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Abstract

For modeling Service-Oriented Architectures (SOAs) and validating worst-case performance
guarantees a deterministic modeling method with efficient analysis is presented. Upper
and lower bounds for delay and workload in systems are used to describe performance
contracts. The SLA Calculus allows one to combine model descriptions for single systems
and to derive bounds for reaction time and capacity of composed systems with analytic
means.
The intended, but not exclusive modeling domain for SLA Calculus are distributed

software systems with reaction time constraints. SOAs are a system design paradigm that
encapsulate software functions in service applications. Due to their standardized interfaces
and accessibility via networks, large systems can be composed from smaller services and
presented as services again. A well-known implementation of the service paradigm are Web
Services that allow applications with components connected by the Internet. Own services
and those rented from providers can be transparently combined by users.
Performance guarantees for SOAs gain importance with more complex systems and

applications in business environments When a service is rented by a customer the provider
agrees upon a Service Level Agreement (SLA) with conditions concerning interface, pricing
and performance. Service reaction time in form of delay is an important part in many SLAs
and subject to performance models discussed in this work. With SLAs providers implicate a
maximum delay for their products when the customer limits the workload to their systems.
Hence customers expect the contracted service provider to deliver the performance figures
unless the workload exceeds the SLA. Since contract penalties could apply, providers have
a natural interest in dimensioning their service in regard to the SLA. Even for maximum
workloads specified in the contracts the worst-case delay has to hold. Moreover, due to the
compositional nature of Web Services, customers become providers themselves when they
offer their service compositions to others. Again, worst-case performance bounds are of
major interest here.
Analyzing models of SOAs is an option to plan, dimension and validate service perfor-

mance. For system modeling and analysis many methods exist. Queueing Systems and
simulation are two well-known approaches in computer science. They provide average and
thus long-term performance numbers quite easily using, probabilistic workload and service
process descriptions. Deriving system behavior in worst-case situations for performance
guarantees is elaborative and can be impossible for more complex systems. Receiving delay
bounds usable in SLAs for SOAs by model analysis is still a research issue.
A promising candidate to model SOA with SLAs is Network Calculus, an analytical

method to derive performance bounds for network components. Given deterministic
descriptions for arrival to and service in a network node hard bounds for network delay and
the required buffer memory in routers are computed. A fine-granular separation between
short- and long-term goals is possible. Network Calculus models also feature composition of
elements and fast analytical analysis. When applied to SOAs with SLAs the problem arises
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that SLAs are not suitable as a system description and information source for Network
Calculus models. Especially the internal service capacity is not exposed by SLAs, since
providers consider them as a business secret. Without service process descriptions Network
Calculus models cannot be analyzed.

The SLA Calculus is presented as a solution to this problem. As a novel contribution for
deterministic model analysis for SOAs, SLA Calculus is an extension to Network Calculus.
Instead of service process descriptions, it uses information on latency to characterize a
system. Delay of services is not a scalar analysis result anymore, it becomes a process
over time that is bound with Network Calculus-style curves, the delay curves. Together
with arrival curves the performance contracts in SLAs are formalized by so-called SLA
Delay Properties (SDPs) as a description for the service performance in worst-case. Service
composition can be modeled by serial and parallel combination of SDPs. The necessary
theorems for the resulting worst-case bounds are given and proved. We will present a
method to transfer these performance figures to the missing service process description
again. Apart from basic theory we will also consider solutions for practical modeling
situations. An algorithm to extract arrival and delay curves from measurements, enables
the modeler to include already existing systems without given SLAs as model elements.
Finally, we will sketch a selection method in form of an optimization problem for services
to support the dynamic service selection in SOAs with a Service Broker.
SLA Calculus model analysis will deliver deterministic upper and lower bounds for

workload capacities and response times. For upper bounds the worst-case is assumed, thus
bounds are pessimistic. The advantage of SLA Calculus is the ability to compute these
bounds very fast and to give system modelers a quick overview on system characteristics
considering extreme situations. In other modeling methods a lengthy transient analysis
would be required.

The strict perspective towards worst-case brought up another analysis target: Until now,
relatively little attention was paid to contract conformance between subsequent services
within service compositions. When services offer different workload capacities the arrival
rate to the system needs to be adjusted to avoid bottlenecks. Additionally, for service
compositions no response time contract can be guaranteed without internal buffering to
enforce a common arrival rate. SLA Calculus unveils the necessary buffer delays and is
able to bound them.
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1 Introduction

In the age of the Internet, applications are implemented as distributed software systems.
Service-Oriented Architectures (SOAs) are a design paradigm, based on the idea that
processing functions of software systems can be separated into independent instances that
are offered as services. Each service offers a capability such as processing power, data
storage or a computing function. A workflow using those independent services connects
them to a system serving a purpose. Service providers can either be local or remote,
service calls over networks are transparent for the application. A system may span over the
Internet without geographical restrictions. Basic services are combined to complex systems
by composition and may form hierarchies [94] that present themselves as a service again. It
is substantial to the SOA approach that every service has an exactly defined function and
interface [91]. This allows one to exchange services without functional modification of the
composed system. A common implementation of SOA are Web Services [94] that can be
hosted at different service providers with individual bias in quality, speed and service. The
system performance of SOAs is directly dependent on its components, bottlenecks decrease
the overall system performance. Not being able to distinguish between local, remote
and composed services the resulting service performance is unknown to the user and not
measurable unless one is a customer in contract. This can result in unclear situations where
users of a service are dependent on performance and availability of service components. As
SOAs have an important role in business applications they need to meet requirements in
availability and response times.
Performance guarantees of a service component are often committed by the service

provider to the customer in form of a Service Level Agreement (SLA) [17, 109]. SLAs are
a form of contract between a user and a service provider issued by service providers as
an offer or by customers as a requirement. Besides functional service descriptions and
monetary aspects, they include guarantees on service performance [17, 93]. Being part of a
business contract, service providers and customers have a substantial interest in providing
or renting services that are conform to their SLAs. On the one side customers rely on
service guarantees since their business may depend on the service. On the other side
providers are willing to fulfill SLA contracts to keep and generate customers. Additionally,
contract penalties may apply. With financial interests and legal issues, a line has to be
drawn between a service that performs conform to a SLA and a service that fails. For this
reason SLAs include maximum and minimum values providing limits on service workload
and acceptable performance figures. From the opposite view, one can assume that a service
will always react conform with its SLA, as long as the described worst-case workload limit
is not exceeded.
Models are used for performance estimation and validation of composed systems. Es-

pecially in early design phases analytical models help to estimate performance figures for
systems. While these models are very abstract compared to real systems they offer fast
analysis results for various applications. Service customers can use them to size the SOA

1



1 Introduction

for an intended workload and to select service providers based on performance to avoid
shortages at runtime. As performance guarantees in SLAs gain importance in SOAs there
is the need to integrate them in the modeling process, too. While SLAs of basic services
may offer sufficient information, resulting performance of a service composition is unknown
in the first place. A modeling method aware of SLAs would be able to use their values
next to the system structure as input. Model analysis would provide performance bounds
or even a SLA for the complete system.
This advantage is not limited to general performance estimation, it also supports the

process of SLA validation for systems. With an appropriate model service providers are
able to decide if a (composed) system given as a model is able to fulfill a required SLA.
Furthermore, since the model is based on guarantees for single services and the analysis
provides worst-case performance bounds the provider itself can pass guarantees to the
customers.

1.1 Challenges

Analytic performance models for SOAs require a formalization of performance limits and
guarantees found in SLAs. Results given by model analysis should show the maximum (and
minimum) results achievable by the system. This is necessary to make a clear distinction
between service models that fulfill requirements even in worst-case situations and those
which do not. Stochastic modeling methods like Queueing Theory allow computation
of bounds for simple models with elaborative analysis. For detailed models average
performance values in equilibrium are computable. In case of SOA with SLAs this introduces
several problems: System conformance to SLAs is hard to show if the model provides mean
values only. There is no indication if SLA limits are still violated in rare cases. This task
can be solved when a deterministic modeling method is chosen that is able to give a binary
answer as an analysis result. For models of packet switched networks the Network Calculus
approach [107] can deliver tight bounds on performance figures. However, mapping SOA
models to Network Calculus is restricted by the information given in SLAs.

A second challenge for SOA modeling is that SLAs present their service as some kind of
black-box. Performance commitments reflect the service behavior in extreme situations,
for example, for a maximum workload the worst-case response times are given in form of
upper bounds. In their information set the service performance is not included and thus
the processing rate for service requests is unknown. From the customer’s perspective and
due to the way SOA economy is structured, there is little chance to get this information
next to SLAs. So SOA models have to work with performance guarantees, but should
not depend on the knowledge of service rates. This conflicts with the usage of Network
Calculus models since their analysis depends on service rates. On the contrary, in Queueing
Theory the service rate is a factor that can be computed afterwards.

The hard limits on performance and absolute guarantees sketched above do not apply to
all SOA models. In real applications short phases of reduced performance or higher load
are accepted by providers and customers, as long as such phases have a limited duration.
The reason is that SOAs are influenced by many external factors. Services communicating
over a network cannot rely on a completely controlled environment and are influenced by
external network traffic, load and other factors. From the abstract model perspective the
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behavior of services or composed SOAs seems to be stochastic. Hard deadlines, as found
in embedded systems, are likely to be violated. Hence requirements in SLAs often have to
include tolerances. Target values for performance indicators are set, but violations up to a
given short period of time, regulated by rules in SLAs are allowed. A modeling method
reflecting the structure of SLAs should formalize and make use of this aspect. As we will
see, Network Calculus can provide this.
Modeling and validation of SLAs in SOAs differs in several characteristics from other

modeling domains. As a consequence, modeling for SOA has to consider the way perfor-
mance guarantees and workload restrictions are formulated in SLAs. On the one hand,
limits for performance figures of system components have to be formulated and on basis
of the analysis a decision whether a modeled system itself is compliant to performance
requirements should be possible. On the other hand, a way to deal with hidden service
rates in SLAs has to be found.
Based on these requirements the following problems are solved:

• How to build analytical models for systems when only SLAs for components are
known?

• How to model performance requirements found in SLAs?

• How to determine performance bounds of SOAs composed of services that feature
SLAs?

• How to validate if a given system can fulfill an SLA?

• And, for newly deployed services with unknown SLAs: How to estimate their model
parameters?

1.2 Contributions of this Work

Previous observations and requirements motivate the work done in this thesis: The
development of an algebraic modeling method to describe systems with nonfunctional
requirements for workload and delays based on (min,+) algebra. SLA Calculus is a
deterministic calculus for performance bounds in SOAs under worst-case assumptions.
Model analysis itself will give performance bounds based on the given limits of model
components. It is a strictly analytic approach that can be implemented in an efficient way.
This work will include theory, system model and application of a deterministic model for
SLAs.

The introduced SLA Calculus is based on Network Calculus, a system theory for computer
networks. By transferring the ideas of a model for packet processing to the modeling
domain of SOA, a framework for SLA validation is created. Network Calculus features
expressions for deterministic bounds of system workload and speed. Functions are used
to model these performance values with a high degree of flexibility. For the need of SLA
modeling the function set is extended with functions that bound the processing duration
for service requests with the same flexibility. The so-called delay curves are the main
contribution of this thesis. They enable SLA Calculus to model soft deadlines and other
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quantitative requirements regarding time behavior in SLAs, and to substitute the missing
service rate information. With the curve modeling concept the new calculus is able to
separate long-term target performance from temporary variations.
A special focus is set on computing guarantees for composed services. For serial and

parallel concatenations of single services to networks forming SOAs, the analytic framework
to derive arrival and delay bounds is constructed. Additionally, the resulting performance
figures describe the SOA as a service usable in hierarchical models again.
As a second contribution the means are provided to compute missing service curves for

SLA Calculus models. This can help service providers to size their systems according to
contracts closed with customers. In detail, for given arrival and delay curves the lower
bounds on service rates are found. Up to now, the feature of service rate computation has
been unknown in Network Calculus. On the contrary, in Queueing Theory this is quite
simple due to operational laws and Little’s theorem. This work transfers this relationship
of arrivals, delay and service to SLA Calculus.
Another aspect is the inclusion of components with unknown SLAs in SLA Calculus

models. To provide performance bounds for these components, a curve estimation procedure
from measured traces is provided. Some curve estimation schemes exist for Network
Calculus, but they deliver too detailed results or are limited to packet traces. Therefore, a
completely new method has been developed, that addresses the arrival properties of jobs
to a service provider, which differ from packet arrivals to a network component in Network
Calculus.

1.3 Outline

This thesis proposes SLA Calculus an analytical method to model and validate SLAs in
SOAs, describes its mathematical foundation and compares the results to other modeling
methods suitable for SOAs. The text consists of eleven chapters and an appendix.
First, SOAs are introduced as the main use case. Although the main results in this

work are on a very abstract level, the application area is highlighted in Chapter 2. Some
derivatives of SOA like Web Services or Cloud-Computing will be distinguished. BPEL as
description language is shown for example to get an insight into the structure of a SOA.
The chapter also includes a discussion on the qualitative and quantitative properties of
SLAs. For SLAs several description languages exist, WSLA will serve as an example here.
Chapter 3 discusses the special aspects of models for SOA with the inclusion of SLAs.
The need to build models based on performance guarantees and the requirements on such
appropriate modeling language are formulated.

As a second part, modeling and analysis techniques to describe and validate performance
aspects of SOAs are summarized. In detail, we focus on discrete event systems. Widely
used is Queueing Theory as stochastic modeling method, an introduction of its basics is
given in Chapter 4. Several analysis techniques for Queueing Theory and the underlying
more general Markov Chains are presented. We will see that queues can be used to
model SOAs, but efficient analysis options for performance bounds are limited for detailed
models. Simulation as a second analysis technique and its application to SOAs is shown
in Chapter 5. In comparison, working with bounds is natural with the basic technique of
this work, Network Calculus. For Network Calculus, the main ideas of the (min,+)-algebra
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are sketched and Network Calculus is presented in detail in Chapter 6 as a deterministic
network system theory. Real-Time Calculus as an application of (min,+)-algebra to
real-time systems is briefly introduced.
SLA Calculus as the main contribution of this thesis forms the last part. In order to

bound it, Chapter 7 points out the approach of describing delay in form of cumulated
functions. This is used to form a model description for SOAs with SLAs with quantitative
requirements in Chapter 8. SLA Calculus models do not require parameters on internal
service performance, Chapter 9 includes a method to compute the missing service curve.
Apart from analytical modeling another elementary problem is solved in Chapter 10. It
describes a method to estimate the input parameters to SLA Calculus from measurements.
Finally the thesis will be concluded and several issues left open for future research are

highlighted.

1.4 Previous Publications

This thesis is based on three publications [117–119] with myself as the sole author and
contributor. The articles have been published and presented at the conferences, ValueTools
2011 [117], MMB 2012 [119] and Winter Simulation Conference 2012 [118].

Basic work for the SLA Calculus is included in [117] with the presentation of delay flows
and curves as an addition to the Network Calculus, to model quantitative requirements
in SLAs. This idea reappears in Chapter 7. The work also includes a first approach on
service curve computation included in Chapter 9.

Publication [119] states the sketched ideas in [117] more precisely, hence it also contributes
to Chapter 7. The second, analytic approach to service curve computation Chapter 9 was
also published in Chapter [119].

Estimation of arrival and delay curves for SOAs is the contribution of [118]. Chapter 10
is founded on these algorithms.
Additionally earlier results from publications with co-authors are used.

• SIMUTools 2008: [15], “Simulating Process Chain Models with OMNeT++“. ProC/B
is a modeling language initially used for logistical process descriptions. Two parallel
diploma thesis [53, 128] described and implemented a minimalistic prototype for
analysis with the OMNeT++ simulation environment. The author reviewed the
concepts, completed still missing model elements and rewrote significant parts of the
prototype. In [15] the project results are presented.

• SIPEW 2008: [16], “A Framework for Simulation Models of Service-Oriented Archi-
tectures”. The work is on SOA performance analysis with ProC/B using the ported
model library from [15]. Additionally, the SOA model includes a second model tier
that reflects TCP/IP traffic generated by distributed services. The author designed
and implemented new model components connecting both tiers and was responsible
for running and analyzing the example model.

• WinterSim 2009 [17], “Simulation Based Validation of Quantitative Requirements
in Service Oriented Architectures“. Simulative SOA performance analysis as in [16]
was extended with measurements tailored to quantitative requirements in SLAs.
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Programming, experiment runs and the concepts how to integrate the measurements
into the model was done by the author.

• Simulation Journal 2010: [19], “A Simulation Environment for Hierarchical Process
Chains Based on OMNeT++”. This is a more detailed description of mapping
ProC/B to OMNeT++ initially described in [15]. The ProC/B toolkit evolved since
the first publication. A documentation of the introduced class hierarchy in the
model library and the general message-based programming style is given. The new
model is compared to its predecessor. The author contributed significant work in
implementation and the statistical comparison.
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In this chapter SOAs and SLAs are introduced as a research context and main application
field for the SLA Calculus. The concept of a service and its quality is introduced. Several
implementations of SOAs have been developed, the most important class, Web Services, is
explained in more detail. A special focus is on SLAs for such services, the main terms are
highlighted and WSLA as an exemplary SLA definition language is presented in syntax
and semantics.
The term service is used in various situations. In general a service describes a specific

work a person or machine offers to others. In case of computer science, services are offered
by computers or more specific, the software running on the system. In this work the
term service is used in two circumstances: to describe communication over networks and
for networked software components. Telecommunication systems offer a communication
service. The term service is used for the functionality of a network to transmit data
packets (RFC 2475 [24]). For Internet hosts implementing the TCP/IP stack the service
of data transmission is offered by an operating system. Programs can use connections to
other systems by socket interfaces that communicate with the local TCP/IP transport
layer implementation. In recent years the concept of network service evolved. With the
emerging SOA as a design paradigm, service is also used for the higher level concept of
data processing.

2.1 An Architecture for Distributed Systems

The generic term SOA describes a software paradigm for networked, distributed systems.
Software resources in SOAs are offered as services [91]. A system is made of (loosely)
coupled, distributed services. The concept of a service in SOA is application-centric
and abstracts from simple data transmission in RFC 2475 [24]. To describe the concept
Papazoglou and van den Heuvel [91] give a definition of a service in SOA:

Definition 2.1.1 (Services in SOA). A service is a pair of interface and implementation
representing a (reusable) unit of work. In SOAs a service has the following properties [91]:

1. maintains its own state (self-contained)

2. platform independence

3. dynamic location, invocation and recombination

Functions realized in a software are packaged in protocol containers that offer a well
defined call and return syntax. The published interface of a service is described in a
standard definition language [91]. On an abstract level, a service is a pair containing an
interface and a private implementation linked to it (Figure 2.1). Service consumers can
use services without any knowledge of implementation details [85, 91]. Components in
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Implementation

Interface

Service

Figure 2.1: A SOA service abstracts an individual implementation with a defined interface

SOAs hide their implementation, only their Application Programming Interface (API) is
known and can be discovered, the computing architecture running the service remains
hidden. With this implicit encapsulation SOAs are independent of specific hard- or software
technology [91]. To stick with the picture of the layered TCP-IP stack, a service in a SOA
is a construct located at the application layer.

Example 2.1.1. Services accessible via Internet can be: user account management and
authentication, text translation, credit card payment, data storage (WebDAV), stock ticker,
synchronization architecture, a complete Enterprise Resource Planning system, tracking
and tracing for parcel services and transaction management. Apart from services providing
necessary infrastructure for bigger systems one can also interpret the following examples as
services: providing a content management system, hosting a web shop or converting web
pages to versions for mobile devices.

The list in Example 2.1.1 implies the intermediate step towards a SOA. Services are
not built for one purpose, they are reusable and can be offered to a private group of
users or openly via Internet. Additionally, services can be coupled and composed to more
sophisticated services [94]. In this way SOAs are built [91] with services:

Definition 2.1.2 (Service-Oriented Architecture). A system composed of services is a
Service-Oriented Architecture.

A webshop can be set up from available services in the net by using a database, a
payment service, user management and connection to tracking and tracing systems. In
an ideal scenario, all functions of composed systems are conducted as services, even the
fraction of functionality provided by the system maintainer itself.

2.1.1 SOA Workflows

Commonly SOAs are introduced as a technology to build business applications [1, 91]. One
key factor that has drawn the attention to SOAs is the reflection of structured business
activities and computing infrastructure in the same meta-model: workflows.

Companies tend to structure their activities into process descriptions. A business process
is a set of activities in a given order to meet a business objective [1, Chapter 3.3.2].
These process descriptions can be seen as a model of the company structure and can
help in documentation, resolving errors and optimization of time and costs. A business
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process description that is executable by computers or human participants is a workflow [1,
Chapter 3.3.2]. The term workflow comes from office automation projects [1] that existed
in companies long before computers were common and paper files were distributed between
departments in a structured way.
Activities performed in a company can be ordered and executed conditionally, so work-

flows can be seen as some kind of scripting language for business objectives. Activities are
ordered in a sequence with the semantics, that an activity has to finish before the next one
starts, thus a workflow forms a directed graph. Decision nodes can branch the workflow
into variants, parallel execution and synchronization of activities can be included as well.
There is no standardized model or graphic representation for workflows, but UML activity
diagrams [96] or variations cover the limited workflow grammar sufficiently.
SOAs are offered as a solution for tighter business integration without any shared

middleware. Each party can offer a subset of their internal activities as a service via
network. This allows a more granular control of the information flow and, when done
correctly, does not expose business secrets to customers or competitors. Additionally, a
service offered via interfaces can be replaced by another service with the same interface. In
this way, SOA enables the coupling of relevant parts of business information systems even
in short-lived business relationships.
SOAs can help to reuse existing legacy applications by encapsulating them as services

and combine them with new applications [9]. Many companies run legacy systems (“do not
touch, always repair”) that cannot be replaced easily [1]. The strict separation of interface
and implementation for a service gives a blueprint on how to integrate these systems. The
SOA approach allows one to use old, proprietary software systems as a component in an
open and standardized system.
Adopting company structures to SOA was a widely discussed theme in recent years

[1, 9, 91]. The topic and technologies became more mature over the time and standards
evolved, so that aspects of SOA are found, at least as a design philosophy, in many software
products intended for business use today. In the following the key promises and advantages
that come along SOAs are examined.

2.2 Web Services

SOAs are a design philosophy, not a specific technology [91]. They are a generic term for
loosely coupled systems. Web Services are a specific manifestation of this idea [85, 91, 94],
they compare to SOA like C++ to Object-Oriented programming paradigms.

The Web Service paradigm introduced by W3C [121] uses a technology stack built around
the XML data format. Interface descriptions are done with Web Services Description
Language (WSDL) [40]. A WSDL document includes call and response URLs for a Web
Service and their parameter structures and serves the same function as method signatures
in programming languages. Call and return format in Web Service are Simple Object Access
Protocol (SOAP) messages. In an ideal Web Service scenario (Figure 2.2) services can be
discovered from service brokers by implementing a Universal Description, Discovery and
Integration (UDDI) registry [89]. The service provider can advertise services by sending
WSDL descriptions to the broker. Potential service consumers call the broker and receive
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Figure 2.2: A Web Service scenario: A customer queries a service broker for a service. The
returned WSDL document is used to establish a SOAP-based communication
to the service

answers in form of WSDL documents used to initiate the direct communication between
the customer and service provider.

Example 2.2.1. The company HollowEarth Inc. offers services based on geospatial
information systems, their best selling and sophisticated product is a geocoding service.
Geocoding is done for digital road networks as found in navigation systems. These networks
are large graphs with nodes as road intersections and edges as roads. Given an address in
form of text (thus strings) a geocoder identifies the road graph edge or node that represents
this address. The result can be used as input into a route planner or a negative geocoding
result can help to identify non-existing addresses. The geocoding process is quite laborious
as incomplete data, spelling and typing errors in the address have to be considered and
corrected. In the past customers sent a file with a set of addresses to geocode to HollowEarth.
Several hours later a list of road network IDs was returned. Now HollowEarth has decided
to offer geocoding as a service to allow customers to integrate the product into their business
workflows. They offer their algorithm as a Web Service to other users by accepting SOAP
requests and issuing a WSDL file to a UDDI registry listing geospatial services.

2.2.1 Service Composition

A single Web Service is intended to perform a well-defined task. If several of those atomic
services should be used to perform a more complex task, they can be combined to a
new service. A service implementation based on other services is a composite service [1,
Chapter 8]. Service composition includes invocations of other services based on underlying
business logics [1], thus sequencing and branching is supported. If such a composed service
is requested, it behaves like a basic service, hence the composition is transparent to the
caller. Similar to procedural programming languages, this allows system modelers to form
hierarchical systems including encapsulation and hiding of inner structures. Composition
also includes the idea that used services can be located at different companies (or providers),
while workflows are limited to one organization.
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Figure 2.3: Orchestration of Services: A workflow execution engine request services A, B
and C in sequence. Service C is a composed service.

Since services in a composed service remain independent, a Workflow Execution Engine
(WEE) controls the sequence and conditions of service requests. From a very abstract
perspective WEE run scripts defined in service composition languages and provide service
interfaces themselves to enable service composition. Figure 2.3 shows how three services (A,
B and C) are composed to a sequence of services. The WEE responsible for the composition
calls the first service by sending a message to its interface. There is no direct connection
between services A and B, service A returns a message to the calling WEE instead. Only
then, probably after some internal processing and format conversions, the control flow
is delegated to service B by message. Service C is a composition of services D and E
itself. A second WEE unites them by executing an own composition script on request,
yet the internals stay hidden by the interface. In [111] van der Aalst gives an overview
on the supported workflow patterns for several Web Service composition languages. The
exemplary language to model process interactions in simple or composed Web Services
is (the) Business Process Execution Language (BPEL) [94]. Since WEEs are intended as
successors or replacements of normal middleware products, their functionality extends far
beyond script execution. They may provide a database access layer, load balancing, security
frameworks and other (often vendor-specific) features handy in business environments.
Well-known WEE implementations at the time being are WebSphere (IBM), BizTalk Server
(Microsoft) or jBPM (jBoss).

Example 2.2.2. ParcelSink Ltd. offers a door-to-door parcel delivery service. Their
payment model is based on the distance between sender and receiver addresses, so ParcelSink
considers both locations to determine the transportation fee. Their workflow to process
a transportation request is shown in Figure 2.4. The first operation is to determine
the start and destination address from the customer, this can be done be telephone or
website. Geocoding is a service composition with parallel calls to two services with start
and destination address as input. Since geocoding comes along with additional costs and
waiting time, a catalog of previously used addresses exists and is used when a customer
returns. When both geocoding invocations are done (thus the workflow has to synchronize)
their result is used to determine the transportation costs for the invoice. Two invoice copies
are sent by email to sender and receiver.
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BPEL

The Business Process Execution Language for web-services, denoted as WS-BPEL or just
BPEL, is a standard-based service orchestration technology [57, 79]. BPEL is used to
describe interactions of Web Service to reflect business processes [1, 9, 94]. The XML-based
language provides means to describe control logics for a Web Service composition [1].
Roughly, BPEL is a high level scripting language triggering service calls to Web Services.
In fact, orchestrated web services are considered as executable processes [94] in BPEL.
A service composition is based on a WEE, starting the script is again triggered by a
Web Service call. The service is only visible by its interface, this allows BPEL to define
composed and hierarchical workflows.
BPEL supports Web Service composition but gives no formalism to define an individual

Web Service within the language. This gap to describe basic components is filled by
using WSDL [1, Section 8.5.1], [9]. Basic service components described in WSDL are
considered as an abstract interface description. The network address (URL) of the actual
service location is left open. It is expected that BPEL process engines add the appropriate
URLs at runtime based on their specific configuration [1, Section 8.5.1]. That provides
the opportunity to implement dynamic service composition in the process engine [79, 83].
Service providers, as long as they implement the interface as specified, can be selected
based on pricing or performance criteria without changing the workflow itself. Reducing
BPEL to a scripting language this would be comparable to changing the environment path
to executables.
For service composition and orchestration the scripting part of BPEL provides control

structures [1, 57] as found in procedural programming languages:

invoke start a service call,

receive wait for SOAP messages, the script blocks and

reply send a SOAP message to another Web Service.

The expression set also includes control components dedicated to conditional and parallel
workflows [87].

sequence A sequence of services that have to be called one after the other

if/then/else conditional statement allowing to choose between several execution paths
depending on a variable. It is comparable to conditions in higher programming
languages. BPEL 1.1 defines switch statements [1] instead.

while A loop repeating a workflow part. It is comparable to while-loops in higher pro-
gramming languages.

flow A synchronization element for a set of activities. All activities are started in parallel
and the flow element is considered as finished when all started activities are done.

Example 2.2.3. ParcelSink Inc. has modeled its main business workflow with BPEL, an
excerpt from the file with central XML tags is shown in Listing 2.1. The process definition
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for transportBookingProcess starts with naming the participants in this workflow by enu-
merating <partnerLinks/>. Their name attributes relate to the customer itself and WSDL
descriptions to used services. The next mandatory section, identified by <variables/>
defines the variables used in this script.

The workflow description starts in BPEL right after the variable definition using control
expressions. Here a sequential process order is chosen. The workflow script execution is
triggered by messages received from external sources (Line 19). Start- and destination
addresses are saved in two variables and, since service invocations accept a single parameter
only, are assigned to complex variable transportJob (Line 26). The first invocation
starts the fetchAddressService to check for completeness of both address entries. Then
the workflow decides if the addresses are known or have to be geocoded. If known the
catalog service is started and the result overwrites the transportJob variable (Line 45).
Otherwise two synchronized geocoding operations are started in Line 37 using the <flow>
tag. The workflow will block until both addresses are verified and mapped to a road network,
the result is stored in transportJob again. The execution leaves the scope of the if-
block and processes the last two commands. Two invoices have to be printed and sent,
thus printInvoiceService is requested two times using a <while> block (we omit the
statements to increment i). Finally the workflow is finished, if a SOAP message with the
transfer papers was sent to the service caller (Line 55).

The BPEL file in Listing 2.1 is missing some definitions and serves as an example only.
For detailed information on BPEL syntax we refer to its language definition in [57].

Listing 2.1: BPEL process description for ParcelSink Ltd.
1 <process name =" transportBookingProcess " xmlns =" http :// docs.oasis -open.

org/ wsbpel /2.0/ process / executable ">
2
3 <partnerLinks >
4 <partnerLink name =" customer " ... />
5 <partnerLink name =" fetchAddressService " ... />
6 <partnerLink name =" startGeocoder " ... />
7 <partnerLink name =" destinationGeocoder " ... />
8 <partnerLink name =" catalogService " ... />
9 <partnerLink name =" printInvoiceService " ... />

10 </ partnerLinks >
11
12 <variables >
13 <variable name =" StartAddress " ... />
14 <variable name =" DestinationAddress " ... />
15 <variable name =" transportJob " ... />
16 </variables >
17
18 <sequence >
19 <receive partnerLink =" customer " operation =" bookTransportStart "

variable =" StartAddress " />
20 <receive partnerLink =" customer " operation =" bookTransportDestination "

variable =" DestinationAddress " />
21
22 <assign >
23 <copy >
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24 <from variable =" StartAddress " />
25 <from variable =" DestinationAddress " />
26 <to variable =" transportJob " />
27 </copy >
28 </assign >
29
30 <invoke partnerLink =" fetchAddressService " operation =" checkAndVerify "

inputVariable =" transportJob " outputVariable =" transportJob " />
31
32 <if >
33 <condition >
34 bpel: isKnown ( StartAddress , DestinationAddress ) == false
35 </condition >
36 <flow >
37 <invoke partnerLink =" startGeocoder " operation =" geocode "

inputVariable =" StartAddress " />
38 <invoke partnerLink =" destinationGeocoder " operation =" geocode "

inputVariable =" DestinationAddress " />
39 </flow >
40 <assign >
41 ...
42 <to variable =" transportJob " />
43 </assign >
44 <else >
45 <invoke partnerLink =" catalogService " operation =" retrieveAddress "

outputVariable =" transportJob " />
46 </else >
47 </if >
48
49 <while >
50 <condition > i <= 2 </condition >
51 <invoke partnerLink =" printInvoiceService " operation =" printInvoice "

inputVariable =" transportJob " />
52 ...
53 </while >
54
55 <reply partnerLink =" customer " variable =" transportJob " />
56 </sequence >
57 </process >

2.3 Service Level Agreements

With the development of SOAs many systems, even commercial ones, will rely on outsourced
services hosted on remote servers. By doing so, the user of the service not only receives
processed computing jobs from the service provider, but also uses (partially) several
resources at the computing center:

• hardware where the service is executed

• software licenses

• CPU cycles
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• storage

• computing infrastructure (building, cooling, etc.)

• energy

• Internet traffic

• know-how of system administrators

• other non-free items like IP addresses, domains, etc.

This list is far from being complete, but serves as justification to discuss an important aspect
of services in SOAs: One has to pay for them. Business models for SOAs include monthly
fees or a pay-per-use charging [9]. Users become customers and system administrators
become business contractors. This finally leads to the situation that some kind of quality is
expected from services in exchange for money. Expectations and promises for service quality
become part of business contracts and finally, they are considered as a requirement for the
service. Such requirements like reliability and response times are mandatory to integrate a
service with a second or build a composed system. The manifestation of requirements for
services are Service Level Agreements [17, 23, 86, 109].
For networked systems RFC 3198 [125] gives a definition for an SLA:

The documented result of a negotiation between a customer/consumer and
a provider of a service, that specifies the levels of availability, serviceability,
performance, operation or other attributes of the service [RFC2475]. [. . . ]

The term service in this definition is originally used for the functionality of a network to
transmit data packets (RFC 2475 [24]). In the past the concept of network service evolved.
Services in a network became a higher level concept of data processing in computer systems
reachable over a data network.
RFC 3198 makes a difference between the party that offers the service (provider) and

the user of the service (customer). Although for simple systems customer and user can
be the same person, we will use this terminology for roles in the remaining work. SLAs
can be issued by service providers as an offer or by customers as a requirement. In any
case, SLAs are a contract between user and service provider. They can be set up as part of
paper contracts in form of human-readable text (and thus unusable for automatic service
brokering) or in electronic form (c.f. Section 2.3.3). SLAs include two sets of specifications
[17, 23, 86, 93, 109]: a functional service description and requirements for runtime. This
thesis will mainly focus on the second SLA part.

2.3.1 Functional Properties

First of all, it has to be defined what a specific service is able to do and how it can be used.
Considering Definition 2.1.1, these requirements are mandatory. These are functional or
qualitative requirements in an SLA. As a rule of thumb, service properties invariant at
runtime are functional properties.
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The service syntax or more specifically, its interface description according to Defini-
tion 2.1.1 is expressed using description languages. For Web Services WSDL [40] is used.
It is XML-based and thus machine readable, a property that helps in automatic generation
of source code to access the service. Apart from these technical properties the functional
SLA part also includes properties important for business applications: pricing and charging
of service usage may be a factor. This can include, for example, payment modalities. Each
single job request or a monthly fee may be charged. Also important in business contracts
are juridical properties that delegate responsibility between contractors. This can include
terms of usage and modes for giving compensation if the rented service is dis-functional.

2.3.2 Nonfunctional Properties

The nonfunctional SLA part includes fractions of the contract that can be measured and
quantified, hence its entries are called quantitative requirements [17] or SLA metrics [93].
Barros and Dumas [9] include guarantees, pricing, penalties, delivery modes in nonfunctional
service properties. We exclude monetary properties for pricing here and interpret them as
a static part of the interface description. However, some SLA specifications may include
rules for contract penalties if certain quantitative requirements are not met by the service
at runtime [9, 108]. Like the functional part, quantitative requirements are part of the SLA
contract between user and provider. The metrics commonly found in SLAs [93] can be
divided into two subgroups: restrictions for the customer and obligations for the provider.
The following enumeration of SLA metrics used in this work is far from being complete in
general. An extensive list is available in [93].
Workload restrictions affect the usage of services by users or customers since they are

not free to use the resources of this service vastly. Sending an unlimited number of requests
may lead to overloaded computing resources at the (probably unprepared) service provider.
In general, service providers can only offer limited resources. They have to be continuously
provided and maybe shared, and if one or several customers exceed their quota the service
performance will degrade for all. Response times for requests are elongated and buffering
occurs. In extreme cases the provider will run out of storage space and deny further request.
To ensure system functionality and to achieve customer satisfaction service providers may
issue restrictions on the workload sent to their systems. To monitor restrictions and to
detect violations the workload has to be quantified [93]. Metrics used to specify SLAs
frequently found in system performance models are given in the following list.

Request Rate The number of service calls per time unit. It may be limited to reduce the
service load.

Job Size When the size or complexity of a request will use computing resources there may
be an upper bound per request or per time interval. Quantification is done in Bytes,
data sets or CPU cycles.

With the restrictions for workload, a service provider should be able to dimension and
distribute its computing resources. This finally allows him or her to give some guarantees
on the service performance.
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Response Time Time gap between request and service response. For typical computing
applications this is measured in small time scales like milliseconds. In SOA, depending
on the service complexity, response times can range from seconds to hours.

Throughput Number of processed requests per time interval.

Utilization Fraction of time the service is not idle

Availability The service shall be reachable and reactive for a certain percentage of time.
For obvious reasons this is a minimum requirement. For example, 99% percent
availability per year results in up to 4 days of downtime per year.

A more formal definition of request rate, response time, utilization and throughput using
average values will be given in Section 4.2 for Queueing Systems.
When giving guarantees and enforcing restrictions one has to decide by some criteria

if they are fulfilled or violated. By defining limits for criteria the maximum value a
performance metric is allowed to reach is set. For example, maximum request rates can
be used to limit workload in SLAs while maximum response times define deadlines for
each request. While maximum (and minimum) criteria classify workloads clearly criteria
based on statistics are common as well. Most notable are criteria using average values,
often in combination with an associated time interval. However, as we will see in the
following, defining contracts with statistical values has some drawbacks for SLA validation
and modeling. Of course, other statistical figures (median, etc.) are also possible.
In literature different terms for the set of quantitative requirements in SLAs are used.

Two terms, Quality of Service [86] and Service Level Objective [125] will be highlighted.
They cover the same set of values, but differ in their intention (Figure 2.5).

Quality of Service

When services are used by contractors in a productive environment they expect some
predictability for the service performance. As with most systems, performance, availability
(reliability) and security are of major interest [85]. A frequently used term for quantitative
requirements in SLAs is also Quality of Service (QoS). QoS is related to the nonfunctional
properties a service should offer. QoS is about performance metrics [86], response times
and throughput are direct results of the QoS (c.f. [85, p. 647]). In [83] QoS is considered
as different levels of performance and reliability of a functional identical service. A single
SLA file can include a single functional but diverse nonfunctional parts of a service (see
Figure 2.5. They often differ in guaranteed service quality and in pricing. The QoS levels
can be chosen when the service is selected and further negotiations with the provider begin.

Example 2.3.1. HollowEarth offers three QoS levels for their geocoding service, offering
the same functionality The community edition is for free, but neither response times nor
availability are guaranteed. For a fixed rate per request the professional level is available
with a guaranteed response time, however the number of requests per time unit is limited.
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Figure 2.5: Partition of Properties in Service Level Agreements

Multiple QoS levels per SLA are handy during negotiations, though obviously an SLA
with n QoS levels can be replaced by n SLAs with one QoS level. In the remainder we will
assume one QoS level for all SLAs only.

Service Level Objectives

A guideline to verify if a service meets the intended QoS level are Service Level Objectives
(SLOs) [125]. RFC 3198 [125] states on SLOs:

Partitions an SLA into individual metrics and operational information to
enforce and/or monitor the SLA. “Service Level Objectives” may be defined as
part of an SLA, [...], or in a separate document. It is a set of parameters and
their values. The actions of enforcing and reporting monitored compliance can
be implemented as one or more policies.

SLOs define thresholds for performance and reliability properties that help to decide if a
service conforms to a QoS level [126]. Thresholds can be realized in form of maximum/min-
imum values or stochastic expressions based on measurements. [17] shows a blueprint how
Service Level Objectives in SLAs can be verified in a simulative environment.
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Tolerances for SLOs

Response times in SLAs are formulated in a way that a certain tolerance within a time
interval is allowed. The lack of hard deadlines as common in embedded real-time Systems
[103] originates from communication infrastructure used for SOAs. Regardless whether
a private network or the Internet is used, data communication is not 100% reliable in
terms of transmission rates and connections stability. In a network too many factors and
events influence the system performance [17]: heavy traffic load, cross-traffic, change of IP
packet routes, system downtimes and maintenance, etc. . For the intended application field
of business computing for SOA or even Cloud Computing, these communication latency
variations do not matter as they are not time critical. The deadlines found in an SLA
contract are either requirements of a customer or offers by the provider, but not a central
system property as in real-time systems. With the background of unreliable networks,
SLAs try to quantify their tolerance on deadlines in SLOs. However, in a complete system
performance model these tolerances have to be included.
We will not discuss the specific and in-probable case when the SOA paradigm is used

for real-time system design. This would mix two opposed ideas and is a research topic on
its own.

2.3.3 SLA Definition Languages

To specify SLAs for Web Services several attempts towards an SLA definition language
have been made. Two dialects to be mentioned are WS-Agreement [3] and SLAng [69].
The Web Service Level Agreement (WSLA) language [78] as a third variant gained a big
momentum in the industry and is implemented in various software systems [87]. WSLA
tries to cover the complete life-cycle of a Web Service. This includes specification, run-time
measurements to control the SLA and even a set of actions or penalties that apply when
the SLA is not met.
In the following, the language elements found in WSLA will be briefly introduced to

give the reader a notion of how SLAs are stated. The language format is XML with the
drawback that even small SLA aspects become lengthy files. Hence for the given WSLA
example a shortened and simplified WSLA syntax is used.
In principle, WSLA documents include three sections identified by XML tags: The

<Parties> tag allows one to name all participants that are involved in the agreement, a
functional property. <Obligations/> holds nonfunctional properties, a mixture of both is
in <ServiceDefinition/>.

Example 2.3.2. Parcel service ParcelSink and Geoinformation provider HollowEarth have
agreed on an SLA for the geocoding service using a file in WSLA syntax. Listing 2.2 shows
the file with the <Parties/> section for all participants (<ServiceDefinition/> and
<Obligations/> are shown later). HollowEarth Inc. is declared with <ServiceProvider/>
in Line 3 and related to unique the string name="HollowEarth". The service consumer
ParcelSink adds itself to the WSLA file with <ServiceConsumer name="ParcelSink">.

Listing 2.2: WSLA Example
1 <SLA xmlns =" http :// www.ibm.com/wlsa >
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2 <Parties >
3 <ServiceProvider name =" HollowEarth ">
4 <Contact >
5 <Street > Convex Road 1</ Street >
6 <City > Atlantis City </City >
7 </Contact >
8 </ ServiceProvider >
9

10 <ServiceConsumer name =" ParcelSink ">
11 <Contact > ... </Contact >
12 </ ServiceConsumer >
13
14 </Parties >
15
16 <ServiceDefinition name =" geocodeService ">
17 ...
18 </ ServiceDefinition >
19
20 <Obligations >
21 ...
22 </ Obligations >
23 </SLA >

Service and Measurement Definitions

The <ServiceDefinition/> section identifies one or multiple services part of the SLA
contract. Each definition can also include several operations that are offered by the service.
In particular the <Operation/> tag is from major interest as it connects a WSDL service
interface to the SLA contract. For each interface performance indicators can be identified
with <SLAParameter/> tags. Their unit and semantic can be freely defined based on the
underlying measurements. An <SLAParameter/> tag names a performance value and adds
some meta-information and access regulations to it, however the real measurements are
defined in <Metric/> tags and each <SLAParameter/> tag is based on one.
The metrics specify what and how is to be measured. Actual information providers in

<Metric/> are the <MeasurementDirective/> tags. They gather information by giving a
reference to performance statistics implemented in WEEs. The WSLA standard does not
specify any obligatory statistic functions [78], so implementations may vary. More generic
is the reference to an URL that can be requested for the performance value. Functions
defined over <MeasurementDirective/> tags can be used to build more sophisticated
performance indicators. The <Function/> tag can apply algebraic operators to values or
construct time-series from sequential measurements. Next to basic addition and division,
other operators for time series exist, most of them adapted from statistics (mean values,
median, counters, change rates, etc. ). Metrics carry also a <Source/> tag with the name
of the party that is responsible for the measurement.

Example 2.3.3. For the WSLA between HollowEarth and ParcelSink a service and metric
definition is shown in Listing 2.3 (this replaces <ServiceDefintion/> in Listing 2.2). Web
Service geocodeService offers the operation geocodeAndVerify described by a WSDL file.
Two service performance indicators are associated with this operation by <SLAParameter/>
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tags: workload (Line 4) and responseTime(Line 8). Their values will be used later to
define the Service Level Objectives based on a implication. For the workload parameter it is
stated that the workloadMetric metric (Line 16)is used for measurement.

While the definition of <SLAParameter/> tags serves for administrative functions a
main part of functionality in a WSLA file is found in <Metric/> definitions. The
workloadMetric is based on a concatenation of two other metrics, callCountTimeSeries
and callCount, that shall be explained in reversed order. Metric callCount (Line 45)
will provide a counter of service invocations since the system was started. The ac-
tual invocation count (and thus the connection to the running system) is gathered by
a <MeasurementDirective/> tag referring to a server sided method InvocationCount.
Metric callCount is used by metric callCountTimeSeries to construct a list of measure-
ments with each element associated to its measurement time (Line 37). In WSLA such lists
are named time series and are instantiated by a function TSConstructor. In this case the
list has a limited length of two elements only, when a new value is added the oldest one is
dropped. The measurement schedule for this metric is not shown in this example. Typical
schedules are measurement cycles of one or five minutes. Finally the time series is used in
metric workloadMetric to determine the number of service invocations between two points
of time. Three functions are used here, two select values from callCountTimeSeries
(Lines 19 and 27) while the surrounding one subtracts one value from the other (Line 17).
The expression is rather lengthy, but in principle it only calculates

workloadMetric = callCountT imeSeries[0]− callCountT imeSeries[−1] (2.1)

if the time series of length n can be indexed by 0 down to −(n− 1).
The second SLA parameter responseTime is based on responseTimeMetric (Line 52),

being a composition of responseTimeTimeSeries and responseTimeSource. In metric
responseTimeSource (Line 66) a special service interface is used to determine the service
delay. It can start the geocoding service without any address data (HollowEarth will add
two random addresses on its own) and return the seconds until the service responses. Again
a time series is constructed with these measurements in metric responseTimeTimeSeries,
the data structure takes up to five measurements (Line 58). The way the response times are
recorded is quite error-prone. Possible error sources are, for example, alien network traffic
or a short downtime of the test service. For this reason metric responseTimeMetric does
average (Line 53, wsla:Mean) the five values in responseTimeTimeSeries to minimize
the effect of temporary measurement errors.

Listing 2.3: WSLA Example Service Definitions
1 <ServiceDefinition name =" geocodeService ">
2
3 <Operation name =" geocodeAndVerify " xsi:type ="

WSDLSOAPOperationDescriptionType ">
4 <SLAParameter name =" workload ">
5 <Metric > workloadMetric </ Metric >
6 </ SLAParameter >
7
8 <SLAParameter name =" responseTime ">
9 <Metric > responseTimeMetric </ Metric >
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10 </ SLAParameter >
11 </Operation >
12
13
14 <!-- workload -->
15
16 <Metric name =" workloadMetric " type =" float" unit =" long">
17 <Function xsi:type =" Minus" resultType =" long">
18 <Operand >
19 <Function xsi:type =" TSSelect " resultType =" long">
20 <Operand >
21 <Metric > callCountTimeSeries </ Metric >
22 </Operand >
23 <Element >0</ Element >
24 </Function >
25 </Operand >
26 <Operand >
27 <Function xsi:type =" TSSelect " resultType =" long">
28 <Operand >
29 <Metric > callCountTimeSeries </ Metric >
30 </Operand >
31 <Element >-1</ Element >
32 </Function >
33 </Operand >
34 </Function >
35 </Metric >
36
37 <Metric name =" callCountTimeSeries " type ="TS">
38 <Function xsi:type =" TSConstructor " resultType ="TS">
39 <Schedule > workloadSchedule </ Schedule >
40 <Metric >callCount </ Metric >
41 <Window >2</ Window >
42 </Function >
43 </Metric >
44
45 <Metric name =" callCount " type =" long" unit =" calls">
46 <MeasurementDirective xsi:txpe =" InvocationCount " resultType =" long"

/>
47 </Metric >
48
49
50 <!-- response time -->
51
52 <Metric name =" responseTimeMetric " type =" double " unit =" seconds ">
53 <Function xsi:type =" wsla:Mean" resultType =" double ">
54 <Metric > responseTimeTimeSeries </ Metric >
55 </Function >
56 </Metric >
57
58 <Metric name =" responseTimeTimeSeries " type ="TS" unit =" seconds ">
59 <Function xsi:type =" TSConstructor " resultType ="TS">
60 <Schedule > workloadSchedule </ Schedule >
61 <Metric > responseTimeSource </ Metric >
62 <Window >5</ Window >
63 </Function >
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64 </Metric >
65
66 <Metric name =" responseTimeSource " type =" long" unit =" seconds ">
67 <MeasurementDirective xsi:type =" wsla: responseTime " resultType ="

double " >
68 <MeasurementURI >http :// services . hollowearth .com/ geocodeService /

testResponseTime </ MeasurementURI >
69 </ MeasurementDirective >
70 </Metric >
71
72 </ ServiceDefinition >

Service Level Obligations

Now the metrics are used to formulate service guarantees for the SLA contract. In the
section marked with <Obligations/> SLOs agreed upon are noted down and also actions
taken on SLA violations can be defined in advance. Every obligation includes a logic
expression with predicates based on measured values and logic operators (AND, OR,
IMPLIES, etc.) combining the predicates. Predicates offer means to compare values found
in <SLAParameter/> to other variables or user-defined constants. Typical comparison
operators like Less, Greater, etc. are used here. For example a threshold on average
response times can be defined in this way.

