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An explicit description of SLp2,Cq in terms of
SO`p3, 1q and vice versa

Frank Klinker

Abstract. In this note we present explicit and elementary formulas for
the correspondence between the group of special Lorentz transformation
SO`

p3, 1q, on the one hand, and its spin group SLp2,Cq, on the other
hand.

Although we will not mention Clifford algebra terminology explicitly,
it is hidden in our calculations by using complex 2ˆ 2-matrices. Never-
theless, our calculations are strongly motivated by the Clifford algebra
glp4,Cq of four-dimensional space-time.

1. Introduction

It is well known that for a pseudo-euclidean vector space pV, gq the universal
cover of the special orthogonal group SOpV, gq is given by the so called
spin group SpinpV, gq. For the case V “ Rp`q and g “ diagp1q,´1pq
we write SOpp, qq and Spinpp, qq. The covering map is 2:1 for dimV ą

2. The theoretic setting in which spin groups and related structures are
best described is the Clifford algebra C`pV, gq, see [2, 3, 8] for example.
Although spin groups in general refrain from being described by classical
matrix groups for dimensional reason, there are accidental isomorphisms
to such in dimension three to six, see Table 1. The isomorphisms are a
consequence of the classification of Lie algebras and can for example be seen
by recalling the connection to Dynkin diagrams. We use the notation from
[4] and recommend this book for details on the definition of the classical
matrix groups. Due to the fact that the complexifications of the orthogonal
groups are independent of the signature of the pseudo-Riemannian metric
the groups in each column of Table 1 are real forms of the same complex
group for fixed dimension.

Infinitesimally, i.e. on Lie algebra level, the 2:1 covering structure cannot
be seen. Therefore, the description on this level is given by fixing bases in
the respective Lie algebras. If we try to take over this consideration to the
groups we see that the exponential map enters in the construction. A useful
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2 FRANK KLINKER

Table 1. The isomorphisms in dimensions 3 ď p` q ď 6

p` q “ 3 p` q “ 4 p` q “ 5 p` q “ 6

p3, 0q SUp2q p4, 0q SUp2q2 p5, 0q Spp2q p6, 0q SUp4q

p2, 1q SLp2,Rq p3, 1q SLp2,Cq p4, 1q Spp1, 1q p5, 1q SLp2,Hq

p2, 2q SLp2,Rq2 p3, 2q Spp4,Rq p4, 2q SUp2, 2q

p3, 3q SLp4,Rq

and manageable description is not obtained in general due to the Baker-
Campbell-Hausdorff formula. However, in dimension four such description is
possible and we present explicit formulas for the maps that connect SOp3, 1q
and SLp2,Cq.

2. Some Preliminaries

We will give some preliminaries on Lorentz transformations, Pauli matrices,
glp2,Cq, and SLp2,Cq, mainly to fix our notation.

By glnK we denote the set of all (n ˆ n)-matrices over the field K and by
GLpn,Kq Ă glnK the group of all regular matrices. The set of Lorentz
transformations Op3, 1q by definition contains all elements T P GLp4,Rq
that obey }T~x}2 “ }~x}2 for ~x “ px0, x1, x2, x3qt P R4. Here we use

}~x}2 “ px0q2 ´ px1q2 ´ px2q2 ´ px3q2 “
3
ÿ

i,j“0

gijx
ixj

where

g “ pgijqi,j“0,...,3 “ diagp1,´1,´1,´1q (1)

denotes the Minkowski metric and we write R3,1 “ pR4, gq. We denote the

matrix entries of an endomorphism T by T ij such that pT~xqi “
3
ř

j“0
T ijx

j .

Remark 2.1. The Lorentz transformations form a subgroup of GLp4,Rq.
As a submanifold of GLp4,Rq the group structure is smooth such that
SOp3, 1q is indeed a Lie group. This follows also from a more general fact
stating that closed subgroups of Lie groups are Lie subgroups, see [4, The-
orem II.2.3].

