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Chapter 1

Motivation

The discovery of the giant magnetoresistance (GMR) e�ect at the end of the 1980s [1,2]
is considered as a textbook example of the in�uence of fundamental research on our
everyday life on a short timescale. Less than 10 years later, hard disk drives with read
heads using the GMR-e�ect, allowing for a further increase of data storage density, have
already been commercially available [3].

Another class of devices which is expected to be a�ected by fundamental research
in the next decades are integrated circuits. For about 50 years Moore's empirical law
has accurately described the increasing integration level, which predicts a doubling of
the number of components per chip roughly every 24 months. However, when structure
sizes will reach the range between 5 − 7 nm during the years 2020 − 2025, conven-
tional complementary metal-oxide-semiconductor (CMOS) technology is expected to be
exhausted [4]. To achieve a further gain of computational power, several concepts such
as vertical integration of layers with active electronic components [5], semiconductor
based spintronics [6] or quantum computation [7] have been intensely studied in the last
decades.

Very recently there was a debate if all-optical logic circuits could provide a signi�cant
contribution for future computation devices [8�11]. In its course, major challenges for all-
optical circuits to compete with state-of the art CMOS technology regarding device foot-
print, energy consumption and production costs have been outlined [9�11]. Nevertheless,
there is the hope that all-optical circuits could be superior to current CMOS-technology
regarding heat dissipation and operation speed [8, 12].

A very promising system for the realization of all-optical logic circuits are exciton-
polaritons in semiconductor microcavities. Exciton-polaritons are light-matter quasipar-
ticles, the theoretical concept of which was developed in the 1950s [13�16], and intensely
studied in the following decades in bulk material. The observation of strong coupling
between photons and excitons in semiconductor microcavities in 1992 [17] stimulated
two discoveries, which might pave the way towards an all-optical logic circuit: Firstly,
the realization of an electrically pumped polariton laser [18�20], which operates with-
out occupation inversion and is therefore expected to be more e�cient with respect to
power consumption as compared to conventional semiconductor lasers [21]. Secondly,
the demonstration of an all-optical polariton transistor [22], which ful�lls several essen-
tial requirements for the operation of a logic device such as cascadability and logic gate
operation [9, 12, 23].
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2 Motivation

However, the realization of devices based on exciton-polaritons is still in the proof
of principle stage and up to now it is not clear if there will be a technological impact
comparable to the discovery of the GMR-e�ect. Nevertheless, exciton-polaritons pro-
vide an ideal system to study a broad spectrum of fundamental physical phenomena
such as polariton condensation which is closely related to Bose-Einstein-Condensation
(BEC) [24], harmonic oscillator potentials [25], Josephson oscillations [26] and super�uid
phenomena [27�30].

The scope of this thesis is twofold: On the one hand a contribution to the under-
standing of the fundamental physics of exciton-polaritons in semiconductors shall be
provided, on the other hand the potential for prospective applications such as polariton
lasing devices and all-optical integrated circuits shall also be evaluated.

The structure of this thesis is as follows: In chapter 2 a comprehensive overview of the
concept of exciton-polaritons in semiconductors is given. In its course, similarities and
fundamental di�erences between polaritons in bulk materials as well as in microcavities
are elucidated. Furthermore, an introduction into the physics of BEC and its application
to polariton condensates in microcavities is provided.

Chapter 3 focuses on spectroscopy of polaritons in bulk materials. As outlined in
chapter 2, semiconductor crystals of very high quality are required for the observation
of signatures of polaritons in bulk materials, which are provided by high-quality natural
Cu2O crystals. While the energetically lowest exciton-polariton series, which is known as
the so-called yellow series, has been investigated in detail in Cu2O, only little is known
about the higher lying exciton-polariton series. Using two single frequency lasers in the
visible and infrared spectral range, respectively, the blue exciton-polariton is investigated
in this chapter by means of sum-frequency generation. The main result is the observation
of a coherent propagation of the blue exciton-polariton over macroscopic distances despite
a large absorption coe�cient in this spectral region.

In chapter 4 the feasibility of di�erent types of polariton based laser operation in
a microcavity is evaluated for the case of GaAs-based compound semiconductors. In
the �rst part of this chapter, workable operating parameters for a polariton laser in the
visible spectral range are investigated. Among other things, an upper bound of 90 K for
the lattice temperature is determined. The second part deals with the evaluation of a
new concept for a terahertz lasing source [31], in which the transition between the dark
2p exciton state and the lower polariton state shall be exploited by means of two-photon
pumping of the 2p state. A prerequisite for an actual detection of terahertz radiation ac-
cording to this concept is a detailed understanding of the two-photon processes occurring
in a microcavity, which is provided in this chapter.

Chapter 5 deals with di�erent aspects of the propagation of polariton condensates
in GaAs-based microcavities exhibiting high quality factors on the order of 10000. In
the �rst part of this chapter, propagating polariton condensates in a photonic wire are
considered, which are injected by non-resonant optical excitation. In this connection, the
interaction between the polariton condensate and background carriers is studied by two
complementary experimental techniques, namely a second order correlation measurement
as well as a Young's double-slit experiment. The key �nding here is a pronounced decrease
of coherence of the polariton condensate mediated by interaction with the background
carriers. The second part of this chapter elucidates the feasibility to steer and manipulate
polariton condensates by recon�gurable optically induced potentials, which might pave
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the way towards all-optical logic circuits based on microcavity polaritons.

Finally, in chapter 6, a comprehensive summary and conclusion of the key results of
this thesis is provided as well as an outlook for further investigations based on the results
presented in this work.





Chapter 2

Exciton-Polaritons

In this chapter the fundamental properties of exciton-polaritons (in the following the
term polariton will be used as a synonym for exciton-polariton) are introduced. As a
starting point the seminal work of Hop�eld [15], who launched the quantum mechanical
theory of polaritons together with Fano [14] and Agranovich [16], is brie�y reviewed.
This is followed by an analysis of the Jaynes-Cummings Hamiltonian in the rotating
wave approximation [32] and a detailed discussion of the physical requirements for the
validity of the polariton concept. Thereafter, polaritons in semiconductor microcavities
are introduced using the Jaynes-Cummings Hamiltonian. In the �nal part of this chapter
the fundamental concepts of BEC are explained and applied to microcavity polaritons.

2.1 Hop�elds description of polaritons and rotating wave

approximation

The elementary excitations of the electronic system of a semiconductor which possesses
the lowest energy are the so-called excitons. Excitons are bound quasiparticles which
consist of a hole in the valence band and an electron in the conduction band. The
energetic states of an exciton can usually be described in the framework of the Bohr
model:

En(k) = Eg −
R∗

n2
+

~2k2

2M
, n = 1,2,... (2.1)

where R∗ is the e�ective Rhyberg constant, also known as exciton binding energy, Eg the
bandgap energy, k the wavenumber andM = m∗e+m∗h the total mass of the electron and
the hole, respectively. Depending on the semiconductor material the e�ective Rhyberg
constant lies in a range of 1 − 100 meV, for example R∗ = 4.2 meV in GaAs [33] and
R∗ ≈ 100 meV in Cu2O [34]∗. The third term in Eq. (2.1) describes the kinetic energy,
which is also known as spatial dispersion. Here, a parabolic dispersion is assumed which

∗Here it should be mentioned that the energetic structure of the yellow exciton series in Cu2O is not
completely captured by the hydrogen model. Whereas the e�ective Rhyberg constant R∗ ≈ 100 meV
describes accurately the higher energy states n ≥ 2 of the yellow exciton in Cu2O, the exciton binding
energy amounts to Eb = 153 meV [35]. The deviation of the 1s state arises mainly due to the fact
that the Bohr radius of the lowest exciton is on the order of magnitude of the lattice constant and the
nonparabolicities of the bands have to be taken into account [35].
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6 Exciton-Polaritons

is a valid approximation near the band minima.

When excitons couple to the light �eld (so-called bright excitons), interaction ef-
fects between photons and excitons have to be considered. Depending on the inter-
action strength, the experimental approach and the quality of the investigated sample
(see Sec. 2.2 for further details), these interaction can be treated as small perturbation
where photons and excitons remain eigenstates of the system (the so-called weak cou-
pling regime), or new eigenstates, which are called polaritons, are generated due to the
interaction (the so-called strong coupling regime). Within this section the latter case will
be discussed.

In Refs. [15, 16] the second-quantized Hamiltonian, which describes the photons,
excitons and their mutual interaction, is derived. As an approximation only quadratic
terms are considered, which allows for an analytical diagonalization of the corresponding
Hamiltonian. Damping e�ects mediated by exciton-phonon interaction or terms of higher
order are not considered within this model. In Ref. [36] the model was extended for
spatial dispersion e�ects of the excitonic resonance according to Eq. (2.1). The resulting
Hamiltonian reads [37]

H =
∑
γ

[~c′k(a†γaγ +
1

2
) + ~ωex,γ(b†γbγ +

1

2
) (2.2)

+ iCγ(a†γ + a−γ)(bγ − b†−γ) +Dγ(a†γ + a−γ)(aγ + a†−γ)],

where

~ωex,γ = ~ω0 +
~2k2

2M
, (2.3)

Cγ = ~ω0

[
πβωex,γ

c′kεb

] 1
2

, (2.4)

Dγ = ~ω0
πβωex,γ

c′kεb
, (2.5)

c′ =
c
√
εb
. (2.6)

γ = (k, p) is a combined index which accounts for the wavevector k and the polariza-
tion p for the two transverse electromagnetic modes.† β (εb) denotes the polarizability
(background dielectric constant). a†γ (b†γ) is the photonic (excitonic) creation operator
and aγ (bγ) is the photonic (excitonic) annihilation operator. The �rst two terms in
Eq. (2.2) describe the non-interacting photons and excitons, respectively. The third
term considers exciton-photon interactions, the fourth photon-photon interactions. The
introduction of polariton operators, which are linear combinations of the photon and
exciton operators, allows for the calculation of the eigenvalues and eigenstates of the
Hamiltonian in Eq. (2.2). This yields an eigenvalue problem and the expansion coe�-
cients of the polariton operators as well as the eigenvalues can be determined analytically.
This approach is known as Hop�eld-transformation in this context, further details can
be found in Refs. [15,36,37].

†−γ means −γ = (−k, p).
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However, for the description of polaritons in this thesis the Hamiltonian in Eq. (2.2)
is further simpli�ed. Firstly, the photon-photon interaction term is neglected, which
corresponds to the A2-term arising from the minimal substitution of the momentum-
operator p̂→ (p̂− qA) in the semiclassical treatment of quantum mechanics. Secondly,
antiresonant contributions a†γb

†
γ (aγbγ), which describe the simultaneous creation (an-

nihilation) of a photon and an exciton, are not considered. This approach is known as
rotating wave approximation, the corresponding Hamiltonian is called Jaynes-Cummings
Hamiltonian [32]. Finally, the vacuum energy is neglected, since an occupation number
of 〈a†γaγ〉 >> 1 for photons (〈b†γbγ〉 >> 1 for excitons) is expected. The simpli�ed
Hamiltonian reads

H = Hphoton +Hexciton +Hinteraction = (2.7)

=
∑
γ

[~c′ka†γaγ + ~ωex,γb†γbγ +
~Ωγ

2
(a†γbγ + aγb

†
γ)],

where ~Ωγ
2 corresponds to Cγ de�ned in Eq. (2.4). One obtains the following relation [37]

~Ωγ =

(
k0

k

) 1
2

~Ωr, (2.8)

where k0 is the wavenumber at crossing point of the photon and exciton dispersion and
~Ωr is the so-called Rabi splitting. Near the crossing point of the photon and exciton
dispersion, i.e. k → k0, ~Ωγ ≈ ~Ωr can be assumed.

The rotating wave approximation holds as long as the Rabi splitting is signi�cantly
smaller compared to the exciton transition energy, which is typically the case for excitonic
transitions in the visible spectral range in anorganic semiconductors. The GaAs-based
microcavity structures investigated in this thesis, for example, exhibit a Rabi splitting
of ~Ωr ≈ 10 meV, whereas the exciton transition energy is ~Ωex ≈ 1600 meV.

However, for intersubband transitions between quantized subbands of quantum wells
[38] and cyclotron resonances of a high-mobility two-dimensional electron gas [39], the
Rabi splitting can lie in the same order of magnitude as the transition energy of the
unperturbed system. In this connection, the antiresonant contributions a†γb

†
γ (aγbγ) have

to be considered and the rotating wave approximation breaks down [40,41]. In this case
one typically speaks of the ultrastrong coupling regime.

As no interaction between states with di�erent wavevectors k and polarization p is
included in the Hamiltonian of Eq. (2.7), the corresponding eigenvalue problem can be
solved for each wavevector k independently. Therefore the Hamiltonian can be rewritten
in the following matrix representation

H =

(
Eph(k) ~Ωr

2
~Ωr

2 Eex(k)

)
, (2.9)

where Eph(k) = ~c′k (Eex(k) = ~ω0 + ~2k2
2M ) denotes the energy of the photon (exciton).

The diagonalization of this Hamiltonian yields new eigenstates, which are called lower
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polariton (LP) and upper polariton (UP):

|LP 〉 = Xk |X〉+ Ck |P 〉 , (2.10)

|UP 〉 = −Ck |X〉+Xk |P 〉 , (2.11)

where |P 〉 (|X〉) is the photonic (excitonic) basis state of the noninteracting system.
The new eigenstates are a linear combination of the photonic and excitonic states. The
expansion coe�cients Ck and Xk are the so-called Hop�eld coe�cients and the square
of the mean value determines the photonic and excitonic fraction of the corresponding
polariton, respectively. They satisfy the relation

|Ck|2 + |Xk|2 = 1. (2.12)

|Ck|2 and |Xk|2 are given by the following relations

|Ck|2 =
1

2

(
1− ∆E(k)√

∆E(k)2 + (~Ωr)2

)
, (2.13)

|Xk|2 =
1

2

(
1 +

∆E(k)√
∆E(k)2 + (~Ωr)2

)
, (2.14)

where ∆E(k) = Eph(k)−Eex(k) is the so-called exciton-photon detuning (in the following
abbreviated as detuning). A large negative detuning corresponds to a Hop�eld coe�cient
|Ck|2 ≈ 1 and a mainly photon-like LP (exciton-like UP). For a large positive detuning
the situation is reversed: |Xk|2 ≈ 1 and the LP (UP) is mainly determined by the
excitonic (photonic) properties. However, for the case of degeneracy of the unperturbed
states, i.e. Eph(k0) = Eex(k0) and therefore ∆E(k0) = 0, |Ck0 |2 = |Xk0 |2 = 1

2 , the
LP and the UP exhibit both 50 % excitonic and photonic character (at |k| = k0). The
corresponding eigenenergies are

ELP,UP =
1

2

[
Eph(k) + Eex(k)∓

√
(Eph(k)− Eex(k))2 + (~Ωr)2

]
. (2.15)
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Figure 2-1: (a) Calculated polariton dispersions for the 1s heavy hole bulk exciton resonance
in GaAs. For better visibility the Rabi splitting is enhanced by a factor of 20 and indicated by
a black arrow. (b) Corresponding squared Hop�eld coe�cients.
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The ∓-sign indicates an anticrossing behavior of the new eigenstates, which is char-
acteristic for coupled quantum systems. The minimal energy level separation occurs for
the degeneracy case ∆E(k0) = 0 and corresponds to the Rabi splitting ~Ωr.

Fig. 2-1 (a) shows a schematic polariton dispersion at the 1s bulk exciton resonance
in GaAs (E1s = 1515 mev), which is calculated by diagonalization of the Hamiltonian
given in Eq. (2.9). For simplicity other exciton resonances are neglected. The Rabi
splitting is increased by a factor 20 for better visibility. The following properties of bulk
polaritons are evident from Fig. 2-1:

(i) For wavenumbers far away from the crossing point of the eigenstates of the noninter-
acting system, the LP and UP dispersions approach the dispersions of the exciton
and photon, respectively, which is also re�ected by squared Hop�eld coe�cients of
unity and zero value.

(ii) At the point of degeneracy an anticrossing of the polariton branches can be ob-
served, which is characteristic for light-matter interaction.

(iii) The polariton dispersion exhibits a monotonous behavior, i.e. there is no polaritonic
state exhibiting a minimum in energy. In contrast, polaritons in microcavities
possess a well-de�ned energetic minimum (see Sec. 2.3.2).

For the description of the interaction of the light �eld with n excitonic resonances, the
Hamiltonian of Eq. (2.9) can be extended to a (n+ 1)x(n+ 1)-matrix, which is used to
model a polariton dispersion in chapter 3.

2.2 Validity of the polariton model

As already mentioned in Sec. 2.1, the outlined polariton model is only valid under certain
conditions, at which the build-up of new eigenstates can be observed. For the assessment
of the prerequisites for the observation of polaritons it is necessary to include damping
e�ects into the model outlined in the previous section. Damping e�ects are mediated
e.g. by exciton-lattice interaction by phonons and by leakage of photons out of the semi-
conductor. A comprehensive quantum �eld theoretical treatment of polaritons including
phonon interaction was given by Tait [42] and also the requirements for the observation
of polariton e�ects were derived in this work. In this connection, two kinds of solutions
for the polariton dispersion are discussed: Firstly, a quasiparticle solution where polari-
tons are introduced into the system with �xed momentum k at a time t and are not
in�uenced further by an excitation source. In this case the semiconductor is uniformly
excited. This situation typically occurs in a nonlinear optics experiment as described in
chapter 3. In this case polariton e�ects occur as long as

~Γ <
~Ωr

2
, (2.16)

where ~Γ describes the broadening of the linewidth induced by damping. This condition
is ful�lled in most cases, e.g. for the 1s exciton in bulk GaAs a homogeneous broadening
of the linewidth of ~Γ = 0.2 meV has been observed [43], whereas the Rabi splitting is
about 16 meV [37]. This condition can also be interpreted in terms of Rabi-oscillations
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between the eigenstates of the undisturbed system: Polariton e�ects can be observed as
long as there is coherent energy transfer between a photon and an exciton at least once.

Secondly, a forced harmonic solution which has a �xed frequency and damps out
exponentially in space which is characteristic for linear optical experiments, e.g. trans-
mission and absorption experiments. The following condition was derived in a quantum
�eld theoretical approach [42] and also in the classical treatment of polaritons [44]:

~Γ <

(
4~ω0

Mc2

) 1
2 √

εb~Ωr. (2.17)

Using typical parameters for bulk GaAs M = 0.3me,
√
εb = 3.55 and ~ω0 = 1515 meV

[45] the rhs of Eq. (2.17) yields a value of 0.35 meV, which is about the size of the broad-
ening of the linewidth in high quality samples. Therefore, the observation of signatures
of polariton e�ects is very challenging within the frame of linear optical experiments and
requires very pure samples exhibiting narrow linewidths [45].

From the considerations outlined above, it is evident that the occurrence of polari-
ton e�ects in bulk semiconductors depends very strongly on the experimental situation.
The requirements for a linear optical experiment are much more stringent [Eq. (2.17)]
compared to the situation of a nonlinear optical experiment [Eq. (2.16)]. Therefore, a
large extent of di�erent nonlinear optical spectroscopic techniques has been developed to
investigate polariton e�ects in bulk semiconductors [46].

However, as will be discussed in the next section, semiconductor microcavities possess
the huge advantage that only the condition of the quasiparticle solution [Eq. (2.16)] has
to be ful�lled due to wavevector con�nement independent of the experiment performed.
Therefore, the observation of polariton e�ects is much easier to achieve than in bulk
semiconductors.

2.3 Polaritons in semiconductor microcavities

Polaritons in bulk semiconductors are subject to several restrictions, which prevent
a further evolution from fundamental research to applications. These are especially:
(i) Observation of polariton e�ects imposes high requirements on sample quality and
experimental approach as outlined in the previous section, (ii) the three physical pa-
rameters entering Eq. (2.7), i.e. the exciton-energy ~ω0, the Rabi splitting ~Ωr and the
photon dispersion, cannot be designed at will and (iii) the LP in bulk material does not
possess an energetic minimum.

However, the con�nement of the wavevector of the light �eld in one direction using
a microcavity can resolve all these issues as will be discussed within this section.

