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Abstract

A general Bayesian approach for stochastic versions of deterministic growth mod-
els is presented to provide predictions for crack propagation in an early stage of the
growth process. To improve the prediction, the information of other crack growth
processes is used in a hierarchical (mixed-effects) model. Two stochastic versions of a
deterministic growth model are considered. One is a nonlinear regression setup where
the trajectory is assumed to be the solution of an ordinary differential equation with
additive errors. The other is a diffusion model defined by a stochastic differential
equation (SDE) where increments have additive errors. Six growth models in the two
versions are compared with respect to their ability to predict the crack propagation in
a large data example. Two of them are based on the classical Paris-Erdogan law for
crack growth, and four are other widely used growth models. It turned out that the
three-parameter Paris-Erdogan model and the Weibull model provide the best results
followed by the logistic model. Suprisingly, the SDE approach has no advantage for
the prediction compared with the nonlinear regression setup.

Keywords: Fatigue propagation, Paris-Erdogan equation, stochastic differential equation,
Euler-Maruyama approximation, Bayesian estimation and prediction
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1 Introduction

In many research areas of engineering, material fatigue plays an important role. Experi-

ments are often very expensive because they take a long time and the constructions are

costly. To extract as much information as possible from the existing experiments and to

predict fatigue, statistical models are a valuable tool. One of these existing experiments

was conducted by Virkler et al. (1979). Sixty-eight replicate constant amplitude tests in

aluminum alloy were carried out to investigate the fatigue crack propagation. In each of

these tests, the number of cycles that leads to fixed crack lengths was observed. Against

the natural assumption that something is observed at fixed times, here the time is the

dependent variable and the crack length is the independent variable.

Many contributions to the literature consider crack growth modeling. We will restrict

on the articles that developed statistical methods for the data set of Virkler et al. (1979)

being aware that this will not provide a comprehensive overview. The here presented papers

all build their ideas on the Paris model

dL

dT
= CL

m
2 , (1)

where L denotes the crack length, T the time in cycle counts and C and m are material

dependent constants. Their approach for a statistical model is to multiply the equation’s

right hand side by a stochastic process. Chiquet et al. (2009) include this idea in the

framework of piecewise deterministic Markov processes. The used Markov process is a

stationary jump process with finite state space and between these jumps, a deterministic

behaviour is assumed. Lin and Yang (1983) approximate the crack length process by a

diffusion process and, additionally, determine the probability for a random arrival time

at a fixed crack length. The model parameters are estimated with standard regression

methods which are plugged into the process formula and then the process is simulated.

From the simulations they derive predictions and heuristic prediction intervals. Ortiz and

Kiremidjian (1988) multiply a zero mean stationary Gaussian process on the right hand

side of equation (1) and apply the logarithm on both sides. The result is a lognormally

distributed, additive error process for the logarithm of the differences. Additionally, they

calculate a probability distribution for the amount of cycle counts that is needed to arrive

2



at a fixed crack length. However, their application to the data reveals that a distinction

between short, medium and long crack lengths is needed. Ray and Tangirala (1996) propose

a similar model with lognormally distributed crack growth rates. They generate expected

values from the extended Kalman filter and compare the first two moments of the crack

length with the model results. Any further estimation or prediction theory is missing. A

newer approach to predict crack growth is proposed by Zárate et al. (2012). The L on

the right hand side of equation (1) is replaced by a polynomial of L, whose parameters

are estimated with Bayesian methods. In Wu and Ni (2004), we mainly find a comparison

of two experimental data sets, namely the one of Virkler et al. (1979) also used in the

present paper, as well as one under random loading produced by themselves. In addition,

a comparison of three models is made, a Markov chain model, a polynomial model, and a

model based on the Paris equation called Yang’s power law model. But, just like Chiquet

et al. (2009) and Zárate et al. (2012), they ignore the fact that the independent variable

in the Virkler data is the crack length. A good overview of possible approaches modeling

fatigue processes in general is given in Sobczyk and Spencer (1992).

In the above mentioned works, either each series is modeled on its own, or all series

are taken together for modeling. The disadvantages are, that either the information of the

other series cannot be used in the estimation or a very high variance is implied. Both can be

avoided by using a hierarchical mixed model, also called mixed-effects model in frequentist

statistics. That means, each series is taken as an observation of one individual. Every single

individual follows the same law, for example, a nonlinear parametric regression model or

a diffusion process where the model parameter can vary with each individual. The various

parameters are assumed to be distributed according to a known family whose parameters

are estimated. This approach gives the opportunity to analyze intra and interindividual

variances separately. As a result we have a lower intraindividual variance which helps to

get a more precise prediction for each individual.

For nonlinear parametric regression, mixed models are well-known. For example, Demi-

denko (2013) gives a good overview whereas Zimmermann and Núñez-Antón (2001) explic-

itly focus on growth curve data, both with frequentist estimation methods. Ditlevsen and

de Gaetano (2005) and Picchini et al. (2010) apply maximum likelihood estimation to a
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mixed-effect model defined by stochastic differential equations. The present work is based

on the ideas of Oravecz and Tuerlinckx (2011) and Donnet et al. (2010). The first one com-

pares a linear mixed model with the hierarchical Ornstein-Uhlenbeck model. The second

one investigates a hierarchical nonlinear mixed model that is extended by replacing the

deterministic regression function by a stochastic process. This leads to a two error model,

one error resulting from the stochastic process and the other one is additive. The special

case of the hierarchical Ornstein-Uhlenbeck model has been investigated by Oravecz et al.

