Variational and Perturbative Extensions of Continuous
Unitary Transformations for Low-Dimensional Spin
Systems

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Fakultat Physik
der Technischen Universitat Dortmund

vorgelegt von
Nils Alexander Drescher

aus Dortmund

technische universitat
dortmund

21. November 2014



Dissertation in der Fakultat Physik

Erster Gutachter:
Zweiter Gutachter:
Vorsitzender der Priifungskommission:

Vertreterin der wissenschaftlichen Mitarbeiter:

Tag der miindlichen Priifung:

Technische Universitat Dortmund

Prof. Dr. Gotz S. Uhrig
Dr. Kai P. Schmidt
Prof. Dr. Dieter Suter
Dr. Barbel Siegmann

19.12.2014



Meinen Eltern
Vera und Bernhard

Give me six hours to chop down
a tree and I will spend the first
four sharpening the ax.

— Unknown. Often attributed
to Abraham Lincoln.
[Schwartz(2010)]






Contents

1 Motivation and overview 9
2 Self-similar continuous unitary transformations (sCUT) 13
2.1 Continuous unitary transformations (CUT) . . . . .. ... ... ... ... 14
2.2 Generator schemes . . . . . .. ..o 17
2.2.1  Wegner’s generator scheme . . . . . . . ... ... 17
2.2.2  Mielke’s generator scheme . . . . .. .. ... oL 18
2.2.3 Particle-conserving generator scheme . . . . .. .. ... ... ... 18
2.2.4 Particle-sorting generator schemes . . . . . . ... .. ... 19

2.3 Flow equation in second quantization . . . . . . . .. .. ... ... ... 20
2.4 Self-similar truncation . . . . ... ... . L 22
2.5 Symmetries . . ... e 25
2.5.1 Symmetries of the Hamiltonian . . . . . .. ... ... ... ... .. 26
2.5.2  Symmetries of the observable . . . . .. .. ... ... ... ... 28

2.6 Technical implementation . . . . . ... .. ... ... ... .. 29
2.6.1 Datatypes. . . . . . . 31
2.6.2 Algorithms . . . . . . . .. 33
2.6.3 Parallelization . . . . . . . ... o oo 37

3 Enhanced perturbative continuous unitary transformations (epCUT) 41
3.1 Perturbative continuous unitary transformations (pCUT) . . . .. ... .. 43
3.2 Enhanced perturbative CUT (epCUT) for the Hamiltonian . . . . . . . .. 45
3.2.1 Perturbative expansion of the flow equation . . . .. ... .. ... 45
3.2.2  Example: Harmonic oscillator with quartic perturbation . . . . . . 46
3.2.3 Algorithm for the Hamiltonian . . . . . . .. ... ... ... .... 49
3.2.4  Reduction of the differential equation system . . . . . . . .. .. .. 51

3.3 Directly evaluated epCUT (deepCUT) . . . . ... ... ... ... .... 52
3.4 Transformation of observables . . . . . .. .. .. ... 0L %)
3.4.1 Algorithm for the observables . . . . .. ... ... ... ...... 55
3.4.2  Reduction of the differential equation system . . . . . . . .. .. .. 56

3.5 Simplification rules for bosonic operators . . . . . . . ... ... ... ... o7
3.5.1 Basic a posteriori rule . . . ... oL Lo 59
3.5.2  Extended a posteriorirule . . . .. ..o L 60
3.5.3 Basic apriorirule . ... ... 63
3.5.4 Extended a priorirule . . . . ... oL 64

3.6 Minimal order and symmetries . . . . . .. ... oo 65
3.7 Technical aspects . . . . . . . . . . . .. 66

3.7.1 Implementation . . . . .. ... .. o 66



CONTENTS

3.7.2 Performance . . . . . . ... L 70
3.8 Conclusions . . . . . . . . . . e 72
3.9 Applications . . . . . .. 73
3.10 Outlook . . . . . . . . e 74
Variational generators 75
4.1 Two boson model . . . . . . . .. ... ... 7
4.2 Treatment by deepCUT . . . . . . . . . ... 79
4.3 Results for particle-sorting generators . . . . . . . ... ... 80
4.4 Variational generators . . . . . . . ... Lo o 85
4.4.1 Scalar optimization . . . . . ... ... L 87
4.4.2 Vectorial optimization . . . . . . .. ... oL 89
4.4.3 Tensorial optimization . . . . . . ... .. ... ... ... 91
4.5 Results for variational generators . . . . . . .. ..o 92
4.5.1 Asymptotics for small off-diagonality . . . .. ... ... ... ... 93
4.5.2 Performance for larger off-diagonality . . . . . .. .. ... ... .. 97
4.6 Conclusions . . . . . . . . . 101
4.7 Outlook . . . . . . e 102
sCUTs with Variational Extensions for Dimerized Spin S=1/2 Models 105
5.1 Low-dimensional spin S=1/2 Heisenberg models . . . . . . ... .. ... .. 107
5.1.1 One-dimensional dimerized Heisenberg chain . . . . . . . . . .. .. 107
5.1.2  Two-dimensional dimerized Heisenberg model . . . . . . .. .. .. 108
5.2 Derivation of the effective Hamiltonian . . . . . . . . ... ... ... ... 109
5.2.1 Triplon representation . . . . . . . . . .. ... ... .. ... ... 110
5.2.2  Variational starting point . . . . . ... ..o 111
5.2.3 Details of the CUT . . . .. ... ... .. ... ... 113
5.2.4  Symmetries . . . ... L. Lo 114
5.3 Review: Dimerized spin S=!/2 Heisenberg chain . . . . ... .. ... ... 115
5.4 Two-dimensional Heisenberg model with default starting point . . . . . . . 117
5.5 Two-dimensional Heisenberg model with varied starting point . . . . . .. 120
5.5.1 Ground state energy . . . . .. ..o 120
5.5.2 Dispersionand gap . . . . . . . ... oo 123
5.5.3 Magnetization . . . . . ..o 127
5.6 One-dimensional Heisenberg chain with generic optimization of starting point128
5.6.1 Stepwise optimization of starting point . . . . . ... ... .. ... 129
5.6.2 Continuous optimization of starting point . . . . . ... ... ... 130
5.7 Conclusions . . . . . . . . . 133
5.8 Outlook . . . . . . . e 135
S=1 Heisenberg chain by deepCUT's 137
6.1 S=1 Heisenberg chain . . . . . . . . . . .. .. ... 138
6.2 Treatment by deepCUT with variational extensions . . . . . ... ... .. 139
6.2.1 Mapping to S=1/2 Heisenberg ladder . . . . . . .. ... ... ... 139
6.2.2 Triplon Hamiltonian and observables . . . . .. ... ... ... .. 141
6.2.3 Decoupling of the low quasi-particle sub-spaces . . . . .. .. ... 143
6.2.4 Evaluation of spectral properties . . . . .. ... ... ... ... 145
6.3 Selection of the variational parameter . . . . . . . . .. ... ... .. ... 148

6.4 Overview over the energy spectrum . . . . . . . .. ... ... ... .. .. 151



CONTENTS 7

6.5 Details of the S=0 spectrum . . . . . . .. ... ... ... ... 153
6.6 Details of the S=1 spectrum . . . . . . .. ... .. ... .. ... .... 159
6.7 Conclusions . . . . . . . . . e 164
6.8 Outlook . . . . . . . . e 165
7 Summary 167
8 Zusammenfassung 169

A Dispersions of the Two-dimensional Dimerized S=1/2 Heisenberg Model171
Bibliography 187
Teilpublikationen 189

Danksagung 191



CONTENTS




Chapter 1

Motivation and overview

Superconductivity is one of the most impressing quantum phenomena that can be observed
macroscopically. Since its discovery by Onnes [Onnes(1911), Onnes(1913)], the exotic
properties of the superconducting phase have triggered numerous theoretical and experi-
mental studies, and as well as extensive research for industrial applications [Bray(2008),
Bray(2009)].

Apparently, the ability of superconducting materials below their transition tempera-
ture T to carry high current densities without any losses due to electrical DC resistance is
attractive in numerous technological applications. First of all, we mention the generation
and indefinite maintenance of strong magnetic fields used in research facilities, particle
accelerators like the Large Hadron Collider (LHC), and for compact and lightweight elec-
tric motors and generators. So far, the biggest commercial success has been achieved by
superconducting solenoids for Magnetic Resonance Imaging (MRI) devices, which provide
an exceptionally high resolution for medical diagnostics without the ohmic losses and heat
production of conventional copper solenoids.

An obvious application of superconductivity are superconducting wires for connecting
of electrical power grids. However, superconductors are also suitable for the construction
of more sophisticated power grid components, e. g. fault current limiters or superconduct-
ing magnetic energy storage. Moreover, superconductors can be used in an increasing
number of electronic devices, with high quality microwave filters in cell phone base stations
being the most successful commercial application [Smith & Jain(1999), Willemsen(2001)].

The exploitation of the Josephson effect in superconducting quantum interference de-
vices (SQUIDs) allows for the measurement of magnetic fields with the accuracy of flux
quanta. Eventually, the direct manipulation of magnetic flux quanta in superconducting
quantum circuits is a promising candidate for the implementation of scalable quantum
computers [Barends et al.(2014)].

Microscopically, the superconducting phase can be understood as condensate of two-
electron bound states (Cooper pairs). For conventional superconductivity, as it has been
found in pure metals or alloys like NbTi, the attractive interaction between electrons is
mediated by electron-phonon coupling [Bardeen et al.(1957b),Bardeen et al.(1957a)]. The
need to operate well below the transition temperature of the superconductor diminishes
the technical and economical benefits of superconducting devices, since the low transition
temperatures of conventional superconductors require expensive cooling by liquid helium.

For this reason, much interest has been paid to the discovery of unconventional
superconductors [Bednorz & Miiller(1986)], where the conventional, phonon-mediated
mechanism can be ruled out due to the missing isotope effect [Hoen et al.(1989)]. While
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different classes of unconventional superconductors have been found over the years, the
pairing mechanism in this materials remains one of the most puzzling open questions in
condensed matter physics. Of particular interest are cuprate superconductors, some of
which remain superconducting above the boiling point of liquid nitrogen [Wu et al.(1987)]
and even up to 138 K [Dai et al.(1995)], leading to the name high-temperature supercon-
ductor (HTSC). While their high transition temperature makes them more attractive
than conventional superconductors for industrial applications, the manufacturing process
is more challenging.

The understanding of the pairing mechanism in HT'SCs is of great interest for funda-
mental research. At the same time, it has as a strong technological motivation, as it might
lead to novel superconducting materials with even higher transition temperatures and im-
proved mechanical properties, allowing for the widespread application of superconducting
technologies.

Chemically, the cuprate superconductors consist of low-dimensional structures (chains,
ladders, plains) of copper and oxygen, embedded in a matrix of various other elements.
While the host materials like LayCuQy are believed to be Mott insulators [Manousakis(1991)],
doping with electrons or holes leads to normal conductance by charge carriers and, at
a critical concentration, superconductivity arises. Interestingly, the materials enter the
superconducting state close to the breakdown of long-range anti-ferromagnetic (AFM) or-
der, where a quantum phase transition (QPT) to a magnetically disordered ground state
happens. This suggest that the attractive interaction between charge carriers in cuprate
HTSCs is mediated by magnetic fluctuations, and particular interest has been paid on
the magnetic properties of the ground state and its excitations.

Because cuprate superconductors have a complex chemical and geometrical structure,
complex interactions and strong electronic correlations to consider, a direct description
taking all microscopic details into account seems to be desperate. In order to provide an
understanding of the mechanisms that are essential for the magnetic properties and, fi-
nally, their role in the mechanism of superconductivity, a stepwise reduction of complexity
is necessary. In the cuprates, the half-occupied orbitals of the Cu?* ions is most important
for the electronic and magnetic properties. They interact via superexchange mediated by
the oxygen atoms. This system can be simplified as a Hubbard model, where each lattice
site represents one orbital of a copper atom that can hold up to two electrons. In the
minimal realization, only Coulomb repulsion U on the same site and a nearest-neighbour
hopping t are considered as interactions. For the undoped case, i.e., for one electron per
lattice site and in the limit of large U > ¢, the system becomes a Mott insulator, where
each electron is confined to a specific site and electron hopping is inhibited by the high
energy of doubly occupied states. For studying the low-energy physics of the system,
it is sufficient to concentrate on the spin degree of freedom of the localized electrons.
This leads us to the Heisenberg model, which describes the system in terms of effective
spin-spin interactions that are a consequence of the high-energy physics in the underlying

Hubbard model.

At each of these steps, processes on a large energy scale determine the properties on
a lower energy scale in an intricate way. This gives rise to a large variety of effective
interaction processes that appear in the effective low-energy model. Depending on which
effective couplings are identified as important and which can be neglected in different
parameter regimes of the macroscopic model, it can be necessary to construct different
effective models in order to understand the macroscopic model in all aspects. Conversely,
new insights can be gained when the couplings of the effective model are treated as free
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parameters and the full phase diagram is explored, giving rise to novel kinds of order,
exotic phases and their excitations.

Continuous unitary transformations (CUT) are a powerful framework to derive such
effective low-energy models in a systematic and controlled fashion. By selection of an ap-
propriate generator scheme, they offer a large degree of control over the general structure
of the derived effective model. Even more, they can be used to understand the physical
properties of the system in terms of conserved quasi-particles for the elementary excita-
tions and to describe multi-particle continua and bound states, as well as response func-
tions. The effective Hamiltonian can be diagonalized directly by the continuous unitary
transformation (CUT), or used as starting point for the investigation by other methods.

In this thesis, we derive several methodological improvements of the CUT method,
including perturbative and variational aspects, and apply it to low-dimensional spin sys-
tems. The thesis is structured as follows:

In chapter two, we give an introduction to the self-similar CUT (sCUT) method that
serves as a starting point for the studies in the subsequent chapters and explain the
computational implementation used in this thesis.

In chapter three, we develop two novel CUT-based techniques to study many-particle
systems: The enhanced perturbative CUT (epCUT) method, which allows for high-order
perturbative expansions for effective models beyond the limitations the existing pertur-
bative CUT (pCUT) approach, and the directly evaluated epCUT (deepCUT) method,
which allows us to obtain non-perturbative effective Hamiltonians efficiently and with
a significantly larger robustness compared to sCUT. We illustrate these methods by a
perturbed harmonic oscillator as pedagogic example.

In chapter four, we investigate the properties of CUTs in second quantization for
systems with overlapping quasi-particle sub-spaces. These systems are a particular chal-
lenge for the CUT method, because the particle-sorting generator schemes used to decou-
ple the low-energy spectrum can fail in the case of strong overlap or yield a misleading
quasi-particle picture. We investigate this in detail for a system of two coupled harmonic
oscillators using deepCUT. Then, we develop a family of three novel variational generator
schemes that do not suffer from the problems of the conventional particle-sorting gener-
ators. They lead to a meaningful quasi-particle interpretation even in the case of strong
overlap.

In chapter five, we study the QPT in the dimerized, two-dimensional S=1/2 Heisenberg
model by means of sSCUT with a variational starting point. For the first time, we are able
to describe a phase with a spontaneously broken continuous symmetry by means of CUT
and to derive an effective model that describes both gapped triplons and gapless magnons
as quasi-particles in a uniform operator representation. After this, we generalize the
concept of the variational starting point and show how an optimal starting point can be
obtained independent of the particularities of the model.

In chapter six, we investigate the S=1 Heisenberg chain using the deepCUT method
and derive an effective model in terms of triplon quasi-particles. To this end, we use a
mapping to a ladder-like S=1/2 Heisenberg system introducing a variational parameter. We
analyze the low-energy spectrum and calculate energy- and momentum-resolved response
functions. In particular, we are interested in the spontaneous quasi-particle decay of one
triplon into two triplons. We find that, due to the strongly overlapping quasi-particle
sub-spaces, the use of the variational generators is mandatory.

Finally, we summarize our findings in both English and German language.
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Chapter 2

Self-similar continuous unitary
transformations (sCUT)

Contents
2.1 Continuous unitary transformations (CUT) ....... ... 14
2.2 Generatorschemes. . . ... ... ... ... e 17
2.2.1 Wegner’s generator scheme . . . . .. ... ... .. ..., 17
2.2.2  Mielke’s generator scheme . . . . . .. ... L L. 18
2.2.3 Particle-conserving generator scheme . . . . . .. ... ... .. 18
2.2.4  Particle-sorting generator schemes . . . . .. .. .. ... ... 19
2.3 Flow equation in second quantization . ... ... ....... 20
2.4 Self-similar truncation . ........... ... 000000, 22
2.5 Symmetries . . . . . . o0t e e e e e e e e e e e e e e e e 25
2.5.1 Symmetries of the Hamiltonian . . . . . . .. .. .. ... ... 26
2.5.2  Symmetries of the observable . . . .. .. .. ... 0. 28
2.6 Technical implementation . .. ... ............... 29
2.6.1 Datatypes . . . . . . e 31
2.6.2 Algorithms . . . . .. ... .. ... 33
2.6.3 Parallelization . . . . ... .. ... o 37

At first glance, condensed matter physics might appear as terra cognita: Schrodinger’s
equation, the theory of everything at low energy scales, and the basic ingredients, electrons
and nuclei, are known since the early 20" century; the Hamiltonian of any compound can
be written down exactly [Czycholl(2000)].

De facto, the complex interactions between these comparatively simple building blocks
in various geometries have proven to be a cornucopia of innumerable interesting and
diversified physical phenomena. The challenges in understanding these phenomena go
well beyond a mere quantitative reproduction; a significant reduction of complexity by
suitable representations, smart approximations and powerful effective theories is essential.
In the best case, even rough approximations can provide an understanding for the essential
ingredients of complex physical phenomena. Prominent examples comprise the concepts
of quasi-particles and Fermi liquid theory [Landau(1957)]. They allow for the description
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of a complex, strongly-interacting, highly-correlated many-fermion-system in terms of the
well-known, interaction-free Fermi gas, modified by just a few material-specific parameters
that can be determined experimentally.

In the attempt to map a physical system to a renormalized Hamiltonian, where the
phenomena of interest are better accessible, unitary transformations turned out to be
a very versatile and powerful tool. They bear the advantage to retain the spectrum of
eigenvalues when mapping a Hamiltonian to an effective model. In this manner, they
allow us to decouple different degrees of freedom, e. g., different types of quasi-particles,
or to map a many-particle problem to a few-particle problem of conserved quasi-particles.
In this way, the high-energy processes can be integrated out and an effective model for
the low-energy physics is obtained. Eventually, the effective model can be studied by
standard techniques or the degrees of freedom on the low-energy scale can be decoupled
and studied individually.

Depending on the realization, different limitations appear: For a numerical, exact
diagonalization to be feasible, the Hilbert space has to be kept finite, implying a finite
lattice size. Some one-step transformations such as the Bogoliubov transformation [Bo-
goliubov(1958a), Bogoliubov(1958b)] can be applied completely on an analytical level,
but they decouple any but the most simple Hamiltonians to a limited degree only. Other
unitary transformations such as the Frohlich transformation [Frohlich(1952)] require ad-
ditional approximations. Another technique that relies on a multi-step transformation is
the projector-based renormalization method [Becker et al.(2002)].

In this thesis, we focus on an approach that can be understood as an infinite number
of infinitesimal unitary transformations, leading to a continuous unitary transformation
(CUT), that maps the Hamiltonian to an effective model. The structure of the effective
model is controlled by the generator scheme.

In this chapter, we introduce the CUT with a focus on its self-similar version. We
start with a discussion of CUT and the flow equation in general. In the second section, we
present the various generator schemes used to derive effective Hamiltonians of different
shapes. Then, we introduce a formulation of the flow equations using second quantization.
Based on this, we explain the truncation scheme characteristic for self-similar CUTs in
section 2.4. In the subsequent section, we describe a formalism to exploit the symmetries
of the Hamiltonian in second quantization. Finally, we illustrate the key concepts of the
computational implementation used in this thesis with emphasis on parallelization.

2.1 Continuous unitary transformations (CUT)

Finding a suitable transformation to map the initial Hamiltonian Hj,;; to an effective
Hamiltonian H.g of a specific shape is a sophisticated task. For a one-step transformation,
it requires to anticipate the action of a possibly very complex transformation as a whole,
while minimizing deviations from the desired structure of the effective Hamiltonian. The
CUT method found independently by Wegner [Wegner(1994)] and Glazek and Wilson
[Glazek & Wilson(1993), Glazek & Wilson(1994)] circumvents these problems using an
infinite number of infinitesimal transformations, each of them bringing the Hamiltonian
closer to the desired shape. Mathematically, this translates into the parametrization of
the transformation

H(0) = U)HU(¢) (2.1)
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by a continuous flow parameter ¢ with the initial condition
U(O) =1 = H<O) = Hinitial (22)

and Heg := H(00). At each value of ¢, the momentary infinitesimal transformation can
be understood in terms of the antihermitian generator

o0 = 20

of U(¢). By this definition, the flow of the Hamiltonian (2.1) can be described by a
differential equation, denoted as flow equation

Ul(6) = —n'(¢) (2.3)

OpH = [n(0), H(0)]. (2.4)

In this notation, the control of the direction of the flow has been shifted from U(¢) to
the generator n(¢). The main advantage of this formulation is that the generator can be
chosen as a function

n(€) = nH(C)] (2:5)

of the flowing Hamiltonian itself, defined by a superoperator 7 that we call generator
scheme henceforth. Therefore, it is not necessary to store the full, possibly very complex
transformation U(¢). Due to the feedback of the Hamiltonian on the generator, the flow
equation (2.4) is non-linear. As a consequence, a suitable generator scheme can steer the
generator asymptotically towards attractive fixed points of the flow equation where the
Hamiltonian has the desired simpler structure.

The variety of possible generator schemes allows for a large degree of control over the
shape of the effective Hamiltonian. We give an overview of the various possibilities in the
next section.

For the calculation of experimentally observable quantities such as static correlations
or response functions, two aspects of CUT matter: If the Hamiltonian is transformed
into the renormalized basis, its structure can be chosen in a way that the determination
of the ground state and excited states is easier or even trivial. However, the associated
operator O has to be known in the same basis. This is achieved by the transformation of
observables

940 = [n(£), O(0)]. (2.6)

This has been used for the first time by Kehrein and Mielke [Kehrein & Mielke(1998),
Kehrein(1999)] in their studies of dissipative quantum systems. Since the generator 7(¢)
has to be determined by the flowing Hamiltonian, it is preferable to carry out the inte-
gration of both equations (2.4) and (2.6) simultaneously.

While the global structure of the Hamiltonian may become simpler in the sense that
different degrees of freedom are decoupled, new interaction processes arise in the flowing
Hamiltonian due to the commutator in Eq. (2.4). They have to be considered as arguments
of the commutator again. In any, but the most simple situations, the ensuing proliferation
of more and more interaction processes leads to an infinite number of terms and the
differential equations are not closed. Different strategies have been suggested to handle
this problem leading to different realizations of CUTs:
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Restriction to finite systems: If the system is restricted to a finite size, i.e., the
Hamiltonian is a matrix of finite dimension, the flow equation can always be closed.
Inevitably, this places a severe limitation on the application to systems in the thermody-
namic limits.

Perturbative CUT (pCUT): The idea of a perturbative expansion is continued sys-
tematically in the pCUT method by Knetter and Uhrig [Uhrig & Normand(1998), Knetter
& Uhrig(2000), Knetter et al.(2003a)], which allows us to derive a perturbative expansion
for the effective Hamiltonian up to very high orders. Under the requirements of pCUT,
the perturbative flow equations can be integrated analytically and the remaining task
consists in the calculation of matrix elements of the effective Hamiltonian. We will give
a short overview of this method in section 3.1.

Self-similar CUT (sCUT): This version of CUT is the focus of this chapter. The
Hamiltonian is approximated by a large but finite number of interaction processes in sec-
ond quantization. The systematics which processes are considered is defined in the trun-
cation scheme, cf. Sect. 2.4, based on a small parameter [Mielke(1997h), Mielke(1997a),
Kehrein(2006)] or with respect to the range of the underlying process in real-space [Reis-
chl et al.(2004), Fischer et al.(2010), Duffe(2010)]. For these processes, the flow equation
is integrated numerically, giving rise to a non-perturbative, renormalized Hamiltonian.

Graph-theory based CUT (gCUT): In the gCUT method [Yang & Schmidt(2011)]
developed recently, the action of the Hamiltonian is decomposed into the action on fi-
nite graphs of various complexity. On each graph, the flow equation for the Hamiltonian
can be solved numerically on the matrix level. At the end, the irreducible contribu-
tions of each graph are combined to obtain a non-perturbative effective Hamiltonian
valid in the thermodynamic limit. This method can be seen as an extension of the
exact linked-cluster expansion [Irving & Hamer(1984)] for ground-state properties. The
accuracy is controlled by the maximal size of the graphs, similar to the range of processes
in a sSCUT with real-space truncation.

Enhanced perturbative CUT (epCUT): The epCUT method combines elements
of both pCUT, i.e., the perturbative expansion of Hamiltonian and flow equation, and
sCUT, i.e., the representation of the Hamiltonian in second quantization and the ex-
plicit numerical integration of the resulting differential equation system (DES) for its
coefficients. By this combination, it is possible to overcome the limitations of pCUT and
obtain effective Hamiltonians for a larger class of models. In addition, the special trunca-
tion of the flow equations associated with epCUT gives rise to a non-perturbative twin,
the directly evaluated epCUT (deepCUT) method.

The epCUT and the deepCUT have been developed by Holger Krull [Krull(2011),Krull
et al.(2012)], G6tz Uhrig and myself; my contribution is expounded in chapter 3 of this
thesis.

Due to their high flexibility, CUT-based methods have been applied to a large range of
models. For an overview of the different applications, we recommend references [[Kehrein(2006),
Wegner(2006)] and [Krull et al.(2012)].
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2.2 Generator schemes

The choice of the generator scheme implies a large degree of control over the mapping
of the initial Hamiltonian to the effective model in the limit of infinite /. A qualitative
understanding of the flow induced by a generator scheme is provided by the fixed points
of the flow.

If the flowing Hamiltonian converges in the limit of infinite ¢, the effective Hamiltonian
has to commute with the generator

[(0), H(0)] = 0 (2.7)

and the flow equation approaches a fixed point. Since the generator is determined from
the Hamiltonian itself, the generator scheme puts a necessary condition on the effective
Hamiltonian’s structure, e. g. diagonality or block-diagonality.

In a second step, the asymptotics of the flowing Hamiltonian in the vicinity of the
fixed points can be studied. The flowing Hamiltonian can converge only to attractive
fixed points, unless the initial Hamiltonian corresponds to a stationary point already!.

However, the existence of attractive fixed points alone does not guarantee that the
flowing Hamiltonian converges. The set of Hamiltonians for which the generator scheme
converges is a third criterion that can be used to classify different generator schemes.

2.2.1 Wegner’s generator scheme

At first, we consider the original generator scheme introduced by Wegner [Wegner(1994)].
For each value of the flow parameter, the Hamiltonian H(¢) = Hq(¢) + Hypq(¢) is decom-
posed into a diagonal part Hy(¢) and an off-diagonal part H,q(¢) that shall vanish for
infinite /.

Taken literally, this means to include any matrix element between different states in
H,q. However, we are completely free to include only a part of these matrix elements in
H.,q; the rest is assigned to Hq(¢) and converges to a finite value for ¢ — oo. For this
reason, the term “diagonal” is often used sloppily in the context of generator schemes
and denotes the parts of the Hamiltonian to be kept. For a many-particle problem for
instance, it is meaningful to decouple subspaces of different quasi-particle number leading
to a block-diagonal effective Hamiltonian [Wegner(1994)].

With this decomposition, Wegner’s generator is defined as

nw () = nwlH(0)] = [H(£), Hna(€)] = [Ha(€), Hna(L)]. (2.82)
On the matrix level, the generator can be written as
mw.ij (€) = (hii(€) = hj;(€)) hi (€). (2.8b)

The generator depends bilinear on the Hamiltonian’s coefficients, which yields a trilinear
flow equation. Because the squared Frobenius norm of the diagonal part

1 Ha(0)]]” = Z [haa(£)|* = 22(%’(5) = hyi(0))*hig (O)h:(0) (2.9)

1 If the Hamiltonian has a special symmetry, a third case is possible in which the Hamiltonian converges
to a saddle point protected by symmetry.
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is increasing monotonically and bounded from above, the flowing Hamiltonian has to
converge always to a fixed point, where all off-diagonal elements h;; vanish or connect
degenerate states with h;; = h;;. The original proof for finite matrices [Wegner(1994)]
has been extended to infinite systems [Dusuel & Uhrig(2004)] and self-similar truncation
[Moussa(2010)], the latter one including a derivation of the generator scheme based on a
variational argument.

2.2.2 Mielke’s generator scheme

In 1998, Mielke proposed a different generator [Mielke(1998)] defined on the matrix level
that depends explicitly on the row and column indices

,ij(€) = sign(i — j)hi;(£). (2.10)

In contrast to Wegner’s generator, it vanishes only if all matrix elements between different
states are zero, even in presence of degeneracies.
The flow equations for the matrix elements of the Hamiltonian read

Oehij(€) = — sign(i — j) (hii(£) — hy;(€)) hij (£)
+ Z (sign(i — k) + sign(j — k)) hi(0) h; (£). (2.11)

ki, j

In the vicinity of fixed points of the flow, i.e., diagonal Hamiltonians, the derivative is
dominated by the leading term linear in the off-diagonality. A fixed point is attractive if

sign(i — j) = sign(h;(00) — hy;j(00)) (2.12)

holds, which means that the eigenvalues have to be sorted in ascending order in the energy
at ¢ = oo if the corresponding states have been linked by matrix elements in the course
of the flow.

Another interesting feature of this generator scheme appears if the initial Hamiltonian
exhibits a band-diagonal structure, i.e., for a fixed N € N holds h;; = 0 if |i — 5| > N.
In this case, the sign functions in Eq. (2.11) ensure that the differentials of off-diagonal
elements violating the band-diagonality never become finite [Mielke(1998)]. Eventually,
this conservation of the band-diagonality limits the emergence of higher interaction terms,
which improves the numerical performance.

The convergence of this generator scheme can be proven by investigation of the sum of
the first r diagonal elements of H, which turns out to be a monotonically decreasing func-
tion of £. If the spectrum of H is bounded from below, the sum has to converge while the
off-diagonal elements connecting the first 7 states to higher states vanish [Mielke(1998)].
This proof holds for both finite and infinite matrices. However, the norm of the off-

diagonality itself can increase in early phases of the flow due to the sorting of eigenvalues
enforced by Eq. (2.12) [Dusuel & Uhrig(2004)].

2.2.3 Particle-conserving generator scheme

A related generator scheme has been suggested by Knetter and Uhrig [Uhrig & Nor-
mand(1998), Knetter & Uhrig(2000), Knetter(1999)] for the purpose of decoupling sub-
spaces with different quasi-particle numbers

Moei; (€) = sign (i — 4j5) hij (£)- (2.13a)
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This scheme can be seen as a generalization of Mielke’s generator scheme where the
indices ¢ and j are replaced by the diagonal elements g;; and g;; of an operator () that
is already in its eigen basis [Knetter et al.(2003b)]. In this way, each state i has a
well-defined quantum number ¢; and the generator acts only between states of different
¢;i- We emphasize that the operator () is not transformed as an observable, so that
the labeling by ¢;; is permanent, whereas the commutator [H (), Q)] changes during the
flow. For the decoupling of subspaces with different quasi-particle numbers in many-body
problems, () can be identified with the quasi-particle counting operator. This leads to
the name “particle-conserving generator scheme”, because the number of renormalized
quasi-particles at £ = oo is a conserved quantum number.

In this context, the subspace of zero quasi-particle can be a unique reference state, i. e.,
the vacuum of quasi-particles, or a reference ensemble that can have other quasi-particles
as degrees of freedom, giving rise to the systematic derivation of effective low-energy
models. The definition (2.13a) can be expressed also in second quantization as

Aol H(0) = 3 HI(0) — H (1), (2.13)

i>j

where H; stands for the block of the Hamiltonian that creates ¢ and annihilates j quasi-
particles. This representation is especially useful for the application in the thermodynamic
limit.

As for Mielke’s generator scheme, convergence can be guaranteed if the spectrum is
bounded from below [Knetter & Uhrig(2000)]. If approximations are used however, the
flow equations can diverge even in this situation [Dusuel & Uhrig(2004), Reischl(2006)].

If the ground state is unique, the particle-conserving generator scheme maps vacuum
state of the renormalized basis to the physical ground state of the system [Heidbrink &
Uhrig(2002)]. This proof has been generalized in the sense that the particle-conserving
generator sorts all quasi-particle subspaces in such a way that all energy eigenvalues are
ascending by their quasi-particle number [Fischer et al.(2010)]. In analogy to Mielke’s
generator scheme, 7, conserves the block-band diagonal structure of the initial Hamilto-
nian, i.e., a Hamiltonian composed of terms that change the quasi-particle number by at
most AQP keeps this property in the course of the flow [Knetter & Uhrig(2000), Knetter
et al.(2003b)].

A similar generator scheme has been used previously by Stein at al. for the Hubbard
model [Stein(1997)] and Holstein-Primakov bosons [Stein(1998)], where the sign func-
tion was not necessary to conserve the block-band diagonal structure of the Hamiltonian
because changes of the boson number occurred only by a fixed number, namely +2.

2.2.4 Particle-sorting generator schemes

The particle-conserving generator scheme allows us to decouple and to sort all quasi-particle
subspaces ascending by energy. This full sorting can be problematic if physics of the
model suggests an effective model with overlapping quasi-particle subspaces. In these
situations, the particle-conserving generator scheme rearranges the Hilbert space in an
inappropriate way and causes the flow equations to diverge in presence of approxima-
tions [Reischl(2006), Fischer et al.(2010)].

To overcome these problems, Fischer, Duffe and Uhrig introduced a family of generator
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schemes

Tl H(O] =D > Hj(0) = H(0) (2.14)
J<m i>j

that only decouple and sort the m lowest quasi-particle subspaces, while higher subspaces
remain coupled [Fischer(2007), Duffe(2010), Fischer et al.(2010), Duffe & Uhrig(2011), Fi-
scher(2012a)]. In the following, we refer to them as 'particle-sorting generator schemes’,
with 7. as a special case. This approach also bears the advantage that fewer commu-
tators have to be calculated, even though the block-band diagonality can no longer be
guaranteed. We develop this concept further in chapter 4.

One of the first applications of the particle sorting generator schemes has been the
successful description of spontaneous quasi-particle decay in the S = 1/2 Heisenberg chain
with diagonal coupling [Fischer et al.(2010), Fischer(2012a)], where the dispersion enters
and hybridizes with the two-quasi-particle continuum. The ground-state generator 7.,
is used to decouple the ground state only, while the remaining interactions between the
one-particle dispersions and higher subspaces are treated by a variational diagonalization
in a finite subspace.

A similar strategy has been applied recently to calculate the low-energy excitations of
the ionic Hubbard model [Hafez et al.(2014a), Hafez et al.(2014b)].

In 2008, Dawson et al. independently derived a similar generator

NpE0,ij (£) = hio(€)do,; — dioho;(¢) (2.15)

that takes into account only matrix elements between vacuum and higher states [Dawson
et al.(2008)]. We stress that, in contrast to the particle-conserving generator scheme,
the definition on the matrix level versus second quantization is not just a matter of
notation, but actually leads to different flows since 7., for instance, comprises also matrix
elements between the one quasi-particle sector and higher subspaces, in contrast to npgo.
Interestingly, the flow of the vacuum energy E(¢) = (0| H(¢) |0) for the generators npc, 7o:n
and npgo turns out to be identical for a unique vacuum state and without approximations
[Fischer et al.(2010), Fischer(2012a)].

2.3 Flow equation in second quantization

In its standard formulation (2.4), the flow equation is a differential equation for the
Hamiltonian as an operator which is a complicated object that is beyond the scope of
standard integration algorithms. Apart from the treatment on the matrix level, the
formulation of CUT in second quantization [Wegner(1994), Dusuel & Uhrig(2004), Reischl
et al.(2004), Knetter et al.(2003a), Fischer et al.(2010)] allows us to extract an ordinary
DES for scalar, (-dependent functions h;(¢) as prefactors of terms in the Hamiltonian®.
To this end, we define an operator basis {A;}, consisting of normal-ordered monomials
of creation and annihilation operators together with the identity operator. The name
“term” is reserved for the combination of a monomial and its scalar prefactor. Using
these definitions, we expand the Hamiltonian

H(l) = hi(0)A;. (2.16)

2 This section is based on my contribution to the article [Krull et al.(2012)]. ©2012 American Physical
Society.
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using the basis {A;} and the ¢-dependent coefficients h;(¢). In the following, we restrict
ourselves to the particle-sorting generator schemes because the application of these gener-
ator schemes to a term corresponds to a multiplication with a sign factor ¢; € {—1,0,+1}.
Then, the generator can be written as

n(0) =Y m(OA; ="y hi(O)n[Al]. (2.17)
Expanded in the operator basis, the flow equation (2.4) reads

> Ohi(0) A = hi(0)hi(0) [IA;], A] (2.18)

Comparing the coefficients of different monomials, the flow equation (2.4) finally becomes
equivalent to a set of ordinary differential equations for the coefficients h;(¢)

Ochi(£) =~ Dyjihyi (0 (0). (2.19a)

The commutator relations between the basis operators are encoded in the coefficients D;
of the bilinear DES. These coefficients D;j, are complex numbers in general . For the
systems considered in this thesis they are given by integers or fractional numbers. We
call a single D;;;, a “contribution” to the DES. The contributions are obtained from

[[A;], Ak] = ZDijkAi (2.19b)

by comparing the coefficients of the result of the commutator monomial by monomial.

In this way, the problem of solving the flow equation is transformed into the algebraic
problem of calculating the coefficients of the DES (2.19b) and of the subsequent numerical
solution of Eq. (2.19a).

To assess the level of convergence realized by the particle-sorting generators during
the integration, it is advantageous to measure the residual off-diagonality (ROD) of the
Hamiltonian in the sense of terms that have to be rotated away by the generator. In this
thesis, we use the Pythagorean sum of the Hamiltonian’s coefficients of all terms that

contribute to the generator
ROD = |3 [l (2.20)

that differs from Reischl’s original definition [Reischl et al.(2004), Reischl(2006)] by a
square root. For lattice systems, it is necassary to consider the coefficients of terms
related by translation invariance in the sum only once in order to guarantee a finite ROD.

The formulation in second quantization can be extended straightforwardly to observ-
ables

O(t) => 0,(0)B; (2.21)
with coefficients 0;(¢), while the corresponding operator basis B; does not need to be the

same as for the Hamiltonian. Hence the flow equation for an observable (2.6) leads to a
DES for its coeflicients

e0i(0) =Y " DSheh;(€)ok(0). (2.22a)

j7k
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H 0,

QU

Figure 2.1: Schematic representation of the sCUT self-consistency loops. The sets of monomi-
als are represented by the sides of the rectangle, while each area represents the set of commuta-
tors between pairs of monomials. The inner lines separate the different iterations of the sCUT
algorithm. Left panel: Self-consistency loops for the Hamiltonian. Usually, both H and 7 refer
to the same operator basis. Right panel: Self-consistency loops for an observable.

The contributions Df,?js are obtained by calculating the commutators between the mono-
mials of the generator and the monomials of the observable followed by a comparison of

the coefficients

> DirBi=[ilA)], Bil. (2.22D)

The DES for the coefficients of the observables is linear, but it is coupled to the transfor-
mation of the Hamiltonian via the prefactors h;(¢).

2.4 Self-similar truncation

The characteristic approximation of the sSCUT method consists in restricting the flowing
Hamiltonian to a finite set of basis operators {A4;}, denoted as truncation scheme. By this,
the flowing Hamiltonian is confined to a finite-dimensional sub-manifold of the operator
algebra. All commutators between the relevant {A;} are taken into account to determine
the DES. Technically, this is done by calculating all the commutators for monomials
present in the initial Hamiltonian first. If further monomials compatible with the trunca-
tion scheme arise in the calculation, they are added to the set of basis operators and the
missing commutators are calculated. This step is iterated until no new basis operators
incorporated by the truncation scheme arise [Reischl(2006), Duffe(2010)]. A schematic
representation is given in Fig. 2.1. The sCUT strategy is optimal in the sense that the
truncated flow is chosen as close to the untruncated flow-line as possible without violating
the truncation criterion, i.e., the Frobenius/Hilbert-Schmidt norm of the neglected part
of the flowing Hamiltonian is minimal for each value of ¢ [Moussa(2010)].
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Figure 2.2: Decomposition of the diagonal matrix element |a37) (a8v] of a three quasi-particle
state into irreducible interaction processes, cf. Ref. [Drescher et al.(2011)]. A restriction to at
most two quasi-particle processes neglects only the irreducible three quasi-particle contribution
agagaiyaaagay.
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Figure 2.3: Graphical representation of the truncation scheme d = (da,...,dsy) with N =3
for the Hamiltonian. The maximal extensions dy and d; are superfluous since the corresponding
monomials have extension zero.
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We stress that the restriction to a finite set of monomials does not imply a restriction
to a finite Hilbert space. As illustrated in Fig. 2.2, the truncation of irreducible processes
involving a large number of quasi-particles does not mean that matrix elements between
such states would be neglected completely. Instead, the contributions of low-particle
processes are used as an approximation for the matrix element and only the corrections
by complicated processes (involving more particles) are neglected.

