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Abstract

The problem of constructing Bayesian optimal discriminating designs for a class of regres-

sion models with respect to the T -optimality criterion introduced by Atkinson and Fedorov

(1975a) is considered. It is demonstrated that the discretization of the integral with respect

to the prior distribution leads to locally T -optimal discriminating design problems with a

large number of model comparisons. Current methodology for the numerical construction of

discrimination designs can only deal with a few comparisons, but the discretization of the

Bayesian prior easily yields to discrimination design problems for more than 100 competing

models. A new efficient method is developed to deal with problems of this type. It combines

some features of the classical exchange type algorithm with the gradient methods. Con-

vergence is proved and it is demonstrated that the new method can find Bayesian optimal

discriminating designs in situations where all currently available procedures fail.
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1 Introduction

Optimal design theory provides useful tools to improve the accuracy of statistical inference without

any additional costs by carefully planning experiments before they are conducted. Numerous

authors have worked on the construction of optimal designs in various situations. For many models

optimal designs have been developed explicitly [see the monographs of Pukelsheim (2006); Atkinson

et al. (2007)] and several algorithms have been developed for their numerical construction if the

optimal designs are not available in explicit form [see Yu (2010); Yang et al. (2013) among others].

On the other hand the construction of such designs depends sensitively on the model assumptions

and an optimal design for a particular model might be inefficient if it is used in a different model.

Moreover, in many experiments it is often not obvious which model should be finally fitted to

the data and model building is an important part of data analysis. A typical and very important

example are Phase II dose-finding studies, where various nonlinear regression models of the form

Y = η(x, θ) + ε.(1.1)

have been developed for describing the dose-response relation [see Pinheiro et al. (2006)], but

the problem of model uncertainty arises in nearly any other statistical application. As a conse-

quence, the construction of efficient designs for model identification has become an important field

in optimal design theory. Early work can be found in Stigler (1971), who determined designs for

discriminating between two nested univariate polynomials by minimizing the volume of the con-

fidence ellipsoid for the parameters corresponding to the extension of the smaller model. Several

authors have worked on this approach in various other classes of nested models [see for example

Dette and Haller (1998) or Song and Wong (1999) among others].

A different approach to the problem of constructing optimal designs for model discrimination is

given in a pioneering paper by Atkinson and Fedorov (1975a), who proposed the T -optimality cri-

terion to construct designs for discriminating between two competing regression models. Roughly

speaking their approach provides a design such that the sum of squares for a lack of fit test is

large. Atkinson and Fedorov (1975b) extended this method for discriminating a selected model η1

from a class of other regression models, say {η2, . . . , ηk}, k ≥ 2. In contrast to the work Stigler

(1971) and followers the T -optimality criterion does not require competing nested models and has

found considerable attention in the statistical literature with numerous applications including such

important fields as chemistry or pharmacokinetics [see e.g. Atkinson et al. (1998), Ucinski and

Bogacka (2005), López-Fidalgo et al. (2007), Atkinson (2008), Tommasi (2009) or Foo and Duffull

(2011) for some more recent references]. A drawback of the T -optimality criterion consists of the

fact that – even in the case of linear models – the criterion depends on the parameters of the model

η1. This means that T -optimality is a local optimality criterion in the sense of Chernoff (1953),
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and that it requires some preliminary knowledge regarding the parameters. Consequently, most

of the cited papers refer to locally T -optimal designs. Although there exist applications where

such information is available [for example in the analysis of dose response studies as considered in

Pinheiro et al. (2006)], in most situations such knowledge can be rarely provided. Several authors

have introduced robust versions of the classical optimality criteria such as Bayesian or minimax

D-optimality criteria in order to determine efficient designs for model discrimination, which are less

sensitive with respect to the choice of parameters [see Pronzato and Walter (1985); Chaloner and

Verdinelli (1995); Dette (1997)]. The robustness problem of the T -optimality criterion has been

already mentioned in Atkinson and Fedorov (1975a), who proposed a Bayesian approach to address

the problem of parameter uncertainty in the T -optimality criterion. Wiens (2009) imposed (lin-

ear) neighbourhoud structures on each regression response and determined least favorable points

in these neighbourhouds in order to robustify the locally T -optimal design problem. Dette et al.

(2012) considered polynomial regression models and determined explicitly Bayesian T -optimal dis-

criminating designs for the criterion introduced by Atkinson and Fedorov (1975a). Their results

indicate the difficulties arising in Bayesian T -optimal design problems.

The scarcity of literature on Bayesian T -optimal discriminating designs can be explained by the

fact that in nearly all cases of practical interest these designs have to be found numerically, and

even this is a very hard problem. These numerical difficulties become even apparent in the case of

locally T -optimal designs. Atkinson and Fedorov (1975a) proposed an exchange type algorithm,

which has a rather slow rate of convergence and has been used by several authors. Braess and

Dette (2013) pointed out that, besides its slow convergence, this algorithm does not yield the so-

lution of the optimal discriminating design problem, if more than 5 model comparisons are under

consideration. These authors developed a more efficient algorithm for the determination of locally

T -optimal discriminating designs for several competing regression models by exploring relations

between optimal design problems and (nonlinear) vector-valued approximation theory. Although

the resulting algorithm provides a substantial improvement of the exchange type methods it cannot

deal with Bayesian optimality criteria in general, and the development of an efficient procedure for

this purpose is a very challenging and open problem.

The goal of the present paper is to fill this gap. We utilize the fact that in applications the integral

with respect to the prior distribution has to be determined by a discrete approximation and we

show that the discrete Bayesian T -optimal design problem is a special case of the local T -optimality

criterion for a very large number of competing models considered as in Braess and Dette (2013).

The competing models arise from the different support points used for the approximation of the

prior distribution by a discrete measure, and the number of model comparisons in the resulting

criterion easily exceeds the 200. Therefore the algorithm in Braess and Dette (2013) does not pro-

vide a solution of the corresponding optimization problem, and we propose a new method for the

numerical construction of Bayesian T -optimal designs with substantial computational advantages.
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Roughly speaking, the support points of the design in each iteration are determined in a similar

manner as proposed in Atkinson and Fedorov (1975a) but for the calculation of the corresponding

weights we use a gradient approach. It turns out that the new procedure is extremely efficient and

is able to find Bayesian T -optimal designs with a few number of iterations.

