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1 Introduction

Strongly correlated electron systems are of great importance in the field of condensed mat-
ter physics as a wide range of physical phenomena, e.g. certain properties of magnetism and
conductivity, can only be understood in the framework of a quantum mechanical description
of many-body systems in which interactions between electrons are important. However, even
fairly simple models including interacting electrons can already be very challenging and exact
solutions can only be derived in rare cases. An effective way to deal with such models is to
reduce the complicated many-body problem to a simpler effective model with a focus on the
physical aspects under consideration.

Two very important examples of strongly correlated electron systems [1] are the Kondo (or
sd-exchange) model [2] and the single impurity Anderson model (STAM) [3]. These are the
most basic archetypes of models describing magnetic impurities in a host metal and most of the
works in the field of magnetic impurities have been based on these two models [1].

The Kondo model describes the interaction of a local magnetic moment and the conduction
electrons of a host metal via a spin-spin exchange interaction. This interaction leads to the
Kondo effect [1, 2, 4] which results in the anomalous behavior of the susceptibility, specific heat
and resistivity at small temperatures [5, 6].

The single impurity Anderson model is able to explain how such local moments arise in the
first place. It describes a single impurity level which is hybridized with a non-interacting bath
of electrons. The local magnetic moment arises from a repulsive Coulomb interaction which
favors a singly occupied impurity level.

The main challenge of such impurity models lies, on the one hand, within the largely sepa-
rated energy scales that reach from the bath electrons’ bandwidth D down to the exponentially
small Kondo temperature 7. On the other hand, it is posed by the break-down of standard per-
turbation theory below the Kondo energy scale Tx. The search for a complete theory down to
arbitrarily small temperatures is known as the Kondo problem [1] and was first solved by the
numerical renormalization group (NRG) [7-10].

The Continuous Unitary Transformation (CUT) (or flow equation) approach [11-14] is a
method of theoretical quantum mechanics which is able to systematically derive simpler effec-
tive models. The approach constructs a unitary transformation which continuously transforms a
given Hamiltonian closer to diagonality. In realistic many-body problems the exact construction
of a CUT is, in general, far too complex which necessitates the introduction of approximations,
e.g., by truncating certain contributions. Fortunately, this is not necessarily a disadvantage be-
cause the resulting effective model can be much simpler while still containing the key features
of the initial model. CUTs can be set up non-perturbatively and exhibit an intrinsic energy sep-
aration which are essential features when treating the Kondo problem.

The objective of this thesis is to apply the method of Continuous Unitary Transformations
to the single impurity Anderson and the Kondo model in order to derive effective models avoid-
ing infrared divergences which occur in perturbative treatments. CUTs have been applied suc-
cessfully to a wide range of problems in many-body theory in which most commonly gapped
systems are discussed. In this thesis, on the other hand, we face the problem of an impurity in



CHAPTER 1. INTRODUCTION

a gapless host material which gives rise to a system with largely separated energy scales and a
non-trivial low-temperature strong-coupling behavior. Besides the research interest in the CUT
approach itself, the method has also the potential to derive intuitively easily accessible effective
models.

There are a few earlier approaches in which CUTs have been applied to the Kondo problem.
A number of works have been published in the case of the Kondo model. Conventional “poor
man’s scaling” results [15] could be reproduced by CUT [16] in which, however, diverging dif-
ferential equations arise and thus the approach fails to yield effective models. Another direct
approach applying a CUT to the Kondo model [17] results in an effective model where the pa-
rameters still exhibit logarithmic infrared divergences very similar to those found by a standard
perturbative treatment [2]. There are CUT approaches which are able to derive effective models
for the Kondo model, but these approaches rely on a bosonized form of the Kondo model before
applying the CUT [18-20].

In the case of the Anderson model, on the other hand, only a few approaches [21-23] were
published while none of them reveal the exponential character of the Kondo temperature Tx.
Nevertheless, an important previous work is able to reconstruct the Schrieffer-Wolff transfor-
mation using CUTs [22].

We investigate three different approaches to the Anderson and Kondo model — which are
further outlined in Sec. 1.1 — and construct effective models using Continuous Unitary Trans-
formations.

1.1 Thesis Overview

A short overview and a very brief summary of each chapter is given in the following.

Chapter 2 provides a general overview of the history and the basic physics of the Anderson
and Kondo model as well as the representations used in this thesis. References to further litera-
ture on the subject are presented.

Chapter 3 introduces the basic ideas of conventional scaling theory which is able to reveal
the exponential character of the Kondo temperature 7x but fails to solve the Kondo problem
due to diverging couplings. The CUT approach exhibits parallels to the scaling approach from
Chap. 3 and it is non-perturbative which motivates the usage of this method in the context of
the Anderson and Kondo model.

Chap. 3 is supposed to give the reader not familiar with conventional scaling theory enough
information to understand the similarity between the conventional scaling and the Continuous
Unitary Transformation approach outlined in Chap. 4.

Chapter 4 introduces the concept of Continuous Unitary Transformations and provides a wide
range of literature for further information on the method. Additionally, in the end of Chap. 4
the similarity between the scaling approach from Chap. 3 and the CUT approach is explicitly
shown. Both methods exhibit an intrinsic energy separation as higher energetic processes are
treated before lower ones. This is a very useful feature when treating the Kondo problem.

Chapter 5 describes our first approach applying the Continuous Unitary Transformation to
the Anderson model. We use a chain representation of the Anderson Hamiltonian which is sim-
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ilar to the starting point used for a numerical renormalization group calculation [8, 10]. We
use a different parametrization, separating particle and hole states by constructing two chains
(one for each of them) using two separate Lanczos tridiagonalizations. The Continuous Unitary
Transformation is set up such that the ground state of the effective Hamiltonian becomes the
vacuum, i.e., the state without particles and holes. We try to keep the chain local by focus-
ing on nearest-neighbor interactions in most parts while we study the influence of interactions
over longer ranges later in this chapter. We study the influence of the interaction U on the single-
particle energies of the effective Hamiltonian and compare them to those calculated from simple
effective Hamiltonians already known to describe the respective energy regimes. Additionally,
we compare them to the flow of the lowest non-zero many-particle energy of states with total
charge Q = 1 (with respect to half-filling) and total spin § = 0 obtained by NRG calculations
(cf. Ref. [10]).

We find good agreement within the high and intermediate energy regimes for larger values of
U and nearest-neighbor interactions. For smaller values of U, we have to include interactions
over longer ranges in order to obtain comparatively good results.

The most interesting regime, the strong-coupling regime, is missed in this approach which
brought us to analyze further approaches described in Chaps. 6 and 7.

Chapter 6 again deals with the Anderson model alone. We use a parametrization in which
the non-interacting model is diagonal and thus the ground state is simply given by a Fermi
sea. The interaction term in this approach is completely non-local. Our aim is to transform the
Hamiltonian in a way that the Fermi sea becomes also the ground state of the interacting model.
The parametrization in Chap. 6 enables us to derive the flow equations analytically if operators
are truncated in orders of the interaction U.

We find converging differential equations yielding an effective model without any diver-
gences, even for energies arbitrarily close to the Fermi level.

We study the low-energy interaction vertex Uppppngn;: at the Fermi level which becomes at-
tractive for a certain parameter regime of the initial interaction U.

In order to find out if the effective model captures the low-temperature strong-coupling be-
havior, we calculate the impurity contribution to the magnetic susceptibility x4. In the first
part of Chap. 6 we derive 4 numerically and find an exponential increase with respect to the
Coulomb interaction U over some parameter regime which is in agreement with the correct be-
havior. We, however, miss a factor of two in the exponent. The second part of Chap. 6 examines
a low-order scaling expansion to the flow equation which enables us to derive an analytical
expression for the susceptibility )4. Again, we find an exponential increase in the interaction U
but this time the exponent is too large by a factor % ~1.62.

Chapter 7 deals with both the Anderson as well as the Kondo model. We investigate a third
parametrization, starting from the initial star-parametrization including the interaction U in the
diagonal part of the Hamiltonian Hp and truncating terms in orders of the hybridization V.

An approach using a similar parametrization, which is able to reconstruct the Schrieffer-
Wolff transformation, was already used in literature [22]. We revisit this procedure comparing
different generators. We use deepCUT ideas in order to find the induced spin-spin interaction
analytically in a way that simplifies the calculation significantly in contrast to the calculation
already used in literature.

Reproducing ’poor man’s scaling” results by diagonalizing the spin-spin interaction has al-
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ready been achieved for the Kondo model but has not been done for the Anderson model so
far. Thus, we try to diagonalize the induced spin-spin interaction of the Anderson model which
results in the same differential equations as already known for the Kondo model. These dif-
ferential equations are able to reproduce results obtained from conventional scaling but fail to
solve the Kondo problem due to diverging contributions on the Kondo energy scale.

The main goal of Chap. 7 is to modify this approach in a way that enables us, in contrast to
earlier approaches, to construct effective models without infrared divergences. We will follow
the increasing spin-spin interactions during the flow and determine a new reference state as
soon as the diagonal spin-flip contributions become large enough in order to account for a new
ground state.

Our adapted method prevents the divergences which occur in the previous approaches and
results in an effective model that reveals the exponentially small Kondo energy scale as the
binding energy of a singlet ground state in the diagonal part of the effective model.

Chapter 8 summarizes the applied methods and results and provides an outlook on open ques-
tions and possible further investigations.



2 Anderson Impurity Model

2.1 Historical Overview

In the mid 1930’s an unexpected low-temperature dependence of the resistivity in metals hosting
magnetic impurities was measured [4] and led to a quest for the understanding of the physical
mechanism behind this phenomenon [1] that lasted more than three decades. This observation
contradicted the expected low-temperature behavior of the resistivity of metals which had the
form

R=Ry+aT?+BT°. (2.1)

The finite resistivity R at T = 0 is induced by impurities while the T2-behavior is attributed
to electron-electron interactions [24, 25] which are described by Fermi-liquid theory. At higher
temperatures the resistivity is dominated by electron-phonon scattering [25] which leads to
“Bloch’s T2 law” [26].

When a non-magnetic metal, such as gold, contains magnetic impurities, such as a 3d tran-
sition metal (e.g. iron) or a 4 f rare earth element, the resistivity shows a minimum at very low
temperatures. When the temperature is lowered further, the resistivity increases first before it
reaches a constant value Ry.

It was not before the mid 60’s that significant advances in the understanding of this problem
were made by J. Kondo [2, 27]. He used the so-called sd-exchange model [28-30] which de-
scribes a local moment associated with an impurity that couples to the bath electrons of the host
metal via a spin-spin coupling J. The Hamiltonian is explicitly given in Eq. (2.3). He was able
to calculate the resistivity of this model in third-order perturbation theory and found

ke T
R=Ry+aT’—yln (%) (2.2)

where kg is the Boltzmann constant, D the bath electrons’ bandwidth and Ry, o as well as y
are constants with respect to the temperature 7 with y depending on the spin-spin interaction
J [2]. The T°-term stems from the phonon contribution while the In(7') term is an effect of
the impurity. A logarithmic increase of the resistivity fits the experimental data close to the
resistivity minimum. Nevertheless, the theory has a serious problem as it breaks down for very
small temperatures due to a diverging resistivity for 7 — 0.

Anderson introduced a model based on earlier experimental [31] and theoretical [5] works on
impurities. His model contains important insights on the nature of localized magnetic moments
in dilute magnetic alloys and has played a crucial role in the understanding of the theory of
magnetic impurities. Today it is called the Anderson impurity model [3] and is based on the
idea of a virtual bound state just below the Fermi level which is almost localized and associated
with the impurity. In order to explain the appearance of a local moment at low temperatures, he
introduced a short-range Coulomb interaction U between electrons localized on the impurity.
Once the local moment is present, the low-temperature physics can be understood in terms of
an effective Kondo model. This was explicitly shown by Schrieffer and Wolff [32] who were
able to map the Anderson model to an effective Kondo model.
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In the late 60’s Anderson and co-workers developed a method that was better suited to de-
scribe the physics of such models by reorganizing perturbation theory in a way that eliminates
higher energetic excitations first [33—-36]. With this method, called scaling, he was able to find
an exponentially small energy scale, known as the Kondo temperature 7k, where the exchange
coupling J becomes infinitely large [15]. This behavior could be associated with the appear-
ance of a new bound state, the so-called Kondo singlet. Such a singlet ground state was already
conjectured earlier [37—40].

The local moment of the impurity becomes completely screened by the formation of the
singlet between the impurity spin and the spin of a bath electron. This leads to anomalous
contributions to numerous material properties such as the resistivity, susceptibility and specific
heat [1, 5, 6]. This effect is now called the Kondo effect. For an overview, see for example Ref.
[41].

The search for a complete theory which describes the Kondo effect down to arbitrarily small
temperatures is one of the fundamental problems of many-body theory as it appears in a lot of
correlated electron systems, for example, in Heavy-Fermion physics [1, 42], the Mott-Hubbard
metal-insulator [43, 44] or in ultra-small quantum dots [45]. It became famous by the name
“Kondo problem*.

As perturbation theory breaks down at T ~ Tk, non-perturbative methods had to be devel-
oped. The one that finally solved the Kondo problem was found in the mid 70’s by Wilson
[46] and was rewarded with the Nobel prize in 1982. It combines renormalization group ideas
known from quantum field theory and the scaling approach mentioned earlier. The result was
the numerical renormalization group (NRG) [7] which described for the first time the com-
plete crossover from the high-energy physics of a free impurity orbital down to the low-energy
physics of a screened impurity spin.

Krishna, Wilkins and Wilson applied this method extensively to the symmetric [8] and asym-
metric Anderson model [9]. A recent review is given in Ref. [10]. In the 80’s exact analytical
results were obtained independently by Andrei [47] and Wiegmann [48] using the Bethe ansatz
which confirmed the NRG calculations.

A series of works were published by Hewson and co-workers from the early 90’s until recent
times. In these works he developed a perturbative approach which is able to describe the low-
energy physics of the Anderson impurity model, the so-called renormalized perturbation theory
[49-52].

There were extensive investigations of the Anderson impurity model throughout the last
decades and the model has been essential for the understanding of the theory of magnetic impu-
rities. Of course, many-body theory has moved on since these days but, nevertheless, the single
impurity Anderson as well as the Kondo model remain the most basic impurity models and are
thus the perfect candidates for applying new methods to the Kondo problem.

2.2 Kondo Model

The Kondo model was introduced by J. Kondo [2] in order to explain the resistivity minimum
found in metals hosting magnetic impurities. It describes the interaction of the bath electrons
of a host metal with a dispersion &_ and a localized spin 7 associated with the impurity. The
interaction is exchanged by a spin-spin coupling J between the impurity spin and the spins of
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the bath electrons 5,
Hx = Y geef oo +JT 5. (2.3)
k,o
The Hamiltonian is written down in second quantization, i.e., Cle (cxo) creates (annihilates) a
bath electron with momentum k and spin ¢ while 5}, is the bath electrons’ spin
1

= T -
5= Y Y sty 4
kK a.p

which interacts with the local impurity spin. The vector G contains the Pauli matrices G =
Yucxy: 01€y. In Bq. (2.3) the exchange coupling J is isotropic. A more general version is the
anisotropic Kondo model

u

_ + J T

Ho= Y tctotiot ¥ 0T Y oyl @5
k.o HExX,y,z kK o,

where o* describes the Pauli matrix with g = x,y,z and is associated with the bath electrons’
spin while T# is the spin operator of the impurity.
In order to gain a better understanding, we can rewrite the Hamiltonian by introducing the
well-known ladder operators
5 =1+t (2.6)

and splitting the coupling into a polarization part J, and a spin-flip contribution J, = J, =J |

J

_ t z f f + .

Hx = kZ & koo T N Z [’L’Z (CkTCk'T — ck¢ck,¢) +A (r Ci | Ckit +7 CkTCkw)] 2.7)
,O k .k’

with A = J./s,. A ferromagnetic coupling J; < 0 polarizes the electrons close to the impurity
and the electrons’ spin is then parallel to the impurity spin. The spin-flip terms are irrelevant in
this case as they only come into play if the electrons’ spin and the impurity spin are antiparallel.
Thus, in the ferromagnetic case the physics is dominated by J, and spin-flips do not play a
significant role.

This changes drastically as soon as an antiferromagnetic coupling J, > 0 is introduced. As
the spins of the electrons and the impurity are now antiparallel, spin-flip contributions become
a dominant part. Standard second-order perturbation theory results in integrals of the form

@ [P s
E' o J1 S o< In(6) (2.8)

where 0 is a constant which is given by the difference of the smallest contributing energy level
to the Fermi energy €r. The bath electrons form a quasi-continuum with energies arbitrarily
close to the Fermi level which results in a logarithmic divergence for € — €. This is a typical
infrared problem of quantum field theory. When calculating physical quantities, the only cut-off
for 8 is the temperature and consequently the results diverge when T tends to zero.

One can say that divergent spin-flip contributions are lying at the heart of the problem. These
spin-flip contributions lead to the Kondo singlet mentioned in Sec. 2.1. The binding energy of
this singlet is given by an exponentially small energy scale, the so-called Kondo temperature

T o< o 7 (2.9)
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where p describes the density of states of the bath electrons at the Fermi level and J is the
exchange coupling from Eq. (2.3).

The Kondo energy scale can already be seen in perturbation theory as the divergent contribu-
tions become of order O (1) at the Kondo temperature 7x. This marks the point were perturba-
tion theory breaks down.

2.3 Single Impurity Anderson Model (SIAM)

The single impurity Anderson model was introduced by Anderson in 1963 [3] in order to explain
the occurrence of localized moments in dilute magnetic alloys. The most straightforward idea
to introduce an impurity would be to assume an effective potential Vi, (r) which is associated
with the impurity. This would lead to a potential scattering model

_ T il
H=Y &%+ Y YaCkouo (2.10)
k,c kk'.o

with V., = (k|Vinp|k'). However, such a model is not sufficient to deliver a good description of
transition metals or rare earth impurities [1].

Earlier works [5, 31] led to the idea of a virtual bound state close below the Fermi level
€r which is associated with the impurity. A repulsive Coulomb interaction U favors the single
occupation of the impurity and leads to a local moment at smaller temperatures. The interaction
term renders the problem much more difficult and it cannot be understood in a single-particle
picture anymore.

The bath electrons can be localized on the impurity due to an overlap of the conduction
electron’s wave function and the impurity’s valence orbital. For 3d transition metals (such as
iron), these are the d-orbitals. This is the reason why the impurity state is often denoted by
|d) and operators creating (annihilating) a particle on the impurity by d* (d). Sometimes the
notation |f) and for the operators f7 (f) is used because the valence orbitals of rare earth
impurities are the f-orbitals.

Mathematically, we can construct such hybridization matrix elements as the overlap integral
between the bath electron’s wave function described by Wannier functions

¥, (r) e KT gy (2.11)

- e

— where ¢ (r) are the Bloch states of the conduction electrons — and the valence orbital of the
impurity @q (r). The overlap matrix element, or hybridization function, is then given by

Vi =Y e (¢g|H| WPy, ). (2.12)

An additional Coulomb interaction between electrons on the impurity is introduced in order
to obtain an energy regime where the impurity is singly occupied and contains a fixed local
moment.

The Coulomb interaction is given by

U= //% )95 (r |r r,|¢()¢d(r')d3rd3r’. (2.13)
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This interaction strength can be of the order of several eV, even after taking effects of delocal-
ization and screening into account [1, 53].

Now we are ready to write down a Hamiltonian based on the idea of a virtual bound state with
an energy level g, close below the Fermi level on which conduction electrons can be localized
as a result of the hybridization function V. The single impurity Anderson model can be written
in the form

H=Y gclotiot ¥ (Vidboro+ Welods ) + L eadsd +Udld[d d,.  (214)
k,o k,o 9

We use the simplest form of a non-degenerate d-orbital. In this case, there are only three differ-
ent configurations of the impurity level

% E=2e+U 1) empty: [0): E =0
2) singly occupied: |0): E = &
E=8d
3) doubly occupied: | 1): E =2g+U.

Figure 2.1: Configurations of the impurity level. For
&4 <0and U > —g, the singly occupied ~ From this simple picture we can understand

state has the lowest energy. Ff)r &a=-Y, why the Coulomb interaction will lead to a
the empty and doubly occupied state are local moment. If &g < 0 and U > —¢&g4, the
degenerate. . . . .
singly occupied state is the lowest-lying so
that at low temperatures the impurity level is occupied by one spin. This leads to the presence
of a fixed local moment on the impurity.

2.3.1 Particle-Hole Symmetry

The Hamiltonian (2.14) obviously conserves spin symmetry
o s (2.15)

as long as the coefficients are spin-independent. This is not necessarily the case as, for example,
spin-orbit interactions or an external magnetic field can lead to spin dependent coefficients and
thus to a spin-symmetry broken case.

Besides the spin symmetry, there is a certain set of parameters for which the model addition-
ally exhibits particle-hole symmetry in the sense that

cltc kg (2.16)

dl —— —d,.
One can verify that the Hamiltonian is invariant under the substitution (2.16) if

U
Eke=—"&s, V=W, &= —5 (2.17)
Under these conditions, the interacting Hamiltonian conserves particle-hole symmetry (2.16)
which leads to a symmetric density of states around the Fermi level €g. This gives the model
with the special parameters (2.17) the name symmetric Anderson model.



CHAPTER 2. ANDERSON IMPURITY MODEL

2.4 Schrieffer-Wolff Transformation

The Schrieffer-Wolff transformation [32] reveals a relation between the Anderson impurity and
the Kondo model. We will reproduce this transformation using Continuous Unitary Transfor-
mations and so we want to discuss the Schrieffer-Wolff transformation in more detail.

The idea is to eliminate charge fluctuations on the impurity induced by the hybridization Vi
and to construct an effective Hamiltonian by applying a unitary transformation

Hy — e?SHe S (2.18)

where $ is the generator of the transformation. In order to conserve the hermiticity of the Hamil-
tonian, the generator has to be anti-hermitian

A

§T=_-§ . (2.19)

It is convenient to expand the effective Hamiltonian in a power series of A as long as A is
sufficiently small

N /'Ln .
He =H + n;l — [S,H] (2.20)
where the recursive definition
[S,H], = [S$.H] (2.21)

S.H], = [S,[S.H]] n>1

n—1"7
was introduced. We write the initial Hamiltonian in the form
H=Hp+AV (2.22)
with
V=Y (vkdgcka -|—V|tc;rwd6> (2.23)
k,o

where Vi = AV). The Schrieffer-Wolff transformation eliminates the charge fluctuations in-
duced by the hybridization in linear order. If we focus on orders up to A2, the effective Hamil-
tonian has the form

2
Heg=Hp+AV+A[S,Hp] +A% [8,V] + % [S,[3,Hp]] + 0O (A7). (2.24)

In order to eliminate the linear order, the generator must fulfill

[S,Hp| = -V (2.25)
which is achieved by the choice of the generator
Vi Vi
§=Y — K __niscl d K (1-ngs)cl dy—hec. . 2.26
kyzogk_(gd_i_U)ndvcckc G+l§;8k_8d( ndso')ckcr c ¢ ( )

By using Eq. (2.25) in Eq. (2.24) we derive
2

Hor = Ho+ = [$.7] + O (1Y), @.27)

10



2.4. SCHRIEFFER-WOLFF TRANSFORMATION

The commutator between the generator from Eq. (2.26) and V from Eq. (2.23) yields

12 A A !
> [8,V] = Hex + Hair + Hy + Hen. (2.28)

All four emerging terms can be expressed in a compact way using the notation

o CkT o dT
Y= (Cu) va= <d¢> ' (229

The four terms are given by

a) a spin-spin exchange interaction

1 b TR
Hex = =3 ¥ e (W8, ) - (¥69,). (2.30)
kK
b) a direct spin-spin interaction
Lo 1 L O
Hgir = Z {Wkkfllflz‘lfk/-i-ifkk/( 5 d) ( 11 k’):| ) (2.31)
KK

¢) an additional term to the impurity contributions

Hy=-Y [ZWkk dyds+2hadid]d idT] : (2.32)
k (¢

d) a term that couples the empty impurity level to the doubly occupied impurity level
1

_ 7t
H,, = 5 é, (Jkk’ +Jk’k) (deickick/T + h-C-) . (2.33)

The coupling constants are given by

1 1 1 1 1
e = ViV + — — 2.34
kk PR |:8k—(8d+U) & —(a+U) é&—¢& Sk/—é'd:| ( )
1 1 1
Wi = =WV .
kk 2 k Tk |:8k—8d+8k/—8d:|

The spin-spin exchange interaction contains the same operator structure as the Kondo Hamilto-
nian with an effective exchange coupling Jy. Thus, we have mapped the Anderson Hamiltonian
to an effective Kondo model.

If we consider the spin-symmetric case & = —%, the diagonal elements of the spin-spin
exchange coupling become

1 1

U~ U
& — 75 Ek-i-j

Jik = V|® ! (2.35)

11



CHAPTER 2. ANDERSON IMPURITY MODEL

At the Fermi level we find

4|VkF|2

U (2.36)

JkaF = -

This is an antiferromagnetic coupling as an additional minus sign was introduced in Eq. (2.30).
The antiferromagnetic coupling of the spin-spin exchange interaction leads to the Kondo singlet
just as explained in Sec. 2.2. The Kondo temperature for the symmetric Anderson model is given
by

1 __U_
Tgoce 7 =g 8oV2, (2.37)

The bath electrons’ density of states p is evaluated at the Fermi level. The exponential behavior
in the Coulomb interaction U is a good benchmark to check if a method describes the Kondo
effect or not.

2.5 Energy Representation

It is very useful to express the SIAM in terms of new operators labeling energies instead of
momenta. Explicit results are given for the diagonal dispersion

Hp =Y gl oco (2.38)
k,o
the hybridization
= ¥ (Vedbao + iciods) (2.39)
k,o

and for a very general structured operator

= Y KUNOR N +he. (2.40)
{ki,0;}

where the operator OAlfll_'_'_'lfl’;’ is of the form
N
=0 :]eds:- (2.41)
i=1

The operator O denotes an arbitrary operator acting only on the impurity. Note that, for exam-
ple, the spin-spin interaction from Eq. (2.30) is governed by such an operator of this general
structure. The first step is to introduce a continuum approximation for the quasi-continuum of
the bath electrons. Because of the isotropic coefficients € and Vjy, it is convenient to introduce
spherical coordinates. Finally, a substitution k — € (k) is used. Carrying out these steps leads
to the continuum energy representation. The reader is referred to Ref. [8] or App. 9.6 for the
explicit execution of these steps.

12
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The continuum energy representation for the operators from Eqgs. (2.38) - (2.40) is given by

D
H — Y / de € clscen (2.42)
o /D
D s .
oy = Y[ dev/p(e) (Vie)diceo+V" (e)clods)
~ |
— Z/ de; -- / dey Jeo. 8‘3(1‘[\/ g,)O81 e +h.c.
{o:}

where p (€) is the density of states of the bath electrons. We see that the structure of the general
operator only depends on the number of bath operators.
The Anderson model in energy representation is of the form

D D
y / deeclocet ) / deVp(e) (Vg dices +V;c§c,dc,) (2.43)
(e} - (o) -

+ &) dbd,+Ud{d]d d,.
(o2

The continuum representation is not very well suited for a numerical treatment. Consequently,
we need to discretize this representation again. At first sight, it might seem a bit like running in
circles but note that during the transformation a lot of information is shifted to the density of
states p of the bath electrons. Additionally, the energy representation is better suited to develop
a discretization scheme that fits the challenges of the exponentially varying energy scales of the
Kondo problem.

2.6 Logarithmic Discretization

The important energy scales of the Kondo problem reach from energies of the order of the
bandwidth D down to exponentially small energies below the Kondo temperature 7. A linear
discretization is not a suitable approach for such a problem. A discretization scheme that is
better suited for the challenges of the Kondo problem is the logarithmic discretization sketched
in Fig. 2.2. For a detailed discussion, see Ref. [10].

The continuum of the bath electron states is discretized in exponentially decreasing intervals

I-i—
D

I

—n—1 A—n
=[arta)

= [-A7" AT (2.44)

where A > 1 is a discretization parameter and n € IN. The length of such an interval is given by

d N A

5” =(1-A"HA™" (2.45)
The higher energy scales are only covered with a low precision while small energy scales have
a very high resolution. This discretization scheme easily reaches down to exponentially small
energy scales. In the following, the two different discretization schemes used in this thesis are
discussed.

13



CHAPTER 2. ANDERSON IMPURITY MODEL

2.6.1 Discretization of a Flat Density Of States

The discretization of the model (2.43) is achieved by discretizing the bath electrons’ density of

o|mY

Figure 2.2: Logarithmic discretization of a contin-
uum of bath-electron states sketched
for a flat density of states p(g) =
PO (D — |®]) with pg = i and a band-
width 2D coupled to an impurity.

states [10]. We replace the continuum by one
energy level in each interval I-.

The energy levels are given as the energy av-
erage over the corresponding interval where
the averaging function is the bath electrons’
density of states p.

The real information about the density of
states is contained within the discretization
of the hybridization function.

If we take a constant hybridization function
into account, then each level should carry
the same weight as the undiscretized inter-
val. Hence, we collect all the weight in each
interval by integrating the bath electrons’

density of states. The formal representation is given by

1
ef=w/niep<e> de.

where we integrate over the intervals ;-

DA™
/n, /A n-t1’ /n

Then the discretized Hamiltonian is of the form

vl = [ ple)ae (2.46)
— DA 1
/ (2.47)
DA n

H= ZZE Cno,sC€ nGs"'ZZV (ncs G+ddcn6s>' (2.43)

s=+n,oc s=+n,oc

For a flat density of states

1
=po®(D— = 2.49
p(@)=po®(D—|ol), po=-p. (2.49)
we can easily calculate the parameters (2.46) as
= 1 1
S (1A AT, =S (1-AT) A (2.50)

As this procedure does not affect the d-operators at all, we can simply use the initial interaction

part of the undiscretized Hamiltonian

Z Zezczo,scnc,s + Z Zvygn (C}.zc,sdc +dg'cnc,s) (2.51)

s=+n,0 s=+n,0

+ &Y dsd,+Udld/dd,.
o

This discretization scheme is very well established and was extensively used throughout the last
decades. For further information, the reader is referred to Refs. [8, 10].

14



2.6. LOGARITHMIC DISCRETIZATION

2.6.2 Discretization of the Lorentzian Density Of States

We can also construct a different discretized approximation for the continuum Hamiltonian
(2.43). The approach in the last section focused on the flat density of states of the bath electrons.
The resulting Hamiltonian still contains a hybridization term and is thus not diagonal for U = 0.
Now we want to construct a discretized ap-
proximation so that the Hamiltonian is di-

agonal for U = 0. The influence of the hy-
bridization is then shifted to the dispersion
g and the d-operators. The density of states of
:g the Anderson model without interaction is
z given by the Lorentzian DOS [1]
=
a
1 A
0
=—— 2.52
VAN Pdd = 2 AT o2 (252)
A AT AT AT AT A°

where A = mpyV2. In contrast to the previ-
ous approach, the d-operators must be trans-
Figure 2.3: Logarithmic discretization of the Lor-  formed so that the Hamiltonian is diagonal.
entzian DOS. . . .
The transformation will be chosen in a
way that the discretized model reproduces the density of states (2.52). We denote the transfor-
mation of the impurity operator by

di=Y Y v¥clsa (2.53)

a==+ n

The ;- are chosen so that the density of states of the free Hamiltonian pgd can be reconstructed
from the discretized model. The dd-Green’s function of the discretized model

G, = (gsld, —d|gs) + (gs|d};

2.54

can be calculated by exploiting Eq. (2.53) and using the Fermi sea as the ground state. The den-
sity of states can then be calculated by using the Sokhatsky-Weierstrass theorem and focusing
on the imaginary part

1
pd (@) = — lim EImG:{d =Y Y Inls(o—¢). (2.55)

s—0t s=+ n

In the spirit of the last section, we choose for the on-site energies €. the energy average with
respect to the Lorentzian density of states over an interval I:-. From Eq. (2.55) we see that the
|7 |? must be the collected weight of the Lorentzian density of states of an interval I;-

1
o [ eobiense, [P [ b 250

For the Lorentzian density of states, these parameters can still be calculated analytically as

2 l —1 2 —n _l -1 2 —n—1
T = —tan (AA ) —tan (AA ) (2.57)
& _ o, L A Ae(E)
D +12 D o2, (A2 )
27 || A2+ (5)
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CHAPTER 2. ANDERSON IMPURITY MODEL

The major difference to the approach of the last section is the transformation of the d-operator
which leads to a completely non-local Hamiltonian. The discretized effective Hamiltonian is of

the form
Z ngcnc sCno, s T & Z Z nz nlc 51€ny0,52 (2.58)

s=+n,o V1 $2= i’ll 12,0
+ U Z '}’,i ys"4 nit,s1 nz%Sz Cnsl.s3Cnat,sa”
{ni,si=%}

This representation is well suited for an expansion in the interaction parameter U. Additionally,
the ground state of the non-interacting Hamiltonian is a Fermi sea. On the other hand, the
resulting Hamiltonian exhibits a strong non-locality as all combinations of the sites appear in
the interaction part.

We will use both approaches in this thesis and try to construct an effective Hamiltonian us-
ing Continuous Unitary Transformations. The representation (2.58) can be mapped to a local
problem using a Lanczos tridiagonalization which is described in Chap. 5.

2.7 Energy Regimes of the SIAM

The physics of the Anderson model strongly depends on the considered energy scales. In the
symmetric Anderson model (&g = ——) there are three different energy regimes with distinct
features which will be explained brleﬂy in the following. For an extensive discussion, see Ref.

[8].

A. Free-orbital (FO) regime (E > U,A)

On high energy scales (larger than the U-energy scale) the interaction does not play a
significant role. Excitations on these energy scales are not affected by the small inter-
action on the impurity. This leads to an impurity that behaves effectively as if it were
non-interacting. Hence, in this regime we look at free bath electrons and an effectively
free impurity orbital which gives rise to the name of this regime. The energy levels of
the Hamiltonian in this regime can be constructed from the non-interacting Hamiltonian
for U,V = 0. Of course, one can use the interaction term U and the hybridization V as
small perturbations which only provides satisfying results for large temperatures well
above the U- and A-energy scale. When the temperature is lowered, perturbation theory
breaks down. The effect of U lifts the quadruple degeneracy of the possible impurity con-
figurations while the hybridization shifts the energies by a factor proportional to V2. As
mentioned earlier, these effects are very small on the considered energy scales.

B. Local-moment (LM) regime (U > E > Tx)
As energies are reduced below the U-energy scale, it becomes important that the quadru-
ple degeneracy of the possible impurity configurations is lifted by the interaction. Well
below the U-energy scale, charge fluctuations are frozen out by the interaction U as the
empty or doubly occupied states lie with an energy % above the singly occupied state.
Consequently, in the local-moment regime the impurity is singly occupied and a localized
spin-carrying state is present at the impurity. As we already know from the Schrieffer-
Wolff transformation, this energy regime can be described by an effective Kondo Hamil-
tonian where the singly occupied impurity is coupled to the bath with an effective cou-

pling J = 42 (lose to the Fermi level. As the effective coupling J is small while the
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Coulomb interaction U is large compared to the considered energies, one can also use
the limit J = 0 and U — . Again, one can include the influence of the coupling J per-
turbatively as long as one stays well inside the local-moment regime. The perturbative
treatment is identical to the one for the Kondo model from which we know that it breaks
down on the Kondo energy scale.

C. Strong-coupling (SC) regime (E < Tx)

When energies are decreased even further below the exponentially small Kondo temper-
ature Tx, the spin-spin interaction J, induced by the hybridization V and interaction U,
leads to the formation of a singlet state of the local moment on the impurity and a bath
electron’s spin. Well below the Kondo energy scale 7Tk, where excitation energies are
smaller than the binding energy of the singlet, one can use the effective Kondo model
in the strong-coupling limit J — oo. In this limit the excitation energies are too small to
break up the singlet state. This additionally freezes out spin-fluctuations on the impurity
and results in the complete screening of the impurity.

There are two more energy regimes in the case of the asymmetric Anderson model (g4 # —%)
[9]. Because the asymmetric Anderson model is not discussed in this thesis, the additional
energy regimes are only mentioned very briefly.

D. Valence-fluctuation regime
The valence-fluctuation regime corresponds to the case where the doubly occupied state is
thermally depopulated while the remaining empty and singly occupied levels are degen-
erate and decoupled from the bath electrons. When energies are lowered, the free-orbital
regime crosses to the valence-fluctuation regime which itself crosses to the local-moment
regime when energies are decreased further. The basic physics well inside this regime can
be understood by using the limit A, &g =0 and U — oo.

E. Frozen-impurity regime
In the asymmetric case, there is also the stable frozen-impurity regime in which addition-
ally the doubly occupied state becomes thermally depopulated while only the empty im-
purity level remains. Well inside this regime, one can use an effective Hamiltonian which
is given by the free-electron Hamiltonian and an empty impurity state which corresponds
to the limit A,U = 0 and &g — oo.

2.8 Density Of States (DOS)

The above mentioned energy scales for the symmetric Anderson model are also manifest in
the density of states (DOS). For U = 0, the DOS can be calculated analytically. The interested
reader is referred to Ref. [1]. For the bath electrons, a flat density of states

1

po(@) =po®(D—|0f), po=55 (2.59)
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Density of states

| 5 | 5
-U2 us2
€ €

Figure 2.4: Density of states for the non-interacting (left) and the interacting symmetric Anderson model
(right). For U = 0, the density of states is a Lorentzian with width A = 7poV? where py = %.
For U > 0, the width of the Kondo peak around the Fermi level becomes exponentially small and
is given by the Kondo temperature 7x. Additionally, the so-called Hubbard satellites occur on the
U-energy scale.

with a bandwidth 2D is used. In this case, the hybridization leads to a Lorentzian density of

states
I A

p(w):EAZ-I—(oz

with the width A = pgV? where py = %. Introducing the interaction changes the appearance
of the DOS. The width of the Kondo peak around the Fermi level becomes exponentially small
and is given by the Kondo temperature 7. This many-body resonance is induced by magnetic
scattering at the Fermi level and can be understood in a Fermi liquid quasi-particle picture
[1] which is appropriate in the strong-coupling regime below the exponentially small Kondo
temperature Tx. The interactions of the quasi-particles can be absorbed into renormalizations of
the resonance width of the non-interacting model by replacing A from Eq. (2.60) by A ~ Tk. The
height of the Kondo peak of the interacting Anderson model at the Fermi level remains constant,
although the peak’s width is reduced. There is additionally a new feature, the so-called Hubbard
satellites which arise symmetrically around the Kondo peak. For the atomic limit A = 0, it can
be shown that the Hubbard satellites occur at the positions € = :I:% [1].