SOp3, 1q admits four connected components that are associated to orientabil-
ity and time-orientability of R3,1. The connected component of the identity
is given by the Lorentz transformations that obey detpT q “ 1 and T 0

0 ą 0.
The special Lorentz transformations form a subgroup denoted by SO`p3, 1q.
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We use the following Pauli matrices:

σ0 “

ˆ

1 0
0 1

˙

, σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

. (2)

The matrices σ1, σ2, and σ3 obey

σ21 “ σ22 “ σ23 “ σ20 “ σ0 ,

σ1σ2 “ ´σ2σ1 , σ1σ3 “ ´σ3σ1 , σ2σ3 “ ´σ3σ2 ,

σ1σ2 “ iσ3 , σ2σ3 “ iσ1 , σ3σ1 “ iσ2 .

(3)

This can be combined to

σiσj “ δijσ0 ` i
3
ÿ

k“1

εijkσk (4)

with εijk totally skew symmetric and ε123 “ 1. In particular, for i “ 0, 1, 2, 3
we have the nice relation

δij “
1

2
trpσiσjq , (5)

and, moreover, from (4) we get for i “ 1, 2, 3

3
ÿ

j“1

σjσiσj “ ´σi and
3
ÿ

j“0

σjσiσj “ 0 . (6)

We consider the natural R-linear map

Ψ : R4 Ñ glp2,Cq

~x “

¨

˚

˚

˝

x0

x1

x2

x3

˛

‹

‹

‚

ÞÑ Ψp~xq “
3
ÿ

i“0

xiσi “

ˆ

x0 ` x3 x1 ´ ix2

x1 ` ix2 x0 ´ x3

˙

.
(7)

The image Ψp~xq of ~x P R4 is a Hermitian matrix, i.e.

Ψp~xq P hp2,Cq :“ tA P glp2,Cq | A “ A:u

and, therefore, of type

ˆ

a w̄
w b

˙

with a, b P R and w P C. The inverse map

is given by

Ψ´1
ˆˆ

a w̄
w b

˙˙

“

¨

˚

˚

˝

1
2pa` bq
Repwq
Impwq
1
2pa´ bq

˛

‹

‹

‚

.

In particular, each Hermitian matrix B P hp2,Cq can be written as B “

x0σ0 ` x1σ1 ` x2σ2 ` x3σ3 with xi P R and we have

}~x}2 “ px0q2 ´ px1q2 ´ px2q2 ´ px3q2 “ detpΨp~xqq .

As noticed in the title the special linear group SLp2,Cq Ă glp2,Cq will play
an important role in the following and we will recall its definition:

SLp2,Cq “
 

B P glp2,Cq | detpBq “ 1
(

. (8)



4 FRANK KLINKER

SLp2,Cq is a Lie group, that has complex dimension three or real dimension
six: in (8) we have one complex equation for the four complex parameters.
Each matrix in SLp2,Cq can be written in the form

A “ a0σ0 ` a
1σ1 ` a

2σ2 ` a
3σ3 (9)

with
detpAq “ pa0q2 ´ pa1q2 ´ pa2q2 ´ pa3q2 “ 1 . (10)

Complex generators of SLp2,Cq are, for example, σ1, σ2 and σ3.
1 Therefore,

real generators are σ1, σ2, and σ3, as well as iσ1, iσ2, and iσ3.

