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Chapter 1

Introduction

Excitons are quasi-particles, that can form in semiconductors and consist of an
electron-hole pair bound together by Coulumb attraction [1]. They can be excited
by means of light and can form other quasi-particles. This work is concerned with
the study of the dynamics of two di�erent excitonic quasi-particles and how they
are in�uenced by a magnetic �eld.

The �rst type of quasi-particles studied in this work are exciton polaritons.
Exciton polaritons are the result between coupling and photons to excitons [1, 2].
An exciton polariton shares the characteristics of both excitons and photons [2].
Though it is possible to localize a polariton by con�ning the electromagnetic �eld
of the light, which allows the study of quantum-mechanical phenomena like Bose-
Einstein condensates [3, 4], polaritons are propagating states. Due to the excitonic
part the velocity of their propagation is reduced. In bulk (Cd,Zn)Te crystals, the
material used in this work, one can observe a delay up to 350 ps in a 755 µm thick
crystal. This e�ect can be used for a delay-line memory in optical computation.

Furthermore, one can understand all light propagation inside a bulk crystal as
polariton propagation. In this case, the polariton is not formed with one resonance,
but a multitude of resonances [5, 6]. This is of special importance for magnetic-
�eld-induced polarization e�ects. Due to the larger number of resonances, it is not
always possible to determine the origin of a polarization e�ect [7].

One of these e�ects is magneto-spatial dispersion, which manifests as linear
birefringence. It has been studied previously in bulk CdTe crystals in Voigt geom-
etry. From symmetry considerations one can deduce further properties on, e.g.,
its allowance [8]. But even though an excitonic origin has been suspected [9], no
model predicting its spectral or magnetic dependence has so far been presented.
The development and testing of such a model are important aims of this work.
This is possible due to a new experimental setup that allows one to measure both
the propagation speed and polarization state of light. As these measurements are
performed in Faraday geometry a non-trivial spectral dependence of the Faraday
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2 Introduction

rotation is discovered.

Using linear birefringence and Faraday rotation, it is possible to manipulate
the polarization of light in a controlled fashion by controlling the exciton resonance
using, for example, strain. Since the polarization of light can be used to trans-
port information, such an application would be useful, for example, in quantum
computing.

The second type of excitonic quasi-particles are exciton magnetic polarons [10].
They are formed in diluted magnetic semiconductors due to sp-d exchange interac-
tion between the spin of an exciton and the spin of manganese atoms by orienting
the manganese spins which reduces the energy of the exciton. In contrast to prop-
agating polaritons, initial localization of the exciton is necessary for the exciton
magnetic polaron formation. Also, the formation takes time [10]. It is necessary
to study the dynamics since the exciton lifetime and the formation time can be
comparable, leading to incomplete polaron formation. Further, the formation is
supported by con�ning the exciton in potential wells. So the formation dynam-
ics have been studied extensively in non-magnetic quantum wells with magnetic
(Cd,Mn)Te barriers and some magnetic quantum wells [10, 11, 12].

In recent years, the manufacturing of CdSe based quantum wells has become
feasible, but the knowledge of the interaction of di�erent CdSe based alloys is
still limited. Studying formation dynamics of exciton magnetic polarons in this
novel material has led to a more de�ned understanding of the nature of the used
quantum well. Exciton magnetic polarons are interesting from a fundamental
physics standpoint as they provide optically induced ferromagnetism.



Chapter 2

Theory of excitons in zincblende

II-VI semiconductors

2.1 Excitons in II-VI zincblende semiconductors

2.1.1 Crystal structure

CdTe is a II-VI semiconductor that crystallizes in the zincblende structure at
normal pressure [13]. Its unit cell is shown in �gure 2-1. The crystal lattice can be
constructed from two face-centered cubic(fcc) lattices shifted against each other
by a quarter of a unit cell diagonal. One fcc-lattice consists of cadmium while the

Figure 2-1: Unit cell of CdTe [14]. Gray spheres represent Cd atoms while yellow
spheres represent Te atoms.

other of tellurium. Each cadmium atom is surrounded by 4 tellurium atoms. These
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4 Theory of excitons in zincblende II-VI semiconductors

4 atoms are aligned like the vertices(corners) of a regular tetrahedron (triangular
pyramid). This con�guration determines the symmetry of the crystal. It is of
Td point group. This group contains all symmetry operations that transform a
regular tetrahedron into itself [15].

2.1.2 Band structure

The band structure of CdTe is shown in �gure 2-2. In this �gure the �lled valence-
bands have an energy below E = 0 and the empty conduction-bands have a energy
above E = 0. The fundamental band gap is between the valence-band with the
highest energy and the conduction-band with the lowest. The smallest band gap is
found at the Γ-point, the center of the �rst Brillouin-Zone, which makes the CdTe
a direct band gap semiconductor. For both bands the electrons at the Γ-point do
not have momentum and do not propagate. Further for both bands the density
of states is small. There are several band gaps between empty conduction-bands

Figure 2-2: Band structure (a) and density of states (b). Solid curves represent nonlocal
pseudopotential calculations [16], while dashed curves represent data from ultraviolet
photoemission spectroscopy measurements [17].

and full valence-bands at the X- and L-points of the Brillouin-Zone, where both
bands have higher densities of states than those of the smallest band gap. These
band gaps determine the refractive index of CdTe [5, 6].
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2.1.3 Wannier-Mott excitons

Excitons are quasi-particles that are formed from a valence-band hole and a conduction-
band electron bound by their Coulomb interaction. They are either called Frenkel
or Wannier-Mott excitons, depending on the volume of the wavefunction of the
electron and hole [1]. In a Frenkel exciton the wavefunction's volume does not
exceed one unit cell of the crystal. The other extreme are Wannier-Mott excitons.
Here, the volume of the electron wavefunction and the hole wavefunction is large∗

These are the excitons studied in this work. They are described analogous to the
model of a hydrogen atom, but their binding energy En(~k) is much smaller.

En(~k) = − e4µ

2~2κ2n2
+

~2~k2

2M︸ ︷︷ ︸
kinetic energy

. (2.1)

Here κ is the macroscopic dielectric constant, while n = 1, 2, . . . ,∞ is the principle
quantum number corresponding to the shell in an atom. Also µ−1 = (m∗e)

−1 +

(m∗h)
−1 and M = m∗e +m∗h, where m

∗
e is the e�ective mass of the electron and m∗h

the e�ective mass of the hole. ~K describes the momentum of the center of the
mass. An exciton can propagate through the crystal, leading to a kinetic energy
of ~2K2

2M
[1].

Before an electron and a hole can form an exciton is has to be lifted from the
valence-band into conduction-band. The corresponding energy of excitation is the
band gap energy EG between the edges of the valence- and conduction-band. If
an exciton is formed it is usually in the lowest state n = 1 leading to an exciton
energy Eexc of

Eexc = EG −
e4µ

2~2κ2︸ ︷︷ ︸
Ex

+
~2K2

2M
. (2.2)

Ex is the exciton binding energy also known as the "exciton Rydberg" energy [1].
From the "exciton Rydberg" one can estimate the "exciton Bohr radius" ax which
is used as a measure of the size of the exciton wavefunction [1]

Ex =
e4µ

2~2κ2
=

e2

2κax
=

~2

2µa2
x

. (2.3)

∗In CdTe bulk crystals a unit cell has a size of 0.4293 nm [18], while an exciton has a Bohr
radius between ax = 6.0 nm[19] and ax = 7.5 nm[20].
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2.2 Propagation of exciton polaritons

A polariton is a mixed particle formed by a photon and an exciton due to the cou-
pling between photon and exciton. It has theoretically been predicted by Pekar[21]
and Hop�eld[22]. It a�ects the propagation of light, and also the properties of light
during propagation. This section introduces the theory necessary to calculate the
propagation of an exciton polariton.

The usual way to describe the propagation of light is the dielectric constant
and the refractive index. A short introduction is given in section 2.2.1. After this
the polariton concept is introduced in section 2.2.2. In section 2.2.4 the concept
of the dielectric constant is expanded to describe anisotropic media.

The second part of section 2.2 is dedicated to the change of polarization of
light during polariton propagation. In order to quantify the polarization, an ex-
perimentally accessible quantity, the Stokes vector, is presented in section 2.2.5,
together with a more theoretical one, the Jones vector.

Building upon the dielectric tensor, di�erent kinds of polarization e�ects are
presented in section 2.2.6. In section 2.2.7 a method for calculating the strength
of polarization e�ects from excitonic parameters is demonstrated. Moreover, the
relation between the delay introduced by an exciton and excitonic polarization
e�ects is discussed in section 2.2.8.

2.2.1 Plane wave in an isotropic medium

Electromagnetic waves in dielectric media without free charges and currents are
described by Maxwell's equations

∇ ~D = 0 , ∇ ~B = 0 ,

∇× ~E = −1

c

∂ ~B

∂t
, ∇× ~H =

1

c

∂ ~D

∂t
.

Here ~D = ε ~E is the electric induction, ~H =
~B
µ
is the magnetic �eld, ~E is the

electric �eld and ~B the magnetic induction. The material parameter ε is the
dielectric constant, also called permittivity, while µ is called the permeability.

An electromagnetic wave can propagate in any direction and has di�erent
shapes, but for this work the simple idealized case of a plane wave propagating
along ~z is su�cient. In this case, the electric �eld, found as a solution of Maxwell's
equations takes the form [23]

~E(z, w, t) = ~Aeikz+iωt , (2.4)

with k =
√
µε
ω

c
.
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Because in this spectral range µ is 1 for most semiconductors, including (Cd,Zn)Te,
the wave vector is

k =
√
ε
ω

c
= n

ω

c
(2.5)

with n being the refractive index. ~A is a complex vector describing the amplitude
and phase of the oscillation. This vector is orthogonal to the direction of prop-
agation. If the wave vector has an imaginary part light will be absorbed during
propagation and equation (2.4) can be written as

~E(z, w, t) = ~A(e−=(k)z+iωtei<(k)z+iωt) ,

with <(k) =

√
<(ε) +

√
<(ε)2 + =(ε)2

√
2

ω

c

and =(k) =

√
−<(ε) +

√
<(ε)2 + =(ε)2

√
2

ω

c
.

The phase of a wave propagates with the so-called phase velocity vp = c
n
. A

wave packet like the polariton propagates with the group velocity vG = ∂ω
∂k
. From

this one can de�ne a group refractive index nG = c
vG
. It can di�er signi�cantly

from the refractive index n in the case of dispersion where ε is a function of ω

nG =
∂

∂ω
<(ω

√
ε(ω)). (2.6)

2.2.2 The exciton polariton concept

If an exciton has a non-vanishing dipole, it can be excited by an electromagnetic
wave. If the energy of the electromagnetic wave is close to that of the exciton,
the two particles will form a new quasi-particle called exciton polariton [1]. To
calculate the dispersion of the polariton the dielectric constant ε is used. The
concept of the dielectric constant ε is introduced in section 2.2.1. As an exciton
can be described as a hydrogen atom one may use the model of a Lorentz oscillator.
The dielectric constant of an oscillator with a frequency of ω

2π
is described as

ε = ε0 +
f

ω2
res − ω2 − iωΓ

, (2.7)

where f is the oscillator strength, Γ is the dampening of the oscillator, ωres the
resonance frequency, and ω the frequency of the light. The background dielectric
constant ε0 represents contributions, such as di�erent exciton states and higher
band transitions [2]. As equation (2.7) is a function of the frequency of the exciting
light it can be called dielectric function. A typical example is shown in �gure 2-4.
For ease of comparison an energry scale has been used. With increasing energy the
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real part of ε increases. At the resonance energy <(ε) changes sign and increases
again to approach εb. For photon energies close resonance energy ε has a signi�cant
imaginary part which leads to absorption.

Equation (2.7) has been developed for an atom that does not propagate. Since
the exciton can propagate and has kinetic energy as stated in equation (2.1),
equation (2.7) has to be modi�ed. The kinetic energy has to be added to the
exciton resonance energy. When forming a polariton the exciton and photon share
a common wave vector ~k. This leads to a more complicated equation where the
wavevectors ~k satisfy the dispersion equation(

c~k

ω

)2

= ε0 +
4πα0ω

2
0

ω2
0 − ω2 + (~k2/M)ω0 − iωΓ

. (2.8)

In the dispersion equation α0 = 2d2/~ω0, d is the dipole matrix element for optical
excitation of the exciton and ~ω0 is the exciton energy for ~k = 0 [2]. For each
propagation direction there are two solutions for this equation. Both are shown in

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5
1 . 6 6 0

1 . 6 6 2

1 . 6 6 4

1 . 6 6 6

1 . 6 6 8

1 . 6 7 0

 

En
er

gy
(e

V
)
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Figure 2-3: Dispersions of light (red dots), exciton (blue dots), upper and lower polari-
ton branches calculated for ε0 = 11.2, ~ω0 = 1.6644 eV, 4πα0 = 8.8 × 10−3, ~Γ = 8 µeV
and M = 1.6me where me is the mass of a free electron.

�gure 2-3 together with the dispersions of excitons and photons, which are depicted
as a nearly vertical red dotted line and a blue dotted parabola, respectively. The
two solutions are called upper and lower polariton branch. The one above the
exciton parabola is the upper polariton branch (UP), while the one below the
exciton parabola is the lower polariton branch (LP).

The upper polariton dispersion is shallow for low ~k. With increasing ~k its slope
increases until it follows the photon dispersion. The LP dispersion starts with a
slope close to the photon dispersion at low energy. Then its slope decreases as the
LP dispersion approaches the exciton dispersion. With further energy increase the
polariton dispersion follows the exciton dispersion. The propagation speed, which
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is determined by the slope of the dispersion, drops signi�cantly when approaching
the exciton resonance ~ω0.

The dependence of the exciton energy on the wave vector is called spatial
dispersion [2]. One consequence is, that above a certain energy both branches
exist. In this case, one can use the e�ective refractive index

n̄ =
n1n2 + ε0

n1 + n2

, (2.9)

where n1 and n2 are the refractive indexes of the upper and lower branches, respec-
tively, to describe the propagation of light. This is only necessary if the photon
energy ~ω is close to the resonance energy ~ω0. For other energies the branch
closer to the light dispersion dominates and the other branch can be neglected [2].

The resulting dielectric function is shown in �gure 2-4. In comparison to the
Lorentz oscillator, the increase of the dielectric function, when approaching the
resonance from low energies, is not as pronounced. Further spatial dispersion leads
to a slower approach to ε0 for energies above the resonance energy and absorption
in a wider spectral window.

Imperfect growing conditions may lead to a �uctuation of the exciton reso-
nance energy ~ω0, called inhomogeneous broadening. Since the distribution of the
exciton resonance energy can be described by a Gaussian with a width of Γinh, the
dielectric function has to be convoluted with a Gaussian distribution. For a non-
inhomogeneously broadened dielectric function ε(ω, ω0), where ~ω is the photon
energy and ~ω0 is the resonance energy, the inhomogeneously broadened dielectric
function ε′(ω, ω0) is

ε′(ω, ω0) =

∫ +∞

−∞
ε(ω, ω0 + ω′)

exp
[
− (ω′)2

2Γ2
inh

]
√

2πΓinh

dω′. (2.10)

2.2.3 Simpli�cations

Solving the dispersion relation shown in equation (2.8) is not always necessary and
several simpli�cations can be done. For energies close to the resonance |ω0−ω| �
ω0 one can simplify it to [2](

c~k

ω

)2

= ε0 +
4πα0ω0

ω0 − ω + (~k2/M)− iΓ/2
.

For photon energies ~ω not too close to the exciton resonance ~ω0, where the
in�uence of the spatial dispersion is very small |~k2/M | � |ω0−ω|, one can simply
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Figure 2-4: Dielectric functions of a simple Lorentz oscillator (green line) and polaritons
with spatial dispersion without inhomogeneous broadening (red line) and with 1meV in
homogeneous broadening calculated for ε0 = 11.2, ~ω0 = 1.6644 eV, 4πα0 = 8.8× 10−3,
~Γ = 8 µeV and M = 1.6me.

calculate the dielectric constant as

ε(ω) = ε0 +
ε0ωLT

ω0 − ω − iΓ/2
, (2.11)

where ωLT = 2πα0ω0
ε0

is the longitudinal-transverse splitting. The complex disper-
sion of the simpli�ed model (SM) without spatial dispersion is presented in �gure
2-5. For comparison, the dispersions of the LP branch and UP branch are also
shown in �gure 2-5. These dispersions are calculated for Cd0.88Zn0.12Te, which is
the material used in this study, at a temperature of T = 1.8K.