The remaining part of this paper is organized as follows. In Section 2 we give an introduction

into the problem of designing experiments for discriminating between competing regression models

and also derive some basic properties of locally T -optimal discriminating designs. In particular we

show how the Bayesian T -optimal design problem is related to a local one with a large number

of model comparisons [see Section 2.2]. Section 3 is devoted to the construction of new numerical

procedures (in particular Algorithm 3.2), for which we prove convergence to a T -optimal discrim-

inating design. Our approach consists of two steps consecutively optimizing with respect to the

support points (Step 1) and weights of the design (Step 2). For the second step we also discuss two

procedures to speed up the convergence of the algorithm. The results are illustrated in Section 4

calculating several Bayesian T -optimal discriminating designs in examples, where all other available

procedure do not provide a numerical solution of the optimal design problem. For example, the

new procedure is able to solve locally T -optimal designs with more than 240 model comparisons as

they are arising frequently in Bayesian T -optimal design problems. In particular we illustrate the

methodology calculating Bayesian T -optimal discriminating designs for a dose finding clinical trial

which has recently been discussed in Pinheiro et al. (2006). The corresponding R-package will be

provided in the CRAN library. Finally all proof are deferred to an appendix in Section 5.

2 T -optimal discriminating designs

Consider the regression model (1.1), where x belongs to some compact set X and observations

at different experimental conditions are independent. For the sake of transparency and a clear

representation we assume that the error ε is normally distributed. The methodology developed

in the following discussion can be extended to more general error structures following the line of

research in López-Fidalgo et al. (2007), but details are omitted for the sake of brevity.

Throughout this paper we consider the situation where ν different models, say

ηi(x, θi), i = 1, . . . , ν,(2.1)

are available to describe the dependency of Y on the predictor x. In (2.1) the quantity θi denotes a

di-dimensional parameter, which varies in a compact space, say Θi (i = 1, . . . , ν). Following Kiefer

(1974) we consider approximate designs that are defined as probability measures, say ξ, with finite

support. The support points x1, . . . , xk of a design ξ give the locations where observations are taken,

while the weights ω1, . . . , ωk describe the relative proportions of observations at these points. If an
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approximate design is given and n observations can be taken, a rounding procedure is applied to

obtain integers ni (i = 1, . . . , k) from the not necessarily integer valued quantities ωin such that∑k
i=1 ni = n. We are interested in designing an experiment, such that a most appropriate model

can be chosen from the given class {η1, . . . , ην} of competing models.

2.1 T -optimal designs

In the case of ν = 2 competing models Atkinson and Fedorov (1975a) proposed to fix one model,

say η1(·, θ1), with corresponding parameter θ1 and to maximize the functional

T12(ξ) = inf
θ2∈Θ2

∫
X

[
η1(x, θ1)− η2(x, θ2)

]2

ξ(dx),(2.2)

in the class of all (approximate) designs. Roughly speaking, these designs maximize the power

of the test of the hypothesis ”η1 versus η2” . Note that the resulting optimal design depends on

the parameter θ1 for the first model, which has to be fixed by the experimenter. This means that

these designs are local in the sense of Chernoff (1953). It was pointed out by Dette et al. (2013)

that locally T -optimal designs may be very sensitive with respect to misspecification of θ1. In

a further paper Atkinson and Fedorov (1975b) generalized their approach to construct optimal

discriminating designs for more than 2 competing regression models and suggested the criterion

T (ξ) = min
2≤j≤ν

T1j(ξ) = min
2≤j≤ν

inf
θj∈Θj

∫
X

[
η1(x, θ1)− ηj(x, θj)

]2

ξ(dx).(2.3)

This criterion determines a ”good” design for discriminating the model η1 against η2, . . . , ην , where

the parameter θ1 has the same meaning as before. As pointed out by Tommasi and López-Fidalgo

(2010) and Braess and Dette (2013) there are many situations, where it is not clear which model

should be considered as fixed and these authors proposed a symmetrized Bayesian (instead of

minimax) version of the T -optimality criterion, that is

TP(ξ) =
ν∑

i,j=1

pi,jTi,j(ξ) =
ν∑

i,j=1

pi,j inf
θi,j∈Θj

∫
X

[
ηi(x, θi)− ηj(x, θi,j)

]2

ξ(dx),(2.4)

where the quantities pi,j denote nonnegative weights reflecting the importance of the comparison

between the the model ηi and ηj. We note again that this criterion requires the specification of the

parameter θi, whenever the corresponding weight pi,j is positive. Throughout this paper we will

call a design maximizing one of the criteria (2.2) - (2.4) locally T -optimal discriminating design,

where the specific criterion under consideration is always clear from the context. For some recent

references discussing locally T -optimal discriminating designs we refer to Ucinski and Bogacka
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(2005), López-Fidalgo et al. (2007), Atkinson (2008), Tommasi (2009) or Braess and Dette (2013)

among many others. For the formulation of the first results we require the following assumptions.

Assumption 2.1 For each i = 1, . . . , ν the functions ηi(·, θi) is continuously differentiable with

respect to the parameter θi ∈ Θi, .

Assumption 2.2 For any design ξ such that TP(ξ) > 0 and weight pi,j 6= 0 the infima in (2.4)

are attained at a unique points θ̂i,j = θ̂i,j(ξ) in the interior of the set Θj.

For a design ξ we also introduce the notation

Θ∗i,j(ξ) = arg inf
θi,j∈Θj

∫
X

[
ηi(x, θi)− ηj(x, θi,j)

]2
ξ(dx),(2.5)

which is used in the formulation of the following result.

Theorem 2.1 If Assumption 2.1 is satisfied, then the design ξ∗ is a locally TP-optimal discrimi-

nating design, if and only if there exist distributions µ∗ij on the sets Θ∗i,j(ξ
∗) defined in (2.5) such

that the inequality

(2.6)
ν∑

i,j=1

pi,j

∫
Θ∗
i,j(ξ

∗)

[
ηi(x, θi)− ηj(x, θi,j)

]2
µ∗ij(dθi,j) ≤ TP(ξ∗)

is satisfied for all x ∈ X . Moreover, there is equality in (2.6) for all support points of the the locally

TP-optimal discriminating design ξ∗.