2.3.1 Semiconductor microcavities

The description of microcavities and the implications on the dispersion of the photon
mainly follows Refs. [47�49], unless otherwise stated. A microcavity is an optical res-
onator with spatial extent in the range of the wavelength of light. Due to the very small
resonator dimensions, the time for a round trip of a photon within the resonator is rather
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short, which imposes high requirements on the re�ectivity of the microcavity mirrors to
allow for a storage time of photons within the microcavity of several picoseconds. Metallic
mirrors typically do not provide re�ectivities larger than 99%, whereas dielectric mirrors
can be designed as such, that in principle arbitrarily high re�ectivities can be realized.
Fig. 2-2 shows a typical design of a semiconductor microcavity surrounded by dielectric
mirrors on both sides, so-called distributed Bragg re�ectors (DBRs). The DBR consists
of alternating layers of di�erent materials with di�erent index of refraction and optical
thickness of λDBR/4. Partial re�ection of light occurs at each layer boundary and the
re�ected beams of light with an optical wavelength close to λDBR interfere constructively,
i.e. the DBR acts as a high quality re�ector within a certain spectral range around λDBR.
Within this spectral range, light cannot propagate into the structure. In analogy to the
energy bandgap of a semiconductor one speaks of a photonic bandgap or a photonic
stopband, respectively. The re�ectivity of a DBR is given by the relation

R = 1− 4
next

nc

(
n1

n2

)2n

, (2.18)

where n1 (n2) is the lower (higher) index of refraction of the DBR layers, n the number
of alternating layer pairs, nc the index of refraction of the cavity material and next the
index of refraction of the substrate or the vacuum depending on whether the upper or
lower DBR is considered. Due to the di�erent values of next for the upper and lower
DBR, respectively, it is convenient to extend the lower DBR by four more pairs of layers
to obtain the same re�ectivity for both DBRs. For the structure shown in Fig. 2-2, using
the index of refractions nAlAs = 3 and nAl0.2Ga0.8As = 3.5, respectively, [50] one obtains
a re�ectivity as high as R = 0.99993.

lower DBR upper DBRSubstrate SurfaceCavity

Figure 2-2: Scanning electron microscope (SEM) image of the cross section of a typical mi-
crocavity structure investigated in this thesis. The central cavity layer, consisting of AlAs, is
surrounded on both sides by DBR structures consisting of 32 and 36, alternating pairs of AlAs
and Al0.2Ga0.8As layers, respectively, which provide high re�ectivities larger than 99%. SEM
image has been provided by the institute of Technical Physics of Würzburg University.
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The cavity layer is designed for a certain target wavelength λc and has an optical
thickness of λc/2 or a multiple of λc/2. The cavities investigated in this thesis are all
of λc/2-type. The cavity layer, sandwiched between two DBRs, can be considered as a
defect or impurity in an ideal photonic crystal, which allows for the propagation of a
localized photonic mode within the photonic bandgap. The quality factor Q (Q-factor)
of a microcavity is de�ned as

Q =
λc

δλc
, (2.19)

where δλc is the linewidth of the cavity resonance. The Q-factor describes the rate of
dissipation of optical energy and the characteristic lifetime τ of a photon within the
cavity is given by

τ =
Q

ωc
. (2.20)

For a λc/2-cavity the free spectral range is the same as the cavity mode frequency,
therefore the Q-factor and the �nesse F are equivalent:

Q = F =
π
√
R

1−R
. (2.21)

However, Eq. (2.21) holds only if one assumes that leakage of photons due to imperfect
mirrors is the only source of energy dissipation. In realistic structures other dissipation
processes (e.g., scattering and absorption) also play a role, therefore the Q-factor cannot
be increased arbitrarily by adding more and more DBR layers. Consequently, F only
gives an upper bound for the Q-factor.

An additional complication arises from the fact that the electromagnetic (EM) �eld
of the cavity mode penetrates into the DBR structure due to the low re�ection coe�cient
of the single λDBR/4-layers of the DBR. The e�ective penetration depth is given by:

LDBR =
λc

2nc

n1n2

|n1 − n2|
, (2.22)

which yields an e�ective cavity length of Leff = Lc +LDBR, where Lc = λc
2nc

is the length
of a λc/2-cavity. For the microcavity shown in Fig. 2-2 this gives an e�ective cavity
length 20 times larger compared to the length of a λc/2-cavity. Therefore the frequency
of the cavity mode ωm is mainly a�ected by the DBR structure according to [51]

ωm =
Lcωc + LDBRωDBR

Leff
, (2.23)

at which ωDBR denotes the center frequency of the DBR given by the optical thickness of
the single layers of the DBR. Therefore the cavity-mode frequency is mainly determined
by the DBR and the relation ωm = ωc holds only for the idealized case that the DBR
layers have exactly half the optical thickness of the cavity.

The dispersion of the EM-�eld inside the cavity is given by the relation

Ec =
~c
nc
k =

~c
nc

√
k2
⊥ + k2

|| =
~ck⊥
nc

√
1 + (k||/k⊥)2, (2.24)

where k|| is the in-plane wavenumber and k⊥ = nc(2π/λc) the wavenumber perpendicular
to the DBR structure. A Taylor expansion for small in-plane wavenumbers k|| << k⊥
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leads to

Ec ≈
~ck⊥
nc

(
1 +

k2
||

2k2
⊥

)
= Ec(k|| = 0) +

~2k2
||

2mc
, (2.25)

where the cavity photon e�ective mass is

mc =
Ec(k|| = 0)n2

c

c2
, (2.26)

which is typically on the order of 10−5me. Due to the con�nement of the EM-�eld in
the direction perpendicular to the DBR structure, a parabolic dispersion of the EM-�eld
is obtained according to Eq. (2.25). This results in the dispersion of the LP also being
parabolic and therefore in an energetic minimum, which will be derived within the next
section.

2.3.2 Interaction of the con�ned cavity mode with con�ned excitonic

states

To obtain a polaritonic system using a microcavity, an interaction between the con�ned
EM-�eld of the microcavity and the excitonic states must be provided. A common
approach to realize this coupling is depicted in Fig. 2-3. Several stacks of quantum wells
are placed within the central antinodes of the EM-�eld. A quantum well is a narrow
layer of a semiconductor material (GaAs in the samples investigated in this thesis),
which is surrounded by two barriers of semiconductors with a wider bandgap (AlAs in
the investigated samples). In consequence, the exciton motion is con�ned in the growth
direction of the sample in analogy to the well-known particle in a box problem in quantum
mechanics. There are two bene�ts arising from the coupling of quantum well excitons to
the EM-�eld of the cavity:

Firstly, the exciton binding energy is signi�cantly increased with respect to bulk
excitons. For the idealized condition of an in�nitely high barrier and a quantum well
thickness Lqw → 0, the theoretical limit for the exciton binding energy is [52]

R∗2D = 4R∗3D. (2.27)

Figure 2-3: Schematic drawing of a typical GaAs-based microcavity design with three stacks
of four GaAs quantum wells embedded within the three central antinodes of the EM-cavity �eld.
The black solid line represents the �eld distribution of the cavity mode. Adapted from Ref. [55].
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However, under realistic conditions of �nite barrier height and quantum well thick-
ness, typical exciton binding energies for GaAs quantum wells lie in a range of 2−3R∗3D,
which corresponds to R∗2D = 8− 12 meV [52]. In consequence, due to the larger exciton
binding energy, excitonic features in GaAs quantum wells are more robust concerning
thermal dissociation compared to excitons in GaAs bulk material. Moreover, the oscil-
lator strength of excitons in quantum wells is largely increased compared to bulk mate-
rial [53]. Therefore, signatures of excitonic states in quantum wells can still be observed
at room temperature, whereas no such feature can be seen in the case of bulk GaAs [54].

Secondly, the Rabi splitting can be designed at will by the choice of the number of
quantum wells placed in the antinodes of the EM-�eld. The more quantum wells are
embedded in the microcavity, the more excitons interact with the con�ned EM-�eld, and
in consequence the oscillator strength of the excitons as well as the Rabi splitting is also
increased. The Rabi splitting depends on the number of quantum wells N inserted into
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Figure 2-4: Calculated polariton dispersions for δ = −10 meV (a), δ = 0 meV (b) and δ =
10 meV (c), respectively. The panels (d), (e) and (f) show the corresponding squared Hop�eld
coe�cients |Ck|| |2 and |Xk|| |2.
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the microcavity by the relation [56]

Ωr ∝
√
N . (2.28)

For the microcavity design depicted in Fig. 2-3, at which three stacks of four GaAs
quantum wells are placed in the three central antinodes of the con�ned EM-�eld inside
of the cavity, typically Rabi splittings on the order of 10 meV can be achieved.

The Eqs. (2.7)-(2.15) presented in Sec. 2.1 remain valid for polaritons in microcavi-
ties with the substitution k → k|| and the use of the parabolic photon dispersion derived
in Eq. (2.25) due to the wavevector con�nement perpendicular to the DBR. The diag-
onalization of the Hamiltonian given in Eq. (2.9) using the parabolic photon dispersion
of Eq. (2.25) results in the polariton dispersions shown in Fig. 2-4. Here, an energy of
Eex = 1600 meV for the 1s heavy hole exciton of the energetically lowest intersubband
transition, which interacts with the cavity mode, is assumed and three di�erent energies
for the cavity mode of 1590 meV, 1600 meV and 1610 meV, respectively, at zero in-plane
wavenumber are chosen. For the Rabi splitting ~Ωr = 10 meV is selected. For conve-
nience we de�ne the detuning δ = Eph(k|| = 0)−Eex(k|| = 0) as the di�erence in energy
between the cavity mode and the exciton at zero in-plane wavenumber. The calculated
dispersions allow for the following statements:

(i) For large in-plane wavenumbers the LP (UP) approaches the exciton (photon)
dispersion and the corresponding squared Hop�eld coe�cient reaches unity value
independent of the chosen detuning.

(ii) For negative detuning, the LP is mainly determined by the photonic fraction for
small in-plane wavenumbers, which is re�ected by a steep parabolic dispersion and a
large |Ck|| |

2-coe�cient. The UP, on the other hand, exhibits a rather �at dispersion
and is therefore dominated by excitonic properties.

(iii) For positive detuning, the situation is reversed. The LP is rather exciton-like for
small in-plane wavenumbers, whereas the UP is photon-like.

(iv) In the case of zero detuning, the photonic and excitonic fraction at k|| = 0 is 50%

for the LP and UP, respectively, and the dispersions of both polariton branches
exhibit the largest deviation from the dispersions of the undisturbed eigenstates.

(v) Finally, contrary to bulk polaritons the LP exhibits an energetic minimum for
k|| = 0.

For small in-plane wavenumbers, the dispersion of both polariton branches can be
approximated by a parabola [49]:

ELP,UP(k||) = ELP,UP(0) +
~2k2
||

2mLP,UP
, (2.29)

where the polariton e�ective mass is given by the harmonic mean of the e�ective masses
of the photon and the exciton, weighted with the corresponding squared Hop�eld coe�-



16 Exciton-Polaritons

cients:

1

mLP
=
|Ck||=0|2

mc
+
|Xk||=0|2

mex
, (2.30)

1

mUP
=
|Xk||=0|2

mc
+
|Ck||=0|2

mex
. (2.31)

Due to the much larger e�ective mass of the exciton compared to the EM-cavity mode,
the e�ective mass of both polariton branches is mainly determined by the e�ective mass
of the light �eld:

mLP ≈ mc

|Ck||=0|2
, (2.32)

mUP ≈ mc

|Xk||=0|2
. (2.33)

Consequently, depending on the detuning, the polaritons exhibit an e�ective mass on
the order of 10−4me. This extraordinarily small e�ective mass allows for the observation
of condensation of polaritons similar to Bose-Einstein condensation (BEC) in condensed
matter as will be discussed in Sec. 2.4.

So far it has been shown that two of the main restrictions of bulk polaritons can
be resolved by the use of microcavities. Firstly, polariton dispersions can be tailored
at will by selection of the cavity resonance, exciton resonance and the Rabi splitting,
which are accessible by the design of the microcavity and the embedded quantum wells.
Secondly, the LP branch exhibits a well de�ned energetic minimum. Finally, the question
arises, which of the criteria necessary for the observation of bulk polaritons, as derived
in Sec. 2.2, is of relevance for microcavity based structures. However, due to the ver-
tical con�nement of the polariton along the cavity axis, the less stringent quasiparticle
solution [given by Eq. (2.16)] is relevant for microcavity polaritons independent of the
experiment performed [37]. Commonly, broadening parameters γex (γc), which represent
the half-width at half maximum of the linewidth of the exciton (cavity resonance), are
phenomenologically introduced by the substitutions Eex → Eex−iγex and Ec → Ec−iγc,
respectively. For the case of δ = 0, this leads to the modi�ed eigenenergies:

ELP,UP =
1

2

[
Ec(k||) + Eex(k||)− iγc − iγex ∓

√
(~Ωr)2 − (γc − γex)2

]
. (2.34)

Here, the polariton concept remains valid as long as the expression within the square
root is positive, i.e.

~Ωr > |γc − γex|. (2.35)

For the investigated GaAs-based microcavities, exhibitingQ-factors larger than 1000, this
relation holds as long as the carrier density is below the Mott-density (see Sec. 4.1.1).
Therefore, the observation of polariton e�ects is largely facilitated compared to bulk
semiconductors, as the polariton dispersion can be typically measured by means of pho-
toluminescence experiments.
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2.4 Condensation of polaritons

As a composite particle, consisting of a linear superposition of two bosons, i.e. a photon
and an exciton, the polariton behaves as a bosonic particle, too. Due to their very
low e�ective mass and the existence of a well de�ned energetic minimum, the LPs in
a microcavity are especially appealing for the realization of a macroscopic occupation
of the ground state similar to BEC. Within this section common theoretical concepts to
describe BECs are explained, which will be followed by a short discussion on the question
whether the nomenclature BEC is appropriate for polariton condensates.

2.4.1 Einsteins proposal: The ideal Bose gas

The fundamental di�erence between fermions and bosons relies on the fact that the Pauli
exclusion principle does not apply to bosons. Consequently, bosons can accumulate in
unlimited quantity in a degenerate state. On the basis of a work of Satyendra Nath Bose
on the quantum statistics of light, Albert Einstein predicted the existence of a phase
transition, at which the ground state of a bosonic system is populated in a macroscopic
way, and derived an explicit expression for the critical temperature Tc of the phase tran-
sition. In the following a brief derivation of Einsteins argument is given [57]:
As a starting point, a system of N noninteracting bosons possessing a mass m is con-
sidered distributed in a volume V at a temperature T . The average number of bosons
np occupying a speci�c single particle state Ep is given by the Bose-Einstein distribution
function

np =
1

exp{β[Ep − µ(T )]} − 1
, (2.36)

where β = 1/kbT and µ(T ) is the chemical potential, which depends on the tempera-
ture T . For the noninteracting bosons a parabolic dispersion is assumed:

Ep =
p2

2m
. (2.37)

According to Eq. (2.36), E0 ≥ µ(T ) has to be ful�lled, otherwise the occupation number
for states with Ep < µ(T ) would become negative. The overall particle number N is
connected with the Bose-Einstein distribution function by the relation

N = n0 +
∑
p,p 6=0

np, (2.38)

where the occupation number of the ground state is treated separately. For large systems,
i.e. V →∞, the sum in Eq. (2.38) can be replaced by an integral which leads to

N = n0 +
V

(2π~)3

∫
d3p np. (2.39)

The integral can be evaluated analytically and one obtains

N = n0 +
V

λ3
T

g3/2(z), (2.40)
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where g3/2(z) is a polylogarithm of the order 3/2, z = exp(βµ) and the thermal wave-
length λT is given by

λT =
2π~√

2πmkbT
. (2.41)

As g3/2(z) is a monotonic function, the second expression in Eq. (2.40) reaches its max-
imum value for a value of µ = 0 for the chemical potential. This means, there is a
maximum number of particles at a given temperature T which can occupy excited states.
Consequently, the excess particles are forced to accumulate the ground state in accor-
dance with Eq. (2.40). The critical temperature, at which a signi�cant population of the
ground state sets in, is therefore given by the relation

N =
V

λ3
T

g3/2(1). (2.42)

Solving the equation for Tc leads to an explicit expression for the critical temperature:

kbTc =
2π~2

m

(
n

ζ(3/2)

)2/3

, (2.43)

where ζ(3/2) = g3/2(1) ≈ 2.6124 is the Riemann zeta function for the argument x = 3/2

and n = N/V the particle density. From Eq. (2.43) it is immediately evident that a low
mass of the bosonic particle is bene�cial for reaching a high critical temperature. Whereas
for atomic gases temperatures within a range of 0.2 − 2 µK are required to observe a
phase transition to a BEC [58,59], the very low e�ective polariton mass in microcavities
allows for the observation of condensation phenomena up to room temperature in wide
bandgap [60, 61] and organic semiconductors [62, 63]. Despite the simplifying assump-
tions of an in�nite system and noninteracting particles, Eq. (2.43) already provides a
good estimate. For example, for the parameters of liquid 4He, one obtains a critical
phase transition temperature of 3.13 K, which is in reasonable agreement with the ex-
perimentally determined temperature of 2.18 K for a phase transition to a super�uid
state [57].

2.4.2 Interacting Bose gas

For a more precise description of a bosonic many-particle system, interactions between
bosons and the inclusion of additional single particle potentials Vext have to be con-
sidered. A convenient starting point for the theoretical treatment of the system is the
nonrelativistic many-body Hamiltonian in second quantization:

Ĥ =

∫ (
~2

2m
∇Ψ̂†(r)∇Ψ̂(r)

)
dr +

∫ (
Vext(r)Ψ̂†(r)Ψ̂(r)

)
dr (2.44)

+
1

2

∫ (
Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r)Ψ̂(r′)

)
drdr′.

Here, Ψ̂†(r) [Ψ̂(r)] denotes the �eld operator creating [annihilating] a particle at the
point r. The de�nition of the �eld operators is given by
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Ψ̂(r) =
∑
i

ϕi(r)ai, (2.45)

Ψ̂†(r) =
∑
i

ϕ∗i (r)a†i , (2.46)

where ϕi(r) is the single-particle wavefunction in the state i. The �eld operators obey
the well-known commutation relations for bosons:

[Ψ̂(r), Ψ̂†(r′)] = δ(r− r′), (2.47)

[Ψ̂(r), Ψ̂(r′)] = 0. (2.48)

The equation of motion for the �eld operator Ψ̂(r) can be derived in the Heisenberg
representation using Eq. (2.44) and the commutation relations for the �eld operator [64]:

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂(r, t), Ĥ] = (2.49)

=

[
−~2∇2

2m
+ Vext(r, t) +

∫
Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)dr′

]
Ψ̂(r, t).

2.4.3 The Gross-Pitaevskii equation

For the further treatment of Eq. (2.49), the following assumptions and approximations
are made [65]:

(i) The temperature of the Bose gas is lower than the critical temperature for BEC.
In consequence, the momenta of the bosons are small. Therefore the inequality

kR << 1, (2.50)

is always satis�ed, where R denotes the length scale at which the bosons interact
with each other. The inequality (2.50) determines the low energy regime in standard
scattering theory [66]. In this case the di�erential scattering cross section becomes
independent of energy and scattering angle and is only determined by the so-called
s-wave scattering length a.

(ii) A dilute Bose gas is considered, which warrants an interaction of more than two
particles to be negligible. This assumption has already been used for the ansatz
of Eq. (2.44), where only two-particle interactions are considered. The diluteness
criterion can be formulated in terms of the following inequality

|a| << n−1/3, (2.51)

where n is the density of the Bose gas. This means that the average particle
separation is much larger than the scattering length a.

(iii) The ground state is occupied with a large number of bosons N0 >> 1, and the
number of uncondensed bosons is much smaller than N0. This allows for the re-
placement of the �eld operator Ψ̂(r, t) with a classical wavefunction Ψ0(r, t) with
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the normalization ∫
|Ψ0(r, t)|2dr = N0, (2.52)

which is also called the order parameter for the phase transition to BEC.

(iv) Ψ0(r, t) varies slowly on the length scale R of boson interaction. This allows for
the substitution Ψ0(r′, t)→ Ψ0(r, t) in the integral of Eq. (2.49).

Under this assumptions one can write down the famous Gross-Pitaevskii equation (GPE)
straight forward:

i~
∂

∂t
Ψ0(r, t) =

[
−~2∇2

2m
+ Vext(r, t) + g|Ψ0(r, t)|2

]
Ψ0(r, t), (2.53)

where g =
∫
V (r)d3r is the interaction coupling constant, which is related to the s-wave

scattering length a by the relation:

g =
4π~2a

m
. (2.54)

From Eq. (2.53) one can derive the same continuity equation as for the linear Schrödinger
equation:

∂n

∂t
+∇j = 0, (2.55)

where the density of the Bose gas n and the current density j are given by:

n(r, t) = |Ψ0(r, t)|2 (2.56)

j(r, t) = − i~
2m

(Ψ∗0∇Ψ0 −Ψ0∇Ψ∗0) = n
~
m
∇S. (2.57)

Here, S denotes the phase of the order parameter given by:

Ψ0(r, t) =
√
n(r, t)eiS(r,t). (2.58)

The velocity of the condensate �ow can now be de�ned as

vs(r, t) =
j

n
=

~
m
∇S, (2.59)

with the important consequence that vs is irrotational in any region of space, where
n(r, t) is nonzero:

∇ x vs(r, t) = 0. (2.60)

However, if one considers a closed contour C around a region, where the condensate
is absent, i.e. Ψ0(r, t) = 0, the circulation is given by the so-called Onsager-Feynman
quantization condition due to the fact that the phase is de�ned only modulo 2π:∮

C
vsdl =

~
m

∮
C
∇Sdl =

2π~
m
· l, (2.61)

where l is an integer number. The occurrence of such phase shifts of multiples of 2π

around the singularity of a BEC are called quantized vortices and the quantization num-
ber l is termed vortex charge. Quantized vortices are excitations of a super�uid and the
experimental observation of such is regarded as strong evidence for super�uid behavior.
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For the theoretical description of polariton condensates, generalized versions of the
GPE, including losses, ampli�cation and energy relaxation terms [67�69] have emerged
as valuable tools for the explanation of several experimental observations such as prop-
agation and repulsion of polariton condensates [69], pattern formation [70, 71] vortex
dynamics [72] and long range spin transport [73]. In this thesis, a generalized GPE is
used for the simulations of �ows of polariton condensates steered by optically generated
potentials (see Sec. 5.2).