The SM does only have one branch. As long as the UP branch wavevector is
real, UP and SM are in good agreement. For low energies up to 1.663 eV the SM
and LP branches are in good agreement both for real and imaginary parts of the
wavevector. In the small energy regime in between there are signi�cant di�erences
both in the real and the imaginary parts of k. In this energy window one cannot
neglect spatial dispersion and needs to use the solutions of equation (2.8), but for
energies below 1.663 eV the simple model is su�cient.
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Figure 2-5: Complex dispersions of the LP branch (blue line), UP branch (red line)
and simple Lorentz oscillator (dashed green line) without spatial dispersion calculated
for ε0 = 11.2, ω0 = 1.6644 eV, 4πα0 = 8.8× 10−3 and M = 1.6me.

In a crystal with signi�cant inhomogeneous broadening of the exciton resonance
one has to take into account this broadening. In this case one uses equation (2.10)
with equation (2.11), and the resulting dielectric function reads

ε(ω, ω0) = ε0

∫ +∞

−∞

ε0ωLT
ω′ − ω − iΓ/2

exp
[
− (ω′−ω0)2

2Γ2
inh

]
√

2πΓinh

dω′. (2.12)

2.2.4 Plane wave in an anisotropic medium

The dielectric constant is used to describe the propagation of electromagnetic
waves in a medium. This parameter is a scalar in isotropic media, but has to be
described as a tensor in anisotropic media. If the wave propagates along ~z this
tensor can be simpli�ed to a 2x2 matrix

εij =

(
εxx εxy
εyx εyy

)
. (2.13)

Using symmetry analysis [8] one can identify three contributions

εxy = −εyx = iεo� (2.14)

εxx = εi + εdia/2 , εyy = εi − εdia/2 (2.15)

to the dielectric tensor. Here εi is the dielectric constant for the isotropic case
without polarization e�ects, εdia and εo� are the contributions to the diagonal
and o�-diagonal elements of εij, respectively. εij can be diagonalized yielding two
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eigenvectors ~E1 and ~E2 and eigenvalues ε1 and ε2. These read

~E1,2 =

(
i(εdia∓

√
ε2
dia

+4ε2
o�

)

2εo�

1

)
, (2.16)

ε1,2 =
2εi ∓

√
ε2
dia + 4ε2

o�

2
. (2.17)

The propagation of an electromagnetic wave along ~z can now be described as a
superposition of two eigenwaves

~E(z, t) = A1
~E1e

in1z/c−iωt + A2
~E2e

in2z/c−iωt (2.18)

with complex amplitudes A1,2 and refractive indices n1,2 =
√
ε1,2. The complex

amplitudes A1 and A2 are determined by the polarization of light entering the
sample. Assuming that the crystal starts at z = 0 and neglecting re�ection at the
the electric �elds inside and outside of the sample ~Eextern have to match.

~Eextern = A1
~E1 + A2

~E2

For example, in the case of light linearly polarized along ~x with ~Eextern =

(
1

0

)
the amplitudes are

A1,2 = ∓ iεo�√
ε2
dia + 4ε2

o�

. (2.19)

Another example is positive circularly (right-handed) polarized light with ~Eextern =
√

2

(
−i

1

)
. In this case, the amplitudes are

A1,2 =
i[
√
ε2
dia + 4ε2

o� ∓ (εdia + 2εo�)]√
8ε2

dia + 32ε2
o�

. (2.20)

2.2.5 Stokes parameters

To represent the state of light one may use the Stokes parameters introduced in
1852 by G. G. Stokes [24, 25].

They are often used by experimentalists, as they only use easily accessible
observables. Assuming that light propagates along ~z in a Cartesian coordinate
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system with the axes ~x, ~y and ~z, then the Stokes parameters are

S0 = I = Ix + Iy = Ix′ + Iy′ = Iσ+ + Iσ−, (2.21a)

S1 = Q = Ix − Iy, (2.21b)

S2 = U = Ix′ − Iy′ , (2.21c)

S3 = V = Iσ+ − Iσ−. (2.21d)

Ix and Iy are the intensities of light linearly polarized along ~x and ~y, respectively,

while Ix′ and Iy′ are the intensities of light linearly polarized along ~x′ = 1√
2

(
1

1

)
and ~y′ = 1√

2

(
−1

1

)
. Further, Iσ+ and Iσ− are the intensities of positive and

negative (left-handed) circularly polarized light.

The Stokes vector contains more information than just the polarization state
of light. S0 is the intensity of the light. If one wants to only study the polarization
state of light, the normalized Stokes vector ~S = (S1, S2, S3), will be su�cient.

S1 =
S1

S0

=
Ix − Iy
Ix + Iy

, (2.22a)

S2 =
S2

S0

=
Ix′ − Iy′
Ix′ + Iy′

, (2.22b)

S3 =
S3

S0

=
Iσ+ − Iσ−
Iσ+ + Iσ−

. (2.22c)

The length |~S| =
√
S2

1 + S2
2 + S2

3 of ~S provides the total polarization degree of the
beam. If |~S| = 0, the light is not polarized, while it is completely polarized in the
case of |~S| = 1 [24].

2.2.5.1 Relation to Jones vector

The mathematical description of light used in equation (2.18), which is used to
calculate the change of polarization during propagation through a medium, is much
closer to the Jones vector. For a given z, one can simplify

~E(z, t) = A1
~E1e

in1z/c−iωt + A2
~E2e

in2z/c−iωt

→ ~E(t) = ~Jeiωt, (2.23)

where ~J = (Ex, Ey) is the so-called Jones vector, a two dimensional complex vector
of the complex electric �eld amplitudes Ex and Ey [24].

A comparison of the results of an experiment and the calculation is only possible
if one can convert Jones into Stokes vectors. The Stokes and Jones vectors of
several polarization states are shown in table 2-1. One can calculate the Stokes
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State of polarization Stokes vector Jones vector

horizontal linear

 1
0
0

 (
−1
0

)
.

vertical linear

 −1
0
0

 (
−0
1

)
.

linear along +45◦

 1
1
0

 1√
2

(
−1
1

)
.

linear along −45◦

 0
−1
0

 1√
2

(
1
−1

)
.

positive circular / right-handed (σ+)

 0
0
1

 1√
2

(
1
−i

)
.

negative circular / left-handed (σ−)

 0
0
−1

 1√
2

(
1
i

)
.

Table 2-1: Stokes and Jones vectors of di�erent polarization states for | ~J | = 1.

vector ~S from the complex amplitudes of the Jones vector as [26]

S1 =
|Ex|2 − |Ey|2

|Ex|2 + |Ey|2
, (2.24a)

S2 =
<(ExE

∗
y)

|Ex|2 + |Ey|2
, (2.24b)

S3 =
=(ExE

∗
y)

|Ex|2 + |Ey|2
. (2.24c)

The normalized Stokes vector used as a vector in a Cartesian coordinate system
can be used to visualize polarization e�ects. Since the maximum polarization of
light is 1, all the possible polarization states of light are inside a sphere with a
radius of 1 around the origin of the Cartesian coordinate system. This sphere is
known as the Poincaré sphere.
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2.2.6 Optical activity and other polarization e�ects

A medium is called optically active when the linear polarization of light is continu-
ously rotated while propagating through the medium. It has been �rstly observed
by the French physicist Dominique F. J. Arago in 1811 in quartz [24]. It can be
explained assuming that the linearly polarized light propagates as two circularly
polarized waves through the crystal. The electric �eld of such a wave propagating
along ~z according to equation (2.18) and table 2-1 is

~E(z, t) = A1
1√
2

(
1

−i

)
ein1z/c−iωt︸ ︷︷ ︸

right-handed circularly polarized

+A2
1√
2

(
1

i

)
ein2z/c−iωt︸ ︷︷ ︸

left-handed circularly polarized

. (2.25)

If the linear polarization has the angle α relative to ~x at z = 0, the amplitudes
must satisfy (

cos(α)

sin(α)

)
= A1

(
1

−i

)
+ A2

(
1

i

)
.

The complex amplitudes

A1 =
1√
2
eiα and A2 =

1√
2
e−iα (2.26)

are complex conjugates. The reason for optical activity is circular birefringence.
This is a di�erence in the phase velocities v1 = c

n1
and v2 = c

n2
of the two circularly

polarized waves. Thus, the two waves accumulate a phase di�erence ∆ϕ = (n1 −
n2)lz by propagating a distance l through the medium. At z = l the electric �eld
is

~E(t) =
1

2

[(
1

−i

)
ei(α+∆ϕ/2) +

(
1

−i

)
e−i(α+∆ϕ/2)

]
ei(n1+n2)/2·(l/c)−iωt. (2.27)

As the angle of linear polarization de�nes the phases of the two waves (see equa-
tions (2.26) and (2.25) the additional phase di�erence ∆ϕ rotates the angle of
linear polarization to α+∆ϕ/2. In quartz, where this e�ect was �rstly discovered,
it was due to the crystal structure and did not require an external �eld to be ob-
served [24]. But if the e�ect is due to an external magnetic �eld applied along the
direction of propagation (Faraday geometry), the e�ect is called Faraday rotation.

It is also possible for two linearly polarized waves to propagate at di�erent
speeds. This is called linear birefringence. Assuming that these waves are polarized
along ~x and ~y, the electric �eld of a positive circularly polarized wave can be written
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as

~E(z, t) =
1√
2

(
1

0

)
ein1z/c−iωt +

−i√
2

(
0

1

)
ein2z/c−iωt.

Similar to circular birefringence the two linearly polarized waves accumulate a
phase di�erence of ∆ϕ after propagating through a crystal of thickness l. The
electric �eld at z = l is written as

~E(t) =
1√
2

(
1

−ie−i∆ϕ

)
ei(n1+n2)/2·(l/c)−iωt+∆ϕ/2.

When the phase di�erence is ∆ϕ = π
2
, the light is purely linear (S2 = −1) polarized.

An increase of the phase di�erence to ∆ϕ = π will change its polarization to
negative circularly(S3 = −1) polarized, ∆ϕ = 3

2
π will make it S1 = 1, while

∆ϕ = 2π is again positive circularly polarized (S3 = 1).

While circular birefringence leads to oscillations of the �rst two normalized
Stokes parameters S1 and S2, linear birefringence leads to oscillations in S2 and
S3, when the two linear polarizations with di�erent phase velocity are those of S1.

The two e�ects described above are phase-based e�ects, but there are also
absorption-based e�ects. When two polarizations are absorbed at a di�erent rate
while propagating through a medium, the e�ect is called dichroism. This is ex-
pressed by di�erent imaginary parts of the refractive indexes n1 = n′1 + in′′1 and
n2 = n′2 + in′′2. If there are no phase-based e�ects (n′1 = n′2 = n′), one can rewrite
equation (2.18) as

~E(z, t) = e−
n′′1+n′′2

2
·z/c
(
A1

~E1e
−n
′′
1−n

′′
2

2
·z/c + A2

~E2e
n′′1−n

′′
2

2
·z/c
)
ein′z/c−iωt.

The ratio of the intensities I1 and I2 of the two polarizations changes while prop-
agating through the crystal according to

I1

I2

=
Abs(A1| ~E1|)2

Abs(A2| ~E2|)2
e−2(n′′1−n′′2 )·z/c. (2.28)

The ratio changes exponentially until, after propagation over a distance (z →∞),
only one polarization remains.

2.2.7 Excitonic magneto-optical e�ects

The fundamental exciton doublet can be excited by propagating light. If a mag-
netic �eld ~B is applied along ~B ‖ ~k ‖ [001] and the crystal is described by the
Td point group, the doublet of optically active states can be described by a 2x2
e�ective Hamiltonian H. For an excitation being a mixture of circularly polarized
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light (σ+ and σ−), the e�ective Hamiltonian Hσ takes the form

Hσ =

(
~ω0 + ∆

2
V kzBz

V kzBz ~ω0 − ∆
2

)
. (2.29)

In a basis of light linearly polarized along ~x and ~y, the Hamiltonian reads

Hxy =

(
~ω0 + V Bzkz

i∆
2

i∆
2

~ω0 − V Bzkz

)
. (2.30)

In both Hamiltonians, ∆ = gexcµBBz is the exciton Zeeman splitting with gexc
being the exciton g-factor,V is the constant responsible for the magneto-spatial
dispersion. Diagonalization of Hxy given by

Hxy = S ·
(

~ω0 +
√

4B2
zk

2
zV

2 + ∆ 0

0 ~ω0 −
√

4B2
zk

2
zV

2 + ∆

)
· S−1 (2.31)

with S =

(
i
(

2BzkzV−
√

4B2
zk

2
zV

2+∆2
)

∆

i
(

2BzkzV+
√

4B2
zk

2
zV

2+∆2
)

∆

1 1

)

reveals two resonances split by

~Ωe� = 2
√

4B2
zk

2
zV

2 + ∆. (2.32)

Starting from equation (2.31) one can calculate the dielectric tensor εij for light
with the photon energy ~ω according to

εij = S ·
(
ε(ω, ~ω0 + ~Ωe�/2) 0

0 ε(ω, ~ω0 − ~Ωe�/2)

)
· S−1. (2.33)

Here ε(ω, ~ωres) is a dielectric function for light with a photon energy ~ω exciting
an exciton resonance with the energy of ~ωres. If Ωe� is small enough, ε can be
approximated by a �rst-order Taylor series. This simpli�es equation (2.33) to

εij = ε(ω, ~ω0)

(
1 0

0 1

)
+
dε(ω, ~ωres)
d~ωres

∣∣∣∣
~ω0

(
V Bzkz

i∆
2

i∆
2

−V Bzkz

)
. (2.34)

To calulate the resulting polariton propagation, according to section 2.2.4, εdia
and εo� are used. If the photon energy is at least a few meV below the exciton
resonance energy ~ω0, the simpli�ed model will be su�cient. Using equation (2.11)
to calculate the dielectric constant, the contributions to the dielectric tensor are

εo� =
ε0ωLT

(ω0 − ω − iΓ/2)2

∆

2~Bz

Bz = iγ1Bz and (2.35a)

εdia =
ε0ωLT

(ω0 − ω − iΓ/2)2

2V kzBz

~
= γ2kzBz. (2.35b)
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Here, ωLT is the longitudinal-transverse splitting, Γ is the dampening, and γ1

and γ2 are constant responsible for the Faraday rotation and linear birefringence,
respectively. Further, if the exciton resonance is inhomogeneously broadened by
Γinh one can calculate

γ1 =

∫ +∞

−∞

ε0ωLT
~(ω′ − ω − iΓ/2)2

exp
[
− (ω′−ω0)2

2Γ2
inh

]
√

2πΓinh

dω′
∆

2Bz

+ γ′1 (2.36a)

γ2 = 2

∫ +∞

−∞

ε0ωLT
~(ω′ − ω − iΓ/2)2

exp
[
− (ω′−ω0)2

2Γ2
inh

]
√

2πΓinh

dω′V . (2.36b)

If the Zeeman split excitonic resonance is the only source of Faraday rotation,
then γ′1 = 0. But in CdTe there are other sources of Faraday rotation [7]. These
contributions are taken into account by γ′1.

2.2.8 Excitonic polarization e�ects and group refractive in-

dex

There is a very strong dependence between excitonic phase-based polarization
e�ects and the group refractive index. If we describe polarization e�ects according
to equation (2.18), one can easily calculate the phase di�erence

∆ϕ = (n1 − n2)
ω

c
l = ∆n

ω

c
l

between the two waves after the propagation through a crystal of thickness l.
Assuming that the frequency dependence of n1 and n2 is the same except a small
shift in frequency Ωe�, one obtains

n1(ω) = n(ω +
Ωe�

2
) and n2(ω) = n(ω − Ωe�

2
).

Also n(ω) and ∂n
∂ω

should be continuous and Ωe� small. In this case, we can use a
linear approximation for ∆n and get a phase di�erence of

∆ϕ =
∂n

∂ω
Ωe�

ω

c
l . (2.37)

The group refractive index is, according to equation (2.6),

nG(ω) =
∂

∂ω
ωn(ω)

or = n+ ω
∂n

∂ω
. (2.38)
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If we combine equations (2.37) and (2.38), we can calculate the phase di�erence
as

∆ϕ = (nG − n)
l

c︸ ︷︷ ︸
τ

Ωe� . (2.39)

It is simply the delay τ introduced by the split resonance multiplied by the splitting
of the resonance Ωe�.
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2.3 Exciton magnetic polaron formation

The term �polaron� was invented by Pekar to describe correlated states of electrons
and lattice vibrations [27]. The usage of the term has been expanded to describe
quasi-particles that generate at least part of their formation energy by polarizing
the surrounding material.