Very important in SLA contracts between two parties is the <Implies/> operator, also
known in logic for two values A,B as term A⇒ B = ¬A ∨B. When the expression A is
true then B has also to be true. Implications can be used to formulate conditions between
customer and provider, for instance to implement the service guarantees for providers under
the workload restrictions for customers (c.f. Section 2.3.2). Obligations can be limited to
be valid within a time period only.

Penalties found in SLAs sometimes are covered by <ActionGuarantee/> tags. They can
be triggered by SLA violations and notify the parties named in the WSLA document. In
[93], these actions are subsumed as “if-then rules”.

Example 2.3.4. The SLA contract between HollowEarth and ParcelSink includes a single
SLO: If the geocoding service is not used more than 480 times in a minute the provider
can guarantee a service delay smaller than or equal to 10 seconds. Or, using the WSLA
SLA parameters and an implication:

(workload ≤ 480/min)⇒ (responseT ime ≤ 10s)

Listing 2.4 shows the WSLA construct for the last part of the contract file. The SLO
SLOWorkloadImpliesResponseTime obliges HollowEarth to a response time.

Listing 2.4: WSLA Example Obligations
1 <Obligations >
2 <ServiceLevelObjective name =" SLOWorkloadImpliesResponseTime ">
3 <Obliged > HollowEarth </ Obliged >
4 <Expression >
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5 <Implies >
6 <Expression >
7 <Predicate xsi:type =" Less">
8 <SLAParameter >Workload </ SLAParameter >
9 <Value >480 </ Value >

10 </Predicate >
11 </Expression >
12 <Expression >
13 <Predicate xsi:type =" Less">
14 <SLAParameter > ResponseTime </ SLAParameter >
15 <Value >10 </ Value >
16 </Predicate >
17 </Expression >
18 </Implies >
19 </Expression >
20 </ ServiceLevelObjective >
21 </ Obligations >

At this point we finish the introduction on SLA description languages. In case more
details are added to the contracts, e.g. tolerances, the syntax becomes more complex and
the SLA files more long. For continuation of the ParcelSink example we will use a set of
SLOs written down in an informal way:

Example 2.3.5. Table 2.1 contains the SLOs for all services participating in the workflow.
It includes upper limits for the workload, thus the arrival contract, and sets limits for the
response time in form of a delay contract. Together both columns form an implication
expressed by <Implies/> tags in WSLA files. Both contract parts are internally split into
short and long-term obligations. The long-term contract parts correspond to the level of
details on conditions expressed with WSLA constructs as demonstrated in Listings 2.2, 2.3
and 2.4. New are the short-term obligations that formalize the flexibility and tolerance to
service variance both contract parties have to accept. This variance is restricted in length
and/or size by columns “Length” and “Burst”.

First, from the perspective of a service customer, access to servers hosting some services
is restricted. Column “server access” shows if the customer can read performance figures
like service rates directly from the machines or if he or she is dependent on information
found in SLAs issued by the providers. In this example, the geocoding services are external
and thus, not accessible.

For the long-term arrival contracts the maximum number of requests per second is given.
For example, for HollowEarth a maximum long-term rate of 8 requests per second is specified.
This figure is an upper bound, but to anticipate high-load phases resulting from external
influences some variance is allowed by a short-term contract. It specifies a time interval
of given seconds (second contract column) with arrival rates exceeding the long-term goal.
However, these bursts are limited in time by the first column in the short-term contract.
Within 3 seconds the HollowEarth service is prepared to accept requests at a rate of 25
requests/s. Additionally a third figure in column “Burst” allows some arrivals that have no
rate limit at all.

Delay contracts are given by maximum response times in seconds for each service. For a
limited time this goal may be missed and the maximum short-term delay may apply. This

25



2 Service-Oriented Architectures

is combined with a limit on downtimes when zero request are processed.
With Table 2.1 we present a second geocoding provider responsible for geocoding destina-

tion addresses. The provider FlatWorld promises – due to a drastically simplified geodic
model – to respond within 5 seconds when there are not more than 15 arrivals per second.

2.3.4 Lower Performance Bounds

While it is common for SLOs to specify upper bounds on arrival processes and delay, lower
bounds on service performance can be agreed upon, too. A lower arrival bound defines the
minimum workload that has to be sent to a service, this can be done using a minimum
request rate or a certain workload size. Since many services do not come for free and
contracts may have some minimum duration, lower arrival bounds can help to choose a
suitable service provider. Especially if charging includes a basic fee, every offer has to be
evaluated by customers if it pays off for the projected workload. Minimum workload levels
can be adjusted according to break-even points, a customer immediately knows that the
service or contracting scheme does not suit well.

Lower response times limits require a system to process request for a given time period
at least. In contrast to maximum delays the need for SOAs working slow requires some
justification. First of all, services will have intrinsic delay. This is the shortest response
time greater than zero which all requests to a service will experience even when there is no
other load. It may be caused by buffers, transmission delays or the implemented service
functionality itself. With knowledge of intrinsic delay service customers can conclude
that services (or their composition) will never work faster than specified. Second, when a
customer agrees on lower SLOs concerning response times, he or she can also express that
processing is not required to be faster. This self-imposed restriction may lead to cheaper
service offers as excessive reservation of system resources can be avoided by providers.
For computing systems such lower bounds can apply to limit the usage of a service, for
example, on a low QoS level.
Offering not the fastest service is not necessarily a deficit if the response times are

documented well in SLOs. In combination with upper response times the variance of
processing speed is limited, service response times become more predicable. Therefore
lower bounds on delay are helpful in capacity planning for fork/join systems, for example,
when implementing the BPEL <flow/> tag. With knowledge of minimum processing times
the output buffer size of systems storing jobs waiting to synchronize can be estimated. As
a side effect, the customer can also externalize the (virtual) buffers required to implement
his or her workflow to the provider.
Equal to the implication found in upper performance contracts a relationship can be

constructed for lower SLOs: With a required minimum request rate the provider can ensure
that service calls takes at least a specific amount of time since there is always some load
on the server.

Example 2.3.6. For the services used in the ParcelSink workflow SLOs on the lower
performance are given in Table 2.2. In a similar way to Table 2.1 the contracts and
implications on the arrival process and the resulting response time is given. As long as
the customer sends request at the required rate the service will not answer within the
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ParcelSink X 100 3 5 12 - - - 5
HollowEarth × 25 3 10 8 30 8 5 10
Flatworld × 20 2 - 15 50 2 20 5
Catalog X 12 1 10 9 - - - 2
Fetch Address X - - 2 15 - - 5 10
Print Invoice X - - 6 25 - - 3 16

Table 2.1: SLOs for ParcelSink workflow example
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ParcelSink X - - - - - - - -
HollowEarth × - - 5 3 - - 3 4
Flatworld × 1 1 - 2 - - - 3
Catalog X - - 5 1 - - - 1
Fetch Address X - - - 1 - - 4 2
Print Invoice X - - 4 6 - - 8 0.5

Table 2.2: Lower SLOs for ParcelSink workflow example
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time specified by the delay contract. On the long-term a minimum response time is given
for all services. Some short-term variation is allowed by a ’speed up’ time, during that
limited phase services are allowed to answer earlier. In the second line we can read for the
HollowEarth service the implication

(workload ≥ 3/s)⇒ (responseT ime ≥ 4s)

Additionally, the contract should still hold if zero job requests are sent to the service for
a maximum of 5 seconds. In return, the customer has to accept an interval of up to 3
seconds with early responses. For the FlatWorld service there are also details available on
the minimum arrival rate in short-term. While the long-term contract requires 2 requests
per second the customer is allowed to send one request for one second only.

Finally, in other applications different from SOAs and computer science, lower per-
formance bounds have some significant importance. This can be the case in modeling
transportation, production processes or chemical reactions. In those modeling domains a
process has to run a minimum amount of time until it is considered as completed.

2.4 System Capacity Planning

When SOA workflow descriptions like BPEL files are to be realized service providers
offering the required services have to be selected. Abstract process descriptions are related
to service endpoints by WEEs. Choosing services and their providers is the process of
service selection [79, 83] or capacity planning (provisioning) for Web Services [45, 46].
System capacity planning is about dimensioning the required computing infrastructure
[46], it can be a manual process or can be delegated to service brokers implementing more
sophisticated selection criteria.
Service brokers in the standard Web Service scenario (c.f. Figure 2.2) are not aware

of the performance figures in SLAs of their mediated services and thus cannot consider
performance constraints. As a solution QoS-aware extensions to service brokers have been
proposed [79, 83, 85]. Service providers register services together with QoS-levels they can
guarantee in their SLAs. When customers request a service description via the service
broker they add their QoS requirement to their message. The broker selects a service
provider that provides a suitable service in terms of semantics and functionality. Special
about the QoS-aware service selection is that performance requirements are considered
this time and are balanced against monetary cost. This scenario can be even extended
by negotiation capabilities between QoS and pricing level [83]. A service selection process
includes construction, validation and evaluation [82] of workload, performance and cost
models for the SOA.

For optimization tasks the lower bound for response times can help to improve results. By
their knowledge optimization targets for systems are not only limited to reduce the upper
delay bound. For example, when selecting from a set of systems there might be systems
with a small distance between upper and lower bound, while others have more variability
in response times. Instead of reducing the maximum response time only, optimization can
aim on smaller minimum response times.
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Service Selection can run once at the deployment of SOAs. When service providers are
selected due to performance requirements it seems reasonable to rerun the service selection
when conditions change. Dynamic Service Selection [79, 83, 85] or runtime provisioning
[87] is the continuous process of adaption to changing conditions. By switching service
providers on the fly performance requirements given by SLAs and other contracts hold
under varying workloads. With a QoS-aware service broker [85] BPEL execution engines
can change the binding of an abstract interface to a specific service at runtime.

2.5 Cloud Computing

The current state of art in SOA based computing is Cloud Computing. While the industry
is quickly adopting, there seems to be no unified definition for the term Cloud Computing
[4, 48, 95, 102, 127] in computer science. Different adoption speeds and ideas for computing
architecture led to a rift between academia and industry [95]. Armbrust et al. [4] defines it
as applications delivered as a service including necessary hardware and system resources
via Internet. It maximizes the concept of SOAs by providing every aspect of computing
as a service usable on demand without preceding investments. Hayes [51] says that cloud
computing is

“a shift in the geography of computation”.

Functions of software are migrating from personal computers to data centers. As a side
effect, hardware can be shared among other customers by cloud data center operators.
Due to this “statistical multiplexing” the average data center utilization is higher than in
traditional, private centers with positive effects on operating costs [4].

From the perspective of customers the advantage of Clouds is the scalability of computing
resources on request. Additional computing power for already running applications is
supplied by the service provider on payment. Small companies can start with their products
using a minimum on Cloud resources and without investing in own infrastructure. On
growing demand or to handle high load phases computational power is rented by the
“pay-as-you-go” approach [4]. When demand shrinks or the company goes out of business
Cloud resources are let go and no private data centers collecting dust remain.

Hence, Clouds already feature a sophisticated form of dynamic service composition known
from Web Services. Moreover, in theory system provisioning and capacity planning for the
future is rendered unnecessary for customers, since there is neither lack nor abundance
of resources. So Computing Clouds could be the solution to everyone dependent on SOA
service performance. When quantitative requirements in SLAs are not met additional
resources from the Cloud are simply assigned. Potentially unlimited resources can make
you stop thinking of service guarantees. Nevertheless we see Cloud Computing as one
of the main application fields for modeling and validation of distributed systems with
SLAs. On the one hand, delegating responsibility for performance to the Cloud provider
also shifts away the problem of SLA conformance, but does not solve it. Customers still
expect performance guarantees for applications in the Cloud, however it merely centralizes
the responsibility to the data center operator. On the other hand, customer relying on
unlimited resources from the Cloud are ill-advised since their financial resources are likely
to be limited. Renting a bad performing Cloud service multiple times just to ensure a
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minimum QoS may become expensive. Good planning ahead and choosing Cloud providers
by their offered SLA is even more important as up to now there is no transparent migration
to other providers. While workflows of Web Services are compositions of abstract services
with no persistent state, Cloud applications suffer from a phenomena known as “vendor-lock”
[4, 48]. Clouds only offer programming interfaces and data structures that are unique
to the provider, for example, switching from Amazon EC2 to the Google App Engine is
cumbersome.

For Cloud Computing, SLAs are the service contract, and being able to model the system
based on SLA information will help customers to use Cloud infrastructures.
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In the previous chapter we have seen that SOA and the concept of services are a versatile
computing architecture. New or existing program parts can be offered to other internal or
external users without losing control on privacy and integrity of the own systems. System
builders can pick services to fill functionality of workflows and compose a new system
using computing power distributed over the Internet. Moreover, they can start to offer
their composed system itself as a service to others. Composition languages offer serial and
parallel constructs supported by loops and decision statements.
Next to the functional soundness of a SOA, the performance of such compositions

is important. For single services, especially when a contract exists, the performance
is guaranteed in SLAs in their SLO section in form of upper and lower bounds. They
apply when an implication is met: When the customer limits the workload, the service
provider grants an upper limit on the response time. These bounds are often defined for
the long-term. Since many factors can influence the performance of a distributed system,
short-term variations are accepted as a necessity, too. The variation range is codified
in SLAs to identify non-conform services. For business applications this is an important
feature since customer relationships and the avoidance of contract penalties depend on the
given service guarantees.

With such a focus on performance bounds and the ability to compose services based on
others SOA, designers are also interested in SLAs for their own systems. The bounds can
be used to estimate the performance for internal use or, when offering composed services
to others, to give own service guarantees and to set up contracts. Conversely, if there is a
performance bound a composed system has to fulfill, one can select a candidate from a set
of similar services based on its SLA and pricing condition as criteria. In this application
field decisions have to be made early, ideally before a service is contracted. At that point
in time the performance characteristic of a service is known by bounds in its SLA only.

3.1 Performance Models for SOAs

Modeling computing systems is a helpful tool for various tasks like performance prediction,
capacity planning, monitoring or optimization. A model is a representation of a system
intended to study the system [8, Section 1.8]. Using models has several advantages as
there is no necessity that the system already exists in reality, so one can study fictional
systems. Based on models, questions related to feasibility and performance can be answered
at design time. Often there is the need to test new ideas and modifications for already
existing systems, as well. This can be the case when the environment or usage scheme for
a system has changed. Testing the modifications at the existing and running system can
be too dangerous, too costly or both. Models are a safe and normally cheap alternative
compared to experiments with real systems in production. All these benefits apply to the
modeling of SOAs. The SOA development cycle [87] includes modeling to support system
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planning. Performance analysis, prediction of workflow execution times and issuing of
service guarantees can be done without interfering with the real or anticipated system.
Service consumers can use performance-aware models to optimize their workflows and

to locate bottlenecks. Capacity planning and identification of own requirements can and
should be done in early design phases. Constructing SOA performance models can also
support the provisioning of services and their providers [79] for a planned SOA. Later on,
when the SOA is in production, models can be used to monitor the system by comparison
of runtime measurements to the ideal model behavior and enable dynamic service selection.
From the providers’ perspective, SOA models help to fulfill given service guarantees and
to avoid penalties resulting from SLA violations. With performance-aware models and
their analysis providers can plan their computing equipment, network connections and
other resources in advance. Offering service compositions brings providers into the role of
a service consumer themselves. Yet, they still have to issue SLAs for the composed service
and customers rely on them. Using a performance model in all design phases can help
providers to minimize the number of contract breaches for their virtual product.
Building suitable SOA models and their application for performance analysis are the

topics in this work. In preparation for the presentation of modeling methods, some basic
terms and definitions are introduced.

3.2 Discrete Event Systems

For system modeling and analysis many concepts, methods and approaches exist. In natural
sciences differential equations are used to describe the existing laws of nature [35]. These
models are based on the assumption that the state of a system is continuous rather than
discrete. A different concept are Discrete-Event Systems (DESs) widely used in computer
science [6, 35]. DESs are suitable to describe man-made artifacts like computers, software
and the things created by them. In these systems changes are considered, at least at a
certain abstraction level, as immediate jumps from one system state to the next.
A system is the entity that modeling tries to describe. Although the term system is

fundamental in science, no general definition exists. In [8, 70] a system is defined as a
group of objects with interaction for some purpose. For a model of a system it has to
be noted that the system definition also holds. This work will settle to a more narrow
system definition. We will study artificial systems made from interacting components.
Each component has a state described by a set of variables [8]. The combination of all
states is the system state. If state changes occur in a discrete set of, not necessarily in
even spaced, points in time the system is said to be discrete [8]. Events are instantaneous
occurrences from outside or within the system that may lead to system state changes.

3.2.1 System Performance

The meaning of system performance depends on the perspective of a system. When we
deal with artificial systems the system has been built for a specific reason. An indicator
for system performance is how good this system target is achieved. For applications in
computer science system performance is often associated with processing speed. A task is
executed with high performance if its computation time is short. However, other aspects of
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system properties can also be required. Low energy consumption is a common performance
indicator for portable embedded systems that rely on batteries. For controlling machines
and vehicles real-time systems are applied. Their performance is given by absolutely reliable
execution time for tasks. Execution speed, as long as it does not exceed the deadline, is
secondary.
In this work, system performance follows the classic wording of fast task execution and

thus shorter delays.

3.2.2 Analysis of Discrete Event Systems

Model analysis is the activity of answering the initial questions on the original system by
evaluating the model. When the question is about a nonfunctional system property we
speak of a quantitative analysis [35, Section 1.2.2].

Two classes of model analysis methods exist: numerical and analytical. Analytical models
are based on mathematical descriptions, hence model analysis is performed by reasoning [8,
1.10]. The model is a closed mapping of input to output values. A disadvantage of analytic
model analysis is that the descriptiveness of the underlying model itself is limited. Models
built with Network Calculus, the base method used in this thesis, belong to the family of
analytical models. Many classes of Queueing Systems as presented in the following Chapter
4 are analytical models, too. Other examples for analytic methods are Markov Processes
or Petri nets [11].

Numerical model analysis does not work symbolically, it uses actual values. It is applied
to models with nonexistent or unknown closed mapping or when it is too difficult to
compute. Numerical methods use algorithms to find the model output for single points
from the input set. Direct numerical methods give almost exact solutions, their accuracy
is only subject to rounding errors. Approximative numerical methods compute a solution
that is sufficient for many applications. Although numerical model analysis is commonly
performed by computers, it can be still laborious and time-consuming. The advantage of
the numerical approach is its applicability to almost all model variants based on Markov
Chains.

Since Markovian System theory is widespread, two termini from its analysis are frequently
used: transient and steady-state (stationary) analysis differing in their time frame. For
Markov Chains, steady-state analysis gives the state probabilities for a system running for
an infinite time. Based on this result the average system performance can be concluded.
Short variations and exceptions in system performance are neglected. Since this work is
not about Markov Chains we will use steady-state analysis in terms of long-term analysis.
More details and definitions can be found in [35, Section 5.3.10] and [8, 54]. Transient
analysis of a system provides results for a limited time span. In the analysis of Markov
Chains, transient analysis gives the probability on having a series of state changes from a
specific state A into state B within a limited time interval. Therefore short-term system
behavior can be observed, this may include special, unlikely or extreme situations (e.g.
transition probability from functional to broken states). A special but frequently analyzed
case is given when a specific state A is the initial state of a system, and transient analysis
can be used to determine the length of startup phases. For the interested reader, further
details and definitions on transient analysis are given in [34, 54] and [35, Section 5.3.9].
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Figure 3.1: SOA performance modeling workflow

3.2.3 A Model-based SLA Validation Workflow

In Figure 3.1 a blueprint for an SLA validation workflow for SOAs is depicted. This is
not the final validation workflow for every application, most will add further steps, but it
will serve as a prototype for the introduced SOA performance analysis methods. It shows
which models need to be created, which information has to be supplied and where the
results of this work are employed.
Two models are successively created: the structure model and the performance model.

The first holds the SOA workflow structure. It includes basic workflow patterns for the
(planned) original system, so usually abstraction steps are involved. BPEL parsing and
construction of structure models is not considered in detail in this work. However, when
examples are presented, we rely on the brief introduction in BPEL syntax (Section 2.2.1)
and assume that tags like <flow/>, <switch/>, etc. can be mapped to structures of the
modeling method. The second model holds the performance of every single service in the
workflow. It can be either a new model or, for analytical models, the structure model gets
enriched with quantitative figures. These figures are sourced from the information available
to the modeler. Taking measurements at system elements is a comfortable option, but
often the modeler has to rely on information from second hand. As we will see, SLAs are
sources for performance information, too.

After the structure and performance model are set up a quantitative analysis is started.
It delivers a result on performance for the whole SOA based on the model. By comparison
with the target SLA it can be decided, if the intended system fulfills the requirements.
When the SLA validation is part of a service selection process the set of tested services
can be accepted or discarded. It can also be integrated into more elaborate schemes.

3.3 SLA Validation and the Worst-Case

The bounds set upon the operational performance of SOAs by SLAs also influence the
perspective at SOA models. A service can process job requests either conform to an
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SLA or not. Implications in SLAs make this decision dependent on the usage frequency,
therefore one has to observe a service’s reaction to increasing load. The performance may
not drop below the given SLOs. Moreover, this should hold in any situation, even when
the guaranteed limits are reached, but not exceeded. This operating point of maximum
workload and slow service is described as the worst-case situation for a system. As these
bounds are defined by SLOs sections in SLAs one can substitute the worst-case situation
with the SLAs and vice versa.

Deciding if a system conforms to an SLA is denoted as SLA Validation. The need for
SLA Validation occurs in numerous situations from a provider’s and customer’s perspective.
Service operators are interested in whether they can guarantee a certain QoS requested
by customers with their systems. This has to be tested in SLA negotiations [17, 79]
when potential customers lay down their requirements in SLAs and ask for an offer. SLA
Validation helps to provide this offer by testing the SLA against the model and select
an appropriate QoS level. Regarding the perspective of the customer, model-based SLA
Validation helps to select service providers by their SLA or QoS, respectively. For a
dynamic service composition the selection algorithms can be built upon SLA validation
methods. Before a service is replaced at runtime a model modified with the new SLA
values is used to test if the target SLA is invalidated or not. Finally, for a running SOA it
can be checked if the negotiated SLA is fulfilled.

3.4 Performance Bounds as Analysis Result

In the Web Services economy system with performance guarantees on its products and
the risk of SLA contract violations with consequences, model analysis has to provide
performance guarantees itself. Moreover, the only way to give guarantees for a model is to
derive its performance bounds. These bounds have to be independent on the input to the
system as long as it is within an accepted range, even in the worst-case. They also have
to be time-independent, as the guarantees should hold in any situation. And finally, they
have to be deterministic. Any bound dependent on a stochastic element is not a real limit,
it is a weaker statement. This is the case when analysis results depend on statistics.
In this context a model analysis giving average result figures is not suitable for setting

up limits. An average performance result cannot be declared as bound since it is very
likely to be exceeded (or undercut). Remember, it is the nature of average values that a
significant portion of all input is larger or smaller than the average value. We will further
explore the problems of average value models in Chapters 4 and 5.

3.5 SLAs as Performance Description in Models

To validate SLAs an adequate model of the architecture and integration of the SLAs in
the model is necessary [17]. A SOA modeling method that will give performance limits
has to accept bounds and thus SLAs, too. First, without bounds the important worst-case
situations for SLA Validations cannot be described. The reason is, equally to the need to
give bounds as analysis result, that these extreme situations are not included in models
describing the average and expected system operation.
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Second, the encapsulation of services in SOA renders SLAs issued by contributing
providers to the primary source for model input data. In a general situation for modeling
it is assumed that the modeler has to access the original system components. They can be
analyzed on their internal structure and system reactions to different workload levels can
be tested. In other cases at least historical data is available and allows one to construct
performance models. This is not the case for SOAs. In a Web Service environment
the provider will not allow customers to access the offered services and their operating
environment. As shown, Web Services can be used to offer internal business workflows
under controlled conditions to other external users. This offering does not include the
allowance for customers to access the computing systems, analyze their structure and do
performance measurements for sure. Reasons can be the protection of business secrets,
protection of computing infrastructure from manipulations or damage or simply a good
sense for privacy. So all information a service provider provides to customers of a service is
the interface description (WSDL for example) and the performance guarantee in form of
an SLA. Hence, a SOA model has to accept bounds taken from SLAs as the only source of
performance figures.
Additionally, SLAs reflect a performance that is guaranteed, but they do not give any

information on performance of the underlying computing system. Services are presented
by SLAs as a black box system whose reactions on worst-case workloads are known while,
according to the SOA paradigm, the inner system structure and the system capacity stay
hidden. This leads to the odd situation that SLAs include a manifold of performance
indicators but still miss an important value fundamental to system performance modeling:
the real processing speed of the computer system hosting the service. Service rates as
abstraction are a central element in Queueing Theory and other analytical or simulative
modeling methods. The lack of service rates makes system performance modeling and
analysis of SOAs cumbersome. A modeling environment for SOAs needs the ability to
address this situation.

Using limits as model in- and output enables hierarchical models, too. In a similar way,
models of workflows should give performance limits that higher hierarchy level models
accept them as input data again.
Apart from system performance specification with SLAs the bounds and service obliga-

tions have a very specific property: they include tolerances for the short-term. As presented
in Sections 2.3.2 and 2.3.3 the intention of relaxed deadlines is to deal with factors that
influence SOAs. Models for SOA with quantitative requirements should also include these
tolerances.

3.6 Motivation for a Analytical Modeling Approach

When computing bounds for SLA validation one has to decide on the considered time
horizon. Analytical models feature efficient steady-state analysis to show if limits hold for
a system during operation in long-term. Since steady-state analysis methods assume the
normal, often average operation modes for a system at least two problems are created for
SOA analysis: average results and time dependence as the finding might not hold within
short time intervals. A transient analysis seems to be more suitable to verify bounds, but
is often very time-consuming. The ideal SOA performance analysis methods would unite
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both time horizons. Network Calculus as a pure analytic approach includes short- and
long-term performance aspects in a single analysis, but as we will see, it does not comply
with the specifics of SLAs in SOAs.

Still, researching on a SOA modeling method with analytic analysis is desirable. With
a fast model analysis offered by analytic methods one gains the ability to estimate the
performance of distributed systems at design time and in early development stages. This can
reduce the risks and, as a consequence, the costs for SOA projects [85]. Another property
of analytic models is their often small set of model parameters and high abstraction grade,
they are independent from specific technologies like BPEL or WSLA. While this might be
an obstacle to construct almost realistic models, it is an advantage when only some details
about the real world system are known. Missing data might hinder the construction of
detailed numeric or simulation models because not all mandatory variables can be filled
while abstract analytic models still work.

Next to computing performance bounds for a SOA model a fast analysis process is a
requirement for many applications. At the same time the ability to give fast and reliable
guarantees enables new services. When implemented into service brokers with dynamic
service composition they can react to changing environments and workload situations
within short time. To predict the optimal composition a model can be constructed and
analyzed beforehand. In the following chapters we will see that many analysis approaches
need a lot of processing time to give bounds, for example, simulation is often a matter of
minutes up to hours. For systems that have to react fast this can be too lengthy. Analytical
modeling approaches can give, even based on drafts of a SOA, estimates on performance
figures within reasonable time.
In the next sections we will present related work in the research field of SOA modeling

and assess it with the following set of requirements. They are based on the specifics of
SOA systems, descriptions and implementations of Web Services in Section 2.2 and the
way SLAs are contracted.
Hierarchical models For simple atomic models as well as service compositions the same

modeling approach can be used. Models for service compositions can be constructed
from models of their included services. Additionally, service models can be used
transparently as service in other models.

Performance guarantees Target performance indicators in SLAs describe the behavior in
worst-case. If worst-case assumptions are model parameters, the results derived from
model analysis should be equal or better in reality. This is different from stochastic
models like Queueing Theory which gives results in form of distributions and average
values. Conversely models should give bounds to support SLA Validation and the
issuing of own SLAs.

Tolerances Although upper and lower bounds in SLAs exist they are also formulated
in a way that short-term violations are not considered as SLA contract violation.
The separation between long-term performance and short-term behavior during
disturbances and higher workload have to be considered.

Service rate Real processing or service speed of a computing system running a service is
not given in SLAs. They are only known to providers themselves and are sometimes
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kept as a business secret. Knowledge of such service rates is central for many widely
used system models, but a modeling approach for SLAs should do without. In case
the service rate is needed for system sizing for example, the modeling approach should
be able to derive it from the performance model.

Simplicity and expressive parameters: A model, analytic, simulative or even graphical,
should be understandable. We admit that simple is relative and subjective, but it is
often preferable if in fact people with no background knowledge at least understand
a model partially.

Another obligatory and common entry on this list is the wish for a fast model analysis.
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Queueing Theory is the science of analyzing Queueing Network models and has a strong
mathematical foundation that includes stochastics. Several extensive books cover the topic
of Queueing Theory [32, 54, 71, 84]. As Network Calculus, Queueing Theory deals with
system models for DESs. Systems are abstracted to service centers respective queues and
their networks [71, Section 1.2]. They are considered as a class of discrete-event systems,
but emphasize stochastic description and behavior [35]. Analytical evaluation is based
on the network structure and the parameters of queues [71, Section 1.2]. Model analysis
itself is simple for small Queueing Network models. When a limited set of queue variants
is used in Queueing Networks, analysis can be performed by mapping to Markov Chains.
Since the Markov Chain state space usually grows exponentially with the model size and
thus the computation time, we discuss the options for computing results with numerical
methods. For a subset of Queueing Networks, product-form networks, analysis can be
further simplified. The direct product-form approach and Mean-Value Analysis (MVA) are
presented.
Analysis results for product-form networks are primarily average values or probability

distributions for performance indicators found in systems running for an infinite time span
(and thus steady-state). This in contrast to Network Calculus is used to derive upper
and lower bounds on performance figures. Naturally, there are many fields of application
where Network Calculus or Queueing Theory can be used and some others where one
tool is preferred [55]. However, Queueing Theory is an important approach to system
performance analysis [71] and the methods for describing SOA performance developed in
the following chapters have to be compared to it. For this reason we will add a model
mapping from SOAs to Queueing Networks and present excerpts from the extensive work
of Menascé on system capacity planning with Queueing Systems. We will discuss the
options on SLA modeling with Queueing Systems based on the already known ParcelSink
workflow example from Chapter 2, advantages and disadvantages of average values for
SOA and SLA modeling will be pointed out.

4.1 System Model in Queueing Theory

A queue is a very abstract but very powerful system model used in Queueing Theory, it
consists of a waiting line and at least one server [11, Chapter 3]. Arriving entities enqueue
in the waiting line if the server is occupied. After service, the entity will leave the system
without further delay. The original application for Queueing Systems and their networks
was to derive the blocking rate of manually operator switched telephone networks [32].
With this historical background the incoming entities are called customers and the active
station is the server.

Two processes are connected to a queue: the arrival and the service process. Notation, if
not stated otherwise, is adopted from [35, Section 6.2.1]. The arrival process is characterized
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by interarrival times Y , the service process by service time Z [25]. For several customers
both processes form a stochastic sequence, which can be described by a random distribution.
Given expectation values E[Y ] and E[Z] for the underlying distributions the following
properties can be stated [25]:

Arrival Process The arrival rate λ to a system is given by

λ = 1
E[Y ] (4.1)

On the long-term, λ is the average number of customers arriving per time unit.

Service Process The average service rate has symbol µ and relates to the expected service
time by

µ = 1
E[Z] (4.2)

On the long-term, µ is the average number of served customers if the server is busy.

The distribution types allow the classification of queues into a scheme, in literature the
Kendall Notation [8, 32, 35, 54] with six components is common. Well known [8, 32, 54]
are queues with exponentially distributed interarrival and service times and a single server,
in Kendall notation M/M/1/∞/∞/FIFO or shorthand M/M/1. The only parameter λ
of the exponential distribution determines the mean value 1

λ and vice versa. It is the
only continuous distribution featuring the memoryless property (“Markovian” property)
[25]. That is, the expected interarrival time to the next customer’s arrival is 1

λ and the
distribution remains exponential, independent from the last arrival time [54]. The history
of previous arrivals does not influence the present arrivals, the same holds for service times.

A Poisson process is a counting process modeling a discrete state space in continuous time.
The claim to fame is that the times between state changes are exponentially distributed
with parameter 1

λ [70, Section 5.7]. The relationship yields that the number of arrivals
to an M/M/1 queue within a time interval is Poisson distributed. A result in Queueing
Theory, also known as Burkes’s theorem ([35, Section 6.7.1] and [58, Section 5.5.6]), states
a property for departure processes: When the arrival process to a queue is Poisson with
rate λ, the service time distribution is Markovian, then the output is also Poisson with
rate λ. When Poisson processes are multiplexed or demultiplexed the resulting processes
are Poisson again [25], a result that enables a simple analysis of the networks of queues.
Further details on Queueing Theory can be found in [8, 11, 32, 35, 54, 71].

4.2 Performance Metrics in Queueing Systems

Performance analysis in Queueing Theory can be founded on analytical methods when a
restricted class of queues and networks is used. For M/M/1 queues the analysis can be
done based on arrival rate λ and service rate µ only. This allows extremely fast model
analysis with computer programs and the option to solve simpler models by pen and paper.
Analysis will yield at least one of the following performance measures:
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Response Time S: The total time (“sojourn time”) a customer spend in the queue and
service section [26]. To speed up the service of a system response times have to be
kept as small as possible.

Waiting Time W : Queueing time for a job waiting to be serviced [26], W = S − Z holds.

Population X: The population X of customers in a queue is the customer in the server
section and the others in the waiting line.

Utilization ρ: Utilization is the proportion of time the server is busy [35, Section 6.3], thus
there is at least one customer in the queue. Let πn = P [X = n] be the probability to
have n customers in the system. Then π0 is the probability for the server to be idle
and 1− π0 to be busy.

A combined performance measure is traffic intensity, denoted ρ [26, 35]:

traffic intensity = avg. arrival rate
avg. service rate or in symbols ρ = λ

µ
(4.3)

When a server operates at rate µ and is (1 − π0) of the time active, it will have a
throughput of µ(1− π0). For a lossless system in steady state we can assume that
the system is stable, in other words input and output are balanced:

λ = µ(1− π0) (4.4)

We can replace λ with (4.3) and continue with

ρ · µ = µ(1− π0) Eqn. (4.3)
ρ = 1− π0

and see that for single servers with unlimited queue length traffic intensity is the
same as utilization. Since the condition for a stable single server system is λ < µ
[8, 26, 35], we also see that 0 ≤ ρ < 1.

Throughput λ: Throughput (rate) is the number of served customers per time interval,
therefore it is given by Equation 4.4 [35]. It equals the arrival rate.

4.2.1 Operational Laws

Some simple but useful theorems for single queues and Queueing Networks are in the set of
“operational laws” [54, 84]. The relationship between expected values of population, arrival
rate and waiting time in Queueing Systems is known as Little’s Law.

Theorem 4.1 (Little’s Law). In Queueing Systems with arrival rate λ, average population
E[X] and average response time E[S] the following relationship holds:

E[X] = λ · E[S] (4.5)
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Interestingly, the theorem is independent of operating policies used in the waiting line,
it is also not influenced by service time distribution. This fundamental relationship in
Queueing Systems has been proved by Little [77] in 1961, non-theoretical derivations are
found in [11, 35, 54].
If a customer visits a queue v times to finish [80, 82, 84] two theorems apply:

Theorem 4.2 (Service Demand Law). Let vi be the number of visits a customer requires
to complete queue i. The service demand Di for queue i is

Di = vi · E[Zi] = vi ·
1
µi

(4.6)

Theorem 4.3 (Forced Flow Law). For a queue i with average number of visits vi and
arrival rate λ the average throughput is λi = vi · λ.

4.2.2 Steady-State Analysis

Queue analysis for steady-state requires an expression for E[X], other performance figures
are based on it. In Markovian Queueing Systems this can be done via Markov Chain
analysis: The number of customers i in queues is mapped to states pi of a Continuous-Time
Markov Chain (CTMC). For single queues the CTMC is known as birth-death chain [35,
Section 5.4]). Transition rate from pk to pk+1 (a “birth”) is arrival rate λ, from pk to
pk−1 (a “death”) service rate µ. Deriving E[X] is then equal to finding the steady-state
probability π(k) of the CTMC being in state pk. The closed term is

E[X] = ρ

1− ρ = λ

µ− λ
(4.7)

A detailed derivation is in [54, Section 31.2] or [35, Section 6.6.1].
With the mean population for a M/M/1 queue, based on rates λ and µ only, other

performance figures can be found easily. When (4.7) is combined with Little’s Law in
Theorem 4.1 one is able to compute the expected response time:

E[S] = 1
µ− λ

(4.8)

Further recasting gives an easy way to determine the average service rate for given arrival
rates and response times.

µ = λ+ 1
E[S] (4.9)

Example 4.2.1. HollowEarth has the opportunity to dimension their new system in such
a way that the SLO in Table 2.1 is not violated.

(workload ≤ 8 requests per second)⇒ (responseTime ≤ 10s) (4.10)

is relevant for system sizing. To avoid contract breaches of maximum response time the
dedicated server is dimensioned for the given worst-case workload.

We model a workload with the arrival rate λ = 8, for the average response time we use
E[S] = 10s. Applying these values to Equation 4.9 we compute µ = 8 + 1

10 = 8.1 as the
processing rate for the new server.
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Figure 4.1: Two queues forming a tandem system.
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Figure 4.2: Two parallel queues with routing probabilities p1 and p2.

4.3 Queueing Networks

Basic queues can be combined to Queueing Networks by providing their output to other
queues as an input [35, 71]. This enables the construction of parallel and serial connections
[35, Section 1.3.3].
Queues are concatenated to allow customers to traverse the systems sequentially. Let

a set of m queues be indexed by i = 1 . . .m. They are connected serially if the output
of queue i is used as input to queue i+ 1, Figure 4.1 shows a general example. The first
queue in the sequence accepts an arrival process with the rate λ and each queue has a
service rate of µi. According to Burkes’s Theorem the outgoing arrival process of each
queue is a Poisson process with rate λ, this also holds for the composition.
The other case is the parallel configuration of queues. Parallelization can be realized

by distribution (routing) of load. Again let there be a set of m queues with service rate
µi, 1 ≤ i ≤ m and an arrival process of rate λ. Additionally there is a routing probability
pi > 0 for each queue and

∑
i pi = 1 holds. A parallel configuration exists if every queue

receives an arrival process with the rate λi = pi ·λ. Figure 4.2 shows the basic configuration
with a reunion of output processes. The cumulated output process of all m parallel queues
has again an average rate λ.

To describe arbitrary Queueing Networks with m queues the idea of routing probabilities
can be extended to a routing matrix P ∈ Rm with pij ∈ P as a routing probability from
queue i to j. The distinction between infinite or finite population becomes visible when
Queueing Networks are classified as open or closed. In open networks customers enter the
system, pass through the queues and leave the system. Closed Queueing Networks keep
the customers in a cycle by feeding the output back into the network input. Depending on
the network class an analysis method has to be chosen, for example, MVA which works
with closed networks. It is also possible to convert an open network to a closed one by
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connecting in- and output [26, Section 10.1.5]. Within the shortcut a queue is inserted, it’s
service rate is equal to the arrival rate of the replaced source.

4.3.1 Queueing Network Analysis

In theory, any Queueing Network can be mapped to a CTMC and analyzed with numerical
methods. Arbitrary process distributions can be approximated by phase-type distributions
[27, 41] that, in turn, can be mapped into embedded Markov Chains [27]. Using such
approaches the number of chain states to be considered increases dramatically, a “state
space explosion” [27] happens. This results in large CTMCs, when models are detailed and
analysis becomes critical in terms of computation and memory requirements, more efficient
solutions are needed.

Product-Form Networks

Product-form network analysis extends single queue results to Queueing Networks analyzing
each queue in isolation. Performance figures for complete networks are found by result
combination. The price to pay for product-form networks and their efficient analysis is
that allowed queue variants are limited. Results hold for steady-state only. In literature
[25] three important product-form network classes are frequently mentioned: Jackson
networks for open networks, Gordon/Newell for closed and Baskett, Chandy, Muntz and
Palacios (BCMP) networks as their generalization and extension.

Historically, Jackson networks are the first Queueing Networks with known product-form
property [25]. They are open networks of M/M/1 and M/M/n queues with n servers, all
customers in the network are equal. Cycles in networks destroy the Poisson property of
arrival processes in general, but analysis of Jackson networks is still possible in this case
[35].
The Jackson Theorem [25, 35] can be summarized as follows: Let i = 1, . . . ,M be an

index on all queues participating in an open Queueing Network, P describes the structure,
arrival process has the rate λ. Service rates are given per server, so µi is the service rate of
mi servers in queue i. The arrival rate λi to each queue is [35]

λi = ri +
M∑
j=1

λjpji for i = 1, . . . ,M (4.11)

Summand ri stands for arrivals to the queue i from the environment. It is assumed
that the network is stable, thus λi < µi holds. The utilization of queue i is ρi = λi

µi
[54,

Section 32.2], therefore the expected population is E[Xi] = ρi
1−ρi

. Mean network population
E[X1 + X2 + · · · + XM ]. When the modeling assumptions of Jackson networks are not
sufficient for the intended application BCMP [10] networks can be used. Although they still
have the product-form, additional combinations of service time distributions and scheduling
disciplines with multiple customer classes in open or closed networks are supported [82].
Analysis of closed product-form Queueing Networks involves the computation of a

normalization constant, due to the fact that there is no arrival process. Thus, flow balance
equations are not completely determined [5]. As a consequence, state probabilities for all
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possible network states πi do not sum up to 1. This can be fixed by the normalization
constant, but its computation is elaborative [25, 54]. Buzen’s convolution algorithm
provided the first efficient method to analyze Queueing Networks [25, 82]. It computes the
normalization constant in an iterative approach over the number of queues in a network.

Mean-Value Analysis

In many real world applications, response times or queue lengths are of greater interest
than state probabilities as an intermediate result. An analysis method giving these figures
for closed product-form Queueing Networks is MVA. Instead of solving linear equations for
π, MVA is based on the iterative computation of the average queue length in a Queueing
Network [84]. When for n customers the average queue length is known MVA gives the
result for n+ 1. Starting from n = 0 results for arbitrary customer numbers are found. As
a side effect, computation of normalization constants for closed product-form networks can
be avoided [25, 26]. The algorithm is fast and implemented in most software solutions for
Queueing Networks analysis [84].

The algorithm presented here is suitable forM/M/1 queues and is limited to one customer
class. For multiple classes, load-dependent servers and other service time distributions
extensions exist [84]. Central for MVA is the following, from a customer’s perspective
encouraging observation one can make at the moment when he or she queues at the end
of a waiting line: The number of already waiting customers is independent from his or
her arrival or even existence. This is formalized as the Arrival Theorem [26, 71]. As a
consequence, the response time for every customer is always the waiting and service time
of the other waiting customers plus his or her own service time.
Consider a closed Queueing Network with m queues. The MVA equations are given

for queue i ∈ 1 . . .m and are dependent on the number of customers n in the network.
Let Si(n) be the average response time for a customer and the function ni(n) denotes the
waiting line length. The service rate of queue i is µi, thus E[Zi] = 1

µi
.

The first equation is the response time equation based on the components of response
time:

Si(n) = E[Zi] + E[Wi] (4.12)
= E[Zi] + ni(n) · E[Zi] (4.13)
= E[Zi] · (1 + ni(n)) (4.14)
= E[Zi] · (1 + ni(n− 1)) Arrival Theorem (4.15)

By inclusion of visit count vi and applying the Service Demand Law we get

vi · Si(n) = Di · (1 + ni(n− 1)) (4.16)

For Queueing Networks, routing probabilities pij ∈ P can be captured by vi, too.
The second equation gives the throughput. When all response times are summed up,

Little’s Law relates the network throughput λ(n) to population n:

n = λ(n) ·
n∑
i=1

vi · Si(n) (4.17)
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and by solving for throughput λ(n):

λ(n) = n∑m
i=1 vi · Si(n) (4.18)

Using Little’s Law once again the waiting line length for n customers at a specific queue
is given by the third equation:

ni(n) = λi(n) · Si(n) (4.19)

and applying the Forced Flow Law leads to

ni(n) = vi · λ(n) · Si(n) (4.20)

For analysis the algorithm initializes with ni(0) = 0 for i = 1 . . .m [25]. Number of visits
vi is the i-th element of vector v with v = v · P . Then for n = 0 . . .K customers equations
(4.16), (4.18) and (4.20) are iterated for all queues i. The first iteration is trivial since
Si(1) = 1

µi
.

From the algorithm description follows that the computational effort depends on m
and K. MVA computes all queue populations in parallel [25], so there is some memory
usage but it is a non-issue for realistic models. The only outputs of MVA are the average
population and response time of each queue. On the one hand, direct computation of
average performance figures is an advantage in terms of speed. On the other hand, state
probabilities πk are not found, so no indication of the maximum queue length is known [84].
When state probabilities for waiting line length are needed modifications of MVA [25] have
to be used. Another drawback of average results are the missing options for a transient
analysis. MVA cannot determine the time it takes for a Queueing Network to reach steady
state, the time to recover from system breakdowns [84] or bounds of response times.

Approximations and Non-Product Form Networks

For many modeling tasks product-form networks are a viable option. Their queues can be
combined to networks and several average performance figures can be found by analysis.
In return the user has to accept several restrictions and downsides:

• Poisson arrival processes only

• First Come First Serve (FCFS) queueing strategy in Jackson networks, some more,
but not always suitable in BCMP networks

• Restrictions on customer classes

An example for a Queueing Networks class that cannot be decomposed for product-form
analysis are fork/join networks [84, Section 15.6]. They are used to model parallelism
and concurrency that involves synchronization between queues [35]. Figure 4.3 shows the
general (sub-) model of a fork/join network with k parallel queues. A request is split at
the fork node into k sub-requests, each subnetwork receives one sub-request and processes
it independently. The original request is considered to be complete when all sub-requests
are completed [84], in Figure 4.3 this is symbolized by the join node on the right.
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For analytical fork/join analysis only some results for two M/M/1 queues are known [88].
In small networks a numeric Markov Chain analysis can be performed. In larger models,
fork/join splits can be replaced by routing probabilities again giving product-form, but
introducing a semantic error. Otherwise, approximative methods for non-product-form nets
can be applied. In [114] Varki presented a MVA extension that allows one to approximate
the average response times for closed fork/join Queueing Networks with more than two
M/M/1 queues in synchronization. Networks consist of subsystems i including Ki ≥ 1
parallel, but equal queues with exponential service time distribution. The response time
equation of the modified MVA [84, 114] replacing (4.16) is:

vi · Si(n) ≈ Di · (HKi + ni(n− 1)) (4.21)

with the harmonic number HKi =
∑Ki
j=1

1
j [84] adding the synchronization overhead. The

error in approximation has been shown to be smaller than 5% for less than 6 queues in
parallel [114]. For further details we refer to [114, 115] as original works. A limitation on
Varki’s approach is that queues in a subsystem are required to an equal service rate. The
method of Duda and Czachórski [44], summarized in [26, Section 10.6.2], allows diverging
rates in exchange for higher analysis complexity. Each parallel subsystem is replaced by a
single queue with a load-dependent service rate. The parametrization of the queues is done
by an approximative method [26] considering the state space. In the end, if the model
includes synchronization, approximation errors have to be accepted.
Other reasons for non-product-form networks are [84] non-exponential service time

distributions with high variability, queues with blocking [7], sharing of limited resources or
priority scheduling. For their analysis, the decomposition approach gives approximative
results [25]. Queueing Networks are fragmented in subnets that are analyzed in isolation,
the overall solution is deduced from single results. Another approach to be mentioned is
the Product-Form Approximation, the model is modified in a way that it approximates the
original Queueing Network and is in product-form. For further reading we recommend [26].

Even if the network is in product-form there are still viable reasons to use approximative
methods for analysis. When resources are constrained they can save memory and processing
time [25]. Solutions are “good enough” for many modeling applications, for example, when
design alternatives for early system drafts are explored.

4.4 SOA Models with Queueing Networks

Queueing Systems are widely used for modeling computer systems and also for SOAs. In
general, mapping a real world system to queues or a Queueing Network leads to a very
abstract model. There are no options to add variables and control structures are unknown.
Nevertheless many works on general computer systems and SOA modeling and analysis
exist. Exemplary related work on performance modeling in SOA with Queueing Theory
are the well-known books of Menascé and Almeida.

In a series of books about Web Technologies [80], E-Commerce [81], Web Service capacity
planning [82], a Queueing System-based modeling approach for system performance analysis
is adapted to evolving technological approaches. A summary of the three books geared
towards QoS in models can be found in [84]. To show the general approach in SOA modeling
with Queueing Networks some results from the Web Service book [82] are presented here.
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Figure 4.3: A fork/join node with M parallel queues

The Web Service capacity planning approach in [82] involves three kinds of models:
a workload, a performance and finally a cost model. In summary, the workload model
captures the arrival process by its average rate λ and the service demand each arrival brings
to the system. The performance model is the operating speed of the server. Monetary
costs are reflected in the cost model, it has a minor role in [80–82] only.