2.4.4 Bogoliubov theory

The momentum representation of Eq. (2.44) also poses as point of origin for the Bogoli-
ubov theory. In contrast to the considerations in the previous section, the in�uence of
external potentials is neglected, i.e. Vext = 0. By accounting only for quadratic terms
in particle operators ap and a†p with nonzero momentum p = ~k and executing a lin-
ear operator transformation similar to the Hop�eld-transformation mentioned in Sec. 2.1,
which is known as Bogoliubov-transformation in this context, one can derive the so-called
Bogoliubov dispersion [65]:

E(k) =

[
gn

m
(~k)2 +

(
(~k)2

2m

)2
]1/2

. (2.62)

For small momenta ~k << √gnm this dispersion takes a linear form

E(k) = cs~k, (2.63)

where cs =
√
gn/m is the speed of sound for the elementary excitation of the BEC. In

simple words, low energy excitation of a BEC can be considered as sound waves similar
to acoustic phonons in condensed matter and are a consequence of the spontaneous
breaking of a gauge symmetry caused by the phase transition to BEC. The occurrence of
a Bogoliubov-like linear dispersion has already been observed for polariton condensates
[74,75], which is considered as evidence that polariton condensates are closely related to
BEC.

2.4.5 Condensation of a 2D Bose gas

Following the approach presented in Sec. 2.4.1, it becomes evident that in an in�nite
one- or two-dimensional system, a BEC cannot occur at �nite temperature as the inte-
gral in Eq. (2.39) diverges for µ→ 0. Consequently, Eq. (2.39) is always ful�lled without
the need for a macroscopic ground state occupation. This statement also holds when
interactions between bosons are considered according to the Mermin-Wagner-Hohenberg
(MWH) theorem [76, 77]. Nevertheless, under realistic experimental conditions the as-
sumption of an in�nite system size is never ful�lled. To achieve condensation of ultracold
atoms, for example, the atoms are typically stored in magneto-optical traps [58,59]. The
inclusion of external con�nement alters the expression for the critical temperature, which
was calculated in detail for several di�erent potentials in the three-dimensional case [78].
For the case of one- and two-dimensional systems, critical temperatures for the occur-
rence of a BEC have been calculated under the condition of a spatially varying potential
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exhibiting a power-law dependence [79]. Such spatially varying potentials are inherent in
semiconductor microcavities mainly due to lattice mismatch between the di�erent layers
of the DBR structure, which are denoted as disorder e�ects [80]. Moreover, the spread
of the condensate is a�ected by the sample size, the size of the pumped area and the
lifetime of polaritons within the cavity, therefore the spatial extent of the condensate
is in general limited. Consequently, the MWH theorem is commonly not considered
as a principle obstacle for the realization of a localized BEC consisting of microcavity
polaritons [24,81].

Besides a phase transition to a localized BEC, the occurrence of a second phase
transition, which is called Berezinskii-Kosterlitz-Thouless (BKT) transition, is predicted
for a 2D Bose gas [82, 83]. Below a critical temperature TBKT, the 2D Bose gas exhibits
super�uid behavior, which vanishes for the case of T > TBKT. To elucidate the physical
processes at a BKT transition, quantized vortices have to be considered (see Sec. 2.4.3).
Below the critical temperature of TBKT, vortices can only exist in a bound form of pairs
of singly charged vortices exhibiting opposite circulation ±2π. For a closed contour larger
than the vortex pair size, there is no distortion of the phase along this path, since the
vortex pair does not possess a net circulation. For T > TBKT, the vortex pairs break up
and form a disordered gas of phase defects [84]. In contrast to BEC, a BKT transition
requires interaction between bosons and cannot occur in an ideal Bose gas. The critical
temperature for a BKT transition is given by the relation

kbTBKT = ns
π~2

2m
, (2.64)

where ns denotes the density of the super�uid. Signatures of a BKT state are the sudden
occurrence of free vortices above TBKT and a power law decay of the �rst order spatial
coherence below TBKT, which has been observed for 2D trapped cold atoms [85]. However,
due to the small system size investigated in typical experiments studying semiconductor
microcavities, the occurrence of a localized BEC transition is expected before a BKT
transition [81]. In addition, no unambiguous evidence of a BKT transition involving
microcavity polaritons has been observed so far.

Moreover, there is still an ongoing debate if the terminology BEC is appropriate for
the description of the condensation of microcavity polaritons [86,87], as microcavity po-
laritons are bosonic particles out of equilibrium due to their short lifetime in contrast
to BEC of ultracold atoms. Nevertheless, microcavity polaritons exhibit several fea-
tures which are characteristic for a BEC, such as signatures of super�uidity, namely the
occurrence of quantized [27], semiquantized vortices [28] and suppression of scattering
from defects [30], a linear Bogoliubov dispersion [74, 75] or the existence of long range
order spatial coherence [24, 88]. In addition, typical theoretical concepts used for the
descriptions of BEC, such as GPE and Bogoliubov theory can be applied to microcavity
polaritons.

To conclude, polariton condensates are conceptually di�erent from BECs of ultracold
atoms due to the lower dimensionality of the system and their out-of-equilibrium charac-
ter. On the other hand, microcavity polaritons share many physical features with BEC
of ultracold atoms, which encourages the terminology BEC for microcavity polaritons.
However, within this thesis the terminology polariton condensate will be used.



Chapter 3

Coherent propagation of blue

polaritons in Cu2O

In this chapter a novel nonlinear spectroscopic approach using two single frequency lasers
is presented. In this connection, the blue exciton series of bulk Cu2O is investigated,
which is di�cult to access by linear spectroscopic techniques due to the large absorption
coe�cient of Cu2O in this spectral range. The sum-frequency (SF) signal observed
exhibits remarkable polaritonic features of the blue exciton. This chapter has been
published in similar form in Ref. [89].

3.1 Introduction

Nonlinear spectroscopy of solids [90] is a mature �eld allowing insights into electronic
properties not accessible by linear optical methods. Considering only two-photon pro-
cesses there are additional degrees of freedom available, since polarization vectors ~ei and
wave vectors ~ki (i = 1,2) of both photon beams can be set separately, allowing k-space
spectroscopy [90, 91], which gives experimental access to the dispersion of polaritons
in bulk material. Besides spectroscopic data, nonlinear observations linked to coherent
propagation of the excitation can be investigated. The text book example are the so-
called Maker fringes observed in second-harmonic generation [92�94]. Another example
is the coherent propagation of polaritons, which is observed as a beat-like structure in
time-resolved experiments [95].

So far, light generated by sum-frequency generation (SFG) could be extracted out of
a non-linear material only for energies below or close to the band gap with high e�ciency,
otherwise strong absorption occurs. Further, the investigation of non-linear e�ects has
required power levels in the kW to MW range, necessitating pulsed laser sources. By
spectrally narrow excitation of two exciton-polariton resonances in Cu2O, strong SF-
signals far above the bandgap can be observed using continuous wave lasers in the mW
to W power range (see Sec. 3.4).

The lowest excitons of the so-called yellow series in Cu2O have been intensively
studied because they are considered as candidates for BEC in a three dimensional sys-
tem [96�99]. Excitation from the upmost valence band of Γ+

7 -symmetry to the lowest
conduction band of Γ+

6 -symmetry leads to the formation of orthoexcitons (Γ+
5 -symmetry)

23
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and paraexcitons (Γ+
2 -symmetry), which are optically forbidden and split o� by 12 meV

to lower energy from the quadrupole allowed orthoexcitons.

Besides the yellow exciton series there are three other series, the states of which are
named green, blue and violet excitons according to their spectral range of absorption.
The green series arises due to excitation from a Γ+

8 -valence band (split o� by 130 meV
from the Γ+

7 -valence band of the yellow series) to the same Γ+
6 -conduction band. The

blue and violet excitons stem from the same Γ+
7 - and Γ+

8 -valence bands, respectively,
but from an odd parity conduction band of Γ−8 -symmetry. A schematic representation
of the band structure of Cu2O near the Γ-point is shown in the inset of Fig. 3-1. The
S-excitons of these series are dipole allowed. In contrast to the yellow and green series
there have not been many experiments reported on the blue and violet series. Re�ectivity
and transmission measurements of very thin �lms (∝ 100 nm) were reported in the 1960s
[100�102]. Later the optical properties were studied by spectroscopic ellipsometry [103].
Because of the large oscillator strength of the blue and violet excitons, one expects a
pronounced polariton structure, which has not been investigated up to now.

In this chapter, a nonlinear spectroscopic approach to investigate 1s blue polaritons
in natural Cu2O crystals of several 10 µm thickness is presented. Making use of two
narrow band CW-lasers (dye laser and infrared laser), blue polaritons are excited by
SFG. A SF-signal is only seen if the dye laser is tuned to the resonance of the yellow 1s

orthoexciton. It has been shown before that 1s yellow orthoexciton-polaritons propagate
coherently through rather thick samples (∝ 1 mm) [95] with group velocities as low as
40 km/s [104], whereas the o� resonant polaritons in the infrared spectral range exhibit
a group velocity of about 100.000 km/s. Thus, this experiment provides the unique
opportunity to investigate the interaction of polaritons with a group velocity di�erence
of three orders of magnitude. A possible consequence of this experimental situation is the
observation of coherent propagation in a spectral range of high absorption: It is expected
that because of the large damping of blue polaritons with energies 0.5 eV above the band
gap (absorption length ≈ 100 nm) [100], the SF emission originates only from the last
100 nm of the crystal. Nevertheless, for the case of an antiparallel con�guration of the
two laser beams a pronounced beat-like structure is observed which can be understood
if one assumes coherent propagation of blue polaritons through the rather thick crystal
(about 600 times the absorption length).

3.2 Theory

Despite the fact that Cu2O is a semiconductor with inversion symmetry (point group Oh),
SFG can be observed, showing characteristic dependencies on crystal orientation and
polarization. Here, a three-step process is considered: In a �rst step the 1s orthoexciton
of the yellow series (Γ+

5 -symmetry) is excited by a quadrupole transition (even parity
operator Γ+

5 ), in a second step the Γ+
5 -orthoexciton is coupled to the 1s orthoexciton of

the blue series (Γ−4 -symmetry) by a dipole transition (odd parity operator Γ−4 ). Finally,
in a third step a photon is emitted by a dipole transition to the ground state.

Using the coupling coe�cients of the Tables of Koster et al. [105] for the above three
steps, one can derive detailed polarization selection rules for all crystal orientations. For
the �rst step the amplitude QA for the quadrupole transition to the Γ+

5 -orthoexciton is
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~edye ~eir analyser ftp fle

110 110 110 0 1/9

110 110 112 2/9 1/9

110 112 110 2/9 0

110 112 112 0 0

112 110 110 2/9 0

112 110 112 0 0

112 112 110 0 1/9

112 112 112 2/9 1/9

Table 3-1: Relative oscillator strength for di�erent polarizer and analyzer con�gurations and
~kdye = [111]. ftp (fle) denote the relative oscillator strength for TP (LE).

given by the symmetric vector product [106]

QA = ~edye ⊗ ~kdye , (3.1)

where ~edye and ~kdye refer to the polarization and k-vector of the dye laser, respectively. In
the second step, coupling the Γ+

5 -orthoexciton to the blue Γ−4 -orthoexciton [the electron
in the Γ+

6 -conduction band is lifted by the infrared laser into the Γ−8 -conduction band
(Fig. 3-1 inset)] leads to the amplitude SFA of the Γ−4 -state:

SFA = [~edye ⊗ ~kdye]⊗ ~eir , (3.2)

where ~eir refers to the polarization of the infrared laser. Finally one has to decompose
this vector into its transverse and longitudinal components with respect to the wave
vector ~kdye. Only the transverse components lead to SFG (transversal polaritons (TPs)
in Fig. 3-1). As shown in Table 3-1, one can also excite longitudinal excitons (LEs,
polarization parallel ~kdye = [111]). According to the selection rules derived [Eq. (3.2)],
there is no SFG expected for ~kdye = [100] and [110]. Therefore, crystals oriented for
~kdye = [111] are studied here.

In order to elucidate the kinematics of the SFG processes, the polariton dispersion
is modeled taking into account three resonances. The inclusion of the violet exciton
resonance [0.13 eV above the blue exciton resonance (inset of Fig. 3-1)] is of great im-
portance, since the upper polariton branch of the blue exciton resonance is strongly
in�uenced (pushed down) by the violet polariton. For setting up the Hamiltonian, the
rotating wave approximation of the original Hop�eld-Hamiltonian is used [Eq. (2.9)],
which is extended by inclusion of two additional resonances to a 4x4 matrix. Thereby,
the photon dispersion Eph(k) is coupled to the three exciton resonances Ey(k) (yellow
1s orthoexciton), Eb(k) (blue 1s exciton) and Ev(k) (violet 1s exciton).

H =


Eph(k)

√
fyEy,0

2

√
fbEb,0

2

√
fvEv,0

2√
fyEy,0

2 Ey(k) 0 0
√
fbEb,0

2 0 Eb(k) 0
√
fvEv,0

2 0 0 Ev(k)

 . (3.3)



26 Coherent propagation of blue polaritons in Cu2O

For the yellow 1s orthoexciton fy = 1.3 · 10−9 and Ey,0 = 2.032775 eV are taken from
Ref. [107] (note that for k = [111] the oscillator strength is reduced by a factor 3 as
compared to k = [001]). fb = 1.2 · 10−2, fv = 2.1 · 10−2, Eb,0 = 2.576 eV and Ev,0 =

2.703 eV denote the oscillator strengths and resonance energies of the blue and the violet
excitons taken from Ref. [100]. Spatial dispersion is taken into account, using the same
mass m = 3me for all three exciton resonances (me corresponds to the free electron
mass) [108]. Ey(k) = Ey,0 + ~2k2

2m , Eb(k) = Eb,0 + ~2k2
2m and Ev(k) = Ev,0 + ~2k2

2m .
√
fyEy,0,√

fbEb,0 and
√
fvEv,0 denote the corresponding Rabi energies. The photon dispersion is

given by Eph(k) = ~ck/nb, where nb = 3 is assumed for the background refractive index
in the visible spectral range.

In Fig. 3-1 the polariton diagram for the three oscillator model is shown, which is
derived from the diagonalization of the Hamiltonian given by Eq. (3.3). The kinematics of
the experimental setup lead to resonances on the middle polariton branch. As outlined
above, the 1s orthoexciton polariton is pumped by the dye laser. Depending on the
direction of the infrared laser (parallel or antiparallel to the dye laser), two di�erent
resonances on the middle polariton branch are excited, which lead to two di�erent SF-
signals.

Ã6
+

E

E =2.17 eVG

ÄE=0.45 eV
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+

Ã7
+

Figure 3-1: Polariton diagram of a three-oscillator model. Three-step process of the experimen-
tal approach is indicated by arrows. Black solid line, TP dispersion according to Eq. (3.3); dashed
horizontal lines, resonances of blue and violet LEs; red dash-dotted arrow, quadrupole excita-
tion (Γ+

5 -symmetry) of 1s yellow orthoexciton; black arrows, dipole transition (Γ−4 -symmetry) to
the middle polariton branch from 1s yellow orthoexciton for parallel/antiparallel beam propaga-
tion; blue dashed arrows, SFG (Γ−4 -symmetry) for parallel/antiparallel beam propagation. Inset:
Schematic band structure of Cu2O close to the Γ-Point.
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3.3 Experimental details

The high-resolution setup is shown schematically in Fig. 3-2. In the �rst step of SFG
a single-frequency dye laser is used with line width < 5 neV and power < 100 mW
(Coherent 899-29) for resonant excitation of the yellow 1s orthoexciton-polariton. For
the excitation of the blue exciton-polariton in the second step a single-frequency optical-
parametric-oscillator (OPO, Aculight Argos 2400 CW OPO, line width < 5 neV, power
< 1 W) is used. The OPO covers an energy range of 0.496−0.568 eV and 0.602−0.683 eV
for idler and signal output, respectively. Due to the degeneracy point of the OPO at
0.583 eV there is a gap in the tuning range between 0.568− 0.602 eV. The polarization
and the power level of the dye laser and the OPO can be set by half-wave plates and
Glan-Taylor prisms. The dye laser beam is focused by a lens of 200 mm focal length onto
the sample via a silicon beam splitter (transparent for the IR beam from the OPO). For
focusing the infrared beam a BaF2 lens is used. With a �ip mirror and an additional
beam splitter one can switch between a parallel and an antiparallel beam con�guration.
For the adjustment of the overlap of the laser beams, a 100 µm pinhole is mounted on
the sample holder. Measurements are performed at 1.5 K using a He-bath cryostat.

S
OPO

dye
laser 

BS1

O1O2

f200
f200

f170

f200BS2FM
f200

Cryostat

A

FM

PD

OSC

GT

DM

CCD

f100

AP

ë/2

ë/2GT

ë/2

Figure 3-2: Schematic setup for SFG spectroscopy: A, analyzer; AP, aperture; BS1, silicon
beam splitter; BS2, beam splitter; CCD, charge coupled device camera; DM, double monochro-
mator; fxx, lens with xx mm focal length; FM, �ip mirror; GT, Glan-Taylor prism; λ/2, half-wave
plate; O1 and O2, photo objectives; OPO, optical-parametric-oscillator; OSC, oscilloscope; PD,
photo diode; S, sample.

The SF-signal in the blue spectral region is measured with a nitrogen-cooled CCD-
camera behind a double monochromator (second order). The polarization anisotropy
of the monochromator was taken into account by setting the analyzer to the preferred
polarization of the monochromator. The polarization of the SF-signal is then measured
by tuning the half-wave plate. Two high quality photo objectives provide a magni�cation
by a factor of 4 on the CCD. The observed line width of the SF is limited to 10 µeV by
the resolution of the monochromator.

A galvanometer mounted tilting Brewster plate inside of the dye laser cavity enables
one to perform a continuous wavelength scanning in a spectral range of up to 30 GHz,
which allows for a precise determination of the 1s orthoexciton resonance by means of
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transmission measurements. The transmitted laser beam is detected by a photodiode.
The signal of the photodiode is read out by a digital oscilloscope triggered by the driving
voltage of the Brewster plate.

As discussed in detail in Ref. [106], strain-free mounting of the sample is very impor-
tant. Nevertheless, it was still necessary to select an appropriate spot on the sample in
order to achieve a narrow resonance of about 2.5 µeV as seen in Fig. 3-3. The samples
(thickness 30 µm and 60 µm) are cut from a high quality natural crystal and oriented
along [111] (because of selection rules, as derived in Sec. 3.2).

3.4 Results and discussion

In this section, �rstly evidence for the occurrence of resonant SFG as outlined in Sec. 3.2
is provided. In this connection, a power and a polarization dependence is presented,
which con�rms the selection rules (Table 3-1). Finally, the SF-spectra for the parallel
and antiparallel beam con�guration are shown. The most striking result is the occurrence
of a pronounced beat-like structure in the spectra of the antiparallel con�guration which
gives evidence for a coherent propagation of blue polaritons. Here, the propagation length
in the SFG experiments is at least a factor 600 larger than the absorption length of about
100 nm, as known from one-photon experiments [100].
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Figure 3-3: Black line, absorption spectrum of yellow 1s orthoexciton; red dash-dotted line,
excitation spectrum of the SF-signal as function of dye laser-energy for �xed setting of the OPO.
Maximum of absorption is at Eortho = 2.032788 eV.

The dependence of the blue SF-signal on the energy of the dye laser is shown in
Fig. 3-3. The narrow excitation spectrum clearly proves that a narrow band laser is a
prerequisite for observing SFG in this study. The additional small resonance at about
6.5 µeV can be explained by a �ne structure arising due to wave-vector-dependent ex-
change interaction as reported in Ref. [106]. For all other experiments performed, the
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Figure 3-4: Dependence of the SF-signal on product of dye laser (Pdye) and OPO power (Pir).
Blue full circles, Pdye = 30 mW; black open squares, Pdye = 55 mW; red line, linear �t. Inset:
Typical SF-spectrum.

dye laser energy has been kept constant at the transmission minimum of the yellow 1s

orthoexciton.