(2.60)
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3 Scaling Theory

In the following sections we refer to scaling theory as the construction of a series of effective
Hamiltonians, each of the same form but with a reduced bandwidth and renormalized param-
eters. Anderson termed this method in the context of the Kondo model a ”poor man’s scaling
approach” [15]. This method is able to reveal the exponential character of the Kondo tempera-
ture but fails to solve the Kondo problem due to diverging couplings.

This chapter is supposed to give the reader that is not familiar with conventional scaling
enough information in order to understand the similarity between scaling and the CUT approach
explained in Chap. 4.

The forerunners of this scaling approach came from a series of papers in which Anderson
et. al. showed the equivalence between the Kondo model and a one-dimensional statistical prob-
lem [33-36] for which they derived scaling laws. Anderson reproduced these results with the
new version of scaling [15]. Further information on the history of scaling and renormalization
can be found in the literature given in Sec. 3.3.

The idea of scaling theory is to construct an effective Hamiltonian with an effective band-
width Degr < D which contains the same low-energy physics as the initial model. In order to
construct this effective model, all couplings to energies larger than the effective bandwidth are
eliminated first. In the ”poor man’s version” the couplings to higher energies are eliminated
in second-order perturbation theory. For further information on the scaling approach, see Refs.
[16, 54]. The first example of a very similar procedure was used in the context of the construc-
tion of an effective potential in superconductivity theory [55]. This work inspired Anderson
to develop the “poor man’s scaling” for the Kondo model [15, 35, 36]. The method was also
applied to the Anderson model [56, 57]. We will revisit the examples discussed in this chapter
later in the context of Continuous Unitary Transformations in Sec. 4.6.

In the scaling approach the Hilbert space is separated in a subspace of low and a subspace of
high energies

D

Hplp) = Ep|p) where |p) € subspace of low energies |Ep| < N (3.1)
D

Hplq) = Eqlg) where|q) € subspace of high energies |Eq| > "

with s > 1 and where Hp describes the diagonal part of the Hamiltonian. We introduce projectors
P and Q = 1 — P, where P projects on the low-energy subspace Hp while Q projects on the high-
energy subspace Hq. By using these projectors the Hamiltonian can be written in the form

H=PHP+QHQ+PHQ+ QHP. (3.2)
The most crude approximation would be to neglect all parts but that projected to small energies
H = PHP. (3.3)

In most cases, the successive application of H leads to hopping processes from small to high
energies and back. Those terms already occur in second order and therefore the approximation
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CHAPTER 3. SCALING THEORY

(3.3) would neglect physically important contributions to the low-energy physics even in second
order.

A much better approximation is to eliminate the couplings between low- and high-energy
states in second-order perturbation theory first, before projecting on the low-energy subspace.
A single-step transformation was already introduced for the Schrieffer-Wolff transformation in
Sec. 2.4. We can again use the expansion (2.20) for the Hamiltonian

Heygy = e*SHe ™S, (3.4)
The Hamiltonian is split into a diagonal part and a non-diagonal part
H = Hp + AHy (3.5)
while the generator is determined by
[S,Hp| = —Hy (3.6)

where Hy contains all parts of Hy that couple the high- and the low-energy part of the Hamil-
tonian. This choice leads to the effective Hamiltonian

Heg =Hp+A (HV —I:Iv) +O (12) . (3.7

The Hamiltonian H.¢ (before projecting on the low-energy subspace) does not couple the low-
and high-energy subspaces in linear order anymore and thus hopping processes from small to
high energies and back do not occur in second order.

QHQ QHP QHQ o))

AS

PHQ PHP ov?) PHP

Figure 3.1: Sketch of the separation of the high and small energy subspaces in the scaling approach. The part
Hy = PHQ+ QHP is eliminated by a second-order one-step transformation before neglecting the
parts QHQ, PHQ and QHP.

Projecting the effective Hamiltonian (3.7) on small energies

2
PHP = P (Hp+ AHy) P+ %P [S,Hv]P+0O (A7) (3.8)

yields a much better approximation than the one from Eq. (3.3). If the effective Hamiltonian is
of the same form as the initial Hamiltonian, we can take the limit s — 1 and derive the change
of the couplings induced by an infinitesimally small step §D = (1 — %) D. From this we can
derive a scaling equation which describes the flow of the parameters to smaller energies.

In the next sections some examples for the scaling approach are discussed. We will revisit
these examples in the context of Continuous Unitary Transformations in Sec. 4.6.
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3.1. POTENTIAL SCATTERING MODEL

3.1 Potential Scattering Model

In order to introduce the scaling approach, one might start with an elementary but very instruc-
tive example [16] which also provides insights on the interpretation of the results obtained from
the scaling of the Kondo model.

We turn to a simple bilinear, non-interacting Hamiltonian in the form

H= Zskcltck +g Z c;;ck, 3.9
k kK

which is also known as the potential scattering model. We further assume a constant density of

states for g =0

0  otherwise (3.10)

L ifo<e<D
p = D .
Before solving the scaling equation we want to look at some characteristics we already know of
the potential scattering model.

Analytical results

The exact solution (cf. Ref. [16]) can be found by using a N x N representation of the Hamilto-
nian (3.9) and applying it to a not yet determined eigenvector v. Determining the components
v; and the eigenvalues E; from the resulting equations has been achieved in Ref. [16]. For a
repulsive potential g > 0, the exact one-particle energies Ex = € + A& are given by

8

Agg = . 3.11
KT T peln(0/a) G
For an attractive potential g < 0, a bound state with an energy
1
E = —De rdl (3.12)

forms close below the band edge [16]. The binding energy of this bound state is very small for
Ipgl < 1.

Perturbation theory
If we want to tackle the potential scattering model with standard second-order perturbation
theory, we have to calculate

K|Hin|q) |
Ey = & + (K|HinK) + ) M. (3.13)
ok &k &
Applying Hipe = g Y k i/ c;f(ck, in Eq. (3.13) yields
D —¢g
Ex=e+8+8 Y =& +g—pg’hn <—“> (3.14)
a7k &~ &g &k

where the sum was calculated in the continuum limit. For energies much smaller than the band-
width € < D, this is simply the second-order expansion of the exact result (3.11)

Agg =g —pg*ln <2>. (3.15)
&k
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As we are in a quasi-continuum, we can always find an energy scale for which perturbation
theory breaks down, even for an arbitrarily small coupling g. A negative energy shift is predicted
which disagrees completely with the exact result. Thus, one is unable to describe the low-energy
physics in second-order perturbation theory, even for very small couplings g where one would
naively expect reliable results.

This is interesting because problems of the same kind occur in the Kondo model where stan-
dard perturbation theory also breaks down on the exponentially small Kondo energy scale Tx.
This requires the development of new ways for using perturbation theory which better meet the
challenges of such problems.

Scaling theory
We want to eliminate the terms that couple the low- and high-energy subspaces. We will focus
on a continuum limit of the model

D D
H:/O ECECE d8+pg//0 clcg, dede’. (3.16)

The generator
D
S:p// Seer ¢l ¢,y dede’ (3.17)
0
with

g . . / Q
Sp = { £ ifeithergore’ > £

0 otherwise (3.18)

fulfills Eq. (3.6) where Hp is the Hamiltonian for g = 0 and Hy the residual part. By calculating
the commutator in Eq. (3.8), already projecting to low energies € Hp via the projector P from
Eq. (3.2) and focusing on small energies, we can determine the effective Hamiltonian (3.8)

D/s D 1 D/s
PHeffP:/O e cle, d8+[pg—p2g2[)/ Edz}//o ¢, dede’. (3.19)

The effective Hamiltonian is of the same form as the initial Hamiltonian but with a reduced
bandwidth % and an effective renormalized coupling
2.2

pger = pg — 55D (3.20)

where the limit s — 1 was used. 6D describes the reduction of the bandwidth Degf = D — 0D or

oD = <1—1> D. (3.21)

A

We can now repeat this procedure, each time reducing the bandwidth by D and rescaling the
parameters of the Hamiltonian. From Eq. (3.20) we can deduce a scaling equation for s — 1
which describes the change of the renormalized coupling during the flow to smaller effective
bandwidths via

dg  pg’

=—. 22
db D (3-22)
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3.2. SCALING FOR THE KONDO MODEL

Such scaling equations are often written in the form

dg 2
— . 2
dmp P8 (3.23)

This differential equation can be solved by separation of variables
8
D
I+pgln (Deff)

8eff = (3.24)

For a repulsive coupling g > 0, the effective coupling becomes weaker when decreasing the
effective bandwidth. The coupling g¢r is the energy shift A€ on the energy scale Degr. Surpris-
ingly enough, this result agrees perfectly with the exact result (3.11), although we only used
second-order perturbation theory. This is a property of this special model and certainly not true
in general. Nevertheless, the scaling approach rearranges perturbation theory in a way that en-
ables us to derive correct results up to a certain order, even when standard perturbation theory
breaks down.

If we take a closer look at the result (3.24), we see that the scaling equation does not always
lead to a satisfying effective Hamiltonian. If we consider an attractive coupling constant g < 0,
the effective coupling will increase and eventually diverge on an energy scale

1
Degr = De  Ipsl (3.25)

which we recognize from Eq. (3.12). Thus, we can link the break-down of the scaling approach
to the appearance of a bound state. The break-down occurs on the energy scale which cor-
responds to the binding energy of the bound state. This is a very interesting result and gives
significant insights into the physics of the Kondo model as will be described in the following
section.

3.2 Scaling for the Kondo Model

The scaling approach for the Kondo model is discussed in Refs. [15, 35, 36] and summarized
in Refs. [1, 16]. We start from the Kondo Hamiltonian (2.5) in integral representation

D D
H :Z/_DX:CiGCXG rdx+pp ), Y //_DJ”G;‘BT” : CIlaszﬁ tdxpdyy;  (3.26)
c Hexyzo, B

where we use a flat density of states py = % for the bath electrons. The colons denote normal-
ordering with respect to the Fermi sea (cf. Sec. 4.5). The generator of the transformation is
chosen to be of the form

otherwise

D
S=p ¥ Zﬁ I Sttt e, dude (3.27)
V2 a,
where
JH p e D
s = { woy, ifeither [xi| or x| > % . (3.28)
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Calculating the commutator between S and Hy
1 4
5P S, Hy| P

- Y ¥ / dxydx [poz\el,u[/ f()dz]f’ﬂ] RS

HeExyza,p
with the occupation number
n(z) = (FS|c}yc.s|FS) (3.29)

yields the effective Hamiltonian (3.7) projected to small energies. The effective Hamiltonian is
of the same form as the initial Hamiltonian but with a renormalized coupling

7 n(D) —n(=D)\ i
o= J”—p0§|e,-,-“|< 5 >JJ15D. (3.30)

The x-dependence of the expression in the integral over z is neglected which is justified when
focusing on the renormalization at very small energies around the Fermi level. Additionally, the
couplings J' would exhibit an energy dependence at higher energies when applying the scaling
step. Focusing only on the couplings at the Fermi level is an essential approximation of the
scaling approach as analytical solutions could not be derived otherwise. This approximation is
systematically justified in Sec. 6.8.2.

For zero temperature the occupation number is given by the Heaviside function n(g) =
O (—¢) and thus the scaling equations for the Kondo model become

dJ* 2p0 v 1z

“r 31
D - (3.31)
dJs’ . 2po X 72z

dD D I

AT 2P0y

dD D

In order to gain some insights into the behavior of these scaling equations, we consider the case
J=r=J (3.32)

for which the scaling equations simplify to

dJ; dJ, )
=—-2p0J1J., ——==—-2poJ]. 3.33
dinD A R T poJi (3.33)
The hyperbolic scaling trajectory
Ji — JZ2 = const. (3.34)

is constant during the flow to a smaller effective bandwidth Dcg. The flow trajectories are
sketched in Fig. 3.2.
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3.2. SCALING FOR THE KONDO MODEL

J

z

Figure 3.2: Scaling trajectories J> —J2 = ¢ of the Kondo model with J* = J” = J | . A fixed point of the equa-
tion (3.33) is J; = 0. As we see from Eq. (3.33), J; is always increasing for decreasing bandwidths.
If initially J, = |J;|, we find the special trajectory J, = |J,|. This trajectory separates the regions
where J| < |J;| and J, > |/;|. In the first region in which J, < |J;|, the coupling J, scales to
zero for a ferromagnetic coupling J, < 0 and to ever stronger couplings for an antiferromagnetic
coupling J, > 0. The region where J, > |J;| leads to a decreasing J, for J, < 0 but flows towards
a constant value J; > 0 for J, — 0™ and increases for J. > 0 as the bandwidth decreases.

Finally, we want to study an isotropic coupling J, = J; = J. The scaling equation for the cou-
pling is
e

— = —2pJ% 3.35
dIn Der Polefr (539
Integrating this differential equation by separation of variables leads to
J
Jett (Defr) = : (3.36)
et Det) = T in(Cs)

For a ferromagnetic coupling J < 0, the scaling equation converges and scales to zero for Degr —
0. An antiferromagnetic coupling J > 0, on the other hand, leads to a divergence on the Kondo
energy scale

1
Tk = De” 207 . (3.37)

We already encountered such a behavior in Eq. (3.24). We know from the potential scattering
model that a bound state induces such a behavior so that we can suppose that a very similar
mechanism leads to the divergence in the case of the Kondo model, i.e., in the case of an
antiferromagnetic coupling we find a bound state with a binding energy that is given by the
Kondo temperature Tx. We also know that the coupling is growing stronger during the flow to
smaller energy scales, i.e., spin-flip contributions will dominate at small energies which results
in the occurrence of a singlet ground state [58], the so-called Kondo singlet.

In conclusion, the ”poor man’s scaling” fails to solve the Kondo problem as it only leads to
satisfying solutions as long as no bound state is present. In the case of the potential scattering
model, we find the exact low-lying single-particle energies for g > 0 while the scaling approach
fails for an attractive coupling g < 0. In the Kondo model the scaling equations converge for
a ferromagnetic coupling J < 0 but lead to a divergent coupling Je¢r for an antiferromagnetic
coupling J > 0. Nevertheless, the method is able to reveal the exponential character of the
Kondo temperature Tx.

A method that is able to solve the Kondo problem is the numerical renormalization group
(NRG) where, in contrast to earlier methods, the renormalization step is performed numerically.
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3.3 Numerical Renormalization Group (NRG)

The numerical renormalization group (NRG) is a very powerful tool that is able to deal with the
challenges of the Kondo problem. We will compare some results obtained by CUT with NRG
calculations in Chap. 5. For this reason, the main ideas of the NRG approach are briefly outlined
in the following. For a detailed discussion of the method, the reader is referred to the literature
given in this section, especially to the recent review [10].

Renormalization group (RG) ideas were first developed in high energy physics in order to
deal with UV-divergences occurring in perturbative treatments. For a historical overview, see
for example Ref. [59]. The first applications in statistical physics were in the context of phase
transitions and critical exponents and were first introduced by Wilson [60, 61]. For an overview,
see for example Refs. [7, 62—65]. A RG transformation (RGT) R is of the form

Hy+1 = R (Hy) (3.38)

where R transforms the Hamiltonian Hy, which describes the physics on a characteristic energy
scale, onto another Hamiltonian Hy . describing the physics on another (usually smaller) en-
ergy scale. Applying R successively leads to a RG flow which starts at high energies while it
approaches ever smaller energies in the subsequent flow.

In the ”poor man’s version” of the earlier sections the RGT transforms the initial Hamiltonian
into a Hamiltonian of the same form with the sole difference that the high-energy excitations of
the bath electrons are absorbed in the renormalizations of the parameters.

The difference of Wilson’s NRG approach [8—10, 46] to most other RG approaches is that
the RG step is performed numerically. The general strategy in NRG is to use the logarithmic
discretization from Sec. 2.6.1 and to transform the Hamiltonian to a semi-infinite chain by a
Lanczos tridiagonalization which is discussed in Sec. 5.1. The RG transformation for the chain
can be defined as the extension of the chain by one further site (and rescaling all energies by
a factor v/A) which corresponds to the inclusion of a smaller energy scale (and rescaling the
current energy scale to be of the order O (1)). Starting from a finite chain length, which can be
diagonalized exactly, the Hilbert space increases by a constant factor in each RG step. In order
for the NRG approach to remain numerically tractable, one has to truncate a certain fraction
of the highest-lying eigenstates which are obtained after each diagonalization. This truncation
relies on the separation of energy scales and the exponentially decreasing hopping elements ¢,
(5.11) of the chain representation.

A very important subject connected to the RG flow is the notion of fixed points

H* =R(H"). (3.39)

The fixed points of the Anderson model are related to the energy regimes discussed in Sec.
2.7. Note that only R? (applying R twice) has fixed points as the results differ for even and
odd chain lengths N. As a result, applying R once — which extends the chain length by one —
does not fulfill Eq. (3.39). During the RG flow the Hamiltonian comes close to different fixed
point Hamiltonians H* which can be described by fairly simple effective Hamiltonians. For the
symmetric Anderson model, these fixed points are the unstable free-orbital and local-moment
fixed points as well as the stable strong-coupling fixed point to which the flow finally converges.
The physics of these fixed points is described in Sec. 2.7 and the simple effective Hamiltonians
describing them are further explained in Sec. 5.4.4.
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4 Continuous Unitary Transformations

4.1 Flow Equation

The method of Continuous Unitary Transformations provides a theoretical tool that transforms a
Hamiltonian closer (or even completely) to diagonal form. Continuous Unitary Transformations
were first introduced by Wilson and Gtazek [66, 67] under the title similarity renormalization
scheme in the context of high energy physics and independently by Wegner [11] under the name
flow equation method in the context of condensed matter theory. Around the same time a similar
approach was investigated by mathematicians under the name Double Bracket Flow [68] and
Isospectral Flow [69, 70]. We will focus on the branch laid by Wegner. For more information
about the similarity renormalization scheme, see Refs. [71, 72].

For easy problems, as for example Hamiltonians in the form of small finite matrices or non-
interacting fermionic systems, the method of Continuous Unitary Transformations can be car-
ried out without any approximations providing exact results. In terms of numerical accuracy
and calculation effort, however, it is less efficient than most conventional methods such as the
various numerical procedures for exact diagonalization. But with increasing complexity most
methods, especially exact ones, start to become impractical while Continuous Unitary Trans-
formations can still be a very powerful tool for constructing effective models describing the
physical aspects under consideration.

The CUT approach was used for a wide range of problems in many-body theory including
electron-phonon couplings [73, 74], dissipative quantum systems and the spin-boson model
[75-78], the Hubbard model [79-82], the Anderson impurity model [21-23], spin-systems [13,
83—87], one-dimensional spinless fermions [88], the sine-Gordon model [89, 90], interacting
bosonic systems [91], heavy fermions [92], Fermi and Luttinger liquids [93], and the Kondo
model [18-20, 94, 95]. A very broad overview on further applications of CUT is given in Ref.
[96]. The quartic oscillator [97] can be used as a pedagogical introduction to CUT. Further
details on the method are outlined in Ref. [16].

The aim of CUT is to construct a Hamiltonian closer to diagonality which is connected to the
initial Hamiltonian by a unitary transformation. In principle, a self-adjoint operator can always
be brought to diagonality by a unitary transformation. Finding this transformation, however, is
a major problem of theoretical quantum mechanics and, in general, a challenging task. The idea
of CUT is to introduce a unitary transformation that changes continuously as a function of a
flow parameter /. One might picture this procedure thinking of a piecewise transformation of a
finite set of unitary transformations

Hy 11 = UyH\U,, 4.1)

where the transformation Uy is constructed from Hy so that limy_;.. Hy is closer to diagonality.
The unitary transformation that connects the initial Hamiltonian Hy with the Hamiltonian Hy is
given by

UMl — Uy Uy ..U Up. (4.2)
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CHAPTER 4. CONTINUOUS UNITARY TRANSFORMATIONS

Approaching problems with a finite set of unitary transformations is used in the projector-based
renormalization method (PRM) [98, 99]. Instead of performing a finite set of single unitary
transformations, Wegner introduced a continuous parameter / which describes the change of
the Hamiltonian induced by a sequence of infinitesimal unitary transformations. This procedure
can still be expressed as one single unitary transformation connecting the initial Hamiltonian at
! = 0 and the Hamiltonian at the current point of the flow

H()=U(DHO)U (I). (4.3)

From Eq. (4.3) one finds U (0) = 1. Taking the derivative of Eq. (4.3) leads to

9H (I)=[n (1), H(I)] (4.4)
with the anti-hermitian generator
aU (1
n(l) = a,( Jut ). (4.5)

The anti-hermiticity can be shown using the unitarity of U by calculating the derivative of
UTU = 1. Equation (4.4) is called flow equation and is the heart of the Continuous Unitary
Transformation approach. The transformation U (/) from Eq. (4.3) can be constructed from the
flow of the generator. Multiplying Eq. (4.5) with U from the right yields

U (1)

— =nu). (4.6)

The formal solution of the resulting equation (4.6) is given by
U (1) = Lehn)a @.7)

where L is an [-ordering super-operator which orders products of operators depending on / from
left to right in descending order in /. The /-ordering is important because, in general,

(m(@),n(l')] #0. (4.8)
Constructing U from Eq. (4.7) for further calculations of an observable 0
o)=U0)out (1 (4.9)
is not efficient. Instead, we can solve the flow equation for observables
%0 (D) =[n(D),00)] (4.10)

with the initial condition O (0) = O. The flow equation for observables (4.10) can be deduced by
taking the derivative of Eq. (4.9) and by identifying the generator (4.5) in the resulting expres-
sion. In order to set up the flow equation, we need to know how to choose the generator (4.5).
There are a number of different possibilities and in the following sections the most common
ones are discussed.

28



4.2. GENERATORS

4.2 Generators

4.2.1 Wegner’s Generator

The first suggestion for the choice of a generator was given by Wegner [11]. He separated the
Hamiltonian into a diagonal part Hy and a non-diagonal part H;. The generator is then chosen
as

nw (1) = [Ha (1), He (1) (.11)

Note that we do not need more information than we already have at the current state of the flow.
If we write the Hamiltonian in matrix representation with the matrix elements

hym = (n|H|m), &, = (n|H|n), (4.12)
then the matrix elements of Wegner’s generator are of the form

Nw,nm = (Sn - em) hnm- (4-13)
The flow equation (4.4) becomes

Nl = — (&0 — &) hum+ Y., (€n+ &m — 265) hnshon. (4.14)

s#En,m

From this simple calculation we can draw very insightful conclusions. If we calculate the deriva-
tive of the square sum of the non-diagonal elements, we find

Y Nl ==2Y (€0 — &m) ham|* < 0. (4.15)
n,m n,m
n#m n#m

The norm of the off-diagonal elements is monotonically decreasing and finally even vanishing
for the limit / — oo as long as no degeneracies' occur. Terms that couple degenerate states are
not eliminated by Wegner’s generator while all terms that couple non-degenerate states will
eventually vanish for / — oo. Thus, Wegner’s generator fulfills all the required properties. We
can already identify the energy separation of the CUT approach as matrix elements with large
energy differences converge faster than those with small energy differences.

Since a matrix representation is, in general, not very well suited to describe realistic problems
in many-body theory because of the exponentially large size of the considered Hilbert space,
a representation in second quantization is often used. One can then still construct Wegner’s
generator from Eq. (4.11).

4.2.2 Mielke’s Generator

Mielke used another generator [12] that has the special advantage that matrices which are ini-
tially band diagonal, i.e.,
haum=0 VY |[n—m| >N, (4.16)

maintain this property during the flow. The generator he proposed is based on a sign function
and its matrix elements are given by

1M, nm = SgN (1 — M) hyyy. (4.17)

By degeneracies we refer to &, (1) = &, (I).
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The flow equation induced by this choice of the generator is of the form

Ohum = —sgn(n—m) (&, — &n) hum+ Y, [sgn(n—s) — sgn (s —m)] hushgn. (4.18)

sF#n,m
By setting m = n+ N, + r with r > 0 and using Eq. (4.16) for [ = 0 we find
althH_Nc_Hf =0 Vr> O7 (419)

i.e., the band structure (4.16) is indeed conserved during the whole flow. From the flow equation
(4.18) we can construct

r r N

AY en=-2Y Y | <0 (4.20)
n=0 n=0s=r+1

where all elements for s < r+ 1 cancel because of the sign function and the hermiticity of H.

If the Hamiltonian is bounded from below, which is always true for finite matrices, Eq. (4.20)

implies that the differential equation (DEQ) must converge. In this case, the non-diagonal matrix

elements A, must tend to zero for [ — oo for all n and m as r is arbitrary.

In contrast to the flow induced by Wegner’s generator, the derivative of the square sum over
the non-diagonal elements is not necessarily negative, i.e., the norm of the off-diagonal ele-
ments 4, is not a monotonically decreasing function of / and thus the Hamiltonian can be less
diagonal at finite / than it is for / = 0. In the limit / — oo, however, the Hamiltonian will become
diagonal as the non-diagonal elements tend to zero.

We can analyze the asymptotic behavior of the flow. If the non-diagonal elements vanish for
large [, the quadratic term in Eq. (4.18) becomes negligible at some point during the flow. For
large values of /, we can then write

Othym = —sgn(n—m) (€, — &) hpm. 4.21)
We already know that the A, must tend to zero and thus we conclude

for large /. As we did not require this ordering of the diagonal elements for [ = 0, Mielke’s
generator must order the diagonal elements in ascending order during the flow so thatn < m =
8n < gm.

4.2.3 Knetter and Uhrig’s Generator
Particle Conserving Generator

Knetter and Uhrig suggested a generator suited for Hamiltonians in second quantization [13,
14]. Their choice leads to a particle conserving effective Hamiltonian for / — co. This generator
can be considered a generalization of Mielke’s generator for Hamiltonians in second quantiza-
tion and is thus often referred to as MKU- (Mielke-Knetter-Uhrig) or pc- (particle-conserving)
generator. A detailed discussion of the MKU- and further generators described in this section
can be found in Refs. [81, 100]. A Hamiltonian in second quantization can always be written in
the form _

H=Y H/ (4.23)

ij
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where Hl:i contains all contributions that annihilate i and create j particles. Then the pc-generator
is defined as

Npe = ngn (j—1) Hl-j (4.24)
,J
or in the eigenbasis {|n)} of the particle-counting operator Q with Q|n) = g,|n)

Moe,ij = sgn (qi —q;) hij (4.25)

where h;; = (i|H|j) is the coefficient of the operator that changes from the state | ) to the state
|i). Without loss of generality, the eigenstates shall be ordered as follows

i>j = qi=>q; (4.26)

One can again construct the flow equation (4.4) which is of a very similar formal structure as
for the generators before

8lhij = —sgn (C]i —q]') (l’li,‘ h“ ]’ll] + Z sgn qs) — Sgn( q]')] hishsj- 4.27)
SHELL ]

In order to analyze properties of the pc-generator, we investigate the derivative of the first r+ 1
diagonal elements

8,211”_22 Z sgn (q; — qs) |his|? (4.28)

i=0s=r+1
where again all terms with s < r+ 1 cancel because of the anti-hermiticity of the generator.
From the ordering (4.26) we find

-
oY hi <0. (4.29)
i=0
From Eq. (4.29) we can deduce that the DEQ must converge if the Hamiltonian is bounded from
below and thus )
Ili_)ngosgn (gi—qj) |hij| =0 Vi, (4.30)

The limit holds true for all i and j because r is arbitrary. Equation (4.30) implies that the effective
model will contain no terms that switch from one subspace with a fixed number of particles to
another one. Only terms that conserve the number of particles survive the flow, i.e.,

[Q, Hegt] = 0. (4.31)

This is a major simplification as one can treat all subspaces with a fixed number of particles
separately.

We can again analyze the asymptotic behavior and look at i and j with g; # ¢;. Then the
elements A;; tend to zero for large / and the quadratic term in Eq. (4.27) can be neglected which
yields

8lh,~j = —Sgn ((]i — q]') (/’l,’i — hjj) h,’j. (432)
From Eq. (4.30) we know that these elements have to vanish for / — c and thus
sgn (qi — q]‘) (hi,' — hjj) >0 (4.33)

for large /. As we do not rely on the ordering (4.26) (we just introduced it to verify that the gen-
erator converges), we know from Eq. (4.33) that the pc-generator orders the diagonal elements
in ascending order of the particle number of the eigenstates [12, 88, 100].
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Sign-Generator

If the considered Hamiltonian is already particle conserving, the pc-generator is obviously not
very well suited for the problem. One can use the sign-generator in such a case.
We split the Hamiltonian in a part Hy (which we know how to treat) and the residual part H.
We switch to the eigenbasis of Hy
Hg|n) = &,|n). (4.34)
Without loss of generality, the basis states shall be ordered such that
m>n = &,>&,. (4.35)

Then the matrix elements of the sign-generator have the form

Nsign,nm = &N (& — &n) Aum (4.36)

where h,,, are the coefficients of the operators connecting the states |n) and |m). The flow
equation is of the well-known structure

Ohum = — &1 — Em|hum + Y, [sgn (&0 — &) — sgn (& — &n)] hnshm (4.37)

s#En,m

and again we find

9, Z =2 Z Z sgn (€, — &) [ s> < 0 (4.38)

n=0s=r+1
where the inequality holds true because of the ordering (4.35). If the Hamiltonian is bounded
from below, it follows from Eq. (4.38) that the DEQ must converge and that

lim sgn (&, — &) \ham|> =0 ¥ n,m (4.39)
—»o0

as r is arbitrary. Consequently, operators that couple two non-degenerate states must vanish in
the limit [ — oo.

Next, we take a closer look at the asymptotic behavior. Again, terms which couple two non-
degenerate states must vanish for large /. When these elements become small, the quadratic
term in Eq. (4.37) is negligible and leads to the asymptotic behavior

where g, and &, have already converged, i.e., their /-dependence can be neglected in leading
order. Thus, the matrix elements exhibit an exponential behavior for large /

e (4.41)

where /,,,, is a constant with respect to the flow parameter [. As &, is an energy, we now find a
physical interpretation of the flow parameter which is an inverse energy in the case of the sign-
generator. Thus, while / increases during the flow, we proceed to smaller energy differences of
the range /~'. When the flow has proceeded to an energy scale /!, coefficients of operators
contributing to the generator and connecting two states with higher energy difference than [~!
have commonly already approached their asymptotic behavior and vanish exponentially. On the
other hand, coefficients of operators which are not present in the generator and which corre-
spond to higher energy differences than /~! have already converged, i.e., their /-dependence is
negligible in the subsequent flow. This again is a property of the flow equation method which
is similar to the energy separation of RG approaches and which is demonstrated in Chap. 5
explicitly.
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4.2.4 Ground-State Generator

There are further variants of the generator. One of the most important ones is the ground-state
(gs-) generator (see e.g. Refs. [81, 100—102]). If the transformation eliminates all terms that
couple the reference state, which is chosen as the ground state of Hy, to higher excited states, the
generator features gs-generator properties. In this case, the reference state becomes the ground
state of the effective Hamiltonian for / — oo. If the minimal requirements for a gs-generator are
fulfilled, the generator can be referred to as the gs-generator. All generators introduced so far
fulfill gs-generator properties (and more).
In general, the gs-generator can be expressed as

Nes = Y, (Hoi — Hio) (4.42)

i>0

where Hj; denotes all terms that couple the ground state of Hy (denoted by the index 0) to an
excitation above it (denoted by the index i > 0).

If all creation operators from the chosen operator basis in which Hy is diagonal create exci-
tations, the reference state is the vacuum with respect to the respective operator basis?. In this
case, all terms that contain only creation or only annihilation operators have to be included in
the generator as far as the operators are normal-ordered with respect to the vacuum state. This
generator is used explicitly in Chap. 5.

If, on the other hand, the chosen operator basis in which Hy is diagonal contains creation op-
erators which create particles on a level with negative energy, all negative levels in the reference
state are occupied. In this case, all terms that result in an excitation above the Fermi sea must
be eliminated for / — co. As far as the operators are normal-ordered with respect to the Fermi
sea, a term is included into the generator if all energy differences occurring in this term are of
the same sign. This generator is explicitly used in Chap. 6.

The gs-generator converges if the energy spectrum is bounded from below. A detailed discus-
sion and a proof of convergence of the gs-generator can be found in Ref. [101] and an overview
is given in Ref. [81].

The ground-state generator in the context of a zero-particle state suggests other variants of
generators. One could, for example, include all terms that couple the zero-particle vacuum state
and all states including one particle to states with more particles. This generator is often referred
to as 7gs,1p Or simply 11,. These kind of generators are also discussed in the references given
above.

4.3 Variants of Continuous Unitary Transformations

So far we presented a general theoretical framework for the method of Continuous Unitary
Transformations. We know how to set up the flow equation and how to construct the generator.
When we commute the generator and the Hamiltonian in order to derive the flow equation (4.4),
in general, new terms arise which are not present in the initial Hamiltonian. These new terms
arise during the flow and must be commuted with the generator as well which leads to further
terms and so on. For an infinitely large system, the number of arising terms is often arbitrarily

2An example is the separation of particle and hole states. In this case, the Fermi sea corresponds to a vacuum
with respect to particles and holes.
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large while in finite systems the number of arising terms is growing exponentially. This leads to
practical problems and the necessity to introduce approximations at some point.

Different more or less systematic ways of determining how to find sensible approximations
have been developed. Famous examples are the self-similar CUT (sCUT) that was used in the
original work by Wegner [11] and which was extensively used in Refs. [81, 100-107], the
perturbative CUT (pCUT) [13, 108, 109] and the enhanced perturbative CUT (epCUT) with its
non-perturbative extrapolation: the directly evaluated enhanced perturbative CUT (deepCUT)
[110, 111]. A further branch is a graph-theory based version called gCUT [112].

In this thesis the sCUT approach is used in Chap. 5, and in Chaps. 6 and 7 the employed
truncation schemes are justified by deepCUT. A brief overview of the different approaches is
given in the following (except gCUT).

4.3.1 Self-Similar CUT (sCUT)

A self-similar approach to CUT can be applied by choosing a fixed class of basis operators
O, beforehand (most commonly by a truncation scheme that determines the classes of terms
which are discarded) and then performing all commutations between the generator and the
Hamiltonian as long as new terms emerge.

Determining which terms to keep and which to neglect is one of the main problems within
this CUT approach. Common criteria are, for example, the distance between two operators (e.g.
in real space or energy) or the number of operators that a term includes. Of course, a physical
understanding of the problem helps to decide which terms are important and which ones are
not, but such rules vary from model to model and cannot be deduced generally.

Another common and more systematic way of deciding if a term is important or not is to
count how many commutations it takes until the term emerges first. This procedure is justified if
the coefficients of the commuted terms are small. In this case, every commutation increases the
order of the small parameter in which the new term emerges. This procedure sounds perturbative
but it is not. Self-similar CUTs are non-perturbative in nature, even when truncated in orders
of a small parameter. Because of the truncation, one can find a closed system of differential
equations. The Hamiltonian during the flow is expressed as

H(l)=Y hy(1) O, (4.43)

where only the coefficients %, depend on [ while the operator basis O, is fixed. Although the
construction of the flow equation is, in general, a hard task, it is easy to write down the general
structure of the resulting differential equation which is bilinear

Oihy (1) =Y Db (1) (1). (4.44)
i,J

The main task is to calculate the explicit form of the Dj; which depend on the choice of the

generator and stem from the commutations of the basis operators O,,. In most problems the D?j
must be calculated numerically by a program which is able to calculate the needed commutators
and add newly arising terms to the Hamiltonian. Such a program was originally developed by
S. Duffe [102] (see Sec. 5.4.1).

The non-perturbative character of the sSCUT approach is explicitly required when encounter-
ing the Kondo problem as perturbative approaches result in IR-divergences and are not able to
describe the crossover from one energy regime (described in Sec. 2.7) to another.
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4.3.2 Perturbative CUT (pCUT)

In contrast to the non-perturbative sCUT approach, Continuous Unitary Transformations can
also be performed perturbatively [13, 108, 109]. As the Kondo problem needs non-perturbative
tools, a pCUT approach is not suitable for the challenges faced in this thesis. Nevertheless, the
pCUT approach shall be mentioned because deepCUT ideas stemming from perturbative ideas
are used in this thesis. A pCUT can be applied to systems which can be written in the form

N
H=Hy+A Y, T, with [Hy,T,]=mT, (4.45)
m=—N

where A is a small parameter and 7;, contains all terms that create m particles (annihilate m
particles if n < 0). The pCUT approach relies on two prerequisites which the Hamiltonian must
fulfill

1. The unperturbed energy spectrum of Hy must be equidistant with a lower boundary. The
eigenenergies of Hy are proportional to the particle number.

2. The perturbation is of the form V = A4 Zf;’l:_ ~ I (cf. Eq. (4.45)).
The initial generator is chosen to be
N
n=~2a Z sgn(m) Tp,. (4.46)
m=—N
Calculating the commutator between 1) and H yields products of the 7, which are denoted by
T (m) =Ty, Tn,... T, (4.47)

where m is an index vector
m = (my,my,...,ny) (4.48)

with dimension |m| = k and where the m; € {0,£1,+2,...,£N}. One can define the netto par-
ticle number that is created (annihilated) by 7' (m) as

k
M(m) =Y m. (4.49)
i=1
Then the complete Hamiltonian during the flow can be written in the form

H = Hy+ i A* Y F(I,m)T (m) (4.50)
k=1  |m|=k

while the full generator is given by

n= i/lk Y sgn(M(m))F (I,m)T (m) (4.51)
k=1 |m|=k

where |m| denotes the dimension of m. The perturbative character lies within the ansatz in
which, in contrast to the sCUT approach, the coefficients are compared with respect to the
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order of A. Calculating the commutator of the generator and the Hamiltonian and comparing
the coefficients leads to a differential equation for the coefficients

QF (ILm) = —|M(m)|F(/,m) (4.52)
+ )Y [sen(M(my))—sgn(M(my))]F (I,my)F (I,my)

m=(m;,m;)

which does not depend on the specific model at hand. The structure of the differential equation
is recursive with respect to the order in which the coefficients appear. Consequently, if the orders
are not too large, one finds closed systems of differential equations.

