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Abstract

We propose new concepts in order to analyze and model the dependence structure
between two time series. Our methods rely exclusively on the order structure of the
data points. Hence, the methods are stable under monotone transformations of the
time series and robust against small perturbations or measurement errors. Ordinal
pattern dependence can be characterized by four parameters. We propose estimators
for these parameters, and we calculate their asymptotic distributions. Furthermore,
we derive a test for structural breaks within the dependence structure. All results
are supplemented by simulation studies and empirical examples.

For three consecutive data points attaining different values, there are six possibil-
ities how their values can be ordered. These possibilities are called ordinal patterns.
Our first idea is simply to count the number of coincidences of patterns in both time
series, and to compare this with the expected number in the case of independence. If
we detect a lot of coincident patterns, this means that the up-and-down behavior is
similar. Hence, our concept can be seen as a way to measure non-linear ‘correlation’.
We show in the last section, how to generalize the concept in order to capture various
other kinds of dependence.
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1 Introduction

In Schnurr (2014) the concept of positive/negative ordinal pattern dependence has been

introduced. In an empirical study he has found evidence that dependence of this kind

appears in real-world financial data. In the present article, we provide consistent estima-

tors for the key parameters in ordinal pattern dependence, and we derive their asymptotic

distribution. Furthermore, we present a test for structural breaks in the dependence struc-

ture. The applicability of this test is emphasized both, by a simulation study as well as

by a real world data example. Roughly speaking, positive (resp. negative) ordinal pattern

dependence corresponds to a co-monotonic behavior (resp. an anti-monotonic behavior) of

two time series. Sometimes an entirely different connection between time series might be

given. By introducing certain distance functions on the space of ordinal patterns we get

the flexibility to analyze various kinds of dependence. Within this more general framework

we derive again limit theorems and a test for structural breaks.

Detecting changes in the dependence structure is an important issue in various areas

of applications. Analyzing medical data, a change from a synchronous movement of two

data sets to an asynchronous one might indicate a disease or e.g. a higher risk for a heart

attack. In mathematical finance it is a typical strategy to diversify a portfolio in order to

reduce the risk. This does only work, if the assets in the portfolio are not moving in the

same direction all the time. Therefore, as soon as a strong co-movement is detected, it

might be necessary to restructure the portfolio.

From an abstract point of view, the objects under consideration are two discretely

observed stochastic processes (Xn)n∈Z and (Yn)n∈Z. In order to keep the notation simple, we

will always use Z as index set. Increments are denoted by (∆Xn)n∈Z, that is, ∆Xn := Xn−
Xn−1. Furthermore, h ∈ N is the number of consecutive increments under consideration.

The dependence is modeled and analyzed in terms of so called ‘ordinal patterns’. At

first we extract the ordinal information of each time series. With h + 1 consecutive data

points x0, x1, ...xh (or random variables) we associate a permutation in the following way:

we order the values top-to-bottom and write down the indices describing that order. If

h was four and we got the data (x0, x1, x2, x3, x4) = (2, 4, 1, 7, 3.5), the highest value is

obtained at 3, the second highest at 1 and so on. We obtain the vector (3, 1, 4, 0, 2) which
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carries the full ordinal information of the data points. This vector of indices is called the

ordinal pattern of (x0, ..., xh). A mathematical definition of this concept is postponed to the

subsequent section. There, it also becomes clear how to deal with coincident values within

(x0, ..., xh). The reflected vector (−x0, ...,−xh) yields the inverse pattern, that is, read the

permutation from right to left. In the next step we compare the probability (in model

classes) respectively the relative frequency (in real data) of coincident patterns between

the two time series. If the (estimated) probability of coincident patterns is much higher

than it would be under the hypothetical case of independence, we say that the two time

series admit a positive ordinal pattern dependence. In the context of negative dependence

we analyze the appearance respectively the probability of reflected patterns. The degree of

this dependence might change over time: we see below that structural breaks of this kind

show up in the dependence between the S&P 500 and its corresponding volatility index.

Ordinal patterns have been introduced in order to analyze large noisy data sets which

appear in neuro-science, medicine and finance (cf. Bandt and Pompe (2002), Keller et al.

(2007), Sinn et al. (2013)). In all of these articles only a single data set has been considered.

To our knowledge the present paper is the first approach to derive the technical framework

in order to use ordinal patterns in the context of dependence structures and their structural

breaks.

The advantages of the method include that the analysis is stable under monotone trans-

formations of the state space. The ordinal structure is not destroyed by small perturbations

of the data or by measurement errors. Furthermore, there are quick algorithms to analyze

the relative frequencies of ordinal patterns in given data sets (cf. Keller et al. (2007), Sec-

tion 1.4). Reducing the complexity and having efficient algorithms at hand are important

advantages in the context of Big Data. Furthermore, let us emphasize that unlike other

concepts which are based on classical correlation, we do not have to impose the existence

of second moments. This allows us to consider a bigger variety of model classes.

The minimum assumption in order to carry out our analysis is that the time series

under consideration are ordinal pattern stationary (of order h), that is, the probability for

each pattern remains the same over time. In the sections on limit theorems we will have to

be slightly more restrictive and have to impose stationarity of the underlying time-series.
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Obviously stationarity of a time series implies stationary increments, which in turn implies

ordinal pattern stationarity.

The paper is organized as follows: in Section 2 we present the rigorous definitions

of the concepts under consideration. In particular we recall and extend the concept of

ordinal pattern dependence. For the reader’s convenience we have decided to derive the

test for structural breaks first for this classical setting. In order to show the applicability

of the proposed test we consider financial index data. It is then a relatively simple task

to generalize our results to the more general framework which is described in Section

3. There, we consider the new concept of average weighted ordinal pattern dependence.

Some technical proofs have been postponed to Section 4. In Section 5 we present a short

conclusion.

From the practical point of view, our main results are the tests on structural breaks

(cf. Theorem 2.7 and its corollary) and the generalization of the concept of ordinal pattern

dependence (Section 3). In the theoretical part the limit theorems for all parameters under

consideration, in particular for p, are most remarkable (cf. Corollary 2.6).

The notation we are using is mostly standard: vectors are column vectors and ′ denotes

a transposed vector or matrix. In defining new objects we write ‘:=’ where the object to

be defined stands on the left-hand side. We write R+ for [0,∞).

2 Methodology

First we fix some notations and the basic setup. Afterwards we present limit theorems for

the parameters under consideration as well as our test on structural breaks.

2.1 Definitions and General Framework

Let us begin with the formal definition of ordinal patterns: let h ∈ N and x = (x0, x1, ..., xh) ∈
R

h+1. The ordinal pattern of x is the unique permutation Π(x) = (r0, r1, ..., rh) ∈ Sh+1

such that

(i) xr0 ≥ xr1 ≥ ... ≥ xrh and

(ii) rj−1 > rj if xrj−1
= xrj for j ∈ {1, ..., h}.
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For an element π ∈ Sh+1, m(π) is the reflected permutation, that is, read the permutation

from right to left.