Theorem 2.1 provides an extension of the corresponding theorem in Braess and Dette (2013), and

the proof is similar and therefore omitted. For designs ξ, ζ on X we introduce the function

Q(ζ, ξ) =

∫
X

ν∑
i,j=1

pi,j inf
θi,j∈Θ∗

ij(ξ)

[
ηi(x, θi)− ηj(x, θi,j)

]2

ζ(dx),(2.7)

where ζ is an experimental design and the set Θ∗ij(ξ) is defined in (2.5). Using Lemma 5.1 from

the appendix it is easy to check that

∂TP(ξ(α))

∂α

∣∣∣
α=0

= Q(ζ, ξ)− TP(ξ)
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where ξ(α) = (1−α)ξ+αζ denotes the convex combination of the designs ξ and ζ. If Assumption

2.2 is satisfied, the function Q simplifies to

Q(ζ, ξ) =

∫
X

ν∑
i,j=1

pi,j
[
ηi(x, θi)− ηj(x, θ̂i,j)

]2
ζ(dx),

which plays an important role in the subsequent discussion. In particular we need also the following

extension of Theorem 2.1.

Theorem 2.2 If Assumption 2.1 is satisfied and the design ξ is not TP-optimal, then there exists

a design ζ∗, such that the inequality Q(ζ∗, ξ) > TP(ξ) holds.

In order to obtain a more manageable condition of this result let µ̂i,j(ξ) denote a measure on the

set Θ∗i,j(ξ) ( i, j = 1, . . . , ν) for which the function

max
x∈X

ν∑
i,j=1

pi,j

∫
Θ∗
i,j(ξ)

[
ηi(x, θi)− ηj(x, θi,j)

]2
µi,j(dθi,j)

attains its minimal value, and define

(2.8) Ψ(x, ξ) =
ν∑

i,j=1

pi,j

∫
Θ∗
i,j(ξ)

[
ηi(x, θi)− ηj(x, θi,j)

]2
µ̂ij(dθi,j) .

Note that the function in (2.8) simplifies to

(2.9) Ψ(x, ξ) =
ν∑

i,j=1

pi,j
[
ηi(x, θi)− ηj(x, θ̂i,j)

]2
,

if both Assumptions 2.1 and 2.2 are satisfied.

Corollary 2.3 If Assumption 2.1 is satisfied and the design ξ is not TP-optimal then there exists

a point x ∈ X such that

Ψ(x, ξ) > TP(ξ).

2.2 Bayesian T -optimal designs

As pointed out by Dette et al. (2012) locally T -optimal designs are rather sensitive with respect

to misspecification of the unknown parameters θi, and it might be appropriate to construct more

robust designs for model discrimination. The problem of robustness was already mentioned in
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Atkinson and Fedorov (1975a) and these authors proposed a Bayesian version of the T -optimality

criterion which reads in the situation of the criterion (2.4) as follows

TB
P (ξ) =

ν∑
i,j=1

pi,j

∫
Θi

inf
θi,j∈Θj

∫
X

[
ηi(x, λi)− ηj(x, θi,j)

]2

ξ(dx)Pi(dλi).(2.10)

Here for each i = 1, . . . , ν the measure Pi denotes a prior distribution for the parameter θi in model

ηi, such that all integrals in (2.10) are well defined. Throughout this paper we will call any design

maximizing the criterion (2.10) a Bayesian T -optimal discriminating design. For (two) polynomial

regression models Bayesian T -optimal discriminating designs have been explicitly determined by

Dette et al. (2013), and their results indicate the intrinsic difficulties in the construction of optimal

designs with respect to this criterion.

In the following we will link the criterion (2.10) to the locally T -optimality criterion (2.4) for large

number of competing models. For this purpose we note that in nearly all situations of practical

interest an explicit evaluation of the integral in (2.10) is not possible and the criterion has to be

evaluated by numerical integration approximating the prior distribution by a measure with finite

support. Therefore we assume that the prior distribution Pi in the criterion is given by a discrete

measure with masses τi1, . . . τi`i at the points λi1, . . . , λi`i . The criterion in (2.10) can then be

rewritten as

TB
P (ξ) =

ν∑
i,j=1

`i∑
k=1

pi,jτik inf
θi,j∈Θj

∫
X

[
ηi(x, λik)− ηj(x, θi,j)

]2
ξ(dx),(2.11)

which is a locally T -optimality criterion of the from (2.4). The only difference between the criterion

obtained form the Bayesian approach and (2.4) consists in the fact that the criterion (2.11) involves

substantially more comparisons of the functions ηi and ηj. For example, if this approach is used

for a Bayesian version of the criterion (2.2) we obtain

TB12(ξ) =
∑̀
k=1

τk inf
θ2∈Θ2

∫
X

[
η1(x, λk)− η2(x, θ2)

]2
ξ(dx).(2.12)

This is the locally T -optimality criterion (2.4) with ν = `+ 1, pi,`+1 = τi (i = 1, . . . , `) and pi,j = 0

otherwise. Thus, instead of making only one comparison as required for the locally T -optimality

criterion, the Bayesian approach (with a discrete approximation of the prior) yields a criterion with

` comparisons, where ` denotes the number of support points used for the approximation of the

prior distribution. Moreover, for each support point of the prior distribution in the criterion (2.11)

(or (2.12)) the infimum has to be calculated numerically, which is computationally expensive. Con-

sequently, the computation of Bayesian T -optimal discriminating design problems is particularly
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challenging. In the following sections we provide an efficient solution of this problem.

3 Calculating locally T -optimal designs

Braess and Dette (2013) proposed an algorithm for the numerical construction of locally T -optimal

designs, which is based on vector-valued Chebyshev approximation. This algorithm is quite difficult

both in terms of description and implementation. Moreover, it requires substantial computational

resources and is therefore only able to deal with a small number of comparisons in the T -optimality

criterion. The purpose of this section is to develop a more efficient method which is able to deal with

a large number of comparisons in the the criterion and avoids the drawbacks of the procedures in

Atkinson and Fedorov (1975a) and Braess and Dette (2013). As pointed out in Section 2.2 methods

solving this problem are required for the calculation of Bayesian T -optimal discriminating designs.

