apy?), T, =const and T,, =0 (3.38)

with 79 > 0. First of all, we confirm with the equilibrium equations (3.19) that the plate is
in a linearly stable state. However, the stress state violates the compatibility equations [135],
i.e. it cannot be the result of a preceding in-plane deformation within Hookean elasticity. This
renders the problem somewhat artificial, but this model is nevertheless of academic interest.

The stress distribution is compressive in the region —1/,/a, < y < 1/,/a;, and tensional
for larger values of |y|, see fig. 3.8. Beyond a threshold, which is to be determined, the
plate will buckle in order to release the compressive stress. Outside the compressed region,
however, buckling would be energetically unfavourable, and so we expect the wrinkles to confine
themselves to the region —1/,/a, <y < 1/,/a,.

To verify the expectations, the plate equation (3.33) must be solved; now with a spatially
varying 7, which requires a numerical solution. Again we choose the separation ansatz w(zx,y) =
W (y) sin(kzx) to transform the partial differential equation into an ordinary differential equation
for the amplitude function W (y),

Ty

W//// _ 2]€2
- (20 + 22

k,2
) W’ (y) + (k4 L (1- apy2)> W(y) = 0. (3.39)
B
For a numerical treatment it is beneficial to reduce the number of parameters as much as
possible, which can be achieved by the rescaling y = §/+/2k? + 7,/ Ep, which leads to

W () = W" (@) + (=B + ag®) W(g) =0
ayok®/Ep G ok o/ By (3.40)

with &= —202 128 .
(2k2 + 7,/ Ep) (2k? + 7,/ Ep)

A shooting method [109,122] can be applied to solve this differential equation numerically if
boundary conditions are provided. Since a numerical solution can be expected to be symmetrical,
it is sufficient to solve the equation for § > 0. We require the displacements and bending
moments to vanish at infinity, that is, W(oco) = W/ (o0) = 0. In practice, we end the integration
at a point Jmax that is sufficiently large (so that the results do not change anymore when §ax
is further increased) and enforce these boundary conditions there. The boundary conditions
at the starting point of integration are chosen appropriately for an even function, W(0) = 1,
W"(0) = =4 and W’(0) = W’ (0) = 0. The choice W(0) = 1 is arbitrary, since the differential
equation is homogeneous, and 7 serves as a shooting parameter. To satisfy the two boundary

58



3.3. APPLICATIONS TO THE BUCKLING AND WRINKLING OF PLATES AND SHALLOW SHELLS

1.0 156 7
1.0} 3 1 ]

0.5

§ 06 b 0.0 L L L L l
= 04l 0002040608 1.0 |
Figure 3.9.: Numerical results of the rescaled
0.2¢ ] differential equation. The main plot shows the
0.0 wrinkle amplitude function for different values
: ‘ : : of & as indicated by the coloured numbers, and
0 2 4 6 8 10

the inset shows the final values of the shooting
parameters as a function of &.

<

conditions at the endpoint of integration max, & second shooting parameter is required. This
second shooting parameter is one of the parameters occurring in the differential equation; here
we take 3 as a shooting parameter, and consider & as fixed for the moment. The differential
equation can be interpreted as an eigenvalue problem, where /3 plays the role of an “eigenvalue’
and must be chosen so that the boundary value problem has a non-trivial solution.

As a result of the numerical analysis one obtains the two functions 5(@) and 7(&), plus the
shape W(g) of the wrinkles for any given @, see fig. 3.9. For small &, the amplitude function
resembles a Gaussian function. An inspection of the differential equation shows that

)

1 .
W(§) ~ exp (2\/5312) and fr~+vVa for a<1 (3.41)

is an approximate solution of the eigenvalue problem.

For the further analytic and numerical analysis, we must switch to different rescaled quantities
because the length unit introduced in § contains the wavenumber & which is not known a priori.
To this end we choose 1/,/a,, as the length unit (which is the root of the stress parabola), and
Ep as the energy unit. With the dimensionless length, wavenumber and stresses

Yy= g/\/ Qp, k= ]%\/ Qp, Ti = 7A-iapEBy (342)
the parameters of the rescaled differential equation read

- 2 A gaf2
G=_—_oF d 5:%,
(2k% + 7)

(2k2 +7,)° (343

From the numerical analysis, the function 5(&) is known. This relation corresponds to choosing
7o for given transversal tension 7, and given wavenumber k in such a way that the eigenvalue
problem has a solution. Since both & and 8 depend on 7y, the equation

k4 Ak?

Ba(f) = —— (3.44)
(2k2 + #,)°

can only be solved numerically for 7y (k, 7, ). Once this function is determined, it can be minimised

with respect to k — this corresponds to the question, which mode with critical wavenumber

k.(7y) or critical wavelength A, = 27 /k. becomes unstable first when the compressive stress 7

is ramped up. By this minimisation, we also obtain the critical compressive stress 7y . at which

the first mode becomes unstable,

7A-()7C(7A-y) = mkinf'o (]%a%y> =17y (]%c(%y)afy) (345)
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Figure 3.10.: Buckling under locally compressive stress compared to buckling with fixed edges. The
solid lines represent the numerical results for buckling of an infinite plate under a parabolic stress
profile and the dashed lines are the previous results for a simply supported plate of corresponding
width Leg. In the three plots, the critical wavelength, critical compressive tension and effective width
of the wrinkles are shown.

The minimisation proceeds numerically and the results are presented in fig. 3.10. In the units
used in these plots, the results are very close to the previous results from eq. (3.36) and fig. 3.7
for a simply supported plate of width Leg.

We can derive the value of L.g that lets the results match so closely by investigating the limit
of large 7,. The numerical analysis shows that this limit corresponds to & < 1, so that the
approximate solution (3.41) of the rescaled differential equation can be used. Using 3(&) = va&
in (3.44) gives

. R 7 SO
to(k, 7)) =1+ k? 4+ =L + (1+ f’)(l+2k2+f’>. 3.46
ok ) 2k? \/ 2k? 2k? (3.46)

The minimisation of this function with respect to k is rather tedious and was performed with a
computer algebra system. To simplify the results for 7. and A, they can be expanded about
Ty = 00, which yields

1/4
. 9 127 . —1/2 < 64 4 .—3/4
TO’C:ZJF ZTerO('ryl/) and >\C<37A'y > +O(Ty /). (3.47)
In this result, the dimensionlels,s4quantities can be re-substituted by real physical quantities,
giving A\, = (647T4EB/3apTy) / and 1o, = %apEB(l + \/41y/3a,Ep). In this form, the
wavelength and critical tension are very similar to the results (3.36) for fixed plate edges if
T, > Ep/ Lz, i.e. if the transversal tension is very large or the bending stiffness very small. In

fact, the results for fixed plate edges can be recovered by introducing the effective length of the
wrinkles

27

\/3ap

With this length unit, we can write the critical wavelength and critical stress as

1672 Eg L2\ /* 3 2r2Ep 7, L2
Ao = Z0 D Teff d e=— - 1 Y et 3.49
( 7 e Toe =g T A\ 2B, (3.49)

for large 7, in the same form as in the case of fixed plate edges. Only the factor 3/2 in 79 .
is new. It arises because the tension 79 is the maximum compressive stress (in the middle of

Leg = ~3.63-4/1/a,. (3.48)
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the compressive region). The average compressive stress (7,) is smaller: Averaging the stress
distribution 7, = —79(1 — a,y?) over the compressive region gives precisely (7,) = 279. Thus,
the average compressive stress has the same critical value as the constant compressive stress in
the case of fixed edges.

The effective wrinkle length Leg roughly corresponds to the actual length of the wrinkles: At
y = Legr/2, the function W (y) has decayed to a large extent. Figure 3.11 shows some amplitude
functions, which are all very similar, irrespective of the value 7, of the transversal tension. The
analytic solution (3.41) for the limit 7, — oo is also shown. It can be written as

2

W (y) =~ exp <iapy2> = exp <7r2£/2ff> for 7, > a,EB (3.50)
€

and has decayed to exp(—m2/4) ~ 0.084 at y = Leg/2. The amplitude functions for smaller

%, have decayed to exp(—7?/4) at y = A(#,)/2. The function A(%,) is obtained from the

numerical results, and figure 3.10 shows that A is always close to Leg.

It is surprising that the effective wrinkle length is clearly larger than the width of the
compressive region. They reach into the region of the membrane that is under tension in
z-direction, which is energetically unfavourable when one considers the stretching energy in x-
direction. However, the stretching energy in y-direction can be held smaller this way (compared
to the case where the wrinkle length is confined to a smaller region).

3.3.3. Curved plate under local compression

Now we discuss the influence of an initial plate curvature on the buckling instability, i.e. we
investigate the buckling of a shallow shell that is subject to a parabolic stress distribution
in z-direction. This is motivated by the results of chapter 2 and the phenomenological
result [112,113,138] that buckled spherical shells undergo a second instability: The dimple
acquires a polygonal shape due to wrinkles developing on the inner side of the dimple edge.
Our results have shown that the hoop stress 7, exhibits a negative peak in this region, which
can be approximated locally by a parabolic stress distribution, see fig. 2.9 a). The secondary
buckling is thus comparable to the case discussed in the previous section. In order to obtain
quantitative results that can be used to predict the secondary buckling threshold, we refine
the analysis by including curvature effects. In the region where wrinkles occur, the buckled
shape has a curvature that increases approximately linear, see fig. 2.9 b), which corresponds to
a height profile in the form of a cubic parabola (because the curvature is the second derivative
of the height profile in the shallow shell approximation).
Therefore, we investigate the buckling of a shallow shell with a reference height profile

1
z(x,y) = éacy?’ with curvatures Ky = acy, Kz = kzy =0 (3.51)
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Figure 3.12.: The simplified stability prob-
lem: A plate with a height profile of a
cubic parabola is a local approximation
to the compressive region in the section
through the buckled shell (dashed blue
lines). The stress is compressive in the
red strips.

under a stress state
(2, y) = —70(1 — apyz), and T, =T,y =0, (3.52)

see fig. 3.12. A discussion how the parameters a, and a. of the parabola and cubic parabola are
related to the buckled axisymmetric shape and why 7, and the curvature &, are set to zero will
follow in chapter 4. Here, we will just analyse the posed problem, which proceeds analogously
to the previous section. Again, we start by noticing that the geometry and stress state satisfy
the equilibrium equations (3.19) and now continue to the stability equations.

In contrast to the investigation of plate buckling, we now have to solve the full coupled
system (3.26) of stability equations for the normal deflection w(x,y) and stress potential
¢(z,y). Again, we use an ansatz that is harmonic in z-direction, w(z,y) = W (y) sin(kz) and
o(x,y) = P(y) sin(kx). Inserting this ansatz and the given expressions for the curvatures and
stresses in the reference configuration of the shallow shell into (3.26) results in two coupled
linear ordinary differential equations for the amplitude functions

0= <34—2k232+k4—Wro(l—apf))WjLacka@
i ’ Ep Ep (3.53)

0= (9 — 2k%02 + k*) & — (ack® Eapy) W.

For a numerical solution, it is necessary to nondimensionalise the equations, which gives useful
information on the relevant parameters. As before, we choose a length unit 1/,/a,. Substituting
y =19/\/ap and 9, = ,/a, 3 in (3.53) induces further substitutions for the parameters of the
differential equations such that they can finally be written in the form

0= (05 — 24202 + k" — K% (1 - %)) W + (ach?p) & 550

A

0= (0 — 2202 + ) & — (k%) W.

The substitutions included here are

. - k . [Eop ac . 7o . 4 Eop

9= \/apy, k—\/@, Qe = o ag/27 To—apEB, QP—EB, and W = EBW
(3.55)

Because of the symmetry of the problem, we expect W(Q) to be an even function. From
eq. (3.54) then follows that &(§) is an odd function, and it is sufficient to solve the differential
equations on an interval 0 < § < §nax. The boundary conditions at the left end of this interval,
the starting point of integration, follow from the symmetry conditions, @(0) = @”(0) =0,
W'(0) = W"(0) = 0 and W(0) = 1. The latter choice is arbitrary, since the differential
equations are homogeneous. We imagine the plate to be infinitely large, so that the wrinkles
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are confined by the local nature of the compression rather than plate edges. For § — oo,
the wrinkle amplitude W has to approach 0 as well as the slope @' of the stress potential
because the additional tension derived from & shall approach 0. In practice, we integrate up to
a sufficiently large Jmax and impose the boundary conditions W (fmax) = W’ (Jmax) = 0 and
@' (Jmax) = P (Jmax) = 0. When the shooting method must satisfy four boundary conditions
at the endpoint of integration, it needs to vary four independent shooting parameters. In
the present case, due to the homogeneity of the differential equations, there are only three
free starting conditions, W”(0), #(0) and ¢"(0); the choice of W (0) is arbitrary and cannot
serve as a shooting parameter. Thus, the shooting method must be allowed to vary one of the
additional parameters of the differential equations, l%, Q. or 7y.

Exactly as in the previous section, we can interpret the differential equations as an eigenvalue
problem, where one of the three parameters 12;, a. or Ty plays the role of an “eigenvalue” and
must be chosen so that the equations do have a non-trivial solution. In our case, we choose
To as the eigenvalue, because this has the simplest physical interpretation: We increase the
stress on the curved plate until a non-trivial solution in form of wrinkles exists. This value is
then the critical stress 7y which the plate can resist; for larger loads it will wrinkle. Obviously,
the critical stress will depend on the other two parameters, 7o = 7o(a., l%) We consider the
value of a. to be given; the wavenumber k, however, is unknown. The critical wrinkling mode,
that becomes unstable first when the compressive stress is gradually increased, is obtained by
minimising 7y with respect to I;:,

Te(bc) = mkin To(be, k) = To(ac, ke)- (3.56)
Thus, the dimensionless critical stress only depends on da., and so does the critical wavenumber
l%c or wavelength 5\6 =27/ /2:0. The procedure just outlined is carried out numerically.

Figure 3.13 shows the results of the numerical analysis. The critical tension 7, increases with
increasing curvature parameter a.. This reflects the well known fact that bent surfaces (like
corrugated cardboard) are harder to bend in the perpendicular direction than flat surfaces.
The critical wavelength, on the other hand, is only weakly dependent on é.. In addition to the
functions 7.(d.) and ;\c(&c), our numerical procedures return the shape of the wrinkles, that is,
the amplitude function VT/(@) As shown in fig. 3.13 b), the amplitude decays rapidly outside
the compressive region, i.e. for |g| > 1.

The main result of this section is the formula for the critical compressive stress on which a
curved plate starts to wrinkle,

N . . E Qe
Te = apEpte(G.) with a.= H%W’ (3.57)
P

where the function 7.(d.) is known numerically, see fig. 3.13 a), blue line. If the minimum
value 7| y=0 = ~T0 of the parabolic stress falls below —7,, an instability sets in which has the
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wavelength
1

Ae = Ae(@e), 3.58

N (ac) (3.58)
where the function A.(é.) is also known numerically, see fig. 3.13 a), red line. In the special
case d. = 0 corresponding to a flat plate, these results coincide with the results of the previous
section if 7, = 0 is chosen and the formulation is changed to have L.g = 27/,/3a, as the length
unit.

In the remainder of this section, we will discuss the bifurcation behaviour of the wrinkling
transition, and show that it is continuous. This discussion is based on the second and fourth
order energy changes AU and AU®, see egs. (3.27) and (3.29), respectively (the third order
energy change (3.28) vanishes due to symmetry).

The second order energy change (3.27) reads

1
AU = 3 /dA w{EpA*w + 7o(1 — apy®) 2w — acy 826} (3.59)

in the present case, which can be simplified by the replacement 92 — —k? because all functions
have an a-dependence ~ sin(kz). We checked with our numerical solutions (w, ¢) that this
integral vanishes at the critical point 79 = 7. To calculate the energy decrease for 7y > 7., we
use the same functions (w, ¢) which were calculated at the critical point. This is analogous to
the first order perturbation theory used in quantum mechanics. Writing 79 = 7. + (79 — 7¢) and
using that the integral vanishes at 7., we obtain

1
AU? = 5/dA w{—k*(1o — 7.)(1 — apy®) fw (3.60)
Since our plate is infinitely long in z-direction, it is appropriate to discuss the energy decrease
per length, and so the integral in z-direction over the trigonometric function is replaced by its
average, fOL“” sin?(kx)/L, = 1/2. Furthermore, we switch to the reduced units introduced in
(3.55), and finally obtain

Aﬁ'(?) 1. s Ymax o R ) .
7 =5 Tc)W02/ dj W () {*kz (1- yz)} W(5). (3.61)
T 0

In this equation, the function W has a fixed amplitude of W (0) = 1, and Wy denotes the actual
wrinkle amplitude (in reduced units). The integral is negative since W(@) decays rapidly for
4§ > 1. For a. = 20, for example, the integral has a numerical value of —by = —1.0188.

The fourth order energy change caused by the wrinkling pattern can be calculated analogously,
with fOL’ sint(kz)/L, = 3/8 and fOLw cos? (kz) sin?(kz)/L, = 1/8,

AUW 1 1 o e e L 4
I ::’Tzﬁwé/o ay [3(kW)* + (oy)* + 3(051)"] | (3.62)

where the integral evaluates to by = 9.34 for a. = 20.

In total we have an elastic energy

AU
L,

1, 11
= —§b2(7_0 — TC)WO + 3364@12[/0

(3.63)

The optimal wrinkle amplitude is obtained by minimising this function with respect to Wo,
which gives

Wo = i\/ibQ(l — 12)(fo — £o) (3.64)
4
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Wo
wrinkled Figure 3.14.: Bifurcation behaviour for
stable the compressed shallow shell. The energy
flat flat landscape shown on the left gives rise to a

stable o unstable 7o pitchfork bifurcation, where the wrinkle
e amplitude grows like Wy ~ /o — 7c

when the critical point 7. is exceeded.

for 7y > 7.. The energy function and the position of the (un)stable extrema can nicely be
visualised, see fig. 3.14. The elastic energy AU /L, shows, as a function of the wrinkle amplitude
Wo, either one minimum at Wy = 0 (for 7y < 7.) or two minima and one maximum (for 7 > 7).
For the equilibrium configuration, which resides in one of the minima, we get a behaviour that
changes at 7.: The flat solution (WO = 0) splits at 7. into two stable wrinkled solutions that are
equivalent by symmetry, and the flat solution becomes unstable. The wrinkling of the shallow
shell thus represents a supercritical pitchfork bifurcation.

3.4. Comparison and application to other setups

In the last three sections we investigated different models for the buckling and wrinkling of
plates and shallow shells. In each setup, the critical compressive stress 7., where the instability
sets in, and the wavelength A. of the unstable mode have been calculated. The “reference
model” is the long rectangular plate with simply supported long edges, subjected to a uniform
compression 7, and lateral tension 7,. Already in this simple model, useful information about
the transition from buckling to wrinkling has been obtained. The other two models are focused
on the confinement of the wrinkles by a parabolic stress profile that is only locally compressive:
We investigated a flat plate under parabolic stress in z-direction and uniform tension 7, and
a curved plate with linearly increasing curvature s, ~ y under parabolic stress in z-direction
with 7, = 0.

The two models of localised wrinkling can be mapped on the reference model by choosing an
effective wrinkle length L.g. Even the curvature effects influence only the numerical prefactors.
In all models, the following scaling laws describe the critical compressive stress and critical
wavelength:

Ae ~ Leg for buckling (7, = 0)
Ep

Te —)\—g with Ao~ EpL%
Ty

1/4 (3.65)
) for wrinkling (1, > Ep/LZs).

The scaling law of the critical stress is exactly the same as for Euler buckling of bars [83].
Considering the agreement of all the different models, we are encouraged to transfer these
results to other cases like the shear wrinkles shown in fig. 3.2 ¢). In contrast to the fixed plate,
where we have varied 7, and 7, independently, we now have only one control parameter: the
shear angle . It leads to shear strains ,, = /2 and shear stresses 7., = G2p~, see (3.6) and
(3.15) respectively. In the principal axes system, this shear stress corresponds to the components
Ty = Gap7y and 7¢ = —Gap7y, which are equal in magnitude but have opposite signs. The shear
wrinkles are oriented in a 45° angle and have, therefore, an effective length L.g = \/QLy. To
find the critical compressive stress 7¢ = 7., we use the relation (3.36) from the fixed plate model

65



CHAPTER 3. BUCKLING AND WRINKLING OF PLATES AND SHALLOW SHELLS

(with the replacements 7, . — 7, 7y = —7¢ and L, — Leg),

27T2EB TL2 EB EB
c= g 1+l - 558 .= =822 — _4n?2E .
T, 2, ( + 2 Eg = T, 8 2, T LZ (3.66)

This is close to the exact result, 7. = —5.35 7> Ep/LZ, see ref. [124]. According to (3.36), the
critical wavelength is of the order of the plate width,

2 2
Ao = 7 Lot = 2 \/;Ly ~1.63L,, (3.67)

which is also in reasonable agreement with the results of ref. [124]. The deviations to the exact
results can be attributed to the crude simplification of the buckling pattern: Two neighbouring
shear wrinkles are not exactly side by side as the wrinkles in our models, they are shifted in
the 45° direction, see fig. 3.2 c).

We can go beyond this near-threshold regime describing the onset of shear buckling to the
far-from-threshold regime by assuming that a further increase of the shear angle v will increase
the tensional stress 7,,, but not the compressive stress 7¢ because it is absorbed by the wrinkles.
This will soon result in 7, > |7¢|, so that the scaling laws for large lateral tension (3.37) must
be used. The critical compression is of minor interest because it is exceeded anyway in the
far-from-threshold regime. The wavelength of the wrinkles depends on the shear angle,

A= (167T2EBL§H)1/ b ( 8Ly Hi >1/4 (3.68)
Tn 3(1=v2)y

where we assumed 7, = FEsp7y/2 because the wrinkled membrane is approximately under

uniaxial stress. Our result coincides with that of ref. [144] and shows that the wavelength

decreases with increasing shear angle, so that we can again observe a transition from buckling

(wavelength of the order of the plate width) in the near-threshold regime to wrinkling (short

wavelength) in the far-from-threshold regime.

It should be noted that our approach always uses an analysis of the stability equations,
which implies that we consider small displacements. Thus, the essential difference between
buckling and wrinkling is not that wrinkles are well developed and have a large amplitude, but
that wrinkles are under strong tension in the direction perpendicular to the compression. The
condition of “strong tension”, 7, > Ep/ Lgﬁ», should not be taken too literally because it can
also be fulfilled with small (but positive) 7, if the bending stiffness E is small and/or the
wrinkle length Leg is large. In the Lamé geometry as discussed in ref. [34], for example, the
transition from the NT to the FFT regime is mainly controlled by an increasing wrinkle length.

A key point in our analysis of plate buckling is that we control the compression 7, and tension
7, independently. This gives us very general scaling laws (3.65) for the critical compression and
critical wavelength as a function of 7,, Ep and L.g. When setups such as shear wrinkling or
wrinkling in the Lamé geometry are studied, the whole deformation is controlled by a single
parameter. This parameter influences both the compression 7, and the tension 7, (and in the
Lamé geometry also the length L.g) simultaneously, and so these models offer only limited
views on the scaling behaviour of wrinkle characteristics like the wavelength or compressive
stress. For this reason, the authors of ref. [34] report a FFT scaling for the wavelength that is
“in sharp contrast to the N'T scaling” — however, if their scalings are re-written in terms of 7,
Ep and Leg they are exactly the same for NT and FFT and coincide with (3.65).
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Chapter 4

Secondary buckling of spherical shells

Abstract — In the following, we combine the results of the last two chapters to explain
and quantify the secondary buckling phenomenon, that is, the transition in which
the axisymmetric dimple of a buckled spherical shell loses its axisymmetry. We first
present a simplified analysis based on the wrinkling criterion for shallow shells under
localised compression. This approach identifies the physical mechanism underlying
the secondary buckling and already yields useful quantitative predictions for the
critical volume of the secondary buckling that agree with numerical simulation results
available from the literature. A stability analysis of the axisymmetric buckled shape
in the framework of DMV shell theory confirms these findings. Eventually, a phase
diagram for deflated spherical shells is presented, which summarises many of the
results obtained for spherical shells in this thesis.

Published material — Large parts of this chapter are reproduced with modifications
from the author’s publications [155], © 2014 by IOPscience and [156], with kind
permission of The European Physical Journal (EPJ).

4.1. Introduction

In chapter 2 we have seen that spherical shells buckle upon deflation and assume an axisymmetric
shape with a round dimple. We discussed the stability of those shapes with respect to further
growth of the dimple, but not the stability with respect to non-axisymmetric modes. This
important and very relevant subject is examined in the present chapter.

There is evidence that the dimple can lose its axisymmetry when it exceeds a certain size
if the shell’s bending stiffness is sufficiently small: The dimple can acquire a polygonal shape
as shown in fig. 4.1. This phenomenon, termed secondary buckling, has been observed in
experiments on microcapsules [97,98,113] and in numerical simulations based on triangulated
surfaces [112,113,138]. The secondary buckling also occurs when the dimple is formed in other
ways than deflation by uniform pressure, for example by indenting the capsule with a point
force [102,128-130], when the capsule is pressed between rigid plates [128] or when the capsule
adheres to a substrate [80]. Also other shells than perfectly spherical and homogeneous shells
show this behaviour, for example shells with softer regions [31,103] and models for pollen
grains [72]. Tt is, thus, a very generic behaviour.