Let us now introduce the main quantities under consideration:

p := P
(

Π(Xn, Xn+1, ..., Xn+h) = Π(Yn, Yn+1, ..., Yn+h)
)

q :=
∑

π∈Sh+1
P
(

Π(Xn, Xn+1, ..., Xn+h) = π
)

· P
(

Π(Yn, Yn+1, ..., Yn+h) = π
)

r := P
(

Π(Xn, Xn+1, ..., Xn+h) = m
(

Π(Yn, Yn+1, ..., Yn+h)
)

)

s :=
∑

π∈Sh+1
P
(

Π(Xn, Xn+1, ..., Xn+h) = π
)

· P
(

m(Π(Yn, Yn+1, ..., Yn+h)) = π
)

The time series X and Y exhibit a positive ordinal pattern dependence (ord⊕) of order

h ∈ N and level α > 0 if

p > α + q

and negative ordinal pattern dependence (ord⊖) of order h ∈ N and level β > 0 if

r > β + s.

Let us shortly comment on the intuition behind these concepts: we compare the proba-

bility of coincident (resp. reflected) patterns in the time series {p, r} with the (hypothetical)

case of independence {q, s}. In order to have a concept which is comparable to correlation

and other notions which describe or measure dependence between time series, we introduce

the following quantity

ord(X, Y ) :=

(

p− q

1− q

)+

−
(

r − s

1− s

)+

(1)

which is called the standardized ordinal pattern coefficient. It has the following advantages:

we obtain values between -1 and 1, becoming -1 resp. 1 in appropriate cases: let Y be a

monotone transformation of X where X is a time series which admits at least two different

patterns with positive probability. In this case

ord(X, Y ) =

(

1− q

1− q

)+

−
(

0− s

1− s

)+

= 1 (q, s < 1).

In general q becomes 1, only if the time series X and Y both admit only one pattern π with

positive probability (which is then automatically 1). In this case we would set ord(X, Y ) =

1, since this situation corresponds to a perfect co-movement. A similar statement holds

true for s in the case of anti-monotonic behavior.
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Using the standardized coefficient, the interesting parameters are still p and r. If the

time series X and Y under consideration are stationary, q and s do not change over time

also. Recall that we do not want to find structural breaks within one of the time series,

but in their dependence structure. In the context of change-points respectively structural

breaks within one data set cf. Sinn et al. (2012).

Remark 2.1. It is important to note that our method depends on the definition of ordinal

patterns which is not unique in the literature. In each case permutations are used in order

to describe the relative position of h + 1 consecutive data points. Most of the time the

definition which we have given above is used. In Sinn et al. (2012), however, time is

inverted while Bandt and Shiha (2007) use an entirely different approach which they call

‘order patterns’. Using their definition, the reflected pattern is no longer derived by reading

the original pattern σ from the right to the left, but by subtracting: (h+ 1, ..., h+ 1)− σ.

However, the quantities p and q are invariant under bijective transformations (that is:

renaming) of the ordinal patterns. Therefore, our results remain valid whichever definition

is used.

Given the observations (x1, y1), . . . , (xn, yn), we want to estimate the parameters p, q, r, s,

and to test for structural breaks in the level of ordinal pattern dependence. In the subse-

quent section, we will propose estimators and test statistics, and determine their asymptotic

distribution, as n tends to infinity. Readers who are only interested in the test for structural

breaks and its applications might skip the next subsection.

2.2 Asymptotic Distribution of the Estimators of p

The natural estimator of the parameter p is the sample analogue

p̂n =
1

n

n−h
∑

i=1

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)}. (2)

The asymptotic results in our paper require some assumptions regarding the dependence

structure of the underlying process (Xi, Yi)i∈Z. Roughly speaking, our results hold if the

process is ‘short range dependent’. Specifically, we will assume that (Xi, Yi)i∈Z is a func-

tional of an absolutely regular process. This assumption is valid for many processes arising
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in probability theory, statistics and analysis; see e.g. Borovkova, Burton and Dehling (2001)

for a large class of examples.

For the reader’s convenience we recall the following concept: let (Ω,F , P ) be a proba-

bility space. Given two sub-σ-fields A,B ⊂ F , we define

β(A,B) = sup
∑

i,j

|P (Ai ∩ Bj)− P (Ai)P (Bj)|,

where the sup is taken over all partitions A1, . . . , AI ∈ A of Ω, and over all partitions

B1, . . . , BJ ∈ B of Ω. The stochastic process (Zi)i∈Z is called absolutely regular with

coefficients (βm)m≥1, if

βm := sup
n∈Z

β(Fn
−∞,F∞

n+m+1) → 0,

as m→ ∞. Here F l
k denotes the σ-field generated by the random variables Zk, . . . , Zl.

Now we can state our main assumption. We will see below that it is very weak and

that the class under consideration contains several interesting and relevant examples.

Let (Xi, Yi)i≥1 be an R
2-valued stationary process, and let (Zi)i∈Z be a stationary process

with values in some measurable space S. We say that (Xi, Yi)i≥1 is a functional of the

process (Zi)i∈Z, if there exists a measurable function f : SZ → R
2 such that, for all k ≥ 1,

(Xk, Yk) = f((Zk+i)i∈Z).

We call (Xi, Yi)i≥1 a 1-approximating functional with constants (am)m≥1, if for any m ≥ 1,

there exists a function fm : S2m+1 → R
2 such that (for every i ∈ Z)

E‖(Xi, Yi)− fm(Zi−m, . . . , Zi+m)‖ ≤ am. (3)

Note that, in the Econometrics literature 1-approximating functionals are called L1-

near epoch dependent (NED). The following examples show the richness of the class under

consideration. Recall that every causal ARMA(p, q) process can be written as an MA(∞)

process (cf. Brockwell and Davis (1991) Example 3.2.3.).

Example 2.2. (i) Let (Xi)i≥1 be an MA(∞) process, that is,

Xi =
∞
∑

j=0

αjZi−j
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where (αj)j≥0 are real-valued coefficients with
∑∞

i=j α
2
j <∞, and where (Zi)i∈Z is an i.i.d.

process with mean zero and finite variance. (Xi)i≥1 is a 1-approximating functional with

coefficients am =
(

∑∞
j=m+1 α

2
j

)1/2

. Limit theorems for MA(∞) processes require that the

sequence (am)m≥0 decreases to zero sufficiently fast. The minimal requirement is usually

that the coefficients (αj)j≥0 are absolutely summable. If this condition is violated, the

process may exhibit long range dependence, which is e.g. characterized by non-normal

limits and by a scaling different from the usual
√
n-scaling. Let us remark that ordinal

pattern distributions in (a single) ARMA time series have been investigated in Bandt and

Shiha (2007) Section 6.

(ii) Consider the map T : [0, 1] −→ [0, 1], defined by T (ω) = 2ω mod 1, i.e.,

T (ω) =







2ω if 0 ≤ ω ≤ 1/2

2ω − 1 if 1/2 < ω ≤ 1.

This function is well known as the one-dimensional baker’s map in the theory of dynamical

systems. Let g : [0, 1] → R be a Lipschitz-continuous function, and define the stochastic

process (Xn)n≥0 by

Xn(ω) = g(T n(ω)).