(2009) with Bayesian methods.

None of these approaches deals with prediction of future observations for one of the

available series in an early stage of this series. However, the prediction of the crack prop-

agation in an early stage is a very important problem. Therefore, this paper provides a

Bayesian estimation and prediction procedure to derive distributions for future observa-

tions, and thus prediction intervals, in a hierarchical model. We propose and compare two

models with respect to their qualification to predict the material fatigue process. Firstly,

a nonlinear mixed regression model is used, whose regression function is the solution of

an ordinary differential equation (ODE), and secondly, the closely related mixed diffusion

model with matching drift function is considered. The aim of our work is to provide a tool

box for growth processes in a general setup. Therefore, we will restrict to growth curves but

the estimation and prediction procedure can also be used for any other function that leads

to a uniquely existing solution of the SDE. Conservative crack growth models presented in

the above mentioned engineering literature will be compared to famous growth functions,

i.e. the Gompertz, logistic, Richards and Weibull function.

The remainder of this article is structured as follows. The next section introduces the

models and the third the corresponding Bayesian estimation. The fourth section presents

the prediction theory and the fifth section includes the application on the data set as well as

a simulation study to validate the proposed procedure. Finally the results are summarized

and an outlook for future work is given.
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2 Models

As mentioned in the introduction we will have a further look on the differential equation

(1) called Paris or Paris-Erdogan equation. Parameterized another way we get

dL

dT
= θ1L

θ2 .

Since the cracks grow explosively over time, we assume θ1 > 0, θ2 ≥ 1. Therefore, this

differential equation is solved by

L(T ) =


{θ1(θ2 − 1)(θ0 − T )}

1
1−θ2 , θ2 > 1

θ̃0 exp(θ1T ), θ2 = 1

for some θ0 with T < θ0 and θ̃0 > 0. This can easily be seen by differentiation. Since in

the data of Virkler et al. (1979) the length L is the explanatory variable and the time T is

the dependent variable, we have to invert L(T ). This yields

T (L) =


θ0 − 1

θ1(θ2−1)L
1−θ2 , θ2 > 1

1
θ1

(
log(L)− log(θ̃0)

)
, θ2 = 1

with corresponding derivations that lead to the differential equations

dT (L)

dL
=


1
θ1
L−θ2 = θ2−1

L
· 1
θ1(θ2−1)L

1−θ2 = θ2−1
L
· (θ0 − T (L)), θ2 > 1

1
θ1L

= 1
L log(L)

· 1
θ1

log(L) = 1
L log(L)

· (T (L) + 1
θ1

log(θ̃0)), θ2 = 1.

By reparameterization we obtain

Paris 1 (θ2 > 1) : f(t, φ) = A−Bt−C ; b(φ, t, y) =
C

t
(A− y),

Paris 2 (θ2 = 1) : f(t, φ) = A log(t)−B; b(φ, t, y) =
1

t log(t)
(y +B),

with φ = (A,B) ∈ (0,∞) × R, and φ = (A,B,C) ∈ (0,∞)3 respectively, allowing for a

unified representation of the differential equation

df

dt
(t, φ) = b(φ, t, f(t)), f(t0) = y0.
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In addition to the growth models evolved above we can also regard other models resulting

from such an ODE. Here, we particularly consider the following functions:

Gompertz: f(t, φ) = Ae−Be
−Ct

; b(φ, t, y) = BCe−Cty; y0(φ) = A · e−B,

Logistic: f(t, φ) =
A

1 +Be−Ct
; b(φ, t, y) = Cy(1− 1

A
y); y0(φ) =

A

1 +B
,

Richards: f(t, φ) =
A

(1 +Be−Ct)D
; b(φ, t, y) =

BCDe−Ct

1 +Be−Ct
y; y0(φ) =

A

(1 +B)D
,

Weibull: f(t, φ) = A−Be−CtD ; b(φ, t, y) = CDtD−1(A− y); y0(φ) = A−B.

To get a stochastic model, two different types of errors will be introduced. The first and

simplest possibility to obtain a stochastic model is a regression model with additive error.

Here, the solution of an ODE is taken as the regression function in the nonlinear regression

model given by

yn = f(tn, φ) + εn, εn ∼ N (0, s21(γ
2, tn)), n = 0, ..., N.

We here assume a time dependent error variance for a better comparison to the SDE

model. In the simplest case, s21 will be identical to a constant γ2, but other time-dependent

cases are possible. De la Cruz-Meśıa and Marshall (2006), e.g., assume an autoregressive

error structure in a hierarchical nonlinear regression model. Here, we will restrict to the

time-dependent case and will assume a constant variance in the application.