Previous research on the secondary buckling has remained mostly on a phenomenological level
and was concentrated on the reconstruction of experimental results with numerical simulations
of shells, which allowed to determine important characteristics like the critical volume at the
onset of the secondary buckling and the number of wrinkles [112,113]. In the regime far
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Figure 4.1.: Experimental and simulated shapes of
spherical shells beyond the secondary buckling. a)
Surface Evolver simulation [112] and buckled organo-
silica shell [113] (scale bar 5 um), b) simulation and
experimental result for a shell with inhomogeneous
thickness [31] (scale bar 35 um), ¢) Monte Carlo simu-
lation [138], d) deflated plastic ball which the author
found on the campus. Images a)—c) are taken from
the cited references.

beyond the onset of secondary buckling, some results from the theory of stress focusing in
elastic sheets [141,142] can be applied to shells. In this approach the shape is modelled by
straight ridges joined by d-cones [102], and the appropriate scaling laws show that the polygonal
structure has less elastic energy than the axisymmetric buckled shape with a “ring ridge” [141].

However, a theory rationalising the mechanics of the onset of the secondary buckling is
still lacking. Here we will offer an explanation within continuum elasticity theory. This also
demonstrates that polygonal capsule shapes can occur in the absence of any discretisation
effects. For crystalline elastic capsules, defects in the triangulation give rise to additional
faceting effects upon deflation [146].

Our explanation is based on the results of the previous chapter, where a buckling criterion for
shallow shells under locally compressive stress has been derived. As seen in chapter 2, fig. 2.9,
the inner neighbourhood of the dimple edge is under compressive hoop stress. Wrinkles develop
in this region to release this compression when it exceeds a certain threshold. The critical stress
T. obtained in the curved plate model with a parabolic stress profile, section 3.3.3, can be used
to make quantitative predictions at which volume difference the axisymmetric shapes will start
to form wrinkles. To this end, the parameters of the geometry and stress field of the curved
plate model must be adjusted so that the curved plate locally approximates the compressive
region of the buckled axisymmetric shape. When the onset of secondary buckling is found, the
critical wavelength \. of the curved plate model can be used to estimate the number of wrinkles
that will form.

The results of this approach are verified with a more involved stability analysis of the full
axisymmetric shape, which confirms the results for the critical volume difference at secondary
buckling. The prediction of consistent results for the number of wrinkles is more difficult. A
comparison of our results to experiments and simulations is furthermore complicated by the fact
that our calculations are only valid at the onset; but wrinkles in experiments and simulations
can be counted best when they are well developed. We show with scaling arguments that the
number of wrinkles changes with further deflation.

4.2. Simplified analysis based on the curved plate criterion

4.2.1. Simplification of geometry and stress state

In order to apply the critical stress (3.57) and wavelength (3.58) of the curved plate model
to the secondary buckling, we must first justify that the setup of this simplified model is a
reasonable approximation to the real geometry and stress distribution in an axisymmetric,
buckled shape of a deflated spherical shell. Let us recall the results of the axisymmetric shape
equations and Pogorelov model presented in fig. 2.9.
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The region of interest is the so-range where the hoop stress 7, has its compressive (negative)
peak. Around its minimum, the peak can be fitted well with a parabola; therefore, the ¢-
direction of the deflated shell is mapped onto the z-direction of the curved plate model, where
a stress 7, = —7o(l — apyz) is applied. Consequently, the s-direction is mapped onto the
y-direction; and as the meridional tension 7, is much smaller than 7, in the region of interest
and the axisymmetric shape is guaranteed to be free of shear stresses, the choices 7, = 7,y = 0
of the curved plate model are also justified, see (3.52). Secondly, the geometrical setup must
be checked for accuracy. Fig. 2.9 b) shows that the meridional curvature x4 has a root near
the point of maximal compression and increases approximately linearly in its vicinity. The
curvature K, remains small, around |k,| = 1/Ry, and can be neglected if the wrinkles have a
wavelength (in z-direction) that is considerably smaller than Ry. This justifies the geometrical
setup (3.51) with k, = acy and Kk, = Kgy = 0.

The values of the parameters a, and a. of the stress parabola and curvature are obtained
as follows. The cubic parabola is fitted to the point sg = s. where the exact midsurface has
vanishing meridional curvature, ks(s.) = 0, see fig. 4.2. Since the relevant portion of the shell
is shallow, differences in the metric for the description with sy or y as a coordinate can be
neglected [135]. So we can calculate a. by simple differentiation of x4(sg) with respect to sg,
which can be done numerically for a given axisymmetric solution,

Qe = 630”€s| (41)

Se’

The parabola to approximate the hoop tension is chosen to have the same minimum value
—T1p and the same integral f T, dsg over the compressive part as the exact numerical function
T,(s0). Let F' = f:lz T,(s0) dsp denote the exact numerical integral, which has the physical
interpretation of the net force in the compressive region sg € [s1, $3]. We can evaluate it by
numerical integration for a given solution of the shape equations. A parabola of the form
Te = —T0 (1 — apr) has the roots y = :I:l/\/@. The integral over the parabola between its
roots is —47g/ 3,/ap and must equal F. Thus we have

a, = (479/3F)?  with F:/ T (50) dso (4.2)
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to determine the parameter of the parabola from a given axisymmetric shape. Note that
the parabola is centred at y = 0, corresponding to the point sg = s, of vanishing meridional
curvature. This point does not agree exactly with the minimum of the exact hoop tension
T, (80), but is very close (see fig. 4.2).

Figure 4.2 shows that the approximations are not perfect, and that there are considerable
deviations especially far away from the point y = 0 (corresponding to sg = s.). However, these
deviations are acceptable since they are in regions where no wrinkles develop.

4.2.2. Results for the secondary buckling threshold

We can apply the buckling criterion of the curved plate to both the numerical solutions of
the shape equations and the analytic Pogorelov model. Before presenting the detailed results,
we start with considering the scaling laws of the involved quantities. According to all plate
buckling models of chapter 3, the critical compressive stress is 7. ~ Eg/A\2. For small 7, the
wavelength A, is of the same order as the effective wrinkle width Weg, which is determined
by the width of the compressive region. In the Pogorelov model, eq. (2.38), we saw that the

relevant length scale for this width is £ ~ ROE}B/ 4 Thus, the critical compressive stress is
T.~ Eg/ R%E}g/ 2o EQDElB/ 2 The actual hoop stress in the Pogorelov model is obtained from
(2.42), (2.35) and (2.28), 7, ~ EQDEEM(AV/VO)I/‘*. It reaches the threshold, 7, ~ 7., when

AV /Vy ~ Ep. This gives the correct parameter dependence of the secondary buckling volume,
see (4.3) and (4.9) below.

The wrinkles of wavelength A ~ ROE;/ * are distributed over the perimeter 2mrp ~
Ro(AV/Vy)Y/* of the dimple edge, see (2.28). With AV/V, ~ Ep at the secondary buck-
ling threshold, we thus see that the number of wrinkles n = 2wrp/A ~ O(1) does not scale with
the reduced bending stiffness at the onset of secondary buckling. This result is a bit surprising:
One might have expected that shells with smaller bending stiffness have more wrinkles, because
they are easier to bend. And indeed, the wavelength decreases with decreasing bending stiffness;
however, the perimeter on which the wrinkles are distributed also decreases: The secondary
buckling happens earlier for smaller bending stiffnesses. Both effects cancel out, so that the
number of wrinkles at the onset of secondary buckling is quite robust against changes in the
bending stiffness.

We discuss the application of the curved plate buckling criterion to the numerical solutions
exemplary for a capsule with Ep = 1075 and v = 1 /3. For a numerical solution of the
shape equations, the parameters a. and a,, egs. (4.1) and (4.2), are calculated to obtain the
critical compressive stress 7, from the curved plate model (3.57). Then the shape can be
judged if it is beyond the secondary buckling: If the minimum value Tyin = ming, 7,(s0) in
the compressive region exceeds the critical stress, i.e. if |Tymin| > 7e, the final shape will be
non-axisymmetric. For the given elastic parameters, this happens first at a critical volume
difference AV/Vy = 0.048. At this volume, the dimensionless curvature parameter is a. = 20.86,
and the wrinkle wavelength (3.58) evaluates to A, = 0.396Ry. Since the wrinkles are centred at
sc where the radius of the axisymmetric midsurface is r(s.) = 0.476 Ry, the number of wrinkles
is given by n = 27r(s.)/Ac = 7.55, so either n = 7 or n = 8. These results are illustrated in fig.
4.3 in a meridional section and in a three-dimensional view. The amplitude of the wrinkles is
undefined (since the governing differential equations are homogeneous) and is chosen arbitrarily
in the plot. The results show that the wrinkle amplitude decays rapidly outside the compressive
region (compare with fig. 4.2), and that the approximated midsurface is quite accurate in the
region of large wrinkle amplitude. This indicates that our approximations are justified, because
their inaccuracies lie in regions where the wrinkles do not develop.
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Figure 4.3.: Wrinkle shape according to the
curved plate model for EB =10%andv = 1/3
at the omnset of secondary buckling. The
cross section shows the axisymmetric mid-
surface (grey), cubic parabola (dashed blue),
and wrinkle profile W (red). In the three-
dimensional view, the frame indicates the posi-
tion and orientation of the cross section.

This analysis was applied to a whole range of reduced bending stiffnesses Eg, and the critical
volume difference where the secondary buckling sets in depends by a power law on the bending
stiffness,

AVv2nd

= 2552 £%9 4.3
v b (43)

shape egs.

as a fit shows. This dependency is illustrated in the phase diagram in the discussion at the end
of this chapter, see fig. 4.5 below.

Now we apply the curved plate buckling criterion to the axisymmetric shapes of the Pogorelov
model. This way we obtain an analytic result for the secondary buckling threshold. At first, the
parameters a, and a. must be determined. In the Pogorelov model, the hoop stress 7, is given
by (2.42). Its minimum value —7y and the integral F between its roots can be calculated as

Omin EQD 504 EQD 5204 5 2 Omin —31/4
_ & nd F= SO 2 Omin ( w/ 2) . 44
=T 1 2R ™ 1—12 Ry |24%min T 73 (€ V2 (4.4)

Evaluating the parameter a, of the stress parabola (4.2) leads to
ap

 R3[Es(1—2)

a, 3 with @, ~ 0.33955 (4.5)

where, for convenience, the numerical constants have been reduced to @, and the linearised
scaling parameters (2.38) were used.

Calculating the curvature parameter a. is a bit more difficult and cannot be done explicitly.
The problem is that the root of the meridional curvature x;(so) according to (2.43) cannot be
found analytically. It is implicitly determined by the equation

a 1 3 1/4

Eu‘/(gc) TR 0 = @'(s)= (8(1 —v?) A%VO) = (Z(1 - y2)>1/4)1( (4.6)

where the simplified scaling parameters (2.38) were used for o and ¢ and a substitution
X = (AV/VoEp)Y* was defined. The function w(5¢) is known, see (B.7) in appendix B, and
thus this equation can be solved (numerically) for s, and implicitly defines a function 5.(X).
With this numerical function §.(X), the curvature parameter a. can be evaluated numerically
with (4.1) and (2.43) for any given X,

« —1

ac(X) = a? (5c(X)). (4.7)

After these steps, ap, and a.(X) can be plugged into the critical buckling stress 7. (3.57) of
the curved plate. The onset of secondary buckling requires 7. = 79 with 7y from (4.4), which is
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equivalent to

Fo(@0(X)) = Ziuin (8)1/4 (1-22) V!X with a,(X) = (8(1 - y2)>1/4 X (5.(X))
c\lc 3&p 3 c 3 52/2 c .
(4.8)
Solving this equation numerically results, for v = 1/3, in X = 7.8024. Thus, with the original
definition X = (AV/VyEp)'/*, we have derived the secondary buckling volume

Av2nd

=3706 E 4.9
0 B (4.9)

Pog

for the Pogorelov model with the curved plate buckling criterion. The prefactor is still weakly
v-dependent, but the exponent 1 is exact and fixed in this model. This result is similar to the
result (4.3) of the curved plate model applied to the shape equations. Both lines are shown in
the phase diagram below.

The wrinkle number can also be calculated in the Pogorelov model. At X = 7.8024, we have
(for v = 1/3) a curvature parameter of d.(X) = 15.14 and a non-dimensional wavelength of

~

Ac(@c) = 4.366 (see fig. 3.13). This results in a real wavelength of

. A
= 2% = Ro[Bp(1—v?)] e
v~ FolEa (=

The perimeter on which the wrinkles are distributed is 27rp ~ 2w (8AV/3Vy)/4 Ry, see (2.28)
and (2.38). Inserting the volume difference (4.9) at the onset of secondary buckling and dividing
by A. gives the number of wrinkles,

1/4 =
2 X
Ae 3 )\c(l —v?)

(4.10)

Thus, in this combination of simplified models (Pogorelov model for the axisymmetric shape
and buckling criterion from the curved plate model), the number of wrinkles at the onset of
secondary buckling seems fixed at 8 or 9 over the whole range of Ep.

4.3. Stability analysis of the full axisymmetric buckled shape

The results of the previous section are based on the very simple curved plate model for the
buckling threshold, which only incorporates the key features of the geometry and stress state of
the axisymmetric buckled shape. While the reduction to these key features helps understanding
the underlying mechanics, it is questionable if the results are quantitatively correct. In the
following, we present a more rigorous approach, in which stability equations are applied to the
full axisymmetric shape. In comparison with the curved plate model, this is an improvement
because also the less prominent features like the meridional tension 75 # 0 and circumferential
curvature k,, 7 0 are contained in the stability analysis. However, it might be problematic that
the dimple is not shallow for large volume differences. In the curved plate model, this problem
was avoided because we only looked at a small section of the shell, which was even for large
dimples quite shallow.
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4.3.1. Stability equations of shells of revolution

The stability equations for shallow shells that can be found in the literature are formulated in
Cartesian coordinates, like our eq. (3.26). For the treatment of shells that are axisymmetric
before the onset of instability, a polar coordinate system is more appropriate and easier to
handle from a numerical point of view, because it allows a separation ansatz to model the
buckling pattern. We can derive these stability equations for shells of revolution analogously
to section 3.2.5. The basis for this derivation are the strain-displacements relations of the
nonlinear DMV shell theory, which are given in ref. [96] in general coordinates. In appendix
C.1 it is shown that the stability equations can be formulated again in the normal displacement
w and stress potential ¢ and are formally very similar to the Cartesian case,

EpAw = (ksDyy + kpDss)d + (TsDss + 7Dy )w

1
A2¢ = _(K/SDCPLP + HgaDss)w- (4.12)
E>p

Only the derivative operators must be re-defined according to

a9 _cosy
Dss=0;, Dy,=

05 + %263, and A =Dy, + Doy (4.13)

The functions for curvature (ks, k), tension (7, 7,) and geometric properties (v, ) occurring
in the stability equations are properties of the axisymmetric buckled configuration that is to be
tested for its stability with respect to non-axisymmetric deflections. They are, thus, known
numerically when (4.12) is solved.

Because the DMV theory is an approximate shell theory, these stability equations are also
only approximate. They are applicable under the conditions that (i) the typical length scale of
the deformation is much smaller than the smallest radius of curvature of the reference shape,
(ii) the displacements are predominantly normal to the surface and (iii) the stresses due to
bending are smaller than the stresses due to stretching [96]. These prerequisites are met when
the shell is shallow, but also for shells which are closed and, therefore, essentially non-shallow
as long as the “relevant” part of the shell, which is subjected to the largest deformation, is
shallow. In the derivation of the stability equations in appendix C.1, we explicitly assume
that the slope angle ¥ (recall fig. 2.2 for its definition) varies slowly with the arc length. This
assumption is violated at the dimple edge, but we can expect that the wrinkles are repelled
from this region anyway, because bent surfaces (like corrugated cardboard) are hard to bend
in the perpendicular direction. However, this is probably the most inaccurate point in this
approach.

In the following, we are searching for non-axisymmetric solutions in the form of wrinkles.
They are modelled by an ansatz

w(s, p) = W(s)cos(ng), (s, ) = D(s) cos(nyp), (4.14)

where n is the number of wrinkles in circumferential direction and W and & are amplitude
functions as in section 3.3. Inserting this ansatz into (4.12) results in ordinary differential
equations for the amplitude functions; the only change in the equations is 85, — —n2.

The boundary conditions for the amplitude functions are similar to the ones used for the
infinite plates in section 3.3: The normal displacement and the additional stresses shall approach
0 far outside the deformed region. In the present case, this means that we choose a sufficiently
large Smax, where we require W (smax) = W (Smax) = 0 and @(smax) = @' (Smax) = 0. At the
point s = 0, there are, in principle, no boundary conditions at all, since this is not a point on
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a boundary. However, the point s = 0 causes problems, since some terms in the differential
equations diverge here, for example the 1/r terms in (4.13). This problem is circumvented
by choosing a suitable discretisation scheme (see appendix C.2) that is borrowed from the
numerical methods for the Poisson equation in polar coordinates, where the same problems
concerning divergences at s = 0 are encountered [81,82,123].

4.3.2. Results for the secondary buckling threshold

The discretisation that we use to transform the differential equations into a linear system is
documented in appendix C.2. The solution is then represented by the values W) = W(s(i))
and () = @(s(i)) of the amplitude functions evaluated on the grid s = h,with0<i< N
and a step size h = $pax/N.

Since the linear system is homogeneous, see eq. (C.23) in the appendix, a non-trivial solution
only exists if the determinant of the coefficient matrix vanishes. Thus, the stability equations
turn out to be similar to an eigenvalue problem, as in the curved plate model, where the
eigenvalue is “hidden” in the axisymmetric buckled shape. Plotting the determinant along the
axisymmetric buckled branch, for example as a function of the pressure p, the determinant has a
root at a critical pressure which is the onset of the wrinkling instability, see fig. 4.4 a). A similar
procedure has been successfully applied to the unsymmetrical buckling of shallow shells [21, 66].
We use the pressure as the parameter to run through the branch of deflated shapes, because it
directly enters the shape equations as a Lagrange multiplier. The branch consists of shapes
which are unstable in experiments with prescribed pressure; however, these shapes are accessible
in volume controlled experiments. The first root of the determinant functions occurs, in the
example of fig. 4.4, for a wrinkle number n = 6 at approximately p = —0.00107E5p /Ry, which
corresponds to a volume reduction of AV/Vy = 0.055. These are the results for the critical
wrinkle number, critical pressure and critical volume difference for the secondary buckling for
the specific capsule of fig. 4.4.

At the critical volume, the stability equations have a non-trivial solution, which can easily be
found by standard methods for linear systems. The resulting wrinkle amplitude W(s), as the
interpolation of the W) points, is plotted in fig. 4.4 b). We find qualitative agreement with
the curved plate model (cf. figs. 3.13 and 4.3): The wrinkle amplitude has a prominent peak
which is centred in the region of compressive hoop stress, and decays rapidly outside this region.
In contrast to the curved plate model, the wrinkle amplitude is not symmetric with respect
to its maximum; instead we observe an overshoot only in the outer region, and not towards
the centre of the dimple. The most obvious difference in the three-dimensional views is the
different wrinkle number, which will be discussed later.

Repeating the above procedure to calculate the critical volume of the secondary buckling
for different E, we obtain a further line for the phase diagram fig. 4.5. For sufficiently small
bending stiffness, £z < 107 in the present case, the data points can be fitted with a power law

A‘/Qnd

= 19000 E5' (4.15)
VO DMV

and are close to the previously generated secondary buckling line according to the curved plate
model, see fig. 4.5. Only for too large bending stiffnesses, the data points deviate from the
power law fit and the previous lines. This is due to the violation of the assumption that the
characteristic length of the deformation is small compared to the radius of curvature, on which
the DMV theory is based, but which is not justified for large dimples.
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Figure 4.4.: Solution of the discretised stability equations for a shell with Eg = 107° and v = 1/3. a)
Normalised determinant of the coefficient matrix for different wrinkle numbers n for successively
deflated, axisymmetric buckled shapes. b) Solution for the wrinkle amplitude W at the secondary
buckling transition. The vertical line marks sp, the position of the dimple edge where the curvature
Ks 1s at its maximum. The inset shows a three-dimensional view when this wrinkle profile is added
as a normal displacement to the axisymmetric buckled shape.

4.4. Discussion of results

4.4.1. Complete phase diagram of deflated spherical shells

In the preceding chapters we have developed a fairly complete picture of the deflation of
spherical shells. Our theory contains three phases of deflation: For small volume changes, the
shell remains in a spherical shape, then jumps to an axisymmetric buckled configuration in a
primary buckling transition, and finally undergoes a secondary buckling transition where the
dimple loses its axisymmetry. We have obtained quantitative results for the critical volumes
of both buckling transitions using different approaches, which are summarised in the “phase
diagram” fig. 4.5. In addition, literature results for the secondary buckling transition, which
are all based on numerical simulations, are shown [63,112,113]. For completeness, the line
of auto-contact, where opposite sides of extremely deflated shells touch each other, is also
shown [63].

The phase diagram fig. 4.5 is set up in the AV-Ep-plane and is valid for buckling under
volume control. The Poisson ratio is an additional parameter, which is expected to have only
a weak influence on the phase diagram, see ref. [112] for a discussion of this influence. In all
calculations contributing to the phase diagram, it has been fixed to v = 1/3.

We will discuss the deflation behaviour of a spherical shell under volume control by following
an imaginary vertical line in this phase diagram. Starting at the bottom, at small volume
difference, there is only one possible shape for the shell: It is spherical, with a radius smaller
than the initial radius. This trivial solution of the shape equations can be easily handled
analytically, see section 2.4.1.

Upon deflation, the shell will cross the critical volume of first buckling, AVig (blue in fig.
4.5). From there on, there are two possible shell configurations: A spherical shape and an
axisymmetric buckled shape. Of these shapes, the buckled one is stable and the spherical
one metastable; or in other words, the buckled one stores less deformation energy than the
spherical one as shown by the energy diagrams 2.10 in section 2.4.1. Thus, without external
perturbations, the shell will remain spherical. However, it is also possible to indent the shell
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Figure 4.5.: Phase diagram of deflated spherical shells with Poisson ratio v = 1/3 and varying bending
stiffness EB (which is related to the Foppl-von-Kdrman-number yp,x = 1/ E B). Dots represent results
derived from numerical solutions of the axisymmetric shape equations, continuous semi-transparent
lines (blue, red, orange) fits to those data points, solid lines (blue, green, red) analytic results, and
dashed lines results from numerical simulations. The legend to the right indicates the appropriate
equation numbers or literature references.

manually, and the dimple will remain on the shell. Thermal fluctuations or imperfections in the
geometry or material, as they are inherent to real shells, may also cause a sudden transition
to the dimpled shape, although the spherical shape is theoretically (meta)stable. The critical
volume difference AVyg of the first buckling has been calculated analytically for the Pogorelov
model, see eq. (2.50) and the blue solid line in the phase diagram. The blue data points from
the shape equations can be fitted with a power law (semi-transparent blue line). Both results
coincide very well,

AV _ g (1—w)*/" 35 AVt

= . a.
VEJ min 1_ y2)1/5 B 11 VO

= 4.78 E%%1 (4.16)
Pog (

shape egs.

(the numerical prefactor of the Pogorelov result evaluates to 4.97 for v = 1/3).

Deflating the shell further, we will cross the line of classical buckling (green in fig. 4.5). At
this critical volume difference AV,y,, the spherical configuration becomes unstable, and thus the
shell must buckle. In eq. (2.49) we derived the classical buckling volume,

-3
AV, 1 1 ~ .
b=1—<+\/+2(1—u) EB> ~ 6(1 —v)\/Ep. (4.17)
7 2 V1

The exact version of this result is plotted as the solid green line in the phase diagram.

The transition from the spherical to the axisymmetric buckled shape is a discontinuous
transition as our considerations in section 2.4.1 have shown: The dimple will have a finite
size when it is formed; shapes with infinitesimal dimples are energy maxima lying above the
energy of the spherical branch and represent a possible transition state at the discontinuous
transition [152].
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When we cross the line of secondary buckling at AVs,4, the axisymmetric buckled shape will
lose its stability with respect to non-axisymmetric deformations. Due to a region of strong hoop
compression in the inner neighbourhood of the dimple edge, circumferential wrinkles will appear
in this region and the dimple acquires a polygonal shape. In the range of Ep investigated here,
the buckled shape is axisymmetric at first; but extrapolating the lines to smaller F suggests
that this will not be the case for very small Ep.

We calculated the line of this secondary buckling transition via three different routes: (i)
Deriving a wrinkling criterion for a curved rectangular plate and applying this criterion to the
numerical results of the axisymmetric shape equations, (ii) applying the same criterion to the
approximate analytical results in the framework of the Pogorelov model, and (iii) by a linear
stability analysis of the full form in the framework of the DMV shell theory. Variants (i) and
(iii) are plotted in the phase diagram as red and orange data points, respectively, with fitted
power laws (4.3) and (4.15) as semi-transparent lines. Variant (ii) led to the analytic result
(4.9) and is plotted as a solid red line. For convenience, we repeat the results (i) - (iii) here,

A‘/Qnd A‘/Qnd A‘/Qnd
%

= 19000 E5.
Vo 0 Ipmv

= 2552 B%95, = 3706 Ep, and

shape egs. 0 Pog

(4.18)
The apparent mismatch of the numerical prefactors is compensated by the slightly different
exponents, so that all three approaches agree well within the regimes of their respective validity,
see fig. 4.5. Literature results for the secondary buckling line, based on simulations with the
program Surface Evolver [112,113] or a bead-spring model for a triangulated sphere [63], are
also in good agreement with our findings. They are plotted in the phase diagram as dashed
lines by their power laws

AVina/Vo = 3400 E from ref. [113] (4.19)
AVapa/Viy = 8470 B from ref. [112] (4.20)
AVana/Vy = 4764 E5°%° from ref. [63], (4.21)

as obtained from fitting the simulation results.