Recall the definition of the function Ψ in (2.8) and note that under Assumption 2.1 it follows from

Corollary 2.3 that there exists a point x ∈ X , such that the inequality

Ψ(x, ξ) > TP(ξ)

holds, whenever ξ is not a locally T -optimal discriminating design. The algorithm of Atkinson

and Fedorov (1975a) uses this property to construct a sequence of designs which converges to the

locally T -optimal discriminating design. For further reference it is stated here.

Algorithm 3.1 (Atkinson and Fedorov (1975a)) Let ξ0 denote a given (starting) design and

let (αs)
∞
s=0 be a sequence of positive numbers, such that lims→∞ αs = 0,

∑∞
s=0 αs =∞,

∑∞
s=0 α

2
s <

∞. For s = 0, 1, . . . define

ξs+1 = (1− αs)ξs + αsξ(xs+1),

where xs+1 = arg maxx∈X Ψ(x, ξs).

It can be shown that this algorithm converges in the sense that lims→∞ TP(ξs) = TP(ξ∗), where ξ∗

denotes a locally T -optimal discriminating design. However, a major problem of Algorithm 3.1 is

that it yields a sequence of designs with an increasing number of support points. As a consequence

the resulting design (after applying some stopping criterion) is concentrated on a large set of

points. Even if this problem can be solved by clustering or by determining the extrema of the final

function Ψ(x, ξs), it is much more difficult to deal with the accumulation of support points during

the iteration. Moreover, Braess and Dette (2013) demonstrated that in many cases the iteration

process may take several hundred iterations for obtaining a locally T - optimal discriminating design

with a required precision, resulting in a high computational complexity for the recalculation of the
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optimum values

θ̂i,j ∈ arg inf
θi,j∈Θj

∫
X

[
ηi(x, θi)− ηj(x, θi,j)

]2
ξ(dx)(3.1)

in the optimality criterion (2.4). These authors also showed that Algorithm 3.1 may not find the

optimal design if there are too many model comparisons involved in the T -optimality criterion

(2.4).

Therefore, we propose the following alternative basic procedure for the calculation of locally T -

optimal discriminating designs as an alternative to Algorithm 3.1. Roughly speaking, it consists

of two steps treating the maximization with respect to support points (Step 1) and weights (Step

2) separately, where two methods implementing the second step will be given below [see Section

3.1 and 3.2 for details].

Algorithm 3.2 Let ξ0 denote a starting design such that TP(ξ0) > 0 and define recursively a

sequence of designs (ξs)s=0,1,... as follows:

(1) Let S[s] denote the support of the design ξs. Determine the set E[s] of all local maxima of the

function Ψ(x, ξs) on the design space X and define S[s+1] = S[s] ∪ E[s].

(2) We define ξ = {S[s+1], ω} as the design supported at S[s+1] (with a vector w of weights) and

determine the locally TP -optimal design in the class of all designs supported at S[s+1], that

is we determine the vector ω[s+1] maximizing the function

g(ω) = TP({S[s+1], ω}) =
ν∑

i,j=1

pi,j inf
θi,j∈Θj

∑
x∈S[s+1]

[
ηi(x, θi)− ηj(x, θi,j)

]2
wx

(here wx denotes the weights at the point x ∈ Ss+1). All points in S[s+1] with vanishing

components in the vector of weights ω[s+1] will be be removed and the new set of support

points will also be denoted by S[s+1]. Finally the design ξs+1 is defined as the design with the

set of support points S[s+1] and the corresponding nonzero weights.

Theorem 3.3 Let Assumption 2.1 be satisfied and let (ξs)s=0,1,... denote the sequence of designs

obtained by Algorithm 3.2, then

lim
s→∞

TP(ξs+1) = TP(ξ∗),

where ξ∗ denotes a locally T -optimal discriminating design.

A proof of Theorem 3.3 is deferred to Section 5. Note that the algorithm adds all local maxima of

the function Ψ(x, ξs) as possible support points of the design in the next iteration. Consequently, in
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the current form Algorithm 3.2 also accumulates too many support points. To avoid this problem, it

is suggested to remove at each step those points from the support, whenever their weight is smaller

than m0.25, where m denote the working precision of the software used in the implementation

(which is 2.2 × 10−16 for R). Note also that this refinement does not affect the convergence of

the algorithm from a practical point of view. A more important question is the implementation

of the second step of the procedure, that is the maximization of function g(ω). Before we discuss

two computationally efficient procedures for this purpose in the following sections, we state an

important property of the function Ψ(x, ξs+1) obtained in each iteration.

Lemma 3.4 At the end of each iteration of Algorithm 3.2 the function Ψ(x, ξs+1) attains one and

the same value for all support points of the design ξs+1.

3.1 Quadratic programming

Let S[s+1] = {x1, . . . , xn} denote the set obtained in the first step of Algorithm 3.2 and define ξ as

a design supported at S[s+1] with corresponding weights ω1, . . . , ωn (which have to be determined

in Step 2 of the algorithm by maximizing the function

g(ω) =
ν∑

i,j=1

pi,j

n∑
k=1

ωk
[
ηi(xk, θi)− ηj(xk, θ̂i,j)

]2
,

where θ̂i,j = θ̂i,j(ω) is defined in (3.1). For this purpose we suggest to linearize the functions

ηj(xk, θi,j) in the neighborhood of point θ̂i,j. More precisely, we consider the function

g(ω) =
ν∑

i,j=1

pi,j min
αi,j∈Rdj

n∑
k=1

ωk

[
ηi(xk, θi)− ηj(xk, θ̂i,j)− αTi,j

∂ηj(xk, θi,j)

∂θi,j

∣∣∣
θi,j=θ̂i,j

]2

.

=
ν∑

i,j=1

pi,j min
αi,j∈Rdj

[
αT
i,jJ

T
i,jΩJi,jαi,j − 2ωTRi,jαi,j + bT

i,jω
]
,

where dj is the dimension of the parameter space Θj, Ω = diag(ω1, . . . , ωn) and the matrices

Ji,j ∈ Rn×dj , Ri,j ∈ Rn×dj and the vectors bi,j ∈ Rn are defined by

Ji,j =
(∂ηj(xr, θi,j)

∂θi,j

∣∣∣
θi,j=θ̂i,j

)
r=1,...,n

,

Ri,j =
(

[ηi(xr, θi)− ηj(xr, θ̂i,j)]
∂ηj(xr, θi,j)

∂θi,j

∣∣∣
θi,j=θ̂i,j

)
r=1,...,n

,

bi,j =
(

[ηi(xr, θi)− ηj(xr, θ̂i,j)]2
)
r=1,...,n

,
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respectively. Obviously the minimum with respect to αi,j is achieved by αi,j =
(
JT
i,jΩJi,j

)−1
RT
i,jω

which gives

g(ω) = −ωTQ(ω) ω + bTω,

where

Q(ω) =
ν∑

i,j=1

pi,jRi,j

(
JT
i,jΩJi,j

)−1
RT
i,j.