4.4.1 System Level and Component Level Models

In Menascé’s books two Queueing Networks performance models are used for systems:
the system level and the component level model. A model is applied depending on the
perspective and insight to the real system. System level modeling is black-box modeling
done by service consumers that do not have access to the system hardware (or detailed
statistics). In principle, this model works without a given service rate only by inspection
of the input and output process. Since the knowledge of system internals is minimal for
customers, the model reduces to a queue. Mapping of Web Service elements is not complex,
but differs for infinite (thus open) and finite population (closed) Queueing Networks. Open
models are used for workloads sent by an unknown number of client systems to the server,
only the arrival rate is of interest. A single service request is mapped to a Queueing System
customer, arrivals are considered to be Markovian [82]. For closed models, the number
of clients to the server is limited and each client is allowed to send one request to the
system. Steady state analysis for simple systems is done with analytical results for closed
single server Queueing Networks or MVA. Component level models capture more details
and are thus the domain of the service providers. Setting them up requires access to the
system. Computer components like CPUs and mass storages are represented by queues
and combined to open and closed Queueing Networks. The model mapping for open and
closed networks is similar to system level models. Although not explicitly stated, in [82]
open networks are analyzed using their product-form property. Performance figures for
closed networks are computed with MVA. Complexer models use load-dependent servers
and multiple customer classes to represent different workload categories.

Main performance metrics in Web Service models in [82] are response time, throughput,
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availability and costs. According to [82] a high throughput is favored by the provider.
Improving the response time of services is central in Menascé’s models as this performance
metric is visible to customers. The “end-to-end” response time for Web Services [82] is
the sum of network time and service time. Service consumer and provider will have a
different perspective on both time intervals. From the consumer’s perspective only the
complete response time Sk = Zk + Wk is measurable, the provider has insight into the
service process and can measure Wk and Zk individually. Possible network delays due to
router congestions are ignored. For models with a high abstraction level this inaccuracy
can be accepted since network transmission times and processing delay differ in magnitudes
[16]. As an option, delay stations [58] can model transmission delays.
In [82] Web Service capacity planning does not involve SLAs. Instead an “adequate

capacity” for service providers is allocated to deliver a QoS level accepted by customers.
The definition of adequate remains open, but is linked to SLA fulfillment.

4.4.2 Mapping of BPEL Structures

For a Web Service workflow a Queueing Networks performance model can be constructed.
The structure of the network is equal to the execution graph for BPEL files [85]: For each
Web Service named in the BPEL file a system level model, thus a queue, is added to the
model. The execution graph structure is captured with routing matrix P .
Sequences in BPEL are mapped straightforwardly to Queueing Networks, the queues

are aligned to a serial concatenation maintaining their ordering. If <switch/> or other
conditional statements in BPEL have to be mapped the lack of variables in Queueing
Networks becomes immediately visible. Switch expressions can be mapped to parallel
queues under loss of details. Routing based on variables is replaced with probabilities
for the outcomes of decisions. Consider a switch statement that branches the workflow
W into several subworkflows Wi depending on a expression a. pi = P [a⇒Wi] indicates
the probability for choosing path Wi based on the value of a. Then pi is also the routing
probabilities to subworkflow Wi. Practical determination of pi based on a becomes
cumbersome, when detailed estimations or even exact results are required.

Synchronization in BPEL is subject to <flow/> tags. Mapping to Queueing Networks can
be done directly when fork/join network constructs are used. The disadvantage of fork/join
nets is their lack of product-form, thus analysis has to be done by approximation (see also
Section 4.3.1) or the theoretic option of analysis based on full state space enumeration.
BPEL also allows one to define loops in workflows. Without variables the Queueing

Theory is unable to model any counting process, so this BPEL feature can be approximated
as a shared resource only. In [82] an average repetition count vi for a request at a service i
is used as a factor to increase the service demand Di.

Example 4.4.1. A Queueing Network model for the ParcelSink workflow is shown in
Figure 4.4. It includes a network with five queues, one for each service interface, that
replicates the basic workflow structure in Figure 2.4. After the address has been fetched the
workflow execution does either geocode the input or query the transport papers from the
catalog. The decision is modeled by stochastic routing between two parallel subnets. For this
example we assume a probability of 40% that the addresses are already in the database, the
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query process is represented by a single queue. Geocoding is subject to two parallel queues
in a fork/join construct. After address handling the Queueing Network ends in a single
queue for printing the invoice. Since this has to be done two times the repetition count is
set to vprintinvoice = 2. It is a system level model since we have no insight to the inner
structure of HollowEarth and FlatWorld geocoder services.

4.4.3 Modeling SLAs with Queueing Networks

While basic workflow patterns can mapped to Markovian Queueing Networks, transfer of
SLAs is challenging when an exact or approximative analysis is intended. Process models,
as shown in the previous sections, are solely based on rates λ and µ. Hence, input bounds
found in SLAs have to be modeled with these parameters. Naturally, their expressiveness is
limited. Performance Guarantees, response times for instance, can be mapped to analysis
results. As these results are expectation values again, Markovian Queueing Networks are
not a perfect modeling tool for SLAs with limits.
When the modeler has full access to the infrastructure of used SOA services, workload

and service process can be determined with statistical methods (c.f. [70]). For customer
perspective models SLAs are the only source of information, the included SLOs can be
used to extract performance figures. Bounds to which the system has to be conform, even
in worst-case situations, may be used as average input parameters. Anyway, thanks to
Little’s Law missing service rates are not an obstacle.

Example 4.4.2. To map the SLA for the ParcelSink workflow we use the Queueing
Network constructed in Example 4.4.1 and assume M/M/1 queues.

For analysis, an arrival rate to the network input has to be specified. According to the
long-term contract in Table 2.1 we have λ = 12. Further, service rates for all queues are
required. Rates µFetchAddress = 15, µCatalog = 9 and µPrintInvoice = 25 are known due
to internal hosting. For the contracted geocoder services we extract the rates from their
SLAs. In Example 4.2.1 we derived a service rate of µHollowEarth = 8.1 for the HollowEarth
service. Equally, the SLO in the SLA for FlatWorld stating

(workload ≤ 15 requests per second)⇒ (response time ≤ 5s) (4.22)

results in λFlatWorld = 15 and µFlatWorld = 15.2. Figure 4.4 includes the rates, too.

Only long-term contracts have been considered in the example above. Simultaneous
inclusion of short-term arrival bursts is not possible in the Poisson arrival process.

4.4.4 SLA Validation

With a fully parametrized Queueing Network for a SOA workflow, SLA validation reduces
to analysis and subsequent comparison of results and target figures. Still, within this simple
blueprint, there is enough tolerance to produce errors or to misunderstand results. An
analysis method has to be chosen by network type and should consider whether exact or
approximative results are suitable. Soon one will see that some kind of model transformation
is required first, the likelihood to find an unsupported model feature is high.
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Example 4.4.3. To validate the SLA for the ParcelSink workflow we analyze the Queueing
Network for the response time. Intention of our model is to show that SLO

max. 12 requests per second ⇒ max. 5 seconds response time
λ ≤ 12⇒ E[S] ≤ 5s

holds on long-term.
Analysis includes some compromises due to the fork/join of HollowEarth and FlatWorld.

• In a first approach we bring the network to product-form by substituting the fork/join
with routing probabilities p = 0.5 for each service. Solving the Queueing Network
with the help of the Jackson Theorem and MATLAB gives an average system delay
of E[S] = 2.5211.

• When the model with routing is transformed to a closed Queueing Network, MVA
gives us E[S] = 2.350691 excluding the shortcut queue. We use the JMVA component
included in the Java Modelling Tools [22], on the recommendation of [26, Section
10.1.5] we populate the network with 100 customers.

• Varki’s MVA extension approximates E[S] = 3.1617 excluding the shortcut queue.
Since synchronized queues have to be equal we set µHollowEarth = µFlatWorld = 8.1
assuming HollowEarth is the bottleneck. Again, population is 100 customers.

• For guidance, simulative analysis paying attention to routing and fork/join constructs
gives E[S] ≈ 3.1 (JSIM component of the Java Modelling Tools).

Compared to the claimed response time of 5 seconds there is still room left and, based on
the Queueing Network analysis, the given SLA is valid for the ParcelSink workflow.

With the methods and options of Markovian Queueing Networks the example above
gives a positive outcome for the SLA validation. The expected system time is within the
bound given by the SLA implication. But comparing expectation or average values to
maximum values in guarantees is pointless. It is in the nature of averaged figures that some
individuals are below average and some are higher than average. There is no information
in the analysis result on how the system response time variates and if or how often the
response time bound of 5 seconds is exceeded. In the opposite, bounds of SLOs are used to
determine the unknown service rate µ for corresponding services. From worst-case bounds
the average behavior is postulated but no information on its variance is included in the
model. This is a fundamental error when Markovian Queueing Networks and bounds are
combined since there is simply no option to model upper or lower bounds with average
values.

Example 4.4.4. In Figure 4.5 we provided a histogram of response times for the ParcelSink
workflow recorded at a simulative analysis as we will present in Chapter 5. We used
exponential arrival and service time distributions with the parameters in Example 4.4.3. A
majority of service requests finished within the given response time guarantee of 5 seconds,
but obviously processing times exists that violated the performance contract. The positive
result derived with product-form analysis in Example 4.4.3 is invalidated.
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Figure 4.5: Response Time Histogram for ParcelSink Workflow: Many service response
times violate the 5s response time contract.

SLAs Conflict with Poisson Assumptions

A fundamental assumption necessary for queues or Queueing Networks with exact solutions
are workload and service models with identically and independently distributed (IID)
interarrival and service times. This enables the use of Poisson processes with average rates
as the only parameter, closed representations for steady-state results for single M/M/1
and M/M/m can be easily derived. According to Burke’s theorem the output of Markovian
queues is also Poisson, this allows one to construct Queueing Networks that even include
(de-) multiplexing of customer flows that are also Poisson. In the end, the classes of
product-form networks allow an efficient and exact analysis.
The problem in, but not limited to, performance models for SOA is that there are no

IID interarrival and service times in real systems. While in many modeling applications
this simplification can be accepted in exchange for product-form property this is a severe
limitation when working with SLAs. Request arrivals tend to be grouped into bursts [82]
visible as peaks in the short-term arrival rate. They are said to be correlated. Arrival
bursts lead to occupied waiting lines and thus in high system population and increasing
response times, bounds specified SLAs are likely to be violated in systems under load.
Assuming IID arrivals for a system with correlated arrivals leads to an underestimation
of required resources. Also a reduced service rate is often not a phenomena limited to a
single customer. Service levels degrade for a time period, for instance, when a background
maintenance job blocks system resources. The effect on response times is similar to peak
arrival rates.
Since bursts and variations in arrival and service processes are the norm in real-world

SOAs, the inclusion of peak rates can give better results. In theory, infinitely small interar-
rival or potentially infinite service times are possible due to the memoryless exponential
distribution, hence Poisson processes do not explicitly exclude such batch arrivals or periods
of degraded service. But when modeling with bursty arrivals the features to specify or
bound peaks are missing for Poisson processes. Moreover, when request bursts or low

53



4 Queueing Theory

service phases are accepted in a way specified in SLAs the modeler is interested in including
them. As a consequence, a more detailed workload and service model has to drop the
memoryless exponential distribution to allow such variations. Other distributions, such as
Normal or Erlang can be included in workload and service models resulting in a G/M/1 or
even G/G/1 system without product-form property. This also conflicts with the application
requirement of Varki’s MVA extension for fork/join queues, it requires all parallel queues
to be Markovian. Hence, including details on processes leads to loss of Poisson property
and thus the corresponding Queueing Networks are neither in product-form nor efficient
approximation algorithms can be applied. Remaining analysis options are an elaborative
state space Markov Chain analysis or fallback to simulation models.
An intuitive option to model bursty workload is to add a safety factor to the arrival

process to cover short-term variations without loosing efficient analysis. For instance, one
could size service capacity for an arrival rate of x ·λ with x > 1, but give service guarantees
to the customer for a rate of λ only. In terms of SLAs compliance we would be on the
safe side, but at the cost of running an over-sized system. To avoid over-provisioning with
Web servers or SOA services Menascé introduces a burstiness factor [80–82] to capture
high but short lived arrival peaks. Similar to the previous proposal it increases service
demand D, but the factor is based on statistics of the arrival process. It is the fraction of
the measurement interval with an arrival rate that exceeds λ [80]. The burstiness factor
helps to adjust workload to reduce missed deadlines, but it has to be determined at an
already existing system (or simulation model). Due to estimation and averaging, is not
suitable for guarantees.

Errors in Routing Probabilities

In the ParcelSink example we assumed routing probabilities pgeocoding = 0.6 and pcatalog =
0.4. This resulted in a workload reduction to the geocoders (pgeocoding · λ = 4.8) and
the database service (pcatalog · λ = 7.2). However, these routing probabilities are average
values again and are likely to be undercut or excelled during normal system operation for
limited time intervals. The model analysis does not give any information on the system
performance when these probabilities variate. Keeping the worst-case in mind additional
model analysis steps have to be provided with all workload taking one of each possible
routes.

Example 4.4.5. The workload split of 0.6 to 0.4 in the ParcelSink workflow is an average
estimation only. To be prepared for short-term fluctuations or a higher percentage of
returning customers that will use the catalog more frequently two worst-case scenarios
are analyzed. Assuming the worst-case workload to the geocoders (pgeocoding = 1.0 and
pcatalog = 0.0) the fork/join subnetwork is exposed to the full workload λ = 12. Since
the HollowEarth service limits the performance of the fork/join construct the subnetwork
becomes unstable due to λ > µHollowEarth = 8.1. As a consequence, the complete Queueing
Networks is unstable, service requests will pile up and the response time is ∞. An equal
effect is visible when the other extreme case of pgeocoding = 0.0 and pcatalog = 1.0 is tested.
The catalog service has to process requests with rate λ > µcatalog and becomes unstable, too.
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Quality of Approximations Unclear

We add another point of criticism on SOA Queueing Network models including SLAs:
Approximative results cannot provide reliable service guarantees. When MVA is used to
analyze Queueing Networks, it gives exact results for product-form networks. For workflow
patterns using synchronization, MVA extensions give approximations only. Although Varki
has demonstrated the approximation error is about 5% for her MVA extension compared
to exact results [114] for most models, MVA does not include any information in general on
how good an approximative result for a special model is. There are no confidence intervals
as estimation quality indicators. When SLAs are based on them the combination with
monetary interests might be risky. Other analysis methods that can provide confidence
intervals such as simulation require more detailed models and processing time.
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We have seen that modeling and analysis of large SOAs is possible with Queueing Networks.
Mapping of a Web Service to a single queue is straightforward and BPEL workflows can
be replicated by Queueing Networks. The size of models is potentially not limited, as long
as the network has a product-form or can be approximated by a product-form network.
Analysis scales linear with the number of queues. The disadvantage of Queueing Networks
is that, even in Jackson or BCMP networks, their descriptiveness for modeling is limited.
Neither system downtimes nor batches of customer requests in arrival flows as common in
SOAs can be modeled. As a consequence, worst-case situations are hidden for analysis, thus
SLA validation with Queueing Networks is unreliable. When special attributes are added
to the model, for instance synchronization required by BPEL workflows, the product-form
is lost and the quality of approximative solution techniques becomes unclear. Detailed
workload and service models with non-Markovian distributions further reduce options in
approximative analysis. Numerical analysis is, even for small models, highly time- and
resource consuming and thus a theoretical option only. Another, only briefly mentioned
issue in the last Chapter is the lack of variables in Queueing Networks. Decision operators
and loops in workflows have to be replaced with routing probabilities, a method that brings
additional inaccuracy into models and results.

Discrete Event Simulation is a form of state based model analysis [8, Section 1.10]
and a far more powerful analysis method than Queueing Theory. Its applicability is
not limited by model classes and, when random variables are used, they can have any
distribution. Moreover, models can potentially include any feature that can be formulated
with programming languages. Variables, loops and communication between elements can
be used, hence SOA models can be by far more detailed than Queueing Networks. Instead
of giving average results simulative analysis takes a different approach by scanning the
(unlimited) state space to explore system dynamics. Approximative results can be given
with the help of statistics and without the need for full state space evaluation. When
average figures are computed their variance and other moments can be provided to show
the quality of estimation. Discrete-event simulation is based on a time advance routine [70,
Section 1.3.1] that transforms the model state and advances the simulation or model clock.
The sequence of values of model state variables at each occurred event in a simulation run
is called trajectory. By accessing the trajectory during simulation runs or by inspection of
recorded trace files, even rare or extreme events normally hidden beyond average values
can be found.

The flexibility of simulative analysis allows customized statistics of model elements.
Good software support with user-friendly interfaces extends the user base. Therefore,
simulation is a candidate for SOA performance analysis.
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5.1 ProC/B Modeling Language

Simulative model analysis is a computerized task performed by simulation software. Sim-
ulators include well optimized implementations of the time advance loop and the event
queue. A graphical user interface, component libraries and statistic functions add fur-
ther convenience. Several free and commercial software systems exist for discrete event
simulation. In this work the ProC/B tool set [14–17, 60, 116, 120] in combination with
OMNeT++ [112, 113] will be used.

The process chain paradigm by Kuhn [65] allows to model process chains in the field of
logistics. A formalization of process chains was developed in the Collaborative Research
Center “Modeling of Large Logistics Networks” (CRC 559) [33]. ProC/B [14, 120] is a
graphical language [12] to model and analyze elements in logistic networks by analytic
and simulative methods. It adds several features of Queueing Systems to process chain
descriptions to formalize process chains [14]. This includes the sharing of and competition
for limited resources, as well as, convenience modeling elements.
Initially ProC/B models were analyzed with the HIT simulation environment [21].

Unfortunately, compiler support for the used Simula programming language has declined
on modern architectures and operating systems. For this practical reason ProC/B was
implemented from scratch [15] using the OMNeT++ simulation environment [112, 113].

5.1.1 Basic ProC/B Elements

The modeling language ProC/B is based on Process Chain Elements (PCEs) symbolizing
activities and Function Units (FUs) that capture resources and structures of modeled
systems.

Process Chain Elements

PCEs describe tasks in a process chain, their representation in ProC/B is a pointed
rectangle. The workflow of a system, called a process chain in ProC/B, is modeled by
connections of PCEs. The most simple connector is a handover of processes from PCE
A to PCE B when A has finished the service. This is symbolized by directed arcs and
equals a routing probability of 1 in Queueing Networks. In detail, ProC/B includes three
subtypes for PCEs:

Delay PCE Processes are delayed for a given deterministic or random time period. For
logistical models this can be exploited to model the transportation time of goods.

Code PCE Executes a block of programming code to manipulate variables attached to the
process. Programmable PCEs allow one to include new features used to express model
behavior by code and not with standard elements. For example, new measurement
methods or custom trace writers can be added.

Call PCE Request a service or resource from a FU. Service calls block the process until
the service is finished. To perform activities PCEs may require resources with limited
availability in the model. If a PCE cannot acquire all necessary resources to process
a model object, the object is enqueued in a waiting section.
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Loop PCE Repetition of workflows enclosed by two PCEs marking the start and end of a
loop.

We will introduce some of these elements with examples, for a detailed description of all
language elements we refer to [13, 120].
Process chains are not limited to sequenced activities only. For parallel compositions

AND and OR connectors exits that accept two ore more subworkflows. OR connectors
select a single subworkflow to continue for processes. They can be configured to act as a
probabilistic router similar to Queueing Networks. The boolean operation mode selects the
subworkflow based on a boolean expression as known from general programming languages,
a substantial advantage to Queueing Networks. The semantics of AND connectors is the
synchronization of parallel workflows. Arriving processes are forked at opening connectors
by creating copies and sending them to each subworkflow. Closing connectors exist to
join processes that finished their sub-workflows. AND constructs are comparable to the
fork/join queues in Queueing Networks, but they offer complete freedom on arrival process
properties and the inner service structure.
Source and sink are specialized PCEs that mark the beginning and end of a process

chain. The source generates entities (customers, containers, trucks, etc.) to be handled by
the process chain. In detail, interarrival times for the entities can be specified by several
types of random distributions offered by the ProC/B implementation. Modelers can choose
from constant, exponential, normal and other distributions.

Function Units

Function Units offer services (“functions”) to be used by PCEs. Two types of FUs exist:
atomic and composed FUs.

The service of an atomic FU is to offer resources to processes. Server FUs are comparable
to servers in Queueing Theory, offering an abstract service to PCEs as their resource. For
the service duration a server FU is blocked and other processes have to be enqueued
(default: FCFS). In atomic FUs the service process are modeled and one can choose
between several service time distributions again. With this semantic the allocation of
a server can also be interpreted as binding of a process to a limited resource. Servers
can be configured to support preemption or processor sharing, for details we refer to the
language specification in [13]. Resources can also be modeled with storage and counter
FUs. Storages offer (limited) capacity while counters can be incremented and decremented
down to zero.

Composed FUs capture the structure of the model by offering encapsulated process chains
as a service. In this way ProC/B implements reusability of model parts and hierarchies.
To construct more complex models composed FUs can be created by specifying one or
multiple service interfaces and by implementing them with a process chain. Call PCEs
from higher hierarchy levels can use these interfaces in an identical way to atomic FUs.
The only noteworthy difference for process chains implementing the service interface is
their lack of an own source.
A distinctive feature of ProC/B is the modeling of resource sharing, several PCEs can

access the service of a single FU at the same time. Depending on the queueing strategy
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and service capacity of the FU the performance figures will variate. A classic example
for resource sharing within the context of logistic models are truck unloading processes
(several PCEs in parallel workflows) that have to share a single forklifter (a single FU).

5.1.2 Analysis and Measurement Streams

If a simulation model includes random variables, two runs with the same input configuration
(but different random generator seeds) will result in two different trajectories and output
values. In fact the output itself is a random variable [8] likewise the input is random. The
trajectories will also differ in the gathered statistical data for the model run. To analyze
stochastic models many time-consuming simulation runs of the same model with different
seeds are necessary followed by a statistical evaluation.
To get performance figures the user can add statistical operators called measurement

streams to ProC/B models via Graphical User Interface (GUI). Measurements are recorded
in simulation runs at FUs when a process chain offered as function is called or finishes. At
any FU, the model itself is also a FU, utilization, population, response times and other
figures known from Queueing Theory can be measured. Next to the averages a ProC/B
analysis gives the standard deviation and the confidence interval for each metric. When
built-in statistics are not sufficient for a modeling application the user can access detailed
trace files recorded on simulation runs and analyze them with his or her own tools.

However, extracting reliable results even from simple models requires at least two scarce
resources: experience and patience.

Example 5.1.1. In Example 4.2.1 we computed the service rate for the service provider
hosting the HollowEarth geocoding service using an M/M/1 queue. For an arrival rate of
λ = 8.0, a service rate µ = 8.1 the expected response time is E[S] = 10 seconds. The queue
is highly utilized with ρ = 8.0

8.1 ≈ 0.98. We are going to compare these analytic findings to
results estimated by a ProC/B model.

Table D.1 shows simulation results for increasing simulation time. Averaged measure-
ments for long simulation runs (1000000 and 1 Million seconds) conform to analytic
findings on expected response times and population. However, short simulation runs show
different results: In the first experiment with 10000 seconds model time the average response
time is 7.13 seconds while we sized the system for 10 seconds. The experiment with 20000
seconds model time gives a better result. An advantage of simulative analysis is that the
approximative quality is visible in the width of confidence intervals. Considering the 90%
confidence interval for the first run the average response time of the HollowEarth service
is in the interval [5.578, 8.691]. So, according to the first run, the interval is even below
the expected result and with 90% confidence the system is faster than 10 seconds for each
request in average. However, further experiments show that our assumption of 10 seconds
response time does still hold. Longer simulative analysis narrows the interval, but the result
is still approximative and subject to random noise.

The reason for such misleading results is the poor estimation quality of short simulation
runs combined with a high system utilization. Queues under heavy load converge slowly
towards steady-state, the observed standard deviations are high. Increasing simulation
time does indeed reduce the width of confidence intervals, the results become more reliable.

60



5.2 SOA Models with ProC/B

Removing measures taken in the initial, transient model phase improve the results further.
A primer on how to identify the transition from a transient phase to steady-state in
non-terminating simulations is given in [70, Chapter 9] or [8, Chapter 11.5].
The reader might argue that the example is chosen in a way that the utilization of

the system is high and the simulation performs bad. The author has to confess this is
true, but, it is based on a simple reason: In the next section we will describe how to map
complete SOA workflows to ProC/B to analyze systems and to do SLA validation. Since
we are interested in performance figures for systems in worst-case situations we will have to
observe highly utilized systems to validate given performance guarantees. Slow convergence
to steady state values will be the general case and not the exception for simulative SLA
Validation in SOA models. Moreover, even for the average system load on a SOA model,
some services might be highly utilized. When this is not visible or known beforehand,
slowly converging models can be identified by analysis only.

Example 5.1.2. We reconfigured the M/M/1 model from Example 5.1.1 to a lower arrival
rate λ = 5.5 resulting in a utilization of ρ = 5.5

8.1 ≈ 0.68. Except for the arrival rate, nothing
else is changed. Using results from Queueing Theory we expect a population of 2.1154
and thus, an approximative response time of 0.384 seconds in steady state. The results
of simulative analysis are given in Table D.2. Again the simulation result conforms the
analytical findings. Moreover, due to lower utilization, the numbers converge towards the
expected result in shorter time. Even for the short run with 10000 seconds model time the
numbers are usable as an approximative result. Confidence intervals are tighter from the
beginning.

Simulative analysis for a given model is a task performed best by computers, so it is
convenient to increase model time for better results by adjusting the experiment parameters
once. Unfortunately this does also increase the runtime of the simulation program itself.
The waiting time for reliable results can be significant and hence renders simulation a bad
choice when fast analysis is required.

Example 5.1.3. We added the approximative CPU Time for each simulation experiment to
Tables D.1 and D.2 when the model is analyzed using OMNeT++ and the author’s Personal
Computer (i5 quad-core running at 3.3 GHz, 8 GB RAM). Even for rough approximative
analysis of simple M/M/1 queues several seconds up to minutes of CPU time have to be
spent. More confidence is given by even longer analysis, but the gain is not linear to CPU
time.

Since we emphasized functional correctness for the ProC/B implementation instead
of performance, these numbers should not be understood as a general statement on
the duration of simulative analysis. Nevertheless a trend is visible when the estimation
quality is improved and thus, the confidence intervals are narrowed: simulative analysis is
time-consuming.

5.2 SOA Models with ProC/B

The ProC/B modeling language can be used to model SOAs and analyze them using
simulation. When workflows are compared to logistic process chains at an abstract level,
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the ideas are quite similar, hence many features in the ProC/B language simplify the
creation of detailed SOA models. Structure and behavior of workflows can be analyzed
for performance and dependability [16]. We present a mapping from BPEL workflows to
ProC/B models here. Service usage is represented by PCEs and a Web Service finds its
counterpart in functionalities offered by FUs. For details on creating SOA models with
ProC/B we refer to articles [16, 17, 116].

The mapping, as other mappings for other modeling methods presented in this work,
does not consider transmission times of SOA requests. If such a level of detail is required,
additional PCEs and FUs can be added to cover the network structure. On the practical
side, such a model would be very detailed and does not separate network structure from
the workflow. For OMNeT++ model libraries including TCP/IP packet transmissions and
network hardware exists, for example the INET framework (an overview on frameworks is
given in [113]). It allows modeling of host-to-host communication in networks. In [16] the
INET framework and the ProC/B model world was brought together in two tier models.
High request rates lead to network congestions in the INET model visible as an increase of
response times in the ProC/B world [116].

5.2.1 Model Mapping

To use ProC/B for SOA modeling, a mapping of workflow structures for process chains
has to be done. We summarize the mapping of [16] here. Beginning and end of a SOA
workflow are marked by ProC/B sources and sinks. The source models the service request
arrival process, thus for Web Services each generated entity symbolizes a SOAP message
triggering the workflow. A request is considered as finished when the entity arrives at the
sink.
The workflow structure and sequence of service calls is modeled with PCEs. When a

Web Service is described with BPEL, for each abstract service interface a Call-PCE is
added to the model. Since a ProC/B process entity waits at Call-PCEs until a reply is
received, the synchronous <receive/> and <reply/> mechanism in BPEL is simulated.
Sequencing Web Service calls with <sequence/> is a simple concatenation of PCEs to a
process chain in the given call sequence. For other BPEL statements ProC/B connectors
can be used:

<switch/>: OR-connectors can reroute a process entity depending on ProC/B variables
or random.

<while/>: Loops can be realized in ProC/B with Loop PCEs.

<flow/>: Parallel execution and synchronization is the domain of AND-connectors.

Infrastructure of service providers, as well as, composed services are captured with FUs.
Web Service workflows can be offered to other users as a Web Service again, so if the
internal structure is known, it can be modeled as a process chain. With composed FUs
their functionalities can be included in other process chains as a sub-workflow. When it
comes to an atomic service provider or when no further details on a service are known
server-FUs are used.
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Some advice on the multiplicity of FUs when connected to PCEs should be considered.
For the modeling of service providers with FUs at least two variants exist from which can
be chosen. Both differ in model semantics and it is up to the decision of the modeler which
variant suits best. In the first variant, all PCEs for workflow elements that send a request
to the provider are connected to the FU in a n : 1 manner. This model’s resource sharing
and analysis will show the performance degradation of the provider on multiple customer
access. We recommend this variant, if the infrastructure of the data center providing the
service is known in detail and all service requests are processed on the same machine. The
second variant is to replicate the service providers FU and to connect PCEs in a 1 : 1
manner to the set of providers. As an alternative, the capacity factor in server FUs can
be adjusted. In this way resource sharing is not included in SOA models but the aspect
of service guarantees per contract is taken into account. Of course, both variants can be
mixed in a single model.

Example 5.2.1. Figure 5.1 includes a ProC/B model for the ParcelSink Ltd. workflow
defined in Listing 2.1. Model ParcelSink_Main specifies the structure of the workflow
transport with six Call-PCEs, five servers and two kinds of connectors. The workflow is
intended to be called by customers, so no source specifies the arrival process in this ProC/B
model. Instead a virtual source (and sink) acting as some kind of function interface is
used. Addresses for a packet delivery are collected by PCE fetch_addresses, it uses the
resources of the server-FU Webserver. In the next step the workflow instance hands the
request over to a probabilistic routing connector. With a probability of 60% the addresses
have to be geocoded, otherwise the catalog service is used. In the geocoding section the BPEL
file requires a synchronized geocoding of start (at HollowEarth server) and destination (at
FlatWorld server) addresses, so a ProC/B AND-connector forks and joins the request. As
a final task the bill is send by PCE print_invoice, in the BPEL file the service is called
two times by a single request. In this model we have chosen to use two CallPCEs connected
to the same PDF_generator server instead of Loop-PCEs. The effect due to resource usage
at the server is the same, but the loop variant comes with a syntactic overhead (two PCEs,
additional process variables). When done the successful service request is sent back.

5.2.2 Inclusion of Quantitative Requirements from SLAs

In the BPEL mapping to ProC/B we omitted the arrival and service process since necessary
values have to be extracted from the SLAs for each service. When SLAs are to be validated
the sources generating arrival process can be parametrized with the user constraints found
in included SLOs. It is best practice in ProC/B models to separate the workload model
from the remaining workflow encapsulated in a composed FU, since measurements can be
taken at FUs only.

Example 5.2.2. Service requests are send to the ParcelSink workflow by external customers.
In the ProC/B model this is expressed by an additional model layer enclosing the ParcelSink
model. Figure 5.2 shows the top level of our ProC/B model. The source generates a request
flow (exponential distributed, λ = 12), the PCE commission_parcel_service sends the
requests to FU ParcelSink offering service transport. The internal structure of the FU
is given by the workflow shown in Figure 5.1.
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Service processes are modeled with distributions and parameters in the PCEs representing
service usage as depicted in Figure 5.1.

Example 5.2.3. The ParcelSink workflow model is used to validate the SLA implicating a
response time of 5 seconds when the load is limited to 12 requests per second. Parameters
and distributions are equal to the Queueing Network analyzed in Example 4.4.3, Table D.3
shows the found average figures as a result. Based on Queueing Theory results we expect
a turnaround time of approximately 3.1617 seconds. Simulative analysis approximates
similar performance figures for the workflow. The 106 seconds experiment gives an average
response time of 3.1722 seconds and [3.1164, 3.2280] as a confidence interval. However,
we had to wait for this result for about 53 minutes. Shorter simulation runs give weaker
results: for the 10000 seconds run the observed response times average to 3.3683 seconds,
the 90% confidence interval extends to [2.9009, 3.8357].

Simulative analysis can be, as shown in this example, very time-consuming to get reliable
average results comparable to known analytic findings.

Detailed Process Models

While in Queueing Networks we restricted models to Poisson arrival and service processes
to enable a fast analysis, simulation offers the freedom to choose distributions without any
effect on analysis options. While Exponential distributions work well for drafted systems,
Gamma, Erlang and Weibull distributions may lead to more realistic simulation results.
Of course, chosen distributions will affect analysis results, so the modeler has to select
carefully. In case of the SLAs performance modeling scenario no information on possible
distributions is available, so assumptions have to be made. This adds another source
of errors to simulation models. For further reading on random distributions and their
application in simulation models we refer to books [8, 70].

More detailed distributions often require more than one parameter which is, with limited
information, difficult to find. Extensive knowledge on the real process is required. When
no further distribution parameters are known they can be fitted to traces that can be
captured only from already existing systems. For SOA models we again face the problem
that access measurement to systems providing services is limited. SLAs cannot be used
as a detailed source for these figures, since SLAs and their description languages have no
options to define such distribution characteristics.
For network traffic even more advanced models exist. Contrary to previous examples,

packet and job arrivals are not IID but correlated in realistic systems [80, 82]. In [62, 64]
Kriege presented a Markovian arrival process model that involves moment fitting. For
fitting input models to trace data a software toolkit exists [20]. The traffic generator has
been implemented for OMNeT++ [63] and, in combination with the ProC/B library, it
can also drive process chain models.

5.2.3 SLA Validation

Mapping SOA workflows to ProC/B is straightforward, since the global system ideas
are quite similar, but adding quantitative requirements for model-based SLA validation
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takes more effort. SLA validation in ProC/B accepts contract violations as a result of
the stochastic behavior of complex SOAs. Moreover, occurrences of SLA violations are
considered as random variables whose expected value can be computed by simulative
analysis [17]. An SLA is validated by showing that performance figures of interest are
below a given bound, for example, an accepted failure rate. Since steady-state is assumed,
but simulation times are naturally limited this is done with confidence interval for a
significance level. The interval has not to overlap the given bound for successful validation.

Either one- or two-sided confidence intervals are used [17]: When SLA violation can be
decided per request and the SLA defines a maximal failure probability two-sided confidence
intervals are used. SLOs given by average values are validated with one-sided confidence
intervals.
While computing average results and their confidence intervals is a basic functionality

in ProC/B, the binary decision on a SLA violation for single requests needs to be added.
In [17] a method blueprint was presented how to measure SLA violations in ProC/B for
aspects of workload, response time and reliability. The SLA model has three groups of
quantitative requirements, each with an average value, as well as, constraints defined by
sliding windows covering the processes that finished last:

sla.load captures the workload sent to a service. Restrictions can be implied on minimum
interarrival times or the number of arrivals within an interval.

sla.perf captures the response times. Similar to the arrival process limits can be imposed
on maximum delay or the fraction of processes that finish in time.

sla.avail is availability. A certain percentage of service calls have to be successful.

To support the necessary measurements a modeling pattern is used: Each service under
measurement is encapsulated in a FU and a second FU layer embeds the service FU and
acts as a measurement proxy. SLA violations are decided right in the proxy FUs using
CODE-PCEs and ProC/B’s own scripting language. For details on used ProC/B language
options we refer to the original paper [17]. No direct support in ProC/B’s SLA model is
given for implications found in WSLA files. Contract breaches on arrival rate and delays
are visible, but no correlation between both. However, since ProC/B can be extended with
programming languages or by additional code in the OMNeT++ library, such functionality
can be added manually.

Example 5.2.4. We checked the ParcelSink simulation model for response time violations
by evaluating SLA expression sla.perf := (tmax = 5s). In this example we require a quite
low conformance level of at least 80%. The results are appended to Table D.3, a histogram
plot for the short first run was already given in Figure 4.5. The probability of exceeding the
response time is about 0.1793 with a confidence interval (90%) of [0.1789, 0.1797] for the 106

seconds experiment. Based on that figures the workflow is consistent with the requirement
of less than 20% timed out requests.

Supplemental to the use of confidence intervals in SLA validation Example 5.2.4 and
5.2.3 give us two more insights: Relying on average performance figures only as we did
for Queueing Networks leads to wrong assumptions on service conformance. Although
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the average response time of about 3.3 seconds has some comfortable gap to the upper
bound of 5 seconds there are many outliers that violate the SLA. Simulation gives us these
information on variance and thus, on the confidence intervals allowing the classifying of
the results. Here, with a failure rate of 20%, it is unlikely that customers would accept
this service. Second, with short simulation runs the user cannot assume that he receives
results for steady state. For the shorter runs our requirement on 20% conformance was not
met and confidence intervals also showed a significant distance.

The problem of long simulation runs also occurs in situations when the probability of rare
events has to be determined with high precision. In SLA validation this can be the task of
to show that very long response times are very unlikely. When workload and processing
speeds are driven by random processes, there will be many requests that completed in
normal service conditions and only a few in or nearly none in worst-case situations. As
a consequence, most data produced by simulation runs are of minor interest for SLA
validation. Or, with a change of perspective, when a “forbidden” system state does not
occur during extensive simulations, it is still no proof that it might occur in even longer
runs.

Example 5.2.5. A rare event in the ParcelSink workflow model is a response time of 20
seconds or longer. As seen in previous Example 5.2.4 we checked the model for sla.perf :=
(tmax = 15s). The results show a very low probability of 0.0006346. However, computation
of narrow confidence intervals again took several minutes. Depending on the required level
of precision the user has to wait 53 minutes or longer for a result. In the short 10000s and
20000s runs the rare event did not occur at all. Given the case that the short run had been
the only experiment, the user could assume that such long response times do not exist at
all.

Preemptive Timeouts

Although simulation of SOA can take a significant amount of time there is a unique
advantage: It allows specific measurements for SLAs and, due to step-by-step model
execution, to highlight events and react on them. A semantic extension for SOA service
call timeouts [16] was added to ProC/B in order to include deadlines in models and to
avoid process blocks by lost, not returning calls to PCEs. Adding such custom behavior to
Queueing Networks would prevent efficient analysis. The timeout semantics is as follows:
When a process entity “arrives” at a call-PCE, and thus triggers a function offered by a
FU, a timer starts to tick. When the FU finishes within time the process continuous as
usual. If the timer runs down to zero before the process returns the following semantics
apply [16]:

• A copy of the lost process instance with a variable set prior to the function call
continues on the process chain.

• The late original process is terminated and removed from its actual queue

• Reserved process variable in_time is set to false.

66



5.2 SOA Models with ProC/B

The timeout-flag can be used in combinations with OR-connectors to model system reactions
on missed deadlines and to implement own measurements registering these events, for
example, the percentage of timed out requests.

Example 5.2.6. We added a timeout to the customer’s view on the ParcelSink workflow
to identify requests with response times exceeding 5 seconds. The modifications are visible
in Figure 5.3: the Call-PCE for the ParcelSink service marks timed out processes. A
OR-connector allows processes that finished in time to pass to the sink, others are piped
through a Code-PCE first. The Code-PCE includes a statement that increments a counter
for timeouts, its outcome and other results are enlisted in Table D.4.

Obviously, with the timeout extension a fraction of about 10% of all requests per
experiment violated the performance contract only. Timed out requests are forced to
complete within 5 seconds and thus the waiting line lengths are manipulated. This helps
waiting, but not timed out requests to be processed earlier and leads to turnaround times
that are off the expected values for a system without timeouts. Further applications
for timeouts and integration into the ProC/B GUI have been investigated in Johann
Kaufmann’s diploma thesis [59] (a summary is given in [116]).

Errors in Simulation Models

Simulation models and simulation software are complex software constructs with manifold
options to include errors. Some of them can be considered as user errors due to limited
modeling practice, but others are less obvious and woven into model structures. Faulty
analytical models are identified by being not computable or giving implausible results on
user errors, infinite or negative response times for example. The disadvantage of simulation
is that errors are not always immediately visible or occur in rare situations only.
Since simulation libraries offer programming language constructs or require the coding

of behavior simulation models are a class of software. The general problem with software is
the existence of programming errors that cannot be avoided or proven to be non-existent for
non-trivial programs. Errors in simulation models can lead to an abort of the experiment
run and the necessity to debug the model. Although this can be annoying breaking
simulation runs are a less critical error. More severe are errors in model parts causing
behavior not intended by the modeler. Model elements can simply react wrong on input
due to programming errors, that, when not central to the model, can remain unnoticed
and distort results.
The ProC/B editor includes some efficient strategies for model validation based on a

transformation of ProC/B structures to Petri Nets [18]. In detail, the program is able to
identify rare errors like partial deadlocks. They occur when two model elements wait for
each other, but are also dependent on each other. Often these errors exist in models with
high abstraction level since the human factor of the real system is lost. Second, to ensure
that model input and output are in a fixed relation, thus no customers or request get lost
by accident, the number of tokens in the Petri Net is ensured to be limited (Boundedness
property [18]). The third error type is the non-ergodic behavior of model elements that
lead to the absence of a steady-state distribution. Furthermore, syntactic errors in variable
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definitions and ProC/B statements are found. There is no sanity check for errors in input
data [18].

Choosing a too low level of abstraction can also be considered as an error. The manifold
modeling options of simulation models entice modelers to include a extensive level of detail
in their constructs. When several persons participate in the modeling process everyone
wants to include his or her domain knowledge into the model. Due to increased complexity
simulation becomes processing intensive in real time and it takes longer in model time to
reach steady-state. For example, in a higher abstraction grade complete model parts can
be replaced by a single element with a fitted service process distribution.

5.2.4 Applicability of Simulation to SOA

Discrete event simulation offers many options to model SOAs. There is no need to use
abstract queues, and statistics can highlight every aspect of a system. The show stoppers for
SLA validation are the long analysis times without the guarantee that important worst-case
situations are included in the runs. Other obstacles are the need for detailed information
to replicate a system performance of a real system. Next to process rates themselves their
distributions are required in simulative models. If a distribution is unknown assumptions
have to be made. This, together with analysis, renders simulation to a inferior choice to
analytical methods when early system designs need to be evaluated.
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5 Simulation

Figure 5.2: Screenshot of ParcelSink top-level model in ProC/B editor modeling the arrival
process. The source generates requests arrivals (λ = 12) and sends them to the
ParcelSink model on the lower left.

Figure 5.3: Screenshot of the ParcelSink ProC/B model with a timeout constraint. Re-
quests that do not finish within 5 seconds are cancelled immediately and
counted.
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For general system modeling and performance analysis Queueing Theory and Simulation
have been presented. They can be used to model SOAs and to estimate their performance.
When it comes to provide definitive performance guarantees as found in SLAs both methods
have limited applicability. Getting figures for worst-case or best-case situations requires a
lengthy computation or is not supported. Analysis becomes faster when approximative
or average value-based analysis methods are used, but they can only provide long-term
average values. If performance guarantees for SLAs are required, these results are almost
useless. Neither peaks in the job arrival rate nor short service breakdowns are visible.
Simulation computes a sample of the possible trajectories and provides results based on
statistical evaluation. Especially results which result from rare events have to be computed
with high precision and require long simulation runs. This also comes in expense of long
processing times that can be too slow for online reconfiguration and simple draft models.
An additional disadvantage of simulations is the need of detailed input data for detailed
models.
Now we will move to a system performance model that has a completely different view

on systems and their specification. It uses bounds for the description of arrival and service
processes and, depending on the input quality, gives reliable upper bounds for delay and
buffer sizes. The Network Calculus system theory for deterministic Queueing Systems is an
application of the (min,+)-algebra. The (min,+)-linear system theory (for an introduction
see Baccelli et. al. [6]) allows one to describe a limited class of discrete-event systems as
linear time-invariant systems. Network Calculus uses this property to model elements of
packet data networks and analyze their performance [2, 38, 107]. For example, it can be
used to derive and prove worst-case bounds on packet delay and buffer sizes. Network
Calculus has its origins in the books of Chang [38] and Le Boudec and Thiran [107]. They
in turn refer to the work of Cruz [42, 43] on analyzing network delay with (min,+) algebra.
Thiele et. al. used (min,+)-algebra in his Real-Time Calculus to derive execution bounds
in embedded systems [103–105]. Network Calculus and Real-Time Calculus are strongly
related and use the same basic theory for different applications.

There are several reasons to choose the Network Calculus system theory instead of other
analysis methods. In its original incarnation, Network Calculus does not use any stochastic
elements, every model element has a deterministic behavior. Anyway, for arrival and service
processes short-term variations and long-term limits can be modeled. This allows one to
give guarantees and bounds on performance values. Model analysis is purely analytic and
results can be computed extremely fast compared to other analysis methods, especially
simulation. Downsides on the Network Calculus approach are a high abstraction level of
models and the focus on worst-case performance values. This work will propose some ideas
to overcome these limitations for SLA validation.
The contribution in this work towards a calculus for Service Level Agreements is based

on the Network Calculus and Real-Time Calculus approaches, therefore the key elements
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are introduced. The reference books of Chang [38], as well as, Le Boudec and Thiran [107]
use an algebraic approach. A later paper, [30] gives a short but brilliant introduction to
the topic focusing on service curves (c.f. Section 6.2.8). In this work Network Calculus is
described from the unusual perspective of cumulated arrivals and service resources over time
forming functions. Functions are later abstracted to curves that can be manipulated using
(min,+) algebra. This form of introduction is chosen to help the reader in understanding
the ideas in SLA Calculus as a natural extension of Network Calculus and Real-Time
Calculus principles.

6.1 (min,+)-Algebra Basics

Network Calculus and its derivatives are based on the so-called Min-plus or (min,+) algebra.
It is different from the well-known elementary algebra taught at school, used for common
calculations and for solving equations. Basically, elementary algebra is created with two
mappings, addition and multiplication, and the set R of real numbers. We write this
(R,+, ·) or shorthand (+, ·). Neutral Element of addition is 0 and 1 for multiplication.

(min,+) algebra uses the minimum of two numbers instead of addition and addition
instead of multiplication. In reference to elementary algebra the minimum is still said to
be the additive operation and the addition becomes the multiplicative operation (notation
(min,+)). Like their original counterparts the operator min() and + form a dioid [107]
with +∞ as neutral element of addition and 0 as neutral element of multiplication.

Example 6.1.1. The term (5 + 0) · (2 + 4) in elementary algebra is evaluated to a value
of 40. With (min,+) it is expressed as min(5,+∞) + min(2, 4) and gives a value of 7.

The (min,+) Dioid

For the (min,+) algebra some properties can be stated, we recap results from [38, 107]
here and refer to these books for further details. Let R ∪+∞ = R+∞. The additive min()
operator forms a commutative and idempotent semi-group (R+∞,min()):

Zero element ∀a ∈ R+∞ ∃z ∈ R+∞ : min(a, z) = a. In this case z = +∞.

Associativity ∀a, b, c ∈ R+∞ : min(min(a, b), c) = min(a,min(b, c))

Commutativity ∀a, b ∈ R+∞ : min(a, b) = min(b, a)

Idempotency ∀a ∈ R+∞ : min(a, a) = a

Also the multiplicative + operator forms a commutative semi-group (R+∞,+):

Neutral Element ∀a ∈ R+∞∃n ∈ R+∞ : a+ n = a. In this case n = 0.

Associativity ∀a, b, c ∈ R+∞ : (a+ b) + c = a+ (b+ c)

Commutativity ∀a, b ∈ R+∞ : a+ b = b+ a

Together (R+∞,min()) and (R+∞,+) form a commutative dioid:
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Zero element z = +∞ for min() is absorbing for + ∀a ∈ R+∞ : a+ z = z

Distributivity of + with respect to min() ∀a, b, c ∈ R+∞ : min(a, b)+c = min(a+c, b+c)

While (R+∞,min(),+) is a commutative dioid there are some differences to the common
commutative field (R,+, ·). In (R,+, ·) we are used to a + (−a) = 0. This cancellation
property is exploited to solve equations. The (R+∞,min()) semi-group is missing a
cancellation min(a,−a) = +∞, as a result solutions for some equalities are not unique [90].

Wide-sense Increasing Functions

In Network Calculus wide-sense increasing functions are fundamental. Notation and
definitions in this thesis will be similar to [107].

Definition 6.1.1 (Wide-sense increasing function). A function is wide-sense increasing if
and only if f(a) ≤ f(b) for all a ≤ b.

Definition 6.1.2 (Wide-sense decreasing function). A function is wide-sense decreasing
if and only if f(a) ≥ f(b) for all a ≤ b.

Definition 6.1.3 (Casual Function). A function f is casual if f(t) = 0 for t < 0. [74]

Definition 6.1.4 (Sets of wide-sense increasing functions). G is the set of wide-sense
increasing functions with f(t) ≥ 0 ∀t, f ∈ G. F is the subset of G with casual functions. F0
is the subset of F with f(0) = 0 for all f ∈ F0.

The notation of the (min,+) algebra is extended to wide-sense increasing functions [107].
Let f, g ∈ G. The point-wise minimum min(f(t), g(t)) = min(f, g)(t) is written shorthand
f ∧ g for all t. Addition can be written as f(t) + g(t) = (f + g)(t) or shorthand f + g for
all t.
Equations are not point-wise. It is f = g if f(t) = g(t) ∀t holds. The same holds for

inequalities (≤,≥).