In fact, the different secondary buckling lines are so close that some of them cannot be
distinguished. To resolve the differences, we “normalise” the secondary buckling lines by the
line of the Pogorelov model in the sense of plotting

A‘énd'i

—_— 4.22
A‘/Y?Hd |Pog ( )

for each line i as a function of Ep in fig. 4.6. This plot shows that the secondary buckling
volume differences obtained in numerical simulations (dashed lines) are typically smaller than
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our results, which might be due to the fact that the simulated shells are imperfect because
of the triangulation. Furthermore, this plot illustrates that the stability analysis of the full
form in DMV theory (orange data points and fit) is in very good agreement with the linear Ep
dependence from the Pogorelov model for small E, but deviates for larger E. The reason
is, as mentioned before, that for large Ep the dimple grows too large before the secondary
buckling, so that the DMV theory is inaccurate. Indeed, fitting only the seven data points with
smallest bending stiffness Ep < 21076 results in AVapa|pyy ~ E5°° with an exponent very
close to the analytic exponent 1.

4.4.2. Number of wrinkles in secondary buckling

The most eye-catching feature of shells beyond the secondary buckling transition is the number
of wrinkles, or the number of edges in the polygonal dimple. Although the different approaches
agree fairly well concerning the critical volume of secondary buckling, their predictions of the
number of wrinkles at the onset of secondary buckling show substantial differences, see fig. 4.7.

In applying the critical wavelength (3.58) of the curved plate model to the axisymmetric
shapes of the Pogorelov model, we have seen in (4.11) that the wrinkle number seems to be
fixed at n ~ 8.6, independently of the bending stiffness (see red line in fig. 4.7). Applying the
curved plate result (3.58) to the shape equations (red data points), we observe a slight decrease
in the wrinkle number for increasing bending stiffness. In contrast, the wrinkle number in the
DMV theory (orange data points) slightly increases with increasing bending stiffness.

The question whether the wrinkle number at the onset of the secondary buckling should
depend on Ejp is difficult to answer from intuition, because there are two opposing effects at
work: On the one hand, we expect the wrinkle wavelength A\ to become smaller for smaller
bending stiffness; but on the other hand, the dimple size rp at the onset of the secondary
buckling also becomes smaller (see the phase diagram, fig. 4.5). The number of wrinkles is
n = 27rp/A, and we have seen by the scaling laws at the beginning of section 4.2.2 that both
effects cancel out. If there are significant variations of the wrinkle number at the onset, the
dependence on Ep comes from subtle effects, e.g. the detailed geometry. This possibly explains
why our different approximate models, which all have their flaws, predict slightly different
results.

Comparison with previous simulation results is difficult since most results are given for highly
deflated shells, and not at the onset of secondary buckling. In ref. [113], four different deflation
trajectories are reported, from Ep ~ 9-1076 to 10~*. They all exhibit 5 wrinkles at the onset,
except the one with smallest Ep, which starts to wrinkle with 6 wrinkles. This affirms that the
wrinkle number at the onset is quite unaffected by the bending stiffness.

10 T T T T
[ curved plate & Pogorelov model
E 8 ;30-..0.0 . ]
E I TOeoseeesosencecee s baig L T ha 2 TV ]
E o6l curved plate | Figure 4.7.: Number of wrinkles at the onset
ﬁ L & shape eqs. | of secondary buckling. The red data points
£ 4l ] represent the result (3.58) from the curved
= [ 1 plate model applied to the shape equations,
2 L ‘ L R ] the red line shows the constant wrinkle number
10-6 5.10-6 10-5 5.10-5 10~4 n = 8.6 as obtained in (4.11), and the orange
- data points represent the results from the DMV
Ep theory.
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Figure 4.8.: Volume dependence of the wrinkle number. a) Our analytic result (4.24) from the
Pogorelov model and curved plate criterion, plotted for different bending stiffnesses as indicated. b)
Surface Evolver simulations with the same bending stiffnesses; image adapted from ref. [113].

We can get a first idea of the volume dependence of the wrinkle number by considering the
Pogorelov model and the curved plate criterion for wrinkling. In the analysis of the Pogorelov
model we have seen that the parameter a,, is independent of the volume, see (4.5). Since 1/,/a,
determines the width of the compressive region, and the wavelength is of the same order as this
width, we can expect that the wavelength of the wrinkles stays approximately constant when
the shell volume is further decreased. Therefore, the change of the wrinkle number with further
deflation can primarily be attributed to the change of the perimeter 27rp along which the
wrinkles are distributed. The change of rp with AV is of purely geometric nature, according

to (2.28) and (2.38)
8\ /4 7 Ay /4
w=(5) (%) )

Together with the critical wavelength A. from (4.10) we thus obtain the volume-dependent
wrinkle number

1/4 /= 1/4 1/4
n(AV) = 27D _on (8) / T (AV _ ! ) / ~1.1- (AV }> / . (4.24)
)\c 3 )\c VO EB(l — V2) V() EB

In the last step, all numerical constants (with v = 1/3) have been reduced to the single numerical
prefactor. This relation is, of course, only valid beyond the secondary buckling threshold, i.e. for
AV/Vy > AVana/Vo = 3706 E.

Figure 4.8 a) shows the volume dependence of the wrinkle number for different values of the
reduced bending stiffness. After the onset with n = 8.6, the wrinkle number increases with
increasing deflation. This is in qualitative agreement with the simulation results presented
in ref. [113] which are shown in fig. 4.8 b) for comparison. There are quantitative differences
concerning the wrinkle number at the onset (5 to 6 in the simulations, and 8 to 9 in our
prediction) and how fast the wrinkle number increases after the onset.

Of course, the deviations could be attributed to the crude approximations made in our
calculation, but there is also some dubiety about the simulations. The oscillations, especially in
the orange curve in fig. 4.8 b), are very peculiar and probably artifacts caused by the energy
minimisation algorithm being trapped in local minima. Later reports of similar Surface Evolver
simulations [112] show a slightly different behaviour than depicted above: There, the wrinkle
number initially decreases before increasing again with proceeding deflation. Furthermore, in
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simulations carried out in our group [63,140] we observed that the number of wrinkles depends
sensitively on the triangulation, specifically on the position and type of disclinations.

We can conclude that neither our theory nor the numerical simulations from the literature
are able to produce consistent results concerning the wrinkle number. It seems that this most
striking feature of the secondary buckled shapes is governed by subtle effects and prone to
perturbances.
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Chapter 5

Deflation of pendant and rising capsules

Abstract — Elastic capsules that are prepared from droplets or bubbles attached
to a capillary can be deflated by suction through the capillary. In the following
chapter we study this deflation and show that a combined analysis of the shape and
wrinkling characteristics can find the elastic properties of the capsule membrane. For
the shape analysis, an elastic model based on the previously introduced theory of
shells of revolution is developed which incorporates the wrinkles that typically form
upon deflation. Fitting the solutions of these shape equations to the experimental
images gives the surface Young modulus and surface Poisson ratio of the membrane.
Analysing the wavelength of the wrinkles then gives its bending stiffness. This concept
is first tested with theoretically generated shapes to fit, and then applied to two
experiments with polysiloxane capsules and hydrophobin coated bubbles.

Published material — Large parts of this chapter are reproduced with modifications
from the author’s publication [154], with permission of Langmuir, (©) 2013 American
Chemical Society. The theory of sections 5.2.1 and 5.2.2 is already contained in the
author’s diploma thesis [151].

5.1. Introduction

So far, we have mainly considered spherical shells in this thesis. In the forthcoming chapter we
turn to a setup that is less trivial, but frequently used by researchers that synthesise elastic
membranes by interfacial reactions: pendant drops or rather pendant capsules. The typical
experiment in this setup is sketched in fig. 5.1. It starts with a liquid drop hanging in another
fluid, for example a water drop in oil. Alternatively, if the drop has a smaller density than the
bulk liquid, the experiment can be performed upside down using a J-shaped needle, resulting
in a rising capsule, for example an air bubble in water. By adding appropriate chemicals to
the bulk phase, an interfacial reaction can enclose the droplet with an elastic membrane, thus
producing a pendant capsule with the shape of the drop. The elastic properties of the shell can
be probed by provoking a deformation, for example by suction of the inner liquid through the
capillary.

The instrumentation to perform and monitor this type of experiments is well developed
and commercially available. Pendant drop apparatuses come with an electronic control of the
syringe that allows precise control of the droplet’s volume, and they contain a digital camera to
image the shape of the pendant capsule. They are usually used for pendant drop tensiometry, a
method to determine the interfacial tension between the two liquids by analysing the shape of
the drop.

81



CHAPTER 5. DEFLATION OF PENDANT AND RISING CAPSULES
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Figure 5.1.: A typical pendant capsule experiment. a) From a drop hanging from a capillary, a
pendant capsule is created by an interfacial reaction. This elastic capsule can be deformed to probe
its elastic properties, for example by suction through the capillary. In this case, it typically wrinkles,
as indicated by the lines. b) Experimental realisation with polysiloxane capsules.

Because of the simplicity of this procedure, various membrane materials have been studied
in this geometry [1,36,37,42,68,119]. So far, the analysis of those experiments was based on
the pendant drop tensiometry [2,38,115,120], which is, however, only valid for liquid/liquid-
interfaces. This technique neglects the elastic stresses within the capsule membrane [25,44],
and is therefore not valid for the analysis of pendant capsules. We show below that conclusions
about the elastic moduli of the membrane derived from this kind of analysis are more erroneous
than intuitively expected.

Inspired by the pendant drop tensiometry, our aim for this chapter is to develop a method of
pendant capsule elastometry: an analysis tool to infer the elastic properties of a pendant capsule
by analysing its shape upon deflation. To this end, a theoretical model based on the shape
equations for shells of revolution is developed. Since the membranes in these experiments are
typically very thin [114], the influence of the bending stiffness on the shape is negligible, which
leads to simpler shape equations than those of section 2.2. However, we must take into account
that wrinkles appear upon deflation as a consequence of compressive hoop stresses. Solutions
of this elastic model can then be fitted to contours extracted from experimental images, with
the surface Young modulus Esp and surface Poisson ratio v as fit parameters. As the bending
modulus Fp has negligible influence on the capsule shape, its value cannot be determined from
the fit of the contour. Instead, we can analyse the wavelength of the wrinkles which depends
on Ep as seen in eq. (3.36) for example.

This combined approach enables us to determine all elastic constants of individual capsules
from an image analysis, thus offering a valuable alternative to other methods that have been
developed for the mechanical characterisation of single capsules, see refs. [46, 86] for recent
reviews. Most often, these methods involve contact between the capsule and a probe such as an
AFM (atomic force microscope) tip [3,54,132]. There are other methods, like interfacial shear
rheometry [17,68] and Langmuir troughs [105,119,136], that work with planar films instead of
capsules. Our approach is a non-contact method that works with capsules that have a geometry
similar to those used in applications in pharmacy or industry. Conceptually, it is comparable
to methods like shape analysis in shear flow [8,28,139] and spinning drop rheometry [106]
developed by Barthes-Biesel.

In a proof of concept study, this new method is applied to two very different capsule materials:
polymerised octadecyltrichlorosilane (OTS) capsules and hydrophobin (HFBII) coated bubbles.
The results for HFBII indicate a very non-linear elastic behaviour. To model this non-linear
elasticity, a new material model is developed, based on the microscopic view of hard-core beads
that are connected with soft springs.
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5.2. Elastic model for pendant capsules

5.2.1. The Laplace-Young equation for the reference shape

A capsule that is synthesised in the experiment sketched in fig. 5.1 has the shape of a pendant
drop in its undeformed state. If the interior and exterior liquids are not density matched, the
shape of the drop is not exactly spherical but elongated by gravity, and can be described by
the Laplace-Young equation [84], which expresses a balance between gravity and the interfacial
tension v between the two liquids.

The interfacial tension is a parameter which describes how much energy dU is required to
enlarge the interface between the two liquids by an area dA; it is defined as v = dU /dA. Tts
value depends on the two fluids that are in contact at the interface, for an air/water-interface, for
example, the interfacial tension is 72.5 mN/m at room temperature [84]. As a physical system
tries to minimise its energy, the surface tension tends to contract the interface to the smallest
possible shape compatible with the boundary conditions or volume constraints. For this reason,
droplets are spherical in the absence of gravity: Of all geometric bodies, the sphere has the least
surface area for given volume. The tendency to contract the droplet surface also leads to a higher
internal pressure, in the same fashion as if the droplet was enclosed with a uniformly stretched
rubber membrane. The important difference between an elastic sheet and a liquid interface is
that in an elastic membrane, neighbouring molecules are linked and have to stay neighbours
during the deformation, whereas the liquid interface can be reorganised easily, i.e. the molecules
can flow past each other. Elastic tensions develop as a consequence of strain that alters the
distance between neighbouring molecules, but the liquid-liquid surface tension is independent of
local strains. Furthermore, there cannot be shear stresses in the liquid/liquid-interface because
the molecules in the interface are free to flow and change neighbourhoods. The stress tensor of
the fluid interface is thus diagonal, and both principal stresses equal +.

To determine the shape of a pendant drop, we use the same notation for the geometry and
parametrisation of the axisymmetric surface as introduced in section 2.2.1, with an index 0
indicating that we are currently dealing with the reference shape of the capsule to-be, see fig. 5.2
a). Then the Laplace-Young equation reads

Y (Ksy + Kgy) = Po — Ap g 20, (5.1)

where Ap is the density difference of inner and outer fluid, g = 9.81m/s? the acceleration of
gravity and pg the pressure inside the drop at the position zg = 0. It can be obtained from the
general equilibrium equation of the normal forces for shells of revolution, first of eqs. (2.16), by
setting 7, =7, =7, ¢ =0 and p = po — Apg 2.

With the geometric relations for the axisymmetric surface, see sec. 2.2.1, the Laplace-Young
equation is a differential equation and can also be written in the first-order system

r0(80) = cos 1o
26(80) = Sin 1/}0 (52)

%(So) = %(po —Apg Zo) - Sin o .

To

For the numerical solution, boundary conditions must be specified. The arc length coordinate
so runs from the apex (sp = 0) to the capillary (sg = Lo with a not yet specified contour
length Lg). From the geometry of the drop, it is clear that r¢(0) = z¢(0) = ¢o(0) = 0 and
ro(Lo) = a/2, where a is the capillary diameter on which the upper rim of the droplet is fixed.
The choice zp = 0 is arbitrary, because the system (5.2) exhibits a translational symmetry along
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Figure 5.2.: Arc-length parametrisa-
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undeformed (ro(s0), z0(s0)), deformed
(r(s),z(s)) and the wrinkled midsur-
face. The wrinkled region of length
L., is described by an axisymmetric
pseudo-surface around which the real
midsurface oscillates.

the zp-axis: It is invariant under the substitutions zy = 2§ + ¢ and py = pj; + Apgc. Using
a shooting method, the system (5.2) can be solved in order to obtain the drop shape. The
shooting parameter that can be adjusted to satisfy the boundary condition at the upper rim of
the drop is the contour length Ly. For a liquid drop, this length is not fixed a priori.

Similar to the elastic shape equations for spherical shells, the system is ill-defined at sq = O:
The fraction sin ¢y /rg is of the type “0/0”. It can be evaluated using L’Hopital’s rule,

singy o h(s0) cosdy
lim —— = lim —————
so—0 19 s0—0 cos Yo

= ¥5(0). (5.3)

The last equation of the system (5.2) thus simplifies to ¢{(0) = po/27v at the starting point of
integration.

We introduce dimensionless quantities for the numerics by choosing the surface tension ~ as
the tension unit and the capillary diameter a as the length unit. The resulting dimensionless
variables and parameters, indicated by a tilde, are summarised in table 5.1 below. The
dimensionless system of shape equations then reads 7((59) = costbg, Z,(S0) = sinty and
¥, (80) = Po — pZo — sineg/To. The only two parameters occurring in this system are the
reduced pressure Py = apy/y and the reduced density difference p = a? Apg/y. While the
density parameter determines if the drop is rather spherical (small p) or elongated (large p),
the pressure influences the volume of the resulting drop, which can be calculated by numerical
integration (see (2.14)) as

Lo
V= /ﬂ'rg dzg :/ 7T7"g sin 1 dsg. (5.4)
0

5.2.2. Elastic shape equations

With a solution of the Laplace-Young equation, we have a parametrisation (ro(so), 20(so)) of
the reference configuration, which is assumed to be free of elastic stresses because the membrane
has been synthesised in this shape. We neglect the weight of the membrane because it is very
thin, so that only the density difference between inner and outer fluid gives rise to gravitational
effects in form of a hydrostatic pressure p — Ap g z that is exerted on the capsule membrane. In
the reference configuration, this pressure is still pg — Ap g z¢ as in the case of the pendant drop;
and it must be balanced so that the capsule can keep its reference shape. We therefore assume
that the interfacial tension 7y continues to act in the interfacial layer, although the two liquids
are now separated by the elastic membrane. The reason for this is that there are now two
solid/liquid-interfaces which also give rise to an interfacial tension. During the creation process
of the elastic membrane, it is often observed that the measured interfacial tension of the drop
decreases as a function of time, because the molecules that attach to the interface in order to
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build up a membrane act as surfactants, but eventually approaches a steady value [1,5,68,119].
We can interpret this decrease of the interfacial tension as the crossover between the liquid-liquid
interfacial tension before the reaction and the liquid-solid interfacial tension after the capsule
creation is completed.

Therefore, the stress-strain relations (2.10) of the elasticity theory of axisymmetric shells must
be extended to account for an additional, constant surface tension . At the same time, we can
neglect the bending stiffness because the capsule walls are very thin [151]. This approximation
of shell theory is also called membrane theory [89], and can be applied if the deformation of the
capsule is not close to an isometric deformation as in the case of buckled spherical shells, but
dominated by stretching. The resulting surface energy density for our capsule model thus reads

1 FEsp
21— 12

ws(As, Ayp) [(As = 12 +20(As — D)(Ap — 1) + (Ap — 1)%] + XA (5.5)
Recall from section 2.2.1 that the meridional and circumferential stretches are defined as
As = ds/dsg and A, = r/rg for a deformation from (ro, zo) to (7, z), see fig. 5.2 a) and b). The
term AgA,7y accounts for the energy change according to the basic definition of the surface
tension, v = dU/dA. With eq. (5.5), the energy change of a small membrane element can be
calculated as dU = wg dAg = v dA + elastic terms because dA = A\, dAg.

According to the constitutive relations (2.10) we now obtain

1 8w5 EQD 1

b vt wiad pay wd (ORI R AR B (5.6)

for the meridional stress, and the same with indices s and ¢ interchanged for the circumferential
stress 7,. In the undeformed configuration, where Ay = A, = 1, the membrane is in the same
stress state as the liquid drop has been before, 7, = 7, = 7, as required for equilibrium. The
approach of incorporating the interfacial tension v into the stress-strain relations has been
developed in the author’s diploma thesis from 2011 [151], and independently from this by
Carvajal et. al. [25] in 2011 and Ferri et. al. [44] in 2012.

Due to the vanishing bending stiffness and bending moments, the equilibrium equations
for shells of revolution (2.16) simplify considerably. By the last of egs. (2.16), the vanishing
bending moments imply that the transverse shear tension ¢ also vanishes. Hence the shape
equations (2.17) reduce to only four first order differential equations,

As
' (80) = As cOS P, P (s0) = T—(p —Apgz — KuTy),
o (5.7)
2'(s0) = A sinp, T2(80) = As Te ~ 75 cos ).

Analogous to section 2.2, all quantities appearing on the right hand sides must be expressed in
terms of the basic functions r, z, ¥ and 7, with the help of geometric relations, see sec. 2.2.1,
and the constitutive relations (5.6). The equations

1— 2
A= Ao = Ay (ra—7) —v(Ap — 1) +1,
To Esp (5.8)
sinw ED 1
hp ==, w:1_21/21((%_1)”@3_1))“

close the system (5.7) of shape equations.
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lengths, volumes and curvatures pressure, density and energy

F=rfa, Z=z/a p=ap/y, p=a*Apg/y
V=V/d, k=ar U=U/ya®

tensions elastic modulus

=71y, =1 Esp = Eap /vy

Table 5.1.: Overview of reduced variables for pendant capsules (indices i € {s, ¢}). Adapted from the
author’s diploma thesis [151].

The boundary conditions for the system of differential equations are obvious from geometry:
At the upper rim they must fix the capsule radius to the radius a/2 of the capillary, and at the
apex they must ensure that the capsule is closed and smooth. These conditions read

r(0) =2(0) =¢(0) =0 and r(Lg)=a/2, (5.9)

where the choice z(0) = 0 is justified by the same argument as for the Laplace-Young equation.
We thus have four boundary conditions for four first-order differential equations, which is
appropriate.

There are again problems with ill-defined terms at the start point sg = 0 of integration,
which can be solved by L’Hdépital’s rule and symmetry arguments as for the shape equations
of spherical shells, see appendix A.2. The results can be easily transferred from the spherical
shells to pendant capsules, and we get at s = 0

_ Esp
Eop — (1o —=7)(1 —v)’

1 As
P == As and 7. =0. (5.10)

T2

A = Ay

A shooting method as already used for spherical shells can solve the shape equations. For
the nondimensionalisation we choose the equilibrium surface tension v as the tension unit and
the capillary diameter a as the length unit. Setting v and a to 1 and replacing dimensional
quantities by their dimensionless variants as summarised in table 5.1 leads to shape equations
that are ready to be solved numerically.

5.2.3. Wrinkling and modified shape equations

The theory of pendant capsules presented so far has already been developed in the author’s
diploma thesis [151]. However, it is not suitable for the application to experiments, because
wrinkles appear on the deflated capsule most often, see fig. 5.1 for example. The reason for the
wrinkling is the same as discussed throughout chapter 3: A negative stress. Indeed, numerical
solutions of the shape equations (5.7) show that there are regions of negative hoop stress 7, < 0.
Note that to obtain 7, < 0, the compressive elastic contribution to the stress must be larger in
magnitude than the isotropic surface tension ~, see eq. (5.6).

A membrane with small bending modulus cannot support compressive stresses, instead, it
will wrinkle [13,34,75,130]. As our membrane is modelled with vanishing bending stiffness, its
critical compressive stress for wrinkling is 7, = 0. This value is a lower bound for the 7, (so)
function. For real membranes with a small but finite bending stiffness E'g, the lower bound
is a small negative value 7, . ~ —\/Ep7s/L2, with 7, the (positive) meridional stress and
L., the wrinkle length. This formula is taken from eq. (3.37) and was derived for flat plates,
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but we show in the next section that the behaviour of pendant capsules is the same if the
wrinkle wavelength is small compared to the radius of curvature. As 7 is of the order of v and
the bending stiffness scales like Ep ~ EapHE, see eq. (2.9), the dimensionless critical value
reads Ty . ~ —V/ FopHy /L.,. Whereas the membrane thickness Hy is of the order of micro-
to nanometres, the wrinkle length is around one millimetre in typical experiments. Thus the
nondimensionalised critical compression is only of the order 107 to 1073. Setting it to zero is,
thus, a good approximation.

A way to respect this lower bound for 7,,(s¢) is to allow the real midsurface of the capsule to
oscillate around an axisymmetric pseudo-surface, see fig. 5.2 c¢). We denote quantities referring
to this pseudo-surface and differing from the real midsurface with an overbar, so (7(so), 2(s0))
is its shape which we are seeking. The shape equations for the axisymmetric pseudo-surface are
determined by setting 7, = 0 in areas where the original model would yield 7, < 0 [89].

According to Hooke’s law (5.6), the wrinkling condition 7, < 0 is equivalent to

2

Ap < 1—y—2 X — (A — 1). (5.11)
Eop

At the point where A, falls below this threshold during the numeric integration of the normal

shape equations (5.7), we switch to a modified system of shape equations to continue the

integration. This system describes the pseudo-surface and is mainly determined by setting

T, = 0 in the wrinkling domain, i.e.

1—v?

Ae=1-7 Eop

As — v(As — 1). (5.12)

Note that A, is the hoop stretch of the real, wrinkled midsurface and is not to be confused
with the stretch A, = 7/rq of the pseudo-surface.

In order to eliminate the hoop stretch of the real midsurface from our system of equations,
we insert this expression (5.12) into the constitutive relation (5.6) for the meridional tension,

1 vy
s = Fop— [(As = 1) — =——As| +. 5.13
T. 2D N ( ) Eo v ( )

However, this tension is not suitable for considering the force balance of the pseudo-surface
since it is measured per unit length of the wrinkled, non-axisymmetric midsurface. In order to
adopt the simple axisymmetric force balance for the pseudo-surface, we have to measure the
tension per unit length of the pseudo-surface [89], 7, = T,A,/ 5\@ resulting in

2

1—v
[As (EQD 2wy — A2 ) — Bop + (1 +v)]. (5.14)
Eop

_ 1
Te — —
s )\w

The shape equations for the pseudo-surface are obtained by modifying the original shape
equations (5.7) and (5.8). The necessary changes are to mark 7, A, and 7, with an overbar,
because they are different for the real midsurface and pseudo-surface, and to replace the
constitutive relations for the stresses by (5.14) and 7, = 0, which results in

¥ (50) = As cos ), W(s0) = 2 (p— Apg),
Te (5.15)

2/ (50) = Agsinp, Ti(s0) = A2 cosep
T
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for the system of differential equations, and for the relations that close this system

-7

Ap =

and )\, — TSA¢+E2D—’V(1+V)

— ) 5.16
0 Eop —2vy —7%(1 — v2)/Esp ( )

Finding a numerical solution for the shape of a deflated pendant capsule involves both the
original and modified systems of the shape equations. We use a shooting method with 75(0)
as the free shooting parameter, which is adjusted until the boundary condition r(Lg) = a/2 is
satisfied. The integration starts at the apex, using the original shape equations (5.7). In each
integration step, the wrinkling condition (5.11) is checked. When A, falls below this threshold,
at sp = s4, the integration is stopped. From this point on, the wrinkled shape equations
(5.15) are integrated, using continuity conditions for all functions as starting conditions. The
integration goes on until the point sg = sp, where the wrinkling condition is not met any more,

i.e. where
T -1 1—12
To 7 Esp

A — v(As — 1). (5.17)

Then we switch back to the original shape equations (5.7), again using continuity conditions for
all functions. This last part should run up to the end so = Ly, where the boundary deviation
r(Ly) — a/2 can be calculated. The initial guess of 7,(0) at the very beginning of the integration
is then adjusted, and after some iterations the boundary deviation should approach to zero.
The wrinkle length L,,, necessary for the wrinkling analysis, can be obtained as L,, = sp — s4.