This process was studied by Kac (1946), who established the central limit theorem for

partial sums
∑n

i=1Xi, under the assumption that g is a function of bounded variation.

The time series (Xn)n≥0 is a 1-approximating functional of an i.i.d. process (Zj)j∈Z with

approximating constants am = ‖g‖L/2m+1 where ‖·‖L denotes the Lipschitz norm.

(iii) The continued fraction expansion provides an example from analysis that falls under

the framework of the processes studied in this paper. It is well known that any ω ∈ (0, 1]

has a unique continued fraction expansion

ω =
1

a1 +
1

a2+
1

a3+···

,

where the coefficients ai, i ≥ 1, are non-negative integers. Since these coefficients are

functions of ω, we obtain a stochastic process (Zi)i≥1, defined on the probability space

Ω = (0, 1] by Zi(ω) = ai. If we equip (0, 1] with the Gauß measure

µ((0, x]) =
1

log 2
log(1 + x),
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the process (Zi)i≥1 becomes a stationary ψ-mixing process. We can then study the process

of remainders

Xn(ω) =
1

Zn(ω) +
1

Zn+1(ω)+
1

Zn+2(ω)+···

.

The process (Xn)n≥1 is a 1-approximating functional of the process (Zi)i≥1, and thus the

results of the present paper are applicable to this example.

Remark 2.3. At first glance, it might be a bit surprising that examples from the theory of

dynamical systems are treated in an article which deals with the order structure of data. In

fact, there is a close relationship between these two mathematical subjects: using ordinal

patterns in the analysis of time series is equivalent to dividing the state-space into a finite

number of pieces and using only the information in which piece the state is contained at

a certain time. This is known as symbolic dynamics in the theory of dynamical systems.

Each of these pieces is assigned with a so called symbol. Hence, orbits of the dynamical

system are turned into sequences of symbols (cf. Keller et al. (2007), Section 1.2).

Processes that are 1-approximating functionals of an absolutely regular process satisfy

practically all limit theorems of probability theory, provided the 1-approximation coef-

ficients am and the absolute regularity coefficients βk decrease sufficiently fast. In our

applications below, we are not so much interested in limit theorems for the (Xi, Yi)-process

itself, but in limit theorems for certain functions g((Xi, Yi), . . . , (Xi+h, Yi+h)) of the data.

We then have to show that these functions are 1-approximating functionals, as well. We

will now state this result for two functions that play a role in the context of the present

research. A preliminary lemma, along with its proof, is postponed to Section 4.

Theorem 2.4. Let (Xi, Yi)i≥1 be a stationary 1-approximating functional of the absolutely

regular process (Zi)i≥1. Let (β(k))k≥1 denote the mixing coefficients of the process (Zi)i≥1,

and let (ak)k≥1 denote the 1-approximation constants. Assume that

∞
∑

k=1

(
√
ak + β(k)) <∞. (4)

Furthermore, assume that the distribution functions of Xi − X1, and of Yi − Y1, are both

Lipschitz-continuous, for any i ∈ {1, . . . , h+ 1}. Then, as n→ ∞,

√
n(p̂n − p)

D−→ N(0, σ2), (5)
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where the asymptotic variance is given by the series

σ2 = Var(1{Π(X1,...,Xh+1)=Π(Y1,...,Yh+1)}) (6)

+2
∞
∑

m=2

Cov
(

1{Π(X1,...,Xh+1)=Π(Y1,...,Yh+1)}, 1{Π(Xm,...,Xm+h)=Π(Ym,...,Ym+h)}

)

,

Proof. We apply Theorem 18.6.3 of Ibragimov and Linnik (1971) to the partial sums of the

random variables

ξi := 1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)}.

By Lemma 4.1, we get that ξi is a 1-approximating functional of the process (Zi)i≥1 with

approximation constants (
√
ak)k≥1. Thus, the conditions of Theorem 18.6.3 of Ibragimov

and Linnik (1971) are satisfied, and hence (5) holds.

Remark 2.5. Theorem 2.4 holds under the assumption that the underlying time series

(Xi, Yi)i≥1 is short range dependent. In the case of long-range dependent time series, other

limit theorems hold, albeit with a normalization that is different from the standard
√
n-

normalization.

In order to determine asymptotic confidence intervals for p using the above limit theo-

rem, we need to estimate the limit variance σ2. De Jong and Davidson (2000) have proposed

a kernel estimator for the series on the r.h.s. of (6). Let k : R → [0, 1] be a symmetric

kernel, i.e. k(−x) = k(x), that is continuous in 0 and safisfies k(0) = 1, and let (bn)n≥1 be

a bandwidth sequence tending to infinity. Then we define the estimator

σ̂2
n =

1

n

n−h
∑

i=1

n−h
∑

j=1

k

(

i− j

bn

)

(

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)}−p̂n
)(

1{Π(Xj ,...,Xj+h)=Π(Yj ,...,Yj+h)}−p̂n
)

.

(7)

De Jong and Davidson (2000) show that σ̂2
n is a consistent estimator of σ2, provided some

technical conditions concerning the kernel function k, the bandwidth sequence (bn)n≥1 and

the process (Xi, Yi)i≥1 hold. The assumptions on the process follow from our assumptions.

Concerning the kernel function and the bandwidth sequence, a possible choice is given

by k(x) = (1 − |x|)1[−1,1](x) and bn = log(n). We thus obtain the following corollary to

Theorem 2.4.
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Corollary 2.6. Under the same assumptions as in Theorem 2.4

√
n(p̂n − p)

σ̂n

D−→ N(0, 1).

As a consequence, [p̂n − zασ̂n, p̂n − zασ̂n] is a confidence interval with asymptotic coverage

probability (1−α). Here zα denotes the upper α quantile of the standard normal distribution.

We complement this theoretical result with a simulation of two correlated standard

normal AR(1) time series, where the AR-parameter φ is 0.1. Furthermore we have set

h = 2, p = 0.6353, n = 1000, k(x) and bn as above. We have simulated this 1000 times

obtaining the following histogram and Q–Q plot.

Histogram of sqrt(n) * (p_n − 0.6353)/sigma_n

sqrt(n) * (p_n − 0.6353)/sigma_n

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 1: Histogram of
√
n(p̂n − p)/σ̂n for

1000 simulations of correlated AR(1) time

series and density of N(0,1) distribution.
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Figure 2: Q–Q plot of
√
n(p̂n − p)/σ̂n for

1000 simulations of correlated AR(1) time

series and N(0,1) distribution.

2.3 Structural Breaks

As we have pointed out above the interesting parameter, in order to detect structural breaks

in the dependence structure, is p. If p changes significantly over time, r has to change also.

Furthermore, in order to analyze r one can instead analyze p for X and −Y . For stationary

time series, the values of q and s are stationary over time, too.
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In order to test the hypothesis that there is no change in the ordinal pattern dependence,

we propose the test statistic

Tn = max
0≤k≤n−h

1√
n

∣

∣

∣

∣

∣

k
∑

i=1

(

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)} − p̂n
)

∣

∣

∣

∣

∣

(8)

and prove limit theorems which are valid under the hypothesis.