4.3.3 Enhanced Perturbative CUT (epCUT)
The enhanced perturbative CUT [110, 111] is again constructed for Hamiltonians of the form
H =Hy+ AHy. (4.53)
The Hamiltonian and the generator are represented in second quantization
H(l) = Y hi(l) O; (4.54)
N = Lmho
and the DEQ is given by

Orhy (1) =Y Dl (1) i (1) (4.55)
ij

which is so far non-perturbative. As the D?j have to be calculated just as in the sSCUT approach,
one could ask for the advantage of the enhanced perturbative CUT compared to the sSCUT. The
answer is that epCUT intrinsically delivers a truncation scheme so that the calculated coeffi-
cients are exact up to a certain order (as long as not combined with an additional truncation
scheme). The coefficients are expanded in a small parameter A

ha (1) = Y A5 (1) (4.56)
k

through which the perturbative character becomes obvious. Inserting Eq. (4.56) in Eq. (4.55)
and comparing the coefficients in orders of A yields
I (=Y, ¥ DLaP (1)nl (). (4.57)
i,j ptg=m
We can see from Eq. (4.57) that only coefficients up to order m act on the m-th order. Thus, we
know that we can truncate all terms that emerge in higher orders and still be correct up to order

m. For a systematic analysis, one defines the minimal order Oy, (1) in which a term emerges.
From Eq. (4.55) one finds

Opnin(n) = min  |[Opin (1) + Omin (7)1 - 4.58
mm( ) {i,j|D§‘j7£0}[ mm() min (J)] ( )
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A useful truncation scheme can then be used by choosing an order O, up to which one wants to
calculate the targeted quantities and truncate all terms for which

Omin (1) > O (4.59)

One can even optimize the truncation scheme further if one is interested in a special quantity
of the flow, e.g., the ground-state energy or the dispersion. It may very well be that terms are
included so far which only act in a higher order than O, on the targeted quantities. Such terms
can be neglected while still being correct up to order O, for the targeted quantities.

The maximal order O,y (n) [110], which is the order up to which one needs to know #, so
that the targeted quantity is still correct up to order O, can be calculated from

0 ) = O — Onmin (J)]. 4.60
max (7) {n,ﬂr%i-l’;(;éﬂ}[ max (71) (J)] ( )

Terms for which
Omin (1) > Omax (1) 4.61)

can additionally be truncated. Furthermore, contributions to the right-hand side of the DEQ can
be neglected. The contribution on the right-hand side with a coefficient D; can be neglected if

Onmax (I’l) < Onin (l) + Omin (]) . (4.62)

This process leads to a differential equation with less entries than before and which is still
exact in the chosen order O, at least for the quantities in question. The coefficients of the
thus truncated minimal system of differential equations are denoted by Dl’-’j (cf. Egs. (4.55) and
(4.63)).

A clear advantage of the epCUT in contrast to the pCUT approach is that it also works for
an unperturbed Hamiltonian Hy with a non-equidistant spectrum. On the other hand, one has to

calculate the D;’j which is not necessary within the pCUT approach.

4.3.4 Directly Evaluated Enhanced Perturbative CUT (deepCUT)

The directly evaluated enhanced perturbative CUT [110, 111] follows the epCUT idea. After
determining the minimal system of differential equations D;’J based on epCUT ideas (cf. Sec.
4.3.3), one can simply use it in the full differential equation (4.55)

Oihn (1) =Y Df;hi (1) by (1). (4.63)
irj

This approach is not perturbative anymore and the resulting coefficients can be of a much more
complicated structure than a polynomial in the chosen order. Roughly, the deepCUT method
is a version of sCUT with a clever and systematic way of truncating the system of differential
equations.

In this thesis the deepCUT idea is used in Chap. 7 in order to optimize the reproduction of
the Schrieffer-Wolff transformation and also to justify truncation schemes at various points in
Chaps. 6 and 7.
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4.4 Residual Off-Diagonality

The residual off-diagonality (ROD) [101-103, 113, 114] is defined as the square root of the sum
of the squared absolute values of all coefficients contributing to the generator

ROD:( Y |h,,|2> (4.64)

n:h,€N

where the 4, are the coefficients of the Hamiltonian in second quantization. For a matrix rep-
resentation the definition is analogous and corresponds to the sum running over all matrix ele-
ments h,,, that contribute to the generator. The square root in Eq. (4.64) is introduced so that
the ROD is an energy.

The residual-off diagonality tracks the convergence of the flow. From the flow equation
(4.4) we know that there is no further change of the Hamiltonian as soon as the residual off-
diagonality is zero. Consequently, if the ROD tends to zero for [ — oo, the differential equations
converge. For the proposed generators from Sec. 4.2, this is always the case as long as the
system can be written in the form of finite matrices and no truncation is incorporated.

For infinite matrices or when a truncation scheme is introduced, the situation is not that
clear anymore. In such a case, one might encounter diverging differential equations and thus a
divergent residual off-diagonality. These divergences can be an intrinsic feature of the truncated
flow equations but can also stem from numerical instabilities.

4.5 Reference State and Normal-Ordering

In order to set up the CUT approach for realistic many-body problems, we need to introduce
normal-ordering with respect to an adequate reference state. The need for a normal-ordering
scheme can be understood when looking at the example of the commutator of two quartic
fermionic operators

[cIczc§c4, cJ{,cz,cg,c“,] = cIcch,cz,c§c4,54,3/ — ciczci,cz,c;,c“é&m (4.65)

— CICZC-{/C4C§/C4/63,2/ +CIC2C;C2/C§/C4/54’1/

— ey Cherciey By ey ciey ey by

— derchegelesda +eleychepclesdu
At first sight, only terms with six operators occur but this depends on the ordering of the opera-
tors, e.g., ordering all creation operators to the left would also produce terms with four operators
or less. Thus, truncating terms with six operators is problematic as there is still a feedback to

terms with less operators.

In order to organize the operators in a way that we can truncate higher-order interaction terms

in a well-behaved manner, we introduce normal-ordering of the operators which is chosen with
respect to a reference state |ref) so that

(ref| : A : |ref) = 0. (4.66)
For the choice of the reference state during the flow, the Hamiltonian is split in two parts

H=H;+H, (4.67)
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where the ground state of Hy is known. The reference state is chosen to be the ground state of
Hjy. If the generator fulfills at least gs-generator properties, the reference state will become the
ground state of the effective Hamiltonian for / — oo (convergence assumed).

Normal-ordering is based on Wick’s theorem [115, 116] and is explained in App. 9.7. If
the operator basis is chosen such that all creation operators create excitations (cf. Sec. 4.2.4),
the reference state is a vacuum with respect to these operators. In this case, normal-ordering
coincides with the rule to shift all creation operators to the left. If there are creation operators in
the chosen operator basis which create particles on a level with negative energy, the reference
state is a Fermi sea with respect to these operators. In this case, the normal-ordering prescription
is more complicated® and is explained in the following.

The normal-ordering of a bilinear operator is defined by subtracting the expectation value
with respect to the reference state

: cIc2 = chfc2 - <cIc2) (4.68)
with
(cle,) = (ref|clc,|ref). (4.69)

The definition (4.68) obviously fulfills Eq. (4.66). For terms containing more operators, all con-
tractions have to be calculated (where a contraction denotes the expectation value with respect
to the reference state). Normal-ordering for operators consisting of four operators takes the form

cIc£c3c4 = cIc§c3c4 T ey <c1rc;>— : c;c4 : (circ3>+ : c§c3 : (CIC4> (4.70)
+ cJ{c4 : (c;c3>— : chfc3 : (c;c4>+ : CICE D (cyey) + (cic%}(c3c4>
(creshesey) +ereg)(eses)

where all normal-ordered operators on the right-hand side also fulfill Eq. (4.66). The signs in
Eq. (4.70) stem from the fermionic character of the operators. Every time a fermionic operator
that is part of a contraction must be swapped with another fermionic operator in order to bring
the contracted operators side by side, a minus sign is introduced.

One important feature of normal-ordered operators is that the order of the operators can be
changed and only a sign appears every time two fermionic operators are swapped, e.g.,

: cIc;c§c4c5c6 = cifc;c4c§c5c6 = cIc;c4c5c§c6 . “4.71)
This means that there is no further direct feedback of such terms on terms including less opera-
tors. Hence, the truncation of such terms is controlled.
If the ground state of Hy is degenerate, as for example for the V = 0 Anderson model where
the impurity level has a spin degree of freedom in the ground state, we can use a reference
ensemble

(1A D+ A L) =0. (4.72)

A local impurity operator basis that fulfills Eq. (4.72) is introduced in Chap. 7.
Note that Wick’s theorem only works for Slater determinants. A singlet state, for instance,
cannot be normal-ordered using Wick’s theorem.

3The normal-ordering prescription for the vacuum state, i.e. shifting all creation operators to the left, is a special
case of the more general normal-ordering scheme outlined in Sec. 4.5.
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4.6 Renormalization with CUT

The last part of this chapter outlines some similarities between conventional scaling discussed
in Chap. 3 and the CUT approach. As mentioned earlier, it is a well-known fact that there is an
intrinsic energy separation in the flow equation approach. In fact, we can obtain almost identical
results as we did for the conventional scaling in Chap. 3.

Before we discuss how to reach beyond “poor man’s scaling” with CUT in Chaps. 5-7, we
reexamine the models from Chap. 3 in the light of Continuous Unitary Transformations.

4.6.1 Potential Scattering Model

A CUT of the potential scattering model (3.16) is given in Ref. [16]. We start from a continuum
limit of the potential scattering model (3.16)

D D
H:/ gcic,de +p// g (e,€) cle, dede’. (4.73)
0 0

The initial coupling for / = 0 is given by g (€,€’,/ = 0) = g. Introducing the sign-generator

D
n :p//o sgn (e —¢') g (e,€') cfe, dede’, (4.74)

calculating the commutator between 1 and H and comparing the coefficients in Eq. (4.4) leads
to the differential equation

D
dg(ee)=—le—¢g(ee)+p /0 [sen(e—z) —sgn(z—€')] g(e,2) g (z,€") dz. (4.75)
We can write the coefficient in the form
g(e,&) =g (e &) e el (4.76)

in order to absorb the linear term on the right-hand side of Eq. (4.75) into the coefficient. We
introduce the so-called infrared (IR-) approximation

g(ge) =gele=ell 4.77)

where ¢ = g (&p, €r) is evaluated at the Fermi level &p. By using Eq. (4.77) in Eq. (4.75) for
€ = & = 0 we find the differential equation for the coupling g that will be renormalized during
the flow to smaller energies

D
98 = —2p / sen (z) e 24l dz g2, (4.78)
0

The integral can be calculated and the resulting differential equation for the renormalized cou-
pling becomes

03 = —png [1 _ e—ZDl] . (4.79)

The exponential function will quickly tend to zero because D is the largest energy scale in
the system and can be neglected as long as the integration starts from /y > 0. Note that the
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exponential function is important for convergence for / — 0. Nevertheless, taking the early flow
into account only changes the prefactor in the result and not the exponent of the exponential
function which is the object of interest. The different sign in Eq. (4.79) compared to Eq. (3.22)
is due to the fact that / is an inverse energy and is thus increasing when energies are lowered. In
order to compare the result (4.79) to the scaling equation (3.22), we have to substitute

1
l = (4.80)
Dey
which leads to the flow equation for the renormalized coupling
52
g =25 (4.81)

eft D i
€

This is of the same form as the scaling equation for the potential scattering model (3.22). The
IR-approximation is very similar to the procedure in the scaling approach and it is used later in
this thesis in order to analyze the low-energy behavior of different systems.

Note that it is the IR-approximation that leads to the divergence in this example and not the
CUT approach itself. Solving Eq. (4.75) numerically would lead to perfect agreement with exact
results. This is due to the simplicity of the model and will change in the Kondo problem where
the CUT approach itself will lead to a divergence just as the scaling approach does.

4.6.2 Kondo Model

A CUT approach reproducing the ’poor man’s scaling” results for an isotropic coupling using
the IR-approximation has been accomplished in Ref. [16]. We will, however, reproduce the
scaling equations for a general anisotropic coupling.

In order to use the IR-approximation in the CUT approach for the Kondo model, the flow
equation has to be derived first. When commuting the generator (4.83) and the Hamiltonian
(4.82), new terms emerge. On the one hand, we find terms with a quartic bath-operator structure
while, on the other hand, bilinear terms emerge. Terms that are quartic in the bath operators are
dismissed while hopping terms are included for the derivation of the flow equation as quartic
terms scale faster to zero than bilinear ones (cf. Sec. 6.8.1). We also dismiss the hopping terms
in the scaling approach of this chapter as their action on the spin-spin interaction is of order J3
while we only include terms up to order J2. We will revisit the differential equation including
the hopping terms in Chap. 7.

Flow Equation

We start from the Kondo Hamiltonian in which the non-diagonal bilinear terms ¢, that emerge
during the flow for / > 0 are already included

H = Z tum - cnccmc + Z ZZ . aﬁ nacmﬁ (4.82)

n,m,o Hexyzn.me, 3

The generator is chosen to be

M=) M CroCmo:+ 2, 2 2 MmCepT™ : CuaCyp * (4.83)

n,m,c nexyzn.mo, 3
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with the coefficients

N = 52N (6 — €m) tum s My = 520 (€5 — Em) L. (4.84)

Commuting the generator 11 with the Hamiltonian and comparing the coefficients in order to
derive the flow equation (4.4) while neglecting all terms with quartic bath operators leads to the
flow equation (for a more detailed calculation see App. 9.5)

W = ), (Mhiin — Ml + Moy — M Th) (4.85)
X
1 2 g
- Z Z 5 ‘ekq#‘ (nm xm n,\m ) (1 —26 )
X k.gexyz
altnm = Z (nztvctxm - n)tcm nx Z Z [TI“ J)l;n - )l;lm‘]zlir]
X uex V,Z X

where the occupation number
6 = (cloCro) (4.86)

stems from the normal-ordering with respect to the Fermi sea. In the case of an isotropic cou-
pling Jhy = T, the flow equation becomes

alJnm = Z (nr{xtxm - n){mtnx + n:zx‘]xm - n)tcm‘]nx) (487)

X

- Z (nr{x‘]xm - TL{mJnx) (1 — 29x)

X

3
all‘nm = Z (nrtzxtxm - n)tcmtnx) + Z Z [ni{x‘]xm - n){m‘]nx} .
X

X

The starting values for Eqs. (4.85) and (4.87) are both given by
J#m - Ju'}’n}’m y Inm = 8n5nm (4.88)

where in Eq. (4.87) J* = J while €, and 7, are given by Eq. (2.50). Truncating the hopping
elements as well leads to the DEQ

alJnm = (Sm - 8”) nlfm - Z (nI{x‘]xm - n){m‘]nx) (1 - 20)6) . (489)

X

In the next section we will apply an IR-approximation to the DEQ (4.89).

Continuum Limit and IR-Approximation

For the IR-approximation, we will also dismiss the bilinear terms in Eq. (4.85) and thus use Eq.
(4.89). We use the continuum limit (cf. Sec. 2.6 and Sec. 6.8.4)

u
& — &, Y — pode, Jux, — JH (g,€') (4.90)

i Yoy
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which leads to the differential equation
ok, = —le—¢€|JL, (4.91)

eg!
D
- DO Jewul* [ [sene—2) — sen (c- &)] S (1 - 20 (2)) &z
k,q -

for a constant DOS pg = % of the bath electrons. The starting values are given by
JH (e,€") =JH. (4.92)
Introducing the IR-approximation
uo_ o —le—¢|l
JE, = JremlEE (4.93)

where the renormalized coupling J* is calculated using € = €’ = &r = 0 in Eq. (4.91), leads to
the flow equation for the coupling at the Fermi level

D
A" =po ) |€kqu ‘2/ sgn (z) (1—26 (z))e 2 dz j* j. (4.94)
k,q -D

The integral can be solved analytically which finally yields the flow equation for the couplings
at small energies

o = % Y [eiqu|* 74T [1 _ e—ZDl] (4.95)
k.q

or for an isotropic coupling

_ 2poJ?
o7 =P [1-e21]. (4.96)
We can neglect the exponential function and substitute the flow parameter by an inverse energy
I = De_f%. Following the argument which leads from Eq. (4.79) to Eq. (4.81) results in the flow
equation for the anisotropic couplings from Eq. (4.95)

2P0 1 -
Il = —POpF (4.97)
Degt
2PO = 77
I = ———TF
eff Deff
2
o = —POpp,
Degt

This is exactly the scaling behavior (3.31) that we found with the conventional scaling approach.

We will revisit the DEQ (4.87) in Chap. 7 and analyze the full DEQ without the IR-approxi-
mation. In contrast to the potential scattering model, the differential equation (4.87) leads to a
divergence on the Kondo energy scale even for the full numerical solution without the IR-ap-
proximation. In Chap. 7 we will modify this approach in order to find an effective model with
small finite coefficients arbitrarily close to the Fermi level.
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5 Chain Representation

5.1 Tridiagonalization

The NRG approach (cf. Sec. 3.3) relies on a semi-infinite chain representation of the Anderson
Hamiltonian [10]. This representation is obtained by a Lanczos tridiagonalization [117]. We use
a similar starting point and study how far the CUT approach is able to describe the crossover
between the energy regimes mentioned in Sec. 2.7. The standard way of deriving the chain
representation is to use the discretization (2.51) which leads to

— i Tt
H= ;s,,c,tc,cw + v; (chodo +dicos ) +Udld]d,d, + ed;dz,da 5.1)
where the new operator
1 - 2 2

CSG = V;Vn cls with V= ;Vn (5.2)

was introduced. If we choose the starting vector

1
Ing) = VZVH ¢t 10), (5.3)
n

the operator (5.2) will act on the zeroth site of the chain. The notation |n;) denotes that the
i-th site of the chain is occupied. Through the choice (5.2) the hybridization is absorbed into
the coupling V between the impurity and the zeroth site of the chain. Hence, we only need to
transform the diagonal part

Hp=Y €,i5Cus (5.4)

n.o

in order to obtain a semi-infinite chain. We can successively construct a basis in which the
Hamiltonian Hp is tridiagonal by using the Lanczos algorithm.

A chain representation can be a huge advantage when the interaction is taken into account.
The NRG, for example, relies on this representation in order to successively add a new site to
the chain before diagonalizing the Hamiltonian. Such a representation seems also promising for
the Continuous Unitary Transformation approach as we can truncate the system in a way that
the Hamiltonian remains local during the flow. This resembles RG-like ideas where a certain
locality of the energy scales is also assumed.

The aim of the Lanczos tridiagonalization is to find the parameters ¢, and €, for a tridiago-
nalized form of Hp from Eq. (5.4)

T
He =Y €,¢hotuo+ Xt (Chatuiio+ i 106no) (5.5)
n,o n,o

If the Hamiltonian (5.5) acts on a normalized state |n;), one finds

Hc|n0> = £0|n0>—|—t0|n1>, i=0 (5.6)
Heln;) = &lm) +tilnig1) +tioa|ni-y),  i>0.
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Thus, we can construct the basis states after choosing the starting vector |ng) by calculating
& = (no|Hc|no) (5.7)
1) = Hclno) — €lno) = toln1)

and successively constructing all further basis states |n;) and parameters & and ¢; for i > 1 by
the iterative algorithm

2 = (i) (5.8)
I
i) = ti—llnl>
& = (mi|Hc|m)
1) = Helni) — &lni) —ti—1|ni—1).

For a symmetric density of states the tridiagonalized Hamiltonian including the interaction is of
the form

H = VZ (dl;cOG + cgcdd) + Ztn (czcanG + CZHGCM) (5.9)
o n,o
+ Udldd d, +e1 dids.
(e2

In the following, we refer to this representation as c-chain. If the density of states is symmetric,
all on-site energies are zero, i.e.,
&=0 Vn. (5.10)

We choose a flat density of states for the bath electrons with a bandwidth 2D which is symmetric
around the Fermi level, i.e., on-site energies vanish. In the case of a flat DOS (2.59), analytical
results [46] for the hopping elements are known

t 1+A ) (1—A! ;

== ( ) ) A2, (5.11)
D 21 -—A2-1/1 —A—213

The Hamiltonian (5.9) describes a semi-infinite chain where the sites are coupled by the hopping

elements t, while the first site of the chain is coupled to the impurity via the hybridization V.
Fig. 5.1 depicts the Hamiltonian (5.9).

Hint Hbath
‘—‘_< ) () ).
1 2 3
& & & & &

Figure 5.1: Chain representation of the Anderson Hamiltonian (5.9). The bath Hamiltonian Hp from Eq. (5.4)
is mapped on a semi-infinite chain (5.5) with hopping elements 7, from Eq. (5.11) and on-site ener-
gies &, = 0 due to the symmetric DOS. The chain for the bath electrons is coupled to the impurity

via the hybridization element V = /¥, |V,|*. In the following, we refer to this representation as
c-chain.

This representation is widely used but not very well suited for a CUT as all on-site energies are
zero. Thus, we have no criterion to determine the sign in the generator.

In the next section we modify the chain representation by separating particle and hole states
which will result in a Hamiltonian (referred to as ph-chain) that is appropriate for a CUT.
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5.2. SEPARATION OF PARTICLE AND HOLE STATES

5.2 Separation of Particle and Hole States

We will separate particle and hole states by applying two separate Lanczos tridiagonalizations
in order to find a chain representation that is better suited for a CUT. In this case, all creation
operators — pj;c for particles as well as h,tc for holes — create excitations and the vacuum®
is the ground state of Hp. Instead of using the Hamiltonian (2.51), which is discretized with
respect to the flat DOS, we will use the Hamiltonian (2.58) which is discretized with respect
to the Lorentzian DOS. The coefficients &, and 7, are given by Eq. (2.57). The non-interacting

Hamiltonian is diagonal for this discretization, i.e.,
Hp = Hi + Hp (5.12)
with

Z~r:_L no,+ ncj: (5'13)
n,o

while the d-operator is given by

=) Zyn Chos (5.14)

s=+ n

In the next step we separate particle and hole states by using two separate Lanczos tridiagonal-
izations for the part with positive & and the one with negative &, , respectively. We introduce

Chos = Pror Chom =g (5.15)
and choose the starting vectors

pos) = V2Y vl 5hs0) (5.16)

|h0,6> = \/EZYn_ilnalhlcv”'vhNG>
n

for the separate tridiagonalizations. Note that the factor v/2 is needed in order to normalize the
states as each part for positive and negative energy carries only half the spectral weight. We can
identity the d-operator from Eq. (5.14) as

=L Pho+ Ly —f(p0c,+h0c,) (5.17)

where the operators p(T)G and h,; denote the operators acting on the zeroth site of the chain.
The second equality in Eq. (5.17) holds true because of the choice of the starting vectors (5.16)
through which the tridiagonalized Hamiltonian (5.18) is kept local.

Tridiagonalizing the Hamiltonians from Eq. (5.12) separately using the Lanczos algorithm
(5.7) and (5.8) with the starting vectors (5.16) yields the non-interacting part of the Hamiltonian
as two separated linear chains

Ho=Y & (,;;;G Do+ h,Twhm> +Y 1 <p;c, Prito + ol 1o +h.c.) , (5.18)
n,o n,o

“4Referring to the state without particles and holes.
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one for the particles and one for the holes. In the following, we refer to this representation
as ph-chain. Fig. 5.2 depicts the Hamiltonian (5.18) where the two chains are coupled by the
interaction term (5.21). The sites are each coupled by the hopping elements #,.

H
holes int particles
t t U t t
1 0 0 1
@ @ @ Po @ @
& & € € & £,

Figure 5.2: Chain representation of the Anderson Hamiltonian (5.18) with separated particle and hole states.
The hybridization is already absorbed into the hopping elements #, and the on-site energies &,. The
interaction from Eq. (5.21) connects the two chains. In the following, we refer to this representation
as ph-chain.

The remaining interaction term can be determined by replacing the d-operators in

Himp = €4 d3d+Udld]d\d, (5.19)
(o)

by Eq. (5.17) as the starting vector (5.16) remains unchanged by the Lanczos tridiagonalization.
The full Anderson Hamiltonian in chain representation with separated particle and hole states
is of the form

with H, from Eq. (5.18) and the impurity contribution

1 U
Himp = E Z <8d + E) (PSGPOG - hgchOG +chhgc + hOchG) (5.21)
c

- % (P(T)TPSJ,hETh(Tu + Porhby oy hoy — Poy oyl hos = Py b g, Poy
+PiyPoy o Poy + PbyPoyPorPoy  PoyltarPoy oy, — PoyhorPoy oy
—PothoyPorho, + Poy o, Pothor + hopho oo, = P, PorPoy o
b Py Po oy P oo, — s, Poyhos o+ PosPohogh )

An additional constant due to the normal-ordering of the operators was dismissed.

5.2.1 Normal-Ordering and Reference State

When particles and holes are separated, the ground state for U = 0 is given by the vacuum |0),
1.e., the state without particles and holes. Thus, we choose the vacuum as the reference state.
The basic ideas of normal-ordering operators with respect to the vacuum state were already
given in Sec. 4.5. We need a normal-ordering scheme for several reasons. An obvious one is
that we need a unique operator representation in order to treat the problem numerically.

The main reason, however, is that we need to organize the operators in a way that we can trun-
cate higher interaction terms which emerge during the flow in a well-behaved manner (see Sec.
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5.2. SEPARATION OF PARTICLE AND HOLE STATES

4.5). Normal-ordering with respect to the vacuum coincides with the rule to order all creation
operators to the left. A term stemming from Eq. (5.19), for instance, could be of the form

T i _ Tt i
Porho o Poy = Poyhoy Porhoy + PorPoy (5.22)
where the right-hand side is normal-ordered. With this rule the general definition of normal-
ordering
0]:0:]0)=0 (5.23)
holds true. The only terms that couple the vacuum state to states with more particles are opera-
tors that only contain annihilation or only creation operators, e.g.,
Tt IS A
Poshoss  PorPojtorhoy s Posloss  PorPoiPorho, - (5.24)
The gs-generator eliminates these terms and the vacuum will become the ground state of the
effective model.

5.2.2 Starting Values

We have to calculate the starting values of the g, and 7, from Eq. (5.18) numerically by a
Lanczos tridiagonalization as outlined in Sec. 5.2.

Fig. 5.3 compares the starting values for the conventional c-chain (5.5) (given by Eq. (5.11))
and the starting values for the ph-chain (5.18) which are derived numerically.

0

10 =7 7 T L L T 7 7 7 T L L T 7
_ - e (ph-chain)
) ) S~~~ .- t (ph-chain)
.E 10 = ——— t_(c-chain)
3
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site n

Figure 5.3: Starting values €, and 1, for the tridiagonalized Hamiltonian (5.18) with N = 50, A = 2.5 and
% = 4-1073 constructed from a Lanczos tridiagonalization with separated particle and hole states
(ph-chain) compared to the hopping elements #, of a tridiagonalization where particles and holes
are not separated (c-chain) (5.9). In the case of the c-chain, all &, are zero and the hopping elements
t, decrease proportional to f, o< A~7 for large n (cf. Eq. (5.11)). For the ph-chain (particles and
holes separated) both the €, as well as the 7, decrease according to A™" for large n.
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The hopping elements ¢, for the ph-chain (5.18) decrease proportional to ¢, < A™" for large n in
contrast to the hopping elements of the c-chain (5.9) which decrease according to #, o< A2 for
large n (cf. Eq. (5.11)). This is due to the fact that twice as much hopping elements are needed
for the c-chain compared to the ph-chain in order to reach the same energy scale.

In the case of the c-chain, two hopping elements are needed (describing two energy levels -
the positive and the corresponding negative one -) to step forward to the next discretized interval
(2.44) corresponding to the next lower energy scale Ey o< A™". For the ph-chain, every hopping
element links directly to the next lower energy scale. In exchange, the Hilbert space increases
twice as fast in the exponent when increasing the length N of the ph-chain (factor 2*V) compared
to the c-chain (factor 22V).

5.3 Flow Equation for the Non-Interacting Model

We want to analyze the behavior of the non-interacting model as we can already find some char-
acteristics that still hold true for U > 0. Additionally, we can see the intrinsic energy separation
of the CUT approach.

We start from the Hamiltonian

N N—1
H= Snpl;o-l?no- + Z In (p:;o-er_IG +P2+10Pno> (5.25)

n=0,0 n=0,0
and choose the generator as

N—-1
n=Y m(PloPriio PriioPro) (5.26)

n=0,0

with the coefficients

Nn =sgn (& — &11)t (5.27)

in order to eliminate the hopping elements for / — oo. Because of the exponentially decreasing
character of the g,, we find

sgn (&, —&4+1) = 1. (5.28)

Calculating the commutator between 1 from Eq. (5.26) and H from Eq. (5.25) we can find the
flow equation (4.4)

Aty = — & —Enr1|ta (5.29)
g, = 2>—2>,, 0<n<N
ae = 213
oy = —2t]%,_l
Itunta = talpr1l —tap1ta =0

where 1,42 are the coefficients of the newly emerging terms p,Tm Ppios- We would need to
commute these terms again and even include them into the generator but as long as Eq. (5.28)
is fulfilled they will not occur, i.e., the differential equation (5.29) is already exact.
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5.3.1 Exponential Flow Parameter

The flow parameter / represents an inverse energy (cf. Sec. 4.2.3). It is useful to adjust the flow
parameter to the exponentially decreasing energy scales €&, < A™". This can be achieved by
introducing a new flow parameter b that leads to an exponentially decreasing energy scale when
increased linearly

[— (Ab— 1)1)—1. (5.30)

The flow equation (4.4) can be rewritten using Eq. (5.30)

AH () =W HD] — 3B = (7). A () (5:31)

where H (b) = H (1 (b)). As [ (b = 0) = 0, the starting Hamiltonians for H and H coincide and
the only change that has to be taken into account in contrast to the flow equation of the old
parameter / is the newly emerging term % —In(A)A’D~!. By using Eq. (5.31) we find

dpH (b) =In(A)A”[n (b), H (b)] D™ . (5.32)

When the new exponential flow parameter b increases linearly, the energy scale [=! oc A=°
decreases exponentially. As the energy scale connected to the site n decreases as &, < A™", we
can link b linearly to the sites n of the chain. This can also be seen in the numerical data shown
in the following sections.

5.3.2 Residual Off-Diagonality of the Non-Interacting Model

A 4th-order Runge-Kutta algorithm was implemented in order to solve Eq. (5.29) numerically.
In the case of U = 0, we have a closed system of differential equations without any approxima-
tions or truncations and thus expect to find exact results (apart from numerical errors).

At first, we can look at the residual off-diagonality (ROD) (cf. Sec. 4.4) which, for U =0, is

of the simple form
ROD = /Y |t]*. (5.33)
n

Fig. 5.4 depicts a typical example of the ROD which shows some oscillations for small » while
it exhibits an exponential decrease

ROD<A? b<N (5.34)
as long as b < N and finally results in a double exponential asymptotic behavior

RODo<ce @ p>N (5.35)

for b > N. The double exponential behavior corresponds to the asymptotic behavior ROD o< e =%/
for large flow parameters [ = AP (cf. Eq. (4.41)) where the exponential flow parameter (5.30) is

used.
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residual off-diagonality (ROD) [D]

10

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
exponential flow parameter b

Figure 5.4: Residual off-diagonality ROD = /Y, |tn|2 for A =2.5, % =4-1073, U = 0 and varying chain
lengths N (from left to right: N = 20, 30, 40 and 50). We see an exponential decrease ROD o<

A~ for b < N and a decrease of the form ROD <« e~*A™" for b > N. The exponential decrease
corresponds to a power law ROD o< /! for the flow parameter / while the asymptotic behavior for
large b corresponds to the well-known exponential decrease for large flow parameters ROD o< e =%/,

From Eq. (5.30) we find that the exponential behavior ROD o< A~? corresponds to a power law?
in the conventional flow parameter

ROD o [, (5.36)

The power law is independent of the chosen discretization parameter A as can be seen from the
results shown in Fig. 5.5 and occurs until the lowest energy scale in the system is reached which
is linked to the chain length by Ey o< A=V, The exponential flow parameter is connected to an
energy scale by [~! = A=? for large b. Thus, the lowest energy scale is reached when b ~ N. On
smaller energy scales the asymptotic behavior for large b > N occurs and manifests as a double
exponential behavior ROD o< e~ If we identify / o< A? for large b, we see that this behavior
corresponds to the well-known exponential behavior

ROD o« ¢~ ¥ (5.37)

which is a general behavior of differential equations generated by Continuous Unitary Trans-
formations for large values of / (cf. Eq. (4.41)).

SFor an analytical derivation of this power law, see App. 9.4.
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Figure 5.5: Residual off-diagonality ROD = /¥, |1,|* for N = 50, ¥ =4-1073 and U = 0 for different values
of A. From top to bottom: A = 1.5, 1.9, 2.5, 3.5 and 6. For b < N, we see an exponential decrease
A" which corresponds to a power law /! independent of the discretization parameter A.

Fig. 5.5 verifies that the prefactor in the exponent of the exponential behavior ROD o< A~ is
equal to one for various values of A which corresponds to a power law ROD o< [~! independent
of the discretization parameter A.

For small values of b, the residual off-diagonality exhibits some oscillations. Each oscillation
stems from a hopping element 7, which initially increases when the site n on which it acts is
of the order of the flow parameter b, i.e., the energy scale corresponding to the flow parameter
lies in the region of the energy scale g,. If b increases further, the hopping element ¢#, decreases
quickly and tends to zero. We see this effect as one oscillation because the next hopping element
t,+1 already starts to increase.

This reflects an energy separation of the flow equation as processes on higher energy scales
are affected first and have already converged when lower energy scales are reached. This be-
havior is a feature of the CUT approach that is very similar to RG approaches as it also exhibits
an intrinsic energy separation.

Fig. 5.6 shows the above described occurrence of the oscillations. All qualitative observations
mentioned in this section still hold true when an interaction U > 0 is introduced.
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residual off-diagonality (ROD) [D]

exponential flow parameter b

Figure 5.6: Residual off-diagonality ROD = \/¥,, |1|* for A=2.5, ¥ = 41073, U = 0 and N = 50. The
dashed red lines show the hopping elements #,,. The square sum of the 7, results in the square of the
residual off-diagonality. The hopping elements ¢, acting on larger energy scales converge before
the ones acting on lower energy scales. This behavior is a feature of the CUT approach that is very
similar to RG approaches as it also exhibits an intrinsic energy separation.

5.3.3 Flow of the Single-Particle Energies

In the non-interacting case, the only remaining coefficients are the single-particle energies &,.
As the ROD tends to zero, the effective Hamiltonian becomes diagonal and we expect the on-site
energies &, to converge to the single-particle energies d,, of the diagonalized Hamiltonian. The
d, can easily be derived from an exact diagonalization (e.g. Ref. [118]). Note that the starting
values of the g, before the tridiagonalization also coincide with the d,,.

Fig. 5.7 depicts the flow of one exemplary energy level, here €19, which exemplifies that the
€, indeed converge to the expected single-particle energies d,, of the diagonalized Hamiltonian.
The single-particle energies flow from their starting values &, (0) to their expected value d,.
The main crossover takes place when b ~ n, i.e., when the energy scale connected to the flow
parameter b is in the region of €,. Beyond this value of the flow parameter, &, converges quickly
to d,.

Fig. 5.8 depicts the flow of the difference between the g, and the single-particle energies d,
of the diagonalized Hamiltonian. The flow parameter b/ at which the &, quickly converge to d,,
increases linearly with n. This corresponds to the fact that the convergence for the respective
energy level g, takes place when the energy scale connected to the flow parameter b is of the
order of the energy scale &,. This represents the RG-like character of the flow equation approach
as higher energetic processes are treated before lower ones.
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Figure 5.7: Flow of an exemplary rescaled single-particle energy A'%o for N =20, A=2.5, § =4-1073
and U = 0. The single-particle energy flows from its starting value & (0) to the expected single-
particle energy do of the diagonalized Hamiltonian which is obtained from an exact diagonaliza-
tion [118].

A" (e, - d,)

0 10 20 30 40 50
b

Figure 5.8: Flow of the difference A, (b) = A" (&, (b) —d,,) vs. the exponential flow parameter b for N = 50,
A=125, % =4.1073 and U = 0. The d,, denote the expected single-particle energies obtained from
an exact diagonalization. A, (b) is rescaled with a factor A" in order to bring all quantities to order
O(1). The exponential flow parameter b, at which the g, quickly converge to the single-particle
energies d, of the diagonalized Hamiltonian, increases linearly with n. Thus, the convergence for
the respective energy levels takes place where the energy scale connected to the flow parameter b
is of the order of g,. This represents the RG-like character of the flow equation approach as higher
energetic processes are treated before lower ones.
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5.4 Influence of the Interaction

5.4.1 Derivation of the Flow Equation

The next step is to introduce the interaction U > 0. In this case, it becomes impossible to derive
a closed system of differential equations without approximations. It was necessary to write
a program that is able to commute the Hamiltonian with the generator and to identify newly
emerging operators which are added to the Hamiltonian and the generator while constructing
the flow equation. Such a program was originally developed by S. Duffe [102] and was further
modified by T. Fischer [101, 104], S.A. Hamerla [103] and N.A. Drescher [105].

For the program used in this thesis, numerous adaptations have been incorporated to account
for the fermionic algebra and the operator basis with separated particle and hole states. The
main ideas, however, remain the same:

1. Set up the initial Hamiltonian H (0) in the basis O,,.

2. Determine if a term belongs to the generator. If it does, the commutator between the
generator contribution and the Hamiltonian is carried out and the resulting operators are
calculated.

3. Check which of the operators generated in step 2 are truncated.

4. Compare the remaining operators to those in the initial Hamiltonian by a hashing algo-
rithm. If the operator is found in the initial Hamiltonian, the term D; h; (1) h; (1) is added
to the right-hand side of the derivative of the coefficient 4, (/) belonging to the operator
On. If the operator is not found, it is added to the Hamiltonian with a new coefficient

gn (1).

5. Calculate the commutators emerging from the new terms and repeat step 2 to 5 until no
new terms emerge.

The resulting differential equations are solved numerically, e.g., by a 4th-order Runge-Kutta
algorithm [118]. We use the exponential flow parameter b (5.30) in order to solve the DEQs and
thus the resulting flow equations have to be modified by the factor In (A) A? from Eq. (5.32).

5.4.2 Generator

The generator of choice should at least fulfill gs-generator properties (cf. Sec. 4.2.4) so that
the ground state of the effective Hamiltonian becomes the vacuum |0), i.e., the state without
particles and holes. Additionally, we want to eliminate the hopping elements 7, in order to study
the influence of the interaction U on the single-particle energies &,.

Terms that must be included into the generator are terms that consist only of creation or only
of annihilation operators because a normal-ordered term yields zero acting on the vacuum as
soon as there is at least one annihilation operator present. Examples of operators included into
the generator are

T T T T T T T T T i T T
Cnionmay > Cmay anazcn3a3cn4a4 v Oy cnzazcn3a3cn4a4cn5a5cn6ae vt (5'38)
iy Cnpen 3 Cnyag CnaanCnsasCnaay 0 Cnyon Sy Cnz o Cnyony Cns s Cngots
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where the c-operators can be both, particle- or hole-operators (if cza is a hole-operator, the
notation also denotes hj;a and not the hermitian conjugated!). The sign in the generator is chosen
according to the change of the particle number induced by the respective operator. If the particle
number is increased, a sign 41 is chosen and a sign —1 if the number of particles is decreased.
So, if OAZgS denotes an operator that only consists of creation operators and #4; is its coefficient
in the Hamiltonian, then the gs-generator takes the form

Mo = L i (Ol — Ogs) - (539)

Additionally, we want to eliminate the hopping elements #, in order to gain the single-particle
energies €, under the influence of the interaction U. Thus, we additionally include

Mhopping = Ztrrl) (P;cpm-lc - P;rz+1apnc> + Zt;lzl (hfmhmg - hl+1chnc) (5.40)

n,o n,o

in the full generator

1 = Nhopping T Ngs- (5.41)

The sign in Eq. (5.40) is given by Eq. (5.28). Commuting two quartic operators yields terms with
up to six operators. Commuting these terms in turn produces terms with even eight operators and
so on. Furthermore, the local character vanishes because commuting a term acting on the sites
n and n+ 1 with a term acting on the sites n 4 1 and n 4 2 results in a term that acts on the sites
n and n+ 2. The number of occurring terms becomes too large to handle very quickly. There

are 162 = 256 ( pf), pf), hg), hf)) local operators acting on one site n. Thus, the full number

of terms increases with the chain length N according to Nerms = 256" which necessitates an
adequate truncation scheme.