In some cases, especially for high values of Fop, a simple shooting method fails to converge.
It turned out that these cases are reliably handled by a multiple shooting method [122].

5.2.4. Wavelength of the wrinkles

We have not included a bending energy in the model described above, because for thin membranes
with a small bending modulus (Ep ~ EopHZ in the case of isotropic materials) the bending
moments give only small corrections in the equilibrium equations (2.16). These corrections are
controlled by the dimensionless parameter Eg/vya?. For the experimental systems analysed
below, this parameter is only of the order 107% to 107!°. Therefore, Ep cannot be inferred
directly from an analysis of the capsule’s shape, and we use the wrinkle analysis developed in
the following instead.

The shape equations can predict the regions where wrinkles occur, but not their amplitude
and wavelength. These characteristics are mainly determined by the bending modulus Ep of
the membrane. In chapter 3, we saw that a flat plate with simply supported edges wrinkles
with the wavelength A, ~ (EpL? /7,)/4. Furthermore, we saw that this formula stays valid if
the wrinkles are not confined by edges, but by the locality of the compressive stress, as it is the
case with wrinkled pendant capsules. Finally, we found that a weak initial plate curvature only
influences the numerical prefactor of this relation (if the curvature is along the wrinkles, i.e. in
s-direction in the case of pendant capsules).

In the case of pendant capsules we have a membrane that is initially curved in both directions
(ks and Kk, are nonzero, see fig. 5.3) and wrinkles in a region determined by the location of the
compressive hoop stress. We will not solve this wrinkling problem in full detail as in chapter 3,
where stability equations of shallow shells were solved. Instead, we present energy arguments
in the following which show that the flat plate result for the relation between wavelength and
bending stiffness can still be used as long as the curvatures are weak, and we will quantify
this condition of weakness. These energy arguments are based on an educated guess for the
wrinkling pattern and constitute therefore no complete, exact solution; however, our experience
of chapter 3 suggests that it captures the correct behaviour.
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Figure 5.3.: a) The wrinkled region of a pendant
capsule is curved in the meridional and circum-
ferential directions. b) Geometry for the analytic
calculation of the deformation energies: The mem-
brane patch has two radii of curvature, R, and R,
and is parametrised via the arc lengths s (in meri-
dional direction) and ¢t = R, (in circumferential
direction).

For the analytical calculation, we assume that the curvatures ks = 1/R, and £, = 1/R,,
are constant in the wrinkling region and that the stresses are homogeneous, with tensional
T, > 0 and compressive 7, < 0. The membrane patch is parametrised by the arc lengths s and
t = @R, see fig. 5.3. Upon wrinkling, the main contributions to the deformation energy are
bending in the circumferential direction and stretching in both circumferential and meridional
directions. Changes in the gravitational potential energy caused by wrinkling are neglected
since the wrinkles are largely parallel to the z-axis.

We first calculate the length change of a fibre that is oriented along the s or ¢ direction
upon wrinkling. With an initial radius of curvature R, corresponding to either R, or R, the
wrinkled fibre can be parametrised in polar coordinates by p(8) = R + C'sin(kR6), where C is
the wrinkle amplitude and k the wave number. The length change caused by the wrinkling can
be calculated from the arc-length element of this curve [19],

ds = /p(0)2 + p/(0)2d6 = [R + C'sin(kRO) + %CQICQRCOSQ(RRH) +0(C?%)df.  (5.18)

For a fibre in meridional direction, we assume that the wrinkles have an effective length L,,
and hence wave vector k = m/L,, in s-direction. We take R = R, in (5.18) to obtain the length
change up to quadratic order in C,

7 1 ,C?R CL, w2C?

Rs s
Al = A |:OSin(ﬂ'Rsa/Lw) + §7T2Tw‘ COS2(7TR59/Lw) do =2 <R, + iL.

(5.19)

A fibre positioned at the circumferential coordinate ¢ contributes 7,Al; dt to the deformation
energy when it is stretched against the tension 75. The amplitude of the wrinkles depends on
the position along the circumferential direction by C(t) = Cysin(27t/A) where A is the wrinkle
wavelength. Thus, the total energy caused by the stretch in meridional direction is

27 R, 3C2R C2L,R
Us = / T, Al dt = 7T—MTS and analogously U, = 73 —2—2—% (5.20)
0

1 L, Az ¢
for the stretching energy in circumferential direction. Since 7, < 0, the contribution U, is
negative, that is, it is the energy gain which drives the wrinkling. Note that the term linear
in C in the length change (5.19) vanishes in the integrals, because the sinusoidally oscillating
amplitude C(t) is integrated over full periods.

The bending is strongest in (-direction, and its energy cost depends on the curvature change
of a circumferential fibre. For a curve given in polar coordinates, p(¢) = R, + C'sin(2r¢R,/A),
the curvature can be approximated to first order in the amplitude C as [19]

2 /2 " 2
_pH2p" —pp” 1 1 47 .
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with ¢ = ¢pR,. Considering that the wrinkle amplitude depends on the position along the
meridional direction via C(s) = Cysinns/L,,, the bending energy reads

1 1\’ 1 ) a2 1\°
n = [[ asa {z £ (5 1) } - B, (T ) - 6

)

Now the argumentation is the same as in section 3.3.1. For the wrinkled state to become
preferable to the unwrinkled state, the total deformation energy must be negative, Us+U,+Up <
0, which is equivalent to

A2 A2 [(4x? 1\
T < Tap,c(/l) = *T(sm - EBH </12 — R?) . (5.23)

The wrinkling will first occur with a wavelength that renders the critical stress |7, (A)| minimal,
which is

T A4
1672L2, (1 — A*/1674R%)

1672 Ep L2
—( 0" Bl (5.24)

1/4
p— EBL%;/’]TQR?O> or equivalently FEp =
The latter form can be used to determine the bending modulus from measurements of the
wrinkle wavelength.

If the wrinkle wavelength is much smaller than the radius of curvature, A < R, the term
1/R2 in (5.23) can be neglected and the critical wavelength is exactly the result (3.36) for flat
plates with fixed edges derived above. Note that the small ratio A/R,, enters the formula for
Ep (5.24) in the fourth power, so that the initial curvature of the membrane has only little
influence on the wavelength analysis, and can therefore be neglected.

5.3. Analysis of theoretically generated shapes

The basic idea of our elastometry method is to fit solutions of the elastic shape equations
(including wrinkling) to contours extracted from experimental images of deflated pendant
capsules. The elastic moduli and the pressure serve as the fit parameters, where the pressure
is mainly used to control the capsule volume, and the elastic parameters to adjust its shape.
Before applying this core module to real experiments, we need to test it in cases with known
results. To this end we take a solution of the Laplace-Young equation with an interfacial tension
v = 49.8 mN/m, density difference Ap = 1000kg/m? and volume V; = 8.23 mm? as the initial
shape of a pendant capsule — these values are taken from the HFBII experiment presented below.
We then use our shape equations with fixed elastic moduli (Korig = 600 mN/m, Vo = 0.3) to
compute deflated configurations. The area compression modulus Kop = Eop/2(1 — v) defined
above in eq. (3.14) is used instead of the Young modulus to characterise the membrane because
the fits work better when Ksp and v are used as fit parameters: The fit error minimum has
a “nicer shape” and is easier to locate in the (Kyp,v)-plane than in the (Fsp,v)-plane. From
each theoretically generated contour, we calculate a set of approximately 150 sampling points
x; = (r;, 2;), exactly as one would obtain from an image analysis. We optionally add some
noise to simulate an imperfect contour analysis, and pass the sampling points to the fitting
procedure to see whether it finds the correct solution.
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Figure 5.4.: Laplace-Young fits of deflated
elastic capsules. a) V = Vj, fitted surface
tension Yapp = 49.8 mN/m and b) V = 0.9V},
fitted surface tension Yapp = 28.7mN/m. In
the top row, the red dots are the elastic shape
to which the solution of the Laplace-Young
equation (green line) is fitted. Light red lines
indicate the wrinkled region according to the

‘ , — — elastic shape equations. In the bottom row,

3107 ¢ , 0.02/ % /\ the fit residual (in reduced units) is plotted

0 g 3 o0 7' ._ versus the number of the sampling point; the

_004c i Vi numbering starts at the left attachment to the

v capillary and goes counter-clockwise around

the capsule.
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5.3.1. Fitting elastic shapes with the Laplace-Young equation

Many experiments on elastic capsules attached to a capillary have been analysed using the
standard software of pendant drop tensiometers [1,42,68,119]. In this analysis, the Laplace-
Young equation is fitted to the captured capsule shape, although the Laplace-Young equation
is not the correct model if the capsule has an elastic membrane. The result of this process is a
“measured” apparent surface tension 7,pp as a function of how much the capsule is deformed.
Since the Laplace-Young fits also provide the current capsule surface A, one can subsequently
calculate the Gibbs elasticity

d~,
EGibbs = A —222 2
Gibbs dA (5 5)

by finite differences. This is essentially the same definition as used for the area compression
modulus in eq. (3.14), which is based on Kap = Ag - 7/AA for isotropic deformations.

We investigate the performance of this analysis applied to the theoretically generated shapes of
deflated elastic capsules, see appendix D.2 for a description of the least-squares fitting procedure.
In fig. 5.4, two fit results are plotted, one for the undeformed shape and one for a deflated
shape. The first case is actually a fit to a drop shape, so that the Laplace-Young equation is
the appropriate model. It finds the correct value of the surface tension, vapp, = v = 49.8 mN/m,
and the fit residual is very small and randomly distributed, which indicates that this is just
numerical noise. The fit in fig. 5.4 b), however, fails. There are visible deviations between
the fitted Laplace-Young shape and the original elastic shape, and the fit residual is large and
shows systematic deviations. The fitted surface tension v,p, = 28.7mN/m is smaller, which
is qualitatively correct because the initial surface tension is lowered by the elastic stresses,
which are negative when the membrane is compressed by deflation, see the constitutive relation
(5.6). Figure 5.4 b) shows a fit to an extremely deflated capsule, with well developed wrinkles.
However, the same effects in weaker form can be seen for smaller deformations, even before the
onset of wrinkling.

For the Gibbs elasticity, we find that Egj,ns is significantly lower than the actual area
compression modulus Ko = 600 mN/m used for the theoretical shape generation, see fig. 5.5,
red dots. It appears that for elastic capsules, the intricate interplay between membrane
geometry and elastic tensions renders the Laplace-Young analysis more erroneous than intuitively
expected: Not even for small deformation does the Gibbs elastic modulus approach the real
area compression modulus. A precise theory of this effect is lacking so far, but in some way,
the capsule geometry and the non-constant and anisotropic stress distribution must affect the
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Laplace-Young fits so that the apparent surface tension obtained from them is not a suitable
average value of the stress distribution in the membrane. This explains the observations of
Stanimirova et. al. that pendant drop tensiometry gives wrong results if applied to capsules
with high surface elasticity [119].

5.3.2. Fitting with the elastic shape equations and sensitivity to noise

The fitting procedure where solutions of the elastic shape equations are fitted to given sampling
points is described in appendix D.2. Applying the procedure to the theoretically generated
shapes (without noise) works very well, and it recovers the correct values for the elastic moduli,
that is, Kop = Korig and v = Vg in our test. Some example results for the fit residual
distribution over the (Ksp,v)-plane are shown in appendix D.4, see figs. D.4 and D.5. The
results for Kop over a range of reduced volumes are represented by green triangles in fig. 5.5.

In a further test, a small noise is added to the sampling points before fitting. Each sampling
point is shifted by a random number drawn from the interval [—0.0045,0.0045] in r- and
z-direction. A deviation of +0.0045 in reduced units corresponds to nearly 1 pixel in typical
images, and so this is a reasonable noise amplitude to simulate imperfections of the contour
detection. Figure 5.5 shows the fits to the noisy contour as blue dots. The error bars of the fits
have been generated as described in appendix D.3: The basic idea is to construct worst-case
systematic error estimates by displacing the sampling points by +1 pixel. Here, where the
sampling points are given directly in reduced units, a displacement of +0.007 (corresponding to
+1 px at usual image resolutions) has been used to generate the error bars.

For small deformations, the fits to the noisy contour do not succeed. Especially for V' = 0.98V}
the fit fails, and the correct value of Kz = 600 mN/m is not even included in the range of
error bars. The fits at V/Vy = 0.94 and 0.96 are better and reasonably close to the correct value.
But only for V' < 0.92V}, the results lie perfectly in the diagram (fig. 5.5). It is not astonishing
that the fit did not work for the smallest deformation: The root mean square deviation between
the initial shape and the shape at V/V = 0.98 is about 0.01 length units, the noise amplitude
is 0.0045 and the offset used for the error bars is 0.007 — so the sampling points passed to the
fitting procedure have an offset from their original place which is of the same order as the
deformation. Only for deformations that are considerably larger than the noise we can expect
successful fits. In appendix D.4, two fit results for the noisy contour are shown in figs. D.6 and
D.7. The plots of the fit residual over the Kop-v-grid in these figures demonstrate that the
minimum is better localised and easier to find for large deformations than for small ones.
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1 mm 1 mm 1 mm 1 mm

Figure 5.6.: Fitted images of OTS (upper row) and HFBII (lower row) capsules. The first image
shows the equilibrated capsule, fitted with the Laplace-Young equation, while the next three show
deflated shapes, fitted with the elastic model. The red dots are the sampling points extracted from
the image, the blue line is the end of the capillary, the green line is the fitted solution of the shape
equations, and the horizontal green lines indicate the wrinkled region according to the fit.

5.4. Analysis of experiments

The elastometry method sketched in the introduction of the present chapter shall now be
applied to real capsules. Experimental data on two different systems, polysiloxane capsules and
hydrophobin coated bubbles, is available through collaborations with the group of Prof. Heinz
Rehage, TU Dortmund, and the group of Dr. Pietro Cicuta, University of Cambridge.

To prepare a pendant polysiloxane capsule, a glass cell is filled with p-xylene containing
octadecyltrichlorosilane (OTS). Then a drop of water is placed into this phase using a syringe.
The polymerisation process starts immediately after the oil/water-interface is formed [36].
Hydrophobin coated bubbles are prepared in a very similar fashion. As described in previous
work [5], an air bubble is placed into a solution of class IT hydrophobin (HFBII) in water using
a J-shaped needle; and HFBII proteins adsorb at the interface over the course of 20 minutes.
Although the proteins do not crosslink, a hydrophobin layer exhibits elasticity [6, 7].

After equilibration, the capsules are deflated slowly (i.e. quasi-statically, on a timescale of
~ 10s for a deflation of OTS capsules and even slower for HFBII capsules) by sucking the
enclosed medium back into the syringe. The OTS capsule is subsequently re-inflated to check
whether the deformation is reversible.

The whole experiment is recorded with a digital camera. From each movie, a set of frames is
selected, and each image is analysed using a contour detection algorithm described in appendix
D.1. Then, a three step fitting procedure can be used to determine the elastic moduli of the
capsule membrane:

1) Reference configuration: The undeformed capsule shape is fitted using the Laplace-Young
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equation with the interfacial tension  and pressure pg inside the capsule as free parameters,
see appendix D.2 for technical details.

2) Shape analysis: At each stage of deflation, solutions of the shape equations (including
wrinkling) are fitted to the extracted contours with pressure p, Poisson ratio v and area
compression modulus Kop = Eop/2(1 — v) as free parameters, see also appendix D.2.

3) Wrinkle analysis: The wavelength A in the centre of the wrinkled region is measured from
images. The length L., of the wrinkles and a mean value of 75 over this region are obtained
from the fitted solution. Then, the bending modulus Ep is determined from eq. (5.24).
Using the relationship Ep = EapHZ/12(1 — 1v/?), see eq. (2.9), an effective membrane
thickness Hj can also be estimated. This is, however, a rough estimate, since this relation
applies only to thin sheets of isotropic material, but the membranes at hand are evidently
anisotropic.

Note that the position and length L,, of the wrinkled region are not fit parameters but
can be used as an independent check of the accuracy of the fit. L,, is determined from the
fitted numerical solution as the arc length over which the modified shape equations (5.15) were
integrated. In the following, the fit results are presented, see fig. 5.6 for some examples.

5.4.1. Results for polysiloxane capsules

In step one of the fitting procedure, four images of the reference configuration are fitted with
the Laplace-Young equation to obtain an average surface tension v = 11.2mN/m. This value is
lower than the surface tension of the clean p-xylene/water-interface because the OTS molecules
are surface active agents which lower the interfacial tension during the polymerisation. Scaling
factors that relate lengths measured in reduced units, pixels, and millimetres are also obtained
from the Laplace-Young fits, see appendix D.4.2 for a full documentation; in the present
discussion only the length unit ¢ = 1.44 mm is required.

In the experiment, the OTS capsule is deflated and subsequently re-inflated. In the second
step of the analysis, images from both processes are fitted using the elastic model, see fig. 5.6
(upper row) for some example images. All data points in fig. 5.7 represent wrinkled shapes,
because even the slightest deformation gives rise to wrinkles due to the low initial surface
tension and high compression modulus. We find an area compression modulus Ksp which
starts at approximately Ksp &~ 500 mN/m and decreases with decreasing V/V,. The Poisson

500 .
‘.. { Figure 5.7.: Fit results for the area com-
__ 400 oe—o ® 7 pression modulus Ksp and Poisson ratio
&l i o %7 . ] v (inset) for OTS capsules. The blue
ZE 300F @ o-o° JEPRRET g : dots are for deflation, the red dots for re-
? & *-6 ° ] inflation, all shapes are wrinkled. Both
Q 200 08 .'-w" w w ] curves do not meet within the plotted
r 0.6 y "'%. 1 range because the deflation was driven
100 ’ < 1 to even smaller volumes than shown, but
: O'g 80 0 ‘85 o 9 0 0 9 s 1] for these the contour analysis failed. Er-
L s o o ] ror bars were generated by displacing the
0.80 0.85 0.90 0.95 1 sampling points about +1 pixel, see ap-
pendix D.3. Lines are drawn to guide the

VIVo eye.
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Figure 5.8.: Wrinkle analysis for the OTS capsule; blue colour is used for the deflation and red for
the re-inflation. a) Wrinkle length L., (upper curves) and mean tension 7, (lower curves), both
in reduced units with length unit ¢ = 1.44 mm and tension unit v = 11.2mN/m. Dark blue and
dark red represent results taken from the fitted shape equations, light blue and light red represent
direct measurements from the images. b) Measured wavelength (upper panel) and resulting bending
stiffness (lower panel, both panels share their horizontal axis). The averaged bending stiffness
Ep = 2.5-107'" Nm is represented by the dashed black line; taking the average only over the
deflation data (blue dots) results in Eg = 1.2 - 107* Nm, see dashed grey line.

ratio increases at the same time from around v = 0.6 to 0.8. The resulting surface shear
modulus for the initial values is Gop = Kop(1 —v)/(1 +v) = 125 mN/m. In ref. [114], larger
values of 200 — 300 mN/m (obtained by interfacial shear rheology) are reported for similar OTS
membranes.

Although the error bars in fig. 5.7 are overlapping, this result is reliable because the error
bars represent worst case systematic errors (see appendix D.3). An analysis of the noise in
the contour, see appendix D.5, also suggests that the fits are reliable because the noise is very
small compared to the deformation. Further indications of the good accuracy of the fits are the
coincidence of the wrinkled region obtained in the fits with the experimental observations, see
fig. 5.8 a), and the visual agreement between fitted contour and experimental image, see fig. 5.6.

The deformation is not perfectly reversible, and we observe hysteresis: The area compression
modulus obtained for re-inflated capsules is smaller than for the first deflation (compare lower
red and upper blue data points in fig. 5.7). The presence of hysteresis indicates that the
decreasing modulus is not a pure artifact of the method but a result of creep, for example by
plastic effects, i.e. breakage or rearrangement of bonds in the OTS network, or by the formation
of micro-defects such as shear cracks. Further investigations of experiments with several
deflation/inflation-cycles have shown that the hysteresis diminishes after several cycles [61].

Finally, the wrinkling pattern is related to the bending stiffness in the third step of the
analysis. Wrinkle wavelengths A can be measured from the images, and values for 7, in the
wrinkled region and L,, are obtained from the fitted solutions, see fig. 5.8 (dark blue and dark
red dots). This results with eq. (5.24) in a bending stiffness shown in the lower panel of fig. 5.8
b). The average over all determined values is Ep = (2.5 +0.7) - 1071*Nm. As the plot shows,
the values obtained at the end of the re-inflation might be erroneous (possibly because of the
non-reversibility of the deformation), and so it might be more appropriate to average the bending
stiffness only over the deflation results (blue dots), which gives Ep = (1.2 +£0.1) - 1074 Nm.
In any case, the determined bending stiffness is 3 orders of magnitude larger than previous
estimates [26,48] which used an experiment with a smaller capsule of the same material in shear
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flow, resulting in wrinkles with a much shorter wavelength [139]. Moreover, the OTS capsules
in ref. [139] were prepared in a different aqueous solution (glycerol and NaOH) and using longer
polymerisation times. These deviations can give rise to distinct membrane thicknesses and
crosslink densities, which can explain the differences in the bending modulus: The bending
modulus varies with the third power of the membrane thickness and Cerda and Mahadevan
estimated in ref. [26] a thickness around 20 times smaller than that of the capsules used here.

Combining the values for Ep with measurements of E5p from the shape analysis we estimate
the effective membrane thickness Heg =~ (0.77 £ 0.07) um (for the average over all data points)
or Hog =~ (0.56+0.02) pm (for the average over the deflation). This is in approximate agreement
with the actual capsule thickness 0.86 um < Hy < 1.4 um measured by electron microscopy, see
fig. D.10 in appendix D.4.

5.4.2. Results for hydrophobin coated bubbles

Hydrophobin coated bubbles do not hang but rise from a capillary because of buoyancy. Since
the physics of rising and pendant capsules is the same, the experimental images are simply
rotated by 180° and fed to the usual shape analysis. In the first step of the analysis, four
images of the reference shape are fitted to obtain the interfacial tension v = 49.8 mN/m and
unit length @ = 0.95 mm.

In the second step, the number of fit parameters can be reduced by constraining v = 0.6
because this value has been determined in an independent experiment [5]. Then, only the
area compression modulus Kop must be determined, which is shown in fig. 5.9 a). The area
compression modulus increases for small deformations, where the capsule does not wrinkle
(blue squares in fig. 5.9 a)), to values around 500 mN/m. The onset of wrinkling coincides
with a sharp increase of the modulus to a maximum value of Kop ~ 2000 mN/m. This sharp
increase is consistent with the molecular structure of HFBII [60], which contains a rigid core
consisting of four g-strands and is stabilised by disulfide bridges. The modulus Ksp increases
sharply when compression of this rigid protein core sets in, while at small deformations only
contacts between hydrophobin proteins or a soft shell consisting of coil and loop structures
surrounding the rigid S-barrel are compressed. The sharp rise of the compression modulus
triggers wrinkling. Subsequently, the compression modulus decreases again (blue circles in fig.
5.9 a)) likely signalling creep as also observed for the OTS capsules. Possible explanations for
the creep behaviour are the formation of micro-defects such as shear cracks or localised bulges
into the subphase, which weaken the hydrophobin layer.

The choice of the fixed value for v influences the absolute values obtained for Kop and the
size of its jump when wrinkling sets in, while the characteristic course described above is robust.
Taking the Poisson ratio as a fit parameter also results in a similar course of the elastic modulus,
see fig. 5.9 b). However, the results for v differ substantially from the previously assumed value
of v = 0.6; and the results for Kyp are larger for small deformations. An analysis of the noise in
the extracted contour, see appendix D.5, raises the question if the shapes in the pre-wrinkling
regime are sufficiently deflated to be fitted at all. The fact that the fit results do not scatter
too much and exhibit clearly visible trends, however, suggests that there is some significance to
the results and that the interesting non-linear behaviour is at least qualitatively correct.

The values Kap < 500 mN/m for the compression modulus for small deformations and prior
to wrinkling are in good agreement with values reported previously for HFBII [1,17,29]. The
large values around Kop = 2000 mN/m at the onset of wrinkling have not been reported before,
since the experimental methods used in the literature are not reliable in the presence of wrinkles.
However, a comparison to viral capsids consisting of densely packed proteins is possible. In
ref. [70], the bulk Young modulus of a viral capsid is measured as 1.8 GPa, which is comparable
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Figure 5.9.: Fit results for HFBII capsules, with wrinkled (o) and non-wrinkled (m) shapes. Lines
are drawn to guide the eye. a) In these fits, the Poisson ratio is fixed to v = 0.6. b) The same
experiment fitted with free Poisson ratio, see inset for the results.

to our result for the bulk modulus E = Fop/Hg =~ 1 GPa, where Hy ~ 2nm is the hydrophobin
layer thickness [76].