Another way to define a stochastic model is extending the ODE to the corresponding

SDE defined by

dYt(φ) = b(φ, t, Yt) dt+ s2(γ
2, t, Yt) dWt, Y0 = y0,

where {Wt, t ∈ [0,∞)} denotes a Brownian motion. The observations are assumed to be a

discretization of one path of the process, i.e. yn = Ytn(φ), n = 0, ..., N . The most appealing

property of the SDE model for our purpose of prediction is the fact that prediction intervals

will increase over time. Due to the Markov property the prediction is based on the last

observation point and, therefore, has a low variance close to the last observation which

becomes bigger with growing distance.

As mentioned, for some choices of b and s2 we can calculate a solution for the SDE

defined above. For example, we get a solution for the Gompertz function with s2(γ
2, t, y) =
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γy, γ =
√
γ2 > 0 that is given by

Yt(φ) = exp

(
log(A)−Be−Ct − 1

2
γ2t+ γWt

)
. (2)

In this special case the process has the nice feature that its logarithm is normally dis-

tributed. That means, on the one hand we get a likelihood for estimation that is the

multivariate normal distribution (for the logarithms) and on the other hand we have a den-

sity for the predictive distribution. This is not self-evident, see, for example, the Weibull

function. To get a solution we decide for s2(γ
2, t, y) = γ(A − y). In this case the process

Yt(φ) is given by

Yt(φ) = A− B

exp(CtD + 1
2
γ2t+ γWt)

.

The calculations for the two cases are based on Itô’s formula, see, for example, Protter

(2005). Unfortunately, we do not obtain a normally distributed process by such a simple

transformation as given in (2). Furthermore, these calculations cannot be done for all

choices of b or s2. To keep the following calculations as general and programming codes as

flexible as possible we will use the SDE for the estimation and prediction scheme presented

in the following. Therefore, we need to use some approximation for the discretely observed

process. We will take the Euler-Maruyama scheme or in short Euler scheme, see, for

example, Fuchs (2013), as a frequently used scheme. We are aware that this will introduce

an approximation error but the application to the data of Virkler et al. (1979) shows that

the resulting prediction intervals are quite good.

The underlying data set for this article contains measurements of several individuals as

it is often the case for growth curve data. That means, we have observations yi0, ..., yiNi at

points ti0, ..., tiNi , i = 1, ..., I. If we assume each of the individuals to follow the same curve

with varying parameters up to an error term, we in turn assume that the data result from

one of the two hierarchical models:
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model (1): nonlinear regression

yin = f(tin, φi) + εin

φi ∼ N (µ,Ω) iid.

εin ∼ N (0, s21(γ
2, tin)),

model (2): stochastic process

yin = Ytin(φi)

φi ∼ N (µ,Ω) iid.

dYt(φ) = b(φ, t, Yt) dt+ s2(γ
2, t, Yt) dWt,

n = 0, ..., Ni; i = 1, ..., I. Models (1) and (2) are mixed models, model (1) will also be

referred to as mixed regression model, model (2) as mixed diffusion model. Let us first

note that, strictly, we would have to include another index in the notation of the Brownian

motion because it is one Brownian motion for each individual and not the same for all.

Secondly, φi and the Brownian motion of the ith individual as well as the I Brownian

motions among themselves have to be stochastically independent. Models (1) and (2) will

each be applied for six growth curves which leads to twelve models altogether.

The variables µ, Ω and γ2 are parameters we need to estimate. As already mentioned,

in the following we will use the Euler approximation given by

Yi0 = y0(φi)

Yin = Yi(n−1) + b(φi, ti(n−1), Yi(n−1))∆in + s2(γ
2, ti(n−1), Yi(n−1))

√
∆inξin

∆in := tin − ti(n−1)

ξin ∼ N (0, 1) iid., n = 1, ..., Ni; i = 1, ..., I.

In the remainder of this work we will use the following notations. Our data are taken to

be realisations from Yin, if we assume the diffusion model, and from yin, if we assume the

regression model, being aware that both are random variables. The main goal of this article

is the prediction of some y∗I , respectively Yt∗I , in t∗I > tINI , but to obtain some distribution

for that we first have to estimate the unknown parameters.

3 Bayesian Estimation

First we present the posterior distributions that are equal in both models, namely for µ

and Ω. We assume a conjugate normal prior distribution of µ with mean m and variance

matrix V . Then it can be seen by direct calculation (cf. Carlin and Louis (2009), p. 168)
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that

µ| φ1, ..., φI ,Ω ∼ N (mpost, V post)

V post = (V −1 + I · Ω−1)−1

mpost = V post ·

(
V −1m+

I∑
i=1

Ω−1φi

)
.

In the following, we assume Ω to be a diagonal matrix diag(ω2
A, ω

2
B), diag(ω2

A, ω
2
B, ω

2
C) or

diag(ω2
A, ω

2
B, ω

2
C , ω

2
D) for the respective model. Choosing the inverse Gamma distribution

for the diagonal elements ω2
A ∼ IG(αA, βA), i.e. ω−2A ∼ Gamma(αA, βA), we get the

conditional posterior distribution

ω2
A| A1, ..., AI , µA ∼ IG

(
αA +

I

2
, βA +

1

2

I∑
i=1

(Ai − µA)2

)

with µ = (µA, µB), µ = (µA, µB, µC) or µ = (µA, µB, µC , µD) for the respective model.

Analogously we proceed with ω2
B, ω

2
C and possibly ω2

D as can also be seen in Carlin and

Louis (2009), p. 35.