5.4.3 Truncation Scheme

There are two major criteria by which we choose the truncation scheme. On the one hand, we
look at the range d (defined in Eq. (5.43)) of an occurring operator. On the other hand, the
number of operators Nops of the terms is considered. Our aim is to keep the operators local
during the whole flow and thus we will truncate all terms that act on non-neighboring sites and
study the influence of the number of operators.

As we truncate all operators with a range d > 1, all remaining terms act either on a site n or
on the sites n and n+ 1. We do not include any further truncations and track the norm of terms
with a fixed number of operators Nops. The norm is plotted against the smallest site n on which
the term acts and is defined as

G = \/Z\hi (Nops, ) | (5.42)

where A; (Nops, n) are the coefficients of terms containing Nops operators and the smallest site the
term acts on is n. We solve the resulting flow equation numerically by a 4th-order Runge-Kutta
algorithm and consider the norm (5.42) at large b where the differential equation has already
converged.
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Figure 5.9: Norm GNypo.n from Eq. (5.42) of terms with a fixed number of operators Nops and the smallest site
n on which the term acts vs. site n. The parameters of the chain are N = 50, A =2.5, % =4-1073,

% = 1073 and from top to bottom the number of operators Nops = 2, 4, ..., 12, 14. The larger the
number of operators contained in the term, the faster the operators vanish for increasing n (linked
to decreasing energies), i.e., operators with a large number of operators Nops are irrelevant. Thus,
truncating terms with a larger number of operators is a justified approximation.

Operators with a large number of operators Nyps decrease much faster for increasing n which
corresponds to decreasing energy scales. This is a strong indication that terms containing a large
number of operators are irrelevant and do not play a significant role in the flow of low-energy
contributions. Therefore, we neglect all terms containing more than six operators. Comparing
the results obtained for a truncation of terms containing more than six operators to the results
obtained without a truncation with respect to the number of operators yields almost indistin-
guishable results.

A much harder question to answer is how far it is justified to truncate terms with higher
ranges d. The range of a term is defined as

d= Z (n; —ngp) (5.43)

where ng is the smallest site occurring in the term while n; denotes the other sites on which the

operators act. We will consider results for d > 1 in Sec. 5.4.8 and discuss the influence of the
interaction-range.
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5.4.4 Effective Fixed-Point Hamiltonians

In order to study how far the Continuous Unitary Transformation approach as outlined in this
chapter is able to describe the crossover between the different energy regimes of the Anderson
model, explained in Sec. 2.7, we have to find a good criterion by which we can decide if we
see the crossover between the energy regimes. Well inside the different energy regimes, the
Anderson model can be approximated by simple single-particle Hamiltonians which can be
found from the chain representation (5.5) (c-chain representation). The energy regimes as well
as the fixed-point Hamiltonians are discussed in Refs. [1, 8].

As the flow parameter / can be interpreted as an inverse energy, we will start the flow at high
energies corresponding to the energy scales of the free-orbital regime. In this regime we can
construct the single-particle energies from the U = 0 Anderson model

N—1
Hio =V Y (dhcoo+ clods ) + X, 1 (haCurio +Chi1060) (5.44)
o

n=0,0

where the t, are given by Eq. (5.11). In principle, one can also set V = 0 which will have no
significant effect on high energy scales.

When the flow parameter / increases, i.e., energies are decreasing, we will cross the U-energy
scale and a singly occupied impurity becomes energetically favored. Thus, in the vicinity of the
impurity a spin-carrying state will be localized. This gives rise to the local-moment regime at
intermediate energy scales. As the energies are still far above the binding energy of the Kondo
singlet, only charge excitations are frozen out while spin fluctuations still occur. The effective
Hamiltonian describing this energy regime can be constructed from

N—-1

Hin= ¥ 1o (ChoCusio+Chiotus) +4 ¥ chaBapcop? (5.45)
nIO,G a7ﬁ

with J = 47‘/2. At first sight, it might seem as if the effective Hamiltonian of the local-moment
regime (5.45) and the one of the free-orbital regime (5.44) coincide for V = 0. But there is a
subtle difference as in the free-orbital regime the impurity is still present as a free level with
zero energy while the impurity is already occupied and decoupled from the rest of the chain in
the local-moment regime.

Finally, if the flow parameter becomes large enough so that the corresponding energy scale
lies below the Kondo temperature 7k, the formation of the Kondo singlet additionally freezes
out spin fluctuations on the impurity. The effective Hamiltonian describing the single-particle
energies of this regime is given by

N—-1
Hse= Y tn(ChoCyiiotChiiatio) (5.46)

n=1,0

and can be pictured as a screening of the impurity and the first site of the chain by the formation
of a singlet between them.

We can gain the expected single-particle energies in the respective energy regimes by diago-
nalizing the fixed-point Hamiltonians (5.44) - (5.46) — where the fixed-point Hamiltonian (5.45)
is diagonalized for J = 0.
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Figure 5.10: Rescaled single-particle energies A"g, from the diagonalization of the fixed-point Hamiltonians
(5.44) - (5.46) for N =42, % =4.10"3 and A = 2.5. These energy levels represent the expected
single-particle energies of the effective Hamiltonian from the CUT for b — oo in the respective
energy regimes.

Fig. 5.10 shows the single-particle energies from the diagonalized fixed-point Hamiltonians
(5.44) - (5.46) after rescaling the single-particle energies with a factor A” in order to bring all
energy scales to the same order.

As in each fixed-point Hamiltonian one site less is present, the first site in the free-orbital
regime is rescaled by a factor one while the first site in the local-moment regime is rescaled by
a factor A and in the strong-coupling regime by a factor A2.

If the CUT is able to describe the different energy regimes, we expect that the single-particle
energies A”"¢g, of the effective Hamiltonian for b — oo coincide with the single-particle energies
of the fixed-point Hamiltonians (5.44) - (5.46) (plotted in Fig. 5.10) in the respective energy
regimes [8]. We expect the crossover between the energy levels of the free-orbital fixed-point
Hamiltonian and the local-moment fixed-point Hamiltonian around the U-energy scale and the
crossover from the local-moment fixed-point Hamiltonian Hy )y to the strong-coupling fixed-
point Hamiltonian Hsc in the region of the the Kondo energy scale Tx. This is our benchmark
for determining if we are able to describe the crossover between the different energy regimes
within the CUT approach which will be analyzed in the following sections.

5.4.5 Residual Off-Diagonality of the Interacting Model

If the interaction U is introduced, the residual off-diagonality is at first sight of the same form
as in the case of U = 0 (cf. Fig. 5.4). The residual off-diagonality of the interaction terms has

60



5.4. INFLUENCE OF THE INTERACTION

10

—_

S,
—
N

153
S}

_.
oI

—_
(==

separated residual off-diagonalities [D]
&

10 - full ROD RSN \ -
—————— ROD of terms including four operators '§.§_\ '\\
. . . (SN
------- ROD of terms including six operators \.\\\.\ |
~2 \
10 80 m_ ‘\§§ ™
I
N
-
1 0-96 = I | I | I | I | I | ! | ! | ! | i l!
0 5 10 15 20 25 30 35 40

exponential flow parameter b

Figure 5.11: Separated residual off-diagonalities for N = 40, A = 2.5, IZ) =4-1073 and % = 1073, The full
ROD (dominated by bilinear terms), the ROD for terms with four and the ROD for terms with six
operators are shown. The ROD of terms with a larger number of operators vanishes faster than
ROD o A~ for large b which renders them irrelevant.

to be separated, e.g., by the number of operators in order to make their flow visible. Fig. 5.11
shows the full residual off-diagonality and the ones for four and six operators. Terms containing
more than six operators are truncated.

The residual off-diagonalities for terms with four or six operators vanish much faster than
ROD o A~” which renders them irrelevant and indicates that the interaction terms do not play
a significant role for the flow of terms acting on small energies.

This might already indicate that the correct low-energy physics of the Anderson model is not
covered within the CUT approach as used in this chapter because we expect that the crossover
from the local-moment to the strong-coupling regime is again driven by interactions and that
the single-particle picture breaks down during the crossover.

5.4.6 Single-Particle Energies of the Effective Hamiltonian

We now turn to the single-particle energies €, of the effective Hamiltonian for » — oo. The
single-particle energies for U = 0 flow to the exact single-particle energies of the non-interacting
model. As we now include the interaction U, the single-particle energies flow to a different value
for b — oo than in the non-interacting case.

The rescaled single-particle energies A”g, (o) are plotted in Fig. 5.12 for various values of
U.
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Figure 5.12: Rescaled single-particle energies A”¢g, of the effective Hamiltonian for b — e for N = 40, A =
2.5, % =4-107% and from left to right: § =1,107!,1072,1073,9-107%,8-107%, .., 2-107%,
1-107*. The single-particle energies of the fixed-point Hamiltonians are calculated from Egs.
(5.44) - (5.46) and are represented by the dashed red lines. We see a crossover from the single-
particle energies for U = 0 (which coincides with the free-orbital fixed point) to the expected
energy levels of the local-moment regime (cf. Sec. 5.4.4). In both regimes the norm of interaction
terms calculated by Eq. (5.47) are negligible and become significantly large only in the region of
the crossover. This is in agreement with the picture described in Sec. 5.4.4. The crossover to the
strong-coupling regime cannot be retrieved as the single-particle energies are not reaching the
reference energy levels of the strong-coupling regime (SC), although the lowest energy scale in
the system is well below the Kondo temperature Tx.

In Fig. 5.12 we additionally plotted the norm of local interaction terms

Gy =A"" [ |hi? (5.47)

1

where the /!, denote the coefficients of local interaction terms acting on site 7.
By a local interaction term we refer to a term that consists only of density operators acting
on the site n, e.g.,

T T T T i T T
pnTpnTpnipni ) pnTpnThnThnT ’ pnTpnTpn¢pn¢hnThnT' (5.48)
The local interaction terms are also rescaled with a factor A”~! in order to compare them to
the single-particle energies. Even after rescaling the local interaction terms they are almost zero

everywhere except for the crossover region on the U-energy scale where we see a shift of the
single-particle energies due to the interaction. We see two distinct regions linked to
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Figure 5.13: NRG results for the flow of the lowest non-zero many-particle energies with odd N and total
charge Q = 1 (with respect to half-filling) and total spin S = 0 (cf. Ref. [8, 10]). The lowest-
lying energy level from a state with one particle added to the ground state (Q = 1), where the
ground-state energy is set to zero, is plotted for % =4-1073 and from left to right: % =1,1071,
1072,1073,8-107%,6-107%,4-107*,2-10~* and 1- 10~*. The different expected many-particle
energies represented by the red dashed lines can be understood by the fixed-point Hamiltonians
(5.44) - (5.46). If the number of sites for the free-orbital regime N + 1 is odd, then the additional
particle is added to a zero energy level. The same is true for the strong-coupling regime as N — 1
must be odd as well. In the local-moment regime N is even and by adding a particle to the ground
state the energy is increased by the lowest positive single-particle energy.

the free-orbital and the local-moment regime where a single-particle picture holds well inside
the respective regimes and the single-particle Hamiltonians are well described by the effective
fixed-point Hamiltonians (5.44) and (5.45). The single-particle energies after diagonalizing the
fixed-point Hamiltonians are shown in Fig. 5.12 as the red dashed lines. The single-particle
picture breaks down in the crossover region between the free-orbital and the local-moment
regime where local interaction terms are not negligible anymore.

The appearance of the single-particle energies of the effective Hamiltonian is very similar to
NRG results (cf. Ref. [8, 10] or Fig. 5.13) when focusing on states where one particle is added
to the ground state (denoted by the total charge Q = 1 with respect to half-filling). We derived
the flow of the lowest non-zero many-particle energies from states with total charge Q = 1 and
total spin S = O (cf. Ref. [10]) of the Anderson model with a NRG program originally developed
by F.B. Anders which was kindly provided to us by S. Schmitt in order to compare our results
to those obtained by NRG calculations.

Fig. 5.13 shows the flow of the lowest-lying many-particle levels of states with Q = 1 and
S = 0. The reference energy levels of the different fixed-point Hamiltonians (5.44) - (5.46) can
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be obtained by the following reasoning.

The chain lengths of the effective fixed-point Hamiltonians (5.44) and (5.46) are N + 1 and
N — 1 which shall be odd. In this case, the chain length for the fixed-point Hamiltonian (5.45) is
N and must be even. Because the spectrum is symmetric around the Fermi level, a zero energy
level is present in the case of an odd number of sites and thus adding a particle results in the
same energy as the ground-state energy — which is set to zero. For an even N (in the local-
moment regime), the zero energy level is not present and thus adding a particle increases the
energy by the lowest single-particle energy present in the effective Hamiltonian. The expected
energy levels of the respective fixed-point Hamiltonians obtained from this reasoning are shown
as the red dashed lines in Fig. 5.13. The general structure of the results obtained with NRG is
very similar to the one gained with CUT.

For smaller interactions, below % = 1073, the local-moment regime is not as clearly distinct
in the CUT data as it is in the NRG data. Additionally, the local interaction terms are decreasing
very quickly with decreasing U and are already small for % — 1073 while they are almost zero
for % = 10~*. For such small % < 10~4, we see almost no development of the local-moment
regime within the CUT data while it is still clearly distinct in the NRG data. If we pass further
to ever smaller energies, we expect to see the single-particle energies reaching the U = 0 energy
levels again when crossing to the strong-coupling regime which is not observed in the data
obtained with the CUT approach.

It seems that the rapid decrease of the interaction terms with decreasing energies results in an
effective model that misses the correct low-energy physics of the Anderson model. This result
is not completely satisfying but we can, nevertheless, clearly identify the crossover from the
free-orbital to the local-moment regime.

5.4.7 Crossover from the Free-Orbital to the Local-Moment Regime

We want to study the crossover from the free-orbital to the local-moment regime further. On the
one hand, we are interested in the question how far the crossover region coincides with already
known results while, on the other hand, we want to study how far the interaction-range d from
Eq. (5.43) influences the results.

From NRG calculations [8] we know that the crossover between the free-orbital and the local-
moment regime occurs on an energy scale between % and % The site n of the chain is linked
to the energy scale by

& = % (1+AH)Aa™. (5.49)

Thus, a given energy &, corresponds to the site

l n 2¢,

R EV G
n= A (5.50)

In Fig. 5.14 we compare the crossover regions obtained with the CUT to the sites n connected
to the energy scales % and % We find an almost perfect agreement of the crossover region
for large values of U. In the energy interval in which we expect the crossover between the
free-orbital and the local-moment regime to occur, the single-particle energies switch from the
single-particle energies of the free-orbital fixed-point Hamiltonian (5.44) to the single-particle

energies of the local-moment fixed-point Hamiltonian (5.45).
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Figure 5.14: Rescaled single-particle energies A”¢, of the effective Hamiltonian for b — o for N = 30,
A=25,%=4-10"3and from left to right: 4 =1,1071,107%,1073,8-10%,6-10%,4-10"%,
2-10"*and 1-10~*. Terms with more than six operators or a range (5.43) d > 1 are truncated.
The dashed red lines denote the single-particle energies of the free-orbital fixed-point Hamilto-
nian (FO) (5.44) and the local-moment fixed-point Hamiltonian (LM) (5.45). The dashed black
vertical lines mark the energy intervals % <E< % which denote the expected crossover region
known from NRG calculations [8]. For large values of U, the crossover takes place exactly in the
expected regions. For smaller values of % < 1073, the crossover takes place beyond the expected
energy scale and is less distinct than in the NRG data.

For smaller values of U, we again observe that the crossover is less distinct than it is in the
NRG data. Additionally, the crossover takes place beyond the expected energy scale which is
an additional hint towards the fact that we might lose some important information during the
flow due to the truncation.

5.4.8 Influence of the Interaction-Range

In Fig. 5.15 the single-particle energies with an interaction-range d = 7 are shown. Terms with
more than six operators are truncated just as before but this time terms with an interaction-range
up to d =7 are also taken into account. The dotted lines show the single-particle energies from
Fig. 5.14 with d = 1 in order to illustrate the improvement of the results for higher interaction
ranges.

The results for larger values of U are already in good agreement with the NRG data and are
thus not significantly affected by the interaction-range. When we consider smaller values of
U, the results for d = 7 show a much more distinct crossover than for d = 1 which is in good
agreement with NRG calculations. Furthermore, we see a shift of the energy scale of the
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Figure 5.15: Rescaled single-particle energies A"g, of the effective Hamiltonian for b — o for N = 13,

A=25, % =4-10"3 and from left to right: % =1, 107!, 1072, 1073, Terms with more than

six operators or a range (5.43) d > 7 are truncated. The dotted lines show the results from Fig.
5.14 where the interaction-range was d = 1. The dashed red lines denote the single-particle en-
ergies of the free-orbital fixed-point Hamiltonian (FO) (5.44) and the local-moment fixed-point
Hamiltonian (LM) (5.45). The dashed black vertical lines show the energy intervals 2% <E< %
which denote the expected crossover region known from NRG calculations [8]. Compared to the
results for d = 1 (cf. Fig. 5.14), we find a more distinct crossover in the correct energy region for
smaller U. Thus, including larger interaction-ranges improves the results further.

crossover between the results for d = 1 and d = 7 towards the correct crossover region. Thus,
we are able to improve the results by including larger interaction-ranges d.

In summary, we can state that the CUT approach as used in this chapter is able to describe
the crossover from the free-orbital to the local-moment regime. The approach works very well
for larger values of U on higher energy scales. The calculation effort for these parameters is
decent and the results fit the NRG data. For smaller values of U, however, the numerical ef-
fort increases significantly as large interaction-ranges d are required. If we wanted to approach
smaller values of U, we would need even larger values of d, i.e., we would have to include even
more terms which would increase the calculation effort further.

We find no indication that the strong-coupling physics is captured within this approach. Thus,
we limit our analysis to the crossover between the free-orbital and the local-moment regime. In
the next chapters we investigate two different approaches with the aim of capturing the strong-
coupling regime.
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6 Truncation in Orders of the Coulomb
Interaction U

6.1 Parametrization and Reference State

In this chapter we use the energy parametrization (2.58) and choose the ground state for U = 0
as the reference state which is given by the Fermi sea

Iref) = |FS). 6.1)

The single-particle energies &, and the weights ¥, are given by Eq. (2.57) where the hybridiza-
tion is already absorbed into the parameters &, and 7J,. We normal-order the operators with
respect to the Fermi sea which results in the Hamiltonian

H= Z tayny - Cj;lccnzc D+ Z Unynonsny ijc;rzz¢cn3¢cn4¢ :+Eo1, (6.2)

ni,n2,0 {I’ll}

cf. Eq. (2.58), where an additional energy constant due to the normal-ordering was dismissed
so that Ey = 0 and the coefficients for the starting Hamiltonian are given by

U
tnlnz = 8111 6111112 + <£d + E) '}’nl ynz ) Un1n2n3n4 = UYnl Ynﬂ’ng %14 ) EO = O (63)
The single-particle energies €, and the weights 7, are given by Eq. (2.57). In order to derive the
coefficients in the form (6.3), we use
2 1
L%l Cotus) = 5 (6:4)
n

Note that the hopping terms t,,,, vanish in the particle-hole symmetric case &g = —%.

In this chapter we will derive the impurity contribution to the susceptibility x4 so that we
need to apply a magnetic field to the impurity which can be achieved by the substitution

& <+— €& —0h (6.5)

where 6 = £1 is the sign connected to the spin index of the operator ngq 5. The energy h is
connected to a magnetic field B viah = % geUnB where g 1s the Landé g-factor while ug denotes
the Bohr magneton. In the following, we refer to the energy 4 as the magnetic field.

6.2 Flow Equation and Truncation

The flow equations in this chapter are derived analytically. Since we will apply a magnetic field
to the impurity, we consider a spin-symmetry broken case and thus explicitly use spin-dependent
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coefficients. The generator is chosen to be of the general structure

_ t . . Z U LT .
n - Z nnlnz,(‘)' . C}’lIO'C}’lQG St nn1n2n3n4 . Cn]Tcnz\Lcn3‘LCn4T . (66)
ny,ny,0o {}’l,}
R,o RN BN | .
+ Z nn1n2n3n4 : CI’llGCnQGCn3GCn4G :
ny,n,n3,n4
ny>ny,ng>n3
with the coefficients
t ot c _ U R.o §Ro c
nnl”Z»G o S”1n276t’l1n2’ nn1n2n3ﬂ4 o Sn1n2n3n4U”1”2”3"4’ nn1n2n3n4 n1n2ﬂ3n4Rn1n2n3n4 (6.7)
U R,o . . X
The coefficients s, ., 5> Siinynsn, A0 Sninynn, are arbitrary so far and will be specified later

when calculating explicit results. The third interaction term, where all operators have the same
spin, is not present in the initial Hamiltonian but will emerge during the flow. We will eliminate
some of these terms and thus include them in the generator.

We calculate the commutator of 17 from Eq. (6.6) and H from Eq. (6.2) and derive the flow
equation (4.4). New terms emerge during the flow which are discussed later (cf. Eq. (6.10)).
The flow equation stemming from the initial Hamiltonian (6.2) is of the form

Ay = 2 Y 000 (1-65) (1-60) U2 s, (6.84)
X1,X2,X3,X4
2
) shn (67 -67) (1)
X1,X2,0

al[;[]nz = Z (S;rllxl - s)Tcln2> nixy x1n2 + Z ( X]XQ n1x2x1n2> <9\L ei/ ) t)iC/1X2U”1x2xln2

X1

+ Z (Si]lxlxzxz - Szlc]sxzxmz) (9}1 (1 - 9}2 - 9xT3> + exiz 9;3) Uan1x2x3Ux3xzx1"2 (6.8b)

X1,%2,X3

al n1n2 Z (Sriz]xl - Si]l’lg) nixy x1n2 + Z ( X])CQ le’l]l’lzX]) <9T GT ) t)I]XQU)inanl

X1

+ Z (Szlc]mxzxz o Szlc]zxznle) (9;1 (1 B 9;2 o 9x¢3> + exTz 9x¢3) Uxim sy Unyxanyn (6.8¢)

X1,X2,X3

_ to_w 7 LW !
alUnl’12n3n4 - Z (Snlx] sx|n2n3n4 tn]x] UX1n2n3n4 + SnQX] Sn]x|n3n4 t}’lz)C] Un1x1n3n4
X1

X1

U 1 1 Y il i
+ Z (Sn1n2x1n4 - Sx1n3) tx1n3Un1n2x1n4 + Z sn1n2n3x1 - sx1n4 tx1n4Un1n2"3x1
X1

X1

¥ (Hnm — ) UnnseiUssensn, (1 65 = 61,) (6.8d)

X1,X2

U U !
+ Z (Sn1x1n3x2 _Sx2n2x1n4) Unixins Uxynoxing (9 — 0 >

X1,X2
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where the starting values are given by Eqgs. (6.3) and (2.57) while

67 = (ChoCuc) (6.9)
stems from the normal-ordering with respect to the Fermi sea. The starting value for Ej is set to
zero because we are only interested in the dependence on the magnetic field 2 which does not
affect the dismissed constant as the magnetic field cancels due to the different signs for different
spin. All emerging terms are normal-ordered with respect to the Fermi sea in order to capture
all feedback of newly emerging terms. Useful calculation rules for products of normal-ordered
operators are described in App. 9.7.

When calculating the commutator of two quartic terms with the coefficient Uy, ,yn3n,, NEW
terms emerge which are of the form

HneW = Z Z Rn1n2n3n4 n16C226Cn36cn46 (610)

G ni,ny,n3,ng
ny>ny,ng>n3

ch ool of .
+ ZZ Z anznz.nwsna Cn16€n,6n3,6Cn46n56Cne0 - -

G ny,ngny,n3,ng,ns
n3>np,ng>ny

The flow of the newly emerging R- and I'-terms from Eq. (6.10) are given in Egs. (6.11a) -
(6.11d). The DEQ describing the generation of the R- and I'-terms during the flow is given by

R} mymsny = %Wz (Mipeynans Unixasing = Maywsyng Unaxians ) (exﬁ - exg) (6.11a)
_ %Mz (M8 e g Uniyeins — Mo oy Unaians) <9xﬁ o )
_ %2 (1113 Unsnssine = Moty Unisions) (84, = 604
+ %xhxz (M1 329y Unavacans = My Unixixans) (6)}1 -6} )

IRy sy = %mz (1Y o nans Usamnaxs = Ny Usinamss ) (ejl - 9;) (6.11b)
= 3 X (s~ W Usnie) (0, 01)
_ %xm (MY pinse Usomangxs = Mmoo, Usimimss ) (QCTl -6 )
+ % (Mt m1mga Uiomanssy = Moo Usingnans) <9xT1 o] >

=
_
=
)
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311_‘21”2”3”4”5”6 - Z(nxlmnsnﬁU"l"anl nn1n2n4x1 xln3n5n6) (6.11¢)
X1
o Z(ngnzns%Umnanm nn1n3n4x1Ux1n2n5n6)
X]
o Z(ngn3n4n6Un1n2n5X1 nnlnznsxlleanunﬁ)
X
+ (ngnznwaU"lMHSM nzn;nm x1n2n4n6)
X
81 ninan3ngnsng = Z nn3xln6n5Un2nl-xln4 nn2n1x1n4 n3xinens (611d)
X

U U, U
nn2x1n6n5 n3nixing nn3n1x1n4 naxinens

U
- Z nn3x1n6n4Un2n1xl"5 nnznlxlnjUn3xl"6n4

)
)
)
)

nngxl nenyg Un3”1x1”5 nn;nlxlns Un2x1n6n4

In order to justify a truncation scheme, we want to use deepCUT ideas (cf. Sec. 4.3.4) targeting
the ground-state energy Ey. We are interested in the second derivative of Ey with respect to the
magnetic field 4 (cf. Sec. 6.6) and thus we want to be exact up to order /2 for Ey. Additionally,
we want the second derivative of E to be correct up to order U 2 and thus Ey must be correct
for the orders A"U™ with n,m < 2. In the following, we mean by correct in order #*U” that we
are correct in all orders for which /*U™ with n < x and m < y. For the order hU 2 for example,
these are the orders U, U2, h, hU and hU?.

In this case, the I'-terms can be neglected as they act in lowest order #°U? or h*U?> on the
ground-state energy Eo while we only want to include terms up to order #/>U?. Additionally, we
can argue from a scaling perspective that terms with a higher number of operators will scale
faster to zero than terms with less operators (cf. Sec. 6.8). The R-terms, on the other hand, are
quartic operators and thus not negligible from a scaling perspective. Additionally, there is an
action on the constant E( in order h2U? from R-terms, i.e., there is no justification to neglect
such terms. Nevertheless, from a deepCUT point of view we only need to take the commutation
of R-terms with bilinear terms into account because the commutation between a R-term and
another quartic term is at least of order U3.

The commutation of an R-term and a bilinear term is at least of order 2ZU? and the resulting
terms will contribute to the right-hand side of the flow equation for the bilinear terms and the
R-terms. Since we are using deepCUT ideas, we are only interested in the orders A"U™ with
n,m < 2 for Ey. The action induced by the order hU? of the hopping terms on Ej is at least of
order h*U? (one additional commutation with bilinear terms increases the order of by one)
while the order hU? from the R-terms acts at least in order #3U? on E, (one commutation with
a bilinear term affects the order h/2U? of the bilinear terms while one further commutation with
a bilinear term affects the order #3U? of Ep). A commutation with a quartic term would result
in an expression which is of order U 3. Thus, we have to include the right-hand side of the
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flow equation stemming from the commutation of bilinear terms with R-terms for the derivative
of bilinear terms but we can neglect them for the derivative of the R-terms. The remaining
commutations described above result in the additional differential equation

_ (o3 (o2
aanlnzngm; - ( ny4ny + tn3n3 - tnznz o tnlnl) nnlnzn3n4,0 (6.12(1)
(o2 _ (e} (e (o2
atnan - Z Z sx2x1 )Cln]le’lz, tx2x1 l1n1)~2n2 exl 9)(2 (612b)
x| <nyxp<np
c (e2 (o2
Z Z SXZXI n1x1x2n2» tx2xl ”1x1x2n2 exl 9)62

N

)
)
- Z Z S)CCFZXI xlnln2x2» )
)

X2X] llnlnzxz X1 X2
xp<nyxy>np
c c c
+ Z Z sxle n]x1n2x27 txle nlxlnzxz 9 exz
X1>n1 Xp2>ny

where the action on the hopping elements (6.12b) stems from the commutation of the R- and
the hopping terms. In App. 9.8 the truncation scheme is outlined further. We use the DEQs
(6.8a)-(6.8d), (6.11a), (6.11b), (6.12a) and (6.12b) and solve them by a 4th-order Runge-Kutta
algorithm. With this system of differential equations the targeted quantity Ey is exact for the
orders /U™ with n,m < 2.

6.3 Symmetries

There are two symmetries in the system which are conserved during the whole flow and can be
used to increase the efficiency of the calculation. Without applying a magnetic field (2 = 0) the
system conserves spin symmetry

o G o 9
tﬂlnz - tnlnz ’ Un1n2"3n4 = Umninyans » Rn1n2n3n4 = Rn1nzn3n4 (6-13)
and in the particle-hole symmetric case (&g = —%) without a magnetic field (h = 0) the coeffi-
cients additionally exhibit particle-hole symmetry
(e2 _ (e _ (e _ poO
bning = “liiny » Un1"2n3n4 — Ynynznofy Rn1n2n3n4 Rn4n3n2n1 (6.14)

where 7i; denotes the site for which

& = —&,. (6.15)
Of course, the fact that the Hamiltonian is self-adjoint® additionally implies
o __4+0 _ o _ po
t’llnz - tnzm ’ U”1”2"3n4 — Yngnznany o Rl’l]nznql’u Rngn4n1n2 (6-16)

If a magnetic field is introduced, the symmetries are reduced to Eq. (6.16) and the symmetry

C,Tu7 <> ¢z Which implies

(o2 _ (¢ _ o (e __ poC
tnlng - tﬁzfll ) Un1”2n3”4 - Un3n4n1n2 ’ Rn1n2n3n4 Rn4n3n2n1 (617)

The hermiticity of the Hamiltonian is not really a proper symmetry but manifests in the coefficients in a similar
way.
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6.4 Choice of the Generator

The generator should at least fulfill gs-generator properties (cf. Sec. 4.2.4). The bilinear part of
the generator is chosen to be

Mo = 580 (&5 = &) iy (6.18)
The criteria for the sign of quartic terms are chosen by the signs of the energy differences

&) — &l

ng

& — &

v &l —E&n, &L —gl. (6.19)
If all energy differences from Eq. (6.19) are positive, then we choose a positive sign +1. If, on
the other hand, all energy differences (6.19) are negative, then a sign —1 is chosen. Through this
choice the generator fulfills gs-generator properties. Thus, the sign in the generator is defined

as

+1 if e,Il —824 >0, e,%z —e,% >0, 821 —e,% >0, eiz —824 >0
Smmnms = & —1 if &l —&l, <0, & —e <0, gl —eh <0, & —gl, <0 . (6.20)
0 otherwise

We also need to eliminate some of the emerging R-terms from Eq. (6.10) as well in order to
eliminate all terms that couple to the Fermi sea and thus

o (o3 (e} (e} o (o2 (e} (o2 (e}
. +1 ?f 8’},1_8’2,4>0’ 8,3—8,?>0, s,g—e,?>0, 8’3_8’§,4>0
Spmmns.e = —1 if & —¢&;, <0, & —¢&. <0, g —¢, <0, g’ —¢g; <0 .(6.21)
0 otherwise

The generator (6.6) with the sign functions (6.18), (6.20) and (6.21) fulfills gs-generator prop-
erties because all remaining terms in the effective model yield zero acting on the Fermi sea. If
the resulting DEQ converges, the ground state of the effective Hamiltonian will be the Fermi
sea.

6.5 Numerical Results of the Flow without Magnetic Field

6.5.1 Residual Off-Diagonality

At first, we will focus on the particle-hole symmetric case (&g = —%) without a magnetic field
(h = 0). The coefficients t,,,, for n; # ny are zero for [ = 0 (cf. Eq. (6.3)) and thus emerge in
lowest order U?.

Fig. 6.1 shows the residual off-diagonalities for the different coefficients of the Hamiltonian
(6.2) and (6.10). The residual off-diagonality converges and thus results in an effective model
with the Fermi sea as its ground state. We separate the residual off-diagonality of the different
contributions (bilinear, U- and R-terms), i.e., for the ROD of the bilinear terms only bilinear
contributions are included into the generator while only U-terms are included in the ROD for
U-terms and the same applies to the ROD of R-terms.
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Figure 6.1: Residual off-diagonality for the Anderson model with N =16, A=6, J; = 0.01414, ¥ = 1073 and
h = 0 for the different coefficients from Eqgs. (6.2) and (6.10). The residual off-diagonality vanishes
for / — oo and thus the CUT constructs an effective Hamiltonian without any divergences with the
Fermi sea as the ground state. The dominating part of the ROD for all / is the interaction part given
by the coefficients Uy, nyn3n,- The R-terms from Eq. (6.10) and the bilinear hopping terms are zero
for [ = 0 and emerge during the flow in order U2. They remain smaller than the interaction terms
during the whole flow.

The hopping terms as well as the R-terms are zero for / = 0 and remain smaller than the in-
teraction contribution of the U-terms during the whole flow. The full ROD almost completely
coincides with the ROD of the U-terms throughout the whole flow.

6.5.2 Interaction Vertex at the Fermi Level

Hewson developed a renormalized perturbation theory (cf. e.g. Ref. [50]) from which he con-
structs an effective low-energy Hamiltonian describing the correct strong-coupling physics. He
finds a renormalized interaction strength U = 4Tk for large enough values of %. Motivated
by this finding, we investigate the behavior of the low-energy interaction vertex Uy pppnpng a8 it
describes the interaction of quasi-particles at the Fermi level. Note that there is no need for the
two approaches to agree on this point. Nevertheless, similarities or differences between these
two approaches are worthwhile to study.

Fig. 6.2 depicts the flow of the Uy zupnpng for various initial interaction strengths U.
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Figure 6.2: Renormalized interaction vertex uy,, from Eq. (6.22) at the Fermi level &g = 0 for the Anderson
model with N = 16, A =6, }; = 0.01414, from top to bottom 10°5 = 0.2, 0.4, ..., 2.8, 3 and
h=0. The inset shows the renormalized interaction vertex u, (o) of the effective Hamiltonian for
I — co. The renormalized interaction vertex i, (o) decreases linearly with U and even becomes
attractive over some parameter regime before it increases again.

The interaction vertices U,,;;;,, are normalized to their initial value

Unnnn (l)

() = G 0)

(6.22)

so that we can compare them for different U. Instead of an exponential behavior, we rather find
a linear one and the interaction uy, (e=) becomes even attractive when U increases. At some
point, the linear behavior ceases and uy, (eo) starts to increase again. This is an inconclusive
result because, as stated earlier, it is unclear if the two approaches necessarily have to coincide
in this point. Nevertheless, we can state that we do not find an exponential behavior for the
low-energy vertex up,, (o).

6.5.3 Interaction Vertex on Different Energy Scales

Fig. 6.3 shows the u, defined in Eq. (6.22) for different n. The smaller the energy scales on
which u, acts, the larger the renormalization of u, during the flow. At large energy scales the
u, show almost no renormalization which corresponds to the free-orbital regime. For small
energies, the u, exhibit the same flow.
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Figure 6.3: Renormalized interaction vertex u, from Eq. (6.22) for the Anderson model with N = 30, A = 3,

% =0.01414, % = 1073 and & = 0. The local interaction terms on high-energy scales are not

renormalized (free-orbital regime) while there is a strong renormalization at small energies. The
inset shows the difference of the renormalized interaction vertex uy, (eo) to the interaction vertex
Up (o0) at the Fermi level &g = 0 for / — oo vs. the site n. At small energies, the local interaction
vertices u, (1) exhibit the same flow.

As the results are inconclusive so far, we need a better criterion to decide if we have taken the
important contributions into account in order to describe the strong-coupling physics. In the
next sections we will apply a magnetic field / in order to calculate the impurity contribution to
the magnetic susceptibility )4 for small 4.

6.6 Magnetization and Susceptibility

The calculation of the impurity contribution to the susceptibility x4 is a good criterion to decide
if we are able to describe the Kondo effect. On the one hand, we are able to calculate this
quantity without an observable transformation while, on the other hand, we know precisely
what to expect if we capture the low-energy physics correctly [50, 119].

The impurity contribution to the susceptibility yq4 is given by

 g2ud

= 6.23
4Tk (6.23)

Xd

for large enough values of ﬂ%. We can calculate this quantity within our approach by applying
a magnetic field A to the impurity in order to capture the impurity contribution alone. The
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magnetic field 4 is incorporated into the Hamiltonian (6.2) through the substitution
& <— & —Oh. (6.24)

Note that the substitution will lead to bilinear terms in order / in the initial Hamiltonian, even
for the particle-hole symmetric case & = —%, cf. Eq. (6.3). Thus, not only the spin symmetry
is broken by applying a magnetic field but the particle-hole symmetry as well. We determine
the susceptibility by starting from the Anderson model in the form

H(h)=H(h=0)—) chnys (6.25)

where the substitution (6.24) was used. Calculating the ground-state energy E results in

Eo = (gs|H|gs) = (gs] (H (h=0)— Zchnd,a> |gs). (6.26)

Taking the derivative with respect to the magnetic field yields

dEo _ , d(esles)

The norm of the ground state is independent of the magnetic field as it is normalized to one.
Using additionally the definition of the magnetization of the impurity

_ 8eUB
2

m (h) (gs|ng s —nq||gs) (6.28)

we find

_ge.uB@
2 dh’

m(h) = (6.29)
As the generator outlined in Sec. 6.4 fulfills gs-generator properties and we normal-order the
operators with respect to the Fermi sea (chosen as the ground state of the Hamiltonian (6.2)
for &4, U and h = 0), the Fermi sea becomes the ground state of the effective Hamiltonian.
Additionally, all remaining operators yield zero acting on the Fermi sea and thus the constant
E(y must converge to the ground-state energy of the effective model.