Step three of the procedure, the wrinkle wavelength analysis, cannot be performed for HFBII
capsules: Because of the small bending stiffness, the wavelength is too small to be resolved in
the experimental images. The observable folds in fig. 5.6 (lower row) are not primary, sinusoidal
wrinkles, but rather secondary or higher order structures. Using eq. (5.24) with L,,, 75 and
Ep = EapHE /12(1 — v?) obtained from the elastic fits, we expect wavelengths between 7.6 and
11 pm, which is sub-pixel dimension in the available images. In the literature, similarly small
or even smaller wrinkle wavelengths for compressed HFBII films in a Langmuir trough have
been reported [5,13,17].

5.5. Outlook: a custom elasticity model for protein layers

In the previous section we found that hydrophobin layers exhibit a very peculiar, non-linear
elastic behaviour. Based on the assumption that this behaviour can be attributed to the
molecular structure of HFBII proteins, we now develop an elastic law that is supposed to
explain the above results.

The microscopic view of the proposed model for a hydrophobin layer at an air/water-interface
is shown in fig. 5.10: Globular proteins interact by soft springs (corresponding to an outer soft
shell) and steric interactions (corresponding to hard cores). From this microscopic view we will
derive continuum elastic laws that can be used in the shape equations of pendant /rising capsules.
Because the bead-spring network and hard cores are quite generic, our model could apply much
more widely. Further applications may include Pickering emulsions [16] or interacting particle
rafts [133,134] in colloidal systems.

To test if the model can explain the above fit results of the hydrophobin capsules, we will
use the modified shape equations to generate deflated shapes obeying our custom elasticity
model, and fit them using the standard shape equations (with Hookean elasticity) described
above. The aim is to reproduce the characteristic course of Kop as a function of the deflated
volume, see fig. 5.9, with an initial increase, sharp jump and final decrease. As shown below,
this succeeds in part. This is work in progress, and further research will be necessary for a full
explanation of the hydrophobin layer elasticity.
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Figure 5.10.: Bead-spring model with hard cores to mimic the
behaviour of HFBII molecules at the air/water-interface. The
springs give the network a Hookean elasticity, and the hard
cores (green disks) impose limits on the maximal admissible
compression. The lattice constant is normalised to 1.

5.5.1. Continuum description of a bead-spring model with hard cores

The spring interactions between the beads in fig. (5.10) give the network its elasticity. We
assume that the beads are arranged in the (z,y)-plane in a hexagonal crystal with a lattice
constant normalised to 1. Such an arrangement is the closest packing of spheres and it behaves
isotropically [84], so that the continuum elasticity of the membrane can be characterised by
two elastic moduli, for example the (surface) Poisson ratio and (surface) Young modulus. On
the microscopic level, the elastic response of the membrane is governed by the spring constant
k. By evaluation of the deformation energy within one unit cell, it can be shown that the
continuum elastic moduli are determined by [99, 118]

2 1
FEop=—k and v=-.
V3 3
Without the hard-core interactions, the membrane can thus be described with the usual Hookean
elasticity as specified by egs. (5.5) and (5.6), with the Poisson ratio confined to v = 1/3. We
repeat the constitutive relations here, with a superscript ) indicating that it is the contribution
of the springs:

(5.26)

0 Ay) = 122 (e 1) vy~ D]+ (5.27)
—v% )y
and with indices  and y interchanged for TZSS). The interfacial tension  has been incorporated
here, although it cannot be attributed to the springs, but to the air/water-interface in the
meshes of the network.

Now comes the most important part of the model: Evaluating the influence of the steric
interactions between the hard cores. The springs in the lattice have a rest length of 1 and
can be oriented along three different directions ¢, which we characterise by the angle ¢; to the
z-axis. This angle can take the values p; = ¢o + i7/3, with i € {—1,0, 1}, where g determines
the overall orientation of the lattice in the (z,y)-plane.

We consider a deformation in the principal axes system that is characterised by the stretches
Az and Ay,. The length of a spring along direction ¢ changes from 1 to

(e c08PiN| _ N2 cos? o + A2 sin o)
d; = '(x\ysingo)‘ = \/)\Icos pi + Ay sin” g; (5.28)

by this deformation. The steric interactions enforce that the springs of the lattice can be
compressed at maximum to a minimal length of L (with L < 1, of course). Thus, we have three
conditions d; > L to be satisfied, or equivalently

A2 cos®(pg — m/3) + )\5 sin?(po —7/3) > L
A2 cos®(p0) + Ay sin® (o)

L
A2 cos®(po + 7/3) + A2 sin®(po + 7/3) > L

(ALY

2
2 (5.29)
2.
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Figure 5.11.: Forbidden domains (light grey) in the (A;, Ay)-plane limited by ellipses, for L = 0.5. a)
Different orientations ¢o produce different forbidden domains. Straight lines are degenerate ellipses
with infinite major axis, and dashed lines with alternating colour indicate if two of the three ellipses
are identical. The pictograms show the lattice orientation. b) Choice of ¢ that minimises the area
of the forbidden domain. For easy identification, the boundaries are labelled 1 and 2; and the point
on both lines is termed B.

In the (Az, Ay)-plane, these conditions specify three ellipses to be excluded from the admissible
domain for the stretches, see fig. 5.11 a). All three ellipses go through the point (L, L). The
hard-core length L corresponds to the diameter of the hard cores, measured in units of the
lattice constant.

The forbidden domain, shaded light grey in this figure, depends on the orientation g of the
lattice. For the remainder of this chapter we choose this parameter according to the following
rule: If A, < Ay, then ¢y = 30°; otherwise ¢y = 0°. With this choice, the forbidden domain
becomes as small as possible, see fig. 5.11 b). Choosing ¢ in dependence of the stress state
means that it may change during a deformation — for hydrophobin rafts this seems plausible
because the proteins are not rigidly crosslinked, but may change their neighbours to get from
a 0° state to a 30° state (see pictograms in fig. 5.11). In case of a rising capsule, the stress
state varies as a function of the arc length sy, and so we may encounter regions of 0° and
30° orientation within a single capsule. Problems might arise at the boundary separating two
regions of different orientation, because the lattices cannot be joined properly. This could give
rise to a line energy; however, we neglect these complications in the following.

With this choice of ¢q, the boundary line between the forbidden and admissible domain of
the stretches simplifies to 3A2 /4 + A2 /4 = L? for A, < Ay and A2 /44 3)2 /4 = L? for X\, > \,.
Written as an explicit function, the boundary line reads

\J4L?/3 —X2/3 if A, > L (boundary 1)
AP (2,) = v ! . (5.30)
\JAL? = 3)2 if A, < L (boundary 2)

Here we have introduced the terms boundary 1 and 2, which have to be distinguished in most
of the following calculations. They are plotted in red and blue, respectively, in fig. 5.11 b). The
point (Az, Ay) = (L, L) which is on both boundary lines is termed point B.

If the external loads try to push the membrane into the forbidden domain, the hard-
core interactions keep it on the boundary of the forbidden domain by providing additional
contributions to the stresses 7, and 7,. These hard-core contributions are denoted by 7(%) and
Tygc). The complete stresses then read

7o =7 A A) + 79 and 7, = 70 (A, Ay) + 710 (5.31)

with (Az, \,) a point on the boundary of the forbidden domain (5.30). Since 7{) and Téc) are
transmitted through the “skeleton” of hard cores, they must satisfy certain conditions that can
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be derived from the geometry of the lattice. In appendix E.1 it is shown that the ratio of the
hard-core stresses is confined to

(c)

(c) 2 /932
7Y _ N/ if A, > L (boundary 1) 1 <D< ifa, =\, = L (point B).
) 3X2/A2 if Ay < L (boundary 2) 3~ 7

(5.32)
Note that (A;, A,) must always be a point on the boundary of the forbidden domain when these
equations are applied to calculate the hard-core contributions to the stresses.

The above results for our custom elasticity model for hydrophobin particle rafts are sum-
marised and illustrated in fig. 5.12. Different regions in the stretch plane and stress plane are
shown, with focus on the regime relevant for compressed membranes: A; <1 and 0 < 7; < 7.
The light green regions are the admissible regions, where the hard cores are not in contact.
Here, the usual Hookean elasticity (5.27) is valid, and there is a bijective mapping between
(A, Ay) points in the stretch plane and (7, 7,) points in the stress plane.

On boundaries 1 and 2, the hard cores come into contact. In the stretch plane, this boundary
cannot be trespassed: Even if the external forces try to push the lattice beyond this line, the
lattice will get stuck on the boundary of the forbidden domain. In the stress plane, however,
the points beyond boundaries 1 and 2 can be accessed by including the hard-core contributions
7(°) and TZSC) in the stresses.

A point (AL, AP)) on the boundary in the stretch space is mapped by Hooke’s law to a
point (7'I(b)7 Téb)) on the boundary in the stress space. From this point on, stresses (7, 7,) =
(ngb), Téb)) + (ngc), Téc)) can be reached, where the hard-core contributions 7.(°) and 7'75‘:) must
be negative (because the skeleton can only support compressive stresses) and must obey the
ratio constraint (5.32). The submanifold of stresses which is accessible from the point on
the boundary is, thus, a straight line with a slope ()\12,/)\9%)2/3 starting from boundary 1 or
3()\5/)\2)2 starting from boundary 2 in fig. 5.12 b), see the thin red and blue lines.

For point B, with A, = A, = L, the ratio of the hard-core stresses is not fixed to a certain
value. Instead, in can range from 1/3 to 3. In the plot of the stress plane, fig. 5.12 b), this
means that the whole white region is accessible from point B.

5.5.2. Shape equations in the pendant/rising capsule geometry

We now apply the previously developed elasticity model to the shape equations in the
pendant /rising capsule geometry. We identify the z-direction of the planar model with the
(meridional) s-direction of the shell, and the y-direction with the (circumferential) ¢-direction.
To evaluate the right-hand side of the shape equations (5.7), we must be able to calculate A
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and 7, from given A, = r/ry and 7,. With the help of the plots of the stretch and stress planes
in fig. 5.12, we can figure out the suitable algorithm:

e We check if the point is in the admissible domain or on the boundary by calculating
AP (A,) with (5.30) and () (AP, \,) using (5.27), which is the smallest possible stress
in the admissible domain. If the given 7, is larger than this value, the point is in the
admissible domain, if it is smaller then the point is on the boundary to the forbidden
domain.

e If the point is in the admissible domain, everything is as before and egs. (5.8) can be used
to calculate A and 7.

e If the point is on the boundary, then we know that Ay = A{")()\,) according to eq. (5.30).
In addition, we can calculate the spring contributions 7% ()\gb), Ay) from Hooke’s law
(5.27). The hard-core contribution can then be obtained as the difference between the
given 75 and the spring contribution, TS(C) =75 — TS(S) ()\gb), A¢). This value should be
negative. The sought stress 7, can then be calculated from the Hookean contribution
T;S) according to (5.27) and the hard-core contribution TQS,C) according to (5.32), so that

rp = 1O (AP),A,) + 749,

Thus we can use the usual shape equations (5.7) for the integration when the lattice is on
boundary 1 or 2. Just the closing relations (5.8) that are necessary to compute the right-hand
side must be replaced by the above procedure.

This method does not work when the lattice is stuck in point B, which must be handled
separately in the shape equations. The reason is that the confinement to Ay = A, = L already
determines the shape of the capsule: It is uniformly compressed. The circumferential stretch
r/ro = L directly implies r(sg) = Lro(so). Inserting this solution into the differential equation
for r in the system of shape equations (5.7) then yields ¢(sg) = %o(sg). The differential
equation for z then becomes z'(sg) = Lsinty and has the solution z(sg) = Lzo(so) + ¢ with
some constant ¢ depending on the starting value. From the differential equation for ¢ in the
shape equations (5.7) we can then deduce

T = (* Kzo Ts+p—Apg Z) /K (5.33)
by inserting the known solutions. So in principle, only 7, must be determined by solving its
differential equation. In order to keep the code of the numerical implementation consistent,
however, we solve the full system of shape equations (5.7) with the closing relations (5.8)
modified to contain the explicit result (5.33) just derived. This produces the correct numerical
solutions in the same “data format” as in all other parts, at the cost of having wasted some
computation time.

When the lattice is in the jammed state B already at the start point of integration (at the
apex), we need to evaluate the limits of the explicit solutions for sy — 0. At the apex, the
meridional and circumferential curvatures coincide, k(0) = £4,(0) = ks, /L = po/2yL. From
the force balance, the meridional and circumferential tensions follow as 7,(0) = 7,(0) = pL~v/po.
This finding has a remarkable impact: 74(0) is fixed by the external parameters, and cannot
serve as a shooting parameter! The problem of having lost the only shooting parameter is
resolved below in the discussion of continuity conditions.

Wrinkling can occur when the lattice is jammed on boundary 2 or point B. Like in section
5.2.3, we handle wrinkling by introducing a pseudo-surface (indicated with an overbar) and

setting the hoop stress to zero. On boundary 2, we have A\, = \/4L?/3 — A2/3 (note that A,
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refers to the hoop stretch of the real, wrinkle surface and is to be distinguished from the pseudo
hoop stretch A, = /7). The condition 7, = 0 is equivalent to

EQD 1

-

(A —1) +v(Xs —1)]. (5.34)

We further have 7(¢) = Té,c) A2/ 3)\3. So the complete meridional tension, measured per unit
length of the pseudo-surface, is determined by
Ay

_ . LAY
Tszz Tg)()\s,/\w)_kg)\iéﬂ;) ’ (5.35)

This is a quite complicated function of Ay, because TL;C) and )\, herein also depend on Ag. It
must be solved for A\ to evaluate the right-hand side of the wrinkled shape equations (5.15),
which is done numerically in each integration step of the shape equations.

When wrinkling occurs in point B, the shape equations for the pseudo-surface (5.15) can
also be used, and since Ay = A\, = L, the inversion of a stress-strain relation to obtain A
is not necessary. In point B, the hard-core stresses TS(C) and Téc) are independent of each
other, and the spring contributions TS(S) and 7% are fixed because of A\, = Ay = L. From the
wrinkling condition 7, = 0 we can, thus, calculate Téc). The meridional hard-core contribution
7{¢) must be calculated from the differential equation for 7,. Note that the geometry of the
pseudo-surface is not fixed by the condition Ay = A\, = L because the circumferential stretch
Xp of the pseudo-surface is free. This is in contrast to the case of a lattice being stuck in point
B without wrinkling as discussed above.

5.5.3. Numerical integration and switching between the shape equations

The modified shape equations are integrated from the apex, so = 0 to the attachment point
so = Lo to the capillary. On this way, the integration will run through different domains and
must switch to the appropriate shape equations discussed in the previous section. Figure 5.13
shows typical trajectories of the integration in the stress plane, that is, parametric plots of
(TS(SQ),’T]P(S())) with Sp € [0, Lo}

We name the different domains of the stress plane as follows: The admissible domain (light
green in fig. 5.13) is abbreviated “A”, the red and blue ruled regions are termed “1” and “2”
(because they come from boundary 1 and 2 in the stretch plane), and the white region is termed
“B”. Regions 2 and B also appear in wrinkled form, we then call them “2W” and “BW™.

In the numerical integration, an event handler must be introduced which detects when the
integration runs from one region into another. This is quite similar to our treatment of the
wrinkled region, where an event handler was implemented that checks the wrinkling condition
(5.11) and switches to the appropriate shape equations. Changes from region A to regions 1, 2
or B can be detected on the basis of strains, which are limited by the boundary (5.30). The
other direction, a change from a hard-core region into the A domain, occurs when the hard-core
stresses become positive.

Switching between the different hard-core regions is, however, a bit more complicated because
the continuity conditions are less obvious. An elaborate variational calculation shows surprisingly
that 7, may jump at transitions from B—BW, B—2, 2— 1 and BW — 1 see appendix E.2
and fig. 5.13. This jump is necessary, especially when starting in region B, where we have seen
that the shooting parameter is eliminated: The jump, or rather its arc-length coordinate s,
serves as an substitute shooting parameter. In the following discussion of each trajectory shown
in fig. 5.13 this becomes clearer.
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B — BW — 1, light blue. The transition from B to BW occurs at s; which can be chosen
arbitrary (it just has to occur before the trajectory reaches the wrinkling region 7, =
0). This is the shooting parameter that is adjusted to match the boundary condition
r(Lg) = a/2 at the end of integration. The rest of the trajectory is “deterministic”: The
jump from BW to 1 occurs when the wrinkling condition 5‘«/9 < A, becomes false. As the
stretches are fixed to L in B, BW and on the boundary of 1, the stretches are continuous
at this transition, only the hoop stress jumps.

B — BW —2W — 2 — 1, light red. The first transition occurs again at a free position sy,
and the remainder of the course is deterministic: BW — 2W is continuous and occurs
when the ratio TS(DC) /7{) becomes larger than 3; 2W — 2 is also continuous and happens
when /_\w becomes larger than A,; and 2 — 1, which has a jump in 7, is determined by
A, becoming larger than L.

B — 2 —1, violet. Again, the transition out of region B happens at a shooting parameter s,
and the second transition is deterministic as explained in the previous trajectory.

A — 2 — A, dark yellow. This trajectory is entirely deterministic, and the shooting parameter
is 75(0) as usual because we are starting in region A. The integration switches from A
to 2 when the boundary (5.30) in the stretch plane is reached; and back to A when the
hard-core stresses become positive. Both transitions are continuous. A transition from A
to 1 is also possible and obeys the same reasoning.

The dark green trajectory is trivial because it stays in region A for the whole integration. More
paths are possible and have been worked out, but the presented ones were most commonly met
in the numerical investigations.

5.5.4. Analysis of theoretically generated shapes with Hookean elasticity

With the newly developed shape equations we can compute deflated shapes of capsules obeying
our custom elasticity model for bead-spring networks with hard cores. Starting with a Laplace-
Young shape with g = 0.25 and pp = 2 (in the reduced units of tab. 5.1), the pressure is lowered
from p = pg to p = 0.1py. Figure 5.14 shows the length of the wrinkled region as a function of
the reduced volume for three such series of deflated shapes with different elastic parameters.
The curves without hard-core interactions (red and blue, with L = 0) show that the onset of
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wrinkling occurs earlier for higher elastic moduli. If hard-core interactions are included and
occur already for small compressions (green curve, L = 0.95), the wrinkling sets in early, even
though the elastic modulus is small.

Thus, if a shape analysis that judges only L,, and uses the usual Hookean elasticity without
hard cores is applied to shapes that obey our custom elasticity model, it overestimates the
elastic modulus considerably. Figure 5.14 illustrates this as the green line with Esp = 5 and
L = 0.95 is much closer to the red line with EQD = 10 than to the blue line with EQD =35.

Our shape analysis does not rely on a measurement of L,,, but analyses the contour of the
deflated shell. However, the wrinkled region is a very characteristic feature of the deflated shape,
and has a large impact on the contour. In the wrinkled region, the contour typically appears
rather straight and is relatively little curved [153]. We therefore expect similar results when
our shape fitting procedure uses Hookean elasticity to fit deflated shapes in which hard-core
interactions are important.

This hypothesis is tested in a fashion similar to that of section 5.3: Series of deflated shapes are
computed using the modified shape equations, each theoretically generated shape is converted
into a set of sampling points and fed to the usual shape analysis algorithm which uses Hookean
elasticity without hard cores. As shown in fig. 5.15, the fitted area compression modulus
Ksp can differ substantially from the value f(orig that has been used for the theoretical shape
generation.

The analysis is concentrated to area compression moduli of Korig =5 to 20, hard-core lengths
L = 0.95 to 0.99 and Poisson ratio v = 1/3 (which is fixed to this value also in the Hookean fits).
When small hard-core lengths are combined with large area compression moduli, e.g. L = 0.95
with Korig = 20, the hard-core interactions have no influence on the shape, because it starts to
wrinkle before the hard-core domains are reached. The numerical integration then takes a path
A — AW — A and produces a shape that can also be produced by the Hookean shape equations
without hard-core interactions. This shape can be perfectly fitted with Hookean elasticity and
reproduces the correct area compression modulus, and therefore these cases are omitted from
fig. 5.15. There are some deflation series that are very close to the limit where the hard-core
interactions cease to influence the shape (see L = 0.96 and IN{orig = 10 in fig. 5.15, for example),
where there are only small deviations between fit result and original modulus.

In deflation series where the hard-core interactions profoundly influence the shape, the course
of the fitted area compression modulus is close to our expectations. For small deformations,
where the hard cores are not yet in contact, the original value is reproduced, Kop = Korig.
When the hard cores come into contact (which also triggers wrinkling), the fitted modulus can
grow much larger than the original value. The peculiar dip in Ksp shortly before the onset of
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Figure 5.15.: Fit results for theoretically generated capsule shapes of various area compression moduli
Korig and hard-core lengths L. The fits are~perf0rmed using the usual Hookean elasticity (without
hard cores) and come to differing results Kop for the fitted area compression modulus. In both

shape generation and fits, the Poisson ratio is fixed to v = 1/3.

wrinkling is an artifact of holding ¥ = 1/3 constant in the fits. Further tests with free v showed
that these points can also be fitted with Kop near f(orig and v dropping to negative values; a
result which also lacks an intuitive explanation.

After the onset of wrinkling, the fitted values of Kop are on a plateau and increase only
slightly for increasing deflation. The plateau value is independent of the original value f(orig,
but it depends strongly on the hard-core length L: The larger L, the larger is the plateau value.
Consequently, the fitted Kop can jump quite high at the onset of wrinkling if Korig is small
and L is large; in fig. 5.15 it jumps to more than its six-fold value for Rorig =5and L =0.99.

It was the aim of the newly developed elasticity model to explain the HFBII fit results (see
fig. 5.9), to produce the same “signature” in the plots of fitted compression modulus versus
reduced volume. Comparing fig. 5.15 to fig. 5.9, it becomes clear that this has only been
achieved in part. It is possible to explain the hard jump at the onset of wrinkling, but not the
initial increase of the compression modulus, nor its final decrease as obtained in the HFBII fits.

The initial increase of the compression modulus might be obtained if non-linear spring inter-
actions are included in the elasticity model (springs that get stiffer for proceeding compression).
The decrease after the jump, on the other hand, might be considered as a decreasing hard-core
length L, because for smaller L, the plateau value is smaller. This could be modelled by
“hard” cores which actually can be slightly compressed. Replacing the hard-core interactions by
spring-interactions with relatively large spring constant could achieve this.

In summary, there are several indicators that the proposed elastic model is too “hard” in
distinguishing easily compressible domains and purely incompressible ones. A softer transition
might produce results closer to the HFBII elasticity, modelled for example by springs whose
spring constant slightly increases with compression, and then sharply increases to a large but
finite hard-core spring constant. Such a model could even be more tractable on the theoretical
part because the resulting elastic law might come out as a bijective mapping between stretches
and stresses if the spring constant is a continuous function of the compression. Then the
tedious case-by-case analysis given above could be spared. In addition, the proposed model is
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theoretically appealing because it can be easily verified by simulating the network of beads and
springs directly. This gives a nice project for future research activities on this field.
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Chapter 6

Conclusions and outlook

Published material — The following text contains parts of the conclusions from all
of the author’s first-authored publications [152], © 2011 by the American Physical
Society, [154], with permission of Langmuir, (¢) 2013 American Chemical Society, [155],
© 2014 by IOPscience, [156], with kind permission of The European Physical Journal
(EPJ), and [157], reproduced by permission of The Royal Society of Chemistry.

In this thesis, several new research results on the deformation of elastic shells have been
reported. They are grouped in three divisions: The buckling transitions of deflated spherical
shells, wrinkling and buckling of plates and shallow shells under in-plane loads and the deflation
of capsules that are attached to a capillary. Special emphasis was put on the applications of
the theoretical results in shape analyses to determine the elastic moduli of shells from simple
experimental observations.

6.1. Buckling transitions of spherical shells

We first considered spherical shells that are deflated, and completed the theoretical understanding
of the generic deformation behaviour. The deflation starts with a spherical shape for small
volume changes, and jumps to an axisymmetric buckled shape in a primary buckling transition.
If the shell is thick enough, it remains axisymmetric, and deflates completely until opposite
sides are in contact. Thin shells, however, undergo a secondary buckling transition in which
the dimple acquires a polygonal shape and loses its axisymmetry.

Two approaches to compute buckled axisymmetric shapes have been introduced in chapter
2. The first approach is based on non-linear shell theory with Hookean elasticity, i.e. with
a quadratic strain-energy density function. Equilibrium equations have been derived by a
variational calculation, and they coincide with the force and moment equilibrium conditions
found in the literature. It is beneficial to have an energy functional at hand from which
the shape equations follow by minimisation, because it provides a least energy criterion for
competing shapes to decide which one is the physical ground state. A special case, where
opposite sides of a strongly deflated shell are in contact, has also been considered. The second
approach is an analytical model proposed by Pogorelov, which is specially designed for buckled
shapes with a finite dimple. It is based on the observation that the buckled shape is close to an
isometric deformation of the sphere, with a mirror-inverted spherical cap. We have seen that
this approximate model agrees very well with the numerical solutions of the non-linear shape
equations.
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The first buckling, from a spherical to an axisymmetric indented shape, has been investigated
under three different load cases, see section 2.5. We have seen that the stability of buckled
shapes (with respect to further growth of the dimple) depends decisively on the load case.

When a simple mechanical pressure difference between the inside and outside is prescribed,
the shell collapses completely after the buckling has set in, so that opposite sides of the shell
are in contact. In the shell theory literature, this phenomenon is termed Sna})—through buckling.
The onset of buckling is somewhere between the critical pressure p. ~ —Eg * and the classical
buckling pressure pep, ~ —E‘lB/ 2, see egs. (2.58) and (2.46), where the imperfections inherent
to real shells prevent the theoretical limit of p¢, to be reached in reality. The dimensionless
bending stiffness that occurs in these relations is proportional to the ratio of bending stiffness
and surface Young modulus, Ep = Ep/FEspR2, see eq. (2.22).