The matrix Q(ω) depends on ω, but if we ignore this dependence and take the matrix Ω =

diag(ω1, . . . , ωn) as fixed, then we end up with a quadratic programming problem, that is

φ(ω, ω) = −ωTQ(ω) ω + bTω → max
ω
,(3.2)

n∑
k=1

ωk = 1; ωk ≥ 0, k = 1, . . . , n.

This problem is solved iteratively until convergence, substituting each time the solution obtained

in the previous iteration instead of ω. We note that a similar idea has also been proposed by Braess

and Dette (2013).

Remark 3.5 In the practical implementation of the procedure it is recommended to perform only

a few iterations of this step such that an improvement in the difference between the value of

the criterion of the starting design in Step 2 and the design obtained in the iteration of (3.2) is

observed. This will speed up the convergence of the procedure substantially. In this case equality

of the function Ψ at the support points of the calculated design (as stated in Lemma 3.4) is only

achieved approximately.

Formally, the convergence of the algorithm is only proved if the iteration (3.2) is performed until

convergence. However, in all examples considered so far, we observed convergence of the procedure,

even if only a few iterations of (3.2) are used. In our R program the user can specify the number

of iterations used in this part of the algorithm. Thus, if any problem regarding convergence is

observed, the number of iterations should be increased (of course at a cost speed of the algorithm).
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3.2 A gradient method

A further option for the second step in Algorithm 3.2 is a specialized gradient method, which is

used for the function

g(ω) =
ν∑

i,j=1

pi,j

n∑
k=1

ωk
[
ηi(xk, θi)− ηj(xk, θ̂i,j)

]2
(3.3)

where θ̂i,j = θ̂i,j(ω) is defined in (3.1). For it s description we define the functions

vk(ω) =
ν∑

i,j=1

pi,j
[
ηi(xk, θi)− ηj(xk, θ̂i,j(ω))

]2
, k = 1, . . . , n,

and iteratively calculate a sequence of vectors (ω(γ))γ=0,1,.... At the beginning we choose ω(0) = ω

(for example equal weights). If ω(γ) = (ω(γ),1, . . . , ω(γ),n) is given, we proceed for γ = 0, 1, . . . as

follows. We determine indices k and k corresponding to max1≤k≤n vk(ω(γ)) and min1≤k≤n vk(ω(γ)),

respectively, and define

α∗ = arg max
0≤α≤ω(γ),k

g(ω(γ)(α)),(3.4)

where the vector ω(γ)(α) = (ω(γ),1(α), . . . , ω(γ),n(α)) is given by

ω(γ),i(α) =


ω(γ),i + α if i = k

ω(γ),i − α if i = k

ω(γ),i else

The vector ω(γ+1) of the next iteration is then defined by ω(γ+1) = ω(γ)(α
∗). The following theorem

shows that the generated sequence of vectors converges to a maximizer of the function g in (3.3)

and is proved in the Appendix.

Theorem 3.6 The sequence (ω(γ))γ∈N converges to a vector ω∗ ∈ arg max g(ω).

Remark 3.7 It is worthwhile to mention that the one dimensional optimization problem (3.4) is

computationally rather expensive. In the implementation we use a linearization of the optimization

problem, which is obtained in a similar way a described in Section 3.1.

13



4 Implementation and numerical examples

We have implemented the procedure for the calculation of the locally T -optimal discriminating

design in R, where the user has to specify the weights pi,j and the corresponding preliminary

information regarding the parameters θi. To be precise, we call

P =

 p1,1 p1,2 . . . p1,ν−1 p1,ν

...
...

...
...

...

pν,1 pν,2 . . . pν,ν−1 pν,ν


the comparison table for the locally T -optimal discriminating design problem under consideration.

This table has to be specified by the experimenter. Because the Bayesian T -optimal design problem

with a discrete prior can be reduced to a locally T -optimal one with a large number of model

comparisons, we now describe the corresponding table for the Bayesian T -optimality criterion. For

illustration purposes we consider the case ν = 2. The Bayesian T -optimality criterion is given in

(2.12), where the prior for the parameter θ1 puts masses τ1, . . . τ` at the points λ1, . . . , λ`. This

criterion can be rewritten as a local T -optimality criterion of the form (2.4), i.e.

TP(ξ) =
`+1∑
i,j=1

pi,j inf
θi,j∈Θj

∫
X

[
ηi(x, θi)− ηj(x, θi,j)

]2

ξ(dx),(4.1)

where comparison table is given by

P = (pi,j)i,j=1,...,`+1 =


0 0 . . . 0 τ1

0 0 . . . 0 τ2

...
...

...
...

...

0 0 . . . 0 τ`
0 0 . . . 0 0

 ∈ R`+1×`+1,(4.2)

ηi(x, θi) = η1(x, λi), i = 1, . . . , ` and η`+1(x, θi,j) = η2(x, θi,`+1). The extension of this approach

to more than two models is easy and left to the reader. We now illustrate the new method in

two examples calculating Bayesian T -optimal discriminating designs. We have implemented both

procedures described in Section 3.1 and 3.2 and the results were similar. For this reason we only

represent the Bayesian T -optimal discriminating designs calculated by Algorithm 3.2, where the

quadratic programming method was used in Step 2 [see Section 3.1 for details].
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4.1 Bayesian T -optimal discriminating designs for exponential models

Consider the problem of discriminating between the two regression models

η1(x, θ1) = θ1,1 − θ1,2 exp(−θ1,3x
θ1,4),(4.3)

η2(x, θ2) = θ2,1 − θ2,2 exp(−θ2,3x),

where the design space is given by the interval [0, 10]. Exponential models of the form (4.3) are

widely used in applications. For example, the model η2 is frequently fitted in agricultural sciences,

where it is called Mitscherlichs growth law and used for describing the relation between the yield of a

crop and the amount of fertilizer. In fisheries research this model is called Bertalanffy growth curve

and used for the description of the length of a fish in dependence of its age [see Ratkowsky (1990)].