In diluted magnetic semiconductors there is a strong exchange interaction be-
tween the carrier and magnetic ions [28]. This interaction leads to the collective
alignment of the spins of the magnetic ions, which can be understood as a form
of spatially con�ned ferromagnetism. This quasi-particle is known as a magnetic
polaron.

Magnetic polarons can be divided into bound and free magnetic polarons. In
the �rst case the carrier is bound by Coulumb potential to an impurity. This
leads to a decrease of the wavefunctions volume, that is called localization. Ex-
amples of bound polarons are electrons bound to donors [29] and holes bound to
acceptors [30, 31, 32]. The theory describing this system is detailed and allows an
understanding of their main features [33].

Free polarons are not bound to an impurity and carriers are only localized
due to the polarization which they create in their environment. A more detailed
introduction to free magnetic polarons is given in subsection 2.3.1. A super�cial
introduction into the theory used to describe them is given in subsection 2.3.2.
The conditions under which a free exciton magnetic polaron is stable are explored
in subsection 2.3.3. Usually, free magnetic polarons are not stable in bulk mate-
rial. Investigations of these polarons are easier in systems where the movement of
carriers is con�ned in at least one dimension [34]. Quantum wells, which con�ne
the movement in one dimension, are introduced in subsection 2.3.5.

2.3.1 Exciton magnetic polarons in diluted magnetic semi-

conductors

Exciton magnetic polarons (EMPs) are magnetic polarons formed by excitons,
e.g., in diluted magnetic semiconductors with magnetic Mn2+ ions [10]. In diluted
magnetic semiconductors carriers are coupled to the spin of the magnetic ions by
sp-d exchange interaction [28]. Due to this exchange interaction the energy of an
exciton can be changed by aligning the manganese (Mn) spins. One example is the
giant Zeeman splitting, which is the splitting of the exciton states with di�erent
spin due to the application of an external magnetic �eld. For a heavy hole exciton
the energy splitting ∆Ez can be described by the modi�ed Brillouin function [10]

∆Ez = (α− β)N0xSe�B 5
2

[
5µBgMnB

2kB(T + T0)

]
, (2.40)
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where x is the concentration of Mn, while N0α and N0β are the exchange integrals
of the conduction- and valence-band. With increasing concentration Mn forms
antiferromagnetically coupled clusters. The e�ective spin Se� and e�ective tem-
perature T0 permit a a phenomenological description of their contribution to the
Zeeman splitting.

Since the energy of the exciton can be reduced due to the alignment of Mn
spins, formation of an EMP is an energetically favorable process. An EMP can be
formed during the lifetime of an exciton and can be divided into two phases [33].
In the so-called �uctuation phase the exciton spin aligns along the �uctuation �eld
reducing the energy of the exciton. This �eld is the average �eld created by the
randomly aligned Mn spins inside the volume of the exciton wavefunction. Since
the orientation of the exciton spin is kept stable by the �uctuation �eld, the exciton
can align the Mn spins collectively, which also reduces the exciton energy. This
phase is called the collective phase, and would not be able without the �uctuation
�eld. Without it the exciton spin �uctuation would be faster than the response of
the Mn spins [10]. The collective phase approaches an equilibrium state where all
the Mn spins are collectively aligned leading to the exciton energy being �xed.
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magnetic polaron formation

Figure 2-6: Schematic presentation of the formation of an exciton magnetic polaron.
The exciton spin is represented by the big arrow while the Mn spins are shown as small
arrows. Taken from Ref. [10].

Fig. 2-6 illustrates the formation of an exciton magnetic polaron. There is
a popular theoretical prediction [10, 34], that during the collective regime the
exciton can localize itself. By aligning the Mn spins the exciton creates a three-
dimensional potential well. The potential well compresses the wavefunction leading
to a higher density |Ψ(r)|2 of the carrier wavefunction Ψ(r). This in turn allows
a stronger alignment of the Mn spins, which produces a deeper potential well.
These two processes amplify each other, but are limited since the Mn spins can
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be completely aligned. This behaviour is know as autolocalization and leads to an
increase in the formation time of the polaron.

If an external magnetic �eld is applied, the Mn spins will be aligned. Since the
polaron generates its energy by aligning these spins, an external �eld leads to the
reduction of the polaron energy and to the suppression of its formation.

2.3.2 Introduction into the theory of the magnetic polaron

In this chapter the most fundamental points of the theory of exciton magnetic
polarons are introduced. A more comprehensive view can be found in di�erent
publications [33, 35, 36]. After an exciton is formed its spin is aligned parallel to
the magnetic moment generated by the �uctuations of the randomly aligned Mn
spins. If the exciton wavefunction is in contact with N Mn spins, their magnetic
moment produced is ∝

√
N [10]†. The polaron gains energy and the exciton energy

is reduced as its spin aligns along the �uctuation magnetic moment. During the
collective phase the carrier spin is aligned along the collective magnetic moment.
Since all Mn spins contribute, this magnetic moment is ∝ N [10]. Usually about
N = 100 Mn spins contribute to an exciton magnetic polaron [10]. This leads to
a collective magnetic moment which is about 10 times bigger than the �uctuation
magnetic moment. As a result, the collective phase is dominant, unless the exciton
decays before it aligns the Mn spin collectively. Temperature suppresses the col-
lective phase, if the thermal energy kBT exceeds the energy won by the alignment
of a Mn spin. In this case, the exciton magnetic polaron energy is de�ned by the
�uctuation phase.

In the most general case the magnetic polaron can be described by the following
Hamiltonian [10]:

HMP = [K + U(~r)] + [Hdd +Hmag] +Hex.

Here, K is the kinetic energy and U(~r) accounts for all static potentials including
the Coulomb potentials of impurities and the in�uence of the �uctuating quantum
well width. [Hdd + Hmag] is the Hamilton-operator of the spin of the localized
magnetic ions, where Hdd accounts for the interaction between the spins of the
magnetic ions and Hmag accounts for the interaction with an external magnetic
�eld. The interaction between carrier and localized ion is described by the Hamil-
tonian Hex.

A more speci�c Hamiltonian is used for autolocalized magnetic polarons [10]:

HMP = K(rloc,t) + U(~r) + Vex(Ψ
2(rloc, t), t) (2.41)

†The spins are randomly aligned. The expectation value for a measurement of their orientation
is 0, but the expected experimental error would be ∝

√
N .
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Here Vex(Ψ2(rloc, t), t) accounts for the interaction between localized spins and
the carrier. It depends on the carrier's wavefunction and it's localization radius,
which is usually assumed to be proportional to a local magnetization. This can be
expressed by an exchange �eld Bex(~r) [10, 34] . For an exciton forming a magnetic
polaron with Mn2+ ions, one neglects the electron contribution [10]. In this case,
the exchange �eld reads [10]

Bex =
1

3µBgMn

βJ |Ψ(~r)|2 . (2.42)

Here β is the hole exchange constant, Ψ(~r) the carrier's wavefunction and gMn ≈ 2

the g-factor of the Mn2+ ions. The resulting Schrödinger equation (2.41) is non-
linear as the Hamiltonian depends on the wavefunction.

This Schrödinger equation, even using the assumption that the magnetization
is linear to Bex, has only been solved exactly for the one dimensional case. To
�nd solutions for other systems, calculus of variations is employed [37, 38], where
a functional is minimized and it is assumed that the system will adopt a state
corresponding to the minimized functional. One can show that the minimized
functional is the free energy for constant temperature [39]. This makes it possible
to understand a free magnetic polaron as a thermodynamic system.

2.3.3 Temperature dependence for systems of di�erent di-

mensions

It is possible to study the formation of an exciton magnetic polaron using thermo-
dynamics. The functional to be minimized to �nd a stable state is the free energy
[39]

F = ∆K(rloc) + FM(rloc, T ) , (2.43)

where ∆K is the energy gained by autolocalization and FM is the free energy of
the magnetic ions in the carrier exchange �eld. Both depend on the localization
radius r0 [34], while the free energy also depends on the temperature T .

Without the presence of an external magnetic �eld it is written as

FM =
∑
i

−kBT ln(Zi),

where kB is the Boltzman constant and Zi the sum over the states of the magnetic
ion i, which reads [34]

Zi =
1

2s+ 1

s∑
m=−s

exp

(
mJβ|Ψ(ri)|2

kBT

)
.
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In this equation s and J are the spins of the magnetic ions and the carrier while β
is the hole exchange constant and |Ψ(ri)|2 is the probability density of the carrier
at the ion i. In a continuum approximation the free energy of the ions is

FM = −kBT
∫

d3r ln

[
1

2s+ 1
·

s∑
m=−s

exp

(
mJβ|Ψ(ri)|2

kBT

)]
. (2.44)

Assuming that the carrier is con�ned in a volume V , where its probability density
is constant, it is useful to introduce a variational parameter αd ∝ 1

V T
. This leads

to

FM(rloc, T ) = F̃ (α) ∝ αd (2.45)

for the ion free energy. In contrast, ∆K strongly depends on the dimension d.
This can be expressed as [34]

∆K =
~

2mr2
loc

k ∝ (αdT )2/d. (2.46)

The dependences of the magnetic ion's free energy and the energy won by au-
tolocalization on ad are shown in �gure 2-7(a). The dependence of the magnetic
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Figure 2-7: (a): Dependences of the kinetic energy gained due to autolocalization ∆K
and the free energy of the mangetic ions FMP on αd ∝ 1

rd
loc
T
. (b): Free energies for one-,

two- and three-dimensional systems for three di�frent temperatures T1 < T2 < T3 < T4

in dependence on αd. Taken from Ref. [10].

polaron free energy on αd is shown in �gure 2-7(b) for three di�erent tempera-
tures. Several conclusions arise from these dependences. In contrast to two- and
three-dimensional systems, the minima of the magnetic polaron free energy is at
αd > 0 for all considered temperatures. This makes magnetic polaron formation
energetically favourable. For two- or three-dimensional systems there is a critical
temperature Tc, where the most favorable state is αd = 0; rloc →∞. In this case,
there is no polaron formation. In three-dimensional systems the formation of a
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magnetic polaron is hindered by an initial barrier. According to equation (2.44),
the stability of the system depends on the exchange integrals, the e�ective mass
of the carrier and the temperature.

Figure 2-8: Dependence of the relative polaron energy E
E0

on the relative temperature
T
Tc

for one-dimensional systems (curve A), two-dimensional systems (curve B) and three-
dimensional systems (curve C). Taken from Ref.[34].

Typical temperature dependences are shown in �gure 2-8. The curve labelled
'B' refers to quantum wells. For a quantum well the polaron energy reaches 0 at
a critical temperature Tc. This is the behaviour shown in �gure 2-7(b), where the
free energy increase for αd and the carrier localization decreases with temperature.

Theoretical calculations for CdTe/Cd0.75Mn0.25Te quantum wells predict a crit-
ical temperature of Tc ≈ 1.6K [34, 10]. This is in contrast to empiric values, as
it is possible to observe exciton magnetic polaron formation for temperatures in
excess of 20K [11]. This di�erence can be explained by �uctuations of the quan-
tum well width compressing the exciton wavefunction and enabling the magnetic
polaron formation. The localization radius changes during the polaron formation.
A particle of this nature is called a quasi-free polaron.

2.3.4 Indirect prediction of polaron energy

There is a relationship between the polaron energy, the magnetic exchange �eld
of the polaron, the magnetic moment of the equilibrium state and the magnetic
moment during the �uctuation phase which can be used to predict the polaron
energy. In II-VI semiconductors, the presence of Mn2+ ions leads to the giant
Zeeman splitting for excitons. According to equation (2.40), it can be described
by a modi�ed Brillouin function, which depends on the exchange integrals of the
conduction- and valence-band, N0α and N0β. Since most of the splitting is due
to the heavy hole, one can neglect the contributions of the electron. The Zeeman
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splitting for the heavy hole reads

∆Ehh
z =

|β|
|α|+ |β|

∆Ez(B). (2.47)

Further simpli�cation is possible if the linear approximation

∆Ehh
z (B) =

dEhh
z

dB

∣∣∣∣
B=0

B = γB (2.48)

is used, with γ being the slope of the Zeeman splitting for small magnetic �elds. In
this case, the alignment of the magnetic moment of the polaron MMP(Bex) along
the exchange �eld yields the following energy [35]:

1

2
∆Ehh

z = Bex ·MMP(Bex)

⇒ 1

2

d∆Ehh
z

dMMP(Bex)
= Bex =

1

2

d∆Ehh
z

dB

dB

dMMP(Bex)
(2.49)

Using the equation (2.48) the energy of the magnetic polaron is EMP = 1
2
d∆Ehh

z

dB
Bex,

leading to

EMP =

(
1

2

d∆Ehh
z

dB

)2

·
(

dB

dMMP(Bex)

)
. (2.50)

One can approximate the magnetic moment of the collective phase MMP as [35]

MMP(B) =
< M2

f >

kBT
B. (2.51)

The magnetic moment of the �uctuation phaseMf determines the gradient dρ
dB

∣∣
B=0T

of the magnetic �eld dependence of the photoluminescence polarization ρ(B) at
B = 0T [35]. From this the magnetic polaron energy can be obtained using the
following calculations:

ρ(B) ≈
√

2 < M2
f >√

πkbT
B (2.52)

dρ

dB

∣∣∣∣
B=0T

=

√
2 < M2

f >√
πkbT

⇒ (2.51)⇒ dMMP(Bex)

dB
=

πkBT

2

[
dρ

dB

∣∣∣∣
B=0T

]2

(2.53)

⇒ (2.50)⇒ EMP =
1

2πkBT

( γ
Θ

)2

, (2.54)

where Θ =
dρ

dB

∣∣∣∣
B=0T

.
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The possibility to predict the polaron energy from continuous wave measurements
is useful if the exciton decays before the polaron is fully formed.

2.3.5 Quantum wells

Molecular beam epitaxy has enabled the growth of layers with a thickness of single
atoms of di�erent composition onto another. This opens the possibility to produce
di�erent structures which demonstrate quantum mechanical phenomena. One of
these structures is a quantum well.

This structure con�nes the movement of excitons in one dimension by a one
dimensional potential well. The quantum well is a layer with a thickness less than
the exciton Bohr radius surrounded by a di�erent material with a bigger band gap
than the quantum well. The surrounding material is called barrier material. A
schematic illustration of a structure is shown in �gure 2-9.
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Figure 2-9: Schematic illustration of a quantum well and the related band gaps.

2.3.5.1 Idealized potential well

It is possible to determine the in�uence of a quantum well (QW) on an electron
by a simple quantum mechanical model. The model assumes that the electron
can propagate freely in ~x- and ~y-direction, but an in�nitely deep potential well
of thickness L centered around z = 0 con�nes the movement in ~z-direction. This
system can be described by the Hamiltonian

H =
p2

2m∗
+ V (z)

V (z) = −∞ for z ≥ L

2

V (z) = V0 for z <
L

2
.
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Most likely the e�ective mass of the electron m∗A in the quantum well material will
not be the same as in the material of the barrier m∗B. To take this into account
one has to generalize the continuity conditions‡ leading to

1

m∗A
· dψA
dz

=
1

m∗B
· dψB
dz

, (2.55)

where ψA and ψB are the wavefunctions inside the quantum well and the barrier.
Because the potential well is in�nitely deep the electron wavefunction will not
penetrate into the barrier material. Under this condition equation (2.55) leads to
the following electron energies:

En =
~2

2m∗A

(nπ
L

)2

︸ ︷︷ ︸
Con�nement energy

+
~2

2m∗A

(
k2
x + k2

y

)
. (2.56)

There are several possible states n, but only the ground state n = 1 will be studied
in the scope of this work. In this state the con�nement increases the energy of the
electron by ~2

2m∗
A

(
nπ
L

)2.

2.3.5.2 Real semiconductor quantum wells

In real quantum wells the potential well is of �nite depth. The energy di�erence
between barrier and QW is known as band o�set. As a result, the wavefunction
penetrates into the barrier material. With decreasing thickness L and band o�set
the part of the wavefunction inside the barrier increases.

Quantum wells can also con�ne holes, vacancies in the the valence-band. The
potential con�ning their wavefunction is known as the valence-band o�set. The
energy of a band is usually given for an electron. Since a hole has a positive charge,
the valence-band of the material of the quantum well needs to be of higher energy
than the barrier to con�ne a hole. Due to the sign of the valence-band o�set, there
are two types of quantum wells:

• Type I: Both, the electron and the hole are con�ned inside the quantum well.

• Type II: At least one particle is con�ned, but the material that is energet-
ically favorable for one particle is not energetically favorable for the other
one.