We can find the susceptibility for # = 0 by differentiating Eq. (6.29)

2,2 12
8clp d Ey
= — e ) 6.30
Xd § A, (6.30)
Thus, we expect to find
d’E, 1
- — = — 6.31

The next sections present the results for the flow in the case of a finite magnetic field.
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6.7 Numerical Results of the Flow in Finite Magnetic Field

6.7.1 Residual Off-Diagonality

When a magnetic field is applied, the starting values remain the same as in Eq. (6.3) but with
the additional term

tl’(;n = —Gh’}’n’}/m (6.32)
which stems from the substitution (6.24). The term (6.32) explicitly breaks the spin symmetry

as well as the particle-hole symmetry.
Fig. 6.4 depicts the residual off-diagonality for a finite magnetic field % =107,
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Figure 6.4: Residual off-diagonality for the Anderson model with N =16, A =6, TV) =0.01414, % =103 and
a magnetic field % = 107>, In contrast to Fig. 6.1 (where & = 0), the bilinear terms are non-zero
for [ = 0. In the early flow, the interaction terms Uy, n,1;n, dominate while the bilinear terms take
over at larger /. The DEQ converges for finite magnetic fields and yields an effective model with
the Fermi sea as the ground state.

In contrast to the residual off-diagonality for 2 = O (cf. Fig. 6.1), bilinear terms in order / are
already present for [ = 0 (cf. Eq. (6.3)). For & = 0, the interaction term dominates the residual
off-diagonality throughout the whole flow while for 4 # 0 the hopping will become the most
dominant part for large /. The differential equations (6.8a)-(6.8d), (6.11a), (6.11b), (6.12a) and
(6.12b) still yield an effective model for i > 0.
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6.7.2 Ground-State Energy and Susceptibility

For now we are interested in the constant £y which converges to the ground-state energy of the
effective Hamiltonian.

Fig. 6.5 shows the flow of E( for different magnetic fields 4. The influence of the magnetic
field is very small so that we need to look at the inset of Fig. 6.5 in order to see its influence. As
expected, the ground-state energy is reduced by the magnetic field .
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i B, -3.320e-05 - =
06+00 Eo -3.325e-05 |- =
-3.330e-05 — .
=} -3.335¢-05— = 7
6 -le-05 — —3.3406—05_ Connnl Lol | |_ ]
o - 1e+03 le+04 le+05 .
i flow parameter 1 [D-l] 7]
-2e-05— _|
-3e-05— _|
'46_05 IIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1
1e+00 let+01 1e+02 1e+03 le+04 let+05

flow parameter | [D'l]

Figure 6.5: Flow of the constant Ey from Eq. (6.2) for the Anderson model with N = 16, A = 6, % =0.01414,

% = 1073 and from top to bottom 1061% =1,2,...,9, 10. The inset shows the flow for large / with a
higher resolution in order to see the very small influence of the magnetic field. As we expect from
second-order perturbation theory, the ground-state energy is reduced by the magnetic field.

The inset shows the numerical difference ratio of the effective model
AEy(h)  Eo(h+Ah)—Ey(h)

: 6.33
Ah Ah (6.33)
If we assume the form
Eo(h) = a+ Bh+yh® (6.34)
for the ground-state energy, we find for the numerical difference ratio (6.33)
AEy (h
AO}E ) _ B+ yAh+27h (6.35)
where the coefficients are given by
2m (0 4
(X:E()<h:0), ﬁ:_ ( )7 '}/:_% (6.36)
8eUB 8e ALLB
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Figure 6.6: Ground-state energy Ej (e<) of the effective model for / — oo for the Anderson model with N = 16,
A=6,%=0.01414, Y =10 % and 4 = 10 °. The ground-state energy is reduced with increasing
magnetic field A. It is well approximated by Eq (h) = o + Bh+ vh?> with B ~ —0.0007585 and
Y~ —2042D~'. The inset shows the difference ratio (6.33). We see that the approximation (6.34)
is quite accurate for the chosen values of i and Ah. B’ =  + yAh = —0.0028 is also in agreement
with Eq. (6.37). Thus, we can indeed determine the susceptibility by Eq. (6.30) using the numerical
results.

As long as Ah is small enough so that Eq. (6.34) is appropriate, we can derive the susceptibility
from the slope of the numerical difference ratio (6.33) with respect to the magnetic field (cf.
Fig. 6.6).

Fig. 6.6 depicts the ground-state energy Ej in dependence of the magnetic field. A discretiza-
tion error in order Ak influences the linear contribution 8 in Eq. (6.34) according to

B’ =B+ vAh (6.37)

which, however, is not of interest when calculating the susceptibility )4 as the susceptibility is
only determined by the second-order contribution 7. Thus, Fig. 6.6 shows that Eq. (6.34) is a
good approximation for the chosen values of /2 and Ak in order to calculate the susceptibility x4
which can be determined by Eq. (6.30) as the slope of the difference ratio (6.33).

So far the numerical results show the expected behavior for the ground-state energy E (co).
Thus, we can study how far the strong-coupling physics of the Anderson model is captured by
the differential equations (6.8a)-(6.8d), (6.11a), (6.11b), (6.12a) and (6.12b).

In Fig. 6.7 we calculate the ground-state energy for different values of & with %’ =107% and
derive the susceptibility x4 from Eq. (6.30) for various values of U and V.
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Figure 6.7: Logarithmic representation of the impurity contribution to the susceptibility xq derived from the
second derivative of the ground-state energy Ej (o) with respect to the magnetic field (6.30), nu-
merically evaluated by the difference ratio (6.33) for finite % = 107° for the Anderson model with
N =16, A = 6 and from top to bottom % =0.01 (blue), 0.01414 (red) and 0.02 (green). There is a
clear tendency towards an exponential increase of the susceptibility which is in agreement with the
expected behavior (6.23). The exponential behavior is one of the benchmarks whether a method is
able to capture the strong-coupling behavior. However, the exponent differs by a factor % from the
expected exponent while the factor A5 from Eq. (6.39) is an expected discretization effect.

We find an exponential increase for the curvature of the ground-state energy Eg (o) with in-
creasing U and thus an exponentially increasing susceptibility

U

_ 1y U
Ya= e 2 (6.38)

which is in agreement with the expected qualitative behavior (6.23) but differs by a factor % in
the exponent. The factor

IA+1

Ax = =
AT oA

InA (6.39)
included in Eq. (6.38) is an expected discretization effect [8].

In conclusion, we can state that it is a promising observation that the CUT approach is able
to capture the exponential dependence on the interaction U as this is a good benchmark for the
successful description of the strong-coupling behavior of the Anderson model. However, the
exponent differs by a factor % from the expected exponent and the results become worse for
larger values of U.
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Further investigations are required to identify the origin of the missing factor of two. An
obvious possible source is the truncation scheme. By applying deepCUT we intended to use a
systematic way of deciding which terms to neglect. But, of course, we still might miss some
important contributions. We used various variations of the truncation scheme, e.g., either by
completely neglecting the R-terms or by taking them fully into account. Such variations have
only a minor influence on the susceptibility and do not affect the exponent. Including the I'-
terms with six operators is not realistic as the calculation effort is already very large when only
including quartic terms.

It could also be necessary to modify the generator in order to eliminate more terms. To this
end, one could study the sign-generator

ninaning

SShnanuny = 520 (&), + 65— &, — e, ). (6.40)

Because of the huge calculation effort of this approach, we want to reduce the system of differ-
ential equations by introducing a scaling expansion which is presented in the next sections.

6.8 Scaling Approach to the Flow Equation

In the previous sections we were able to derive an exponential increase with respect to the
interaction U for the susceptibility x4 over some parameter regime. Therefore, it is interesting to
investigate the differential equations (6.8a)-(6.8d), (6.11a), (6.11b), (6.12a) and (6.12b) further.
In the present section we do not justify the truncation scheme in orders of a small parameter,
which so far was U, but use scaling arguments instead.

The scaling approach results in a small system of differential equations which can be solved
easily. The aim of the following sections is to introduce a new kind of systematic expansion in
the scaling parameter A and examine if this generates an appropriate approximation scheme.

All calculations in this chapter, the numerical treatment of the last sections as well as the
scaling approach of the following sections, are new and have not been reported so far.

6.8.1 Scaling Dimension

We introduce a new quantity, the so-called scaling dimension d, by studying a simple example
of a diagonal Hamiltonian

D
Hp = Z/Dx ccte. s d. (6.41)
L ).

In the spirit of the scaling approach from Chap. 3, we focus on smaller energy scales and look
at a model with a reduced bandwidth

AD
Hy =Y / X e dx (6.42)
(o2

with A € [0, 1]. We can now rescale the Hamiltonian with the substitution u = 7 in Eq. (6.42)
which leads to

D
A=Y / gl du (6.43)
L /.
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with

P i
Hy==P, ¢ =VAc) . (6.44)

The new operators cm fulfill standard fermionic anticommutator relations. We also rescale the
Hamiltonian so that the diagonal part has scaling dimension zero

A% = A°Ap. (6.45)

Hp denotes a Hamiltonian of the form (6.41) but with the rescaled operators (6.44). Next, we
analyze the scaling dimension of an operator of the general structure

1
2 N 2N
. T .
= i) ye : G Xi0; - . .
Hoy = Z/ / [pr]r (c1renton) [ Lo T] €nop: drodioy.  (6.46)

{oi} i=1 i=N+1

Following the scaling steps (6.41) - (6.43) leads to

1
2 N 2N
A = AN 12/ / [Hp ),u,] s i) [1elo T1 Cuo : dur..duay  (6.47)
{oi} i=1 i=N+1

from which we can see that an operator of the form (6.46) has scaling dimensiond = N — 1 as
Ay = AN Ay (6.48)
when focusing only on the leading order of the coefficients in Eq. (6.47)
s (x1,...,x2v) <+ Tg(er,....er) =15. (6.49)

Thus, the major finding is that the more operators a term contains, the faster it scales to zero
and the less important it is for the low-energy physics.

In order to account for the A-dependence of the coefficients, we use a Taylor expansion. The
only contribution of the expansion that does not increase the scaling dimension is the leading
order. From the result (6.48) we find the scaling dimensions for bilinear and quartic terms

A} =A°A,, H} =A'H,. (6.50)

The diagonal part from Eq. (6.45) has scaling dimension d =0 by definition. The bilinear terms
with constant I" also have scaling dimension d = 0 while quartic terms scale with d = 1.

6.8.2 IR-Approximation and Scaling Expansion

The argument used in Eq. (6.49) gives a systematic justification for the approximation in the
”poor man’s scaling” from Sec. 3.2 and for the IR-approximation of the Continuous Unitary
Transformation approach from Sec. 4.6, respectively.

The argument for the “poor man’s scaling” approach is straightforward. The interaction term
in the Kondo model is bilinear with respect to the bath operators and has thus the same scaling
dimension as the diagonal part when focusing on the leading order of

JH (xl,)Q) o JH (81:,81:) :f“. (6.51)
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6.8. SCALING APPROACH TO THE FLOW EQUATION

This is precisely what is done in the ”poor man’s scaling” approach.
In order to understand the IR-approximation in the light of a scaling perspective, we first have
to investigate generic terms stemming from Continuous Unitary Transformations

TH (x1,x0) = JH (x1,xp) el (6.52)
When we scale the energies x; — Ax;, we find
T (Axr, Axa) = JH (Axy, Axy) e Fi—2lAl, (6.53)
We can absorb the factor A in the exponent into the flow parameter
= Al (6.54)

which is convenient as we scale all energies with a factor A. In this case, the exponential factor
does not affect the scaling dimension and we can use

JH (XI,XZ)pr' (8F,8F>e_|xl_x2|l. (6.55)

This is precisely the IR-approximation from Eq. (4.93).
In the next sections we set up a scaling expansion in order to justify a reduced closed system
of differential equations.

6.8.3 Expansion in the Scaling Parameter A4

We want to expand the coefficients so that we can truncate in orders of A. We will study the flow
equation in first order so that we only need to track the first-order expansion of the coefficients

I'(¥) =T (8r) + VI (&) - (R— &) (6.56)

as all higher terms scale at least in second order in A. The vector €r denotes the vector where
all entries correspond to the Fermi energy €r = 0. The operator structure so far is

H =Hp+H+Hy+Hr +Hr (6.57)

with the contributions

Hy — ;/_L;E:clccw:de (6.58)
Ho= ) / / [HP a]lr (8) : el 6Cepo : derdes

w= (][]
mo= X/ (][, |Mee

1

6 2
D
— oot T .
Hr = Z// [H ] cgl(,CSZ6c€3(-,c£4(-,c£5c—,686(y : deg...dsgg.
c - 1

—»

’r i .
U (€) D CetCey1Cey Cont - dejderdesdey

1
2
Ro- 68166‘8266‘8360846 d81d82d83d84
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CHAPTER 6. TRUNCATION IN ORDERS OF THE COULOMB INTERACTION U

In addition to these terms, only terms with at least six operators occur which have a scaling
dimension higher than one so that we do not need to discuss them. Applying the scaling steps
(6.41) - (6.43) leads to the scaling dimensions for the terms from Eq. (6.58)

D
Ay = A% / e1dloleg i de (6.59)
L |
l
I:It}” = )LOZ// [Hp 7(,8,] ),8) c€166620 dejdey

w = f [ [ [
RSN

1

At = 122/ / !Hp le,] [ (AE): cglccgzc 236584 Coy5Ceq0 ¢ d€1...dEs.

U (A€): EITEZQ 1Ce, Ce,r - dE1dErdesdey

1
2
Ro (A€) : €L, 5CL, 5Cer0Ce, © dE1dErdEsdeEs

We see that we can neglect Hr and all contributions of the coefficients beyond the leading order
for Hy and Hr while we need additionally the linear order of the coefficients of the bilinear
Hamiltonian when we focus on orders up to A.

The major difference to the truncation scheme from the last sections is that we will expand
the coefficients and thus reduce the huge system of coupled differential equations to only a few
coefficients while we will neglect further contributions of the right-hand side of the DEQ which
scale faster to zero than the linear order in A. In order to find these terms, we have to analyze
the flow equation itself from a scaling perspective as explained in the next section.

6.8.4 Scaling Approximation to the Flow Equation

We explain how we analyze the flow equation by discussing the procedure explicitly for the
DEQ (6.8b) and (6.8c¢), respectively.

We focus on the part which stems from the commutation of the bilinear terms (which is
already the full DEQ for U = 0)

o o o o
altnlnz |€}’l1 8n2|ti’l1n2 + Z nlxl sxlnz) tnlxltxlnz (660)
X170,
where we separated the part on the right-hand side that is linear in #,) ,, . First, we introduce the

continuum limit

c i
Y i ichotne: = Y i efueipp (6.61)
n1n2 nlo' nzo' - . < Iny Iny .
ng,nz,0 ny,ny,0c yn] %’lz Yn] '}’ng

ny#ny ny#ny

> X[ [ VpEp@Eta () schocyg saete
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6.8. SCALING APPROACH TO THE FLOW EQUATION

where we used
tr(lylnz 1 T 1 T
g —e, v —pe)de, —i(€1,8), —cho— . (6.62)

C
Yo Ynp Y \ P (8) o

The new operators clc, fulfill anticommutation relations in the continuum while the factors

P (8)_% cancel with the density of states p (€) to the generic factor /p (€) of each integral’ in
the continuum limit (cf. Eq. (2.42)). The continuum limit (6.62) for the DEQ (6.60) results in

dits (e,€') = —|e—¢€|is(g,€) (6.63)
D
+ /_ P [sgn(e—z) —sgn(z—¢€')] 1 (€,2) 15 (2,€') dz.

Scaling all energies with a factor A (including the flow parameter // = A[) and substituting u = 5
yields

/

ots (Ae,Ae') = AN le—¢€'|ts (Ae, Ae) (6.64)

ol
+ A/_ p (Au) [sgn (Ae — Au) —sgn (Au—Ag') 1o (Ae, Au)to (Au, A€') du

The boundaries of the integrals are set to infinity because for finite / the coefficients 75 (€, €’)
are exponentially suppressed (cf. Eq. (6.67)) and thus the contributions beyond the bandwidth
D are negligible.

We see that the scaling dimension is reduced by one due to the scaling of the flow parameter
as

/
% =A. (6.65)

This observation leads to
Ite (Ae, le’) =-2"e—¢|ts (e, 1€ (6.66)
+ AO/ p () [sgn (e — Au) —sgn (Au— A€')] 1 (Ae, Au) 1o (Au, A€) du

Thus, if we want to expand in linear order in A, we have to expand the coefficients 74 in linear
order as well. To this end, we introduce

i (e,€") =15 (g,€) e le=ell (6.67)

in order to account for the linear term in Eq. (6.63) and focus on small energies close to the
Fermi level

|6e| = |e —ep| < D (6.63)

which yields

oy (5e,6¢/) = —2 /wp(z)sgn(z)fg(Saz)fg (.6¢)edz; (6.69)

7A quartic term in the continuum limit, for instance is of the form

j‘jj.j D Hl lp(gl) (81382783784) ng €2~L €3J, €4T d£1d82d€3d€4.
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Next, we expand the coefficient in linear order
is (e,€') =T+ oo (e+€). (6.70)

The expansion takes the form (6.70) as the coefficients must fulfill 75 (€,€’) = i (€', €) due to
hermiticity. From Egs. (6.70) and (6.69) we obtain

0 [fs+0s (6e+8¢')] = — 2/00 p (z)sgn (z) e 21l dz72 (6.71)
a 4/°° p(z)sgn(z)z e_2|z|ldzl~60‘6

— 2/oo p (z)sen(z)e 2 ldzis 0 (56 + 8e')

where we dismissed all quadratic terms in d€ and z. Comparing the coefficients in Eq. (6.71)
results in the DEQs for the expansion coefficients from Eq. (6.70)

dis = -2 / p (z)sgn(z)e 2Fldzig —4 / p (o) |zle X dzizoy  (6.72)
s = —2/ p(z)sgn(z)e_2|z|ldzfaoc6.

The starting values for the differential equation are given by
fc; - _Gh, ao' == 0 (6.73)
If we examine Eq. (6.72) and bear in mind that s (I = 0) = 0, we find

0 =0 V1. (6.74)

6.8.5 First-Order Expansion for the Non-Interacting Model

In the last section we already derived the full flow equation (6.72) for U = 0 in a first-order
scaling expansion. We now want to examine if we can obtain reasonable results from this ex-
pansion.

Introducing a continuum limit (6.62) in the differential equation (6.8a) - (6.8¢) for U =0
yields

)
s = ¥ [ [ sener-=)l8(-a)-6(-2)p@)p @)e 2 dada
~ ] J-
D D
dis = -2 / p(z)sgn(z)e *ldzz —4 / p (2)lzle 2 ldzis g (6.75)
D
dos = —2/ p (z)sgn (z)e 2 dz s ot
-D

with the starting values

fs=—-0ch, Qz=0, Eyj=0. (6.76)
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Using p (z) = p (—z) and the substitution z <> —z results in

8ZE0 — —22/ / p Zl ZZ (Zl+22)le1dZ2t

iy = (6.77)
al OCG - O

where we used Eq. (6.74) which holds true because of the starting values (6.76). The remaining
integral in the derivative of 75 in Eq. (6.75) yields zero and thus 75 is not renormalized during
the flow. We replace 7 by its starting value (6.76) in the differential equation for Ey from Egq.
(6.77). If we additionally use the Lorentzian density of states (2.60), we find

5 —2 u1+u2 -l
dEy = ——h / / duid 6.78
=0 Z (1) (1) urduy (6.78)
where we substituted u; = §. As the bandwidth D is the largest energy scale in the system and
nv?
A= — 6.79
D (6.79)

is very small, we can set the upper boundary of the integrals to infinity. Additionally, we inte-
grate Ey and send / — oo

2h? 1
Ey(e0) = ——— duydus. 6.80
0( ) ﬂzA/() /0 (ul +u2) (1_1_”%) (1 +u%) uraun ( )

The only approximation so far is to set the boundaries of the integral to infinity which is well-
justified. The integral can be calculated analytically

<[ 1 /4
duduy = = 6.81
/0 /0 (w1 +u) (1+2) (1) 272 (6.31)

which leads to a simple expression for the ground-state energy

h2
Eg(o0,h) = ——. 6.82
This, of course, is not the correct formula for the ground-state energy as it would lead to a linear
dependence of the magnetization. However, we do not expect to find the full magnetization
from our approach because we only focused on small energies. We calculate the susceptibility
from Eq. (6.30) as the second derivative of the ground-state energy (6.82) and find

g2ud

6.83
2A ( )

Xd =

which is in perfect agreement with the analytical formula for U = 0 [1].
This is an important result as we can obtain it from an analytic calculation with a systematic
truncation criterion in orders of the scaling parameter A. In the next section we analyze if we
are able to capture interaction effects on the susceptibility x4 when including the interaction U.
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6.8.6 First-Order Expansion for the Interacting Model

In this section we analyze the differential equations (6.8a)-(6.8d), (6.11a), (6.11b), (6.12a) and
(6.12b) from a scaling perspective in linear order including the interaction U.

We use the continuum limit (cf. Eq. (6.62)) and the procedure outlined in Sec. 6.8.4. Thus,
we rescale x; <+ Ax; and I’ = Al and analyze the DEQ using the expansion (6.56). We can
immediately identify terms that can be neglected. Each integral contributes +1 (cf. Eq. (6.47))
to the scaling dimension and the rescaling of the flow parameter reduces it by one (cf. Eq.
(6.64)). Thus, the lowest scaling dimension of a contribution on the right-hand side of the DEQ
is

dmin =N —1 (6.84)

where N denotes the number of integrals. When we focus on terms up to linear order, we can
dismiss all contributions that have three integrals or more because such contributions scale at
least in order A%. We can additionally dismiss further contributions as we already know that we
need U- and R-terms only in zeroth order because their leading order already scales linearly
due to the quartic bath operator structure. Hence, for these terms we can additionally dismiss
all terms with at least two integrals (cf. Eq. (6.84)). This renders R-terms negligible in linear
order as they emerge due to terms including two integrals (cf. Eq. (6.11a)). U-terms, on the
other hand, will affect the results and must be taken into consideration. The difference between
the R- and U-terms (and with it their asymmetric treatment) stems from the fact that U-terms
are already present in the initial Hamiltonian while R-terms have to emerge first.
We expand the coefficients

is(e,€)=lstos(e+€), Ule,e,e,e4)=U0 (6.85)
with
to (£,8) = o (e &) e E7EN (6.86)
Ulel,e,e3.61) = Ule, e, e3,8)e [ata-sal

We use the sign-function
sV (€1,€2,€3,€4) = sgn (€1 + & — &3 — &) (6.87)

for the generator and analyze the flow equations (6.8a)-(6.84) in a first-order scaling expansion
as outlined in Sec. 6.8.4 which yields after a comparison of the coefficients

D
dEy = Z/ / sgn (21 —22) [0 (—21) — 0 (—22)] p (21) P (z2) e 21~V dzydey 75

o = 2 / (22)sn (21 —22) [0 (=21) — 8 (=22)] e 242z, dzp 50

— 2/ 2)sgn(z)e 2R lldz 72 4/ 2) |zle 2 dz iy g (6.88)
Ao = —2/ p (2)sen (2)e 2dz Fyato
U = —42/ 2)sgn(z)e 2 ldz 7,0,
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The DEQ (6.88) can be simplified using p (z) = p (—z) and substituting z <> —z

D rD
AEy = -2Y, / / P (z1)p (z2) e 2O+ dz dzy 12 (6.89)
=~ Jo Jo
D D B
i = —4/ / P (z1)p (z2) e 2t a4z dz, 750
0 0
(91066 —
qU = 0.

The flow of 0,5 is zero because ot (0) = 0 which results in
os(1)=0 VI (6.90)
Additionally, as the derivative of U is zero, we can simply replace it by its starting value
U()=U (6.91)
and use the symmetry

I = —Is (6.92)

which holds true during the whole flow. The differential equation for the renormalized coupling
fs then becomes

D D
Ojfy = 4U / / P (z1)p (z2) e 20+l dz dzy 7. (6.93)
0 JO

Using the Lorentzian density of states (2.52) and substituting u = % while using the limit % —> 00
for the upper boundaries of the integral (cf. Sec. 6.8.5) and integrating 7 yields

tc / / 1—e" 2(u+uz)Al
1 dud 6.94
n< ) T2A (uy +up) 1+u)(1+ ) M. ( )

For [ — oo, we find the renormalized coupling

iy = —Ghews (6.95)
where the integral was calculated using Eq. (6.81). We again used no approximation apart from
% — oo for the integral boundaries.

Now we want to calculate the ground-state energy E (o). If we take a closer look at Eq.
(6.89), we find

| R
A Ey = —50 ;to-@]tg (6.96)

which can be written in the form

1 2
0Ey = ~0 ;a,t(,. (6.97)

89



CHAPTER 6. TRUNCATION IN ORDERS OF THE COULOMB INTERACTION U

Integrating Eq. (6.97) yields
_ _ _i 2 2
Eg () — Ep (0) = (7 (=) =5 (0)) - (6.98)
4U %
Using the starting values (6.76) and the final result for 75 from Eq. (6.95), we find

Eo(oo,h) = (1 —ea) . (6.99)

The susceptibility is calculated from Eq. (6.30) as

2,,2 16 U
Yi= ngB (enz 8ooV? _ 1) , (6.100)
For U — 0, we find
2,2
. ge:“’B
| =2 6.101
Ulinmxd 2wA ( )
which is in agreement with Eq. (6.83). For large enough values of ﬂ%, we find an exponential

increase of the susceptibility in the interaction U. This is in accordance with the correct result.
The exponent, however, does not perfectly agree with the correct exponent 8;)0%' Our result

&N
P22

differs by a factor 1.62 from the correct exponent.

In summary, we can state that the scaling expansion yields the correct result for }4 in the non-
interacting case which is not trivial as we use a scaling approximation, i.e., we only focus on
low energies. Additionally, we are able to capture the exponential strong-coupling behavior of
the susceptibility while the exponent differs by a factor of 71:—2 ~ 1.62 but depends on the correct

ratio %. The coefficient C (U,V) of the Kondo temperature

U

Tg o< C(U,V)e %0V’ (6.102)

is not in perfect agreement with the correct result which is C(U,V) = C = const. in leading

order in J and given by
C(U,V) o< \/4pyVEU (6.103)

when including the first-order corrections in J (cf. App. 9.3). In contrast, we find a coefficient
C(U,V) < U. Nevertheless, the scaling expansion is able to derive the exponential dependence
of the susceptibility analytically by a systematic approach which does not rely on any a priori
knowledge.

Further investigations are required in order to understand the origin of the factor % in the
exponent. Investigating higher order expansions in A might improve the result.

However, it might be more interesting to better understand the flow for 2 = 0 and to include
the renormalization of U induced by the commutation of U-terms with themselves which is
neglected in the approach so far. This renormalization might influence the exponent and thus
might improve the results.
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7 Truncation in Orders of the Hybridization
Element V

7.1 Parametrization and Local Operator Basis

In this chapter we deal with a third parametrization of the Anderson model. We use the dis-
cretization with respect to the flat DOS (2.51) and choose the ground state of

Hp = Z Snc;rzocna + &g an,a + Und7¢nd7¢ (7.1)
n,o c
as the reference state where ng  is the particle-counting operator
nae = didg. (7.2)

The singly occupied impurity state is the lowest-lying eigenstate of the Hamiltonian (7.1) and
thus the reference state is degenerate with a spin degree of freedom on the impurity. Because of
this spin degree of freedom, we have to use a reference ensemble for the impurity operators and
thus the normal-ordering scheme is defined as

(1A D+ A L) =0.

An operator basis which is normal-ordered with respect to the reference ensemble (7.3) has
already been applied successfully, e.g., to the Hubbard model [81, 103]. The chosen operator
basis is shown in Tab. 7.1.

(7.3)

bosonic operators

fermionic operators

1

Rz =ng+—Nq,|

dTTrdi

d d,

d#d;

did,
n=nq++ng,—1
D = anﬁn(u —n

Fip=(1-nay)d,
F = (1-ngy)d,
FZ,T = ”d,idT
F2,¢ = ”d,Td¢
Fy = nad|
F;’i = nddeI
FIT,T = (1-na,) d;
Fl = (1—-ngy)d]

Table 7.1: Impurity operator basis with ng 5 = dids.

The reason for this choice of the fermionic operators becomes evident upon inspecting the
local impurity configurations which are connected by these operators. As the energy difference
between the empty and the singly occupied state is different from the singly to the doubly
occupied state, we have no unique energy change which we can attribute to the operator d(T,.
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2¢e +U N>
0 |0 >
+ + + +
dG dG FI,G FZ,G
€ (¢)
‘ AE=¢, AE=g,+U o2

Figure 7.1: Impurity configurations connected by the superposed operators FlT - and FZJr & In contrast to the

operator dI, the operators FE - and F2T - can be attributed to a unique energy change.

The d:;—operator connects the empty to the singly occupied state and the singly occupied to the
doubly occupied state. The superposed operator FE s = (1— n(-;)dj, only connects the empty

with the singly occupied state while the superposed operator FzT, o= n(-;d;ry only connects the
singly occupied with the doubly occupied state. Thus, we can attribute a unique energy differ-
ence to both superposed operators which are given by

AE :f;'d:éd—U (7.4)
AE2=8d+U=éd+l7

where the coefficients U and &, are the coefficients of the Anderson Hamiltonian (2.51) ex-
pressed in the new operator basis from Tab. 7.1

H = Hp + Hg (7.5)
with the diagonal Hamiltonian Hp and the hybridization part Hg

Hp = Y €i:¢)500: +Ean+UD (7.6)
n,o
He = Y Vi (FlotuotciaFi o) + Ll (F oo+ loFrg )
n,o n,o
The coefficients in the new operator basis are given by

- U ~
Vn:VYna Fn:VYna Q=&+ 7, U=

> > (7.7)

with the parameters €, and 7, from Eq. (2.50). The bath operators are still normal-ordered with
respect to the Fermi sea. If the reader is interested in performing own calculations, App. 9.9
provides useful local commutators and products for this operator basis.

7.2 The Schrieffer-Wolff Transformation Revisited

In order to become familiar with the new operator basis and the basic differential equations of
this approach, we will start by reproducing the Schrieffer-Wolff transformation (cf. Sec. 2.4)
with different generators.

This has already been accomplished in a slightly different approach [22] using a very specific
generator only constructed for this problem which is similar to the original generator of the
Schrieffer-Wolff transformation (2.26).
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The procedure outlined in this section is reminiscent of the Frohlich transformation [120]
which reveals an attractive interaction between two electrons induced by an electron-phonon
interaction. The Frohlich transformation is a one-step transformation which can also be con-
structed from Continuous Unitary Transformations [73, 74] with a less singular result. Repro-
ducing the Schrieffer-Wolff transformation with Continuous Unitary Transformations also re-
sults in a less singular spin-spin exchange interaction than from the one-step transformation
itself. We want to study the influence of the choice of the generator on the effective spin-spin
exchange interaction J,;, and we will simplify the transformation using deepCUT ideas so that
we are able to calculate the resulting J,,,, analytically in a simpler manner than it is done in the
original work [22]. From the approach in Ref. [22] one finds for the effective spin-spin exchange
coupling

(a—€n)(€a— €+ U)+(e9—€n) (a—€n+U)

Jom =V, V,, U .
T (g — ) (€a— €0+ U )+ (€4 — €m)? (€ — Em + U)?

(7.8)

The parameters & and U in Eq. (7.8) differ from the initial parameters as their flow is also taken
into account. Nevertheless, one can use the initial parameters (7.7) in order to compare them to
the results obtained with our approach.

In principle, one can argue from deepCUT ideas (cf. the argument that leads from Eq. (7.14)
to Eq. (7.18)) that the flow of the parameters &,, & and U can and even should be neglected
when targeting the lowest order of the spin-spin interaction. In this case, the initial parameters
should indeed be used in this formula. Otherwise, the final result for the coupling Jy, at the
Fermi level g, differs in order V*# from the result obtained by the one-step Schrieffer-Wolff
transformation.

Using the symmetric Anderson model &g = —% and focusing on the couplings J,,, — where
ng denotes the index corresponding to the Fermi level g,, = 0 — and further using V,, = V'§,, one
finds

J 21U
—Y”;F =VU———3— (7.9)
U? U4
o (2-%) +%

In contrast to the result from the one-step Schrietfer-Woltf transformation (2.34), one can see
that the coupling exhibits no divergences. Nevertheless, one should mention that there are still
divergences in some couplings on the U-energy scale, e.g., in the diagonal couplings J,, for an
index n which corresponds to an energy &, = % The most interesting coupling is the one at the
Fermi level

Jnpne  4V?

= (7.10)
ng

which coincides with the result from the Schrieffer-Wolff transformation (2.36). It should be
mentioned that the original paper [22] stays in k-space and uses the operator basis from Eq.
(2.14) instead of the one from Tab. 7.1. Here the results from Ref. [22] are presented in a
slightly different manner in order to reach a better comparability to results obtained with our
approach.

In the next section we will revisit the Schrieffer-Wolff transformation for different generators
in order to further pursue our goal of finding an adequate description for the Kondo regime
within the CUT approach.
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7.2.1 Flow Equation

We want to eliminate the hybridization elements and analyze the thereby induced spin-spin
interaction and thus we choose the generator

r
77 Znn ( 1,0 nG nGFl,G) + Znn <F2Jtacn6 _CZGFZ,G) + Z nnm . nGCmG (7 11)
n,o

n,m,o

In order to find the flow equation (4.4), we have to commute the generator (7.11) and the Hamil-
tonian (7.5). By calculating the commutators we find that new terms emerge during the flow
which are of the form

H = Y tun:ChoCmo: (7.12)
n,m,c

Hy = Z JN dr dacnocmd + Z JZf,,yG n;: cj;ccm(y :
n,m,o n,m,o

+ Z m cm,cm(_y —I—Z o (d;dlrcnicmT—l—cmTcnididT)

n,m,o n.,m

All newly emerging terms are of order V2 and coincide with the newly emerging terms in the
Schrieffer-Wolff transformation (2.30) which contain the effective spin-spin interaction, albeit
with a different sign. Through the additional sign a positive coupling corresponds to an antifer-
romagnetic coupling.

We target the couplings J,(l;)l from Eq. (7.12) in order V2. To this end, we have to calculate the
commutators

[Mr,Hp+HR] and [n, Hp] (7.13)

as all other commutations are of order V> or higher.
By comparing the commutators from Eq. (7.13) to the derivatives of the Hamiltonians (7.5)
and (7.12) we deduce the flow equation (4.4) for the parameters

dE, = Z((l—en)nXVn—ennEFn) (7.14)
diga = r;( VB + (1= 6,) i Ty)

w = ¥ (i)

e = Y (e0—E0tD)

ar, = n, (&,—&-0)

altnm = nrtzm (8m ) (nn m+ nmv + nn m+ n,grn)

(MY Vin + gV — 3 T — 1,

N = N =

o (M T+ ML — 1Y Vie — 1, Vi)
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alJr% = n;rm + n;rn - nXVm - nn‘;Vn

al‘]r:ztm = n;fvm + nrlr;Vn - TerFm - nn‘ir‘n

where 6, is the occupation number with respect to the Fermi sea
6, = () 5Cno) (7.15)

which stems from the normal-ordering of the bath electrons. The coefficients JZ,;’G and J,%
fulfill the spin-rotation symmetry

i 1
e = Zdum (7.16)

and J?, can be deduced from J,',l,ﬁq,(; as long as no further terms are added to the generator

ol = —%J,’fm. (7.17)
The symmetries (7.16) and (7.17) are conserved during the whole flow as one can see from the
flow equation (7.14). The coefficients V,, and I',, coincide for / = 0 but as soon as [ increases
they deviate from each other. This is why we introduced them as two independent parameters.
The coefficients in the generator (7.11) are still arbitrary.

We want to analyze the influence of two standard generators, namely Wegner’s and the sign-
generator (cf. Sec. 4.2), which have not been used so far in order to reproduce the Schrieffer-
Wolff transformation. However, before we choose special generators we want to simplify the
DEQ (7.14) using deepCUT ideas from Sec. 4.3.4. We target Hy from Eq. (7.12) in order V2 and
neglect all terms which act in order V3 on Hj. In this case, we can neglect the flow of Hp and the
newly emerging hopping terms t,, as their corrections to Hj are of order V3. The differential
equation simplifies to

Ve = n (ea—8+0) (7.18)
oy = ) (e,—&-0)

al‘]}/’ll\}’\l;’l = nrl:Fm + T'Inl;rn - nnVVm - nxvn

W = M Vn+ MV =1 T — 1T

where we only need to calculate J,Ii, because of the symmetries (7.16) and (7.17). At first sight,
this approximation might seem a bit crude and perhaps one wants to analyze the full differential
equation (7.14) in order to obtain the full Hamiltonian in order V2. However, it is an experience
from deepCUT calculations that the minimal system of differential equations, which is correct
up to a given order for a targeted quantity, yields the best results [110, 111]. Furthermore, the
DEQ (7.18) is still correct up to order V2 for the targeted quantity Hy. The simplification (7.18)
renders it much easier to calculate the coupling ,I,% and also leads to a coupling at the Fermi

level which is in perfect agreement with the result from the Schrieffer-Wolff transformation.
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7.2.2 Generators

Wegner’s generator (cf. Sec. 4.2.1) is given by

NWegner = [HDa HR] (719)
= Z [_ (8” — &+ U) V"] (FIT,GCnG - Cj;GFl,G>
n,o
+ Z [_ (8” —& - ﬁ) r”} (FZT,GCnG - CILGFZG)
n,c

while the sign-generator (cf. Eq. (7.22) and Sec. 4.2.3) uses the sign of the energy difference
between the states that are connected by the operator. The operator FIT o connects the empty
impurity state to the singly occupied one (cf. Eq. (7.4)) while annihilatiné a particle with energy
&, in the bath (cf. Eq. (7.6)) which leads to an energy difference

AE, =& —U—g,. (7.20)

The operator F{ & connects the singly occupied to the doubly occupied impurity level (cf. Eq.
(7.4)) and annihilates a particle with energy €, in the bath which leads to an energy difference

AEy, =&+ U —¢,. (7.21)

Thus, the sign-generator is of the form

Nign = Y [—sen(en—Ea+0)V,)] (Fﬁocm . CI,GFM,) (7.22)

N
Q

+ Y [-sen (8~ &~ 0) 0] (Fgtuo — clobg )
(e}

n,

Since both generators have a very similar structure, it is useful to define the generator in the
form

= —fiVe, mp=—fTy (7.23)
with

= { &—&=xU Wegner’s generator ' (7.24)

n 7 sen (& —&=+U)  sign-generator

In the next section we will solve the DEQ (7.18) and analyze the induced spin-spin interaction.