In Fig. 3-4 the power dependence of the SF-signal is presented. As expected, the
SF-signal depends linearly on the product of the power levels of both lasers. By placing
an iris in the telescopic setup, it was con�rmed that the SF-beam is collinear to the pump
beams, as opposed to an isotropic signal distribution of incoherent photoluminescence.
The inset of Fig. 3-4 shows a typical SF-signal. The full width at half maximum is about
10 µeV, which is limited by the spectral resolution of the monochromator.

In the inset of Fig. 3-5 a detailed polarization dependence of the SF-signal is shown
for the incoming polarizations ~edye = [112] and ~eir = [110]. In accordance with the
group theoretical considerations (Table 3-1), the SF-signal vanishes in [112] and exhibits
a maximum for [110]. The other polarization dependences according to Table 3-1 are
also con�rmed. In addition, measurements of crystals oriented along ~kdye = [100] and
[110] have been performed. As expected from Eq. (3.2), no SFG has been observed.

In Fig. 3-5 (a)-(c) the SF-spectra for the parallel and antiparallel beam con�guration
are presented, respectively. In the parallel beam con�guration [Fig 3-5 (a)] one can �nd
a resonance centered at about 2.595 eV with a full width at half maximum (FWHM) of
10 meV, which is attributed to phase-matching (energy and momentum conservation) on
the middle polariton branch as shown in Fig. 3-1.

In the antiparallel con�guration [Fig. 3-5 (b) and (c)], however, oscillations of the SF-
signal are clearly seen. At �rst sight, the most obvious interpretation of these oscillations
seems to be the occurrence of a standing wave of the OPO beam in the sample. From
the large absorption coe�cient in the blue spectral range one expects that the emission
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of SF stems only from the last 100 nm of the crystal. In the case of a node at the
sample boundaries one would expect a decrease of the SF-signal. However, using the
Fresnel formula one can deduce a re�ection coe�cient of R = (nir−1)2

(nir+1)2
≈ 20%, where

nir = 2.55 is the refractive index in the infrared spectral range as reported in Ref. [109].
This corresponds to a coe�cient of the �nesse of F = 4R

(1−R)2
≈ 1.25 and a minimal

transmission at the nodes of Tmin = 1
1+F ≈ 0.44. Since it is shown in Fig. 3-4 that the

intensity of the SF-signal scales linearly with the OPO laser power one would expect
only a suppression by a factor of 2 and not by a factor of up to 50 as shown in the data
[Fig. 3-5 (b) and (c)]. Besides, standing waves should also be observable in the parallel
beam con�guration.

An alternative explanation for the occurrence of these oscillations is a phase-matching
e�ect. As discussed in Ref. [93], these so-called Maker fringes should be quenched if the
nonlinear medium is absorbing. Here, the absorption length is even almost three orders
of magnitude smaller than the thickness of the crystal [100�102]. Thus, the occurrence
of oscillations which are related to a phase matching e�ect can only be explained if one
assumes a coherent propagation of the blue polaritons through the crystal.

The condition for phase matching ∆k = 0 is ful�lled on the middle polariton branch,
where the polariton slopes of the OPO-beam starting from the 1s yellow orthoexciton-
polariton resonance (Fig. 3-1) intersect. The SF-signal ISF for a transparent medium is
given by [93]:

ISF ∝
[sin(∆kL/2)]2

(∆kL/2)2
, (3.4)

where L denotes the length of the crystal.

For the parallel (antiparallel) beam con�guration the phase mismatch ∆k is given
by:

∆k = 2π ·
[
nsf↑↑(↑↓)
λsf

− northo
λortho

(∓)

nir
λir

]
, (3.5)

where nsf↑↑(↑↓) is the refractive index for the SF-polariton in the parallel (antiparallel)
con�guration, northo denotes the refractive index for the yellow 1s orthoexciton and nir
for the infrared spectral range. λsf , λortho and λir are the corresponding wavelengths in
vacuum.

A more rigorous analysis of the phase-matching spectrum would require the inclusion
of damping processes in the polariton model. This might also explain that for the overall
�t of the phase-matching analysis a rather high refractive index for the resonantly ex-
cited 1s orthoexciton-polariton (northo = 3.6) was derived as compared to the previously
reported background refractive index northo = 2.95 [110]. With nir = 2.55 in the infrared
spectral range and phase-matching ∆k = 0 at an energy of 2.6062 eV one can �t the
experimental data well for the antiparallel beam con�guration for the 30 µm and the
60 µm thick sample [Fig. 3-5 (b) and (c)]. Unfortunately the spectral range between
2.600 − 2.630 eV is not accessible to the OPO-system used due to the aforementioned
gap in the tuning range. Therefore the phase matching condition could not be studied
directly. The fact that no oscillations for the parallel con�guration are observed, can
be deduced from Eqs. (3.4) and (3.5). The corresponding phase matching spectrum is
oscillating with a large period of about 50 meV, the resonance is thus not in�uenced by
the phase matching e�ect.
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Figure 3-5: (a) Blue exciton-polariton resonance in the parallel beam con�guration for the
30 µm sample. (b) and (c): Blue exciton-polariton resonance in the antiparallel beam con�g-
uration for the 30 µm and the 60 µm sample. Black squares, data; red line, calculated curve
according to Eqs. (3.4) and (3.5). Power of the OPO and the dye laser as well as the dye
laser energy has been kept constant. Inset: Polarization dependence of SF-signal with respect
to the crystal axis [112] and [110] (~kdye = [111]). Incoming polarizations are ~edye = [112] and
~eir = [110]. Signal intensity is proportional to the radial distance from the center.



32 Coherent propagation of blue polaritons in Cu2O

If there was an appreciable absorption of the coherently excited blue excitons due to
relaxation processes to lower excitons (e.g. dipole-allowed P-excitons of the yellow series),
one would expect an emission shifted to lower energy from the observed SF-emission. The
spectral region down to the yellow series has been carefully scanned without observing
any emission.

3.5 Summary

In conclusion, an e�cient SFG in Cu2O, a crystal with inversion symmetry, has been
demonstrated using two continuous wave lasers of rather low power (< 100 mW, <
1 W). The selection rules for a quadrupole-dipole SFG process have been con�rmed in
detail. The most surprising observation is the occurrence of pronounced oscillations,
which are observed only in the antiparallel beam con�guration. A careful analysis of
these oscillations reveals evidence for a coherent propagation of blue polaritons in crystals
up to 600 times thicker than the absorption length, which is known from transmission
measurements [100�102]. The reason for this unexpected observation might be the rather
unique situation of the experimental approach: Firstly, two single frequency laser systems
are used. Consequently, polaritons with very well de�ned energies and wavevectors are
generated. Therefore, intercarrier scattering is expected to be signi�cantly reduced due
to a lack of available scattering channels which ful�ll energy and momentum conservation
according to Fermi's Golden Rule. Secondly, two coherently propagating polariton beams
with a di�erence in group velocity by three orders of magnitude fuse to generate a SFG
polariton beam.

Possible alternative interpretations of these results in terms of simple interference
e�ects have been considered, which also lead to an oscillating pattern depending on the
thickness of the crystal. This pattern would be expected for both con�gurations contrary
to the experimental data. The missing beat-like pattern in the parallel con�guration,
however, is explained by an analysis assuming Maker-fringes. In addition, the large ratio
of contrast (up to a factor of 50) as compared to a factor of 2 expected in an interference
pattern, is a good argument for this interpretation.

Unfortunately, for experimental reasons, the resonance of the Maker fringes cannot
be observed directly. As mentioned before, a weakness in the polariton analysis lies in the
fact that damping is neglected. As a concept for a theoretical treatment of SFG it might
be advantageous to start with polariton eigenstates as basis states and interpret SFG as
a fusion of two incoming polaritons into an outgoing polariton as was �rst proposed in
Ref. [111]. Due to the large di�erence in group velocity of the participating polariton
beams in these experiments (see Sec. 3.1), the polariton fusion concept might be of even
more relevance than in experiments discussed so far [112�114].

For future experiments it might be promising to look for an interband dynamic Stark
e�ect using an infrared laser of higher power. An intraband dynamic Stark e�ect of
yellow excitons has already been reported in Ref. [115].



Chapter 4

Feasibility study for polariton based

lasing devices

In this chapter the physical constraints of two di�erent lasing devices based on microcav-
ity polaritons are investigated. Firstly, optimal operating parameters for a GaAs-based
polariton laser emitting in the visible spectral range are studied by means of non-resonant
optical pumping. In the second part of this chapter, a theoretical proposal for the emis-
sion of terahertz (THz) radiation making use of the transition between the 2p exciton
state and the LP [31] is evaluated using nonlinear spectroscopic techniques. The �rst
part of this chapter has been published in similar form in Ref. [116], the second part of
this chapter has been published in a shorter version in Ref. [117].

4.1 Determination of operating parameters for a GaAs-based

polariton laser

4.1.1 Introduction

Since the observation of the so-called strong coupling regime in semiconductor micro-
cavities [17], the �eld of semiconductor based cavity quantum electrodynamics has been
intensively studied due to many promising applications such as an inversionless polariton
laser [21].

However, the term "polariton laser" is strictly speaking misleading, as the acronym
laser is an abbreviation for "Light Ampli�cation by Stimulated Emission of Radiation",
whereas the operating principle of a polariton laser does not rely on the stimulated
emission of photons. Nevertheless the term "polariton laser" is conveniently used in the
literature, as a polariton laser shares the most characteristic property with a conventional
laser, which is the emission of coherent monochromatic radiation. Fig. 4-1 schematically
shows the operating principle of a conventional semiconductor laser [Fig. 4-1(a)] and
a polariton laser [Fig. 4-1(b)], respectively, to elucidate the fundamental di�erences of
these two devices. For convenience, non-resonant optical pumping is assumed here, as
this pumping mechanism is solely applied for the experiments presented in this thesis.

Under this condition, the physical processes occurring in a conventional semiconduc-
tor laser can be described as follows: Firstly, an electron-hole (e-h) plasma is created

33
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Figure 4-1: Principle of operation for a conventional semiconductor laser (a) and a polariton
laser (b). The images are adapted from Refs. [49, 118].

by non-resonant pumping, which loses energy by emission of longitudinal optical (LO)
and acoustical (AC) phonons and occupies e-h pair states near the bandgap [Step 1 and
2 in Fig. 4-1(a)]. The e-h pair states are annihilated by a stimulated emission process
mediated by a cavity photon, which ampli�es the coherent EM �eld inside of the cavity
(Step 3). Finally, EM �eld modes can escape from the cavity due to the �nite re�ectivity
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of the cavity mirrors (Step 4). Note, however, that a population inversion between the
crystal ground state and the e-h pair states at the bandgap is required here, which is also
known as Bernard-Dura�ourg condition in this context [119], otherwise reabsorption of
cavity photons suppresses the ampli�cation of the EM �eld.

This is in contrast to the principle of operation of a polariton laser: An e-h plasma is
created by non-resonant pumping, which loses energy by emission of longitudinal optical
(LO) and acoustical (AC) phonons and �nally forms excitons, which accumulate on the
excitonic part of the LP dispersion at large in-plane wavevectors [Step 1 in Fig. 4-1(b)].
This is followed by a further relaxation process along the LP dispersion towards the
so-called bottleneck region at the in�ection point of the LP dispersion by emission of
AC phonons (Step 2). The bottleneck area separates two regions of the LP dispersion:
States with larger in-plane wavevector posses a negligible photonic component and can
therefore be considered as pure excitons, whereas states with lower in-plane wavevectors
exhibit a signi�cant photonic Hop�eld coe�cient, which causes an increasing steepness
of the LP dispersion, a decrease of the polariton lifetime and the density of states at
low in-plane wavevectors. All these e�ects restrain a further e�ective relaxation down to
the LP ground state mediated by AC phonons which is the reason for the nomenclature
bottleneck region [49, 120]. For the further relaxation down to the LP ground state,
especially under high power excitation conditions, polariton-polariton scattering becomes
the dominant relaxation mechanism (Step 3) [121]. One polariton is scattered thereby
to the LP ground state and a second one is scattered to a higher energy part of the
LP dispersion under energy and wavevector conservation [122]. This scattering process
is proportional to the number of occupied states in the bottleneck region as well as
in the LP ground state, therefore a pronounced stimulated scattering process into the
ground state sets in provided a certain population threshold is reached. In consequence,
a macroscopic population of the ground state occurs, i.e. a polariton condensate. In
the last step photons leak out of the cavity mediated by the photonic component of the
LP states, which share the same properties such as energy and in-plane wavevector with
the polaritons inside the cavity (Step 4). Therefore no population inversion between
the crystal ground state and the LP ground state is needed for a lasing operation in
this system, only a compensation of the losses due to the radiation out of the cavity by
stimulated scattering is required. This gives rise to the hope of a more e�cient lasing
operation of polariton lasers with respect to energy consumption.

However, the stability of the light-matter coupled excitons (here the 1s heavy-hole
(hh) excitons) is a prerequisite for the operation of a polariton laser, whereas no polariton
lasing can occur, when the excitonic states are ionized, which is referred to as the weak
coupling regime. The transition between the phase of stable excitons and dissociation
of excitons is called Mott-transition, which describes in general a transition between an
insulating and a conducting phase in condensed matter [123]. To warrant the stability
of the coupled excitons the choice of two experimentally accessible parameters is crucial:

Firstly, there is an upper bound for the applied lattice temperature, as the excitons
remain stable only as long as the thermal �uctuations, which are determined by the lattice
temperature, are smaller than the exciton binding energy. For GaAs quantum wells
typical exciton binding energies lie on the order of 10 meV, which corresponds to a lattice
temperature of roughly 100 K. This is clearly a limitation concerning room temperature
operation of a polariton laser in GaAs-based microcavities and indeed an upper bound
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of 70 K for polariton lasing operation has been observed so far for this system [124,125].
More promising in this respect are wide bandgap semiconductors such as ZnO and GaN,
exhibiting exciton binding energies of 60 meV in ZnO bulk material [126] and up to
50 meV in GaN quantum wells [127], or organic semiconductors [128].

The other limitation for polariton laser operation arises from the fact that excitons
become instable, provided a certain saturation density of carriers excited in a semicon-
ductor is reached, which is also known as Mott-density. The reason for this bleaching
of the exciton resonances is attributed to screening e�ects [129, 130] and phase space
�lling [129]. In simple words, screening can be understood as follows: The creation of
an increasing number of e-h pairs leads to a renormalization of the bandgap, i.e. the
width of the bandgap decreases, whereas the exciton resonances do not shift remarkably
in energy due to the charge neutrality of the bound state. At large densities the excitonic
resonances disappear and are replaced by the electronic continuum, which is shifted to
lower energies. Typical carrier densities in this regime correspond to approximately one
free carrier per exciton volume in the crystal, which can be descriptively interpreted as a
screening e�ect of the hydrogen-like Coulomb interaction between the electron and hole
in the undisturbed exciton [129]. Phase space �lling is related to the fact that the cre-
ation of an exciton also implies the occupation of the single-particle phase space, as an
exciton consists of a linear combination of electron and hole states, respectively. As elec-
trons and holes are fermionic particles, they obey the Pauli exclusion principle. Hence,
already occupied states in phase space cannot contribute to the formation of excitons,
which leads in consequence to a decrease of the exciton oscillator strength.

The dependence of the exciton oscillator strength f on the carrier density can phe-
nomenologically be described by the following function [131]:

f(ne−h) =
f0

1 + ne−h/nsat
, (4.1)

where f0 denotes the oscillator strength for an e-h pair density of ne−h = 0 and nsat the
saturation carrier density. Typical values for nsat are in the range of 1010 − 1011 cm2

(Refs. [131, 132] and references therein). The oscillator strength is linked with the Rabi
splitting by the relation

~ωr =
√
f(ne−h)~ωex. (4.2)

Consequently, with increasing e-h density the oscillator strength of the exciton decreases
as well as the Rabi splitting. At high e-h densities the inequality (2.35) is no longer satis-
�ed, the strong coupling regime breaks down and polaritons are not anymore eigenstates
of the microcavity system.

Therefore, the maximum pump power for a polariton laser is limited, as a transition
from the strong- to the weak coupling regime occurs, when the threshold carrier density is
exceeded. Moreover, in the weak coupling regime the cavity emits coherent laser radiation
due to population inversion between the conduction and the valence band, respectively,
which is di�cult to distinguish from polariton lasing, as both regimes share several
features such as a nonlinear input-output curve and coherent emission of radiation.

In the last years condensation of polaritons, exhibiting similar features as compared
to BEC (see Sec. 2.4.5), which is a prerequisite for a polariton laser device, was reported
for di�erent material systems such as CdTe [24], ZnO [126], GaN [60] and GaAs [133].
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Furthermore, the operation of an electrically pumped polariton laser has already been
demonstrated for a GaAs-based semiconductor compounds at cryogenic temperatures of
10 K [18, 19]. In addition, several groups succeeded in the performance of room tem-
perature operation studying wide bandgap semiconductors [60,61] and organic semicon-
ductors [62, 63] under non-resonant optical pumping. Recently, an electrically pumped
polariton laser operating at room temperature for a GaN-based microcavity has been
reported [20].

Great progress has also been achieved concerning the requirement to distinguish
polariton lasing operation from conventional cavity lasing (CL) operation in the weak
coupling regime: The observation of a Zeemann-splitting, which occurs only under po-
lariton condensation conditions due to the excitonic fraction of polaritons [18, 134], the
occurrence of a two-threshold behavior of the input-output curve, the emission energy
and the second order coherence function [124, 135] as well as temporally resolved mea-
surements [136] allow for a precise distinction between these two regimes of lasing.

However, on the road towards a polariton laser, systematic studies need to be per-
formed in order to determine the optimal operating parameters. Detailed investigations
of the threshold power dependence on the lattice temperature and the exciton-cavity
detuning for GaN- [137,138] and CdTe-based [139,140] microcavities were accomplished.
In contrast, for GaAs-based microcavities there exist only studies for one single detun-
ing [124] or for a limited range of temperatures and detunings [141].

In this section a systematic investigation of the phase transitions to polariton lasing
and CL for a wide range of temperatures and detunings in a GaAs-based microcavity is
presented. In this connection, an upper limit of temperature of 90 K and a lower limit
of δ = Ec−Ex = −12 meV of detuning for polariton lasing in the investigated sample is
determined, where Ec (Ex) denotes the energy of the cavity (exciton). A clear distinction
between the regime of CL and polariton lasing is also provided by means of spectrally
and temporally resolved measurements.

4.1.2 Experimental details

The investigated sample is a GaAs-based λ/2-microcavity with a Q-factor of about 1800.
The design of the sample is as follows: Three stacks of four GaAs quantum wells are
placed in the three central antinodes of the electric �eld con�ned by two distributed Bragg
re�ector (DBR) structures in the microcavity. The upper (lower) DBR structure consists
of 16 (20) alternating layers of Al0.2Ga0.8As and AlAs. The interaction of the cavity
�eld with the exciton resonance of the 12 contained GaAs quantum wells leads to a Rabi
splitting of about 14 meV. It should be noted that the microcavity exhibits a thickness
gradient, i.e. the cavity resonance energy varies across the sample. In consequence, the
exciton-cavity detuning depends on the position of the sample.∗

Fig. 4-2 shows a schematic diagram of the experimental setup used for the experiments
presented in this section. The sample is mounted in a helium-�ow cryostat, measurements
are performed in a temperature range of 10−110 K. For optical excitation a picosecond-
pulsed Titanium-Sapphire laser (repetition rate 75.39 MHz) is tuned to a wavelength of

∗The sample has been manufactured in the institute of Technical Physics of Würzburg University.
The identi�er of the sample is C1059.
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744 nm (1666 meV). The laser beam is focused under 45◦ of incidence onto the sample,
the shape of the spot is Gaussian and about 30 µm in diameter. The excitation laser
power can be varied by means of two grayscale �lters mounted in reversed orientation,
which minimizes the displacement and the inhomogeneity of the laser beam in contrast
to using one grayscale �lter only.

f60

Cryostat

Streak-
camera

MO FM

Ti:Sa laser 744 nm

S

Mono-
chromator

C
C

D

f350

f750

FM

f350
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C
C

D

Filter

LC filter

f60

Figure 4-2: Schematic diagram of the experimental setup. CCD, charge coupled device camera;
fxx, lens with xx mm focal length; FM, �ipmirror; LC �lter, tunable liquid crystal �lter; MO,
microscope objective (numerical aperture 0.26); S, sample.