The posteriors of µ and Ω depend on the unobserved φ1, ..., φI . Therefore, we also need

to calculate the full conditional posterior of φi for each i = 1, ..., I, first in model (1), the

mixed nonlinear regression framework.

Although we are investigating nonlinear models we indeed could separate the com-

ponents and estimate a few of them with a conjugate prior explicitly. However, some

components have to be estimated with some sampling method like the Metropolis Hastings

(MH) algorithm (see Carlin and Louis (2009), p. 130). Therefore, we refrain from calcu-

lating the posteriors explicitly for a part of the vector φi and use the MH algorithm for

the whole vector φi. Given by the model definition, the likelihood in the mixed regression

model (1) is

p(yi0, ..., yiNi | φi, γ2) =

Ni∏
n=0

1√
2πs1(γ2, tin)

exp

(
− 1

2s21(γ
2, tin)

(yin − f(tin, φi))
2

)
,

i = 1, ..., I. Furthermore, a normal prior is assumed by the model definition. The resulting

posterior also depends on γ2, for whose estimation we assume the structure s21(γ
2, t, y) =

γ2 · s̄2(t) allowing for a conjugate prior. Of course a sampling method like the MH algorithm
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could also be employed for other nonlinear functions. s̄2 can be for example s̄2(t) = 1 or

s̄2(t) = t. γ2 ∼ IG(αγ, βγ) is a sensible choice for the variance parameter and we obtain

γ2| {yin}n=0,...,Ni;i=1,...,I , φ1, ..., φI

∼ IG

(
αγ +

1

2

I∑
i=1

(Ni + 1), βγ +
1

2

I∑
i=1

Ni∑
n=0

(yin − f(tin, φi))
2

s̄2(tin)

)
.

With the full conditional posteriors, we can use the Gibbs sampler to simulate the poste-

rior distribution p(φ1, ..., φI , µ,Ω, γ
2| {yin}n=0,...,Ni;i=1,...,I) by drawing iteratively from the

conditional marginals. After choosing starting values φ∗i0, i = 1, ..., I, for the MH step and

µ∗0, Ω∗0 and γ2∗0 for the Gibbs sampler, we draw for k = 1, ..., K from

φ∗ik ∼ p(φi| yi0, ..., yiNi , γ2∗k−1, µ∗k−1,Ω∗k−1), i = 1, ..., I

µ∗k ∼ p(µ| φ∗1k, ..., φ∗Ik,Ω∗k−1)

Ω∗k ∼ p(Ω| φ∗1k, ..., φ∗Ik, µ∗k)

γ2∗k ∼ p(γ2| {yin}n=0,...,Ni;i=1,...,I , φ
∗
1k, ..., φ

∗
Ik).

This procedure is called Metropolis-within-Gibbs or univariate Metropolis algorithm be-

cause drawing from the full conditional posterior of φi is executed through a Metropo-

lis step, see Carlin and Louis (2009), p. 141. With this iterative procedure we obtain

K drawings (φ∗1k, ..., φ
∗
Ik, µ

∗
k,Ω

∗
k, γ

2∗
k ), k = 1, ..., K, from the joint posterior distribution

p(φ1, ..., φI , µ,Ω, γ
2| {yin}n=0,...,Ni;i=1,...,I).

For the posterior of φi in the mixed diffusion model we get an approximated likelihood

through the Euler approximation. We first obtain the transition distribution

Yin| Yi(n−1), φi, γ2 ∼ N
(
Yi(n−1) + b(φi, ti(n−1), Yi(n−1))∆in, s

2
2(γ

2, ti(n−1), Yi(n−1))∆in

)
,

n = 1, ..., Ni, that builds up the joint distribution

p(Yi1, ..., YiNi | φi, γ2) =

Ni∏
n=1

p(Yin| Yi(n−1), φi, γ2),

which is the approximated likelihood for φi and γ2. Of course, the true transition density

of the process might not be a normal one. A good overview of possibly resulting problems

can be seen in Sørensen (2004) or Beskos et al. (2006). The estimation methods presented
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in the following can be transferred to other approximation schemes, because the likelihood

function can easily be exchanged in the MH step. Pedersen (1995) proved that the likelihood

of the Euler approximated process asymptotically tends to the likelihood of the true process

for growing sample size. Cano et al. (2006) worked this idea out for a posterior density

built up on the likelihood of the approximated process.

Looking at the functions b, all but one of the components of φi occur which makes

it impossible to estimate the non-occuring component with the differences. One could

calculate some estimation with the first observation point and the estimation of the other

components but for the prediction this is not necessary and will, therefore, not be done in

the application. Similar to the regression model, we decide for the structure s2(γ
2, t, y) =

γ · s̃(t, y) without any further unknown variable for the estimation of γ2. In the application

section we will use s̃(t, y) = 1 but other choices are possible. E.g. s̃(t, y) = t would yield a

variance structure dependent on time or s̃(t, y) = y would lead to an autoregressive variance

dependent on the actual process. With γ2 ∼ IG(αγ, βγ) the conditional posterior is given

by

γ2| {Yin}n=1,...,Ni;i=1,...,I , φ1, ..., φI

∼ IG

(
αγ +

1

2

I∑
i=1

Ni, βγ +
1

2

I∑
i=1

Ni∑
n=1

(Yin − Yi(n−1) − b(φi, ti(n−1), Yi(n−1))∆in)2

s̃2(ti(n−1), Yi(n−1))∆in

)
.