Optimal designs for exponential regression models have been determined by Han and Chaloner

(2003) among others. In the following we will demonstrate the performance of the new algorithm

in calculating Bayesian T -optimal discriminating designs for the two exponential models. Note

that it make only sense to consider the Bayesian version of T12, because the model η2 is obtained

as a special case of η1 for θ1,4 = 1. It is easy to see that the locally T -optimal discriminating

designs do not depend on the linear parameters of η1 and we have chosen θ̄1,1 = 2 and θ̄2,2 = 1 for

these parameters. For the parameters θ̄1,3 and θ̄1,4 we considered independent prior distributions

supported at the points

(4.4) µj +
σ(i− 3)

2
i = 1, . . . , 5 ; j = 3, 4 ,

where µ3 = 0.8, µ4 = 1.5 and different values of the variance σ2 are investigated. The corresponding

weights at these points are proportional (in both cases) to

(4.5)
1√

2πσ2
exp
(
−(i− 3)2

8

)
; i = 1, . . . , 5 .

We note that this yields 25 terms in the Bayesian optimality criterion (2.12). Bayesian T -optimal

discriminating designs are depicted in Table 1 for various values of σ2, where an equidistant design

at 11 points 0, 1, . . . , 10 was used as starting design.

A typical determination of the optimal design takes between 0.03 seconds (in the case σ2 = 0)

and 1.4 seconds (in the case σ2 = 0.4) CPU time on a standard PC (with an intel core i7-4790K

processor). The algorithm using the procedure described in Section 3.2 in step 2 requires between

0.11 seconds (in the case σ2 = 0) and 11.6 seconds (in the case σ2 = 0.4) CPU time. We observe

that for small values of σ2 the optimal designs are supported at 4 points, while for σ2 ≥ 0.285 the

Bayesian T -optimal discriminating design is supported at 5 points. The corresponding function Ψ
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σ2 Optimal design σ2 Optimal design

0.0
0.000 0.441 1.952 10.000
0.209 0.385 0.291 0.115

0.285
0.000 0.453 1.758 10.000
0.207 0.396 0.292 0.105

0.1
0.000 0.452 1.877 10.000
0.209 0.391 0.290 0.110

0.3
0.000 0.452 1.747 4.951 10.000
0.207 0.396 0.292 0.003 0.102

0.2
0.000 0.455 1.811 10.000
0.208 0.394 0.291 0.107

0.4
0.000 0.446 1.651 4.699 10.000
0.200 0.384 0.290 0.060 0.066

Table 1: Bayesian T -optimal discriminating designs for the two exponential models in (4.3). The
support points and weights of the independent prior distributions for the parameters θ1,3 and θ1,4

are given by (4.4) and (4.5), respectively.

from the equivalence Theorem 2.1. is shown in Figure 1.

4.2 Bayesian T -optimal discrimination designs for dose finding studies

Non-linear regression models have also numerous applications in dose response studies, where they

are used to describe the dose response relationship. In these and similar situations the first step of

the data analysis consists in the identification of an appropriate model, and the design of experiment

should take this task into account. For example, for modeling the dose response relationship of a

Phase II clinical trial Pinheiro et al. (2006) proposed the following plausible models

η1(x, θ1) = θ1,1 + θ1,2x;

η2(x, θ2) = θ2,1 + θ2,2x(θ2,3 − x);(4.6)

η3(x, θ3) = θ3,1 + θ3,2x/(θ3,3 + x);

η4(x, θ4) = θ4,1 + θ4,2/(1 + exp(θ4,3 − x)/θ4,4);

where the designs space (dose range) is given by the interval X = [0, 500]. In this reference some

prior information regarding the parameters for the models is also provided, that is

θ1 = (60, 0.56), θ2 = (60, 7/2250, 600), θ3 = (60, 294, 25), θ4 = (49.62, 290.51, 150, 45.51).

Locally optimal discrimination designs for the models in (4.6) have been determined by Braess

and Dette (2013) in the case pi,j = 1/6, (1 ≤ j < i ≤ 4), which means that the resulting local

T -optimality criterion (2.4) consists of 6 model comparisons.

We begin with an illustration of the new methodology developed in Section 3 calculating again the

locally T -optimal discriminating design for this scenario. The proposed algorithm needs only four
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Figure 1: The function on the left hand side of inequality (2.6) in the equivalence Theorem 2.1 for
the numerically calculated Bayesian T -optimal discriminating designs. The competing regression
models are given in (4.3).

iterations for the calculation of a design, say ξ4, which has at least efficiency

EffTP(ξ4) =
TP(ξ̃4)

supζ TP(ζ)
≥ 0.999.

The function Ψ(·, ξ1) after the first iteration is displayed in Figure 2, where we used the same

starting design as in Braess and Dette (2013). The support points of ξ1 are shown as circles and

we can see that function Ψ(x, ξ1) attains one and the same value, which is represented with dotted

line, for all support points. We finally note that the algorithm proposed in Braess and Dette (2013)

needs 9 iterations to find a design with the same efficiency.

We now investigate Bayesian T -optimal discriminating designs for a similar situation. For the

sake of a transparent representation we only specify a prior distribution of the four-dimensional

parameter θ4 for the calculation of the discriminating design, while θ2 and θ3 are considered as

fixed. In order to obtain a design which is robust with respect to model misspecification we chose a

prior discrete prior with 81 points in R4. More precisely, the support points of the prior distribution
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Figure 2: The function Ψ(·, ξ1) after the first iteration of Algorithm 3.2

are given by the points {
µe1,e2,e3,e4 | e1, e2, e3, e4 ∈ {−1, 0, 1}

}
,(4.7)

where

µe1,e2,e3,e4 = (µ1 + e1σ, µ2 + e2σ, µ3 + e3σ, µ4 + e4σ),

µ = (µ1, µ2, µ3, µ4) = (49.62, 290.51, 150, 45.51),

and different values for σ2 are considered. The weights at the corresponding points are proportional

(normalized such that their sum is 1) to

1

(2πσ2)2
exp

( ||µe1,e2,e3,e4 − µ||22
2σ2

)
, e1, e2, e3, e4 ∈ {−1, 0, 1},(4.8)

where || · ||2 denotes the Euclidean norm. The resulting Bayesian optimality criterion (2.11) consist

of 246 model comparisons. In this case the method of Braess and Dette (2013) fails to find the

Bayesian T -optimal discriminating design. Bayesian T -optimal discriminating designs have been

calculated by the new Algorithm 3.2 for various values of σ2 and the results are shown in Table 2.