Theorem 2.7. Under the same assumptions as in Theorem 2.4, we have

Tn
D−→ σ sup

0≤λ≤1
|W (λ)− λW (1)|,

where σ is defined in (6), and where (W (λ))0≤λ≤1 is standard Brownian motion.

The proof is again postponed to Section 4.

Corollary 2.8. Under the same assumptions as in Theorem 2.4, we have

1

σ̂n
Tn

D−→ sup
0≤λ≤1

|W (λ)− λW (1)|,

where σ̂n is defined in (7), and where (W (λ))0≤λ≤1 is standard Brownian motion.

Remark 2.9. Note that the distribution of sup0≤λ≤1 |W (λ) − λW (1)| is the Kolmogorov

distribution. If we denote the upper α quantile of the Kolmogorov distribution by kα, the

test that rejects the hypothesis of no change when Tn/σ̂n ≥ kα has level α.

Example 2.10. Again we complement the theoretical result with a simulation study. In

both cases we have simulated two correlated AR(1) time series, where the AR-parameter

φ is 0.2. Furthermore we have set h = 2, n = 1000, k(x) and bn as above. In the first

time series (Figure 3), there is no structural break (p = 0.6353). In the second time series

(Figure 4) we have set p = 0.6353 for the first 500 data points and p = 0.5378 for the

second 500 data points. We have simulated both pairs of time series 1000 times. Recall

that the 0.95 quantile of the Kolmogorov distribution is 1.36.

Let us, furthermore, analyze empirically the power of the test under different sizes of

the change: we have used the same setting as above and obtain in Figure 5 the power of

the test for various values of p after the break.
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Figure 3: Histogram of Tn/σ̂n for 1000 sim-

ulations of correlated AR(1) time series

without structural break and Kolmogorov

density.
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Figure 4: Histogram of Tn/σ̂n for 1000 sim-

ulations of correlated AR(1) time series

with a change of p after 500 observations

and Kolmogorov density
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Figure 5: Empirical power of the test for structural breaks for different values of p after

500 data points.

We now work with simulated data sets which have been generated under three distinct

settings: the normal distribution, the Student-t distribution with 2 degrees of freedom and

the Cauchy distribution. For 500, 1000 and 2000 data points, we analyze structural breaks
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after 1/4, 1/3 respectively 1/2 of the data. For the resulting AR(1)-time series with φ = 0.2

as above we analyze changes in p from 0.635 to 0.437.

n=500 n=1000 n=2000

break Normal Student-t Cauchy break Normal Student-t Cauchy break Normal Student-t Cauchy

125 0.628 0.611 0.559 250 0.938 0.891 0.861 500 0.998 0.998 0.996

167 0.776 0.769 0.71 333 0.979 0.973 0.958 667 1 0.999 1

250 0.877 0.851 0.81 500 0.997 0.992 0.984 1000 1 1 1

Let us emphasize that in medical and financial data n=2000 is a reasonable number

which is often obtained. It is surprising that we get strong results even in the highly

irregular Cauchy setting.

Finally, we use our method on real data.

Example 2.11. Let us consider the S&P 500 and its corresponding volatility Index VIX. We

cannot go into the details of the Chicago Board Options Exchange Volatility Index (VIX),

but we give a short overview: the index was introduced in 1993 in order to measure the

US-market’s expectation of 30-day volatility which is implied by at-the-money S&P 100

option prices. Since 2003, the VIX is calculated based on S&P 500 data (we write SPX for

short). The VIX is often qualified as the ‘fear index’ in newspapers, TV shows and also in

research papers. It has been discussed whether the VIX is a self-fulfilling prophecy or if

it is a good predictor for the future anyway (cf. Whaley (2008), and the references given

therein). For us the following facts are of importance:

• The VIX can be used to measure the market volatility at the moment it is calculated

(instead of trying to predict the future).

• Whether we use the S&P 100 or the S&P 500 data makes no difference, they are ‘for

all intents and purposes (...) perfect substitutes’ (Whaley (2008), p.3).

• The relation between the two datasets (SPX↔VIX) is difficult to model (cf. Madan

and Yor (2011)).

• There is a negative relation between the datasets which is asymmetric and hence, in

particular, not linear (cf. Whaley (2008), Section IV).

We have used open source data which we have extracted from finance.yahoo.com. We

have analyzed the daily ‘close prices’ for two periods of time each consisting in 2000 data
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points for h = 2. In the time period from 1990-01-02 (the first day for which the VIX has

been calculated) until 1997-11-25 we obtain T2000/σ̂2000 = 0.843. In the time period from

1997-11-26 to 2005-11-08 we get T2000/σ̂2000 = 1.5174. Hence, our test suggests that there

has been a structural break in the dependence between the two time series in this second

time period (level α = 0.05). Recall that the so called dot-com bubble falls in the second

time period. The effect gets weaker as h increases. However, for h = 3 resp. h = 4 we still

get significant results in case of the second time period, namely, T2000/σ̂2000 is 1.4898 resp.

1.3616. Let us have a closer look on the values of

1√
nσ̂n

∣

∣

∣

∣

∣

k
∑

i=1

(

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)} − p̂n
)

∣

∣

∣

∣

∣

before the maximum in (8) is taken. The vertical line is the 0.95-quantile of the Kolmogorov

distribution.
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Figure 6: No structural break is detected

in the first 8 year period.
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Figure 7: In the second time period a struc-

tural break is detected.

2.4 Estimating the Other Parameters

Now we deal with the other parameters under consideration in order to estimate the stan-

dardized ordinal pattern coefficient.
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To estimate the parameter q, we define the following auxiliary parameters

qX(π) = P (Π(X1, . . . , Xh) = π) (9)

qY (π) = P (Π(Y1, . . . , Yh) = π). (10)

where π ∈ Sh+1 denotes a permutation. Note that we have the following identity

q =
∑

π∈Sh

qX(π) qY (π).

We estimate the parameters qX(π) and qY (π) by their sample analogues

q̂X(π) =
1

n

n−h
∑

i=1

1{π(Xi,...,Xi+h)=π} (11)

q̂Y (π) =
1

n

n−h
∑

i=1

1{π(Yi,...,Yi+h)=π}, (12)

and finally q by the plug-in estimator

q̂n =
∑

π∈Sh

q̂X(π) q̂Y (π). (13)

Theorem 2.12. Under the same conditions as in Theorem 2.4, the random vector

√
n ((q̂X(π)− qX(π))π∈Sh

, (q̂Y (π)− qY (π))π∈Sh
)

converges in distribution to a multivariate normal distribution with mean vector zero and

covariance matrix

Σ =





Σ11 Σ12

Σ12 Σ22



 ,

where the entries of the (n!× n!) block matrices Σ11 =
(

σ11
π,π′

)

π,π′∈Sh
, Σ12 =

(

σ12
π,π′

)

π,π′∈Sh
,

and Σ22 =
(

σ22
π,π′

)

π,π′∈Sh
are given by the following formulas

σ11
π,π′ =

∞
∑

k=−∞

Cov(1{π(X1,...,Xh)=π}, 1{π(Xk+1,...,Xk+h)=π′}) (14)

σ12
π,π′ =

∞
∑

k=−∞

Cov(1{π(X1,...,Xh)=π}, 1{π(Yk+1,...,Yk+h)=π′}) (15)

σ22
π,π′ =

∞
∑

k=−∞

Cov(1{π(Y1,...,Yh)=π}, 1{π(Yk+1,...,Yk+h)=π′}). (16)
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Proof. This follows from the multivariate CLT for functionals of mixing processes, which

can be derived from Theorem 18.6.3 of Ibragimov and Linnik (1971) by using the Cramér-

Wold device.