Convention of Left-Continuous Functions

Network Calculus models data flows in networks with wide-sense increasing functions.
At packet level these data flows are sequences of discrete events. For this reason the
Network Calculus traffic arrival model uses step functions that are non-continuous at the
packet arrival times. Discontinuity makes calculations hard. However, at least a one-sided
continuity can be assumed.
We will recap the Weierstrass definition for continuity here because the difference

between continuity and one-sided continuity is directly observable. A function f : S → R
is continuous in point c ∈ S, if for any number ε > 0 there is a δ > 0 such that ∀s ∈ S
within range c− δ < s < c+ δ the following holds:

f(c)− ε < f(s) < f(c) + ε (6.1)

or equivalently |s − c| < δ follows |f(s) − f(c)| < ε. ε is used to define a neighborhood
around f(c). The function values will stay within this neighborhood when the input range
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c

Figure 6.1: Left-continuous in point c.

c

Figure 6.2: Right-continuous in point c.

spanned around c by δ is just small enough. When f is continuous in c this works for any
neighborhood around f(c) no matter how small. When f is not continuous in c there are
neighborhoods around f(c) given by some ε not covered by the function input range for
some δ.
For one-sided continuity the input range is only spanned around c in one direction.

Definition 6.1.5 (Left and Right-continuous Functions). A function f : S → R is left-
continuous in point c ∈ S when for any number ε > 0 there is a δ > 0 such that ∀s ∈ S
within range c− δ < s < c the inequality |f(s)− f(c)| < ε holds.

It is right-continuous in point c if c < s < c+ δ and |f(s)− f(c)| < ε.

Example 6.1.2. Function fc is left-continuous in c.

fc(x) =
{

1 if x ≤ c
2 else

(6.2)

It is neither right- nor generally continuous in c.

Per convention [107, Section 3.1.3] functions f ∈ G are left-continuous. Figures 6.1 and
6.2 show left- and right-continuous functions.

6.1.1 Infimum and Supremum

In Network Calculus frequently the infimum is used instead of the minimum to denote the
lower bound of a set. The minimum of a set S ∈ R is defined by

min(S) = {a | a ∈ S and a ≤ b ∀b ∈ S} (6.3)

Using the smallest element of a set as lower boundary is quite intuitive, for the closed set
[s, t] ∈ R, s < t we can expect the lower bound to be s.

For open set (s, t) the lower bound is not s because s is not in the set. To get the lower
bound the infimum is used.

inf(S) = {max(a) | b ≥ a ∀b ∈ S} (6.4)

It is safe to replace minimum with infimum in general when working with open, partially
open and closed sets because if a minimum of a set exists it is equal to the infimum. Let
[a, b] be a closed set, then the following is true:

min([a, b]) = inf([a, b]) = a
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Upper Bounds of an open set are, instead of a maximum, expressed by the supremum.

sup(S) = {min(a) | b ≤ a ∀b ∈ S} (6.5)

6.1.2 Function Curvature

The function curvature is an important property in Network Calculus. A function f is convex
in R if for all x, y ∈ R and 0 ≤ z ≤ 1 the inequality f(zx+(1−z)y) ≤ z ·f(x)+(1−z) ·f(y)
holds. It is concave if f(zx+ (1− z)y) ≥ z · f(x) + (1− z) · f(y).

A function f is star-shaped if f(t)
t is wide-sense decreasing ∀ t > 0 [107, Definition 3.1.9].

For two values s, t with 0 < s ≤ t this gives
f(s)
s
≥ f(t)

t
(6.6)

In star-shaped functions the rate of growth decreases over time, thus concave functions are
star-shaped [107, Theorem 3.1.4].

6.1.3 Convolution

Convolution is an operation between two functions. The result is a new function forming
the overlay of both functions. It plays an important role in mathematics, natural sciences
and technical applications. In elementary algebraic systems convolution is an integral over
a product of two real-valued functions f and g:

(f ∗ g)(t) =
∫ +∞

−∞
f(t− s) · g(s) ds (6.7)

The effect of convolution can be explained as follows: Although convolution is commutative,
let us call function f the input signal, g the filter and h the output signal. Filter g is used
to scale the value of input f at a specific point in time t to form the output. Without
convolution this is expressed as h(t) = f(t)g(t). The distinctive feature of convolution is
that the output is not only dependent on a single point in time. It also includes previous
values of f averaged by filter g. To address previous points in time variable s is used to
shift time t backwards. The value of the input function is thus found by f(t − s), it is
weighted by the filter g evaluated in s. As an intermediate step we get

f(t− s) · g(s) (6.8)

Finally we sum up all weighted values by integrating over s. By moving s in interval
(−∞,∞) all possible function images of f weighted by g are considered.

6.1.4 Linear Time-Invariant Systems

A system described by operator S reacts on input x(t) with output S[x(t)]. x is a function
(“signal”) of time index t. The system is linear if for inputs x1(t), x2(t) and factor c the
following holds:

S[x1(t) + x2(t)] = S[x1(t)] + S[x2(t)] (Superposition) (6.9)
S[c · x1(t)] = c · S[x1(t)] (Scaling) (6.10)
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So factors applied to the input are reflected at the output and signals can be combined. A
system is time invariant if the reaction to an input is always the same regardless of the
time the input arrived:

y(t) = S[x1(t)]⇒ y(t+ ∆) = S[x1(t+ ∆)] ∀∆ (6.11)

The concept of a linear system has an outstanding importance in system theory, communi-
cation technology and many other disciplines [39, 49]. Assuming linearity simplifies a wide
range of equations and models. However, in reality there is no system that reacts strictly
linear. An arbitrary factor applied to inputs will not always be reflected at the output.
The theory can still be applied since many systems are linear within a range of inputs and
only behave non-linear for inputs that exceed their specification.

Impulse Response

In system theory a linear system is completely characterized by its impulse response
function. In theory this response can be measured if a Dirac impulse δ(t) is sent to the
system. The Dirac function is given by

δ(t) =
{

+∞ t = 0
0 t 6= 0

(6.12)

with the assumption that
∫+∞
−∞ δ(t) dt = 1. The Dirac impulse is an ideal signal, all other

signals to the system can be represented as combinations of it. Since the system is linear
it can be scaled by multiplication with a factor. It is also time-invariant so the impulse
can also be shifted along the time axis. When a linear system’s reaction to one impulse is
known the reaction to a series of impulses is known as well.

6.1.5 (min,+) Convolution

For Network Calculus convolution is a frequently used operation. Since the calculus is
based on (min,+) algebra the convolution has to be defined with respect to the changed
operators. The additive operators are exchanged for the minimum function, hence the
integral is replaced by minimum operation. In particular, to allow non-continuous input
functions, the infimum is used [107].

Definition 6.1.6 ((min,+) Convolution). Let f and g be two functions or sequences in F .
The (min,+) convolution of f and g (notation f ⊗ g) is the function

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} (6.13)

If t < 0 : (f ⊗ g)(t) = 0.

Convolution has the following properties ([107, Theorem 3.1.5] and [107, Theorem 3.1.6]).
Let functions f , g, h ∈ F .

Closure of ⊗ : (f ⊗ g) ∈ F . Convolution is closed in F .
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Associativity of ⊗ : (f ⊗ g)⊗h = f ⊗ (g⊗h). The order of operator application does not
matter.

Zero element for min() is absorbing for ⊗ : The zero element for min() is the function
ε ∈ F defined as

ε(t) =
{

+∞ t ≥ 0
0 t < 0

One has f ⊗ ε = ε.

Neutral element for ⊗ : f ⊗ δ0 = f . δ0(t) = ∞ for t > 0 and δ0(t) = 0 for t ≤ 0 is the
Dirac function equivalent for Network Calculus, see also Section 6.2.4.

Commutativity of ⊗ : f ⊗ g = g⊗ f .

Distributivity of ⊗ with respect to min(): min(f, g)⊗h = min(f ⊗h, g⊗h).

Addition of a constant: ∀K ∈ R+ : (f +K)⊗ g = (f ⊗ g) +K

Functions passing through the origin: If f(0) = g(0) = 0 then f ⊗ g ≤ min(f, g). When
f and g are star-shaped then f ⊗ g = min(f, g) holds.

Convex functions: If f and g are convex then f ⊗ g is convex.

Isotonicity: If f ≤ g and f ′ ≤ g′ then f ⊗ f ′ ≤ g⊗ g′. The operator does not change the
ordering.

(min,+)-convolution is associative, commutative, distributive in respect to min() and closed
in F0. Again (F ,min, ⊗ ) is a diod [38, 47].

6.1.6 (min,+) Deconvolution

The dual operation to ⊗ in (min,+) is deconvolution.

Definition 6.1.7 ((min,+) Deconvolution). Let f, g ∈ F . The (min,+) deconvolution of
f by g (notation f � g) is the function

(f � g)(t) = sup
s≥0
{f(t+ s)− g(s)}

Deconvolution has the following properties [107, Theorem 3.1.12]: Let functions f , g,
h ∈ F .

Isotonicity of � : If f ≤ g then f �h ≤ g�h and h� f ≥ h� g.

Composition of � : (f � g)�h = f � (g⊗h).

Composition of � and ⊗ : (f ⊗ g)� g ≤ f ⊗ (g� g).

Duality between � and ⊗ : f � g ≤ h iff f ≤ g⊗h.

Self-deconvolution: (f � f) is a sub-additive function of F such that (f � f)(0) = 0.
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6.1.7 The (max,+)-Algebra

For the definition of lower curve contracts and their combinations we will use the (max,+)-
algebra. Its definition equals the (min,+)-algebra when the minimum-operator is replaced
by a maximum-operator. For this reason the algebra is only briefly introduced, more details
can be found in [6], [107, Section 3.2] and [38, Section 6.1].
The algebraic structure (R ∪ {−∞},max(),+) is a dioid [107, Section 3.2]. Additive

operation max() is associative, commutative and has −∞ as zero element. The multiplica-
tive operation + also features associativity, commutativity and 0 as neutral element. Also
distributivity of + with respect to max() is given.
The point-wise maximum max(f(t), g(t)) = max(f, g)(t) for all t is written shorthand

f ∨ g .

(max,+) Convolution

With the operation from the (max,+) dioid a (max,+) variant of convolution can be defined
[107, Definition 3.2.1]:

Definition 6.1.8 ((max,+) Convolution). Let f and g be two functions or sequences in
F . The (max,+) convolution of f and g (notation f ⊗ g) is the function

(f ⊗ g)(t) = sup
0≤s≤t

{f(t− s) + g(s)} (6.14)

If t < 0 : (f ⊗ g)(t) = 0.

6.1.8 Sub-additive and Super-additive Functions

Definition 6.1.9 (Sub-additive Function). A function f is said to be sub-additive if [107,
Def. 3.1.11]

f(s) + f(t− s) ≥ f(t) for s ≤ t (6.15)

Corollary 6.1 (Sub-additivity of concave functions). Any concave function f with f(0) = 0
is sub-additive.

In the same sense super-additive functions exist.

Definition 6.1.10 (Super-additive Function). A function f is said to be super-additive if

f(s) + f(t− s) ≤ f(t) for s ≤ t (6.16)

Corollary 6.2 (Super-additivity of convex functions). Any convex function f with f(0) = 0
is super-additive.

Both proofs are given in the Appendix.
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6.1.9 Sub-additive Closure

Definition 6.1.11 (Sub-additive and Super-additive Closure). For function f ∈ F the
sub-additive closure f is recursively defined [38]

f(0) = 0 (6.17)
f(t) = min(f(t), min

0<s<t
(f(s) + f(t− s))), t > 0 (6.18)

The super-additive closure f is defined when min() operators are replaced with max().

In combination with convolution sub-additive functions have an interesting property
described in [107, Theorem 3.1.6] and [38, Lemma 2.1.5 (xi)]. We adopt the notation of
[38] and write f◦ = f ∧ ε with ε being the neutral element for min().

Lemma 6.3. When two functions f, g are sub-additive then

( f ∧ g ) = (( f ∧ g )◦) = f◦ ∧ g◦ = f ⊗ g (6.19)

holds [38, Lemma 2.1.5].

6.2 System Model

The basic system model for Network Calculus is quite similar to the model used in Queueing
Theory for Queueing Systems (Section 4.1) or linear system theory (Section 6.1.4). The
systems to model are computer networks transmitting data, the main idea is to describe
them as systems that are linear time-invariant under the (min,+) algebra. Signals to these
systems are arrivals of network packets over time. The impulse response describes how
service resources are used and allows one to derive the output signal in form of departing
packets. The noteworthiness for Network Calculus is that signals are not modeled with
functions giving their value at a certain point of time. Instead, cumulative functions are
used for input, output, as well as, the impulse response. System states are unknown to
Network Calculus, they are hidden in bounds and limits on the signals.
Computer networks are hierarchical systems built of subnets, switches, routers, single

network hosts and their connections. The Network Calculus model can be applied to an
atomic component or combinations forming a bigger system. Network Calculus provides
the tools to compute performance values for composed systems from the results of basic
systems.

Regardless of their specific purpose, network components can be abstracted to a simple
system that performs the service of transmitting data. This type of system is the basic
Network Calculus system model, in this work it will be called a network element. Figure 6.3
contains the basic system model. As common in the queueing notation the arrivals enter
the system from the left and, after the network service has been applied, leave to the right.
To process arrivals a network element needs resources in form of “service”. The service
process is described by a flow of resources arriving from the top. Resources might be
limited and not always sufficient to process all arrivals. In the case of a resource shortage,
comparable to Queueing Systems, processing stations have to enqueue arrivals until there
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Network ElementArriving packets R Departing Packets R∗

Service Resources C

Figure 6.3: Network Calculus system model: A network element transmits data (packets).
This task requires service resources.

are enough resources at hand. Unused resources leave the network element immediately
and cannot be kept for later usage. So the service resources in Figure 6.3 are the available,
but not actually used service capacity at this point of time.

Data packets or low level bitstreams are the initially intended usage domain for Network
Calculus. Of course, the modeling method can also be applied to other areas, one could
also specify computation tasks, customers or packets in logistics as arrivals. The term
service could be replaced with energy, CPU time or load capacity of trucks. Examples for
other areas of application are sensor networks [98], optimization of network routes [29] and
even energy withdrawal from batteries [73].

6.2.1 Arrival and Departure Flows

Let r(t) be a function describing the arrival process with the number of arrivals to a
network element at time t. Depending on the model r(t) is measured in number of bytes
or other quantities. When the arrivals are packets r(t) gives the size. Figure 6.4 shows an
instance of r(t) with discrete, equally sized packet arrivals.

Function r(t) is a sequence of discrete arrivals with detailed information on every packet.
For high level modeling a simplified description without discrete arrivals is preferable. The
approach in Queueing Theory is to find a distribution for packet interarrival times in
r(t). The approach in Network Calculus is different. Information on arrival processes is
abstracted by summing up the number of arrivals to network elements within time interval
[0, t]. The so-called arrival flow can be easily determined by integrating r(t).

Definition 6.2.1 (Arrival Flow). Let r(t) be the number of arrivals of an arrival process
at time t. The cumulative sum

R(t) =
∫ t

0
r(x) dx (6.20)

is the arrival flow of the process in interval [0, t].

R(t) is wide-sense increasing and R(t) = 0 for t ≤ 0, thus R(t) ∈ F . For r(t) with
discrete arrivals R(t) becomes a non-continuous step function. In this case R(t) is a discrete
model for the arrival process. Figure 6.4 shows the arrival flow R(t), too. R(t) has been
constructed bottom-up by integrating given function r(t).

A fluid model for the arrival process exists when R(t) has a derivate dR
dt , hence R(t) has

to be continuous. In this case the rate of arrivals at time t can be expressed by the slope
of a function R(t). For this reason function r(t) is also referred as the arrival rate function
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Figure 6.4: Arrival function r(t) with discrete arrivals (the spikes). It is used to form the
arrival flow R(t) (step function).
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Figure 6.5: Arrival flow R(t) is bound from above by an arrival curve αU

in Network Calculus [107, Section 1.1]. In a fluid model, r(t) is also continuous and cannot
capture individual packet arrivals. So r(t) can only be constructed top-down from a known
arrival flow R(t) by derivation.
However, choosing between fluid models with continuous flows or discrete models built

from arrival processes is seldom necessary in Network Calculus. Arrival flows are further
abstracted by bounding functions, so fluidity of flows can be assumed as long as the
resolution of a discrete flow is not required.

The basic system model in Network Calculus also includes the packet departure process.
The outgoing flow in interval [0, t] is denoted as R∗(t) following the same principle of
abstraction by cumulation as the arrival process. Thus, R∗(t) has the same mathematical
properties as R(t). If two network elements A and B are concatenated, the output of A is
fed as input into B. Hence R∗ is also often referred to as the outgoing arrival flow [107].

6.2.2 Backlog and Delay

Processing or transmission of packets by network elements introduces delays (response
times) to the packet flow. When several packets arrive at a busy element also queueing in
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Figure 6.6: Illustration of R(t) being constrained by αU in every time interval (R ≤ R⊗αU )

a buffer may occur. The amount of bytes or packets held back inside a network element
is called backlog [107, Section 1.1.2] and is comparable to queue population in Queueing
Systems (Section 4.2). Delay and backlog for a system can be derived by the distances of
corresponding flows R and R∗.

The vertical deviation between two functions f(t), g(t) is the difference at the same time
t [107, Definition 3.1.15]:

Definition 6.2.2 (Vertical Deviation). Let f, g ∈ F be two functions. The vertical
deviation v (f, g) between both functions is

v (f, g) (t) = |g(t)− f(t)| (6.21)

Horizontal deviation between two functions is the difference in input to get the same
output. The definition is also based on [107, Definition 3.1.15].

Definition 6.2.3 (Horizontal Deviation). Let f, g ∈ F be two functions. The horizontal
deviation h (f, g) between both functions is defined as

h (f, g) (t) = inf {d ≥ 0 such that f(t) ≤ g(t+ d)} (6.22)

Figuratively h (f, g) (t) is the additional time g(t) needs to reach the level f(t). Figure 6.7
illustrates this.

Backlog Bounds

System backlog can be computed from vertical deviation between arrival and departure
flows [107, Def. 1.1.1]:

Definition 6.2.4 (Backlog). Let R and R∗ be corresponding arrival and departure flows
for a system. The amount of backlogged arrivals in the system at time t is v (R,R∗) (t).

A system is said to be in a backlog interval [a, b] if v (R,R∗) (t) > 0 ∀t ∈ [a, b]. When
backlogging in a system occurs, arrivals have to be stored in a memory whose capacity is
naturally limited. Necessary buffer sizes for the system can be dimensioned adequately
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by computing the maximum backlog. The maximum buffer occupation in a system with
arrival flow R and departure flow R∗ is bmax (R,R∗) with

bmax (a, b) = sup
t≥0
{v (a, b) (t)} (6.23)

Delay Bounds

The horizontal deviation is used in Network Calculus to obtain a bound on the system
delay [38, 107]. Le Boudec and Thiran define this latency as virtual delay [107, Section
1.1.2]:

Definition 6.2.5 (Virtual Delay). Let R and R∗ be corresponding arrival and departure
flows for a system. The virtual delay for arrivals to the system at time t is

h (R,R∗) (t) (6.24)

Similar to maximum backlog we can also state the maximum virtual delay.

Definition 6.2.6 (Maximum Virtual Delay). The maximum virtual delay in a system with
arrival flow R and departure flow R∗ is hmax (R,R∗) with

hmax (a, b) = sup
t≥0
{h (a, b) (t)} (6.25)

6.2.3 Curves as Flow Abstraction

Using cumulated functions to describe arrival and departure processes at a network
introduces a connection to classical system theory. The flows are the signals sent to and
emitted by the network element. It has not been specified in the previous sections how
arrival flows R and R∗ are derived. These functions can be seen as one of many samples
that can be measured at a system. One could opt to extract the average arrival and
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departure rates for the network. This is the approach taken for Queueing Networks, a very
condensed process model enabling efficient analysis.

The approach chosen in Network Calculus is to use deterministic upper and lower bounds
for processes. Individual flows are replaced with functions. A flow is a wide-sense increasing
function and its increase within a time interval can be bounded by another wide-sense
increasing function.

Arrival Curves

To characterize arrival flows and to set bounds on arrival rates, Network Calculus abstracts
individual arrival flows with functions called arrival curves conforming to the arrival curve
property [103]. An upper arrival curve is a function that serves as a time-invariant upper
bound for an arrival flow R(t) or departure flow R∗(t).

Definition 6.2.7 (Upper Arrival Curve). A function αU (t) is a upper arrival curve for
arrival function R(t) if for all intervals [s, t]

R(t)−R(s) ≤ αU (t− s) ∀ 0 ≤ s ≤ t (6.26)

If the relation holds R is said to conform to upper arrival curve αU .

In Figure 6.5 R(t) is bound from above by an arrival curve: The flow never exceeds the
curve constraint defined by αU . In this case, we have R(t) ≤ αU (t) ∀ t. However, this is
not enough to fulfill the arrival curve property. Definition 6.2.7 requires that the relation
holds for all time intervals. Figure 6.6 illustrates the idea by applying the bounding curve
to several points of R(t). For this example of a discrete model the points are chosen
immediately before the arrival of another packet. Notable is the application of αU at
t = 0.3 and t = 6.5. With the application of αU at t = 0.3 the original bound on R set by
the arrival curve prototype at t = 0 in Figure 6.5 is replaced with a lower one. It is the
upper limit until the arrival at t = 6.5. Starting from this point, R(t) will stay below the
new boundary.
Up to this point, flows and curves were defined with elementary algebra and (min,+)

algebra was not used at all. It has been shown in [107, Lemma 1.2.3] and [38, Lemma
2.2.2] that the idea of overlapping intervals is equivalent to (min,+) convolution of arrival
flow and curve.

Theorem 6.4 ((min,+)-Algebra Constraint). Arrival function R is constrained by αU iff

R(t) ≤ (R⊗αU )(t) ∀t (6.27)

Proof. Using the definition of (min,+) convolution we can rewrite the right side of R(t) ≤
(R⊗αU )(t) as R(t) ≤ inf0≤s≤t(R(t− s) + αU (s)). R and αU are only defined for s ≥ 0, so
the case for s < 0 is not considered. The infimum operator gives the minimal solutions of
R(t− s) + αU (s) for all combinations of s and t with 0 ≤ s ≤ t. All of them are greater or
equal to the left-side R(t). The inequality stays true if the infimum operator is removed:

R(t) ≤ R(t− s) + αU (s) ∀0 ≤ s ≤ t

and αU is an arrival curve.
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Lower Arrival Curves

In a similar approach arrival flows can be enforced in the model not to drop below a certain
bound within a time interval.

Definition 6.2.8 (Lower Arrival Curve). A lower arrival curve αL satisfies the relation

αL(t− s) ≤ R(t)−R(s) ∀ 0 ≤ s ≤ t (6.28)

Lower arrival curves are not included in the work of Le Boudec and Thiran in [107],
they are a concept of Real-Time Calculus [104, 106]. The relation can be mapped to an
expression in (max,+)-algebra.

Theorem 6.5 (Lower Arrival Curve Constraints). Let R by an arrival flow and αL ∈ F0
a lower arrival curve bounding R from below. Then R ≥ R⊗αL holds.

Proof. Using the Definition of ⊗ we can rewrite the right side

R(t) ≥ sup
0≤s≤t

(
R(s) + αL(t− s)

)
(6.29)

The supremum operator gives the maximum solution of R(s) + αL(t− s). All solutions,
even the maximum one, are smaller or equal to the left side. So inequality stays true when
the supremum operator is removed:

R ≥ R(s) + αL(t− s) (6.30)

and by reordering
R(t)−R(s) ≥ αL(t− s) (6.31)

6.2.4 Arrival Curve Instances

Arrival curves are a sub-model for arrival flows in Network Calculus. Every f ∈ F can serve
as arrival curve. To simplify successive computations only a small set of basic functions is
used. Most of them are linear or grow stepwise. A catalog of common functions can be
found in [107, Section 3.1.3]. On the one hand, the usage of simple functions with one or
two parameters offers limited precision for flow bounds. On the other hand, simple curve
models have prominent advantages: The semantics of curve parameters are known and can
be associated to real world systems. With arrival curves discrete arrivals can be abstracted
to a continuous, even derivable input model. Additionally, such basic arrival curves can be
combined to more complex functions that are still arrival curves. In the following we will
also show how those combinations can be exploited to partition an arrival curve into zones
that separate short-term and long-term behavior of a flow. Curve composition also allows
one to approximate arbitrary arrival curves to improve precision.

Linear Function or peak rate function: λR(t) = R · t. When used as upper arrival curve,
λR limits the arrival rate to a maximum of R. λR is convex and concave.
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Affine Function is a vertically shifted linear function (c.f. Figure A.1):

γr,b =
{
r · t+ b for t > 0
0 for t = 0

(6.32)

γr,b is concave.

Rate-Latency Function is a horizontally shifted linear function (c.f. Figure A.2):

βR,T = R ·max(0, t− T ) (6.33)

βR,T is convex.

Burst-Delay Function unit impulse function for Network Calculus systems (c.f. Fig-
ure A.3):

δT (t) =
{

0 for t ≤ T
∞ t else

(6.34)

Step Function (c.f. Figure A.4)

uT (t) = 1t>T =
{

0 for t ≤ T
1 else

(6.35)

6.2.5 Interpretation of Curve Parameters

The rate of the bounded arrival flow is of major importance in curve definition. For curves
based on linear function λR this is straightforward. They allow a maximum arrival rate of
dλR
dt = R to the bounded arrival flows. When λR is used for a lower bound, arrival flows
are expected to have a rate of R at least.
Affine functions γr,b are a very expressive function class for arrival curves. For upper

bounds, equal to linear curves, they allow a peak arrival rate of r. Burst size parameter
b gives some additional capacity for system arrivals that are not conform to rate r. To
explain this in detail a result from [107] will be used: An arrival flow R that is bound
by γr,b is also compliant to a leaky-bucket system with leak rate r and bucket capacity b.
This kind of imaginary device is sketched in Figure 6.8. It is based on the assumption that
processing of R in the gray box requires fluid (e.g. water). The fluid is stored in the bucket
with capacity b on top of the processor. When the system starts the bucket is completely
filled. A pipe refills it with a constant rate r, when the bucket is filled additional fluid is
lost (thus the bucket overflows without any further consequences). The processor removes
fluid from the basin on demand, equal sized arrivals use up the same volume. If the bucket
is depleted the processing has to stop until there is enough fluid available again.
With this physical model the parameter in γr,b can be explained as follows: When the

arrival flow has a rate smaller or equal to r the processor will never stop due to fluid
shortages, so the arrival flow can pass by. For moments with arrival rates greater than r
the processor can use the fluid reserve in the bucket. However, the arrivals that come in
with higher rate may not require more than b fluid in sum. Such an arrival burst of size b
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may happen only once or the resources get depleted, hence the arrival flow is allowed to
have a burst of size b. It is also possible to distribute capacity b to several smaller bursts
bi with

∑
i bi ≤ b. It should be also said that the fluid level in the bucket can be restored

within phases when the arrival rate is smaller than r, but independent of the phase length
the reserve can only be filled up to capacity b.

Burst Control with Curve Compositions

Using one affine curve only can be sufficient in some models to bound arrival flows. However,
a single burst limit may result in loose bounds. Within burst size b any variant of arrival
process behavior is possible: an arrival of a single packet of size b or the instantaneous
arrival of several small packets that sum up to burst size b. Theoretically these packets
could have a infinitely high arrival rate. The work of Le Boudec and Thiran [107] associates
the term burstiness with this behavior. Figure 6.9 shows an example of this situation. In
the middle of the arrival flow plot a packet burst arrives, the packet arrival rate within the
burst duration is very high. This rate is also referred as burst rate. So parameter b allows
the modeler to set an upper bound on the burstiness, but gives no additional means to
control the arrival rate within bursts.

An option to bound the burst rate in a more strict way is to use a second affine function
in the curve. Let this curve be γr2,b2(t) = r2 · t+ b2. For the first affine function we also
introduce r = r1 and b = b1 to unify the notation. New function γr2,b2 is intended to
regulate arrival rates of packets that arrive faster than r1, hence it makes sense to require
r2 > r1. Also the burst size should be limited, so we should have b1 > b2. Figure 6.11
shows the modified arrival curve as a combination of two simple functions. Except for the
intersection point all t are double covered by γr1,b1 and γr2,b2 . We define our combined
upper arrival curve αU more precisely with the point-wise minimum of both functions:

αU (t) = min (γr1,b1(t), γr2,b2(t)) (6.36)
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Now with the second function arrival flow bursts are still possible, but they have to comply
to rate r2. In terms of arrival process modeling this can also be interpreted as setting
bounds for different time intervals. Function γr2,b2 bounds arrivals in the short-term while
γr1,b1 sets a bound for average arrivals in the long-term.
Again an analogy to leaky buckets for arrival curves with two affine functions can be

constructed. An arrival flow bound by composition γr1,b1 ∧ γr2,b2 can be processed by a
tandem of leaky buckets with capacity b1 and b2 and leak rates r1 and r2. Figure 6.10
shows the construct. The tandem stops if one bucket runs out of fluid, so the first station
does not queue for the second. As b2 < b1 and r1 < r2 the additional bucket can control
the characteristics of bursts that have taken place outside the control domain of the first.
This is independent of the ordering of the buckets [107].

To generalize arrival curves based on piecewise-linear functions we use the following
notation. For upper arrival curves a set of functions γri,bi

, i ∈ 1 . . . n

αU = min
i

(γri,bi
) (6.37)

Using concave piecewise-linear functions as upper arrival curves adds clarity to the arrival
process modeling, allows approximating continuous functions and simplifies computations.
In a visual interpretation, each affine function adds a line segment to the arrival curve
with semantics of rate and burst size. The modeler can interpret the piecewise-linear
function as a combination of leaky buckets. Additionally, the curve as a process model
stays simple. Modeling the worst-case is supported by concave upper bounds as well. Using
the construction method in Equation (6.37), the concave arrival curve includes arrival rates
in decreasing order. The rates and sizes of arrival bursts are visible to the modeler.
Apart from user advantages, concave functions have desirable properties for (min,+)-

related operations. In [107, Definiton 1.2.4] and [107, Corollary 3.1.1] Le Boudec and
Thiran define a set of “good” functions with the following equivalent properties for a
function f ∈ F :

1. f is sub-additive and f(0) = 0
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2. f = f ⊗ f

3. f = f

Property 3 follows immediately from property 2 and the definition of the sub-additive
closure. Arrival curves constructed as shown in (6.37) are members of the set of “good”
functions. Due to the definition of affine functions we have γr,b(0) = 0 and γr,b is concave,
thus piecewise-linear arrival curves are sub-additive and property 1 is fulfilled.

By property 3 concave piecewise-linear functions are equal to their sub-additive closure.
Using them as arrival flow envelope implies bounds that include all necessary, but no
redundant information. Additionally for “good” functions f, g Lemma 6.3 applies, thus
f ⊗ g = f ∧ g . This result can be used to simplify and accelerate implementations of
(min,+)-related operations.

Inter-Arrival Time Control with Lower Bounds

As for upper arrival curves, the arrival rate is also central for lower envelopes. With a
lower arrival curve defined by a linear function λR the arrival rate can be bounded from
below to be at least rate R or higher.
The convex equivalent for affine curves are rate-latency functions βR,T (Figure A.2).

They define a minimum arrival rate of R and include a translation T that, if positive, shifts
the linear function part to the right. For lower envelopes arrival flow T has the semantics
of the maximum interarrival time. Figure 6.12 shows this interpretation. Offset T marks
the longest theoretical time interval with no arrivals and thus an arrival rate of 0. Within
this interval the flow rate may decrease to values smaller than rate R or completely stall.
For rate-latency curves used as lower envelopes is no figurative model similar to leaky
buckets. In Chapter 7 an alternative description based on “debt” towards the arrival flow
is developed.
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Figure 6.14: A shaper enforcing an arrival curve σ on arrival flow R.

For more detailed lower arrival envelopes two rate-latency curves βR1,T1 and βR2,T2 with
R1 > R2 and T1 > T2 can be combined using operator max() as shown in Figure 6.13.
Analogously, the upper case βR1,T1 controls the arrival flow behavior in the long-term,
requires a rate of R1 and allows a time interval of length T1 with a lower rate. However,
the throttling of arrival flow in short-term can be controlled with the second function
βR2,T2 . Constant T2 defines the maximum time interval with a flow rate of 0 and R2 is the
minimum arrival rate while the flow drops below long-term rate R1. In general, a convex
version for lower arrival curves is formed with the maximum operator:

αL = max
i

(βRi,Ti) (6.38)

6.2.6 Shaper Elements

A shaper is a Network Calculus model element that enforces an arrival curve constraint to
an arrival flow (traffic regulation). So for an arbitrary arrival flow R passing through a
shaper implementing curve σ the output flow is [107]

R∗ = R⊗σ (6.39)

Equivalently one can see σ as the impulse response of the shaper [38]. In [38] the construct
is called a maximal f -regulator with curve f . Figure 6.14 shows the shaper with input and
output relationships.
Shapers can be classified by the way they handle the additional traffic part that is

not compliant to σ. A policer [107, Section 1.5] just tags packet arrivals as ’conform’ or
’non-conform’ and forwards all traffic, thus the part of departing packets marked as conform
forms R∗. A greedy shaper [107] is equipped with a cache or buffer to store non-conformant
arrivals (e.g. an Ethernet card). In Figure 6.15 an arrival flow to a shaper is plotted
together with the shaping curve. Since some arrivals are not conform to the constraint
σ (marked as gray areas) they are buffered. As soon as the arrival flow drops below the
arrival curve constraint σ the difference is emitted from the buffer. Figure 6.16 shows the
resulting departure flow.
The buffer occupation x(t) of a greedy shaper enforcing arrival constraint σ is given by
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[107, Corollary 1.5.2]:

x(t) = v (R,R∗) (6.40)
= R(t)−R∗(t) (6.41)
= R(t)− (R⊗σ)(t) (6.42)
= R(t)− inf

0≤s≤t
{R(s) + σ(t− s)} (6.43)

= sup
0≤s≤t

{−R(s)− σ(t− s)} (6.44)

= sup
0≤s≤t

{R(t)−R(s)− σ(t− s)} (6.45)

This is the maximum difference between arrivals in the interval and the output allowed by
the shaping curve in interval t− s. Figure 6.17 shows the application of used terms.

Lemma 6.6 (Arrival Constraints with Shapers). A flow R constrained by σ passing through
a shaper implementing σ does not require buffering.

Proof. Based on backlog x(t) = v (R,R∗) we can write

x(t) = R(t)−R∗(t) (6.46)
≤ R⊗σ −R∗(t) Theorem 6.4 (6.47)
= R⊗σ −R⊗σ Definition Shaper (6.48)
= 0 (6.49)

As a consequence, saying a flow is constrained by σ is equivalent to saying a flow is
passing a shaper with curve σ and no buffering/backlog occurs.

Definition 6.2.9 (Shaper Conformity). A flow is σ-conform to a shaper implementing
limit σ when no buffering is required while the flow passes the shaper.
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6.2.7 Service Flows

Whenever an arrival to a network element has to be processed, routed or delivered the
component has to invest service capacity to the arrival. The delivered service towards the
arrival flow can be measured in resource units. In Queueing Systems one would describe
the service (or resource consumption) process by its service time distribution. Network
Calculus uses a resource flow expressing the delivered work units at any point in time.
In the original work of Le Boudec and Thiran [107] the concept of a resource flow is

not used, instead the service curve abstracting this flow is introduced as the missing link
between R and R∗. Here the resource flow C(t) is adopted from Real-Time Calculus [105]
as it seems to be more intuitive for the reader. In the Network Calculus system model
(Figure 6.3) C(t) expresses the service resources available to the network element.

The amount of service resources available to a system at time t is expressed with the
resource function c(t). It has to be pointed out that c(t) does not necessarily describe the
consumed resources at t, it includes the service the system could deliver. As for arrivals
and departures a cumulated flow of a potential service in interval [0, t] can be formed.

Definition 6.2.10 (Resource Flow). Let c(t) be the number of service resources available
to a service process at time t. Then the integral

C(t) =
∫ t

0
c(x) dx (6.50)

is the resource flow of the service process in interval [0, t].

The definition assumes a fluid model for C(t) as there must be a derivative c(t) (c.f.
Section 6.2.1). Resource Flow C(t) ∈ F is the amount of service capacity applicable to
arrivals by a system in interval [0, t].

6.2.8 Service Curves

The idea of generalizing cumulated arrival functions with arrival curves has proven to
be useful. When the resources available to a system are expressed with C(t), a similar
abstraction can be made. Service curves reflect scheduling, delays and service rates of
a system. Arrivals can be buffered or queued at an element that offers a service curve.
In contrast to Queueing Systems, Network Calculus does not specify how this buffering
happens. The queueing discipline (FIFO, LIFO, etc.) is left open and implicitly encoded
in the service curve.
Again upper and lower bounds for service flows can be given. In [107] the lower bound

of resource flows is introduced as service curve and later [107, Definition 1.6.1] extended to
a maximum service curve indicating the upper boundary. As already done with resource
flow C we adopt the notation of Real-Time Calculus [103–105].

Definition 6.2.11 (Lower Service Curve). Let C(t) be a resource flow. Its lower service
curve βL satisfies:

βL(t− s) ≤ C(t)− C(s) ∀ 0 ≤ s ≤ t (6.51)
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The lower service curve is a bound from below on the service a system is able to deliver
to the arrival flow in any time interval.
As the service capacity of a system is likely to be limited an upper bound makes sense

also. Upper service curve βU sets a bound from above on the resource flow: the sum of
performed work units up to time t will never exceed βU (t). The upper service curve is also
the impulse response of a network element (c.f. Section 6.1.4).

Definition 6.2.12 (Upper Service Curve). Let C(t) be a resource flow. Its upper service
curve βU satisfies:

βU (t− s) ≥ C(t)− C(s) ∀ 0 ≤ s ≤ t (6.52)

A detailed work on different service curve classes can be found in [30].

Service Curve Instances

A service curve β is required to be wide-sense increasing and β(0) = 0, thus β ∈ F . Again
the function set used in practical modeling is rather limited to keep the parameter set small
and simplify computations. Members in the catalog of wide-sense increasing functions
for arrival curves in Section 6.2.4 can also be chosen for service curves. Piece-wise linear
functions like λR and βR,T express a single service rate. Function compositions can be
used to approximate more detailed service curves.
For λR(t) = R · t parameter R can be interpreted as a fixed service rate. A server with

βU = βL = λR(t) can draw dλR
dt = R resources per time unit from the resource flow. Linear

service curves are not suitable to model interruptions and slowdowns. The only option
would be to average reduced and normal service rates by choosing a lower value for R, but
this would repeat mistakes of Queueing Systems. An advantage of the service curve concept
is the ability to separate latencies from long-term rates. For this reason the piece-wise
linear rate-latency function βR,T (t) is common for service curve definitions. Parameter R
is the sustainable service rate, it can be continuously delivered. Delays are modeled with
T as system latency. By definition of rate-latency curves T shifts the previously linear
function to the right. As a result, βR,T (t) = 0 for t ∈ [0, T ] indicates no service at all in
this interval.

Example 6.2.1. The manufacturer of a hard disk type claims his device can read at
least 100 MB/s. Due to the nature of the rotating discs one has to wait until the surface
with requested data moves under the heads. The mean access time is 60 ms, thus a full
rotation gives 120 ms latency in the worst-case. The service curve offered by this drive is
βL(t) = β0.12,100(t) = max(0, 100(t− 0.12)).

To model service processes in more detail, service curves can be composed from basic
functions. For convex curves an approach equal to lower arrival curves in Section 6.2.5 can
be applied.

6.2.9 Server Elements

As in Queueing Systems the output process of a system depends on the input and service
processes. With arrival and service curves, there are tools at hand to give upper and
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Server
Arrival Flow

R

R∗ ≤ R⊗βU

R∗ ≥ R⊗βL

βU βL

Figure 6.18: A server providing at least a service of βL and a maximum service of βU to
arrival flow R.

lower bounds on the last two processes. Using them in Network Calculus allows one to
calculate deterministic envelopes for the output process. Again (min,+)-convolution is a
key operator in computations.

The second Network Calculus element next to shaper is the server representing a service
guarantee. While in [107, Definition 1.3.1] servers are implicitly introduced with service
curves, [38, Definition 2.3.1] defines a so-called f -server with service curve f .

Definition 6.2.13 (Server Element). A network element that guarantees a service curve
βL ∈ F to an arrival flow R such that the departure flow is given by

R∗ ≥ βL⊗R (6.53)

is called a server element.

In [107, Definition 1.6.1] the server is extended to include upper service curves βU ∈ F
by satisfying R∗ ≤ βU ⊗R. Figure 6.18 shows a single server with upper and lower service
bounds. Figure 6.19 displays the relationship between an arrival flow R, lower service
curve βL and the lower output bound given by R∗ ≥ R⊗βL. The convolution is applied
to the convex curve βL at every point of R, the curve is moved along the arrival flow.
Resulting R∗(t) is shown as a dashed line, it is the lower envelope of the departure flow
when the system delivers the lowest service. For upper envelopes the case is similar to the
application of arrival curves to flows, Figure 6.6 with αU = βU would be a valid example.

Corollary 6.7 (Lower Departure Bound). For a server processing an arrival flow bounded
by αL from below with lower service curve βL the output flow is bound from below by curve

αL
′ ≥ αL⊗βL (6.54)

Proof. Replace R with αL in Definition 6.2.13.

A special case of servers is the delay element. It is presented in [42] or in the examples
of [107, Section 1.3.1]. Delay elements introduce a maximum delay T between arrival and
departure flows by using the burst-delay function δT as service function. Except for latency
the flow passes the element without further modifications, so h(R,R∗)(t) = T for all t
holds.

Example 6.2.2. A delay element implementing arrival curve constraint δ0 has no effect
on the arrival flow. δ0 is the neutral element for (min,+) convolution (c.f. Section 6.1.5).
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Figure 6.19: Effect of a service curve βL convolved with arrival flow R: The lower departure
flow bound is R∗ = R⊗βL.

Increased Departure Flow Burstiness

Definition 6.2.13 gives the lower output flow bound for servers by shifting arrival bounds to
the right: Processing time is added according to service curves. For upper departure flow
bounds backlogs during processing have to be considered. Whenever a flow is processed by
a server with non-zero delay arrivals have to be buffered in the element. In worst-case the
buffered arrivals can be emitted to the departure flow at the rate specified by the service
curve. This behavior adds some variance to the departure flow, or, in wording of Network
Calculus, results in an increase of burstiness. Its limit can be computed by [107, Theorem
1.4.3]:

Theorem 6.8 (Upper Departure Bound (Server)). For a server processing an arrival flow
conform to αU with lower service curve βL the output flow is bound from above by curve

αU
′ = αU �βL (6.55)

For a stable system αU ≤ αU ′ holds. Figure 6.20 shows the effect to an arrival curve. For
all time t the maximum backlog that might be observed in future is added by shifting the
curve vertically. For example, the reader may consider the maximum backlog respective of
the vertical deviation at t = 5 that is reflected in αU ′(0).

6.3 Worst-Case Bound Analysis

Network Calculus is an excellent tool to get deterministic performance bounds for systems
under worst-case conditions. To achieve this the modeler has to omit flows in general and
start to work with the abstracting curve concept only.
Any instance of an arrival flow R can be bounded from above by αU . To reenact the

worst-case we set R = αU to get the maximum number of arrivals within any time interval.
For network elements that feature a resource flow C the worst-case is given by a shortage
of resources. We can assume that C = βL is the minimum service capacity for a server.
Thus, arrival and service curves are not only a characterization of system processes, they
also provide the worst-case situations for their processes.
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Figure 6.20: Increased Departure Flow Burstiness for Servers due to full backlog processing
in best-case (worst-case for departure flows).

6.3.1 Backlog Bound

By assuming the worst-case situation described above, the maximum backlog is given by

bmax
(
αU , βL

)
= max

t≥0

{
v
(
αU , βL

)}
(6.56)

using the notation of Definition 6.2.2 and the result from ([107, Theorem 1.4.1]).
For example, bmax

(
αU , βL

)
can be used to dimension the buffer size in a router dis-

tributing network packets with a minimum service βL. When the arrival flow is enforced
to stay below curve αU the computed buffer size will never be exceeded in any situation.
Maximum backlog bmax

(
αU , βL

)
does not exist for all combinations of αU and βL.

This is the case when βL is not sufficient to process the arrival flow. The existence of
bmax

(
αU , βL

)
can be exploited to formulate a stability criterion for a system (implicit in

[107, Theorem 1.4.1]): A system with input bound αU and service envelope βU is stable if
bmax

(
αU , βL

)
<∞. In Queueing Systems this corresponds to the requirement ρ < 1 on

utilization.

6.3.2 Maximum System Latency

To find the maximum system latency a system is also investigated under worst-case
conditions for the same arguments as for the backlog: When R is replaced with αU the
worst-case for arrivals is used. R∗ is redundant data as its lower envelope can be computed
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Figure 6.21: Delay and backlog for the worst-case with an arrival flow equal to αU and
service equal to βL.

by R⊗βL. Assuming the worst-case, we can also write αU ⊗βL and using Definition 6.2.5
we can conclude

hmax
(
αU , αU ⊗βL

)
(6.57)

to be the maximum system latency that is guaranteed in any situation for a system with
bounds αU and βL. In [107, Theorem 1.4.2] it has been shown that the convolution in
Equation 6.57 can be avoided. Using the notation above we get

h (R,R∗) (t) ≤ hmax
(
αU , βL

)
for all t (6.58)

Figure 6.21 illustrates the principle of backlog and maximum delay when applied to
bounding curves.

6.4 Networks of Network Calculus Elements

In this section we will consider serial and parallel constructs of Network Calculus elements.
Elements are combined and the new arrival, service and departure bounds are formed.
An interesting fact about Network Calculus has to be stated in the beginning: Paral-

lelization of elements in Network Calculus can seldom be found in literature, this holds
especially for the deterministic Network Calculus presented here. This results from the
bias of Network Calculus towards worst-case results and the specifics of the underlying
(min,+)-algebra. For shapers Network Calculus gives the same algebraic results for serial
and parallel constructs, therefore there is no need to include them explicitly.

6.4.1 Shaper Concatenation

Shaper can be concatenated to serial networks. For a tandem of two shapers the concate-
nation has a shaping curve given by the (min,+)-convolution of both original curves. The
theorem and proof are based on [38, Theorem 2.2.7] and its proof.
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Shaper 1 Shaper 2Arrival Flow
R R∗1 = R⊗σ1

Departure Flow
R∗ = R⊗σ1⊗σ2

σ1 σ2

Figure 6.22: Two shapers connected to a tandem limit an arrival flow to σ1⊗σ2.

Theorem 6.9 (Tandem Shaper). Let σ1 be the shaping curve of the first shaper and σ2 of
the second. A concatenation of both shapers has shaping curve σc given by

σc = σ1⊗σ2 (6.59)

The result is independent of the shaper arrangement.

Proof. Let R be an arrival flow entering the first shaper. Then the output R∗1 is given by

R∗1 = R⊗σ1 by Eqn. (6.39) (6.60)

When R∗1 is fed into the second shaper the flow is limited to

R∗ = R∗1⊗σ2 by Eqn. (6.39) (6.61)

Combining (6.60) and (6.61) we get

R∗ = (R⊗σ1)⊗σ2 (6.62)
= R⊗ (σ1⊗σ2) using associativity of ⊗ (6.63)

Independence of the shaper ordering follows from the associativity of (min,+)-convolution
(Section 6.1.5).

Serial Composition is not limited to tandem systems. Repeating the tandem concatena-
tion step by step for n shapers with shaping curves σ1 . . . σn gives

R∗ = R⊗
n⊗
i=1

σi (6.64)

6.4.2 Shaper Parallelization

In the book of Chang [38, Theorem 2.2.9] the parallel ordering of two shapers (“maximal
f -regulators”) is described as ”filter bank summation“. Figure 6.23 shows the parallel
construct, it applies the shaping curve of each shaper simultaneous to the arrival flow.
Hence semantics of the left distribution point marked with ”&“ are the duplication of flow
R to flows R1 and R2 with R = R1 = R2. For the right junction point semantics are the
minimum service of both servers to the original flow R.
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Theorem 6.10 (Filter Bank Summation). For two shapers with shaping curves σ1 and σ2
the parallel construct is a shaper with

σ(t) = σ1 ∧ σ2 (6.65)

if σ1 ∧ σ2 is sub-additive.

The proof is also from [38]:

Proof. The theorem can be rewritten as

R∗ = R∗1 ∧R∗2 (6.66)
= (R⊗σ1) ∧ (R⊗σ2) (6.67)
= R⊗ (σ1 ∧ σ2 ) distributivity of ⊗ (6.68)

As f1 ∧ f2 is sub-additive and f1,2(0) = 0 one can replace the term with its sub-additive
closure

R∗ = R⊗ (σ1 ∧ σ2 ) (6.69)
= R⊗ (σ1⊗σ2) by [38, Lemma 2.1.5 (xi)] (6.70)
= R⊗ (σ1⊗σ2) (6.71)
= R⊗ (σ1 ∧ σ2 ) (6.72)

In combination with Lemma 6.3 we get the interesting result that shapers in parallel
yield the same bounds as serial concatenated shapers.

&R

Shaper 1

Shaper 2

∧

R

R

R∗1 = R⊗σ1

R∗2 = R⊗σ2

R∗ = R⊗ (σ1 ∧ σ2 )

Figure 6.23: Two shapers in parallel (Filter Bank Summation [38])

6.4.3 Server Concatenation

Combining servers is equal to the combination of their service curves, therefore their
impulse responses can be concatenated. This allows one to combine several model elements
to a single model description. Figure 6.24 shows two servers in a tandem configuration.
The offered service curve is given by the following theorem [107, Theorem 1.4.3]:
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Server 1 Server 2
Arrival Flow

R R∗1 ≥ R⊗βL1

Departure Flow

R∗ ≥ R⊗βL1 ⊗βL2

βL1 βL2

Figure 6.24: Two servers connected to a tandem offer service curve βL1 ⊗βL2 to an arrival
flow.

Theorem 6.11 (Server Concatenation). Two servers in sequential concatenation with
individual service curves βL1 and βL2 are traversed by an arrival flow. The combined system
offers a service curve of β1⊗β2.