The emission from the sample is collected using a microscope objective (numerical
aperture 0.26); the far �eld emission was studied by imaging the Fourier plane of the
objective onto the entrance slit of a monochromator using two lenses (see e.g. Ref. [55,142]
for details). For detection a liquid nitrogen-cooled CCD-camera was used. For a precise
focusing and positioning of the excitation laser spot onto the sample, an intermediate
image is captured using an additional CCD camera behind a focusing lens. Time-resolved
measurements are accomplished with a streak camera (time resolution 2 ps). Here,
spectral resolution is provided by a liquid crystal �lter (full width at half maximum
0.7 nm) positioned in front of the streak camera.

4.1.3 Results and discussion

Fig. 4-3 and Fig. 4-4 show examples of far �eld emission images for di�erent excitation
power levels P for detunings of δ = −7.0 meV and δ = 7.7 meV at T = 10 K. For
the negative detuning case one observes a blue shift of 1.9 meV with respect to the
minimum of the lower polariton (LP) branch at the phase transition to polariton lasing
[P = Pthr, Fig. 4-3(b)]. Note that a rather broad distribution of the polariton condensate
with respect to the in-plane wavevector can be observed, which is caused by a broad
distribution of background carriers injected by the comparably large excitation laser
spot of 30 µm in diameter [143], whereas the in-plane wavevector distribution changes
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Figure 4-3: Far �eld emission for di�erent excitation power levels at δ = −7.0 meV. The
solid lines are calculated dispersion curves. C, cavity dispersion; LP, lower polariton disper-
sion. (a) Below threshold power the main emission originates from the calculated LP dispersion.
(b) and (c): Slightly above threshold power polariton lasing, blueshifted in energy by 1.9 meV
with respect to the minimum of the LP branch, is observed. (d) For high excitation powers two
di�erent modes can be seen.

signi�cantly when the diameter of the excitation laser spot is reduced by one order of
magnitude (see chapter 5). The blueshift of the emission is due to repulsive polariton-
polariton and polariton-background carrier interactions (see Sec. 5.2 for more details).
At high excitation power two di�erent modes occur [Fig. 4-3(d)]. The low energy mode
is identi�ed as polariton lasing and the high energy mode as bare CL, which is in good
agreement with the calculated dispersion. The occurrence of the strong and the weak
coupling regimes arises due to the carrier density changing during one excitation pulse
(see also Fig. 4-5). In contrast, for the positive detuning case a rather large blue shift of
13.8 meV at the phase transition to polariton lasing is observed [Fig. 4-4(b)]. Surprisingly
polariton lasing occurs at higher energies than the expected cavity mode. At slightly
higher excitation power of P = 1.56Pthr one further mode appears at an energy even
above the upper polariton branch [Fig. 4-4(c)].

For this experimental setting an additional streak camera measurement is performed
[Fig. 4-5]. The high energy peak exhibits a pulse duration (FWHM) of about 6 ps. After
the decay of the high energy peak, the low energy peak rises with a pulse duration of
about 15 ps. This observation can be interpreted as follows: After decrease of the carrier
density a transition back to the strong coupling regime takes place; the bare CL breaks
down and polariton lasing arises. Thus, high and low energy peaks can be attributed to
bare CL and to polariton lasing, respectively. A transition from the weak- to the strong
coupling regime during one excitation pulse was also observed previously [136].

For high excitation power, only a single mode is observed [Fig. 4-4(d)], which can be
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Figure 4-4: Far �eld emission for di�erent excitation power levels at δ = 7.7 meV. The solid
lines are calculated dispersion curves. C, cavity dispersion; LP, lower polariton dispersion; UP,
upper polariton dispersion; X, exciton dispersion. (a) Below threshold power the main emission
originates from the calculated LP dispersion. (b) At threshold power polariton lasing, blueshifted
in energy by 13.8 meV with respect to the minimum of the LP branch, is observed. (c) Slightly
above threshold power two di�erent modes can be identi�ed. (d) For high excitation powers only
one mode can be seen.
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Figure 4-5: Time-resolved emission at δ = 7.7 meV, T = 10 K and P = 1.56Pthr. Spectral
sensitivity is provided by a tunable liquid crystal �lter. Red line, E = 1626.9 meV; black dashed
line, E = 1624.0 meV.

attributed to CL. Fig. 4-6 shows the detuning dependent emission energies (in-plane
momentum k|| = 0) at di�erent temperatures for low power excitation, excitation at
threshold and P > 10Pthr. At threshold for T = 10 K, a signi�cant blueshift varying
from 1.5 − 13.8 meV relative to the minimum of the LP branch occurs [Fig. 4-6(a)].
The largest blueshift is observed at δ = 7.7 meV, the smallest at δ = −6.3 meV. For
δ > 5 meV, the emission at threshold is even higher in energy than the expected cavity
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Figure 4-6: Detuning dependent emission (k|| = 0) at di�erent temperatures. Solid blue (red)
line, lower (upper) polariton branch �tted to the data; black solid line, expected cavity mode;
black dotted line, expected exciton energy. Note that for T = 10−70 K two mode emission is not
observed for several positive detunings at high power excitation P > 10Pthr, but for intermediate
excitation power (typically P < 3Pthr).

mode. At large negative detuning δ < −12 meV, the emission lies approximately at
the expected cavity mode. In the case of high excitation power, two emission modes
can be seen in a range of δ = [−10; 3] meV as discussed in detail above for the case
of δ = −7.0 meV [Fig. 4-3(d)]. Time-resolved measurements reveal the same results as
shown in Fig. 4-5. The high energy peak has a pulse duration of about 6 − 7 ps and is
followed at later times by the low energy peak with a pulse duration of about 15− 30 ps.
As mentioned before, the high (low) energy mode can be attributed to pure CL (polariton
lasing). Also for δ > 3 meV, two mode emission can be found, but only in the case of
intermediate excitation power (typically P < 10Pthr, [Fig. 4-4(c)]). For δ < −13 meV
no signi�cant shift in energy can be observed when increasing the excitation power from
P = Pthr to P > 10Pthr. This can be explained by a direct transition to CL without
occurrence of polariton lasing.
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From these �ndings, one can identify three criteria that need to be ful�lled to observe
a phase transition to polariton lasing: (i) emission energy E < Ec at threshold for nega-
tive detuning, (ii) occurrence of two modes for excitation power levels above threshold in
pulsed regime and (iii) further blueshift of the emission when increasing the excitation
power far above threshold. According to these criteria polariton lasing can be observed
in a range of δ = [−9.8; 7.7] meV for T = 10 K [Fig. 4-6(a)], δ = [−12.0; 8.3] meV
for T = 30 K [Fig. 4-6(b)], δ = [−10.3; 9.3] meV for T = 50 K [Fig. 4-6(c)] and
δ = [−8.0; 11.6] meV for T = 70 K [Fig. 4-6(d)]. Note, however, that the upper δ-
bound is determined by the sample edge that does not allow larger positive detunings.
Moreover, the detuning at a given position on the sample depends on the temperature,
as the exciton resonance is much more redshifted with increasing temperature compared
to the cavity resonance. In consequence, the accessible detuning range is shifted to larger
positive values for increased temperatures (see Fig. 4-7).

Apparently there exists a lower bound with respect to detuning for polariton lasing for
the investigated structure, when reaching a negative detuning on the order of magnitude
of the Rabi splitting. This �nding coincides with earlier measurements on the same
sample at quasi-resonant excitation in which a lower bound for polariton lasing was
observed at δ = −10 meV [75]. On the other hand, it is very well known that polariton
condensation can be achieved in principle for even larger negative detunings for GaAs-
based microcavities exhibiting larger Q-factors on the order of 10000 (see Ref. [144] and
chapter 5 in this thesis). Therefore the observed lower bound of δ = −12 meV, which
corresponds to a photonic fraction of 83 % of the LP ground state, does not represent a
fundamental barrier for polariton condensation, but can be attributed to the comparably
low Q-factor of 1800 of the investigated sample, which corresponds to a rather short
cavity lifetime of 2 ps. The larger the photonic fraction of the LP, the smaller is the
density of states of the LP at small in-plane wavevectors. Therefore the number of
scattering channels is signi�cantly reduced for large negative detunings. In addition the
LP lifetime decreases with decreasing detuning and is mainly given by the cavity lifetime
for large negative detunings, which is rather short due to the comparable low Q-factor
of the investigated microcavity. Consequently, the combination of a reduced scattering
cross section and a short LP lifetime prevents polariton condensation in this sample for
a photonic fraction of the LP ground state exceeding 83 %.

At temperatures above T = 90 K no phase transition to polariton lasing occurs since
there is only one mode observable and no signi�cant further blueshift can be seen when
increasing the excitation power far above threshold [Fig. 4-6(e) and (f)]. This �nding is
in good agreement with earlier results at δ = 0 meV [124].

For all temperatures a prominent blueshift of CL with respect to the expected cavity
mode can be observed for positive detunings, whereas for negative detunings the CL
energy coincides with the estimated cavity energy [Fig. 4-6]. This seems to contradict
studies in which a redshift of the cavity mode was reported [145,146]. However, in these
studies continuous wave lasers were used which create a rather equilibrated background
carrier distribution in contrast to the experimental situation here. On the other hand,
a blueshift of the cavity mode with increasing carrier density was reported by another
group at negative detuning [71].

In addition, the dependence of the emission intensity on the excitation power is in-
vestigated. Fig. 4-7 shows example input-output (I-O) curves and the corresponding
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power dependent spectra (in-plane momentum |k||| < 0.085 µm−1) at three di�erent de-
tunings. For detunings of δ = 2.3 meV and δ = −8.9 meV two modes of emission and
an additional blueshift when increasing the laser power above threshold can clearly be
seen [Fig. 4-7 (a) and (c)]. In contrast, for a large negative detuning of δ = −15.6 meV
only one mode of emission without additional blueshift is observed [Fig. 4-7 (e)]. There-
fore one can conclude that for δ = 2.3 meV and δ = −8.9 meV polariton lasing can be
achieved, whereas in the latter case only CL occurs. Earlier, it has been claimed that
the observation of a two-threshold behavior in the I-O curve is a prerequisite for the oc-
currence of polariton lasing [145]. According to the presented data this is not necessarily
the case: Whereas there is evidence for two thresholds in the I-O curve in the case of
δ = 2.3 meV [Fig. 4-7 (b)], only a single threshold occurs for δ = −8.9 meV [Fig. 4-7 (d)].
From previous reports it is well known that a two-threshold behavior in the I-O curve can
be very pronounced in structures exhibiting further con�nement, such as nanowires [147]
and micropillars [148]. However, there are only few publications in which such an e�ect
was observed in planar microcavities [124, 125, 135]. Here, it should be emphasized that
the two-threshold criterion with respect to the I-O curve might be su�cient, but it is not
a prerequisite for the observation of polariton lasing.

Fig. 4-8 shows dependence of threshold power on detuning at di�erent temperatures.
The lowest threshold is observed for T = 10 K and δ ≈ 6 meV. When going to negative
detuning the polariton lasing threshold power increases due to less e�cient scattering
into the k|| = 0-state and shortened LP lifetime. On the other hand, when going to
positive detuning the e�ective mass rises due to higher exitonic fraction of the LP, which
results in an increment of the critical density according to Eq. (2.43) and therefore the
threshold might increase again for δ > 6 meV. Note, however, that the carrier density
injected into the sample may vary for di�erent detunings as the corresponding re�ection
minima of the DBR structure are dependent on the detuning (see Sec. 4.2.3.2), whereas
the excitation laser energy was kept constant at about 744 nm.

Interestingly there is no sharp increase of the threshold power observable, when going
from the strong to the weak coupling regime around δ = [−12;−8] meV in the temper-
ature range of T = 10− 70 K. The inset of Fig. 4-8 shows the dependence of threshold
power on lattice temperature for three di�erent detunings (δ = −5 meV, δ = 0 meV and
δ = 5 meV), in which polariton lasing can be achieved up to T = 70 K. While there is
a systematic rise of the threshold power with increasing temperature, there is no signif-
icant jump observable between the strong coupling regime at T = 70 K and the weak
coupling regime at T = 90 K. A rather small increase of threshold, namely a doubling,
was recently reported in a high-�nesse GaAs-based microcavity for δ = −5 meV when
going from strong to weak coupling regime in a temperature range of T = 25−70 K [125].
For a similar con�guration (δ = −5 meV, T = 30− 90 K) an increase by a factor of 4 is
observed here.

4.1.4 Summary

In conclusion, far �eld measurements on a GaAs-based microcavity over a wide range
of detunings and temperatures have been performed at di�erent excitation powers. A
clear boundary between the strong and the weak coupling regime at threshold power has
been identi�ed by far �eld and time-resolved spectroscopy. A lower limit of −12 meV
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Figure 4-8: Dependence of threshold power on detuning for di�erent lattice temperatures.
Data points inside (outside) of the shaded area are attributed to polariton lasing (CL). Inset:
Dependence of threshold power on lattice temperature for di�erent detunings. Black diamonds,
δ = 5 meV; red circles, δ = 0 meV; blue triangles, δ = −5 meV.

for detuning and an upper temperature of 90 K was found for achieving polariton lasing
in the investigated sample. While the lattice temperature of 90 K poses a fundamental
barrier for polariton lasing, which is given by the exciton binding energy on the order of
10 meV, polariton lasing for even more negative detunings can be achieved provided a
microcavity exhibiting a signi�cantly larger Q-factor is studied. Moreover, the threshold
power does not appear to be an appropriate criterion to identify the bounds for polariton
lasing in the δ − T parameter space since there is no signi�cant rise in threshold power
observable when leaving the polariton lasing regime. Further, it has been shown that the
observation of two thresholds in the I-O curve is not a prerequisite for the occurrence of
polariton lasing in this study.

4.2 Nonlinear spectroscopy of exciton-polaritons in a GaAs-

based microcavity

4.2.1 Introduction

While THz spectroscopy is an appealing tool for a wide range of applications such as
investigation of biomolecules, material evaluation and security issues, e.g. tracing of
illegal drugs (Ref. [149] and references therein), the number of available laser sources in
this spectral region is rather limited. Furthermore, all coherent THz sources available
so far su�er from certain drawbacks, as they are either bulky and expensive (e.g. free
electron lasers), exhibit low e�ciencies [e.g. THz radiation generated by optical mixing
techniques and photocarrier acceleration in photoconducting antennas (Ref. [150] and
references therein)], or can only be operated below room temperature and require a
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complicated design (quantum cascade lasers [151]). Therefore, the identi�cation of new
reliable THz sources is currently a dynamic �eld of research [152].

Recently, a design for a vertical cavity surface emitting THz laser based on the
stimulated THz transition between a dipole-forbidden 2p exciton state and the lower
exciton-polariton in a microcavity has been proposed [31]. Fig. 4-9 (a) shows a schematic
illustration of the operating principle of the THz lasing device according to Ref. [31].
2p exciton states are pumped by a two-photon excitation process, as they cannot be
accessed by a one photon process due to the selection rules. The 2p state can decay into
the LP ground state accompanied by the emission of a photon. As the energy di�erence
between the LP ground state and the 2p exciton lies roughly in the range of 10−50 meV
for typical semiconductor microcavity systems, such as GaAs, GaN and ZnO, the emitted
photons lie in the THz frequency range. The system can be understood in terms of a
three-level system, therefore on �rst sight one might assume that a population inversion
between the 2p exciton and the LP ground state is required here. This is, however, not
the case as the considered structure [Fig. 4-9(b)] does not possess a resonator for THz
radiation. Consequently, THz radiation is immediately released from the microcavity
and is not reabsorbed. Hence, the THz generation rate T can simply be described by the
following expression [31]:

T ∝ Np(Ns + 1), (4.3)

where Ns (Np) denotes the occupation number of the LP ground state (2p state). There-
fore THz lasing sets in simultaneously with the occurrence of a macroscopic population
of the LP ground state.

Figure 4-9: Principle of operation for a THz lasing device according to the proposal of Ref. [31].
(a) Schematic illustration of the dispersions of the involved states. The 2p exciton states (dashed
line, frequency ωp) are populated by a two-photon excitation process with a pump frequency of
ωa = ωp/2. The 2p state can decay radiatively to the LP ground state (frequency ωs) under
emission of THz radiation with frequency ωc = ωp − ωs. (b) Considered structure for a THz
lasing device: A standard semiconductor microcavity consisting of an active layer containing
quantum wells sandwiched between two DBRs. THz emission is expected to occur perpendicular
to the microcavity plane. Image is taken from Ref. [31].
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While there are encouraging proof of principle studies for the feasibility of a polariton
laser device, as has been discussed in the previous section of this chapter, there is no un-
ambiguous evidence for THz-lasing operation so far. For an evaluation of the feasibility of
the proposal of Ref. [31], a careful investigation of the occurring two-photon processes in
a semiconductor microcavity is necessary. Recently, two-photon excitation of polaritons
in a GaAs-based microcavity system was reported [153]. In this study a femtosecond-
pulsed laser with a spectral width of 13 meV, more than two times larger than the Rabi
splitting in the investigated sample, was used, which did not allow for energy-resolved
two-photon excitation spectroscopy (TPE spectroscopy). The strong emission of the UP
and LP state at resonant excitation was interpreted in terms of 2p exciton injection fol-
lowed by decay under stimulated THz-emission into polariton states. Unfortunately, the
2p exciton state could not be unambiguously identi�ed in this study due to the limited
spectral resolution of the laser system, which would have given even stronger evidence
for the interpretation of the authors. Furthermore, a second harmonic generation (SHG)
process at the LP and UP state energies might also explain the pronounced emission
observed from these states for resonant pumping.

The focus of this section lies on a systematic investigation of the occurring two-photon
excitation processes in a GaAs-based microcavity. Here, a tunable nanosecond-pulsed
OPO with a spectral width of 0.3 meV is used, allowing for energy-resolved TPE and
SHG spectroscopy. Therefore, a distinction between two-photon absorption (TPA) and
SHG processes is rendered possible.

4.2.2 Experimental details

The investigated sample is the same as the one described in Sec. 4.1.2. Fig. 4-10 shows
a schematic diagram of the experimental setup used for the study presented in this
section. The sample is mounted in a helium-�ow cryostat, measurements are performed
at 10 K. For two-photon excitation a nanosecond-pulsed optical-parametric oscillator
(OPO) pumped with a repetition rate of 10 Hz by the third harmonic of a Nd:YAG laser
is used. The divergence of the OPO beam is compensated by a cylindrically shaped lens
with a focal length of 300 mm. The excitation power of the OPO can be varied using
a half-wave plate and a Glan-Taylor prism, the polarization of the OPO is adjusted
by a further half-wave plate. A longpass �lter suppresses the SHG generated from the
half-wave plates.

For TPE spectroscopy the elliptically shaped laser beam is focused under 45◦ degrees
of incidence onto the sample with main axes of 100 µm and 500 µm, respectively (dashed
gray line in Fig. 4-10). For SHG spectroscopy, excitation under normal incidence using a
beamsplitter and a microscope objective is chosen for the sake of wavevector conservation
(solid gray line in Fig. 4-10). Here, the main axes of the elliptically shaped spot measure
20 µm and 100 µm, respectively. For a precise focusing and positioning of the excitation
laser spot onto the sample, an intermediate image is captured using an additional CCD
camera behind a focusing lens.

TPE spectroscopy is used to investigate non-resonant TPA processes. In this con-
nection, the detection energy remains �xed in an energy range of 3.3 meV centered
around the LP energy, while the wavelength of the OPO is tuned in a range of typically
1465− 1565 nm (792− 846 meV).
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Figure 4-10: Schematic diagram of the experimental setup. BS, beam splitter; CCD, charge
coupled device camera; fxx, lens with xx mm focal length; FM, �ipmirror; GT, Glan-Taylor
prism; λ/2, half-wave plate; LP, longpass �lter (cut-o� wavelength 1400 nm); MO, microscope
objective (numerical aperture 0.26); OPO, optical-parametric oscillator; S, sample.

Furthermore, SHG spectroscopy is utilized as a complementary experimental tech-
nique, in which only resonant two-photon processes are considered. In this connection,
the detection wavelength is tuned in combination with the wavelength of the OPO and
always corresponds to the two-photon energy of the OPO. The combination of both
experimental techniques using a nanosecond-pulsed OPO system with a rather narrow
linewidth of 0.3 meV compared to femtosecond-pulsed laser systems allows for a clear
distinction between non-resonant TPA processes and coherent SHG.

The emission from the sample is collected using a microscope objective (numerical
aperture 0.26). The polarization dependence of the emission is determined by rotation of
a half-wave plate in front of a Glan-Taylor prism. For detection a thermoelectric-cooled
CCD-camera behind a monochromator is used.

4.2.3 Results and discussion

This section is split into two parts. In Sec. 4.2.3.1 non-resonant TPA processes are studied
and the feasibility of an e�cient population of the 2p exciton is evaluated, whereas in
Sec. 4.2.3.2 coherent SHG processes in GaAs-based microcavities are revealed.