If we omit in (9) the condition on the determinant we get all of glp2,Cq

by such linear combination. The product of two matrices A “
3
ř

j“0
ajσj and

B “
3
ř

j“0
bjσj expands as

AB “
3
ÿ

j“0

ajbjσ0 `
3
ÿ

j“1

pa0bj ` b0ajqσj ` i
3
ÿ

j,k,`“1

εjk` ajbk σ` . (11)

Given a matrix A P glp2,Cq we define the conjugated matrix by

A1 “ a0σ0 ´ a
1σ1 ´ a

2σ2 ´ a
3σ3 . (12)

This conjugate obeys detpA1q “ detpAq and A1B1 “ pBAq1. In particular,
the product of a matrix and its conjugated is given by

A1A “ AA1 “
`

pa0q2 ´ pa1q2 ´ pa2q2 ´ pa3q2
˘

σ0 , (13)

such that its trace obeys

1

2
trpA1Aq “ detpAq “ pa0q2 ´ pa1q2 ´ pa2q2 ´ pa3q2 . (14)

Moreover, for A P SLp2,Cq we have A1 P SLp2,Cq and A´1 “ A1 due to
(10).

We collect the symmetry properties (3) and the symmetry property (12)
as follows. We introduce signs εi and εij defined by σ1i “ εiσi and σiσj “
εijσjσi, i.e.

`

εi
˘

i“0,...,3
“

¨

˚

˚

˝

1
´1
´1
´1

˛

‹

‹

‚

,
`

εij
˘

i,j“0,...,3
“

¨

˚

˚

˝

1 1 1 1
1 1 ´1 ´1
1 ´1 1 ´1
1 ´1 ´1 1

˛

‹

‹

‚

. (15)

In particular, in terms of εi Minkowski metric (1) reads as

gij “ εiδij “ εjδij .

1Because of (3) we have exppb1σ1`b
2σ2`b

3σ3q “ a0`a1σ1`a
2σ2`a

3σ3 with complex
coefficients ai which depend on the bj . This follows from a more general relation between
Lie groups and their tangent space at the identity, i.e. their Lie algebra, see [4, Proposition
II.1.6].
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3. SOp3, 1q in terms of SLp2,Cq

We consider an action Φ of SLp2,Cq on the set of Hermitian matrices that
is defined by

SLp2,Cq ˆ hp2,Cq Q pA,Bq ÞÑ ABA: P hp2,Cq . (16)

Writing B “ Ψp~xq the combination Ψ´1pAΨp~xqA:q yields an element in R4.
This defines an action Φ of SLp2,Cq on R4 via

ΦpAqp~xq “ Ψ´1pAΨp~xqA:q (17)

The map ΦpAq : R4 Ñ R4 is R-linear. Furthermore, we have

}ΦpAqp~xq}2 “ }Ψ´1pAΨp~xqA:q}2 “ detpAΨp~xqA:q

“ detpAq ĞdetpAq detpΨp~xqq “ detpΨp~xqq “ }~x}2

such that ΦpAq is a Lorentz transformation.

The Matrix entries of T :“ pΦpAqijqi,j“0,...,3 depend on the complex param-
eters ai from the decomposition of A according to (9). They can explicitly
be expressed by expanding and rearranging the right hand side of (17):

Ψ
`

ΦpAqp~xq
˘

“

4
ÿ

i,j“0

T ijx
jσi

“
`

a0ā0 ` a1ā1 ` a2ā2 ` a3ā3
˘

x0σ0

`
`

a0ā1 ` a1ā0 ´ ia2ā3 ` ia3ā2
˘

x1σ0

`
`

a0ā2 ` a2ā0 ` ia1ā3 ´ ia3ā1
˘

x2σ0

`
`

a0ā3 ` a3ā0 ´ ia1ā2 ` ia2ā1
˘

x3σ0

`
`

a0ā1 ` a1ā0 ` ia2ā3 ´ ia3ā2
˘

x0σ1

`
`

a0ā0 ` a1ā1 ´ a2ā2 ´ a3ā3
˘

x1σ1

`
`

a1ā2 ` a2ā1 ` ia0ā3 ´ ia3ā0
˘

x2σ1

`
`

a1ā3 ` a3ā1 ´ ia0ā2 ` ia2ā0
˘

x3σ1 (18)