Another property of real quantum wells are imperfections created during the
growth of the quantum well. The thickness of a quantum well can vary. According

‡Derived from the time invariant Schroedinger-Equation
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to equation (2.56) this will lead to �uctuations of the energy of the con�ned parti-
cles. Also the composition of the quantum well can vary leading to �uctuations in
the conduction- and valence- band o�sets. Further, a quantum well may contain
impurities, which can attract either electrons or holes. Because of imperfections,
there are energetically favourable places inside the quantum well. These attract
carriers, either electrons or holes, which , after emitting their excess energies as
phonons, will be localized in these places. This process is known as non-magnetic
localization.



Chapter 3

Measuring sub-nanosecond

dynamics

Most of the measurements presented in this work were performed with either a
time-of-�ight setup or time-resolved photoluminescence setup. Both setups al-
low for studying sub-nanosecond dynamics. The main purpose of a time-of-�ight
setup is to determine the time necessary for light to propagate through a sample.
Usually a time-resolved photoluminescence setup is used to determine the lifetime
of an excited state emitting photoluminescence (PL). Both setups were modi�ed
to expand their capabilities, e.g. by applying strong external magnetic �elds to
the sample. The principle con�guration of the time-of-�ight setup is presented in
section 3.1, while the time-resolved PL setup is presented in section 3.2.

3.1 Time-of-�ight setup

To measure the delay introduced by a sample one creates a laser pulse, sends
it through a sample and compares the time of arrival at a detector behind the
sample to the time of arrival for the identical path but without the sample. The
setup required to conduct this measurement is known as a time-of-�ight setup
and is schematically shown in Fig. 3-1. It can be divided into three parts. The
excitation creating the laser pulse, the sample and the devices necessary to keep
it in a certain state and the detection analysing the transmitted pulse. In Fig.
3-1 the parts belonging to the excitation are coloured green and the path of the
pulse is indicated by a red line. The laser pulse is created in a mode-locked
Ti:Sapphire laser. This laser produces a pulse every 13.2 ns which corresponds to
a repetition rate of 75.75MHz. The power of the laser pulses is then reduced, and
their polarization is set by passing through a Glan-Thompson prism and then a
retarder plate. The retarder plate is either a λ/2, if the exciting light should be
linearly polarized, or a λ/4, which is used to create circularly polarized light.

30
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Figure 3-1: Schematic presentation of a time-of-�ight setup. The polarization of the
laser pulse created by the Ti:Sapphire laser is set by the Glan-Thompson (Glan) prism
and a retarder plate (Retarder). The laser beam is then focused on the sample (S),
which is kept inside a split coil bath cryostat. The light transmitted through the sample
is collected by a lens, a retarder plate and a Glan-Thompson prism are used to select a
single polarization. The temporal and spectral composition of this light is analysed by
the combination of a spectrometer and a streak camera.

The light is then focused on the sample using a lens. The sample is kept
inside a bath cryostat, where it is submerged in super�uid helium, which is kept
at a temperature of T = 1.8K. Because super�uid helium is an e�cient coolant
[40] and the excitation power is low (100µW-2mW), the sample has the same
temperature as the helium. The cryostat can also produce a magnetic �eld of
up to B = 10T in the direction of the laser propagation. This magnetic �eld is
created by superconductive split coils.

The light leaving the sample on the side opposing the excitation is collected
for detection into a beam by a second lens. A speci�c polarization of the light
is selected by passing the beam through a retarder plate and a Glan-Thompson
prism. It is then focused onto the vertical entrance slit of a 500mm spectrometer.
The di�erent spectral components are spatially separated in the horizontal plane
by a grating with 300grooves

mm
. As a next step, the resulting light is focused on the

horizontal entrance slit of a streak camera. The streak camera is synchronized to
the laser using a fast optical diode. For this purpose, a part of the laser beam is
split from the main beam by a beam splitter (BS) and is focused on the diode.
The di�erent temporal components of the beam of light are spatially separated
in the vertical direction by the streak camera. At the end of the streak camera
the spatial intensity distribution is measured by a two-dimensional charge-coupled
device(CCD). The vertical position of a pixel in the array corresponds to the time
of arrival of the detected light, while the horizontal position determines the energy.
The temporal resolution of the setup is 20ps, while the spectral resolution is 1meV.
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3.2 Time-resolved photoluminescence

A time-resolved PL setup shares several components with a time-of-�ight setup.
It can also be divided into three parts and its schematic representation is shown in
Fig. 3-2. The exciting laser pulse is created by a mode-locked Ti:Sapphire laser.
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Figure 3-2: The sample (S) is kept inside a split coil bath cryostat, and is excited by
a laser pulse created by a Ti:Sapphire laser and an optical parametric oscillator (OPO)
in combination with a second harmonic generation crystal (SHG). The emitted PL is
collected and the spectral and temporal composition analyzed by a combination of a
spectrometer and a streak camera.

Since the energy of the light is too low to be absorbed, an optical parametric
oscillator in combination with a second harmonic generating crystal is used to
increase the photon energy of the light. Before being focused onto the sample,
the power of the resulting laser beam is adjusted resulting in a power density of
P ≤ 1Wcm−2.

The sample is kept inside a bath cryostat and is submerged in super�uid helium
with a temperature of T = 1.8K − 2K. The cryostat is able to produce a strong
magnetic �eld of up to B = 7T using superconductive split coils. By rotating
the cryostat one can choose, if the magnetic �eld is applied in Faraday or Voigt
geometry∗.

The emitted PL is collected by a lens and then focused onto a spectrometer
where its spectral components are resolved by a grating with 300grooves

mm
. The

temporal resolution is achieved using a streak camera. The resolution of this
setup is 33ps and 2meV. In time-integrated measurements the spectrally resolved
light is focused onto a liquid nitrogen cooled CCD camera.

∗In Faraday geometry the magnetic �eld is applied parallel to the direction of propagation of
the collected PL, while it is applied orthogonal to the direction of propagation of the collected
PL in Voigt geometry.



Chapter 4

Polariton propagation in (Cd,Zn)Te

The experimental work on exciton polaritons is presented in three sections. First
the basic properties of the exciton polariton are determined in section 4.1. Po-
laritons are propagating states. The dynamics and the type of propagation in the
absence of an external magnetic �eld are studied in section 4.2. The application
of an external magnetic �eld results in the appearance of several polarization ef-
fects. They are identi�ed and characterized in section 4.3. Conclusions from the
experimental work are drawn in section 4.4.

4.1 Optical properties of exciton polariton

In this section the exciton polariton (EP) of the fundamental exciton will be char-
acterized. The photoluminescence (PL) spectrum of the EP is studied in sub-
section 4.1.1 together with the recombination dynamics of the EP. In the next
two subsection the properties of exciton resonance relevant for EP propagation
are determined. In subsection 4.1.2 re�ection spectra are used to determine the
exciton resonance energy ~ω0 and the inhomogeneous broadening Γinh. The homo-
geneous broadening Γ is deduced from transmission measurements in subsection
4.1.3. Since the longitudinal-transverse splitting ωLT, the background dielectric
constant ε0 and the e�ective mass M are known from literature, the exciton is
then fully characterized. In subsection 4.1.4 the in�uence of an external magnetic
�eld on the resonance energy and the PL spectra is studied.

The studied samples were part of a bulk Cd0.88Zn0.12Te crystal, that was grown
by the Bridgman technique at a high temperature of T = 1200 ◦C [41]. The crystal
was not intentionally doped, resulting in a slight p-doping with a concentration
on the order of 1015cm−3 due to limitations in the growth process. The crystal
was cut along the (100) plane and divided into several samples. After chemically-
mechanically polishing they had a good surface quality as evident by the low
etched pits density of 104 cm−2 and a rocking curve of less than 20 arcseconds.

33
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The samples are between 208µm and 745µm thick.

4.1.1 Photoluminescence

Fig. 4-1(a) shows the PLspectrum taken from the Cd0.88Zn0.12Te crystal at T =

1.8K using high-energetic excitation(2.33 eV). The spectrum consists of 4 main
peaks. One narrow peak at 1.6643 eV and a broader one at 1.657 eV and their
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Figure 4-1: (a) PLspectrum excited by non-resonant continuous-wave excitation with
a photon energy of 2.33 eV, the sample was kept at T = 1.8K. No magnetic �eld was
applied. (b) Typical EP dispersion in bulk crystal is shown as black lines, red and blue
lines represent the dispersions of light and the exciton, respectively.

optical phonon replicas. The narrow one is associated with the bottom of the
upper polariton(UP) branch, while the broader one is due to emission from the
lower polariton(LP) branch.

When polaritons relax in energy by emitting phonons they accumulate at the
bottom of the UP branch. A typical EP dispersion is shown in Fig. 4-1(b). It
is shallow at the UP bottom resulting in a narrow linewidth of the emitted PL.
From the bottom of the UP branch a polariton can relax into the LP branch.
Also, it can relax further within the LP branch. The gradient of the LP dispersion
increases with decreasing polariton energy. As the group velocity is given by the
gradient, a reduction of polariton energy will result in an increase of propagation
speed. When the polariton reaches the surface it can be converted into a photon
and leave the sample. Since this energy is a�ected by the continuous relaxation,
the PL line is spectrally wide.

Polaritons of both branches can emit longitudinal optical (LO) phonons [42].
Accordingly their energies are reduced by that of an LO phonon ~ωLO = 22meV.
Due to the strong slope of the LP dispersion at lower energies the polaritons
propagation to the surface is fast after emission of an LO phonon. The two weak
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peaks around 1.64 eV are replica due to this relaxation mechanism.

To con�rm this relaxation path time-resolved PL was used. Fig. 4-2 shows PL
measured under pulsed excitation with a photon energy of ~ωexc = 1.673 eV.
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Figure 4-2: PLexcited by a laser pulse of 1 ps duration at 8K without a magnetic
�eld. (a): Time integrated spectra measured in re�ection geometry(black line) and
transmission geometry(red line). (b): Intensity transients for UP(black boxes), UP-
LO(green triangles) and LP(red dots).The lines are exponential curves �tted to the data.

Both time-integrated PL spectra shown in Fig. 4-2(a) are useful for under-
standing the origin of the PL . The spectrum represented by the black line in Fig.
4-2(a) was acquired in re�ection geometry, where the excitation was focused on
the spot from which the PL was collected (detection spot). The red line represents
a spectrum acquired in transmission geometry, where the PL was collected from
the back side of the crystal. The �rst spectrum is similar to the spectrum taken
under high-energy excitation shown in Fig. 4-1, but the stray light from the laser
and the UP peak are much stronger. The second spectrum di�ers from the �rst.
Here the LO phonon replicas are more pronounced, while the LP is shifted to lower
energies, the UP and Laser peak are missing. This di�erence is due to the spec-



36 Polariton propagation in (Cd,Zn)Te

tral dependence of the transparency. As demonstrated in chapter 4.1.3, when the
photon energy approaches the exciton resonance the transparency decreases until
there is no propagation through the crystal. From this one can deduce that the
UP peak is due to emission from polariton at the surface. The polaritons inside
the crystal do not contribute to this peak, as they get absorbed before they can
propagate to the surface where they could be emitted as a photon. In contrast the
UP-LO peak has signi�cant contributions from polaritons inside the crystal.

The PL intensity dynamics for the �rst two nanoseconds after excitation of the
LP(red dots), UP-LO(green triangles) and UP lines(black squares) are shown in
Fig. 4-2(b). The phonon replica of the UP decays with a time constant of 1540ps
while the UP PL decays which a time constant of 877ps. This di�erence is a
result of the UP peak being PL from polaritons at the surface of the crystal. At
the surface the polariton population reduces faster, because a polariton can escape
the sample by exciting a photon outside the sample.

Assuming, that the creation of an LP is the main relaxation path for UP inside
the crystal, the populations nUP and nLP can be described by rate equations

dnUP(t)

dt
= −nUP

τf

dnLP(t)

dt
=
nUP
τf
− nLP

τd
,

where is the τf is the time constant for the relaxation for from UP to LP and τd is
the time constant for the decay leading to PL . If the starting population is ns in
the UP and 0 in the LP the UP and LP population

nUP = nse
− t
τf nLP =

(
e
− t
τd − e−

t
τf

)
nsτd

τd − τf
(4.1)

are related, since τf is the lifetime of the UP branch and the risetime of the LP.

The LP luminescence has a rise time determined by �tting the data in 4-2(b)
and is comparable to the decay time of the UP. This con�rms that the UP feeds
the LP branch. Furthermore, the LP branch has a lifetime of about 3 ns.

4.1.2 Re�ection

At the interface between two media with di�erent refractive indices n1 and n2 light
can be re�ected. The re�ection is usually calculated using the Fresnel equations
[43]. The ratio between the re�ected intensity IR and incident intensity I0 is
named the re�ection coe�cient R. Assuming that the light arrives at the surface
at a normal incidence R is given by [43]:

R =
IR
I0

R =

∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣2 (4.2)
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Since the refractive index for light with an energy close to a exciton resonance is
in�uenced by the exciton according to equations (2.5) and (2.8), re�ection spectra
can be used to characterize excitons.

A re�ection spectrum measured at a temperature of T = 1.8K is shown in Fig.
4-3 as black circles. A re�ection spectrum calculated with the Fresnel equations
(4.2) is also shown in this �gure as the green line. In the experiment the sample
is surrounded by liquid helium. When calculating the re�ection spectra it was
assumed that the helium refractive index is n1 = 1. The second medium is the
sample, its refractive index n2 =

√
ε is calculated from the dielectric function of an

inhomogeneously broadened (Γinh = 1meV) and damped (Γ = 8 µeV) exciton with
a resonance energy of ~ω0 = 1.6644 eV and with spatial dispersion (M = 1.5m0).
This dielectric function was calculated numerically by the algorithm presented in
appendix 8.1.
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Figure 4-3: Black dots: Measured re�ection spectrum at T = 1.8K without an ex-
ternal magnetic �eld. Lines: Calculated re�ection spectra for an inhomogeneously
broadened exciton with spatial dispersion (~ω0 = 1.6644 eV,Γinh = 1meV, Γ = 8 µeV
and M = 1.5m0) without(green) and with dead layers of 6.5 nm(blue), 13 nm(red) and
19.5 nm(black) thickness.

The calculated and measured re�ection spectra do not coincide. The measure-
ment shows a plateau at low energies followed by a dip at 1.6655 eV and another
plateau at higher energies. The calculated spectrum rises towards a peak for low
energies followed by a dip at higher energies.

This di�erence can be attributed to the existence of a dead layer. This is a
layer at the interface, where excitons are suppressed by strong electric �elds. [44].
As there is no exciton resonance, the dielectric function for this layer di�ers from
the rest of the crystal [44, 2] and is given by the background dielectric constant ε0.
This layer has a thickness on the order of the exciton Bohr radius ax (∼ 10 nm).
As this is below the wavelength of light, there is always interference between the
light re�ected at the interface between atmosphere and the dead layer and at
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the interface between the dead layer and the normal crystal. There is further
interference inside the dead layer.

A convenient way to calculate the re�ection of such a structure is the transfer
matrix method [45, 46]. Assuming that the refractive index outside the crystal is
equal to 1, the re�ection coe�cient R of the dead layer with the thickness ld and
refractive index nd =

√
ε0 =

√
11.2 [47] on top of a bulk crystal with a refractive

index of nb is

R =

∣∣∣∣∣nd
(
1 + eξ +

(
−1 + eξ

)
nd
)
− nb

(
−1 + eξ +

(
1 + eξ

)
nd
)

nd (1 + eξ − (−1 + eξ)nd) + nb (1− eξ + (1 + eξ)nd)

∣∣∣∣∣
2

(4.3)

ξ =
2iωldnd

c
. (4.4)

In Fig. 4-3 re�ection spectra calculated for dead layers of 6.5 nm (blue), 13nm
(red) and 19.5 nm (black) thickness are shown. With increasing thickness the
low-energy peak disappears and the dip moves to lower energies. The spectrum
calculated for ld = 13 nm is in good agreement with our measurement. This
thickness is about twice the exciton Bohr radius, which is between ax = 6.0 nm[19]
and ax = 7.5 nm[20].∗ This is the expected ratio between bohr radius and dead
layer thickness for the lowest exciton level[44].
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Figure 4-4: Dots: Measured re�ection spectrum at 1.8K and B = 0T. Red Line:
Calculated re�ection spectrum for an inhomogeneously broadened exciton with Γ = 8 µeV
and Γinh = 1meV. Cyan Line: Re�ection spectrum of an exciton without inhomogeneous
broadening but with an homogeneous broadening of Γ = 1.4meV and a resonance energy
of ~ω0 = 1.6647 eV behind a dead layer of 12 nm thickness.