This can be seen by direct calculation because

Yin − Yi(n−1) − b(φi, ti(n−1), Yi(n−1))∆in

s̃(ti(n−1), Yi(n−1))
√

∆in

∼ N (0, γ2), n = 1, ..., Ni; i = 1, ..., I.

The resulting Gibbs sampler is analogous to the regression model.

4 Bayesian Prediction

The main aim of this article is the prediction for y∗I in t∗I with t∗I > tINI . Of course we

could predict parts of any of the I series, but to simplify notations let us say we want to

predict the further development of the last series. In the real data application we would

have observed I − 1 series already and want to use their information for the prediction of
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the new one. Therefore, in the mixed regression model the predictive distribution is

p(y∗I | {yin}n=0,...,NI ;i=1,...,I) =

∫
p(y∗I | φI , γ2) · p(φI , γ2| {yin}n=0,...,Ni;i=1,...,I) d(φI , γ

2)

≈ 1

K

K∑
k=1

p(y∗I | φ∗Ik, γ2∗1k),

with (φ∗Ik, γ
2∗
1k) ∼ p(φI , γ

2| {yin}n=0,...,Ni;i=1,...,I) coming from the Gibbs sampler. We will

approximate this distribution in the application section by simulations. We use rejection

sampling, see Carlin and Louis (2009), p. 116, with the indicator function on some candi-

date area C∗ multiplied with maxy∗I∈C∗ (p(y∗I | {yin}n=0,...,Ni;i=1,...,I)) as the envelope function.

This candidate area can be some neighborhood around the last observation yINI as chosen

in the application section. The point prediction, taken as the expected value of the pre-

dictive distribution, can then be approximated by the mean of the drawn sample. In the

same way (1 − α)-prediction intervals can be obtained with the α
2

and 1 − α
2

quantiles as

interval boundaries.

Analogously we can predict Yt∗I in t∗I with t∗I > tINI in the mixed diffusion model.

Here, the whole issue becomes a bit more complicated, since the Euler approximation gets

imprecise with big time differences. Therefore, we would get a bad prediction when t∗I is

much bigger than tINI because of the approximation scheme even if the model is correct

and the estimation is good. To avoid this problem we simulate the following process with

some sampling partition tINI = τ0 < τ1 < ... < τL = t∗I . By enlarging L, one gets a more

precise approximation. For simplification we take

τl = l ·∆∗ + tINI , l = 0, ..., L,

where ∆∗ :=
t∗I−tINI

L
is the distance between the equidistant time points. Then we iteratively

build the predicted Euler approximation of Yt∗I (φI) by

Yt∗I (φI) ≈ Y ∗IL = YINI +
L−1∑
l=0

{b(φI , τl, Y ∗Il)∆∗ + γs̃(τl, Y
∗
Il)ξ

∗
l }

ξ∗l ∼ N (0,∆∗) iid, l = 0, ..., L− 1

with Y ∗I0 := YINI . Hence we obtain a distribution for Y ∗IL dependent on φI , γ
2, YINI and the
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intermediate points

Y ∗IL| φI , γ2, YINI , Y ∗I1, ..., Y ∗IL−1

∼ N

(
YINI + ∆∗

L−1∑
l=0

b(φI , τl, Y
∗
Il), γ

2∆∗
L−1∑
l=0

s̃2(τl, Y
∗
Il)

)
.

Practically, we set starting values Y
∗(k)
I0 = YINI , k = 1, ..., K and iteratively draw

Y
∗(k)
Il ∼ 1

K

K∑
r=1

p
(
Y ∗Il| φ∗Ir, γ2∗r , Y

∗(r)
I(l−1)

)
, k = 1, ..., K

for l = 1, ..., L with φ∗Ir and γ2∗r , r = 1, ..., K resulting from the Gibbs sampler as derived

in Section 3.

5 Simulations and Application to Crack Growth

All calculations in this section are made with the programming language R, R Core Team

(2013).

In the following we compare the predictions made with the two models (1) and (2)

each for the six presented growth curves. We will first present simulations to validate the

estimation and prediction procedure and later on apply the models to the data of Virkler

et al. (1979).

5.1 Simulation Study

For the simulation study we assume equally long series except the one to predict, the Ith

series, that will be half as long. Then this series will be predicted in the missing time

values. In particular, we will simulate 1000 times a set of I = 20 series, each with 101

observation points. For the estimation we will cut the Ith series after the 51st observation

in each simulation set, so that N1 = ... = NI−1 = Ñ = 101 and NI = 51. For the Ith series,

each point of the second half, i.e. t∗I ∈ {t52, ..., t101}, will be predicted, so that L = 50.

Considering the time-homogeneity of the stochastic process in model (2), we construct a

finer grid, i.e., for each interval [ti−1, ti], we insert nine equidistant points, i = 1, ..., Ñ .

Then the process is simulated on this finer partition. For the observation points, we take
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every tenth value of the simulated process. All series in model (2) are simulated with the

starting value y0 = 0.5.