The definition of a suitable truncation scheme is a demanding task. In an early work,
Kehrein and Mielke suggested the restriction to the monomials present in the initial
Hamiltonian. After a solution of this minimal flow equation system, new monomials are
assessed one-by-one whether taking them into account changes the solution of the flow
equation significantly [Kehrein & Mielke(1994)]. However, this strategy appears to be
practical only for very small systems of flow equation.

One consequence of truncation is the loss of unitarity of the transformation. As a
rule of thumb, the effective Hamiltonian is believed to be the more accurate the more
monomials are taken into account. A mathematical analysis of the truncation error is
possible by decomposing the untruncated flow equation (2.4) for H(¢) = H'(¢)+H"(¢) into
a truncated flow equation for the truncated Hamiltonian H'(¢) and an inhomogeneous flow
equation for the difference to a unitarily transformed Hamiltonian H"(¢) [Drescher(2009),
Drescher et al.(2011)]. Eventually, this leads to a rigorous, upper bound for ||H"(¢)|| and
for the error of the ground state energy. We stress that these quantities are accessible from
within the truncated calculation. In the models analyzed so far however, these bounds
turned out to be to loose for practical applications.

For practical purposes, the best possibility to estimate the quality of a truncation
scheme remains to compare the results with other, more or less strict truncation schemes
and with results of other numerical methods.

For incorporating large numbers of monomials in the truncation scheme, a systematic
criterion is called for. In gapped quantum systems on a lattice, real-space correlation
functions decay exponentially on a length scale &, called correlation length. This suggests
the range of interactions in real-space as a criterion for the truncation scheme [Reischl
et al.(2004)]. The correlation length and the gap

Ao EF (2.23)

are linked by the dynamical critical exponent z [Sachdev(1999a)]. Close to a second order
quantum phase transition, this real-space truncation has to be handled with care since
the correlation length diverges and long-range processes become important.

As a measure of the real-space extension of a term of the Hamiltonian, Reischl proposed
the maximal taxi cab distance d between pairs of local creation and annihilation operators
of the monomial [Reischl(2006)]. The absolute positions are not taken into account,
because, usually, the Hamiltonian is invariant under translation. In one dimension, this
corresponds to the distance from the leftmost to the rightmost local operator of the
monomial.

Furthermore, it is advantageous to distinguish between simple operators affecting few
quasi-particles, that are expected to be most important for the low-energy physics, and
complex operators affecting many quasi-particles, that are more numerous for the same
extension, but influence the low-energy scale only indirectly due to their renormalizing
effect to the simple operators. A more sophisticated real-space truncation scheme trun-
cates monomials based on their real-space extension, the number of creation operators
i and the number of annihilation operators j of the monomial [Reischl(2006), Fischer
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et al.(2010)]. If 7 or j exceed the maximal particle number N, the monomial is truncated
immediately. Otherwise, a truncation based on a maximal extension d,, specific for the
sum n =i+ 7 < 2N of local creation and annihilation operators present in the monomial
is applied, see Fig. 2.3. The 2N-tuple d = (ds, . .., dan) serves as a shorthand notation for
the truncation scheme. The maximal extensions dy and d; are superfluous since the cor-
responding monomials have extension zero and only a single coefficient is required when
translation invariance is exploited.

In principle, the truncation scheme for the monomials of the observable can be defined
similarly as for the Hamiltonian with different extensions if necessary. For the calculation
of response functions, however, the relevant observables are usually not invariant with
respect to translations, but are confined to a specific set of lattice sites at £ = 0. In
this situation, Reischl used the sum of distances between the central site and all local
operators as extension of the monomials [Reischl(2006)].

Again, we have to emphasize that the restriction to a finite real-space extension of
operators in second quantization does not imply a restriction to a finite Hilbert size or,
in particular, to a lattice of finite size. However, a closer look [Drescher(2009), Drescher
et al.(2011)] reveals that the existence of a maximal extension dp,, for monomials can
disguise the difference between the thermodynamic limit and a sufficiently large, but finite,
system with periodic boundary conditions. While both systems are invariant with respect
to translations, the periodic boundary folds back terms from the commutator (2.19b).

Due to the finite extension of representatives enforced by truncation, all consequences
of these wrap-around effects are suppressed if the system size exceeds

Ly = 3o + 1. (2.24)

In this way, the truncated calculation for infinite lattices yields the same flow equations
as the calculations for finite size systems with system size L > Lg,. Therefore Lg, can be
understood as an effective system size induced by real-space truncation.

Yet, this effective system size addresses the quantitavive impact on the coupling con-
stants of the effective Hamiltonian only. We emphasize that it is fundamentally distinct
from the finite system size of, for instance, a numerical exact diagonalization (ED), which
leads to a large but finite set of discrete eigenvalues. The sCUT calculation in real-space,
in contrast, refers on the thermodynamic limit and must be evaluated on an infinite lat-
tice. As a result, the sCUT calculates states of multiple quasi-particles as true continua,
not as a set of discrete eigenvalues.

2.5 Symmetries

The selection of a truncation scheme is a trade-off between accuracy and computational
effort, because both memory and runtime increase with the number of basis operators
{A;} of the Hamiltonian. Exploiting the symmetries of the Hamiltonian, this number
can be reduced significantly, increasing the efficiency of the calculation and allowing more
involved calculations. For a treatment in the thermodynamic limit, it is essential to exploit
at least translation invariance.

A detailed discussion of the utilization of symmetries can be found in the PhD thesis
of Alexander Reischl [Reischl et al.(2004)]. Here, we present an alternative formulation
that is closer to the computational implementation realized in the program by Sebastian

Duffe [Duffe(2010)].
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2.5.1 Symmetries of the Hamiltonian

The presence of symmetries in the Hamiltonian appears in the algebraic representation as
constant ratios between the coefficients of different monomials. The first step to exploit
this redundancy is to choose polynomials as basis operators A;, i.e., linear combinations
of monomials obeying the associated symmetries. In this way, the information about
multiple monomials can be encoded in a single coefficient h;. In a second step, the
symmetric polynomial can be expressed by a superoperator ¥ that restores the whole
polynomial A; dynamically from a single monomial C;

A; = S0, (2.25)

Only the representative C; has to be stored. Even more, we will see that also the deriva-
tion of flow equations can be formulated based on such representatives instead of the
complete monomials. This greatly reduces the computation time. The efficiency of this
step depends on the exploited symmetry group and a weight factor w counting the number
of monomials present in A;. In particular, it is specific to the actual interaction process.
A highly symmetric representative (e.g. the identity operator 1) may be identical with
its symmetric combination A;, which yields w = 1. On the other hand, the polynomial A;
may be composed of up to w = n monomials if the symmetry group of the Hamiltonian is
n-fold and each individual monomial does not share any of the Hamiltonian’s symmetries.
Usually, the latter case applies to the vast majority of representatives [Duffe(2010)], which
means that nearly a factor of n in the number of representatives for the Hamiltonian can
be saved. R

Now, we want to derive a formal description for symmetries. Let T be a linear super-
operator that acts on the vector space of monomials and satisfies the conditions

T (ChCy) = (f()l) (f@) , (2.26a)
THC, = 7T Cy. (2.26b)

If T and 1 do not commute, this indicates that the generator scheme and the unitary
transformation break the symmetry of the Hamiltonian. We speak of an n-fold symmetry
transformation of the Hamiltonian if

TH = H, (2.27a)
T =1 (2.27b)

hold. Eventually, the superoperator

n

Gr=Y (f) (2.28)

=1

defines a sum over a subgroup of the symmetries of the Hamiltonian. If the Hamiltonian
has multiple independent symmetries, the full symmetry operation can be realized by a
product of sums over independent subgroups.

Applying G to a representative C; generates a polynomial A; that is invariant under
application of T" as required by Equation (2.27a). As an example, let us consider a basis
of local operators al, a, with r being the one-dimensional site index. Let the Hamiltonian

n M )

be symmetric with respect to the reflection superoperator Treﬂect say’ — a(jr. Therefore,
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we can use the polynomial A; = ala, ., + aT_,,af,,fl as an element of the operator basis.

It can be generated from the representative C; = ala, 41 by application of @reﬁect.

But if the representative shares symmetries with the Hamiltonian, each monomial
may be generated multiple times. For example, take the representative C; = agao that is
symmetric with respect to reflections

~

Greﬁecth = QOJ (229)

Consequently, the prefactor of the representative C; in the polynomial @reﬂectC’j is not
given by unity, but by an integer m = 2, denoted as multiplicity. It is linked to the
weight factor by n = m - w. For convenience, we define the superoperators M and W
that express the multiplication of a monomial by the corresponding multiplicity or weight
factor, respectively. The major difference to the formulation of Reischl [Reischl(2006)] is
that the implementation used here relies on the normalized symmetry group operation
Y., that generates each monomial just once. In this way, it is guaranteed that a represen-
tative C; and the corresponding monomial in A; always share the same prefactor®. Both
formulations are equivalent, but result in different intermediate correction factors in the
algorithms to determine the DES. The two symmetry group operations are linked by

G =M, (2.30)

For this convention, the definition of the ROD from Eq. 2.20 in terms of the coefficients
n; of the representatives in the generator reads

ROD = [ " w;|n/*. (2.31)

We have to stress that all symmetries covered by this formulation occur on the level of
individual monomials in second quantization. Usually, there is no exact correspondence
to the unitary transformations U that leave the Hamiltonian invariant, especially for
continuous symmetries. In particular, this means that only a part of the redundancy can
be eliminated depending on the algebraic representation. On page 114, we discuss an
example for the SU(2) spin symmetry.

The last ingredient in our formalism is the superoperator R that maps each monomial
to the corresponding representative. The explicit choice of the representative is arbitrary,
but has to be unique. Technically, this can be implemented by generating the whole
polynomial using X, sorting the monomials according to a suitable criterion and picking
the first one. Eventually, we find the following relations for products of superoperators:

GG =nG GR=0G GS =WG =nS (2.32a)
RG =nR RR=R RS =WR (2.32b)
SG=WG =nS SR=3% S5 = M3, (2.32¢)

Finally, we derive the modified version of Eq. (2.19b) for representatives. We replace
the polynomials A; by the application of the symmetry group operation on the represen-
tatives
G 1
7]/—\Cj, /—\Ok

M M

D20 = |72C;, 80| = G (2.33)
> bt =[5, 50

3 Tt turns out for the symmetries used in this thesis that all monomial belonging to a symmetric
combination have the same absolute prefactor, but their sign may differ.
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In this equation, we expressed the division by the multiplicity of the representative Cj
by the inverse of the multiplicity superoperator. This is straight forward, because the
multiplicity of a term is always a positive integer number. One of the symmetry group
operations has been shifted in front of the commutator since

G060 - 33 (e (Ti) - (Ficy) (Tiey) (2:340)
Y (B () a) - T (e (Te)) s

i=1 j=1

~G [écl, 02} . (2.34¢)
Next, we take the representatives on both sides of the equation applying R and obtain
— ~ 1
p M
with the final result

S DG =Y MR {ﬁi(}j, %Ck} . (2.36)

ik

Compared to the bare calculation, the symmetrized evaluation of the commutator involves
the construction of the symmetric combination for the generator terms. This increases
the number of terms on the right hand side of the flow equation by approximately n.
Nevertheless, the index set of j and k is smaller by a factor of n each, so that an overall
reduction of computational effort by a factor of n can be expected.

A special case of a twofold symmetry on the operator level is the self-adjointness of the
Hamiltonian. The adjoining superoperator 1" = t violates both conditions (2.26), because
adjoining reverts the order of operators and does not commute, but anti-commutes with
the generator scheme

{r.n} =0, (2.37)

since 7] exchanges hermitian by anti-hermitian operators. However, both sign factor cancel
out in the derivation of the symmetrized flow equation (2.36), so that it holds also for
this kind of symmetry.

2.5.2 Symmetries of the observable

If observable and Hamiltonian share the same symmetry group, the Equation (2.36) can
be adopted for the transformation of observables, see Eq. (2.6), in a straightforward way.
However, the situation becomes more complicated if both symmetry groups differ, because
the multiplicities depend on the symmetry group. In general, the symmetry group of the
observable is a subgroup® of the symmetry group of the Hamiltonian

Gy = GrGy Go = Gy (2.38)

4 On the other hand, symmetry of an observable that is not shared by the Hamiltonian will be broken
for £ > 0 anyways since the generator of the CUT is determined by the Hamiltonian.
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with
Gr=> T Gy=> U (2.39)
i=1 =1

It is important that the common symmetry subgroup operation @T is applied to H after
Gy in Eq. (2.38) since both do not need to commute. In the following, we use the
notation D; for a representative belonging to the operator basis of the observable. With
these assumptions, the symmetry group operator G can be shifted as

[éHﬁCL@ODQ] = Gr [@TéUﬁcla DQ] =Go [éHﬁChDZ] (2.40)
Finally, the observable transformation for representatives reads
— ~ & 1
Z DijkD’i = ZMORO l:??EHCj, 7ij| . (2.41)
i ik Mo

2.6 Technical implementation

The computational tasks associated with the application of the CUT method can be
divided into three consecutive steps:

Algebraic part: The algebraic part consists in the construction of the DES and the
operator basis {4;}, see Egs. (2.19b) and (2.22b). Its implementation comprises most of
the methodological and model-specific know-how of the sCUT method and will be the
subject of this section.

Integration part: The integration part consist in solving the DES numerically to de-
termine the coefficients of the effective Hamiltonian, see Egs. (2.19b) and (2.22b). The
integration is carried out by standard Runge-Kutta integration algorithms® with both
fixed (rk4) and adaptive step-size (Dopr853) using the implementation of reference [Press
et al.(2007)]. Program runs for different sets of parameters are parallelized straight-
forwardly using the OpenMP interface [OpenMP(2005)]. The integration program is
based on an earlier version written by Sebastian Duffe [Duffe(2010)] and Tim Fischer [Fi-
scher(2012a)] with extensions by myself during my diploma work [Drescher(2009)]. Be-
cause the numerical integration for a fixed set of parameters is straightforward and a pure
numerical task, we do not explain the program in detail. However, some analyses require
a more sophisticated workflow, e. g., the combination with minimization and derivation
algorithms, which we will mention in due time.

Analysis of the effective Hamiltonian: After the effective Hamiltonian has been
obtained, further processing is required to obtain the relevant physical quantities. The
computational effort for this step varies strongly depending on the quantities of interest
and may include both algebraical and numerical aspects. For instance, the ground state
energy can be read off directly as the coefficient of the identity operator, while the calcula-
tion of spectral densities involves the calculation of many matrix elements and a Lanczos
tridiagonalization. We will explain the different analysis tools later in the chapters where
they are used.

5 A test with the Bulirsch-Stoer method [Press et al.(2007)] showed very similar results and perfor-
mance as with the adaptive Runge-Kutta algorithm. It is not pursued in the following.
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The algebraical part is based on a program written by Sebastian Duffe and Tim Fis-
cher for spin S = 1/2 ladders with hole doping [Duffe(2010)] or diagonal couplings [Fi-
scher(2012a)]. It has been extended during my diploma work [Drescher(2009)]. As part
of this thesis, large parts of the program have been rewritten by myself with the aim to
clearly separate the model-independent core algorithms from the model-dependent code.
The new version includes a modular system of various lattice types, algebras, symmetries,
truncations and generator schemes. Each module is responsible for a distinct aspect of
the of the model, so that a large variety of models is accessible by combination. In a
similar way, modules for different varieties of CUT can be treated. For supporting a new
model, only the missing building blocks have to be added. This good extensibility allowed
it to add implementations for the transverse field Ising model [Fauseweh(2012), Fauseweh
& Uhrig(2013)] and the ionic Hubbard model [Hafez et al.(2014a), Hafez et al.(2014b)] to
the monolithic code base. Moreover, we optimized performance and memory consumption
for the treatment of large numbers of monomials. The most significant gain in perfor-
mance has been archived by including shared-memory parallelism. We elaborate on the
peculiar challenges and benefits of parallelization in subsection 2.6.3. Another interesting
new feature is the implementation of basis transformations that allow us to input the
Hamiltonian in a convenient representation, e.g. spin operators, while the error-prone
transfer to the operator basis of the calculation, e.g. triplon operators, and the applica-
tion of symmetries are carried out automatically. Eventually, the new structure renders
possible the seamless integration of the novel epCUT /deepCUT method as an alternative
to the sCUT method (see chapter 3 for the method itself and its implementation). For
the implementation, we stick to C++ due to its high performance with fine-grained control
of the underlying data structures and its strong support for object-oriented and generic
programming techniques.

Classical polymorphism is a standard technique to implement a modular system. It
means to define the interface of a type by an abstract base class and to let the different
implementations derive from it. However, we found that classical polymorphism is not
the optimal solution in our situation, because the model-specific details have strong in-
fluence on the low-level data structures and on the elementary operations manipulating
them. For instance, a local operator is implemented as composition of a creation part,
an annihilation part and a lattice site. Its binary representation changes for different
algebras and lattices. The question, how much quasi-particle a monomial actually creates
can only be answered using model-specific knowledge that is encapsulated in the algebra.
Applying classical polymorphism on this level would allow us to mix terms defined on
different lattice types (e.g. 1D and 2D) or different algebras in the Hamiltonian, which is
not meaningful in our situation. Furthermore, the use of virtual functions adds an over-
head in memory consumption® and impedes some compiler optimizations such as inlining
of simple functions.

Instead, we find a library relying on generic programming techniques to be the more
efficient solution in our situation. Using C++, this involves using function and class
templates for the implementation of core algorithms and composed data structures. Al-
ternative implementations of model-dependent classes are independent from each other,
but share the same names for operations of the same purpose. Because all classes are fixed
at compile-time, inconsistent mixing of model-dependent particularities can be spotted by

6 Usually, this is negligible; but for the dominant lightweight data types as the lattice position in one
dimension (that needs only 8 bit memory to be stored), 64 bit for a virtual table pointer is a severe
overhead.
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the type checking system in advance, and the source code is fully transparent to compiler
optimizations. Moreover, optimized versions of core algorithms for special cases can be
provided using partial template specialization and unnecessary conditional branches can
be eliminated automatically in the compilation process.

The price of this approach is that the binary has to be compiled anew from the
program library each time the model configuration is changed. However, the overhead of
the compilation process is insignificant compared to the usual runtime of the program. For
convenience, we added a build system using Bash that reads the model-specific details
from a configuration file and automatizes the construction of the program binary.

2.6.1 Data types

In this subsection, we give a short overview over the data types used in the program.
Guided by the paradigm of generic programming, we have to distinguish between the
abstract data type and its implementation by a C++ class. While any class provides its
own interface when defined, the abstract data type itself is not present in the source
code. Instead, it is characterised outside the source code by a set of properties, member
functions and type declarations that have to be implemented by a concrete class fitting to
the abstract type. We stress that this is a significant difference to classical polymorphism,
where the relations are expressed in the source code explicitly by inheriting from an
(abstract) base class that defines the interface of the type. For the understanding of
the program structure, we focus our description on the important abstract data types if
possible and mention their concrete implementations only by name and purpose.

Prefactor: For any prefactor, the arithmetic operators +,- *,/,+= *= and /= have to be
defined. This requirement is fulfilled for the build-in numerical types. Fractions are used
as prefactors in the algebraic calculation and polynomials of physical parameters are used
to represent the initial values of the Hamiltonian’s coefficients in a general way.

The following types are model-dependent and defined in the namespace model:

Algebra: An algebra defines the nested type flavour that is used to store the quantum
numbers associated with local creation or annihilation operators. It defines functions to
calculate the number of quasi-particles associated with each state and whether a state
includes odd numbers of fermions, as well as commutator, anti-commutator and normal-
ordered product of local operators of this algebra that are implemented as a hard-coded
table.

In this thesis, all calculations are carried out in the hard-core triplon algebra, cf.
Chapts. 5 and 6, and the boson algebra, cf. Chapt. 4. An algebra for S = 1/2 spin
operator is used for the representation of the initial Hamiltonian only.

Lattice: A lattice defines the nested type position that is used to store a real-space
position on the lattice. It defines functions to determine the real-space range between
a pair of positions and the extension of a term, as well as the application of translation
symmetry to a term and the determination of the representative with respect to translation
symmetry.

In this thesis, a one-dimensional chain, a two-dimensional square lattice and a square
lattice with doubled elementary cell are used.
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Symmetry: A symmetry class defines functions to generate the symmetry group /i\,
to find the representative R with respect to finite symmetries and the multiplicity M.
It also defines the interface to generate the translation symmetry group and to find the
corresponding representative. The function calls are forwarded to the appropriate func-
tions of the lattice only if translation symmetry is activated. The information whether
translation symmetry holds or not is stored by the symmetry class. In this thesis, all
symmetry groups are composed of subgroups that can be selected by boolean template
parameters.

The symmetries depend strongly on the model and the concrete Hamiltonian; their
implementations are discussed in the corresponding chapters. A default implementation
for no symmetry or translation symmetry only is available for any combination of algebra
and lattice.

Generator scheme: This type is confined to generator schemes that depend linearly
on the terms in the Hamiltonian, see Eq. 2.17. It provides a function that applies the
generator scheme to a term, and a predicate function for terms that denotes whether they
contribute to the generator or not.

The implemented generator schemes comprise the particle-conserving and the particle-
sorting generator schemes, as well as modifications that restrict the real-space extension
or minimal order of generator terms (cf. page 76).

Truncation scheme: This type provides a predicate function that defines whether a
term is truncated or not. For sCUT, we use the implementation suggested in section 2.4
exclusively.

The following types are model-independent and are defined in the namespace cut:

Local operators: The local operator is the elementary building block of algebraic struc-
tures. It acts on a single lattice site only that is stored in a lattice: :position attribute.
The action on the local Hilbert space in second quantization is decomposed into a creation
part and an annihilation part. The implementations of each part are strongly model-
dependent and are represented by an algebra::flavour attribute each. This structure
is particularly well suited for hard-core operators, cf. Ref. [Fischer(2012a)], where the
algebra: :flavour is directly associated to a state of the local Hilbert space.

Term: A term is composed of a prefactor, a boolean that decides whether it is real
or imaginary and a dynamical array of local operators that represents the monomial. It
is used extensively in all algebraic calculations. The separation between real and pure
imaginary terms may be surprising at first glance, because a complex prefactor could
serve the same need. However, complex prefactors would double the numerical effort in
the integration part, and it turns out that actually no terms with a mixed prefactor exist
for the investigated models.

Hamiltonian: The Hamiltonian manages the mapping between the index 4, the cor-
responding element of the operator basis A; (represented by a term) and provides quick
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read Hamiltonian in input algebra
transform Hamiltonian to output algebra
apply symmetries
define generator scheme
define truncation scheme
WHILE new representatives in Hamiltonian:
run loop for all old generator representatives,
all new observable representatives
run loop for all new generator representatives,
all observable representatives
END WHILE
output Hamiltonian and DES

Figure 2.4: Pseudocode for the program steps to calculate the DES of the Hamiltonian without
parallelization. Green commands are needed only if symmetries are exploited.

lookup operations in both directions’. It is confined to a particular symmetry class and
caches the multiplicity of each representative. The prefactor of each term is given by its
initial value written as polynomial of the model parameters. New representatives can be
added to the Hamiltonian in the course of the flow as terms with the prefactor zero.

The name of the class is to some extent misleading, since it is also used to store the
operator basis for observables. For this reason, we use the notation cut::hamiltonian
in the following when we refer to the data type.

DES: The DES encapsulates the list of contributions D;;; and holds pointers to two
instances of cut::hamiltonian: The Hamiltonian itself and the quantity of interest, i.e.,
an observable or the Hamiltonian again. It defines a member function to add a new
contribution D;;;A;, where the index 7 is determined from the monomial and the oper-
ator basis. For monomials not known yet, the operator basis is extended automatically.
Different classes exist depending on whether access is required by one thread only or by
multiple threads, cf. Sect. 2.6.3.

The storage of the contributions D, is delegated to a buffer type, that can have two
different implementations: The first one stores the DES in the RAM and provides fast
reading access. The second one writes the contributions to a temporary file. It is not
suitable for the integration part, but it is the method of choice for the algebraic part for
large systems, because about 90 % of the memory consumption in SCUT can be attributed
to the DES and only write access is required.

2.6.2 Algorithms

Having introduced the most important data structures, we concentrate now on the algo-
rithmic part of the program. The heart of the program is the calculation of commutators
between basis operators, implemented by the loop function. In the following, we discuss
the main program flow and the interplay between the most important utility algorithms:

7 While the old implementation used a hash table to obtain the index of a representative, the new
version relies on a sorted-tree-like storing scheme using the boost: :multiindex library [Munoz(2006)].
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Figure 2.5: Pseudocode for the program steps to calculate the DES of an observable without

read observable in input algebra

transform observable to output algebra

apply symmetries

define generator scheme

define truncation scheme

read Hamiltonian in output algebra

WHILE new representatives in observable:
run loop for all generator representatives,

all new observable representatives
END WHILE
output observable and DES

parallelization. Green commands are needed only if symmetries are exploited.

FOR each representative in generator:
apply finite generator symmetries
FOR each representative in observable:
apply a-priori simplification rules as far as possible
apply translation group to generator terms
apply generator scheme
apply full a-priori simplification rules
commute generator terms with observable representative
site-order result
evaluate normal-ordered products
apply truncation scheme or a-posteriori simplification rule
find representative for observable translation group
find representative for observable finite symmetries
collect all terms
divide by multiplicity of observable representative
identify new representatives
store contributions in DES
END FOR
END FOR

Figure 2.6: Pseudocode for the loop function to calculate the commutators of ranges of gen-
erator and observable representatives. Green commands are needed only if symmetries are
exploited; blue commands are extensions for the epCUT method that are explained in section

3.7.1.
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Transformation of Hamiltonian: The simplified program flow for the transformation
of the Hamiltonian is illustrated in Fig. 2.4. After loading the Hamiltonian from a file,
it is transformed to an algebra where the calculations are carried out. If symmetries are
exploited, the Hamiltonian is expressed in terms of representatives.

According to the generator scheme and the truncation scheme of choice, the commuta-
tor between generator and Hamiltonian is carried out on the level of individual representa-
tives by the loop function, cf. Eq. 2.36. Because the generator is constructed dynamically
from the Hamiltonian by applying the generator scheme, the Hamiltonian’s representa-
tives enter the commutator in two different roles. We call the representative that enters
the commutator as the left argument after the generator scheme is applied “generator
representative” and the representative that enters the commutator as the right argument
“observable representative”. While evaluating the commutators by the loop function,
the contributions to the DES are identified and new representatives are appended to the
Hamiltonian.

So far, the new representatives have not been considered as arguments of the commu-
tator. In a second iteration, the new representatives have to be considered in both roles,
as generator representatives and as observable representatives, and the missing commuta-
tors with old and new representatives are calculated using the loop function. A graphical
representation of these self-consistency loops is given as left panel of Fig. 2.1. This pro-
cedure is iterated until no new representatives passing the truncation scheme arise and
self-consistency is reached.

At the end, the full lowing Hamiltonian and the DES are stored in files.

Transformation of observable: The simplified program flow for the transformation
of an observable is illustrated in Fig. 2.5. As for the Hamiltonian, the observable is loaded
from a file and transformed to the algebra used for the calculations. If symmetries are
exploited, the observable is expressed in terms of representatives. In addition, the full
basis of the flowing Hamiltonian has to be restored from the previous Hamiltonian run.

Analogously to the transformation of the Hamiltonian, the commutator between gen-
erator and Hamiltonian is carried out by the loop function on the level of individual
representatives respecting the generator scheme and the truncation scheme. Obviously,
the observable representatives come from the observable, while the generator representa-
tives are obtained from the Hamiltonian by application of the generator scheme.

The new representatives in the observable have to be taken into account in subsequent
iterations of the self-consistency loop, but no new generator representatives appear. A
graphical representation of the loops can be found in the right panel of Fig. 2.1.

At the end, the full flowing observable and the DES are stored in files.

Loop function: The loop function is the basic building block for all high-level func-
tions that calculate the DES for Hamiltonian and observables. The function acts on a
range of generator representatives and observable representatives passed as pairs of itera-
tors®; this corresponds to rectangular blocks in the graphical representations in Fig. 2.1.
The loop function calculates all commutators which comply with the generator scheme
and truncation scheme, identifies and stores the contributions to the DES according to
Eq. 2.41.

8 An iterator is a type that encapsulates the access to a set of elements. It allows to dereference a
specific element and can be iterated to switch to the next element.
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Figure 2.6 shows a pseudocode representation of the function consisting of two nested
loops for generator and observable representatives. In presence of symmetries, the first
task to calculate the commutator between a pair of representatives is to construct the
symmetry group of the generator representative. For finite symmetries, this can be done
outside the observable loop, but the translation group operation is specific for the observ-
able representative as we will explain in the next paragraph. After the generator scheme
has been applied, the commutation function is called. The local operators of the resulting
terms are not in any particular order. To compare them with the (independent) elements
of the operator basis, the local operators have to be sorted by their site index and normal-
ordered. Then, the truncation scheme can be applied and, if symmetries are used, the
representatives are determined and the correction factor stemming from Equation (2.33)
is applied. Finally, representatives that appear for the first time are reported and the
contributions are stored in the DES.

Translation group: Strictly speaking, the translation symmetry group operation S in
Eq. 2.41 involves a summation over the whole lattice. For bosons and hard-core bosons
that are the subject of this thesis, the commutator of two terms always vanishs if the clus-
ters of the terms do not share a common lattice site. As a result, the translation group
function of the symmetry classes has to construct only a finite set of generator terms,
depending on the cluster of the observable representative [Duffe(2010)]. For fermionic
operators, the situation is more complicated because they do not commute but anticom-
mute on different lattice sites. Nevertheless, it turns out that a similar argument holds
for fermionic operators as well since fermionic operators appear always in pairs in the
physically relevant models [Duffe(2010)].

Commutator: The efficient calculation of the commutator of two terms is of crucial
importance for the performance of the program. An efficient approach is to reduce the
commutator down to the level of single local operators using product rules, for details see
Refs. [Reischl(2006), Duffe(2010)]. Then, the tables for local commutators and anticom-
mutators specific for the algebra can be applied.

Site and normal ordering: The local operators of the terms calculated by the commu-
tator function do not show any particular order and two local operators can have the same
site index. In order to identify them with operators of the basis, we have to bring them
in a unique form [Reischl(2006), Duffe(2010)]. First, the local operators are rearranged
according to their site index. Next, local operators on the same site are contracted using
the tables of local, normal-ordered products defined by the algebra . The advantage of
this sorting is that only one local operator (with at most one creation and one annihila-
tion operator) is needed for each site the term acts on. Strictly speaking, this does not
match the usual definition of normal-ordering with respect to the vacuum state, because
an annihilation operator with a lower site index will be placed before a creation operator
with a higher site index. For bosonic operators, this is essentially a difference of notation.
For fermionic operators, an additional sign factor can appear.

Change basis and symmetry: The ability to change the representation of a cut::
hamiltonian automatically allows us to define the Hamiltonian in a convenient represen-

9 For mixed bosonic and fermionic problems, sorting all bosonic operators in front of the fermionic
operators is advantageous for the calculation of the commutator [Duffe(2010)].
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tation, e. g., in terms of spin operators that can be adapted to new models easily, while the
calculations are carried out in a representation better suited for computations. Another
application is shown in chapter 5, where the basis rotation of the local Hilbert space is
implemented in this way.

This is implemented by the cut::change basis_symmetry functor. The algorithm
itself is completely generic: Each local creation and annihilation operator of the first
algebra is replaced by a term defined by the second algebra. Then, the products are
multiplied out and the normal-ordered products are evaluated like for the result of the
commutator function. For a new transformation, only the table of the mapping of the
local creation and annihilation operators has to be provided.

In addition, the functor is sensitive to the symmetry classes of both cut::hamilton-
ian objects. Before the change of the algebra, the representatives are replaced by all
terms of their corresponding symmetric combination using the ¥ operation. In the new
algebra, all monomials are converted to representatives with respect to the new symmetry
class.

2.6.3 Parallelization

While it becomes increasingly difficult to further increase the clock rate significantly, im-
provements of the processor architecture and the bundling of multiple processing elements
(cores and processors) have become increasingly important for the evolution of modern
computing technology. We exploit the latter development in two ways:

As a trivial approach, we can run multiple instances of a program for different parame-
ters as independent UEs (threads and processes). The total runtime for a single parameter
set does not change, but the runtime for a batch of multiple parameter sets is reduced to
the runtime of the longest individual program run, provided enough processing elements
and memory for each unit of execution are available. Technically speaking, this approach
increases the bandwidth, but does not reduce the latency.

A more sophisticated approach is to use multiple UEs together to reduce the runtime
of a single set of parameters. Depending on the problem, this way can be much more
challenging because the UEs can no longer work independently. However, it bears the
advantage that first useful results are available significantly earlier. Because the UEs can
share their data, the memory can be used more efficiently—at best, the memory use does
not increase with the number of UEs at all.

The calculation of the flow equation system is a computationally costly task: For a
large set of representatives, the accumulated CPU time can be of the order of weeks or
months, while memory consumption can reach the limitations of the available computing
nodes'’. Moreover, the algebraic calculation does not depend on the model parameters,
but only few technical parameters such as the truncation and the generator scheme. In
this situation, it is highly desirable to decrease the runtime of a single parameter set and
to use the main memory as efficiently as possible.

In the following, we will discuss the most important aspects of parallelization. For
a detailed overview of the field, we have to refer to the programming literature, see for

10 For the sCUT method, the memory use can be reduced drastically by writing the DES directly to
a file. But for the epCUT method, approximately one third of the total memory use is needed for the
Hamiltonian, which has to be kept in the main memory.



38 Self-similar continuous unitary transformations (sCUT)

instance Ref. [Mattson et al.(2004)]. We concentrate on shared memory platforms, which
means that all UEs have access to a common address space. This enables us to exploit
one complete compute node for one program instance. The calculations have been done
on the compute clusters of the TU Dortmund with up to 8 threads on the clusters cll
and PhiDo or with up to 16 threads on cl2. For the technical implementation, we stick to
the OpenMP interface [OpenMP(2005)], that offers a large variety of high- and low-level
constructions for shared memory parallelization.
In the process of parallelization, we identify three major challenges:

Exploitable concurrency: The program has to be decomposed into parts with mini-
mal interdependencies. If necessary, this can involve a complete redesign of the program
structure. Mattson et al. [Mattson et al.(2004)] distinguish decomposition by tasks and
decomposition by data.

Consistency and correctness: In contrast to a serial program, the order of instruc-
tions is less predictable because the different UEs act mostly independent. While each
unit of execution can have its own local variables, access to shared resources has to be
handled carefully. The most prominent examples for shared ressources are shared vari-
ables and other data structures, but also less obvious resources such as access to a file or
the memory allocation system have to be considered. Each unit of execution accessing a
shared resource has to be aware that the next time it might have been altered by another
unit of execution. It is even more problematic if two access operations happen simulta-
neously and lead to an inconsistent state of the resource (thread-safety). Both situations
can be avoided by the correct use of critical sections, locking or restriction to read-only
operations in the parallel section of the program.

Efficiency: An optimally'! parallelized program would distribute the total CPU time
equally on n UEs reducing the total runtime by a factor of n. However the efficiency
n = n% will usually decrease with the number of UEs until no further re-
duction of runtime can be reached. One reason for this is the increasing overhead for
synchronization and communication when more UEs are added. Furthermore, the work
has to be shared homogeneously between the UEs (efficient load balancing), because the
whole program ends only after the last UEs has finished. When only parts of the source
code are parallelized, the remaining serial fraction puts a lower bound to the total runtime

of the program.

Now, we investigate the parallelization of the transformation of Hamiltonian and ob-
servable, see subsection 2.6.2. The calculation of commutators for pairs of representatives
by the loop function is a natural starting point to exploit concurrency, since it allows for
a straightforward decomposition into individual tasks'?. We decompose this task into n
chunks (one for each unit of execution) that consist of commuting all generator repre-

11 On rare occasions, the total CPU time can even decrease by adding more processing elements when
caches can be used more efficiently.

12 On the other hand, a decomposition by data is less obvious, because the main data structures,
Hamiltonian, observable and DES, enter the commutator not only as arguments, but are responsible for
the processing and identification of the resulting terms as well.



2.6 Technical implementation 39

sentatives with 1/n of the observable representatives'®. Because representatives with high
indices are usually more complicated and involve more costly computations, we assign
the observable representatives periodically to the chunks (round robin). By these mea-
sures, the variance in runtime of the chunks is already negligible, so that a dynamic load
balancing, which would mean additional synchronization overhead, is not necessary. The
cyclic access to the observable representative is encapsulated by a special iterator class,
and each unit of execution executes the loop function for different iterators. No changes
in the loop function itself are required.

While the calculation of the commutators by the loop function requires read-only
access to Hamiltonian and/or observable, adding new representatives to a cut::hamil-
tonian and adding new contributions to the DES is non-trivial, because it involves write
access to shared data structures. We implemented two different strategies to handle this
issue:

Split & merge: This strategies has the focus on maximal independence of the UEs. It
uses a parallelized DES class that reflects the interface of the DES type, but internally,
it contains two DES buffers and one cut::hamiltonian for each unit of execution, in
addition to the DES buffer of the global DES. When adding a new contribution, the action
of the DES depends on whether the representative is already present in the global cut: :
hamiltonian: If 'yes’, the contribution is stored in the first unit of execution-specific DES
buffer. If 'no’, the representative is added to the unit of execution-specific cut: :hamil-
tonian if necessary. Then, the contribution is stored in the second unit of execution-
specific DES buffer along with the index with respect to the unit of execution-specific
cut::hamiltonian.

After the loop functions have finished, the new representatives from the unit of execution-
specific cut: :hamiltonians are added to the global cut: :hamiltonian one after another.
Then, the unit of execution-specific indices of the second DES buffers are mapped to the
global indices. Finally, all contributions of the unit of execution-specific DES buffers are
moved to the global DES buffer one after another.

Locking: This strategy optimizes the memory consumption. Here, the access to the
cut::hamiltonian is protected by a lock, so that only one unit of execution can access it
at a time. This is also affects the read-only operations (thread-safety), but the overhead for
reading operations can be made marginal by using cached iterators. Each threads stores
its contributions in a unit of execution-specific DES buffer, that can be synchronized after
all commutations have ended.

In a direct comparison, the “Split & merge” strategy tries to minimize the synchro-
nization overhead, but uses more memory than the “Locking” strategy, because multiple
temporary copies of new representatives are kept. For the sCUT method, memory con-
sumption of the Hamiltonian is only small, but for the epCUT method, it is the limiting
factor and the use of the “Locking” strategy is mandatory for large calculations.

Finally, we take a short look at the potential for a further increase in performance.
The parallel implementations discussed so far are suitable for the execution on a single
compute node. If even higher performance is required, a distributed memory model has

13 Usually, only a minority of Hamiltonian representatives contribute to the generator, so that an
additional decomposition by generator representatives is not needed.
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to be considered for the concurrent execution on multiple compute nodes. This strategy
bears the advantage that the total memory available increases linearly with the number
of nodes, so that there would be no principal limitation for the maximal number of
representatives.

For this purpose, we favor a data decomposition strategy that distributes the Hamil-
tonian, or observable, respectively, homogeneously between the nodes. Each node is
responsible for the commutators between all generator representatives'* and all represen-
tatives in its specific part of the Hamiltonian. The resulting representatives are sent to
the appropriate node where the representative’s index can be determined by comparison
of coefficients. We suggest to use a hash function in order to distribute the representatives
to the nodes equally. However, the implementation of a distributed program is beyond
the scope of this thesis.

In this chapter, we gave an introduction to the SCUT method and to the underlying
technical implementation. We will apply it in chapter 5 to analyse the two-dimensional
dimerized S = 1/2 Heisenberg model. Meanwhile, we present a novel methodological
development that combines aspects of sSCUT with perturbative considerations. In the
next chapter, we provide the derivation of the (de)epCUT method and show how it is
included seamlessly into the sCUT program library.

14 Here we assume that only few representatives contribute to the generator, so that it can be stored
easily on each computation node. If the representatives in the generator are as numerous as in the part of
the Hamiltonian, other strategies such as a matrix-like decomposition of both generator and Hamiltonian
may be more suitable.
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In the last chapter, we gave an overview over the self-similar CUT (sCUT) method
[Mielke(1997b), Dusuel & Uhrig(2004), Reischl et al.(2004)], a non-perturbative renormal-
ization approach that allows us to determine effective Hamiltonians in terms of normal-
ordered operators in second quantization. By the choice of the generator scheme, we are
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able to select the structure of the effective Hamiltonian to a large degree. The sCUT
method is able to exploit the symmetries of the Hamiltonian and observables on the oper-
ator level. In particular, the use of translation symmetry allows us to work directly in the
thermodynamic limit. The sCUT method can be applied to a large range of models with
a spectrum bounded from below and a suitable representation in second quantization.

While the flow equation system itself depends only on the general structure of the
model, its numerical integration has to be carried out for each set of parameters again.
Moreover, the sCUT method requires the definition of an appropriate truncation scheme,
which is a highly non-trivial task. If the representation in second quantization, the gener-
ator scheme or the truncation are not chosen appropriately, the flow equations can diverge
and the mapping to an effective Hamiltonian fails.