Re�ection spectra are not suitable to determine all parameters of the exciton.

∗ According to equation (2.3), for an exciton binding energy of Ex10.5meV[48], a conduction-
band mass of me = 0.094m0, a heavy hole mass of mhh = 0.72m0 and a light hole mass of
mlh = 0.13m0 [49], the bohr radii are ax = 6.6nm and ax = 8.2 nm for heavy and light hole
excitons, respectively.
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One limitation is the type of broadening. In bulk crystal an exciton will be homo-
geneously broadend, since the excitonic resonance is a damped oscillator. Further,
crystal imperfection can lead to spacial �uctuation of the exciton resonance energy.
In this case, the excitonic resonance is inhomogeneously broadened [50].†

Re�ection spectra are not suitable to distinguish between these two types of
broadening as demonstrated in Fig. 4-4. This �gure contains the measured spec-
trum and two calculated spectra. The red line represents a spectrum is calculated
with the same excitonic parameters, as they have been used for the best �tting re-
�ection spectrum in Fig. 4-3. The second one, shown as a cyan line, uses the same
parameters, but does not assume an inhomogeneously broadend exciton, but only
a homogeneous broadening with Γ = 1.4meV. The exciton energy ~ω0 = 1.6647

di�ers as well as the thickness of the dead layer ld = 12 nm. Both re�ection spectra
are in good agreement with the experimental data. But the one calculated for only
homogeneous broadening is in better agreement than the one which also assumes
inhomogeneous broadening. But as demonstrated in the next chapter one needs
additional measurements to decide between them.

4.1.3 Transmission

Re�ection measurements allow to determine the resonance energy ~ω0 of the ex-
citon, but it is di�cult to judge whether the broadening is homogeneous or in-
homogeneous. For this aspect one needs a measurement that is sensitive to the
imaginary part of the dielectric function, which is strongly in�uenced by the broad-
ening. This is true for transmission spectra. If one neglects the re�ections at the
surfaces, the intensity It of light leaving the sample after propagation through the
crystal of thickness lb for a beam of initial intensity I0 is given by

It = I0e
−2=(

√
εlbω/c), (4.5)

where ε is the dielectric constant and ~ω the photon energy. The measured trans-
mission spectrum without magnetic �eld at a temperature of T = 1.8K is shown
in Fig. 4-5 by black dots. The transmission drops from ≈ 0.7 at 1.65 eV to below
0.01 above 1.661 eV. In Fig. 4-5 two transmission spectra are also shown which
have been calculated for the same exciton parameters as those used in Fig. 4-4,
but neglecting spatial dispersion. As the transmission is already ≈ 0 at a detuning
of (~ω0 − ~ω) = 3meV, one can use the simpli�ed dielectric function presented in
equation (2.11) for the homogeneously broadened exciton and its convolution with
a Gaussian distribution for the inhomogeneously broadened exciton.

The calculated spectrum for an inhomogeneously broadened exciton with Γinh =

1meV and Γ = 8 µeV is shown as a red curve and is in good agreement with the

†For a more detailed theoretical description see subsection 2.2.2.
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Figure 4-5: Black Dots: Transmission spectrum measured at 1.8K and B = 0T.
Red Line: Calculated transmission spectrum spectrum for an inhomogeneous broadened
exciton with Γ = 8 µeV, Γinh = 1meV. Green Line: Transmission spectrum of an exciton
without inhomogeneous broadening, but with a homogeneous broadening of Γ = 1.4meV.
Both lines were calculated using a resonance energy of ~ω0 = 1.6647 eV.

measurement. For the exciton with a homogeneous broadening of Γ = 1.4meV, the
calculated transmission is so small, that it can be neglected. This clearly indicates
that the large broadening is not homogeneous. Transmission close to this exciton
resonance is only possible, if the homogeneous broadening due to dampening is
small. The value of 8 µeV is comparable to values reported for ZnO and GaN bulk
crystals [51, 52, 53].

4.1.4 Diamagnetic shift

A magnetic �eld in�uences the PL and the re�ection spectra. In Fig. 4-6 both
spectra for B = 0T and B = 7T are presented. The PL intensity of the UP peak
is increased by a factor of 5, when a magnetic �eld of B = 7T is applied compared
to B = 0T. Furthermore, the energy of the UP peak changes. The re�ection
spectra also show movement of the dip.

The energies of the UP PL peak for magnetic �elds ranging from B = 0T to
7T are shown as black squares in Fig. 4-7 together with the resonance energies
of the re�ection spectra, which are represented by red dots. Both the UP PL
and the re�ection spectra resonance energy increase with the magnetic �eld. Two
parabolas are �tted to the data in Fig. 4-7. The red parabolic line represents a
diamagetic shift of 28µeVT−2 and is in good agreement with the exciton resonance
energy determined using re�ection spectra. The UP PL peak is in good agreement
with the black curve, which represents a diagmagnetic shift of 15.8µeVT−2.
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Figure 4-6: Re�ection spectra, shown in the upper part, and PL spectra, shown at the
bottom measured at T = 1.8K. Data for B = 0T is represented by black lines, while
data for B = 7T is shown as red lines.
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Figure 4-7: Magnetic �eld dependence of the resonance energy taken from the re�ection
spectra (red dots) and the UP PL peak energy (black squares). The lines are parabolas
representing a diamagnetic shifts of 28 µeVT−2(red line) and 15.8 µeVT−2(black lines).
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4.2 Exciton polariton propagation
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Figure 4-8: 2D contour plots with energy and time of arrival as axis of the intensity of
di�erent optical pulses transmitted through the sample. (a) Superposition of 4 pulses of
1 ps duration with di�erent photon energy. (b) 1 pulse of 150 fs duration. Red vertical
line: Exciton resonance energy Eexec = 1.6644 eV.

To study the propagation of polaritons close to the fundamental exciton reso-
nance the setup presented in chapter 3.1 was used. The crystal had a thickness of
l = 745 µm maintained at a temperature of T = 8 K. The mode-locked Ti:Sapphire
laser used in the experiment could produce two types of laser pulses:

(i) Pulses with a duration of τd ≈ 150 fs. These pulses are spectrally broad.
Their full width at half maximum is 12meV. When using them one can
obtain the polariton dispersion in this energy range within a single measure-
ment.

(ii) Pulses with a duration τd of about 1 ps. Because they are spectrally narrow
(≈ 1meV) it takes several measurements to obtain the polariton dispersion.
The advantage of this method is that one may measure the dispersion at
photon energies of stronger absorption. This is not possible with spectrally
wide pulses due to the limited dynamical range of the streak camera.
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Fig. 4-8(a) shows the delay, which is introduced by propagation through the
sample, for four laser pulses of τd = 1 ps duration with di�erent energy. The pulses
are shown as black shadowed areas, and with increasing energy the delay increases.
From the view of an experimentalist it is worth mentioning that Fig. 4-8(a) is an
overlay of four measurements using 1 ps long pulses with di�erent energies. For
each measurement the power density P ≤ 10 mW/cm2 was kept low and is in the
linear regime.

Fig. 4-8(b) is a single measurement using 150 fs long pulses of low power density
(P ≤ 10 mW/cm2). Without the sample all energy components would arrive
with the same delay. After passing through the sample the pulse is distorted, as
demonstrated by the black curve. Each spectral component arrives at a di�erent
time. The higher the photon energy the stronger the delay of the pulse. It is also
noteworthy that the pulse is still spectral and temporal continuous.
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Figure 4-9: Energy dependence of the delay time measured with several pulses of 1 ps
(black dots) and one 150 fs duration (red line). The calculated delay or group index is
shown as a black curve.

The energy dependence of the delay time determined from these two images is
shown in �gure 4-9. The black dots represent measurements with ps-pulses, while
the red line under the black dots is extracted from a measurement using 150 fs
pulses. The two measurements are in very good agreement. From that one can
conclude that there is no signi�cant e�ect of the high energy tail of the 150 fs pulse
on the speed of propagation.

The group index c/vg = ng, shown as a black line, was calculated neglecting
spacial dispersion but including inhomogeneous broadening. For this calculation
equation (2.6) from section 2.2.4 was used in combination with the dielectric func-
tion of the inhomogeneously broadened simpli�ed model a according to equation
2.12 and the exciton parameters gained in section 4.1.2. Assuming ballistic propa-
gation the delay τ is simply τ = ngl/c. The calculation is in good agreement with
the experimental data.
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4.2.1 Ballistic propagation

The calculated data shown in the previous section are based on the assumption
that the propagation is ballistic. As there are two principle types of propagation,
ballistic and di�usive, one needs to verify this assumption. Ballistic propagation is
directional and needs changes in the medium to alter the direction of propagation.
Di�usive propagation does not have a direction of propagation.

(  )

( 
 )

T

Figure 4-10: Contour plot of intensity of light leaving the sample versus delay time and
energy. The sample is rotated slightly out of normal incidence and was hit Red vertical
line: Exciton resonance energy Eexec = 1.6638 eV.

Fig. 4-10 demonstrates the results of a time of �ight measurement taken under
the same conditions as for Fig. 4-8(b), but the sample is slightly rotated. While
the black shadowed areas in Fig. 4-8(b), which indicate the arrival of the spectral
components of the laser pulse with 150 fs duration, can be described by a single
continuous curve, the shadowed areas in Fig. 4-10 form three curves. From this
one can conclude that, due to the rotation of the sample, a spectral component
does not arrive at a single time, but at three di�erent times.

The smallest delay is the same as in �gure 4-8, but the other two delays are
three or �ve times its value. These curves are due to re�ection at the surfaces of
the sample. They leave the sample at a slight angle as the front and the back of
the sample are not perfectly parallel. After re�ection the light will not propagate
back on the same path as the incident pulse, but under an angle.

Re�ection is not possible for di�usion. Di�usion can be described with Fick's
laws [54]. The �rst Fick's law J = −D∇φ states that the �ux J is proportional
to the gradient ∇φ of the polariton concentration φ. Without external in�uence
the gradient cannot reverse it's sign with time and the direction of �ux cannot
change. Since the only mayor external in�uence on the polariton concentration
is the exciting laser pulse creating an initial population at the surface, di�usive
propagation would not reverse.
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As we can only explain re�ections by ballistic propagation, their presence con-
�rms that the polariton propagation is ballistic. During ballistic propagation scat-
tering can still in�uence the propagation of light by changing the wave vector. This
would result in a wider aperture for the cone of light leaving the sample, then the
cone of light entering it. This behaviour would be visible in the angle distribution
of the transmitted beam intensity. The distribution is shown for three for di�erent
photon energies in �gure 4-11.
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Figure 4-11: Transmitted beam intensity as a function of the detection angle α for
four photon energies ~ω. α is taken relatively to the normal of the surface. Black dots
represent the measured data, while the solid red lines are �ts with a Gaussian distribution.

The dependences can be described by a Gaussian distribution with a full width
at half maximum αFWHM = 0.33◦, and is independent of the excitation energy. The
width is de�ned by the aperture angle of the laser beam focused onto the sample
and no widening of the beam can be observed. From this one can conclude, that the
wave vector is conserved and the wave vector conserved. Further one can assume
that the dominant source of scattering in these highly pure samples is mainly
inelastic scattering on acoustical and optical phonons. Under these conditions the
propagation should not in�uence the coherence of the transmitted light.
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4.3 Exciton polariton propagation in an external

magnetic �eld

4.3.1 In�uence on the time of �ight

Application of an external magnetic �eld leads to a diamagnetic shift of the exciton
resonance, as discussed in section 4.1.4. This a�ects the spectral dependence of
the delay of light after propagation through the sample. In Fig. 4-12 the time of
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Figure 4-12: Measured spectral dependence of the time of arrival after propagation
through a 655µm thick sample kept at T = 1.8K. The black circles represent results
measured at B = 0T, while data measured at B = 7T are shown as red circles. The black
curve was calculated using equations (2.12) and (2.6) for an exciton resonance ~ω0 =
1.6644 eV and the red curve was calculated for ~ω0 = 1.6658 eV. The inhomogeneous
broadening was Γinh = 1meV and the homogeneous was Γ = 8 µeV.

arrival of the exciton polaritons measured for B = 0T and B = 7T in a 655 µm
thick crystal kept at a temperature of T = 1.8K is shown. The two measurements
are almost identical except that for the higher magnetic �eld is shifted to higher
energies. In Fig. 4-12 theoretical curves for the time of arrival calculated for
~ω0 = 1.6644 eV and ~ω0 = 1.6658 eV. The resonance energies extracted from
re�ection spectra demonstrated in section 4.1.4, are also shown.

The measured data and the two curves are in good agreement. From this one
can derive that the spectral dependence of the delay follows the exciton resonance.

4.3.2 Change of polarization

Fig. 4-13 summarizes the temporal and spectral variations of the transmitted
optical pulse intensity in the axis frame x′, y′ and its linear polarization S2. They
were acquired using the polarimetric time-of-�ight technique described in chapter
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Figure 4-13: (a) and (b) Contour plots of transmitted pulse intensities measured as
function of photon energy ~ω and time delay t at B = 5 T. Panels (a) and (b) correspond
to the data measured in linear x′ and y′ polarizations, respectively. (c) gives temporal
dependences of the intensities Ix′ (solid line) and Iy′ (dashed line) and (d) shows the
temporal evolutions of linear polarization degree S2 measured at B = 5 T (open circles)
and B = 0T (solid squares). The spectral dependences of Ix′ and Iy′ are displayed in (e)
and of S2 in (f). The incoming pulse is linearly polarized along x′ (S2 = 1).

3.1. To determine the polarization of light one needs 6 intensity measurements
in total and two per polarization, see equations 2.22. The results of two such
measurements, where the transmitted intensity was taken for linear polarizations
along the x′ and y′ axes at B = 5 T, are shown by the contour plots in Figs. 4-
13(a) and 4-13(b). The pulse incident on the sample was linearly polarized along
x′(S2 = 1). The time t = 0 corresponds to the arrival time of the optical pulse
without the sample in the optical path.

In contrast to Fig. 4-8(b), which shows a distorted but continuous pulse, in
Fig. 4-13(a) and (b) certain spectral and temporal components are very weak or
missing.

The intensity of the two measurements can be analyzed depending on delay
time (Fig. 4-8(c)) or energy (Fig. 4-8(e)). This is possible since there is a strictly
increasing relation between the photon energy ~ω and the delay τ , as demonstrated
in chapter 4.2. Accordingly, the polarization can be calculated on basis of equation
(2.22).

The application of a magnetic �eld leads to pronounced oscillations in the
temporal and spectral dependences of the linear polarization S2 as shown in Figs. 4-
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13(d) and 4-13(f). This is in contrast to data measured without magnetic �eld,
which are also shown in Fig. 4-13. In zero magnetic �eld the polarization state
of the incoming pulse is fully conserved. One can see that S2 is almost constant
against the time delay and in the spectral domain. First of all, this means that
the system is isotropic at B = 0. Secondly, nearly no depolarization takes place,
so that the exciton polariton propagation is coherent.

The frequency of the oscillations induced by a magnetic �eld of B = 5 T
increases with an increase of ~ω in the spectral domain, see Fig. 4-13(f). In the
time domain, shown in Fig. 4-13(d), it is almost constant. This is as expected for
a magnetic-�eld-induced anisotropy due to splitting of exciton Zeeman sublevels.
As equation (2.39) states, that the phase di�erence between the two eigenwaves
φ ≈ Ωeffτ increases linearly with time of arrival. The resulting polarization degree
oscillates with a frequency of Ωeff .

This allows the determination of the e�ective Zeeman splitting, even when it
is hidden by inhomogeneous broadening in the spectral domain. In Fig. 4-13(d)
more than two full oscillations are visible for a magnetic �eld strength B = 5T.
Such strong retardation results from the large delays of light in the sample. This
result is quite interesting from an application point of view, because it allows to
achieve optical modulation at high frequencies of about 10 GHz.

4.3.3 Identi�cation of polarization e�ects

In the previous chapter it was demonstrated that there are strong polarization
e�ects. The relationship to the delay was discussed, but not which e�ects are
present. To be able to describe the e�ects and their spectral and temporal behavior
one must identify them �rst.

4.3.3.1 Faraday rotation

If one applies a magnetic �eld to a transparent sample in Faraday geometry, the
strongest expected magneto-optical e�ect on the polarization of the light will be
Faraday rotation. One can also assume that a resonance, that exhibits a Zee-
man splitting, causes Faraday rotation. In (Cd,Zn)Te the refractive index n for
the transparent region can be calculated with just two e�ective resonances [6].
For most of the transparent region a single e�ective oscillator (SEO) model, as
proposed by S. H. Wemple and M. DiDomenico[5], is su�cient to calculate the
refractive index [6]. In this model resonances of the X- and L- point of the band
structure are represented by a single, very strong e�ective resonance. To calcu-
late the refractive index for light with a photon energy close to the fundamental
band gap one needs to add a second resonance of lower energy to account for the
interband transitions at the fundamental band gap [6].
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Figure 4-14: Faraday rotation measured at B = 7T and T = 1.8K.