`
`

a0ā2 ` a2ā0 ´ ia1ā3 ` ia3ā1
˘

x0σ2

`
`

a1ā2 ` a2ā1 ´ ia0ā3 ` ia3ā0
˘

x1σ2

`
`

a0ā0 ´ a1ā1 ` a2ā2 ´ a3ā3
˘

x2σ2

`
`

a2ā3 ` a3ā2 ` ia0ā1 ´ ia1ā0
˘

x3σ2

`
`

a0ā3 ` a3ā0 ` ia1ā2 ´ ia2ā1
˘

x0σ3

`
`

a1ā3 ` a3ā1 ` ia0ā2 ´ ia2ā0
˘

x1σ3

`
`

a2ā3 ` a3ā2 ´ ia0ā1 ` ia1ā0
˘

x2σ3

`
`

a0ā0 ´ a1ā1 ´ a2ā2 ` a3ā3
˘

x3σ3 .
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By applying (5) directly to (17) we see that (18) gets the following compact
form.

Proposition 3.1. Consider A P SLp2,Cq and Φ : SLp2,Cq Ñ SOp3, 1q.
Then the image of T “ ΦpAq has the entries

T ij “
1

2
trpσiAσjA

:q “
1

2
trpAσjA

:σiq (19)

Remark 3.2. As we saw, the map ΦpAq is a Lorentz transformation – but
is it a special Lorentz transformation as well? From (18) we see directly
that ΦpAq00 ą 0 – but what about the determinant of ΦpAq? Without
calculating the determinant we can see the result as follows: The image of
the map Φ : SLp2,Cq Ñ Op3, 1q is connected because Φ is continuous and
SLp2,Cq is (simply) connected. Furthermore, the identity is in the image
of Φ such that all of the image of Φ is contained in SO`p3, 1q.

4. SLp2,Cq in terms of SOp3, 1q

By explicitly inverting the system (18)we show in this section that for any
special Lorentz transformation T P SO`p3, 1q their exists a matrix A P

SLp2,Cq with T “ ΦpAq. This matrix isn’t unique, because with A its
negative ´A P SLp2,Cq obeys Φp´Aq “ ΦpAq, too. This 2:1 behavior will
be reflected in the existence of a square root during the process of solving
the equation T “ ΦpAq, i.e. (18), for ai.

To solve (18) we write ΦpAq “ T and consider (17) and (19), i.e. ΨpT~xq “
AΨp~xqA: and T ij “

1
2trpσiAσjA

:q. We define matrices τpiqpT q P glp2,Cq by

τpiqpT q :“
3
ÿ

j,k“0

T jkσ
1
iσjσiσk . (20)

For example, i “ 0 yields

τp0qpT q “
3
ÿ

i“0

T iiσ0 `
3
ÿ

i“1

pT i0 ` T
0
iqσi ` i

3
ÿ

i,j,k“1

T ijεijkσk . (21)

Moreover, due to (17), we have

τpiqpT q “
3
ÿ

k“0

σ1i
`

3
ÿ

j“0

T jkσj
˘

σiσk “
3
ÿ

k“0

σ1iΨpT p~ekqqσiσk

“

3
ÿ

k“0

σ1iAσkA
:σiσk .

(22)
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For arbitrary B “
3
ř

i“0
biσi we get

3
ÿ

j“0

σjBσj “ b0
3
ÿ

j“0

pσjq
2σ0 `

3
ÿ

i“1

bi
3
ÿ

j“0

σjσiσj “ 4b0σ0 (23)

by using (6). Doing the same calculations for Bσ1, Bσ2, and Bσ3 we get for
i “ 0, 1, 2, 3

3
ÿ

j“0

σjBσiσj “ 4biσ0 (24)

such that

τpiqpT q “ σ1iA
3
ÿ

j“0

σjA
:σiσj “ 4āiσ1iA . (25)

We use (12) and consider the following trace

1

2
tr
`

τpiqpT q
1τpiqpT q

˘

“
1

2
tr
`

p4āiσ1iAq
1p4āiσiAq

˘

“ 8pāiq2trpA1σiσiAq

“ 16pāiq2 .