In some cases, a Hamiltonian H, can be diagonalized analytically, so that all eigen-
values and relevant quantum numbers are known exactly. This description can be used
as starting point to explore the properties of more complicated Hamiltonians, which is
decomposed into Hy and a perturbation. Perturbation theory can be expected to yield
quantitatively reliable results as long as the perturbation is small and no quantum phase
transition occurs. In the context of continuous unitary transformations (CUTs), the per-
turbative CUT (pCUT) method [Uhrig & Normand(1998), Knetter & Uhrig(2000), Knet-
ter et al.(2003a), Knetter(2003)] has been established as an efficient scheme to determine
an effective Hamiltonian as a high-order perturbative series in the expansion parameter.
Since it provides the dispersion as an analytical function of the perturbative parameters,
the pCUT method can be used to detect second order phase transitions efficiently [Vi-
dal et al.(2009), Dusuel et al.(2011)]. Moreover, the pCUT method is also able to treat
multi-particle states, which allows for the calculation of bound states [Uhrig & Nor-
mand(1998), Knetter et al.(2000), Knetter(2003), Knetter et al.(2003a)]. We give a short
overview of this method in the next section.

As a drawback of the pCUT, the unperturbed part of the Hamiltonian must have an
equidistant energy spectrum. If the model includes on-site interactions of the quasi-particles
of interest, such as the Hubbard repulsion U for electrons [Hafez & Jafari(2010), Hafez &
Abolhassani(2011)], these terms have to be considered as part of the perturbation. More-
over, pCUT is confined to the use of the particle-conserving generator scheme, which
limits the flexibility of the transformation. As for any perturbative approach, results are
reliable only for small values of the perturbative parameter, depending on the order of
calculation. To a certain extent, this behavior can be improved by using extrapolations
such as Padé approximants [Padé(1892), Baker Jr.& Gammel(1961), Guttmann(1989)].

In this chapter, we present a novel method based on CUTs that unifies the strengths
of both sCUT and pCUT: enhanced perturbative CUT. Like pCUT, it allows us to
determine an effective Hamiltonian as a high-order perturbative series depending on an
expansion parameter. Like sCUT, it is based on the decomposition of the Hamiltonian
in terms of normal-ordered monomials in second quantization. In this way, the enhanced
perturbative CUT (epCUT) method does not suffer from the limitations of pCUT, namely
the restriction to an equidistant spectrum in the unperturbed part of the Hamiltonian or
the use of the particle-conserving generator scheme only. Thus, the epCUT method is
more flexible than pCUT and can be applied to a larger class of models.

In addition to the perturbative evaluation, the flow equation system of epCUT can be
used to obtain renormalized, effective Hamiltonians beyond the limitations of perturbation
theory. We call this method directly evaluated epCUT. As in sCUT, a strictly non-
perturbative effective Hamiltonian is obtained by integrating the flow equation system for
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each set of parameters. In directly evaluated epCUT (deepCUT), the complex truncation
scheme is replaced by the order of the underlying epCUT calculation. This approach
turns out to be robust even for large off-diagonalities.

The development of the epCUT and deepCUT methods has been done in collaboration
with Holger Krull [Krull(2011)] and G&tz S. Uhrig. My focus was on the algebraic part
of the method that generates the differential equation system (DES) and its technical
implementation. This chapter is an adapted and extended version of my contribution to
the common publication [Krull et al.(2012)]'. In the article, the application of epCUT and
deepCUT to the antiferromagnetic S=1/2 Heisenberg ladder with and without alternating
strength of the rung interaction can be found.

The chapter is structured as follows: At first, we give a brief overview over the pCUT
method. In the next section, we introduce the epCUT method for the transformation
of the Hamiltonian. This comprises the perturbative expansion of the flow equation
in second quantization, an examplary calculation of a harmonic oscillator with quartic
perturbation, the generic algorithm to construct the perturbative flow equation system
and an analysis which parts of the DES can be omitted if we are interested only in parts
of the effective Hamiltonian. This reduction of the DES is the basis for the deepCUT
method, the non-perturbative twin of epCUT, that is presented in Sect. 3.3. Next, we
explain the transformation of observables for both epCUT and deepCUT. In the following
section, we show how the focus on the low-quasi-particle sub-spaces can be exploited to
reduce the computational effort drastically and to reach very high orders of the calculation.
Subsequently, we analyze the interplay between the minimal order and the symmetries
of the effective Hamiltonian. Then, we consider the technical differences compared to
sCUT and give an impression of the computational performance. Finally, we draw our
conclusions and give an overview over current applications as well as an outlook to further
developments.

3.1 Perturbative continuous unitary transformations
(pCUT)

The pCUT method developed by Knetter and Uhrig [Uhrig & Normand(1998), Knet-
ter(1999), Knetter & Uhrig(2000)] is the first systematic approach to perform high-order
perturbation theory by means of CUTs. In this section, we give a short overview over this
method, following the derivation by Knetter and Uhrig. For the details, we recommend
Refs. [Knetter(1999), Knetter & Uhrig(2000)].

At first, we split the Hamiltonian H(0) = Hy + x - V into a unperturbed part H
and a perturbation V with a control parameter x. In order to apply the pCUT method,
we have to be able to interpret Hy as a counting operator of quasi-particles. If H
has an equidistant spectrum, this condition can be met by scaling the Hamiltonian and
shifting the ground state energy to zero. Then, the Hamiltonian can be written in second
quantization as

N
H(0)=Hy+z-V=Hy+x Y Tn, (3.1)
m=—N
where the perturbation is decomposed into the operators 7,,, each of them changing the
quasi-particle number by m € Z.

1 (©2012 American Physical Society.
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Due to the commutator in the flow equation (2.4), products of multiple T, operators
appear in the flowing Hamiltonian. This motivates the ansatz

= Hy+ i l’k Z F(f, M)Tm, (32)

k=1 dim(m)=k

with coefficients F'(¢;m) and the operator product

dim(rm)
= I[ 7 (3.3)
m=m1
The tuple m serves as shorthand notation for the sequence of indices mq, ..., m; of the

T,, operators in the product T;. The dimension of the tuple is identical to the order
in z in which the corresponding operator product Ty appears. Since the total change
in the quasi-particle number of the product Ty is given by M (m) := Z?;nf(m) m;, the
corresponding particle-conserving generator reads

=> 2 D" sign(M () F(6m)T (17). (3.4)

k=1 dim(m)=k

Inserting the ansétze for the Hamiltonian (3.2) and the generator (3.4) into the flow
equation (2.4), the operator products T, can be identified on both sides of the equation.
Commutations between the diagonal part H, and the operators Ty can be calculated
directly due to the equidistant spectrum

[Ho, T(m)] = M (m)T (). (3:5)

This leads to a hierarchy of ordinary differential equations for the coefficients F(¢;m),
where the derivatives of the coefficients of large tuples, i.e., high orders, depend only on
coefficients of smaller tuples, i. e., lower orders. If the corresponding operator product T
changes the number of quasi-particles, the same coefficient F'(¢;m) can appear on both
sites of Eq. (3.5). An interesting feature of the pCUT is that the differential equations
depend only on the possible values of m, but not on the details of the model.

Due to the particular structure of the DES, the functions F'(¢;71) can be determined
analytically. They are composed of a polynomial P, (¢;m) in £ and an exponential decay
part

F(;0) = e MO0 73) = e~ IMO7 VZP Je . (3.6)

The degree of the polynomials is limited by a function I'(m) that depends on the tuple
m. From the shape (3.6), we see directly that only the particle-conserving terms with
M (m) = 0 remain for £ — oco. Finally, the effective Hamiltonian reads

Heg = Hy+ Y a* > Cm)T(m) with C(m):=F(l=oco;m). (3.7)
dim () =k, M (m)=0

So far, the calculation of the coefficients C (1) has been largely model-independent.
In contrast to sCUT, however, even simple physical quantities such as the ground state
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energy can not be identified directly in this representation, because the operator products
T(m) are not normal-ordered. Hence, the next step is to evaluate the matrix elements
of the effective Hamiltonian explicitly on a finite size lattice. In this step, the details
of the model enter the calculation. Then, the matrix elements of the vacuum and the
few-particle states can be used to derive a representation of the effective Hamiltonian in
second quantization. Due to the linked cluster theorem and the finite order of calculation,
a finite size lattice is sufficient to obtain results valid in the thermodynamic limit.

3.2 Enhanced perturbative CUT (epCUT) for the
Hamiltonian

The epCUT method unifies the perturbative concept of pCUT with the representation
by normal-ordered monomials of sSCUT. This allows us to derive a series expansion for
effective Hamiltonians for a more general class of models than pCUT.

In this section, we present a comprehensive derivation of the epCUT method for the
transformation of the Hamiltonian. At first, we consider the flow equation in second
quantization and decompose it by means of a perturbative expansion of the coefficients of
the monomials. We illustrate the derivation of the perturbative flow equation system and
how it can be solved analytically in an examplary calculation for a harmonic oscillator
with quartic perturbation. With this motivation, we derive an algorithm that calculates
the epCUT of the DES for a general Hamiltonian and discuss the similarities to the sCUT
method. In the last subsection, we analyze how the DES can be reduced to only those
parts, which are essential to extract the perturbative series of the physical quantities we
are interested in.

3.2.1 Perturbative expansion of the flow equation

In this subsection, we consider the perturbative solution of the flow equation in second
quantization which leads us to a perturbative series of the effective Hamiltonian. At first,
we decompose the initial Hamiltonian

H = Hy+zV (3.8)

into an unperturbed part Hy and a perturbation V. In contrast to pCUT, the formalism
is very general and does not require further restrictions. In particular, we do not require
the unperturbed part to have an equidistant spectrum. In order to be able to guarantee
that a finite order in the expansion parameter requires only to deal with a finite number
of terms we assume either that the local Hilbert space at a given site is finite dimensional
or that Hy is a sum of local terms which are bilinear in bosonic or fermionic variables.
We will see that the method works best for a (block-)diagonal Hy. These conditions are
sufficient, but not necessary for epCUT to work. It is beyond the scope of the present
work to fully elucidate the marginal cases where epCUT is possible or impossible.

We aim at the perturbation series up to and including order n in x. Thus we expand
the flowing Hamiltonian

H(t)=Y H™, H™ 2™ (3.9)
m=0
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into terms of order 2™ up to m < n. Expanding the H™) in the operator basis {4;} intro-

duced in Sect. 2.3 we perform the expansion in powers of x by expanding the coefficient

0) = Xn: ™ (). (3.10)

At [ = 0, the initial values fi(m)(O) are fixed by the initial Hamiltonian (3.8) and its
representation in terms of the {A;}. Applying (3.10) to the numerical part of the flow
equation (2.19a), one obtains for the particle-based generators the representation

) Z 2" f () ZDW Z 2P (0) £19(0). (3.11)

p,q=0

Here, the contributions D, refer to the DES as it is defined in the algebraic part of the
flow equation (2.19b). For the prefactors of 2™ this implies

oS0 =" 3" DtV (O K20 (3.12)

J,k ptg=m

We stress that the contributions D;jj, to the DES do not depend on the order m of the
coefficients, but only on the algebraic relations between the corresponding monomials.
Hence they need to be calculated only once. Moreover, Eq. (3.12) defines a hierarchy
between the coefficients because fi(m) (¢) is influenced only by coefficients of the same
order m or lower, but not by coefficients of higher orders.

The perturbative DES (3.12) for the coefficients fi(m) can be solved numerically in a
similar way as in sCUT. If H is diagonal, the differential 0, fz-(m) (¢) may include products
of £ (¢) and diagonal elements of H©. All other contributions to 8y f{™ (¢) are products
of coefficients of lower orders. In a similar way as for pCUT (cf. Eq. (3.6)), this implies
an exponential decay of the first order generator coefficients fi(l)(é) for the quasi-particle
based generator schemes if the decoupled quasi-particle subspaces are sorted according
to their energy eigenvalues with respect to Hy. Then, the first order generator terms
converge in the limit ¢ — oo. This argument is applied iteratively to the higher orders. In
conclusion, the perturbative evaluation converges always, as long as the energy spectrum
of Hy fits to the sorting of quasi-particle sub-spaces by the generator schemes. For the
particle-conserving generator scheme, see Sub. 2.2.3, this means that the implication

Qi > qi; = hi > hy; (3.13)

holds for the unperturbed part of the Hamiltonian.

3.2.2 Example: Harmonic oscillator with quartic perturbation

Before we derive the algorithms to derive the flow equation system in epCUT generally,
we want to give a simple example for the construction and solution of the DES. In this
section, we analyze the perturbed harmonic oscillator

H=¢y+wbb+x-H (3.14a)
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i Aj hi(0) hi(co) Oumin Ot Onn
0 1 € c+ér— Lzt 0 2 2
1 ) wo + wx wo + 0T — %—‘é:ﬂ 0 0 2
2 bit 4+ p* x 0 1 1 1
3 b'bTbh Ux Ux — i—i:ﬁ 1 -1

4 bi3b° 0 — S’ 2 | —

5 bPob3 + bi3p° 0 0 2 —

Table 3.1: Basis operators A; (written as polynomials obeying hermiticity) occuring in a second
order epCUT for the perturbed harmonic oscillator using the particle conserving generator
scheme 7)pc. The third column shows the initial coefficients h;(¢ = 0), the fourth the final
renormalized coefficients h;(¢ = oo). The minimum order O, ;, is the leading order of the
considered operator; O%%E is the highest relevant order of the coefficient for computing the
ground-state energy, and O}H%E is the highest relevant order for computing the excitation energy
(cf. Sect. 3.2.4). The terms marked in light gray are irrelevant for the computation of the ground-
state energy in second order; the terms in dark gray are irrelevant if the excitation energy is
computed. If a term can not influence the targeted quantities at all, it has no maximal order
(symbolized by a dash).

with ground-state energy ¢, frequency wg > 0, and bosonic creation and annihilation
operators bf,b. It is perturbed by

Hy = b 4 b* 4+ &+ Ob'b 4+ UbTbTbb, (3.14D)

controlled by the expansion parameter x. The perturbation includes a ground-state shift
€, a frequency shift @, and a density-density repulsion U. In order that H is bounded
from below for x € [0,00[, we require H; to be positive. Using the Gersgorin circle
theorem [Gersgorin(1931)] to the diagonal elements e, of H; in the basis of oscillator
eigenstates {|n)}, all eigenvalues are positive if

e, = (n| Hy|n) = é+nw+n(n—1)U (3.15a)
!
> |(n+ 4| Hy [n)| + [(n — 4| Hy |n)| (3.15b)

holds. The second matrix element occurs only for n > 4 and can be estimated by
(n+4| Hy |n) > (n — 4| Hy [n) > 0. The resulting final inequality

ez>4(n+4)(n+3)(n+2)(n+1) (3.16)

is satisfied for € = 10, © = 12, and U = 2. We stick to this set of parameters in the
following.

Now, we evaluate the perturbative DES for the coefficients f/"(¢). The operator basis
{A;} is listed in Tab. 3.1. For order zero, we parametrize the prefactors of the unperturbed
parts by the flow parameter ¢ leading to

HOW) = £7(0 L +A7(0 &b, (3.17)
Ao Aq

with the initial conditions féo)(()) = ¢y and fl(o)(O) = wp. None of these terms contributes
to the generator. Hence the coefficients stay constant in order zero.
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i 2 0 1 2
jio2 2 2 2 2 2 2
k12 2 2 2 1

Dy, -4 -48 | -192

Table 3.2: Non-vanishing contributions D;;; to the DES of the perturbed harmonic oscillator
in the particle conserving generator scheme. Operators and contributions marked in light gray
are irrelevant for the computation of the ground-state energy in second order; those in dark gray
are irrelevant for the first excitation.

In linear order, two additional terms Ay and A3 occur

HO () =2 fs(0) L_+xfi"(0) ',

Ao Al
3.18
+afi(0) (01 + ) +afs (0 4lbTbb (3.18)
—— A
Ao 3
with the initial conditions fél)(O) =¢ fU ( ) = @, @, f£9(0) = 1 and fél)(O) = U. The
third term contributes to the generator
W) = f (0) (01 = b") (3.19)
Due to n = O(z), the derivative in linear order reads
A (€)= [n(0), HO(0)] (3.200)
zxﬁ”() (0) [Ape Az, Ai] (3.20b)
= —4z VO F20) (01 + b (3.20¢)
——
Az
By comparing coefficients, one identifies the contribution Doy to f2(1):
Ouf3" (0) = —wof3" () (3:21)
with the initial condition fz(l)(O) = 1 and the solution
f0(0) = e, (3.22)

All other first-order coefficients retain their initial values.
The initial Hamiltonian does not comprise second-order terms. Such terms arise due
to commutation of terms of lower order. The two relevant combinations are

O H® (0) = [n™(0), HD(0)] + [n®(0), HO(0)]. (3.23)
The first one reads as
[0 (0), HO(0)] =2 157 (0) {7 (0) [fpe A, Ad]

+22 f30(0) £ (0) [pe Az, As]
+2? f30(0) £ (0) [pe Az, As). (3.24)
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To represent the right-hand side, two additional terms A4 and Aj are required (see
Tab. 3.1):

[ﬁpcA% Al] - - 4A2, (325&)
[ﬁpCA27 AQ] == —48140 - 192141 - 144143 - 32144, (325b)
[ﬁpCAQ’ AS] = _12142 — 84 (325C)

with vanishing initial values ffg (¢) =0.
In Tab. 3.2, we summarize the explicit results for all contributions to the differen-
tial equation system up to second order in xz. Here, we focus only on the second-

order correction to the identity operator Ay, i.e., on the ground-state energy E(()Q) =

éo)(oo) + :L’fél)(oo) + x2fé2)(oo). Because the only second order contribution to Ag is

given by Eq. (3.25b), its differential equation reads as
0ufP (0) = =48 £V (0) £V (0) = —48e 80", (3.26)

Using féQ)(O) =0, it follows

8(00) = —18 [ e atar = -2 (3.27)
0

Wo

In this example, we calculated and solved the perturbative flow equations separately
in each order. For higher orders or more sophisticated systems, it is more advantageous
to split the solution into an algebraic task of deriving the DES and into a numerical task
of solving it, as it is done in the sCUT method. In the next section, we discuss an efficient
algorithm to handle the algebraic task for more general models.

3.2.3 Algorithm for the Hamiltonian

A key task in the implementation of epCUT is the design of an efficient algorithm to
identify the monomials and to exactly calculate the commutators which are relevant for
the transformed Hamiltonian in the order of interest n. Henceforth, we call the order we
are aiming at the “targeted” order.

Based on Eq. (3.12), we can calculate each order m based on the results of lower orders.
This leads to an evaluation scheme in terms of blocks [n(p),H (‘7)], which is sketched
in Fig. 3.1. The calculation of each block [n(p),H(q)} bears similarities to the sCUT
evaluation scheme (cf. Fig. 2.1).

Order zero is trivially given by the representation (3.8) if n[Hy| = 0, which means that
H is block diagonal. The calculation of the commutators [, H("=D] .. [nm=D HO]
can be carried out independently. According to Eq. (2.19b), the commutator [7[A;], Ax]
can be written as linear combination of monomials A; of which the prefactors define the
contributions D;jj of the DES. For those monomials not yet present in the Hamiltonian,
an additional monomial has to be included in the operator basis with a unique index. We
call the order in which a monomial occurs for the first time its minimal order O, (A;).

We stress that in the evaluation of [n®, H@], the commutator [[A;], Aj] needs to be
calculated only if O, ;, (4;) = pand O, (A;) = ¢. For all monomials with lower O, ;, (4;)
and/or lower O, (4;), the commutators have already been calculated in lower orders.
The calculation of the commutators for [n(m),H (0)] is special because its result may
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H©) HO H® H® H@®
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Figure 3.1: Sketch of the epCUT algorithm to calculate the DES for the iterative calculation of
9 H®. Due to the commutators [n(l), H(3)] e [17(3), H(l)], new terms with O, . = 4 emerge.
Thus, the calculation of the block [77(4), H (0)] has to be carried out at last and self-consistently
because it generates monomials contributing to the generator in the same order. If Hj is not
(block-)diagonal, both [7](4),H (0)] and [n(o),H (4)] have to be calculated simultaneously in a
single self-consistent loop (cf. Fig. 2.1).

include additional monomials of the same minimum order m which were not considered
so far. Since these monomials also enter the commutator via 7™, the block [n(m), H (0)}
has to be iterated until no additional monomials occur: Then self-consistency is reached.
This should be done once the inner blocks [n®>%, H@>0] are finished.

If the unperturbed Hamiltonian H, is local, the commutation of monomials from
n™) and H, lead to monomials acting on the same local cluster or smaller sub-clusters.
Furthermore, if the local Hilbert space of the cluster is finite, the number of new monomials
which can be generated by iterative commutations with H, is bounded by the finite
number of linearly independent matrices on this finite-dimensional Hilbert space. Then
the iterative loop is guaranteed to terminate after a finite number of cycles.

If the unperturbed Hamiltonian Hy has also non-(block-)diagonal terms, the generator
includes terms of order zero. Therefore, the blocks [77(0), H (m)] have to be evaluated self-
consistently as well. Since any term of the Hamiltonian may also appear in the generator,
the blocks [n™, H®] and [, H™] have to be calculated simultaneously within a
common self-consistency loop. Self-consistency can be reached in a finite number of steps
if the local Hilbert space at each site is finite or if the H, consists of a sum of local
bilinear bosonic or fermionic terms. Otherwise, it is difficult to see generally whether
self-consistency can be reached in a finite number of iterations.

We draw the reader’s attention to the fact that the evaluation scheme of the sCUT
method (see Fig. 2.1) can be seen as a special case of the epCUT evaluation scheme for
Hy := H. Considering the total Hamiltonian as the unperturbed one, the whole algorithm
constructing the DES reduces to the calculation of the block [17(0), H(O)}, which has to be
evaluated self-consistently with respect to both the generator and the Hamiltonian. Since
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for Hy = H the unperturbed part Hy includes non-local and non-(block-)diagonal terms
and perhaps refers even to an infinite local Hilbert space, the iteration of commutators
will not terminate for any but the simplest models. This motivates the use of additional
truncation schemes in sSCUT, as discussed in Sect. 2.4.

3.2.4 Reduction of the differential equation system

In the last subsection, we described a generic algorithm to calculate the representatives
and the DES in epCUT systematically. For the perturbed harmonic oscillator, the results
for order two are given in Tabs. 3.1 and 3.2. They allow us to determine the complete
effective Hamiltonian in second order. However, only a small part of this information is
actually needed if we focus on specific parts of it. For instance, the exemplary calculation
in subsection 3.2.2 revealed that only the two differential equations (3.21) and (3.26) are
essential to determine the ground state energy up to second order. In the following, we
will call a representative “targeted” if we need its coefficient for the calculation of our
quantities of interest, e. g. the ground state energy or the dispersion.

In analogy to the minimal order O, (4;), in which the representative appears for the
first time, we denote the highest order that is necessary to determine the quantities of
interest as the representative’s maximal order O, (A;). The set of maximal orders is
specific for the quantities of interest and for the order of calculation n. If a representa-
tive is targeted, we are interested in all its perturbative coefficients and O, (4;) = n
holds. Other representatives, however, may still be needed as intermediate results with
Omax(‘Ai) S n.

The minimal and maximal orders are linked by the hierarchy of the perturbative DES,
see Eq. (3.12). For a given maximal order of A;, the maximal orders of A; and Ay have
to satisfy

Omax(Ai) S Omax(Aj) + Omin(Ak’)7 Omin(Aj) + Omax(Ak')7 (328)

leading to lower bounds for the maximal orders
Omax<Aj> > Omax(Ai> - Omln(Ak> (329&)
Omax(Ak) > OmaX(Ai) - Omin(Aj)' (329b)

We stress that we obtain only inequalities for the maximal orders when considering a
single D; ;. Higher orders of the coefficient may become important in other contributions.
Considering the whole DES, the maximal order can be defined formally as

O,x(4)) = max O ax(Ai) — Oin (Ag)] 3.30
w4 =m0 — O (A4 (3:30)
Technically, we can compute the maximal orders of the representatives not targeted ex-
plicitly by applying Eq. (3.29a) iteratively. As starting condition, we set the maximal
order n for the targeted representatives only

n, if A; is targeted

Omax(Ai) = { (331)

0, otherwise.

With each iteration, each O, . (A;) increases or remains constant, until self-consistency is
reached. The maximal orders for the perturbed harmonic oscillator aiming at the ground
state energy, or the one-particle energy, respectively, are shown in Tabs. 3.1.
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As an example, we investigate the representative A,. Its only impact on the ground
state energy is due to Dyge, which yields the maximal order

Omax(AQ) = OmaX(AO) - Omin(AQ) =2-1=1 (332)

In contrast, the representative A5 occurs only in Dss5q, contributing to its own differential,
and can be discarded completely in a second order calculation of the ground state energy.
When all maximal orders are known, we compare them with the minimal orders. If

0. (A) <O, (4) (3.33)

max (

holds, no coefficient of the perturbative series is needed. Therefore, we can eliminate the
corresponding representative and all contributions of the DES that refer to it. In the
exemplary calculation, this situation happens for Az, which influences A, due to Daos,
but has a maximal order O, (A3) =1—-1=0<1=0,,,(A;3).

Although all remaining representatives are relevant, the DES may still include irrel-
evant contributions D;;;, that do not influence the remaining coefficients. This happens
if

min(

o AZ) < Omin(Aj) + Omin(Ak) (334)

max (

holds. In the exemplary calculation, this occurs for D55, which does not matter although
both A; and A, are relevant. In this context, we may interpret O, .. (A4;) as the maximal
order of the contribution D;;;, and O, (A4;) + Opin(A) as its minimal order.

Eliminating all irrelevant representatives and contributions, we end up with a mini-
mal operator basis and a minimal DES. The effect of the reduction of the DES can be
dramatic, eliminating the vast majority of representatives and contributions. We provide
quantitative data for the S=1/2 Heisenberg ladder in Fig. 3.7. This reduction increases the
performance of the integration part significantly, because a much smaller DES has to be
processed and only perturbative coefficients fi(m) (0) with O, (A4;) < m < O,,..(4;) have
to be evaluated. However, we stress that the reduced DES has to be discarded completely
as soon as we are interested in a coefficient that is not targeted.

Beyond the computational benefits, the reduction of the DES lays the foundation for
the deepCUT method that we explain in the next section. In contrast to the minimal
order, the maximal order requires the knowledge of the full DES before it can be deter-
mined. Nevertheless, it is possible to define upper bounds for the maximal order during
the generation of the DES, which we will investigate in Sect. 3.5.

3.3 Directly evaluated epCUT (deepCUT)

In addition to the perturbative evaluation, the reduced DES computed by epCUT in a
given order n can be evaluated non-perturbatively. After the reduction step described
in the last section, the DES consists exclusively of contributions which are relevant to
the targeted quantities in the desired order n. This reduced DES in Eq. (2.19a) can be
numerically integrated for any given value of x to obtain the coefficients of the Hamiltonian
hi(€) directly without passing by an expansion in z. In such a calculation, all coefficients
influence one another to infinite order in z. The numerical solution depends on the
expansion parameter in an intricate manner and can no longer be understood as finite
partial sum of an infinite series. In this sense, the perturbative reduced DES in order n
is extrapolated by the direct evaluation in a non-perturbative way.
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Figure 3.2: Ground-state energy Ej of the perturbed oscillator (3.14) relative to the first-
order shift zé versus the expansion parameter x. For reference, the ground-state energy has
been determined by Holger Krull [Krull et al.(2012)] using exact diagonalization considering 500
oscillator states (black line). The second-order result (blue line) deviates already significantly
for small « while the deepCUT results of the same order targeting the ground-state energy (0
QP) (red line) and targeting additionally the excitation energy (1 QP)(green line) are much
more robust. The parameters are ¢y = 0, wo=1, € = 10, ©® = 12, and U = 2, (cf. Sect. 3.2.2).

To stress the difference to perturbation series computed by epCUT, we call this tech-
nique directly evaluated epCUT (deepCUT). We keep the term “enhanced perturbative”
in this expression because the approach is derived from the epCUT. Yet, we stress that
by the direct evaluation contributions to infinite order in x are included. In this sense, x
serves as an expansion parameter for the DES, but it is not considered as a perturbative
parameter.

We emphasize that the reduction of the DES before the numeric integration is essential.
It enhances the performance of the integration because the reduced DES is much smaller.
The crucial empirical observation is that the reduction renders the integration much more
robust. Numerical integrations of the DES without the reduction diverge for high orders
and high values of . We conclude that the reduced DES represents the relevant physical
processes in a more appropriate way. The integration of the full DES generates spurious
higher-order contributions which overestimate certain effects. In an exact solution, the
spurious higher-order contributions would be compensated by other processes which are
captured only in a higher-order calculation.

We illustrate the difference between deepCUT and epCUT for the perturbed harmonic
oscillator (3.14). Targeting the ground-state energy, the first step is to calculate the
maximal orders of the representatives A; and to reduce the contributions in the DES to
the relevant ones (cf. Tables 3.1 and 3.2). The minimal DES for the coefficients h; of the
three relevant representatives in second order reads

agho = —48h2h2, ho(O) =€+ €x (335&)
aghl = 0, hl(O) = Wy + wr = h1(€) (335b)
aghg = — 4h2h1, hQ(O) =X. (335C)

In contrast to the epCUT, different powers of the expansion parameter = are not split.
Because hq(f) remains constant, the coefficient in the generator can be determined ana-
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lytically to be
ha(€) = hy(0)e 410 = ge=dlwotboa) (3.36)

For the ground-state energy, it follows that

o0

ho(00) = ho(0) — 482 / e~y (3.37a)
0
6 2
—e b — —2 (3.37h)
wo + rw

At first glance, the slight modification wy — wo+ 2w in the energy denominator compared
to the perturbative second order result (3.27) seems inconspicuous. But, we stress that a
Taylor series of (3.37) includes infinite orders of z. In Fig. 3.2, the results are compared to
exact diagonalization (ED) in the Hilbert space of 500 states?. Even for small values of the
expansion parameter, the perturbative result deviates significantly while the deepCUT of
the same order behaves reasonably even at x = 0.5 and beyond. We stress that the fact
that we can solve the equations analytically is due to the simplicity of the calculations
for this particular model in low order.

The perturbative result for the ground-state energy hy does not depend on whether or
not we target the single excitation energy h;. This is different in deepCUT where changes
in the DES due to varying targeted quantities will generally influence all quantities, at
least weakly. Targeting both the ground-state energy hy and the excitation energy hy
modifies the derivative of hy(¢) to

8@h1 = —192h2h2, hl (0) =Wy + wx (338)

so that now the complete DES is given by (3.35) and by (3.38). We solve the DES similar
to a previous treatment [Dusuel & Uhrig(2004)] introducing the quantity

Q) = y/h2 — 48h2 (3.39)

which is conserved along the flow. Physically meaningful values are Q2 > 0. Both h; and
hs decrease during the flow until A vanishes in the limit of infinite /. Then the effective
Hamiltonian reads as

ho(o0) = i (Q —wy — wx) + € + €z, (3.40a)
hi(o0) = Q, (3.40D)
ha(oc) = 0. (3.40¢)

As can be seen in Fig. 3.2, targeting hy as well modified the result for g, but only slightly.

This deepCUT bears similarities to the sCUT approach. In sCUT, a set of basis op-
erators is selected by a truncation scheme and for this set the full DES is computed. It
comprises all commutation relations between the selected basis operators. In deepCUT,
the order of the expansion parameter takes over the role of the truncation scheme. But
we stress that the deepCUT is not self-similar: In sCUT all commutators between the

2 The ED data has been provided by Holger Krull [Krull et al.(2012)].
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selected monomials are considered. In epCUT and thus in deepCUT only the commu-
tators between specific subblocks based on the minimum orders O, are considered, see
Sect. 3.2.3. Moreover, targeting certain sub-spaces with ¢ quasi-particles and the concomi-
tant reduction of the DES does not only discard irrelevant monomials. Also contributions
linking relevant monomials are omitted if their effect is of too high order. Therefore,
the ‘truncation‘ taking place in (de)epCUT, controlled by the expansion parameter, is a
truncation of the DES rather than a truncation of operators as it is done in the sCUT
approach.

One practical advantage of the deepCUT over the sCUT is that only one parameter,
the maximum order of the expansion parameter, needs to be fixed in order to define the
approximation. In the sCUT, generically many parameters define the truncation scheme,
see Sect. 2.4, which leaves a degree of ambiguity about how to systematically improve the
approximation.

3.4 Transformation of observables

So far, we considered the transformation of the Hamiltonian only. In order to allow for
the calculation of static correlations or reponse functions, which are relevant for the inter-
pretation of scattering experiments, we have to transform the corresponding observables
into the same basis as the renormalized Hamiltonian using equation (2.6).

In the first part of this section, we extend the epCUT framework to derive the flow
equation system for observables. Then, we investigate the reduction of the DES for
observables and discuss its influence on the deepCUT evaluation scheme.

3.4.1 Algorithm for the observables

In this subsection, we derive the perturbative flow equation for observables and adapt the
epCUT algorithm described in Sect. 3.2.3. Our starting point is the numerical and the
algebraical flow equation for observables in second quantization (2.22). We expand the
observable in the expansion parameter x

O) =Y 0i(0)B; =" a™ ™ (0)B,. (3.41)

i i m=0

Then, the differential equations (2.22a) imply a hierarchical DES for the perturbative
coefficients of the observable

O™ (0 =" > DI AP O£ (). (3.42)
jk ptg=m

The contributions D%b,f to the DES of the observable are defined by the algebraic
part of the flow equation (2.22b). For each minimal order, the commutator based on
the representatives of lower orders is evaluated and new representatives are added to the
operator basis { B;}, cf. Fig. 3.3. Since the generator 7 is defined solely by the Hamiltonian,
it is not influenced by the outcome of the transformation of observables. For this reason
the evaluation of [n(m>0), O(O)] does not need to be carried out self-consistently. After the
calculation of the commutators [p®, Om=Y] . [pm=1 OW] only the block [n®, O]
has to be treated self-consistently. But recall that n® only occurs if the unperturbed
Hamiltonian H, is not (block-)diagonal. Because both differential equations (2.4) and

(2.6) are coupled by the generator, their integrations have to be done simultaneously.
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Figure 3.3: Sketch of the epCUT algorithm to calculate the DES for 9,0 iteratively. Due
to the commutators [77(1),0(3)],..., [77(4),0(0)], additional terms with O, ; = 4 emerge. In
contrast to the algorithm for the Hamiltonian, see Fig. 3.1, no self-consistent calculation is
needed for [77(4), O(O)]. Self-consistency is required only for [77(0), 0(4)] if n©) is finite.

3.4.2 Reduction of the differential equation system

For the transformation of the Hamiltonian, we extensively discussed that only certain
contributions really matter. In subsection 3.2.4, we introduced the concept of a maximum
order in which the coefficient of a physical process needs to be known in order to influence
the targeted quantities. We want to extend this concept of a maximum order also to the
transformation of observables. It turns out that this extension is rather subtle.

Before, in the flow of the Hamiltonian, the maximum order of a generator coefficient
OnH (A;) is the maximum order of the same representative OX, (A;) in the Hamiltonian.
Now, we also target certain blocks of the observable and they are influenced by the
representatives in the generator. Usually, we are interested in the 0:n blocks linking the
ground state to the excited states. This leads to maximum orders for both the observable
term OY, (A;) and the generator terms O%:9 (A;). The latter does not need to coincide

max max
with the maximum order O™ (4;) resulting from the consideration of the Hamiltonian

max
flow alone. Thus, one has to find a unique and unambiguous way to fix O  (A;). We
discuss three alternatives:

(A) The maximum order of the generator terms is chosen in such a way that the
targeted quantities in both the Hamiltonian and the observable(s) can be computed up
to the targeted order® n

o

max

(A;) = max(OX (A;), 0" (A))). (3.43)

max max

Then the iterative calculation of the O, ., must be realized within a single self-consistent
loop. The perturbative evaluation yields a perturbative series for the coefficients of the

3 One may also aim at order ny for the Hamiltonian and a different order no for the observable.
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observables under the transformation with the full generator up to order n. It may happen
that in this way some generator terms are assigned a higher O7. > O7I than in the
transformation of the Hamiltonian alone so that the DES of the Hamiltonian comprises
additional contributions. By construction, this does not affect the strictly perturbative
evaluation of the epCUT. But it will affect its direct evaluation (deepCUT) although it
should be absolutely minor in a parameter regime of good convergence of the flow.

(B) Alternatively, the determination of 0%, (B;) and 079 (A;) can be realized after

max

and strictly separated from the calculation of O (A;) and O, _(A;). Monomials which
are discarded due to the reduction of the Hamiltonian will not be considered for the DES
of the observables even though this may affect the targeted coefficients of the observable.
Hence the transformation of the observables in perturbative evaluation is not realized with
respect to the complete generator. We stress that this does not violate the unitarity of
the transformation up to the calculated order because the generator is still anti-Hermitian
and it is essentially the same as for the transformation of the Hamiltonian. No significant
deviations are expected in the regime of good convergence of the flow. Note also that any
generator whose coefficients differ only by orders larger than O (A;) leads to the same
perturbative series for the relevant quantities in the Hamiltonian.

(C) A third alternative consists in taking over the O71 (A;) for the reduction of the
DES for the observables. Then only the values O, (B;) are computed self-consistently.

For deepCUT, alternatives (B) and (C) ensure that the DES for the Hamiltonian is
independent of the considered observables. Generally, we expect that the precision in
the derivation of effective Hamiltonians is more important than the precision of matrix
elements. Also in experiment, energies are generically known to much higher accuracy
than matrix elements.

In order to keep the effective Hamiltonian in direct evaluation independent of the ob-
servables, we decide to use alternative (B) for deepCUT. For the perturbative evaluation,
however, we favor alternative (A) because it makes the rigorous determination of the

perturbation series of matrix elements possible.

3.5 Simplification rules for bosonic operators

The reduction of the DES discards a large number of monomials and of the contributions
D;ji, which is essential for an efficient evaluation and the application of the deepCUT
method. But, it would be even more advantageous if one avoided the calculation of the
omitted terms before they are tediously computed. While the minimum orders O, are
known at each step of the iterative setup of the DES so that they can be used on the fly,
the maximum orders O, . are not known during the set-up of the DES.

Fortunately, estimates help. An upper bound for the maximum order is enough to
discard irrelevant representatives before they are added to the operator basis, accelerat-
ing the setup of the relevant part of the DES. Concomitantly, the memory consumption
is reduced significantly. Henceforth, we call such estimates “simplification rules’. Be-
cause only irrelevant representatives are discarded, the DES after the reduction is not
altered; only the indices of the representatives may change. We emphasize that the
simplification rules constitute the part of the epCUT method which depends strongly on
the model, the structure of the perturbed and the unperturbed Hamiltonian and on the
targeted quantities.

We have to distinguish two distinct classes of simplification rules: The first type es-
timates the maximal order of the representatives in Eq. (2.19b) in the same way as a
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truncation scheme. Because these rules can only be applied after the commutator has
been evaluated, we refer to them as a posteriori rules. However, the computationally
most costly part in the calculation of the DES is the evaluation of commutators. For the
sake of efficiency, it is highly desirable to use also the second type, the a priori rules,
estimating whether a commutator has to be evaluated at all prior to its computation.

Because the a priori rules are necessarily less strict than their a posterior: analogues,
one should use the combination of both kinds in practice. The additional use of a priori
rules does not reduce the number of representatives or the memory consumption. But, it
boosts the speed of the calculation significantly because the vast majority of commutators
can be discarded, and the a priori rules help to avoid the laborious computation of these
unnecessary commutators. A quantitative comparison of different simplification rules is
presented in subsection Sect. 3.7.2.

In practice, every new simplification rule is carefully checked by comparing the results
of the program with more involving simplification rules to the results from the program
with their already tested, less strict counterpart. In this way, one can be sure that no
errors are introduced by incorrect assumptions.

In this section, we aim at a quantitative description up to order n of the blocks of the
effective Hamiltonian creating and annihilating at most ¢ quasi-particles. For instance,
q = 0 provides the correct perturbative expansion of the ground-state energy and ¢ = 1
allows us to calculate the dispersion relation up to order n. The simplification rules retain
both quasi-particle-conserving and quasi-particle number violating representatives in the
Hamiltonian. This is important if the generator does not decouple all particle-conserving
blocks of interest completely, and the remaining off-diagonalities are treated by other
methods such as ED, or when we are interested in observables. The optional restriction
to quasi-particle-conserving representatives only can be done in the reduction step and is
not part of the simplification rules.

We restrict ourselves to models with bosonic algebra, i.e., bosons

Blasbls] =0 [biarbis] =00 [biasbls] = s (3.44a)

on lattice sites ¢ and j with boson flavors o and (3, or hard-core bosons

Pt ] _ t ] _ ¢
wa@ﬁ}__a Puwgﬁ}_wx [QQJNJ__@¢QB<1—-§:QWQN>. (3.44b)
Y

Hard-core bosons behave similar to normal bosons on different lattice sites, but they have
the additional constraint that at most one of them can exist on the same lattice site,
ot o=t t..=0 (3.45)
B0, 3 i,a1,[3 . :
We require that Hj is diagonal, so that commutations with Hy do not change the struc-
ture of a monomial, and that the generator has leading order one. Consider a monomial
that is not targeted. It may be relevant if nested commutations with the Hamiltonian
or the generator can lead to a targeted monomial. This can only happen due to com-
mutations with off-diagonal parts that are at least of order one. Because we target only

representatives with few local operators, a complicated monomial requires many commu-
tations with simple off-diagonal monomials, or few commutations with complicated, i.e.,
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high-order monomials, in order to produce a targeted monomial. Since the targeted mono-
mials are relevant up to order n, the complexity of a monomial is linked to its maximal
order.