For the Gompertz, Logistic, Richards and Weibull curves we take time points t0 =

0, t1 = 0.01, ..., t101 = 1, for the first Paris model t0 = 0.2, t1 = 0.21, ..., t101 = 1.2 and for

the second Paris model t0 = 1.2, t1 = 1.21, ..., t101 = 2.2. As we have seen in the second

section, the two Paris models may not start in 0 resp. 1. We conduct the simulations with

the parameter µ equal to

Gompertz Logistic Richards Weibull Paris 1 Paris 2

(10, 3, 5) (10, 9, 7) (10, 2, 8, 3) (10, 9, 5, 2) (10, 1, 1.2) (20, 3).

The resulting simulated data are represented in parts in Figure 1 where Figure 1(a) shows

the six growth curves for the chosen parameters. For a better comparison the Paris derived

curves are also plotted in t ∈ [0, 1], i.e., for the Paris 1 model in t− 0.2 and for the Paris 2

model in t− 1.2.

For the hyperparameter Ω we choose 1
100
·diag(µ) for each model. With φi ∼ N (µ,Ω), i =

1, ..., I, we get I curves, for example see Figure 1(b) for the Gompertz function. For the

variance, we choose s21(γ
2, t) ≡ γ2 = 1

4
and with the resulting errors we obtain, for example,

for the Gompertz function the points in Figure 1(c) for model (1). With s̃ ≡ 1 and γ2 = 1
4

a

simulation set resulting from model (2) with the Gompertz function is displayed in Figure

1(d). In the comparison of Figures 1(c) and 1(d) one can see the effect of the different

variance structures of model (1) and model (2) with otherwise equal parameters.
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Figure 1: Simulation Example, (a) growth curves with chosen parameters, (b) Gompertz

curves with drawn φi ∼ N (µ,Ω), i = 1, ..., I, iid., (c) curves from (b) with additive

regression error, (d) Euler approximated diffusion processes following model (2)

For the estimation of the parameters, we assume γ2 ∼ IG(4, 1), ω2
a ∼ IG(100

m
, 1), a ∈

{A, ..., D} and µ ∼ N (m,V = diag(m)), where in each case m is chosen as the true, in

a simulation study known, value. Note that the aim is not a sensitivity analysis of the

models which would be very elaborate for the twelve models altogether. We start with the

true values of µ for µ∗0 and for φ∗10, ..., φ
∗
I0 and with γ2∗0 = 1. We simulate for each model

101000 Markov chain iterations, drop a burn-in of 1000 iterations, take a thinning rate of

100 and obtain a sample of K = 1000 from the posterior. In the MH-step for sampling φi

we need to choose a proposal density. Here, the normal density with the last sample as

15



mean and m
50

as standard deviation is taken.

In Tables 1 and 2, the evaluation of the parameter estimations is presented. Deviation

names the mean squared error of the point estimation, i.e. the mean of the posterior, and

the true value. The second column is the coverage rate, i.e. the rate of 95%-credibility

intervals that include the true value. Score refers to the scoring rule of Gneiting and Raftery

(2007) for interval forecasts with α = 0.05, i.e.

S(l, u, y) = (u− l) +
2

α
(l − y)1{y < l}+

2

α
(y − u)1{y > u}, (3)

where l is the lower interval boundary, i.e. the α
2

quantile, u the upper boundary, i.e. the

1− α
2

quantile of the predictive distribution, and y the true value. The deviation and score

values in the table each are averaged over all series. In Table 1 all parameters for model

(1) have coverage rates around 95%. In Table 2 we mostly see the same picture for model

(2), only for the Weibull curve, the variance parameter is slightly underestimated.

Gompertz Logistic Paris 1

deviation rate score deviation rate score deviation rate score

A 0.0074 0.98 0.44 0.0063 0.98 0.41 0.0087 0.99 0.49

B 0.0056 0.99 0.41 0.0384 1.00 1.20 0.0044 1.00 0.37

C 0.0092 1.00 0.56 0.0117 0.99 0.59 0.0017 0.99 0.23

γ2 0.000063 0.95 0.038 0.000064 0.95 0.038 0.000058 0.95 0.036

Weibull Richards Paris 2

deviation rate score deviation rate score deviation rate score

A 0.0060 0.98 0.40 0.0050 0.97 0.35 0.0048 0.99 0.40

B 0.0133 0.98 0.59 0.0949 0.94 1.26 0.0171 0.99 0.75

C 0.0239 1.00 0.91 0.0307 0.98 0.88

D 0.0022 0.99 0.24 0.0678 0.96 1.19

γ2 0.000069 0.94 0.038 0.000068 0.94 0.038 0.000064 0.95 0.037

Table 1: Evaluation of the parameters in model (1)

For the predictions in model (1) we sample from the predictive distribution with re-

jection sampling, as explained in the third section. The candidate area C∗ is chosen

as [yINI − 2, yINI + 10] with a grid of 0.001. For the prediction in model (2) we also