A typical determination of the optimal design takes between 0.09 seconds (in the case σ2 = 0) and

7.8 seconds (in the case σ2 = 372) CPU time on a standard PC. The algorithm using the procedure

described in Section 3.2 in Step 2 requires between 0.75 seconds (in the case σ2 = 0) and 37.1

seconds (in the case σ2 = 372) CPU time. For small values the Bayesian T -optimal discriminating

designs are supported at 4 points including the boundary of the design space. The smaller (larger)

interior support point is increasing (decreasing) if σ2 is increasing. For larger values of σ2 even

the number of support points of the optimal design increases. For example, if σ2 = 352 or 372

the Bayesian T -optimal discriminating design has 5 or 6 points (including the boundary points

of the design space). These observations are in line with the theoretical finding of Braess and

18



Dette (2007) who showed that the number of support points of Bayesian D-optimal designs can

become arbitrarily large with an increasing variability in the prior distribution. The corresponding

functions from the equivalence Theorem 2.1 are shown in Figure 3.

σ2 optimal design σ2 optimal design

0
0.000 78.783 241.036 500.0
0.255 0.213 0.357 0.175

332 0.000 92.692 222.735 500.0
0.260 0.240 0.344 0.156

202 0.000 84.467 234.134 500.0
0.257 0.225 0.351 0.167

352 0.000 91.743 129.322 221.118 500.0
0.260 0.214 0.036 0.336 0.154

302 0.000 91.029 225.713 500.0
0.259 0.237 0.345 0.159

372 0.000 89.881 129.590 170.306 220.191 500.0
0.260 0.170 0.091 0.019 0.310 0.150

Table 2: Bayesian T -optimal discriminating designs for the models in (4.6). The weights in the
criterion (2.10) are given by pi,j = 1/6; 1 ≤ i < j ≤ 4 and the support and masses of the prior
distribution are defined by (4.7) and (4.8), respectively.
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5 Proofs

5.1 An auxiliary result

Lemma 5.1 Let ϕ(v, y) be a twice continuously differentiable function of two variables v ∈ V ⊂ Rk

and y ∈ Y , where Y is a compact set. Denote by Y∗ the set of all points where the minimum

miny∈Y ϕ(v, y) is attained and let q ∈ Rk be an arbitrary direction. Then

∂miny∈Y∗ ϕ(v, y)

∂q
= min

y∈Y∗

∂ϕ(v, y)

∂q
.(5.1)
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Figure 3: The function on the left-hand side of inequality (2.6) in the equivalence Theorem 2.1 for
the numerically calculated Bayesian T -optimal discriminating designs. The competing regression
models are given in (4.6).

Proof. See Pshenichny (1971), p. 75.

5.2 Proofs

Proof of Theorem 2.2. Assume without loss of generality that pi,j > 0 for all i, j = 1, . . . , ν. Let

ξ∗ denote any locally T -optimal discriminating design and let θ = (θi,j)i,j=1,...,ν denote the vector

consisting of all θi,j ∈ Θi,j(ξ
∗). We introduce the function

ϕ(x, θ) =
ν∑

i,j=1

pi,j
[
ηi(x, θi)− ηj(x, θi,j)

]2
(5.2)

and consider the product measure

µ(dθ) =
∏

i,j=1,...,ν

µi,j(dθi,j),(5.3)
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where µij are measures on the sets Θ∗i,j(ξ
∗) defined by (2.5). Similarly, we define µ∗(dθ) =∏

i,j=1,...,ν µ
∗
i,j(dθi,j) as the product measure of the measures µ∗i,j in Theorem 2.1. From this re-

sult we have

TP(ξ∗) ≥ sup
ζ

∫
X

∫
Θ∗(ξ∗)

ϕ(x, θ)µ∗(dθ)ζ(dx)

≥ inf
µ

sup
ζ

∫
X

∫
Θ∗(ξ∗)

ϕ(x, θ)µ(dθ)ζ(dx) = sup
ζ

inf
µ

∫
X

∫
Θ∗(ξ∗)

ϕ(x, θ)µ(dθ)ζ(dx),

where the sup and inf are calculated in the class of designs ζ on X and product measures µ on

Θ∗(ξ∗) = ⊗νi,j=1Θ∗i,j(ξ∗), respectively. It now follows that the characterizing inequality (2.6) in

Theorem 2.1 is equivalent to the inequality

sup
ζ
Q(ζ, ξ∗) ≤ TP(ξ∗).

Consequently, any non-optimal design must satisfy the opposite inequality. �

Proof of Corollary 2.3: Let ξ denote a design such that TP(ξ) > 0 and recall the definition of

the set Θ∗ij(ξ) in (2.5). We consider for a vector θ = (θi,j)i,j=1,...,ν ∈ Θ∗(ξ) = ⊗i,j=1,...,νΘ
∗
i,j(ξ), the

function ϕ is defined in (5.2) and product measures µ(dθ) of the form (5.3) on Θ∗(ξ). Now the well

known minimax theorem and the definition of the function Q in (2.7) yields

max
x∈X

Ψ(x, ξ) = inf
µ

max
x∈X

∫
Θ∗(ξ)

ϕ(x, θ)µ(dθ) = inf
µ

sup
ζ

∫
X

∫
Θ∗(ξ)

ϕ(x, θ)µ(dθ)ζ(dx)

= sup
ζ

inf
µ

∫
X

∫
Θ∗(ξ)

ϕ(x, θ)µ(dθ)ζ(dx) = sup
ζ

inf
θ∈Θ∗(ξ)

∫
ϕ(x, θ)ζ(dx) = sup

ζ
Q(ζ, ξ),

where the infimum is calculated with respect to all measures µ of the form (5.3) and the supremum is

calculated with respect to all experimental designs ζ on X . Note that X is compact by assumption

and it can be checked that the set Θ∗(ξ) is also compact as a closed subset of a compact set.