7.2.3 The Induced Spin-Spin Interaction

As the flow of Hp (and hence the flow of the parameters &,, & and U) has been neglected, the
prefactors f:F remain constant during the flow and from the DEQ (7.18) we find

V= Ve Jn (6=&t0)l Py o=to (6n—8a=0)1 (7.25)
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We can further calculate the effective spin-spin exchange interaction from the DEQ (7.18) by
using Eq. (7.25)

Yy = [fif+ | vie U (et O)vh (en—aat Oty (7.26)
— U+ 1] v2e (en—éd—0)+fn7(em—éd—l?)]lyn},m'
Integrating Eq. (7.26) yields for Wegner’s generator

- &+ &y —283+20U0
o=l (6,—Ei+00)" + (6, —E+00)

N (00) =

o) =
nm,Wegner

2
VY (7.27)

and for the sign-generator

g

sgn (&, — &+ oU) +sgn (&, — & +oU
o sign (oo) — Z ( n ) ( )

7 T 2 m- 7.28
G:j:IG |8n—éd+GU‘—|—‘gm_§d_|_GU‘ Vo, (7.28)

Focusing on the couplings with m = ng and &, = 0 in the particle-hole symmetric case (&3 = 0)
with U = % yields the couplings (including those already derived in literature)

. 1 1 1
J, = - — —2 7.29
nng,SW 4 [xn 1 X, + 1 1 ( )
i x2—2
Kehrein = ——>— 5
nng,Kenrein (x% B 1>2 + 1
| 1 Xp + 2 Xp — 2
_JnnF,Wegner (oo) = 75 2 o 2
21+ D) +1 (i —1)"+1
T () = C1[sgn(xa+1)+1 sgn(x,—1)—1
AN, Sign 2 k11 I, —1]+1
with the parameters
2, - Jom 4y
_ on — . Jo=— 7.30
Xn U’ nm To YT 0 U ( )

which were introduced in order to obtain simple expressions. J:,,,F,SW denotes the result of the
Schrieffer-Wolff transformation (2.34) while fnnF,Kehrein denotes the coupling (7.9) derived by
Kehrein and Mielke [22]. The additional sign in Wegner’s and the sign-generator is due to a
different definition of the sign of the induced spin-spin interaction (cf. Sec. 7.2.1). On small
energy scales, close to the Fermi level &g = 0, all approaches coincide and yield the famous
Schrieffer-Wolff result

. Jen 4v?
e = —1 & PP
. Yo U

(7.31)

As this coupling describes an on-shell process at the Fermi level, all approaches have to coincide
while away from the Fermi level the couplings describe virtual processes which can differ when
using different transformations. The results for all four transformations presented in this section
are compared in Fig. 7.2
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~—o

--—-- Schrieffer-Wolff
----- Kehrein's generator

---- Wegner's generator
sign-generator

Figure 7.2: Comparison of the induced spin-spin interaction for Wegner’s and the sign-generator, the generator
used by Kehrein and Mielke [22] as well as the result obtained by the original Schrieffer-Wolff

transformation from Eq. (7.29). The coupling Jy,, = JOJ;”; with Jp = 4—52 is plotted vs. x, = %
n n]:

Close to the Fermi level x,,;, = 0 all approaches coincide and yield J,,, = —1 which is equivalent to
- —4—52. The results obtained by CUT are less singular than those from the Schrieffer-Wolff

"FV‘IF
Vo
transformation. Wegner’s and the sign-generator yield results which are antiferromagnetic over the
full energy spectrum in contrast to the one-step Schrieffer-Wolff transformation and the approach

used by Kehrein and Mielke [22]. This represents no disagreement as different transformations are
used.

All results obtained by CUT are less singular than the result obtained by the one-step Schrieffer-
Wolff transformation. Nevertheless, the CUT result still exhibits some divergences, e.g., on the
U-energy scale in the diagonal couplings J,,, for n corresponding to an energy &, = % The
result for J,,,. obtained from Wegner’s and the sign-generator are antiferromagnetic over the full
energy spectrum in contrast to the one-step Schrieffer-Wolff transformation and the approach
used by Kehrein and Mielke. This is no disagreement as the respective couplings describe virtual
processes. The coupling at the Fermi level, on the other hand, describes a real process and thus
all approaches have to coincide at this point, which they do.

Fig. 7.3 depicts a case with broken particle-hole symmetry in the limit U — oo. The dimen-
sionless parameters

&y 4 €4Jnm
— J o= 7.32
Yn P nm = 2 . ( )

are chosen because again all results become simple functions of these parameters.
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Figure 7.3: Comparison of the induced spin-spin interaction for Wegner’s and the sign-generator, the generator
used by Kehrein and Mielke [22] as well as the original Schrieffer-Wolff transformation from Eq.
(7.33). The coupling J,, = JOJ;}:’; . with Jyp = ‘g—dz is plotted vs. y, = i—g in the limit U — o with
€4 < 0. Kehrein and Mielke’s approach coincides in this special case with the result obtained by

Wegner’s generator. The sign-generator yields exactly zero for € < &q. Again, the results obtained
by CUT are less singular.

The couplings with the parameters from Eq. (7.32) become

- 1 1
_JnnF,SW = 5 |:y 1 - 1:| (733)
n
T Ketwein = ————
~JYnng,Kehrein  — _m
n
J = 2k
nnp,Wegner — _m
n
. sgn(l—y,)+1
JnnF,sign = - |1 _yn| 1

The signs in Eq. (7.33) are chosen differently than in Eq. (7.29) because an additional sign is
introduced in the coupling (7.32) due to the fact that &5 < 0. Thus, a negative coupling in Fig. 7.3
still corresponds to an antiferromagnetic one. We find a divergence of the couplings obtained
from the one-step transformation at € = £4. The result obtained by Wegner’s generator and the
one used by Kehrein and Mielke coincide in this special case. The sign-generator yields a result
that exhibits no ferromagnetic coupling and which is exactly zero beyond &y.
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7.3 Diagonalization of the Spin-Spin Interaction

So far we succeeded in mapping the Anderson Hamiltonian to an effective Kondo model.
Next, we try to diagonalize the induced spin-spin interaction at the same time as it is built up
due to the elimination of the hybridization elements which has not been done for the Anderson
model so far.
We add new terms to the generator

mo= Y nlhdidselscnot+ Y Mminon: i chglmo (7.34)

n,m,o n,m,o

+ Z nnmn C;rzccmo +Znnm (deJ-,r n¢ mT mTCnJ,didT>

n,m,0

In the following, we use the sign-generator which is given by

= sgn (& — &) I}, (7.35)
77%1,6 = sgn(& — gm) i, G

M = 520 (€0 — &m) I

Nt = —sgn(g,+en)JL,.

We only include terms that act in lowest order J> on the spin-spin interaction and thus we have
to calculate the commutators

[Ny, Hp + Hj (7.36)

from which we only include terms that act on Hj. All further terms are neglected as their feed-
back on the spin-spin interaction is at least of order J3.

Calculating the commutators and comparing the coefficients in the flow equation (4.4) yields
additional terms to the differential equation (7.18)

Wiins = <em—en>n::,;,a—§ Yo (nli/lh i) (1260 (1.37)
alJzIzt = (&n— + Z o (nxm c nr'f;c GJN' + UN'J:;; c nn xm, G) (1—26y)
A = (En—E0) My %; (i, + ) (1-26)

Oy = (0 + Em) Ny + Z (Mo + M om — M — M) (1 —26)

where o as an index labels the spin while it has the value ¢ = 41 as a coefficient. The occupa-
tion number

6, = (clsCro) (7.38)

is calculated with respect to the Fermi sea and stems from the normal-ordering of the bath
operators. Note that the -dependence in the derivative of J,% in Eq. (7.37) cancels due to the
spin-rotation symmetry (7.39) (cf. Eq. (7.40)).
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Taking a closer look at the differential equation (7.37) reveals that J" and J'V interact only
with each other and do not couple to J* or J” which also only interact with each other. The
spin-rotation symmetry

) 1
SJhine = 5 (7.39)

still holds true during the whole flow which simplifies the differential equation for JI,% to

AW = (en— &)t~ X (sl —nfkaik ) (1-260). (7.40)

X

This differential equation is the same as Eq. (4.89) with an isotropic coupling
JE =T (7.41)

which is the flow equation for the diagonalization of the spin-spin interactions of the Kondo
model.

In the last sections this differential equation was only analyzed at small energies very close
to the Fermi level g = 0 by introducing the IR-approximation

I =JTe ey, (7.42)
which leads to the flow (cf. Sec. 4.6.2) for the coupling at the Fermi level

2
i = 2P ;’J. (7.43)

This coincides with the scaling equation from the “poor man’s scaling” (3.35) with [=! = D
which diverges on the Kondo energy scale [~! = T (cf. Sec. 4.6.2).

Analyzing the full differential equation (7.40) numerically not only confirms the results ob-
tained by the IR-approximation but additionally reveals the Kondo energy scale as a crossover
between diverging and non-diverging couplings, i.e., diagonal couplings J,,, with an index n that
corresponds to an energy |g,| > Tx converge while those with |g,| < Tk diverge. This insight
has not been reported so far and is missed when focusing only on energies at the Fermi level.

In contrast to the potential scattering model (cf. Sec. 4.6.1), where the divergence is a result
of the IR-approximation, the divergence in the case of the Kondo model is also present in the
full numerical solution of the differential equation (7.40).

In the following, we want to analyze the Kondo model first before we turn to the Anderson
model. At first, we solve the differential equation (7.40) numerically by a 4th-order Runge-Kutta
algorithm with the starting values

T (0) = T Y (7.44)

which corresponds to diagonalizing the spin-spin interaction of the Kondo model.
Fig. 7.4 shows the residual off-diagonality for different interaction strengths J.
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Figure 7.4: Residual off-diagonality ROD = 4/}, |Jum|?* for the Kondo model. The DEQ (7.40) with the
starting values (7.44) is solved for N = 80, A = 2 and from left to right: 2poJ = 0.2, 0.19, 0.18, ...
0.09, 0.08, 0.07. The residual off-diagonality decreases first until the energy scales come close to
the Kondo temperature Tx where the ROD quickly increases until it finally diverges on the Kondo
energy scale.

First, the residual off-diagonality decreases as a result of the linear term in Eq. (7.40). As soon
as the energy scale comes close to the Kondo temperature Tk, the quadratic term in Eq. (7.40)
starts to dominate and leads to divergence.

Fig. 7.5 shows the energy scale on which the coupling J,Ilan diverges. We see that the diver-
gence indeed occurs on the Kondo energy scale

AN

Tg < e 20’ (7.45)

where A is a known effect of the discretization [8] and is given by Eq. (6.39). Fig. 7.5 also
verifies that the value of Aj coincides with Eq. (6.39) by varying the discretization parameter
A. When A is reduced, A, converges to one.

The IR-approximation is a very useful approach in order to gain insights into the behavior of
the differential equation at the Fermi level. On the other hand, one misses another interesting
and for our further purposes very important point. The IR-approximation only reveals that the
coupling diverges at the Fermi level &g = 0. A remaining question is how the couplings behave
on other energy scales. Solving the DEQ (7.40) numerically can answer this question.
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Figure 7.5: Point of divergence [y vs. the Kondo coupling J for the Kondo model. The inverse of I coincides
with the Kondo energy scale /, ! = Tk. We investigate different discretization parameters A (left top:
N =60, A = 2.5, right top: N = 80, A = 2, left bottom: N = 120, A = 1.5, right bottom: N = 240,
A = 1.2) in order to verify that the discretization effect on the Kondo energy scale coincides with Eq.
(6.39). The modification of the exponent of 7x is in perfect agreement with the known influence of
the discretization (6.39) [8].

Jun_
. . . |/y"|2 . .
n for which |g,| < Tk diverge in contrast to those corresponding to |&,| > Tg which converge

towards a finite value.

We see this effect even clearer if we analyze the derivative of the couplings J,,, with respect
to the flow parameter / shown in Fig. 7.7. The derivative diverges for |&,| < Tx and tends to zero
for |g,| > Txk.

This observation is very interesting as it shows that the spin-flip contributions will only play a
dominant role below the Kondo energy scale and ensures that the Kondo singlet will form below
the Kondo temperature 7x. We will return to this point when we discuss our new approach in
Sec. 7.5.

Fig. 7.6 shows the flow of the couplings for different n. Only couplings J,,, with an index
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Figure 7.6: Flow of the diagonal couplings J,,,/ |74|* of the Kondo model for N = 80, A =2 and 2pJ = 0.1. The

point of divergence for these parameters is I &~ 21825D~! which corresponds to the Kondo energy
scale Tk ~ 4.85-1073D. The black lines show the couplings with an index 1 for which |g,| < Tx while
the red lines show the couplings with an index n for which |g,| > Tx. We can see that only couplings
with |g,| < Tk diverge while those corresponding to |g,| > Tk converge towards a constant value.
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Figure 7.7: Flow of the derivative of the diagonal couplings d{% /|7 of the Kondo model for N = 80, A =2
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and 2poJ = 0.1. The point of divergence for these parameters is Iy ~ 21825D~! which corresponds to
the Kondo temperature Ty = 4.85 - 107D. The black lines show the derivative of the couplings with
an index n for which |g,| < Tx while the red lines show the derivative of the couplings with an index n
for which |g,| > Tx. We can see that only couplings with |g,| < Tk diverge while those corresponding
to |&,| > Tk converge towards a finite value.



7.3. DIAGONALIZATION OF THE SPIN-SPIN INTERACTION

We started this section with the Anderson model and derived a differential equation for the
induced spin-spin interaction which we already knew from the diagonalization of the spin-spin
interaction of the Kondo model. This led us to analyze the flow for the Kondo model first.

Next, we want to analyze if we can directly start from the Anderson model and still find the
Kondo energy scale Tk as the inverse flow parameter on which the differential equations diverge.
This has not been studied so far. We want to eliminate the charge fluctuations induced by the hy-
bridization V,,,, and diagonalize the induced spin-spin interaction J,,;, at the same time. Note that
this is not in one-to-one correspondence with applying a Schrieffer-Wolff transformation first
and then diagonalizing the effective Kondo Hamiltonian as we perform both transformations
simultaneously.

Fig. 7.8 shows the point of divergence [y vs. the interaction U.
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Figure 7.8: Point of divergence /o for the Anderson model vs. the Coulomb interaction U for % =0.01414. The
inverse of Iy coincides with the Kondo energy scale I, I = Tk. We look at different discretization
parameters A (left top: N = 60, A =2, right top: N = 80, A = 1.8, left bottom: N = 100, A = 1.5,
right bottom: N = 200, A = 1.2) in order to see the discretization effect on the Kondo temperature
Tx. The dotted vertical lines show the interaction strengths U for which % = &,. The exponent of the
energy scale is influenced by the discretization precisely by A, from (6.39) which is the well-known
discretization effect on the Kondo temperature [8]. Additionally, discontinuities occur each time %
crosses an energy level g, which is also a discretization effect. For smaller values of A, there are more

discontinuities as more &, lie in the considered interval. The discontinuities, however, become smaller
for decreasing A.
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In order to find the Kondo energy scale of the Anderson Hamiltonian with Continuous Unitary
Transformations, we combine Eq. (7.18), which eliminates the hybridization elements, and Eq.
(7.37) which is supposed to diagonalize the induced spin-spin interaction. This DEQ also leads
to divergence on an energy scale that depends on the parameters U and V. There are certain
values of U for which discontinuities occur. In the intervals between the discontinuities we
find the correct exponential behavior of the Kondo temperature Tk_1 o< exXp <A A#) where

A is the discretization influence on the Kondo temperature from Eq. (6.39). The origin of the
discontinuities is the discretization. Each time the interaction % crosses an energy level g,, one
sign in the generator is changed discontinuously

U U

n,c

In Fig. 7.8 the dashed vertical lines show the different interactions with % = &,. We can see
that the discontinuities indeed occur exactly each time % crosses an energy level g,. If the
discretization parameter A is decreased, more energy levels lie in the considered interval and
thus we see more discontinuities. On the other hand, the weight |)/n|2 carried by the respective
energy level decreases which results in smaller discontinuities.

We succeeded in turning away the hybridization elements of the Anderson model while also
including the induced spin-spin interaction into the generator which results in a divergence
on the Kondo energy scale Tx. This has so far only been accomplished for the Kondo model
but not for the Anderson model. We can check that the exponent is also correct for different
hybridizations V.

Fig. 7.9 shows the point of divergence /y for varying U and different hybridizations V. The
exponent changes according to

—1 ~Anp
Tk =1, =C(U,V)e "3 (7.47)
where C (U,V) describes the discontinuous behavior observed in Fig. 7.8 due to the generator
(7.46) and is constant in each respective interval between two discontinuities.

Finally, we use a fixed U and vary the hybridization V. Our main goal is to find out whether
discontinuities occur when varying V. As the signs in the generator (7.46) do not depend on the
hybridization V, we do not expect to see such discontinuities. Fig. 7.10 shows the results for
different fixed U. Indeed, no discontinuities occur which supports our explanation for the origin
of the discontinuities. We again find the correct behavior of the exponent 7 e exp (A A#)
with A, from Eq. (6.39).

The fact that the flow equations diverge shows that the approach is not able to diagonalize
important parts of the Hamiltonian. The aim of the second part of this chapter is to search for a
solution of this challenging problem and to provide an advanced approach that is able to produce
non-diverging parameters for energies arbitrarily close to the Fermi level ep = 0. We suppose
that the main problem and the reason for the divergence is the choice of the reference state.
It might be suited for the local-moment regime (cf. Sec. 2.7) but obviously not for the strong-
coupling regime where the spin of the impurity becomes completely screened. This screening
cannot be achieved by the current reference state. Our new approach will focus on the change
of the reference state during the flow which will lead to converging differential equations and
an effective Hamiltonian without divergences at small energies.
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Figure 7.9: Point of divergence [y vs. the Coulomb interaction U of the Anderson model with N = 80, A =
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Figure 7.10: Point of divergence [ vs. the hybridization V (left panel) and vs. D?/V? (right panel) for the An-

derson model with N = 60, A = 2 and from top to bottom: 103% =4, 3, 2 and 1. The inverse
of Iy coincides with the Kondo energy scale [, ! = Tx. The Kondo temperature scales correctly as
Tk o< exp (—A /\WUVZ) with A from Eq. (6.39). No discontinuities occur because the hybridization

has no influence on the sign in the generator (7.46) in contrast to the Coulomb interaction U. This
result is in agreement with the expected behavior.
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7.4 Adapted Reference State for the Kondo Model
Coupled to an Auxiliary Spin

The approach of the last sections does not allow to construct an effective model as the induced
spin-spin interactions J,, with |g,| < Tx diverge on the Kondo energy scale. In this section we
want to identify the source of this divergence and find a way to avoid it. One obvious approxi-
mation we used is the truncation of operators. However, including higher interaction terms will
not solve the problem of the divergence but will only result in a better estimate of the energy
scale on which the differential equation diverges [16], i.e., we find higher-order corrections to
the Kondo temperature 7x.

We assume that the source of the problem is rather the chosen reference state which is conve-
nient for the weak-coupling but not for the strong-coupling regime. As we cross from the weak-
to the strong-coupling regime, diagonal spin-flip contributions become important and lead to
a singlet which screens the impurity. The reference state so far is not able to account for this
screening of the impurity so that the increase of the spin-spin interactions is not prevented and
leads to the divergence. We want to establish an approach that does not rely on an a priori un-
derstanding of the problem and for this reason we do not simply assume a singlet reference state
but modify the procedure so that it yields this behavior as a result.

We modify the diagonal part of the Hamiltonian Hp by adding the emerging diagonal spin-
spin interactions and derive the adapted reference state as the ground state of the modified
diagonal part of the Hamiltonian Hp. In the Kondo problem the spin-spin couplings become
larger during the flow which has a significant impact on the reference state. The additional
terms contributing to the diagonal Hamiltonian of the Anderson model are

1
‘:‘;Serso“ ZJN (a’T dscl oo + 70N 5o :) (7.43)
and for the Kondo model
i = X X JmOl ™ s Clacup (749
Nex Vi n, o, B

If we assume that the impurity is only singly occupied and that the energy scales are small
enough so that charge fluctuations are negligible, then Hﬁggerson and H}jﬁ‘g‘d‘) are equivalent.

In order to find an adapted approach that avoids the divergence of the differential equations,
we first study a different model in which the question of the choice of the adapted reference
state is much simpler.

7.4.1 Kondo Model Coupled to an Auxiliary Spin

In this section we add an auxiliary spin S = % to the Kondo model which is coupled to the
impurity via an isotropic spin-spin exchange coupling K. In this system it is easy to decide
which modified reference state to choose and thus we can study if changing the reference state
prevents the divergence found in the last sections. Additionally, we find patterns which we will
recognize when dealing with the Kondo Hamiltonian. The Kondo model coupled to the auxiliary
spin is of the form

H= Zs ChoCno i+ 2, X, Y JunClg T c;acmﬁ:JrK%-ﬁK. (7.50)

unexyznmeo,f
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At first sight, this seems to complicate the problem even further as we include an additional
coupling and thus also new physics. However, we are only interested in an adapted operator
basis and a suitable reference state in order to construct converging flow equations. This can
be achieved much easier for this model because we only need to understand the physics of the
isolated additional site coupled to the impurity which boils down to the coupling of two spins
S= % with the eigenstates

1
0) = I9)=—5(th=141) (7.51)
1) = =]
2) = |@=%(IN>+I¢T))
3) = J)=1|4d)

where the first spin is associated to the impurity while the second one is the auxiliary spin. The
corresponding energy levels are given by

K 3K
Et b0 = i E; = 4 (7.52)
The singlet state is the ground state and thus we introduce the normal-ordering scheme
k) (q| = |k){g|non-normal-ordered — 105 Oys (7.53)

where the states |k) and |g) denote the states from Eq. (7.51) and the index s corresponds to the
singlet state. In the next step we expand T# in this operator basis

=Y o [k) (gl with o = (k|t"|g) (7.54)

where the indices k£ and ¢ again denote the states from Eq. (7.51). The expansion coefficients
can be written in matrix form and are given by

0 -1 0 1
. 1 —1 0 1 0
X
ot = AR ) 0 1 (7.55)
1 0 1 0
0 1 0 1
y 1 -1 0 1 0
o =
2v2i | O -1 0 1
—1 0 -1 0
0 0 1 0
o = o 1 0 0
201 0 0 0
0O o0 o0 -1
We find that the matrices o fulfill properties very similar to the Pauli matrices
5 .
ato’ = %]l-i—%ZEMWar. (7.56)
r
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The Hamiltonian in the adapted operator basis is of the form

H= an ChoCno +ZEk|k (k| + Z TPl - g (7.57)

k e a B
with the energy levels

K 3K
Eip3=—, Ey=——. 7.58
123=7. Eo 1 (7.58)
In principle, the normal-ordering (7.53) would additionally produce hopping terms but because
J5%%(0) = 0, hopping terms are not present in the initial Hamiltonian. Moreover, a constant
due to the normal-ordering of the bath operators was dismissed. The starting values of the

qB

coefficients are given by

I =Y TanGiy Ol (7.59)
Hexyz

Their explicit values can be found in App. 9.10.1. The idea is to modify the diagonal part of Hp
by using

Hp=Y & :cloCpro: +2Ek|k (7.60)

n,o

and to choose the ground state of the Hamiltonian (7.60) as the reference state which is given
by

[ref) = |FS)|singlet). (7.61)

Note that Wick’s theorem can only be applied to the bath operators but not to the singlet state
formed by the impurity and the auxiliary spin because it is not a Slater determinant.

7.4.2 Generator and Flow Equation

With the previous reference state, which was the Fermi sea, states of different spin are energeti-
cally degenerate while applying a spin-flip to the new reference state, which is the singlet state,
requires the energy K.

In order to transform the Hamiltonian, we choose the generator

0= Z M) g] : Clacyg (7.62)
quc B

The most obvious choice for the coefficients would be

k4o — son (Ey — Ey+ &, — &) JX4%P. (7.63)

nm

We will see, however, that this choice leads to problems because including states that couple
two triplet states leads to divergence. Luckily enough, we do not necessarily need to turn these
terms away as we only want to eliminate terms that couple to the ground state of Hp. Thus, we
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only eliminate terms that couple triplet states to the singlet. The generator in this case is of the
form

NkaoP — £ sen (Ex — Ey + € — &) JK9*P (7.64)

m
where the coefficient

1 if Ei—E;#0
fig=4 1 if k,g=0 (7.65)
0 otherwise

includes all terms that couple to the singlet state. In order to construct the flow equation (4.4),
we calculate the commutators between 7] from Eq. (7.62) and H from Eq. (7.57). We truncate
terms that are quartic with respect to the bath operators and further neglect the normal-ordering
(7.53) of the adapted operator basis because it only affects the order J 3 of E;. Additional terms
which can occur in order J? within this approximation are of the form

Hy =Y Viglk)(ql. (7.66)
k.q

Comparing the coefficients to the derivative of H leads to the flow equation (4.4)

KB = (E,— Ep+ &y — &) nkI°P (7.67)
= LX(nirerai —nihapen) e
+ LY (nirerapg® —nberger) (1 - )
Y:p x
Wiy = X (s —npabeser ) (1-6,)6,
n,m
p.0 B

with 6, = (c;r,(,cnd) which stems from the normal-ordering of the bath operators with respect to
the Fermi sea.

Flow of £ and Vj,,

A nice feature of Eq. (7.67) is that no terms Vj, occur for k # q. The reason for this is that at
least one coefficient on the right-hand side of the differential equation for Vi, is forbidden by
spin conservation or the right-hand side cancels due to symmetry as long as k # ¢. For k = ¢, on
the contrary, the change of E; (given by the change of Vj;) is finite. The energies of the triplet
states £ » 3 remain degenerate during the whole flow which holds true for all parameters. This
fact allows us to define an effective coupling K (/) = E; (I) — Eo () with i = 1,2, 3.

Fig. 7.11 shows the flow of the diagonal elements Ej.
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Figure 7.11: Flow of the energy levels E; from the DEQ (7.67) for the Kondo model coupled to an auxiliary
spin where d/E; = 9;Vi with N =40, A =2, 2pyJ = 0.12 and 2pyK (0) = 0.01. The energy
levels of the triplet states E 5 3 remain degenerate during the flow which allows the definition of
a flowing coupling K (/) that increases during the flow.

7.4.3 Vanishing Coupling and Kondo Energy Scale

In order to verify whether the DEQ (7.67) is correct and to understand how the truncation

schemes for the adapted and the conventional operator basis are related to each other, we study
the case K = 0.

When we neglect the flow of the coefficients J*** and set

TP = Jon Y O Olg s AP =T Y atf g, (7.68)
u u
which is in agreement with the starting value (7.59), we find
al-]nm + (8n - 8m) rlnm + Z (nnxjxm - nxm nx Z kq oc[)’ (7-69)
X

This shows that Eq. (7.68) holds true during the whole flow and that the differential equation
for J,, coincides with the initial DEQ for the Kondo model without the auxiliary spin (7.40).
When taking J*®® into account and using

TP = Jum Y Ol Ol g+ g Bap s M = nan b0 + Minbgap,  (7.70)
u
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we find the differential equation for the coefficients

alJnm = Z (nr{xtxm - n){mtnx + nr’zx']xm - n)tcm‘]nx) (771)

X

B Z [nr{x‘]xm - n){m‘]nx] (1 - ZGA)

X
3
all‘nm = Z (nf,xfxm - r’)l;mtnx) + Z Z (T’}{x‘]xm - n){m‘]nx) :
X X

This coincides with the DEQ (4.87) in the conventional operator basis when taking hopping
terms into consideration. The truncation scheme we use in the following sections is the one
where the terms JX*% are taken into account.

Note that this is, however, not the main difference to the approach before. For K > 0, we find
an IR-cutoff due to the coupling K and thus converging differential equations independent of
the question if we take the couplings JXX*® (which are only a small fraction of all couplings

nm
kqgo3+ -
Jkaop ) into account.

7.4.4 IR-Approximation

Before analyzing the full differential equation (7.67) numerically it is useful to study the be-
havior at low energies close to the Fermi level &g = 0. We use the continuum limit (cf. Sec.
6.8.4)

kqa 3
€ — €, Y podx, O — ghaob (g¢) (7.72)
Y Vm
of the DEQ (7.67) which leads to
P — (E,—Ei+¢ —¢)nleP (7.73)

b pqay tkpyp kpyB ;pqory
T ZPO/D(TISZ ng/ TN Jes >9zdz
VP -
D
k k
+ e [ (s - ae) (1 6o
Y,p -

and apply the IR-approximation in the form

Jé"gf‘ﬁ _ Jggﬁe—fkq|Ek—Eq+e—£’ L (7.74)
Using Eq. (7.74) in Eq. (7.73) for € = €' = €f yields
k k
OWeyer = —fua|Eq— Enl Jeter” (1.75)

D
— — &k &
+ ZPO /0 Jpgsgn (Aqu + Z) e~ Ura A2l i |6y Zl)ldz (Jgpqezyj sfej;ﬁ —J ngngqg;ﬁ)
Y.p
D .
- ZPO /0 fipsgn (AEy, —z) e (el AEpg-t2| +fip [ AEg 2 ) g (ngeiyjéé)e);ﬁ - Jéggy‘]z;qe};ﬁ)
Y.p

where
AE, = E—E,. (7.76)
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The factor fi, equals one for all k and g when using the full generator (7.63) and is given by
Eq. (7.65) when using the generator (7.64) which only includes terms that couple to the singlet
state. We can calculate the integrals for K > 0 using the symmetries from Eq. (9.64), cf. App.
9.10.2, and by exploiting the following properties of the coefficients

foi = foj foralli,j>0 (7.77)
foi = fio foralli>0
fij = frp foralli,j,i',j>0

which hold true for both the generators given by Eq. (7.63) and Eq. (7.64), respectively. Thus,
the DEQ (7.75) simplifies to

01 01 4po (14t _KI 011 71
RIUL = —|K|J£F§F¢+T[1—e (1+f“>D’]e KLjOITL T (7.78)
o Po [ _2(p— _ 0111\2  2f11P0 _ 2111 2
alJSFSTFT - -2 [e 2D-K) _ ¢ 2Kl} (JngFi> +T [l—e zm] (JstTFT) _

For a more detailed calculation, see App. 9.10.4. As we performed the calculation for both
generators, the one from Eq. (7.63) as well as the one from Eq. (7.64), we can now study the
difference between them. If we use the full generator (7.63), all fi, = 1. In this case, a term is

present that is not exponentially suppressed by a factor e X’ (the second term in 81Jé;§FT), ie.,
the differential equation diverges due to an integral over /!,

If we use the generator (7.64) which does not include terms that connect different triplet
states, the factor fi; is zero. Consequently, the term that is not exponentially suppressed van-
ishes and thus we expect convergence. This result is convenient as only terms which couple
non-degenerate states will eventually converge. When using the adapted reference state, the ex-
citation from the singlet to a triplet state requires an energy K and thus leads to a term e X/,
The triplet states are degenerate and thus no factor occurs that could lead to convergence as the
exponent is zero.

Using the generator (7.64) that only includes terms that couple to the singlet state yields the
final DEQ

4p ~
01 01 0 — — 01 11
HIYL = —|K|J€F§F¢+T[1—e Dl]e KLjoItL i (7.79)
2
~1 0 — — — ~0
alJSFISTFT _ _P7 [e 2D-K) _ o 2Kl] (Jsl:lgs)

where all terms are suppressed by a factor e X, This factor suppresses the integrals over !
exponentially and thus implies convergence.

Kondo Energy Scale

We can verify that Eq. (7.78) for K = 0 and the full generator (7.63), where all fi, = 1, yields
the same results as the approach without the auxiliary spin. Eq. (7.78) then becomes

4p
01 0 — 01 11
HILL = - [l—e ZD’} JO Lt (7.80)

2 2
LT = % [l—e_le} ((JSFIJJ) +2(J§F1§FT) )
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Multiplying the first equation with — \/Li and adding the two equations yields

.2
o = %[1—520’]1“2 (7.81)
with
3 1
J = Jgel — —=Jodr (7.82)

\/5 EFEF

From the starting values (7.59) (cf. App. 9.10.1) we find that the starting value for J coincides
with the initial J of the conventional Kondo model. Thus Eq. (7.81) is the well-known scal-
ing equation (4.96) of the Kondo model with an isotropic coupling, i.e., the new DEQ (7.67)
diverges on the Kondo energy scale for K = 0, just as expected.

7.4.5 Numerical Residual Off-Diagonality

The IR-approximation of the last section predicts that the DEQ (7.67) converges. In order to
verify this prediction, we additionally solve the full DEQ (7.67) without the IR-approximation
numerically and examine the residual off-diagonality.

Fig. 7.12 shows the residual off-diagonality of Eq. (7.67) for the generator (7.64).
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Figure 7.12: Residual off-diagonality for the Kondo model coupled to an auxiliary spin for A = 2, 2pgJ = 0.12,
2ppK = 1 and from left to right: number of energy levels N = 10, 12, 14, ..., 38, 40. The differential
equation (7.67) converges for K > 0 while it diverges for K = 0 (dashed line). For intermediate /,
the residual off-diagonality is described by a power law o/ 2. For large [ (beyond the inverse of the

lowest energy scale in the system Ey o< A2 ), the ROD decreases exponentially.
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We find a power law ROD o< [ =2 for the residual off-diagonality for intermediate /. At some
point beyond the lowest energy scale in the system the residual off-diagonality decreases expo-
nentially. The point beyond which the large [-limit behavior occurs increases exponentially as
A? where N denotes the number of energy levels included. The lowest energy scale decreases
proportional to A~ and thus the point for which we find the large /-limit behavior is propor-
tional to the lowest energy scale in the system. The dashed line in Fig. 7.12 shows the residual
off-diagonality for K = 0 which diverges. This result confirms that the new reference state leads
to converging differential equations for K > 0.

7.5 Adapted Reference State for the Kondo and Anderson
Model

In the last sections we introduced new terms to the diagonal part of the Hamiltonian Hp from
which we derived the reference state as the ground state. The main difference compared to
the previous Hamiltonian is that flipping a spin on the impurity requires an energy K which
enabled us to find converging differential equations. We achieved this, however, by introducing
an auxiliary spin which forces the impurity into a singlet ground state. This made it easy to
modify Hp but does still not solve the Kondo or Anderson model. The question of the following
sections is how to use the knowledge gained in the last sections in order to construct converging
differential equations for the Kondo and Anderson model, respectively.

In order to construct converging flow equations, we include diagonal spin-spin interactions
in the diagonal Hamiltonian

Hp=Y & :cloCpo: -l—ZJnnGgﬁ T cj,acnﬁ L (7.83)
n,o

n,c

We will choose the ground state of the Hamiltonian (7.83) as the reference state. Thus, we have
to understand how the ground state of Hp is affected by the local spin-spin interactions J,;,. In
principle, we have to solve a many-body problem again that is itself almost as difficult as the
original Hamiltonian.

Fortunately, we can find the ground state by a much simpler consideration. If the couplings
Jnn are small enough (like in the early flow), the ground state is the Fermi sea. The reason for
this is that the spin-flip contributions have no effect on the Fermi sea as all sites are either empty
or doubly occupied. Thus, in order for the spin-flip contributions to affect the reference state,
their action must account for the energy loss from removing a particle from the Fermi sea. This
can only happen if the couplings J,, are large enough. The couplings J,,,, increase during the
flow until it becomes energetically favorable at one specific site to remove a particle from the
Fermi sea so that the spin-flip contribution can act. This happens on one specific site first while
the residual part still forms a Fermi sea and is unaffected by the spin-flip contributions.

In order to understand how the ground state will change, we only have to focus on the impu-
rity and the specific site where it becomes energetically favorable to remove a particle. However,
we need to include three sites to our analysis because if the negative level & = —&, is a level
where it is energetically favored to remove a particle from the Fermi sea, then the positive level
& yields the same energy when adding a particle to the Fermi sea due to particle-hole symmetry.
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Figure 7.13: Part of the Hamiltonian H, which consists of the sites on which it first becomes energetically fa-
vorable to remove a particle from the Fermi sea so that the spin-flip term can act on the respective
site. Because of the particle-hole symmetry, removing a particle from a negative level results in
the same energy loss as adding a particle to the corresponding positive level.

Thus, we only need to focus on
H, = Zer (ciqcm - c;(,cm) +JrrZ Z O'gﬁ T (Ciacr/g + c;facfﬁ) (7.84)
o Hoo.p

where 7 labels operators acting on the site with energy & = —é&,. This is a problem that can be
solved by exact diagonalization and we find 32 eigenstates® which are given in App. 9.11.1.

In order to test the adapted approach and in order to keep the numerical calculation effort
tractable, we will neglect some of these eigenstates. The states that are not neglected are:

1. The ones which describe the spin-spin coupling, namely the singlet state |s*) and the
triplet states |¢°).

2. The Fermi sea |FS, o) because the reference state is changed when the singlet and the
Fermi sea have the same energy, i.e., these states compete to become the ground state.

3. The state |6) (cf. Eq. (7.86)) because it has also the potential to become the ground state.

These are 12 (cf. Egs. (7.85) and (7.86)) out of the 32 eigenstates of the Hamiltonian (7.84). We
neglect the remaining 20 eigenstates in order to keep the numerical calculation effort tractable.
The method does not rely on this approximation but expanding in the full adapted operator
basis would be less transparent (e.g. finding all symmetries) and the computational effort would
increase significantly. This approximation is very useful in order to understand the approach
and to verify if it works. Nevertheless, it would be an interesting task for following works to
implement the flow equations without this approximation in order to study its influence or to
study if one can neglect even more states.

App. 9.11.1 shows all eigenstates of the Hamiltonian (7.84) and also the ones that are dis-
carded. We neglect all states with an energy that is higher-lying than the energies of the triplet
states. The remaining states are

)=l = ZS(0RH=0LD) =1 = SS(LE =L
1) =1l7) = 10,1,1) 5)=1r") = [T (7.85)
P)=1) = SORH+LD) 0=l = Z=( LA+ T
3)=l5) = 10,4,4) T =1 = L4,

8Following the same procedure for the Anderson model would, in principle, lead to 64 eigenstates but as we
project on a singly occupied impurity state before changing the reference state, we also find 32 eigenstates.
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and further
8) = [FS,1)=10,1,1))
9) = [FS,|)=10,,11)

~ 1
100 = )=z 1 A0 -2t [ L)
1) = D= [ hut -2 LD+ ).

V6

The notation refers to the following levels

|positive level g, impurity level g4, negative level &5)

with & > 0 and & = —&,. The eigenvalues of these states are given by
3, Iy
Esi:— 2r—8r , Eli:é_gr (1—1,2,3)
EFS,G — —28r ; E6 - _2Jrr

and thus out of the eigenstates (7.85) and (7.86) possible ground states are

|FS,G> = |0767T‘L>7 EFS,G = —2¢
_ 1 3,
|S > = EUQT»U‘M%T))» E-=— 3 — &
oo B 3
|S > - \/5 (| J/)T?T\L> | ThL?T\L)) 9 E'sJr - 2 8r‘
) = —-110.0,6)~20.6.0)+6.0.0)], Eq—

V6

(7.86)

(7.87)

(7.88)

(7.89)

—2Jr.