On the other hand, when the system is constructed so that the shell must have a given
volume, the first stable shapes after buckling have a small, but finite dimple. Buckling then
occurs between the critical volume difference AVig/Vy ~ E%/ ® and the classical threshold
AV [V ~ E]lg/ % see eqs. (2.50) and (2.49), respectively. Between these thresholds, the buckled
shape is the energetically favourable ground state, and the spherical shape is metastable; the
metastability is lost at AV, where the spherical shape becomes unstable.

In most experiments, there will be a feedback between the deformation and the pressure
difference exerted on the shell, for example if the shell encloses a gas and for osmotic pressures.
The feedback by an internal medium stops the snap-through buckling known from pressure
control at a finite volume, thus stabilising buckled shapes with medium volume. Our findings
explain why these are the shapes that are usually observed in osmosis driven microcapsule
experiments, although they are unstable from the simple viewpoint of pressure control. This
requires, however, that the initial osmolyte concentration in the capsule interior is sufficiently
large. Buckling under osmotic pressure is indeed intermediate between buckling under volume
control and buckling under mechanical pressure: In the limit of a small number Nj, of osmotically
active molecules in the capsule interior, buckling under mechanical pressure control is recovered;
for increasing Nj,, the behaviour effectively approaches buckling under volume control. The
stabilising effect of an internal medium, such as an enclosed gas or osmotically active particles,
is quite generic as long as the force density exerted on the shell is still a normal pressure that is
spatially constant. We checked that the same qualitative results could be obtained by including
a compressible fluid in the shell, with a free energy contribution F ~ (V — V)2,

Two shape analyses for axisymmetric buckled shells have been developed. In section 2.4.2
we saw that the curvature at the dimple edge depends strongly on the dimensionless bendin%
stiffness, with smaller bending stiffnesses leading to sharper bends. A power law Keqge ~ E’}B,/
describes this dependence for sufficiently small bending stiffnesses and sufficiently small volume
changes. This relation can be used to extract the reduced bending stiffness of a shell by
analysing an image of its buckled shape. An experimental verification of this method has
recently been done by Jose et al. [71].

The second shape analysis, see section 2.5.5, is intended to use spherical microcapsules as
osmotic pressure sensors. An accurate analytic formula (2.69) has been derived that allows to
deduce the osmotic pressure from the observed volume of buckled capsules when their elastic
moduli are known. This relation can also be used to obtain the elastic moduli of a capsule
from the measured volume if the external osmotic pressure is known from an independent
measurement. When this shape analysis is combined with the first one, the absolute values
of the surface Young modulus and bending stiffness can be determined (and not only the
ratio between them). We applied the second shape analysis to published experimental data on
polyelectrolyte capsules [51]. Our findings are also relevant for stabilising buckled shapes of a
desired volume in applications by choosing the osmolyte concentrations according to eq. (2.71).
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In chapter 4, we explained the mechanism behind the secondary buckling transition where the
dimple loses its axisymmetry. So far, the secondary buckling transition has only been observed
in experiments or simulations but lacked a physical explanation. The key ingredient underlying
the secondary buckling is a locally compressive hoop stress, with a characteristic negative peak
near the edge of the axisymmetric dimple. In a quantitative analysis, we approximated the
profile of the compressive hoop stress 7, by a parabola. This led to a derivation of a critical
compressive stress, the “curved plate criterion” in the auxiliary chapter 3. This threshold is
quite analogous to the critical force in the Euler buckling of bars: When the critical stress
is reached, the membrane cannot support the compression anymore and buckles out of its
symmetric shape in order to release the compressive stress. Our analysis also showed that
the secondary buckling transition is continuous as opposed to the primary buckling transition,
which is discontinuous.

We found the critical volume reduction at the onset of secondary buckling by applying
the curved plate criterion to solutions of the shape equations and the Pogorelov model of
axisymmetric buckled shapes. The results have been verified by a linear stability analysis in
the framework of non-linear DMV shell theory, where the full geometry and stress state has
been taken into account. All three approaches produce consistent results for the critical volume
reduction of secondary buckling, which is proportional to AVa,q/Vo ~ Epg. This result is also
in agreement with existing simulation data in the literature.

Furthermore, we have obtained results for the wrinkle number n at the onset of secondary
buckling and beyond. Scaling arguments give n ~ E~;1/4AV1/4, see eq. (4.24), for the number
of wrinkles. At the onset of secondary buckling, where AVo,q ~ EB, the wrinkle number
becomes approximately independent of the reduced bending stiffness in accordance with our
more detailed analysis, see fig. 4.7. Beyond the onset of secondary buckling, the wrinkle number
increases like n ~ AV1/* in accordance with numerical simulations in the literature. Small
discrepancies between our three approaches concerning the number of wrinkles at the onset of
secondary buckling show that the number is very sensitive to the “ingredients” of the theoretical
analysis.

Finally, a phase diagram for deflated spherical shells under volume control has been created,
see fig. 4.5. It presents the stability regimes of all three relevant shapes (spherical, axisymmetric
buckled, polygonal buckled), which are separated by the thresholds AVig, AV, and AVayg
summarised above. The phase diagram is certainly one of the central results of this thesis.

6.2. Wrinkling and buckling of shallow shells

The aim of chapter 3 was to establish a secondary buckling criterion based on our observation
that axisymmetric buckled shapes have a negative peak in the hoop stress in the region where
wrinkles appear according to numerical simulations. In the theoretical framework of small-strain
elasticity theory for plates and shallow shells, stability equations have been derived from an
energy functional by considering small normal deflections of the reference state. Stability
equations (not to be confused with equilibrium equations) can predict emerging buckling
patterns. The critical load at which the amplitude of the buckling pattern begins to grow is
an important quantity that is to be determined, as well as the geometrical properties of the
pattern like its wavelength.

A rectangular plate with simply supported edges served as a first example and reference
case. It is compressed in z- direction and stretched in y-direction by spatially constant stresses
7 < 0 and 7,. We used the stability equations to calculate the critical compressive stress
Toe~ —Ep/ )\z at which the first mode becomes unstable. This unstable mode is a sinusoidal
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pattern with wavelength A., which is of the order of the plate width A, ~ L, for vanishing
lateral tension 7, = 0, or determined by Ac ~ (EpL?/7,)'/* if the lateral tension 7, is large,
see eq. (3.65). The first case, with relatively large wavelength, is traditionally called buckling,
and the second case, where the wavelength is much shorter, wrinkling.

The buckling problem of a rectangular plate under compression is, of course not new, and has
been investigated extensively before. However, the phenomena of buckling and wrinkling have
mostly been considered separately and with different tools. Buckling is usually investigated as
done here, using stability equations to calculate a critical stress and the wavelength, see for
example Timoshenko’s books [124,125]. Wrinkling, on the other hand, is typically investigated
using energy arguments, in which an elastic energy is minimised with respect to the wrinkle
wavelength [26]. A threshold for the compressive stress cannot be calculated in this framework,
instead, it is assumed that the system is well beyond this threshold. Some authors refer to
these different approaches as the NT (near threshold) analysis for buckling and the FFT (far
from threshold) analysis for wrinkling [34]. Here, however, we have found a model system in
which a crossover from buckling to wrinkling can be observed, all in a unified calculation based
on the stability equations. The essential difference between buckling and wrinkling is not that
buckling is near the onset and wrinkling far beyond the onset, it is the value of the lateral
tension 7, which is decisive. Wrinkling is obtained for 7, > FEp/L%;, where Leg is the length of
the wrinkles. We were able to find these results because we imagined to control the compression
7, and lateral tension 7, independently from each other. In typical experiments with wrinkled
thin sheets, however, there is only one parameter, for example the shear angle when a sheet is
sheared. Then, 7, and 7, are not independent, but are ramped up simultaneously by increasing
the single deformation parameter. The analysis of such setups offers thus only a limited view
on the scaling laws that govern buckling and wrinkling.

As a second example problem, we studied the buckling and wrinkling of an infinite plate
under localised compression in form of a parabolic stress profile 7, (y). This system is already
close to a portion of an axisymmetric buckled shell, where a negative peak in the hoop stress
T,(S0) occurs that can be approximated by a parabola around its minimum. We have seen, for
example in fig. 3.10, that the results for the critical compression 7, . and critical wavelength A.
can be mapped onto the previous results for fixed plate edges by choosing an effective plate
width Leg that roughly coincides with the length of the wrinkles.

Finally, an initial small curvature in y-direction was incorporated into the model. The
curvature k,(y) was chosen to increase linearly with y, because the same behaviour is observed
for the meridional curvature of axisymmetric buckled shapes in the region where the secondary
buckling starts. Our analysis for 7, = 0 showed that the curvature has an impact on the
numerical prefactors in the results for 7, . and .. With egs. (3.57) and (3.58), the “curved
plate criterion” was written down, to be used in the analysis of the secondary buckling of
spherical shells.

6.3. Deflation of capsules attached to a capillary

In the last part of this thesis, chapter 5, an elastometry method for capsules prepared from
pendant drops or rising bubbles has been developed. The shape equations for shells of revolution
as introduced for spherical shells can also be used to describe capsules with a reference
configuration in form of a droplet shape, which is a solution of the Laplace-Young equation. For
application to pendant capsules, the shape equations must be modified by setting the bending
stiffness to zero (because the experimentally investigated capsules are typically very thin) and to
introduce a pseudo-surface around which the real midsurface wrinkles in regions of compressive
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hoop stress. This model describes the contours of deflated experimental polysiloxane capsules
and hydrophobin coated bubbles accurately. A separate energy consideration gave a relation
between the wavelength of the wrinkles and the bending stiffness of the capsule membrane.

A three step fitting procedure allows to completely characterise the mechanical properties of
a capsule attached to a capillary: First, the undeformed shape is fitted with the Laplace-Young
equation to obtain the interfacial tension . Then, a series of deflated shapes is fitted using our
shape equations, which gives the Poisson ratio v and area compression modulus Kop of the
capsule membrane. Finally, the bending stiffness Fg can be determined from a measurement of
the wrinkle wavelength.

At first, the fitting procedure has been tested by fitting theoretically generated deflated
shapes in order to check if the original moduli are reproduced by the fit. The fitting procedure
works well as long as the noise in the set of sampling points, which is present in real applications
due to the experimental images and the contour detection algorithm, is substantially smaller
than the deformation. For comparison, we also analysed the theoretically generated shapes
by fitting the Laplace-Young equation to them and calculating the Gibbs elasticity modulus
from the obtained apparent interfacial tension. Surprisingly, the Laplace-Young analysis fails
to produce reasonable results for the elastic modulus, even for very small deformations. This
result is very important because this technique has been widely used by researchers working
with pendant capsules [1,68,119].

Then, the procedure has been applied to two different systems of capsules, pendant poly-
siloxane (OTS) capsules and rising bubbles coated with the protein hydrophobin (HFBII).
Applying this method to an OTS capsules gave reasonable values for all three elastic constants:
Ksp ~ 500mN/m, v ~ 0.6 and Ep ~ 1.2 - 107 Nm for the small deformation behaviour.
Furthermore, the analysed capsule shows softening or creep with decreasing volume, which can
also be observed for the hydrophobin capsule (see figs. 5.7 and 5.9).

For the analysed HFBII capsule, the area compression modulus initially grows upon deflation,
Kop = 160mN/m to 500 mN/m if we assume v = 0.6. At the onset of wrinkling, it jumps to
2000 mN/m because compression of the rigid protein core sets in (see fig. 5.9). Obviously, this
complex behaviour cannot be explained by simple Hookean elasticity, and our measurement
suggests that an appropriate elasticity model should include an immense strain stiffening upon
compression.

We started to develop such a custom elasticity model for hydrophobin layers in the final
section 5.5. This model is based on the microscopic view of particles with hard cores arranged
in a two-dimensional lattice, crosslinked with soft compressible springs. While the springs
contribute a Hookean elasticity to the network as used in the usual shape equations, the
hard-core interactions impose constraints on the admissible strains. Hard-core contributions to
the stresses enforce these constraints. An analysis of the shape equations constructed around
this elasticity model revealed that wrinkling can be triggered by the onset of the hard-core
interactions. This coincides with the observation that the analysed HFBII capsule starts to
wrinkle after the measured jump in the area compression modulus.

As a further test whether the proposed elasticity model is a good approach to hydrophobin
elasticity, we generated deflated shapes obeying our custom elasticity model and fitted them
using the usual shape equations with Hookean elasticity without hard-core interactions. The
signature obtained in these fits is not exactly the same as observed for HFBII capsules. Our
elasticity model can explain the jump in the area compression modulus when the hard cores
get in contact and trigger wrinkling. However, the other remarkable features of the apparent
HFBII elasticity, namely the initial increase and final decrease of the area compression modulus,
are not reproduced.
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6.4. Outlook

During the research for this dissertation, new questions arose showing possible paths that could
be worth an investigation. The following short discussion of open questions shall conclude this
thesis.

Concerning the stability of buckled shapes after the first buckling transition of spherical
shells, our investigation has drawn a fairly complete picture for volume control, pressure control
and osmosis. However, even more experimental situations are possible which give rise to a
feedback. When the shell material chemically reacts with an enclosed substance, there could
be a feedback between the volume (or internal concentration of the substance) and the elastic
moduli of the membrane. Deflation mechanisms such as slowly dissolving the interior liquid of
the capsule by the external liquid [32,113,150] will involve a feedback if the exterior volume
is not much larger than the internal capsule volume. Such feedbacks can either stabilise or
destabilise non-collapsed buckled shapes. If reducing the capsule volume increases the internal
pressure or stiffens the capsule material, non-collapsed shapes will be stabilised. However, if it
is the other way around, complete collapse upon buckling will be the generic behaviour.

There are also open questions on the secondary buckling of spherical shells, which has been
investigated only for volume control in this thesis. For pressure control and shapes with opposite
sides in contact, the secondary buckling may also occur, but in modified form. Furthermore,
our theory is only valid for shapes close to axisymmetry. Wrinkled shapes beyond the onset
of secondary buckling cannot be calculated so far (except by numerical simulations). Thus,
quantitative theoretical results for the evolution of the wrinkle amplitude and wrinkle number
are still missing.

The analysis of pendant OTS and rising HFBII capsules has proved the concept of our
elastometry method, which could be added to the features of pendant drop tensiometers in the
future. The method is a convenient tool for physical chemists who seek to characterise the
elastic properties of synthesised membranes. It can reveal changes in elastic constants with
decreasing volume that are not accessible by other methods. This is an important feature
for experimenters who try to design stable membranes that can be reversibly deformed. An
immense improvement of the method could be achieved by a simultaneous measurement of the
pressure inside the capsule, which should be possible with most commercially available pendant
drop tensiometers as they already have built-in pressure sensors. This would eliminate one of
the fit parameters and lead to a preciser determination of the area compression modulus.
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Appendix A

Shape equations for shells of revolution

A.1. Derivation of the equilibrium equations

In section 2.2.3, the calculus of variations to derive the equilibrium equations from an energy
functional was sketched. Between (2.12) and (2.15) lies a calculation in which the variations of
the strains must be expressed in terms of the normal and tangential displacements du and dv.
To this end, we write the strains in terms of r, z and 1 by virtue of the geometric relations
introduced in section 2.2.1,

es =As — 1 =/r2+ 22 -1, ep=Ap—1=1/rog—1, (A1)
Ky = Askis — ksy = V' — kg, Ky = Aok — Kpy = SINY /10 — Ky,

where a prime denotes the derivative d/dsg = A\s d/ds. The variations of the strains can thus
be reduced to the variations of r, z and ¢ (and their derivatives), which are related by (2.11)
to the variations du and dv,

or = sin(¢) du + cos(¢) v and  §z = — cos(y)) du + sin(v) dv (A.2)

or’ = cos(¥)Y' du + sin(¢) du’ — sin(¢)y’ dv + cos(v) dv’ (A.3)
02" = sin()y’ du — cos(v) du’ + cos()y’ dv + sin(v)) 6o’ .
so that we obtain for the stretching strains from (A.1)
des = 0hg = (r' 6r' + 2" 62") /As = cos(vp) 67’ + sin(vp) 62" = ¢'du + §v’
5 i A4
fep = oA, = L =Y 5, Y s, (A-4)
To To To
For the bending strains, we need the variation of 1, which can be obtained from
r’ = \scostp
= 0r' = cos(v)) G5 — Assin(vh) 61
_cos()ONs —or'  —ou' +Y'ov 6
e ey W WML (4.5)
/ ! /
= 0K, = (— i“ + mév) and 0K, = S5V (— ‘;“ + nsév) . (A.6)
s To s

Now we can expand (2.12) from the main text using the constitutive equations to replace the
derivatives of the energy density wg and (A.4) and (A.6) to replace the variations of the strains,

L
_ 0 owg owg owg owg
(5U—/0 dsg 27r7"0{ de. des + De, de, + K. 0K, + @ 0K, }
)‘LPTS )\sTga )\gpms )\smg,
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Lo
= / dsg 271'{7’7'3 (¢ du+ 0v") + ATy (sin(ep) du + cos(¢)) dv)
0
+ 71 (—0U' [ As + K5 00) + Ay cos ) (—0u' /A + ks O0) }
Lo Lo
= 2mrmg (—0u’ /X + ks OV) ’ + / dsg 27r{5u (P74 AsTp sinep] + 60’ [r7]
0 0

+ 0u'[ (rms)' /A — my cos | + 6v [ ATy cos Y —(rmy) ks + Asmpris cos 1) | }

=-Tq = AshKsTq

L() LO

= 2mrmg (—0u' /A + ks 0V) ‘ — 27rq 5u‘ + 27T, 51}‘
0 0

Lo 1d(r cos 1d(rrs
+/0 dsg 2mrAs {5u {Tsfis + Tyl + - SSQ)} s { Tﬂ)n’ ¥ Fag — - (ds( )} } .

(A7)

Lo
0

In these steps, integration by parts has been used, and the transversal shear stress ¢ was defined
by rq = my cosy) — d(rmg)/ds. For closed shells, the boundary terms of the integration by
parts vanish because r(0) = r(Lg) = 0; in other cases, these boundary terms will provide
boundary conditions, depending on the allowed variations at the boundaries.

In the main text we also stated that the variation of the load potential P = —pV for a
uniform normal pressure is (2.13), which will be derived now. We have

Lo Lo
5P = (5/ dso { — prr®2'} = / dso (—pm){2r2’ or + 1% 62"}
0 0

2 Lo ko ! /
= —pnr 52‘0 +/ dso (—pm){2r2' or — 211" 62}
0

Lo Lo
= dso (=2pmr) {2’ or — ' 62} = / dso { — 2mrAspou}, (A.8)
0 0

which proves (2.13).

A more general load on a shell is described by (spatially varying) force densities p,(s) and
ps(s) in normal and meridional direction, respectively. The hydrostatic case discussed above
is the special case p,(s) = p and ps(s) = 0. A tangential force density ps can be exerted for
example by hydrodynamic flow or by friction with solids like the elastic capsule membrane of the
opposite side in self-contacting shapes. We cannot consider a tangential force in circumferential
direction because it contradicts our assumption of torsionless, axisymmetric deformation. In the
general case, a load potential P may not exist. Then, the derivation of equilibrium equations
cannot be based on the minimisation of an energy functional, but on the principle of virtual
work, which leads to the same mathematical formulation. The variation of the load potential is
replaced by

Lo

0P = — / dA {p, du+ psdv} = — dsg 2mrAg {pn 0u + ps dv}, (A.9)
0

the work done by the external load and the virtual displacements du and dv.

In any case, the equilibrium equations are obtained from (U + P) = 0. In the hydrostatic
case, adding (A.7) and (A.8) gives (2.15) in the main text and the equilibrium equations (2.16).
In the more general case, the ps appears in the second of the equilibrium equations, which
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represents the equilibrium in meridional direction. The general equilibrium equations are then

1d(rq)
0= shs - — Pn
Tk +T@/<;¢+r ds P
1d
0= COS’L/)TLP + Ksq — —ﬂ — Ds (AlO)
r ds
_ 1d(rms) cos®
O—q—i—; T e

A.2. Limits of the shape equations at the poles

In this section we will obtain the simplified expressions (2.19) which are necessary to evaluate
the right-hand side of the shape equations at so = 0 and sy = Lo, i.e. at the poles of the
spherical shell.

We start with the circumferential stretch, which is defined as A\, = r /ro with r =179 =0 at
so = 0. With L’Ho6pital’s rule we obtain for the limit

r'(s0) lim As COS Y _

s0—0Tg  s0—0 7‘6(30) s0—0 cos g

As(0), (A.11)

because cos(0) = costhp(0) = 1; the same calculation holds for sy — Lg. The strains and
stresses are thus isotropic at the poles,
Eoyp 1 Esp

TS:TAP:l_V/\fS()\Sfl) and A(e:A¢:m~ (A'12)

With +(0) = 0, the circumferential curvature £, = sin/r is also ill-defined, which can be
evaluated analytically as

sing _ o Akscosy o (A.13)

Ko(0) = lim im
#(0) s0—0 T s0—0  Agcosv

Thus, the bending strains and moments are also isotropic at the poles,

mS K/So

mszmw:EB(1+V) m )\s.

()\SI{S — HSO) and K =Ky =

1

" (A.14)

The right hand sides of 7/, 2’ and ¢’ of the shape equations (2.17) can be evaluated with these
results at the poles. It remains to simplify the right-hand sides of 7, m/’ and ¢’. For 7/ and
m/, we use a simple symmetry argument. A meridian on the shell is described by a coordinate
range sg € [0, Lg]. We can extend this meridian to a full circle by choosing so € [—Lg, Lo]. The
functions mg and 74 are continuous and continuously differentiable on the extended meridian
as they are solutions of a first-order system of differential equations. Moreover, due to the
axisymmetry, they are symmetric with reference to so = 0, i.e. they are either even functions,
like z(s¢), or odd functions, like r(sg). Since the function values 7,(0) and m,(0) are, in general,
not zero at the poles, these functions must be even, and so we have 7.(0) = m}(0) = 0, as in
(2.19) in the main text.

The transverse shear stress vanishes at the poles, ¢(0) = 0, because otherwise the term ¢/r
in the last of the shape equations (2.17) would show a real divergence; and apart from that it
can be shown by force balances that a nonzero shear stress at the poles can only be balanced
by external point forces [151]. So, ¢(sp) can be an odd function with ¢’(0) # 0 . This limit can
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be evaluated directly from the last of the shape equations by using L’Hopital’s rule on the term
q/r,

¢ (0) = lim A4 (—IisTs — KTy — gcosw +p)

so—0
= 2,(0) (—2@(0)75(0) +p —costh(0) lim, z>
(0 (2007 0) +p— 1)
= q0)=20) (-x 0 (0) + 5) (A.15)

which is the remaining term of (2.19).
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Minimisation of Pogorelov’s energy functional

The analytic solution of Pogorelov’s variational problem proceeds as follows. The coordinate
range [0,00) is divided into two parts I; = [0,0) and Iy = [0,00). On the interval I, the
function w is of the order of unity (since its starting value is 1) and it shall have a root at
50 = 0. From there on, w is assumed to stay small, that is, we can neglect w? as compared to
w on Iy, which will simplify the constraint (2.40). On Iy, Pogorelov argues that w’ should be
approximately constant because the curvature x, oc w’ has a maximum at the dimple edge and
therefore varies only little in its vicinity. With this simplification and the boundary conditions
(2.41) we have

’U_)l(go) = (§0 — 0’)/0’, (Bl)

and the constraint (2.40) and boundary conditions further dictate

_ 1 _ 9 1 _ 3 O
=——(50 — — ——= (50 — - B.2
u1(50) 20(50 o) 62 (50 —0)” + 3 (B.2)
as the solution on I;. On I, the constraint simplifies to we = —uh, which can be inserted

directly into the energy functional (2.39). The complete functional on I; and I reduces with
these two simplifications to

T fem 2 X 2, 2 1 17 3 X 2 2
J :/ dso {0 +ui} —|—/ dso {wf +u3} ==+ —0 —|—/ dso {uy® +u3}. (B.3)
0 - o 315 -

With the ansatz on Iy, the functions @; and w; are fixed by (B.1) and (B.2), respectively. A
variation is only possible by varying the parameter o. On I, the function uy can be subjected to
arbitrary variations which respect the boundary conditions. At sy = o, the boundary condition
is given by the continuity condition uz(c) = u1(c) = ¢/3. To find the minimum of (B.3), we
first keep o fixed and variate with respect to us. The solution will depend still on o, and we
then minimise with respect to o.

Requiring a vanishing variation 0.J[us] = 0 results in the differential equation

uy" + e = 0. (B.4)
It can be solved with an exponential ansatz, and the solution which conforms the boundary
conditions is given by

’ELQ(E()) = 7337@ (wlewl(goia) + WQ6w2(§070)) (B5)

with w; = —(1 —4)/v/2 and wy = —(1 +4)/v/2. From the constraint wy, = —u’, it follows
immediately that

Wy = —— (_ew1(§0—0) + ew2(§0—‘7)> . (BG)
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APPENDIX B. MINIMISATION OF POGORELOV’S ENERGY FUNCTIONAL

With egs. (B.1), (B.2), (B.5) and (B.6), the complete solution is determined,

u1(50), 0<350< L 01(50), 0<50<
a(s) = § 0) OSf0o<o g gy = { D) OsSo<e gy
uz(50), 50>0 wa(50), S0 >0
Evaluating the functional J for this solution, we get
1 V2 17
J(o)= =4+ 0>+ —o° B.
@) =557 T 3157 (B8)

We can now perform the final minimisation with respect to o, which gives a numerical value of

Omin = 1.24667 and  Jyin = 1.15092. (B.9)
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Appendix C

Stability equations of axisymmetric shallow shells

C.1. Derivation of the stability equations

In this appendix, the derivation of the Cartesian stability equations of section 3.2.5 is transferred
to axisymmetric shells. The procedure is analogous, but mathematically more involved.