For a quantitative measure, we have to anticipate possible cancellation of local oper-
ators by commutations with first-order generator terms. This consideration is identical
for both bosons and hard-core bosons, because for both of them the full cancellation of
a creation and an annihilation operator yielding the identity is the best case towards a
simpler structure. In this section, we study two classes of simplification rules: The ba-
sic simplification rules exploit that the change in the number of quasi-particles due to
the monomials in 7™ is limited to a number AQP. The extended simplification rules
consider not only the number of quasi-particles involved, but also exploit the real-space
structure of the monomials in n*). For the combination with symmetries (cf. Sect. 2.5),
the simplification rule should not treat monomials belonging to the same representative
differently.

Strictly speaking, we have to take into account commutations with more complicated,
but higher-order monomials as well. However, for the simplification rules investigated
in this thesis, this is not necessary since a sequence of m commutations with n™ is at
least as efficient in canceling local operators as a single commutation with a monomial
contributing to H™. It is helpful to recall that any monomial in H™ in itself results from
(nested) commutations of lower-order monomials, and that any commutation amounts up
to a difference of two normal-ordered products.

The simplification rules can be applied to both the Hamiltonian and the observable, if
each of them meets the requirements of the simplification rule. In the latter case, on has
to make sure that both operator bases are compatible, i. e., the simplification rules applied
to the Hamiltonian transformation do not yield lower estimates for O, ,, than required
for the targeted quantities of the observable. For instance, if we aim at the 0:2 block of
the observable to determine two-quasi-particle response functions, the simplification rules
of the Hamiltonian transformation have to target the same block at least. Typically, we
are interested in the 2:2 block of the Hamiltonian in this situation anyway. Since the
simplification rules aim at all blocks with at most q creation and at most ¢ annihilation
operators, both calculations are compatible.

In the next subsection, we present the basic a posteriori simplification rule that dis-
cards monomials based on the number of created and annihilated quasi-particles after
the evaluation of the commutator. Taking also the real-space structure of the monomi-
als into account, we improve the simplification rule obtaining the extended a posterior:
simplification rule. Then, we switch to the basic a priori simplification rule, which is
applied to the arguments of the commutator before it is evaluated. At the end, we in-
vestigate the extended a priori simplification rule, which also considers the real-space
structure of the arguments of the commutator.

3.5.1 Basic a posterior: rule

For the basic a posteriori rule, we require that the first order generator part increases
or decreases the number of quasi-particles by at most AQP. A monomial creating c
quasi-particles and annihilating a quasi-particles is targeted if both ¢ < ¢ and a < ¢
hold. Its maximum order is the targeted order O, ,, = n. If it is not targeted, it can
influence the targeted monomials by affecting monomials consisting of fewer creation and
annihilation operators via the DES.
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In the commutation of a monomial with a generator term, some of the local creation
and annihilation operators may cancel due to normal ordering. In order to yield a mono-
mial affecting the first sub-spaces with ¢ quasi-particles

¢ = max(c — ¢,0) (3.46a)
local creation operators and
a' = max(a — ¢,0) (3.46b)

local annihilation operators have to cancel.

First, we consider commutations with lowest-order generator terms stemming from
the initial Hamiltonian. Because each commutation with (") increases the order of the
affected coefficients by one, the maximum order is bounded by

~ d a
e [ ] [ ] 20 o

where the tilde on the left side means that one is dealing with an upper bound and [y]
stands for the smallest integer that is still larger or equal to y. If in the calculation of
Oy H™ the estimate Opay of a monomial is lower than m, this contribution is irrelevant
and can be omitted. This reduces the size of both the DES and of the Hamiltonian to be
tracked. Moreover, discarding irrelevant monomials avoids the calculation of unnecessary
commutators in the following iterations of the algorithm.

Clearly, the number of created and annihilated quasi-particles can be reduced by a
number larger than AQP by commutations with generator terms involving more quasi-particles
which may have developed during the flow from the basic terms. However, the generator
terms involving more quasi-particles have a higher minimum order O, so that a single
commutation with them affects coefficients only in a higher order m+0O,;,. In fact, for the
models investigated in this thesis, the ratio between AQP and O, ;, for new terms devel-
oped during the flow can not exceed the corresponding ratio for generator terms present
in the initial Hamiltonian. Therefore, it is sufficient to consider only commutations with
the initial monomials in our simplification rules.

We emphasize that it is important for this simplification rule that the unperturbed
Hamiltonian Hj is block diagonal with respect to the number of quasi-particles. Other-
wise, Hy will lead to generator terms of order zero, which means that monomials with high
quasi-particle number can influence the coefficients of monomials with low quasi-particle
number in the same order.

Applying the simplification rule reduces the number of representatives considerably,
leading to a significant improvement of runtime and memory consumption. In section
3.7.2, we present performance data for the S=1/2 Heisenberg ladder.

This basic simplification rule can be improved further by taking more model-specific
information into account. In the next subsection, we describe the possibilities to exploit
the real-space structure of the monomials to lower the upper bound O,,.x.

3.5.2 Extended a posterior: rule

The upper bound 5max for the maximum order can be reduced by considering the real-
space structure of the monomial. For clarity, we restrict ourselves to one-dimensional
models. As discussed before, we concentrate on the effect of commutations with first-order
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Figure 3.4: Decomposition of the sites with creation operators (or the annihilation operators,
respectively) of a monomial into linked sub-clusters k; and its covering with first-order generator
terms. Each circle stands for a lattice site. Filled circles represent sites where the local action
of the monomial differs from identity. At most, two adjacent local operators can be canceled by
a single commutation with n); this is represented by ellipses.

terms present in the initial Hamiltonian. This is sufficient because any more complicated
monomials in the generator have been induced by commutations of a number of first-
order terms. Hence, their gain in number of involved quasi-particles is paid for by a
correspondingly higher order in x. Thus, one may safely restrict the consideration to the
basic building blocks present in the initial Hamiltonian.

We require that a commutation with the generator ") cancels at most AQP local
creation or annihilation operators on adjacent sites. Therefore, sparse and extended
monomials require more commutations in order to reduce their local operators compared
to monomials with the same numbers of operators which are more localized in real space.
We begin with the special case AQP = 2. At the end, we will discuss the modifications
for arbitrary AQP.

At first, we study the ground-state energy per site, i.e., the coefficient of the identity
operators summed over all lattice sites, in highest order. The clusters of the creation and
of the annihilation operators are treated separately. Both are decomposed into linked
sub-clusters of size k{ and k" (see Fig. 3.4). To cancel all local operators, each sub-cluster
needs to be covered by (%w first-order generator terms. In conclusion,

Ko=) Vﬂ (3.48)

i

commutations with 7" are needed for the clusters of creation or annihilation operators to
be reduced to the coefficient of the identity operator. This argument leads to the extended
upper bound for the maximum order

Omax =1 — K¢ — K. (3.49)

For a single linked cluster, this formula resembles the result obtained for the basic
simplification rule in Eq. (3.47).
The formula (3.49) can be generalized to

Ouax = n — K¢ — K¢ (3.50)

for the sub-space QP of states with ¢ quasi-particles leading to modified cluster sums K.
Let g be the number of the targeted sub-space with the highest number of quasi-particles.
This means that ¢ ist the maximum number of local creation and annihilation operators
allowed in a monomial targeted up to order n. Terms which affect more quasi-particles
have to be reduced to affecting at most ¢ quasi-particles by commutations with 1™ until at
most ¢ local creation and annihilation operators are left. To obtain an upper bound Oy,
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one has to choose ¢ positions for local operators to be kept in the cluster in such a way that
the other creation and/or annihilation operators can be canceled by a minimum number of
commutations. To this end, one also has to consider that the commutations with hopping
terms stemming from H) may also shift creation and/or annihilation operators so that
they form adjacent pairs which can be canceled by pair creation or annihilation. However,
it turns out that this mechanism can reduce the cluster sum K, at most by unity, while
the elimination of a pair of adjacent local operators always reduces the cluster sum by
unity. Hence, the latter process dominates and provides the correct upper bound Oy,.x.

For hopping terms, the above approach means to select sites at the edges of odd sub-
clusters first. This saves one commutation for each local operator kept. Let a be the
number of odd clusters. The cluster sum Kj is reduced in this way by

d; = min(«, q). (3.51)

If more local operators remain, i.e., a < ¢, the most efficient way to place them is in pairs
on even sub-clusters. This reduces the cluster sum additionally by

dy = Lq ;le , (3.52)

where |y| is the largest integer which is still smaller or equal to y.
In conclusion, the cluster sums are reduced if one is aiming at higher quasi-particle
sub-spaces according to

—d d
K=Ky —d; — V 1J = Ky — VJF 1J. (3.53a)

2 2

To avoid unreasonable negative results, this expression has to be checked against zero to
obtain the final result

K, = max(K,0). (3.53b)

Now, we consider a generalization of the extended simplification rule where the first
order in the generator creates or annihilates an arbitrary number AQP of quasi-particles
on adjacent lattice sites. For this, one has to consider multiple auxiliary variables «;
counting the number of sub-clusters with

ki =i mod AQP (3.54)

and the convention aaqp := 0o. Again, the ¢ local operators to be kept are distributed
preferentially along the sub-clusters with the lowest number of remaining operators. This
leads to the recursive relations

d; = min (ozi, {% (q - ijdj)J ) (3.55)

for the reduction of K due to the different types of sub-clusters. The generalized cluster
sum reads

AQP
K, = max (KO - d;, 0) (3.56a)

i=1
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with

Ko=) {AEPW . (3.56h)

7

In the last paragraph, we did not provide a rigorous definition of the term “adjacent”.
Usually, we use it if two lattice sites are nearest-neighbours. However, it can be suitable
in some models to define also next-nearest neighbours as “adjacent”, if the generator
contains such processes in first order. This implies that sub-clusters can be linked not
only due to nearest neighbour bonds, but also due to next-nearest neighbour bonds. For
these generalized concepts of adjacent sites and linked sub-clusters, the derivation of the
extended simplification rule holds. In this way, the extended simplification rule can be
applied to a larger class of Hamiltonians, where the first order generator terms do not act
between nearest neighbours.

For further refinements of O,.,, one may consider creation and annihilation oper-
ators of different types individually. Recently, a spin-sensitive version of the a pos-
teriori simplification rules has been implemented for the ionic Hubbard model [Hafez
et al.(2014a)].

3.5.3 Basic a prior: rule

As stated in Sect. 3.5, the performance of the epCUT algorithm can be enhanced signif-
icantly by avoiding the computation of unnecessary commutators. For this purpose, we
consider the two normal-ordered products T'D and DT in

[T,D] =TD — DT (3.57)

separately. Here we discuss T'D explicitly; DT is treated in the same way. For an analogue
of the basic simplification rule, see subsection 3.5.1, we estimate the minimum numbers
of creation and annihilation operators crp and arp which can appear in the monomials
of the normal-ordering of T'D. We use the numbers ¢y, cp,ar, and ap from each factor
as input. At most

srp = min(ar, ¢p) (3.58)
pairs of local operators can cancel in the process of normal-ordering. Hence it follows

CTD > cr+cCp — STtp (359&)
arp Z ar + ap — Stp. (359b)

Using these estimates in Eq. (3.47), one obtains an upper bound

e o (5500

N - ar +ap —Stp 0
AQP QJ

with ¢ being the number of the targeted quasi-particle sub-space. Considering also the in-
verse product DT, the commutator [T, D] does not need to be calculated while evaluating

Oy H™) if

(3.60)

m > max (6max’TD, 5maX7DT) (3.61)
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holds.
As an example, we consider the commutator of the monomials
T =t (3.62a)
D =t} ot} 1t ot 1 (3.62b)

and O_; (T) = O,,;,(D) = 1. They are composed of local hard-core operators tg)z with a

local degree of freedom « and site index i. The numbers of local creation and annihilation
operators are given by

min

cr =2 ar =0 (3.63a)
cp =2 ap = 2. (3.63b)

In the normal-ordering of T'D, no local operator can cancel (srp = 0) implying crp = 4
and arp = 2. For the product DT, spr = 2 pairs of local operators may cancel implying
crp > 2 and arp > 0. Aiming at the ground-state energy (¢ = 0) in second order (n = 2)
we obtain

Omaxrp =n— [2] = [1] = —1 (3.64a)

Omax,DT =n — |_1-| — |_O-| == —f-l (364b)

from Eq. (3.60). Since the commutator [T, D] yields monomials with a maximum order
of at most 1 in the calculation of 9,H?, it can not yield relevant contributions. Hence it
does not need to be evaluated at all.

But in a calculation of order n > 2 or aiming at a higher quasi-particle sub-space ¢ > 0,
Eq. (3.60) yields higher upper bounds for the maximum order and thus the commutator
must be evaluated explicitly. Note that this basic a prior:i rule is only sensitive to changes
of the quasi-particle numbers. It can not anticipate that the commutator in this example
actually vanishes due to the hard-core algebra (see Eq. (3.44b)).

3.5.4 Extended a prior: rule

The real-space structure of the commutator arguments 7" and D allows us to extend the
above a priori rule in analogy to the extended a posterior: rule in subsection 3.5.2. Let Cr
and Cp be the clusters of the creation operators in 7" and in D, respectively. Analogously,
Ar, Ap are the clusters of their respective annihilation operators. Normal-ordering the
product T'D can cancel local operators only on the intersection

STD = AT N CD. (365)
Due to the locality of the algebra, the commutator vanishes if none of the clusters overlap
Stp =0 N Spr = 0. (3.66)

Thus the normal-ordered product T'D definitely has local creation operators on the union
cluster

CTD 2 OT U (CD \ STD) (367&)
and local annihilation operators on the union cluster

Arp 2 Ap U (Ar \ Srp). (3.67b)
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There may be additional creation or annihilation operators, but no general statements
can be made on their existence. In this sense, the right-hand sides of Egs. (3.67a) and
(3.67b) are minimum clusters for the normal-ordered product 7'D. They can be used in
Eq. (3.50) to obtain an upper bound for the maximum order 5max,TD and the correspond-
ing reasoning is used to obtain 5max, pr. This makes it possible to avoid the computation
of the commutator [T, D].

For hard-core bosons, one can use the intersections Srp and Spr additionally to
exclude further commutators: The normal-ordered product T'D will vanish if C'r and
Cp \ Srp are not disjoint or likewise if Ap and Ay \ Srp are not disjoint because the
creation or annihilation of two quasi-particles is attempted on the same site.

Although it is less strict, the basic a priori rule has the advantage to be much more
lightweight in comparison to the extended a prior: rule because it requires mere counting
of operators. Furthermore, it can be used very efficiently in the context of translation
symmetry. Because it does not rely on the real-space structure of a term, it can be applied
to all terms in the translation group in contrast to the extended rule. Therefore, for best
performance, it turns out to be most efficient to combine both rules in practice.

3.6 Minimal order and symmetries

Compared to the minimal order, the maximal order appears to be more cumbersome,
because the maximal order requires the knowledge of the full DES before it can be deter-
mined. Nevertheless, it is possible to define upper bounds for the maximal order during
the generation of the DES, which has been investigated in the previous section.

In contrast, the minimal order of a representative is trivially given by the order of
calculation when it appears for the first time. Yet, this does not need to match its leading
order in the sense of perturbation theory, which may be larger. The reason for this
subtlety is that the contributions to the derivative can cancel in the numerical integration
due to hidden symmetries of the Hamiltonian. This can happen for symmetries that are
not exploited by the choice of representatives with respect to the symmetry group, but
manifest as fixed ratios between prefactors of different representatives. In this way, a
calculation without exploiting symmetries can make some representatives appear in lower
orders than with exploiting symmetries and, consequently, can result in the calculation
of additional contributions to the DES. This ambiguity is another reason, apart from the
computational benefits, why it is desirable to exploit as much symmetries as possible.

Apart from the symmetries on the level of coefficients, the DES of the Hamiltonian
itself gives us the freedom to swap the generator and operator index of any contribution
without changing the flow equations. In this way, the contributions D,j; and D;;; can be
absorbed into a single contribution, possibly canceling each other. A prominent example
is the cancellation of contributions violating the block-band structure of the Hamiltonian
when using the particle-conserving generator scheme [Knetter & Uhrig(2000)]. Again,
ignoring these cancellations can lead to lower minimal orders for some coefficients, which
influences the reduction of the DES.

For the perturbative evaluation, the superfluous contributions are no issue since they
do not affect the perturbative coefficients. For the deepCUT method, however, any change
in the DES influences all coefficients of the effective Hamiltonian in an intricate way. Due
to this mechanism, deepCUT calculations with and without exploiting symmetries can
lead to slightly different effective Hamiltonians, although the effect is negligible in practical
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applications.

To eliminate this issue completely, the minimal order of a representative can be cor-
rected after the perturbative evaluation if it turns out that the coefficient in minimal order
is exactly zero. However, in numerical calculations floating point numbers as coefficients
will never cancel exactly. An alternative is the analytical solution of the perturbative
DES, which is not limited in accuracy. Indeed, if H is diagonal, the perturbative DES
resembles the structure of the DES in pCUT, which has polynomials in the flow parameter
multiplied by exponential factors, see Eq. (3.6).

So far, we discussed the influence of symmetries on the minimal order. Likewise,
the concepts of minimal and maximal order can violate symmetries of the Hamiltonian
that can not be exploited straightforwardly on the level of representatives. An example
of this issue is the full SU(2) spin symmetry, that can not be covered completely by a
representation based on local triplon operators, cf. page 114. In this situation, the same
monomial can appear in multiple symmetric combinations, potentially in different orders.
Conversely, the monomials in a symmetric combination can have significantly different
structures and different minimal and maximal orders. As a result the DES breaks the
symmetry of the initial Hamiltonian. For the S=!/2 Heisenberg ladder, we found that
the matrix elements of the effective Hamiltonian that violated the total spin conservation
where only marginal and could be neglected.

3.7 Technical aspects

In this section, we focus on the technical aspects of the epCUT /deepCUT methods. In
particular, we show how the library for the sSCUT method presented in Sect. 2.6 can be
extended to epCUT so that most source code can be shared and all models implemented
so far can be tackled with both methods. This implementation supports shared memory
parallelism as well, so that the runtime can be reduced by a factor given by approximately
the number of cores available. Then, we discuss the computational performance and
the efficiency of the simplification rules. We finish with a discussion of the different
computational demands of sCUT and epCUT.

3.7.1 Implementation

The application of the epCUT method consists of four major computational tasks: The
algebraic part, i.e., the construction of the basis operators and the DES, the reduction of
the DES, the numerical integration of Eq. (3.12) to determine the perturbative coefficients
and finally the analysis of the effective Hamiltonian.

Since sCUT and epCUT work on the level of monomials in second quantization, the
algebraic part of epCUT shares large parts of its code basis with the sCUT implementation
discussed in Sect. 2.6. However, the epCUT method requires new data structures to cover
the concept of minimal orders and the simplification rules, as well as new algorithms to
generate the DES for Hamiltonian and observables. My contribution to this project is the
major subject of this subsection.

The reduction of the DES as it is discussed in Sect. 3.2.4 and the numerical in-
tegration of the perturbative flow equation (3.12) have been implemented by Holger
Krull [Krull(2011)].

In this thesis, we do not consider the perturbative evaluation, but apply the deepCUT
method in chapters 4 and 5. Here, the workflow comprises the same algebraic part and the
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read Hamiltonian in input algebra
transform Hamiltonian to output algebra
apply symmetries
define generator scheme
define simplification rules
adjust simplification rules to minimal order 0
WHILE new representatives in H©):
run loop for all old generator representatives in H(®,
all new observable representatives in H(©)
run loop for all new generator representatives in H©),
all observable representatives in H(©
END WHILE
FOR m in (1,...,n):
adjust simplification rules to minimal order m
run loop for all generator representatives in 7t
all observable representatives in H ()
END FOR
WHILE new representatives in H(m#0):
run loop for all generator representatives in 1),

all observable representatives in H©)
END WHILE
END FOR

output Hamiltonian and DES

FOR each block in ([n®, H™=D] . [pm=b HD]):

all new observable representatives in H (™)
run loop for all new generator representatives in 1™,

Figure 3.5: Pseudocode for the program steps to calculate the DES of the Hamiltonian up to
order n without parallelization. Green commands are only needed if symmetries are exploited;

the blue color highlights the major differences to the sCUT code, cf. Fig. 2.4.
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read observable in input algebra
transform observable to output algebra
apply symmetries
define generator scheme
define simplification rules
read Hamiltonian in output algebra
FOR m in (0,1,...,n):
adjust simplification rules to minimal order m
FOR each block in ([nM,0™=D] . [ntm OO]):
run loop for all generator representatives in 7t
all observable representatives in H ()
END FOR
WHILE new representatives in O
run loop for all generator representatives in 1(®,
all new observable representatives in O™
END WHILE
END FOR
output observable and DES

Figure 3.6: Pseudocode for the program steps to calculate the DES of an observable up to
order n without parallelization. Green commands are only needed if symmetries are exploited;
the blue color highlights the major differences to the sCUT code, cf. Fig. 2.5.

reduction of the DES. Instead of the integration program for the perturbative coefficients
{ fi(m) (0)}, however, we use the same integration program as for sCUT to determine the
coefficients {h;(¢)} of the effective Hamiltonian non-perturbatively. In the same way, the
analysis tools of the sCUT method can be used directly.

For the analytical part, we add the following data types to the implementation already
explained in Sect. 2.6:

Hamiltonian expansion: The cut::hamiltonian expansion data type is an exten-
sion of the cut::hamiltonian data type used to store the operator basis {A4;}. The
extension allows it to sort the representatives by their minimal order, so that each part
H™) O can be linked to a range of indices, that is stored by the cut::hamilton-
ian_expansion.

A-posteriort simplification rule: As they discard all monomials with 6max(Ai) <
Opnin(A;) resulting from the commutator, the a posteriori simplification rules work in the
same way as a truncation scheme, so the same abstract type can be used for both of them.
But in contrast to the truncation schemes discussed for sCUT, they require the knowledge
of the minimal order terms produced, which has to be updated by the algorithms that
generate the DES.

A-priori simplification rule: In contrast to the a posteriori simplification rules, the
a priori simplification rules have to be implemented as binary predicates that act on both
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arguments of the commutator. For reasons of performance, it is useful to implement a
second member function evaluates the simplification rule as far as possible before the
translation group is applied. This is trivial for the basic simplification rule, but not
possible for the extended simplification rule which is sensitive to relative displacements
of the monomials. As a replacement, we use the basic simplification rule to provide this
auxiliary function for the implementation of the extended simplification rule. In this way,
it is possible to cancel some commutations even before the translation group operation is
applied.

The algorithms to generate the epCUT DES as described in Sects. 3.2 and 3.4 require
a sequential calculation of the commutators for all minimal orders. In the following, we
discuss the differences to the sCUT algorithms:

Loop function: The task to calculate the commutators between ranges of representa-
tives does not change from sCUT to epCUT. As can be seen in Fig. 2.6, only the function
calls for the a priori simplification rule have to be added before and after the translation
group operation is applied. Using a trivial a priori rule for sCUT, the same loop function
can be used as elementary building block for both methods.

Transformation of Hamiltonian: The simplified program flow for the transformation
of the Hamiltonian is illustrated in Fig. 3.5; a graphical representation is given in Fig. 3.1.
After the symmetrization of the Hamiltonian and the definition of the generator scheme
and the simplification rules, the contributions in order zero are calculated in a self-similar
loop with respect to both n(®) and H®). This part is analogous to the sCUT calculation.
Higher orders m are calculated one after another. For each minimal order, the inner
commutator blocks [p®, HM=D] . [pm=D HW] are evaluated first. Since the newly
generated representatives for 9, do not appear as arguments of the commutator, no
self-consistent iteration is needed. Then, the blocks [7](0), H (m)] and [n(m), H (0)] have to
be calculated in a common, self-similar iteration. New representatives are added to the
Hamiltonian with the minimal order in which they arise. This means that representatives
of the initial Hamiltonian with higher minimal order have to be shifted towards higher
index values in order to keep the representatives sorted with respect to O,;,..

Transformation of observable: The simplified program flow for the transformation
of the observables is illustrated in Fig. 3.6; a graphical representation is given in Fig. 3.3.
After the initialization, the orders m are calculated sequentially. This happens to be
less complex than for the Hamiltonian since no self-consistent iteration is needed for
[n(o),H(m)]. For each minimal order, the [77(1), O(mfl)] ey [n(m), (’)(0)} are calculated
first. Then, the commutator [77(0), (’)(m)] is calculated self-consistently. Again, the calcu-
lation of the block [17(0), H (0)] can be seen as analogon to the sCUT calculation.

In subsection 2.6.3, we sketched how shared memory parallelism is used to reduce the
total runtime of the sCUT calculation. We implemented a similar approach based on the
OpenMPinterface [OpenMP(2005)] for the epCUT method as well as an alternative to
the serial transformation algorithms described before. Because each block [n(“'), H ('")],
[77("'), O("')} can vary strongly in the number of commutators to be calculated, we paral-
lelize the computation of each block separately. Nevertheless, the number of commutations
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Figure 3.7: Performance data for the S=1/2 symmetric Heisenberg ladder [Krull et al.(2012)].
Left panel: Number of representatives in the effective Hamiltonian versus the order of the calcu-
lation for various optimizations aiming at the ground-state energy using 7y and exploiting self-
adjointness, reflection and spin symmetries. Highest to lowest curve: Full Hamiltonian (black),
basic simplification rule (red), extended rule (blue), full reduction of the DES (gray) based on
the exact O,,,,. Right panel: Runtime time for the construction of the DES versus the order
calculation with more and more optimizations using 7., and all symmetries. Highest to low-
est curve: Full Hamiltonian without simplification (black), basic a posteriori simplification rule
(red), extended a posteriori rule (green), additional use of the basic a priori rule (blue), addi-
tional use of the extended a priori rule (dark yellow). The computations were performed on an
Intel Xeon CPU (E5345, 2.33 GHz, single thread).

in each block is still large enough to allow for a homogenous work load distribution. In
this manner, the total runtime of a calculation could be reduced by a factor given close
to the number of cores availible (8 for the clusters cll and PhiDo, 16 for cl2).

3.7.2 Performance

In this subsection, we give an overview over the computational performance of the al-
gebraic part of the epCUT method. As a reference calculation, we consider the S=1/2
symmetric Heisenberg ladder by epCUT using triplon operators (cf. Sect. 5). For the
details of the calculation, we refer to Ref. [Krull et al.(2012)].

With increasing order, the number of representatives in the effective Hamiltonian, the
runtime and the memory consumption rise exponentially, see Fig. 3.7. At the same time,

generator order +# representatives runtime RAM
scheme [dd:hh:mm]  [GB]
0:n 17 51,731,694 2:17:14 8.1
1mn 15 107,513,297 13:09:12  17.3
2:n 13 51,371,642 11:09:47 8.0

Table 3.3: Number of representatives in the operator basis, total runtime and memory con-
sumption for the S=1/2 symmetric Heisenberg ladder [Krull et al.(2012)] using various gener-
ator schemes in the highest order calculated. The computations were performed on an Intel
Xeon CPU (Eb5345, 2.33 GHz, single thread) exploiting extended a priori and a posteriori
simplification rules and hermiticity, reflection and spin symmetries.
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the fraction of representatives that are actually relevant for the ground state energy de-
creases dramatically. However, we are interested in increasing the order of the calculation
as high as possible because this generically enhances the accuracy of the calculation: More
and more orders kept imply that more and more physical processes with an increasing
spatial range are taken into account. This dilemma can be overcome to a large extent
by the use of the simplification rules derived in Sect. 3.5. Due to the basic a posteri-
ori simplification rule, the number of representatives kept for the same order decreases
tremendously, which reduces the runtime by approximately two orders of magnitudes.
This advantage increases slightly when the extended a posteriori rule is exploited. The
additional use of the basic a priori simplification rule does not decrease the number of
representatives, but reduces the overhead due to the calculation of irrelevant commuta-
tors and reduces the runtime by more than one order of magnitude. The additional use
of the extended a priori simplification rule decreases the runtime further by about one
order of magnitude. For small orders, the number of representatives using the a pos-
tertori simplification rule is close to the number after the reduction, but the difference
grows for larger orders to more than a factor of ten. This suggests that more sophisticated
simplification rules may be found that push the maximal order of calculation even further.

From the computational point of view, both sCUT and deepCUT are very similar
in the sense that they produce an operator basis and a DES for a given model, whose
reliability depends on the invested computational effort. While the sCUT method evalu-
ates the commutators for any pair of representatives, leading to a dense DES with many
contributions per representative, the epCUT algorithm evaluates the commutator only for
pairs of representatives with the appropriate minimal orders, and contributions that do
not affect the targeted quantities are discarded. For this reason, the DES of deepCUT is
sparse with comparably few contributions per representative. This has a direct influence
on the trade-off between different computational resources.

In both cases, the size of the DES after the reduction is roughly proportional to the
runtime and it is limited by the RAM available in the integration program. During
the algebraic calculation, the DES can be stored entirely on mass storage media, so
that only the Hamiltonian (before the reduction) has to be stored in the RAM. For
the sCUT method, the Hamiltonian is significantly smaller than the DES (about one
order of magnitude or more, as a rule of thumb), so that the RAM consumption is low
and runtime is the limiting factor for computing hardware available. In the deepCUT
method, in contrast, the Hamiltonian is not much smaller than the sparse DES (roughly
a factor of three). As a result, the memory consumption of the Hamiltonian becomes
the limiting factor for the deepCUT method with respect to the computing hardware
availible in this thesis. In Tab. 3.3, we provide quantitative performance data for the
highest orders calculated without parallelization. Because it stores multiple temporary
copies of basis operators, the “split & merge” strategy explained in subsection 2.6.3 seems
to be inappropriate for the parallelization of the epCUT algorithm. Instead, we prefer
the “locking” strategy, which is optimized for low RAM consumption.

Since the analytical part is identical for these methods, the computational character-
istics of the deepCUT method also hold for the epCUT method. A difference exists only
for the integration parts. Because the epCUT method has to store up to n perturbative
coefficients for each basis operator, the memory consumption in the integration part is
larger than for deepCUT.
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In this section, we have shown how the sCUT library can be extended to handle the
epCUT method as well. We stress that the algorithms differ only on the most abstract
level, while all core routines are shared. In particular, all model-specific classes imple-
mented for sCUT can be treated by epCUT and vice versa. The computational effort
increases exponentially with rising order of the calculation. It can be reduced drastically
by the application of simplification rules, so that high orders can be reached. For a further
gain in performance, we adapted the parallelization techniques developed for sCUT.

3.8 Conclusions

In this chapter, we presented two novel and very flexible methods based on CUTs: en-
hanced perturbative CUT (epCUT) and directly evaluated epCUT (deepCUT). They
have been developed in collaboration with Holger Krull and Go6tz S. Uhrig [Krull et al.(2012)].
Both methods are illustrated by an exemplary calculation for the harmonic oscillator with
quartic perturbation.

The epCUT method is designed to obtain a perturbative expansion of the effective
Hamiltonian and observables beyond the limitations of pCUT. Like sCUT, it is split into
the generation of the DES and its numerical integration. Due to its formulation based on
normal-ordered operators in second quantization, the generic algorithm to determine the
flow equation system does not require the unperturbed Hamiltonian to have any particular
shape. In particular, no equidistant spectrum is required. The same large variety of
generators as for sCUT can be used in the epCUT method. Moreover, symmetries of
Hamiltonian and observables such as lattice symmetries can be exploited on the operator
level. Due to the interplay with the minimal order of representatives, it is recommended
to exploit as much symmetries as possible.

If only parts of the effective Hamiltonian are targeted, the DES can be reduced signif-
icantly. This increases the performance of the integration of the flow equation system and
is essential if the deepCUT method is to be applied. Depending on the unperturbed and
perturbed part of the Hamiltonian, the optional definition of simplification rules allows
us to avoid the calculation of irrelevant commutators, greatly reducing runtime and mem-
ory consumption. We distinguish between a priori and a posteriori simplification rules
depending on whether they are applied before or after the commutator is evaluated. We
emphasize that these simplification rules are the only model-dependent part of the meth-
ods. Here, we presented simplification rules for boson and hard-core boson operators
that take into account the change in the number of quasi-particles and, optionally, the
real-space structure of the associated terms.

The deepCUT method allows us to evaluate the epCUT DES non-perturbatively. It
can be seen as a renormalization technique, leading to a highly robust extrapolation of
the solution to the perturbative flow equation system. Similar to sCUT, the integration
has to done for each set of parameters anew. The order of calculation fulfills a similar
role as the complicated truncation schemes in sCUT, but it is less ambiguous and the
results are robust even for large off-diagonalities. Mathematically, the deepCUT realizes
a truncation of the DES in contrast to the truncation of the operator basis used in sCUT.

Due to its similarities, we were able to extend the core algorithms and data structures
of the SCUT method to implement also the epCUT/deepCUT method. As a result, the
full model library is accessible for both methods. Like the sCUT implementation, the
epCUT algorithms use shared memory parallelism efficiently to speedup the calculations
on multicore systems.
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3.9 Applications

Clearly, applications of epCUT and deepCUT to physical systems are called for. At first,
we recall the introductory article [Krull et al.(2012)] and the diploma thesis of Holger
Krull [Krull(2011)], where a detailed investigation of the S=!/2 Heisenberg ladder with
and without alternating rung coupling strength using epCUT and deepCUT is provided.
The case for the alternating coupling strength is especially interesting since it renders the
unperturbed spectrum non-equidistant, so that the perturbative evaluation is beyond the
limitations of pCUT, but well possible with epCUT. In these references, also a comparison
of ground state energy and gap with density matrix renormalization group (DMRG)
results is presented.

In this thesis, we study two other models using deepCUT": In chapter 4, we investigate
a system of two coupled harmonic oscillators with the usual particle-sorting generators
and use it as a testing ground for the variational generators. In chapter 6, we analyze the
S=1 Heisenberg chain after a mapping to a S=1/2 system. As in other CUT approaches, we
can use deepCUT to derive an effective model and solve it using complementary methods.
In this case, we apply an exact diagonalization in a finite subspace in order to evaluate
multi-quasi-particle properties.

We are pleased to mention that the benefits of the method already stimulated the
application of deepCUT to two other models that we address in the following. For both of
them, the technical implementation presented in this chapter has been used and extended
by model-specific classes:

For the transverse field Ising model, Fauseweh and Uhrig found a representation in
terms of string operators that allowed them to calculate the DES of the Hamiltonian in
infinite order [Fauseweh(2012), Fauseweh & Uhrig(2013)]. Using the transformation of
observables, they were able to determine the contributions to the dynamical structure
factor for up to three quasi-particles.

Recently, we applied the deepCUT method to the one-dimensional Hubbard model
with additional alternating potential §, known as ionic Hubbard model [Nagaosa & Taki-
moto(1986)]. Depending from the interplay between § and Hubbard repulsion U, the
system is in a band insulator, spontaneously dimerized insulator or Mott insulator phase.
Starting from the band insulator limit [Hafez et al.(2014a), Hafez(2014)], we calculated
the one- and two-quasi-particle excitation spectrum in the band insulator phase. By a
combination of deepCUT and self-consistent mean-field theory, we were able to describe
the transition to the spontaneously dimerized insulator phase as condensation of excitons.
In a second work [Hafez et al.(2014b), Hafez(2014)], we chose the limit of isolated dimers
as starting point for the deepCUT calculation. This ansatz allowed us to calculate the
low-energy excitation spectrum in all three phases. In contrast to the calculation based on
the band insulator limit, the translation symmetry has been broken explicitly in this rep-
resentation. In the band insulator phase, both representations lead to similar ground state
energies and the same excitations could be identified. Only the dimer limit calculation
detects the lower ground state energy due to the spontaneous breaking of the translation
symmetry in the spontaneously dimerized insulator phase. In the Mott insulator phase,
we were able integrate out the high-energy fermion and singlon degrees of freedom by a
first deepCUT, leading to a purely magnetic effective Hamiltonian. Then the magnetic
degrees of freedom of the effective Hamiltonian were analyzed by a second deepCU'T step
and an ED in a finite subspace of at most three triplons.
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3.10 Outlook

So far, we focused on one-dimensional models only, where DMRG [White(1993), Scholl-
wock(2005)] is the method of choice for ground state properties in terms of accuracy. For
higher dimensions, however, the application of DMRG is very tedious and other methods
are called for. An important feature of the (de)epCUT methods is that its formulation in
second quantization is completely independent of the dimension of the model. Only the
implementations of lattice and simplification rules have to be provided, and the number
of representatives increases. So we expect that the application of (de)epCUT in higher
dimensions is promising in further studies.

In Sect. 3.6, we sketched how the integration of the flow equations can be carried out
analytically. This has two benefits: First, the leading order of each representative can
be determined unambiguously, even if symmetries are exploited incompletely. Second,
the effective Hamiltonian can be calculated as an analytical function—mnot only of the
perturbative parameter, but also of other parameters that are encoded in the initial
conditions. For the inhomogeneous S=!/2 Heisenberg ladder, for instance, this means
that the dispersion is determined as analytic function of both the ladder coupling and
the alternating rung coupling strength. Only one analytical integration is necessary to
explore the whole parameter space where the transformation converges, not one numerical
integration for each value of the alternating rung coupling strength. We think that this is
interesting especially for the determination of second order phase transitions for models
with small perturbation, but a complicated interplay between multiple on-site interactions.

For the epCUT algorithm itself, we can think of extensions that allow us to handle
perturbations with two independent expansion parameters or that implement generator
schemes that are bilinear in the coefficients of the Hamiltonian such as Wegner’s generator
[Wegner(1994)].

The deepCUT evaluation bears some similarities with the graph-theory based CUT
(gCUT) method: In both renormalization schemes, long-range processes are truncated
due to their high order or directly due to their range in real-space, while local processes
are captured in infinite order. However, both methods are complementary in the way
how they decompose and truncate the flow equation: The deepCUT decomposes the
Hamiltonian into monomials in second quantization, leading to a coupled DES for its
coefficients. The full translation invariance is kept in this formulation. In contrast, gCUT
decomposes the action of the full Hamiltonian into its action on different clusters. On
each cluster, the flow equation can be solved on the matrix level independently, while the
conservation of momentum is violated on finite clusters. So a detailed comparison between
both methods that reveals the different characteristics of both methods is in order.
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One of the major features of the continuous unitary transformation (CUT) method
is to provide a uniform framework to decouple different degrees of freedom and to derive
effective models systematically. In this mapping, the choice of an appropriate generator
scheme is of crucial importance for the global structure of the flow. It serves two major

objectives:

First, we consider the manifold of coefficients of the Hamiltonian expressed in second
quantization. The choice of the generator scheme defines a sub-manifold of fixed points
of the flow wherever the generator vanishes. If the flow reaches one of them! in the

1 Tt may happen that the flow has additional fixed points where the generator does not vanish, but
commutes with the Hamiltonian.
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limit ¢ — oo, this puts a constraint on the structure of the effective Hamiltonian. For
instance, a converged flow under the particle conserving generator means that the effective
Hamiltonian includes no processes linking sub-spaces of different quasi-particle number
any more. This property can be exploited by including specifically those processes in the
generator which shall vanish in the effective Hamiltonian.

Second, the choice of prefactors of the generator terms decides about path and di-
rection of the flow lines. This defines which parts of the sub-manifold of fixed points
are attractive and which parts are repulsive. The particle-conserving generator, for in-
stance, converges exponentially when the linked particle-sub-blocks are sorted ascending
by energy [Mielke(1998), Heidbrink & Uhrig(2002), Fischer et al.(2010)]. Even a small
change in the initial Hamiltonian may cause the flow to run to a different fixed point,
because the flow equation is non-linear. As a result, the effective Hamiltonian may depend
discontinuously on the initial parameters.

The use of the particle-conserving generator scheme for decoupling different degrees
of freedom is straight-forward when the spectrum is composed of well-separated bands,
which can be identified with sub-spaces of different numbers of quasi-particles. When the
bands overlap, the identification is more complex. In an exact calculation, the particle-
sorting generators will map the low-lying parts to the low-quasi-particle sub-spaces (states
with few quasi-particles) if the spectrum is bounded from below and the correspond-
ing states are linked by matrix elements [Mielke(1998), Heidbrink & Uhrig(2002), Fischer
et al.(2010)]. But in a truncated calculation [Duffe(2010), Duffe & Uhrig(2011)], the ef-
fective Hamiltonian can show a finite overlap, or the calculation can diverge.

When decoupling is the primary target, the divergence caused by overlap is the main
limitation for the application of the generator. Different countermeasures have been used:

Truncation: Often, the processes connecting overlapping bands are not present in the
initial Hamiltonian and appear only after several commutations. Choosing a strict trunca-
tion scheme in sCUT or a low order for directly evaluated epCUT (deepCUT) may prevent
divergence, though it can put severe limitations on the accuracy of the calculation in terms
of unitarity.