Even though it is possible to take the resonances of the X- and L-point of
the band structure as a single e�ective resonance for the refractive index, one
can not apply this model to calculate Faraday rotation. Each of these resonances
can possibly cause Faraday rotation leading to a non-trivial spectral dependence.
In addition to calculating Faraday rotation not being feasible [7], previous mea-
surements for pure CdTe di�er by a factor of more than 2 [9, 7]. This makes it
necessary to study the Faraday rotation in a wide energy window.

In Fig. 4-14 the measured spectral dependence of the rotation angle from
0.84 eV to 1.65 eV is shown. It has been measured at a magnetic �eld of B = 7T
and a temperature of T = 1.8K in a 655µm thick sample. From 0.8 eV to 1.6 eV
Faraday rotation slowly increases with photon energy. Above 1.62 eV the Faraday
rotation decreases fast with photon energy.

This spectral dependence can be explained by the contribution of several res-
onances. One can attribute the slow rise to the resonances that contribute to the
SEO, while the fast change is due to the Zeeman splitting of the fundamental
exciton resonance. A large detuning leads to slower spectral changes for polariza-
tion e�ects, while a small detuning results in steeper spectral changes. Further a
resonance needs to a�ect the refractive index in order to induce Faraday rotation.
Because of this, one can neglect the e�ect of the of the fundamental resonance
on the refractive index for light, if the photon energy is at least 200meV below
the energy of the fundamental resonance [6]. So, while the resonances of the SEO
determine the refractive index and Faraday rotation of most transmitted photon
energies, the fundamental resonance can only induce signi�cant Faraday rotation
in a narrrow spectral window.

The fundamental resonance and the resonances of the SEO cause Faraday
rotation with opposing sign. Because of this there is an energy where the two
contributions cancel each other out, resulting in the absence of Faraday rotation.
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4.3.3.2 Magneto-spatial dispersion

The second phase-based polarization e�ect is linear birefringence. In Faraday
geometry its source is magneto spatial dispersion and the sign of the product of
the magneto spatial dispersion constant V and the wavevector kz determines which
linearly polarized eigenwave propagates faster.

When linear birefringence is the only polarization e�ect, a phase di�erence
occurs during propagation between the two eigenwaves. This phase di�erence
will be compensated, if the light is re�ected and propagates back on its previous
path This is a reliable way of distinguishing between linear birefringence due to
magneto-spatial dispersion and circular dichroism. Both e�ects can create circular
polarization, but only linear birefringence switches sign when the wavevector is
inverted.
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Figure 4-15: Comparison of the polarization of light leaving a 655 µm thick sample at
B = 5T and T = 1.8K, that was S2 polarized before entering the sample. Blue squares:
transmitted light, red circles: Light that is re�ected and propagates back through the
sample.

Fig. 4-15 shows the time of arrival dependence of the polarization of light
leaving the sample at B = 5T and T = 1.8K. The curve labeled 'Transmis-
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sion' accounts for light that propagates through the sample once. 'Re�ection' is
attributed to light that propagates through the crystal once, is re�ected at the
surface and leaves the sample at the other surface. In both measurements the
light is S2 = 1 polarized when it �rst enters the sample.

'Transmission' shows oscillations in all three polarizations. 'Re�ection' oscil-
lates in the two linear polarizations S1 and S2 but not in S3. In S3 there is only a
drift towards positive circular polarization. The oscillations of 'Transmission' and
'Re�ection' are of similar frequency, but do not match in phase.

Since Faraday rotation does not compensate itself, both 'Re�ection' and 'Trans-
mission' show oscillations in the linear polarizations. For the same energy of light
the 'Re�ection' will have twice the time of �ight and Faraday rotation compared
to 'Transmission'. This leads to the fact that oscillations in S1 and S2 having the
same frequency but di�erent phase.

The oscillations in S3 which are visible in transmission geometry are missing
in re�ection, since the linear birefringence compensates itself. The drift towards
positive circular polarization might be due to circular dichroism.

4.3.3.3 Dichroism

Dichroism can be easily identi�ed by its ability to polarize light by absorbing one
eigenpolarization stronger than the other. Birefringence can change polarization
but cannot generate it. In Fig. 4-16 the polarization of light leaving the sample
is shown for applied magnetic �elds of B = 0T and B = ±5T. The light is
unpolarized before entering the sample. There is no polarization generated without
an applied magnetic �eld. At B = ±5T there is polarization generated in all three
polarizations for energies above 1.654 eV and below 1.662 eV. If we study the e�ects
while changing the sign of the magnetic �eld, we see that the total polarization
|S| generated by both directions of the magnetic �eld is the same. The generated
polarization in S1 and S3 is of opposite sign for opposite magnetic �eld values. In
contrast the S2 polarization does not change sign with magnetic �eld.

The energy window in which polarization is generated is the same as the trans-
mission edge shown in Fig. 4-5. As dichroism is an absorption based e�ect it
can only occur for photon energies in the absorption region of the material. The
drop of polarization above 1.66 eV is most likely not an e�ect of the sample but a
measurement error. At these energies there is very little transmitted light and the
background of the measurement, which is unpolarized, becomes more dominant.

The polarization in S1 is generated by linear dichroism, due to di�erent ab-
sorption for light polarized along the [100] and [010] crystal axes. By changing the
magnetic �eld direction, this di�erence in absorption changes its sign.

The polarization in S2 is of common sign for B = ±5T. This in contrast to
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Figure 4-16: Measured spectral dependences of the polarization of beams of light,
that entered the sample unpolarized, after propagation through the crystal at di�erent
magnetic �elds. The black, red and green lines represent data measured at B = 0T,
B = 5T, B = −5T.

the expectation for a single resonance, where one would expect S2 = 0. According
to equations (2.35) and (2.36) the arguments ϕo� = arg(εo�) and ϕdia = arg(εdia)

have only a neglectable di�erence as long as =(kz)� <(kz). As shown in the ap-
pendix 8.3, S2 vanishes for both eigenwaves if ϕo� = ϕdia. Due to this, the relative
suppression of one eigenwave, which is the origin of dichroism, will not generate
any polarization in S2.

The polarization observed in S2 is due to the contribution of the resonances of
the X- and L-point to εo�, which changes ϕo�. A more visual description is, that
the Faraday rotation created by the higher energy resonances rotates the linear
polarization, which is generated by the linear birefringence of the exciton, from S1

into S2. As both the dichroism and the additional Faraday rotation change their
sign with inversion of the magnetic �eld, the the sign of the polarization measured
in S2 keeps is the same.

The di�erent behaviour of the sign for the polarization measured in S1 and S2

when the external magnetic �eld is inverted can be used to con�rm the alignment of
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the experiment.As both the polarization measured in S1 and S2 behave as predicted
by theory, one can assume that the orientations of the experimental ~x and ~y axes
to the crystal axes are ~x ‖ [100] and ~y ‖ [010]. The orientation of the crystal axes
has also been con�rmed by Laue X-ray di�raction.

4.3.4 Characterization of magneto-spatial dispersion

The main e�ect of magneto-spatial dispersion is linear birefringence. The deter-
mination of the strength of linear birefringence can be simpli�ed, if there is no
circular birefringence complicating the evaluation. As discussed in chapter 4.3.3.1,
there is a certain photon energy where there is no circular birefringence (Faraday
rotation).

One possibility to identify this photon energy is the study of the e�ects of
the sample on linearly polarized light. The measured polarization of light leaving
the sample for di�erent detunings E − ~ω0 is shown in the upper part of Fig.
4-17. The light is S2 = 1 polarized before entering the sample for all photon
energies. After leaving the sample light with a detuning energy below 15.2meV is
negatively S1 polarized. With increasing energy the light gets more S2 polarized.
With higher energies circular polarization increases. At even higher energies there
are oscillations in S1, S2 and S3.

At a detuning energy of −15.2meV, indicated by a black vertical line in Fig.
4-17, there is no S1 polarization. Also the light entered the sample with no S1

polarization. As there is no absorption at this energy, the Faraday rotation is
either absent or rotated the linear polarization by a multiple of 180◦. The second
option can be excluded, as the Faraday rotation introduced by a sample of 655 µm
thickness of B = 5T never exceeds 50◦ for photon energies below 1.65 eV (1.65 eV
correspond to a detuning energy of −15.2meV, compare Fig. 4-14). From this one
can conclude, that there is no Faraday rotation at a detuning of −15.2meV

At this detuning energy there is a S3 polarization indicating the presence of lin-
ear birefringence. One can characterize linear birefringence, using its dependence
on the angle of exciting linear polarization. The dependence of the polarization
of exiting light on the angle α of linear polarization relative to ~x is shown in the
lower part of Fig. 4-17. The black squares are measured for a detuning energy
of −15.2meV and B = 5T. The measured S1 polarization can be described by
a cos(2α) function, while S2 follows a sin(2α) function, both with an amplitude
close to one. S3 also follows a sin(2α) function but with a smaller amplitude.

For pure linear birefringence in the basis of ~x and ~y the circular polarization
S3 reads as

S3 = sin (2α) sin (∆φ), (4.6)
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Figure 4-17: Upper graph: Spectral dependence of the polarization of transmitted light
in the vicinity of the exciton resonance. The light was S2 = 1 polarized before entering
the crystal at T = 1.8K and B = 5T. Lower graph: Dependence of the polarization of
light leaving the sample at T = 1.8K and B = 5T on the angle of α of the entering linear
polarization relative to ~x. Black squares represent measured polarization at a detuning
energy(E − ~ω0) of −15.2meV, red dots at a detuning energy of −11.7meV while green
triangles where measured at −8.1meV detuning. These energies are indicated in the
upper graph by vertical lines of their respective colours. The coloured curves in the
lower graph are calculated from a dielectric tensor, that was �tted to the experimental
data.

where ∆φ is the phase di�erence of the two propagating eigenwaves. The black
curve plotted in Fig. 4-17 is calculated for a phase di�erence of ∆φ = 0.32 and is
in good agreement with the experimental data. In the absence of Faraday rotation
one can simplify equation (2.32) to ~Ωeff = 2V kzB. Using equation (2.39) one
can evaluate V = φc/[2(ng − n0)kzLBz] = 5× 10−12 eVcmT−1. With a known V ,
one can calculate the linear birefringence for di�erent energies.
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4.3.5 Spectral dependence of the dielectric tensor

After identifying and characterizing the polarization e�ects it is of interest if the
excitonic model proposed in chapter 2.2.7 can describe these e�ects. The model
predicts the dielectric tensor for a speci�c energy using a given dielectric function,
which, in turn, has to be calculated from excitonic parameters. This model needs
to be veri�ed by comparing it with values extracted from measurements.

The dielectric tensor at the detuning energy of−15.2meV is known. Since there
is no Faraday rotation or dichroism, the o�-diagonal elements of the dielectric
tensor vanish (εoff = 0). The di�erence between the diagonal elements of the
dielectric tensor εdia can be calculated as

εdia =
dε0

dω

2V kzB

~
.
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Figure 4-18: Spectral dependence of the o�-diagonal εoff (upper graph) and diagonal
εdia (lower graph) contributions to the dielectric tensor at B = 5T and T = 1.8K.
Black squares represent the real part and red dots the imaginary part extracted by a �t
of the angular dependence of the polarization as shown in the lower part of �gure 4-17.
Calculated spectral dependences of the real part are shown as green curves for a magneto-
spatial constant of V = 5× 10−12 eVcmT−1 and a Zeeman splitting of ∆ = 55 µeV.
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This tensor can be a starting point for a �t to extract the dielectric tensor of
all detuning energies. The dependence of the polarization ~S on the angle of the
linearly polarization α relative to ~x||[100] of the incident light‡ can be used, for
this. To be able to �t it one needs to calculate the dependence for di�erent εdia
and εo�. The algorithm to calculate the dependence of the polarization ~S on the
angle of the linearly polarization is presented in appendix 8.2. The result of the
algorithm is �tted to the experimental data by minimizing the sum of the squared
di�erences between the calculated and measured stokes vectors by varying the real
and imaginary parts of εdia and εo�.

Fitted theoretical curves for −11.7meV and −8.1meV detuning are shown in
�gure 4-17 together with the corresponding measured data and the experimental
and calculated data for −15.2meV detuning, which has been discussed in section
4.3.4. If one compares −11.7meV to −15.2meV one notices that the angle de-
pendence is shifted to higher angles. This is due to the Faraday rotation that is
present at −11.7meV but not at −15.2meV. Also the amplitude of the oscillation
in S3 is stronger, as the linear birefringence increases the closer the photon energy
E is to the exciton resonance.

When comparing the results for −8.1meV detuning to those of −11.7meV one
can see another shift to higher angles. But the most striking di�erence is that the
oscillations are no longer around 0. S1 is shifted to the negative, S2 as well as
S3 is shifted towards positive values. This is the consequence of dichroism. The
shifts are in the same direction as the generated polarization, shown in �gure 4-16.
Another consequence is that the angular dependence can no longer be described by
simple sine- or cosine-functions. The calculated curves for the linear polarization
start to take up the character of a sawtooth function.

The results of the �ts described above are shown in �gure 4-18 together with
other detunings between −24meV to −12meV§ detuning. Real parts are shown
as black squares while the imaginary parts are represented by red dots. In the
upper part of �gure 4-17 values for εo� are shown. Its real part is 6.5 × 10−4 at
−24meV detuning energy due to the contributions of the higher energies reso-
nances discussed in chapter 4.3.3.1. With increasing photon energy it then starts
to decrease. At −15.2meV detuning it is 0, resulting in the absence of Faraday
rotation. It decreases further as the photon energy gets closer to ~ω0 until reach-
ing −2× 10−2 at −8meV detuning. The real part of εdia is almost 0 at −24meV
detuning and increases with photon energy. At −8meV it has a value of 2.9×10−2.
Both imaginary parts are 0 for detunings below −14meV. Above this energy, both

‡The incident light is completely linearly polarized.
§It is possible to �t for detunings above −12meV, but calculated and measured angle depen-

dences di�er signi�cantly in S1 and S3. The model neglects re�ection at the surfaces. Since
the eigenwaves are not orthagonaly polarized (no anti-parallel Stokes vector) for these photon
energies, see subsection 4.3.3.3, one can expect polarization dependent re�ection.
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imaginary parts increase in the same direction as the corresponding real parts.

After extracting values for the di�erent contributions of the dielectric tensor one
can compare them with those predicted by equations (2.36a) and (2.36b). The two
green lines in �gure 4-18 represent corresponding calculations. The o�-diagonal
contributions to the dielectric tensor are calculated according to εo� = γ1Bz, where
γ1 is calculated according to equation (2.36a). The calculated εo� for a Zeeman
splitting of ∆ = 55 µeV and γ′1 = 2.2× 10−4T−1 is shown in �gure 4-18 as a green
line. It is in good agreement with the data extracted from the measurements.

The di�erence of the diagonal elements of the dielectric tensor are given by
εdia = V kzBγ2 using (2.36b) to calculate γ2. It is represented in the lower part
of �gure 4-18 by the green curve. The agreement between the calculated and
extracted data is reasonable.

As there is decent agreement between the extracted and calculated dielectric
tensor, one can apply the model presented in chapter 2.2.7 to calculate the polar-
ization of light after transmission through the sample.

The spectral dependence of the relative strength of Faraday rotation and non-
reciprocal birefringence leads to a interesting phenomena one can call polarization
nutation. To understand it one needs to understand the expected behaviour. For a
�xed ratio of Faraday rotation and non-reciprocal birefringence, one would expect
the Stokes vector of light to precess around the Stokes vector of the Eigenwaves [55]
as the light propagates through the crystal. This leads to a periodic behaviour of
the polarization with increasing delay. But in the crystal studied here both delay
and ratio of Faraday rotation and linear birefringence depend on the energy of the
transmitted light. Since this leads to a delay dependence of the eigenvectors the
polarization is no longer just precessing, it is nutating. This results in a not purely
periodic behaviour of the polarization with increasing delay.

4.3.5.1 Comparison with previous measurements

To check the validity of the excitonic model in section 2.2.7 one should apply it
to previous measurements. Krichevtosov et al. [9] studied linear birefringence
for detunings between −63meV and −440meV in pure CdTe. According to [8]
their parameter A relates to the diagonal elements of the dielectric tensor by the
following relation (εdia/2) = AkzBz = γ2/2kzBz. Calculating γ2 using equation
(2.36b) allows to extrapolate to these detunings.