The reference shape for our energy considerations is the axisymmetric buckled shape, charac-
terised by its geometry (the functions r, z, 1, ks and &, see section 2.2) and its stress state
(Ts, T, ms and my,). This shape is perturbed by displacement fields u(s, ¢), v(s, ¢) and w(s, ¢)
in meridional, circumferential and normal direction, respectively. The displacements induce
strains and bending strains according to the strain-displacement relations of the DMV theory,
which are given in ref. [96] in general coordinates in terms of covariant derivatives. They can
be specialised to axisymmetric surfaces, parametrised by s and ¢ as in section 2.2.1, by going
through the covariant derivatives, fundamental tensors and Christoffel symbols. This results in

1
€ = Ot — Kew + 5(88111)2, K, = 0*w = D,,w,
cos Y 1 1 9 cos Y 1,4
E‘P = . u—+ ;@,U — K}SDU) + ﬁ(@,w) s K‘P = , é?sw —+ ﬁaww = Dtptpw7

ﬁ#@wv = Dy w,

(C.1)
which has been cross-checked with the general linear strains given in ref. [135]. Here, the differ-
ential operators D, Dy, and D, are defined to shorten the notation. These simplified strains
and bending strains of the DMV theory are justified if the displacements are predominantly
normal to the surface, i.e. if w is larger than u and v.

The energy change due to the strains is

— 1 (iawu — coswv + 0sv + 1(6510)(8@10)) , Kgp = %Bsaww _

e -
9 T r

AW - /dA {wstretch + Wpend + wext} (C2)
with the energy densities
1 EH
Wstretch = Ts€s + Tp€p + 51_752 (53 + 21/555@ + f‘:i + 2(1 — V)Eip)

1
Woend = Ms Ky +my Ky + S Ep (K7 +2vK K, +2(1 - v)K?,) (C.3)

Wext = PW.

When integration by parts is used to rearrange the energy functional we must take the
Jacobian determinant into account, dA = r dsdp. As a general rule for the integration by parts
one obtains [4]

[-@9aa=- [ Lo gaa ()
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APPENDIX C. STABILITY EQUATIONS OF AXISYMMETRIC SHALLOW SHELLS

where boundary terms are omitted.
Collecting the first order terms (in w, v, w) and requiring them to vanish for arbitrary
displacement fields reproduces the equilibrium equations of the DMV theory,
o(rr, 10(r a(rm
(855) =Ty Coswa KsTs + KoTo + ; ( q) =D rq = — ( S) — My COS’(/}' (05)

Os 0s

They coincide with the equilibrium equations (2.16) of the nonlinear theory of shells of revolution,
except that the effect of the transverse shearing force ¢ is neglected in the meridional force
balance, which is typical for the DMV theory [96].

The main concern of this appendix is the second order energy change, from which the stability
equations are derived. This functional is given by

AW = / dA {;Ts(aswf - 12

2 ¥y2

(G@w)z

1 FEsp B 9 B cos Y % B
+ 31,2 (0su — ksw)* + 2v(0su — Ksw) ( U + . KW
5 2 5 ,  (C6)
T T 2 T T

1
+§EB [(Dssw)2 + 2v(Dgsw)(Dppw) + (waw>2 +2(1 - V)(wa)ﬂ } .
Just as in the derivation of the stability equations in Cartesian coordinates in section 3.2.5, this
functional must be symmetrised and written in the form

AW = /dA {(u,v,w)fl(u,v,w)T}. (C.7)

The symmetrisation involves extensive use of integration by parts (C.4). As a simplification,
we assume that the angle ¢ is varying slowly (in comparison to u, v, w and r), so that its
derivative 051 = 0 can be neglected. This limits our theory to the case where the typical length
scale of the non-axisymmetric perturbation is much smaller than the radii of curvature of the
axisymmetric buckled shape.

Following the rationale of section 3.2.5, the critical point for the loss of stability of the
axisymmetric shape is when the lowest eigenvalue of H crosses zero. The three equations
0=H (u,v,w)T can be rearranged with a lengthy calculation into the form

0= EA?w — 1,Dsew — ToDpow — 557'8(1) - HS(,T;D

(1) 1
_ 18(1"7'5 ) B COS¢T(1) N 1878(90)

0 ¢ r Op (C.8)

r 0s r

0= 187’5,1) 1 3(7‘273(30))

r Op r2  0Os

Here, the Laplacian A = Dy, 4+ Dy, was introduced. The additional tensions Ti(l) appearing in

these stability equations, which are functions the linearised versions 651) of the strains (C.1),
are defined as

) _ _E

E E
M = %(521) + Vfg(al))’ T:gsla) _ b 621’)’ ng eul (55,1) + Vggl))’
1-v 1+v 1—-v C.9)
) 1 _ 1 (0pu cosy 1) _ cosv O,v (C.
gy’ = 0su — Ksw, Esg =5 | — ——v+ dsv |, €p) = — U+ —— — Kpw.
2 r T r r
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C.2. DISCRETISATION

The last two equations of (C.8) are the in-plane equilibrium equations of the general linear

membrane theory of shells of revolution [135]. Analogous to the Cartesian case, they are satisfied
(1) _

automatically by using the stress potential ¢, from which the tensions derive as 75" = D, ¢,
TS) = Dgs¢ and T§1) = —Dg,¢. The governing equation for the stress potential is
A%¢ = Eop (—kyDssw — ksDyyw). (C.10)

Introducing the stress potential into the first equation of (C.8), we get the full stability equations
of shells of revolution,

EpAw = (ksDyyp + kD) + (TsDgs + 7, Dy )w
1
Eop

o, (C.11)
A*p = —(ksDyy + kpDss)w,

which is the system (4.12) in the main text.

C.2. Discretisation

For the numerical solution of the DMV stability equations, we discretise the differential
equations (4.12) to obtain a system of linear equations. We use the same convention for the
nondimensionalisation as in section 2.2, i.e. we take Ry as the length unit and Fsp as the tension
unit. A useful discretisation can be adopted from the literature on the numerical solution of
the Poisson equation in polar coordinates [81,82,123] because the Poisson equation involves
the same problems at s = 0 concerning divergences in the Laplacian. So we divide the domain
0 < s < Smax into N intervals, separated by the points s®) =i - h, with 0 < i < N and a step
size h = Smax/N. The functions W (s) and @(s) are then represented by their values at these
sampling points, W =W (s®) and &) = & ().

In the stability equations (4.12), derivatives with respect to s up to fourth order occur. In
the discretised equations they are approximated by central finite differences,

—fa=1) 4 G+

7(s(3)
F(s™) 5h
")\ f(zil) B Qf(l) + f(ZJrl)
f(sV) = 72 .12
1 ( (4) _f(i72) + Zf(iil) - 2f(i+1) + f(i+2) ( . )
f (5 ) = 253
() f(if2) _ 4f(i71) + 6f(i) _ 4f(i+1) + f(i+2)
f (5 ) = h4 :

At the boundaries of the integration region, this involves problems since these formulae are
“overlapping” the integration region, that is, they use function values of points outside the
region. Thus, to evaluate the third and fourth derivatives at i = N, for example, we need to
introduce two “phantom points” 4 = N + 1 and ¢ = N + 2. That induces four further degrees
of freedom in our equations, WN+D WN+2)  p(N+1) and $(N+2) and thus necessitates four
extra equations: the boundary conditions. As discussed before, we impose a vanishing function
value and derivative value at spax for both functions W and @. In the discretised formulation,
this means WW) = 0 and W+ — W V-1 — 0 and the same for &.

The boundary ¢ = 0 is more difficult to handle, since some terms of the stability equations
diverge. This problem can be circumvented by transforming the differential equations into
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APPENDIX C. STABILITY EQUATIONS OF AXISYMMETRIC SHALLOW SHELLS

a weak form by integrating them over a disc of radius ¢ — 0, i.e. integrating over the range
0 <s<eand 0 < ¢ < 27 In the vicinity of s = 0, the axisymmetric solutions satisfy
ks = Ky = Kk and 7, = 7, = 7, see (2.19). Furthermore, cost ~ 1 and thus r ~ s, so that the
Laplacian reduces to A = 92 + %35 + 8%8?0, the usual Laplacian for flat polar coordinates. Thus,
the second of the stability equations (4.12) reads

0= A%p + EyprAw. (C.13)
Integrating the right hand side over the disk and using Gauss’s divergence theorem to transform
the surface integral into a contour integral, we obtain
2m

/dAV - (VA¢+ EsprVw) = %dt es(VAp+ EopkVw) = dp 5(85A¢+E2Dn88w)|8
0

(C.14)
where V is the nabla operator, § d¢ the contour integral over the circle of radius € and e, the unit
normal vector to this contour. With the ansatz (4.14), w = W(s) cos(np) and ¢ = D(s) cos(ny),
we thus obtain from (C.13) and (C.14)

27 2 2
1 2
0= / dep cos(nep) {sfﬁ"' + " — Al + %@15 + EQDKJW’} (C.15)
0 S S s—¢
For the other stability equation, we obtain analogously
2 2 2
1 2
0= / dep cos(nyp) {EB (SW’" + W’ — P Ly + nQW) — kP — TW’} (C.16)
0 S S s—e

As the integral over a full period of the cosine vanishes, these two equations are satisfied when
the terms in curly braces do not diverge. This is, in the limit ¢ — 0, the case if

W(0)=W'0)=0 and &(0)=d%'(0)=0. (C.17)

This has the same form as the boundary conditions at the other end of the integration region;
but in this case, it is the expression of the differential equations to be satisfied at s(9). Thus,
the differential equations (4.12) must be imposed only at the points s, 5@ where all
terms of the Laplacian are regular; at s(?) we impose (C.17). By that, we have avoided the
problem of diverging terms in the Laplacian.

Hence, we only need one phantom point s~ at which the function values are fixed by the
conditions (C.17) to WD = W) and (-1 = &), For the solution of the linear system, we
can even spare this phantom point, because the differential equations at the other points do not
use this point. We can see this by considering explicitly the squared Laplacian that occurs in
the stability equations (4.12). According to our discretisation (C.12), only the third and fourth
derivatives, evaluated at s(!), use function values at s(~1). The relevant terms of the squared
Laplacian are, thus, A2 = 9% + %83 + ... when we use the Laplacian of flat polar coordinates,
which is justified because we are close to the point s = 0. The discretisation at s = s() = h
then reads

2 FEV 42—y
mr (1) L e (1) “.

(C.18)

where the function value (=1 at the phantom point cancels out. Hence, the problem is closed
by the boundary conditions W = ¢ = 0.
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C.2. DISCRETISATION

The discretisation of the stability equations (4.12) proceeds as follows. When we include the
phantom points, we need to solve the equations on the grid of s-values (0, h, 2h, ..., [N + 2]h).
The function values of W and @ at these positions are organised in one big vector,

f=W——&—)= WO wh . w2 g0 g0 N+, (C.19)
The differential operators can be written as matrices of dimension (N + 3) x (N + 3) that

operate on the W or @ sub-vector. For example, the fourth derivative according to (C.12) can
be written as

-4 6 —4 1
1 -4 6 —4 1
1 1 -4 6 -4 1
1 -4 6 -4 1
o 0 0 0 0 O 0O 0 O
o 0 0 0 0O O 0O 0 O

where the first row and last two rows account for the phantom points, at which the derivative
does not need to be evaluated. In the second line, the missing 1 to the left of the —4 is due
to our argument that the usage of f(=1 of the third and fourth derivatives in the squared
Laplacian cancels out. Blank elements of this matrix are to be understood as zero.

Analogous differentiation matrices d, d> and d3 exist. When a differential operator in the
stability equations is multiplied with an s-dependent function, e.g. g(s)9s with g(s) = cos¥/r,
each row of the differentiation matrix must be multiplied with the appropriate function value.
This can be achieved by a matrix multiplication from the left, in our example myd; with a
matrix

my = with ¢, = g(s(i)). (C.21)
gN+2

0
0

The most complex derivative operator that must be translated to a matrix is the squared
Laplacian A% = (Dgs 4+ Dyy)(Dss + Dyy). For completeness, we give it here in explicit form,

e nt  2n2kek,  4n2cos i
= 7«7 — ’[“2 - ,r4
=go(s)
N <2n2 Cgosw 3 K2 cos 1) L 2K sk COS TP L coszw B HgﬂPH(S)) 0,
. . , r (C.22)
=g1(s)
. (_222 P coszw> 92 4 290V g3 4 g
T r ¢
S——
—on(s) =g3(s)

On matrix level, the first row of this equation is represented by a matrix my, with a function
go(s) corresponding to the terms in the first row; and the other matrices can be obtained
as my,d; as explained above. All these matrices are summed up to give the matrix of the
discretised squared Laplacian, daz = mgy, + mg, di + my,d> + mgy, ds + d;. All other operators
in the stability equations (4.12) can be analogously transformed into matrices.
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Finally, the whole set of stability equations is represented by a linear system that can be

sketched as

[[10000000
EpA?®
— TsDgs — 7Dy

00000100
000010-10

00000000]]

—#sDypy — KpDas

00000000

0000000
0000000
1000000

(=] i (el

(C.23)

Each block of the matrix represents a differential operator of the stability equations as indicated.
The ones in the left column are acting on W, and those of the right column on @. The rows of
the differentiation matrices that were full of zeroes can be used to implement the six boundary
conditions as shown in the equation: W(0) = W (Smax) = W'(Smax) = 0 are implemented in
= @ (Smax) = 0 in the lower right block. Note that
the first column of each block is associated to the point s(°) and the last two to the phantom

the upper left block and ¢(0) = P(smax)

points sV) and s(N+D),
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Appendix D

Contour analysis and fitting procedure

Consider an image of a pendant capsule which has to be compared to a theoretical contour
given by a parametrisation r(sg), z(so) with so € [0, Lg] — this may either be a solution of the
Laplace-Young equation (5.2) or the elastic shape equations (5.7) and (5.15). The length unit
of the theoretical contour is chosen as the capsule diameter a at its upper rim, which coincides
with the inner diameter of the capillary.

D.1. Contour analysis

The steps to find sampling points on the contour in an image are visualised in fig. D.1 and can
be described as follows:

1. The images are imported as png files into the software Mathematica and converted into a
matrix of greyscale values, which range from 0 (dark) to 1 (bright).

2. An edge detection algorithm (Canny’s method, which is implemented in Mathematica) is
used to find edges in the image.

3. The position of the end of the capillary is found by searching a horizontal jump in the
upper part of the outermost edge (horizontal blue line).

4. All outermost points are detected. At the capillary (blue), they are used to determine
the length scale of the image: The outer capillary diameter b®*) is measured in pixels.
Its real dimensions (in mm) are known. At the capsule, the points (yellow) capture the
contour.

5. Sampling points (red) are distributed equidistantly (each 5 pixels) along the contour.

Figure D.1.: The five stages of the contour detection as described in the enumeration, using the
example of an OTS capsule.

125



APPENDIX D. CONTOUR ANALYSIS AND FITTING PROCEDURE

Figure D.2.: a) Principle for calculating the de-
viation from perfect axisymmetry. b) Measure
of deviation between the theoretical contour
(green line) and the sampling points (red). The
shortest connections of the sampling points to
the theory line (red lines) are squared and
summed up.

In some cases, the capsule in the image is inclined, because of a maladjusted camera or
tilted table. Thus it does not seem to be axisymmetric with respect to the vertical axis. To
compensate for this, the image has to be rotated by a certain angle which is determined by
minimising the deviation from axisymmetry defined as follows (see fig. D.2 a):

For each pixel row, the difference between the centre (zy + zg)/2 in this row and the
z-coordinate xy, of the centre of mass of all contour points (yellow) is squared and added to

the error,
2
1 xrr + TR
§axi = — cm T T &4 . D.1
S (e - ) 0.1)

all rows

If necessary, each image is rotated by the angle that minimises this error before performing the
five step contour extraction described above.

D.2. Least-squares fitting

All computed contours are nondimensionalised, specifically, the length unit is given as the
diameter of the capsule’s upper rim. In order to compare a computed contour to the sampling
points, we have to determine a conversion factor a(P*) measuring the diameter in pixels. The
contour measured in pixels is then given by

(t) = (1) -

Now, we can define a measure of how much a given theoretical curve r(P¥) 2(P%) deviates from
) Ina geometrical language, the procedure can be described as

i

the set of sampling points x
follows (see fig. D.2 b):

e Lay the theoretical contour over the image, aligning its upper rim with the end of the

capillary and the origin of the r-axis with the centre of mass of the sampling points.
e Sum up the squares of the distances d; between :cgpx) and the theoretical contour and
calculate the root mean square deviation (RMS deviation) over all n sampling points:

(D.3)
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D.2. LEAST-SQUARES FITTING

Unfortunately, a(®) cannot be measured directly from the images
because the point of attachment between capillary and capsule frequently
accumulates dirt like patches of the polymerised material. So we decide
to determine a®) indirectly with the Laplace Young fits: We adjust a(P*)
so that the Laplace-Young fits have the lowest remaining RMS deviation,
i.e. we use the scaling factor as an additional fit parameter. The mean
value <a(px)> of all Laplace-Young fits is then kept for all following fits
of the elastic shape equations.

In addition to the conversion factor a(®) between theory length unit and pixels, we need to
know the diameter a in real length units, e.g. in millimetres. Since the outer diameter b (see fig.
D.3) of the capillary is specified by the manufacturer, we can calculate the inner diameter as

Figure D.3.: Capil-
lary measures

o — <a(px)/b(p><)> b, (D.4)

where the average (-) is taken over all pictures that are used for the Laplace-Young fits.

The actual fitting process now involves a minimisation of the RMS deviation (D.3) by
adjusting the fit parameters. In case of the Laplace-Young fits, the dimensionless density
difference j and pressure fy are the fit parameters that influence the shape, and a(® is the fit
parameter finding the correct scale of the image. The RMS deviation is implicitly a function of
all three fit parameters, and is minimised using Mathematica’s FindMinimum routine in three
dimensions. Suitable starting values must be provided. From the fitted density difference p, the
value of the surface tension can be calculated, see tab. 5.1,

v=a*2Apg/p, (D.5)

since the actual density difference Ap is known and a is determined by eq. (D.4). In effect, the
interfacial tension -~y is the fitting parameter we are interested in, not the density difference.

In case of the elastic fits, the fit parameters are the pressure p (which controls the volume)
and the elastic moduli K»p and v (which influence the shape). Of interest are only the elastic
moduli. While v is a dimensionless number anyway, the dimensionless area compression modulus
can be converted to the real area compression modulus (in SI units) by

Kap = vKap, (D.6)

where + is already known from the Laplace-Young fits.

As the numerical solution of the elastic shape equations is much more prone to numerical issues
than the solution of the Laplace-Young equation and takes much longer time, Mathematica’s
FindMinimum routine cannot be directly used to adjust all three fit parameters simultaneously.
Instead, we construct a grid in the (Kap, v)-plane. For each place on this grid, the pressure p
is adjusted using Mathematica’s FindMinimum routine while keeping the other fit parameters
fixed. The smallest fit residual obtained this way indicates the place on the grid which is closest
to the actual elastic moduli of the capsule. In its vicinity, a refined grid is constructed and the
procedure is repeated in order to better localise the true fit minimum. This method has the
advantage that we have more control over the numerics. Unlike Mathematica’s FindMinimum,
our method cannot run into parameter domains outside the reasonable range, where the solutions
of the shape equations cannot converge any more. Additionally, we can use parameter tracing
for the initial values of the shooting parameters, and by plotting the fit residual over the grid,
numerical issues and outliers can be registered. Examples of such plots are given below in
section D.4.
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D.3. Estimating error bars

Our contour detection has a resolution of +1 pixel. The worst case would be that the sampling
points x; are shifted systematically. In order to estimate how strong this worst-case error in the
contour detection influences the fit results, we repeat the elastic fits with displaced sampling
points. The displacements are done in four different modes:

e Shift all contour points by 1 pixel outward.
e Shift all contour points by 1 pixel inward.

e Shift the points on the side inward, and the points at the bottom downward (so that the
capsule appears more slender).

e Shift the points on the side outward, and the points at the bottom upward (so that the
capsule appears more chubby).

The error bars for the points in the Kop-V- and v-V-diagrams (figs. 5.5, 5.7 and 5.9) are
generated by taking the maximum deviation from the original results. If the maximum deviation
is still smaller than the grid spacing on the Kop or v axes, we take the grid spacing as the
smallest possible error bar. Hence, they are worst-case estimates. Typically, the inward /outward
modes produce the largest deviations in V/Vp, whereas the slender/chubby modes produce the
largest errors in the elastic constants.

We expect the modes described above to reveal the worst-case systematic errors of the method.
Since they describe a possible systematic mistake of the camera, for example caused by lighting
effects, we expect that all images are affected by the same mode. It follows that each point
in the Kop-V-diagrams has to be shifted in the same direction when correcting them. Thus,
the positions of the points relative to each other are mainly conserved. This ensures that the
trends observed in the diagrams are well resolved; only the overall scale of the plot may vary
within the error bars.

Another systematic error comes from the fact that the pseudo-surface deviates from the
detected outermost contour by about 1 wrinkle amplitude. Especially for OTS capsules, where
the wrinkle amplitude grows larger than 1 pixel during deflation, it has to be checked that this
error is smaller than the observed drift of the compression modulus.

For given wavelength A, the sg-dependent wrinkle amplitude is determined by the consid-
eration that a circumferential fibre of real length w(sy) = 279\, must be deposited on the
perimeter u(sg) = 27rr05\<p of the pseudo-surface. In the wrinkling region where 5\#, < Ay, there
is an excess length w(sg) — u(sp) > 0 which has to lie in the wrinkles. For sinusoidal wrinkles
with small amplitude C' and wavenumber k = 27/ A, the excess length is given according to
(5.18) as
3 C°F

Vel (D.7)

2
1
w—u:/ §C2fk2c082(k?9) df =27
0

where the integration was performed with the assumption that v is a multiple of A. This gives
the relation

- 5 C2\
2rro(r, — Ay) = 27C A;"’"O (D.8)
so that the amplitude reads
A
C(s0) = = Ap(50) (D.9)
7\ Ap(s0)
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D.4. EXAMPLES FOR FIT RESULTS

Now, instead of measuring the RMS deviation between midsurface (r(so), 2(so)) and sampling
points, we measure it between the outermost surface (r(sg) + C(so), 2(s0)) and sampling points.

Surprisingly, the influence on the resulting fit parameters is small compared to the four
displacement modes discussed above, although the maximum amplitude is 5 pixels in the
analysed OTS experiment. Only the capsule volume is affected significantly, so that the points
in the Kop-V-diagram would be shifted to the left. For clarity, this error mode is not presented
in detail in the main text since it is less significant than the modes mentioned before. A possible
reason for this small influence is that the displacement due to the amplitude is always much
smaller than the deformation, because the wrinkle amplitude is only large when the deformation
is extermely large.

D.4. Examples for fit results

In the following, some plots of fit results are shown (figs. D.4 to D.9). For each example, the
upper left plot shows the fitted solution (green line) together with the experimental image
(greyscale) and the sampling points (red). Horizontal green lines indicate the wrinkled region
according to the fitted solution of the shape equations. The upper right plot shows the
distribution of the fit residual in the (Ksp,v)-plane, dark colours correspond to low RMS
deviations; the best fit is indicated with a green dot. The bottom plot shows the residual
for the best fit as a function of the sampling point number: The numbering starts at the left
attachment to the capillary and goes counter-clockwise around the capsule.

D.4.1. Fits to theory shapes

Figures D.4 and D.5 show two fits to theoretically generated shapes, with Koz = 600 mN/m
and Verig = 0.3 and zero noise. The reference shape has a surface tension of v = 49.8 mN/m,
see section 5.3. Both fits are as perfect as they can be. They reproduce the correct volume
and Poisson ratio and are as close as possible to the correct area compression modulus (the
original value for the compression modulus in reduced units, Kqug/v = 12.06, does not lie
exactly on the fit grid, which has Ksp/vy = 12 as the closest value). This slight discrepancy
explains the fit residual shown in the bottom plots, which is overall very small but shows a
systematic deviation between fit and sampling points.

As explained in section 5.3.2, a noisy contour was prepared from the theoretically generated
shapes by shifting each sampling by a random two-dimensional vector & whose components are
random numbers drawn from the interval [—0.0045,0.0045]. The fits to this noisy contour are
shown in figs. D.6 and D.7. In the first case, where the capsule is only little deformed, the fit is
close to the original moduli, but does not reproduce them exactly. In the second case, with
larger deformation, the fit finds the correct values for Kop and v because the deformation is
sufficiently larger than the noise, see appendix D.5. The fit residual, see the bottom plots of
both figures, shows the inevitable deviations between the smooth solution of the shape equations
and the noisy contour.
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Figure D.4.: Fit to a theoretically generated shape with V/Vy = 0.94, Korig = 600mN/m and
Vorig = 0.3, without noise.
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Figure D.5.: Fit to a theoretically generated shape with V/Vy = 0.88, Korig = 600mN/m and
Vorig = 0.3, without noise.
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Figure D.6.: Fit to a theoretically generated shape with V/Vy = 0.94, Korig = 600mN/m and

Vorig = 0.3, with noise amplitude 0.0045.