(26)

This special combination of τpiqpT q and τpiqpT q
1 yields the following state-

ment.

Proposition 4.1. Consider T P SO`p3, 1q. Then there exist maps

Φ̂˘
piq : SO`p3, 1q Ñ SLp2,Cq

for i “ 0, 1, 2, 3 such that the images Φ̂˘
piqpT q are the solutions of ΦpAq “ T

if tr
`

τpiqpT q
1τpiqpT q

˘

‰ 0. The maps are given by

Φ̂˘
piqpT q “ ˘

1
b

1
2tr

`

τpiqpT q1τpiqpT q
˘

σ1iτpiqpT q (27)

We will formulate the result (27) in terms of T alone, i.e. without help of
the map τpiq. By using the signs (15) a more explicit way to express (20) is

εiτpiqpT q “
3
ÿ

j,k“0

T jkσiσjσiσk

“

´

3
ÿ

j“0

εijT
j
j

¯

σ0 `
3
ÿ

j“1

`

εijT
j
0 ` T

0
j

˘

σj ` i
3
ÿ

j,k,`“1

εijεjk`T
j
kσ` .

We write Tpiq for the matrix with entries pTpiqq
j
k “ εijT

j
k, in particular

Tp0q “ T .
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For the expansion εiτpiq “ t0σ0 ` t
1σ1 ` t

2σ2 ` t
3σ3 we have

1

2
tr
`

τpiqpT q
1τpiqpT q

˘

“ pt0q2 ´ pt1q2 ´ pt2q2 ´ pt3q2

“
`

trpTpiqq
˘2
´

3
ÿ

j“1

´

εijT
j
0 ` T

0
j ` i

3
ÿ

k,`“1

εikεk`jT
k
`

¯2

“
`

trpTpiqq
˘2
´

3
ÿ

j“1

`

T j0T
j
0 ` T

0
jT

0
j ` 2εijT

j
0T

0
j

˘

´

3
ÿ

j,k,`,m,n“1

εikεimεk`jεmnjT
k
`T

m
n

` 2i
3
ÿ

j,k,`“1

εk`jpεijT
j
0 ` T

0
jqεikT

k
`

“
`

trpTpiqq
˘2
´

3
ÿ

i“1

`

T j0T
j
0 ` T

0
jT

0
j ` 2εijT

j
0T

0
j

˘

`

3
ÿ

j,k“1

T jkT
j
k ´

3
ÿ

j,k“1

εikεijT
j
kT

k
j

´ 2i
3
ÿ

j,k,`“1

εjk`pεijT
j
0 ` T

0
jqεikT

k
` ,

where we used
ř3
`“1 εjk`εmn` “ 2δjkmn in the last step. From the fact that T

is a Lorentz transformation we have
3
ÿ

i,k“0

T ijgikT
k
` “ gj` . (28)

After considering j “ ` and multiplying by the sign εj we take the sum over
j and obtain

3
ÿ

k,j“1

T kjT
k
j ´

3
ÿ

j“1

T j0T
j
0 ´

3
ÿ

j“1

T 0
jT

0
j “ 4´ pT 0

0q
2 . (29)

We use this and insert the positive signs εi0 to simplify

1

2
trpτ 1piqτpiqq “ 4`

`

trpTpiqq
˘2
´ 2i

3
ÿ

j,k,`“1

εjk`pεijT
j
0 ` T

0
jqεikT

k
`

´ εi0εi0T
0
0T

0
0 ´ 2

3
ÿ

i“1

εi0εijT
j
0T

0
j ´

3
ÿ

j,k“1

εikεijT
j
kT

k
j

“ 4` ptr
`

Tpiqq
˘2
´

3
ÿ

j,k“0

εikεijT
j
kT

k
j
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´ 2i
3
ÿ

j,k,`“1

εjk`pεijT
j
0 ` T

0
jqεikT

k
`

“ 4`
`

trpTpiqq
˘2
´ trpT 2

piqq ´ 2i
3
ÿ

j,k,`“1

εjk`pεijT
j
0 ` T

0
jqεikT

k
` .