The calculated A = γ2/2 using equation (2.36b) and V = 5 × 10−12 eVcmT−1

is shown in Fig. 4-19 as a black line together with a red curve calculated for
V = 12× 10−12 eVcmT−1. The measured values reported in [9] are represented by
black dots in Fig. 4-19.

The curve calculated for V = 5×10−12 eVcmT−1, which was determined in sec-
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Figure 4-19: Spectral dependence of A, a constant describing the contribution of
magneto-spatial dispersion to the dielectric tensor reported in [9]. The curves rep-
resent calculated spectral dependences of A using A = γ2/2, where γ2 is calculated
according to equation (2.36b). The black and the red line represent calculations for
V = 5× 10−12 eVcmT−1 and V = 12× 10−12 eVcmT−1.

tion 4.3.4, is too low, but the one for V = 12×10−12 eVcmT−1 is in good agreement
with the experimental data. One can deduce that the excitonic model is correct,
because it describes the spectral dependence well. Di�erence in experimental tech-
niques or sample can lead to the di�erence in the values of V . In [9] pure CdTe
is investigated at lower magnetic �elds in Voigt con�guration. They also studied
pure ZnTe. It showed almost no linear birefringence when compared to CdTe. Our
sample is Cd0.88Zn0.12Te which has a signi�cant portion of Zn, leading to a weaker
linear birefringence compared to pure CdTe.

4.3.6 Magnetic �eld dependence

Up to this point, the magnetic-�eld-induced anisotropy was only characterized for
a single magnetic �eld of B = 5T. To get a more complete understanding of the
magnetic-�eld-induced optical anisotropy one needs to investigate the magnetic
�eld dependence.

In Fig. 4-20(a) the measured delay dependence of the polarization of light
leaving the 655µm thick sample at B = 7T and T = 1.8K is represented by
symbols. The light was S3 = 1 polarized before entering the sample. The light is
S3 = 1 for the lowest delays, because the magneto spatial dispersion is too weak
to convert it to S2. With increasing delay the light is converted to S2. At higher
delays all three polarizations oscillate.

Fits of the experimental data are also shown in Fig. 4-20(a). The linear
birefringence is characterized by V = 5× 10−12 eVcmT−1 and this parameter was
kept �xed. The contribution of the higher resonances to the Faraday rotation
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Figure 4-20: (a) Symbols: Measured polarization of transmitted light at B = 7T
and T = 1.8K that was S3 = 1 polarized before entering the sample. Lines: Calculated
polarization for V = 5×10−12 eVcmT−1 and ∆ = 60 µeV. (b) Zeeman splitting extracted
from �ts where it was the only free parameter.

varies only slowly with energy, so one can include it by using a constant γ′1 =

2.2 × 10−4T−1. The Zeeman splitting ∆ was the only parameter determined by
�tting the curves to the data and is shown in Fig. 4-20. From B = 0T to B = 5T
the Zeeman splitting increases linearly with magnetic �eld. For this region we
can derive a g-factor of |gexc| = 0.2. This value is comparable to the exciton g-
factor estimated for bulk CdTe taking into account complex valence-band e�ects
[56, 57, 58]. The calculations give either |gexc| ≈ 0.1, if the electron-hole exchange
interaction is disregarded [58] or |gexc| ≈ 0.35 if electron-hole exchange is taken
into account.

4.4 Conclusion

The propagation dynamics of exciton polaritons in a sub-mm thick (Cd,Zn)Te
bulk crystal have been studied. The fundamental exciton resonance, though being
inhomogeneously broadened by 1meV, has only a small homogeneous broadening
of 8 µeV. The resulting transparency for photons with an energy close to the exci-
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ton resonance allows the observation of sub-nanosecond delay of light. This delay
depends on the photon energy and leads to signi�cant enhancement of magneto-
optical e�ects if a magnetic �eld is applied. The magneto-optical e�ects were
studied in Faraday con�guration, where they manifest themselves in oscillations
of the polarization state in the time domain, when a spectrally broad pulse is
transmitted through the crystal. The frequency of these oscillations depends on
the magnetic �eld and reaches 10 GHz at B ∼ 5 T.

The e�ects leading to the oscillations of the polarization are identi�ed as linear
birefringence due to magneto-spatial dispersion and Faraday rotation (circular
birefringence). Further, the presence of linear and circular dichroism for photon
energies less than 10meV below the exciton resonance has been shown. The linear
birefringence and part of the Faraday rotation is due to the splitting of excitonic
sublevels and can be predicted by a model assuming a split exciton resonance.
The exciton Zeeman splitting leads to the Faraday rotation, and is determined
even though the splitting is more than one order smaller than the inhomogeneous
broadening. The exciton g-factor was evaluated to be |gexc| = 0.2, while the
magneto-spatial dispersion constant is V = 5× 10−12 eV cm T−1.

The Faraday rotation has a non-trivial spectral dependence due to the con-
tributions of several resonances. The contributions produce rotation in di�erent
directions leading to a sign change at photon energies close to the resonance.
As a result, each spectral component of an optical pulse experiences a di�erent
anisotropy. The steep energy dependence of the relative strength of Faraday rota-
tion and non-reciprocal birefringence lead to polarization nutation of the exciton
polaritons. Nutation of the exciton polariton polarization is a quite interesting
phenomenon, because it can be applied to manipulation of the polarization state
of the transmitted light. The relative strength of linear and circular birefringence
can be adjusted by active control of the energy of the exciton resonance.



Chapter 5

Exciton magnetic polaron dynamics

Exciton magnetic polarons in novel (Cd,Mn)Se/(Cd,Mg)Se quantum wells were
already examined in my diploma thesis [59], where polaron formation was con-
�rmed and unusual magnetic �eld dependences of the formation dynamics were
discovered [60]. This work has been continued and new results challenge the ex-
planation for the unusual dynamics. Further investigations resulted in a new and
more complete explanation enhancing the understanding of this novel material.

This experimental work can be divided into three parts. First of all, the sample
is introduced and characterized in subsection 5.1, which leads to the establishment
of exciton magnetic polaron formation. Exciton magnetic polaron formation is
con�rmed in subsection 5.2 followed by the study of the exciton magnetic polaron
formation dynamics in subsection 5.3. Finally, a conclusion is drawn.

5.1 Sample characterization

5.1.1 Sample description

The sample 1-372 has been grown in the group of S.V. Ivanov at the Io�e Physical-
Technical Institute in St. Petersburg by molecular beam epitaxy. It is a quantum
well structure grown on top of an GaAs substrate. The �rst layer grown was a
0.4 µm thick bu�er layer of (Cd0.83,Mg0.17)Se. This was followed by 5 periods of
9.7 nm thick (Cd0.83,Mg0.17)Se barrier layers with of 3.8 nm thick (Cd0.935,Mn0.065)Se
quantum wells in between. A top layer of CdSe covers the structure for protection.

5.1.2 Magnetic �eld dependence of exciton energy

Sample 1-372 is a semimagnetic quantum as it contains manganese (Mn) ions.
The concentration of MnSe is x = 0.065. Excitons forming at low temperatures in

61
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quantum wells are strongly in�uenced by the presence of Mn ions. One e�ect is the
giant Zeeman splitting. One would expect this splitting to increase linearly with
concentration of Mn ions. But with increasing Mn concentration antiferromagnetic
clusters are formed , where the spins of two Mn ions align antiparallel and com-
pensate each other. This behavior is taken into account by an e�ective spin and
an e�ective temperature in the modi�ed Brillouin function, which is introduced in
equation (2.40).

The giant Zeeman splitting a�ects the energy of the exciton. It can be studied
by measuring the exciton energy at di�erent magnetic �elds. Re�ection spectra a
commonly used to determine the energy of an exciton resonance (see chapter 4.1.2
for a more detailed description).

Re�ection spectra measured at magnetic �elds up to B = 7T at a temperature
of T = 1.8K are shown in �gure 5-1. Due to the excitonic resonance every spectrum
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Figure 5-1: Magnetic �eld dependence of the re�ection spectra of sample 1-372 taken
at T = 1.8K [59].

shows a visible dip. The energy of this dip decreases with increasing magnetic �eld.
Since the giant Zeeman splitting is larger than the width of the dip, it is su�cient
to take the energy of the dip as the energy of the lower level of the Zeeman split
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exciton resonance.

The excitonic resonance is the energy of the exciton when it is formed. It is
shown for di�erent magnetic �elds in �gure 5-2 as full black circles.
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Figure 5-2: Left: PLspectra measured for sample 1-372 for di�erent magnetic �elds.
Right: The exciton resonance energies measured at di�erent magnetic �elds are repre-
sented by black dots. The open circles represent the energy of the PL. The black line is
a modi�ed Brillouin-function(x =0.065, T0 = 1.46 K, Se� = 1.09) �tted to the measured
exciton resonance energies [59].

The energy of the exciton resonance decreases from 1.913 eV at B = 0T to
about 1.872 eV at 3T. The slope of the giant Zeeman splitting decreases with
magnetic �eld and at B = 7T the energy of the exciton resonance is 1.865 eV.

Moreover, the exciton energy can be determined by photoluminescence. Time-
integrated PLspectra for B = 0T, B = 2T and B = 7T are shown in the left part
of �gure 5-2. The energy of the PL is the energy of the exciton when it decays
emitting a photon.

The giant Zeeman splitting can be described by a modi�ed Brillouin-function
as stated in equation (2.40). A calculated magnetic �eld dependence of the exci-
ton energy at its formation is shown in the right part of �gure 5-2. It has been
calculated using the exchange integrals N0α = 0.258 eV and N0β = −1.110 eV of
bulk CdSe crystals [61]. The values of the e�ective spin Se� = 1.09 and e�ective
temperature T = 1.46K have been derived by �tting equation (2.40) to the mea-
sured data. The calculated and measured magnetic �eld dependences are in good
agreement.

There is a di�erence between the resonance energy determined using re�ectivity
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and the energy derived from PL measurements. This di�erence can be attributed
to a Stokes shift of the exciton energy during the lifetime of the exciton. This shift
decreases with magnetic �eld. It is 18meV for B = 0T and 3meV for B = 7T.

This behaviour is consistent with an exciton magnetic polaron, where during
its formation the exciton energy is reduced. Magnetic polaron formation can be
suppressed with an external magnetic �eld. An external magnetic �eld aligns the
Mn spins. In this case, the polaron cannot gain energy by aligning the Mn spins,
because they are already aligned. One would expect, that it is suppressed at
B = 7T. The remaining shift of 3meV is due to non-magnetic localization. In
this case, one can attribute 15meV to the localization due to the exciton magnetic
polaron.

5.2 Con�rmation of exciton magnetic polaron for-

mation

5.2.1 Temperature dependence

The formation of an exciton magnetic polaron has been suggested in chapter 5.1.2.
It gives an explanation for the di�erence between the energy necessary to generate
an exciton and the energy of the exciton when it decays. This energy di�erence
decreases with increasing magnetic �eld. This is consistent with the properties of
an exciton magnetic polaron, as a magnetic �eld is one of the ways to suppress the
formation of an exciton magnetic polaron.

As discussed in subsection 2.3.3, it is also possible to suppress the formation
of an exciton magnetic polaron with temperature. This leads to an increase of
energy the PL maximum (blue-shift) with increasing temperature. It is typical for
exciton magnetic polaron formation at low temperatures.

To demonstrate this behaviour, three PL spectra taken at the temperatures of
T = 2K, T = 8K and T = 15.5K are shown in the left part of �gure 5-3. These
spectra were recorded without a magnetic �eld applied to the sample. The energy
of the PL peak moves to higher energies with increasing temperature. To illustrate
this further, the temperature dependence of the energy of maximum PL intensity is
displayed in the right part of �gure 5-3. The energy of the PL increases by 10meV
between 2K and T = 20K. This increase seems to asymptotically approach an
energy of 1.899 eV.

This is in contrast to the expected dependence. One would expect the energy
of the exciton to follow the energy of the band gap, which decreases with increas-
ing temperature. This temperature dependence can be described by the Varshi
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Figure 5-3: Left: PLspectra measured at T = 2K, T = 8K and T = 15.5K without an
external magnetic �eld. Right: Energy of the maximum PL intensity for temperatures
between T = 2K and T = 20K [59].

equation

E0(T ) = E0(0)− αT 2

β + T
. (5.1)

For bulk CdSe, the parameters α = 6.396 · 10−4 and β = 281 K of the Varshi
equation are known [62] and one would expect, that the energy of the band gap
decreases by 1.06meV, when the temperature is increased from 2K to 20K. There-
fore the obseved blue shift of the PL maximum with increasing temperature can
not be explained by the temperature dependence of the band gap, so it must be
due to an additional e�ect. It can be explained by the suppression of the exciton
magnetic polaron formation. Since increasing the temperature suppresses the for-
mation, the shift of the exciton energy during its lifetime is smaller. This leads to
an increase of the PL energy, as it is the energy of the exciton at the end of its
life.

5.2.2 Comparison with measurements of PL polarization

In the previous two chapters the typical behavior of an exciton magnetic polaron
was observed. Though it is unlikely, this behavior could be produced by other
e�ects. Another way to con�rm the formation of an exciton magnetic polaron is
to compare the measured energy shift to the one predicted by theory.

For an exciton mangetic polaron there is a relationship between the Zeeman
splitting, the magnetic �eld dependence of the circular polarization of the PL and
Stokes shift due to polaron formation. This relationship is further discussed in
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Figure 5-4: Magnetic �eld dependence of the circular PL polarization at T = 1.8K
[59].

chapter 2.3.4.

The magnetic �eld dependence of the PL polarization is displayed in �gure
5-4. There is almost no circular polarization without a magnetic �eld, but the
light emitted at B = 0.4T is already completely polarized.

According to equation (2.54) the energy of the polaron induced Stokes shift,
also called exciton magnetic polaron energy EMP = 1

2πkBT
γ2

θ2
, can be calculated

using the slope γ = 36meVT−1 of the Zeeman splitting of the heavy hole at zero
magnetic �eld and the slope θ = 8.2T−1 of the circular polarization dependence
on the magnetic �eld. The calculated polaron energy is 15meV for a temperature
of T = 2K. This is in excellent agreement with the 15meV di�erence in energy
between the exciton resonance and the PL attributed to the formation of an exciton
magnetic polaron.

5.3 Exciton polaron formation dynamics

An exciton magnetic polaron (EMP) is a excitonic quasi-particle. The hole of the
exciton polarizes the Mn spins in its vicinity. The collective alignment of the Mn
spin reduces the exciton energy. This process has its own dynamics and a�ects the
dynamics of the exciton. A typical time-resolved PL spectrum of sample 1-372 is
shown in �gure 5-5(a) as a colour contour plot. It was acquired at a temperature
of T = 5K without an external magnetic �eld applied. At t = 0 ns an exciton
population is generated using a laser pulse of about 1 ps duration with a photon
energy of 2.06 eV. The �rst 2 ns of the evolution of the PL are shown. With time
the PL decreases both in energy and in intensity.
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Figure 5-5: (a): Contour plot(red represents max. intensity, blue min. intensity) of a
measured time-resolved PL spectrum taken at T = 5K and B = 0T for sample I-372.
Red line: Exponential curve describing the time evolution of the center energy of the PL.
(b): Time evolution of the spectrally integrated intensity of the PL.

The evolution of the energy of the PL maximum, E(t), can be described by an
exponential function

E(t) = δEe
− t
τf + E∞. (5.2)

Here δE is the localization energy, while E∞ is the energy of the equilibrium state.
The speed of the formation is given by the formation time τf. The red curve shown
in �gure 5-5(a) was calculated for δE = 16.7meV, E∞ = 1.885 eV and τf = 537 ps
and is in good agreement with the experimental data shown in 5-5(a), which was
acquired at a temperature of T = 5K without a magnetic �eld applied.

To investigate the recombination dynamics, the transient of the PL intensity
is used. The spectrally integrated intensity of PL , which was measured at a
temperture of T = 5K without a magnetic �eld applied, is shown in �gure 5-5(b)
in a logarithmic plot. Due to the limited lifetime τl of the exciton the intensity of
the PL reads

I(t) = I0e
− t
τl . (5.3)

5.3.1 Magnetic �eld dependence of the EMP formation dy-

namics

During its lifetime the exciton will loose energy if an exciton magnetic polaron
is formed. This process approaches an equilibrium state. The energy di�erence
between the energy E(t = 0) during excitation and the equilibrium energy is the
localization energy δE.
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Figure 5-6: Magnetic �eld dependence of the localization energy δE measured at a
Temperature of T = 2K in Faraday geomerty.