4.2.3.1 TPE spectroscopy

Fig. 4-11 (a) shows a typical TPE spectrum. The strong rise in signal intensity above
1620 meV is attributed to the intersubband transition between the highest heavy hole
subband and the lowest conduction subband. The oscillations superimposed on the
increasing signal intensity above 1620 meV with a periodicity of roughly 12 meV [indicated
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by black dotted lines in Fig. 4-11 (a)] are caused by a modulation of the re�ectivity in the
infrared spectral range due to the DBR. A comparison with data presented in Sec. 4.1
(Fig. 4-12) allows to clearly identify the two resonances below 1620 meV in Fig. 4-11 (a)
as 1s exciton and LP, respectively.

The LP energies observed here are slightly larger compared to the data presented
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Figure 4-11: (a) TPE spectrum for a detuning δ = Ec − Ex = −16.8 meV, where Ec (Ex)
denotes the energy of the cavity (exciton). The pulse energy of the OPO is kept constant at
about 50 µJ. The onset of the lowest intersubband transition is indicated by the black dashed
line. The oscillations superimposed on the increasing signal intensity above 1620 meV due to
the DBR are marked by black dotted lines. The detection energy range is indicated by the
blue rectangle. Inset: Close-up of the TPE spectrum below the intersubband transition. Above
1605 meV an increase of the TPE signal can be observed. (b) Dependence of signal intensity of
the LP on the pulse energy of the OPO for a two-photon energy of 1653 meV. Black squares,
data; red line, power-law �t y = a · xp with p = 3.20 ± 0.15. (c) Polarization dependence of
the TPA intensity for an incoming polarization of the OPO in [011] direction. Signal intensity
is proportional to the radial distance from the center. The two-photon energy lies at 1653 meV,
the pulse energy is 42 µJ.
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Figure 4-12: Dependence of the observed resonance energies below the subbandgap. Full
squares are taken from TPE spectra. Open dots and solid lines are taken from Fig. 4-8 (a).
Black solid line (dotted line) is the calculated cavity (1s exciton) energy.
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in Sec. 4.1 due to integration over a broad distribution of LP states with di�erent in-
plane momenta, whereas the data of Sec. 4.1 are related to the LP state at k|| = 0 only.
We do not observe any resonance corresponding to the UP energy in the TPE spectra
[Figs. 4-11 (a) and 4-12]. Note that the radiative transition between the UP and LP
state is forbidden due to parity conservation, which can only be overcome for the case
of hybridization of the UP with an exciton exhibiting a di�erent parity [154]. However,
this requires a careful design of the sample and is not a generic e�ect. Further, for a
phonon-assisted relaxation process, the emission of acoustic phonons is required, as the
energy splitting between the UP and LP is roughly a factor of two smaller than the
longitudinal optical phonon energy. Therefore, we believe that SHG is the dominating
process compared to TPE of the LP via the UP, when the two-photon energy is resonant
to the UP (see Sec. 4.2.3.2).

Scattering from the 1s exciton to LP states is only observed at large negative de-
tunings, corresponding to a photonic fraction of the LP ground state larger than 80 %

(Fig. 4-12). A close-up of the TPE spectrum [inset of Fig. 4-11 (a)] reveals an onset of
the TPA process at roughly 1605 meV. Beside the 1s exciton, no further exciton reso-
nances can be observed in the TPE spectrum. The 2p exciton is expected to lie roughly
10 meV higher in energy compared to the 1s exciton in GaAs quantum wells [155], which
is only 2 meV below the intersubband transition. A clear identi�cation of the 2p exciton
is therefore challenging.
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Figure 4-13: Far �eld emission for excitation with di�erent two-photon energies at
δ = −15.4 meV. The excitation pulse energy is about 50 µJ. (a) Emission of polaritons exhibit-
ing a broad distribution of in-plane momenta can be observed under non-resonant excitation.
(b)-(d): For the case of resonant excitation only emission of polaritons corresponding to the
two-photon energy of the OPO can be seen. The solid line corresponds to the calculated LP
dispersion.

This �nding agrees with previous studies: While clear evidence for P-states in TPE
experiments [156, 157] between the N = 2, 3, 4 subbands of GaAs quantum wells was
reported, only unpronounced steps in photoconductivity measurements [155] or even
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Figure 4-14: SHG spectrum for δ = −0.7 meV. LP and UP resonances can be clearly identi�ed.
Left inset: Dependence of signal intensity of the LP resonance on the pulse energy of the OPO.
Black squares, data; red line, power law �t y = a · xp with p = 2.11 ± 0.09. Right inset:
Polarization dependence of the SHG emission at the LP energy for an incoming polarization
of the OPO in [011] direction. Signal intensity is proportional to the radial distance from the
center.

only a broad tail [158] in TPE signal intensity below the subbandgap have been observed
as signatures of the 2p exciton of the lowest N = 1 intersubband transition in GaAs-
based quantum wells. Note that a THz excitation of the 2p exciton from a polariton
condensate was very recently reported, which allows for the di�erentiation between cavity
and polariton lasing [159].

However, the absence of a pronounced 2p exciton resonance in TPE spectroscopy
might indicate a low two-photon pumping e�ciency of the LP via this channel. The
detection of THz radiation is a challenging task, typically bolometers at cryogenic tem-
peratures are used. Therefore a careful analysis of the transition energies and the THz
wavelength to look for facilitates the actual detection. Most likely, materials with a
higher exciton-binding energy such as ZnO or GaN are more promising for the realiza-
tion of a THz laser device as proposed in Ref. [31], since the identi�cation of 2p exciton
states is expected to be more feasible in this materials.

In Fig. 4-11 (b) the dependence of the LP emission on the pulse energy of the OPO
is shown for the case of non-resonant two-photon excitation. The data can be approx-
imated well using a power-law function y = a · x3.2±0.15. On �rst sight this seems
surprising since one expects a quadratic dependence for a TPA process. However, since
the signal is detected at the LP, not only the creation of electron-hole pairs above the
subbandgap contributes to the signal intensity, but also the relaxation mechanism into
LP states is important. Relevant relaxation processes below the condensation threshold
are spontaneous acoustic-phonon scattering for polaritons with large wavevectors and
polariton-polariton scattering for LPs scattering into the groundstate at k|| = 0 [121].
The probability for the �rst process is independent of the reservoir density of polaritons



52 Feasibility study for polariton based lasing devices

with large in-plane momenta, the latter one exhibits a quadratic dependence. In combi-
nation with the quadratic TPA process this yields an overall quadratic dependence for
the case of acoustic phonon scattering and a fourth degree polynomial dependence for the
case of polariton-polariton scattering. The cubic behavior observed here demonstrates
that both mechanisms are of relevance since the emission from a broad distribution of
wavevectors is detected. Note, however, that the dynamic range for the choice of the
pulse energy is limited to roughly 50 µJ due to reaching the destruction threshold of
the sample in the case of non-resonant excitation. Fig. 4-11 (c) shows the polarization
dependence of the TPA intensity under non-resonant two-photon excitation. Clearly, an
isotropic emission can be observed as expected for a non-resonant excitation process.

Fig. 4-13 shows the far �eld emission for di�erent excitation energies. In the case
of non-resonant excitation, where the two photon-energy is larger than the subbandgap,
a broad distribution of LPs with di�erent wavevectors is populated [Fig. 4-13 (a)]. In
contrast, only LPs with the corresponding two-photon energies can be observed for the
case of resonant excitation [Fig. 4-13 (b)-(d)]. Further, there is no evidence for relaxation
towards the LP ground state at k|| = 0 [Fig. 4-13 (b)], which indicates a SHG process.

4.2.3.2 SHG spectroscopy

To substantiate this interpretation, in addition, SHG spectroscopy is performed. In this
connection, only resonant two-photon processes are considered, as outlined in Sec. 4.2.2.

Fig. 4-14 shows a typical SHG spectrum. LP and UP resonances can be clearly
identi�ed, and moreover, two further resonances at 1688 meV and 1720 meV can be
observed, which will be discussed below. The dependence of the LP SHG intensity on
the pulse energy of the OPO exhibits a quadratic behavior as expected for a SHG process
(left inset of Fig. 4-14) in contrast to the observed cubic behavior for the TPA process as
discussed before. Furthermore, a pronounced polarization anisotropy of the emission is
observed, which gives additional evidence for SHG (right inset of Fig. 4-14), whereas the
polarization of the LP emission is isotropic for a non-resonant TPA process [Fig. 4-11 (c)].

SHG spectroscopy has been performed for several di�erent detunings δ (Fig. 4-15).
For the LP and UP states the expected anticrossing can be seen, whereas the other
two peaks exhibit a monotonous increase in energy with respect to the detuning. In
addition, transfer matrix calculations have been performed in order to determine spectral
positions of the re�ection minima of the DBR structure from the growth parameters of
the investigated sample.† As one can see in Fig. 4-15 the observed peaks are in good
agreement with the expected energies of the re�ection minima of the wedge shaped DBR.
Therefore, these peaks can be attributed to the �rst and second re�ection minima of the
DBR, respectively.

Furthermore, the ratio of the intensity of the LP resonance and the UP resonance
in the SHG spectra is analyzed (Fig. 4-16). Whereas SHG of the UP dominates for a
photonic fraction of the LP of less than 50 %, which corresponds to a photonic fraction of
the UP larger than 50 %, SHG of the LP is more than one order of magnitude stronger
for the case of a photonic fraction of 90 % of the LP. This behavior reveals a strong

†Calculations have been performed by Thomas Czerniuk of Institute of Experimental Physics 2 of
TU Dortmund University.
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dependence of the SHG e�ciency on the photonic fraction of the polaritons.

4.2.4 Summary

In conclusion, a systematic study of the two-photon processes occurring in a GaAs-based
microcavity in the strong coupling regime has been performed. Pronounced SHG from
the LP, UP and re�ectivity minima of the DBR have been observed, at which the photonic
fraction of the polaritons is crucial for the SHG e�ciency. However, clear evidence for
an e�cient population of the 2p exciton by a two-photon process, which is a requirement
for a THz lasing device based on microcavity polaritons, has not been observed by TPE
spectroscopy [31]. Wide bandgap semiconductors such as GaN and ZnO, exhibiting larger
exciton binding energies, are more appealing for the realization of such a device, as they
should allow for a more straightforward identi�cation of the 2p excitons and therefore
facilitated detection of THz radiation.

It has been clearly demonstrated that SHG is a pronounced mechanism occurring in
GaAs-based microcavities. Further studies investigating two-photon pumping processes
of polaritons in GaAs-based microcavities should always rule out SHG to get unambigu-
ous evidence for a TPA process.

For further experiments, a detailed study of the polarization anisotropy of the SHG at
high magnetic �elds should reveal the selection rules for SHG in GaAs-based microcavities
as was demonstrated before for GaAs bulk material [160].



Chapter 5

Coherence properties and �ow

control of propagating polariton

condensates

In this chapter the propagation of polariton condensates in microcavities is studied. In
the �rst part of this chapter the coherence properties of a propagating polariton con-
densate in a photonic wire are investigated. Here, two complementary experimental
techniques, namely a second-order correlation measurement as well as a Young's double-
slit experiment are used. In the second part, the creation and manipulation of a directed
propagation of an polariton condensate by optically induced potentials is studied. By
using a spatial light modulator (SLM), arbitrarily shaped potentials can be generated,
which allow for an accurate control of the propagation of the polariton condensate in-
jected by non-resonant optical pumping. For the experiments presented in this chapter
microcavities exhibiting a large Q-factor on the order of 10000 are required to obtain
a �ow of polariton condensates propagating several 10 µm away from the excitation
laser spot. The �rst part of this chapter has already been published in similar form in
Ref. [161]. Some of the results of the �rst part of this chapter are also presented in the
bachelor's thesis of Ö. Bayraktar [162], which was supervised by the author of this thesis.

5.1 In�uence of interactions with non-condensed particles

on the coherence of a 1D polariton condensate

5.1.1 Introduction

As already discussed in Sec. 4.1.1, a polariton laser promises low power consumption
as it operates without the need for population inversion. For practical applications the
carriers have to be injected non-resonantly with signi�cant excess energy, e.g., by elec-
trical currents, as demonstrated very recently [18�20]. Consequently, during relaxation
a broad distribution of background carriers is generated. This might limit the perfor-
mance of such a device in terms of coherence of the emission due to interaction between
condensed polaritons and uncondensed particles. Comparative linewidth measurements
on 2D polariton condensates indicated that the separation of reservoir carriers from the

55
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polariton condensate may improve the coherence properties of the latter [163].

Polariton condensates in 2D cavity structures [55, 164, 165] are not only a�ected by
interaction with background carriers but also undergo considerable scattering among the
polaritons themselves. Such scattering is elastic in that the energy in the polariton system
is maintained. In 2D cavities the phase space of possible scattering events is rather large
so that the bare e�ect of background carriers on the coherence of the polariton condensate
is hard to assess. In particular this is the case when the coherence underneath the laser
spot only is studied as in Refs. [55, 164, 165]. Promising in this respect are photonic
wire structures, in which the polariton scattering is suppressed due to the reduced phase
space accessible for quasi-elastic scattering in one dimension. Propagation of polariton
condensates several 10 µm away from the excitation laser spot has been demonstrated
in these structures [88].

In the �rst part of this chapter a spatially resolved study of the coherence properties
of a laser-excited 1D polariton condensate is presented. In this connection, �rst and
second-order correlation functions of the emission from polariton condensates are inves-
tigated. Both correlation functions demonstrate a reduced coherence of the polariton
condensate when background carriers are present. This loss of coherence is attributed
to interactions between background carriers and the polariton condensate. Two di�er-
ent e�ects contribute to the interaction: (i) The Coulomb-potential mediated by the
background carriers and (ii) non-resonant scattering between background carriers and
polaritons. However, a detailed evaluation of the exact contributions of these e�ects is
beyond the scope of this work.

5.1.2 Coherence of a light source

As the coherence properties of a polariton laser are investigated in the �rst part of this
chapter, the term coherence shall brie�y be de�ned within this section.

5.1.2.1 Coherence in classical optics

In classical optics the term coherence is related to the observability of interference e�ects,
which requires a �xed phase relation between two light waves. As an experimentally
accessible quantity the term coherence is related to the �rst-order correlation function:

g1(r1, t1, r2, t2) =
〈E−(r1, t1)E+(r2, t2)〉√
〈|E(r1, t1)|2〉 〈|E(r2, t2)|2〉

, (5.1)

where E+ (E−) represent the positive (negative) frequency parts of the Fourier integral
of the electrical �eld E [168]. Note that in quantum theory E+ and E− are identi�ed as
the photon annihilation and creation operators, respectively. Here, the �rst-order spatial
correlation functions g1(r1, t, r2, t) and temporal correlation functions g1(r, t1, r, t2) are
of particular interest as the measurement of these quantities allows for the determination
of the coherence length lc and coherence time τc. First-order spatial correlations can
be experimentally accessed e.g. by Young's double-slit experiment (see Sec. 5.1.4.2)
or Michelson interferometry at zero time-delay in a retrore�ector con�guration [24,169].
First-order temporal correlations can be determined e.g. using a Michelson interferometer
with varying temporal delay between both optical paths of the interferometer. In this
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connection, the visibility of the observable interference fringes is a direct measure of
�rst-order temporal and spatial coherence, respectively (see Sec. 5.1.4.2). However, the
de�nition of coherence in classical optics is not related to the inherent properties of a light
source, as the �rst-order coherence of light can be manipulated during propagation, e.g.
arbitrarily large �rst-order temporal and spatial coherence can be generated by spatial
and spectral �ltering of thermal light sources.

5.1.2.2 Quantum theory of optical coherence

The successful realization of the �rst laser by Theodore Maiman [170], however, raised
questions concerning the fundamental distinction between a laser and a conventional
thermal light source exhibiting �rst-order coherence, i.e. long coherence time and large
coherence length. A useful quantity for di�erentiation between these two types of light
sources is the second-order temporal correlation function, given by

g2(t, τ) =
〈â†(t)â†(t+ τ)â(t)â(t+ τ)〉

〈n̂(t)〉 〈n̂(t+ τ)〉
, (5.2)

where â, â† and n̂ are the photon creation, annihilation and number operator of the
mode of interest. For stationary light �elds Eq. (5.2) is averaged in time, giving rise to
the function g2(τ). g2(τ) can be regarded as a measure for the probability of detecting a
second photon delayed by a time τ after the detection of the �rst photon and therefore
elucidates the photon emission statistics of a light source. Independent of the particular
light source, for large time delays with respect to the coherence time, the photon emission
events are uncorrelated, i.e. g2(τ >> τc) = 1. Second-order correlations were experi-
mentally accessed for the �rst time by Hanbury Brown and Twiss in the 1950s [171],
who observed correlated, i.e. increased, photon emission arising from a -according to the
classic de�nition- coherent thermal emitter at time of coincidence τ = 0. On the other
hand, second-order correlation measurements performed on the �rst available laser in the
1960s revealed no correlated photon emission at small temporal delays [172].

The reason for this deviation in second-order correlation lies in the di�erent emission
statistics of a thermal emitter and a laser. Whereas the photon number distribution
of a single mode of a thermal emitter obeys a Bose-Einstein distribution, a Poissonian
distribution re�ects an ideal laser. Inserting these photon number distributions into the
temporal average of Eq. (5.2) reveals g2(0) = 1 for a laser and g2(0) = 2 for a thermal
light source (see Ref. [173] for details).

A more stringent condition for optical coherence was formulated by Roy Glauber in
1963 [168]. According to his de�nition, nth-order coherence requires

gj(t1, ..., tj) = 1, j ≤ n. (5.3)

Here,

gj(t1, ..., tj) =

〈:
j∏
i=1

â†(ti)â(ti) :〉

j∏
i=1
〈n̂(ti)〉

(5.4)

denotes the jth order correlation function and the double stops indicate normal ordering



58 Coherence properties and �ow control of propagating polariton condensates

of the photon creation and annihilation operators, respectively, which describes the prob-
ability of a joint j-photon detection event. A coherent state, which is an eigenstate of the
photon annihilation operator [174], ful�lls Eq. (5.3) for arbitrary n, which describes the
light �eld of an ideal laser. On the other hand, a thermal emitter obeys the relation [175]

gj(0) = j!, (5.5)

which has been experimentally evidenced for polariton emission in the thermal regime up
to third order [176]. Arbitrarily high order correlation functions are of course not acces-
sible in a real experiment, but measurements of second-order correlations can provide a
strong evidence for a Poissonian photon number distribution, which indicates a coherent
state.

5.1.3 Experimental details

A GaAs-based λ/2-microcavity with an experimentally determined Q-factor of about
10000 is investigated. The design of the sample is as follows: Three stacks of four GaAs
quantum wells are placed in the three central antinodes of the electric �eld con�ned by
two distributed Bragg re�ector (DBR) structures in a λ/2-cavity. The quantum wells
are 13 nm in thickness and separated by 4 nm thick barrier layers of AlAs. The upper
(lower) DBR structure consists of 23 (27) alternating layers of Al0.2Ga0.8As and AlAs.
The interaction of the cavity �eld with the exciton resonance of the 12 contained GaAs
quantum wells leads to a Rabi splitting of about 10.5 meV. Photonic wires are fabricated
by lithography and etching. A wire with the following parameters is studied: The exciton-
cavity detuning is δ = EC − EX = −15.1 meV. The wire length is L = 100 µm and the
wire width is W = 5 µm.∗

Fig. 5-1 shows a schematic diagram of the experimental setup used for real-space
imaging, Fourier-space spectroscopy and Young's double-slit experiment, respectively.
The sample is mounted in a helium-�ow cryostat. Measurements are performed at 10 K.
For non-resonant optical excitation a femtosecond-pulsed Titanium-Sapphire laser (rep-
etition rate 75.39 MHz) with central wavelength at 740 nm (1675 meV) is used. A
polarizer and a Glan-Taylor prism allow for arbitrary attenuation of the laser beam. The
laser beam is focused onto the sample under normal incidence. The shape of the spot is
Gaussian and about 2 µm in diameter.

The emission from the sample is collected using a microscope objective (numerical
aperture 0.42). The far �eld emission is studied by imaging the Fourier plane of the
objective onto the entrance slit of a monochromator. For detection a liquid nitrogen-
cooled CCD-camera is used. For real-space imaging the photonic wire is magni�ed by
a factor of 87.5 and projected onto the entrance slit of a monochromator, using a lens
with f = 350 mm (dashed ellipse in Fig. 5-1) instead of the lenses f = 400 mm and
f = 750 mm (�lled black ellipses in Fig. 5-1), respectively, used for far �eld imaging.