The Fermi sea |FS,o) is the lowest-lying state in the early flow while the singlet state |s*)
— formed by the impurity and the positive level &, or the negative level &, respectively — de-
creases during the ongoing flow until it will eventually become smaller than the Fermi sea. The
state |6) becomes the ground state for larger values of J,, and, in contrast to the singlet state,
it is a spin carrying state, i.e., the impurity spin is not screened. It is important to note that the
singlet state becomes the ground state before the state |G) does when we continuously increase
Jy. If this was not the case, the physics would be completely different as the spin of the impurity
would not be screened and an effectively ferromagnetic coupling to the remaining bath would
arise. But this is not the physics of the Kondo model as in this case the singlet state forms first.

The parameter regimes with their respective ground states are given by
° J, < 2—?: ground state: |FS, o)
o 2—;6' < J,r < 2€:: ground state: |s)

e J, > 2¢: ground state: |G).
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Figure 7.14: Energy difference between the singlet state and the Fermi sea AE (n) = E,(n) — Egs (n) from
Eq. (7.89) for the Kondo model with N = 40, A = 2 and 2pyJ = 0.14. The sites n belong to
the negative energy levels and the absolute values of the energies are decreasing from top to
bottom. The flow parameter at which the DEQ diverges if the reference state is not changed is

given by lo ~ 1127D~! which corresponds to a Kondo temperature %( ~ 8.873-10~*. The black

lines mark the flow of AE (n) at a site n for which |g,| > Tx while the red lines mark the flow of
AE (n) at a site n for which |g,| < Tk. At the point where one AE (n) crosses zero, the reference
state is changed and the singlet state forms at the site n. The green line shows AE (np) at the site
closest to the Fermi level. The inset shows that the site that is closest to the Fermi level forms the
singlet first. Because of the particle-hole symmetry, the singlet can be formed equally with both
the positive as well as the negative energy level.

As soon as we reach the point where

2¢
Jrr (lO) = Trv

the singlet state |s*) will become the ground state. The singlet state cannot be expressed as a
product state and thus Wick’s theorem cannot be applied to the respective sites involved in the
formation of the singlet. The remaining bath, of course, can still be normal-ordered as before.
At the point where the singlet state becomes energetically favorable, we choose the singlet state
as the reference state and use the states from Eqs. (7.85) and (7.86) as a new basis. We solve
the DEQ (7.40) in the initial operator basis with the Fermi sea as the reference state using the
starting values (7.44) which belong to the Kondo model.

We follow the ratio J’”’ at each site and as soon as the ratio becomes 22 = (cf Eq. (7.90))
at one energy level &, we change the reference state. The procedure is fur'{her explalned in Sec.
7.5.4.

(7.90)
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Figure 7.15: Energy difference between the singlet state and the Fermi sea AE (n) = E,(n) — Egs (n) from
Eq. (7.89) for the Anderson model with N =40, A =2, ¥ = 1.2 —3 and %, = 0.01414. The
sites n belong to the negative energy levels and the absolute values of the energles are decreasing
from top to bottom. The value of the flow parameter at which the DEQ diverges if the reference
state is not changed is given by Iy ~ 7201D~! which corresponds to a Kondo temperature % ~
1.389 - 10~*. The black lines mark the flow of AE (n) at a site n for which |g,| > Tk while the
red lines mark the flow of AE (n) at a site n for which |g,| < Tk. At the point where one AE (n)
crosses zero, the reference state is changed and the singlet state forms at the site n. The green line
shows AE (np) at the site closest to the Fermi level. The inset shows that the site that is closest
to the Fermi level forms the singlet first. Because of the particle-hole symmetry, the singlet can
be formed equally with both the positive as well as the negative energy level.

Fig. 7.14 depicts the energy difference between the singlet state and the Fermi sea for the Kondo
model. At the point where this difference crosses zero at one site, the reference state is changed.
The couplings J,,, only diverge for indices n with |g,| < Tk (cf. Sec. 7.3), i.e., only couplings be-
low the Kondo energy scale become large enough to account for the energy loss from removing
a particle from the Fermi sea by forming a singlet state. Thus, the approach ensures intrinsically
that the singlet will form below the Kondo energy scale. We already know from the results of
Fig. 7.6 that the smaller the energy &, the faster the ratio % 2 increases. Thus, the singlet forms
at the lowest energy scale in the system. In a continuum thlS would be directly at the Fermi level
EF.

Note that the site at which the singlet is formed might change during the subsequent flow.
However, this possibility is neglected in the following due to practical reasons. If the site at
which the singlet forms changed during the subsequent flow, we would have to change the basis
again for the new site while the old site is still expressed in the adapted operator basis. This
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would lead to very cumbersome basis changes. Nevertheless, it is a very interesting question
at which energy scale the singlet will finally form. For now, however, we are only interested in
the question if the approach works at all and not in possible optimizations. Hence, the possible
shift of the site which forms the singlet ground state is neglected and we use the site that forms
the singlet first throughout the whole flow.

Fig. 7.15 depicts the energy difference between the singlet state and the Fermi sea for the
Anderson model. In principle, the procedure is the same as for the Kondo model except that
we have to eliminate the hybridization elements additionally. We solve the DEQ (7.18) in order
to eliminate the hybridization elements and thereby build up the induced spin-spin interaction
which is diagonalized by the DEQ (7.40) at the same time. The further procedure coincides with
that of the Kondo model (the procedure is further explained in Sec. 7.5.4).

The spin-spin couplings again increase below the Kondo energy scale until at some point the
formation of a singlet state becomes energetically favorable. The singlet always forms at the
site closest to the Fermi level because the ratio Jsﬂ increases faster at smaller energies €, ~ 0.

7.5.1 Hamiltonian in the Adapted Operator Basis

In the next step we determine the effective Hamiltonian and the adapted flow equation after the
reference state is changed. We denote the site which is part of the adapted operator basis by
r and the flow parameter at which the reference state is changed by /y. If the flow parameter
reaches the point /y, the effective Hamiltonian is of the form

Ze,, hono it Y Y, Y Jum(lo)o ChoCp - (7.91)

unmqgp

We separate the sites denoted by r and 7 (with & = —¢,) which form the singlet state

H) = ¥ & Chatuo 6 (: clotro = clotro 1) (7192)
it
) zﬁ[ (lo) Ot T : clac,  +Irr () Ofig ™l
X azﬁ[ (lo) Gl ™l e (1) 0Ly T - Clatyy
+ gazignn;ﬂ wm (l0) Olyp ™ ijcmg
n ;;ﬁn;ir[m l0) Olg T = ChoC,g T (lo) Olyg T : C:acnﬁ]
n ;O;}n;ir[m (o) Oty T < clacyg : +Jm (lo) Ol - cIacﬁ]

Next, we introduce the adapted operator basis

k) (q| = |k){q|non-normal-ordered — 1 (6ks— 5(]5— + O+ 5qs+) (7.93)
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where k and g denote the basis states from Egs. (7.85) and (7.86). We expand all respective
operators in this operator basis which yields

H(l) = Y &:cistus: +2Eklk (k|+ Y, Eglk){ql (7.94)
n#+rc k,q: k#q
+ Y Y Y Pl clac,s
k,gn,m#xro,
+ ¥ X 1 (Kalens +chola) (k)
k,q,0n#£+tr

As we have chosen the basis states so that terms which act only on the site r or only on the site 7
are diagonal, we already know that the E} are given by the eigenvalues (7.88) where J,, = J,, (I)
while the starting values for the other coefficients have to be determined from

I (10) = Jam (o) Y, ol (KITH]q) (7.95)
u
T} (lp) = Jur(lo) Y. 0l (KT clqlq) +Jur (o) Y Obo (klTHclylq)
1,00 0
Eryo) = Y Y gz (0" kletclye gla) + (05 (gt clue 410)) ).
kg \t0 rF aﬁ FaCrpld ap 4 FaCrp
U oo,p

The starting values for terms that couple the triplet and singlet states s™ and * from Eq. (7.85)
are identical to the starting values for the Kondo model coupled to an auxiliary spin

JkaoP (g, %"Jnm o) 00y for k,ges™, 1 (7.96)
where ot is given by Eq. (7.55). Only states with the same number of particles couple via

,]f,‘flaﬁ (Ip), i.e., t; with s~ and tl-Jr with s, respectively. The terms that couple the Fermi sea
states with different spins are given by

1
JkaaB 10y = 5 Y. Jum (lo) cgkcqogﬁ for k,q€FS,o (7.97)
u

where o} and 6, denote the spin of the states k and g. Additionally, there is a coupling between
the three-particle states |&) where both the positive as well as the negative level are singly
occupied

IrsP (lo ZJnm (lo) " 0o, 0Ly for kqed (7.98)
with s* =¥ =1 and s = —1. No further terms are allowed by spin conservation for the cou-

plings Jnm 99P The explicit starting values of all non-zero couplings an op (Ip) are given in App.
9.11.2. Because there is a term in the Hamiltonian (7.92) that couples the sites r and 7 before
the reference state is changed, there is a term that couples the Fermi sea to the |G)-states from
Eq. (7.86). Thus, the only non-zero starting values for Ey, are given by

3 3
%Jrf(ZO) s Eg11=Ej9= —%
The starting values for the Fﬁqc-terms cannot be written in a compact way and thus are only
given in App. 9.11.2.

Eg10==Ei0s = g7 (lo) . (7.99)
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7.5.2 Generator and Reference State

The general structure of the generator is chosen to be

n o= YnEka+Y Y Y metfikal: clac, (7.100)
k,q k.q o, B n,m#£r

+ ¥ ¥ 0 (Wialens — chola) k)

k,q,0 n£+r

We want to eliminate all terms that couple to the reference state. In contrast to the Kondo model
coupled to an auxiliary spin, we have to use a reference ensemble instead of a single reference
state because the states |s~) and |s*) are degenerate due to the particle-hole symmetry

(0) = = ((FS|(s~|O|s™)|FS) + (FS|(sT|O|s")|FS)). (7.101)

| =

The operator basis (7.93) is normal-ordered with respect to the reference ensemble (7.101).
In order to eliminate all terms that couple to states of the reference ensemble, we choose the
coefficients of the generator to be of the form

E sgn (Ex —E,) Ey, ifkorges™

Mg = 0 otherwise

was sgn (Ex — Eg+ €, — €n) kqap ifkorg e st
o
T’ni,] = sgn (8,, — Em) ,]f,’?,aﬂ ifk= qc< st (7.102)
0 otherwise

nch _ sgn (Ex—E;— &) I ifkorgest

nI’ 0 otherwise

7.5.3 Flow Equation

In order to obtain the adapted flow equation (4.4), we have to commute the generator (7.100)
with the Hamiltonian (7.94). We truncate terms with a quartic bath-operator structure. The flow
equation is of the form

IErg = (Egqq—Ew) Mg+ Y. M5Epg— Y, MfuEip (7.103a)
p#q p#k
k
R PY (manl s =P aieP™ ) 6, (1 - 6,)
P a,Bnm#ELr
- Y X (i) 6,
b n7
n#+rp,Y
kpy Yk
+ n;ézj’:rpzjt/ (nn,r szy—i_ nn,F any> (1 - On)
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AT = (&n+Egq—Eu) M, ¢ (7.103b)

kpo E vk

+ Z (nnf)F Epq— npqrnpc)

P#q
~ ¥ (1B, —nre)

p#k

k k

+ XX (nifagre —neri) e,

P x#£+ry

k
+ XY (nifmee —nbierir) (-6
D x#+ry

TP = (g, — &+ Eyq— Ee) /1P (7.103¢)

nm
k
+ X (i Epy = i)
p#q
~ ¥ (nP e - nEaped)
p#k
k k
X (nprrake gl o,
xF#Eny,p
k k
X (s - i) (1- 6,)
xF#Eny,p
k k
— X (nfierpe 4 nptfrpke o nineripP oo
p

Note that parts of the flow equation for J,If,q,,aﬁ are of the same structure as for the Kondo model

coupled to an auxiliary spin (cf. Eq. (7.67)). In principle, due to the normal-ordering (7.93)
hopping terms would emerge which would induce a flow of the on-site energies. The normal-
ordering scheme is chosen such that terms emerging in this way always couple to J33%*. As
JE9% is not present in the initial Hamiltonian at [y, it is of order J2. The feedback of such terms
on Ej, are of order J. Thus, we neglect the normal-ordering (7.93) as well.

The number of indices is very large and one should optimize the differential equation by ex-
ploiting symmetries. A lot of combinations of the k and ¢ indices, for example, are forbidden by
spin conservation which can be used to reduce the numerical calculation effort. The symmetries
are given in App. 9.11.3.

7.5.4 Residual Off-Diagonality

In the following sections the results obtained with the adapted approach are presented.
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Figure 7.16: Residual off-diagonality for the Kondo model with N =40, A = 2 and 2pyJ = 0.2 where the ref-
erence state is changed during the flow. At first, the Fermi sea is chosen to be the reference state
and the DEQ (7.40) is solved with the starting values (7.44). The couplings below the Kondo tem-
perature are increasing during the flow which leads to a new reference state at /. After changing
the reference state, the new differential equations (7.103a) - (7.103c¢) are solved which converge
in contrast to the initial DEQ (7.40). The ROD for the DEQ (7.40) without changing the reference
state is denoted by the dashed line.

Fig. 7.16 depicts the residual off-diagonality of the Kondo model with the adapted approach
in order to check if the differential equations (7.103a) - (7.103¢) converge. We start from the
Kondo Hamiltonian and solve the differential equation (7.40) with the starting values (7.44) and
the Fermi sea as the reference state while following the spin-spin couplings J,,,, numerically at
each site.

For small values of [, the ratio J"—" is significantly smaller than % (cf. Eq. (7 90)). At some

energy scale [y the spin-spin couphng Jnn becomes large enough so that J’”’ = 3 is fulfilled. As
soon as this happens, we change the reference state and rewrite the Hamlltoman to the form
(7.94) in the adapted operator basis (7.85) and (7.86). Additionally, we use the adapted differ-
ential equations (7.103a) - (7.103¢) and continue with the flow starting at /y. The differential
equations are solved by a 4th-order Runge-Kutta algorithm.

For small values of [, the residual off-diagonality is the same as for the previous DEQ (7.40)
because the reference state is not changed yet. When we switch to the adapted reference state,
the residual off-diagonality changes discontinuously because the generator is changed and thus
different types of terms are included in the residual off-diagonality.
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Figure 7.17: Residual off-diagonality for the Anderson model with N = 52, A = 2, % = 3.2e —3 and
% = 0.01414. The first part of the flow only shows the ROD of the DEQ (7.40) for the induced
spin-spin interaction J,% from Eq. (7.12). At first, the ROD is increasing because the spin-spin
interaction is zero for / = 0 and builds up when turning away the hybridization. The diagonaliza-
tion of the induced spin-spin interaction leads to divergence (dashed black line). The couplings
below the Kondo temperature Tk are increasing during the flow which leads to a change of the
reference state at some flow parameter /y. Subsequently, we solve the DEQs (7.103a) - (7.103¢)
which converge in contrast to the initial DEQ (7.40). The adapted approach leads to converging
differential equations.

One might wonder why the residual off-diagonality increases after changing the reference state
as we turn away less terms than before (we only turn away terms that couple to the singlet
state). But one must also bear in mind that we include completely different types of terms into
the generator.

Especially, new terms appear in the ROD after changing the reference state which are diago-
nal in the bath operators. We illustrate this for terms of the form

+ +
Pl s ) (7.104)

noCnp
which have starting values at [ that are proportional to J,, (Iy). These terms were not turned
away by the Continuous Unitary Transformation in the previous operator basis. Thus, these
terms are large compared to the terms in the generator before the reference state is changed
which are suppressed by a factor e/l After the reference state is changed, terms that
include diagonal elements in the bath operators are included in the residual off-diagonality.
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Thus, the residual off-diagonality increases abruptly when changing the reference state and
using the adapted generator.

The dashed line shows the behavior of the residual off-diagonality when the reference state
is not changed. In this case, the residual off-diagonality diverges on the Kondo temperature 7.
The adapted flow equations (7.103a) - (7.103c¢) are able to prevent this divergence and lead to
an effective Hamiltonian with small finite couplings at the Fermi level &g = 0.

Fig. 7.17 shows the residual off-diagonality of the Anderson impurity model obtained with
the adapted approach. We start from the Anderson Hamiltonian in the form (7.5) and eliminate
the hybridization elements and diagonalize the thereby induced spin-spin interaction Hy from
Eq. (7.12) simultaneously by using the differential equations (7.18) and (7.40).

We only plot the ROD of the spin-spin couplings J,I,i, from Eq. (7.40) because the hybridiza-
tion elements — which would in principle also contribute to the ROD — are given analytically
by Eq. (7.25). For small values of /, the residual off-diagonality increases as the spin-spin cou-
plings Il are generated due to the elimination of the hybridization elements which are given by
Eq. (7.25). At some point during the flow, the hybridization elements become negligible. The
action of the induced spin-spin interaction on itself from Eq. (7.40) is now the driving part of
the flow equation which leads to diverging couplings (dashed black line).

When the formation of a singlet state becomes energetically favorable, we first project the
Anderson Hamiltonian to a singly occupied impurity state. This can be done because [y is far
beyond the U-energy scale and thus the charge fluctuations of the impurity will not play a
significant role in the subsequent flow.

The couplings J=, and J?, vanish due to this projection. Using the spin-rotation symmetry
(7.39) for JZ%,G and J,% leads to an effective Kondo Hamiltonian with the couplings J,,,,, = J,I,%
Subsequently, we can follow the same procedure as used for the Kondo model. Again, the
adapted approach is able to construct an effective low-energy model for the single impurity
Anderson model without infrared divergences as shown in Fig. 7.17.

To conclude, so far we achieved our goal of finding a way how to construct converging DEQs
within the CUT approach when truncating in orders of the hybridization V and the spin-spin
interaction J, respectively. Diagonalizing important contributions of the spin-spin interaction
in this way and still providing an effective model with small finite parameters arbitrarily close
to the Fermi level has not been achieved so far. There are no previous works in the case of
the Anderson model which diagonalize the induced spin-spin interaction and in the case of the
Kondo model previous works resulted either in diverging DEQs [16] or still exhibit IR-divergent
parameters [17] or rely on bosonization before applying the CUT [18-20].

7.5.5 Kondo Energy Scale in the Effective Model

We succeeded to provide a method that yields an effective Hamiltonian with (small) finite pa-
rameters for € — €. The major question is, however, if our effective Hamiltonian is able to de-
scribe the important strong-coupling physics. With the previous approach we found the Kondo
temperature Tk only as the energy scale at which the differential equation diverges.

In order to study whether we capture the strong-coupling physics or not, we analyze two
interesting energy scales of the flow:

1. The flow parameter /o at which the reference state is changed.

2. The binding energy of the singlet state.
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Figure 7.18: Flow parameter /y at which the reference state is changed for the Kondo model with A =2 and
N =52. The inverse energy scale /y is increasing proportional to the inverse of the Kondo temperature
T ! The factor A A from Eq. (6.39) is an effect of the discretization.

Fig. 7.18 depicts the flow parameter [y at which the reference state is changed for the Kondo
model. From the numerical data presented in Fig. 7.18 we find that the energy scale at which
the reference state is changed shows an exponential behavior in the form

A

1 _ A
Iy " ece 20 (7.105)

where the factor A, in the exponent is an effect of the discretization and is given by Eq. (6.39).
It is manifest in the discretized Kondo model regardless of the applied method [8]. Thus, we
find that the energy scale at which the reference state is changed is proportional to the Kondo
temperature Tx.

Following the procedure outlined in the last sections, we can also analyze the energy scale [, !
at which the new reference state is formed for the Anderson model. We again find discontinuities
that we already found in Fig. 7.8. The explanation is the same as before.

Every time % crosses an energy level g,, one sign in the generator changes discontinuously
(cf. Eq. (7.46)). However, for decreasing A the discontinuities become smaller (cf. Fig. 7.8).

Between the discontinuities, we find (at least for large enough values of U) the exponential

behavior
U

_AA—YU
Iy loce Eov?, (7.106)

Fig. 7.19 shows the flow parameter /y at which the reference state is changed for the Anderson
model.
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Figure 7.19: Inverse energy scale [ at which the reference state is changed for the Anderson model with N = 52,
A =2and % = 0.01414. The inverse energy scale [y is increasing proportional to the inverse of the

Kondo temperature 7y ! for large enough values of U. The factor A from Eq. (6.39) as well as the
discontinuities at €, = % (cf. Fig. 7.8) are effects of the discretization.

The second energy scale we want to study is the binding energy of the singlet. It is an advantage
of our approach that we can identify this quantity easily as the energy difference of the two
lowest energies E; and E_ from the diagonal part Ej from Eq. (7.109) of the Hamiltonian
(7.108) (cf. Eq. (7.88)) for [ — o

A, =E_—E,. (7.107)

If we forget about the interaction part for a moment and consider the form of the effective
Hamiltonian

Hy = Y &n:cioCio:+ Y, Evls)(s"+ Y Y Erltl) (1] (7.108)
n,c r=+ r==+ |

+ Y Ees olFS,0) (S, 0] + L E6|6)(5] + ¢ L (IFS.0) (5] + |6)(FS. o)
(o3 (e) (o3
we can identify the binding energy of the singlet state as the energy difference between the two
lowest energy levels of E; where we have to diagonalize the Ey, first (cf. Eq. (7.94)). Note that

Ay from Eq. (7.107) can only be interpreted as the binding energy for / — o because the singlet
is the ground state of the effective model only in this limit.
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Figure 7.20: Flow of A, (1) = E_ (1) — E; (1) for the Kondo model with N = 40, A = 2 and from top to bottom
2ppJ =0.2,0.19,0.18, ..., 0.11, 0.1, 0.091 where E is the energy of the singlet state and E_ is
the first excitation above the singlet state (cf. Egs. (7.109) and (7.88)). The lines for 2pyJ = 0.17
and 0.16 end before the other lines for numerical reasons. For these parameters a smaller stepsize

is needed which increases the calculation effort. The binding energy for / — o decreases as
A (e0) o< exp (—%) (dotted black lines) where A, is a discretization effect and is given by
Eq. (6.39). The adapted approach leads to an effective model where the Kondo temperature Tx is
already manifest in the diagonal part described by the energies Ej.

For smaller values of /, there are still interaction terms present that act on the singlet state which
vanish for [ — oo. Diagonalizing the terms |k)(g| yields the eigenvalues

Eg,

+
UNEN 2

1 2
Ey=- [EFS,G +Es+ \/ (Eps,c —Es)” +4g> (7.109)

where the lowest-lying level is the energy of the singlet Es and the second lowest-lying is the
energy level E_ which belongs to a linear combination of the Fermi sea and the |G )-states (cf.
Eq. (7.88)). Fig. 7.20 depicts the flow of the resulting A, (1) from Eq. (7.107).

The energy needed to break up the singlet ground state is given by the final difference

As (00) = E_ (00) — Ey (o) (7.110)

where Ej is the singlet’s energy (which is the lowest lying) and E_ is given by Eq. (7.109).
For increasing /, we find a rapid increase of Ay (/) until it converges towards the binding
energy of the singlet state A (o). The binding energy is analyzed in Fig. 7.22.
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Figure 7.21: Flow of A, (I) = E_ (I) — E,(I) for the Anderson model with N = 52, A =2, §; = 0.01414 and
in the top plot %10 = 1.463, 1.6, 1.8, 2,2.2, 2.4, 2.6, 2.8, 2.93 (values of § are lying between
& and €)¢) and in the bottom plot %103 =3.2,34,3.6,3.8,4,4.2,4.4,4.6,4.8, 5 (values of %
are lying between &g and &) where Ej is the energy of the singlet state and E_ the first excitation
above the singlet state (cf. Egs. (7.109) and (7.88)). The binding energy A (o) is further analyzed
in Fig. 7.23. The dashed lines end before the others for numerical reasons. For these parameters
a smaller stepsize is needed which increases the calculation effort.

In Fig. 7.21 we also analyze the flow of A, for the Anderson model. Here we have to bear in
mind that we find discontinuities when an energy level €, crosses % For reasons of clarity, the
regions between two €, are depicted separately in Fig. 7.21.

For [ — o, we find an exponential decrease of the form

Ap

Ay (00) o< & 2007 (7.111)

for the Kondo model and an exponential decrease of the form

—Ap U2
Ag(o0) e a0V (7.112)

for the Anderson model.

In Figs. 7.22 and 7.23 the exponential behavior (7.111) and (7.112) of the binding energy
As (e0) is shown.
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Figure 7.22: Binding energy of the singlet state A, (e0) = E_ (o) — E; (o0) for the Kondo model with N = 40
and A = 2 where E; is the energy of the singlet state and E_ is the first excitation above the

singlet state (7.109).
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Figure 7.23: Binding energy of the singlet state A, (c0) = E_ (o0) — E (o) for the Anderson model with N =
52,A=2and % =0.01414 where E; is the energy of the singlet state and E_ is the first excitation
above the singlet state (7.109).
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To conclude, it is fair to state that the adapted approach not only yields a finite, well-defined
effective Hamiltonian but also results in a model where the Kondo energy scale is already man-
ifest in the diagonal part. It is no longer hidden in the interplay between kinetic energy and
interaction. If we forget about the remaining interactions, which do not couple the singlet state
to other states anymore, the effective model is of a very simple structure. The physics of a
screened impurity spin due to the formation of a singlet with a binding energy given by the
Kondo temperature 7k is evident and confirms the results obtained with other methods, e.g.,
NRG [1, 8].

In the calculations presented in this chapter we used the site which forms the singlet first
— which is the site closest to the Fermi level — throughout the whole flow. For test purposes,
we also fixed the singlet at another site n with |g,| &~ Tx which has only a minor influence
on the results presented in this chapter. Especially the binding energy of the singlet is almost
independent of the site at which the singlet forms.

7.5.6 Specific Heat of the Effective Model
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Figure 7.24: Comparison of the specific heat of the Kondo model taken from Ref. [121] (left panel) and the
specific heat from Eq. (7.116) (right panel) where a low-temperature approximation was used and
the influence of the bath electrons was not taken into consideration. Thus, we do not expect to find
the correct high-temperature behavior or the linear behavior for 7 — 0. The only information used
is the result from Fig. 7.22, namely that the binding energy of the singlet is given by the Kondo
temperature Tx. This is already enough information to find the maximum close below the Kondo
temperature Tx.

In this section we want to analyze the specific heat of the effective Hamiltonian and compare
it to the specific heat of the Kondo model. We use a very simple calculation in which we only
want to use the information from Fig. 7.22, namely that the binding energy of the singlet is
given by the Kondo temperature 7x.
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We calculate the expectation value of H

Ee BE 4 E_ e BE-

()= (Ho) = =

(7.113)

where Hy denotes the Hamiltonian for J = 0. We only used the two lowest energy levels Ej from
Eq. (7.109) and neglected the higher-lying ones. From the numerical results we know that

E_—E; =1k (7.114)
which we use in the next step

E;+ (E;+Tx)e PTk

(H) — (Ho) = o (7.115)
Hence, the impurity contribution to the specific heat is given by
X
d T2 e 7T
Cvimp = g (H)—(Hp)) = -5 ————. (7.116)

We notice that this is a universal function depending only on T—ZI;

Fig. 7.24 compares the specific heat (7.116) (right panel) with the specific heat of the Kondo
model [121] (left panel). With our straightforward calculation we already find the maximum
close below the Kondo temperature. As we used a low-temperature approximation, we are not
expecting to find the correct high-temperature behavior. The specific heat (7.116) decreases
much faster than the correct specific heat for higher temperatures. We also miss the linear be-
havior ¢y jmp o< TLK for T — 0 which is not surprising as we neglected the influence of the bath
electrons which is ultimately the reason for the linear behavior for T — 0. One could try to
capture this effect treating the remaining interaction terms in the effective model perturbatively
or taking the flow of the g, into account.
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8 Conclusion and Outlook

In this thesis we applied the method of Continuous Unitary Transformations to the single im-
purity Anderson and the Kondo model. Our aim was to study if the Continuous Unitary Trans-
formation approach is able to deal with the challenges of the Kondo problem and to construct
effective models describing the Kondo effect. We investigated three different approaches.

Chapter S Conclusion: Chap. 5 describes our first approach to the Anderson impurity model.
We map the Hamiltonian to a semi-infinite chain representation and separate particle and hole
states by applying two separate Lanczos tridiagonalizations. This is important as in this case p'
and 1" both create excitations. We wrote a CUT program that was developed in order to set up
the flow equations which are solved by a 4th-order Runge-Kutta algorithm.

We truncate terms with more than six operators and additionally all terms with an interaction-
range further than nearest-neighbors (d = 1). We compare the single-particle energies of the
effective model to the lowest non-zero many-particle flow (total charge Q = 1 and total spin
S = 0) derived from NRG calculations (cf. Ref. [10]) and further to the single-particle energies
obtained from effective fixed-point Hamiltonians describing the respective energy regimes.

We try to identify the different energy regimes of the Anderson impurity model and find very
good agreement for larger values of U in the free-orbital and the local-moment regime. We also
find the crossover between these two regimes in the expected regions. For smaller values of U,
the crossover is less distinct than expected and occurs a bit beyond the expected energy regime.
Increasing the interaction-range d beyond nearest-neighbor interactions improves the results.
For d =7, the results for % — 1073 are also in very good agreement with NRG calculations.

However, the most interesting crossover to the strong-coupling regime is not covered with
this approach. Thus, we focus on two other approaches in order to capture the strong-coupling
regime as well.

Chapter 6 Conclusion: In Chap. 6 we investigate an approach which starts from a parametriza-
tion in which the Hamiltonian is diagonal for U = 0 and consequently the initial interaction
Hamiltonian becomes completely non-local due to the diagonalization of the hybridization term.

We are able to derive the flow equations analytically by truncating emerging operators in
orders of the interaction U. We solve the differential equations numerically and find converging
differential equations and an effective model with small finite parameters on all energy scales.

We analyze the flow of the low-energy interaction vertex Uypnpnn: and the constant £y which
converges to the ground-state energy. The low-energy interaction vertex of the effective model
becomes attractive over some parameter regime.

In order to study if we are able to describe the low-energy strong-coupling behavior, we
calculate the impurity contribution to the susceptibility yq. We apply a magnetic field to the im-
purity level and calculate the ground-state energy Ey () in dependence of the magnetic field .
We calculate the susceptibility by the second derivative of the ground-state energy with respect
to the magnetic field.

At first, we calculate the susceptibility numerically by solving the full differential equation
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where the ground-state energy is derived in second order U2. We find an exponential increase
of the susceptibility

— qe i
%d = ole P (81)

where A, is an expected discretization effect and is given by Eq. (6.39). The exponential be-
havior is a good benchmark whether the strong-coupling physics is captured or not. However,
our result differs by a factor % in the exponent.

In the second part of Chap. 6 we apply a scaling expansion to the flow equation. We expand in
a scaling parameter A and discard terms that scale faster to zero than a chosen order in A when
lowering energies. A systematic low-order expansion in first order in A is investigated which
leads to a system of differential equations that can be solved analytically. The susceptibility yq
calculated from the scaling expansion is in perfect agreement with the exact result for U = 0
which is not trivial as the scaling expansion is an approximation, even for the non-interacting
case. By including the interaction and expanding in linear order in A, we are already able to
derive the exponential behavior of the susceptibility analytically without approximations

2,2 16 _U
P gZZB (en:z 8pV2 _ 1) ) (8.2)
The exponent differs from the expected exponent by a factor }r—? ~ 1.62 but exhibits the correct
U
ratio .
A

Chapter 6 Outlook: The promising results from the scaling expansion suggest further investi-
gations.

An obvious open task would be to include higher orders in the scaling parameter A and to
study if the results thereby improve. This is an entirely realistic aim as we can still neglect terms
with six operators when targeting the ground-state energy in second order in A.

However, it might also be interesting to better understand the flow for 2 = 0 and to include
the renormalization of U induced by the commutation of U-terms with themselves. This renor-
malization might influence the exponent and thus might improve the results.

Another interesting question would be if the calculation of further observables (e.g. the spe-
cific heat or the density of states) yields reasonable results in the framework of a scaling expan-
sion.

As the scaling expansion is not entirely developed for the Kondo problem, it would be an
interesting question to study if it can be applied to further problems as well.

Chapter 7 Conclusion: Chap. 7 describes our third approach to the Anderson and Kondo
model. This time we truncate in orders of the hybridization element V and in orders of the
spin-spin interaction J, respectively. An approach using a similar parametrization was already
used in the context of the Kondo model [16]. With this approach the conventional scaling re-
sults were reproduced, i.e., differential equations were derived which, however, diverge on the
Kondo energy scale Tx. This approach fails to solve the Kondo problem due to diverging spin-
spin couplings just as found in the ”poor man’s scaling”. Our aim in Chap. 7 is to modify this
approach in a way that enables us to derive an effective model without infrared divergences.

In the first part of Chap. 7 we reproduce the Schrieffer-Wolff transformation by using the sign-
as well as Wegner’s generator in order to have a starting point to develop our improved approach.
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We compare the resulting spin-spin interaction to the one-step Schrieffer-Wolff transformation
and the CUT approach already used by Kehrein and Mielke [22]. We use deepCUT ideas in
order to justify a truncation scheme which enables us to derive the induced spin-spin interaction
Jnm analytically without approximations. The results from Continuous Unitary Transformations
are less singular than those from the one-step transformation. The induced spin-spin couplings
Jung from the sign- as well as from Wegner’s generator are antiferromagnetic over the full energy
spectrum while the couplings from the Schrieffer-Wolff Transformation as well as from the
generator used by Kehrein and Mielke are not. This is no disagreement as long as the couplings
coincide at the Fermi level because different transformations are considered.

In the next step we aim at diagonalizing the induced spin-spin interaction. By exploiting the
spin-rotation symmetry we are able to find a differential equation for the induced spin-spin in-
teraction of the Anderson model which coincides with the one already known for the Kondo
model. Trying to diagonalize the induced spin-spin interaction results in diverging differential
equations where the energy scale on which the DEQ diverges is the Kondo temperature 7x. We
analyze if we can simultaneously eliminate the hybridization V and the induced spin-spin inter-
action J in the Anderson model. We find the exponential behavior in the Coulomb interaction
U of the Kondo temperature T given by the energy scale on which the flow equation diverges.

Our main goal of this chapter, however, is to find a way to construct effective models with-
out infrared divergences. We identify the origin of the divergence and modify the approach so
that the divergence is prevented. In order to achieve this goal, we first study the Kondo model
coupled to an auxiliary spin S = % via an isotropic spin-spin coupling K. The impurity and
the auxiliary spin form a singlet ground state with triplets as excitations. We choose the oper-
ators |k)(q|, where |k) and |g) denote the singlet and triplet states, as a new operator basis and
include the thereby diagonalized spin-spin interaction between the impurity and the auxiliary
spin to the diagonal part of the Hamiltonian Hp from which the reference state is deduced.
The main difference in the adapted approach is that flipping a spin on the impurity requires
the energy K while it requires no energy in the conventional approach. This leads to an IR-
cutoff and finally to convergence. We derived the flow equation for the improved approach and
found converging differential equations from a numerical treatment. Additionally, we applied
the IR-approximation to the flow equation in order to verify the numerical result analytically.
For K = 0, the IR-approximation yields diverging integrals over /~! which become exponen-
tially suppressed by a factor e~ 1Kl for K > 0 and thus converge.

In the next step we apply this improved approach to the Anderson and the Kondo model. The
main idea is to include the emerging diagonal spin-spin interactions J,, to the diagonal part
of the Hamiltonian Hp from which the reference state is determined. We follow the diagonal
spin-spin interactions J,,;,, and change the reference state as soon as they become large enough
so that the singlet state, instead of the Fermi sea, becomes the ground state of Hp. When the
energy scale connected to the flow parameter / approaches the Kondo temperature Tk, a singlet
state forms below the Kondo temperature. We use the same procedure as for the Kondo model
coupled to the auxiliary spin and expand all respective operators in the basis operators of Hp. In
the case of the Kondo model, there are further charge fluctuations in the bath (in contrast to the
auxiliary spin which was by construction a fixed local moment) so that besides the singlet and
triplets more states, e.g. the Fermi sea, are present in the operator basis of Hp which renders the
problem more difficult.

Nevertheless, the adapted operator basis is transparent and intuitively accessible as the singlet
state is directly labeled which can be seen as an advantage of our approach. In the course of the
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flow the singlet state becomes the lowest-lying state and thus one can define the energy differ-
ence between this state and the first excitation above it as the binding energy of the singlet. This
exemplifies how easily the parameters can be interpreted in this representation. The reference
state is changed just when the singlet state becomes the lowest-lying state. Thus, the difference
between the singlet’s energy and the state that was the lowest-lying before is zero at this point.
The energy difference increases throughout the subsequent flow and finally converges to the
Kondo temperature Tx. We find perfect agreement, at least in leading order in J (cf. App. 9.3),
to the Kondo temperature Tk o< e~A42/2p0/ for the Kondo model and Tx < eAaU/800V? for the
Anderson model.

Finally, we calculate the impurity contribution to the specific heat only using the binding
energy of the Kondo singlet derived from the numerical results. The specific heat is a universal
function of the ratio T—i and we can already identify the maximum close below the Kondo tem-
perature Tx.

Chapter 7 Outlook: A very interesting project would be to apply the scaling expansion (from
Chap. 6) to the adapted flow equations. The main question in this context would be if the ex-
ponential strong-coupling behavior is also captured in a low-order scaling expansion. Once the
scaling expansion is applied, the numerical calculation effort becomes very small because the
remaining coupled coefficients would be of the order of ~ 40 coefficients.

Another remaining question is the final energy scale of the bath electrons which form the
singlet with the impurity. We use the site which forms the singlet first (which is the site closest
to the Fermi level) throughout the whole flow as the new reference state. It would be interesting
to analyze if the singlet remains at the Fermi level or whether it becomes energetically favorable
for the singlet to form on another site during the subsequent flow.

In the result for cy we miss the linear behavior cy jmp o< T—TI; for T — 0 which we cannot
hope to find within our approximation. This is due to the fact that we neglected the remaining
interaction part of the effective model as well as the flow of the single-particle energies &,. It
would be interesting to see if one can extract the necessary information in order to find the linear
behavior, e.g., by a perturbative treatment of the remaining interaction terms in the effective
model or by investigating the flow of g,.

To keep things as simple as possible, we discard 20 of the 32 states of the adapted operator
basis. It would be interesting to use all basis states and study the influence of this approximation
or to find out if one can neglect even more states.

In order to verify further that the effective model exhibits the correct low-temperature behav-
ior, it would be an interesting task to calculate other observables.