We repeat the proof from [107, Theorem 1.4.3].

Proof. Assume two servers S1 and S2 with service curves βL1 and βL2 . Both servers are in
a tandem configuration (Figure 6.24). Arrival flow R is processed in S1 first, the output is

R∗1 ≥ R⊗βL1 (6.73)

R∗1 is fed into S2 and finally emitted as

R∗2 ≥ R∗1⊗βL2 (6.74)
≥ (R⊗βL1 )⊗βL2 (6.75)
= R⊗ (βL1 ⊗βL2 ) (6.76)

So the combined service curve of the tandem system is β1⊗β2.

Shapers and Tandem Servers

The combined service curve of tandem servers can of course be used to compute backlog
and delay bounds. For arrival curve αU and service curves βL1 , βL2 we have a maximum
backlog of bmax

(
αU , βL1 ⊗βL2

)
and a maximum delay of hmax

(
αU , βL1 ⊗βL2

)
. For both

bounds the arrival curve to the first server is of importance, while the limits for the flow
from server 1 to server 2 are neglected. The reason is the commutative property of ⊗ , it
does not matter if server 1 or 2 processes the arrivals first. A comparable assumption is
found in product-form Queueing Networks: A Poisson arrival process with rate λ processed
by a queue keeps its rate at departure (if the system is stable). As a result, all queues in a
concatenation have the same arrival rate and can be rearranged, populations for single
queues can be combined with the commutative sum for global analysis.
For upper limits on backlog and delay in server tandems the increase of burstiness by

Theorem 6.8 has no impact, too. Even more, in a quite astonishing result presented in
[107, Theorem 1.5.2] Le Boudec and Thiran show that adding a shaper to manipulate
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S1 Shaper S2
R

R∗1 ≤ R�βL1 R∗1 = R∗1⊗σ

R∗ ≥ R⊗βL1 ⊗βL2

βL1 βL2σ

Figure 6.25: In a server tandem a shaper is used to prepare the departure flow of the first
server for the second.

the arrival flow does not influence the results. Consider the system in Figure 6.25. Two
servers S1 and S2 from a tandem system are serving an arrival flow αU . Each server offers
a service limited by βL1 respectively βL2 . The output flow of S1 suffers from a burstiness
increase due to Theorem 6.8, it is limited from above by αU �βL1 . To smooth out those
bursts towards S2 a greedy shaper is placed in between. It implements a shaping curve σ
with σ(t) ≥ αU (t) for all t. For the described system [107, Theorem 1.5.2] states that the
shaper can be ignored from the perspective of maximum backlog and delay analysis.
The proof is based on commutativity of (min,+)-convolution, due to its relevance for

SLA Calculus we repeat a variation using maximum delay instead of backlog here. Since
the shaping curve is also an service curve ([107, Corollary 1.5.1]) offered by the shaper to
the arrival flow the delay bound of the system is:

h(α, βL1 ⊗σ⊗βL2 ) = h(α, σ⊗βL1 ⊗βL2 ) (6.77)

As one can see, the delay bound is not affected by the position of the shaper in the system.
Furthermore, since σ ≥ α, it is true that

h(αU , σ⊗β1⊗βL2 ) = h(αU , βL1 ⊗β2) (6.78)

by [107, Lemma 1.5.2], a shaper at the system entrance will not modify the flow at all.
Thus, the worst-case delay and, in a similar argumentation, the backlog are not influenced
by adding a greedy shaper.
We again emphasize that this result of transparent shapers holds only for worst-case

delay bounds and not for average delay.

6.4.4 Server Parallelization

Similar to parallel shapers Chang in [38, Theorem 2.3.5] gives a result for the lower service
curve of parallel servers. “Filter bank summation” for servers handles arrival flows equal
to parallel shapers (see Figure 6.26). An arrival flow R is forked to flows R1 and R2. After
passing the servers departure flows R∗1 and R∗2 are joined to a single flow R∗ again. Here it
is important that parallel servers in Network Calculus (and thus the connectors & and ∧
in Figure 6.26) combine the semantics of a (de-) multiplexer for routing and fork/join. In
case of fork/join R = R1 = R2 is given by duplication for synchronization. For the routing
case R = R1 +R2 semantics are based on the worst-case assumption of Network Calculus:
The worst theoretic router sends all arrivals to the bottleneck component, thus the system
performance is determined by the weakest server.
Hence the combined system capacity is given by the following theorem [38]:
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Theorem 6.12 (Service of Parallel Servers). Let S1 and S2 be two servers with service
curves βL1 and βL2 . Both server in parallel offer a service curve of βL1 ∧ βL2 to the arrival
flow.

Proof. The proof equals proof 6.4.2 with an inequality instead of an equality [38].

The consequence of this result is that in parallel systems the slowest element determines
the output bounds of the departure flow and thus the response time. According to the
author’s knowledge, literature to Network Calculus does not extend beyond this result of
Chang on parallelization of servers. In terms of modeling it does not pay off to include
parallel elements in Network Calculus as they can be replaced with their serial counterpart.
As a consequence, demultiplexing for packet flows is a “neglected research field” [97].

&R

Server 1

Server 2

∧

R

R

R∗1 ≥ R⊗ f1

R∗2 ≥ R⊗ f2

R∗ ≥ R⊗ ( f1 ∧ f2 )

Figure 6.26: Two servers in parallel

6.5 Real-Time Calculus

With Network Calculus a prominent representative of (min,+)-based calculi has been
introduced. The descriptive power of curve contracts can be extended to other modeling
domains apart from packet networks. Real-Time Calculus is a variant of Network Calculus
for computing upper and lower performance bounds in models for real-time systems [124].
Real-time Systems are characterized by the ability to finish computation tasks within a
given deadline. Typically such kind of performance guarantees are required in embedded
systems controlling a machine, vehicle or consumer electronics. It is a good example how
ideas from Network Calculus initially can be transferred to other application domains.
There is no single work in literature serving as authoritative definition of Real-Time

Calculus in the same way as the works of Le Boudec and Thiran [107] or Chang [38] do
for Network Calculus. Real-Time Calculus is the union of of results presented in a set
of papers. Beginning from the initial work [103] Real-Time Calculus evolved in several
papers [36, 37, 104–106, 124] to a modeling framework. The PhD thesis of Wandeler [122]
includes a extensive summary on Real-Time Calculus. A detailed and critical comparison
of Network Calculus and Real-Time Calculus from the perspective of service curves is
provided by Bouillard et. al. [30]. Due to the different application domains we cannot
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provide one single system model for Real-Time Calculus. However, there is a core of
common ideas that are summarized in the following.

6.5.1 System Model

The basic model elements in Real-Time Calculus are resources that process arriving entities.
Such a resource can be a processor, a router or a specific subsystem in an (embedded)
system component. As in Queueing Theory and Network Calculus the granularity of the
model is subject to the level of detail chosen by the modeler.
In Real-Time Calculus a more general arrival process model than in Network Calculus

is used [36, 37]. Instead of packets event flows are modeled. An incoming event can be,
for example, a processing job in an embedded system. Event flow R has, except for the
modeled quantities, the same properties as a Network Calculus arrival flow (Section 6.2.1).
It is bounded with arrival curves from above (αU ) and below (αL) [36, 37].
The number of processing units (e.g. CPU cycles) available to an element in a time

interval is denoted with resource flow C(t), its upper and lower envelopes are given by
service curves βL and βU [36]. Real-Time Calculus requires all model elements to conform
to a strict service curve [122, 124, Section 2.3.1]. We repeat the definition of [30], an equal
definition is provided by [107]:

Definition 6.5.1 (Strict Service Curve). A system offers a strict service curve βL if,
during any backlogged period ]s, t] , R∗(t)−R∗(s) ≥ βL(t− s) holds.

In practice, a system implementing a strict service curve has a guaranteed output that
does not drop below βL.

Figure 6.27 shows a single Real-Time Calculus resource that accepts an incoming event
flow R. Processed events leave the resource in form of departing arrival flow, notation R′
instead of R∗ is used. The resource also accepts a flow C of processing capabilities that
are consumed when R is processed. Their availability in a time interval is guaranteed and
limited by envelopes βU and βL.
Given the situation that not all processing capabilities available to a resource are

consumed, a flow of remaining processing capabilities C ′(t) = C(t) − R′(t) leaves the
system.

6.5.2 System Analysis

Primary goals in Real-Time Calculus model analysis are to determine the worst-case
response time and backlog. For real-time systems these results help to keep deadlines and
to size buffers in the embedded hardware. Intermediate steps towards these values are the
computation of upper and lower bounds for departure flows and the remaining resource
flows.
The outgoing arrival curves and remaining service capacity bounds are computed as
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ResourceR R′
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Figure 6.27: A Real-Time Calculus resource with associated flows and their bounds (in
style of [104])

follows [104, 122]:

αL
′ = min

{
(αL�βU )⊗βL, βL

}
(6.79)

αU
′ = min

{
(αU ⊗βU )�βL, βU

}
(6.80)

βL
′(t) = max

0≤s≤t

{
βL(s)− αU (s)

}
(6.81)

βU
′(t) = max

0≤s≤t

{
βU (s)− αL(s)

}
(6.82)

Figure 6.27 includes the bounds for outgoing flows, too. Real-Time Calculus also uses delay
and backlog bounds from Definitions 6.2.5 and 6.2.4. For modeling more complex systems,
resources are combined to networks. Routing of flows is not limited to event arrival flows
only, it also extends to processing and remaining processing capability flows. This allows
one to model systems with priorities for different event types and to determine the overall
performance bounds for each priority class [104].

When the processing unit works without priorities a Generalized Processor Sharing (GPS)
element is given. The processing resources are proportionally distributed on each arrival
flow. While [92] gives results for linear service curves only, Thiele et. al. [105] extends
GPS in Real-Time Calculus to general service curves. A similar result is given in [101].

Each flow Ri, i = 1 . . . n is associated to a weight φi with
∑n
i=1 φi = 1. During operation

each flow receives the share
φi∑

j∈B(t) φj
(6.83)

of the available resource flow. B(t) is the set of backlogged (thus active) flows at time t
[107, Section 2.1.2]. A flow can allocate at least φi processing capacity, if it is the only
active flow it can even take advantage of the full system capacity. Then the resource flow
available for each arrival flow Ri is bounded by [105] βLi = φiβ

L and βUi = βU .
The GPS model in Real-Time Calculus can also be used to describe loop constructs with

a fixed iteration count. When each single job in an event flow has to be executed n times in
a processing unit, each repetition i = 1 . . . n has an equal share φi of processing resources
available. Since an event processed in a loop is finished, that is when it has completed the
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last iteration, a processing unit with resource flow bounds βL and βU offers bounds

1
n
βL and βU (6.84)

if an event is processed n times.

6.6 Software Support

To analyze Network Calculus or Real-Time Calculus models software suites exist. Tailored
to models of data networks is the DISCO network calculator [50, 99]. The stand-alone
software is implemented in Java, network models are formulated using the GraphML
language [50]. Another tool for Network Calculus is NC-Maude [31].

Resulting from the modeling domain of Real-Time Calculus the RTC Toolbox [123] was
presented in the PhD thesis of Wandeler [122]. It is a Java library for (min,+)-operations
using the MATLAB computer algebra system as a front end. The software is under constant
development since 2006 at the ETH Zürich. In this work the RTC Toolbox is the primary
tool to analyze the following exemplary Network Calculus models.

In [28] further proposals for implementations of (min,+)-operators, including a discussion
of an earlier version of the RTC Toolbox, are given.

6.7 SOAs Models with Network Calculus

Network Calculus offers extensive methods to model discrete-event systems that have to
conform to QoS. The network-oriented model can also be applied to other domains as
Real-Time Calculus does. Of course this also extends to the modeling domain of SOAs
with SLAs.

A work on QoS modeling and analysis with Network Calculus is the PhD-thesis of
Krishna Pandit [90]. The intention is to give a unified model for QoS performance analysis
for packet-switched networks. The modeled networks are reconfigurable systems. Pandit
also uses a combined modeling approach with queues and Network Calculus elements in
one model. Arrival curves are used to regulate the arrival process towards a queue. For
the combination simulative results are given.
For the modeling domain of SOAs with SLAs Network Calculus is rarely used. In

Eckert et al. [45] Web Service workflows are analyzed for their worst-case behavior. Their
goal is to support capacity planning by avoidance of SLA violations due to performance
bottlenecks. Sequential Web Service workflows are used as blueprints for a business process.
In accordance with the assumption that a service can be replaced by a semantically equal
one, the model is used to support service selection by the workflow controller.

6.7.1 Mapping of BPEL Structures to Network Calculus

The mapping of Web Services with BPEL to Network Calculus is similar to Queueing
Networks. Each Web Service participating in a workflow is modeled by a Network Calculus
server element instead of a queue. In the approach of [45] only sequences of services are
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considered. Here we extend the application of Network Calculus to Web Services by adding
parallel (synchronized) constructs and loops.
Semantics of the Network Calculus workload model are substantially changed. Instead

of single data packets the entities passing through the network are service requests (c.f.
[45]). Therefore, the abstraction level in models changes from packet to application layer.
Sequences of service interfaces in BPEL become modeled with serially concatenated

servers using Theorem 6.11. For a coherent ordering of server elements the expression
sequence of the BPEL file can be used, but is not important due to associativity of (min,+)
convolution.
Routing decisions using <switch/> tags are abstracted to parallel server constructs

according to Theorem 6.12. Since Network Calculus has no descriptive means for variables
or decisions all routing rules are lost in abstraction. Instead, the worst-case for routing
decisions is implicitly assumed by exposing all possible routes to the full arrival flow.
Synchronization of services in BPEL with <flow/> tags is expressed with parallel servers
using Theorem 6.12, too.
Loops resulting from <while/> tags can be emulated by using results for GPS in Real-

Time Calculus under the condition that the maximum repetition count is known.

Example 6.7.1. The network of server elements describing the ParcelSink workflow is
shown in Figure 6.31. The BPEL file names five service interfaces, each one is represented
by a Network Calculus server element here. Both geocoder services, instantiated by Hol-
lowEarth and FlatWorld, are subject to synchronized execution and thus modeled as parallel
servers. In the BPEL file a <switch/> statement routes requests to the pair of geocoders
or to the internal catalog depending on the familiarity of the addresses. Since Network
Calculus has no notion of variables and thus decisions, this system aspect is also abstracted
to parallel routing. It is known for the invoice printing service that it is always called two
times, so it annotated in the network with repetition count n = 2. The triple of address
fetching service, printing service and the combined geocoder/catalog section is in sequence,
thus its server elements are concatenated.

6.7.2 Modeling SLAs with Network Calculus

For including SLAs into Network Calculus models the two-sided contract between customer
and provider on maximum workload and guaranteed response time is split. While the
workload is part of the model input, analysis will provide the maximum delay. The flow of
request arrivals is bounded with upper arrival curves. In [45] the arrival contract is modeled
with leaky buckets. When general piecewise linear functions are used, the interpretation
guidelines in Section 6.2.5 can be transferred to flows of job requests.

Since Network Calculus server elements are used to describe the workflow, the knowledge
of service curves in this type of model is mandatory. In [45] rate-latency curves model
the sustainable service rates and the service startup-times. As discussed in Section 3.5
the service capacity itself is not part of SLAs issued by providers, for SOA modeling
with Network Calculus it has to be provided in addition. Access to computing systems
in order to create performance models and thus service curves is a privilege of service
providers. Given that condition, workflow models using Network Calculus are suitable to
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service providers and apply less to service customers. To provide an example based on the
ParcelSink workflow we change our role and perspective to that of a service provider with
full access and detailed knowledge on service capacities. The presented service curves are
the results of a service curve computation in the upcoming Chapter 9.

Example 6.7.2. To limit the arrival process an upper arrival curve

αUParcelSink = min(γ100,5, γ12,269) (6.85)

is arranged using the ParcelSink SLO in Table 2.1. Bursts are limited to 3 time units at a
rate up to 100 requests per second. It limits the arrival flow to a rate of 12 requests per
time unit on the long run (269 = 3 · 100 + 5− 12 · 3).

The service process of the first geocoder is bound from below by

βLhollowearth =
{

max(β8,10, β25,13.4) t < 18
β8,2.375 t ≥ 18

(6.86)

and for the second a bound of

βLflatworld =
{
β20,5 t < 7
β15,4.33 t ≥ 7

(6.87)

is known.
For the remaining services the lower service curves are given by

βLcatalog =


0 t < 2
β12,1.1667 2 ≤ t < 3
β9,0.556 t ≥ 3

(6.88)

βLfetchaddress = β15,9.8667 (6.89)
βLprintinvoice = β25,15.76 (6.90)

Figure 6.28 includes plots for αUParcelSink and the basic service curves.

6.7.3 SLA Validation

After modeling Web Service workflows with Network Calculus, the end-to-end delay is
computed in [45] and considered as the global workflow response time in worst-case. By
comparison of delay limits required by customers a workflow configuration is either accepted
or discarded. Hence, the first step in Network Calculus SLA validation is the computation
of the global service curve βL for all services participating in a workflow by Theorem 6.11.
In a second step the maximum horizontal distance (Equation (6.3.2)) between arrival
contract αU and βL gives the worst-case system latency. As a second performance figure
the throughput of a workflow is read from the resulting sustainable service rate in βL [45].
For all computations in the following example the RTC Toolbox [123] introduced in

Section 6.6 is used.
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Figure 6.28: Arrival and Service Curves for ParcelSink Services.
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Figure 6.30: Maximum response time of ParcelSink workflow with reduced arrival curve.

Example 6.7.3. Given the arrival curve contract αU and the service curves from Example
6.7.2 the response time guarantee of 5 seconds is to be validated. Based on the ParcelSink
workflow structure the global service curve βLParcelSink is computed step by step (Figure 6.29
shows the intermediate results). The workflow uses two geocoders in synchronization (yellow
box in Figure 6.31), so Theorem 6.12 gives

βLgeocoding = βLhollowearth ∧ βLflatworld =
{

max(β8,10, β25,13.4) t < 18
max(β8,2.375) t ≥ 18

(6.91)

Obviously, the better lower service bound of FlatWorld cannot contribute to the combined
worst-case performance when it is synchronized with HollowEarth. The service curve
describing the worst-case routing between the geocoders and the internal address database is
found using Theorem 6.12 again.

βLroute = βLgeocoding ∧ βLcatalog = βLgeocoding (6.92)

The geocoder section is the bottleneck here. Before the service curve for the complete
workflow can be derived the loop construct for print_invoice has to be considered. Using
Equation 6.84 the offered service bound is

βLlooped = 0.5 · βLprintinvoice (6.93)
= 0.5 · β25,15.76 (6.94)
= 0.5 · (25 ·max(0, t− 15.76)) (6.95)
= β12.5,15.76 (6.96)
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The global service curve is given by serial concatenation (Theorem 6.11) of the remaining
services and βLroute:

βLParcelSink = βLfetchaddress⊗βLroute⊗βLlooped (6.97)

=


β8,36 t < 41
β25,39.4 41 ≤ t < 41.2
β15,38.2 41.2 ≤ t < 49.4286
β8,28.375 t ≥ 49.4286

(6.98)

In view of that lower bound for the service, the processing of request in the ParcelSink
workflow might completely stop for 36 time units. Otherwise the minimum long-term service
rate is 8. Furthermore, the service curve is not convex due to the rate increase in interval
[41, 49.4286). The curve is still super-additive, which can be easily verified by computing
βLParcelSink⊗βLParcelSink = βLParcelSink.
Now, by knowing the service characteristic, we can use the given arrival bound to compute

the maximum delay by Equation (6.25).

hmax
(
αU , βLParcelSink

)
= sup

t≥0
h
(
αU , βLParcelSink

)
(t) (6.99)

=∞ (6.100)

According to Network Calculus analysis the workflow is not a stable system under the
load specified by αU . Or, in terms of SLA validation, the system is not conform to the
given customer workload contract. The reason for the negative result is the gap between
long-term arrival rate (12 per time unit) and long-term service rate (8 per time unit)
resulting from HollowEarth. When we analyzed the workflow with Queueing Theory, the
bottleneck was concealed in average rates and the stochastic routing was sending 60%
of requests to the geocoders only. Here, with Network Calculus, the system overload in
worst-case is exposed.

Example 6.7.4. One can create a stable system by reducing the workload send to the
workflow. We match long-term arrival and service rates by redefining the arrival curve to:

αUstable = min(γ100,5, γ8,281) (6.101)

With this arrival bound we recompute the delay:

hmax
(
αUstable, β

L
ParcelSink

)
= sup

t≥0
h
(
αU , βLParcelSink

)
(t) (6.102)

= 63.5 (6.103)

As a result, the provider running the ParcelSink workflow can guarantee a maximum system
latency of 63.5 seconds for the reduced system load. The delay bound of 5s required by the
SLA is still not fulfilled.

Analysis gave us two results based on the maximum delay bound. The first states that
the system is not sufficient enough for the initial workload contract, so the SLA validation
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6.7 SOAs Models with Network Calculus

fails due to the unbounded delay. The second result is found after adjustments to the
arrival contract have been made to get a stable system. A figure for the maximum delay
was identified, still not sufficient, but it can serve as a starting point to negotiate a new
SLA.

Discussion of Results

Basically, we modeled and analyzed the SOA of ParcelSink in a way common for data
networks and received a single, deterministic performance guarantee on delay. Although the
information on maximum delay is valuable, several questions on SOA performance are left
open. Tolerances for workload have been included in the arrival curve and the service curve
separates short- and long-term processing. The monolithic analysis result on maximum
delay indicates short-term system performance in a theoretic worst-case situation with a
low probability for real world systems. Network Calculus analysis is lacking separation of
short- and long-term results, zero information is given for long-term delays more important
in SLAs. When SLAs with tolerances are to be validated the approach will not provide
sufficient information.

We also have to remind the reader that for the exemplary model analysis the knowledge
of service curves, starting in Example 6.7.2, was explicitly assumed. As discussed in
Chapter 3 in a SOA scenario SLAs provide delay guarantees, but leave the processing rate
of obliged systems open. For the service selection scenario in [45] this gap in knowledge is
closed by the introduction of a service broker, aware of the service descriptions of each
service. Moreover, service curves can be negotiated between customer and provider. For
the model proposed in [45] this is a sound solution, but such negotiation mechanisms are
not known to existing Web Service protocols. With unknown service curves analysis is
impossible and, from a SOA customer’s perspective, Network Calculus is unsuitable for
SLA validation.

Still Network Calculus has some advantages for SOA modeling and SLA validation. The
Calculus is deterministic, under the assumption of correct model parameters the results
will also be deterministic upper bounds. This is different from other modeling methods like
Queueing Theory or Simulation that yield average values instead of bounds. As seen in our
example, from the deterministic perspective the outcome of a validation may completely
differ.

Even within the deterministic bounds there is the option of including tolerances in model
parameters. Upper and lower curves give a high degree of freedom to describe workload and
performance variations. By adjusting the shape of concave (and convex) curves the flow
can be characterized in short-term behavior and long-term target performance. When we
limited curves to piece-wise linear functions we gained an intuitive way to model tolerances.
The analysis process itself is efficient and results can be computed fast, with the hardware
of Example 5.1.3 computations took less than a second.
In summary, Network Calculus is not the answer to the problem, but a good starting

point for achieving a solution.
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In the previous chapters three modeling methods for modeling and performance analysis
of SOAs were presented and applied to SOAs, that have to be compliant to SLAs with
quantitative requirements. With Queueing Networks the lack of deterministic bounds
is a major problem when service guarantees are to be validated. More detailed models
or non-average results break their efficient analysis option. Simulation does give more
insight into performance behavior of SOAs, but requires lengthy computations and detailed
models. The results still give no performance guarantees, as worst-case situations may not
be reached during simulative analysis.

Network Calculus and Real-Time Calculus can provide deterministic worst-case bounds
for systems, they have algebraic foundations and offer fast computable results. By knowledge
of bounding curves for arrivals and service/resource availability in a system, performance
numbers like output bounds, backlog and system delays can be derived. But in case of
SOA models their service process descriptions only require information that cannot be
extracted from SLOs in SLAs. Additionally, concentration on worst-case scenarios limits
the use of Network Calculus for modeling domains with less strict time constraints. This
also limits the applicability to models with SLA performance descriptions.
Up to now, one specification in SLOs did not receive enough consideration in SOA

modeling: response time limits with their short-term tolerances. In the following chapters
SLA Calculus is proposed as a performance modeling method for SOAs with SLAs, that
combines the strengths on Queueing Theory and Network Calculus. SLA Calculus is based
on the ideas of Network Calculus to describe processes by their deterministic bounds.
In exchange for service curves, SLA Calculus uses curves to bound system delay. This
allows service customers to build performance models based on the information and service
promises given by service providers. Thus, SLA Calculus is suitable for models from a
provider and customer perspective.

7.1 Curves for Delay Contracts

Development of SLA Calculus is based on the idea that processing of an arrival emits a
second event with the processing time, namely the delay as seen by the processed event.
The flow of these delay events corresponds to the distance between arrival and departure
flows. The delay flow within a time interval can variate, but the rate is regulated by
means of Network Calculus. By imposing bounds on the delay flow the underlying system
performance is characterized.
The regulating element in the SLA Calculus system model will be arrival functions

setting bounds on the delay flow within time intervals. Depending on the configuration of
the so-called delay curve one will be able to include classical hard deadlines, as well as,
less restrictive requirements as found in SLAs. By interpretation, delay times can be seen
as a liquid (discrete: packets) with a flow regulated by one or several leaky buckets. One
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can define a sustainable rate of delays, as well as, the acceptance of delay burst by giving
the leaky bucket an appropriate capacity. Instead of hard deadlines there is “additional”
delay available to compensate short-term fluctuations.

It is the primary goal of this thesis to describe the idea of delay flows and their bounding
with methods of Network Calculus. First it is formalized for general systems, then it will
be specialized to SOA models in the following sections to utilize Network Calculus for SLA
descriptions.

7.1.1 Delay Process Modeling

The delay process for a system modeled with SLA Calculus is generated by a function
over arrival and departure flows. Thus, delay functions for SLA Calculus are second level
expressions defined over elementary functions in Network Calculus. To the best of our
knowledge this concept remains unused in the Network Calculus literature.
The delay function in SLA Calculus uses inverses of both input flows or curves whose

difference provides the desired vertical distance as delay value. However, only strictly
(non-) increasing functions can be inverted, but arrival flows are monotonically increasing
step functions. For functions f ∈ F0 we solve this issue by usage of a pseudo-inverse (f)−1

introduced in upcoming Definition 7.3.1.

Definition 7.1.1 (SLA Calculus Delay Function). Let R(t) be the arrival flow to a system
and R∗(t) the corresponding departure flow. The delay at time t is the vertical deviation
(Definition 6.2.2) between both inverted flows:

d (R,R∗) (t) = (R∗)−1(R(t))− (R)−1(R(t)) (7.1)

The subtrahend cannot be reduced to t due to the characteristic of the pseudoinverse.
Delay is a quantity measured in a unit of time. For simplicity, the unit of the used time
basis for t, e.g. milliseconds, seconds or minutes, should be used.

Figure 7.1 shows how a delay function between an arrival and departure flow is constituted.
The blue horizontal arrows mark the delay for discrete arrivals that entered the system
until they left. With every arrival leaving the system after processing such an arrow can
be drawn between input and output flows. It can be considered as a discrete delay event
occurring whenever an entity is entering the system for processing.

Definition 7.1.2 (Delay Event). A delay event triggered by arrival i is given by li = (wi, ti)
with wi = h (R,R∗) (ti) as event weight specified by the delay experienced by i and ti as
arrival time of i.

To simplify the notation following operators are introduced: t(ei) = ti and w(ei) = wi.

7.1.2 Delay Flow

To construct delay contracts with d (R,R∗) (t) its value is interpreted as an arrival flow
of delay events. This allows one to construct a delay flow in form of a cumulated delay
function.

116



7.1 Curves for Delay Contracts

R(t)

#
 a

rr
iv

a
ls

 a
n
d
 d

e
la

y
 u

n
it

s

t

R*(t)

D(R,R*)(t)

Figure 7.1: Delay Function d (R,R∗) (t)
is given by the length of the
blue arrows (delay events).
Delay flow D (R,R∗) (t) is
the continuous sum over
d (R,R∗) (t).

t
m

R(t)

D(m)

D(t)

ψU(t)

a
rr

iv
a
ls

 a
n
d

 d
e
la

y
s

Figure 7.2: Continuous model: arrivals
R(t) with upper bound, de-
parture flow R∗(t) and result-
ing delay D(m) bounded by
ΨU .

Definition 7.1.3 (SLA Calculus Delay Flow). Let d (R,R∗) (t) be a delay function for a
system with arrival flow R and departure flow R∗. Then Delay Flow

D (R,R∗) (t) =
∫ t

0
d (R,R∗) (x) dx (7.2)

is the cumulative sum of delays in time interval [0, t].

If the context allows an abbreviation, notation D (f, g) (t) = D(t) is used. D(t) ∈ F
and D(t) = 0 for t ≤ 0 and D(t) is wide-sense increasing. Thus, D(t) features the same
properties as arrival flows and can be described with similar algebraic methods.

Figuratively speaking about discrete delay events, each event adds the processing time of
its corresponding arrival to the delay flow (Figure 7.1). As a result, D(t) is a step function.
Equal to arrival flows the delay model is continuous when d

dxD(t) = d(t) exists. The rate
of delay emitted by a system in t is then given by the slope of D(t). Delay function d(t) is
also continuous without delay events. Figure 7.2 includes continuous arrival, departure and
delay flows. It shows also a noteworthiness for the area between flows R and R∗ in interval
[0,m] found by the integrative function D(m): Due to the way it h (R,R∗) (t) defined the
integrative sum also includes an (almost triangular) area right of m.

117



7 An Approach to Delay Modeling

ServiceArrivals R Departures R∗

Delay Flow D (R,R∗)

αU

αL

ΨUΨL

Figure 7.3: Model element with delay: A service processes arrivals (requests). Their waiting
times are cumulated to a delay flow D (R,R∗).

With the introduction of delay flows in modeling the basic Network Calculus system
model is altered. Figure 7.3 shows a model element focusing on arrival and delay flows,
resource flow C is not part of the model anymore.

7.1.3 Delay Curves

The central concept in this work is to describe limits on delays within a time interval by
the same tools as deployed on arrival processes. Delay curves bound delay flows emitted
by systems. Similar to arrival curves one can construct upper and lower bounds on the
cumulated delay in a time interval.

Definition 7.1.4 (Upper Delay Curve). An upper delay curve ΨU for delay function D(t)
satisfies the relation

D(t)−D(s) ≤ ΨU (t− s) ∀ 0 ≤ s ≤ t (7.3)

ΨU is the upper bound for the sum of delay events in time interval [0, t]. Some trivia on
symbol Ψ: In contrast to lower-case notation used in Network Calculus for curves, Ψ is
a Greek upper-case character. By definition of delay flows the expressed delay quantity
is based on integration. Integration functions are denoted with uppercase letters and for
delay curves this scheme is continued.
Using (min,+)-convolution, Equation 7.3 can be written as

D ≤ D⊗ΨU (7.4)

This is shown by Theorem 6.4 when R is replaced by D. Figure 7.2 shows a (continuous)
delay flow D given as the area between R and R∗. The delay flow itself is bounded by ΨU

from above.

Definition 7.1.5 (Lower Delay Curve). A lower delay curve ΨL for delay function D(t)
satisfies the relation

D(t)−D(s) ≥ ΨL(t− s) ∀ 0 ≤ s ≤ t (7.5)

ΨL(t) is the lower bound for the sum of delay events in time interval [0, t]. With the
help of (max,+)-convolution, Equation 7.5 can be written as

D ≥ D⊗ΨL (7.6)

Again the proof is straightforward using Theorem 6.5 and by setting R = D.
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Upper and lower delay curves provide the tools to model worst-case and best-case system
performance with delay contracts. In the following we will give details on the interpretation
of upper and lower curves in context of performance models, as well as, semantics of
function types used to instantiate delay contracts.

7.1.4 Delay Curve Interpretation

For system performance models in computer science the upper bounds on delay are of
major interest, since response times within these bounds are considered as well-performing
and thus desirable. Hence, in combination with given arrival process bounds, upper delay
curves indirectly set constraints on the minimum processing rates in systems. Further we
make the following realistic assumption:

Assumption 7.1 (Relationship of Load and Delay). For systems modeled with SLA
Calculus we postulate that delay grows with the load level. Precisely, delay is a monotonic
increasing function ∆ of the load. Thus, for two load levels l1 and l2 with l1 < l2 and a
function

∆ : load→ response time (7.7)

we have ∆(l1) ≤ ∆(l2).

Arrival and delay curves are algebraically identical. Therefore they can be defined with
the same function classes as listed in Section 6.2.4 for arrival curves. Delay flows are
non-continuous functions. The underlying delay function itself changes its value in non-
continuous steps, whenever an arrival to the system was processed. As for arrival processes
the use of piecewise linear functions to construct delay curves enables one to abstract from
discrete delay events to a fluid model that will be used in this work. Semantics for curve
primitives in order to set bounds on delays in system models are defined as described in
the following paragraphs.

Linear Delay Curves for Deadlines

Maximum system delays are modeled with linear delay curves of the type λr = r · t.

Theorem 7.2 (Maximum Delay from Linear Delay Curve). In a system with arrival flow
R constrained by αU from above and a delay flow bound by λr from above the maximum
system delay is r.

Proof. Consider a system with fixed delay T and infinite service rate. The service curve
can be expressed as a burst-delay curve δT (t) (Equation 6.34). With delay being a function
of load (Proposition 7.1) we consider the maximum, thus worst-case arrival flow R = αU .
Retaining the worst-case the lower departure envelope is computed by

αL
′ = (αU ⊗ δT )(t) = αU (t− T ) (7.8)

The lower output flow bound is the arrival curve shifted by T , the horizontal deviation
between arrivals and departures is d

(
αU , αL

′) (t) = T ∀t. By Definition 7.1.3 this results
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in delay flow

D
(
αU , αL

′) (t) =
∫ t

0
(αL′)−1(αU (x))− (αU )−1(αU (x)) dx (7.9)

=
∫ t

0
(αU )−1(αU (x)) + T − (αU )−1(αU (x)) dx Lemma 7.3 (7.10)

=
∫ t

0
T dx = Tt (7.11)

The delay flow has thus a slope of d
dtTt = T and can be bounded from above with a delay

curve λT = Tt.

Until now, the addition of delay curves did not add anything to the expressiveness of a
Network Calculus model. However, delay curves are not limited to linear functions.

Affine Delay Curves

If affine functions of type γr,b are used to define delay curves, bursts in the delay flow can
be bounded. The control of delay bursts extends expressiveness of delay models beyond
the definition of hard deadlines. Bursts in the delay flow of a system can occur in several
situations:

• The modeled system may stop for a limited time interval. Processing of arrivals is
delayed for this interval, the burst is immediately visible in the delay flow.

• From the user’s point of view the system slows down processing of arrivals for a time
interval. Reasons for this can be heavy workload induced by other system users or a
phase of system self-maintenance.

• In non-fluid models b marks the maximum size of a single delay event.

Using affine delay curves of type γr,b allows one to define a maximum execution time of r
time units in the same way as for linear curves. Additionally, burst size b can be used to
relax strict deadlines for a short period until delay events reach a sum of b. To stay in the
picture of leaky buckets, delay flows are controlled with bucket capacity b allowing delay
arrivals not conform to rate r.

Composed Delay Curves

Using a single affine function γr,b, respectively, a leaky bucket to control the delay process
introduces more flexibility in delay modeling than simple deadlines. To model the short-
term behavior during bursts of delay events occurring on stalled processing, curves have to
include more details. In Network Calculus, short-term bursts in arrival flows are controlled
with compositions of affine functions (c.f. Section 6.2.5). The same principle can be
exploited to control delay flows in short and long-term. Composing delay curves from
two or more affine curves allows us to control the delay process by setting delay rates for
different time intervals.
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Let γr1,b1 and γr2,b2 be two upper delay functions. In the long-term we require the delay
flow to be limited by rate r1, for the short-term a higher rate can be accepted, thus r2 > r1.
Equally, delay burst capacity is smaller for the short-term delay model, thus b1 > b2. Offset
b1 can be considered as long-term tolerance towards system slowdowns. In a discrete model
b2 is the maximum delay event size. As done for upper arrival curves the min() operator is
used to form a concave envelope:

ΨU (t) = (γr1,b1 ⊗ γr2,b2)(t) = γr1,b1 ∧ γr2,b2 (7.12)

Using more than two affine functions allows us to define more detailed constraints on delay.
Furthermore, arbitrary delay curves can be approximated with piecewise linear functions.

7.1.5 Lower Delay Curve Interpretation

Lower delay curves are the lower envelope for the delay flow in a system used to model the
minimum response time, thus one can ensure processing takes at least a specific amount of
time. Or, for given arrival process bounds, lower delay curves indirectly set the maximum
processing rate of a system.

While Queueing Theory combines upper and lower bounds in average performance values,
(min,+)-based calculi can specify their range. This adds information on the variance of
processing speed. To construct lower delay envelopes we use the convex function set which
also provides descriptions of lower arrival and service curves. If no information on response
times is available, delay curve ΨL(t) = 0 is the lowest valid bound that can be used as
substitute.

Linear Lower Delay Curve

With a linear delay curve ΨL = λr one can model the minimum response time for a system.
The rate of the delay flow bounded from below is at least r, thus each arrival has to endure
a delay greater or equal.

Rate-Latency Lower Delay Curves

As for the upper bounds, adding burst capacities to the lower envelope extends modeling
flexibility. Rate-Latency curves βR,T (c.f. Section 6.2.4) are used to form lower delay
envelopes, including some tolerance towards the minimum response times. While in arrival
curves the relocated x-axis intersection is the maximum interarrival time of network packets
or customers (compare Section 6.2.5) the interpretation for delay curves changes, too.
Translation variable T can be interpreted as the maximum interarrival time between two
delay events in delay flows. Within a time interval of length T in a continuous model the
system is able to work in a high processing rate. Zero or less delay than rate R demands
has to be emitted into the delay flow. It is the lag on an ideal delay curve λr.

Composed Lower Delay Curves

Lower envelopes for delay flows are formed by compositions of convex curves. To minimize
the parameter set and to establish common semantics with lower arrival curves, we will use
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rate-latency functions of type βR,T to compose piecewise linear functions as lower delay
curves. A lower delay curve with i segments is given by

ΨL(t) = max
i

(βRi,Ti(t), 0) with Ri+1 < Ri and Ti+1 > Ti ≥ 0 (7.13)

In case of two rate-latency functions βR1,T1 and βR2,T2 the parameter set can be interpreted
as follows: R1 is the minimum delay rate for the system, R2 an even lower rate caused by
a short-term system speed up. T1 gives the long-term tolerance towards higher processing
rates. In a discrete model T2 is the maximum interarrival time between delay events.
Additional line segments can add more detailed lower limits to the delay process and thus
indirectly to the maximum processing rate.

7.2 Delay Contract Conformity

The reader might ask for the practical use of delay curves and how to utilize a system to
process arrivals in such a speed that is according to the delay model. In this thesis, no
method to enforce a system’s behavior with delay curves will be presented. Instead, delay
curves are considered as a model for a delay contract that is either met or not.
A system operates conform to a delay curve if the following definition applies:

Definition 7.2.1 (Conformance to Upper Delay Curve Contracts). Let ΨU be an upper
delay curve for a system and D the delay flow emitted by the system. The system is conform
to the delay contract modeled with ΨU if

D(t) ≤ (ΨU ⊗D)(t) (7.14)

holds for all t.

Equally, curve contracts for lower bounds are met when following definition applies:

Definition 7.2.2 (Conformance to lower delay curve contract). Let ΨL be a lower delay
curve for a system and D the delay flow emitted by the system. The system is conform to
the delay contract modeled with ΨL if

D(t) ≥ (D⊗ΨL)(t) (7.15)

holds for all t.

The delay contract is guaranteed to the arrivals (job requests) entering the system.

7.3 Horizontal Integration Revisited

Definition 7.1.3 for delay flows includes the integral over the horizontal distance between
arrival and departure flow. While the concept of horizontal integration is complementary
to the commonly used vertical integration, it cannot be used straightforward in many
applications. To compute a delay flow D (f, g) (t) for two functions f, g ∈ F the horizontal
deviation between f and g and its integral have to be included as well. This step turns out
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to be problematic in applications due to the handling of integration variables. For instance,
to evaluate expression

h (f, g) (x) dx = inf {τ ≥ 0 : f(x) ≤ g(x+ τ)} dx (7.16)

two values have to be computed: f(x) and g(y) with y = τ +x > x. This renders the use of
horizontal integration in computer algebra systems like MATLAB cumbersome. However,
the integral over the horizontal deviation can be replaced with a more common vertical one
[117]. In the following paragraphs the transformation using inverse functions is described.

7.3.1 Pseudoinverse

The basic idea to compute delay flow D (f, g) (t) is to use a special inversion for monotoni-
cally increasing f and g in underlying function d (f, g) (t). In [107, Proposition 3.1.1] it is
demonstrated how the maximum horizontal distance between two wide-sense increasing
functions is found using the so-called pseudoinverse for one function. For every strictly
increasing function a left-inversion [107, Sec. 3.1.4] exists:

∀ t1 < t2, f(t1) < f(t2) ∃ f−1 ∈ F : f−1(f(t)) = t ∀t (7.17)

However, when f ∈ F is wide-sense increasing for some inputs a, b and a < b plateaus
exist with f(a) = y = f(b). In this case f is not left-invertible due to f−1(y) = a and
f−1(y) = b, a 6= b. As a consequence, one cannot find a left-inverse for the catalog of
functions in Section 6.2.4 used to instantiate curve contracts. Instead pseudoinverse [107,
Def. 3.1.7] functions are used.

Definition 7.3.1 (Pseudoinverse). The pseudoinverse (f)−1 of function f ∈ F is given
by:

(f)−1(x) = inf {t : f(t) ≥ x} = sup {t : f(t) < x} (7.18)

Also, (f)−1 ∈ F if f ∈ F and (f)−1(0) = 0 [107, Theorem 3.1.2]

Example 7.3.1. The graphs in Figure 7.4 show a simple example. Function f(x) ∈ F
in (a) is composed from linear segments with f(x) = 1 for x ∈ [1, 3]. Its pseudoinverse
function (f)−1 in (b) is not continuous at x = 1. Due to the infimum operator in Definition
(7.3.1) we have (f)−1(1) = 1 instead of (f)−1(1) = 3.

For curve estimation the pseudoinverse of rate-latency function βR,T is required.

β−1
R,T (t) =

{
0 for t = 0
t
R + T for t > 0

(7.19)

The following lemma shows an effect when one function is shifted along the time axis.

Lemma 7.3 (Pseudoinversion and Horizontal Shift). Given are two functions f, g ∈ F0
with g(t) = f(t− c). For their pseudo-inverses the following can be stated:

(g)−1(f(t)) = (f)−1(f(t)) + c (7.20)
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Figure 7.4: Function f and its pseudoinverse (f)−1

Proof.

(g)−1(f(t)) = inf {x : g(x) ≥ f(t)} Definition 7.3.1 (7.21)
= inf {x : f(x− c) ≥ f(t)} (7.22)
= inf {∆ + c : f(∆) ≥ f(t)} ∆ = x− c (7.23)
= inf {∆ : f(∆) ≥ f(t)}+ c (7.24)
= (f)−1(f(t)) + c Definition 7.3.1 (7.25)

7.3.2 Horizontal Distance by Inversion

By application of the pseudoinverse the horizontal deviation function can be replaced.

Theorem 7.4 (Transformation of Horizontal Deviation). Let f, g ∈ F .

h (f, g) (t) = (g)−1(f(t))− t (7.26)

Proof. We start from Definition 6.2.3 of horizontal deviation and apply Definition 7.3.1 of
the pseudoinverse.

h (f, g) (t) = inf {d ≥ 0 : f(t) ≤ g(t+ d)} (7.27)
= inf {d ≥ 0 : g(t+ d) ≥ f(t)} − t+ t (7.28)
= inf {d+ t ≥ 0 : g(t+ d) ≥ f(t)} − t (7.29)
= inf {∆ ≥ 0 : g(∆) ≥ f(t)} − t d+ t = ∆ (7.30)
= (g)−1(f(t))− t Definition 7.3.1 (7.31)
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As a result, delay flows can be computed by

D (f, g) (t) =
∫ t

0
(g)−1(f(x))− x dx (7.32)

In [107, Section 3.1.4] a small but useful list for the functions used in curve definitions is
given:

(λR)−1 = λ 1
R

(7.33)

(δT )−1 = δ0 ∧ T (7.34)
(βR,T )−1 = γ 1

R
,T (7.35)

(γr,b)−1 = β 1
r
,b (7.36)

7.4 Backlog Curves

While we used the horizontal deviation between incoming and outgoing flows as system
delay and imposed limits with delay curves, similar constructs for the backlog given by
vertical deviation are also possible. Indeed, backlog flows and even curves can be formulated
in a similar manner as delay curves. However, we will see that backlog curves are quite
redundant for modeling needs with SLAs.

Definition 7.4.1 (SLA Calculus Backlog Function). The backlog b(t) for job request flow
R and departure flow R∗ at time t is the vertical deviation (Def. 6.2.2) between both
functions

v (R,R∗) (t) = R∗(t)−R(t) (7.37)

As known for arrival and delay, a backlog flow in form of an arrival flow can be formulated:

Definition 7.4.2 (Backlog Flow). Let v (R,R∗) (t) be the backlog for an arrival curve and
a departure flow. Backlog Flow B(t) is the cumulative sum of backlogged arrivals in interval
[0, t].

B(R,R∗)(t) =
∫ t

0
v (R,R∗) (x) dx (7.38)

For abbreviation, notation B(t) = B(R,R∗)(t) is used.

Finally, also upper and lower bounds in form of backlog curves are possible:

Definition 7.4.3 (Backlog Curves). Upper backlog curve ΥU and lower backlog curve ΥL

for backlog flow B(t) satisfy the relation

ΥL⊗B ≤ B ≤ B⊗ΥU (7.39)

Backlog curves will not be used for SLA modeling in this thesis, here, delay curves
are preferred. SLA Calculus is intended for black box modeling of SOAs considering the
customer perspective. When sending job requests to a service, the response time is of more
interest to the customer than the behavior of internal buffer processes. Without proof we
assume that SLAs do not put any limitations on the internal buffering of a service.
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Nevertheless, an application in other modeling domains than SOA can be imagined.
Backlog is a synonym for storage space. In computer applications buffer occupation, as
long as it stays below its bound, is negligible in cost and system performance impact. For
models of transport and logistic systems one might opt to model the storage occupation
with backlog curves. It is of interest because storage space for material goods has to be
rented and paid.
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8 SLA Calculus Modeling

With delay curves a new quantity can be used in (min,+)-based calculi. The delay
“generated” by a system can be controlled in short- and long-term. The available capacity
for acceptance of delay can also be used to impose requirements on the unknown service
process in an indirect way. By the third curve class Network Calculus is enabled to model
quantitative requirements in SLAs.
This chapter introduces an abstract model for performance reasoning and validation

for SOAs. SLA Calculus reflects the case when performance guarantees and SLAs are
used to construct a model and shall be given by the model. For this reason SLA Calculus
focuses on deterministic bounds - input and output values are curve contracts imposing
upper and lower bounds on performance figures. Network elements are redefined to service
representatives and their arrivals to requests to a system or service. To model contracts on
workloads, arrival curves limit request arrival processes generated by service customers.
The previously introduced delay curves are used to substitute service rates not defined
in SLAs. The calculus presented in this thesis works on a very high abstraction level.
We will use a discrete model of requests with continuous time domain and abstract jobs
to continuous request flows. Again, as in other presented SOA models, small network
latencies are ignored to simplify the model. This allows us to use an unified service model
for different technologies like Web Services, Cloud Computing or other implementations
following the SOA paradigm. Our model intents to satisfy the requirements for a SOA
model presented in Section 3.6.

8.1 Basic Service Model

The basic model element for SLA Calculus completes the delay flow node in Figure 7.3. A
service node accepts and processes workload in form of job requests sent by a WEE. After
processing a job leaves the service and returns to the WEE to be forwarded into subsequent
services. The input/output model is similar to other discrete-event models. Additionally,
for each processed job a delay event is generated by the service node. Figure 8.1 shows
the system model for a service with input, output and delay process. The input flow and
the delay flow are guarded by shaper elements to implement curve contracts, the server
element symbolizes the request processing.

8.1.1 Request Model

The request arrival process to a service is the workload in form of a job request sequence.
For the modeling domain of SOAs, it is assumed that these job requests are discrete
computation tasks that return a result or confirmation.

Definition 8.1.1 (Request Arrival Event). Arrival event ei = (wi, ti) for the ith request
is a tuple with arrival time ti and event weight wi. Default is w(ei) = 1.
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Figure 8.1: Basic service model element: A shaper marks non-conform traffic to a server
implementing the service.

Depending on the system to model, weight can express the request size in bytes or the
processing complexity (c.f. [17]), for example in CPU cycles. The idea is that workload for
a service depends on the task to execute and not on the input size. To model the request
arrival process, arrival function r(t) is used.

Definition 8.1.2 (SLA Calculus Request Arrival Function). Let ei, i ∈ N be a sequence
of request arrivals events to a service. Then arrival function r(t) to the service is given by

r(t) =
∑
i

w(ei) such that t(ei) = t (8.1)

This equals the arrival modeling in Network Calculus with the exception that simultaneous
arrivals are possible. Data packets arrive serially as they are transmitted, in SOA jobs
can arrive in batches and thus, from an abstract perspective, in parallel. Based on the
modified arrival function arrival flow R can be set up.