0.6
0.5
04
~ 03
0.2
0.1
0.0

Fit results: V/Vy = 0.880,
Kop =597mN/m, v = 0.3

0.004 1 ° e . e .° or o]
Tg 0002; ° 0... 0. ° :. ° .o. ° .. ° .. ° : ... e o ¢ ®
i [ o © ° g400° e % %o °o e0%, _® °
Z 0000 5w v e e e,
=~ r °e ° «® .. ®ee , ° ° ° o ® o..
- - ° ° [ ° O.' e ° _° °
-0. Foe e . . ° .
L1 L L L L I L L L [ ] 1 L L I
0 20 40 60 80 100 120 140

sampling point

Figure D.7.: Fit to a theoretically generated shape with V/Vy = 0.88, Korig = 600mN/m and

Vorig = 0.3, with noise amplitude 0.0045.

131



APPENDIX D. CONTOUR ANALYSIS AND FITTING PROCEDURE

D.4.2. Fits of experiments with OTS and HFBII capsules

Step 1: Laplace-Young fits and conversion factors. In both OTS and HFBII measurements,
four images of the undeformed capsule were fitted with the Laplace-Young equation with
the interfacial tension =, internal pressure py and scaling factor a(P) as fit parameters. The
averaged surface tensions and conversion factors are listed in the following table.

vy mm <+ px theor. length unit < px
OTS | 11.2mN/m 1mm=135px 1=194 px
HFBII | 49.8mN/m 1mm=146 px 1=139 px

Whereas the Laplace-Young fits for HFBII match the detected contour nearly perfectly, small
systematic deviations (+1 px) can be observed for the Laplace-Young fits to the initial OTS
capsule. These deviations may be caused by the polymerisation process and might affect the
results of the following elastic fits, especially for small deformation.

Step 2: Shape Analysis. Two representative fit results for OTS and HFBII capsules are
shown in figs. D.8 and D.9. Evidently, the capsule shapes are reproduced very well. For the
OTS capsule, even the boundary of the wrinkled region predicted by the theory (horizontal
green lines) matches the experimental result, although the position of the horizontal green lines
was not incorporated in the RMS deviation. The fact that they coincide with the experimental
observations proves that the elastic model captures the wrinkling behaviour accurately.

The plots of the RMS deviation distribution in the (K3p,v)-plane (upper right plot in each
figure) show that the minima are nicely located inside the refined area of the parameter space.
That was facilitated by choosing the area compression modulus Ksp instead of the surface
Young modulus Esp on the horizontal axis. The reverse mapping Fop = 2(1 — v) Kap would
stretch the circular minimum to a long and narrow ellipse, which would be harder to analyse
with our rudimentary grid based minimisation method.

Finally, the fit residual along the contour (bottom plots of each figure) reveals whether
there are systematic deviations between fitted contour and sampling points. In both cases, the
systematic deviations are relatively small, though visible. For the OTS capsule, the largest
deviations are at the right attachment point to the capillary, and other maxima at the point
where the wrinkles end (around the 50 sampling point). At this point, the experimental
capsule shape even seems to have a small kink, which cannot be reproduced by the model
according to the continuity conditions of the slope angle. In case of the HFBII capsule, this
effect is much smaller since the wrinkle amplitude is smaller. Consequently, the fit residual
shows a less systematic behaviour.

Step 3: Wrinkle analysis. As described in the main text, the wrinkle analysis is only possible
for the OTS capsule since the wrinkles on the HFBII capsule cannot be resolved without
microscopy. For OTS, the resulting bending stiffness is Fp ~ (1.2 to 2.5) - 10714 Nm, see the
main text. The corresponding membrane thickness Hy =~ 0.56 um to 0.77 um obtained from
equation (2.9) should rather be considered as an effective thickness, because this formula is
only valid for shells composed of a thin sheet of isotropic material. Evidently, this is not the
case because the obtained Poisson ratio v ~ 0.6 is outside the admissible range [—1,1/2] for
three-dimensional Poisson ratios.

The results for the effective membrane thickness can be confirmed by raster electron microscopy
measurements with another OTS capsule produced according to the same protocol (fig. D.10).
During the preparation for the raster electron microscopy, the membrane was dried and teared in
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Figure D.8.: Fit to an experimental image of an OTS capsule.
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Figure D.9.: Fit to an experimental image of a HFBII coated bubble.
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20 pm —

Figure D.10.: Raster electron microscopy image of a dried and torn OTS membrane. The numbered
red lines indicate thickness measurements.

consequence. At some gaps (numbered 1-4 in fig. D.10), values of 1.4 um, 0.98 um, 0.83 pm and
0.86 wm were obtained for the thickness. This agreement of the fitted and measured membrane
thickness suggests that our method works accurately.

D.5. Quantification of noise in the capsule contours

To transfer the above results from the fitting of theory shapes to the fitting of contours captured
from images, we need to measure the amount of noise in a given set of sampling points. In the
above case, this was obsolete since the noise was added manually and with known amplitude.
Contours extracted from images are likely to be noisy too, but with unknown amplitude.

The set of sampling points x; = (r;, z;) to be analysed is supposed
to be ordered, with ¢ = 1 corresponding to the first point at the left
attachment point to the capillary, and i = n to the last point before
the right attachment point. In the results presented below, we assume
that they are given in the reduced units of tab. 5.1, that is, with the
capillary diameter a as unit length.

As a first transformation, we form the moving average (over four
successive sampling points) of the lists ; and z;, which results in two
lists 7; and Zz; representing smoothed sampling points. We interpolate
between these smoothed points to obtain a parametrisation (7(t), z(¢)) representing the mid-line
of the band of noisy sampling points (see fig. D.11, blue continuous line). The root mean
square deviation between the sampling points and smoothed mid-line is suitable to measure the

Figure D.11.: Noisy
sampling points with
smoothed mid-line.
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magnitude of the noise. We define the noise measure as

V= (356 ()

where the prefactor V3 is motivated as follows.

In section D.4.1, noise was added manually to a contour by drawing a random number
0 € [-A, A from a uniform distribution (actually, there were two displacements, in horizontal
and vertical direction, but since tangential displacements do not produce noise, we only need to
consider the displacement in normal direction). The probability density function of ¢ has a
variance of 02 = A?/3. From this equation, the noise amplitude can be obtained as A = V305,
and os can be roughly estimated as the root mean square deviation between the smoothed
mid-line and the sampling points. Thus, definition (D.10) should give the noise amplitude of
the contour. Applying this definition to the theoretically generated noisy contour indeed gives
with V = 0.0041 a value close to the original noise amplitude A = 0.0045.

The magnitude of the noise has to be compared to the deformation out of the initial shape,
which can be measured simply by the root mean square distance between sampling points and

Laplace-Young shape (7o, 29),
(s0) o\ 1/2
T ro(So
— . D.11
()~ () ) (-1

1 n

As a test case with known results, we analyse the noisy contours of the theoretically generated
shapes, see fig. D.12. In subfigure a), the noise and deformation measures N and D are plotted
against the reduced volume. Averaged over all points, we find N = 0.0041. Multiples of this
value are plotted in orange and green. The blue line is a quadratic fit to the data points for the
deformation measure D). This blue lines intersects the N-, 2N- and 4N-lines at certain volumes
Vi = 0.996V,, Vo = 0.984V; and V; = 0.963V}, respectively. Subfigure b) shows a simplified
version of the fit results, which were already presented in fig. 5.5 in the main text. The volumes
V1, Vo and Vj are marked by the vertical red, orange and green lines and indicate some kind of
“reliability level” of the fits: Around the red line, the deformation is of the same size as the
noise amplitude, and thus a fit is not possible. The orange and green lines indicate the volumes
where the deformation is twice the noise and four times the noise, respectively. As we can see
from the fit results, the fit in the vicinity of the orange line fails, but the fits beyond the green
line are satisfactorily close to the exact result Koz = 600 mN/m.

The same procedure was applied to the images of OTS and HFBII capsules that have been
analysed in section 5.4, and the results are presented in a similar manner in figs. D.13 and D.14,
respectively. For the OTS capsules we find that all analysed images are in the “safe region”
beyond the green line, which suggests that all OTS fits are quite reliable. Note that the noise
level N = 0.002, which is also measured with the capillary diameter a as the length unit, is
very small for the OTS images because they are of high contrast and good quality.

In case of the HFBII images, a noise level very similar to the theory shapes is found, see
fig. D.14 a). The noise levels shown in the Kop-V-diagram, fig. D.14 b), indicate that the
reliability of the fits in the pre-wrinkling regime (the ascending branch, cf. fig. 5.9) is doubtful:
In the pre-wrinkling regime, the deformation is not much larger than the noise. However, the
clear trend of these data points and their small fluctuations around their linear fit suggest that
there is a certain significance to these results. For a definite answer, however, more experimental
data is needed, preferably with better image quality and less noise.

o\ 1/2
) (D.10)
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Figure D.12.: Noise quantification and fit results for the theoretical shapes, with known elastic moduli
Korig = 600mN/m and verig = 0.3. a) The measured noise N and deformation D (in length units of
a, see tab. 5.1) are plotted against the reduced volume. The lines 2N and 4N indicate multiples of
the measured noise. b) Fit results, as plotted in fig. 5.5 in the main text, with additionally indicated
noise levels in red, orange and blue as in subfigure a). The inset shows the fitted Poisson ratio, which

has not been shown in the main text for simplicity.
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Figure D.13.: Noise quantification and fit results for the OTS images. a) The measured noise N and
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Figure D.14.: Noise quantification and fit results for the HFBII images. a) The measured noise N

f — D ]
. —— N =0.0039 E
. T 2N |
- 4N |
- v o s v v v v .. . - o
0.85 0.90 0.95
V/ Vo

b)

2500

2000
1500
1000

500 ¢

0
0.80

0.85

and deformation D. b) Fit results, as plotted in fig. 5.9 in the main text.

136

0.90
V/Vy

0.95




Appendix E

Derivation of the HFBII elasticity model

E.1. Ratios of the hard-core stresses

We consider a jammed state of the lattice, that is, when (A, \,) is on the boundary of the
admissible domain. Here, boundary 1 as specified by eq. (5.30) and fig. 5.11 b) is considered,
where 3)\2/4 + A2 /4 = L?.

On this boundary, the lattice, see fig. E.1 a), is compressed predominantly in z-direction.
Not all hard cores of neighbouring beads are in contact with each other, only those along the
links that are drawn continuous in subfigure b). The dashed link in this figure is a spring
interaction, not a hard-core interaction, and is therefore ignored in the following. Subfigure c)
shows that the force F, applied to a bead is split into components F; tangential to the links.
Trigonometric relations give cos w = F,/2F;. Analogous considerations give sin o« = Fy /2F; for
the splitting of F},. Thus we have
?Z =tana (E.1)
as the condition that the skeleton is in static equilibrium.

With subfigure d) we can relate the geometric angle a to the lengths of the links. The
hard-core links have, by definition, length L. The vertical (dashed) link has a rest length of 1,
and is stretched (or compressed) by the deformation to a length A, - 1. We thus obtain

F,
tana = N = L M (E.2)

- :
NIVERPY N VY

Finally, we have to relate the forces F, and Fj to the stresses ngc) and TZSC). Stresses are
forces per length, and the investigated cell of the lattice has a height [, = A, and width
lo = ly/tana = VAL? — A2, see subfigure e). With (%) = F, /I, and 7{°) = F,/l,, we thus
arrive at © \2

T y
r(e) 412 — )\Z' (E-3)
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Figure E.1.: Sketches to calculate the ratio of the hard-core stresses

122
:)\y

ly

137



APPENDIX E. DERIVATION OF THE HFBII ELASTICITY MODEL

With the strain constraint (5.30) on boundary 1, this is equivalent to

A1
SIS

(E.4)

Thus, only the ratio between the hard-core stresses is prescribed by the geometry of the lattice.
Analogous results can be obtained on boundary 2, with all indices z and y interchanged. The
complete result is therefore

7(e) {/\5/3)@ for A\, > L (boundary 1) . (E.5)

7@ = 3X2/A2 for A\, < L (boundary 2)
In point B with A\, = A, = L, which lies on both boundaries 1 and 2, the lattice is uniformly
compressed and all neighbouring beads are in contact. Equation (E.5) then states that the
ratio of the hard-core stresses is either 3 or 1/3. In fact, due to the close packing of spheres,
any value in between can also be realised, so that
<)
r

< % <3 for \; = A\, = L (boundary point B). (E.6)
Tx

1
3
E.2. Variational calculation and continuity conditions

In section 2.2.3 and appendix A.1, the equilibrium equations for shells of revolution (including a
bending stiffness) have been derived by a variational calculation. We now revisit this calculation
and adopt it to our custom elasticity model with hard-core interactions and without bending
stiffness. The aim is to determine the continuity conditions at the boundary of the different
regions A, B, 1 and 2. As a byproduct, we will re-obtain the equilibrium equations, including
the correct ratios between the hard-core stresses Ts@ and Téc) as developed in the previous
appendix section.

We first collect the results of the previous variational calculation, setting Fp = 0 and using
p — Apg z as the pressure. This corresponds to the variational calculation one would perform
for region A. We need the variations of the elastic energy functional U and load potential P,

U= / wg(As, Ap) dAg = / 2nrowg dsg  and
R R (E.7)
P=—pV+Apgz™Vy = / 722 (—p + Apg z) dso,

R
where the region R of integration is arbitrary and not necessarily sg € [0, Lo, and 2(em) is the

z-coordinate of the centre of mass of the enclosed liquid. The variations have been obtained in
(A.7) and (A.8) as

‘ ‘ , , o 1d(rr®
oU = 27rr7'5(5)5v‘ —|—/ dsg 27 A < du [Ts(b)lis + T(b)lﬁp] + dv COS¢T(5) - = (rrs”) ,
or  Jg ks r ¢ r ds

P =mr’(—p+ Apyg z)&z‘ + / dsg 27Tr/\s{6u [—p+ Apgz] } (E.8)
OR R

Here, 0u and dv are the normal and tangential variation of the contour, see eq. (2.11) and
fig. 2.3, and 6z is the variation in z-direction. It is not very consistent to use these three
variations, since only two of them are independent. This issue will be resolved later where
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transversality conditions introduce even more dependencies of the variations at the boundary
OR. The boundary terms in (E.8) are to be evaluated at the boundary of the integration
region R: If it is limited by so = s; and sy = s2, then our notation is to be understood as
flor = fls, — fls,- We are especially careful in the notation of the stresses. Here we only have
spring contributions, defined by 7{8) = L0wg /0, and Tés) = i@ws/a)\w see eq. (5.6). In
the region A, these are identical to the corvhplete stresses 75 and TS;. Therefore, the equilibrium
equations of membrane theory which follow from §(U + P) = 0 can be written as

cos 1drrs
0 == sls - A d 0 - - - .
KsTs + KpTp —p+ Apgz an - T - ds

(E.9)

They are a special case of the shell equilibrium equations (2.16) for vanishing bending stiffness.

In a second step, let us determine the equilibrium equations in region 2, where the strains are
constrained by A2 + 3)\2 —4L? =0, see eq. (5.30). We can incorporate this constraint in the
variational calculation by means of a Lagrange multiplier ¢(sg). From a physical point of view,
the Lagrange multiplier takes care that the system remains on boundary 2 in the stretch space,
and we can expect it to be related to the hard-core stresses, which fulfil the same function in
the physical reality. The functional of this constraint that must be incorporated in the calculus
of variations is NV = fR t(so) [)\z + 3)@ - 4L2} dsgp, and its variation can be obtained after some
calculation as

SN = / £[2X, OXs + 60, 0N,] dso (E.10)
R
A2 A2 d(rast
= 277 )\Stév‘ + / dso 27X { du Astns + Siﬁmp + v |32 Astcosyy  1d(ra) )
mr  lor  Jg r A2 7 A2 e r ds

This has the same form as §U, but with the hard-core stresses 7'5(,‘3) and Tq(f) in place of 75 and
T, when we identify
A2 A\t

7o) = and 7 = 3)\§ p

@

(E.11)

Thus, the variational calculation for region 2 has reproduced the correct ratio of the hard-
core stresses determined in eq. (E.5). The equilibrium equations for region 2 follow from
(U + P + N) = 0 and have the same form (E.9) as before, but with hard-core contributions
included in the stresses (7, = 78 4+ 7(°) and analogous for T,). An analogous calculation can
be done for region 1.

In region B, we need to introduce two constraints A, = L and A, = L with two separate
Lagrange multipliers ¢,(so) and t,(so) which will be related to the hard-core stresses. The
functional of the constraints reads N = [, {[\s — L]ts + [\, — L]t } dso and its variation can
be written as

5N:/ {ts0Xs +t,0M,} dso (E.12)
R

r r ds

1d(rrle)
= 27T’I“TS(C)(5U’ + / dso 2mrAs {(5u [TS(C)FJS + Téc)nw] + v T;C) cosy 1 (7 )] }
OR R

with the hard-core stresses

t t
= = and 70 =_—%2_. E.13
Ts 27r and 7o 27ro s ( )
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Again, the equilibrium equations that follow from 6(U + P + N) = 0 have the same form (E.9)
as above, but now with two independent hard-core contributions TS(C) and Tg(f) included in the
stresses.

So far, the equilibrium equations in regions A, 2 and B have been derived separately by using
that the integrands of the variated functional must vanish for arbitrary éu and dv. From the
boundary terms, we can now derive continuity conditions for the geometric quantities r, z, ¥,
the stretches A, A, and the stresses 7,, 7, at the boundary between two different regions.

Three continuity conditions can be derived from the requirement that the elastic energy density
wg stays finite. From this requirement follows that Ay < oo, and with 7/(s0)%+2'(s0)? = A\s <
we conclude that r and z are continuous (a jump would imply an infinite derivative). As the
hoop stretch A, = r/rg is a function of two continuous functions, it is also continuous.

Further boundary conditions follow from the conditions that the boundary terms in the
variational calculation must vanish. We consider the case that a region Ry with sg € [s1, so] is
in contact with a region Ro with sg € [sg, s3] (both regions can be chosen from A, 1, 2 and B).
We mark all functions that are defined on sg > so (belonging to Rs) with a tilde to distinguish
them from the functions defined on sy < ss.

The position sy of the transition is not fixed, it must also be variated. When the boundary
of an integral fssf I(sp) dsg is altered from sg to sa + ds2, then the value of the integral changes
by I(s2)dsz. Collecting all boundary terms of the variation 6(U + P+ N), see egs. (E.8), (E.10)
and (E.12), and setting them to zero gives

21Ty 0v + i (—p + Ap g 2)0z + [2nrows + 72 (—p + Ap g 2)]|ds2
= 217700 + T2 (—p 4+ Ap g £)67 + [2mrotis + mitE (—p + Apg £)]dse, (E.14)

where both sides are understood as being evaluated at so. The stresses 7, and 75 can contain
hard-core contributions from JN, depending of what type regions R; and Ry are, and the
energy densities wg and wg are distinguished because they are evaluated at different stretches,
wg = ws(As, Ap) and Wg = wg(As, Ap).

The variations du, dv, ds2, 64 and §v are not independent from each other, but related by
transversality conditions. Above we have derived that the shape r(sg) and z(sg) is continuous
at any point sg. Consequently, the shape variations must also produce a continuous variated

shape, which implies (7 + or)| = (F+ 577)|s2+582, or

S2+0s2
or(s2) +71'(s2)ds2 = 07 (s2) + 7 (s2)dse  and  dz2(s2) + 2'(s2)ds2 = dZ(s2) + Z'(s2)ds2. (E.15)

These transversality conditions can also be expressed in terms of the normal and tangential
variations by use of eq. (2.11), which results in

sin ) ou + cos ) 0v + r'dse = sin) 6 + cos ) 69 + #'ds,  and

- - E.16
—cos ) du + sin1) v + 2'dsy = — cos ) du + sin 50 + ' Jso. ( )

Using the the second transversality condition (E.15) we see that the terms
7 (—p + Ap g 2)[6z 4+ 2'8s9] = ni?(—p + Ap g 2)[6Z + 7850 (E.17)

cancel out in the boundary terms (E.14) because r = 7 and z = Z at the point s;. What remains
from (E.14) is

rTs0U + TowgdSey = TTs0D + ToWsg0Sa. (E.18)

From the five variations du, dv, dso, dt and 00, only three are independent because we

have two transversality conditions (E.15). However, we cannot choose dv, 60 and dss as the
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three independent ones, because they are all related to a tangential shape variation. It is
“safer” to consider du, dv and dss as independent, and then determine d@ and 4o from the
transversality conditions to eliminate them from the boundary condition (E.18). Multiplying
the first transversality condition (E.15) with cos 1, the second one with sin ) and adding them
results in

60 = (8¢ — c8)du + (c¢ + s3)dv + [é(r' — ) + 3(2 — Z')]ds2 (E.19)

where the abbreviations s = sint and ¢ = cos® (and analogously with a tilde) have been
introduced. With this we can eliminate §v from the boundary terms (E.18), resulting in

Su |77y (s6—c8)|+0v[FTs(ci+58)—rTs| +052 [ro(Ws—wg) +77s (E(r' —7)+5(z'—Z"))] = 0. (E.20)

Now we can argue that the variations du, v and Jsy are independent and arbitrary, so that
each term in this equations must vanish on its own.

Setting the term next to du to zero results in sint cosv = cos sin v, which is equivalent
to tant) = tanv and we can conclude that

P(s2) = P(s2), (E.21)

so the slope angle 9 is continuous at any region change. With this result and r = 7 in mind, we
can analyse the term next to dv and get

7s(s2) = Ts(s2) (E.22)

and thus, the meridional stress is also continuous. From the last term we obtain, using
" = Agcostp and 2/ = A\gsin ), the following condition:

ws (s Ap) — TsAsAp = Ws(Asy Ap) — TsAs Ao (E.23)

(both sides evaluated at s3).

After all, we have derived that most of the functions of interest r, z, ¥, As, Ay, 75 and 7,
are continuous. However, A; and 7, may be discontinuous as long as the non-trivial continuity
condition (E.23) is satisfied. A further investigation requires specification of regions R; and
R5 being in contact. As a first check of consistency, let us assume that both R; and Ry are of
type A, so that the transition at so is purely artificial. The continuity of 7, and A, implies the
continuity of 7, and A\; by Hooke’s law. Obviously, equation (E.23) is then also satisfied.

The transition from R; = A to Ry = 2 is also entirely continuous, but the argumentation is far
less trivial because Hooke’s law only holds in the A region; in region 2 there are additional hard-
core stresses. For the continuity of the meridional stress we need 78 (A\g, A,) = 79 (Ag, Ay ) +7(9).
A jump in ), is thus possible when 7(¢)(s5) # 0. The non-trivial continuity condition (E.23),
written as

Ws(Asy Ap) = As Ao (Asy M) = ws(Ass Ap) — As AT sy M), (E.24)

is an equation to determine the relation between A, and \,. Inserting the functions for the
energy density and Hookean stresses from eqs. (5.5) and (5.6) into this equation and rearranging
it with Mathematica gives two solutions,

As =As O Ag=A\g + v(l—X,). (E.25)

In the first case, \, is continuous, thus 7{°)(s3) = 0 as argued above, and because of the fixed
ratio of the hard-core stresses, we have 7'5,5) (s2) = 0, too. So in this case, the hoop stress is
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also continuous. The second case is more exciting because it might provide a possibility for a
discontinuous transition. But when we calculate the hard-core stress in this case,

E 1
L (1=, (E.26)

ngc) = TS(S)()‘Sv Ap) — TS(S)(S‘S’ Ap) = 1—-v2 )
)

we find that it is larger than zero because A\, < L < 1 in region 2. This is not allowed and
rules out the second case. The only possibility to change between regions A and 2 is to do it
continuously in all functions.

A discontinuous transition can be found between regions R; = 2 and Ry = B. At first we
observe that the meridional stretch is confined by eq. (5.30) to Ay = V4L? — 3)\3 in region
2, and to Ay = A\, = L in region B. As the hoop stretch is continuous, we conclude that
As = V4L? — 3L2 = L is also continuous. The non-trivial continuity condition (E.23) is then
obviously satisfied, and the continuity of the meridional stress guarantees that 7(°)(s) = 7{¢)(s2).
However, we cannot conclude that Téc) is continuous, because it does not explicitly depend on
TS(C) in region B. There is no possibility to make any statements about Téc) in region B because
it is an independent parameter here. Thus, the meridional stress may be discontinuous at a
transition between regions 2 and B (and analogously between 1 and B), and we see in the
main text that this discontinuity is indeed necessary to be able to solve the shape equations
numerically.

The transition between regions Ry = 1 and Ry = 2 is also discontinuous. Due to the
confinement of the stretches to the boundary (5.30) of the admissible domain in the stretch
plane, we can again conclude that Ay = Ay = L is continuous. Therefore, the Hookean

contributions 7(*) and T;S) are continuous, and so is 7{*). The hard-core stress contribution
in hoop direction, however, is discontinuous. We can even calculate the size of the jump
with eq. (5.32): In region 1 we have Téc)(SQ) = 7()(s3)/3, and it changes by a factor 9 to
%éc)(SQ) = 37(%)(sy) in region 2.

In principle, jumps in the hoop stress are even possible in the artificial transition from region
B to B, because Téc) is constitutively undetermined. However, the shape is nearly entirely fixed
by the constraint A; = A, = L, and we have derived above a relation (5.33) between 7, and
other quantities which enforces 7, to be continuous within region B. A discontinuity in the
hoop stress within region B is only possible when the geometric constraints are removed by
allowing the midsurface to wrinkle. Thus, the transition between regions B and BW can have a
discontinuous 7,. On the other hand, the transition between region 2 and its wrinkling region
2W is continuous because it is equivalent to the artificial transition from 2 to 2, which must be
continuous because the ratio of hard-core stresses is fixed and thus 7, is determined by the
constitutive relations.
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