To study the spatial coherence of the polariton condensate along the wire, Young's
double-slit experiment is performed. To this end, the emission from the sample is mag-

∗The investigated sample has been manufactured in the institute of Technical Physics of Würzburg
University. The identi�er of the sample is M4159-7.1.
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Figure 5-1: Schematic setup for real-space imaging, Fourier-space spectroscopy and Young's
double-slit experiment: BS, beam splitter; CCD, charge coupled device camera; DS, doubleslit;
fxx, lens with xx mm focal length; FM, �ip mirror; GT, Glan-Taylor prism; MO, microscope
objective (focal length 4 mm, NA 0.42); P, polarizer; S, sample.

ni�ed by a factor of 100 onto four di�erent double slits. Thereby the spatial coherence
between two small areas of diameter b = 0.4 µm with distances of a = 1.25 µm, 2.5 µm,
5 µm and 7.5 µm can be investigated. The interference fringes are recorded with the
CCD camera behind the monochromator. Contrary to previous reports [55,88,164,165],
the location of the slit center d with respect to the excitation laser spot is chosen as an
additional variable to investigate spatial coherence. d = 0 corresponds to placing the
double slit symmetrically with respect to the excitation laser spot. From the observed
interference fringes the visibility V = Imax−Imin

Imax+Imin
within a spectral range of 0.5 meV is

calculated, which is used as measure for �rst-order spatial coherence.

For the measurement of g2(τ), the streak camera setup described in Ref. [167] is
slightly modi�ed. A drawback of the experimental approach presented there lies in
photon reconstruction errors of the built-in streak camera routine in the single photon
counting mode especially for short time delays τ < 1 − 2 ps. This prevents a direct
determination of the g2-function for τ = 0, which can only be extrapolated from values
of the g2-function for larger τ . Due to these photon reconstruction errors one can speak
of a dark time on the order of 2 ps. A similar problem occurs when measuring photon-
statistics using avalanche photodiodes, which exhibit a dark time on the order of 100 ns.
To circumvent this problem, in conventional Hanbury-Brown-Twiss (HBT) setups two
avalanche photodiodes are used. Similar to a HBT setup, the streak-camera can be used
as two e�ective detectors by means of the following approach:

The emission of the photonic wire is split into two di�erent optical paths delayed
by 72.5 ps in time, thereby giving access to g2(τ ′ = 72.5 ps) = g2(τ = 0), where τ
re�ects the real time delay between the detection of two photons and τ ′ the time delay
due to the arti�cial time delay given by di�erent optical path lengths. Therefore two
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50:50 beamsplitters and a shortpass (SP) �lter with cut-o� wavelength at 800 nm are
used (Fig. 5-2). The SP-�lter provides transmission of the excitation laser as well as
re�ection of the investigated polariton-emission from the sample. Both emission patterns
are magni�ed by a factor of 25 onto the entrance slit of a streak camera equipped with an
additional horizontal de�ection unit. The horizontal de�ection speed is slow compared to
the vertical de�ection speed and allows for the recording of multiple streaks per screen.
Horizontal time windows of 300 ns, 600 ns and 1200 ns, respectively, can be chosen. The
temporal resolution of the setup is approximately 2 ps. Spectral sensitivity is provided
by a bandpass �lter with a Full Width at Half Maximum (FWHM) of 1 nm.

f100

BS2
Cryostat

BS1

Streak-
camera

MO BP

Ti:Sa laser

S

SP GT

P

Figure 5-2: Schematic setup for the second-order correlation measurement: BP, bandpass �lter
(FWHM 1 nm); BS1, BS2, beam splitters; f100, lens with 100 mm focal length; GT, Glan-Taylor
prism; MO, microscope objective (focal length 4 mm); S, sample; SP, shortpass �lter (cut-o�
wavelength 800 nm); P, polarizer. Note: Emission path indicated by the dashed line is delayed
by 72.5 ps due to optical path length di�erence.

For the second-order correlation measurement, emission regions of 3 µm width along
the wire are selected using a vertical slit, and a horizontal de�ection time of 300 ns
per screen is used. For a reliable signal to noise ratio 100 000 frames are recorded,
Fig. 5-3 (a) shows a typical image integrated over 100 000 frames. Every frame consists
of 22 streaks and each streak corresponds to one single excitation pulse. Every detected
photon within one frame is assigned to a certain streak and second-order correlation
functions are calculated as described in Ref. [167]. A typical example for such a g2-
function is shown by the red line in the inset of Fig. 5-3 (b). However, especially for
short pulses the g2-function can be distorted by jitter-e�ects as described in Ref. [167],
which are indicated by g2-values signi�cantly below 1. To account for these e�ects,
the g2-functions between several combinations of di�erent streaks are averaged, which
is indicated by the black line in the inset of Fig. 5-3 (b). Since neighboring streaks
are separated by 13.2 ns in time, the shape of this curve does not re�ect second-order
correlation of the emission from the sample, but jitter arising from the streak camera
system. By dividing the g2-function of photons within the same streak by the average
of the g2-functions of photons between di�erent streaks, jitter is separated from second-
order correlation of the emission from the sample. Fig. 5-3 (b) gives a typical example
of such a normalized g2-function. Here g2(τ ′ = 72.5 ps) corresponds to g2(τ = 0) due to
the time delay between the two emission pro�les. The additional peak for τ ′ = 40 ps is
probably caused by the tail of the pulse as can be seen in Fig. 5-3 (a).
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Figure 5-3: (a) Typical image integrated over 100 000 frames when probing a 3 µm section of
the photonic wire using a horizontal de�ection time of 300 ns. (b) Normalized g2(τ ′)-function.
Due to the arti�cial time delay between both pro�les, τ ′ = 72.5 ps corresponds to τ = 0 ps. Inset:
Red line, calculated g2(τ ′)-function when correlating photons within the same streak; black line,
average of the correlation functions when correlating photons between di�erent streaks.

5.1.4 Results and discussion

5.1.4.1 Real-space and Fourier-space spectroscopy

In a photonic wire light is con�ned normal to the wire axis. In a simple model the
con�nement of the light can be treated in terms of standing waves, therefore the cavity
dispersion is described as follows [177]:

Ei(kx) =

√
E2
c +

~2c2
0

n2

(
π2

W 2
(i+ 1)2 + k2

x

)
, (5.6)

where n is the index of refraction of the cavity material, W is the width of the wire and
Ec is the cavity energy of the corresponding planar cavity. The lateral con�nement gives
rise to a multiplet of subbranches which are labeled i = 0,1,2 ... in the following. For
convenience the exciton-cavity detuning is de�ned as the di�erence in energy between
the lowest i = 0 cavity subbranch and the uncoupled quantum well exciton.

For identi�cation of the di�erent subbranches of the lower polariton [178] in the
photonic wire and evaluation of the propagation of the polariton condensates, real-space
and Fourier-space spectroscopy is performed at di�erent excitation powers.

Figs. 5-4 (a) and (b) show the corresponding images for an excitation power below
threshold. Here, the excitation laser spot is located at the center of the photonic wire.
Several dispersion curves of LP subbranches can be distinguished in Fig. 5-4 (b) and
allocated to di�erent photonic wire subbranches. The most intensive mode corresponds
to the i = 0-subbranch, also weak signatures of the i = 2-, i = 3- and i = 4-subbranches
can be observed [Fig. 5-4 (b)]. The reason for the weak signal intensities from higher
subbranches is the orientation of the photonic wire parallel to the entrance slit of the
monochromator, leading to a small detection range in ky-space (|ky| < 0.12 µm−1).
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Figure 5-4: Real-space images [(a), (c) and (e)] and Fourier-space images [(b), (d) and (f)] of the
photonic wire at di�erent excitation power levels. (a) Even below threshold propagation e�ects of
the LPs, located in the energy range between 1527−1537 meV, are observed. The strong emission
centered at 1544 meV arises from the QWE. (b) Dispersions of several LP subbranches can be
distinguished. Black lines correspond to calculated curves. (c) and (d): Slightly above threshold
the main emission originates from the i = 3-, and i = 4-subbranches. (e) and (f): For further
increased excitation power levels the main emission is shifted towards lower LP subbranches.
The most intense emission arises at |kx| ≈ 2 µm−1.

For this detection geometry the observed emission in Fourier-space is dominated by
the ground mode, due to its symmetric, nodeless mode pattern perpendicular to the
wire axis [178, 179]. The strong emission centered at 1544 meV is attributed to the
bare uncoupled quantum well exciton (QWE). This QWE photoluminescence is emitted
mostly through the edge of the wire. In real-space the con�ned LP modes show up
as several emission peaks below the QWE in the energy range of 1527 − 1537 meV
[Fig. 5-4 (a)]. Already below threshold, propagation of the LPs along the wire is observed,
which is extended compared to the propagation of the exciton due to the light polariton
mass [Fig. 5-4 (a)].

At the threshold power signi�cant changes of the emission patterns occur both in
real- [Fig. 5-4 (c)] and in Fourier-space [Fig. 5-4 (d)] because of polariton condensate
formation. The polariton condensate emission is most pronounced from the i = 3- and
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Figure 5-5: Power dependent spectra of the emission from the photonic wire. Three di�erent
excitation regimes are indicated by the labels A, B and C. Note: Emission was integrated over
the full real-space image and divided by the maximum signal intensity for each excitation power
separately.

i = 4-subbranches with the main emission at wavevectors of |kx| ≈ 2 µm−1. This
can be attributed to conversion of potential energy mediated by Coulomb interaction
with background carriers within the excitation laser spot into kinetic energy [88]. When
the excitation power is further increased, the main emission shifts to lower subbranches
[Fig. 5-4 (e) and (f)] and the propagation along the photonic wire becomes much more
pronounced. As the emission in real-space broadens, a clear distinction especially between
the i = 0-, i = 1- and i = 2-LP subbranches in real-space is hardly possible because of
the small energy splitting between them.

Fig. 5-5 summarizes the power dependent spectra for increasing excitation power,
divided into three di�erent regimes. Below threshold (regime A) the strongest emission
comes from the QWE, for intermediate excitation powers in regime B the main emission
is shifted from the i = 4 LP subbranch to the LP i = 0-, i = 1- and i = 2-subbranches,
whereas for high excitation powers clearly above threshold (regime C) the emission energy
remains about constant.

As the streak-camera setup possesses a low duty cycle, when recording only single
excitation pulses, which is limited to 130 frames per second by the CCD camera [167],
a pronounced emission of the mode of interest is required for second-order correlation
measurements. Otherwise a reasonable signal to noise ration cannot be provided. Un-
fortunately, the signal intensity within excitation regime B does not allow for correlation
measurements using the streak camera setup. Therefore, a HBT setup is used to perform
cross-correlation measurements between polariton condensates of di�erent subbranches
in excitation regime B. The temporal resolution of the HBT setup is on the order of
500 ps. Fig. 5-6 shows a typical cross-correlation measurement between two condensate
modes at energies of 1532.6 meV and 1534.7 meV, respectively. Clearly, antibunching at
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Figure 5-6: Second-order cross-correlation between two polariton condensate modes at energies
of 1532.6 meV and 1534.7 meV. Excitation power amounts to P = 1.8Pthr.

τ = 0 is observed. This indicates mode competition between polariton condensates in
di�erent subbranches. A similar antibunching e�ect was observed in Ref. [180] between
two degenerate orbital states in a honeycomb lattice potential, which was attributed to
stochastic formation of di�erent polariton condensates.

5.1.4.2 First-order spatial coherence

For spatially resolved investigation of the polariton condensate coherence properties, high
excitation power levels within regime C are chosen, where pronounced propagation e�ects
along the wire are observed.

In Fig. 5-7 the dependence of the visibility of the interference pattern on the probed
location of the photonic wire is presented for an emission energy of 1532 meV at an
excitation power of P = 14.3Pthr. For |d| > 10 µm, far away from the center of the
excitation laser spot, the visibility is almost constant and shows the expected monotonous
behavior with respect to the slit separation as observed elsewhere [55, 88, 164]: The
visibility increases from roughly 0.6 to 0.9 when decreasing the slit separation from
a = 7.5 µm to a = 1.25 µm. However, in the vicinity of the laser spot around d = 0 a
drastic decrease of the visibility becomes evident for slit separations of a = 1.25 µm and
a = 2.5 µm. The FWHM in both cases is approximately a = 3.5 µm, which is on the order
of the excitation laser spot size. For the cases of a = 5 µm and a = 7.5 µm, no pronounced
minimum of the visibility at d = 0 is observed. Instead, two pronounced minima located
symmetrically relative to d = 0 are seen. In addition, the distance between the minima
matches the slit separation a. Therefore, the observation of the minima corresponds to
the situation, where the spatial coherence between polariton condensates located at the
excitation laser spot and condensates located at distances of a = 5 µm and a = 7.5 µm,
respectively, away from the excitation spot is probed.

The reduced spatial coherence around the laser spot is tentatively assigned to inter-
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Figure 5-7: Visibility V (d) of the measured interference pattern as function of the location d
of the double slit center for di�erent slit separations a. The energy of the emission is centered
at 1532 meV, the excitation power is P = 14.3Pthr. d = 0 corresponds to the situation of the
double slit placed symmetrically with respect to the excitation laser spot.

action between condensed polaritons and the thermalized reservoir of excitons localized
around the excitation laser spot as suggested in Refs. [68, 69]. Recently, there was a
claim for observation of the detrimental e�ect of uncondensed polaritons on the spatial
coherence [181]. In this study a 2D polariton condensate was created under the opti-
cal parametric oscillation excitation scheme and the spatial coherence between a strictly
maintained phase-matching condition and an excitation energy slightly shifted out of
phase-matching was compared. In the latter case spatial coherence was found to be
decreased, which was attributed to the detrimental e�ect of uncondensed polaritons on
spatial coherence. However, the decrease of coherence in that report might also be ex-
plained as a consequence of a lower density of the polariton condensate [182] in the case
of phase mismatch of the excitation laser. Here, that explanation can be ruled out, as
similar polariton densities at the pump spot and 20 µm away in the real space spectra are
observed, whereas the visibility is V (0 µm) = 0.4 at the pump spot and V (20 µm) = 0.9

[Fig. 5-7 (a)] far away from the pump spot.

5.1.4.3 Spatially resolved measurement of second-order temporal correla-

tions

To substantiate the presented interpretation of the results of the double slit experiment,
additionally the g2(τ)-function is measured spatially resolved using the correlation streak-
camera technique. To that end, the excitation laser spot is placed at the edge of the
photonic wire and the emission of the sample centered at 1530 meV is imaged onto the
entrance slit of the streak camera. Under this condition condensate emission occurs at
lower wavevectors compared to excitation at the wire center. Thus, the intensity of the
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Figure 5-8: (a) Time-resolved spatial distribution of the emission of the condensate centered
at 1530 meV. Both pro�les arise from the same excitation pulse, but are delayed in time by
72.5 ps due to di�erent optical path lengths (see Sec. 5.1.3 for explanation). The excitation
power amounts to P = 30.4Pthr. (b) Measured g2(τ = 0) with respect to the position on the
photonic wire.

strongest emission feature is redshifted compared to the power-dependent spectra shown
in Fig. 5-5.

In Fig. 5-8 (a) the time-resolved spatial distribution of the polariton condensate is
shown. Here, 0 µm indicates the location of the excitation laser spot. Using a beamsplit-
ter, the emission from the photonic wire is imaged onto the entrance slit of the streak
camera twice with a relative time delay of 72.5 ps to avoid photon reconstruction errors
for τ = 0 as outlined in Sec. 5.1.3. From this image one can deduce a group velocity of
4.5 µm ps−1 in accordance with Ref. [69]. Second-order correlations are measured col-
lecting signal from a photonic wire region with 3 µm spatial extent using a vertical slit.
Subsequently this region is shifted along the wire. Fig. 5-8 (b) shows the result of these
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Figure 5-9: Time evolution of the second-order photon-correlation function g2(t, τ = 0) (black
squares) compared to the normalized output intensity (blue solid line) of the polariton condensate
for x = 0 µm (a) and x = 16.3 µm (b). The red dashed line indicate the time averaged value
g2(τ = 0) presented in Fig. 5-8, the black dashed line the limiting case for coherent light. Note:
Only times t with a su�cient signal-to-noise ratio have been considered for the evaluation of
g2(t, τ = 0).

spatially resolved measurements of g2(τ = 0), the correlation function for simultaneous
arrival of two photons.

A bunching of photons emitted from the center of the excitation laser spot can clearly
be seen, re�ected by values increased above unity, g2(τ = 0) = 1.23. g2(τ = 0) decreases
signi�cantly within 5 µm down to g2(τ = 0) = 1.10. Further on, a slight decrease down
to g2(τ = 0) = 1.06 for a distance of 37 µm from the excitation laser spot is observed.
Whereas g2(τ = 0) = 1 re�ects Poissonian distribution and therefore a coherent photon
source, increased values of g2(τ = 0) indicate a deviation from such a distribution and
hence decreased coherence (see Sec. 5.1.2).

The time resolution on the ps timescale of the streak camera system also allows
for an evaluation of the equal-time correlation function g2(t, τ = 0) at di�erent times
within the emission pulse, which provides insights into the coherence dynamics of a
non-stationary light �eld. The g2(t, τ = 0)-function is analyzed for di�erent positions
along the photonic wire (Fig. 5-9). At the location of the excitation laser spot, only
small �uctuation around the mean value of g2(τ = 0) = 1.23 can be observed during the
emission pulse of the polariton condensate [Fig. 5-9 (a)]. Interestingly, far away from
the excitation laser the situation is di�erent [Fig. 5-9 (b)]: A monotonous decrease of
g2(τ = 0) towards 1 within the pulse is observed, which demonstrates the recovery of a
coherent light emission when no reservoir of background carriers is present. Therefore,
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this experiment additionally corroborates the interpretation of a decreased coherence of
the polariton condensate when background carriers are present.

We also consider the possibility that the high g2-values observed at the pump spot
can be interpreted in terms of simultaneously detected thermal photons. However, an
analysis of the input-output curve at the location of the excitation laser spot revealed a
ratio of roughly 3 % thermal photons and 97 % photons from the polariton condensate
within the duration of roughly 10 ps of the polariton condensate emission [Fig. 5-9 (a)].
Even for the very unlikely case that every detected pair consisting of a thermal/coherent
photon would contribute with g2(τ = 0) = 2, the overall value for g2(τ = 0) would be
1.06, which is signi�cantly lower than the average value of g2(τ = 0) = 1.23 within the
emission pulse from the polariton condensate at the position of the excitation laser spot
[Fig. 5-9 (a)]. Therefore, one can exclude an explanation of the presented data in terms
of thermal photons measured simultaneously.

A similar decrease of second-order coherence induced by interaction with a reservoir
was recently observed for a photon BEC [183]. One of the key �ndings of that report
is the observation of increased particle number �uctuations for decreasing condensate
fraction with respect to the reservoir (excited dye-molecules in that study). This is
identi�ed by an increase of g2(τ = 0) up to values of 1.7 for low condensate fractions.
The high g2-values observed are attributed to the grand-canonical ensemble conditions
of the experiment at hand when the condensate fraction is low and the particle exchange
between the reservoir and the condensate is very e�ective. A similar e�ect is seen in this
experiment: As the reservoir is mainly located within the excitation laser spot, there is a
gradient from low condensate fraction within the laser spot to high condensate fraction
several 10 µm away from the excitation laser.

5.1.5 Summary

In conclusion, the detrimental e�ects of background carriers on the coherence proper-
ties of polariton condensates due to interaction between the reservoir and the polariton
condensate has been demonstrated using Young's double slit experiment and a second-
order correlation measurement. Moreover, a technique to determine spatially resolved
second-order correlations has been presented, which should also allow one to measure
second-order cross-correlations of polariton condensates at di�erent spatial positions.
Furthermore, the operation of the streak-camera as two e�ective detectors should also
enable measurements of correlations between condensates exhibiting di�erent polariza-
tions or energies.

5.2 All-optical �ow control of a polariton condensate using

non-resonant excitation

5.2.1 Introduction

As has already been outlined in chapter 1, all-optical logic circuits might be promis-
ing alternatives to standard CMOS technology regarding heat dissipation and operation
speed [8,12]. Furthermore, in principle they allow for the dynamic design of logic circuits
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by alteration of the applied light �elds [184].

An appealing system for the realization of all-optical logic circuits is given by exciton-
polaritons in semiconductor microcavities. Especially dissipationless coherent propaga-
tion of polariton condensates over hundreds of microns [185], frictionless �ow [30] and
a propagation speed on the order of 1 % of the speed of light [69] highlight promis-
ing features of polariton condensates concerning logic gate operations. Recently, several
groups succeeded in establishing a proof of principle polariton-based transistor opera-
tion [22,186,187] and in Ref. [22] even more sophisticated features such as cascadability
of two transistors and logic gate operation were demonstrated. However, the approaches
presented in Refs. [186, 187] require lithographic patterning and are therefore strictly
speaking not all-optical circuits. In Ref. [22] a resonant excitation scheme is used, which
demands a careful choice of the energy and angle of the excitation laser due to the strict
requirements for phase-matching. Beyond that, the number of laser beams impinging
on the sample scales with the number of transistors cascaded, which might be a serious
drawback for large scale applications.