Remark 2.13. We have presented the formulas (14)–(16) for the asymptotic covariances for

the case when the underlying process (Xk, Yk)k∈Z is two-sided. In the case of a one-sided

process (Xk, Yk)k≥1, the formulas have to be adapted. E.g., in this case (14) becomes

σ11
ππ′ = Cov(1{π(X1,...,Xh)=π}, 1{π(X1,...,Xh)=π′})

+
∞
∑

k=1

Cov(1{π(X1,...,Xh)=π}, 1{π(Xk+1,...,Xk+h)=π′})

+
∞
∑

k=1

Cov(1{π(X1,...,Xh)=π′}, 1{π(Xk+1,...,Xk+h)=π})

Using Theorem 2.12 and the delta method, we can now derive the asymptotic distribu-

tion of the estimator q̂n, defined in (13). The proof can be found in Section 4.

Theorem 2.14. Under the same assumptions as in Theorem 2.4,

√
n(q̂n − q) → N(0, γ2),

where the asymptotic variance γ2 is given by the formula

γ2 =
∑

π,π′∈Sh

qY (π)σ
11
π,π′qY (π

′) + 2
∑

π,π′∈Sh

qX(π)σ
12
π,π′qY (π

′) +
∑

π,π′∈Sh

qX(π)σ
22
π,π′qX(π

′)

If we want to apply the above limit theorems for hypothesis testing and the determi-

nation of confidence intervals, we need to estimate the limit covariance matrix Σ. We will

again apply the kernel estimate, proposed by De Jong and Davidson (2000), using the same

kernel k and the same bandwidth (bn)n≥1 as before. We define the R
2(h+1)!-valued random

vectors

Vi =
(

(

1{π(Xi,...,Xi+h)=π} − q̂X(π)
)

π∈Sh+1
,
(

1{π(Yi,...,Yi+h)=π} − q̂Y (π)
)

π∈Sh+1

)T

.

The kernel estimator for the covariance matrix Σ is then given by

Σ̂n =
1

n

n−h
∑

i=1

n−h
∑

j=1

k

(

i− j

bn

)

Vi V
T
j .
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We denote the entries of estimated covariance matrix Σ̂n by σ̂11
π,π′(n),σ̂12

π,π′(n), and σ̂22
π,π′(n),

respectively, where π, π′ ∈ Sh+1. Plugging the estimated covariances into the formula for

γ2, we then obtain a consistent estimator for γ2.

γ̂2n =
∑

π,π′∈Sh

q̂Y (π)σ̂
11
π,π′(n)q̂Y (π

′) + 2
∑

π,π′∈Sh

q̂X(π)σ̂
12
π,π′(n)q̂Y (π

′) +
∑

π,π′∈Sh

q̂X(π)σ̂
22
π,π′(n)q̂X(π

′).

Corollary 2.15. Under the same assumptions as in Theorem 2.14
√
n(q̂n − q)

γ̂n

D−→ N(0, 1).

As a consequence, [q̂n − zαγ̂n, q̂n − zαγ̂n] is a confidence interval with asymptotic coverage

probability (1−α). Here zα denotes the upper α quantile of the standard normal distribution.

Remark 2.16. (i) The coefficients r, s can be estimated in the same way as p, q, by applying

the estimators for p and q to the process (Xi,−Yi)i≥1. E.g., we can estimate r by

r̂n =
1

n

n−h
∑

i=1

1{Π(Xi,...,Xi+h)=Π(−Yi,...,−Yi+h)}

(ii) The standardized ordinal pattern coefficient ord(X, Y ) can be estimated by the plug-in

estimator

ˆord(X, Y ) =

(

p̂n − q̂n
1− p̂n

)+

−
(

r̂n − ŝn
1− ŝn

)+

.

If p 6= q and r 6= s, we can establish asymptotic normality of ˆord(X, Y ) using the delta

method.

3 Weighted Ordinal Pattern Dependence

As we have pointed out in the introduction, positive ordinal pattern dependence only counts

the occurrence of coincident patterns. In the case of large values of h it might happen that

there is a strong co-movement of the two time series under consideration, which is distracted

by a small noise. This might lead to ‘almost similar’ patterns, a term which will be made

precise below.

Besides, we might be interested in an entirely different dependence structure between

two time series. We will see that our general approach yields a powerful tool to introduce

and analyze various kinds of dependence.
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3.1 Different Kinds of Dependence

Let us begin with the following example:

b

b

b

b

b
b

b

Figure 8: The pattern (2, 1, 5, 4, 0, 6, 3).

b

b

b

b

b
b

b

Figure 9: The pattern (2, 1, 4, 5, 0, 6, 3).

The difference between the corresponding permutations is only one neighboring trans-

position. In this sense the permutations are very close to each other. However, one has

to be very careful with the meaning of ‘close to each other’. For h = 4 the permutations

(1, 3, 2, 0, 4) and (3, 1, 2, 4, 0) differ only by two transpositions. Nevertheless, they look

almost like ord⊖.

If the distance is chosen appropriately, (e.g. ℓ1-metric, see below) a small distance

on Sh+1 can be interpreted as a strong co-movement. Hence, we introduce a decreasing

function w on d(Sh+1, Sh+1), the image of the metric. This function will be called weight

function. In the case described in Section 1 the distance function is the discrete metric and

the weight function is w = 1{0}.

In the present section, we only consider positive dependence. The case of negative

dependence can be treated in the same way, or by using positive dependence on X and

−Y .

Let us directly consider the most general setting. We will see below that it is sometimes

useful to consider different types of patterns to be close to each other. Hence, we allow any

metric on Sh+1, and even every pseudo-metric. The reduction of complexity is in general

not as strong as in the ‘classical’ setting as described in Section 1. The question is, how to

compare the difference between the given data and the hypothetical case of independence.

In the classical setting we have compared probabilities, but since it has been probabilities of

Bernoulli random variables, we have compared expected values as well. This latter concept

carries over to the more general case.

19



Let d : Sh+1 × Sh+1 → R+ be a pseudo-metric, that is, for every σ, π, ρ ∈ Sh+1 we have

(i) d(σ, σ) = 0

(ii) d(σ, π) + d(π, ρ) ≥ d(σ, ρ)

Furthermore, let w : d(Sh+1, Sh+1) → [0, 1] be a monotonically decreasing function such

that w(0) = 1.