Restriction of generator blocks: If the overlap happens only for states of high
quasi-particle number, the blocks linking these sub-spaces can be excluded from the
generator scheme [Fischer et al.(2010), Fischer(2012a)]. In contrast to truncation, this
procedure does not influence the accuracy of the calculation, but only lower quasi-particle
sub-spaces will be decoupled. If also the higher quasi-particle sub-spaces are in the focus,
the subsequent evaluation has to take into account the whole Fock space. For instance,
the effective Hamiltonian can be treated by exact diagonalization (ED) in a finite sub-
space [Fischer et al.(2010), Fischer(2012a)] or by diagrammatic techniques.

Restriction within generator blocks: If the problematic block of the Hamiltonian
itself has to be decoupled, it is still possible to exclude only certain parts of it from the
generator [Duffe(2010),Duffe & Uhrig(2011)]. Again, the overlapping states are often con-
nected by the more complicated processes, i. e.long-range operators for sSCUT or operators
with large minimal order for deepCUT. At least, this procedure can limit the residual
couplings between the blocks, which have to be ignored in an approximative approach or
handled by other methods.
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Wegner’s generator: Another possibility would be to drop the particle-conserving gen-
erator completely and switch back to Wegner’s original generator scheme [Wegner(1994)].
Even in a truncated calculation, it reduces the Frobenius norm of off-diagonal terms most
quickly [Moussa(2010)]. However, this comes at the price that no particular ordering of
the Hilbert space is enforced. This impedes the interpretation of the low-energy spectrum
in terms of quasi-particles in the effective model. Furthermore, this generator bears its
own perils; for instance, it is unable to decouple states that are degenerate in energy.

Usually, the restriction of the generator is more advantageous than a truncation, because
it does not imply a loss of accuracy of the transformation. However, it leaves residual
couplings in the effective Hamiltonian which require an approximative treatment in the
following evaluation. For a strong overlap, the necessary restrictions of the generator
can lead to residual couplings which are strong enough to make a further evaluation
infeasible. With the spin S=1 Heisenberg chain, we will address a physical model with
these difficulties in chapter 6.

The aim of this chapter is to develop a modification of the existing particle-based
generator schemes, which allows us to decouple all quasi-particle blocks of interest to
a large extent, but to skip sorting of the eigenvalues specifically where it would spoil
convergence. In particular, it shall be applicable for models which favour an interpre-
tation by quasi-particles with strongly overlapping quasi-particle sub-spaces. We label
these schemes “variational generator schemes”, whereas we use term “particle-sorting”
for addressing the conventional generator schemes 7);.,,, 2., flpe €xclusively. Both types of
schemes will be summerized under the term “particle-based”.

This chapter is organized as follows: At first, we define a toy-model with adjustable
quasi-particle overlap. We investigate the limitations of the conventional particle-sorting
generators. After this, we mathematically deduce a family of variational generator schemes
and discuss their numerical characteristics. Next, we discuss the qualitative features of
the effective models for the new generators and benchmark their accuracy quantitatively.

4.1 Two boson model

As a testing ground for the variational generator, we choose a Hamiltonian
H(u,T') = JHo(p) + TJHy = JHo(p) + I'J (Haecay + Hbound) (4.1)

with a diagonal part Hy with 7,.[H] = 0 and a perturbation H; consisting of the parts
Hecay + Hpouna With a control parameter I'. The parameter J defines the energy scale of
the system. Without loss of generality, we set J = 1 in the following. The parameter p
in Hy is used to control the overlap of adjacent quasi-particle bands. The perturbation is
necessary to push the flow out of the fixed point for H = JH, and may be very small.

Our simple model for overlapping quasi-particle sub-spaces is given by two harmonic
oscillators

Hy=(1—p)a'a+ (1+p)b'd (4.2)
with occupation numbers n, and n;, with respect to the counting operators

N, = a'a, (4.3a)
N, = b'b. (4.3b)
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Figure 4.1: Spectrum of the unperturbed two boson model depending on the detuning param-
eter p. The colors are used to identify sub-spaces of the same quasi-particle number. Left panel:
Naive determination of the quasi-particle number by the counting operator N. Right panel:
Determination of the quasi-particle number by sorting the Fock space with respect to energy.

We interpret the oscillator quanta as quasi-particles. For the total particle number n =
ne + Ny, the sub-space consists of n + 1 discrete states. In analogy to infinite systems,
we denote the difference between the highest and lowest eigenstate with n quasi-particles
as bandwidth D,, = 2|u|n. It increases linearly with rising p. At u = 0, all states in the
n-quasi-particle sub-space are degenerate. In the following, we will consider only pu > 0,
since a sign change of p corresponds only to a swap of a and b operators. The average
energy of the n-quasi-particle sub-space remains centered around the energy n (see left
panel of Fig. 4.1). As a result, the bands n and m start to overlap at

/'me _ |n B m‘
c

— (4.4)

At u = 1, the a quasi-particle becomes gapless and the lower edges all quasi-particle bands
hit the ground state energy.

This mapping of the spectrum is by no means unique, however. The energy eigen-
values can be labeled differently by the Fock space states |n,,np). The right panel of
Fig. 4.1 illustrates a mapping where the sub-spaces of different quasi-particle number are
sorted ascending by energy and all crossings are avoided. In this representation, the b
one-particle energy decreases after touching the two-quasi-particle band, while a strong
two-quasi-particle interaction emerges to push up the two-quasi-particle branch. Due to
their energy-sorting properties, we expect the particle-sorting generators to favor effective
Hamiltonians of this shape.

As perturbation, we consider decay processes linking the one-quasi-particle and the
two-quasi-particle sub-spaces

Huiccay = a'®b+ bla® + bPa + a'0’+aa + ala® + b7%b + b10”. (4.5)

The spectrum of the operator Hgecay itself is not bounded from below, which would spoil
the treatment of H by CUT and exact diagonalization. Analogously to Sect. 3.2.2, we want
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to apply the Gersgorin circle theorem [Gersgorin(1931)] in order to guarantee that only
positive energy eigenvalues occur. Hence, the sum of the absolute off-diagonal coefficients

o= Z |(nl, | Haeeay [Ta, mo)| < 31 + 4ngny + 3ny + 202 + 207 (4.6)

’ /
NG,y

in a row of the Hamiltonian’s matrix has to be lower than the corresponding diagonal
matrix element. Equation 4.6 holds exactly for n,,n, = 0 and serves as an upper bound
for o otherwise. As a result, adding a diagonal part

Hyouna = bala + 5b'b + 4a’dlab + 2aa? + 20702 (4.7)

to the perturbation ensures that all eigenvalues of the full perturbation H; are zero at
least, so that the spectrum of H(u, [’ > 0) is allways bounded from below.

4.2 Treatment by deepCUT

In contrast to the other models mentioned in this thesis, which are represented by
hardcore-bosons on a lattice, this model consists of two pure bosonic degrees of free-
dom. As a result, creation and annihilation operators are not nilpontent anymore, and
the dimension of the ’local’ Hilbert space is infinite. To fit into the same program struc-
ture as mentioned in section 2.6, we map the two types of bosons to a position on a
'lattice’ consisting of two points. Furthermore, the created and annihilated flavors of the
local operators are used to store the power of bosonic creation and annihilation operators.
For the algebraic calculations, a table of normal-ordered products of type af““a ““afa **
with exponents ¢y, ar,cgr,ar € N is generated at the start of the program. Using the re-
lations

[a,al"] = nat™™! [a",a'] = — na"", (4.8)

the product is simplified recursively as

ot =cpa P I L (4.9)
until either a;, = 0 or cg = 0 is reached.

If not mentioned otherwise, we used the following steps throughout the chapter to
analyse the Hamiltonian’s spectrum:

e The differential equation system (DES) of deepCUT is derived for both generators,
aiming either at all quasi-particle conserving blocks or only at those blocks decoupled
by the generators. For details about targeting, we refer to section 3.2.4. We stick to
calculations of order 10, because our focus is on resorting due to small perturbations,
and the compact DES and quick integration times allow for scanning a large sets of
parameters.

e The numerical integrations are carried out using an adaptive Runge-Kutta algorithm
[Press et al.(2007)] (see chapter 2.6) up to £yax = 200.

e The Hamiltonians are transformed into matrix representation and the energy eigen-
values are determined by exact diagonalization using the INTEL MATH KERNEL
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L1BRARY (version 10.2.6). For decoupled quasi-particle sub-spaces, the diagonal-
ization is done in each sub-space of constant quasi-particle number separately (sub-
space diagonalization). For coupled quasi-particle sub-spaces, the diagonalization
is carried out in a finite Fock space of at most 20 quasi-particles (Fock space diag-
onalization).

4.3 Results for particle-sorting generators
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Figure 4.2: Energy spectrum using the particle-sorting generators at u = 0 versus perturbation
I'. The energies are determined by diagonalization in a sub-space with the same quasi-particle
number. The color represents the number of quasi-particles. Energy eigenvalues of the initial
Hamiltonian (shown in gray) obtained by an exact diagonalization in a Fock space of at most
20 quasi-particles are mostly hidden behind the eigenvalues of the diagonal blocks. Left panel:
N1:n generator, aiming at the one-quasi-particle sub-space. Right panel: 72., generator, aiming
at the one-quasi-particle and two-quasi-particle sub-space.

We start the investigation with a detailed analysis of the conventional particle-sorting
generator schemes 7., and 7.,,.

In the left panel of Figure 4.2, the energy spectra of the effective Hamiltonian depend-
ing on I' for p = 0 and 7., aiming at at most one quasi-particle are shown. With rising
I', the different quasi-particle sub-spaces are pushed apart from each other and raised in
energy. The one-quasi-particle energies are exactly on top of the energy eigenvalues of the
full initial Hamiltonian obtained by Fock space diagonalization (shown in gray, mostly
hidden by the spectra in the quasi-particle sub-spaces). The higher quasi-particle sub-
spaces coincide with the Fock space diagonalization only at small values of I". For larger
values, the deviations grow since the residual couplings between the higher sub-spaces
are neglected by the diagonalization within a quasi-particle sub-space and truncation er-
rors in the diagonal blocks not targeted arise. The results from 7)., generator shown in
the right panel of Figure 4.2 behaves qualitatively the same, but here both the one- and
two-quasi-particle energies aimed at are on top of the energy eigenvalues of the full initial
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Figure 4.3: Energy spectrum using the particle-sorting generators at I' = 103 versus detuning
p. The energies are determined by diagonalization in a sub-space with the same quasi-particle
number. The color represents the number of quasi-particles. As a reference, the eigenvalues
of the bare Hamiltonian obtained by an exact diagonalization in a Fock space of at most 20
quasi-particles are shown in gray. Left panel: 7., generator, aiming at the one-quasi-particle
sub-space. Right panel: 1., generator, aiming at the one-quasi-particle and two-quasi-particle
sub-space.

Hamiltonian and the differences in the higher quasi-particle sub-spaces are too small to
be discernible.

Next, we study the behavior of the particle-sorting generators when adjusting the
spectrum of Hy by the detuning parameter u resulting in overlapping quasi-particle bands.
For the 7., generator, the relevant overlap starts at . = 1/3 for the one-quasi-particle and
two-quasi-particle sub-spaces. For the 7y, generator, already the 2:3 overlap at p. = 1/5
affects the energy sorting. Because the rearrangement of the Hilbert space is driven by the
off-diagonality at £ = 0, we choose I' = 1073, which is large enough to surpass numerical
noise, but makes sure that the spectrum is dominated by Hy. In Figure 4.3, the energy
spectrum of each quasi-particle sub-block is depicted. In the left panel of Figure 4.4 for
the 1., generator and the left panel of Figure 4.5 for the 1,., generator, the spectrum is
enlarged around the onset of the overlap.

We define ji, as the smallest value of p where the residual off-diagonality (ROD) devel-
ops a local minimum and ., as the value when the ROD starts to diverge. The quantities
i, — and p_ denote the values where the Fock space spectrum of the Hamiltonian has
negative eigenvalues at the local minimum of the ROD and at ¢ = 200, respectively. With
these definitions, the flow can be characterized by three different regimes:

For 0 < p < py (0 < p < 0.2020 for 7.,), the energy spectrum is compatible with
the sorting criterion of the generator and the eigenvalues are only slightly modified due
to Hy. The ROD shows a sequence of two phases of exponential convergence, as can be
seen in the right panel of Fig. 4.5 for the 7., generator. For the 7)., generator in the
right panel of 4.4, the first region is too small to be discernible. The parameters of the
plotted off-diagonalities are marked in the left panels by dashed black lines; conversely,
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Figure 4.4: Left panel: Energy spectrum of the effective Hamiltonian using the 7., generator,
aiming at the one-quasi-particle sub-space, at I' = 10™3 versus detuning y in the region of the
overlap. Dashed lines represent the spectrum at £ = 200, the solid lines are for the fully converged
Hamiltonian with ROD= 10~1* (nearly on top of each other). The energies are determined by
diagonalization in a sub-space with the same quasi-particle number. The color represents the
number of quasi-particles. Energy eigenvalues of the initial Hamiltonian obtained by an exact
diagonalization in a Fock space of at most 50 quasi-particles are shown in gray. Right panel:
ROD versus flow parameter for selected values of p (marked as dashed lines in the left panel)
The value £ = 200 has been marked by a dashed line for comparison with the spectrum in the
left panel.

the value ¢ = 200 (corresponding to the dashed spectrum in the left panel) has been
marked in the plots of ROD. This regime extends slightly beyond the overlap in Hy until
p = pp ~ p. (see Tab. 4.1). The shift may be caused by renormalization effects due to
the finite off-diagonality.

For p, < p < pse (0.2020 < p < 0.2105 for 7y.,), the ROD shows a kink after
the first phase of exponential convergence. It is followed by a phase of exponentially
increasing off-diagonality, which is ended by another kink downwards into exponential
convergence. At the kink upwards, the state with many quasi-particles is lower in energy
than the state with few quasi-particles. In Fig. 4.5, this appears as a crossing of the
two energy branches with high and low quasi-particle number. At the point of maximal
off-diagonality, both branches lie on top of each other. Towards ¢ — oo, the branches re-
arrange according to their quasi-particle number (see solid lines in Figure 4.4 and 4.5) and
converge to the exact eigenvalues. The speed of resorting of the quasi-particle sub-spaces
strongly depends on the detuning parameter. For a finite value of the flow parameter
¢, this creates the impression of sorted branches for large p and a metastable, unsorted
region for intermediate p. This is plainly visible in the left panel of Fig. 4.5 for the 7.,
generator at ¢ = 200, where the swapping of the branches happens in a small window
around p =~ 0.2075. But in view of the larger picture, this 'window’ only consists of those
parameters which exhibit the maximal off-diagonality around ¢ = 200 (cf.Fig. 4.5, right
panel). On the long run, the resorting propagates to smaller values of p until the branches
are sorted in energy by their quasi-particle number (cf.dashed lines in Fig. 4.4 and 4.5).

In the third regime p > p. (u > 0.2105 for n,.,,), the ROD exhibits a third kink
and the calculation diverges (see Figure 4.5, right panel). At this point, the spectra
of the quasi-particle sub-spaces to be decoupled show no abnormalities that qualify for
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Figure 4.5: Left panel: Energy spectrum of the effective Hamiltonian using the 7., generator,
aiming at the one-quasi-particle and two-quasi-particle sub-space, at I' = 1072 versus detuning
i in the region of the overlap. Dashed lines represent the spectrum at ¢ = 200, the solid lines
are for the fully converged Hamiltonian with ROD= 10~'4. The energies are determined by
diagonalization in a sub-space with the same quasi-particle number. The color represents the
number of quasi-particles. Energy eigenvalues of the initial Hamiltonian obtained by an exact
diagonalization in a Fock space of at most 50 quasi-particles are shown in gray. Right panel:
ROD versus flow parameter for selected values of p (marked as dashed lines in the left panel)
The value ¢ = 200 has been marked by a dashed line.

an explanation of the divergence. However, a look at the diagonalization of the full
renormalized Hamiltonian reveals negative eigenvalues in a finite Fock space for p €
[ti—; pu.[, that decrease even further when the dimension of the Fock space is increased. We
take this as evidence of a spectrum unbounded from below in consequence of truncation
errors spoiling the unitarity of the flow. A deeper analysis shows that the spectrum
remains positive until the first minimum of the ROD, becomes unbounded from below for
i > pp— at the second kink and is always unbounded from below at the final kink before
divergency. For the 7., generator, we find that the kink of the ROD at uy, the emergence
of negative eigenvalues for the Hamiltonian at the cusp at u;_ and for the renormalized
Hamiltonian at p_ all occur at the same parameter p = 0.2020 (see Tab. 4.1). The
accuracy in p is given by 0.0005 and the diagonlization of the Hamiltonian has been done
in a Fock space of at most 50 bosons. At u, = 0.2105, the flow equations diverge. For
the ny., generator, we find that strongly negative eigenvalues at the second kink emerge
slightly after the kink has formed, but the evaluation in a finite Fock space can give
only an upper bound of u,_. However, the renormalized Hamiltonian develops negative
eigenvalues at p_ < pi without a second kink appearing.

In summary, it stands to reason that resorting of the Hamiltonian (indicated by the
increasing ROD) due to the overlap in lower quasi-particle sub-spaces in combination
with truncation errors happening for higher quasi-particle may generate a spectrum un-
bounded from below. We conclude that a combination of three ingredients can lead to a
spectrum unbounded from below: An overlap of low-quasi-particle sub-spaces, a resort-
ing of the energy levels and truncation errors in high-quasi-particle sub-spaces. This is
remarkable since the proofs of convergence for the non-truncated particle-sorting genera-
tors [Mielke(1998), Knetter & Uhrig(2000), Dusuel & Uhrig(2004), Fischer et al.(2010), Fi-
scher(2012a)] rely on a spectrum bounded from below. Although the spectrum is un-
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QP 1; ﬁl:n all pr ﬁl:n QP 27 ﬁ2:n all va ?]2:n
pe |3 /3 s Y5
pr | 0.3350 0.3350 0.2020 0.2020
ti— | 0.3355 0.3355 0.2020 0.2020
p— | 0.3335 0.3330 0.2020 0.2020
s | 0.3625 0.3400 0.2770 0.2105

Table 4.1: Special values of the detuning p for order 10 calculations with I' = 10~ for various
generators and targeted quasi-particle (QP) sub-spaces. The integration has been carried out
until the ROD reaches 107'* or the flow diverges. We detected negative eigenvalues in the
spectrum of the renomalized Hamiltonian for u > pu_. At the cusp of the ROD, negative
eigenvalues appeared for y > up_. The exact diagonalization has been carried out in a Fock
space of up to 50 bosons. The resolution in u is given by 0.0005.

order | QP 1, ny,, | all QP, ny., | QP 2, mo., | all QP 9oy
2 0.59 0.59 0.59 0.59
3 0.59 1.19 1.02 1.02
4 1.02 1.02 0.21 0.21
5 1.02 0.68 0.22 0.22
6 0.41 0.42 0.26 0.24
7 0.46 0.41 0.26 0.28
8 0.42 0.38 0.24 0.24
9 0.37 0.36 0.30 0.24
10 0.37 0.35 0.28 0.22

Table 4.2: Critical value p. of the detuning p where the divergence of the deepCUT flow equa-
tion occurs until £ < 200 for various orders of calculation, generators and targeted quasi-particle
(QP) sub-spaces. The resolution in p is given by 0.01.

bounded from below, the flow for decoupling the lower quasi-particle sub-spaces remains
convergent, until the coupling to higher quasi-particle sub-spaces leads to a sudden diver-
gence.

The scenario outlined above has been investigated in detail for order 10. In a com-
parison of various orders, we found it to occur for most orders. For lower orders?, we also
encountered situations where energies of the decoupled quasi-particle sub-spaces divert
from the exact eigenvalues directly after the overlap.

In Table 4.2, we compare the critical value u, where the divergence of the flow equa-
tions starts. Roughly, the calculations aiming at all quasi-particle sub-spaces are less sta-
ble than aiming at the one-quasi-particle sub-space or the two-quasi-particle sub-space,
though there are also counterexamples. Due to its sensitivity to the 2:3 overlap, the 7.,
generator nearly always diverges before the 7., generator, but we do not find a systematic
dependence on the order of calculation.

2 The exceptions are order 2, order 3 (QP1, N1.,,; QP2, 2.5 full QP, 7a.,,), order 6 (7a.,,) and order 7
(QPL ﬁl:n; QP2, ﬁQ:n,)~
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4.4 Variational generators

In this section, we derive a family of optimized particle-based generator schemes frsult-
ing from a variation principle. They are constructed to decouple sub-spaces of different
quasi-particle number as far as possible, but not to sort them by energy. This should
reduce the sensitivity of the convergence of the ROD.

The instability of the particle-sorting generator can be understood qualitatively by
considering the asymptotics of generator terms for a Hamiltonian close to diagonality.
For illustration, we investigate the flow equation for the coefficient of a 1:2 term. In
leading order in I', it reads

8ghat2b - _haTQb (2haTa - hbTb) . (410)

Because corrections to the one-particle energies h,i, and hy, are in second of the off-
diagonality, we approximate them as constant. Then, h,i2;, will decrease exponentially if
the corresponding two-quasi-particle energy eigenvalue is well above the one-quasi-particle
energy eigenvalue. For the initial Hamiltonian, this is the case for 4 < p. = 1/3. Otherwise,
the coefficient will diverge unless it is damped by higher-order contributions. However,
this behavior can be changed by switching the sign of the corresponding generator term

Orhatzy, = Fhatzy (2hgte — yty) | (4.11)

yielding an exponentially converging generator coefficient for the other sequence of eigen
values 2h,i, < hytp. Since the generator is still antihermitian, the transformation stays
unitary up to truncation errors.

This idea has been tested earlier by Sebastian Duffe to the hole-doped S=1/2 Heisenberg
ladder [Duffe(2010)] using self-similar CUT (sCUT). In presence of a hole, the energy to
create a magnetic excitation may be overcompensated in energy by a change of the hole’s
parity. As a result, an increase of the quasi-particle number may lead to a decrease in
energy. In such cases, a sign factor for the corresponding interaction terms in the generator
may help to prevent divergencies.

The major drawback of this approach is that the suitable sign factors have to be known
in advance for each generator term. If the Hamiltonian is dominated by local processes, the
derivative of the generator term’s coefficients is dominated by the coefficient itself and the
difference in energy of the states linked by the term. Thus, the sign of this energy difference
can be used to decide about an appropriate sign factor, but this requires sophisticated
knowledge of the interactions in the (effective) Hamiltonian, before the computation can
be started. In presence of competing local interactions, it may be difficult to decide it at
all. Moreover, the linking between two real-space generator terms by hopping terms may
be dominant, which would require a momentum-dependent sign factor. Even if a dominant
process can be identified, the conditions may change during the flow and the situation for
the effective Hamiltonian is only accessible after integrating the flow equations.

In the hole-doped Heisenberg ladder, the absence of a direct gap between even and
odd hole band made the definition of an appropriate sign factor in real-space problematic
[Duffe(2010)]. For large hole hopping, the bands cross, which spoils the idea of a unique
convergent sign factor even in momentum space.

Here, we want to find a systematic solution to the decoupling-without-sorting task
working mostly model independent, i.e., it shall rely only on those informations about
the system which are already encoded in the DES. Furthermore, it shall be able to adjust
the sign factors if the physical conditions change during the flow. We also want to be
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flexible to modify only those parts of the generator scheme to which cause divergencies,
and to keep the particle-sorting behavior for the rest of the generator scheme. In chapter
6, we encounter a situation where we have to modify the treatment of 2:3 processes in
order to decouple the two-quasi-particle subspace, but have to make sure that the one-
quasi-particle sub-space is still sorted below the two-quasi-particle sub-space.

The starting point of our approach is the DES for the coefficients of the Hamiltonian
(2.19a) using a particle-sorting generator. In order to fix the asymptotics for large ¢, our
first ansatz was to consider the Hamiltonian’s coefficient to be constant. By this, the
derivative can be seen as a linear operation on the particle-sorting generator’s coefficients

Ini() = Z Mir, ({hy}) mi(€). (4.12)

At any point of the flow, the eigenvalues and (generalized) eigenvectors can be determined.
For fixed matrix M, negative eigenvalues correspond to convergent and positive eigenval-
ues to divergent generator coefficients, which require a sign change for the corresponding
eigenvector. Despite of the hermiticity of the Hamiltonian, we stress that the matrix M
is usually not hermitian. However, generalized eigenvectors can be determined. But since
the computation of generalized eigenvectors at each point of the flow is computationally
costly and the interpretation in terms of generalized eigenvectors is not straight-forward,
we discarded this idea.

A

ROD

o
A 14
Figure 4.6: Schematic representation of the ROD of a Hamiltonian under the flow of a generator
with two sign factors as parameters, resulting in four possible trajectories. For ¢ > ¢*, the four

branches for each combination are depicted. Aiming at the steepest descent in ROD, the lowest-
lying trajectory is chosen (solid branch).

To eliminate the ambiguity in the choice of appropriate sign factors, we use a variation
principle as guiding principle. We restrict ourselves to generator schemes which share the
same generator terms as a particle-sorting generator

nw):Zwmp[Az-] with  7p[A;] € {+4;,0,—A;}, (4.13)

but the generator’s coefficients may differ from the particle-sorting choice n;(¢) = h;(¥).
They may depend on additional parameters. Each combination of them represents a
different trajectory of the Hamiltonian’s flow, see Fig. 4.6. To enforce convergence, we
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compare different choices by their influence to the squared ROD

R=) wm} =ROD?, (4.14)

cf.Equation (2.31), and choose the path of steepest descent of the ROD. The quantity
R can be interpreted as a squared length of the coefficient vector (;), but with respect
to a modified scalar product that takes the weight factors w; (see Sect. 2.5) with respect
to the Hamiltonian’s symmetries into account. If the variation parameters allow for each
choice of generator coefficients also the negative choice, we are free to reverse the flow
whenever the derivative of the ROD is positive. By this choice, we can allways force the
ROD to decrease monotonically and convergence is guaranteed.

Since the decrease in ROD is influenced by a (trivial) global scaling of the generator,
we add a normalization constraint

R = Zwmf = Zwih? =R, (4.15)

to make sure that the variation influences only the direction of the flow lines, not the
absolute magnitude of the ROD at a given point. Applying the flow equation (2.19a)
under this constraint, the derivative reads

i ijk j

Here, we introduced the factor

Ty = 2w;Dijehily (4.17)
ik

expressing the influence of the generator’s coefficient 7; on the derivative of the squared
ROD.

In the following, we discuss the different possibilities to introduce variation parameters
in the generator: Scalar, vectorial and tensorial optimization.

4.4.1 Scalar optimization
Derivation

As a minimal ansatz, we add one (scalar) variational parameter ¢ to the generator
mi(€) = chi(L). (4.18)

Due to the normalization constraint (4.15), ¢ € {—1,+1} holds. To minimize the ROD
with respect to Eq. (4.16), we choose

c=—sign(M) with M= Tjh;. (4.19)

J

If the optimization is applied to the full generator, the scalar optimization corresponds
to a flow with the corresponding particle-sorting generator to positive or negative ¢, until
a local minimum of the ROD is reached. However, if the optimization is applied only to
certain blocks of the generator, the interpretation of a negative sign is more complex.
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Figure 4.7: Residual off-diagonality and sign factor ¢ of the scalar optimization versus flow pa-
rameter £ for the 1., generator aiming at the one-quasi-particle sector with slight off-diagonality
I' = 1073 and g = 0.5. Each point represents a step of the adaptive Runge-Kutta integration
algorithm. Left panel: Without any threshold value, the sign factor (red) oscillates between
the integration steps, if the ROD (black) is trapped in a local minimum. Right panel: Due to
the self-adaptive hysteresis (Eq. (4.20)), oscillations arround the local minimum are suppressed
effectively.

Numerical aspects

Although the flow equation behaves smoothly on either trajectory, switching between
discrete trajectories due to a change in the sign factor leads to a numerically problematic
discontinuity in the generator’s coefficients. This gives rise to numerical artifacts for
multi-step integration algorithms, such as a periodic switching between multiple branches
for fixed step size or a vanishing step size for adaptive algorithms®. Therefore, the sign
factor should be optimized once in each integration step, but not within the step for multi-
step integration algorithms. This adds a certain ambiguity, since the instant of generator
optimization are set by the integration algorithm. Furthermore, the ROD oscillates around
a local minimum for both fixed and adaptive step size algorithms, if the step-size adaption
is based only on quantities calculated within a full integration step, see Fig. 4.7, left panel.
If this oscillation accumulates, it does not only extend the computation time, but also
spoils the numerical accuracy of the effective Hamiltonian. For this reason, we recommend
to set ¢ = 0 if the absolute value of the derivation factor M falls below a threshold m. This
stops the flow completely if the optimization is applied to the full generator; otherwise,
the transformation due to the other generator terms may raise M above the threshold
again.

Strictly speaking, this procedure violates the normalization constraint (4.15). How-
ever, we stress that this is only the direct consequence of the numerical integration. In an
exact solution of the DES, the optimized generator would be able hit the fixed point where
the Hamiltonian can not be simplified any more precisely. In this situation, M would be
exactly zero, so that ¢ = 0 is the only meaningful choice. As a result, this procedure only
restores a behavior that has been lost earlier due to the numerical treatment.

The definition of an appropriate threshold is non-trivial, since it must be large enough
to suppress the fluctuations due to an (unknown) finite step size, but small enough to

3 In tests for the S=1 chain (cf.chapter 6), we found the numerical robustness to be increased signifi-
cantly when only a subset of the generator’s coefficients is optimized.
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Figure 4.8: Double hysteresis function for the sign factor ¢ of the scalar optimization depending
on the derivation factor M with threshold value m, see Eq. (4.20). For M < —m or M > +m,
the choice ¢ = —sign(M) is conclusive, since the influence on the derivative of the ROD is
significant. When M enters the interval M € [—m;+m], we keep the value of ¢ at first. Due to
the finite step size of the integration algorithm, M never becomes exactly zero, but can change
its sign from one step to another. Normally, this would lead to unwanted oscillations in ¢. To
prevent this behavior, we set ¢ to zero as soon as M changes its sign. We set ¢ to a finite value
again only when |M| > m holds and the sign factor can be determined unambiguously.

enable a reasonable asymptotic convergence. To circumvent this trade-off, we define a
double hysteresis function

+1 if M+ Al <
+1 if M(€+A€)<O and M(0) <0
cl+Al):=¢ -1 if M{+Al)>0 and M({)>0 (4.20)
-1 it M{+Al) >+m

0 else.

\

As long as M does not change its sign, ¢ keeps its value even if M becomes very small.
By this, a smooth asymptotic convergence for M from one side to zero is not interrupted,
see Fig. 4.8. When M changes its sign from one integration step to the other, ¢ is set
to zero in order to prevent oscillations. Only when the absolute value of M exceeds the
threshold value m, we consider M as sufficiently large and set ¢ to a finite value again.

The definition of the threshold value m is done self-adaptively, i.e., it is set to zero
at the begin of integration, but it is increased during the flow each time the sign factor
skips the double hysteresis and switches to —c directly after one integration step. In the
right panel of Fig. 4.7, it can be seen that the oscillations of the sign factor is suppressed
effectively compared to the left panel.

4.4.2 Vectorial optimization
Derivation

In order to enforce convergence of the flow equation, the scalar optimization suspends the
integration if neither a positive nor a negative particle-sorting generator can decrease the
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ROD further with a finite off-diagonality remaining. As a generalization, we consider the
choice of an own sign factor for each representative in the generator

n:(0) = c;hi(£). (4.21)

Again, ¢; € {—1,+1} holds due to the normalization of the ROD (4.15).

To enforce the unitarity of the flow, the coefficients of a generator term and its adjoint
may not be chosen independently. This is guaranteed by construction if the choice of
representatives exploits the self-adjointness of the Hamiltonian, so that a term and its
antihermitian counterpart share the same ¢;. Furthermore, any symmetry that is exploited
by the choice of the representatives remains conserved by the optimized generator.

Finally, the derivative reads

agR = Z]}ﬁj = Z]}thj =: MjCj. (422)
; -

J

The minimal ROD follows for the choice

c; = —sign(M;) with M; = ZTjhj. (4.23)

J

Interpreting the set of parameters {¢;} as a vector, we baptize this choice “vectorial
optimization”. Since the scalar optimization is included by the special case ¢; = ¢, the
vectorial optimization is clearly an extension of the scalar one so that we expect that it
allows us to decrease the ROD even further.

Numerical aspects

Similar to the scalar optimization, the generator’s coefficients switch discontinuously dur-
ing the flow in the vectorial optimization, so that the update of the coefficients has to
be applied between full integration steps. However, it turns out that the large number of
variational parameters increases the robustness of the flow against fluctuating sign factors
¢;. We use the double hysteresis defined in Eq. (4.20) for each individual generator coeffi-
cient with m = 107 as threshold value throughout our study for large off-diagonality in
subsection 4.5.2. There, we also discuss the practical limitations for the threshold value.

A small absolute value for the threshold allows for a large degree of decoupling, with
a ROD of the same order of magnitude as the threshold. In most situations, this simple
approach is already sufficient.

If an even lower final ROD is required, a more sophisticated approach is to adjust
the threshold value dynamically. The self-adaptive double hysteresis (see Eq. 4.20) can
not be applied directly, because the strongly fluctuating coefficients set the threshold
value so high that the weakly fluctuating coefficients stop converging at comparably large
residual values. For this reason, an adaptive threshold m; is necessary for each individual
coefficient. Moreover, a threshold value raised in an early phase of the flow can turn out
to be too restrictive in a later phase of the low. We address this problem by defining a
decay constant that decrements each self-adaptive threshold value after each integration
step. For the investigated parameters, we found a reduction of m; by 30 % after each
integration step to suppress fluctuations most effectively. We will use this setup for the
investigation of the asymptotics for small off-diagonality in subsection 4.5.1. However,
the absence of a minimal absolute threshold bears the danger of numerical artifacts.
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4.4.3 Tensorial optimization
Derivation

We assume that the generator’s coefficients depend linearly on the Hamiltonian’s coeffi-
cients. A general linear transformation

ni(€) = cijh;(0), (4.24)

can be parametrized by a matrix of parameters c¢;;, justifying the name “tensorial opti-
mization”. For the parameters, the normalization constraint (4.15) translates to

Z WiCinCim = Opm  With ¢, cim € R. (4.25)

In this sense, the matrix c¢;; is orthogonal with respect to a scalar product renormalized
by the symmetry weight of the representatives. The mixing of coefficients with different
symmetry weights is genuine to the tensorial optimization. However, we can map (c;;) to
an orthogonal matrix with ), ¢nCim = dnm by the scaling

éin =\ /%Cin T‘] = 2wiw/ijijkhihk. (426b)
Wnp,
With this representation, the derivative reads

R =Y T =Y Ty, (4.27a)
J J
= Zchthq = ijéjqﬁq- (4.27b)
J J

Although the parameter matrix (¢&;) could be found by brute-force minimization of Equa-
tion (Eq.) (4.27b), it is more efficient to visualize that Eq. (4.27a) is minimal for 7 being

anti-parallel to 7', since ||77||> = R is normalized with respect to the Pythagorean norm
||-||. Hence, the solution reads

ﬁj::—Tj-—~ and 7 = —
7

R
=

>

|

VWj

(4.28)

M~

In summary, we derived an explicit expression for the coefficients of the most complex
optimized generator.

Numerical aspects

In contrast to scalar and vectorial optimizations the generator’s coefficients in tensorial
optimization are smooth functions of the Hamiltonian. For this reason, the generator’s
coefficients can be updated multiple times per step in a multi-step integration algorithm
and the tensorial optimization can be used consistently by step-size adaptions of the
integration algorithm?.

4 If the generator’s coefficients are not taken into account by the step-size adaption, the optimized
generator can not come significantly closer than the momentary step-size to the attractive fixed point of
the flow equation. As a result, the decrease of the ROD stops at comparibly high values.
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_ The generator’s coefficients using tensorial optimization fluctuate strongly if the vector
T is dominated by numerical inaccuracies. For the spin S = 1 chain (cf.chapter 6), we
encountered a rise of off-diagonality due to fluctuations, after convergence was nearly

accomplished. We avoid these artifacts by setting an absolute threshold HTCH = 10712

and switch off the generator block on falling below this threshold.

Similar to Wegner’s generator scheme [Wegner(1994)], the convergence of the tenso-
rially optimized generators slows down close to degeneracies. In Figure 4.12, the number
of integration steps for an adaptive Runge-Kutta-algorithm varies by several orders of
magnitudes depending on the frequency ration p. Exactly at the resonances p*?® = 1/5,
pl? =1/3 12° =3/7 and pl® = 1/2, the integration times peak.

Comparison with Wegner’s generator

To investigate the similarities with fyegner i detail, we insert the solution (4.28) into the
flow equation without exploiting symmetries

0ghi = Z Dijknjhk = Z Dijkijphmhphk . (—2%) . (429)
ik jkmp
Like Wegner’s generator scheme, the tensorial optimization is designed for fast conver-
gence, but slows down close to divergencies. In the same way, it yields a trilinear differ-
ential equation system in the Hamiltonian’s coefficients up to a scalar factor.

However, due to this factor, the tensorial optimization J,H scales quadratically in the
Hamiltonian just as the particle-sorting generators®, which implies a different asymptotic
convergence compared to Wegner’s generator which scales cubically. On the numerical
level, we expect that the integration algorithm can compensate this different asymptotics
to a large extend by an adaption of the step-size. Therefore, so that we expect a similar
numerical performance for both generators.

Even though the tensorially optimized particle based generator resembles in many
properties of Wegner’s generator scheme, we stress that there are also qualitative differ-
ences on a formal level besides a mere scaling of the generator. Written in an analogous
notation, the flow equations of Wegner’s generator reads

Ochi = Eijiniwesner b = > EijrEjmphmhyphy with Ay, € Heag. (4.30)

Jk gkmp
Similar to D;;i,, we introduced the symbol E;;, with > E;jpA; = [A;, Ay] to express the
expansion of the commutator of two basis operators wi;fhout applying the particle-sorting
sign factor to the first argument. In Wegner’s generator, the result of one commutator
(index j) is nested into the other commutator. In contrast, the contraction in Eq. (4.29)

runs over the generator arguments of both commutators and can not be interpreted as a
nested commutator in an obvious way.

4.5 Results for variational generators

In this section, we investigate the impact of the overlapping quasi-particle sub-spaces to
the variational generators and compare their performance with the corresponding particle-

5 In the two-level system [Dusuel & Uhrig(2004)], the tensorially optimization for the particle-
conserving generator has the same flow lines as Wegner’s generator, but keeps the speed of convergence
of the particle-conserving generator.
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sorting generators. Regarding a comparison with Wegner’s generator scheme, we have
to emphasize the calculation of Wegner’s generator scheme requires the evaluation of
a nested commutator, leading to a trilinear DES. These are significant differences in
structure compared to the particle-based generator schemes, which depend linearly on
the Hamiltonian’s coefficients and lead to a bilinear DES. Furthermore, it requires severe
modifications of the enhanced perturbative CUT (epCUT) algorithm (cf.Fig. 3.1) and the
reduction of the DES (cf.Sect. 3.2.4), because the minimal orders of the generator, of the
Hamiltonian and of the diagonal part of the Hamiltonian have to be taken into account.
For these reasons, an investigation by Wegner’s generator scheme is beyond the scope of
this chapter.

At the beginning of this section, we study the asymptotics of the generators for an
overlap enforced by the unperturbed part Hy and an infinitesimal perturbation. After-
wards, we investigate their behavior in presence of a macroscopic perturbation.

4.5.1 Asymptotics for small off-diagonality
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Figure 4.9: ROD versus flow parameter for different generator optimizations after the band
overlap for I' = 1073 aiming at the respective quasi-particle sub-spaces. The insets show the
early phase of the flow where the vectorial optimization crosses the tensorial optimization. Left
panel: 7., based generators at u = 0.4; right panel: 3., based generators at u = 0.25.

Similar to the particle-sorting generator, we study the asymptotic behavior of the
variational generators using an infinitesimal perturbation I' = 1073, At first, we consider
the energy spectrum of the effective Hamiltonian in the different quasi-particle sub-spaces.
The optimized generators reproduce the simple quasi-particle picture visualized in the left
panel of Fig. 4.1. As expected, the states with low quasi-particle number keep the labeling
suggested by Hj after the overlap; the differences to Hy are too small to be noticed by
the naked eye. No divergencies have been observed in the investigated parameter regime.