This yields the following Corollary of Proposition 4.1 that contains the an-
nounced explicit description of SLp2,Cq in terms of SOp3, 1q.

Corollary 4.2. In terms of the entries of T formula (27) reads

Φ̂˘
p0qpT q “ ˘

trpT qσ0 `
3
ÿ

j“1

¨

˝T j0 ` T
0
j ` i

3
ÿ

k,`“1

T k`εjk`

˛

‚σj

d

4` ptrpT qq2 ´ trpT 2q ´ 2i
3
ř

j,k,`“1

εjk`pT j0 ` T 0
jqT k`

(270)

for i “ 0, as well as

Φ̂˘
piqpT q “ ˘

1
d

4`
`

trpTpiqq
˘2
´ trpT 2

piqq ´ 2i
3
ř

j,k,`“1

εjk`pεijT j0 ` T 0
jqεikT k`

ˆ

ˆ

¨

˝

`

T i0 ` T
0
i ` i

3
ÿ

j,k“1

εijεijkT
j
k

˘

σ0 ` trpTpiqqσi

`

3
ÿ

j“1

´

T ij ´ εijT
j
i ` i

3
ÿ

k“1

εikjpεikT
k
0 ` T

0
kq

¯

σj

¸

(27i)
for i “ 1, 2, 3.

Remark 4.3. All four combinations in (20) are needed to describe full
SLp2,Cq because formula (27) only works for τpiqpT q ‰ 0. For example,

the choice Φ̂0 only works for matrices T such that a0 ‰ 0. In particu-
lar, the matrices σ1, σ2, and σ3 that correspond to T “ diagp1, 1,´1,´1q,
T “ diagp1,´1, 1,´1q, and T “ diagp1,´1,´1, 1q, respectively, cannot be
described.

Example 4.4. We consider T P SO`p3, 1q such that

Tp0q “ T “

¨

˝

coshα sinhα
sinhα coshα

12

˛

‚, Tp1q “

¨

˝

coshα sinhα
sinhα coshα

´12

˛

‚,

Tp2q “

¨

˝

coshα ´ sinhα
sinhα ´ coshα

σ3

˛

‚, Tp3q “

¨

˝

coshα ´ sinhα
sinhα ´ coshα

´σ3

˛

‚.
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Then
trpT q “ 2pcoshpαq ` 1q , trpTp1qq “ 2pcoshpαq ´ 1q ,

trpTp2qq “ trpTp3qq “ 0 .

Furthermore we have

T 2 “ T 2
p1q “

¨

˝

2 cosh2 α´ 1 2 coshα sinhα
2 coshα sinhα 2 cosh2´1

12

˛

‚, T 2
p2q “ T 2

p3q “ 14 ,

and

trpτp0qpT q
1τp0qpT qq “ 8pcosh 2α` 1q ,

trpτp1qpT q
1τp1qpT qq “ 8pcosh 2α´ 1q ,

trpτp2qpT q
1τp2qpT qq “ trpτp3qpT q

1τp3qpT qq “ 0 .

Therefore, we can consider Φ̂˘
p0qpT q and Φ̂˘

p1qpT q and get

Φ̂˘
p0qpT q “

1
?

2

ˆ

?
coshα` 1σ0 `

sinhα
?

coshα` 1
σ1

˙

,

Φ̂˘
p1qpT q “

1
?

2

ˆ

sinhα
?

coshα´ 1
σ0 `

?
coshα´ 1σ1

˙

.