As an alternative one might consider non-resonant laser excitation for the realization
of logic gates based on microcavity polaritons. Here, one has a large degree of freedom
regarding the choice of excitation angle and energy. On the other hand, in this case one
needs to control the polariton �ow direction by means of optically created potentials, in
contrast to resonant laser excitation. These potentials are realized under non-resonant
pumping by the simultaneous creation of background carriers, from which condensates
are repelled. While these potentials were exploited to a large extent for the realization
of trapping geometries [25,163,188], only a discretization of the momentum distribution
was shown so far for the case of non-trapping geometries [184].

In this section, a directed condensate �ow over macroscopic distances on the order
of 20 µm using optically generated potentials is demonstrated. Furthermore, by a re-
con�guration of the optical potential, the condensate �ow can be recaptured as well as
steered in arbitrary directions. In addition, the experimental results are con�rmed by nu-
merical simulations using a generalized Gross-Pitaevskii equation (GPE).† Control over
the condensate �ow is an important milestone on the way towards a functional circuit
architecture based on microcavity polaritons [23,189,190].

5.2.2 Experimental details

A planar GaAs-based microcavity with a Q-factor of about 20000 and a Rabi splitting
of 9.5 meV is investigated. Four GaAs quantum wells are placed in the central antinode
of the electric �eld con�ned by two distributed Bragg re�ector (DBR) structures in a
λ/2-cavity. The upper (lower) DBR structure consists of 32 (36) alternating layers of
Al0.2Ga0.8As and AlAs. ‡

Fig. 5-10 schematically shows the experimental setup used for the experiments pre-
sented within this section. The sample is mounted in a helium-�ow cryostat. Measure-

†Numerical simulations have been performed by Przemyslaw Lewandowski under supervision of
Jun.-Prof. Dr. Stefan Schumacher of the Department of Physics of Paderborn University.
‡The investigated sample has been manufactured in the institute of Technical Physics of Würzburg

University. The identi�er of the sample is M3396-9.2.
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Figure 5-10: Schematic setup for real-space and Fourier-space spectroscopy under excitation
with two laser beams: BP, bandpass �lter (FWHM 1 nm); BS, beam splitter; CCD, charge
coupled device camera; fxx, lens with xx mm focal length; FM, �ip mirror; GT, Glan-Taylor
prism; λ/2, half-wave plate; MO, microscope objective (focal length 4 mm, NA 0.42); P, polarizer;
S, sample; SLM, spatial light modulator.

ments are performed at 10 K. For non-resonant optical excitation a femtosecond-pulsed
Titanium-Sapphire laser (repetition rate 75.39 MHz) with central wavelength at 727 nm
(1705 meV) is used. For generation of the optical potentials, the laser beam is divided
using a beamsplitter. The �rst laser beam is collimated using two lenses of 200 mm and
100 mm focal length and the excitation power is varied by rotating a half-wave plate in
front of a Glan-Taylor prism. The shape of the �rst beam is Gaussian with a full width
at half maximum (FWHM) of 2 µm on the sample. The diameter of the second beam
is expanded by two lenses of 100 mm and 300 mm focal length in order to achieve a
complete illumination of the liquid crystal display of a phase-only spatial light modula-
tor (SLM). A polarizer and Glan-Taylor prism allow for a regulation of the excitation
power. A half-wave plate placed behind the Glan-Taylor prism sets the polarization of
the excitation laser such that the contrast of the modulated shape of the laser beam is
maximized. The Fourier-transform of the desired real space shape of the laser spot at
the sample, e.g. a circle or a semicircle, is imposed on the liquid crystal display of the
SLM. Superimposing the Fourier-transform of the phase function of a collecting lens on
the SLM in combination with an additional lens (focal length f = 190 mm) allows for the
downscaling of the beam diameter in order to match the diameter of the laser beam with
the size of the entrance pupil of the microscope objective (numerical aperture 0.42). The
time delay between the beams is less than 2 ps. For detection a liquid nitrogen-cooled
CCD-camera placed behind a monochromator is used. For two-dimensional imaging in
real space and Fourier-space, respectively, the monochromator is operated in zeroth or-
der. In that case, the spectral resolution is provided by a bandpass �lter with a FWHM
of 1 nm. All experiments are performed at an exciton-cavity detuning of −21.7 meV,
which corresponds to a photonic fraction of 96 % of the lower polariton (LP) at zero
in-plane wavevector.



5.2 All-optical �ow control of a polariton condensate using non-resonant excitation 71

5.2.3 Results and discussion

Fig. 5-11 (a) shows a typical dispersion for an excitation power level P several times
higher than the threshold power Pthr for polariton condensation, when only the Gaussian
laser spot is used. Clearly, the main emission at wavevectors of |ky| ≈ 1.8 µm−1 occurs
blueshifted by 3 meV with respect to the lowest energy state of the LP at zero in-
plane wavevector. The observed blueshift arises from repulsive interactions between the
condensed polaritons and background carriers created by non-resonant pumping and from
polariton-polariton interactions. These mechanisms generate an antitrapping potential
and cause ballistic acceleration of the condensed polaritons away from the background
carrier reservoir [143]. This �nding is further elucidated by the corresponding real space
spectrum, where a pronounced ballistic propagation over a distance of several 10 µm can
be seen [Fig. 5-11 (b)]. However, as a two-dimensional polariton system is investigated
here, this propagation occurs omnidirectional, radially symmetric with respect to the
Gaussian excitation laser spot.

As a �rst step towards controlling the spread of the condensate, the condensate can
be trapped by applying a ring shaped laser spot, approximately 10 µm in diameter,
centrosymmetric around the Gaussian spot using the second laser beam modulated by
the SLM. A typical excitation pro�le for this situation is depicted in Fig. 5-12 (a). The
condensate excited by this laser pattern is trapped due to the repulsive interaction with
background carriers located at the position of the laser pattern. Fig. 5-11 (c) shows a
spectrally resolved cross-section in Ly direction, where Ly = 0 µm indicates the position
of the Gaussian laser spot. In this case the main emission is centered at 1602 meV,
3 meV lower in energy compared to the case of excitation with the Gaussian laser spot
only. For the further experiments a spectral region of 1 meV width is selected using
an interference �lter, covering wavevectors |k||| < 1.3 µm−1 only, which is indicated
by the red rectangle in Fig. 5-11 (a). In Fig. 5-12 (b) the trapped condensate can be
seen, which builds up in a donut shape due to the centrosymmetric shape of the applied
optical potential [Fig. 5-12 (a)]. Furthermore, the wavevector distribution is centered
around zero momentum, as expected for a trapped condensate [Fig. 5-12 (c)].

In order to understand the interaction between the optically created potentials and
the condensates better, numerical simulations have been performed. To this end, a
mean-�eld description of the coherent polariton �eld coupled to two incoherent back-
ground carrier/exciton reservoirs, which consist of an active and an inactive reservoir,
is used [72, 191]. The addition of an inactive reservoir re�ects the relaxation process
from a hot electron-hole plasma created by the non-resonant pumping process towards
an active exciton reservoir as described in Sec. 4.1.1, which feeds the coherent polariton
�eld through stimulated scattering. Consequently, the theoretical description is based on
the coupled spatio-temporal dynamics of (a) the coherent polariton �eld/condensate Ψ,
(b) an active exciton reservoir nA feeding the condensate through a stimulated scatter-
ing process, and (c) an inactive reservoir nI created in the optical pumping process and
feeding the active reservoir. The equations of motion read as follows:
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Figure 5-11: (a) Fourier-space image for an excitation power level P = 8Pthr under excitation
with the Gaussian laser spot only. The red rectangle indicates the selected spectral region for
the experiments operating the monochromator in zeroth order. (b) Corresponding real-space
image for P = 8Pthr. (c) Real-space image of the condensate emission for the excitation pro�le
presented in Fig. 5-12 (a). The excitation power levels for the Gaussian spot and for the circle
shaped pattern are P = 18Pthr and P = 6.5Pthr, respectively. Threshold power levels are
determined by exciting either with the Gaussian spot or the circle shaped pattern only.

i~Ψ̇ =
(
H− i(γp −

γ

2
nA) + Vd

)
Ψ (5.7)

+
(
α1 | Ψ |2 +α2nA + α3nI

)
Ψ− iΛ(nA + nI)HΨ,

ṅA =
1

~
(
τnI − γAnA − γ | Ψ |2 nA

)
, (5.8)

ṅI =
1

~
(−τnI − γInI) . (5.9)

Ψ, nA and nI are de�ned in the two-dimensional x, y-plane. Eq. (5.7) captures the dy-
namics of the coherent polariton �eld and is based on the GPE (2.53), which is derived
in Sec. 2.4.3. Here, H = − ~2

2mp
∆ accounts for the free propagation of polaritons with

e�ective mass mp = 0.35 · 10−4 me. The polariton �eld Ψ is replenished by the active
reservoir with γ = 0.004 meVµm2. Disorder e�ects (see Sec. 2.4.5) are considered by
implementation of a disorder potential Vd with a spatial correlation length of 1 µm and
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Figure 5-12: (a) Laser excitation pattern for the trapping geometry. The excitation power levels
are P = 18Pthr for the Gaussian spot and P = 6.5Pthr for the circle shaped pattern. (b) Two-
dimensional real-space image of the trapped condensate. (c) Corresponding Fourier-space image
of the trapped condensate. (d) Laser excitation pattern for the source of directed condensate
�ow. The excitation power levels are P = 18Pthr for the Gaussian spot and P = 11.3Pthr for the
semicircle shaped pattern. (e) Two-dimensional real-space image of the trapped condensate and
the directed condensate �ow escaping from the trap. (f) Corresponding Fourier-space image for
the situation of panel (e).

a root mean square (rms) amplitude of 0.2 meV. A repulsive Coulomb interaction is
given by α1 = 0.0024 meVµm2 (Refs. [70,72,192]) for interaction between polaritons and
by α2 = α3 = 0.008 meVµm2 for the polariton-reservoir interaction. The last term in
Eq. (5.7) with Λ = 0.00025 µm−2 mimics a relaxation term as it drives the polariton
system to on average lower kinetic energies in spatial regions where interaction with the
reservoir densities nA and nI occurs [69]. Spin degrees of freedom [193] are not consid-
ered here. Eqs. (5.8)-(5.9) describe the dynamics of the active and inactive reservoir,
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Figure 5-13: Applied potential landscape for the simulation of the trapping geometry (a) and
of the source of the directed condensate �ow (d). Corresponding time-integrated calculated
condensate distribution in real-space [(b) and (e)] and in k-space [(c) and (f)]. Numerical data
have been provided by Przemyslaw Lewandowski.

respectively. In Eqs. (5.8)-(5.9), the active reservoir is fed by the inactive reservoir with
τ = 0.1 meV. Radiative losses are γp = 0.1 meV, γA = 0.01 meV (Ref. [194]) and
γI = 0.0013 meV (Ref. [72]) for Ψ, nA and nI , respectively.

In the simulations, Eqs. (5.7)-(5.9) are solved on a two-dimensional grid in real space.
Initially, the active reservoir density nA is set to zero. A small complex-valued random
�eld is assumed for the coherent polariton �eld Ψ to trigger the stimulated feeding after
optical excitation. This initial random �eld has a spatial correlation length of 1 µm
and a rms amplitude of 107 cm−2 and di�ers for each of the 30 runs performed for the
simulations. The optical excitation pro�le is included in the initial condition for the
inactive reservoir density nI (experimentally, excitation is far above the gap on a fast
100 fs timescale). The maximum initial reservoir density is max(nI) = 1.1 · 1011 cm−2.
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Figure 5-14: (a) Laser excitation pattern for the collector geometry. The excitation power
levels are P = 18Pthr for the Gaussian spot and P = 5.9Pthr for the SLM generated pattern.
(b) Two-dimensional real-space image of the recollected condensate. (c) Laser excitation pattern
for bending the condensate �ow. The excitation power levels are P = 18Pthr for the Gaussian
spot and P = 6.2Pthr for the SLM generated pattern. (d) Two-dimensional real-space image of
the curve-shaped condensate.

Using a centrosymmetric shaped potential landscape [Fig. 5-13 (a)], the condensate
is trapped with k ≈ 0 [Fig. 5-13 (b) and (c)], in accordance with the experimental
observations [Fig. 5-12 (b) and (c)]. To exploit this trapping geometry for the generation
of a directed condensate �ow, the trap is opened by applying a semicircle shaped potential
instead of a full circle [Fig. 5-12 (d)], the corresponding potential landscape used for the
simulations is presented in [Fig. 5-13 (d)]. Once a condensate builds up inside the cavity,
the polariton condensate can leave the trap by �owing through the aperture at the
bottom in Ly direction [Fig. 5-12 (e)]. Due to the repulsive interaction with the reservoir
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Figure 5-15: Applied potential landscape for the simulation of the collector geometry (a) and
of the bending of the condensate �ow (c). Corresponding time-integrated calculated condensate
distribution in real-space [(c) and (d)]. Numerical data have been provided by Przemyslaw
Lewandowski.

excitons, polaritons are accelerated away from the excitation point such that a directed
polariton �ow from the trap is clearly visible in the experiment [Fig. 5-12 (e)] as well
as in the numerical simulations [Fig. 5-13 (e)]. This pronounced directed propagation is
also evident in Fourier-space, where the wavevector distribution is signi�cantly relocated
towards negative values of ky [Fig. 5-12 (f) and Fig. 5-13 (f)] in contrast to the situation of
the closed trap [Fig. 5-12 (c) and Fig. 5-13 (c)]. Therefore this geometry acts as a source
for a directed condensate �ow. Once a directed �ow is realized, one can further steer and
manipulate this directed condensate arbitrarily by modifying the potential landscape. In
the following, two scenarios are exemplarily demonstrated. By applying an additional
semicircle shaped laser pattern in roughly 10 µm distance from the source [Fig. 5-14 (a)],
the condensate �ow is recollected and transferred to an oval shaped standing wave pattern
[Fig. 5-14 (b)] as a consequence of re�ection, ampli�cation and interference, which is
reproduced well by the simulations [Fig. 5-15 (a) and (b)]. Furthermore, if an opposing
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semicircle shaped potential with respect to the source is applied [Fig. 5-14 (c)], one
can generate a curve shaped condensate �ow [Fig. 5-14 (d)], which is consistent with
calculations [Fig. 5-15 (c) and Fig. 5-15 (d)]. In both scenarios the optically created
potential interacts twofold with the incoming condensate: Firstly the incoming �ow
is redirected due to repulsive Coulomb interaction with the background carriers, and
secondly the potential barrier operates also as a gain medium, which gives rise to strong
condensate emission in up to 15 µm distance from the source of the directed condensate
�ow. Nevertheless, the barrier remains separated in space from the condensate �ow,
which might be bene�cial concerning the loss of coherence of a condensate mediated by
the local presence of background carriers (see Sec. 5.1).

5.2.4 Summary

In conclusion of this section, the control of the polariton �ow using recon�gurable op-
tically induced potentials has been demonstrated. Firstly, a feasible approach for the
generation of directed condensate propagation has been presented. Furthermore, a ma-
nipulation of this �ow, e.g. a recollection of the condensate and a guiding on a curve
shaped trajectory, has been demonstrated. In addition, the experimental results have
been reproduced in terms of a generalized GPE. The control of the condensate �ow is
a prerequisite for further, more sophisticated investigations, e.g. scattering experiments
of polariton condensates, and might pave the way towards all-optical logic circuits using
microcavity polaritons.





Chapter 6

Conclusions and outlook

In conclusion, this thesis provides new insights into the optical properties of bulk po-
laritons as well as polaritons in microcavities. The results of the experiments performed
presented in chapters 3-5 give a contribution to the fundamental understanding of polari-
tons, but are also of relevance to evaluate the potential of applications, such as di�erent
types of GaAs-based polariton lasing devices, and might be pertinent for a possible real-
ization of all-optical logic circuits based on polaritons.

From a fundamental research point of view, the results presented in chapter 3 o�er
interesting �ndings concerning the polariton propagation in bulk material. By a new
nonlinear spectroscopic approach using two single-frequency lasers, the hardly investi-
gated blue exciton-polariton in Cu2O was accessed by sum-frequency generation. Most
notably, the experiment showed signatures of coherent propagation without damping in
a spectral region of high absorption. The experimental observations can be interpreted in
terms of a fusion process of two beams of coherent polaritons exhibiting a large di�erence
in group velocity. However, a full theoretical understanding of the coherent propagation
of polaritons in a highly absorbing material is still lacking. Nevertheless the presented
results should stimulate theoretical work on nonlinear excitation of polaritons.

The investigations presented in chapter 4 aimed at the identi�cation of a suitable pa-
rameter space for operation of a GaAs-based polariton laser and the evaluation of a con-
cept for THz-lasing operation based on polaritons in microcavities, which was suggested
recently [31]. In the �rst part of this chapter an upper limit of the lattice temperature of
90 K for polariton lasing operation was identi�ed and the requirement for a large Q factor
of the microcavity to achieve polariton lasing operation in the negative detuning range
was determined. Therefore, polariton lasing operation in GaAs-based microcavities at
liquid nitrogen temperatures might be in reach. However, the adequacy for applications
beyond fundamental research is currently hard to estimate. Nevertheless, the excellent
crystal quality of available GaAs-based microcavity samples provides ideal circumstances
for investigations on polariton condensates. Subsequently, the knowledge of GaAs-based
materials can be transfered to material systems with larger exciton binding energies, such
as GaN, ZnO and organic semiconductors allowing for room temperature operation of
polariton lasers. Concerning THz lasing operation based on a two-photon pumping pro-
cess of the 2p exciton, the results of two-photon excitation (TPE) spectroscopy indicated
that a realization of such a device will probably be very challenging in GaAs-based mi-
crocavities. In detail, no signi�cant resonance of the 2p exciton could be identi�ed in the
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TPE spectra, which suggests an ine�cient two-photon pumping process. Nevertheless,
the performed nonlinear spectroscopic study of a GaAs-based microcavity revealed other
interesting two-photon processes such as second-harmonic generation arising from the
LP and UP polaritons as well as from the DBR re�ection minima, which might stimulate
further nonlinear spectroscopic investigations of microcavity systems.

High Q factors larger than 10000 in GaAs-based microcavities allowed for the obser-
vation of polariton condensates propagating over macroscopic distances of several 10 µm.
The evaluation of the coherence properties of the propagating condensates as well as the
steering of the condensate �ow was in the focus of chapter 5. In this connection, an
increase of �rst-order as well as second-order coherence was observed, when the conden-
sate propagated out of the excitation laser spot. This was attributed to the presence
of background carriers under non-resonant excitation, which interact with the polariton
condensate. Moreover, the measurement scheme using the streak camera in a Hanbury-
Brown-Twiss-like con�guration, which was demonstrated in this thesis, o�ers the possi-
bility to determine second-order cross-correlation functions between condensates of di�er-
ent polarizations as well as energetically di�erent polariton condensates on a picosecond
timescale in future experiments. Finally, it was shown that the �ow of the condensate
can be steered and manipulated at will by means of optically generated potentials with-
out the need for a resonant excitation scheme. This �nding might be appealing for the
realization of all-optical logic circuits, and moreover it enables scattering experiments in
the solid state with a well-de�ned observable trajectory of particles.



Natural constants and abbreviations

acronym meaning

AC acoustical

BEC Bose-Einstein condensate
BKT Berezinskii-Kosterlitz-Thouless

c speed of light (299792458m/s)
CCD charge-coupled device
CL cavity lasing
CMOS complementary metal-oxide-semiconductor
CW continuous wave

DBR distributed Bragg re�ector

e-h electron-hole
EM electro-magnetic
eV electron volt (1.602176 ·10−19 J)

FWHM full width at half maximum

GMR giant magnetoresistance
GPE Gross-Pitaevskii equation

~ h/2π= 1.054571· 10−34 J s= 6.582118· 10−16 eV s
HBT Hanbury-Brown-Twiss
hh heavy-hole

I-O input-output

kB Boltzmann constant (1.38065·10−23JK−1)

LO longitudinal optical
LP lower polariton

me free electron mass (9.109383 · 10−31 kg)
meV milli-electron volt
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µm micrometer
mW milliwatt
MWH Mermin-Wagner-Hohenberg

NA numerical aperture
Nd:YAG yttrium aluminum garnet doped with neodymium
nm nanometer

OPO optical-parametric-oscillator

PL photoluminescence
ps picosecond

Q quality factor
QWE quantum well exciton

rhs right hand side
rms root mean square

SF sum-frequency
SFG sum-frequency generation
SHG second harmonic generation
SLM spatial light modulator

THz terahertz
Ti:Sa Titanium-Sapphire
TPA two-photon absorption
TPE two-photon excitation

UP upper polariton

W Watt
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