16



Gompertz Logistic Paris 1

deviation rate score deviation rate score deviation rate score

A 0.0115 0.97 0.54 0.0330 0.99 1.01

B 0.0077 0.99 0.46

C 0.0216 0.98 0.75 0.0226 1.00 0.88 0.0051 0.88 0.31

γ2 0.000081 0.92 0.042 0.000084 0.90 0.046 0.000116 0.83 0.057

Weibull Richards Paris 2

deviation rate score deviation rate score deviation rate score

A 0.0068 0.97 0.41

B 0.0490 0.94 1.04 0.0442 0.96 0.98

C 0.0221 0.99 0.86 0.0361 0.97 0.93

D 0.0033 0.96 0.28 0.0862 0.92 1.29

γ2 0.000236 0.58 0.122 0.000090 0.91 0.044 0.000061 0.95 0.037

Table 2: Evaluation of the parameters in model (2)

sample with rejection sampling in each step l = 1, ..., 50. For each l a candidate area

[Ȳ ∗I(l−1) − 2, Ȳ ∗I(l−1) + 2] with Ȳ ∗I(l−1) = 1
K

∑K
k=1 Y

∗(k)
I(l−1) and a grid of 0.001 is selected.

To validate the predictions of the models we compare four key figures. First we calculate

the mean squared error of the point prediction, i.e. the mean of the predictive distribution,

from the true value. Second, the sizes of the 1000 1− α = 0.95 prediction intervals will be

averaged. Third, we calculate the scoring rule S(l, u, y) in (3). If the interval covers the

true value, the score is just the size. The score punishes intervals that do not cover the true

value with the amount of the deviation from the boundary multiplied with 2
α

. Fourth, the

coverage rate will be calculated, i.e. the rate of prediction intervals that include the true

value. The prediction results of the two models can be seen in Figure 2. On the left side,

each of the above mentioned values for the mixed regression model (1) and on the right side

the corresponding values for the mixed diffusion model (2) are displayed. We can see that

the growth models from model (1) behave similarly with respect to the average deviation

and average score. There are differences between the growth models of the diffusion model

(2). However, they are small for predictions shortly after the last observed value. Looking

at the coverage rate (bottom row of Figure 2) we can conclude that the used estimation
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methods work well for all models.

5.2 Real Data Application

The main part of the present work is the application of our models to the data set of

Virkler et al. (1979). In Figure 3 we can see the number of cycle counts devided by 10000

plotted against the crack lengths. There are I = 68 observation series each with Ñ = 164

observation points. The independent variable, the crack length, has a range of [9,49.8]. As

mentioned in the second section, the models have partially different properties in terms of

the range of t. Therefore, in the case of the usual growth curves, we transform the crack

length to start in 0 and devide by 40 to obtain small differences. In the three-parameter

Paris model, we only devide the crack length by 40 and further add 1 in the two-parameter

Paris model.

For the estimation we choose γ2 ∼ IG(1, 1), ω2
a ∼ IG(100, 1), a ∈ {A, ..., D} and

µ ∼ N (m,V = diag(m)) with m equal to

Gompertz Logistic Richards Weibull Paris 1 Paris 2

(30, 5, 7) (30, 9, 7) (25, 1, 5, 23) (28, 20, 8, 5) (25, 2, 1.8) (50, 10).

Employing the estimation procedure with the same adjustments as in the simulations study,

it turned out that the proposal variance is too high and therefore the acceptance rate for φi

gets very small. Therefore, we choose m
100

as proposal standard deviation and additionally

iterate the MH-step inside the Gibbs sampler as long as one candidate is accepted or

maximal 10 times, in the Gompertz and Weibull curves in the regression model maximal

20 times. With the starting values µ∗0 = φ∗10 = ... = φ∗I0 = m and γ2∗0 = 1 we simulate a

Markov chain of 110000 iterations with a burn-in of 10000 and a thinning rate of 100 to

obtain 1000 samples from the posterior. The exceptions are the Richards curve in both

models and the Paris 1 regression model, where we sample 130000 iterations and drop a

burn-in of 30000 due to a slower chain convergence.

We take each of the series as the one to be predicted and cut it after the first half of

the observations, that means NI = 82. Hence, we obtain I = 68 mixed model estimations

and predictions.
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Figure 2: Prediction results in the simulation study for model (1) (left) and model (2)

(right) for the four values average deviation (top row), average size (second row), average

score (third row) and coverage rate (bottom row)
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Figure 3: Observations of the 68 experiments of Virkler et al. (1979)

In Figure 4 the point prediction results of model (1) for the last series generated by

taking the mean of the simulations from the predictive distribution are displayed for all six

growth functions. Presented on the x-axis is the crack length, but we have calculated the

estimations and predictions with the above mentioned transformation for the crack length

range.

Eye-catching is the non-fitting Paris 2 model. For the estimation of µC in the Paris 1

model, we obtain µ̂C = 0.76 with a credibility interval [0.74,0.78]. With θ2 = C + 1 = 1.76

following from the calculations in the beginning, it is clear that a model with θ2 = 1 is not

a good choice for these data.