Both yield the same Matrix A , namely

A “

ˆ

cosh α
2 sinh α

2
sinh α

2 cosh α
2

˙

,

which follows from 2 sinh2 α
2 “ coshα´ 1 and 2 cosh2 α

2 “ coshα` 1.

5. Some concluding Remarks

‚ The results that we presented here in an elementary way have been dis-
cussed in parts in the literature. The particular choice i “ 0 in (27) has
been discussed in [6, p. 69] where the author states a variant of formula
(270), in [5, p. 53] where the author emphasizes that the formula only
holds in special cases, and in [7, p. 130] with reference to [5] but without
comment on the incompleteness.

‚ On purpose we neglected the use of the theory of Clifford algebras and
their representations although there is a strong relation. In fact, the
Clifford algebra C`p4q is the framework in which the results above can be
formulated and we will shortly recall how Pauli matrices enter into the
discussion. Starting in dimension two we see that the set tσ1, σ2u provides
generators of the Clifford algebra C`p2q because σiσj ` σjσi “ 2δij for
i “ 1, 2. By adding the volume element σ3 “ ´iσ1σ2 we get generators
tσ1, σ2, σ3u of C`p3q because the same relations as before hold but for
1 ď i ď 3. As we can check the set tΣ0 “ σ1 b 1,Σ1 “ σ2 b σ1,Σ2 “

σ2 b σ2,Σ3 “ σ2 b σ3, u obeys ΣiΣj ` ΣjΣi “ 2δij for 0 ď i ď 3 such
that it yields generators of C`p4q. Such doubling process can always
be used when going from C`p2k ´ 2q to C`p2kq. This gives a iterative
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way to construct C`p2kq from C`p2q, see for example [1]. The doubling
process, of course, isn’t unique because with any set of generators tΣiu

and any unitary transformation Ω the set tΩΣiΩ
:u yields generators, too.

Although we restricted to the complex Clifford algebra above, generators
of the real Clifford algebra according to a metric with signature can easily
be obtained by adding some extra i in front of some of the generators.
For more details we again refer to the literature, for example [2, 3, 8].

‚ Our choice for C`p4q above is the so called Weyl representation for which
the subspace span

 

Σij “
1
2pΣiΣj ´ ΣjΣiq

(

Ă C`p4q is block-diagonal.
This subspace is isomorphic to the algebra of skew-symmetric (4 ˆ 4)-
matrices and reflects the algebra isomorphism sop4q » sop2q ‘ sop2q. In
terms of Dynkin diagrams this is D2 “ A1 ‘ A1 and here slp2,Cq enters
as the standard realization of A1. A more geometric way to interpret
the isomorphism is the notion of selfduality of 2-forms in dimension four.
In this particular dimension the Hodge operator provides an involution
on the six-dimensional space of 2-forms and, therefore, it splits into two
three-dimensional eigenspaces, the so called self-dual and anti-self-dual
2-forms.

‚ The introduction of the sign εi into (28) to get (29) is a bit artificial. In a
more geometric way this is due to the natural isomorphism R4 » pR4q˚

defined by the Minkowski metric g. In terms of index-notation this is
raising and lowering of indices. This isomorphism is needed when we
want to calculate invariant traces of bilinear forms. In fact, (28) is a
bilinear form rather than an endomorphism.

‚ There is a last nice relation we want to mention. The isomorphism Ψ
from (7) translates (11) to R4. After writing R4 “ R ˆR3 this reflects
the geometry of R3, i.e. the Euclidean product x¨, ¨y and the cross product
ˆ. For this we write ~x “ px0,xq with x P R3. Then

Ψ´1
`

Ψp~xqΨp~yq
˘

“

ˆ

x0y0 ` xx,yy
x0y ` y0x` xˆ y

˙

,

and therefore

1
2Ψ´1

`

Ψp~xqΨp~yq ´Ψp~yqΨp~xq
˘

“

ˆ

0
xˆ y

˙

.
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