Ew
(

d
(

Π(Xn, Xn+1, ..., Xn+h),Π(Yn, Yn+1, ..., Yn+h)
))

−
∑

π,σ∈Sh+1

w(d(π, σ))P
(

Π(Xn, Xn+1, ..., Xn+h) = π
)

· P
(

Π(Yn, Yn+1, ..., Yn+h) = σ
)

(17)

is called average weighted ordinal pattern dependence (AWOPD).

The AWOPD can be normed as in (1). In applications it is sometimes more convenient

to work without any norming: in the classical setting one compares the number of coincident

patterns with the estimate of q times the number of observed patterns, that is, the average

number of coincident patterns one would expect under independence. Let N be the number

of observed points. In the new setting one compares the AWOPD-value

N−h
∑

j=1

w
(

d
(

Π(xj, xj+1, ..., xj+h),Π(yj , yj+1, ..., yj+h)
))

with the comparison value, which is the (plug-in) estimate of

∑

π,σ∈Sh+1

w(d(π, σ))P
(

Π(Xn, Xn+1, ..., Xn+h) = π
)

· P
(

Π(Yn, Yn+1, ..., Yn+h) = σ
)

times (N − h).

The first idea of this section has been to allow a small tolerance in comparing the ordinal

structure of the two time series (cf. in particular Example 3.1 below). Another approach

in this direction would be to use a kind of ε-band around the respective points of the time

series. The problem here is in computation. We would lose the benefit which we get from

analyzing only the ordinal structure, if we checked whether a point is in an ε-band around

another point. And we would have to do this in fact for h+ 1 points simultaneously.

There are various metrics, which can be defined on Sh+1 and which are used in different

areas of mathematics. For a survey consult Deza and Huang (1998) and Critchlow (1985),
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Chapter II. The metric of choice depends highly on the application one has in mind. Here,

we describe two different settings with suitable metrics.

Example 3.1. Maybe, the most natural choice for a metric is the ℓ1-distance: for π, σ ∈ Sh+1

define

dℓ1(σ, π) :=
h
∑

j=0

∣

∣π(j) − σ(j)
∣

∣ .

Using this metric is in line with our interpretation from above. We are still interested (as

in the first section) in the co-movement of time series, but we allow for a small tolerance.

We do not have to have exactly the same pattern in both time series; it is enough if they

are close to each other.

We emphasize the advantage of the new approach with a real world example: let us

consider again the relation between the S&P 500 and the corresponding VIX (cf. Example

2.11). Since we are dealing with a (generalized) ord⊖, we analyze positive dependence

between SPX and -VIX.

In Schnurr (2014) it was shown that there is a strong ord⊕ between the two time series

under consideration (up to the order h = 7). Let us consider the time period from 06-12-

1995 to 05-12-1997 (n = 500) and fix the order h = 6. For small orders the effect is not as

strong. In the given data sets we find 15 coincident patterns. The classical comparison value

is 0.7633. This means that if the two time series with their estimated pattern probabilities

were independent, we would expect 0.7633 coincident patterns. In fact we find 15 of them.

There is strong evidence for a classical positive ordinal pattern dependence.

Next we use the ℓ1-metric and the weight function

w := 1{0} + 0.75 · 1{2} + 0.50 · 1{4} + 0.25 · 1{6}.

Recall that the ℓ1-distance on Sh+1 is always an even number. We compare the AWOPD-

value with the comparison value: the AWOPD-value is 101.5. Keep in mind that here not

only the 15 coincident patterns are counted, but also various almost coincident patterns

do count towards this score. The comparison value is in this case 13.5. The advantage of

our new approach can be emphasized by analyzing a noisy version of the time series. We

calculate the realized variance V of the first time series (S&P500) and add to it a white

noise sequence of i.i.d. Gaussian random variables with mean zero and variance V , that is,
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the variance of the noise is as big as the variance of the data. We have simulated this 100

times. For 81 of the new noisy time series we found not a single coincident pattern between

these time series and the original -VIX data. Using weighted ordinal pattern dependence

with d and w as above we get a mean of 8.4125 for the AWOPD-value, which is significantly

higher than the mean of the comparison value 3.983 (sd=0.4933). Even under a strong noise

the AWOPD approach still detects the positive dependence. This example shows how the

tolerance which we have included in the comparison makes our method more robust.

While the metric in the example considered above is quite canonical, the (optimal)

choice of the weight function is an interesting open question. With our linear function

above we have been quite successful, although it was chosen ad hoc.

On some occasions, it might not be co-movement we are interested in. In the following

example, we use the metric in order to distinguish between ‘order’ and ‘chaos’.

Example 3.2. Sometimes one might not be interested in co-monotonic or anti-monotonic

behavior. Some time series, in particular in biology/medicine have times of regular behavior

and others of, say, chaotic or turbulent behavior. It could be of interest to analyze whether

the chaotic parts within two time series start and stop at about the same time. A structural

break would then mean that one of the series starts its chaotic behavior while the other

one is still in a regular regime or the other way around.

First we have to answer the question how to measure ‘regular’ behavior in terms of

ordinal patterns. Secondly, we will introduce a (pseudo-)metric which describes how far

away a pattern is from being regular. Finally we have to check whether regular parts and

chaotic parts appear at the same time in given time series.

Let us start with the first question: it is doubtless that the pattern in Figure 10 shows

a regular behavior (a time of growth) while the pattern in Figure 11 shows in a certain

sense chaotic behavior, that is, it changes direction all the time.

We want to make this mathematically tractable. The monotone patterns (0, 1, ..., h)

and (h, h − 1, ..., 0) are from our point of view most regular. To every pattern in Sh+1 we

assign the value

π 7→ c(π) := min
{

dℓ1(π, (0, 1, ..., h)), dℓ1(π, (h, h− 1, ..., 0))
}

,

that is, we measure how far away the pattern is from the two most regular ones. Again we
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Figure 10: The pattern (5, 4, 3, 2, 1, 0).

b
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b

Figure 11: The pattern (1, 3, 5, 2, 4, 0).

use the ℓ1-distance, but in a different way than in our above example.

A big value of c(π) means that π is ‘chaotic’. Chaotic patterns should be close to

other chaotic patterns while regular patterns should be close to other regular ones. This is

obtained in the following way: we use a metric on the space c(Sh+1) ⊆ R+ which takes the

order structure of R+ into account. W.l.o.g. we use the Euclidean distance dE. Since we

want to measure the distance between patterns, we pull this metric back via the function

c:

d(π, σ) := dE(c(π), c(σ))

It is easy to check that d is a pseudo-metric on Sh+1. Unlike in the case of a (proper)

metric, d(σ, π) = 0 does not imply σ = π. For example, the distance between the patterns

(0, 1, ..., h) and (h, h−1, ..., 0) is zero. The last step is identical to our previous example: we

use a monotonically decreasing weight function in order to guaranty that a similar behavior

results in a big AWOPD-value while a different behavior results in a small AWOPD-value.

Using this method of analysis on real data is part of ongoing research.

The main difference between the two examples is that different patterns are thought of

as being close to each other. Our above approach hence gives us a lot of flexibility in terms

of the kind of dependence which can be analyzed.