From Ref. [16] we know that truncating the conventional approach in higher orders of J re-
sults in higher-order corrections to the Kondo temperature 7x which corresponds to the point of
divergence of the flow equation. Thus, another question is if expanding the adapted flow equa-
tions in higher orders of J would also yield higher-order corrections to the Kondo temperature
Tk.
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9 Appendix

9.1 Abbreviations
¢ DEQ: Differential EQuation

e CUT: Continuous Unitary Transformation
sCUT: self-similar CUT
pCUT: perturbative CUT
epCUT: enhanced perturbative CUT
deepCUT: directly evaluated enhanced perturbative CUT

e NRG: Numerical Renormalization Group

e RG: Renormalization Group

e RGT: Renormalization Group Transformation
¢ ROD: Residual Off-Diagonality

e DOS: Density Of States

e SIAM: Single Impurity Anderson Model

e FO: Free Orbital

e LM: Local Moment

e SC: Strong Coupling

9.2 Units
In this thesis natural units

c=1, h=1, kg=1 9.1)
are used while all energies are expressed in units of the bandwidth D. In Chap. 6 the energy

h is connected to a magnetic field B via h = % geUnB where g is the Landé g-factor while up
denotes the Bohr magneton. Furthermore, the Fermi energy €r is set to zero.
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9.3 Kondo Temperature 7k

The Kondo temperature found by the ”poor man’s scaling” [1, 15] is given by
Tk = De_TIOJ. 9.2)
Wilson derived corrections to this formula [1]. He found
Tk = Defr (J) e~ ®(2P0)) 9.3)
with
@ (y) :%—%ln|y|+1.58y—|—0(y2). (9.4)

For the Anderson model, the effective bandwidth D¢ [1, 122] is given by
Degr = 0.182U. 9.5)

From the Bethe ansatz [52] the Kondo temperature for the Anderson model is found to be

1
UA\?
TK — (7> e—ﬂ?U/SA-FTL'A/ZU. (96)

The exponent coincides with the result of Wilson (9.3) as well as with the result from the ”’poor
man’s scaling” (9.2) in leading order in J. For the Anderson model, the effective spin-spin
coupling at the Fermi level is given by

_4v?

J=— 9.7)

When the logarithmic discretization from Sec. 2.6 is used, the Kondo temperature Tk is modified
[8] by introducing the coupling Je¢ in Eq. (9.3)

o
Jetf = AL (9.8)

while neglecting the term proportional to y in Eq. (9.4). The factor A, is given by

I1A+1

Ax = =
AToOAC

InA. 9.9)
This results in an estimation of the Kondo temperature in leading order in J at finite A

A

Ty o< & P07 (9.10)
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9.4 Residual Off-Diagonality of the Non-Interacting Model

We derive the power law ROD o [~! found in Sec. 5.3.2 analytically.

We consider the flow equation (5.29). In order to understand the power-law behavior, it is
enough to focus on the exponential behavior of the hopping elements #, and the single-particle
energies &,. We use

0 =op\A™", & =PrAA" 9.11)

which is true for large enough values of n (cf. Fig. 5.3). As we want to study the behavior of the
ROD for intermediate and large values of /, this approximation is justified. Solving the DEQ
(5.29) with these approximations we find for the hopping elements

ty = 10~ (Eneni))l = g A=ne=Pa(AT" AT (9.12)

Thus, the ROD is given by
ROD? ()= Y 2 =0} ¥ A Zte 2 (A=A )1, (9.13)
n=0 n=0

In order to see that the equation follows a power law, we will rescale [ with a factor A and look
how the ROD behaves®. We find

ROD?(Al) = o ¥ A~ 2e 2 (A" -A" A (9.14)
n=0
_ 0‘1% iA—Zne—ZBA(A*”“—A*")l
n=0

= ol (iA—2n—2e—2BA(A"—A”1)l+e—2BA(A1—l)l>
n=0

where we separated the element for n = 0 and shifted the index of the remaining sum by one
in the last step. For larger values of [, the last exponential function on the right-hand side is
negligible as all differences A~ — A~"~! in the sum are smaller than A' — A?. This leads to

ROD? (Al) = A2} Y A~e 2 (A=Al — A2ROD? (1). 9.15)
n=0

Thus, we have found the behavior
ROD ([) o< [ 1. (9.16)

Note that for small / the behavior differs as we cannot neglect the exponential function with the
exponent A! — A® in Eq. (9.14). As we use an infinitely large chain, we find the power law for
arbitrarily large /. For a finite chain length, this calculation only works for intermediate / while
for large / the exponential function for the largest n = N — 1 converges slower than the residual
part so that we find an exponential asymptotic behavior for large /.

%In order to verify this behavior for arbitrary ¥, i.e., ROD? (yI) = y"2ROD? ([), the calculation is basically the

same but one has to introduce n’ = 2.
logpy
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9.5 Flow Equation for the Kondo Model

The derivation of the flow equation for the isotropic Kondo model from Sec. 4.6.2 is given

explicitly.
Useful rules for the product and the commutator of Pauli matrices used in this section are
ote” = Sul+i Y o’ (9.17)
kex,y,z
[0, 0] = 2i ¥ eunot.
kex,y,z

In order to derive the flow equation (4.4), we have to commute the Hamiltonian
H = Z &, : cnccna + Z Z Z Jan nac E (9.18)
nexy.znma,p
with the generator
= Y YY) O™ i hac,p - (9.19)
Hexy.znmegy [3
The commutation of 1 with the d1agonal part yields
M.Hp] =Y, Y. [(en—&)Nun]olpt": cj;acmﬁ : (9.20)
K nm,o,B

while the commutator of the spin-spin interaction with itself can be derived by the following
calculation

[naHJ] = Z Z Namd ”GaB Ot’/3’ [ me mp LT TV c:a/csﬁ/ Z] (9.21)
u.v nin,r,s
afﬁ»a',ﬁ’
=Y Y nnerngﬁG;/ﬁ' [T, 7V] Czafcsﬁ' % c};acmﬁ ;
u.v nin,r,s
o.B,o B/
T i .
+ Z Z Nnm rsG B oc’[i’T ¥ [ CnaCmp 2 CrarCspr ] .
n.v nm,rs
a,B,a’,B’
In the second step the rules for a product of normal-ordered operators from Eq. (9.40) are used.
[n»HJ Z Z nnm-]rso-alg OC’B’ [T T ] Ia;CSB/C;EaCmB (9.22)
Wn.v ngm,r,s
a,ﬁ,a’,ﬁ’
+ ZZ (nxm nx ZG(‘X/YG'}‘/LB (1 - 9,\) - nnxem [Z G&LYG;/B] > [T T ] ,—Sacmﬁ
u,vnm x V4 Y
o,p B -
+ Z (Tlnx.]xm ZG&L},G;}; — NemInx [Z G&}YG#B] ) TtV . c;;acmﬁ :
u,vnm x Y Y
B - -

+ Y Numdonn Zcrgﬁcrga [",7Y] 6, (1—6,)

v nn X ]
+ NumImn chﬁclga {TM,TV}G,Z.
n,vn,m _Ot,[i' i
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The definition for the expectation value
(ChoCno) = B 9.23)

is introduced. In the next step we discard the terms with quartic bath operators and use Eq.
(9.17) as well as

ZO-OCY =[o'o ]aﬁ ) Z Euvk€uvg = 25kq (9.24)
ITRY
which yields
n,Hy] = [ (1—26y) (Muxxm — nmenx)] Ggﬁrﬂ : clacmﬁ : (9.25)
n ma
3 f
+ Z Z (nnxjxm - nmenx) B Y
n,m,o X
+ i Z NumImn€pvi {nga} [T*,7Y]6,, (1 —6,)
WV k nm a
+ i Z Z Nnm mngp,vk |:Z Gaoc:| {TH v
u,v.k n,m

+ 3 Numdmn6a1.

n,m

As the trace of a Pauli matrix is zero

Y 04a =0, (9.26)

the commutator finally results in

T’ HJ ;ZZB |: 1_29 (nnx-]xm nxmjnx):| BT“ C;rlac mp : (9.27)
n.mg

3
+ Z [Z Z (Mncdm — nmenx)l : C;Tlgcm(y t+3 Z NoumImn O 1.

n,m,c X n,m

Constructing the flow equation by comparing the coefficients in Eq. (4.4) yields the flow equa-
tion (4.87). The remaining terms in Eq. (4.87) stem from the commutation of the spin-spin
interaction and the bilinear terms as well as the commutation of the hopping terms with them-
selves. Both calculations only require commutations of two bilinear operators.
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9.6 Energy Representation

In the following, each separate step of the calculation mentioned in Sec. 2.5 is shown explicitly.
At first, a continuum limit is introduced

Q / .
—— [ &% (9.28)

where Q is the volume of the probe. In order to maintain fermionic anticommutation relations
in the continuum, new operators must be introduced

873
ro Ka,ic. (9.29)

Next, we use spherical coordinates and exploit that the coefficients are rotation-invariant

/ Pk — dx / dk k? (9.30)
while we introduce the operator
T
af g — Ao 931)

Varnk

In order to justify the operator substitution, one can use a spherical harmonic expansion

1 N
Gy = %IZakzm,GYzm (k) (9.32)
,m

Akimoe = k/dQ‘lEYlTn (]AC) Ao

If the parameters &g and Vi are rotation-invariant, one finds that only operators withm =1 =10
contribute [8]. The new operators still fulfill fermionic anticommutation relations. In the next
step we switch to the energy representation. We substitute

k— € (k) (9.33)

dg
v (98 %
ak = E Cs(k)' (934)

and use

p(e)=) 6(e—ex) (9.35)
k
we can deduce
Q ,dk

This leads to the final form (2.42).
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9.7 Wick’s Theorem

An operator can be normal-ordered using Wick’s theorem [115]

Ady Ay = CAAy A+ ) P ALLATLAS A,y (9.37)

where the first sum runs over all single contractions and the second sum runs over all double
contractions and so on. The contractions are given by the expectation value of the respective
operators

ASAS = (Ad;). (9.38)

Two contracted operators have to be brought side by side. Each time two fermionic operators are
swapped, a minus sign is introduced. The normal-ordering scheme is best understood looking
at a few examples

A A~ A A A

A1A2A3A4 = :A1A2A3A4 . A’;A4 . <A1A2>— :A2A4 . <A1A3>+ :A2A3 . < 1424
+ :AAy: <A2A3> A1A3 <A2A4> tA1Ay <A3A4> + <A1A2><A3A4>
— (AlA3)(AdAs) + (A1A4) (ArA3).

AlAz = :AlAz : +<A1A2> (9.39)
+:

In order to calculate commutators between normal-ordered operators, one can make use of
helpful rules for the products of normal-ordered operators

tA\Ay. Ay BBy By = ABy. ém.+z Ay ASA,B) . BBy (9.40)

LAy
+ Y :ALASLAYLAB L BS. B! By +...
c,d

where only contractions between operators including both A and B operators are taken into ac-
count. The rule for the sign in the case of fermionic operators is the same as in Wick’s theorem.
Again, this rule is best explained looking at some examples. We look at the product of two
bilinear normal-ordered operators

:AIAZ ::Eléz . = :AlAzéléz . 'Azéz <A E’ > 2
+ A1By: <A231> AlBl <A B > <A131><A232> + <A132><A231>

and at a product of a quartic and a bilinear term

AAAAAA

:A1A2A4Bz <A3B1>+ :AlAzAgéz <A4é1>+ :A2A3A4él : <A1B2>
— 2A1A3A4B1 : <A2é2>+ 2A1A2A4é1 : <A3é2>— 2A1A2 A3 Al : <A4é2>
- :A3A4 : <A11§1><A232>+ :A2A4 : <A1B1>< A3B2>— :A2A3 : <A1§1>< A4E2>
-+ :A3A4 : <A2é1><A1é2>— A1A4 : <A2é1>< A3BQ>—|— :A1A3 : <A2§1>< A4Bz>
— 3A2A4 : <A3B1>< A1B2>+ IA1A4 : <A3é1>< A2é2>— IAlAz : <A3é1>< A4é2>
+ :A2A3 : <A4l§1>< A1§2>— :A1A3 : <A4é1>< A2E2>+ :AlAQ : <A4§1>< A3E2>.
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9.8 Truncation Scheme in Orders of the Coulomb
Interaction U

In this section the truncation used in Sec. 6.2 is justified systematically by an Opjn/Omax dis-
cussion as outlined in Sec. 4.3.3.

We will truncate in two parameters, namely U and h. We target the constant Hg from Eq.
(9.44) and dismiss all terms that act on a higher order than h?U? on Hg, i.e., we include all
terms of order A"U"™ with n,m < 2. The Hamiltonian is of the form (cf. Sec. 6.1 and 6.2)

H = H,+ Hy + Hr + Hr + Hg (9.43)
where
Hg = Epl (9.44)
H, = Z nm cjlc,cmc, :
n,m,o
— RN .
Hy = Y Unining * CoyyCoy €y Cnpt
ni,ny,n3,n4
— c AT T .
HR - Z Rn1n2n3n4 : cnlﬁcnzﬁcn3ﬁcn46 :
ni,np,n3,n4
np>ny.ng>n3
— c NN B | .
Hr = Z Z l_‘nlnznﬂlﬂlsns ’ Cn10'cn26'cn3c'>'cn4c'scn5c'fcn66 c
ny,ne n2,N3,14,15
n3>nyp.ng>ny

All other emerging terms are at least of order U>. We write the DEQ in the form

H; =Y [T Hy), (9.45)
k.q

where the sum runs over the different terms from Eq. (9.44) and the index of the commutator
in Eq. (9.45) denotes the contribution of the commutator with the same operator structure as
the Hamiltonian H; (where i labels the indices from Eq. (9.44)). We focus on the constant £
and want it to be correct up to the order h?U?, i.e., we include all terms that act in an order
R'U™ with n,m < 2 on Ey. The following tables show which commutations have to be taken
into account.

Omin included orders
Hg | W2, U?| WU™ withn,m <2
H, h | h W2, U, U? hU, hU?
Hy U | hh? U, U? hU, KU
Hg U? h, 2, U, U?
Hr U2 h,U, hU
Hiesidual | > U3 -

As Hg emerges in order U 2 we can drop the order h? because Opin > Omax. The Hp-terms are
dismissed as they emerge in order U 2 and thus Opin > Omax.
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Commutators acting on the constant Hg

Commutator | Opin included orders used
[N, Hg r: | U™ withnm <2 | v
(Mu,Hulg | U? - v
(MR, HR]g | U* - X
[mr. Hrlg | U* - X
Commutators acting on H;
Commutator Omin included orders used
(10, By, hr | h B2 U, U2 hU, hU? |
[ Hul,/ [nu, B, | hU : v
(e, HR,/ v, Hyl, | hU? ) v
[nu, Hul, U’ - v
[Mu, Hr],/ [M&, Hul, | U? * X
[nUvHF]t/[nraHU]t U’ ” X
(MR, HR], u* ) X
(M=, Hrl,/ [nw, Hrl, | U* ) X
[nD HF]t Ut “ X
Commutators acting on Hy
Commutator Omin included orders used
(N, Huly/ [nu,Hly | hU | b B2, U, U2 WU, R2U | v
(e, Hrly/ (e, Hly | hU? ) X
[nu, Huly U - v
[Mu, Hrly/ MR, Huly | U° ) X
[nu, Hrly/ [nr, Holy | U3 - X
[TIR7HR]U Ut 3 X
&, Hrly / [ Hely | U* - X
[nF7HF]U Ut 3 X

Commutators acting on HR

Commutator Ohnin | included orders | used

[, HRlg/ MR, H]g | hU* U,U? X
[, Hrlg / [Mr,Hlg | hU? ) X
[nu,Hulg U? - v
[Mu,Hr]g / [Nr, Hulg | U’ " X
[nu, Hrlg / [nr, Hulg | U? « X
(MR, HR]g Ut “ X
[nr,Hrlg / [nr,Hrlg | U* «“ X
[nr, Hrlg Ut - X
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As we can see from the tables above, no contribution Hr must be taken into account. Thus, we
can neglect such terms and the remaining DEQ is constructed from

JHg = [n,H]g+ [nu,Hulg

oH, = [n,H] + [N, Hul + [Nu, B, + [N, HR] A+ MR, B+ [Nu, Hul,  (9.46)
dHuy = [n.Huly+[nu,Hly+ [nu,Huly

OHR = [NR,Hdisg)g + [Nu,Hulg -

9.9 Local Commutators and Products for the Local

Impurity Operator Basis

We present useful local commutators and products of the parametrization from Sec. 7.1. The
operator basis is chosen to be

bosonic operators | fermionic operators
1 Fip=(1-nqy)d,
ny=nqs—nd| Fw:(l—ndﬁ)di
g |
I .
v Tl
14y 2, = Mand)
A=nar+nay—1 | K= (1-ng))d]
D= 2ngng | —n FIT,¢ = (1 — nd,T) dI

The operators from the initial parametrization and the new one are given by
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9.9. LOCAL COMMUTATORS AND PRODUCTS FOR THE LOCAL IMPURITY OPERATOR BASIS

Basic commutators

Flofi| = —Fg did],i| = —2dld]

-Fi:rov”z = —GFiTG -d;di,nz =0

oD = F dld D] =

-FZT,ole) = _FzT,o -dldj,dgdc-, =0

-FiTG’dz;d& = _Fi:r(;&x(s -d;dj,deT =7

Flodd| =—0Fs | {F .ot =1(on—i+1)
-FzﬁcvdidT =—0Fis F1T,07F1,5 =djd,
-F,-L,didl =0 FZichz,c =1(i—on,+1)
-dgd‘_”ﬁ] =0 FZT,G’Fz,c‘s = —dd,
didgn.| = —20d5d, Ffo.F ot =0

-dj,da,f) =0 Fl o Pyt =

-dgda,déda] = 0n:064 FIT,chzT,a —d:;dg%a
4] ne] =0 FloFla) =0

Basic local products

FlT,cFl,c:%(l—i_GnZ_ﬁ) FZT,O'FZO':%(D'i_ﬁ)
FlT,ch,a = FZT,GFI,a =0

FlT,aﬁ = _FIT,G FZT.Gﬁ =0
Fon.=0 Fj on.=—0F]
FIT,GE = FIT.G F2T.Gﬁ =0

Fchdgtda = FzT,Gdgfd(x _F2T,6605¢
Fl,d d =—0Fs F)odd =0

F, Gd{dj =0 dldjdsds =0

i~ =D iin, =0

n=1-D iD= 7

D*=D n.D=0

didsi=0 dldin=—dld]
didsn, = —odds did/n, =0
dsd;D=0 dld/D=d]d]
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9.10 Kondo Model Coupled to an Auxiliary Spin

9.10.1 Starting Values

The starting values for the Kondo model coupled to an auxiliary spin (7.57) in the new operator
basis from Sec. 7.4 are presented.
The starting values for the energy levels of the singlet and triplet states are given by

Eo=—% [En=7%|En=%[En=1%

while the starting values for the couplings of the Hamiltonian (7.57) are of the form

P =Y Tumtfy Ol (9.47)
U

where a* denotes the matrices from Eq. (7.55). The explicit values of the coefficients (9.47)
are given by

i (0) =+ 5Jun (0) | Jam * (0) = +5Jum (0)

JI”ILI%’lJ,T (0) = +\L[2Jnm (0) Jf%r}ji (O) = +\%Jnm (O)
i’ (0) = +5Jm (0) | Jam'*(0) = + I (0)

i (0) = = 5T (0) | Jun'" (0) = =37 (0)

' (0) = 437 (0) | Jam " (0) = =3 (0)

Jam(0) = =3Jum (0) | Jam' " (0) = + 3 (0)

| (0) = 437 (0) | Jan (0) = =34 (0)

Jr%z?zﬁ (0) - _%Jnm (0) r%r%zu (0) - +%Jnm (0)

The indices k = 0 belong to the singlet state and k = 1,2, 3 belong to the triplet states 7 » 3 from

Eq. (7.51).

9.10.2 Symmetries of the Coefficients

The symmetries of the coefficients J,’f?naﬁ from Eq. (7.57) of the Kondo model coupled to an
auxiliary spin from Sec. 7.4.1 are outlined in the following.
Besides the hermiticity

Jkaob — jakpo (9.48)

the coefficients also fulfill a number of symmetries. There are 64 coefficients for each index
pair (n,m). However, a lot of combinations of the indices k, g, & and f are forbidden by spin
conservation. By using the S--spin conservation only 20 coefficients remain. The coefficients
allowed by spin conservation are

OLTL [ L2t | 40307 | 42317 | OO [ 2007 [ J007T | ,L1UPT | 2217 [ 3311
nm nm nm nm nm nm nm nm nm nm
WUt g2l 3010 1 3200 1 JO20L ) p20LL | 4000 1 LU 2200 ) 433L)
nm nm nm nm nm nm nm nm nm nm

where the indices k = 0 belong to the singlet state and k = 1,2, 3 belong to the triplet states 71 » 3
from Eq. (7.51). All other coefficients remain zero during the whole flow. Some coefficients are
connected by further symmetries
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T T = do [ Jom = — gt
22TT -+ J231¢¢ 10¢T 30T¢
i | i
33TT _i_JllN J21N +123¢T
SO 02y |0ty a0

Finally, only 10 coefficients remain which are not connected by a symmetry.

9.10.3 Vanishing Coupling and Kondo Energy Scale

The calculation from Sec. 7.4.3 is demonstrated explicitly.
Useful rules for the products and commutators of the matrices a* from Eq. (7.55) used in
this section are

ata’ = —5uv11+ Y eunat (9.49)
kexy,g
o, '] = i Y ewat.
kex,y,z

Furthermore, the calculation rule for the Levi-Civita symbol

Y euvseuvr =26, (9.50)
v

is used. We start from the differential equation (7.67) with K =0

al‘]rl;%(xﬁ = (&n— &) Ny kqaﬁ (9.51)
+ LY (nm?“”f;é’fﬁ — P geer) o,
Y x
+ ZZ <nkp067/]pqvfﬁ nquBkaow) (1—6,).
VP X

It is important to note that the flow of the single-particle energies &, is neglected in this approx-
imation and thus we can replace g, by its starting value 8,? . We make the ansatz

k9P — Jana,ﬁ‘ngﬁ + Tum kg B (9.52)
u

9 nk"“ﬁ = m{mZ O‘/ﬁ]Ggﬁ + ni;makquﬁ
m

where 7,,, has the starting value zero. Hence, 7,, # &, but d;i,,, = 9;&,. Thus, we can define a
new quantity

tym = fnm + 87(1)671}7’! = all‘nm = alt~nm (953)

This quantity now coincides with the standard hopping terms used in Eq. (4.87). Introducing
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the coefficients (9.52) yields

o (Jana,ﬁ;ogﬁJrfmncskqaaB) = Y Mdan 3 [0V @], [04 5] 5 61 (9.54)
u X u,v

where we used

Z GOW

- Zn)‘c]m‘]nx Z [a#av]kq [Gvcﬂ]aﬁ ex
X u,v
+ an{x‘]xm Z [OC/“LOCV]kq [G'ucv]aﬁ (1 - ex)

- anm Z[(X au]kq[c Gu]aﬁ (1_9)

ITRY
+ Z(nnx xm nxm nx Z kq a/}
+ |:€ _8 nnln+z _n)‘c]mfnx)}zalgggﬁ
T
+ |: )nlzm—i_Z(nszfxm_nimfnx)} Squaﬁ
= [6"6"]4p Zakp by = [oF o], (9.55)

In the next step we use Egs. (9.17), (9.49) and (9.50) which results in

OFum Y, oc,ﬁ‘q ol 5+
o

_|_

8ltnm5kq8aﬁ (9.56)

Z n xem - n;m‘]nx) Z a/étlcgﬁ

X

Z (txm + & 51’") nnx (t"x + 8’95”") n){m) Z a]iflcgﬁ
u

(
(

Z (77 xem - n){m‘lnx) (1 - 29x)§,05p OC]I;;
(

=

X

Y ((Fon+ €28um) M — (Fax + €0 8x) M) Sg O

(r’r{x‘]xm - n){m‘]nx) 6/6(] 606 B-

B~ w

Comparing the coefficients and using Eq. (9.53) yields the final differential equation

alJnm = Z (nixtxm - n){mtnx + nrzlx‘]xm - n)tcm‘]nx) (957)

o Z (nr{x‘]xm - n){m‘lnx) (1 - 29)6)

3
all‘nm = Z (nf,xfxm - Uiml‘nx) + Z Z (n;{x‘]xm - n){m‘]nx) :
X

This differential equation coincides with Eq. (4.87).
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9.10.4 IR-Approximation

In the following, we give some intermediate steps for the calculation from Sec. 7.4.4.
We start from the continuum limit (7.73)

WP = (E,—Ex+e —e)nd? ©-58)

ee!
D
k k
+ Lo [ (P ol o, a:
Y.p

— ZSI
D
k k
+ ZPO/ (nsfangﬂﬁ o nﬁa?YﬁJsfaY) (1 - 92,) dz.
vp D
Applying the IR-approximation (7.74) to Eq. (9.58) yields

NP = — frg|[Eq— Ex| JedP (9.59)

D
+ Z 0o /0 Fpgsen ( AE,,+ z) e—(qu|Aqu+z|+fkp|AEkp—z|)z dz ( nggy Jﬁféﬁ _ Jﬁfeiy J?quiﬁ)
v.p

FEF

P —(foq| AEpg 2|+ fip |AEp—2| )1 5., ( 7PAY kPYB _ jkpay spayB
- ZPO/O Srpsgn (AEkp_Z)e PalZEpa T Tk 155 ) d g (JEFSF Jg — Jerer Jeper )
104

where fi, = 1 for the full generator (7.63) and a f;, which is given by Eq. (7.65) for the gen-
erator that does not include operators which couple two triplet states. Note that the coefficient
on the left-hand side as well as the coefficient in the linear term on the right-hand side have no
tilde. Additionally,

AE, = E;—E, (9.60)

was introduced. Calculating the coefficients for K > 0, using the symmetries outlined in App.
9.10.2 yields

Wy = —Ofepa 9.61)
D
01 01 — z #1111 701 #1211 702
alJ«t“th?\Fi = - |K| JSF;;L +2 (1 ‘I’fll) pO/O € (K+(1+f“)&l)ldz (JsF&TFTJEFgl} - JEF’:‘LFTJEF;T)
D
02 02 — z 011 712
Ilerer = —|K|JeFeTFT—2(1+f11)P0/O e~ KAl gz ol a2t

R D 2 D - 2
81J§£FT = ZpO/O sgn (z — K)e 2l Kllg; (Jgg) + 2f11p0/0 e %ldz (Jégég)
D D
12 - A201 711 2| 0211 701
al‘lﬁpél:T = 4f11p0/0 € ZZIdZJSFéi:TJSFgFT - 4p0/(; sgn (Z - K) € 2|Z K|ldZ‘]81:q‘;‘T]:TJé?FE:‘rF‘L
where for both generators

foi = foj foralli,j>0 (9.62)
foi = fio foralli>0
fij = fr

p foralli,j,i',j/ >0
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as well as fp; = 1 was used. All other coefficients are either forbidden by spin conservation or
can be calculated using a symmetry from App. 9.10.2. Calculating the integral finally yields

00 22
Tt = Tl=0 (9.63)
A gt
EFER EFERF
01 01 2p0 _ _ki (#1711 501 1201 702
Olipe = = IK|Jopdt T [1 —e(HnDl =K (TR — T )
02 02t 2P0 _ _KI 011] 712
alJSFSTFT - _ |K|J8F;T . T |:1 —e (1+f11)Dl] e KIJSFgFiJSFéFT
A1 Po [ 2D _ 0111\ 2 . J11Po _ 201\ 2
aljengT - -2 [e 2D-K)I _ ¢ 21(1] (Jspeli) I l [l—e 201] (JsFeiFT>

’ 2 2 Q21t
9 Jépzéj _ zPo [e—Z(D—K)l_ e—zm] JO211 jO11Y fi1po [1 _e—le] Jl2ir i

/ EREF YV EREF + i ERER Y EFEF -

We find the symmetries

1
02 01 12 11
Jeid! = ‘EJSFQ: Jaree =V 2 im (9.64)

which is consistent with the starting values. Thus, we can simplify the differential equation
(9.63) further

4 ~

alJSFIJFi - _ |K|J8FI;J,+ % |:1 . e—(l-l—fll)Dl] e—KlnglgFJ,J;FlgFT (9.65)
. 22 o 2

ga = % [e—z(D—K)l_ e—zm] ( Jgg) + flllpo [1 B e_zpz] ( Jé;e?)

which coincides with Eq. (7.78).

9.11 Adapted Operator Basis for the Kondo and Anderson
Model

9.11.1 Basis States for the Adapted Operator Basis

The basis states of the adapted basis from Sec. 7.5 for the sites included in the formation of a
singlet reference state are chosen to be the eigenstates of

H, = Za‘r (c:facm — C;GC,—.O.> +J”Z Z Ggﬁ T (czacrﬁ + C;acm) . (9.66)
o L oap

All eigenstates of the Hamiltonian (9.66) are shown in the following tables. We truncate basis
states that are higher lying then the triplet states. The eigenstates are sorted by particle number.

zero-particle subspace

k | zero-particle states | energy & || AE; = & — & || used
Jrr:L?

- |al> = |07T70> € = 0 AEal =2¢, X
- | az) =10,1,0) €, =0 | AE,=2¢ | X
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one-particle subspace

k | one-particle states energy &; AE; = €& — &, || used
0s7)="5(01,4)—10,1,1)) || & =% —& | AE- =0 v
1| ) =10,1,7%) g =% —¢& =3 v
2[5 )= (0.0 +10,4.1) [& =%—¢ e 4
30 065) =10,4,4) & =% —¢& =38 v
- |a3>:%(|T7\L70>_|\L7T70>) iy = 3—‘%“-1—8’, AEa3 28}‘ X
- | las) =11,1,0) €a, =% +é AE,, = ¢, X
- |(15> 2(|T7J/70>+|J/7T70>> €as :%'1_87‘ AEa5 _%08,, X
- | las) =11,1,0) E="2+e | AE,=e || X
three-particle subspace
k | one-particle states energy &; AE; = & — & || used
Jr=2%
41157 = H(END =14 | e == - | AEx =0 v
5 |li'_>:|T7T7/Nr> £tr:%_8r AEIIF_?)&’ ‘/
6|1 =H(Ltt)+It01) [er=%-& [aE,=3s |V
7106 =144 £ =% —& AE; = 3& v
- an) = S UMD = I1N) | e = +e | AE, =2¢, | X
- | las) =141 oy =2+ & AE, = Q¢, X
- | lag) =[ 14,4, 4) =% +& | AE,=Ye | X
- la) = 5 (MDD + 1L 1) | & =% +& | ALy =Fe | X
two-particle subspace
k | one-particle states energy &; AE; = € — & || used
8 | [FS,1) =10, 1,14) ersg = —2& | ABpsp =0 | v
9 | IFS,1) =104, 1) eps., = —26 | ABps =0 || v
0] =FUtth—2At L0+ L0 |&6=-2 [8E=3s [V
1D = L bD 208D+ 1L | g =20 || AE =18 v
- | lain) = ﬁ (4,10 = 1411)] €ary =0 AE,, =2¢ | X
- | Jan) = ﬂ HLLD =114 €apy =0 AE,,=2¢ | X
- |Cll3> \[ [l T T ¢> + | T i T> + | \1/7T7T>] a3 = Jrr AEaB = %er X
- e = HZMLLD LD+ | s = [ AB =36 | X
- | ais) = 1,110 €a;s = Jrr AE, s = %gr X
- | lae) = 14.4.4) Eag=Jrr || AEq =3 | X
- | Jar7) =[1,1,0) Eayy = 26 AE,,, = 4€, X
- | laig) = [ 14,4,0) €aiy =26 || AEqyy =48 | X
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four-particle subspace

k | one-particle states | energy & || AE; = & — &~ || used
_ 2
rr— 3

- |47T> - | T\L?T?T\L) 84,T =0 AE4,T = 28,« X
- |47¢> = | /Nn\lfvl]\\l’) €1 = 0 AE47‘|( =2¢, X

9.11.2 Starting Values

The starting values of the Kondo (Anderson) model in the adapted operator basis (7.94) from
Sec. 7.5 are given explicitly. The indices belong to the states from Sec. 9.11.1 (row k).

37 7 7 7
Eoo=—"—& | B\ g =5 —& | Bap=F—& |E3=7%—¢&
3J Jrr _ _J,
Eaa=—"—& |Ess=5 & | Eee=%5—& |Ei7=F—-&
Egs=—2¢& Eoo = —2¢ | Evo10=—=2Jr | E1111 = =2Jrr
3 3 3 3
Ejos = %Jﬁ Eg 10 = %Jﬁ Ejg= _%Jﬁ Eg 11 = _%Jrf

10,0 1,0

o T __2\%],” | = +#ﬁ-]nr

L =430 | D0 =+530ur
10,2 10,1

| 1= +#ﬁ~]nr In t= _ﬁé nr

7. L1,

1—"111,3,T _ _%ﬁjnr F’111,2,¢ _ _i_%mjnr
93 9.2

L=l [ =450

LY =+l [ =470,
6.9 8

l_‘n797T = +2_\lﬁ~lnr Fér711797l( = _%ﬁ nr
5,10, 6,10, —_

I T = _2%@ nr Iy ‘ = _2\%-]117
6,11 _ | 5 g _ 10,1 3 g

Fnll —%m’nr 14’7’111 _+2mJ’”

L = e | T = 457
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0 4.7,
Jnﬂ? T = +\[Jnm J S = +%Jnm
3 0,1 _ Jom 7 410 _

+f \[ nm
sl fJnm 15’6’“ + éfnm

2

Tt =+ ffnm S,;Z’“ = +%Jnm
T =+ T Tum | I = + T Ium
' = =Tt | T = —Jadm

I O v2 5.4 2
Jnim’ - __ZJnm Jam = __2Jnm
191112 = Jnm Jﬁn? = +%Jnm
r%n? = +éJnm r?iﬁ’TT = +%Jnm

2 (ONA 64,1, _ 1
Jnm nm — _j-]nm

02“, Jnm Jsﬁ?J’i = _%Jnm

J,i,;%’” +;Jnm T T =10

1,1, 1 5,5, 1
= Jnm nm W= _j-]nm

J33TT Jnm JrZﬁZ’TT - _%Jnm
Jnm = +%Jnm rZﬁZﬂii = +%Jnm

8 8 8.8,

= +2Jnm mﬂii = _%Jnm
sn? = +Jum 2}71§7T¢ = +Jum
9,9, 9.9,
nr7n'TT = _%Jnm nm = +%Jnm

I =~ [Tt = 4L
10 Mt =—+3 Jnm r}r}17107Tl = +%Jnm
11 11 11,11

T — +6Jnm nm = _%Jnm

9.11.3 Symmetries

Without symmetries we have 122 = 144 coefficients Ej g0 2 122 = 288 coefficients F 4% for

each index n and 4 - 122 = 576 coefficients ’q’ P for each index pair (n,m). However, a lot of
combinations of the indices k, g, & and 3 are forbldden by spin conservation. Only 20 coeffi-

cients of Ey 4, 24 coefficients of Fﬁ’q’c for each index n and 64 coefficients of J,’f,ﬂ op for each
index pair (n,m) remain when using S,-spin conservation. The coefficients allowed by spin con-
servation are

Allowed coefficients by spin and particle conservation for J,,’q’al3

01 2 03 23, 02, 2.0, 0.0, T, 27, 33,
Jnm T Jnin 1 Jnin A nm 1 Jnim i) nm i) Jnin i) nm i) Jnm i) Jnm i)

LOJT | 22,000 [ 3010 | /3270 | ;0210 | 22011 | ;000] [ ;LLIL | ;221 | 43.3,0)

nm nm nm nn nm nm nm nm nm nm

J45T¢ S;S,H J;fr’r?’” SAZ,H JZ‘;??,TT g’ﬁ,TT JZM,TT s’iﬁ gfyTT Z};Z,TT

m

T 41T 650 | 74T | 7610 JEOLL T oA T AA L T Sy 0000 T T
nm nm nm nm nm nm nm nm nm nm
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Hermiticity

Symmetries for the coefficients J,;,

J8~8~¢¢ Jr%??ﬁ 1 J%’?,u J;’%m,u Jll 10.1) J’L}{H,H
8ILIT | 49,107 8,10,71 108,11 911,11 11,917
Jnm nm nm nm Jnm nm
185 | 710,977 | ;8.10,1] 08T [~ 9.TTIT 19,17
nm nm nm nm nm nm
Allowed coefficients by spin and particle conservation for E; ,
Eoo | E1q | Exp | B33 | Egp | Enp
Eqq | Ess | Eop | E77 | Es6 | Eoa
Egs | Evo | Er0,10 | E11,11
Esi0 | Eros | Eou1 | Enng
Allowed coefficients by spin and particle conservation for I'J;,’q’c
FE,O,T F};O’O’T FE,Z,T F,IZO’Q’T F2’3’T Fr111,3,¢
r‘gvovi F}llvohl/ r‘?lvlrl' r‘}lovlwl/ ]__‘2727*1/ F}llvzvjr
r‘fl?g?T l’i?gn\ F2797T FZ7IO7T l"zvllT Fng,T
rﬁaghl/ ]._‘2585\]/ l_‘ZLaghl/ rﬁvlo“l/ ]__‘2510\]/ FZ*lla\l/
Ekq Eqk
b = gabe
k,q,0p
SISTT 4+JY OON J44TT J44¢¢
22TT +J22¢¢ 66TT _|_J66H
Jl,l,TT _|_J33ii JSSTT +J77u
J33TT _|_J1,1,l¢ J77TT +J55li
J%ﬁ:_]%u 46TT J46u
JO,I,N J,?,’,f’” 45T¢ J47¢T
10 JT _ J30T¢ 54¢T 74T¢
nm nm
]12¢T _'_J?,ZN J56¢T +J76N
2,1,N +J23¢T 65TJ, _|_J67H
20 2000 SATT 6401
nm — —Jnm nm — “Jnm
D i A
J8 8 _ +J9 9,11 JAgS H_ J’%ﬁ,ﬁ
J89,¢T +J98N Jigl‘?H J118N
JSIJOTT:_J%H“ J;%IOTT +J1111u
810¢¢_ 9 1T,1T 10 1017 | JALITIT
— “Jnm +J
JSW%I,H _ _J%?;QN Jll(;ll,H +Jll 10.1)
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Symmetries for the coefficients l'ﬁ’q’a

Symmetries for the coefficients Ej ,

80— 29T [ 80T = 901

[ T0T — A [ 8T — 93T

O8I — 09T | 32T = o2t

6107 — &I [ 100 — _[ITol

8T +F79¢ pIOLT —  pIT3T

10T = L[ pl02 T pIe2y
Eoo=Es4

The number of remaining coefficients that are not forbidden by spin conservation or connected
by symmetries are 10 for E 4, 12 for each index n of I'9% and 28 for each index pair (n,m) of

nm

k.q,08
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