Definition 8.1.3 (SLA Calculus Arrival Flow). Let r(t) be an arrival function to a service.
Then arrival flow R(t) is given by

R(t) =
∫ t

0
r(x) dx (8.2)

Function R(t) is the cumulated number of service request arrivals in the time interval
[0, t].

128



8.1 Basic Service Model

8.1.2 Processing and Response Model

Request flows are processed by Network Calculus servers. The resource flow C consumed
by the server component for processing exists, but is left unspecified, as well as, its limits
βL and βU . We require FCFS scheduling for the server. A request is processed when it is
visible in the server’s departure flow.

A SOA job request is considered as done if the processing service sends a message or
signal that marks the finishing of processing (c.f. Section 2.2.1). Depending on the system
architecture this message can only be a status report or may contain result data. In a Web
Services architecture such messages are sent back to the BPEL workflow execution engine,
in the SLA Calculus model this coincidences with finished processing in the internal server
component.
To abstract response messages introduce departure events.

Definition 8.1.4 (Request Departure Event). Departure event mi = (wi, ti) for the ith
processed request is a tuple with w(mi) = w(ei) for the corresponding arrival event ei and
t(mi) as departure time.

Definition 8.1.5 (SLA Calculus Departure Function). Let mi, i ∈ N be messages send by
a SOA service when original job requests ei are processed. Then departure function r∗(t) is
given by

r∗(t) =
∑
i

w(mi) such that t(mi) = t (8.3)

Similar to arrival functions departure functions form a departure flow R∗:

Definition 8.1.6 (SLA Calculus Request Departure Flow). Let r∗(t) be the departure
function of a service. Then departure flow R∗(t) is given by

R∗(t) =
∫ t

0
r∗(x) dx (8.4)

Figure 8.1 shows R∗ as a departing arrival flow leaving the service to the right.

8.1.3 Response Time Model

Based on the request and response model the SLA Calculus response time model for a
SOA service is set up. The response time is measured beginning at the point of time the
service receives a request. This event is captured by the request arrival model and thus R.
Processing of a job is considered as finished when the service sends the corresponding SOA
message in the request departure model, namely R∗.
The response time model equals the delay flow D (R,R∗) from Definition 7.1.3 using

request arrival flow R and request departure flow R∗. Furthermore, delay is a monotonic
increasing function of load, thus Proposition 7.1 still applies.
In Figure 8.1 the delay flow is leaving the basic system model to the bottom.
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8.2 Composition Model

Although the composition model is abstract an instance for workflow control is required.
For Web Services or similar SOA variants the existence of WEEs is assumed. As discussed
in Chapter 2 the overhead of the WEE and network transmission times are negligible and
thus are not considered. The modeler is free to add delay nodes in front of services to
include those factors. Still there is an exception for the impact of the WEE on system
delay. When a service has finished processing and the subsequent part of the workflow is
to be called requests are buffered beforehand. As we will see this is necessary to comply
with arrival contracts of subsequent services.

For SLA Calculus models we define a set of service compositions in style of the basic
workflow compositions in Section 2.2.1. The combinations are geared to BPEL tags to
allow an easy mapping of SOAs to models.

Definition 8.2.1 (Serial Composition). Let there be a set of n ≥ 2 services and a common
request flow R towards these services. Services are in serial composition if the departure
flow R∗i of service i is the arrival flow Ri+1 to service i+ 1 for all i ∈ 1 . . . n− 1.

A tandem service is the serial composition of two services.
If a service call employs a service several times we say that it is in a loop.

Definition 8.2.2 (Loop Composition). A service is in a loop with n iterations when the
departure flow of the ith iteration is the input of iteration i+ 1 for all i ∈ 1 . . . n− 1.

For parallelism we distinguish between routing for parallel workflow segments and
synchronized request processing.

Definition 8.2.3 (Routing Composition). Let there be a set of n services and a common
request flow R towards these services. They are in a routing composition, if arrival flow
R is split into n subflows Ri, i ∈ 1 . . . n with

∑
iRi = R and each Ri is processed by the

respective service i. The demultiplexing scheme is arbitrary. At the composition output
the flows R∗i departing from every service are joined to a common departure flow R∗

(Multiplexing). A request ej ∈ Ri is finished when mj ∈ R∗i .

In diagrams notation || is used to symbolize demultiplexing, × joins the flows again.

Definition 8.2.4 (Fork/Join Composition). Let there be a set of n services and a common
request flow R towards these services. They are in a fork/join composition if

• arrival flow R is replicated n times to flows Ri, i ∈ 1 . . . n, hence arrival event ej ∈ R
creates events eij.

• each Ri is processed by the respective service i, it departs as flow R∗i .

• request eij ∈ Ri is finished when departure event mij ∈ R∗i for all i.

At the composition output the flows R∗i are joined to an common departure flow R∗, hence
events mij ∈ R∗i become event mj.

130



8.3 SLA Model

In diagrams notation & is used to symbolize the fork, × denotes the join.
To support the upcoming composition theorems a small but nonrestrictive precondition

on workflow models is set:

Definition 8.2.5 (Workflow). A workflow is a serial composition of one or more services.
Each of these services is either a basic service or a composition based on Definitions 8.2.1,
8.2.2, 8.2.3 or 8.2.4.

8.3 SLA Model

SLAs and guarantees found in their SLO sections are modeled in SLA Calculus with curve
contracts. The time-invariant bounds are used to express commitments on request arrival
processes and guarantees on response times. They allow one to generalize from instances
of the request and response time models to SLAs.
SLAs give indirect information on the performance of the described service. For example,

the SLO sections in a WSLA file as described in Section 2.3.3 can define a maximum
workload and, by implication, associate a response time guarantee. For delay curves a
similar implication has to be made, delay curve contracts are only valid for the arrival
process to a system which is bounded (c.f Section 7.2). This dependency found in SLAs
and general delay contracts are formalized in SLA Delay Properties (SDPs).
To enable SDPs for modeling there is still one model element missing in our toolkit.

8.3.1 Prefetcher

A prefetcher is the complementary model element to a shaper enforcing lower arrival
envelopes αL to arrival flows. It has the ability to output arrivals into the departure flow
before their arrival by creating debt towards the arrival flow.

Definition 8.3.1 (Prefetcher Element). A prefetcher network element enforces a lower
output bound αL on departure flow R∗. Whenever the output drops below αL events in R
are send prior to their arrival to the prefetcher, thus a debt towards the arrival flow is build
up. The prefetcher stops prefetching and decreases debt towards the arrival flow as soon as
possible.

In terms of Network Calculus this translates into the following input-output relationship:

Theorem 8.1 (Input-Output Characterization of Prefetchers). Consider a prefetcher
implementing a lower envelop αL for arrival flow R. At t = 0 there is no debt towards R
and R(t) > 0 for t ≥ 0 holds such that prefetching is possible. The output flow is given by

R∗(t) = (R⊗αL)(t) (8.5)

The proof is a (max,+)-version of the proof for [107, Theorem 1.5.1] adapted to the
discrete time version in [38, Section 6.2.1]. It is shown in the Appendix.
Prefetchers are a continuous time variant of another network element. Chang describes

in [38, Section 6.2.1] the minimum g-regulator. A packet stream modeled by a marked
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point process Ψ = (τ, l) passing this element is conform to lower service guarantee g(t).
For sequence n = 0, 1, 2, . . . the process elements are given by functions τ = {τ(n)} and
l = {l(n)}. τ(n) marks the arrival time of the n+ 1th packet and l(n) is the packet length,
L(n) is the cumulated packet length and thus the service requirement of the network
element. Traffic is said to be g-regular when τ(n)− τ(m) ≥ g(L(n)− L(m)) holds for all
m ≤ n.
The difference between g-regulators and prefetchers is about how packet lengths are

taken into account. With a g-regulator a flow is conform when each packet, and thus,
its payload has arrived completely in such a way that the lower bound holds. Packet
transmission in a network takes little but considerable time, with the arrival of the first
bits of the packet header the required payload is still not delivered. In contrast, arrivals
to the prefetcher are singular events with no transmission time. This simplification is
acceptable in the modeling domain of SOAs, transmission times of service messages have
no high impact on the overall system performance in comparison to job processing times.

Definition 8.3.2 (Prefetcher Earliness). Let R be the input flow or curve into a prefetcher
implementing σ. Then the earliness of R in t is

hearly (R, σ) (t) = inf {d ≥ 0 such that R(t) ≥ σ(t− d)} (8.6)

Definition 8.3.3 (Prefetcher Debt). The debt bearly (R, σ) (t) required by a prefetcher
implementing σ towards the arrival flow R is given by

bearly (R, σ) (t) = min {0,−((R⊗σ)(t)−R(t))} (8.7)

Lemma 8.2 (Lower Arrival Envelops with Prefetchers). A flow R with lower envelope σ
passing through a prefetcher implementing σ does not require to build up debt.

Proof.

bearly (R, σ) (t) = −max {0, R∗(t)−R(t)} Theorem 8.1 (8.8)
≤ −max {0, R∗(t)− (R⊗σ)(t)} (8.9)
= −max {0, (R⊗σ)(t)− (R⊗σ)(t)} (8.10)
= 0 (8.11)

In a similar way to shapers in Definition 6.2.9 the conformance to a prefetcher can be
defined.

Definition 8.3.4 (Prefetcher Conformance). A flow is σ-conform to a prefetcher imple-
menting a lower envelope σ when no debt is build up while the flow passes the prefetcher.

With the shaper-equivalent for lower bounds SDPs can be formulated.
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8.3.2 SLA Delay Properties

SDPs symbolize the SLA performance contract for a service and implicitly the service itself.
Since this contract applies to the service provider, as well as the customer, SDPs include
boundaries for both sides.

Definition 8.3.5 (SLA Delay Property). An SLA Delay Property (SDP) is a set of
arrival (α) and delay (Ψ) curve contracts

{αL, αU ,ΨL,ΨU} (8.12)

with αL,αU , ΨU and ΨL ∈ F0. αU and ΨU are sub-additive, αL and ΨL are super-additive.
Conditions αL ≤ αU , ΨL ≤ ΨU apply and αU (t),ΨU (t) > 0 for all t > 0.

Arrival curves αU and αL address the service customers, they describe the allowed service
workload. Delay curves ΨU and ΨL are the obligations for the providers.

SLA Delay Properties and the Basic Service Model

A basic service model is instantiated for each service with the curve contracts given by the
characterizing SDP. The four curves are assigned to shaper and prefetcher subcomponents
shown in Figure 8.1.
In this context, the input shaper receives αU as a shaping curve. Whenever arrivals in

R have to be backlogged non-conform load to the system is recognized. R also checked
for lower envelope αL by the lower bound mode of the shaper, the prefetcher component.
After passing the shaper and prefetcher the request flow is processed in the server element.
It will emit a delay flow D bound by ΨL and ΨU implemented by the delay shaper and
prefetcher. For the time being, service curve βL remains unknown.

The existence of bounds allows one to define conformance of the request arrival process:

Definition 8.3.6 (Service Customer Conformance). Let SLA =
{
αU , αL,ΨU ,ΨL

}
be an

SDP for a service and R the request flow sent by the customer towards the service. A
basic service model as shown in Figure 8.1 is parametrized with SLA. The customer acts
conform to

• the upper arrival contract in SLA, if R is conform to the input shaper implementing
αU by Definition 6.2.9

• the lower arrival contract in SLA, if R is conform to the input prefetcher implementing
αL by Definition 8.3.4

• the arrival contract in SLA, if both previous conditions hold.

A lower bound αL for R is not always known or required by an application or service.
In those cases the envelope can be set to αL = 0 as default.

The input shaper in the basic model does not add additional delay as long as the arrival
contract holds and can be neglected:
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Theorem 8.3 (No Reshaping Delay for Conformant Flows). An arrival flow R with upper
envelope αU is conform to an SDP {αUi ,ΨU

i , α
L
i ,ΨL

i } if

hmax
(
αU , αUi

)
= 0 (8.13)

holds.

Proof. Let R be the flow towards and R∗ be the flow departing from the shaper imple-
menting αUi .

hmax (R,R∗) = hmax
(
R⊗αU , R⊗αUi

)
(8.14)

= max
t

{
inf
{
d ≥ 0 : (R⊗αU )(t) ≤ (R⊗αUi )(t+ d)

}}
(8.15)

= max
t

{
inf
{
d ≥ 0 : (R⊗αU )(t) ≤ (R⊗αUi )(t) + (R⊗αUi )(d)

}}
(8.16)

= max
t

{
inf
{
d ≥ 0 : (R⊗αU )(t)− (R⊗αUi )(t) ≤ (R⊗αUi )(d)

}}
(8.17)

= max
t

{
inf
{
d ≥ 0 : 0 ≤ (R⊗αUi )(d)

}}
(8.18)

= 0 (8.19)

since R⊗αUi ∈ F0 and wide-sense increasing (Line 8.16 follows from the sub-additivity of
R⊗αUi and Lemma 6.6 leads to Line 8.18).

A server in Network Calculus is stable when a maximum delay (or backlog) bound
exists between the arrival and service curve. This definition of system stability in Network
Calculus is replaced by arrival conformance in SLA Calculus. Service capabilities on
workloads are determined by upper arrival contracts and not by service curves. Workload
exceeding the arrival curves leads to contract breaches, not necessarily to buffer overflows
as in Network Calculus. The arrival contract definition gives us an easy method to check
conformance:

Corollary 8.4. A flow bounded by αU from above is conform to arrival contract αUi when

bmax
(
αU , αUi

)
= 0 or hmax

(
αU , αUi

)
= 0 (8.20)

Proof. Application of Lemma 6.6 (backlog) and Theorem 8.3 (delay).

Delay curves in an SDP address the service providers with response time guarantees.
Their conformance is defined by a combination of Definitions 7.2.1 and 7.2.2

Definition 8.3.7 (Service Provider Conformance). Let SLA =
{
αU , αL,ΨU ,ΨL

}
be an

SDP for a service and D the delay flow emitted by the service. The service provider acts
conform to

• the upper delay contract in SLA, if D is conform to the delay shaper implementing
ΨU by Definition 6.2.9
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SDP 1

{ αU ,αL,ΨU ,ΨL }
R R∗

D

R ≤ R⊗αU

R ≥ R⊗αL

D ≥ D⊗ΨL D ≤ D⊗ΨU

Figure 8.2: Service modeled by an SDP

• the lower delay contract in SLA, if D is conform to the delay prefetcher implementing
ΨL by Definition 8.3.4

• the delay contract in SLA, if both previous conditions hold.

Again, a lower bound ΨL for the response time is not always required, in this case one can
set ΨL = 0. When SLA = {0, αU , 0,ΨU} the notation is abbreviated to SLA = {αU ,ΨU}.

An SLA modeled by an SDP is valid when both contracting parties act according to the
SDP. Since the customer is the active contractor generating the workload the provider has
to process the following implication has to hold:

Definition 8.3.8 (SDP Fulfillment). Let SLA be an SDP. The upper|lower contract in
SLA is fulfilled if

Service customer acts conform to upper|lower contract in SLA
⇒
Service provider acts conform to upper|lower delay contract in SLA

(8.21)

An SDP A is fulfilled if

Service customer is conform to SLA⇒ Service provider is conform to SLA (8.22)

holds.

Whenever the customer acts non-conformant to the SDP the provider is not obliged to
keep his response time guarantee. The consequence for a SOA performance model is that
it is only valid, if all contracting parties are active within the specified bounds. In any
other case, the model simply does not apply. An assignment of an SDP to a service is
depicted in Figure 8.2, it abstracts the detailed basic service model in Figure 8.1 to the
requirements for conformant arrival and delay flows.

The implication in SDPs has also a different effect for systems operating in normal, not
worst-case conditions.

Lemma 8.5 (Delay Curve for Non Worst-Case Loads). A service guarantees SDP SLA =
{αU , αL,ΨU ,ΨL}. The input R to the system is further restrained with upper arrival curve
αUv using factor v, 0 < v ≤ 1 such that αUv = v · αU . Regardless on the changed input flow
the delay contract is not altered.
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8 SLA Calculus Modeling

Proof. When R is conform to αUv , and since αUv ≤ αU , R is also conform to αU . Given that,
the customer acts conform to the SDP. The service provider also has to react conform to
the SDP, thus delay contract ΨU (and ΨL) applies, but is not obliged to scale the reaction
time by v.

In other words, reducing the load to the service does not improve the delay curve contract
initially intended for the worst-case load. The curve contracts are artifacts representing
guarantees and not actual performance figures. Of course, in a real system the average
response time would improve, but that does not interfere with worst-case bounds.

8.4 Contracts for Composed Services

A single SDP represents the contracted performance bounds for a SOA service. Services
can be composed to larger systems as described in Section 2.2.1, therefore a performance
model has to reflect this. By combining SDPs one can construct a performance bound
model that merges all SLAs of participating services into a single SDP. It can either serve
as a performance description for a workflow or as a component model for higher service
hierarchies.

To form networks of services described by SDPs results for concatenation, parallelization
and synchronization are required. The combination of two SDPs is performed by combina-
tion of their corresponding curve contracts. For upper arrival curves serial and parallel
combinations have been presented previously in Sections 6.4.1 and 6.4.2 in the context of
Network Calculus shaper elements. For lower arrival and delay curves as well as upper
delay curves results for such constructs are still missing and will be derived in the following.

8.4.1 Prefetcher Concatenation

The serial concatenation of prefetchers is given by the following theorem.

Theorem 8.6 (Prefetcher Concatenation). Let R be an arrival flow passing through a
tandem of prefetchers with lower arrival envelopes αL1 and αL2 . The departure flow is given
by

R∗ = R⊗ (αL1 ⊗αL2 ) (8.23)

Proof. R∗1 is the departure flow of the first prefetcher given by

R∗1 = R⊗αL1 (8.24)

When R∗1 is fed into the second prefetcher we have

R∗2 = R∗1⊗αL2 (8.25)
= (R⊗αL1 )⊗αL2 (8.26)
= R⊗ (αL1 ⊗αL2 ) associativity of ⊗ (8.27)
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8.4.2 Prefetcher Parallelization

Results for parallel shapers and thus for upper arrival bounds are given for Network
Calculus in Section 6.4.2. They are based on Lemma 6.3 that allows us to replace (min,+)-
convolution by the pointwise minimum if the functions are sub-additive. To derive a SDP
for parallel patterns, results for lower arrival bounds are also needed, and a similar result
has to be shown for the (max,+)-convolution.

Theorem 8.7 (Convolution of Super-Additive Functions). When two functions f and g
are super-additive then their convolution can be simplified to the point-wise maximum.

f ⊗ g = f ∨ g (8.28)

The proof is based on the proof of Lemma 2.1.5 (xi) in [38] and is given in the Appendix.
Now filter bank summation for prefetchers can be formulated.

Theorem 8.8 (Prefetcher Filter Bank Summation). For two prefetchers with curves g1
and g2 the parallel construct is a prefetcher with curve

f = g1 ∨ g2 (8.29)

if g1 ∨ g2 is super-additive.

Proof. Let R∗1 and R∗2 be the departure flow of the two prefetchers and R∗ the output of
the combined system. From the definition of a prefetcher one can write

R∗ = R∗1 ∨R∗2 (8.30)
= R⊗ g1 ∨R⊗ g2 Theorem 8.1 (8.31)
= R⊗ ( g1 ∨ g2 ) distributivity of ⊗ (8.32)

Term g1 ∨ g2 is super-additive and g1(0) = g2(0) = 0, hence one can replace the term with
its super-additive closure.

R∗ = R⊗ g1 ∨ g2 (8.33)

= R⊗ (g1⊗ g2) Theorem 8.7 (8.34)

= R⊗ (g1⊗ g2) (8.35)
= R⊗ ( g1 ∨ g2 ) (8.36)

8.4.3 Arrival Contract Conformance in Tandem Services

Compared to Network Calculus imposing arrival contracts on services requires additional
arrangements in SLA Calculus when . Contract conformance of simple serial compositions
of two services are already dependent on workload restrictions and their calling sequence.
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Stability by Conformance

For concatenated servers in a Network Calculus system, stability is determined using
the combined service curve (Section 6.3.1). Serial compositions of services may become
“unstable” in SLA Calculus analysis, too. This is the case when the arrival flow towards
the composition is conform to the first, but not to one of the subsequent services being a
bottleneck. Hence, we need an approach to determine the workload bound acceptable for
all services in a serial composition. In the basic service model arrival contracts are guarded
with shapers. Service compositions are, in terms of arrival contracts, the composition of
their arrival flow shapers.

Corollary 8.9 (Upper Arrival Contract for Tandem Services). Given the situation of two
services i ∈ {1, 2} with SDPs SLAi = {αUi ,ΨU

i } in a service tandem by Definition 8.2.1.
The common input bound accepted by the composition is

αUcommon = αU1 ⊗αU2 (8.37)

Proof. Let R be the request arrival flow towards the first service. Its arrival contract is,
given the basic service model, modeled by αU1 -shaper conformance (Definition 6.2.9). It
limits a conform arrival flow to R∗1 = R⊗αU1 . Appending the second service is equal to
the concatenation of both shapers. When R∗1 is fed into the next shaper implementing αU2
the flow is limited to

R∗2 = R∗1⊗αU2 (8.38)
= (R⊗αU1 )⊗αU2 (8.39)
= R⊗ (αU1 ⊗αU2 ) associativity of ⊗ (8.40)

With this result, a service composition can be considered as stable, when the arrival flow
is conform to the composition of input shapers.

Output Burstiness Breaks Arrival Contracts

Limiting the arrival flow towards a composition is done according to the shaper with the
weakest arrival contract. Still there is a second kind of Network Calculus node in our basic
service model: The effect of servers on arrival contracts has to be considered, too.
Theorem 6.11 and the commutativity of (min,+)-convolution allows Network Calculus

servers to be concatenated in an arbitrary sequence without changing the service of the
composition. Furthermore, in Section 6.4.3 we saw that even shapers can be inserted into
those server chains to enforce arrival envelopes, without influencing results on maximum
delay or backlog. When joining basic service model elements (Figure 8.1) chains of shapers
and servers are connected. This time, the effect of shapers cannot be ignored. In the SLA
Calculus model world the statement “greedy shapers come for free” [107, Section 1.5.3]
does not hold. Fixed arrival contracts to services and possible output burstiness increases
render the situation more complicated.

138



8.4 Contracts for Composed Services

Given the situation of two services S1, S2 aligned to a tandem with identical SDPs
SLA = {αU ,ΨU}. A request flow conform to αU = αU ⊗αU arrives at the system.
Furthermore, service curve βL1 is known for S1. The departure flow for S1 is limited from
above by αU ′1 = αU �βL1 by Theorem 6.8. Now consider the situation with αU ′1 (t) > αU (t)
for some t, thus the burstiness increase induced by S1 renders the arrival flow non-conform
to αU required by S2. As a consequence, S2 is not obliged to delay contract ΨU anymore,
and no upper delay limit for the tandem system can be computed.

Three options are available to recreate a conformant arrival flow to subsequent services:

1. Limit the input flow bound to the serial composition as such that αUi �βLi ≤ αUi+1
for all services i ∈ {1, . . . , n− 1}. However, this would lead to large unused capacities
especially when a large set of diverse services participates in the service chain.

2. Require all service providers to shape departure flows as such that αU ′i = αUi , and
to include the resulting delay in their response time guarantees. At a first glance
this option seems favorable for simplicity of SOA performance modeling, since no
burstiness increases have to be considered. At a second glance the requirement cannot
be fulfilled by many service providers and is seldom found in SLAs.

3. Apply shaping to every departure flow as such that the arrival contract to the
subsequent service always holds (“Reshaping”). This time, in contrast to the situation
described in Section 6.4.3, the costs of shaping cannot be shifted or removed. Shaping
requires backlogging, and backlogging produces additional delay that has to be
included in the response time model.

A possible implementation of the third option using WEEs realizing service workflows is
shown in Figure 8.3. Two services with given SDPs are in a serial composition, the request
flow towards service 1 is limited by αUcommon = αU1 ⊗αU2 . The departure flow leaving service
1 suffers from burstiness increase described by αUcommon�βL1 . It is up to the WEE to
prepare the request flow using a shaper with shaping curve αU2 to comply to the composed
arrival contract again.
In the following we will give bounds for the third option’s additional delay and we will

include them as reshaping delay ϕ in workflow composition patterns. If one of the first
options is used, the results for workflow composition patterns do still hold with ϕ = 0.

Delay due to Reshaping

Bounding delay due to reshaping is to find the maximum virtual delays of arrivals passing
the shapers in WEEs. Since their input is the output of the server in our basic service
model, it involves the computation of output flow bounds αU ′ = αU �βL by Theorem 6.8,
too. Thus, the maximum delay for a shaper taking αU ′ as input and implementing a
shaping curve σ is

dreshape = max
t

{
d
(
αU
′
, σ
)

(t)
}

(8.41)

using Definition 6.2.5.
Although the reshaping delay can be easily computed in Network Calculus, this approach

has a severe drawback for SLA Calculus models since βL is unknown. However, using
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Reshaper: αU2
Begin
Request

End
Request

Workflow Execution Engine

SDP 1

{ αU1 ,αL1 ,ΨU
1 ,ΨL

1 }

SDP 2

{ αU2 ,αL2 ,ΨU
2 ,ΨL

2 }

ΨU
1 ΨU

2ϕU

αUC αUC �βL1 (αUC �βL1 )⊗αU2

Figure 8.3: Service call and reshaping by WEE for two subsequent services. Curves identify
upper flow envelopes.

service curve computation as presented in the upcoming Chapter 9, one is able to find a
sufficient replacement for βL just by the knowledge of an SDP.

Theorem 8.10 (Lower Service Curve from Delay Bounds). Let αU be the upper arrival
curve and ΨU be the upper delay curve for a system. A lower service curve βL sufficient to
process a flow limited by αU is given by

βL(t) = αU
(
t− d

dtΨ
U (t)

)
�αU (t) (8.42)

The proof is given later in Chapter 9, too. In Theorem 8.10 input αU is shifted in such
a way that it represents the worst-case output flow that is allowed by ΨU . The service
curve is reconstructed by deconvolving the input from the output.

Service curve computation applied to the SDP service model enables us to compute the
reshaping delay for request departure flows. The departure flows in turn are dependent
on the service input. For serial concatenations the output can be computed by successive
application of Theorem 6.8.

Definition 8.4.1 (Upper Service Departure Bounds). Let SLAi = {αUi , αLi ,ΨU
i ,ΨL

i } be
the ith service in a serial composition and βLi the provided service curve. Then the departure
flow αU

′
i of SLAi is given by recursion

αU
′

i = αU∗i−1�βLi (8.43)
αU∗i = αU

′
i ⊗αUi+1 (8.44)

The recursion stops if there is no further input bound, we set αU∗0 = αUcommon computed by
Corollary 8.9.
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Using a common upper arrival bound ensures that the arrival flow is conform to each
service of the composition in its long-term rate. Burstiness increases exist, but can be
removed by shapers for the cost of additional delay.

Corollary 8.11 (Maximum Reshaping Delay in Service Tandems). Let two services be
described by SDP SLA1 = {αU1 , αL1 ,ΨU

1 ,ΨL
1 } and SDP SLA2 = {αU2 , αL2 ,ΨU

2 ,ΨL
2 } be in a

serial composition. The arrival flow towards the composition has an upper envelope of αUC
and is arrival conform for each service. Then the maximum delay due to reshaping of the
departure flow of service 1 to be consistent with arrival contract αU2 is

hmax
(
αUC �βL1 , αU2

)
(8.45)

with βL1 as a service curve provided by the first system.

Proof. Application of Theorem 6.8 gives us the upper departure flow bound for SLA1. To
conform to the second arrival contract the departure flow of SLA1 is shaped to envelope
αUC again. Definition 6.2.6 is used to compute the virtual shaper delay. Since the shaping
curve is the service curve of a shaper [107, Corollary 1.5.1] one can replace the shaper
output with shaping curve αUC .

For the upcoming theorems the reshaping delay has to be included in the descriptions of
delay flow bounds. To reduce the number of used symbols we define a function that gives
us an upper delay curve limiting the additional delay flow.

Definition 8.4.2 (Reshaping Delay Curve). Let two services be in a serial composition,
they are described by SDPs {αUi−1, α

L
i−1,ΨU

i−1,ΨL
i−1} and {αUi , αLi ,ΨU

i ,ΨL
i }. The additional

delay flow due to reshaping between the first and second service is bound from above by a
linear delay curve (Theorem 7.2):

ϕUi (t) = hmax
(
αU
′

i−1, α
U
i

)
· t (8.46)

Earliness and Lower Output Bounds

A phenomenon inversely to burstiness increase at server outputs can be observed for lower
output bounds. The output of a service might drop below the lower input bound of the
subsequent service, as a consequence the guaranteed lower delay contract becomes invalid.
In the basic SLA Calculus service model (Figure 8.1) a prefetcher implementing αL

acts as a guard for the lower bound. Again a common lower arrival bound, similar to
Corollary 8.9, can be stated giving contract conformance for a workflow by the combination
of prefetchers.

Theorem 8.12 (Lower Arrival Contract for Tandem Services). Given the situation of two
services i ∈ {1, 2} with SDPs SLAi = {αUi ,ΨU

i } in a service tandem by Definition 8.2.1.
The common lower input bound accepted by the composition is

αLcommon = αU1 ⊗αU2 (8.47)
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Proof. Lower arrival bound αLcommon is equal to αLcommon prefetcher conformance (Defini-
tion 8.3.4). Hence, it follows from the concatenation of prefetchers by Theorem 8.6.

For a serial concatenation of prefetchers this lower bound would give a “stable” system.
However, this stability is compromised by the server elements in the basic service model.
As their processing requests do depart later, the output bound might be unacceptable for
the next service.
The lower output envelope αL′1 of a server component is given by Corollary 6.7: αL′1 ≥

αL1 ⊗βL1 . By definition of the (min,+)-convolution we can say that αL′1 (t) ≤ αL1 (t) for all
t, figuratively lower bounds get even lower when passing servers. For a second service in
serial composition this might result in a situation with hearly

(
αL
′

1 , α
U
2

)
(t) > 0 for some t.

The implication in the lower delay contract of service 2 will evaluate to false.
Inversely to Definition 8.4.1 the lower service departure bounds in a serial composition

can be computed using recursion.

Definition 8.4.3 (Lower Service Departure Bounds). Let SLAi = {αUi , αLi ,ΨU
i ,ΨL

i } be
the ith service in a serial composition, βLi the provided service curve. Then the lower
envelope of departure flow αU

′
i of SLAi is given by recursion

αL
′

i = αL
′

i−1⊗βLi (8.48)

The recursion stops if there is no further input bound. We set αL′0 = αLcommon computed by
Theorem 8.12.

For service i a too low, non-conform flow arriving from service i− 1 is identified when

max
t

{
hearly

(
αL
′

i−1, α
U
i

)
(t)
}
> 0 (Definition 8.3.4) (8.49)

Contrary to the upper bounds, this knowledge on earliness cannot be used to add a
correction term to lower delay curves in a sound way. While a greedy shaper can delay
early arrivals, there is no realistic concept to force a prefetcher to deliver requests which
did not arrive yet, therefore we did not include it in Definition 8.4.3. One could inject
missing requests into the flow to keep subsequent services busy, but this approach cannot
be justified for SOA. For this reasons lower arrival bounds and the implication on the
lower delay contract get a different interpretation than upper bounds.

• Equation (8.49) is used to identify possible lower contract breaches in a workflow.
The implication is marked as unsatisfiable.

• Regardless on lower arrival contract breaches we continue to compute lower delay
bounds. While SLA validation including lower bounds is out of reach the information
on delay bounds is still valuable. It provides the modeler with information on the
intrinsic delay and thus, the minimum response time for requests for any workload.

Now results for combinations of single SDPs to compositions are derived. Next to curve
combinations, according to workflow patterns, the reshaping delay is added.
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SDP 1

{ αU1 ,αL1 ,ΨU
1 ,ΨL

1 }
αU2

SDP 2

{ αU2 ,αL2 ,ΨU
2 ,ΨL

2 }
R R∗

Concatenation

D (R,R∗)

αUC = αU1 ⊗αU2
αLC = αL1 ⊗αL2

ΨU
C = ΨU

1 + ϕU2 + ΨU
2ΨL

C = ΨL
1 + ΨL

2

Figure 8.4: Concatenation of two services described by SDPs

8.4.4 Serial SLA Delay Property Compositions

Sequences of services as described in Definition 8.2.1 are mapped to feed-forward networks
[38] of service providers. A similar model is proposed in [45]. Figure 8.4 shows a construction
blueprint including the shaper provided by WEEs to handle output burstiness. For limits
on delay flows in tandem systems the following can be stated:

Theorem 8.13 (Upper Delay Curve Summation). Let D1 and D2 be two delay flows
generated by a tandem system with upper delay curves ΨU

1 and ΨU
2 . Then the combined

delay DC = D1 +D2 is upper-constrained by ΨU
C = ΨU

1 + ΨU
2 .

Proof. Using Definition 7.1.4 we get D1 ≤ D1⊗ΨU
1 , D2 ≤ D2⊗ΨU

2 and DC ≤ DC ⊗ΨU
C .

DC(t) ≤ (D1⊗ΨU
1 ) + (D2⊗ΨU

2 )

= inf
0≤s≤t

{
D1(t− s) + ΨU

1 (s)
}

+ inf
0≤v≤t

{
D2(t− v) + ΨU

2 (v)
}

Def. 6.1.6

= inf
0≤s≤t

{
inf

0≤v≤t

{
D1(t− s) + ΨU

1 (s) +D2(t− v) + ΨU
2 (v)

}}
= inf

0≤s≤t

{
inf

0≤v≤t

{
D1(t− s) +D2(t− v) + ΨU

1 (s) + ΨU
2 (v)

}}
≤ inf

0≤s≤t

{
D1(t− s) +D2(t− s) + ΨU

1 (s) + ΨU
2 (s)

}
s = v

= inf
0≤s≤t

{
DC(t− s) + ΨU

C(s)
}

= (DC ⊗ΨU
C)(t) Def. 6.1.6

For lower delay bounds a similar result can be shown using (max,+)-algebra.

Theorem 8.14 (Lower Delay Curve Summation). Let D1 and D2 be two delay flows
generated by a tandem system with lower delay curves ΨL

1 and ΨL
2 . Then the combined

delay DC = D1 +D2 is lower-constrained by ΨL
C = ΨL

1 + ΨL
2 .
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Proof. Using Definition 7.1.5 we get D1 ≥ D1⊗ΨL
1 , D2 ≥ D2⊗ΨL

2 and DC ≥ DC ⊗ΨL
C .

DC(t) ≥ (D1⊗ΨL
1 ) + (D2⊗ΨL

2 )

= sup
0≤s≤t

{
D1(t− s) + ΨL

1 (s)
}

+ sup
0≤v≤t

{
D2(t− v) + ΨL

2 (v)
}

Def. 6.1.8

= sup
0≤s≤t

{
sup

0≤v≤t

{
D1(t− s) +D2(t− v) + ΨL

1 (s) + ΨL
2 (v)

}}
≥ sup

0≤s≤t

{
D1(t− s) +D2(t− s) + ΨL

1 (s) + ΨL
2 (s)

}
s = v

= (DC ⊗ΨL
C)(t) Def. 6.1.8

With the previous results the following theorem on SDP concatenation can be stated:

Theorem 8.15 (SDP Concatenation). Given is a set of SDPs SLAi = {αUi , αLi ,ΨU
i ,ΨL

i },
i ∈ {1, . . . , n} and βLi is computed by Theorem 8.10. Then the serial concatenation to SDP
SLAC = {αUC , αLC ,ΨU

C ,ΨL
C} is given by

αUC =
⊗n

i=1
αUi (8.50)

αLC =
⊗n

i=1
αLi (8.51)

ΨU
C =

n∑
i=1

(
ΨU
i + ϕUi

)
(8.52)

ΨL
C =

n∑
i=1

ΨL
i if max

t

{
hearly

(
αL
′

i−1, α
L
i

)
(t)
}

= 0 ∀i = 1 . . . n (8.53)

If the condition for ΨL
C does not hold,

∑n
i=1 ΨL

i computes the intrinsic delay.

Proof. Let R be the request arrival flow processed by the serial concatenation of services.

1. The concatenation of n services follows from Corollary 8.9. Repeating the concatena-
tion for αUi , . . . , αUn leads to

R∗ = R⊗
⊗n

i=1
αUi (8.54)

2. The concatenation of n services follows from Theorem 8.6 and the associativity of
⊗ . Lower arrival bound αLC is equal to αLC prefetcher conformance (Definition 8.3.4).

3. The first summand of upper delay bound ΨU
C follows from D = ΨU and Theorem 8.13.

The second summand is the cumulated reshaping delay necessary between services
by Corollary 8.11.

4. Lower delay bound ΨL
C also follows from D = ΨL and Theorem 8.14. It holds as

long as the input to subsequent services does not violate the lower arrival contract,
violations are detected by Equation (8.49).
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8.4.5 Parallel SLA Delay Property Compositions

For parallel compositions of services results for limits of arrival flows are given by the filter
bank summation of shapers (Theorem 6.10) and prefetchers (Theorem 8.8). To combine
delay curves in a parallel setup, a method to combine delay flows is derived at first.

Theorem 8.16 (Upper Bound for Parallel Delay Flows). Two systems S1 and S2 are
combined to a parallel system by Definition 8.2.3 or Definition 8.2.4. S1 emits a delay flow
bound by ΨU

1 , the equivalent case holds for S2. The arrival flow R is bounded by αU1 and
αU2 Then the upper delay bound for both systems processing in parallel is ΨU

P = ΨU
1 ∨ΨU

2 .

Proof. The proof considers both possible cases of a fork/join synchronization or a routing
scheme.
The routing case (Definition 8.2.3) assumes arrival flow R is demultiplexed to R1 and

R2 in an arbitrary scheme. S1 and S2 work and finish requests independent of each other,
they have departure flows R∗1 and R∗2. Recalling Definition 7.1.1 and 7.1.3 the delay flow
DP is thus given by

DP (t) =
∫ t

0
(R∗)−1(R(x))− (R)−1(R(x)) dx (8.55)

Due to the routing flow R is split into subflows R1 and R2 with R = R1 + R2, after
processing the departure flows R∗1 and R∗2 are multiplexed to R∗ = R∗1 +R∗2. For the delay
we then observe

DP (t) =
∫ t

0
(R∗1 +R∗2)−1((R1 +R2)(x))− (R1 +R2)−1((R1 +R2)(x)) dx (8.56)

Since S1 and S2 process their arrivals independent of each other, one of both will finish
jobs arrived in t later. To enable an independent determination of delay the integral is
split up. The maximum of both delays is the crucial factor on the departure process.

DP (t) ≤
∫ t

0
[(R∗1)−1(R1(x))− (R1)−1(R1(x))

and (R∗2)−1(R2(x))− (R2)−1(R2(x))] dx (8.57)

=
∫ t

0
max{(R∗1)−1(R1(x))− (R1)−1(R1(x)),

(R∗2)−1(R2x))− (R2)−1(R2(x))} dx (8.58)

= max
{∫ t

0
d (R1, R

∗
1) (x) dx,

∫ t

0
d (R2, R

∗
2) (x) dx

}
Def. 7.1.1 (8.59)

= max {D1(t), D2(t)} Def. 7.1.3 (8.60)

Delay flow D1 is bound by ΨU
1 and D2 by ΨU

2 from above, thus

DP ≤ DP ⊗
(

ΨU
1 ∨ΨU

2

)
(8.61)

Synchronization (Definition 8.2.4) is a special case of the results above with R1 = R2 =
R.
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Theorem 8.17 (Lower Bound for Parallel Delay Flows). Two systems S1 and S2 are
combined to a parallel system. S1 emits a delay flow bound from below by ΨL

1 , the equivalent
case holds for S2 and ΨL

2 . The arrival flow is bounded from below by αL1 and αL2 . Then
the lower delay bound for both systems processing in parallel in a fork/join scheme is
ΨL
P = ΨL

1 ∨ΨL
2 . When an arbitrary routing scheme is used, the lower delay bound is given

by ΨL
P = ΨL

1 ∧ΨL
2 .

Proof. For lower delay bounds we have to consider the best-case, thus all requests are
distributed to the parallel setup in a way that response times are minimal.

Synchronization includes waiting for the slower service, thus the slowest service determines
the overall delay. From the proof of Theorem 8.16 we know that

DP (t) ≤ max {D1(t), D2(t)} (8.62)

Delay flow D1 is bound by ΨL
1 and D2 by ΨL

2 from below, thus in the synchronized case
we have

DP ≥ DP ⊗
(

ΨL
1 ∨ΨL

2

)
(8.63)

For the routing case the delay flow is given by the service that finishes first. The “and”
becomes an “or” and by continuing with Equation 8.56 the minimum delay flow is

DP (t) ≤
∫ t

0

[
(R∗1)−1(R1(x))− (R1)−1(R1(x)) or (R∗2)−1(R2(x))− (R2)−1(R2(x))

]
dx

(8.64)

=
∫ t

0
min

{
(R∗1)−1(R1(x))− (R1)−1(R1(x)), (R∗2)−1(R2x))− (R2)−1(R2(x))

}
dx

(8.65)
= min {D1(t), D2(t)} Def. 7.1.1 and 7.1.3 (8.66)

Using the lower bounds we receive

DP ≥ DP ⊗
(

ΨL
1 ∧ΨL

2

)
(8.67)

With these results the filter bank summation for SDPs is formulated. We start with
parallel constructs featuring the routing of job requests to one of the services. Figure 8.5
includes the participating flows and services.

Theorem 8.18 (Parallel SDP Composition). SLAi = {αUi , αLi ,ΨU
i ,ΨL

i }, i ∈ {1, . . . , n}
is a set of SDPs. The parallel composition (Definition 8.2.3) of SLA1, . . . , SLAn to SDP
SLAP = {αUP , αLP ,ΨU

P ,ΨL
P } is given by

αUP =
∧n

i=1
αUi (8.68)

αLP =
∨n

i=1
αLi (8.69)

ΨU
P =

∨n

i=1
ΨU
i (8.70)

ΨL
P =

∧n

i=1
ΨL
i (8.71)
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||R

SDP 1

{ αU1 ,αL1 ,ΨU
1 ,ΨL

1 }

SDP 2

{ αU2 ,αL2 ,ΨU
2 ,ΨL

2 }

× R∗

Routing

D (R,R∗)

αUP = αU1 ∧ αU2
αLP = αL1 ∨ αL2

R1

R2

ΨU
P = ΨU

1 ∨ΨU
2ΨL

P = ΨL
1 ∧ΨL

2

Figure 8.5: Parallel Composition of SDPs with job routing

Proof. Let R be a request arrival flow processed by n services in parallel.

1. Upper arrival bound αUP is equal to αUP shaper conformance. It follows from the filter
bank summation of n shapers with a shaping curves αUi being an upper constraint
on Ri (Equation 6.39). It limits the arrival flow to R∗i = R⊗αUi .

The filter bank summation is given by Theorem 6.10 and the assiociativity of the
minimum.

2. Lower arrival bound αLP follows from filter bank summation of prefetchers in Theo-
rem 8.8 and the associativity of the maximum.

3. Upper delay bound ΨU
P follows from Theorem 8.16 and the associativity of the max

operator.

4. Lower delay bound ΨL
P follows from Theorem 8.17 and the associativity of the min

operator.

When two services are used in a fork/join scheme (see Figure 8.6) their combined SDP
can be computed by the next theorem.
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&R

SDP 1

{ αU1 ,αL1 ,ΨU
1 ,ΨL

1 }

SDP 2

{ αU2 ,αL2 ,ΨU
2 ,ΨL

2 }

× R∗

fork/join

D (R,R∗)

αUS = αU1 ∧ αU2
αLS = αL1 ∨ αL2

R

R

ΨU
S = ΨU

1 ∨ΨU
2ΨL

S = ΨL
1 ∨ΨL

2

Figure 8.6: Synchronized composition of two SDPs

Theorem 8.19 (Synchronized Parallel SDP Composition). Given a set of SDPs SLAi =
αUi , α

L
i ,ΨU

i ,ΨL
i , i ∈ {1, . . . , n} the parallel composition offering fork/join semantics (Defi-

nition 8.2.4) to SDP SLAS = {αUS , αLS ,ΨU
S ,ΨL

S} is given by

αUS =
∧n

i=1
αUi (8.72)

αLS =
∨n

i=1
αLi (8.73)

ΨU
S =

∨n

i=1
ΨU
i (8.74)

ΨL
S =

∨n

1
ΨL
i (8.75)

Proof. The proof equals the proof of Theorem 8.18 except the result for the lower delay
bound ΨL

S . It is replaced by the first result of Theorem 8.17 considering fork/join constructs.

Both Theorems for parallel compositions do not include any reshaping delay. This is not
necessary since every parallel composition can be merged into a single SDP and included
in serial compositions.

Non-Concave Delay Curves

The general advise in Section 6.2.4 and 7.1.4 for instantiating upper bounds is to use
concave piece-wise linear functions for their simple variable semantics. However, for two

148
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concave curves f, g the combination f ∨ g is not necessarily concave, for example, when
Theorem 8.16 is applied. The interpretation of upper delay curves has to be extended to
the non-concave case.
Figure 8.7 shows the phenomenon for delay curves f, g and h = f ∨ g . Function h is

constructed with affine functions γri,bi
with index i = {A . . .D}. Line segment B limits a

lower delay rate than segment D for the long-term delay rate, thus rB < rD. This curve
form does not exclude delay bursts, they are still possible up to a size of bD time units by
the translation of the last affine segment. However, in accordance with the interpretation
for concave delay curves, the burst is limited in its rate by preceding segments. By the
first line segment, a burst is limited in its rate by rA. The intersection point of segments B
and C marks the preliminary end of a request processing slowdown switching to a phase
of faster response times. Therefore, the lower rate in the second line segment can be
interpreted as a guarantee that the system will recover after short delay bursts and catch
up on long-term processing to some extent.
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Figure 8.7: Pointwise maximum of two arrival curves is not necessarily concave.

8.4.6 Repeated Service Calls

We will derive arrival and delay bounds for services used in loops (Definition 8.2.4) as
the last basic workflow pattern considered in this work, thus a single request is processed
several times by the same resource. Figure 8.8 shows a representation of such a loop. For
the maximum workload that can be processed by a service in a loop the following holds:

Theorem 8.20 (Arrival Flow Bound to Loops). The request arrival flow entering a loop
section is constrained by αU

v from above and by αL

v from below. When the arrival flow is
looped through the service v times the overall arrival flow is constrained by αU and αL.
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Proof. An arrival flow constrained by αU

v looped v times through the same service equals
multiplexing v arrivals flows constrained by αU

v . Thus
v∑
i=1

αU

v
= v · α

U

v
= αU (8.76)

Lower bounds are shown by replacing αU with αL.

Response time guarantees for SDPs are found by the next theorem.

Theorem 8.21 (Upper Delay Constraints in Loops). A service S guarantees SDP SLA =
{αU , αL,ΨU ,ΨL}. An arrival flow limited by αU

v is looped at most v times through the
service. Then the delay flow D is constrained by v ·ΨU . A delay flow limit from below is
given by v ·ΨL.

Proof. Since the number of repetitions is at most v, the request arrival flow to S is conform
to the SDP (by Theorem 8.20). The loop including service S can be unrolled to a sequence
of v separate services Si, i = 1 . . . v, that are equal to S and also conform to the SDP.
The arrival flow to S1 is constrained by αU

v , due to Theorem 8.15 the upper arrival curve
contract of the concatenation is

αUC =
⊗n

i=1

αU

v
(8.77)

Since curve contracts in SDPs are required to be sub-additive, αU and αU

v are sub-additive,
hence αUC is an equal or lower bound than αU

v . Given that, the concatenation is conform
to the arrival curve contract in the SDP.
Although each service Si is processing a reduced workload compared to S Lemma 8.5

gives the original delay curves ΨU
i = ΨU for all services i in worst-case. Furthermore,

services Si are in a serial concatenation and by Theorem 8.13 the upper delay bound is:
v∑
i=1

ΨU
i = v ·ΨU (8.78)

The lower limit follows from the same construction and Theorem 8.14.

Theorem 8.22 (Looped SDPs). A service modeled by SDP SLA = {αU , αL,ΨU ,ΨL} for
a single request processes a job at most v times. Then the SDP SLAv offered to the arrival
flow is

αUv = 1
v
· αU (8.79)

αLv = 1
v
· αL (8.80)

ΨU
v = v ·ΨU +

v∑
i=1

ϕUi (8.81)

ΨL
v = v ·ΨL if max

t

{
hearly

(
αL
′

i−1, α
L
i

)
(t)
}

= 0 ∀i = 1 . . . v (8.82)

If the condition for ΨL
v does not hold, v ·ΨL computes the intrinsic delay.
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SDP 1

{ αU ,αL,ΨU ,ΨL }
αUivR ? R∗

Addition

D (R,R∗)

αUv = 1
vα

U

αLv = 1
vα

L

ΨL ΨU

i

ϕUi

Figure 8.8: A service modeled by an SDP is called v times.

Proof. For the constraints on the arrival flow Equation 6.84 originating from Real-Time
Calculus is used. Delay bounds ΨU

v and ΨL
v follow from Theorem 8.21.

8.5 SOA Modeling with SLA Calculus

For building SOA models with SLA Calculus we start with the inclusion of SLAs (or more
specific, the included SLOs) as they are the basic model element for a service in SLA
Calculus. Then these single components will be joined to workflows using the theorems for
SDP compositions.

8.5.1 Modeling SLAs with SLA Calculus

Modeling service performance is done in SLA Calculus by transferring arrival and delay
contracts found in SLAs into SDPs. Each set of worst-case constraints becomes a perfor-
mance characterization of the underlying processing functions. Arrival bounds are modeled
with compositions of affine functions using the semantics described in Section 6.2.5. Rates,
as well as, capacities for bursts can be considered. In a similar way the corresponding delay
bounds are set up, as described in Section 7.1.4.