3.2 Limit Theorems and Structural Breaks in the Generalized

Setting

We estimate the AWOPD by the sample analogue

D̂n =
1

n

n−h
∑

i=1

w(d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h)))−
∑

π,σ∈Sh+1

w(d(π, σ))q̂X(π)q̂Y (σ),
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where q̂X and q̂Y are defined as in (11) and (12), respectively. In order to derive the

asymptotic distribution of D̂n, we note that D̂n is a functional of the (2 (h + 1)! + 1)-

dimensional random vector
(

1

n

n−h
∑

i=1

w(d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h))), (q̂X(π))π∈Sh+1
, (q̂Y (π))π∈Sh+1

)

.

We will now derive the asymptotic distribution of this random vector.

Theorem 3.3. Under the same assumptions as in Theorem 2.4,

(

1

n

n−h
∑

i=1

w(d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h))), (q̂X(π))π∈Sh+1
, (q̂Y (π))π∈Sh+1

)

is asymptotically normal with mean vector

(

E(w(d(Π(X1, . . . , Xh+1),Π(Y1, . . . , Yh+1)))), (qX(π))π∈Sh+1
, (qY (π))π∈Sh+1

)

,

and covariance matrix (1/n) ·Σ, where

Σ =











a b′
1 b′

2

b1 Σ11 Σ12

b2 Σ21 Σ22











. (18)

Here Σ11, Σ12, and Σ22 are the (h + 1)! × (h + 1)! matrices with entries defined in (14),

(15), and (16), and a ∈ R and b1,b2 ∈ R
(h+1)! are defined as follows

a =
∞
∑

i=−∞

Cov
(

w(d(Π(X1, . . . , X1+h),Π(Y1, . . . , Y1+h))),

w(d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h)))
)

,

b1(π) =
∞
∑

i=−∞

Cov
(

w(d(Π(X1, . . . , X1+h),Π(Y1, . . . , Y1+h))), 1{Π(Xi,...,Xi+h)=π}

)

b2(π) =
∞
∑

i=−∞

Cov
(

w(d(Π(X1, . . . , X1+h),Π(Y1, . . . , Y1+h))), 1{Π(Yi,...,Yi+h)=π}

)

Proof. This follows from the multivariate CLT for functionals of mixing processes, which

can be derived from Theorem 18.6.3 of Ibragimov and Linnik (1971) by using the Cramér-

Wold device.
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Theorem 3.4. Under the same assumptions as in Theorem 2.4,

√
n(D̂n − AWOPD) → N(0, γ2),

where the asymptotic variance γ2 is given by the formula

γ2 = α′Σα,

with Σ as in (18) and

α =






1,−





∑

σ∈Sh+1

w(d(π, σ))qY (σ)





π∈Sh+1

,−





∑

σ∈Sh+1

w(d(σ, π))qX(σ)





π∈Sh+1







′

.

Proof. This follows from Theorem 3.3 and the delta method, applied to the function g :

R
2(h+1)!+1 → R, given by

g(u, (vπ)π∈Sh+1
, (wπ)π∈Sh+1

) = u−
∑

π,σ∈Sh+1

w(d(π, σ))vπwσ.

Note that α = ∇g(E(w(d(Π(X1, . . . , Xh+1),Π(Y1, . . . , Yh+1)))), (qX(π))π∈Sh+1
, (qY (π))π∈Sh+1

).

Finally, we propose a test for structural breaks in the AWOPD rejecting for large values

of the test statistic

Wn = max
0≤k≤n−k

1√
n

k
∑

i=1

[

w (d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h)))

− 1

n

n
∑

i=1

w (d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h)))
]

(19)

Theorem 3.5. Under the same assumptions as in Theorem 2.4, and under the hypothesis

of no structural break,

Wn
D−→

√
a sup

0≤λ≤1
|W (λ)− λW (1)|,

where a is defined as in Theorem 3.3.
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Proof. The proof follows along the lines of the proof of Theorem 2.7. We introduce the

process

Wn(λ) =
1√
n

[nλ]
∑

i=1

[

w (d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h)))

− 1

n

n
∑

i=1

w (d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h)))
]

=
1√
n

[nλ]
∑

i=1

w (d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h)))

− [nλ]

n

1√
n

n
∑

i=1

w (d(Π(Xi, . . . , Xi+h),Π(Yi, . . . , Yi+h))) .

As in the proof of Theorem 2.7, we can show that (Wn(λ))0≤λ≤1 converges in distribution

to the process
√
a(W (λ)− λW (1))0≤λ≤1.

4 Proofs

Let us first show that the time series in Example 2.2 are 1-approximating functionals: In

part (i) we have considered aMA(∞)-time series X. We define the functions fm : R2m+1 →
R by fm(zi−m, . . . , zi+m) =

∑m
j=0 αjzi−j. Thus we obtain

E|Xi − fm(Zi−m, . . . , Zi+m)| = E

∣

∣

∣

∣

∣

∞
∑

j=m+1

αjZi−j

∣

∣

∣

∣

∣

≤
(

E
(

∞
∑

j=m+1

αjZ
2
i−j

)

)1/2

=

(

∞
∑

j=m+1

a2j

)1/2
√

Var(Z1).

Hence, (Xi)i≥1 is a 1-approximating functional with coefficients am =
(

∑∞
j=m+1 α

2
j

)1/2

.

In part (ii) we have considered the baker’s map. We will now show that (Xn)n≥0 is a

functional of an i.i.d. process. It is well-known that for almost every ω ∈ [0, 1], there is a

unique dyadic expansion

ω =
∞
∑

j=1

Zj

2j
,

where Zj = Zj(ω) ∈ {0, 1}. Moreover, the random variables (Zj)j≥1 are i.i.d. and P (Zi =
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0) = P (Zi = 1) = 1/2. Note that

T n(ω) =
∞
∑

j=1

Zj+n

2j
=

−1
∑

j=−∞

2jZn−j.

We then define fm(z−m, . . . , zm) = g(
∑−1

j=−m 2jzj), and thus we obtain

E|X0 − fm(Z−m, . . . , Zm)| = E

∣

∣

∣

∣

∣

g

(

∞
∑

j=1

Zj2
j

)

− g

(

m
∑

j=1

Zj

2j

)∣

∣

∣

∣

∣

≤ ‖g‖LE
(

∞
∑

j=m+1

Zj

2j

)

= ‖g‖L
1

2m+1
.

Hence, (Xn)n≥0 is a 1-approximating functional of the i.i.d. process (Zj)j∈Z with approx-

imating constants am = ‖g‖L/2m+1. The proof for the claim of part (iii) is similar and

hence omitted.

The following lemma is used in the proof of Theorem 2.4.

Lemma 4.1. Let (Xi, Yi)i≥1 be a 1-approximating functional of the process (Zi)i∈Z with

approximating coefficients (am)m≥1.

(i) Assume that the distribution functions of Xi − X1 is Lipschitz-continuous, for any

i ∈ {1, . . . , h+ 1}. Then, for any permutation π,

1{Π(Xi,Xi+1,...Xi+h)=π}

is a 1-approximating functional with approximation constants (O(
√
am))m≥1.