In Fig. 4.9, the ROD for n;., and 7., depending on the flow parameter after the over-
lap is given. The scalar optimization reflects the corresponding particle-sorting generator
until the kink upwards occurs for the particle-sorting generator due to the reordering of
the Hilbert space. At this point, the ROD of the scalar optimization freezes at the local
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Figure 4.10: Upper panels: Pythagorean distance Ag (see Eq. 4.31) between the diagonalized
Hamiltonians before and after the CUT for the decoupled low energy sector versus p at I' = 1073.
Lower panels: ROD at f,,x = 200 versus p. Left panels: 7;., based generators, comparision of
one-quasi-particle states. Right panel: 72., based generators, comparison of one-quasi-particle
states and two-quasi-particle states.

minimum. The vectorial and tensorial optimization start similarly, but continue to de-
crease exponentially after the kink in the particle-sorting generator’s ROD. In a direct
comparison, the tensorial optimization converges slightly better than the vectorial opti-
mization at the beginning of the flow (¢ < 0.5), but loses its advance very soon (see insets
of Fig. 4.9). This is no contradiction to the larger space of variational parameters for the
tensorial optimization, since the variations can only be compared for the same Hamilto-
nian, i.e., at £ = 0. As soon as the flowing Hamiltonians for both optimizations drift
apart, the minimization of ;R can no longer be compared. The vectorial optimization
converges until the ROD reaches the magnitude of numerical fluctuations (ROD ~ 10717),
while the tensorial optimization is stopped at the order of the threshold ||T'|| = 1072

The final ROD at £, = 200 for the 7;.,-based generators is shown in the lower left
panel of Fig. 4.10. Standard generator, scalar and vectorial optimization behave the same
until the overlap occurs. Close to the 1:2 resonance, the decoupling slows down® for all
generators, leaving a significant ROD at (... After the resonance, the particle-sorting
generator decreases faster again until it diverges. In contrast, the scalar optimization
keeps a constant high level of off-diagonality after the overlap. The vectorial optimization
continues to converge to a full decoupling within the numerical accuracy, but slows down
again close to the 1:3 resonance at u = 0.5. The tensorial optimization reflects the
behavior of the vectorial optimization within the limitations of the threshold value.

The 7)., based generators shown in the lower right panel of Fig. 4.10 display a more
complex picture due to the interplay of the one-quasi-particle and two-quasi-particle over-

6 Using the ROD as termination criterion, it can be seen that the Hamiltonian actually becomes fully
block-diagonal for the particle-sorting generator in the convergent region. However, we emphasize the
ROD as termination criterion is inconvenient for the optimized generators, since they can freeze at a
finite value of the ROD forever. Moreover, the ROD at finite ¢ can be used as an estimate for the speed
of convergence.
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lap. Again, the convergence slows down around the first overlap p?? for all generators and
the particle-sorting generator diverges soon after. The ROD of the scalar optimization,
however, rises to an intermediate level at the resonance, but keeps growing continuously
until pl? is reached and the ROD forms a plateau. The vectorial and the tensorial op-
timizations behave similarly for 7., overlap, but convergence slows down for all 1:n and
2:n resonances nNow.

The very similar results for vectorial and tensorial optimization are remarkable. It
may be caused by the simple structure of the model, which is mostly diagonal in the
particle flavor. As a result, commutators with a'b and b'a play no major role in this
model.

For a quantitative comparison of the eigenvalues of the effective Hamiltonians, we
investigated the Pythagorean distance

A= \/Z E, — B (431)

for the sets of eigenvalues {E,} and {E!}. It can be viewed as special cases of the
Frobenius norm for diagonal matrices. We also investigated analoguous measures based
on the trace distance and the maximal eigenvalue, but our findings are qualitatively the
same for all three measures. For the complete Section 4.5, we use a maximal number of
20 quasi-particles for diagonalizations in the full Fock space if not mentioned otherwise.

For a quantitative analysis, we compare the difference A, for the eigenvalues of the
decoupled quasi-particle sub-spaces with the corresponding eigenvalues before the flow
obtained by exact diagonalization of the Fock space in the upper panels of Fig. 4.10. For
both the 7., based generators (upper left panel) and the 7., based generators (upper
right panel), the deviation in the low-lying eigenvalues resembles the behavior of the
residual off-diagonality at ;..

The deviations for the eigenvalues of the decoupled quasi-particle sub-spaces can be
attributed to truncation errors or to an incomplete decoupling of the quasi-particle sub-
spaces, as it is suggested by the finite ROD at /... We investigate this question by
diagonalizing the effective Hamiltonian in the full Fock space and comparing the lowest
eigenvalues with the ED applied before the flow. Aiming for one quasi-particle, the
comparison of the lowest three eigenvalues (vacuum and one-quasi-particle states for p =
0) reveals deviations of Ay ~ 107 for the optimized generators, being accurate within
the numerical limits of the integration (not shown). The same result holds for the particle-
sorting generator until the spectrum becomes unbounded from below beyond p_ where
the comparison becomes ill-defined. Aiming at two quasi-particles, we obtained the same
results for the lowest six eigenvalues (vacuum, one-quasi-particle and two-quasi-particle
states for u = 0).

In summary, the variational show the expected asymptotic convergence. Before the
overlap, all optimized generators reflect the behavior of the corresponding particle-sorting
generator. After the overlap, the vectorial and the tensorial optimizations decouple the
quasi-particle sub-spaces to a larger extend than the scalar optimization. The devia-
tions in the quasi-particle sectors to be decoupled can be explained by the remaining
off-diagonalities. Hence, we conclude that the variational generators do not disturb the
Hamiltonian’s eigenvalue spectrum in the Fock space.

As a measure for the unitarity of the whole transformation, we discuss the deviations
of a set of the lowest 21 eigenvalues (corresponding to up to five quasi-particle at p = 0)
obtained by diagonalization in the full Fock space (up to 20 quasi-particles at y = 0) before
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Figure 4.11: Pythagorean distance Ay (see Eq. 4.31) between the diagonalized Hamiltonians
before and after the CUT for the for the first 21 eigenvalues versus p with I' = 1073, Left panel:
1., based generators, comparision of one-quasi-particle states. Right panel: 7s., based genera-
tors, comparison of one-quasi-particle and two-quasi-particle states; the vectorial optimization
is hidden behind the tensorial optimization.

and after the CUT. Using the 7)., based generators and aiming at the one-quasi-particle
sub-space (see left panel of Fig. 4.11), the error in unitarity increases steadily to ~ 107>
for all generators up to u.. Then, the error grows for the particle-sorting generator due
to the emergence of negative eigenvalues shortly before the divergence. For the scalar
optimization, the error drops down to ~ 107!V instead and decreases even further since
the freezing of the flow also cuts down the possibilities for truncation errors. For the
vectorial and tensorial optimization, the error decreases to an intermediate value of 1078
and increases again at the next resonance. For the 7., based generators (see right panel
of Fig. 4.11), the error of the particle-sorting generator diverges directly after the 2:3
overlap. In constrast, the errors of the optimized generators do not exhibit any anomalies
at pe, but show a similar behavior as their 1:n counterparts with a local maximum of
the error at the 1:2 overlap. We attribute this to the fact that the global shape of the
spectrum is dominated by the one-quasi-particle energies, for which the continuation after
the 1:2 overlap is decisive. Nevertheless, the divergence of the particle-sorting generator
can be triggered by any off-diagonal generator term close to a corresponding overlap of
quasi-particle sub-spaces.

To assess the numerical efficiency, we compare the number of integration steps needed
by the adaptive Runge-Kutta algorithm to reach a fixed f,.x = 200 in Fig. 4.12 as
a measure of the integration time for the 7)., based generators. Before the overlap,
the particle-sorting generator, scalar and vectorial optimization need nearly the same,
constant number of integration steps. After the 2:3 overlap, the particle-sorting generator
increases in the number of steps, while the scalar optimization decreases after the 2:3
overlap, and even more after the 1:2 overlap. The vectorial optimization shows a nearly
constant number of steps, except for a small peak at the 1:2 resonance. Of all variational
generators, the tensorial optimization is computationally most extensive. At resonances,
it can exceed the number of integration steps of the vectorial optimization by two or
more orders of magnitude. We emphasize that the runtime overhead due to the generator
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Figure 4.12: Number of integration steps versus frequency ratio u for the 7., based generators
using an adaptive fourth-order-Runge-Kutta-algorithm [Press et al.(2007)] up to fmax = 200.
The calculation aims at the two-quasi-particle block up to order 10, the perturbation has been
set to I' = 1073,

optimization itself is comparably small, since the evaluation of the weight factors is about
as complex as the evaluation of the differential 9,H. For the tensorial optimization, this
yields a factor of two; for scalar and vectorial optimization, it is even less since the weights
are updated only once a full integration step.

In summary, the optimized generators reflect the asymptotic behavior of the particle-
sorting generator for p < p.. After the energy overlap for pu. < p < 1, the optimized
generators converge allways and yield an effective Hamiltonian with the same labeling of
the Fock space as suggested by Hj, but leave residual off-diagonal terms. The deviations
from the real eigenvalues in the diagonal blocks can be explained by these off-diagonalities.
In contrast, the corresponding particle-sorting generator diverge soon after the overlap
for 4 > p,. The scalar optimization keeps large off-diagonalities, but distorts even the
high-energy spectrum only slightly due to truncation errors and requires the lowest nu-
merical effort. The vectorial and tensorial optimization show very similar asymptotics.
They allow for a significantly stronger decoupling of the low-quasi-particle subspaces than
the scalar optimization. For the vectorial optimization, the speed of the integration is
nearly constant with respect to u, while the tensorial optimization requires much more
integration steps for p > 0.1 and slows down even more close to resonances.

4.5.2 Performance for larger off-diagonality

While the previous subsection investigated the asymptotic behavior of the optimized
generators for small off-diagonality, we now address the application of the optimized
generators for large off-diagonalities. We expect that this will be the relevant case for the
practical application of the method. The choice of I is a trade-off since a large value will
issue a larger challange to the CUT, but it reduces the accessible part of the spectrum,
because the position of the overlaps shift to larger values of u compared to Eq. (4.4).
Using first order perturbation theory, we expect the overlap around

[n —m|

"™ = (1+5T) ™ = (1 + 5T (4.32)

n—+m
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Figure 4.13: Energy spectrum of the effective Hamiltonian for the 7., based generators aiming
at two quasi-particle at I' = 1073 versus detuning parameter j at fyac = 200. The energies
are determined by diagonalization in a sub-space with the same quasi-particle number. The
color represents the number of quasi-particles. Dotted black lines represent the renormalized
eigenvalues after an exact diagonalization in a Fock space of at most three quasi-particles. The
eigenvalues of the initial Hamiltonian obtained in a Fock space of at most 20 quasi-particles are
shown in gray; they are mostly hidden under the other lines except for the high-energy part
E > 4.0. Left panel: scalar optimization; right panel: vectorial optimization with m = 1074,

due to the diagonal matrix elements of Hyoung. At the same time, we are limited to the
range |p| < 1 due to the definition of Hy. For this reason, we choose I' = 0.1.

In Fig. 4.13, the eigenvalues of the initial Hamiltonian in the Fock space are shown
as gray lines. As an example, we focus on the eigenstate that is adiabatically connected
to one-b-particle state for p = 0 in the limit I' — 0. At p = 0, its eigenvalue starts at
E(0) ~ 1.5 and increases linearly with u. In the vicinity of i>! = 1/2, a level repulsions
happens due to an eigenstate with higher energy. After this, the eigenstate’s energy
decreases linearly, until it reaches F(1) ~ 1.5. At this point, we expect the eigenstate
to be adiabatically connected to the two-a-particle state in the limit I' — 0. It is not
possible to connect this branch adiabatically to both the one-b-particle state at u = 0 and
to the two-a-particle state at ;. = 1 without cutting the branch in into two distinct parts.
We expect that the optimized generators will change their labeling of the quasi-particle
sub-spaces in the vicinity of the avoided crossing, because arround ji. the state with one b
particle hybridizes strongly with the state of two a particles due to the decay part I' Hgecay-

Similar avoided crossings with gaps in the same order of magnitude as I' are visible
wherever one b-particle has the same energy as two a particles with respect to the diagonal
part of the Hamiltonian. Furthermore, smaller gaps between previously degenerate states
are visible e. g.at © = 0 due to corrections in higher orders of I'.

Now, we focus on the effective Hamiltonians derived by the CUT. As for the asymp-
totic case, the particle-sorting generators diverge close to ., while the optimized gener-
ators continue the labeling of quasi-particle states suggested by Hy. The spectrum for
the 7., based scalar optimization is given in the left panel of Fig. 4.13. Up to pu., the
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Figure 4.14: Pythagorean distance Ay (see Eq. 4.31) between the diagonalized Hamiltonians
before and after the CUT with 72, based generators for six low-energy states (cf.subsection
4.5.2 for details) versus detuning parameter p at fpax = 200 and I' = 0.1. The black line de-
notes the diagonalization of the two-quasi-particle sub-space only; the colored lines comprise the
renormalized results after different Fock space diagonalizations. For each effective Hamiltonian,
we aim at all parts of the Hamiltonian that are relevant for the subsequent diagonalization step.
For example, we aim at all representatives with at most four creation operators and at most
four annihilation operators when we intend to diagonalize the effective Hamiltonian in a Fock
space of at most four quasi-particles. Left panel: scalar optimization; right panel: vectorial
optimization with m = 1074,

diagonal elements follow the exact energy eigenvalues. For larger u, the energy spec-
trum after the sub-space diagonalization switches discontinuously to straight segments
corresponding to the diagonal part of the initial Hamiltonian, indicating that the flow is
switched off by the scalar optimization. Although this leads to large deviations from the
exact eigenvalues at the avoided crossings, we stress that the effective Hamiltonian still
comprises most of the information about these states once the finite off-diagonal blocks
are taken into account. A Fock space diagonalization for only up to three quasi-particle
leads to a very good agreement with the exact eigenvalues for E < 4. The largest de-
viations occur where states of non-neighboring quasi-particle sub-spaces mix, e. g.for the
highest one-quasi-particle state/lowest three-quasi-particle state at 1 = 1 or the region
where two, three and four quasi-particle hybridize. Here, one has to take into account
a larger number of quasi-particles in the diagonalization. This approach is the discrete
analogon to the variational diagonalization in a finite sub-space, which has been used in
combination with CUTSs previously to study elementary excitations of the S=1/2 Heisen-
berg ladder with diagonal couplings [Fischer et al.(2010), Fischer(2012a)] and the ionic
Hubbard model [Hafez et al.(2014a), Hafez et al.(2014b)]. In chapter 6, we apply this
approach to the S=1 Heisenberg chain.

A quantitative comparison by the Fock space diagonalization is more complex com-
pared to the asymptotic case. Due to the large off-diagonality, significant multi-particle
interactions exist in the effective Hamiltonian leading to potentially large truncation er-
rors with multi-particle states influencing the low-energy spectrum. In addition, the
low-quasi-particle states can no longer be identified once the Fock space diagonalization
is applied, whereas the identification by energy is not meaningful since the generator
enforces no energy-sorting.

For these reasons, we use the following comparison scheme: Before the CUT, the
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Hamiltonian is diagonalized in the full Fock space. After the CUT, the Fock space diag-
onalization for a maximal quasi-particle number is applied and the lowest six eigenvalues
are selected. For each selected eigenvalue, the closest eigenvalue before the CUT is taken
for comparison in A,.

The results are given in the left panel of Fig. 4.14. Deviations for p < p. are small,
while the error rises by several orders of magnitudes up to Ay > 0.1 for g > p.. We obtain
a smaller error of the eigenvalues for a diagonalization in the Fock space of at most three
quasi-particles. By considering larger numbers of quasi-particles in the diagonalization,
we can reduce the remaining error systematically. The remaining error is largest for y = 1
where the hybridization with many-particle states is strongest.

Next, we discuss the spectrum of the vectorial optimization given in the right panel of
Fig. 4.13. The decoupling of the targeted quasi-particle sub-spaces at is accomplished for
the whole range of p and the energies agree with the exact eigenvalues very well. Only
directly at the avoided crossings, the decoupling can be improved visibly by a Fock space
diagonalization for up to three quasi-particle. The quantitative errors shown in the right
panel of Fig. 4.14 can be attributed to two different sources: For u < pu., deviations of
10~° —10~* appear since the threshold value m = 10~* leads to an incomplete decoupling.
They can be reduced further by reducing m or by a Fock space diagonalization. Compared
to the scalar optimization, a notably better decoupling is archived for p > p., with errors
in the same range as for the scalar Fock space diagonalization with three quasi-particles.
Nevertheless, an additional Fock space diagonalization of up to three quasi-particle can
not improve the result of the vectorial optimization systematically. We conclude that the
deviations for 1 > p. have their origin in truncation errors evolving during the flow.

Adressing the numerical aspects, we have to emphasize again that the choice of
an appropriate threshold value m requires a careful analysis: In order to decouple the
quasi-particle sub-spaces as far as possible, a small value for m is desireble. But if m is
chosen too small, large truncation errors accumulate due to strongly fluctuating sign fac-
tors and unphysical artifacts in the spectrum appear’. Similar problems can also happen
for the automatic threshold decay suggested in subsection 4.4.2.

As a guidline for the application to other systems, we recommend to apply the well-
controlled scalar optimization as a first measure to improve the decoupling, especially
if the diagonalization of a decent part of the Fock space can be done with moderate
computational effort. In order to limit the diagonalization to the low-quasi-particle sectors
only, the vectorial optimization has to be used, starting with a large threshold value m
for maximal robustness. Then, the threshold value can be reduced gradually while the
spectrum is monitored carefully for sudden jumps which would indicate artifacts. During
this process, the deviations beween the diagonalization of the quasi-particle sub-spaces
and the full diagonalization of a minimally increased Fock space serve as a mesure for the
errors corresponding to the remaining off-diagonalities.

For the tensorial optimization, we find that the tremendous increase in runtime renders
this optimization strategy impractical for large off-diagonalities in this model.

7 We observed visible artifacts in the low-energy spectrum for large off-diagonalities and smaller m
where the energy eigenvalues deviate from the exact eigenvalues in an uncontrolled way. A Fock space
diagonalization reveals that these large deviations are actually truncation errors and can not be explained
by an incomplete decoupling of quasi-particle sub-spaces.
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4.6 Conclusions

In this chapter, we investigated the limitations of the well-known particle-sorting generator
schemes for a model with adjustable energy overlap between sub-spaces with different
quasi-particle number and present a family of three variational generator schemes that
allow us to access the regime of strong overlap.

Our model consists of two coupled harmonic oscillators, which can be understood in
terms of bosonic quasi-particle. Using a detuning parameter p, we are able to adjust the
energy of the two different types of quasi-particles. For finite u, we can create resonances,
i.e., multiple states with different total quasi-particle number taking the same energy
eigenvalue, and energetic overlaps of different quasi-particle sub-spaces, i.e., situations
where the highest state with a low total quasi-particle number takes a higher energy
than the lowest state with a high total quasi-particle number. Before the overlap, the
standard particle-sorting generators decouple the corresponding low-quasi-particle sub-
spaces with exponentially decreasing ROD. As soon as the quasi-particle sub-spaces
to be decoupled overlap with higher quasi-particle, the CUT resorts the corresponding
quasi-particle states, indicated by an intermediate phase of exponentially increasing ROD.
The speed of reordering depends strongly on the detuning parameter and slows down
close to resonances. The resorting is accompanied by the emergence of a spectrum not
bounded from below due to truncation errors. After the resorting, the ROD decreases
exponentially again, but can diverge when the overlap has been too strong. We suggest
that the underlying instability of the flow equation system has its roots in an energy
spectrum unbounded from below that emerges due to truncation errors.

To extend the applicability of the particle-sorting generators to Hamiltonians with
overlapping quasi-particle sub-spaces, we introduced a family of three variational gener-
ators that attempt to decouple as long as no reordering is required. These variational
generators require no additional algebraic calculations, but build upon the same repre-
sentation of the DES and the operators as the particle-sorting generators. All of these
generators have proven of being able to treat even large energetic overlaps. They enforce
convergence by construction, i.e., the norm of the optimized generator has to vanish for
¢ — oo, although finite off-diagonalities may remain in the Hamiltonian. However, these
generators achieve different degrees of decoupling, robustness and speed of convergence
depending on the parameters.

The scalar optimization primarily stops the integration as soon as the corresponding
particle-sorting generator would increase the ROD. By this, a divergence of the flow
equation is not longer possible. Of all variational generators, the scalar optimization
leaves the largest off-diagonalities in the effective Hamiltonian, but it also adds the lowest
distortion to the energy spectrum. We recommend its application if the obtained residual
off-diagonalities are sufficiently small to be treated efficiently by other methods, e.g.,
exact diagonalization in a finite Fock space.

The vectorial optimization implies a much better decoupling than the scalar optimiza-
tion. The achievable level of decoupling depends on the threshold value m. A small
value leads to a stronger decoupling, but requires the carefull monitoring for artifacts due
to strongly fluctuating sign factors. For small off-diagonalities, even a full decoupling is
possible. Its speed of convergence slows down when the energy eigenvalues are close to
resonances. We recommend its application when a stronger decoupling is required, in
order to reduce the computational effort in the treatment of the residual off-diagonalities
by other methods or to avoid it completely.
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Mathematically, the tensorial optimization offers the best level of decoupling and the
fastest convergence in terms of 9;R. However, we have to mention that a rigorous com-
parison of the speed of convergence is possible only for the same Hamiltonian, i.e., for
H (¢ = 0) where the flow lines of all generators must cross. For ¢ > 0, the flowing Hamilto-
nians of different generators are in no direct relation even at the same ¢ In this sense, the
local minimization of the ROD can not guarantee that the tensorial optimization leads to
a smaller ROD than the vectorial optimization at £ = co. For small off-diagonalities, we
found the tensorial optimization to match the asymptotics of the vectorial optimization,
which may be a particularity of the model, since Hy includes no hopping-like terms. In
comparison to the vectorial optimization, it requires significantly larger computational ef-
fort due to an increasing number of integration steps. Close to resonances, the tremendous
increase in runtime can render the application of this generator infeasible. In an applica-
tion to other models, this generator could be promising due to the chance of a high level
of decoupling, but the vectorial optimization has to be considered if the integration times
become unacceptable.

In summary, the variational generator schemes provide a promising new toolkit to
address systems with strong energy overlaps within the framework of particle-based gen-
erators, each of them offering an individual tradeoff between decoupling, truncation error
and computational effort.

4.7 Outlook

As a next step, the application to an extended physical system, where overlapping quasi-
particle continua spoil the treatment by the conventional particle-sorting generators is
called for. We emphasize that we do not intend to apply the optimization to all the gen-
erator’s coefficients, which would drop the sorting of quasi-particle sub-spaces by energy
completely. Instead, we see the primary use in the specific treatment of those generator
blocks which lead to a divergence of the particle-sorting generators because they connect
strongly overlapping quasi-particle continua.

In chapter 6, we will encounter a system where the three-quasi-particle continuum
falls below the two-quasi-particle continuum and strong matrix elements between the two
sub-spaces exist. Here, we will apply the variational generators to suppress the coupling
to higher quasi-particle sub-spaces and thereby achieve the calculation of bound states
and spectral densities in the two-quasi-particle sector.

Beyond this application, the generator optimization offers some possibilities for further
methodological development:

e In contrast to the tensorial optimization, the scalar and vectorial optimization up-
date the variational parameters depending on the adaptive step size of the integra-
tion algorithm. This adds an ambiguity to the flow because the stepsize adaption
is blind to fluctuating sign factors by definition. Here, the numerical stability could
be increased if the step size is limited to an interval where the evolution of the sign
factors can be predicted safely.

e Moreover, the variational generators can be applied one after another in order to
exploit the different trade-offs between robustness and the level decoupling. For
instance, the results of a scalar optimization may provide a good starting point
with low ROD for a second CUT with vectorial optimization to reduce the off-
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diagonalities further. Then, the tensorial optimization could be used to eliminate
the last off-diagonalities.

e Finally, the vectorial optimization may allow us to design generator schemes taylored
to the effective Hamiltonians: The first CUT using vectorial optimization leads to a
set of sign factors that describe a convergent flow for £ — oco. This set of sign factors
may be used permanently in a second CUT starting from the initial Hamiltonian.
Here, the influence on convergence and numerical robustness of the flow would be
an interesting topic for further studies.
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for Dimerized Spin S=1/2 Models
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The quantitative properties of a condensed matter system, expressed in its density
matrix and its response to external fields, depend on the microscopic details of the in-
teractions between its constituents and the temperature in an intricate manner. These
configurations can be divided into classes with the same qualitative properties, denoted
phases, by appropriate order parameters. While the values of order parameters may vary
smoothly within a phase, their vanishing signalizes a phase transition. Whether an order
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parameter goes to zero smoothly or with a jump makes the difference between continuous
and discontinuous phase transitions [Landau(1937a), Landau(1937b)].

At zero temperature, the properties of the phase are reflected by the symmetry and
the degeneracy of the ground state, as well as the quasi-particles that are appropriate to
describe excitations. Microscopically, a continuous phase transition is indicated by the
softening of an excitation at the quantum-critical point (QCP). Beyond the QCP, the exci-
tation gap becomes negative and the quasi-particle picture breaks down. The ground state
beyond the QCP can be visualized as a condensate of these quasi-particles and a different
quasi-particle picture has to be introduced to describe the excitations. This phenomenon
is denoted as quantum phase transitions (QPTs) [Sachdev(1999a), Sachdev(1999b)], be-
cause in this case, the destabilization of a phase is not driven by thermal, but quantum
fluctuations. The QCP itself is on the edge of both phases an influences the physical
properties at finite temperature.

A particularly interesting case occurs if the new ground state breaks a symmetry of
the Hamiltonian spontaneously. The consequences are an ordered phase with a degen-
erate set of ground states and, if a continuous symmetry is broken spontaneously, the
formation of Goldstone bosons [Nambu(1960), Goldstone(1961), Goldstone et al.(1962)],
e.g., the occurrence of magnons in the anti-ferromagnetic (AFM) phase. The interplay
between Goldstone mechanism and a gauge field is also the origin of the finite photon
gap in superconductors and the Anderson-Higgs mechanism in high-energy physics [An-
derson(1963), Englert & Brout(1964), Guralnik et al.(1964), Higgs(1964)].

The possibility to derive a quasi-particle picture and to track the softening of different
quasi-particle types and bound states render continuous unitary transformations (CUTSs)
in second quantization a powerful tool to elucidate the nature of QPTs. But starting
from the disordered phase, the breakdown of the quasi-particle picture beyond the QCP
impedes a straight-forward description of the ordered phase. The particular difficulty in
this situation is that the reference state and the particle-based generators preserve the
symmetries of the initial Hamiltonian, and so does the effective model determined by the

standard CUTs.

However, a starting point that breaks the symmetry explicitly may work in both
phases. In a recent work [Hafez et al.(2014b)], we were able to describe the ionic Hubbard
model by CUT in the band insulator and Mott insulator phase as well as in the sponta-
neously dimerized insulator phase, were a Z, part of the translation symmetry is broken
spontaneously. In this chapter, we investigate the more complex case of a spontaneously
broken continuous spin symmetry, i. e., the transition from the quantum-disordered phase
to the AFM phase of the two-dimensional dimerized S=1/2 Heisenberg model (2dDH).
Augmenting the self-similar CUT (sCUT) approach with a starting point controlled by a
variational parameter, we are able to treat both phases and demonstrate how triplon and
magnon excitations can be represented by the same type of operators.

The chapter is structured as follows: In the next section, we give an introduction into
the low-dimensional Heisenberg models under study in this chapter. Then, we explain
the representation in second quantization and the details of the transformation to the
effective Hamiltonian. Next, we give a review of our previous findings [Drescher(2009)]
for the varied starting point in the one-dimensional model, which serves as testing ground
for the extensions of the CUT. After investigating the results of the standard sCUT for
the 2dDH in Section 5.4, we present our findings for the sCUT with varied starting point.
Finally, we develop the concept of finding the optimal starting point further, and present
an ansatz that allows us to perform CUTSs from an optimal starting point. For this ansatz,
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no peculiarities of the model have to be taken into account explicitly.

5.1 Low-dimensional spin S=1/2 Heisenberg models

Figure 5.1: Visualization of the 2dDH. Dark bonds indicate the columnar dimerization pattern.
The staggered magnetic field (illustrated by arrows) breaks the translation symmetry of the
dimer sub-lattice and leads to a unit cell of two dimers (shown as dashed line).

In this section, we give an overview of the models analyzed in this chapter. All of
them consist of dimers, i.e., non-overlapping pairs of S = 1/2 spins coupled by an AFM
Heisenberg interaction of strength J > 0. Nearest neighbour spins < 7,5 > that do not
belong to the same dimer are coupled by a weaker Heisenberg interaction 0 < A\J < J.
We write the Hamiltonian as

H= > JS-S+ Y JrS-§ (5.1)

<t,j>€dimer <i,j>¢dimer

for various possible lattice geometries. For A = 0, the ground state is a product state
of singlets on each dimer and the elementary excitations are given by S=1 triplets with
energy J. For finite inter-dimer coupling, the ground state becomes more complex since
the Hamiltonian includes processes that create triplets from the singlet product state.
Similarly, the excitations become dressed quasi-particles, dubbed ’triplons’, that can be
visualized as triplets with a polarization cloud. Depending on the strength and geometry
of the inter-dimer couplings, the ground state may no longer be connected adiabatically
to the singlet product state. In this case, the system undergoes a QPT.

5.1.1 Omne-dimensional dimerized Heisenberg chain

In the simplest case, the dimers are aligned in a one-dimensional chain. The ground state
of the system has spin S=0 and is adiabatically connected to the singlet product state for
any A > 0. The gap remains finite in the whole interval A € [0; 1] [Bulacvskii(1963), Cross
& Fisher(1979)].
Of particular interest is the point A = 1, where the gap closes and the system
turns quantum-critical with an algebraic decay of correlations. Here, it can be solved
1

analytically by Bethe ansatz [Bethe(1931)] with the ground state emergy Fo/n = 5 —
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2In2 [Hulthen(1938)] and lowest excitations known as spinons [des Cloizeaux & Pear-
son(1962), Babujian(1982), Takhtajan(1982)] have the energy

w(k) = gJ|sin(k)]. (5.2)

Both spinons and triplons can be used to describe the excitation spectrum until the chain
comes very close to the point A = 1 [Schmidt & Uhrig(2003)]. While the system can
not stabilize magnetic order, the susceptibility of the ground state with respect to an
alternating magnetic field diverges [Miiller et al.(1981)].

Although the system is quantum-critical at A = 1, no phase transition occurs. For
A > 1, the system is dimerized again and only the roles of strong and weak bonds have
swapped.

This system and its extensions by additional frustrating interactions have been studied
by CUT in detail, see e. g. Refs. [Knetter(1999),Schmidt(2004), Reischl(2006)], and we use
it as testing ground for our extensions of the method.

5.1.2 Two-dimensional dimerized Heisenberg model

In two dimensions, several different lattice geometries can be taken into account. For
the square lattice, columnar and staggered dimerization patterns, but also the quasi-two-
dimensional bilayer system are common [Sandvik(2010)] with similar qualitative behavior.
In this chapter, we stick to the columnar dimerization pattern, see Fig. 5.1.

For small A, the system is in a quantum-disordered phase with triplons as elemen-
tary excitations; but at a critical value \., the gap of the three degenerate triplon modes
closes and the system undergoes a second order QPT towards an AFM phase [Sachdev
& Bhatt(1990)]. Inside the AFM phase, the SU(2) spin symmetry of the Hamiltonian
is broken spontaneously. As a consequence, the ground state shows a spontaneous stag-
gered magnetization and the excitations are given by two degenerate, gapless Goldstone
bosons, the transverse magnons, and a gapped, longitudinal magnon. [Nambu(1960),Gold-
stone(1961), Goldstone et al.(1962)] The formation of a ground state with magnetic order
is no contradiction to the Mermin-Wagner theorem [Mermin & Wagner(1966), Hohen-
berg(1967)], because this phase is not stable for 7" > 0.

The QPT in this model has been studied by a multitude of methods, including per-
turbative approaches [Singh et al.(1988), Katoh & Imada(1993)], mean-field theory us-
ing bond bosons [Sachdev & Bhatt(1990), Koethe(2002)], spin wave theory [Katoh &
Imada(1993)], series expansion [Coster(2011)] and quantum Monte-Carlo (QMC) [Katoh
& Imada(1993), Katoh & Imada(1994), Matsumoto et al.(2001), Wenzel & Janke(2009),
Jiang(2012)].

The most recent calculations QMC suggest A\, ~ 0.524. We collect the findings in Ta-
ble 5.2. Recent QMC studies [Matsumoto et al.(2001), Wenzel & Janke(2009),Jiang(2012)]
for the critical exponent v of the correlation length confirm that the QPT has the same
universality class O(3) as the classical three-dimensional Heisenberg model. The crit-
ical exponent of the spontaneous staggered magnetization M, has been determined as
B = 0.27 [Katoh & Imada(1993),Katoh & Imada(1994)].

Experimentally, the formation of gapless Goldstone modes has been analyzed by
inelastic neutron scattering for the pressure-induced QPT in T1CuCl; [Riiegg et al.(2004)].
In a later experiment, also the formation of the longitudinal magnon mode has been ob-
served [Riiegg et al.(2008)]. Although the spontaneous symmetry breaking is similar, we



5.2 Derivation of the effective Hamiltonian 109

have to stress that T1CuCl;s is a three-dimensional compound with a complex network of
interactions [Matsumoto et al.(2004)], that can not be compared to the 2dDH directly.

As in one dimension, the homogeneous point A\ = 1 inside the AFM phase is of
particular interest. For a detailed review of the two-dimensional homogencous S=1/2
Heisenberg model (2dHH), we refer the reader to Reference [Manousakis(1991)]. We
use the ground state energy and spontaneous staggered magnetization derived by QMC
[Sandvik & Singh(2001)] as numerical reference due to their high reliability. A prominent
feature of the dispersion is a difference between w(m,0) and w(7/2,7/2) of about 10 %,
which has been found by QMC [Sandvik & Singh(2001)] and has been confirmed by
series expansion [Zheng et al.(2005)], but is not captured satisfactory by spin wave theory
even at order three [Syromyatnikov(2010)]. Experimentally, the dispersion relation has
been measured by inelastic neutron scattering [Christensen et al.(2007)].

5.2 Derivation of the effective Hamiltonian

In this section, we discuss the representation of the 2dDH in second quantization and
the technical points of the treatment by the sCUT method. By this, we generalize our
approach used in a previous work [Drescher(2009)] to the two dimensional case.

For our investigation, we stick to the columnar dimerization pattern illustrated in
Figure 5.1. The dimers as elementary building blocks form an effective two-dimensional
lattice. For convenience, we define a as lattice constant in both x and y direction, i.e., we
consider a square lattice of dimers, not a square lattice of spins. This will be important
when comparing the momentum quantum numbers with calculations of other methods.
We write the Hamiltonian (5.1) as

H =JHymer + JoH, + J,H, + BH,, (5.3a)
= Z JgrL,s ' ‘S_;fs + ngfs ’ ‘S_v;arl,s + Jy‘s_:?{/s ’ §£S+1 + Jygfs ’ gferl

+ B(—1)* (Sk7 — S77) . (5.3b)

Here, J denotes the interaction strength on a dimer, J, is the horizontal and J, is the
vertical inter-dimer coupling. For J, = 0, the system consists of decoupled Heisenberg
ladders, while the limit J, = 0 refers to a system of decoupled Heisenberg chains. We used
these limits to verify our implementation by comparison with existing sCUT calculations
in one dimension. For the results presented in this chapter, we always refer to the case
Je = Jy = AJ, introducing the dimensionless parameter A denoting the relative strength of
inter-dimer processes. Then, .J is the global unit of energy; we set it to one in the following.
The parameter B represents the coupling to an external, staggered magnetic field in z
direction that we use to control and to measure the staggered magnetization exploiting
the so-called Hellmann-Feynman theorem [Giittinger(1932), Pauli(1933), Hellmann(1937),
Feynman(1939)]

OF,
M == (0] (=1)* (Sk7 = 8f%7) |0) = _8_30' (5.4)
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5.2.1 Triplon representation

In order to apply the sCUT method, we have to switch to a representation in second
quantization. To this end, we choose the basis

[s) = 10) = (IM4) = 1) (5.5a)

7
) = t1]0) = — T(IW ) (5.5)
[y) = 17]0) = + %(!TTHM)) (5.5¢)
|2) = t7]0) = 7(m>+|m>> (5.5d)

of singlet and triplet eigenstates of the dimer Hamiltonian Hgi,e as basis for the local
Hilbert space. It is the ground state of the model for A\, B = 0. We choose the singlet
product state as reference state, and interpret the triplet states as the action of triplet
creation operators t'® acting on the reference state, i.e., the triplet vacuum. The triplet
operators on the lattice satisfy the commutation relations of hard-core bosons

|:t7ofs7 ths] = 57"77"/5575/ (5 (]1 - tZTSt;{s) tfltgs) . (56)
In this representation, the spin operators read
2550 = 1 10T — iy eqpt?it (5.7a)
By
250 = — — 1T — iy " eup t7TH7 (5.7b)
By

We see that this mapping is very similar to the bond-boson representation [Chubukov(1989),
Sachdev & Bhatt(1990)]. However, we stress that in the bond-boson method, the singlet
state is considered as a fourth, bosonic one-particle state above an abstract vacuum state
with no analogon in the physical subspace. Moreover, it adds unphysical states of more
than one bond-boson on a dimer that can be excluded only approximately by a mean-
field constraint. In contrast to bond-bosons, the triplet operators bear the advantage that
they do not require any extension of the Hilbert space, even though calculations using
the hard-core commutator (5.6) are more involved.
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In terms of triplet operators, the contributions to the Hamiltonian (5.3) read
Hdimer = Z - _IL + Zt?iret?s (58&)
H, ZZ taT‘f‘ta <r+ls+tr+ls>

+30  (BlT e — 0 ) (5.8b)
BFy
+37 Seas ((00 + ) Lt — o) (14 4240))
a,B, 7
H=3 Z (tad + ) (800 + )
+> 5 <tﬂT Bty — L s+1> (5.8¢)
B#y
Hp=> (=1) (¢ +12,). (5.8d)

8

Even though we restrict ourselves to A\, = A\, = A for the 2dDH, both directions of the
dimer lattice are inequivalent due to the different orientation of the dimers. The term in
H,, changes its sign from row to row, since the direction of the magnetic field vector is
oriented in a checkerboard pattern. This breaks the translation symmetry of the lattice,
leading to an elementary cell of two dimers.

During the flow, these operators are mapped to the creation and annihilation operators
of the renormalized, conserved quasi-particles with respect to the physical ground state.
To emphasize the difference to the bare triplet operators at ¢ = 0, we speak of triplon
operators in both phases.

5.2.2 Variational starting point

As mentioned before, the Hamiltonian of the two-dimensional Heisenberg model has a
SU(2) spin symmetry. Because the standard triplon representation introduced in the
previous subsection considers all directions in spin space as equivalent, the particle based
generators treat all triplon channels in the same way. Therefore, the effective Hamiltonian
has a spin-symmetric vacuum state as well and all triplon modes are equivalent. This is
consistent with the physical picture of the dimerized phase, but it does not provide a
mechanism to break the spin symmetry spontaneously, as it happens in the AFM phase.
In the latter case, a spin-symmetric representation is expected to yield reference state
with a negative gap to many-particle states also for the symmetry-broken phase, which
may be interpreted as a false vacuum.

The challenge to find the true, symmetry-broken ground state of the system can be
addressed in three ways: First, the spin-symmetric effective Hamiltonian can be used
as a starting point for a mean-field calculation in the vicinity of the QCP, see [Hafez
et al.(2014a)]. Second, the spin-symmetry can be broken explicitly by a finite, symmetry-
breaking field B. Third, the CUT itself can be modified in a way to break the spin
symmetry by a unitary transformation.
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In this subsection, we want to take the last route and switching to a starting point
that represents the triplon channels differently. However, because the transformation is
unitary, it does not alter the eigenvalue spectrum of the Hamiltonian. The derivation
shown in this subsection is based on a previous work [Drescher(2009)].

For illustration, we consider the Heisenberg dimer in an alternating magnetic field

H =8Y. St B(sh — §f%) = —2]1 +tote 4 B (#7 +17). (5.9)

Its eigenstates can be written as

|s(0)) = cos?|s) +sind |z) (5.10a)
(1)) = |x) (5.10b)
ly(9)) = ly) (5.10c)
|2(9)) = cos¥ |z) —sind|s) (5.10d)
with the angle ¥ defined by tan = \/HT For B = 0 and ¥ = 0, the ground state of

the system is given by the singlet state. For B — oo and ¢ — 7/4, the dimer becomes
fully polarized and the magnetization saturates.

In the following, we want to use this rotated starting point for the CUT of the two-
dimensional dimerized Heisenberg model. Applying the transformation on the operator
level and defining hard-core triplon operators with respect to the rotated basis states

7t = t71(9) = |2(9)) (s()| =cos V¥ t*T + sin ¥ +*7¢7 (5.11a)
VT — t91(0) == |y(9)) (s(9)| = cos? t¥T +sin ) t¥1t* (5.11b)
71— 71(9) = [2(9)) (s(9)| = cos® VT — sin? ) 7

+sindcosd (17 + V1Y + 207117 — 1) (5.11c)

Considering the checkerboard pattern of the staggered magnetic field, we apply this
transformation with positive ¥ to even rows and with negative ¥ to odd rows. Using
the varied starting point (5.11), the Hamiltonian is no longer manifestly symmetric with
respect to permutations of the rotated triplon operators, although the energy eigenvalues
are not affected due to the unitarity of the transformation. This description bears two
advantages:

First, the varied starting point is a better approximation to the ground state of the
Heisenberg model with finite staggered magnetic field. This means that the same trunca-
tion scheme for an appropriately varied starting point may lead to more accurate results
than a calculation starting from the singlet state as reference state. Without truncations,
the properties of the effective Hamiltonian should not depend on the value of 9 at all.
More important for us, however, is that the differences between the triplet modes in the
initial Hamiltonian circumvent the limitation of the effective model to a spin-symmetric
vacuum states for B = 0. In this way, we expect to gain access to ground states with
finite spontaneous magnetization in the AFM phase of the 2dDH.