In the complementary modeling approach to SOAs with Network Calculus the relationship
of arrival rates and resulting delay was split up. Instead, arrival and service rate bounds
gave the maximum delay to decide on SLA conformity. With the precondition on the
knowledge of service rates the approach to SOAs is open to providers only. Since SLAs are
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8 SLA Calculus Modeling

equally available to customers and providers modeling with SDPs in SLA Calculus can be
used independently of the role in the business relationship.

Example 8.5.1. Based on the arrival constraints and implicated delay commitments in
Tables 2.1 and 2.2 the SDPs for the basic services in the ParcelSink workflow can be stated.
For the external geocoder services the SLAs are known only, they give the SDPs

SLAhollowearth =


αU = min(γ25,10, γ8,61)
αL = β3,5
ΨU = min(γ30,5, γ10,165)
ΨL = β4,3



SLAflatworld =


αU = min(γ20,0, γ15,10)
αL = max(β1,0, β2,1)
ΨU = min(γ50,20, γ5,112)
ΨL = β3,0


The remaining services, regardless if contracted externally or hosted at ParcelSink are
described with three further SDPs.

SLAcatalog =


αU = min(γ12,10, γ9,13)
αL = β1,5
ΨU = γ2,0
ΨL = β1,10



SLAfetchaddress =


αU = γ15,2
αL = β1,0
ΨU = γ10,5
ΨL = β2,4

 and SLAprintinvoice =


αU = γ25,6
αL = β6,4
ΨU = γ16,3
ΨL = β0.5,8


Finally the target SLA, the ParcelSink workflow, should conform to is given by

SLATarget =


αU = min(γ100,5, γ305,12)
αL = 0
ΨU = γ5,0
ΨL = 0


8.5.2 Mapping of BPEL Structures to SLA Calculus

SLA Calculus is specifically designed to model workflow structures in SOAs, so mapping
BPEL workflows is straight forward. Each <invoke/> tag representing a service call
interface is modeled with an SDP in SLA Calculus. Further, control structures forming
workflows are mapped to SLA Calculus by applying the previously developed theorems
whenever services are combined by the following BPEL tags:

<sequence/> constructs are formed by serial compositions of SDPs using Theorem 8.15.

<switch/> decisions are given by parallel services with routing described in Theorem 8.18.
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<flow/> tags indicating a fork/join structure are modeled with Theorem 8.19.

<while/> with a known upper bound v for visits is given by Theorem 8.22.

Example 8.5.2. The ParcelSink workflow uses five service instances, in Figure 8.9 each
of these services is represented by its SDP as given in Example 8.5.1. We mapped the
structure of the BPEL file into the model and connected the SDPs to a network. The
request arrival flow R is fed into a network topology similar to the Network Calculus or
Queueing Networks example, the departure flow is R∗. Here a distinction in parallelization
is made between for the synchronized <flow/> tag for the geocoders and the routing to
the catalog service stated by a <switch/> statement. Again, the abstract model does not
include any variables or logic to perform the routing, a parallel construct is used instead.
For the repetition count of the printinvoice service v = 2 is used.

A new addition is the second network for delay flows (dotted lines). The flows are joined
by delay multiplexers for serial, synchronized and routing constructs. They result in flow
D (R,R∗) leaving the system at the bottom.

8.5.3 SLA Validation

SLAs for services are validated for their performance conformance by comparing them to
given requirements. Hence, to validate the performance of service compositions the overall
SLAs have to be derived. SLA Calculus supports this step with results for composing SDPs
to a single SDP. During composition, the upper and lower arrival bounds to the composition
become narrowed and can be compared to the customer’s workload requirements. In detail,
the bounds are valid if the customer’s arrival process is conform to the overall arrival
bounds by Definition 8.3.6.
Contrary to limits on the arrival process, delay flow bounds become wider during

composition. The providers part of the SLA can be checked by comparing the upper and
lower delay bounds using Definition 8.3.7. When the customer and provider part of the
workflow SDP are conform to the requirement SDP the SLA is valid.

The steps for an SLA Calculus workflow analysis are implicitly given by Definitions 8.2.5
and 8.4.1. Best practice here are the following steps:

1. The curves αUcommon and αLcommon to the whole modeled workflow have to be computed
first using the respective composition theorems.

2. Parallel compositions are reduced to an SDP each, then their service curves are
computed.

3. Using αUcommon, the service curves and input contracts all output bounds αU ′ for
services with a successor are computed.

4. Finally, bounds on delay can be derived using the respective composition theorems
again.

Example 8.5.3. Using the SDPs from Example 8.5.1 we can derive the overall SDP
SLAParcelSink for the workflow in Figure 8.9. For SLA validation it is compared to
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SLATarget. Computations are done with MATLAB and the RTC Toolbox. In a first step
we will derive the bounds without the reshaping delay, we will add it in a second step. We
start with the fork/join construct for both geocoders:

SLAgeocoder =



αU = min(γ20,0, γ15,10, γ8,61)
αL = max(β1,0, β2,1, β3,5)

ΨU =
{

min(γ50,20, γ5,112) t < 4.28
min(γ30,5, γ10,165) t ≥ 4.28

ΨL = max(β3,0, β4,3)


A plot of both initial SDPs and the resulting SDP with all four curves in each case is shown
in Figure 8.10. A new upper bound with three segments is formed by convolution. Since
the curves are sub-additive, the operation is equivalent to finding the point-wise minimum.
Although the HollowEarth geocoding service accepts arrival bursts better than its competitor
the overall burst capacity of the synchronized system is determined by FlatWorld. For the
long-term capacity, the service rate of 8 of HollowEarth limits the system. The intersection
point t ≈ 7.28 between the second an third segment in αUgecoding marks the transition between
bursts and long-term capacity. For the lower arrival bound αLgeocoding the transition from
phases with less than expected (modeled with two segments) to long-term minimum rate
r = 3 is at t = 13. The maximum combination of upper delay curve shows results in a
curve that is sub-additive, but obviously not concave anymore. At the intersection point
of the second to the third segment (t = 4.28) the delay rate increases from 5 to 30 until it
transits to the long-term delay guarantee of 10 (t = 8).

The alternative route using the internal address database is added with Theorem 8.18:

SLAedv =



αU = min(γ20,0, γ9,13, γ8,61)
αL = max(β1,0, β2,1, β3,5)

ΨU =
{

min(γ50,20, γ5,112) t < 4.28
min(γ30,5, γ10,165) t ≥ 4.28

ΨL = max(β1,10)


(8.83)

Except of setting the lower delay curve to a rate of 1 the limited burst capacity of the
internal database also reduces the arrival burst capacity of the subsystem.

Printing the invoice is done exactly two times, so the performance bounds in a loop are
found using Theorem 8.22 and v = 2:

SLAloop =


αU = min(γ12.5,3)
αL = β3,4
ΨU = γ32,6
ΨL = β1,8

 (8.84)

The overall SDP is found by concatenation of SLAfetchaddress and SLAedv cutting a small
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“edge” from the arrival burst capacity and adding delay:

SLAfront =



αU = min(γ20,0, γ15,2, γ9,13, γ8,61)
αL = max(β1,0, β2,1, β3,5)

ΨU =
{

min(γ60,25, γ15,117) t < 4.28
min(γ40,10, γ20,170) t ≥ 4.28

ΨL = β3,0


(8.85)

and finally by concatenation of SLAfront with SLAloop:

SLAParcelSink =



αUParcelSink = min(γ20,0, γ12.5,3, γ9,13, γ8,61)
αLParcelSink = max(β1,0, β2,1, β3,4)

ΨU
ParcelSink = ϕUParcelSink +

{
min(γ92,31, γ47,123) t < 4.28
min(γ72,16, γ52,176) t ≥ 4.28

ΨL
ParcelSink = max(β2,4, β3,5.333, β4,6.5)


(8.86)

Figure 8.11 shows both input SDPs and the result for ParcelSink. The overall guaranteed
worst-case arrival capacity of the workflow is thus limited by a rate of 8. Arrival bursts are
limited by a rate of 20, this is further decreased to 12.5 and 9. With αL a minimum arrival
rate of 3 is set, phases of lower activity are quite limited. The upper delay curve gives us a
long-term delay rate of 52, for shorter periods even 92 is acceptable. Delay bursts up to
a weight of 31 time units are not regulated at all. Noteworthy for ΨL is the interval of 4
time units with no arrivals at all.

Finally, when αUParcelSink is known, the reshaping delay can be computed. Appropriate
service curves have been given in Example 6.7.2 based on Theorem 8.10. The workflow
is a serial composition of three major parts: the FetchAddress service, the routing and
synchronization block in the middle and the looped PrintInvoice service. For the first
passage between the first and second parts the burstiness increase for the arrival flow is

αU
′

fetchaddress = αUParcelSink�βLfetchaddress (8.87)

To be conform to the input bound of the second part the flow is reshaped to αUedv with a
maximum delay of ϕUfetchaddress = hmax

(
αU
′

fetchaddress, α
U
e dv

)
= 10s. After reshaping and

passing the second part the flow has the upper limit

αU
′

edv =
(
αU
′

fetchaddress⊗αUedv
)
�βLedv (8.88)

The maximum delay for reshaping to αUloop is ϕUedv = hmax
(
αU
′

fetchaddress, α
U
loop

)
= 8.5556s.

Within the third part, the loop, and after the first iteration the bound is

αU
′

printinvoice =
(
αU
′

edv ⊗αUloop
)
�βLprintinvoice (8.89)

resulting in subsequent reshaping costs of ϕUprintinvoice = hmax
(
αU
′

printinvoice, α
U
printinvoice

)
=

16s to match the input bound for the second iteration. Thus, the necessary time for
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reshaping the request flow in the composition sums up to 34.5556 seconds. As delay curve
this expresses in

ϕUfetchaddress + ϕUedv + ϕUprintinvoice = ϕUParcelSink = λ34.5556 (8.90)

In Figure 8.11 the reshaping delay is plotted in blue. The workflow SDP can be completed:

SLAParcelSink =



αUParcelSink = min (γ20,0, γ12.5,3, γ9,13, γ8,61)
αLParcelSink = max (β1,0, β2,1, β3,4)

ΨU
ParcelSink =

{
min (γ126.5556,31, γ81.5556,123) t < 4.28
min (γ106.5556,16, γ86.5556,176) t ≥ 4.28

ΨL
ParcelSink = max (β2,4, β3,5.333, β4,6.5)


(8.91)

By Definition 8.3.6 we can conclude that the workflow is conformant to the customer
requirements.

bmax
(
αUTarget, α

U
ParcelSink

)
= 0 (8.92)

On the other side, based on Definition 8.3.7 we can say that the workflow is (by far) not
conformant from the perspective of the provider.

bmax
(
ΨU
Target,ΨU

ParcelSink

)
=∞ (8.93)

Still, there is the lower arrival and delay implication. Using Definition 8.3.2 we check for
possible arrival contract breaches due to earliness in the service concatenation.

max
t

{
hearly

(
αL
′

FetchAddress, α
L
edv

)
(t)
}

=∞ (8.94)

max
t

{
hearly

(
αL
′

edv, α
L
loop

)
(t)
}

= 6.0 (8.95)

max
t

{
hearly

(
αL
′

loop, α
L
PrintInvoice

)
(t)
}

= 12.0 (8.96)

Analysis shows that in every service transition there is a contract breach, Figure 8.12 shows
the situation in detail. Therefore the service provider is not obliged to the lower delay
bound, we carry the delay bound on as intrinsic delay only.

We did not take exact measurements on computation time, but the used RTC Toolbox
interpreted in MATLAB delivered results in less than one second. So the analytic analysis
of SLA Calculus models gives us performance figures within the same time magnitude
as product-form Queueing Networks or Network Calculus do. The computation time of
simulative analysis is undercut easily on same hardware (see Example 5.1.3 and Table D.3).

8.6 Discussion

Analysis with SLA Calculus provides us a distinct perspective on systems compared to
previously presented SOA modeling methods. We used performance bounds from SLAs
for simple services as input and received bounds for the worst-case characterization of
the complete workflow. Thus, analysis has a different quality in result and it has to be
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Figure 8.10: Plot of SDP for synchronized geocoders. αU on the top left, ΨU on the top
right and the lower curves in the bottom row.
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Figure 8.11: Plots for SLAfront, SLAloop and SLAParcelSink.
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Figure 8.12: Lower departure envelopes show earliness towards subsequent services.

discussed, if SLA Calculus is a better SOA modeling method than Queueing Networks,
Simulation or even Network Calculus. For the sketched SLA validation scenario we make
the statement that it is definitively a well-suited approach.

With the secrecy policies in SOA eco-systems a modeling has to work frugally with infor-
mation. SLA Calculus models have low information requirements, services are considered
as black-box, system internals on scheduling, storage and especially available processing
resources are not required. It is also irrelevant if the response time reacts linear to increas-
ing workload. The SLA Calculus model with SDPs as service abstraction is simple and
allows patterns and hierarchies. Therefore they are ideal to analyze system drafts when a
simulative approach would bring overhead only. With just a small information set we were
able to set up our exemplary analysis and, by modeling the worst-case, omit many details.

Since SLAs are available to all participants in an SOA eco-system, SLA Calculus suites
both service customers and providers. Both sides can create workflow models, analyze
them and validate SLAs for conformance. Independence on knowledge of service curves is
SLA Calculus’s advantage to pure Network Calculus. For our ParcelSink model we just
used the readily available information in SLAs, no further derivation of service rates was
necessary.

8.6.1 Deterministic SLA Validation

The strength of SLA Calculus is the deterministic but detailed modeling approach on
workload and delay. Analysis gives upper and lower performance bounds without stochastic
components. Although these bounds are wide in contrast to stochastic modeling analysis
methods, they are reliable. If a system fullfills an SLA in any case or not, the decision for an
SLA validation can be made in this way. Queueing Networks at least with efficient analysis,

159



8 SLA Calculus Modeling

and simulation, can draw a better picture of average behavior, but result figures like delay
are potentially unbounded. Validation results will always include some limited, but existing
uncertainty. This is worsened by the process model of shown stochastic methods: The
modeler asks for limits yet the models accept average rates only. In previous instances of
the ParcelSink example we have seen that this may lead to false validation results. It has
to be noted that SLA Calculus assumes valid guarantees for input and stochastic process
models and may be more robust to errors.
Furthermore, bounds are given for workload and delay in a single analysis and even

short-term results are found. In our example we instantly see the workload one can send
to the ParcelSink workflow without overloading at least one participating service, it is
bound by αUParcelSink. Even more, we additionally can read from the first line segments in
αUParcelSink that the long-term rate can be superseded for a short time. This allows the
selection of services with a certain long-term rate and some spare capacity, instead of using
fast (and expensive) providers, that allow continuous processing with the burst rate. In
the above example, an arrival burst may have a duration of 48 time units and, for a short
period of 0.4 seconds, a rate up to 20 is possible. With product-form Queueing Networks
this result is unachievable, simulative analysis would require detailed statistics.
The claim to fame for SLA Calculus is the detailed delay model with upper and lower

bounds. This is an advantage to pure Network Calculus, and in terms of delay limits, to
Queueing Networks. When we include the analysis time as a factor, simulation falls behind,
too. For our example, the analysis gave us the long-term delay rate under worst-case
conditions by ΨU

ParcelSink without any lengthy computation. The delay rate is rounded
86.6 time units which draws a bad picture on the workflow performance compared to
the average results in Queueing Networks. However, one has to be aware that this is a
worst-case figure and a service request will seldom take so much time. The modeler receives
an analysis result based on service guarantees which allows him or her to judge whether
this workflow is suitable for his own needs. In any case the limits are strict, time-invariant
and not annotated with confidence intervals.
Even more interesting analysis results are the delay burst characteristics which show a

delay flow is limited in short phases of lower or zero processing capacities. SLA Calculus
analysis also gives these latency bounds for the short-term in a single run. We gain
more insight into response time characteristics of systems compared to the maximum in
Network Calculus or average response time in Queueing Networks. For the last one the
transient analysis is partially substituted. Limited short-term variations in delay are known
beforehand and can be integrated into further system capacity planning. A noteworthy
detail in this context is the “dent” in ΨU

ParcelSink having a line segment with a slower
delay rate (r ≈ 81.6) than the long-term rate. This is not an error, but the guidelines on
non-concave curves in Section 8.4.5 have to be considered. They show how the system
recovers after a delay burst. In interval [0, 4.28) the burst is limited to rate r ≈ 126.6,
t = 4.28 marks the preliminary end of the request processing slowdown switching to a phase
of faster response times. With SLA Calculus we did not only receive a deterministic upper
bound for the long-term delay, we also got a detailed description on how the workflow
reacts to fluctuations in processing or arrival bursts.
By deriving the overall SDP for a system we receive lower process bounds. Awareness

of lower bounds is not given in product-form Queueing Networks, partially in Real-
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Time Calculus and elaborative in simulation. Curves αLParcelSink and ΨL
ParcelSink are not

symmetric to the upper ones, hence they include additional information. The arrival curve
marks the minimum request flow accepted by the system. It can support service selection
or enable the implication for lower response time contracts. However, such an implication
for lower envelopes is dependent on the service ordering and fragile as we can see in the
example. For the ParcelSink workflow (and in general) the results are still valuable: The
minimum arrival curve (αL 6= β0,0) as well as the minimum delay curve are not trivial.
When analysis results in a curve with zero rate, the trivial lower arrival bound, the non-zero
minimum delay shows the intrinsic delay of the service.

8.6.2 SLA Calculus has its Justification

There is still one question unanswered: When service curves can be computed easily from
SDPs, why not use Network Calculus for SLA validation in general? This already worked in
Chapter 6 for the ParcelSink workflow. Our criticism on this approach is that many detailed
aspects of arrival and delay contracts including tolerances get lost on conversion. Network
Calculus gives “end-to-end” network guarantees, any internals or even the ordering of
system components are neglected. With SLA Calculus burstiness and lagginess of request
flows between single services becomes visible to the modeler. To guarantee workload
contracts within service compositions additional measures are necessary. SLA Calculus
analysis exposes the costs of in-lined shapers in terms of response times. This is only
possible due to the detailed awareness of burstiness increases at internal flows. As for the
other performance figures, this extra time is the most pessimistic assumption and requires
a classification in the model context.
For product-form Queueing Networks, limited to Poisson processes without variance

information, this result is unreachable. Simulation models can be implemented in a way to
log internal arrival contract violations. The exemplary ProC/B language and the shown
SLA validation process offers enough descriptiveness. Still, not all contract breaches may be
detected and the reshaping delay cannot be bounded. In any case, simulative analysis stays
lengthy. Here, this SLA Calculus analysis part is as efficient as other Network Calculus
based computations.
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9 Service Curve Computation

On the one hand, it is hard to give reliable performance guarantees for SOAs with Queueing
Systems, but for long-term results no information on service processes is required. The
average processing rate of a service can be computed easily with performance figures
provided by its SLA. On the other hand Network Calculus can provide deterministic
worst-case guarantees, but is depending on service rates and their bounding curves. SLA
Calculus gives worst-case bounds on delays without knowledge of the service process in
SOAs, it is designed to model systems just by combination of other performance bounds.
But due to the need for internal reshaping SLA Calculus analysis is dependent on service
curves, too.

Furthermore, knowledge of the lower envelope of the service process in a model is helpful
when results are implemented in a real world system. Therefore, computation of service
curves for models can be a subsequent step to SLA Calculus SOA model analysis. This
can be the case in system capacity planning (c.f. Section 2.4), when a known SDP is used
to size the required real world computing infrastructure. Computations of lower service
curves give the minimum required system performance to fulfill service guarantees. The
reverse problem of capacity planning is to validate if a modeled workflow is executable in
time with an existing system. Computed service curves can be compared to already known
service curves and one can decide if the system will perform adequately. Another scenario
that involves service curve computation is to switch from SLA Calculus to pure Network
Calculus modeling and analysis. In many scenarios apart from SOA performance modeling,
Network Calculus is a more mature and general modeling method than SLA Calculus,
which evolved in two decades of research. An argument derived from the popularity of
Network Calculus is that extensive software support exists [99, 110, 123]. Knowledge of
service curves for SOA models gives the modeler access to these tools.
In [117] a numerical method for service curve computation is presented. It does give

a rate-latency service curve and involves an optimizer. However, we have seen that in
Queueing Systems the service rate µ can be easily computed by basic laws for Queueing
Systems. In Example 4.2.1 the average service rate µ is found by combining Little’s Law
and Equation 4.7 for the average system population:

µ = λ+ 1
E[S] (9.1)

Obviously, this is not an optimization problem and can be solved with simple algebra.
Since Network Calculus and SLA Calculus are purely analytic methods one should find
a comparable capability here. In this chapter a similar relationship for (min,+)-based
algebras is described [119]. It generalizes the derivation of service curves and arbitrary
input curves are accepted. Due to its analytic foundation it is independent of the optimizer.
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9 Service Curve Computation

9.1 Problem Description

The problem of service curve computation in SLA Calculus is to find the minimal lower
service curve a system has to provide in order to conform to a given SDP. Thus, with
given curves αU and ΨU a lower envelope βL on the needed resource flow is calculated.
The SDP implicates the system to limit the delay flow D as long as the arrival contract is
valid. This has to hold even for the extreme case R = αU with a worst-case delay flow of
D(R,R∗) = ΨU .
In the SLA Calculus system model a delay flow D(R,R∗) is given by the function of

horizontal distance between arrival R and departure flow R∗ (Definition 7.1.1). Flow R
is limited by αU and D(R,R∗) by ΨU , two curves given by an SDP. Unknown is the
departure flow R∗, but, under the condition that the system is stable, there has to be
a minimum departure flow that results in maximum but conform delay flow. Recalling
Definition 6.2.11 we know that for arrival flow R and lower service curve βL

R∗ ≥ R⊗βL (9.2)

gives a lower bound for the departure flow R∗. When only bounds in form of an SDP
SP = {αU ,ΨU} are at hand the actual input flow R is not available. However, to create a
worst-case situation one can replace R in (9.2) with upper bound αU . Using Definition 7.1.3
the service curve computation problem is then to find the minimum lower service curve βL
with

βL = min
{
β ∈ F0 : D

(
αU , αU ⊗β

)
≤ ΨU ⊗D

(
αU , αU ⊗β

)}
(9.3)

Before a solution is presented the consequences of optimal, approximative and or even
wrong computation of βL are discussed. Let SP be an SDP and βC be the computed
service curve, βT is the theoretical minimal solution.

βC = βT The curve is optimal. In this case we have ΨU ≥ D
(
αU , αU ⊗βC

)
and no better

solution than βC exist. For most situations, unless SP is limited to linear curves,
usually an optimal solution βC = βT is not achievable. Delay flows are formed by
(horizontal) integration, therefore D

(
αU , αU ⊗βC

)
(t) is continuous and a derivative

exists for all t. Piecewise linear functions with more than one segment are naturally
not continuous. Thus the identity between ΨU and D

(
αU , αU ⊗βC

)
(t) as a function

of higher degree is usually not achievable and a non-optimal solution has to be
accepted. Figure 9.1 shows how the delay curve is approximated by the resulting
delay flow.

βC > βT This leads to D
(
αU , αU ⊗βC

)
< ΨU ⊗D

(
αU , αU ⊗βC

)
. The curve is not the

minimum solution and belongs to a faster system than SP requires. In practice, the
system would hold more processing power than necessary. This becomes visible when
comparing Figure 9.2 to Figure 9.1. Processing is faster than necessary and delay
flow D keeps away from its bound ΨU .

An invalid solution is βC < βT . A system implementing service envelope βC is not conform
to SP as D(αU , αU ⊗βC) > ΨU ⊗D(αU , αU ⊗βC). Arrivals are delayed too long, hence
D exceeds ΨU by far.
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Figure 9.1: Good service curve estima-
tion: Resulting delays are
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Figure 9.2: Bad estimation: Rate in
βL is too high, ΨU is not
exhausted.

9.2 Revisiting (min,+)-Deconvolution

Equation (9.1) gives the service rate for known arrival rates and latencies in Queueing
Systems. In SLA Calculus models information on these figures is available in form of upper
bounds. By Definition 6.2.13 the departure flow of a server system is limited from below by

R∗ ≥ R⊗βL (9.4)

We define α∗ as the lowest departure flow when the arrival flow is maximized, thus

α∗ = αU ⊗βL (9.5)

For a moment let us assume that α∗ is known or can be computed from the given data.
Then the idea to compute the service curve can be sketched by using an inverse operation to
(min,+)-convolution in order to unfold the known arrival bounds out of departure bounds.
Thus, an operator ⊗−1 should exist with

βL = α∗⊗−1αU (9.6)

to represent the service curve.
The dual counterpart to (min,+)-convolution is (min,+)-deconvolution (c.f. Defini-

tion 6.1.7). Although (min,+)-deconvolution is not the inverse operation to (min,+)-
convolution in general [76, 107], it can be shown for worst-case conditions in SLA Calculus
that it gives similar results to an inverse operation. With deconvolution not being the
inverse to convolution [76, 107] there is

f 6= (f ⊗ g)� g (9.7)
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for f, g ∈ F . The bad news here is that for f = βL and g = αU one cannot completely
reconstruct service curves with the information encoded in the departure bound αU ⊗βL.
However, a result in bandwidth estimation can be used to compute the service curve with
deconvolution: In Network Calculus models, service curves are descriptions for achievable
bandwidths of server elements. When a model for a server should be based on in- and
output measurements the appropriate service curve has to be estimated. An estimation
approach for lower service curves based on (min,+)-deconvolution is used in Liebeherr et al.
[75, 76]. They show that deconvolution gives sufficient estimates for lower service curves
when applied to input/output functions.

Estimation goal in [76] was to deduce the necessary resource flow C for measured arrival
and departure flows, such that R∗(t) ≥ (R⊗C)(t) holds for all pairs of R and R∗ and
for all t. Since Equation 9.7 neglects the reconstruction of the exact resource flow C an
approximation C̃ is introduced. Deconvolution gives [76]

C̃ = R∗�R (9.8)

with
C̃ ≤ C (9.9)

The approximated resource flow C̃ has the property

R∗ = R⊗ C̃ (9.10)

So C̃ is a service curve reconstructed from the departure curve that can replace the unknown
curve C.
The deconvolution approach gives valid results only if the system is linear and time

invariant. Thus the output is linear to the input load and the estimated service curve
is the impulse response of the server. For practical reasons network elements have a
nonlinear input/output behavior, therefrom the deconvolution approach has limited use
in [76]. Instead the authors present methods for measuring the service curve of network
elements by stimulating the system with different load levels. Bandwidth estimation in
[76] is based on traces of real systems with varying, not necessarily worst-case system load.
It is not specified if the system is linear or not with SDPs describing a system in

SLA Calculus. Arrival bounds implicating a delay bound are descriptions for the worst-
case, this single observation point is only important for service guarantees. There are
no measurements of input and output streams comparable to [76], there are only SDPs
{αU ,ΨU} they conform to. Neglecting the system behavior at average load levels, a special
case can be constructed where system linearity is irrelevant. For this worst-case situation,
deconvolution can be applied as an inverse operator to compute a service curve based on
an SDP with pure algebraic methods.

9.3 Solution Steps

With deconvolution an algebraic tool is found, but still some additional preparations for
service curve computation are required. Given an SDP SP = {αU ,ΨU} two steps and an
optional third one have to be performed.
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1. Find a maximum output function α∗ with ΨU (t) ≥ D(αU , α∗)(t).

2. Use (min,+)-deconvolution to derive a lower service curve: βL = α∗�αU .

3. Replace βL with its super-additive closure

While the second and third steps are simple the first one causes some difficulties.

9.3.1 Departure Flow from SLA Delay Properties

A maximum departure flow α∗ can be constructed by the information given by upper
arrival and delay bounds in an SDP. This can be done by shifting the arrival curve by the
maximum allowed delay to the right. Based on Definition 7.1.4 and Theorem 7.2 the delay
in t is:

h
(
αU , α∗

)
(t) = d

dtD(t) (9.11)

Departure bound α∗ is unknown, but can be derived in return by shifting αU (t) by the
horizontal distance for all t. We also know that D is limited by ΨU , for the worst-case
situation the flow is exchanged by the curve. Figure 9.3 illustrates the idea. For the figure
and the following equations, operator d

dtf(t) = rt(f, t) gives the derivation of f in t.
This approach is quite simple, but does only work for delay bounds given by a linear

function. Delay curves including more than one line segment with pair-wise different rates
are non-continuous in intersection points. With the sudden change of the derivative in
these points the shift width also changes. Figure 9.4 includes a situation with a delay curve
ΨU with two line segments Ψ1 and Ψ2. Since rt(Ψ1) 6= rt(Ψ2) a jump is introduced in the
departure flow. These gaps will introduce an error into the service curve computation.
Derived curves will be valid, but not optimal. Sizing and limiting the error is subject to
future research.

Theorem 9.1 (Departure Flow from Upper Bounds). Let SP =
{
αU ,ΨU

}
be an SDP,

αU and ΨU are concave. A valid output flow B(t) with ΨU ≥ D
(
αU , B

)
is given by

B(t) = αU (t− rt(ΨU , t)) (9.12)

Proof. To prove that B(t) is an outgoing arrival flow which results from a system that
complies with SP , one has to show that

D
(
αU , B

)
(t) =

∫ t

0
h
(
αU , B

)
(x) dx ≤ ΨU (t) for all t ≥ 0 (9.13)

Deriving both sides of (9.13) we get

h
(
αU , B

)
(t) ≤ rt(ΨU , t) (9.14)

Let ∆ = τ + t for τ > 0. Arrival curve αU is wide-sense increasing, so αU (∆) ≥ αU (t)
holds. Delay curve ΨU is required to be concave, so for the delay rate we have rt(ΨU , t) ≤
rt(ΨU ,∆).
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Figure 9.3: Departure flow for a linear
delay curve
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Figure 9.4: Departure flow for a delay
curve with discontinuities.

First we consider the case of a constant delay rate rt(ΨU , t) = rt(ΨU ,∆).

rt(ΨU , t) ≥ d
(
αU , B

)
(t) (9.15)

= (B)−1(αU (t))− (αU )−1(αU (t)) (9.16)
= (αU )−1(αU (t)) + rt(ΨU ,∆)− (αU )−1(αU (t)) Lemma 7.3 (9.17)
= rt(ΨU ,∆) (9.18)

Now follows the case when the rate decreases: rt(ΨU , t) > rt(ΨU ,∆). Let r∗ be the value
of rt(ΨU ,∆) with r∗ = rt(ΨU ,∆) < rt(ΨU , t), thus B(t) = αU (t− r∗).

rt(ΨU , t) ≥ d
(
αU , B

)
(t) (9.19)

= (B)−1(α(t))− (αU )−1(αU (t)) (9.20)
= (αU )−1(αU (t)) + r∗ − (αU )−1(αU (t)) Lemma 7.3 (9.21)
= r∗ (9.22)

The first solution step can be done using Theorem 9.1 and gives us B = α∗. The second
step is supported by Theorem 8.10 that can be proofed by application of results.

Proof of Theorem 8.10. We apply the results of [76], summarized in Equation 9.8, and
replace flows with worst-case bounds. For the workload to the system we set R = αU . A
minimum departure flow α∗ = R∗ under consideration of maximum delay contract ΨU is
given by Theorem 9.1. Since Equation 9.8 provides the minimum service flow to achieve
the output (Equation 9.10) we set C̃ = βL.

The service curve resulting from deconvolution in the second step is not necessarily
convex. In general, this is not a restriction for service curves, but when a non-convex
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curve is used in further computations not all line segments will contribute. This redundant
information can be removed from βL when the curve is replaced by its super-additive
closure, thus βL = βL [72].

Example 9.3.1. For the ParcelSink workflow there have been five SDPs given for single
services in Example 8.5.1. The necessary service capacities are to be computed with the
approach shown above. This can be a step in sizing the actual hardware by getting the
minimal service rate and, due to latency information in service curves, the maximum
startup or maintenance time. We already used the results in Example 6.7.2 for Network
Calculus ahead of time. Actual computation was done with MATLAB and the RTC Toolbox,
additionally we added an implementation for the rate function rt().

For the externally hosted services the service curves are

βLHollowEarth(t) = αUHollowEarth(t− rt(ΨU
HollowEarth, t))�αUHollowEarth(t)

=
{

max(β8,10(t), β25,13.4(t)) t < 18
β8,2.375(t) t ≥ 18

(9.23)

and

βLFlatWorld(t) = αUFlatWorld(t− rt(ΨU
FlatWorld, t))�αUFlatWorld(t)

=
{
β20,5(t) t < 7
β15,4.33(t) t ≥ 7

(9.24)

Figures 9.5 and 9.6 show the input, the service curves as well as the departure flow used in
the deconvolution step.

For the remaining services the lower service curves are given by

βLCatalog(t) = αUCatalog(t− rt(ΨU
Catalog, t))�ΨU

Catalog(t)

=


0 t < 2
β12,1.1667(t) t < 3
β9,0.556(t) t ≥ 3

(9.25)

βLFetchAddress = αUFetchAddress(t− rt(ΨU
FetchAddress, t))�αUFetchAddress(t)

= β15,9.8667(t) (9.26)
βLPrintInvoice = αUPrintInvoice(t− rt(ΨU

PrintInvoice, t))�αUPrintInvoice(t)
= β25,15.76(t) (9.27)

To verify the results we have to show that a system i ∈ {HollowEarth, F latWorld, . . . }
implementing the computed service curve βLi does not violate ΨU

i . Therefore we compute
departure flow R∗i = αUi ⊗βLi and delay flow Di = D

(
αUi , R

∗
i

)
. The service curve is

suitable if for the resulting delay flow

Di ≤ Di⊗ΨU
i (9.28)
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Figure 9.5: HollowEarth service curve computation and verification

holds. This procedure is implemented using MATLAB and the RTC Toolbox, too. Figures
9.5, 9.6 and 9.7 also include the used curves and flows. The delay flows do not violate the
delay contracts and show that the computed results are valid.

Maybe the most noteworthy results are related to the HollowEarth service (Figure 9.5).
The computed departure flow R∗ includes a step at t = 18 influenced by the change of the
delay rate at t = 8. While the initial delay rate shifts the arrival flow 25 time units to the
right, the second delay rate gives a shift of 10 only and starts a line segment at t = 18. To
avoid ambiguous departure flows the conservative second segment is used. The computed
service curve for the HollowEarth service describes a maximum time interval of 10 units with
no processing and a rate of 8.0 on the long-term. Due to the rate increase in interval [10, 18]
βLHollowEarth is not convex, but it is still super-additive since βLHollowEarth = βLHollowEarth
[72]. The short-lived rate increase can be interpreted as additional processing capacity to
recover from phases with no or reduced processing. We also note that deconvolution gave
us the minimum stable system regarding long-term rates.

When the delay flow DHollowEarth is computed for verification one can see that it has an
equal rate to the delay curve on the long-term, thus

d
dtD(t) = d

dtΨ
U
HollowEarth = 10 for t→∞

On the short-term the maximum visible rate is found at

max
t

( d
dtDHollowEarth(t)

)
= 13.8

indicating the maximum delay for this service curve. Still, the burst capacity offered by
ΨU
HollowEarth, as visible in Figure 9.5, is not fully used. Here we can give two reasons for
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Figure 9.6: Flatworld service curve computation and verification
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Figure 9.7: Catalog service curve computation and verification
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this result: First, no identity between the non-continuous delay curve contract and the
flow can be achieved since the flow is a function from higher degree (c.f. Section 9.1).
Remember, the delay curve is combined of affine functions due to their burst-rate semantics
and not for their properties in integral calculus. Second, when the intermediate departure
flow for service curve computation is constructed, the information on a high delay rate of
25 is dropped in this special case in favour of the long-term rate.

The results for the FlatWorld service are found under comparable conditions. Service
curve βLFlatWorld describes zero processing up to 5 time units and a long-term rate of 15.
Again the curve is not convex, but super-additive and gives a stable system. During the
construction of the intermediate delay flow the delay burst capacity described in ΨU

FlatWorld

is completely lost and not included in βLFlatWorld. As a result, when the system is verified,
the delay flow has a constant rate of 5. A constant delay curve contract ΨU

Catalog = γ2,0
was specified for the catalog component. This results in a service curve being a shifted
arrival curve, thus

βLCatalog(t) = max
(
0, αUCatalog(t− 2)

)
In this special case we also notice the identity of DFlatWorld and ΨU

FlatWorld due to the
constant rates.
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10 Curve Estimation

With SLA Calculus one is able to determine theoretical worst-case performance bounds of
systems with components characterized by SLAs. We already applied this in examples like
the ParcelSink Web Services with given and synthetic SDPs. In other modeling situations
the SLAs are unknown. Curve contracts have to be filled with parameters first according
to the reactions and behavior of real or planned services. Model fitting problems are
common to all modeling methods, therefore various approaches exist. For instance, rates
in Queueing System are determined from traces by averaging performance figures.

A complete modeling method for SOAs has to provide solutions for two situations: In the
first case, the SLA for a service is known or available. A mapping from SLA values, or more
specific, their SLOs, to curve contracts in SDPs exists. This work will not provide a scheme
to transfer parameters from WSLA or similar formats. Here, we will consider the second
case with unknown SLAs and present a curve fitting method based on recorded input and
output traces. It is a solution for providers when a services are new, undocumented or
exist as simulation models only. These systems can be surveyed at runtime with statistical
methods and descriptive SDPs can be estimated. The case considered here is a continuation
of previous works [15–17] with already existing SOA simulation models and appropriate
tools for evaluation.

10.1 The Curve Estimation Problem

The problem solved here is finding a characterizing SDP for a SOA service or a general
system based on input and output traces. In detail, for an SDP altogether four upper
and lower bounding curves have to be estimated in such a way, that the initial traces
are conform to the curve contracts again. Formally, for a system an arrival flow R and a
departure flow R∗ are given in form of traces with time marks when jobs entered and left
the system. Required are the curves αL, αU ,ΨL and ΨU with R ≥ αL⊗R and R ≤ αU ⊗R.
Delay flow D is computed from R and R∗ by their horizontal deviation (see Section 7.1.3).
The respective delay curves should be estimated in such a way that D ≥ ΨL⊗D and
D ≤ ΨU ⊗D.
Modeling SOAs with performance constraints and guarantees adds further conditions

on the estimated curves. Despite of being valid bounds for arrival and delay flows the
estimated functions should be kept simple. Parameter sets of piece-wise linear functions
are small, have clear semantics and separate short-term variations. An estimation approach
for SLA Calculus should deliver this type of bounds.

10.1.1 Network Calculus Curve Estimation

Curve estimation for Network Calculus has been published in several works [37, 52, 67, 107].
In the following we will summarize the approaches and show that they are not suitable to
compute SDPs from measured traces, due to some specifics found in SOAs.
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Deconvolution Approach

In general arrival curves can be computed from arrival flows directly using (min,+)-
deconvolution. In [107, Chapter 1.2.4] Le Boudec and Thiran show that deconvolving a
flow with itself gives the so-called minimum arrival curve. In this context it is the smallest
of all valid upper arrival curves for a flow, not a lower bound. Hence the minimum arrival
curve αU for a flow R is

αU (t) = max
λ≥0
{R(t+ λ)−R(λ)} = (R�R)(t) (10.1)

The deconvolution approach was used in [67] to fit arrival curves. (min,+)-deconvolution
includes the maximum vertical distance between input and output flows. In [66] this is
exploited for curve estimation in a comparable sliding window approach.

In a similar way the maximum lower arrival curve can be determined. Replacing (min,+)
with (max,+)-deconvolution gives the upper bounds for R [67]:

αL(t) = min
λ≥0
{R(t+ λ)−R(λ)} = (R�R)(t) (10.2)

At a first glance the deconvolution approach has some advantages. The implementation in
a curve fitting tool is easy as (min,+)-deconvolution is a standard operation in Network
Calculus. No further knowledge on the arrival flow or the properties of the underlying
trace is necessary. Also the resulting curve is the best fitting curve for a flow instance.
At a second glance the approach is not well suited for SLA modeling in SLA Calculus.
The curve results are very detailed, the resulting curve will be a step function if the flow
is a step function. This misfits the idea of a simple representation with piecewise-linear
functions. Thus, the deconvolution approach will remain unused for curve estimation in
SLA Calculus.

Estimation of Affine Functions

A single affine function γr,b can serve as arrival curve with two parameters only. Although
its descriptiveness is rather limited, it is worth to have a look at estimation schemes for r
and b. The two parameters differ in estimation complexity. Rate r can easily be found by
inspection of arrival flow R. In Queueing Systems the average arrival rate for a system is
the sum of all arrivals na divided by time [35, Equation 6.23]:

λ(t) = na(t)
t

(10.3)

An arrival flow R(t) is also the sum of all arrivals up to time t, so we can use na(t) = R(t).
When an arrival flow is based on measurements it is finite, there must be a point of time
tf that belongs to the last measurement. For the arrival rate r we can conclude

r = R(tf )
tf

(10.4)

More elaborate is buffer size b. In Heckmann et. al. [52] b is computed for a given arrival
flow. It exploits the relationship between affine curves and leaky buckets, where b indicates
the bucket size.
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T-SPEC Estimation

T-SPEC contracts are a combination of two affine curves often used for network traffic
specification [100, 107]. Their four parameters p,M, r, b can be mapped to term γp,M ∧γr,b .
As demonstrated in Section 6.2.5 parameters r and b can be used to bound arrival flows in
the long-term, while p and M take responsibility for short-term behavior. The algorithm
of Heckmann et. al. is not capable to separate these flow properties.

To find T-SPEC contracts for network routers a scheme of how to translate observations
based on arrival traces is given in [37]. Measurements include size and interarrival times of
packets to a network interface. For short-term bounds the packet sizes are relevant. The
largest packet found in the trace marks the maximum arrival size M . Then continuous
sequences of M -sized packets are located, their maximum is used for the peak rate p.
Long-term rates r are based on Equation 10.4. Publication [37] does not indicate how the
last parameter b is found. We assume they use the duration of the longest M -sized packet
sequence to adjust b.
This translation scheme can, with small modifications, be employed to find lower

boundaries for flows. For the convex variant of T-SPEC curves minimum packet sizes and
the intervals with no arrivals are relevant. Parameter M is used to size the maximum time
interval with no traffic. Value p indicates the minimum short-term arrival rate. It is found
by locating the longest sequence of minimum-sized packets. Again [37] does not reveal how
to find b, but we can assume it is dependent on the length of the small packet sequence.
The average long-term arrival rate r is still based on Equation 10.4 and thus, equal to the
concave curve.

10.1.2 Noteworthiness for SOA models

In summary, the method for T-SPEC presented in [37] depends on maximum and minimum
packet sizes and the occurrence of sequences of these packets. The scheme can take
advantage of technical restrictions that exist in communication networks, a modeling
domain suitable for Network Calculus operating on packet or even byte stream level. In
the TCP/IP world one would say that modeling takes place at the transport, Internet or
even link layer [68]. End-to-end connections or lines transmit data packets one after the
other and so packet sequences can easily be identified. Another aspect of packet oriented
transmission systems is their specified upper packet size limit. For instance, in Ethernets
this is the Maximum Transfer Unit (MTU) giving the maximum length of a single Ethernet
frame. Network layer protocols like IP fit in their own packet lengths into a frame, hence
the MTU directly influences the size of a packet arrival in Network Calculus models. Both
properties can be exploited to estimate upper arrival curves.
In SOAs both preconditions do not hold. Job requests to services are not necessarily

sequential as packet arrivals to a network interface. Communication in SOAs and thus for
Web Services is on application level, so several requests to a single service can arrive almost
parallel. Multiple job requests, SOAP messages for example, might arrive in interleaved
packets in several TCP/IP connections. On bit and packet level these arrivals are still
sequential, but parallel from application perspective. When several small jobs arrive in
this way they can induce more system load than a larger single arrival (Figure 10.1). For

175



10 Curve Estimation
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Figure 10.1: Concurrent arrivals are possible in SOA: Workload induced by several small
request is greater than a single serial arrival

delay arrivals, being a theoretic construct without any technical limitation, such parallel
arrivals in the delay flow are seen if jobs finish at the same time. As a result, peak arrival
rate p cannot be determined as in [37] by observing a sequence of maximum sized packets
in a single stream. Differences exist also in the identification of maximum job sizes equal
to MTUs. Job sizes may not be limited for processing times and thus delay arrivals. There
may be no limiting timeout. Another aspect is that it is very unlikely to find two delay
arrivals of the same size in sequence, so utilizing the correlation of arrival sizes as in
Network Calculus is not possible. The special situation in SOA models renders the curve
estimation method in [37] unsuitable for SLA Calculus.

10.2 Curve Estimation for SLA Calculus

The following curve estimation scheme is tailored towards arrival processes and delay flows
in SOA. No prior knowledge on sizes and sequences of arrivals is required, input and output
traces are accepted. It is independent of the measurung unit, so curves for request and
delay arrivals to create SDPs are found. Estimated curves are compositions of piece-wise
linear functions. Matching a set of functions of type γr,b to bound a flow can be elaborative,
since there are at least two parameters for each function to fit. The problem is simplified
by splitting measured flows into sub-flows with single long-term rates and burst sizes each.
As a side effect, the number of affine functions in each curve is determined based on the
trace characteristic.
The curve estimation scheme is a shift in the paradigm of this work and SLA Calculus.

Previously, the focus was on deterministic performance guarantees for (composed) systems,
absolute knowledge on input bounds was assumed. Now a real system or running simulation
model is measured, and for practical reasons, the observation period has to be limited.
Not every state may be reached, thus one can not assume that the worst-case situation is
included in the trace. As a consequence, all curves derived from trace data can only set
bounds based on their measurements, other, not observed situations cannot be considered.
There will be an error the user should be aware of, and bounds for one trace might
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over- or underestimate the limits for other system runs. Furthermore, when curves are
estimated from arbitrary traces, a second trace measurement under same conditions might
not be conform. An option to avoid such violations is to formulate very loose-fitting
traffic contracts. This over-fitting might lead to very pessimistic assumptions on system
performance in a following analytic system analysis. The approach taken here is to accept
curve contract violations, quantify them and select the “best” fitting curve with respect to
several measurements.

10.2.1 Event Traces and Delay Flow Computation

Arrival and delay flows are based on events (c.f Sections 7.1.1 and 8.1.1): For the ith
event ei = (wi, ti) there is a weight wi describing the job size and ti marks the arrival time
(c.f. [17]). Curve estimation can work on event traces recordable at every system with an
input and departure process. For curve estimation the minimum data set contains arrivals
and departure times, the job size is the arrival event weight, default is wi = 1. An event
trace E is a set of events e1, . . . , en with ti ≤ tj for i < j. With the ordering event traces
and arrival flows can be used synonymously. An arrival flow R(t) is then a step-function
indicating the cumulated weights of arrival trace E:

R(t) =
k∑
i=1

w(ei) where k = max {i|ti ≤ t} and ei ∈ E (10.5)

Delay flows can be constructed from input and departure traces. When flow A is the arrival
flow and B is the departure flow, delay flow D is formed by computing the horizontal
distance (c.f. Section 6.2.2) of matching input and output events. Let ai, bi be a pair of
events with a ∈ A, b ∈ B generated on behalf of job request i. The new events (ti, wi) ∈ D
are given by ti = t(b) and wi = t(b)− t(a).

10.2.2 The Onion Bucket Algorithm

Our estimation scheme consists of an algorithm to determine curves from traces and a
validation process to discard not feasible solutions. The algorithm is called the onion
bucket algorithm since it shapes and cuts the flow like onion bulbs with the principles of
leaky buckets 1. For our description we will apply estimations to arrival flows, the reader
is free to apply them to delay flows, too.
The basic idea of the algorithm is the trivial fact that all arrival flows have an average

arrival rate when they include at least two arrival events. A rate can easily be computed
for a flow or trace R of limited length by Equation 10.4. When r1 is the long-term arrival
rate for R, one can see that there are arrivals conform to an arrival curve λr1(t) = r1t,
thus, they arrive at average rate, and some which are not arrive at a higher rate. When
conform and non-conform arrivals are identified the arrival flow can be split into two
sub-flows. Figure 10.2 shows the separation of R into two flows by λr1 : the light blue area
are the conform arrivals (R1), the darker blue area are the non-conform ones (R2). From a
global perspective, flow R2 is an arrival burst on top of R1. Arrival events that exceed

1For the record, there is no other serious reason for this name.
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Figure 10.2: Onion Bucket Algorithm: Every flow Ri has an average rate ri and burst size
bi. Non-conform arrivals form a residual flows that is bounded again with ri+1
and bi+1.

the long-term rate are arrival bursts that can be limited by affine functions as described
in Section 6.2.5. Or, using the metaphor of leaky buckets, the flow is conform to a leaky
bucket described by γr1,b1 with refill rate r1 and a still to be determined bucket size b1. In
Figure 10.2 this is visible as the red line with rate r1 and vertical shift b1.

A single affine curve may not be sufficient as an arrival limit, the rate of the bursts can
be controlled with curve compositions (c.f. Section 6.2.5). Since the bursts are isolated in
R2 we can again identify an average rate r2 and a bucket size b2 for R2. This gives us a
second affine curve γr2,b2 usable to limit the bursts in the original flow with a composed
arrival curve γr1,b1 ∧ γr2,b2 . We also receive a residual flow of higher-than average arrivals
R3. Figure 10.2 shows R3 as dark-blue area. Obviously we can repeat the step and receive
an even more detailed burst limit γri,bi

for residual flow Ri. The iteration stops either
when the residual flows contain one or zero arrivals or the bucket size for an iteration is
smaller than the weight of the largest arrival event.
The informal algorithm description above requires an approach to separate flows by

a rate and to determine the buffer size for a flow. Both tasks can be done by Network
Calculus greedy shaper elements implementing a linear shaping curve. Remember, the
greedy shaper buffers non-conform arrivals and outputs them as soon as possible. When
the shaper starts to buffer, there are arrivals destined for the buffer depicted as gray area
in Figure 10.3. This flow towards the buffer can be marked as non-conform and separated
from the main flow. We also see in Figure 10.3 that there are discontinuations in the
flow towards the buffer when the arrival rate drops below the rate of the shaping curve.
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Figure 10.3: Shaping for Onion Bucket Algorithm: Curve α separates burst phases (1 and
3) as new flows R1 and R2.