(ii) Assume that the distribution functions of Xi − X1, and of Yi − Y1, are Lipschitz-

continuous, for any i ∈ {1, . . . , h+ 1}. Then,

1{Π(Xi,Xi+1,...Xi+h)=Π(Yi,Yi+1,...Yi+h)}

is a 1-approximating functional with approximation constants (O(
√
am))m≥1.

Proof. We only present the proof of part (ii). The proof of part (i) follows the same lines.

Let m ≥ 1 and define (X
(m)
i , Y

(m)
i ) = fm(Zi−m, . . . , Zi+m). Then, the following inequality
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holds

1{Π(Xi,Xi+1,...Xi+h)=Π(Yi,Yi+1,...Yi+h)} − 1
{Π(X

(m)
i ,X

(m)
i+1 ,...X

(m)
i+h

)=Π(Y
(m)
i ,Y

(m)
i+1 ,...Y

(m)
i+h

)}

≤
h
∑

j=0

1
{|Xi+j−X

(m)
i+j |>ǫ}

+
h
∑

j=0

1
{|Yi+j−Y

(m)
i+j |>ǫ}

+
∑

0≤j 6=k≤h

1{|Xi+j−Xi+k|≤2ǫ} +
∑

0≤j 6=k≤h

1{|Yi+j−Yi+k|≤2ǫ}.

Thus, by stationarity, we obtain

E
∣

∣

∣
1{Π(Xi,Xi+1,...Xi+h)=Π(Yi,Yi+1,...Yi+h)} − 1

{Π(X
(m)
i ,X

(m)
i+1 ,...X

(m)
i+h

)=Π(Y
(m)
i ,Y

(m)
i+1 ,...Y

(m)
i+h

)}

∣

∣

∣

≤ (h+ 1)P (|X1 −X
(m)
1 | ≥ ǫ) + (h+ 1)P (|Y1 − Y

(m)
1 | ≥ ǫ)

+
∑

1≤j 6=k≤h

P (|Xj −Xk| ≤ 2ǫ) +
∑

1≤j 6=k≤h

P (|Yj − Yk| ≤ 2ǫ)

≤ 2(h+ 1)
am
ǫ

+ 2(h+ 1)hCǫ.

Choosing ǫ =
√
am, we thus obtain

E
∣

∣

∣1{Π(Xi,Xi+1,...Xi+h)=Π(Yi,Yi+1,...Yi+h)} − 1
{Π(X

(m)
i ,X

(m)
i+1 ,...X

(m)
i+h

)=Π(Y
(m)
i ,Y

(m)
i+1 ,...Y

(m)
i+h

)}

∣

∣

∣ ≤ C
√
am,

thus showing that 1{Π(Xi,Xi+1,...Xi+h)=Π(Yi,Yi+1,...Yi+h)} is a 1-approximating functional.

Proof of Theorem 2.14. We define the function f : R2h! → R by f(x,y) =
∑h!

i=1 xi yi, where

x = (x1, . . . , xh!), y = (y1, . . . , yh!). f is everywhere differentiable, with partial derivatives

∂
∂xi
f(x, y) = yi and

∂
∂yi
f(x, y) = xi. Thus, denoting by ∇xf the vector of partial derivatives

of f with respect to the x-coordinates, we obtain

∇f(x, y) =





∇xf

∇yf



 (x,y) =





y

x



 .

Observe that q̂n = f((q̂X(π))π∈Sh
, (q̂Y (π))π∈Sh

), and that q = f(qX , qY ). Hence, we may

apply the delta method, which yields
√
n(p̂n − p) → N(0, γ2), where

γ2 = (∇f(qX , qY ))TΣ∇f(qX , qY )

= (qTY , q
T
X)





Σ11 Σ12

Σ12 Σ22









qY

qX





= qTYΣ11qY + 2qTXΣ12qY + qTXΣ22qX .

Using (14), (15), and (16), we then obtain the final formula for γ2.
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Proof of Theorem 2.7. We introduce the process

Tn(λ) =
1√
n

[nλ]
∑

i=1

(

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)} − p̂n
)

,

which we can rewrite as follows

Tn(λ) =
1√
n

[nλ]
∑

i=1

(

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)} − p
)

− [nλ]√
n
(p̂n − p))

=
1√
n

[nλ]
∑

i=1

(

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)} − p
)

− [nλ]

n

1√
n

n
∑

i=1

(

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)} − p
)

− [nλ]

n3/2

n
∑

i=n−h+1

1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)}.

Note that ([nλ]/n3/2)
∑n

i=n−h+1 1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h) converges to zero in probability,

and that [nλ]/n converges to λ. Thus, by the invariance principle for the partial sums

of the indicator variables 1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)}, we obtain immediately that the term

(1/
√
n)
∑[nλ]

i=1 (1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)}−p) converges in distribution to a Brownian motion

with variance σ2. Thus, by the continuous mapping theorem, we obtain convergence of

(Tn(λ))0≤λ≤1 towards σ(W (λ) − λW (1)). Another application of the continuous mapping

theorem yields that

sup
0≤λ≤1

|Tn(λ)| → σ sup
0≤λ≤1

|W (λ)− λW (1)|.

Finally, we observe that Tn = sup0≤λ≤1− h
n
|Tn(λ)|, and that

∣

∣

∣

∣

∣

sup
0≤λ≤1

|Tn(λ)| − sup
0≤λ≤1− h

n

|Tn(λ)|
∣

∣

∣

∣

∣

≤ 1√
n

n
∑

i=n−h+1

∣

∣1{Π(Xi,...,Xi+h)=Π(Yi,...,Yi+h)} − p̂n
∣

∣ .

As the right hand side converges to zero in probability, we have finally proved that Tn

converges in distribution to σ sup0≤λ≤1 |W (λ)− λW (1)|.

5 Conclusion

In the present paper we have introduced a new method to detect structural breaks in the

dependence between two time series. To this end we have used the concept of ordinal pat-

tern dependence which has been introduced in Schnurr (2014). While that article contained
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mainly a case study, here, we have presented the technical framework and generalized the

concept substantially by using distance functions on the space of ordinal patterns. This

allows us to analyze various kinds of dependence in future research.

Our approach has several advantages compared to other ways of analyzing structural

breaks within the dependence: the method is robust against measurement errors or small

perturbations of the data. The intuition behind the concept is clear and there are quick

algorithms in order to carry out the analysis. Let us emphasize that we do not need our

random variables Xi to have second moments which is a standard assumption for all tests

which are based on correlation.

It is important to note that even the classical ordinal pattern dependence does not

measure the same phenomena as correlation measures. It is not in the scope of the present

paper, but let us mention that we have analyzed data from medicine as well as hydrology

which admit an ord⊕ without showing a significant positive correlation and those with a

strong positive correlation without showing ordinal pattern dependence. This statement

remains true, comparing the ord⊕ with kendall’s tau or spearman’s rho.

Dealing with financial data we have seen that our test works in practice. One could

have other applications in mind. Since the method is scale free one can compare data

coming from entirely different sources. As an example one could analyze the dependence

between asset data and the heart rate of a trader.
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