Application of an external magnetic �eld reduces the shift of the exciton energy
due to exciton magnetic polaron formation. This can be observed by studying the
magnetic �eld dependence of the localization energy δE, which is shown in �gure
5-6. It has been measured for a temperature of T = 2K and the magnetic �eld
was applied in Faraday geometry.

The localization energy is 19meV in the absence of an external magnetic �eld.
It is 18meV for B = 1T and then decreases down to ≈ 4meV for magnetic
�elds above 4T. The formation of an exciton magnetic polaron is suppressed for
B > 4T. If it was not suppressed, the localization energy would decrease further
with magnetic �eld.

The localization energy of 4meV for B > 4T is due to non-magnetic local-
ization. Due to �uctuations in the composition of the quantum well layer and its
width the exciton can reduce its energy by moving to more favorable positions. As
the non-magnetic localization is constant for B ≥ 4T one can assume that the en-
ergy of the exciton magnetic polaron is EMP = 15meV. This energy is comparable
to the values determined by continuous wave measurements.

The dynamics of the exciton is shown in �gure 5-7. The formation time is
τloc = 600 ps in the absence of an external magnetic �eld, which is rather slow.
According to ref. [11], the usual formation time of an exciton magnetic polaron in
CdTe is below 200 ps. It increases to about 800 ps for B = 1T and B = 2T. With
further increase the localization time decreases. It is about 300 ps for magnetic
�elds B ≥ 5T. This time can be attributed to the non-magnetic localization.

The non-monotonic behaviour of the localization time with magnetic �eld is
unusual. One would expect the observed localization time to steadily change from
the EMP localization time to the localization time of the non-magnetic localization
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Figure 5-7: Magnetic �eld dependence of the localization time and exciton lifetime
measured for T = 2K using �elds in Faraday con�guration.

when an external magnetic �eld is applied. Moreover, the exciton lifetime, shown
in �gure 5-7, drops with increasing magnetic �eld. The lifetime is τl = 660 ps
without an applied magnetic �eld. It decreases to 340 ps at B = 1T and is 230 ps
for magnetic �elds above B ≥ 3T.

A simple explanation for both peculiarities is a weak or absent hole localization
inside the quantum well without magnetic �eld applied. The lifetime of an exciton
is inversely proportional to the overlap of the hole and electron wavefunction [63],
because the exciton can only recombine if the electron can take the place of the
hole. When most of the hole wavefunction is inside the barrier and the electron
is con�ned to the quantum well, the lifetime is long due to a small overlap of the
two wavefunctions. Such a quantum well is a type-II structure, as the material
energetically most favourable for the electron is not the one most favourable for
the hole. When a magnetic �eld is applied the giant Zeeman splitting makes the
quantum well energetically more favorable for the hole. Due to this a larger part of
the hole function is inside the quantum well increasing the overlap and decreasing
the lifetime.

If a larger part of the hole wavefunction is inside the quantum well, the Mn
spin can decrease the energy of the exciton further, because most of the giant
Zeeman splitting is due to exchange interaction between the 3d electrons of the
Mn ions and the heavy hole. Accordingly, an increase in the proportion of the
hole wavefunction inside the quantum well leads to a decrease of exciton energy.
This results in additional localization energy which explains the small di�erence
between the localization energies of B = 0T and B = 1T.

It can also have e�ects on the formation dynamics. An increase in the potential
well depth will increase the density of the wavefunction. This allows a stronger
alignment of the Mn spins, which in turn makes the quantum well even more
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favorable for the hole. This e�ect is known as autolocalization and it leads to an
increase of formation time.

5.3.2 E�ects of a Voigt magnetic �eld

The proposed explanation of the e�ects of a magnetic �eld on an exciton magnetic
polaron in Faraday con�guration depends on the hole wavefunction properties and
its con�nement within the quantum well layer in the absence of a magnetic �eld.

The in�uence of Voigt and Faraday �elds on the energy of a heavy hole is
very di�erent when the hole is con�ned inside the quantum well. The con�nement
leads to a strong anisotropy of the heavy hole g-factor [64]. While there is a giant
Zeeman splitting in Faraday con�guration (see Chapter 5.1.2), there is no Zeeman
splitting for Voigt geometry unless �elds of several Tesla are applied [65].
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Figure 5-8: (a): Magnetic �eld dependence of the localization energy for Voigt and
Faraday con�guration. (b): Magnetic �eld dependence of the PL energy at the beginning
of the decay E(t = 0) and for the equilibrium energy E(t → ∞) for Faraday and Voigt
con�gureation together with the exciton energy determined using re�ection spectra in
Faraday con�guration. These measurements were performed at a temperature of T = 2K.
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Figure 5-9: Magnetic �eld dependence of the exciton lifetime and the localization time
in Voigt geomeetry. These measurements were performed at a temperature of T = 2K .

In �gure 5-8(b) the magnetic �eld dependence of the initial exciton energy
E(t = 0) and the equilibrium energy E(t→∞) are shown for Faraday and Voigt
geometries. Also, the energy of the exciton resonance is shown. It has been
determined by re�ection measurements for Faraday magnetic �elds. The energy of
the exciton resonance and E(t = 0) for Faraday geometry are in good agreement
except a deviation at B = 0T. This makes E(t = 0) a subtle indicator of the
Zeeman splitting. For a magnetic �eld B ≤ 2T there is little di�erence between
the results measured in Voigt and Faraday geometries. In Faraday geometry the
Zeeman splitting increases stronger (36meV at B = 6T), than that in Voigt
geometry (29meV at B = 6T), but the di�erence is small when compared to the
average value of the Zeeman splitting.

The Zeeman splitting is isotropic for magnetic �elds B ≤ 2T , which con-
�rms, that the hole is not strongly con�ned without an external magnetic �eld.
For magnetic �elds B > 2T the Zeeman splitting is anisotropic and is bigger in
Zeeman con�guration. This indicates that at higher magnetic �elds the hole is
more con�ned to the quantum well. Also E(t → ∞) is anistropic even at low
magnetic �eld. Even at magnetic �elds of B = 1T there is a di�erence of 10meV
in E(t → ∞). This anisotropy is more pronounced as the EMP formation leads
to the localization of the hole into the quantum well. This localization makes the
Zeeman splitting more anisotropic.

For a more complete understanding the dynamics of the exciton and EMP
can be studied. The exciton lifetime and localization time in Voigt geometry are
shown in �gure 5-9. In contrast to Faraday con�guration, in Voigt geometry the
lifetime of the exciton does not decrease with magnetic �eld, but it increases from
τl = 760 ps at B = 0T to τl = 960 ps at B = 6T. In Faraday geometry the
decrease of lifetime can be explained by the increase of the overlap of electron
and hole wavefunction when the hole is con�ned to the quantum well. As the
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lifetime does not decrease with an increasing magnetic �eld in Voigt geometry, one
can assume, that a magnetic �eld does not lead to strong con�nement of the hole
to the quantum well in voigt geometry. The con�nement of the hole in Faraday
geometry is a result of the Zeeman splitting of the hole. This is not possible in
Voigt geometry, where, because of the g-factor anisotropy on a con�ned hole, the
Zeeman splitting is smaller if the hole is con�ned. If the Zeeman splitting would
induce con�nement, this con�nement would reduce the Zeeman splitting. This
interaction reduces both the Zeeman splitting and the con�nement.

The small increase of lifetime between B = 0T and B = 3T could be explained
by the suppression of EMP formation. If EMP formation leads to localization of
the hole to the quantum well, suppresion of the EMP formation will cancel this
localization and lead to a longer lifetime.

The localization time also changes weakly with magnetic �eld. It decreases
from τf = 600 ps at B = 7T to τf = 500 ps at B = 6T. This is also in contrast to
the localization time in Faraday geometry. In Faraday geometry the localization
time increases from 600ps at B = 0T to 800ps at B = 1T and B = 2T. This
increase in localization time was attributed to autolocalization, where, due to the
EMP formation, a bigger part of the hole wavefunction is con�ned to the quantum
well extending the formation process. This increase is missing in Voigt geomerty,
as in this con�guration the magnetic �eld does not lead to a con�nement of the
hole function.

5.4 Conclusion

The quantum well structure studied is made from the diluted magnetic semi-
conductor (Cd,Mn)Se. The Mn inside the quantum well induces giant Zeeman
splitting, which reduces the energy on one excitonic level by up to 50meV. This
Zeeman splitting is isotropic for magnetic �elds B ≤ 2T, which indicates that the
heavy hole is only weakly con�ned in the absence of magnetic �elds. This giant
Zeeman splitting can increase the band o�set for heavy holes leading to a increase
of the holes con�nement as evident by the threefold reduction of exciton lifetime
for magnetic �elds B ≥ 1T applied in Faraday con�guration. The magnetic �eld
induced con�nement is demonstrated by the anisotropy of the Zeeman splitting
for magnetic �elds B > 2T.

At temperatures T < 20K and magnetic �elds B ≤ 4T exciton magnetic
polaron formation can be observed. The energy of the magnetic polaron is about
15meV and the formation time is τf = 600 ps without an external magnetic �eld.
Exciton magnetic polaron formation also induces a stronger con�nement of the
hole to the quantum well, which allows stronger interaction of the hole with the
Mn spin. This autolocalization extends the formation time to about τf = 800 ps,
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if a magnetic �eld between 1T and 2T is applied in Faraday con�guration. This
has been con�rmed by measurements in Voigt geometry, where the magnetic �eld
suppresses the extension of the formation time due to autolocalization.



Chapter 6

Conclusion

In this work two types of excitonic quasi-particles were studied. Exciton polaritons,
the �rst type, are propagating states formed by photons interacting with excitonic
resonances. The second type are exciton magnetic polarons which are formed by
the sp-d exchange interaction of an heavy-hole exciton with localized manganese
spins leading to a collective alignment of the manganese spins and a reduction of
the exciton energy.

The propagation dynamics of exciton polaritons were studied in a sub-mm thick
(Cd,Zn)Te bulk crystal using polarimetric time of �ight techniques. Due to exciton
polariton formation between a photon and the fundamental exciton resonance, the
propagation speed of light decreases continuously as the photon energy approaches
the energy the fundamental exciton resonance. The maximum observed delay of
350ps was measured for a 655µm thick crystal, and corresponds to a reduction of
the propagation speed by a factor of 150.

The magnetic �eld induced splitting of the exciton resonance gives rise to
magneto-optical e�ects if a magnetic �eld is applied. In Faraday con�gurations
oscillations of the polarization state in the time domain were observed, when a
initially linear polarized spectrally broad pulse was transmitted through the crys-
tal. The frequency of these oscillations depends on the magnetic �eld and reaches
10 GHz at B ∼ 5 T. Four magnetic �eld induced polarization e�ects , Faraday
rotation, linear birefringence due to magneto-spacial dispersion, and linear and
circular dichroism, were identi�ed, characterized and explained by a theoretical
model assuming polariton formation by a Zeeman split exciton resonance. Using
this model it was possible to determine the exciton g-factor of |gexc| = 0.2 and the
magneto-spatial dispersion constant of V = 5×10−12 eV cm T−1, even though the
exciton Zeeman splitting is orders of magnitude smaller than the inhomogeneous
broadening.

Further, higher energy transitions also induce Faraday rotation leading to a
non trivial energy dependence of the optical anisotropy and the observation of pure
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linear birefringence. When using the Poincaré sphere to describe the anisotropy,
both linear birefringence and Faraday rotation induce as a rotation of the Stokes
vector around a vector de�ned by the relative strength of the two e�ects. The
change of this rotation vector with increasing delay can be called polarization
nutation.

Exciton magnetic polaron (EMP) formation has been studied in a (Cd,Mn)Se-
/(Cd,Mg)Se quantum well structure, where it was observed for magnetic �elds be
below B = 4T and temperatures below T = 20K. The reduction of the exciton
energy due to EMP formation is up to 15meV at T = 2K and B=0T. The EMP
formation dynamics are slow (650 ps) compared to more standard systems, such
as CdTe(150-200ps) [11] and is even slower with magnetic �eld between B = 1T
and B = 2T applied. This slowing down can be attributed to autolocilization,
which is described below.

The excitons hole is not con�ned strongly to the Mn containing quantum well
without an magnetic �eld applied, can be con�ned by the application of an ex-
ternal magnetic �eld The Mn induced giant Zeeman splitting reduces the exciton
energy by up to 50meV at B = 7T and increases the valance-band o�set leading
to a stronger con�nement of the hole. Similarly EMP formation also reduces the
exciton energy and induces a stronger hole con�nement. Further the reduction of
the exciton energy due to EMP formation increases with increasing con�nement
of the hole to quantum well. This leads to a positive feedback loop extending
EMP formation time and increasing exciton energy reduction due to EMP forma-
tion. Experimentally the assumption of a magnetic �eld induced con�nement is
con�rmed by a magnetic �eld induced anisotropy of the excitons g-factor and the
magneitic �eld induced reduction of excitons lifetime by a factor of 3.
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Chapter 8

Appendix

8.1 Calculating the dielectric function of an inho-

mogeneously broadened exciton with spatial

dispersion

This is a description of the numerical algorith used to calculate the dielectric
function of an inhomogeneously broadened exciton with spatial dispersion.

• Equation (2.8) was solved for εB = 11.2 [47], ~ωLT = 0.65 eV [47],M = 1.5m0

[47] where m0 is the free electron mass, ~Γ = 8 µeV and ~ω0 = 1.6644 eV
yielding the upper(UP) and lower polariton(LP) branch dispersion.

• From the dispersions one calculates the refractive indexes of the UP and LP
branches and derives the e�ective refractive index n̄ using equation (2.9).

• The e�ective dielectric function ε̄(ω) for an exciton without inhomogeneous
broadening is ε̄(ω) = n̄(ω)2. One can introduce the inhomogeneous broad-
ening Γinh = 1meV by numerically convoluting∗ ε̄(ω) with an Gaussian dis-
tribution. The dielectric function ε(ω) was calculated as

ε(ω) =

∫ 10meV/~

−10meV/~
ε̄(ω + ω′)

exp
[
− (ω′)2

2Γ2
inh

]
√

2πΓinh

dω′.

∗It is impossible to integrate from −∞ to∞ numerically. The limits −10meV/~ to 10meV/~
contain almost the complete Gaussian distribution. This provides it a very good approximation.
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8.2 Calculating the Stokes vector for a given inci-

dent polarization and dielectric tensor

According to section 2.2.4, the dielectric tensor εij can be divided into three con-
tributions. εi is the dielectric constant for the isotropic case, while εdia and εoff
are the contributions to the diagonal and o�-diagonal elements of εij.

The following algorithm was used to calculate the Stokes vector after prop-
agation through the sample for linearly polarized light. The angle between the
direction of the linear polarization and ~x is α.

• The isotropic dielectric constant εi is assumed to be included in the inhomo-
geneously broadened simpli�ed model presented in equation (2.12).

• The amplitudes of the eigenwaves can be calculated by

A1 =
2iεoff cosα +

(
εdia +

√
ε2
dia + 4ε2

off

)
sin Θ

2
√
ε2
dia + 4ε2

off

(8.1)

A2 =
−2iεoff cosα +

(
−εdia +

√
ε2
dia + 4ε2

off

)
sin Θ

2
√
ε2
dia + 4ε2

off

. (8.2)

• The eigenvectors ~E1,2 and eigenvalues are calculated using equations (2.16)
and (2.17).

• The electric �eld after propagation is calculated by equation (2.18).

• Finally, the Stokes vector is calculated from the electric �eld using equations
(2.22).
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8.3 Calculating S2 for eigenpolarization of a single

exciton resonance

According to equations (2.35) and (2.36), for a single exciton resonance with no ad-
ditional contributions (γ′1 = 0), the arguments ϕo� = arg(εo�) and ϕdia = arg(εdia)

of the diagonal and o�-diagonal elements of the dielectric tensor have only a ne-
glectable di�erence as long as =(kz)� <(kz). In this case (ϕdia = ϕo� = ϕc), one
can write equation (2.16) as

~E1,2 =

(
i(|εdia|eiϕc∓

√
|ε2
dia
|+4|εo�|2eiϕc )

2|εo�|eiϕc

1

)

=

(
i(|εdia|∓

√
|ε2
dia
|+4|εo�|2)

2|εo�|
1

)
.

According to equation (2.24b) S2 is calculated as

S2 =
<(ExE

∗
y)

|Ex|2 + |Ey|2
.

Because Ex of ~E1,2 is completely imaginary and Ey completely real the eigenwaves
are not polarized in S2(S2( ~E1,2) = 0).
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