In contrast to the response to the external magnetic field, no obvious choice for the
angle 9 is given. Instead, we treat ¥ as variational parameter. In our analysis, we focus on
the interval ¥ € [0;7/4], where the varied reference state interpolates between the singlet
product state (U = 0) and the Neél state (J = 7/4). For larger values of ¥, the weight
of the |z) state grows stronger, until for ¢ = 7/2, the reference state is given by a state
consisting of |z) triplets on each dimer. When ¥ is increased even further, the sequence
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of reference states is followed in opposite direction up to a sign factor, until the fully
dimerized state |s(m)) = —|s) is retained.

We remark that the varied starting point alone can be used for a simple variational
calculation. The expectation value of the Hamiltonian per dimer with respect to the
varied reference state is given by

e(\, B,9) = (1 —3)\)sin? ¥ cos® ) — 2B sin® cos ¥ + sin* 9 — 3/a. (5.12)

The function €(\, 0,9) for fixed A has a global minimum at

Uopt(A) = £O(X — 1/3) arcsin \/1/2 — 1/6x. (5.13)

Even though all off-diagonal interactions are neglected, this simple ansatz shows some
qualitative features of the 2dDH already: The function Jop () takes the role of an order
parameter that remains zero for A < 1/3 with the singlet product state as approximate
ground state. It becomes finite for A > 1/3 where the Neél ordered state is mixed into the
ground state, leading to a finite staggered magnetization. Applying a SCUT to the varied
starting point allows us to rotate away the off-diagonal terms still present. In this way,
we derive an effective model for the AFM phase of the 2dDH that unifies both qualitative
correctness and quantitative accuracy.

The combination between CUTs and a variational parameter has been investigated by
Dusuel et al. for the quartic oscillator [Dusuel & Uhrig(2004)]. Compared to the default
starting point, they found a significant improvement of accuracy for the stationary points
of the physical properties of the effective model. The choice of stationary points is well-
known from mean-field calculations. In an exact solution, the physical quantities must not
depend on the variational parameter. This behavior is reflected by the weak dependence
on the variational parameter in the vicinity of stationary points [Stevenson(1981)].

5.2.3 Details of the CUT

For the non-perturbative block-diagonalization of the triplon Hamiltonian (5.8) in second
quantization, both the sCUT framework (see Chapt. 2) and the directly evaluated epCUT
(deepCUT) framework developed in Chapter 3 can be applied.

In the models analyzed so far, the deepCUT method showed an excellent robust-
ness, and its accuracy can be controlled conveniently by the order of the differential
equation system (DES). If the unperturbed part of the Hamiltonian is block-diagonal
and local, it is possible to achieve high orders in the expansion parameter by the use
of simplification rules. In the 2dDH, both the coupling to the magnetic field (5.8d) and
terms generated by the varied starting point lead to local off-diagonal terms in the Hamil-
tonian. One has to decide whether these terms should be considered as first order in an
appropriate expansion parameter, or whether they are considered as unperturbed part at
the price that no simplification rules can be used.

In our investigation, the first choice leads to significantly larger fluctuation in the
ground state energy for high values of ¢, which spoils the idea of using it as a vari-
ational parameter with only slight influence on the result. However, abandoning the
simplification rules completely reduces the maximal realizable range severely. Both facts
lead us to the conclusion that, for the intended study of the AFM phase, sCUTs are more
appropriate.

In our analysis, we concentrate on the ground state energy, the staggered magnetiza-
tion and the triplon dispersion. To this end, we employ the standard particle-sorting
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generator schemes 7., and 7;.,. If not mentioned otherwise, we use the truncation
scheme d = (8,6,6,3,3) to decouple the ground state as discussed in Section 2.4 and
d = (6,4,4,3,3) to decouple the one-triplon sector. The numerical integrations are car-
ried out by an adaptive Runge-Kutta algorithm [Press et al.(2007)] (Dopr853, see chapter
2.6) until the off-diagonality has converged to ROD < 10712

5.2.4 Symmetries

B=0 B#0
T n o and  or it . g t: t t,2
D=0 9£0
+ 2 vV v oo—iotE tYy t,2 te t ¢
Toer 2 v L A LA 2 A 2 R J A
Thuor o = P 1A | AR AP SN A
Ty 2 v oot te 2, Y t,e 2
Teye 3 v Xl 2, te t, t,2 te
Tlcrans z,a oo ‘/ ‘/ +i tiﬁ-l,s ti?il,s t:[j-l,s trf—l,s trﬁ-l,s trj—l,s
Tomsya oV X i AT A A AT AT S T S
ﬁrans y,2a OO 2 4 v +1 ti,xs+2 ti?Js—&-Q t:[,zs+2 tri+2 tr,ys—i-2 tT,Zs+2
ihift y,a 2 x ‘/ —1 _ti,xsﬂ _ti;ysﬂ _ti,zsﬂ _trferl _tri-i-l _tr,zs+1

Table 5.1: Generators T of the different symmetry subgroups in second quantization, their
number of elements and their effect on the imaginary unit and the different triplon operators
when applied as a superoperator to a term. The third column denotes which subgroups are used
if the SU(2) spin symmetry is not broken, the forth column denotes the application in a case
where the spin symmetry is broken. For an explanation of the formalism, see Sect. 2.5.

As described in Section 2.5, the efficiency of the CUT calculation can be enhanced
greatly by using a single representative to store the information about a symmetric com-
bination of monomials. For the 2dDH, the symmetry group superoperator G is composed
of the following subgroups, whose generators are defined in Table 5.1:

e The hermiticity CAJT of the Hamiltonian.

e The mirror symmetry of the lattice with respect to a vertical axis CA}ver and to a
horizontal axis G-

e The symmetry of the spin space, exploited by triplon permutation operations @xy
and Gy (for B =0 and ¥ = 0 only).

e The translation symmetry of the lattice, expressed by @trans 2,0 and @tm y.a O the
combination of Girans y,2¢ and Gt 4,4, Tespectively.

We have to stress that the triplon permutation symmetries @xy and @Cyc in second
quantization are an implication of the SU(2) symmetry, i.e., the conservation of the S,
and Sio quantum numbers. But they are not equivalent to it. The triplon symmetries
allow us to describe up to six terms by a single representative. This is sufficient to
describe the creation of a one-triplon state from the vacuum by only one coefficient. By
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contrast, the S=2 two-triplon modes form a multiplet of five degenerate states, which
means that corresponding creation operations from the vacuum have to have the same
matrix element. The triplon permutation symmetries, however, can handle these processes
only by distinct representatives for two and three terms each. A full exploitation of
the spin symmetry would require the representation of created and annihilated states in
terms of S, and S,y quantum numbers using Clebsch-Gordan coefficients. However, this
approach is cumbersome since the total spin addresses the term as a whole, while for
the evaluation of commutators, a representation based on individual local operators is
required.

A finite magnetic field or the varied starting point affect the manifest symmetries of
the Hamiltonian in two ways: First, it renders the z triplon inequivalent to the other
triplon channels. Therefore, Gy can not be applied any longer, but the xy swapping
symmetry @xy is still present. This is the triplon analog to the reduction of the SU(2)
symmetry to U(1) on the spin level. Second, the translation symmetry @trans y.a is broken
since the singlets are polarized in opposite directions in even and odd rows, so that the
unit cell doubles.

However, these differences between even and odd rows can be compensated by an addi-
tional sign factor for the triplon operators and a complex conjugation. By this, Gans 4,24
is complemented by another twofold symmetry group é\shift y.a- Analogous to an electron-
hole transformation, the combined symmetry group @trans yQQGShi& v, 1 equivalent to the
standard translation symmetry group @trans y.a DY a transformation

. . ta ta o «
L= =, tr,25+1 — _tr,23+17 tr,23+1 — _tr,23+1 (514)

that is applied to operators on odd rows only. On the level of spin operators, this means
exchanging left and right spin operators STL7 a1 fb 3e1- Clearly, this compensates the
alternating polarization of dimers, but it means that the coupling H, takes a different
shape on the spin level for even and odd rows.

A better visualization on the spin level can be found when the combined operation

Tenite y@ﬁ;y is considered to motivate the alternative mapping

T 1 T 1 1 T
tésﬂ — _tv{yzsﬂ triy2s+1 — _tr,z23+1 tr,zzsﬂ — _tr,z23+1 (5.15a)

x y y x z z
tr,25+1 - _tr,25+1 tr,25+1 - _tr,2s+1 tr,2s+1 - _tr,23+17 (515b)

which can be interpreted more intuitively as a rotation in spin space on odd rows

L/R, L/R, L/R, L/R, L/R, L/R,
Sr,Q/s—i—ai - _Sr,Q/s—i—yl Sr,és—‘rli — _Sr,és—l—gi ST,Z/S-‘,-ZI — _Sr,Z/s-l—Zl' (5150)
which restores the translation symmetry on the spin level.
In summary, apart from translation symmetry, up to 16 monomials can be stored in
a single representative when the SU(2) symmetry is broken by the magnetic field or the
varied starting point, and even 48 if full SU(2) symmetry is available.

5.3 Review: Dimerized spin S=1/2 Heisenberg chain

In this section, a review of my previous work [Drescher(2009)] is given, where the com-
bination of sCUT and the varied starting point has been tested for the one-dimensional
dimerized S=1/2 Heisenberg model (1dDH). The Hamiltonian is a special case of the
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Figure 5.2: Properties of the 1dDH for the truncation d = (8,6,6,3,3) and the generator
scheme 7o, [Drescher(2009)]. Left panels: Dependence of the physical quantities on the vari-
ational parameter ¥ for A = 0.5, B = 0.5. The upper left panel shows the deviation of the
ground state energy per dimer Ey and the sub-lattice magnetization per dimer M from the local
minimum in ¢. The lower left panel shows the ROD at ¢ = 20 versus 9. The arrows denote the
location of the local minima. Right panel: Position of the angle 9, that minimizes the ground
state energy versus A for different alternating magnetic fields B.

two-dimensional model defined in Eq. (5.3) with A, = A and A\, = 0. As there is no
AFM phase for the one-dimensional model, the aim of the study has been to assess the
feasibility of the approach, to find a good criterion for an optimal angle ¥, and to search
for quantitative improvements in the response to the alternating magnetic field.

In the left panels of Figure 5.2, the dependence of the ground state energy per dimer
Ey, the alternating magnetization per dimer M, and the residual off-diagonality (ROD)
at ¢ = 20 on the variational parameter ¥ is shown. The ground state energy depends
only slightly on ¢, but with a clear local minimum. In a similar way, the magnetization
has a local minimum, which is often in the vicinity of the local minimum of Ey. The
magnitude of the fluctuations when varying ¥} can serve as a measure for the robustness
of the calculation. Usually, the fluctuations are larger for M.

Another criterion to consider is the speed of convergence, i.e., the decrease of the
ROD for rising flow parameter, which is estimated by the ROD at ¢ = 20. It depends
strongly on ¢ and shows a very sharp local minimum, which coincides with the minimum
of Ey for small \ but shifts to a larger angle for large .

Finally, we choose the minimum of the ground state energy Ej for the definition of the
optimal angle ¥,,:. Apart from the robustness of the ground state energy itself, this choice
can also be motivated by the alternating magnetization. To understand this argument,
we consider M as total derivative of the ground state energy with respect to the magnetic
field for the optimal angle

E B B
Mo, By) = — Pol ﬁ;pt@’ ) (5.16)
Ao,Bo
OB\ BYaw(\B)|  OE()\B.0) 9o (N, B)
B Ao, Bo oy A0,B0,%0pt OB Ao, Bo

Because ¥y depends on B, the expression differs from the partial derivative of Ey by an
additional contribution. But if ¥,y is chosen as stationary point of £y, the additional
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contribution cancels and both definitions for M become equivalent'.

As expected, the optimal angle is zero without the alternating magnetic field and rises
with increasing B, as can be seen in the right panel of Figure 5.2. For large \, ¥
becomes increasingly susceptible to the magnetic field and the slope of ¥, (B) increases
for small B.

In a direct comparison with density matrix renormalization group (DMRG) data ob-
tained using the ALPS package [Albuquerque & ALPS collaboration(2007),Bauer et al.(2011)],
the error of the ground state energy remains small for intermediate values of A\ and in-
creases up to the order of 1072 for A\ = 1 (not shown). For the optimial angle, the
deviations decrease.

For the alternating magnetization, the differences between the standard sCUT calcu-
lation and the DMRG reference are more pronounced. In particular, this holds at the
quantum critical case A = 1, where the susceptibility diverges [Miiller et al.(1981)] and
an infinite slope of the magnetization is expected (not shown). Especially for small B,
the calculation for ¥,y leads to smaller deviations from the DMRG result and is able to
track the large slope in the vicinity of B = 0 much better.

In summary, the investigation for the one-dimensional system demonstrated that the
variational ansatz for the reference state can be applied consistently, that the local mini-
mum of the ground state energy is an appropriate choice for the optimal parameter ¥qp
and that it improves both accuracy and speed of convergence, especially close to quantum
criticality.

5.4 Two-dimensional Heisenberg model with default
starting point
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Figure 5.3: Properties of the 2dDH versus inter-dimer coupling for B = 0,79 = 0 and various
truncation schemes. Left panel: Ground state energy per spin determined by 7., The dashed
line denotes the ground state energy after applying a Maxwell construction. For comparison,
we show the QMC reference data [Sandvik & Singh(2001)] for A = 1. Right panel: Excitation
gap determined by 71.y,.

In this section, we study the 2dDH using the default starting point ¢ = 0. By con-
sidering the ground state, the one-particle properties, and the response to the staggered

! However, the choice of any constant angle can be justified by the same argument, since the second
term cancels as well due to dgt = 0.
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Figure 5.4: Dispersion relation of the 2dDH for B = 0,9 = 0 and various values of A, deter-
mined using the generator 7., and the truncation d = (6, 4,4, 3, 3).

magnetic field, we assess the quality of our results in the quantum-disordered phase and
show the limitations of this approach upon approaching the QCP and beyond.

For various truncation schemes considering up to three quasi-particles, we found a
good agreement for the ground state energy per spin in the quantum-disordered phase
with differences smaller than 107 at A\ = 0.5, see Fig. 5.3. Even deep in the AFM
phase, the flow equations remain convergent up to ¢ = 1, except for the truncation
d = (10,6,6,3,3). For A = 0.8, the differences between different truncation schemes
are smaller than 2 - 1072, so that the truncation scheme d = (8,6,6, 3, 3) appears to be
appropriate for our investigation. We have to stress that this accounts for quantitative
errors only. Beyond the QCP, the default starting point describes a false vacuum with
an unknown difference to the real ground state energy. However, the corrections due to
the condensation of triplons appear to be small as the more involving truncation schemes

lead to a false vacuum energy remarkably close to the ground state energy obtained by
QMC at A = 1.

By Fourier transformation of the hopping elements in the one-quasi-particle subspace,
the triplon dispersion can be determined in the full Brillouin zone, see Fig. 5.4. As
expected, the gap is located at kg = (0, 7), which corresponds to the vector of magnetic
ordering for the Neél state in terms of dimer lattice units. With rising A\, the bandwidth
of the dispersion increases and the gap closes linearly. By the root (zero) of the gap as
function of A, see Fig. 5.3, the position A, a of the QCP can be determined. The result
)\((:76’&1’4’3’3) = 0.5265 for the truncation d = (6,4,4,3,3) is close to the QMC reference
Ae = 0.523373 [Matsumoto et al.(2001)], but the finite slope in the vicinity of the QCP and
calculations with larger truncation schemes indicate that A. o shifts towards higher values.
We collect our estimates for different truncations in Table 5.2, together with the estimate
for the onset of spontaneous magnetization \. ps, and the results of other methods. Beyond
Aca, the negative gap marks the destabilization of the quantum-disordered phase, and

calculations using the 7., generator scheme diverge soon®.

Now, we investigate the response of the ground state energy FE and the staggered

2 A small, but finite staggered magnetic field B ~ 107° breaks the spin symmetry explicitly and
negative gap takes a significantly smaller absolute value. However, we did not find this ansatz to lead to
acceptable results for the dispersion, and the problem of divergence persists.
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Figure 5.5: Magnetic properties of the 2dDH for ¥ = 0 and various inter-dimer couplings,
determined using the generator 7., and the truncation d = (8,6,6,3,3). Left panel: Energy
per spin versus staggered magnetic field. Right panel: Staggered magnetization versus staggered
magnetic field for and various inter-dimer couplings A. The solid lines refer to a local Legendre
transform, the dashed lines represent the magnetization after a Maxwell construction. For
details, see the main text.

magnetization® M to the staggered magnetic field B. We find two distinct regimes,
separated by A, (see Tab. 5.2): For A < A, £ is an downward convex function
of B, see the left panel of Figure 5.5. The ensuing staggered magnetization M grows
monotonically with increasing B, see right panel. For A > A, E(B) forms a cusp,
accompanied by two downward concave regions. Consequently, local minima appear in
M (B). This indicates the thermodynamic instability of the quantum-disordered phase.

To establish a physically meaningful picture beyond the QCP, we consider the Legen-
dre transform H (M) of the function F(B) with

dE = —MdB, (5.17a)
dHy = +BdM, (5.17D)
Hy =E+ MB, (5.17¢)

often denoted as magnetic enthalpy [Castellano(2003)]. As can be seen in the left panel
of Figure 5.6, it is downward concave for A < A. . Beyond the QCP, it breaks into two
physical branches that end at +Mj, corresponding to the turning points of E(B). The
region between the turning points is mapped to two unphysical branches that are attached
to the physical branches at +Mj. In the region [—My; +M;], the magnetic enthalpy can
be continued by Maxwell construction, as it is illustrated by the dashed line. For the
magnetization curve, this means that M (B) remains monotonic and stepwise constant
between the local extrema; M, takes the role of a spontaneous staggered magnetization.

The emergence of a spontaneous magnetization itself is another strong indication for
the stabilization of the AFM phase. However, the staggered magnetization® My()\) de-

3 To this end, the staggered magnetization is determined by sampling E(B) in increments of
AB = 2.5-1073 and obtaining the derivative from local interpolations by second order polynomials.

4 To evaluate the spontaneous magnetization, we monitor the function M (B — 0) while B is decreased
exponentially. If a local minimum is found, the interpolated minimal value Mj, defines the spontaneous
magnetization.
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Figure 5.6: Magnetic properties of the 2dDH for ¥ = 0 and various inter-dimer couplings,
determined using the generator 7yg.,. Left panel: Magnetic enthalpy per spin versus staggered
magnetization for the truncation d = (8,6,6,3,3). The solid lines refer to a local Legendre
transform, the dashed lines represent the magnetic enthalpy after a Maxwell construction. For
details, see the main text. Right panel: Spontaneous magnetization versus inter-dimer coupling
for various truncation schemes. The QMC reference at A = 1 is taken from Ref. [Sandvik &
Singh(2001)].

picted in the right panel of Figure 5.6 jumps directly to a finite value for A > A. ),
indicating a first order instead of a second order phase transition. Closely after the QCP,
My reaches a maximum and decreases to zero when A is increased, which is physically not
meaningful. In addition, the error of the ground state energy after the Maxwell construc-
tion for A = 1 is significantly larger than without, see the dashed line in the left panel of
Figure 5.3. From this, we conclude that the auxiliary staggered magnetic field alone is
not sufficient for a meaningful description of the AFM phase by the triplon algebra.

The position of the QCP determined by A. », is in agreement with the QMC reference
[Sandvik & Singh(2001)], which we see as the most reliable value. The calculation via
the gap is compatible with these findings for the truncation scheme d = (6, 4,4, 3, 3). For
more complex truncation schemes, however, A, A shifts to larger values, see Tab. 5.2.

5.5 Two-dimensional Heisenberg model with varied
starting point

In the last section, we found that the default starting point for the 2dDH with an auxiliary
staggered magnetic field does not provide a satisfying description of the AFM phase. In
this section, we discuss the results for breaking the symmetry by the varied starting point
introduced in Section 5.2.2.

5.5.1 Ground state energy

At first, we focus on the ground state energy. All values of the variational parameter
lead to very similar results for Ey(¢)). Occasionally, we observed artifacts in Ey(\, B =
0,9 = const.) in the quantum-disordered phase, see Fig. 5.7, but they appear for specific
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Figure 5.7: Ground state energy per spin of the 2dDH versus inter-dimer coupling for B = 0
and various values of the variational parameter, determined using the generator ng., and the
truncation d = (8,6,6,3,3). Solid lines represent the ground state energy before the Maxwell
construction is applied. The dashed line includes the Maxwell construction. The QMC reference
value for A =1 is taken from Ref. [Sandvik & Singh(2001)].
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Figure 5.8: Ground state energy per spin of the 2dDH versus the variational parameter for
B = 0 and various inter-dimer couplings, calculated using the generator 7g., and the truncation
d = (8,6,6,3,3). The plots show the difference §Ey(¢) = Ey(¢) — Ep(7/4) to the ground state
energy at ¥ = 7/4. The left panel addresses the full range of A; the right panel refers to the first
appearance of the second local minimum. The strong fluctuations for A = 0.5 are an artifact
that vanishes as soon as a small, but finite staggered magnetic field B ~ 1073 is applied. For
comparison, we add a QMC reference value from Ref. [Sandvik & Singh(2001)].
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AL 0.5265 sCUT Nim, d = (6,4,4,3,3)
Afj 5:3:3) 0.5446 sCUT M, d = (7,5,5,3,3)
AEp639) 0.5603 sCUT Nim, d = (8,6,6,3,3)
AGE) 0.5116 sCUT Nom, d = (6,4,4,3,3)
A9 0.5240 sCUT Nom, d = (7,5,5,3,3)
A0 0.5295 sCUT Nom, d = (8,6,6,3,3)
A 0.54 perturbation theory, O(\%) [Singh et al.(1988)]
0.106 linear spin wave theory [Katoh & Imada(1993)]
0.633 perturbation theory, O(6?)  [Katoh & Imada(1993)]
0.535 QMC [Katoh & Imada(1993)]
0.523373 QMC [Matsumoto et al.(2001)]
0.52366 QMC [Wenzel & Janke(2009)]
0.52367 QMC [Jiang(2012)]
0.622 mean field theory [Koethe(2002)]
de 0.809 linear spin wave theory atoh & Imada(1993)

K ]
0.225 perturbation theory, O(§?)  [Katoh & Imada(1993)]
0.303 QMC [Katoh & Imada(1993)]

(2009)]

Q. 1.9096 QMC [Wenzel & Janke(2009)

Table 5.2: Position of the QCP determined by the sCUT method via the root (zero) of
the gap Ac A or the appearance of a spontaneous magnetization A. s, with the correspond-
ing generators and truncation schemes. For comparison, the results of perturbation the-
ory (perturbation theory), linear spin wave theory (linear spin wave theory), quantum Monte-
Carlo (QMC) and mean field theory (mean field theory) are shown. The original work of Katoh
and Imada uses § = % as expansion parameter, Wenzel and Janke use a. = 1/x.. Their results
have been expressed in terms of A for convenience.

combinations of A\ and ¥ only and vanish completely if a small staggered magnetic field
B ~ 1073 is present.

In the left panels of Figures 5.8 and 5.9, we show the dependence on ¢ in detail for
various values of the variational parameter and various truncations. As expected, the
ground state energy depends on the variational parameter only slightly. For medium and
large 1, the differences between the truncation schemes are much smaller than the depen-
dence on ¥ and therefore negligible. For small 1, the differences between the truncation
schemes are clearly visible, but are less pronounced among the more extended truncation
schemes. The vicinity of ¥ = 0 turns out to be most volatile; moreover, it is the only
region where the ground state energy before and after applying the Maxwell construction
differs significantly.

For any value of A, the function Ey(¢) has a local minimum at low but finite values
of ¥. For A > 0.63, a second local minimum emerges from a saddle point at intermediate
values of ¥, see the right panel of Figure 5.8. We show the positions of local minima as a
function of the inter-dimer coupling in the right panel of Figure 5.9.

For fixing an appropriate value of the variational parameter Jop (), we recall that ¢
controls the magnetization of the dimers in the reference state. We expect it to remain
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Figure 5.9: Properties of the 2dDH versus variational parameter for B = 0, determined using
the generator 7g.,. Left panel: Ground state energy per spin versus variational parameter for
A = 0.75 and various truncation schemes. Dashed lines indicate the ground state energy after
the Maxwell construction. Right panel: Positions of local minima of Ey(J) versus inter-dimer
coupling for the truncation d = (8,6,6,3,3). Red data points are considered as physically
meaningful solution. The black line is a fit to the function ¥(\) = a1 - VA — Ac+az- (A —X) +

as - VA — Ae® with A\ = 0.57.

zero in the quantum-disordered phase and to rise monotonously in the AFM phase, so
that it can serve as an order parameter of the AFM phase in a similar way as the stag-
gered magnetization. We consider the second minimum (marked in red in Fig. 5.9) to
be the physically meaningful solution, because it shows important characteristics that we
expected for an order parameter of the AFM phase. It rises monotonously inside the AFM
phase and a fit by a third order polynomial in \/A — A\, suggest that its position would
approach zero for A\, = 0.57 close to the QCP. By comparison with the QMC reference
for A = 1, cf. Fig. 5.8, we see that the accuracy of the associated ground state energy is
better than for most of the interval [0;7/4], but the quantitative benefits are not as clear
as for the quartic oscillator [Dusuel & Uhrig(2004)]. But this choice is spoiled by the fact
that the minimum is not present for A < 0.63. Within the limits of the tested truncation
schemes, we found that it does not stabilize at smaller values of A for a more extended
truncation. Since we can not define an optimal, unambiguous value ¥,p, we investigate
the physical properties in the full interval [0; 7/4] in the following and consider the stability
of the results.

5.5.2 Dispersion and gap

Next, we consider the one-particle properties of the effective model. Because of the rotated
starting point, the different triplon mode are still coupled by a matrix of hopping elements

t€70> = <tg,m+1

Hopping amplitudes from even to odd rows and from odd to even rows may be different
due to the different transformation of even and odd rows. Specifically, this leads to a sign
factor for processes mixing the x and y mode, which have an imaginary prefactor.

For this reason, we restore the full translation symmetry of the dimer lattice by the
transformation (5.14) first, before we apply the Fourier transformation. Exploiting the

tgﬁn = <tz,m ’ Heff Heff

t§71>. (5.18)
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Figure 5.10: Triplon dispersion of the 2dDH for A = 0.25, B = 0 for various values of 9,
calculated using the generator 1., and the truncation d = (6,4,4,3,3). The momentum is
measured with respect to the dimer lattice. Solid lines denote the transverse modes, dashed
lines stand for the longitudinal modes. All curves are nearly on top of each other.
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Figure 5.11: Magnon dispersion of the 2dDH for A = 0.6, B = 0 for various values of 1,
calculated using the generator 71, and the truncation d = (6,4,4,3,3). The dispersion for
¥ = 0.17 is representative for the plateau region ¢ € [0.0757;0.1757]. The momentum is
measured with respect to the dimer lattice. Top panel: Solid and dashed lines denote the
two transverse modes. They are identical up to a shift in momentum space. Bottom panel:
Longitudinal mode.



5.5 Two-dimensional Heisenberg model with varied starting point

125

0.6
0.5
0.4
0.3
0.2
0.1
0.0
-0.1

9=0.00

0.3

1 1 \ 1 1 I\ 1
04 05 06 07 08 09 10
A

0.700
0.600
0.500

0.400 F

0.300
0.200
0.100
0.000

0.00

A=025 ——
=050
A=060 ———
FA=075 —— 1
A =1.00

0.05 0.10 0.15 0.20

9

0.25

Figure 5.12: Gap of the 2dDH for B = 0, calculated using the generator 1., and the truncation
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Figure 5.13: Magnon dispersion of the 2dHH (A = 1) for B = 0 and ¥ = /4, calculated
using the generator 7., and the truncation d = (6,4, 4,3,3). The momentum is measured with
respect to the dimer lattice. Solid and dashed lines denote the two transverse modes. They are
identical up to a shift in momentum space. The black lines denote the dispersions w(ky, ky); red
lines (nearly on top) correspond to dispersion along the perpendicular direction w(2k,, %kx) For
comparison, the results of linear spin wave theory [Manousakis(1991)], a third order deepCUT
calculation in momentum space [Powalski(2014)] and series expansion up to order 14 [Zheng
et al.(2005)] are shown.
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remaining symmetries of the hopping matrix and decoupling the x and y modes, we find
three dispersion branches that can be written as

we (ky, ky) = Z 2R(t,7,,) cos(kzn) cos(kym) (5.19a)

n,even m

+ ( Z 2%(tﬁfm)cos(kxn)cos(kym)> —i—( Z 2%(25%%)cos(kxn)sin(kym)>

n,odd m

n,odd m

w; (kg ky) ZZ?R (t75n) cos(kyn) cos(kym) (5.19Db)

in terms of the real and imaginary parts of the non-vanishing hopping elements® with
n,m € Nyg. The two solutions wy can be connected to two continuous branches wy; e
that cross at k, = *7/2a where the square root in Equation (5.19b) vanishes. They are
identical up to a shift in momentum space wy (kz, ky) = wia(ky, ky + 7/a), which follows
from the sign factor in the transformation (5.14).

Deep inside the quantum-disordered phase, we find very small differences between the
transverse and longitudinal mode and the dispersion is practically independent of the
variational parameter, see Fig. 5.10. The differences grow with rising \; we attribute
them to truncation errors. In the AFM phase, the degeneracy of the modes is lifted for
any finite value of ¥). The gap of the transverse modes remains small. The longitudinal
gap takes a significantly larger value, see Fig. 5.11. While the edges of the interval of
Y show large deviations, we find that the dispersions are robust for intermediate ). For
A = 0.6, the dispersions do not change considerably in the region ¢ € [0.0757;0.1757]; we
provide a plot for this region in Figure A.1 of appendix A.

The deviations are largest at the positions of the gap & = (0,0) and k& = (0, £n).
We show the gap as function of A and of ¥ in Figure 5.12. The residual gap increases
systematically with rising v, even before the phase transition happens.

While small 9 describe the vanishing gap more accurately, the integration of the flow
equation diverges for small ¥ when \ increases. This problem increases if more extended
truncation schemes are considered. We presume that the reason of this divergence is the
decay of a longitudinal magnon in two or more transverse magnons, while the standard
M.n generator tries to decouple all triplon modes on equal footing. Because large ¥ lead to
an artificial transverse gap, the overlap between the longitudinal mode and the continuum
is reduced, which stabilizes the flow equation.

Finally, we want to discuss the case A = 1 in more detail, because it allows us to
compare our results with the findings of linear spin wave theory up to the order O(1/s2)
[Manousakis(1991)], a deepCUT calculation based on the Dyson-Maleev representation
in momentum space up to the order O(1/s3) [Powalski(2014)] and series expansion from
the Ising limit up to order 14 [Zheng et al.(2005)]. For the isotropic case A = 1, the
calculation converges for ¥ > 0.27 only. We show the transverse dispersions for ¢ = 7/4 in
Figure 5.13. A plateau is found in the region [0.257; 0.347] where the dispersion does not
change significantly for varying 1, as can be seen in Figure A.2 of the appendix. Strong
differences occur only in the vicinity of the gap. It is remarkable that the stable region
extends beyond the Neél ordered state (9 = 7/4).

5 Alternatively, we could stick to the broken translation symmetry in the y direction of the lattice and
Fourier transform with respect to 2a. In this way, we would obtain the same dispersions in the reduced
Brillouin zone, but all of them are twofold degenerate.
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By comparing the dispersion w(k,, k,) with its counterpart in the perpendicular di-
rection w(2k,, %kz), we find that the truncation scheme with respect to the dimerized
lattice does not lead to a significant anisotropy in the excitation spectrum. In spite of the
difficulties discussed so far (the divergence for ¢ < 0.27, the large transverse gap and the
finite truncation range), it turns out that the variational sCUT calculation can describe
the high-energy features of the transverse magnon spectrum well. Large deviations occur
only in the vicinity of the gap, where the sCUT in real space is not able to reproduce the
linearly behaviour. In the rest of the Brillouin zone, the sCUT dispersion and the O(1/s3)
deepCUT dispersion show a good agreement, but the deepCUT dispersion systematically
tends to energies smaller by Aw = 0.05 on average. For now, it can not be settled which is
correct. At the point k = (7, 7/2), the sSCUT result agrees better with the series expansion
result than the O(1/s3) deepCUT. At k = (27,0) it is the other way round.

5.5.3 Magnetization
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Figure 5.14: Magnetization of the 2dDH for B — 07, calculated using the generator 7.,
and the truncation d = (8,6,6,3,3). Left panel: Magnetization versus inter-dimer coupling for
various values of the variational parameter. The QMC reference value for A\ = 1 has been taken
from Ref. [Sandvik & Singh(2001)]. Right panel: Deviation of the magnetization from its value
for ¥ = m/4 versus variational parameter for various inter-dimer couplings.

At the end, we discuss the spontaneous staggered magnetization that we extract from
Ey by derivation with respect to the magnetic field and, if required, a Maxwell construc-
tion®, see Fig. 5.14. The spontaneous magnetization increases continuously with rising
9. The deviations are much larger than for the ground state energy. For large enough
1, the cusp in the ground state energy is suppressed quickly and the Maxwell construc-
tion becomes unnecessary. As a consequence, the magnetization increases continuously
from zero, as it must be for a continuous phase transition. However, the finite varia-
tional parameter also smears out the rise of the magnetization and shifts it to lower and
lower A, so that square root singularity can not be captured. This systematic overesti-
mation of the spontaneous magnetization is confirmed by a comparison with the QMC
reference [Sandvik & Singh(2001)].

6 To evaluate the spontaneous magnetization, we monitor the function M (B — 0) while B is decreased
exponentially. If a local minimum is found, the interpolated minimal value Mj defines the spontaneous
magnetization; if not, we evaluate the staggered magnetization at B = 0.
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5.6 One-dimensional Heisenberg chain with generic
optimization of starting point
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Figure 5.15: Schematic representation of the flow lines for the 1dDH for different strengths B of
the alternating magnetic field. The horizontal axis symbolizes an abstract distance between the
initial Hamiltonians (colored lines) and the renormalized Hamiltonian (black curve), connected
by flow lines shown as arrows. Blue color denotes the default starting point (¢ = 0), red color
denotes the varied starting point (9 = ¥opt). The left panel shows the situation for A = 0,
where the varied starting point alone is sufficient to diagonalize the Hamiltonian. The right
panel illustrates the case A > 0, where both starting points require further diagonalization by
the CUT, but the varied starting point results in a less involving calculation.

A A

Figure 5.16: Schematic representation of the flow lines for the dimerized Heisenberg chain
without magnetic field for different inter-dimer couplings A. The horizontal axis symbolizes an
abstract distance between the initial Hamiltonians (colored lines) and the renormalized Hamil-
tonian (black curve), connected by flow lines shown as arrows. Left panel: With increasing
values of A, the distance between the dimer limit as starting point and the eigenstates of the
Hamiltonian increases continuously. Right panel: The eigenstates of a Hamiltonian provide a
good starting point for the CUT of Hamiltonians with a similar value of A. This can be used to
replace one CUT for large off-diagonalities by a sequence of CUT's for small off-diagonalities.

In the last sections, we elucidated the benefits of optimizing the starting point by
introducing a variational parameter before applying the CUT method. Apart from the
application to the magnetically ordered phase, the varied starting point allowed us to
improve the speed of convergence and to reduce truncation errors of the sCUT calculation
in presence of an alternating magnetic field [Drescher(2009)].

In the limit of isolated dimers A = 0, the varied starting point discussed in Subsection
5.2.2 alone is sufficient to diagonalize the Hamiltonian, while a CUT using the default
starting point requires a numerical integration of the flow equation. In the left panel
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of Figure 5.15, this is illustrated by the blue flow lines (arrows), connecting the default
starting point (blue line) with the renormalized Hamiltonian (black line), which is identical
to the optimal starting point (red line). The horizontal axis denotes an abstract measure
for the difference of the Hamiltonians. With rising magnetic field, the difference between
the default starting point and the eigenstates becomes increasingly pronounced.

In the right panel of Figure 5.15, we illustrate the situation for finite A, where the
varied starting point alone is not sufficient to diagonalize the Hamiltonian. Yet, the
optimized starting point can yield “shorter” flow lines that are less prone to truncation
errors.

So far, we optimized the starting point using a variational parameter that was moti-
vated by the eigenstates of parts of the Hamiltonian acting on the local Hilbert space. For
interactions involving macroscopically many lattice sites, i.e., A > 0, this ansatz can not
be used. But is it possible to optimize the starting point without referring to the local
Hilbert space?

In this section, we demonstrate that we are indeed able to optimize the starting point
without being bound to rotations of the local Hilbert space. Even more, we present
an approach that is suitable for a generic Hamiltonian without referring to its algebraic
representation explicitly.

5.6.1 Stepwise optimization of starting point

10+00 : : : : :
10—02 |
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107% | |
S 1070 | -
= 10712 1step —— -
10714 2 steps ———
10716 [ 4 steps —— ]
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t

Figure 5.17: ROD versus flow parameter ¢ for the stepwise optimization of the starting point
with different discretizations. At multiples of A¢ = 20, an additional step of off-diagonality has
been added to the flowing Hamiltonian.

At first, we decompose the Hamiltonian
H(\) = Hy+ AV (5.20)

into a block-diagonal part Hy with 7Hy = 0, and an off-diagonality V. In the following,
we use the 1dDH without magnetic field as example. Upon rising A, the CUT becomes
more involved, see the left panel of Figure 5.16.

For any value of A\, we want to start the CUT from a starting point close to the
renormalized Hamiltonian Heg(A), but only for the default starting point we are able to
write down the Hamiltonian exactly. The key idea to solve this paradox is a bootstrapping
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approach: Once we have solved the flow equations for a specific value of A\, we use it as
starting point to represent Hamiltonian H(X + AX; ¢ = 0) for A + AX. Unless a phase
transition occurs, we can assume that both Hamiltonians are adiabatically connected and
that the off-diagonalities are small and the CUT converges rapidly towards H(A+A\; ¢ =
00) = Heg(A + AN). This step can be summarized as

V(A) _>V()\ +ANL=0):=V()) — VA + AN L = 0) — V+ A)\)'(5'21)

At each step, the off-diagonality V' has to be known in the same basis as the renormalized
Hamiltonian, which is accomplished by transforming V' as an observable, see Eq. (2.6). If
generator index j and observable index k are kept separately in the list of contributions
D;jg, the transformation of V' can be done based on the DES of the Hamiltonian and
no additional algebraic calculations compared to the standard sCUT are required. After
each step, A can be incremented again until the desired value is reached. The approach
starts from A\ = 0, where the Hamiltonian is block-diagonal in the default starting point
already and V' can be read off directly.

We illustrate the stepwise optimization of the starting point in Figure 5.16. The flow
consists of a series of many, quickly converging numerical integrations. Provided that A\
is sufficiently small, we can even sample the effective Hamiltonian as a function of the
physical parameter Heg(A). In this sense, the generic optimization of the starting point
behaves like a renormalization scheme based on the parameter A\. As the off-diagonality
should be the smaller the more steps are used, we expect that truncation errors due to
the CUT steps can be kept small.

However, we stress that we are not restricted to small values of AX in any way.
Because the off-diagonal part is transformed as an observable, no approximations have
been introduced so far, apart from the inevitable truncations of the sCUT.

In Figure 5.17, we show the ROD for the homogeneous S=1/2 Heisenberg chain (A = 1)
for various numbers of intermediate steps. At each multiple of Al = 20, we add another
piece of off-diagonality to the flowing Hamiltonian, leading to a sawtooth pattern. Under
these conditions, the integration time for the full flow is proportional to the number of
steps. However, we emphasize that the speed of convergence increases drastically for
larger numbers of steps, which can be seen directly at ¢ = 20. Switching to the next
step as soon as a certain value of the ROD is reached helps to compensate the increase
of integration time for large numbers of steps. As intended, the maximal ROD decreases
systematically with rising number of intermediate steps.

5.6.2 Continuous optimization of starting point

The stepwise optimization of the starting point allows us to follow the effective Hamil-
tonian as a function of the physical parameter A step-by-step, while the maximal ROD
during the transformation can be controlled by the number of steps. However, the per-
manent change between convergence down to a negligible ROD and starting anew from a
high level in the next step appears to be inefficient.