On the left side in Figure 5 we see each the average over all 68 predictions for the

several crack lengths for model (1), the mean squared error of the point prediction and the

true value 1
68

∑68
i=1(yin − ŷ∗in)2 for n = 83, ..., 168, denoted with average deviation, plotted

against the predicted crack lengths in the top row, the average of the prediction interval

sizes in the second row and the scoring rule for interval forecasts as explained above in the

third row, finally, the amount of prediction intervals that cover the true value, denoted with

coverage rate in the bottom row. The Weibull and the Paris 1 model perform about equally

well in the point prediction and their interval sizes. However, the rate of covering intervals

decreases rapidly with increasing crack length. The Gompertz and the Richards model may

be considered equal in their average performance. Due to high estimated variance values

the logistic and the Paris 2 model lead to the biggest intervals and the biggest deviations
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Figure 4: Point prediction for the last series of Virkler et al. (1979) with the mixed regression

model (1), left: all crack lengths, right: the predicted crack lengths

of the point prediction to the true values but the highest coverage rate and are the worst

fitting growth curves of all. For informative, i.e. precise, predictions from a model that

describes the data we could take the scoring rule (3) into account. Up to a crack length

of 30 mm, the Weibull and the three-parameter Paris model are the best predicting ones,

for larger crack lengths the other models perform better because of the few noncovering

intervals that are highly penalized with the term 2
α

= 40.

Before we look at the right hand side of Figure 5, we consider the prediction for the

last series. Analogously to the plots in Figure 4 for the regression model (1), we look at

plots for the diffusion model (2) in Figure 6. Again, the Paris 2 model behaves worst.

However, the Richards and the Gompertz model also perform poorly. For an explanation

we take a look at Figure 7. There, the data points are realisations of YI(j+1) − YIj and

the lines each represent b(φ̂I , tj, YIj) · (tj+1 − tj), j = 1, ..., NI − 1 with φ̂I the mean of the

simulations from the posterior. The Richards and the Gompertz functions are estimated

to 0 for the crack lengths that we want to predict leading to constant predictions. In

contrast, the three-parameter Paris model performs quite well and the Weibull model can

compete with it. On the right hand side of Figure 5 we notice that the mean squared

deviation of the point predictions to the true values are very small for both growth curve
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Figure 5: Analysis of data set of Virkler et al. (1979) for the mixed regression model (1)

(left) and for the mixed diffusion model (2) (right) for the four values average deviation

(top row), average size (second row), average score (third row) and coverage rate (bottom

row) 22



●●
●●
●●
●●
●●
●●●

●●
●●●

●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

10 20 30 40 50

0
5

10
15

20
25

crack length

cy
cl

e 
co

un
ts

/1
00

00

● data

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●

25 30 35 40 45 50

20
25

30

crack length

cy
cl

e 
co

un
ts

/1
00

00

● data

Gompertz Logistic Richards Weibull Paris 1 Paris 2

Figure 6: Point prediction for the last series of Virkler et al. (1979) with the mixed diffusion

model (2), left: all crack lengths, right: the predicted crack lengths

functions. The Richards, Gompertz and the two-parameter Paris functions perform badly.

The logistic model performs suprisingly well. Although it did not really fit the data in the

mixed regression model, it has a low deviation of the point prediction and the coverage rate

can compete with the Paris 1 model with medium prediction interval sizes for the diffusion

model.

For a further comparison of the two models we take a look at Figure 8 that shows

the consolidated plots from Figure 5 for the three best fitting growth curves. The mixed

regression models are shown in solid lines, whereas the mixed diffusion models are plotted

in dashed lines. For the logistic model the diffusion model is the only suitable if the clas-

sification is not only based on the coverage rate. For the Weibull and the three-parameter

Paris curves the choice for the best model is not that easy. In the regression model, both

perform equally well. For the diffusion model one can recognize differences in the distance

of predictions from the last observed time point. Whereas the Weibull is the better choice

for crack lengths up to 37 or 38 mm, for bigger crack lengths the Paris 1 model performs

better, see, e.g., the average interval score picture where the dotted lines intersect. In sum-

mary one can say, all three functions in both models (1) and (2) can be used to describe

and predict the data set of Virkler et al. (1979), where the Paris 1 and the Weibull model
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Figure 7: Comparison of the estimated differences b(φ̂I , tj, YIj) · (tj+1− tj), j = 1, ..., NI−1

of the last series for model (2)

are a little more preferable.

6 Conclusion

In this paper a novel Bayesian prediction approach for a mixed nonlinear regression and a

mixed diffusion model has been developed. Both have been implemented for four commonly

used growth curves and for two curves resulting from the Paris-Erdogan law that is widely

used in the engineering literature to model crack growth. The appealing property of the

diffusion model is the increasing size of the prediction intervals that start very small and

depend on the last observation point. However, our results show that there is no advantage

of the diffusion to the regression model. We therefore recommend to use the nonlinear

regression model.

Of course, one could try other functional variance structures than the constant one used

in this paper.

For the six growth curves used in this paper we can conclude that the three-parameter

Paris-Erdogan and the Weibull curve are the best fitting ones for the data of Virkler et al.

(1979). With the disadvantage of huge prediction intervals, the logistic curve can also be
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Figure 8: Comparison of the regression model (1) and the diffusion model (2) for the

logistic, the Weibull and the Paris 1 growth curves, for the four values average deviation

(top left), average size (top right), average score (bottom left) and coverage rate (bottom

right)

used if one mainly is interested in a rough prediction with a high coverage rate.

In our approach, we used the common Euler-Maruyama approximation of the SDE.

However, other approximation schemes are possible.
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