These flow fragments are dropped from the input to the next shaping iteration except the
fragment with the highest average rate. Flow fragments with lower rates will not contribute
to the arrival curve estimation and, as a bonus, the algorithm converges faster.
The buffer or bucket size is the difference between input and output given by Equa-

tion 6.40.

Concave Implementation

Further details and specifics of the estimation algorithm are added by the comments on
pseudo-code. Listing 1 contains the main loop generating affine functions and Listing 2 a
shaper for a set of flows. Initial input of Listing 1 is a measured arrival (or delay) flow
R. It is included in the first bulb, a data structure containing the sub-flows of each loop
iteration (Line 2). The output will be stored in the variable curve, a set of affine functions
with no initial content. The maximum arrival weight M is saved for the stopping condition
(Line 3).

The main algorithm runs in an infinite loop whose iterations are identified by counter
i: For all flows in the onion bulb the mean rates are computed and their maximum is
saved in ri (Line 8). Additionally the maximum buffer requirement bi for a shaper with
a linear curve of rate ri is estimated for all flows in the bulb. Buffer estimation function
x(flow, rate) is discussed below. Now the first (i = 1) upper bound is known, function
γi(t) = ri · t+ bi is added to data structure curve (Line 16). γi limits the flow R in the
long-term, the next iteration will give limits for a shorter time horizon. To find rate limits
for these short phases, the sub-flows with a higher rate than ri have to be shaped of from

179



10 Curve Estimation

R. As a small optimization, in Line 22 all flows with buffer requirements smaller than M
are removed.

The shaping itself is performed in function shapeAndCut (Listing 2): Input is the set
onion of arrival flows and the rate parameter r for a shaping curve. Return value bulb is
initialized as an empty set of flows. For all flows Ri in onion the following procedure is
repeated: k is the iteration counter and start marks the beginning of a backlogging phase.
The implementation uses an affine shaping curve whose y-axis intercept is variated with
b, this will be covered later. In the inner loop over events ej ∈ Ri the cumulated weight
Ri(t(ej)) is compared to the value of the shaping curve γ(t(ej)) to decide if backlogging is
required. If a backlogging phase starts, a new flow data structure lossF lowk is created
(Line 4). It will contain arrivals in Ri that are non-conform for the shaper and thus have
to be backlogged. The offset start is set to the arrival time of the last event ej−1 before
backlogging started (Line 14). This is necessary to preserve the rate induced by ej in the
new flow. All succeeding events in the backlogging phase are transformed to new events e′
using offset start and their full weight (Line 18). If not backlogging, the shaping curve is
lowered by adjusting b to simulate the effect of a (min,+)-convolution.

We return to Listing 1. The next loop iteration starts with the new set of flows generated
by the shaper in Line 23 giving the next affine function. The loop runs as long as there are
flows in set bulb that can be bound by an affine function and shaped to sub-flows (Line
24). Maximum arrival size M was saved at the beginning to set all bi to at least M . We
decided to do so because when there is an arrival of weight M the minimum bucket size
has to be greater or equal to M , otherwise the arrival could never pass the system. For
this reason condition endPhase is set in Line 21 to ensure that no buffer requirement is
smaller than M . It decides in Line 15 if a new affine curve is added or the last one is just
updated with a new rate.

The maximum buffer size estimation is based on Equation 6.40 (Figure 6.17), but takes
care of the step function nature of R and discrete event arrivals:

x(R, r) = max
t>0

{
sup

0≤s≤t
{R(t)−R(s)− w(s)− r(t− s)}

}
(10.6)

When evaluating x(R, r) at t(ei) only the left beginning of each step in R(t) is considered
(as symbolized in Figure 10.5). To include the time interval between two succeeding events
ei, ei+1 term w(s) is subtracted. When an event has to be buffered, it is buffered as a
whole, thus the maximum of the required buffer and the event is used (Line 12).

Convex Implementation

A convex version of the algorithm for lower arrival curves can be implemented by the
usage of minimum instead of maximum operations for rates and replacing bucket sizes bi
with time-axis intercepts T to get a set of rate-latency curves βR,T . Instead of maximum
arrival M , the maximum interarrival time can be used (see Figure 6.12). Listing 1 has to
be changed in some lines:

• replace maximum weight with the maximum interarrival time maxIA (line 3)

• and transform it to a y-axis intercept: M = −maxIA · r
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Algorithm 1 Fitting upper (concave) ar-
rival curves

1: curve← {}
2: bulb← {R}
3: M ← maxWeight(bulb)
4: endPhase← false
5: loopActive← true
6: i← 1
7: repeat
8: ri = max(rate(bulb))
9: bi ← t← 0

10: for all R ∈ bulb do
11: myBuffer ← x(R, ri)
12: bi ← max(myBuffer, bi)
13: end for
14: b← max(bi,M)
15: if ¬endPhase then
16: curve ∪ (ri, bi)
17: t← i
18: else
19: rt ← ri
20: end if
21: endPhase← bi ≤M
22: bulb ← {R : R ∈ bulb, x(R, ri) ≥

M}
23: bulb← shapeAndCut(bulb, ri)
24: loopActive← elements(bulb) > 0
25: i← i+ 1
26: until ¬loopActive
27: return curve

Algorithm 2 Shaper implementation
1: function shapeAndCut(onion, r)
2: bulb← {}
3: for all flow ∈ Onion do
4: lossF low ← {}
5: start← 0
6: b← 0
7: k ← 0
8: backLogging ← false
9: for all ej ∈ flow do

10: if R(t(ej)) > r · t(ej) + b then
11: if ¬backLogging then
12: backLogging ← true
13: k ← k + 1
14: start← t(ej−1)
15: lossF lowk ← {}
16: bulb← bulb∪lossF lowk
17: end if
18: e′ = (t(ej)− start, w(ej))
19: lossF lowk ← lossF lowk ∪

e′

20: else
21: backlogging ← false
22: b← R(t(ej))− r · t(ej)
23: end if
24: end for
25: end for
26: return bulb
27: end function

• search for minimum rate (line 8) and minimum buffer (line 12 and 14)

In the shaper implementation of Listing 2 some lines have also to be changed:

• begin backlogging if R(t(ei)) < r · t(ej) + b (line 10)

• replace line 14 with startT ime← min
{

(r·t(ej)+b)−w(ej−1)
r , t(ej)− t(ej−1)

}
• replace line 22 with b← R(t(ej−1))− r · t(ej)

The weight of the previous event is subtracted from the shaper function for startT ime to
include the beginning of every step in flow R.
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10.3 Model Selection

A single set of curves for an SDP can be found with the Onion Bucket Algorithm based on
a trace set. The functions are fitted to exactly bound the arrival and delay flows given
by the traces, but with finite measurement length not all situations are considered. As
a consequence, the curve from one trace might be too tight, when applied, other traces
under the same conditions might violate it.

An obvious solution here would be to record several traces from a system, estimate their
bounds and use their maxima and minima. This approach could approximate or even
yield the real bounds. Unfortunately, this works for systems with existing process limits
only, but this cannot be assumed for an estimation method that does not require a priori
information. For example, if the arrival model is Poisson there is no absolute bound on the
arrival process and thus on bursts. For this reason we estimate curves for a larger set traces
and select the candidates that characterize all arrival and delay flows best. The decision
on the “best” curve is based on the fitting criteria intended to minimize the number of
curve violations when applied to all trace sets. The tool for this curve selection used here
is Hold-Out Validation [61].

10.3.1 Calibration and Validation

The selection process of Hold-Out Validation is applied to a set of traces recorded from a
system under measurement. It is split into phases for model calibration and validation.
In the calibration phase a group of curves for an SDP is estimated for a smaller subset of
traces, in the validation phase it has to show its fitting quality according to the remaining
traces. Phase separation in hold-out validation avoids over-fitting of curves.
Let T be a set of arrival and departure flow pairs {Ri, R∗i } respective traces. For

calibration a subset TC ⊂ T is used: In our experiments we used the first 10% of traces
in T . The Onion Bucket Algorithm is executed for all {Ri, R∗i } ∈ TC resulting in curve
groups {αUi , αLi ,ΨU

i ,ΨL
i }. Goal of the calibration phase is to identify a single SDP SPC =

{αUC , αLC ,ΨU
C ,ΨL

C} that characterizes and limits the arrival and delay processes in TC best.
We exemplarily continue with αUi , the same procedure is applied to the other three curve
types individually. With αUi we have a valid bound for the arrival process described by Ri.
For other flows the bound might be too loose or too tight and curve contract violations
might occur. This error is quantified for all traces in TC with a cost or error function
C(αUi , Rj) assessing the fitting quality when αUi is applied to limit Rj with j 6= i and
{Rj , R∗j} ∈ TC . A curve αUi is selected as a candidate αUC for a minimum sum of costs for
all traces in TC .
With candidate set SPC the validation phase is started to check if SPC is also a valid

characterization of the remaining traces TV = T \ TC . For each of the four curves in SPC
the fitting quality with {Rj , R∗j} ∈ TV is evaluated using the cost function. The results are
averaged and their standard deviation is computed. A curve candidate is accepted, if the
confidence interval of its validation results shows a significant distance to the error values
of discarded curves estimated in the calibration phase.
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10.3.2 Cost Function and Fitting Criteria

To assess the level of conformance of a flow and a curve, three criteria are combined in the
cost function C. Avoiding curve contract violations is the primary goal for curve estimation
in SLA Calculus and so the two criteria are based on intersections of flows and curves.
The severeness of a violation is captured by the intersection area, its duration by the
intersection length. Figure 10.4 shows both criteria applied to an exemplary arrival flow.
The third criterion is introduced as an antagonist to the first two to gratify tight bounds.
It is based on the distance between flow and curve.
The indicator function is used to indicate curve contract violations:

1(a,b)(x) =
{

1 a ≤ x ≤ b
0 otherwise

(10.7)

Function ω(R) returns the arrival time of the last event relative to the first event, thus
when e1 ∈ R is the first and ez ∈ R is the last event ω(R) = t(ez) − t(e1) holds. The
criteria functions are designed in a way that f is the curve and R is the flow. For assessing
lower bounds f and R have to be exchanged.

Intersection Time

The intersection time between arrival flow f and curve R indicates the fraction of time a
curve contract is violated by an arrival process within the observation interval.

it(f,R) =
∫ ω(R)

0
x · 1(0,∞)(R(x)− f(x)) dx (10.8)

The indicator function includes time intervals with intersections in the sum only.
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Intersected Area

As the second fitting criterion the area between flow and curve (Figure 10.4) spanned by
curve contract violations is used:

ia(f,R) =
∫ ω(R)

0
(R(x)− f(x)) · 1(0,∞)(R(x)− f(x)) dx (10.9)

This criterion is included in our estimation method to anticipate short but severe curve
contract violations.

Mean Squared Distance

As a measure of distance between curve and flow the mean squared distance is included.
Criteria based on intersection return a value of 0 if there is no curve contract violation at
all. From the opposite perspective there is no way to quantify with intersection criteria on
how tight the limits imposed by estimated curves are. A measure giving reward on a tight
fit between curve and flow is the cumulated distance, or as used here, the squared distance
eliminating negative distance figures.

mse(f,R) =
∑
t∈ER

(R(t)− f(t))2 (10.10)

Time-Invariant Criteria

With the three criteria as described above one determines the fitting quality in interval
[0, ω(R)]. The claim of curve contracts as described in Section 6.2.3 is that they apply to
all intervals regardless of their length. As a consequence, criteria have to be time-invariant,
too. Considering the interval for the complete trace only brings the risk of not including
curve violations that occur when the curve is “moved” along the trace. Figure 10.5 shows
such a situation for an upper curve, where only one computation of the fitting criteria
would ignore a contract violation. Applying the curve at t = 0 will indicate no contract
violation as R(t) < αU (t) ∀t. If we apply the arrival curve at the interval starting at m,
later arrivals clearly violate the curve contract.
To simulate the time invariance of curve contracts in fitting criteria we decided to fix

the curve to the origin and move the flow instead. This is achieved by the successive
removal of the first event in the input trace, shifting the time indices of remaining events
and computation of the criterion. Our decision to implement time invariance this way is
based on the performance gain when the number of events is reduced. Let E be an event
trace for an arrival or departure flow, notation |E| gives the number of included events.
Operator S shifts the trace by time span ∆:

S(E,∆) =
{
e′|e′ = [t(e)−∆, w(e), a(e)], e ∈ E, t(e)−∆ ≥ 0

}
(10.11)

The average value of each criterion c ∈ {ia, it,mse} under consideration of time-invariance
is then

AV G(c, f,R) =
∑
e∈R

c(f,R)
pc · |S(R, t(e))| · ω(S(R, t(e))) (10.12)
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Function results from the three criteria are dependent on the input trace length. Different
experiments might yield different trace sizes and operator S(E,∆) does also variate their
length. To compare criteria figures independent of trace lengths, values are normalized to
interval [0, 1] using the theoretic worst-case.
Worst-case intersection time is equal for concave and convex curves:

pit(α,R) = ω(R) (10.13)

For concave curves (used for upper bounds) the worst-case intersected area is given by

pia(α,R) =
∫ ω(R)

0
R(x) dx (10.14)

and for convex curves for lower bounds it is

pia(α,R) =
∫ ω(R)

0
α(x) dx (10.15)

The worst-case for the mean squared distance criterion is to have no arrivals at all. This
is equivalent to an arrival flow RZ with arrivals of zero weight. For practical implementation
RZ has to include arrivals, we use the intersection points of the line segments in curve
contracts. Let xi be the abscissa value for the intersection point of line segment γi and
γi+1.

ERZ
= {0, x1, x2, . . . , xn−1, ωR} (10.16)

is the set of events based on intersection points. Then the flow is given by

RZ = {ei|ei = (ti, 0, i) : ti ∈ ERZ
} (10.17)

and the worst-case is computed by

pmse(α,R) = mse(α,RZ) (10.18)

The overall cost function is given as a weighted sum of all three criteria being normalized:

C(α,R) = ait ·
AV G(it, α,R)

pit
+ aia ·

AV G(ia, α,R)
pia

+ amse ·
AV G(mse, α,R)

pmse
(10.19)

with ait ≥ 0, aia ≥ 0, amse ≥ 0 and ait + aia + amse = 1.

10.4 Implementation and Experiment

The goal of the testbed is to estimate an SDP for a model analyzed in a simulator. The
Onion Bucket Algorithm and the described model selection were implemented in an SDP
fitting tool. sc_estimator accepts a set of trace file pairs that have been recorded at
the same system at different runs. Each pair consists of files with measured arrival and
departure times. Output are four curves bounding arrival and delay for each trace file
pair, additionally, for each kind of limiting curve the best fitting instance is marked.
sc_estimator is implemented in C++ featuring a command line interface. This simple
interface allows integration in model fitting workflows based on the Processes Fitting
Toolkit Dortmund (ProFiDo) tool [20] as a future work.
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Figure 10.6: Modified OMNeT++ call center model with trace output

10.4.1 Model and Experiment Setup

Compared to the previous chapters a different model is set up for the following experiment.
To generate a set of input and output traces the OMNeT++ simulator [112, 113] was used.
The model under test is a variation of the call center model provided in the examples of
the OMNeT++ queueing library examples. Figure 10.6 shows a screenshot of the model as
presented in the OMNeT++ GUI. The original call center ends in the router component
in the right part of the model, its output drives a simple server system. Arrivals to the
model are customer calls with exponential distributed interarrival times (µ = 15s). A
classifier routes the calls to different waiting lines, after talking the customer either hangs
up (thus leaves the system) or is forwarded, after some delay, to the classifier again. For our
experiment we are interested in the arrival process of served customers hanging up being
observable at the router, it forms the arrival flow. We have chosen this model configuration
to include a source with a non-trivial interarrival time distribution in the system. The
exponential distributed interarrival times of calls are modified while passing the call center
model.

To support our experiment setup we added two trace writers and a queue element. The
arrival writer records every customer hanging up as an arrival to a file. Before the calls
are removed from the model they are sent to the added queue. Its server offers service
times given by a truncated normal distribution (µ = 5s, σ = 2s). Finally, the server
output is recorded as departure flow by the second trace writer to another file. With the
described experiment setup the arrival flow to be bound with the Onion Bucket algorithm
is determined by the call center model, while the departures flow (and thus the delay) is
given by the queue.

For the experiment we generated 100 pairs of traces with identical parameters for 100000s
of model time each. Unique trajectories due to different system runs were ensured by
varying random number generator seeds. To avoid the transient phase the arrivals of the
first 2000 time units were dropped. All three criteria were equally weighted for curve
selection (ait = aia = amse = 1

3). The initial trace set is divided into two subsets for
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calibration (first 10 runs) and validation (remaining 90 runs). For each estimated curve a
computation time of about one hour was necessary.

10.4.2 Experiment Results

The estimated SDP describing the arrival process to and the delay process of the server
element in the model is

SLA =


αU = min(γ1229.6,1.0, γ0.5931,3.1065, γ0.0656,90.6407)
αL = max(β0.0323,−4.5749, β0.0532,−8.7103, β0.0628,−71.7494
ΨU = min(γ215.749,35.4441, γ2.4737,106.168, γ0.4220,645.733)
ΨL = max(β0.1995,−29.1075, β0.3980,−874.584)


Detailed tables with all estimated, but not selected curves and their calibration findings
can be found in Appendix D.2. The algorithm assigned up to four line segments to every
curve type, the selected curves feature three. For ΨL the first segment, β0,0, is redundant
due to the definition of βR,T and thus omitted here (compare Table D.11).
The last segments in αU and αL limiting the long-term arrival rate are determined by

the arrival rate of incoming calls to the call center. An average rate of r1 ≈ 1
15 = 0.06̄ is

almost exactly mirrored by αU and approximated by αL from below. For the third segment
in αU the computed buffer size is 1, this equals the default arrival weight. The delay curves
limit the long-term delay rate by 0.422 from above and 0.398 from below.
Next to curves and statistical information sc_estimator outputs gnuplot scripts to

plot flows and estimated curves. All plots f can be optionally transformed to g by
g(t) = f(t)−r1 ·t to make them appear horizontal. We have chosen this way of presentation
to point out estimation quality and errors. In Figure 10.7 αU is plotted together with the
arrival flow (#8) it is based on. The estimated curve always stays above the arrival flow
independent of the starting point s and we have

R(t) ≤ inf
0≤s≤t

{R(t− s) + αU (s)} = (R⊗αU )(t) (10.20)

Indeed αU is a upper arrival curve for flow R, the algorithm even considered extrema in
the input data. The dashed line in Figure 10.7 depicts such a situation where bucket size b1
is used completely to fulfill this relationship. In Figure 10.8 αL is shown together with its
corresponding flow, the selected curve instance for ΨU and ΨL are shown in Figures 10.9
and 10.10. For the readers delight, Figure 10.11 shows a situation found by the estimation
tool during calibration when ΨU is not a valid upper bound on another flow. Obviously,
when ΨU is applied at t ≈ 25000 the curve intersects the flow.

The curves forming SDP SLA have been selected by the algorithm for their fitting
quality during calibration. In Tables D.6, D.8, D.10 and D.12 the fitting results during
the calibration phase are listed. Rows corresponding to curves selected for SDP SLA are
printed bold. The mean squared distance criterion has an interesting impact on curve
selection. On the one hand, from the calibration set the upper arrival curve computed for
flow 8 was selected (Table D.6) for its low overall mean. Although it shows a high mean
squared error value it has no (or less than the six decimal place’s resolution) intersections.
On the other hand, upper delay curve 8 has virtually no curve violations for the calibration
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Figure 10.7: Green function: Estimated upper arrival curve αL with arrival flow (#8, red).
The dashed line shows the burst situation leading to b1 = 90.64.
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Figure 10.8: Flow #1 with estimated lower arrival curve αL.

set (c.f. Table D.8), but remains unselected due to its high distance to the flows. Instead,
curve 2 was preferred despite curve violations. The explanation for these selections is the
low variance in the arrival and delay traces, so the estimated long-term contract (r1, b1)
becomes important. Arrival Curve 8 has the highest r1 of all curve candidates, additionally
r2 and b1 are also high. Also for the selected upper delay curve based on flow 2 the
long-term delay rate r1 outstands together with a large, but not largest buffer capacity
b1. This segment parameter combination results in less local curve violations, but if a flow
has a low average rate the mean squared distance increases. The addition of the mean
squared distance criteria helps to balance between local and global fitting. As an example,
in Figure 10.12 curve αU is plotted together with a flow 1 from the calibration set. This
combination showed the worst combined criteria results during calibration. Although αU
is a valid upper bound for this flow it is not a tight bound. Again, no curve violations can
be found, but the difference between long-term rate and average flow rate leads a high
distance error.

The four selected curve candidates are applied to the validation set in the second phase.
Table 10.4.2 includes the validation results when the curves are applied to the remaining
90 traces. The results for each criteria are averaged and finally a weighted overall error
including a 95% confidence interval is computed. For αU the average error value 0.0014071
is [0.001399, 0.0014152]. When compared to the calibration results in Table D.6, the
selected curve has a decent distance to the mean error of other curves in the calibration set.
The same holds for αL, ΨU and ΨL, hence the estimated curves pass the validation phase.
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Figure 10.9: Delay flow with estimated ΨU (curve #2), the dashed line shows the maximum
burst situation.
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Figure 10.10: Flow #1 with estimated lower delay curve ΨL.
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Figure 10.11: ΨU with worst fitting flow. Using ΨU as delay bound leads to curve violations.
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Figure 10.12: Arrival flow #1 with αU : Estimated bound is too loose.
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Table 10.1: Validation findings
Curve Intersected Area Intersection Time Mean Squared Error Combined

mean std. mean std. mean std. mean std. 95% Confidence

αU 0.00000 0.00000 0.00004 0.00036 0.00418 0.00112 0.00141 0.000368 [0.001399, 0.0014152]
αL 0.00000 0.00001 0.01960 0.01308 0.00490 0.00131 0.00817 0.004197 [0.008076, 0.0082605]
ΨU 0.00002 0.00013 0.00283 0.01292 0.00605 0.00203 0.00297 0.004205 [0.002878, 0.0030627]
ΨL 0.00000 0.00000 0.00244 0.00429 0.01474 0.00357 0.00573 0.001651 [0.005689, 0.0057618]

10.4.3 Discussion

A single parameter was neither discussed nor optimized: the weight of each fitting criterion
in cost function (10.19). Curve selection during the calibration phase is heavily dependent
on these weights. In the experiment we distributed the weight equally for the curve
selection, depending on the field of application a different weighting could have been chosen.
For example, the intersected area criterion might be preferred but results in small numbers.
In other situations, when there is plenty of computing capacity available, the weight of the
mean squared error can be reduced. So, for same input data but different weights the tool
will yield different SDPs. Future research should develop parameter policies for different
fields of applications.
This brings us to another, more general aspect on curve estimation when it is used

to compute SDPs: While SLA Calculus assumes that all SDPs represent deterministic
performance guarantees even in worst-case, the estimation tool accepts fitting errors.
Furthermore, it is based on the input data quality and length since it can consider
situations only that appear in traces. In the end, the curve estimation approach presented
suffers from the same faults as simulation. This opens another research field to quantify
the estimation error.
Yet we think the estimation scheme is a suitable tool to derive SDPs for systems. It

shows its qualities for black box systems. It also is practical when it is to elaborative to
derive bounding curves out of detailed system specifications as done in Real-Time Calculus.
However, the modeller using SLA Calculus should keep in mind that estimated curves have
limited precision.
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In this thesis SLA Calculus as a novel method based on Network Calculus to model
quantitative requirements in SLAs for SOAs was introduced. It allows to compute and
validate performance requirements given by SLAs. Service descriptions are purely based on
contracted bounds originating from SLAs. For service compositions deterministic and thus,
dependable results on workload capacity and delay are computable. Key features are the
exclusion of any stochastic model element and to analyze for worst-case situations. Still,
performance descriptions may extend beyond simple maximum rates and hard deadlines.
Arrival processes with bursts and response times in systems with downtimes can be
described in detail for short- and long-term using Network Calculus curve contracts.
The enabling factors for SLA validation are the definition of delay flows and their

envelopes. With delay curves the latency of services within a time interval can be bounded
from above and, if necessary, from below. Long- and short-term goals for delay rates can be
set, when piece-wise linear functions are used, the semantics are simple. Since SLAs do not
include detailed information on service rates, delay curves serve as a substitute for service
curves. This is further supported by the introduction of SDPs as basic system model. SDPs
combine arrival and delay curves to represent an implication found in SLAs: A maximum
delay can only be guaranteed when the workload is limited. Hence, in SLA Calculus
services are black boxes with upper and lower bounds for arrival and delay processes.
To support service composition we provide performance bounds for basic workflow

structures. Based on individual SDPs global SDPs are computable and can be used to
validate given SLAs by comparison. The calculus features theorems for concatenation,
routing, fork/join and loops serial and parallel composition of SDPs, upper and lower
bounds are considered in all compositions. Workloads bounds are narrowed in compositions
to avoid overloading individual services. Delay bounds, due to the nature of passed time
not being distributable, are summed up or maximized to include the worst-case. Found
limits are pessimistic, but can help to reduce the risk of contract breaches significantly.
By focusing on deterministic delay guarantees based on arrival contracts, we also got new
insights in serial workflows: To enable service guarantees for workflows, requests have
to be buffered at every service. Without buffers, the increased output burstiness of one
service might violate the arrival contract of subsequent services. Since buffering introduces
additional delay, a correction term based on required buffer sizes is added to all composition
theorems. On the negative side some properties dedicated to Network Calculus are lost, for
example, service sequences cannot be reordered due to lost linearity. Limiting buffer delays
and linking Network Calculus to SLA Calculus requires the initially unknown service curve
provided by a SDP. We solve this problem with service curve computation. The approach
is, using (min,+)-deconvolution, purely analytic. With curve estimation for SLA Calculus
we provide a method to find the characterizing SDPs for existing services. Arrival and
delay curves are extracted out of traces, no prior knowledge on the measured system is
required. The new method is necessary since methods for Network Calculus are based on
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some limitations in computer networks that do not apply to SOAs. However, since a single
trace limited in length does not include all aspects of system behavior, we also provide a
selection and validation workflow based on the set of traces. With this statistical element
fitting errors have to be considered.

The research on a novel analytic modeling method for SOAs with SLA is justified. Due
to the information hiding approach in SOAs SLAs are often the only available quantitative
system description, models should be modest with parameters. Yet, a fast analysis is
required for drafted models, fast service selection and enabling advanced functionalities in
service brokers. When workflows are composed, reliable performance bounds are required
to issue own SLAs. Still some form of tolerance is desired to compensate the stochastic
nature of networks. At these points, many established system performance models fail.
They are unable to derive deterministic limits, cannot consider worst-case scenarios in
analysis or require long computation times. Based on our evaluation we consider Queueing
Networks, Simulation and Network Calculus as unsuitable modeling methods for SLAs
validation.

In an running example the benefits and downsides of each modeling method for SLA
validation are demonstrated. Queueing Networks and simulation give optimistic results on
the expected average response time. With Network Calculus bottlenecks in the composition
are detected, still the commutative service curves give no information on internal contract
breaches. The suggested SLA Calculus gives valid but pessimistic results for the worst-case.
In this context, it is up to the modeler to decide which method is suitable to him or her,
yet with SLA Calculus it is the first time that nonfunctional requirements on performance
in SLAs can be used in a method that offers efficient analysis and deterministic bounds at
the same time.
The work presented in this thesis can be extended in calculus and software support.

Customer classes and priorities known to Real-Time Calculus remained unconsidered, their
inclusion would enable QoS levels. Furthermore, Real-Time Calculus makes use of upper
service curves for better departure bounds. Service curve computation could be extended
in this direction using lower arrival and delay contracts.

For the underlying method a step away from 100% deterministic analysis could improve
a modeler’s perspective on systems. In a first step, product-form Queueing Systems and
SLA Calculus could be combined for SOAs performance analysis. Both methods feature
efficient analysis, but SLA Calculus cannot give average results and performance limits with
Queueing Systems analysis are elaborative. A joined analysis would still be efficient, but
delivers performance results with lower, average and upper figures. This way, modelers get
a wider perspective on systems. The second step would be the dissolution of deterministic
bounds in SLA Calculus using the theory of Stochastic Network Calculus [56]. In Stochastic
Network Calculus, every curve envelope is related to a conformance probability. The idea
is that stochastic envelopes with a probability smaller than 1 can be defined tighter. As an
effect, modeling of worst-case situations get lost, one gets “almost worst-case” results only.
The advantage of this trade-off are less pessimistic results for real world applications.

For practical applications the software support for SLA Calculus can be extended. A
GUI for service compositions or integration with the ProC/B toolkit would extend the
user base. Also, a formal or even automatic transformation from SLAs given in an XML
dialect to SDPs is lacking.
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When service workflows are modeled analyzed with SLA Calculus and finally, go into
operation one might also monitor their performance at runtime. Service providers need
continuous monitoring to respond to complaints, customers will control their workload
level to see bottlenecks early. The customer can control if he reacts conform to the SLA
and can also see if the provider is conform. Further development of curve estimation in
Chapter 10 could enable a monitoring tool. Based on live input data the bounding curves
for a flow can be computed and compared to contracted ones.
We also envision a new kind of delay-aware service composition for service brokers.

It aggregates several providers with limited capacity to serve a certain workload. With
variating workload the providers are exchanged to keep monetary costs as low as possible.
The novelity is that deterministic delay guarantees are possible, when the selection algorithm
is based on SLA Calculus models. Key element is the theorem for parallel services with
routing. In first sketches we found the underlying optimization problem to be non-linear,
thus for efficient solutions some research is necessary.
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A.1 Basic Functions for Curves
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Figure A.1: Affine function γr,b(t) with
rate r and burst b
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Figure A.2: Rate-latency function βR,T (t)
with rate R and latency T
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Figure A.3: Burst-delay function δT (t)
for usage in delay elements
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Figure A.4: Step Function uT (t)
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A.2 Overview of Used Symbols

Symbol Description See also Page

G Set of wide-sense increasing functions Definition 6.1.4 73
F Subset of G with f(t) = 0 for t < 0 Definition 6.1.4 73
F0 Subset of F with f(t) = 0 for t ≤ 0 Definition 6.1.4 73
f1 ∧ f2 Pointwise minimum of functions f1 and f2 Section 6.1 73
f ⊗ g (min,+)-Convolution Definition 6.1.6 76
f � g (min,+)-Deconvolution Definition 6.1.7 77
f ⊗ g (max,+)-Deconvolution Definition 6.1.8 78
f1 ∨ f2 Pointwise maximum of functions f1 and f2 Section 6.1.7 78
f Sub-additive closure of function f Definition 6.1.11 79
f Super-additive closure of function f Definition 6.1.11 79
f◦ Function f with explicit f(0) = 0 Lemma 6.3 79
R(t) Arrival flow: cumulative arrivals Definition 6.2.1 80
R∗(t) Departure flow: cumulative departures Section 6.2.1 80
v (f, g) (t) Vertical deviation between f, g Definition 6.2.2 82
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B Proofs for Network Calculus

B.1 Proof of Corollary 6.1 (See page 78)

Corollary 6.1 (Sub-additivity of concave functions). Any concave function f with f(0) = 0
is sub-additive.

Proof. The proof is based on the result that concave functions are star-shaped [107, Thm.
3.1.4]. Let s, t be two variables with s ≤ t. Obviously s ≤ s+ t and since f is star-shaped
we can write

f(s+ t)
s+ t

≤ f(s)
s

(B.1)

f(s+ t) ≤ (s+ t)f(s)
s

(B.2)

= f(s) + tf(s)
s

(B.3)

Using the star-shaped property again, we know that

f(s)
s
≤ f(t)

t
(B.4)

tf(s)
s
≤ f(t) (B.5)

Combining both results one can state

f(s+ t) ≤ f(s) + f(t) (B.6)

B.2 Proof of Corollary 6.2 (See page 78)

Corollary 6.2 (Super-additivity of convex functions). Any convex function f with f(0) = 0
is super-additive.

Proof. Recalling the definition of a convex function f and by precondition f(y) = 0 for
y = 0 we can identify the following rule:

f(zx+ (1− z) · 0) ≤ zf(x) + (1− z)f(0) (B.7)
f(zx) ≤ zf(x) (B.8)
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Now, for two variables s, t:

f(s) + f(t) = f

(
(t+ s) t

t+ s

)
+ f

(
(t+ s) s

t+ s

)
(B.9)

≤ t

t+ s
f(t+ s) + s

t+ s
f(t+ s) using (B.8) (B.10)

= f(t+ s) ·
(

t

t+ s
+ s

t+ s

)
(B.11)

= f(s+ t) (B.12)
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C Proofs for SLA Calculus

This appendix contains the proofs for some non-central theorems in Chapter 8.

C.1 Proof of Theorem 8.1 (See page 131)

Theorem 8.1 (Input-Output Characterization of Prefetchers). Consider a prefetcher
implementing a lower envelop αL for arrival flow R. At t = 0 there is no debt towards R
and R(t) > 0 for t ≥ 0 holds such that prefetching is possible. The output flow is given by

R∗(t) = (R⊗αL)(t) (8.5)

Proof. Consider a system that accepts flow R as input and has a departure flow S with
constraints

S ≥ R and S ≥ S⊗αL (C.1)
A system fulfilling the first condition above has to emit arrivals before the corresponding
“real” arrival since the output can be higher than the input. The output has a lower
envelope of αL by the second condition. Although (C.1) is fulfilled this is not necessarily
a prefetcher. The counterexample is a departure flow S(t) =∞ indicating the unlimited
accumulation of debt towards the arrival flow, instead of stopping prefetching as soon
as possible. A system stopping as soon as possible would produce an output that is the
minimal solution to (C.1).
One can show that R⊗αL is the optimal solution (minimal bound) to (C.1). The

departure flow of a prefetcher shall be S∗ = R⊗αL.
Let S′ be another solution to (C.1), so it has αL as lower traffic envelope. By definition

of the prefetcher, S′ = S′⊗αL. Then we have an output that at least equals the input
S′ ≥ R. By monotonicity of ⊗ follows

S′ ≥ R⊗αL = S∗ (C.2)

Now, with a minimal solution, one can show that R∗ = S∗. Input R is wide-sense
increasing, so is the output S∗.
R∗ as departure flow has to be a solution for a system with conditions C.1 and so R∗(t) ≥

S∗(t) ∀t holds. In case of R∗(t) > S∗(t) there would be a situation with accumulation of
debt towards the arrival flow R. This is inconsistent with the definition of a prefetcher that
has to avoid arrival flow debt, thus solution S∗ has to be equal to departure flow R.

C.2 Proof of Theorem 8.7 (See page 137)

Theorem 8.7 (Convolution of Super-Additive Functions). When two functions f and g
are super-additive then their convolution can be simplified to the point-wise maximum.

f ⊗ g = f ∨ g (8.28)
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Proof. (⇒) To proof one direction we start with the observation

f ∨ g ≤ f◦ ∨ g◦ ≤ f◦⊗ g◦ (C.3)

We also know by the monotonicity of the super-additive closure that if f ≤ g then f ≤ g
holds.

( f ∨ g ) ≥ (f◦⊗ g◦) = f ⊗ g (C.4)

So for the right side of the theorem we can write

f ∨ g ≤ (f◦⊗ g◦) = f ⊗ g (C.5)

(⇐) The other direction of the proof starts using the monotonicity of max() (see [38,
Section 6.1]):

f ≤ f ∨ g (C.6)
g ≤ g ∨ f (C.7)

and in combination with (C.4) we get

f ≤ f ∨ g (C.8)
g ≤ g ∨ f (C.9)

By the monotonicity of ⊗ [38, Section 6.1] and g⊗ g = g if and only if g is super-additive
one can write for the left side

f ⊗ g ≤ ( f ∨ g )⊗ ( f ∨ g ) = f ∨ g (C.10)
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D Experiment Results

D.1 ProC/B Simulation Results

Measurement Simulation Time

10000 20000 50000 100000 1000000

Utilization
Mean 0.9912 0.9930 0.9875 0.9885 0.9885
Standard Deviation 0.0971 0.0841 0.1123 0.1084 0.1066
Confidence 90% 2.2269% 1.9925% 1.7134% 1.2703% 0.4522%

Throughput
Mean 8.0159 8.0150 7.9922 7.9956 8.0043
Standard Deviation 0.1250 0.1247 0.1251 0.1251 0.1250
Confidence 90% 0.7687% 0.5520% 0.3105% 0.2438% 0.1982%

Population
Mean 57.2328 83.1361 73.1683 77.5544 83.3045
Standard Deviation 39.9496 69.0944 65.1497 68.6656 88.0788
Confidence 90% 22.7902% 30.9151% 26.9257% 20.1518% 9.8191%

Turnaround Time
Mean 7.1342 10.3724 9.1541 9.6954 10.4076
Standard Deviation 4.9155 8.6129 8.1038 8.5316 10.9411
Confidence 90% 21.8159% 30.3666% 22.9645% 17.5227% 8.5635%

CPU Time
8.88s 18.18s 45.55s 91.40s 922.70s

Table D.1: Simulation results for HollowEarth service (M/M/1 queue, λ = 8.0, µ = 8.1)
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D Experiment Results

Measurement Simulation Time

10000 20000 50000 100000 1000000

Utilization
Mean 0.6854 0.6867 0.6846 0.6808 0.6790
Standard Deviation 0.4643 0.4638 0.4647 0.4662 0.4669
Confidence 90% 1.5630% 1.0678% 0.6785% 0.3856% 0.4997%

Throughput
Mean 5.5440 5.5238 5.5209 5.5008 5.4994
Standard Deviation 0.1798 0.1802 0.1810 0.1818 0.1819
Confidence 90% 0.8835% 0.7058% 0.4647% 0.3100% 0.2640%

Population
Mean 2.2041 2.2295 2.1955 2.1393 2.1187
Standard Deviation 2.7052 2.7815 2.6960 2.6140 2.5770
Confidence 90% 4.3064% 3.4377% 1.8835% 1.8455% 0.5390%

Turnaround Time
Mean 0.3975 0.4036 0.3976 0.3889 0.3853
Standard Deviation 0.4051 0.4217 0.4066 0.3941 0.3867
Confidence 90% 3.5691% 4.1099% 1.4588% 1.5846% 0.6488%

CPU Time
Seconds 5.93 11.84 30.00 63.27 632.14

Table D.2: Simulation results for HollowEarth service (M/M/1 queue, λ = 5.5, µ = 8.1)
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D.1 ProC/B Simulation Results

Measurement Simulation Time

10000 20000 50000 100000 1000000

Throughput
Mean 11.9967 11.9834 11.9865 11.9810 11.9965
Standard Deviation 0.0830 0.0831 0.0831 0.0832 0.0832
Confidence 90% 0.5626% 0.6289% 0.3894% 0.2818% 0.0413%

Population
Mean 40.4172 37.5964 37.3352 36.6339 38.0554
Standard Deviation 27.2867 25.2071 26.1456 25.4182 26.3926
Confidence 90% 15.3680% 10.2368% 6.0530% 4.5811% 1.7581%

Turnaround Time
Mean 3.3683 3.1371 3.1141 3.0574 3.1722
Standard Deviation 2.3343 2.1791 2.2393 2.1870 2.2820
Confidence 90% 13.8751% 9.7538% 4.4433% 4.8048% 1.5044%

Turnaround > 5s
Probability 0.2110 0.1696 0.1669 0.1597 0.1793
Confidence 90% 0.9156% 0.7413% 0.4733% 0.3437% 0.2263%

Turnaround > 15s
Probability 0 0 1.5684 · 10−4 1.0016 · 10−4 6.346 · 10−4

Confidence 90% - - 16.9140 % 14.9703% 2.5592%
CPU Time

Seconds 31.49 64.18 160.84 329.23 3196.69

Table D.3: Simulation results for ParcelSink Workflow
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D Experiment Results

Measurement Simulation Time

10000 20000 50000 100000 1000000

Throughput
Mean 12.0128 11.9654 11.9845 11.9911 11.9992
Standard Deviation 0.0832 0.0835 0.0834 0.0834 0.0833
Confidence 90% 0.7005% 0.5277% 0.3428% 0.3434% 0.1382%

Population
Mean 33.0432 31.0452 31.0903 31.0672 31.3333
Standard Deviation 17.9811 17.3725 17.4608 17.6523 17.9985
Confidence 90% 6.4335% 4.3699% 2.7011% 2.1758% 0.7074%

Turnaround Time
Mean 2.7500 2.5941 2.5942 2.5908 2.6113
Standard Deviation 1.6083 1.5604 1.5585 1.5660 1.5811
Confidence 90% 7.2543% 4.7214% 2.6022% 2.2886% 0.6015%

Counter
Served Requests 120129 239309 599226 1199107 11999249
Timeouts 13428 21574 55163 111481 1154474
Ratio 11.1780% 9.0151% 9.2057% 9.2970% 9.6212%

CPU Time
Seconds 46.46 96.82 229.78 470.77 4248.86

Table D.4: Simulation results for ParcelSink Workflow with Timeouts. Requests older than
5 seconds are terminated, thus statistics on population and turnaround time
are influenced.

204



D.2 Curve Estimation Results

D.2 Curve Estimation Results

Table D.5: Estimated parameters for upper arrival curve αU = mini(γri,bi
)

Curve Segment 4 Segment 3 Segment 2 Segment 1

b4 r4 b3 r3 b2 r2 b1 r1

1 1.0000 705.582 1.57781 297.893 4.98795 0.197502 74.094 0.0627804
2 - - 1.0000 2065.46 2.14333 4.28695 82.5346 0.0649811
3 1.0000 537.008 1.98774 6.58638 16.6349 0.0777795 98.7674 0.0636619
4 - - 1.0000 978.786 2.7071 1.09763 58.8953 0.0640002
5 - - 1.0000 385.448 3.87977 0.258886 56.8743 0.0639058
6 - - 1.0000 727.938 3.71806 0.374306 72.6915 0.06342046
7 - - 1.0000 2572.86 2.84389 0.699311 107.222 0.0640278
8 - - 1.0000 1229.6 3.1065 0.593122 90.6407 0.0655885
9 - - 1.0000 1125.13 3.31477 0.767517 55.816 0.0639301
10 - - 1.0000 230.345 2.84519 0.874648 74.8787 0.064284

Table D.6: Calibration findings for upper arrival curve αU

Curve Intersected Area Intersection Time Mean Squared Error Overall

mean std. mean std. mean std. mean

1 0.00322 0.00468 0.16297 0.14161 0.00170 0.00023 0.05597
2 0.00001 0.00003 0.00326 0.00978 0.00302 0.00069 0.00210
3 0.00045 0.00116 0.03173 0.06840 0.00235 0.00060 0.01151
4 0.00100 0.00225 0.06521 0.11510 0.00134 0.00032 0.02252
5 0.00124 0.00263 0.07732 0.12668 0.00119 0.00028 0.02658
6 0.00147 0.00292 0.08164 0.12112 0.00156 0.00028 0.02822
7 0.00014 0.00041 0.01565 0.04464 0.00350 0.00064 0.00643
8 0.00000 0.00000 0.00000 0.00000 0.00401 0.00087 0.00134
9 0.00124 0.00264 0.07786 0.12754 0.00120 0.00028 0.02677
10 0.00033 0.00091 0.02735 0.06549 0.00211 0.00048 0.00993
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Table D.7: Estimated parameters for upper delay curve ΨU = mini(γri,bi
)

Curve Segment 4 Segment 3 Segment 2 Segment 1

b4 r4 b3 r3 b2 r2 b1 r1

1 - - 28.4966 693.853 93.7272 2.19688 902.419 0.39801
2 - - 35.4441 215.749 106.168 2.47372 645.733 0.42198
3 28.2806 26.7737 36.6414 9.63921 246.768 0.55034 950.943 0.40987
4 - - 30.6942 45.1363 82.0811 1.57013 461.898 0.40217
5 - - 31.4197 58.2452 116.512 1.36264 539.618 0.40394
6 - - 34.9433 189.499 93.1401 3.17001 958.717 0.40184
7 - - 29.2407 438.891 100.577 2.66975 912.093 0.40642
8 - - 29.8506 36.4559 55.6746 2.56809 980.164 0.41886
9 - - 39.1513 56.6582 392.27 1.08789 775.873 0.40641
10 - - 29.9802 89.2779 41.8839 5.22601 592.197 0.40665

Table D.8: Calibration findings for upper delay curve ΨU

Curve Intersected Area Intersection Time Mean Squared Error Overall

mean std. mean std. mean std. mean

1 0.00224 0.00372 0.08412 0.11258 0.00438 0.00064 0.03024
2 0.00000 0.00001 0.00072 0.00217 0.00554 0.00151 0.00209
3 0.00006 0.00015 0.00917 0.02369 0.00647 0.00163 0.00523
4 0.00480 0.00662 0.17138 0.16479 0.00171 0.00025 0.05930
5 0.00292 0.00468 0.11699 0.14593 0.00221 0.00043 0.04071
6 0.00097 0.00191 0.04912 0.08179 0.00535 0.00092 0.01848
7 0.00038 0.00086 0.02915 0.05894 0.00549 0.00110 0.01168
8 0.00000 0.00000 0.00000 0.00000 0.00847 0.00180 0.00282
9 0.00076 0.00157 0.04478 0.07918 0.00423 0.00090 0.01659
10 0.00155 0.00284 0.07586 0.11574 0.00287 0.00065 0.02676
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Table D.9: Estimated parameters for lower arrival curve αL = maxi(βRi,Ti)
Curve Segment 4 Segment 3 Segment 2 Segment 1

T4 R4 T3 R3 T2 R2 T1 R1

1 - - -4.5749 0.032337 -8.71032 0.0532404 -71.7494 0.0627804
2 - - - - -5.62666 0.0388455 -70.8507 0.0649811
3 - - - - - - -8.88804 0.0636619
4 - - - - -9.21112 0.049689 -50.631 0.0640002
5 - - - - -5.53154 0.0427862 -30.944 0.0639058
6 - - - - -6.62556 0.050524 -60.3973 0.0634204
7 - - - - 0 0 -100.099 0.0640278
8 - - - - -5.90274 0.0374546 -62.6482 0.0655885
9 - - - - -5.29537 0.0416632 -30.6702 0.0639301
10 - - - - -5.53705 0.0397594 -27.7046 0.064284

Table D.10: Calibration findings for lower arrival curve αL

Curve Intersected Area Intersection Time Mean Squared Error Overall

mean std. mean std. mean std. mean

1 0.00000 0.00000 0.01712 0.00875 0.00485 0.00086 0.00732
2 0.00582 0.01329 0.06143 0.04403 0.00315 0.00039 0.02347
3 0.03074 0.03079 0.44114 0.08487 0.00161 0.00019 0.15783
4 0.00194 0.00572 0.08997 0.08470 0.00297 0.00035 0.03163
5 0.00952 0.01657 0.16843 0.09080 0.00210 0.00018 0.06001
6 0.00005 0.00015 0.04105 0.04243 0.00303 0.00039 0.01471
7 0.00000 0.00000 0.00343 0.00882 0.02472 0.00175 0.00938
8 0.02921 0.02600 0.05982 0.01807 0.00289 0.00042 0.03064
9 0.01001 0.01696 0.16986 0.08850 0.00208 0.00018 0.06065
10 0.02602 0.03181 0.17538 0.07680 0.00204 0.00026 0.06781
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Table D.11: Estimated parameters for lower delay curve ΨL = maxi(βRi,Ti)

Curve Segment 4 Segment 3 Segment 2 Segment 1

T4 R4 T3 R3 T2 R2 T1 R1

1 - - 0 0 -29.1075 0.1995 -874.5840 0.3980
2 - - - - 0 0 -597.7840 0.4220
3 - - - - -33.4493 0.2361 -115.061 0.4099
4 - - - - -7.2791 0.0389 -413.749 0.4022
5 - - - - -7.0567 0.0543 -219.446 0.4039
6 - - -28.7016 0.2146 -434.5550 0.3923 -811.9700 0.4018
7 - - - - -15.1939 0.1199 -736.2410 0.4064
8 - - - - 0 0 -721.4460 0.4189
9 - - - - -25.8145 0.2058 -275.4910 0.4064
10 - - - - -18.6053 0.1381 -292.8500 0.4066

Table D.12: Calibration findings for lower delay curve ΨL

Curve Intersected Area Intersection Time Mean Squared Error Overall

mean std. mean std. mean std. mean

1 0.00000 0.00000 0.00262 0.00244 0.01512 0.00311 0.00591
2 0.03070 0.02677 0.08190 0.02620 0.02096 0.00207 0.04452
3 0.07368 0.06521 0.30758 0.09784 0.00210 0.00036 0.12779
4 0.00172 0.00515 0.07899 0.09361 0.01516 0.00230 0.03196
5 0.01223 0.02128 0.20450 0.09411 0.00530 0.00116 0.07401
6 0.00000 0.00000 0.01990 0.02243 0.00792 0.00210 0.00927
7 0.00033 0.00100 0.02960 0.04502 0.01066 0.00235 0.01353
8 0.00805 0.01364 0.04922 0.03551 0.02656 0.00241 0.02794
9 0.01389 0.02238 0.17251 0.09490 0.00297 0.00066 0.06312
10 0.01239 0.02043 0.15533 0.09306 0.00365 0.00081 0.05712
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