Consequently all suprema and infima are achieved and there exists a design ζ∗ supported at the

set of local maxima of the function Ψ(x, ξ), such that

Q(ζ∗, ξ) = sup
ζ
Q(ζ, ξ) = max

x∈X
Ψ(x, ξ).

The assertion of Corollary 2.3 now follows from Theorem 2.2. �

Proof of Theorem 3.3: Obviously, the inequality

TP({S[s], ω[s]}) ≤ TP({S[s+1], ω[s+1]})

21



holds for all s as optimization with respect to ω occurs on a larger set. Moreover, the sequence

TP(ξs) is bounded from above by TP(ξ∗) and has a limit, which is denoted by T ∗∗P . Consequently,

there exists a subsequence of designs, say ξsj , j = 1, 2, . . . converging to a design, say ξ∗∗. Note that

TP is upper semi-continuous as the infimum of continuous functions, which implies TP(ξ∗∗) = T ∗∗P .

Now, assume that TP(ξ∗∗) < TP(ξ∗), then ξ∗∗ is not locally T -optimal and by Theorem 2.2 there

exists a constant δ > 0 such that

sup
ζ
Q(ζ, ξ∗∗)− TP(ξ∗∗) = 2δ,

where the function Q is defined in (2.7). Therefore for sufficiently large j, say, j ≥ N we obtain

(using again the lower semi-continuity of supζ Q(ζ, ξ)) that

sup
ζ
Q(ζ, ξsj)− TP(ξsj) > δ,

whenever j ≥ N . Note that by construction the sequence (TP(ξs))s∈N is increasing and therefore

(5.4) TP(ξsj+1
)− TP(ξsj) ≥ TP(ξsj+1)− TP(ξsj).

In order to estimate the right hand side we consider for j ≥ N and α ∈ [0, 1] the design

ξ̃sj+1
(α) = (1− α)ξsj + αζj,

where ζj is the measure for which the function Q(ζ, ξsj) attains its maximal value in the class of

all experimental designs supported at the local maxima of the function Ψ(x, ξsj), and define

αsj+1
= arg max

0≤α≤1
TP(ξ̃sj+1

(α)).

By construction of ξsj+1 is the best design supported at supp(ξsj) ∪ supp(ζj), and (5.4) yields

(5.5) TP(ξsj+1
) ≥ TP(ξsj+1) ≥ TP(ξ̃sj+1

(αsj+1
)).

We introduce the notations h(j, α) = TP(ξ̃sj(α)), and note that

∂TP(ξ̃sj+1
(α))

∂α

∣∣∣
α=0

= Q(ζj, ξsj)− TP(ξsj) = sup
ζ
Q(ζ, ξsj)− TP(ξsj) > δ.
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A Taylor expansion gives

h(j + 1, αsj+1
)− h(j + 1, 0) = max

α∈[0,1]

[
TP(ξ̃sj+1

(α))− TP(ξ̃sj+1
(0))

]
≥ max

α∈[0,1]

[
α
∂TP(ξ̃sj+1

(α))

∂α

∣∣∣
α=0
− 1

2
α2K

]
> max

α∈[0,1]

[
αδ − 1

2
α2K

]
=

δ2

2K
,

where K is an absolute upper bound of the second derivative. Therefore it follows from (5.5) that

TP(ξsj+1
)− TP(ξsj) ≥ TP(ξsj+1)− TP(ξsj)

≥ TP(ξ̃sj+1
(αsj+1

))− TP(ξsj) = h(j + 1, αsj+1
)− h(j + 1, 0) ≥ δ2

2K
.

which gives for L > N + 1

TP(ξsL)− TP(ξsN ) =
L−1∑
j=N

[
TP(ξsj+1

)− TP(ξsj)
]
≥ [L−N ]

δ2

2K
.

The left hand side of this inequality converges to the finite value T (ξ∗∗)−T (ξsN ) as L→∞, while

the right hand side converges to infinity. Therefore we obtain a contradiction to our assumption

TP(ξ∗∗) < TP(ξ∗), which proves the assertion of Theorem 3.3.

Proof of Lemma 3.4: Fix t ∈ {1, . . . , n} and note that wt = 1−
∑n

`=1,` 6=tw`. Under Assumptions

2.1 and 2.2 we obtain by formula (5.1)

∂g(ω)

∂ωk
=

ν∑
i,j=1

pi,j
[
ηi(xk, θi)− ηj(xk, θ̂i,j(ω))

]2 − ν∑
i,j=1

pi,j
[
ηi(xt, θi)− ηj(xt, θ̂i,j(ω))

]2
The condition ∂g(ω)

∂ωk
= 0, k = 1, . . . , n, k 6= t is the necessary condition for weight optimality and

consequently it follows from the definition of the function Ψ(x, ξs+1) that this function attains one

and the same value for all support points of the design ξs+1.

Proof of Theorem 3.6: The proof is similar to the proof of Theorem 3.3. Denote

h(γ, α) = g(ω(γ)(α)),

where the vector ω(γ)(α
∗) is calculated at the γth iteration. Since the sequence g(ω(γ)) is bounded

and increasing (by construction) it converges to some limit, say g∗∗. Consequently there exists a

subsequence of vector of weights, say ω(γj), j = 1, 2, . . . converging to a vector, say ω∗∗. Note that g

is upper semi-continuous as the infimum of continuous functions, which implies g(ω∗∗) = g∗∗. Now,
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assume that g(ω∗∗) < g(ω∗), then it follows by an application of Theorem 2.1 with X = {x1, . . . , xn}
that there exists a constant δ > 0 such that

∂g(ω(α))

∂α

∣∣∣
α=0

= 2δ > 0.

Here the vector ω(α) is defined in the same way as ω(γ)(α), where ω(γ) is replaced by ω = ω∗∗.

Therefore for sufficiently large j, say, j ≥ N we obtain (using the lower semi-continuity of g) that

h(γj, 0) > δ, and a Taylor expansion yields

h(γj+1, α
∗
(γj+1))− h(sj, α

∗
(γj)

)) ≥ max
α

(
α
∂g(ω(α))

∂α
− 1

2
α2K

)
=

δ2

2K
,

where α∗(γj) is the value α∗ from the γjth iteration and K is an absolute upper bound of the second

derivative. Using the same arguments as in the proof of Theorem 3.3 we obtain a contradiction,

which proves the assertion of the theorem.
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