In this subsection, we modify the generic optimization of the starting point in a way
that the off-diagonality is merged into the Hamiltonian continuously. This is realized by
choosing the physical parameter as a continuous function of the flow parameter A\ — A(¢).
This leads to modifications [Uhrig(2010)] of the flow equation (2.4), because the ansatz

H(0) =UO)H (L= 0; \(0))UT(£) (5.22)
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Figure 5.18: ROD of the 1dHH (Apax—1) versus flow parameter for the continuous optimization
of the starting point for various values of £op, where the full off-diagonality has been absorbed by
the flowing Hamiltonian and normal convergence takes over. For comparison, the flow parameter
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Figure 5.19: Deviations of the ground state energy dFEy (left panel) and gap A (right panel)
of the 1dHH (Amax=1) versus the parameter fgp, of the continuous optimization of the starting
point. The flow equations have been integrated up to fnax = 200. For the particle-conserving
generator scheme, the calculation diverged for fsop, = 10 and fgop = 15; the effective Hamilto-
nian has been evaluated at a local minimum of the ROD< 107%.
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Figure 5.20: Dispersion relation w(k) of the IdHH (Apmax—1) for various values of fgop for the
continuous optimization of the starting point for the generator scheme 7);.,. For comparison,
the Bethe ansatz result [des Cloizeaux & Pearson(1962)] is shown in grey.

for the flowing Hamiltonian includes an additional implicit dependence on ¢ due to H (¢ =
0; A(¢)). Taking the total derivative with respect to ¢, we obtain

; T
(5.23a)
_ou(l) OA(Y) Ut ()
o U OHO) + =57 UOVUI(O) + HOUW) =5 (5.23D)

The first and the last term are identical for the standard flow equation. The additionally
emerging second term represents the continuous merging of the off-diagonality into the
flowing Hamiltonian, leading to an additional contribution

d

@H(é) =[n(0), HO)] + N (O)V (). (5.23¢)
Again, the flow equation for the Hamiltonian has to be solved together with the flow
equation for the observable V(¢). The function A(¢) can be chosen arbitrarily, but a
monotonous function of ¢ ranging from 0 to A\,.x appears to be natural. Here, we restrict
ourselves to linear functions

MO = A in (emp, 1), N(0) = 20 — Ctop). (5.24)

gstop

that reach their final value at the parameter (s, Where A(¢ > lgop) = Amax remains
constant and the usual asymptotic convergence of the flow equation takes over.

In Figure 5.18, we show the ROD for different generators and various values of fgp.
As a reference, we show also the flow without continuous optimization of the starting
point ({siop = 0). For better comparison, we centered the ¢ axis around (g, and used a
different scale in ¢ for ¢ > l4p. In the phase ¢ < lgop, the ROD rises slowly towards a
maximum at g, after a very short build-up phase. For 7.,, it increases exponentially
while for 7., and 7. a positive curvature is visible. The particle-conserving generator
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scheme 7),. behaves similar for large values of {4, but shows a more complex behavior
for small /4, in early phases of the flow.

If V(¢) was constant, we would expect the flow to enter a steady-state with a constant
ROD. We attribute the deviation from this scenario to the transformation of V' (¢): With
rising A, V' takes an increasingly complex shape when transformed to the basis of Heg()).
The maximum value that the ROD takes at ¢ = (g, decreases strongly with rising s, as
expected. In the regime ¢ > (g, the flow switches to the normal convergence. For 7.y,
all RODs converge exponentially with the same exponent. For 7;.,, the RODs converge
slower than exponentially, especially for larger values of lgp. This causes the different
RODs to cross around ¢ ~ (g0, + 24. For 7., the graphs are more complex, often
incorporating step- and plateau-like sections. But as a rule of thumb, the large values of
lstop converge faster than the low values.

Now, we discuss the numerical accuracy of the effective Hamiltonians obtained. In
the left panel of Figure 5.19, we present the difference of the ground state from the
Bethe ansatz solution [Bethe(1931), Hulthen(1938)] versus (yop. For all generators, the
dependence on /g, is only small, especially for 7.,. For 7., and 7., the optimization
of the starting point results in a reduction of Ej, decreasing the accuracy of the 7.
calculation. In Figure 5.20, the dispersion for different (g, is shown. For comparison,
we added the Bethe ansatz result for the gapless, first excited state [des Cloizeaux &
Pearson(1962)], which shows a higher excitation energy in the region 0.025 < k£ < 0.2 and
a lower excitation energy everywhere else. Especially the finite gap and the region where
the triplon dispersion is below the analytical excitation energy indicate truncation errors’.
In general, the corrections due to the optimization are small, but become more pronounced
around the gap at k = 0 (see inset), where the accuracy of the sCUT calculation is worst.
We investigate this in more detail in Figure 5.19, where we show the gap versus lgop.
The gap is reduced significantly due to the optimization. For 7., and fs., = 2000, it
saturates around 0.034, nearly a factor of two smaller than the gap of the standard sCUT
calculation. For 7., the gap decreases until /,, ~ 40 and then starts to rise again slowly.

5.7 Conclusions

In this chapter, we extended the sCUT approach in real-space by systematic variations of
the starting point, and applied it to low-dimensional dimerized S=1/2 Heisenberg models.

First, we addressed the 2dDH and derived an effective model of conserved hard-core
quasi-particles, triplons and magnons, for both the quantum-disordered and the AFM
phase. For the first time, we were able to treat a QPT with a spontaneous breaking of
a continuous symmetry with CUT. We reproduced qualitative features of both phases.
But, we found that the quantitative accuracy of the results is limited.

In the quantum-disordered, the standard sCUT provided robust results for the ground
state energy. We were able to derive the dispersion relation and the gap, which showed the
expected linear behavior. Close to the QCP, the deviations between different truncations
for the one-particle properties became visible, and the root of the gap turned out to be
too volatile to pinpoint the QCP accurately. It turned out to be more reliable to track
the destabilization of the quantum-disordered phase by investigating the susceptibility of
the ground state energy to a staggered magnetic field. The result \. y, is consistent with

7 A triplon dispersion above the lowest excited state is not a clear proof of truncation errors, because
it could also refer to a state inside the continuum which starts directly above the first excited state.
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the findings of QMC.

While it was not possible to extend the validity of the standard sCUT ansatz by the
staggered magnetic field alone, the combination with the varied starting point, expressed
by the mixing angle ¥/, allowed us to describe important characteristics of the AFM phase
as well. A finite variational parameter lifts the degeneracy of the triplon branches and
produces two transverse Goldstone modes with low gap and one longitudinal mode with
larger gap. For the homogeneous case A = 1, we found a very good agreement of the high-
energy features of the dispersion with the results of series expansion [Zheng et al.(2005)]
and deepCUT [Powalski(2014)] in momentum space. The accuracy of the dispersion of the
transverse mode was found to be worst at the gap, where it shows the largest dependence
on the variational parameter. This behavior has to be expected for a real-space approach.
For large A and low ¢, we observed a divergence of the 7., generator that we attribute
to the decay of the longitudinal mode into two transverse magnons.

In general, there seems to be no unique, optimal choice for the variational parameter,
but a broad region where the dispersion is robust with respect to variations of ¥. A
stationary point of Ey(¢)) with a slightly improved accuracy could be found only for
A > 0.63.

The spontaneous magnetization in the AFM phase could not be determined satisfac-
torily. It does not show a square root singularity at the QCP, depends strongly on the
variational parameter and deviates from the findings of QMC at A = 1 significantly.

In summary, we were able to extend the sCUT to treat a QPT with spontaneous
breaking of a continuous symmetry in the 2dDH. The results cover the expected qualita-
tive behavior, but are often not quantitatively reliable. We see a combination of reasons
for this behavior: In two dimensions, the sCUT requires sophisticated truncation schemes
and is limited to shorter ranges in real-space compared to one dimension. The variational
parameter introduces an additional degree of freedom and the generator has to deal with
the decay of the longitudinal mode. Altogether, these ambiguities make a robust and
quantitative description of the QPT difficult.

Finally, we developed a generic evaluation technique that allowed us to follow the
effective Hamiltonian H.g as a continuous function of a physical parameter. The existing
sCUT flow equation system can be reused; no further algebraic calculations are required.
Mathematically, this is done by choosing Heg(y) as the optimal starting point for a CUT
of the initial Hamiltonian for a similar physical parameter H(A+ A)), aiming at the limit
AN — 0.

As intended, the generic optimization of the starting point allowed us to keep the ROD
small for the price of a longer integration time. This can help us to prevent divergences in
models that where the initial Hamiltonian has large off-diagonalities. For the S=1 chain
analyzed in Chapter 6 of this thesis, the divergences are not caused by the absolute size of
the off-diagonalities, but by energy overlaps in the renormalized Hamiltonian, which are
not addressed by the generic optimization of the starting point. In a calculation for the
homogeneous Heisenberg chain, the generic optimization of the starting point was not able
to improve the ground state energy, but the value of the gap could be improved. Consid-
ering the runtime, an integration run is more costly compared to the standard evaluation
for a single set of parameters. However, we see a substantial advantage if a systematic
exploration of the parameter space is intended. If small residual off-diagonalities in the
effective Hamiltonians are acceptable, the continuous optimization of the starting point
can provide effective Hamiltonians as a continuous function in A with no additional costs.
However, if zero off-diagonality is required, we have to fall back to the stepwise optimiza-
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tion of the starting point, which has to compete with the application of the standard
integration for a mesh of parameter points.

In summary, we found some advantages of this treatment, but it depends on the
requirements of the concrete application whether the advantages outweigh the increase in
complexity.

5.8 Outlook

Before investigating the spontaneous breaking of a continuous symmetry in other mod-
els, the quantitative reliability of the approach has to be improved at first. In the
quantum-disordered phase, where no variation of the starting point is required, replacing
the sCUT by the deepCUT method can reduce the ambiguity of the truncation lead to a
more accurate description of the one-triplon properties close to the QPT. In the vicinity
of the QCP, a mean field theory calculation on top of the unstable effective Hamiltonian
to describe the condensation of triplons, as it has been done recently for the condensation
of excitons in the ionic Hubbard model [Hafez et al.(2014a)].

Deep in the AFM phase, we concluded that the decoupling of the one-particle modes
is problematic due to the decay of the gapped longitudinal magnon. Only parameter
sets with a large transverse magnon gap converged. This problem can be avoided if the
generator scheme is modified in a way that only the vacuum and the subspaces con-
taining one transverse, but no longitudinal magnons are decoupled®. The second benefit
of these approaches would be that the generator scheme itself breaks the symmetry of
the flow equations. This means that the variation of the starting point might become
obsolete for capturing the spontaneous symmetry breaking in the effective model. In
this way, the deepCUT method could be applied in the AFM phase exploiting the full
simplification rules as well.

Beyond the CUT in real-space, we mention that the evaluation of deepCUT in mo-
mentum space, starting from the Dyson-Maleev representation, is subject of ongoing
research [Powalski(2014)].

In the continuous optimization of the starting point, the interplay between the con-
vergence for rising ¢ and the introduction of further off-diagonality A(¢) leads to a finite
ROD for all /. In the spirit of renormalization techniques, we would prefer to diagonal-
ize the Hamiltonian completely in each step AX and to follow Heg(¢) directly without
spurious off-diagonalities. Since the off-diagonalities can be kept small, solving the flow
equations analytically in leading order in the off-diagonalities would be sufficient. While
perturbative CUT (pCUT) drops out due to its requirement for an equidistant spectrum
of Heg(A > 0), the enhanced perturbative CUT (epCUT) method developed in Chapter 3
would be able to fill the gap if an analytical integration scheme is provided (cf. Sect. 3.6)
and divergent generator terms are excluded from the flow or modified by an appropriate
sign factor (cf. Sect. 4.4.2).

8 Alternatively, the longitudinal magnons could be integrated out in a first step, so that the decoupling
of the transverse magnons can be done in a second CUT involving larger ranges of interaction.
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Triplons are gapped S=1 quasi-particles that have been applied successfully to de-
scribe S=1/2 Heisenberg with a magnetically disordered ground state. In this thesis, we
encountered them in chapter 5 where we used them to describe the excitation spectrum of
the two-dimensional dimerized S=1/2 Heisenberg model and the one-dimensional dimer-
ized S=1/2 Heisenberg model. The excitation spectrum of the S=1 Heisenberg chain
bears large similarities to these systems, with a S=0 ground state and gapped S=1 exci-
tations [Haldane(1983a), Haldane(1983b)]. This raises the question whether it is possible
to derive an effective quasi-particle picture in terms of triplon operators.

In this chapter, we show how such a quasi-particle picture can be developed within
the framework of the directly evaluated epCUT (deepCUT) method and to investigate
the excitation spectrum and response functions. To this end, we use a mapping to a
dimerized S=1/2 ladder with additional, diagonal interactions [White(1996)]. Interestingly,
a similar ladder with diagonal interactions has been studied recently using self-similar
CUT (sCUT) [Fischer et al.(2010), Fischer(2012a)], as an example for system in which
spontaneous quasi-particle decay occurs. This makes the search for the signature of triplon
decay one of the main aspects of our investigation.
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6.1 S=1 Heisenberg chain

Figure 6.1: Schematic representation of the S=1 Heisenberg chain.

In this section, we give a short introduction into the physical properties of the S=1
Heisenberg chain (S1HC), also called Haldane chain

H=T> 8 S (6.1)

In the following, we restrict ourselves to the anti-ferromagnetic (AFM) case J > 0 and
set J = 1. For a better distinction from the S=1/2 spin operators used in Chapter 5, we
introduce the symbol gr for the S=1 spin operator on lattice site 7.

The excitations of a Heisenberg chain depend on the spin in a very general way. In
1983, Haldane showed that chains with integer spin have a S=0 ground state with gapped
S=1 excitations, while chains with half-integer spins (like the S=1/2 chain discussed in
Section 5.1.1) can be described by fractional S=1/2 quasi-particles as elementary excita-
tions [Haldane(1983a), Haldane(1983b)]. Technically, he considered the continuum limit
for large, but finite spin and related it to the qualitative properties to the O(3) non-linear
sigma model. While spin-spin correlations decay exponentially, the ground state, ex-
hibits a topological long-range order [Rommelse & den Nijs(1987),Girvin & Arovas(1989)],
with a long-range string correlation function [den Nijs & Rommelse(1989), White &
Huse(1993)]. For open boundary conditions, this gives rise to S=1/2 edge states [White &
Huse(1993)].

So far, the system has been studied by a large variety of methods. For our study,
numerical investigations of the dispersion relation by density matrix renormalization group
(DMRG) and related methods are most relevant. As one of the first applications of
DMRG, White and Huse determined the ground state energy Fy = —1.401484038971(4),
the energy gap A = 0.41050(2) and the dispersion relation [White & Huse(1993)]. In this
work, they also discussed the possible decay of a triplon with £ < 0.37 into two triplons
with k£ ~ —0.85m. Later, the dispersion relation has been investigated also by correction
vector DMRG [Kuhner & White(1999)], time-dependent DMRG [White & Affleck(2008)]
and matrix product states (MPS) [Haegeman et al.(2012)]. The most detailed discussion
of triplon decay so far has been done in Reference [White & Affleck(2008)], where the
merging of the dispersion with the continuum has been narrowed down to the wave vector
0.2371 < k. < 0.247. In particular and the dynamic structure factors are discussed and a
quantitative comparison with the non-linear sigma model is provided.

From the experimental side, the dispersion has been measured for the S=1 compounds
Ni(C2HgN2)2NO2ClO, (shortened NENP) [Ma et al.(1992), Ma et al.(1995)] and CsNiClg
[Zaliznyak et al.(2001)].

In an extended context, the SIHC can be seen as a special case of the bilinear bi-
quadratic STHC

Hpreq = ZS : S_;H + K <'§r : §r+1>2 (6.2)
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for vanishing biquadratic interaction K = 0 [Fath & Sélyom(1991)]. By Bethe ansatz,
the Hamiltonian can be solved exactly at the points K = +1 [Uimin(1970)] and K = —1
[Babujian(1982), Takhtajan(1982)]. Between these points —1 < K < +1, the system
remains in the Haldane phase. For the qualitative understanding of this phase, the AKLT
point K = 1/3 is of particular interest, where the ground state is given by the one-
dimensional S=1 valence bond solid (VBS) state [Affleck et al.(1987),Affleck et al.(1988)].
In order to construct this state, one interprets each S=1 spin as pair of S=1/2 spins that
are in a triplet state. In the VBS state, each of the S=1/2 spin forms a singlet with another
S=1/2 spin on the adjacent lattice sites. For open boundary conditions, one S=1/2 spin
remains unpaired at both ends of the chain. These spins manifest as the edge states of
the Haldane phase.

6.2 Treatment by deepCUT with variational exten-
sions

In the last section, we gave an overview of the physical properties of the STHC and dis-
cussed the relation of the related AKLT model to a system of S=1/2 spins. In this section,
we explain the steps necessary to apply the deepCUT method to this model. As an
intermediate step, we transform the STHC to an extended S=1/2 Heisenberg ladder, intro-
ducing a variational parameter y. Using triplon operators, we express this Hamiltonian
and the observables in second quantization. In the following subsection, we describe how
the low-lying excitations can be decoupled and discuss similarities and differences to the
S=1/2 Heisenberg ladder with diagonal coupling [Fischer(2012a)]. Finally, we explain the
calculation of the energy spectrum and response functions from the effective Hamiltonian
and observables.

6.2.1 Mapping to S=1/2 Heisenberg ladder

In order to treat the STHC by deepCUT, we have to express the Hamiltonian in terms
of quasi-particle creation and annihilation operators. In contrast to the dimerized S=1/2
models that we discussed in Chapter 5, we were not able to develop a straight-forward
picture of a product state as vacuum, with the degrees of freedom of the local Hilbert state
representing the elementary excitations. On the other hand, the AKLT model [Affleck
et al.(1987), Affleck et al.(1988)] discussed before showed that the VBS state can be
described based on S=1/2 spins that couple to singlets and triplets. Indeed, the STHC
bears large similarities to dimerized S=1/2 systems, like the S=0 nature of the ground
state and the S=1 elementary excitations.

In this subsection, we apply the idea of White [White(1996)] to map the STHC to an
S=1/2 Heisenberg model. After this, the S=1/2 Hamiltonian can be expressed in second
quantization using the established triplon operators in introduced in Subsection 5.2.1.

At first, we interpret each S=1 spin S as triplet state of two spin S=1/2 operators

—

S = k4 8P (6.3)

Siot=1

The indices L and R distinguish the two S=1/2 on the same lattice site; we interpret them
as left and right legs of a ladder, see Fig. 6.2. The constraint that both S=1/2 spins form
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SR

Figure 6.2: Graphical representation of the S=1 Heisenberg chain in terms of S=1/2 operators.
The upper sketch illustrates the Hamiltonian (6.5), where the S=1 spins are replaced by pairs of
S=1/2 spins that form the rungs of a spin ladder. On each rung, the spins are coupled by a strong
ferromagnetic coupling y to a triplet. The AFM couplings between spins on adjacent rungs are
shown in grey. The lower sketch represents the Hamiltonian (6.9), where one leg of the ladder
has been shifted so that the rungs are covered by AFM couplings (dark grey). Nearest-neighbour
and next-nearest neighbour couplings are shown in lighter grey depending on the power of the
expansion parameter. The ferromagnetic coupling ¥ is shown in red.

a triplet can be expressed more conveniently as
SE. SRy, (6.4)

We incorporate it into the Hamiltonian introducing y as Lagrange multiplier

-

’H:ng-gfﬂ-|-,S~’f-Sf+1+§f-5’f+l+§f-§ﬁl+y<§f-§f—l/4>, (6.5)

The Lagrange multiplier can be visualized as control parameter for the doping of the
S1HC by S=0 particles, which increase the dimension of the local Hilbert space to four.
In the limit y — —oo, these unphysical states are suppressed completely. The case y = 0
is known as composite spin model [White(1996)].

In order to map the system to a ladder with AFM rung coupling, we shift the right
leg by one lattice site

Sk =35k, Sft=Sk,. (6.6)

The final geometry of the model as S=1/2 Heisenberg ladder with two kinds of diagonal
coupling is illustrated in Figure 6.2. In the following, we denote this Hamiltonian as
extended S=1/2 Heisenberg ladder (EHL). We will use this name predominantly when
we refer to the model for x # 1, or when we want to point out that the Hamiltonian
still includes unphysical eigenstates that are not present in the SIHC. For the parameter
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x = 1, we will usually refer to this Hamiltonian as STHC, even though we are aware that,
strictly speaking, we consider its embedding into the EHL.

For the calculation of response functions, we have to express the associated observables
in the same basis. In this chapter, we consider the observable

Og=1 = 85 = Sy + 55" = Sy + I (6.7)

that can excite the system from the S=0 ground state into an S=1 state, and the S=0
observable

Os_o =88 =S §F+ §F . §7 + G . GL 4 R SR (6.8)
—GL.GL 4 SL. SR 4 GR . SL 4 GR . SE

6.2.2 Triplon Hamiltonian and observables

In order to express the EHL Hamiltonian in second quantization, we perform an expansion
around a dimerized reference state and introduce triplon creation and annihilation opera-
tors, see Sub. 5.2.1. For S=1/2 Heisenberg ladders, placing the dimers on the rungs of the
ladder is a good starting point even for strong leg couplings [Schmidt(2004), Duffe(2010),
Fischer(2012a),Krull et al.(2012)]. In order to apply deepCUT, we introduce an expansion
parameter z for terms acting on multiple rungs. We assign the nearest neighbour (NN)
interactions to the first order and next-nearest neighbour (NNN) interactions to the sec-
ond order. In this way, we are able to exploit the extended simplification rules for NN as
explained in Subsections 3.5.2 and 3.5.4. The expansion parameter has no deeper physical
meaning apart from the reference state becoming the ground state for x = 0. For our
study of the STHC, we are interested in the case x = 1 exclusively. This brings us to the
expression

=Y a8t 8t + 8- 574 22 S7- Sly 287 90+ ayl - ST - f1 2
(6.9)

In the continuous unitary transformation (CUT), we will treat the Lagrange multiplier
y as variational parameter. A strongly negative y shifts the unphysical states to high
energies, so that they do not distort the low energy spectrum. On the other hand, we will
see that the large couplings for high absolute values of y can hinder the convergence of
the flow equations, so that we have to find a trade-off.

Finally, we express the Hamiltonian in terms of triplon operators. To increase the
readability, we split up the Hamiltonian

H = Hyo+ Hya,p + Hiann + Hiansw + Hoone + Hoo new (6.10)
+ Ho.onn + Haonnw + Hoonn + Hoonww + Haa nn + Hooo nww + Hionn + Hio Nnn

in blocks H., that create ¢ and annihilate a triplons and distinguish between local, NN

1 An alternative that we do not consider here is the modification of the extended simplification rules by
considering also NNN as adjacent, see page 63. While this would increase the accuracy of the calculation
by considering NNN processes as being first order in x as well, it comes for the price of less strict
simplification rules and a more involving calculation.
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and NNN contributions. The individual blocks read

Ho.o = (—§ - 1y) 1 (6.11a)

. 4 4
Hiay = Z tortee (6.11b)
Hi.inn Z Z ( x— —w) (t?Tt?H + tﬂlta ) (6.11c)
Hiannn = Z Z _ZxQ (t?thfﬂ + ity ) (6.11d)
Hja NN = Z Z < T+ 1‘3/) <tmt: tZilt t‘”tl tfjrltr+1> (6.11¢)
T BFY
Hyannn = Z Z }1372 (tf*tl ]! 2t7"+2 £t fBTﬂwz) (6.11f)
T BFEy
Hj.onn = Z Z < > taTtr+1 = Hg:zNN (6.11g)
Hyonnn = Z Z 215&%?12 = Hionwy  (6.11h)
Haa NN = Z Z 1 VYCapy (t tﬁltrﬂ — ') tr-l—l) = HlT:QNN (6.111)
T aﬁv
Hyannn = Z Z —z? €aBy ( r t’Bthr+2 tmﬂ tr+2) = HI:Q,NNN' (6-11j)
r aﬂv

The off-diagonalities are given by the Bogoliubov blocks HQ(B and the blocks HQ(Tl) that
induce the decay of one triplon in two triplons; the block Ha.q nn is particularly pronounced
for large absolute values of the variational parameter.

In the triplon representation, the Hamiltonian has some symmetries that we discussed
in Subsection 5.2.4 for the two-dimensional dimerized S=1/2 Heisenberg model (2dDH)

already For the CUT, we exploit herrmtlclty GT, the SU(2) spin symmetry expressed
by ny and chc, translation symmetry Gtrans and the point reflection symmetry of the

ladder with diagonal couplings, which is mathematically identical to the symmetry Ghor
of the 2dDH.

For using simplification rules in the transformation of the observables, non-local terms
in Og—; and Og—y have to be multiplied by the expansion parameter. We obtain the
modified observables

Og—y = xSY* + 2817
= (tZTthZ S )—i—ix (tyTt’” L ) (6.12)
0 0 -1 -1 2 0“0 0“0 —1%-1 —1%-1 .
Og—o = xSF . SF + Sk . §f 4 42§ . GE 4 4GRSk (6.13)

For both observables, we exploit hermiticity @T and xy spin symmetry @Xy. For Og—, we
exploit the cyclic spin symmetry Gy in addition.
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6.2.3 Decoupling of the low quasi-particle sub-spaces
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Figure 6.3: ROD versus flow parameter of the 2:n based variational generator schemes in order
8 for y = —2, aiming at two quasi-particles. For comparison, the norm of the 2:3 block of the
T.n generator scheme is shown.

In this subsection, we discuss the challanges of decoupling the low-quasi-particle sub-

spaces. At first, we compare the situation with the related asymmetric antiferromagnetic
spin S=1/2 Heisenberg ladder (AASHL)

Haasm = »_ S5 S8+ a8k S + 287 S8 | + 458k, SF (6.14)

where spontaneous quasi-particle decay has been studied by sCUT already [Fischer et al.(2010),
Fischer(2012a)]. In their works, Fischer and Uhrig used the generator scheme 7., to de-
couple determine two-quasi-particle bound states for the determination of the lower edges
of the multi-quasi-particle continua. For the calculation of the dispersion, they found
that the 7)., generator scheme does not describe the merging of the dispersion with the
two-quasi-particle correctly, but presses the dispersion to the lower edge of the continuum.
This results in deviations of the dispersion relation outside the continuum as well. Instead,
they used the 7)., generator scheme to decouple the ground state only and treated the
couplings between the one, two and three quasi-particle sectors by an exact diagonaliza-
tion (ED) in a finite sub-space. Later, it was found that the quality of the results could be
improved further by using a modified generator 7., %! that rotates away the strong 3:1
processes, but does not take into account the weak 2:1 decay processes [Fischer(2012b)].

We compare both models by the contributions of the Hamiltonian’s blocks to the
initial off-diagonality. Fischer and Uhrig investigated the systems for parameters z < 1
and |§| < 0.5. They found out that for a ferromagnetic’ coupling § < 0 the overlap
between dispersion and continuum is significantly larger and the decay can be observed
better. Hence we get the upper bounds

= 1
3 j=—0.
RODQAOAgIgL2 S (42° — 429 + 7°) 1228 234375 (6.15a)
= 1,
3 =
RODE = 557 "= 45 0.375 (6.15b)

2 For negative ¢, they refer to the model as asymmetric ferro-antiferromagnetic spin S=1/2 Heisenberg
ladder (AFASHL).
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for the initial off-diagonalities in the model. We see that the 2:0 block dominates and
that the decay terms are comparably weak.

For the EHL, we are confined to x = 1. In Section 6.3, we will select y = —2.5 as
typical value of the variational parameter. Compared to the AASHL, the off-diagonalities

r=

2 3 —255
RODENG,™ = 4| Hao x| * + 4 |[Hao x| = < (42% + 2%y — 4’y + 2*) =" 7.96875
(6.16a)
rx= 1
2 3 ——25
ROD];III&2 =4 HH2:1,NNN||2 + 4 HHQ;LNNNH2 = §$2 (QZQ + y2) y% 10.875 (616b)

are tremendous. Furthermore, we see that the decay block is in the same order of mag-
nitude as the Bogoliubov terms. We found that neglecting the 2:1 blocks in the 7.,
generator scheme does not lead to a meaningful dispersion relation. In order to avoid
large off-diagonalities in the diagonalization of the effective Hamiltonian, we use the 7.,
generator scheme for the calculation of the ground state energy only. For the calculation
of the one-quasi-particle properties, we use the standard 7;.,. We find that it leads to an
accurate description outside the continuum.

Due to the large overlap of the two-quasi-particle and the three-quasi-particle sub-
spaces, the decoupling of the two-quasi-particle sector is cumbersome. Beginning with
order four, the generator 7., becomes unstable depending on the value of y, and diverges
always in order seven and above. At these low orders, the dispersion relation is not
satisfying, so that we do not expect meaningful results for the higher quasi-particle sub-
spaces.

One might wonder whether it is possible to take only the most important representa-
tives with the lowest minimal order into account for 7,.,. However, it turns out that even
the leading minimal order of the 2:n terms renders the flow divergent.

Another possibility is to fall back on the generator scheme 7., and to treat the ef-
fective Hamiltonian by ED for the sub-spaces of at most three quasi-particles. But in an
exemplary calculation in order eight for y = —2, see Fig. 6.3, we found that this generator
leads to a huge residual off-diagonality (ROD) of 16.9 for the 2:1 sub-block. Treating
these large off-diagonalities by ED in a finite sub-space satisfactorily requires to consider
large ranges of interaction in the diagonalization, which is computationally intensive, and
yet the matrix elements to the four quasi-particle sector are not accounted for.

To resolve this dilemma, we developed the variational generator schemes in Chapter
4. The scalar, vectorial and tensorial optimization of the 2:3 block allow us to decouple
the two-quasi-particle to a large extent from the high-quasi-particle sectors and keep the
flow equations convergent for most parameters. Only for large absolute values of the
variational parameter y &~ —5, or when the three-quasi-particle sub-space is targeted in
high order, we encounter a divergence due to 2:4 processes.

In Figure 6.3, we show the typical RODs as functions of the flow parameter for the
parameter y = —2 in order eight. The scalar optimization of the 2:3 block allows us to
stabilize the ROD at 0.979. This value is improved further to 0.150 when the vectorial
optimization® is applied. Often, the vectorial optimization does not reach a constant value

3 As suggested in Subsub. 4.4.2, we apply an reduction of the self-adaptive threshold of the vectorial
optimization by 30 % after each step of integration. This suppresses sign fluctuations satisfactory and
allows us to reach a small ROD. We use this parameter throughout this chapter if not stated otherwise
explicitly.
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for large values of the flow parameter, but decreases slowly. For all calculations in this
chapter, we stop the flow at ¢ = 200 if not mentioned otherwise explicitly.

The tensorial optimization provides the strongest decoupling by far; for the same
parameters, we are able to reach a ROD < 10~!' at ¢ = 200. The major drawback of
the tensorial optimization is that the integration times increase strongly for high orders,
which makes the application of the tensorial optimization problematic. Up to eight, we
found the results of the tensorial optimization to be very close to those of the vectorial
optimization. Hence, the level of decoupling is sufficient for the investigations done in this
chapter, we stick to the scalar and vectorial optimization due to their better computational
performance.

If not mentioned otherwise, we target all quasi-particle sub-spaces that are required
for the quantities of interest and below, i.e., we target the zero quasi-particle sub-space
if we are interest in the ground state energy only, we target the sub-spaces of at most one
quasi-particle when we determine the dispersion or the one-quasi-particle structure factor
and we target the sub-spaces of at most two quasi-particles when we calculate two-particle
bound states and two-particle structure factors.

6.2.4 Evaluation of spectral properties

In this subsection, we sketch the evaluation techniques that are applied to analyze the
effective Hamiltonian and the effective observables after the deepCUT. These evaluation
techniques have been explained in detail in Reference [Schmidt(2004)], where Schmidt
studied the spectral properties of various triplon models by perturbative CUT (pCUT).
They have been adapted to sCUT by Fischer [Fischer(2012a)] in his study of the AASHL.
Because both sCUT and deepCUT share the same representation of the effective Hamil-
tonian, we use Fischer’s program for the evaluation of the energy spectrum as well as the
static and dynamical structure factor.

Here, we do not aim at a full deduction, but give only the definition of the quantities
calculated in this chapter. For any details of the deduction and the implementation, we
refer the reader to the aforementioned references.

In order to determine the energy spectrum, the Hamiltonian is diagonalized numeri-
cally in a finite sub-space after the ground state is decoupled by CUT. Exploiting trans-
lation invariance, each sub-space of different total momentum can be diagonalized sepa-
rately. We use the representation

1 )
|k, ) = N Z e I, ag) (6.17a)
1 - 1
ko) an) =+ > e* () |r, ag) |+ di, i) (6.17b)

T

1 .
[k, 00) [do, aa) [dy. 02) = 2 > R ET2) 1 o) [ 4 dy,y ) |F o dy - doy ) (6.17¢)

r

for states of fixed total momentum k, that are constructed from the states with triplons
on fixed positions r, r +dy, r + dy + dy with flavors ag, a1, as € {x,y, 2} by a Fourier trans-
formation [Fischer et al.(2010), Fischer(2012a)]. It has the advantage that no momentum
quantization due to a finite lattice size has to be considered, so that it is possible to work in
the thermodynamic limit directly. Only the relative distances dy, ds between lattice sites
occupied by triplons have to be restricted. Furthermore, the numerical effort decreases
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significantly, because the calculations can be carried out independently for different to-
tal momenta. In this chapter, we use a maximal distance of 2000 lattice sites for the
diagonalization of the two-quasi-particle sub-space. When also the three-quasi-particle
sub-space is considered, we reduce the maximal values of d; and dy to 100.

The diagonalization becomes more efficient when the conservation of further quantum
numbers is exploited by considering only sub-spaces of fixed total spin S and fixed mag-
netic quantum number m. Because no magnetic field is applied, we can restrict ourselves
to the case m = 0. The construction of the states with fixed S and m can be found in
Reference [Fischer(2012a)]. The three triplon state with S = 0, which has been added to
analyze the S=0 spectrum in Sect. 6.5, is defined as

V6

After the Hamiltonian matrix has been constructed from the coefficients in second quanti-
zation, it is diagonalized numerically using the INTEL MATH KERNEL LIBRARY (version
10.2.6).

For the comparison with experiments, the response of the system to external influences,
e.g. the scattering of photons or neutrons, is of great interest. For zero temperature, it
can be expressed by the retarded Green’s function

19 =0,m =0) = —= (+|zyx) + |w2y) + [yzz) — [vyz) — |z2y) — |yzz)) . (6.18)

G5'(t) = =7 (ol [O'(t), 0(0)] [v0) O(2) (6.19)

7

h
with respect to the observable O(t) in the Heisenberg picture and the ground state of the
system [t¢g). By a Fourier transformation, we get the representation

+oo
G5t (w) = / Gt (t)e™ dt. (6.20)

For positive energies, it is related to the dynamical structure factor

1

(= Ey) £i0-° o) with O=0(t=0). (6.21)

1
So(w) =—=S of
(9( ) T <¢0| hw —
For the evaluation by CUTs, it is convenient to evaluate the dynamical structure factor

in basis of the effective model [Schmidt(2004)]

1
T
T — (Heg — Ep) + i0+

So(w) = —%% 0|0 Ou 0) (6.22)

Before we explain the calculation of of the dynamical structure factor from the effec-
tive Hamiltonian, we discuss the decomposition into more individual contributions that
allow for a more detailed insight into the dynamics of the model. To this end, it is use-
ful to decompose the state Ou|0) in terms of the conserved quantum numbers of the
model. Using the decomposition into states of fixed total momentum k, we evaluate the
momentum-resolved dynamical structure factor

! o
hw — (Hug — Eo) + 10+ %

So(k,w) = —%% (0] O (k) (k)]0 . (6.23)
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For a even more fine-grained analysis, the state Oeg(k)|0) can be decomposed further
according to other quantum numbers, e. g. the total spin.

Using the particle-based generator schemes, the CUT decouples the quasi-particle sub-
spaces of interest. As a result, the quasi-particle number takes the role of a conserved
quantity and can be used to split the dynamical structure factor into the contributions of
the individual quasi-particle sub-spaces

1 1
Solkw) =3 =28 (01 Olon k) o —— g7 Oerno (W10 (6:240)
=: Z Son(k,w). (6.24b)

Mathematically, the evaluation of the dynamical structure factor corresponds to the
evaluation of a resolvent. For a tridiagonal matrix, a resolvent can be represented ef-
ficiently as continued fraction with coefficients a,,, b, [Zwanzig(1961), Mori(1965), Pettifor
& Weaire(1985),Gagliano & Balseiro(1987), Viswanath & Miiller(1994)]. We use the Lanc-
zos algorithm to bring the Hamiltonian into a tridiagonal shape as a first step. To this
end, we work with a matrix representation of the Hamiltonian and a vector representation
for the starting vector O.g,,.o(k)[0) in the S=0 and S=1 spin sub-spaces with respect to
the basis states (6.17¢) [Fischer(2012b)].

The calculation in a sub-space with finite range allows it to extract only a limited
number of continued fraction coefficients, before numerical artifacts spoiled the calcula-
tion. For a range d; = 2000 in the two-triplon sub-space, we were able to extract the
coefficients up to a depth of n = 450. However, a continued fraction of finite depth leads
to a dynamical structure factor that has poles in w at the eigenvalues of the tridiagonal
Hamiltonian. The solution to this problem is to use a terminator function that is used to
extrapolates a continued fraction of infinite depth. In this work, we used the square-root
terminator [Pettifor & Weaire(1985)]. The parameters ao, and by, have been determined
by averaging over the last 100 coefficients a,, and b,,.

States outside the continuum, like the dispersion and bound states, appear in the
dynamical structure factor as Dirac peaks o« d(w — wy) for the corresponding energy wy
when no residual off-diagonalities are left. This makes them invisible when the dynamical
structure factor is evaluated numerically with a finite resolution in w. The solution to this
issue is to introduce a slight broadening € and to evaluate the dynamical structure factor
at a complex frequency So(k,w + i€). By this, the Dirac peaks appear as Lorentzian
functions.

From the energy-resolved dynamical structure factor (also called spectral density), the
corresponding statical structure factor (also called spectral weight) can be determined by
integration over the energy

“+oo

swwz/%mecw@mﬁmmwmw (6.25)

—00

It is given by the squared norm of the starting vector. Because the one-triplon sub-space
for a fixed total momentum consists of three degenerate states only, we can assign a cor-
responding share of the spectral weight to each of them. This is a qualitative difference
to the two-quasi-particle states inside the continuum. For them, a finite weight is shared
between an increasing number of states when larger and larger ranges d; are considered.
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In the limit of infinite d;, the weight of the individual state vanishes, while the density
converges to a finite value. An important exception are bound states outside the contin-
uum. As discrete states, they concentrate a finite spectral weight SB5(k) in a fixed energy
level. Technically, we calculate this factor as the overlap between the starting vector
Octtneo |0) and the eigenvector of the Hamiltonian corresponding to the bound state.

Integrating out the momentum, one obtains the weight of the individual quasi-particle
sub-spaces

+m
I = [ Sou(B)dk = (0] Ol Our 0} (0.20

—T

The contributions of the different quasi-particle sub-spaces are not arbitrary, but are
subject to a sum rule, which can be written for hermitian observables as

Lot = ) 1o =) (0] O%|0) = (0] 0]0)*. (6.27)

For the S=1 observable Os_;, we can calculate the total weight analytically
Le ' = (0] %87 [0) — ((0] 280 |0))* (6.284)

2 2
— 22 (0| ((SOL’Z) + (Sfff) + 255*51}5) 10) — 22 (0] (SOL’Z + Sff) 0)2 (6.28D)
1 2 5 =

Due to the SU(2) symmetry of the model, the expectation value of the product of the S*

spin operators is the same as for the S* and SY operators. This allows us to identify it

with the coupling term of the Lagrange multiplier y. For the description of the STHC,
the low-energy properties have to be independent of y. This brings us to the result

22 ok, 1 2

x 2 ( 0, ) SIHC 2

It%t:1:?+§x 3

5t (6.28d)

In this section, we explained the mapping of the STHC to an effective spin S=1/2 model
and described how this model can be analyzed by deepCUT with a variational parameter.
In the next section, we discuss appropriate values for the variational parameter, before
we investigate the physical results in the sections thereafter.

6.3 Selection of the variational parameter

In this section, we discuss the selection of the Lagrange multiplier y, that couples to
the eigenstates of the EHL that do not belong to the embedded SITHC. We stress that
the extension of the Hilbert space does not mean any interaction between physical and
unphysical states, and a diagonalization of the Hamiltonian should show difference for
the eigenvalues in the physical sub-space. The benefit of a strongly negative y, however,
is that it shifts these unphysical states to high energies. We illustrate this in Figure 6.4,
where we show a part of the eigenvalue spectrum of the EHL determined by ED for x = 1
and various values of y. The eigenvalues of the SIHC have been identified by an ED of
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Figure 6.4: Eigenvalue spectrum of the extended S=1/2 Heisenberg ladder with 12 rungs at
x = 1 for the momentum k = m, obtained by an ED using the ALPS package [Albuquerque
& ALPS collaboration(2007), Bauer et al.(2011)]. The energy eigenvalues have been subtracted
by the ground state energy. Eigenvalues of the embedded SIHC (black) are independent of the
variational parameter. Unphysical eigenvalues due to the mapping are marked in red.

the S=1 system. Both ED calculations were done using the ALPS package [Albuquerque
& ALPS collaboration(2007), Bauer et al.(2011)].

It turns out that even a small absolute value of y suppresses the unphysical eigenvalues
decently. Even at y = 0, the lowest unphysical eigenvalue at k = 7 has an energy
E — Ey = 2.639 > 6A, which is about six times the energy of the gap. At y = —2.5,
the difference to the ground state energy grows to about ten times the gap. A reason for
this can be seen in the fact that even for the standard S=!/2 Heisenberg ladder without
any diagonal couplings, the probability of finding a diagonally situated pair of spins in a
triplet state is 96.2 % [White(1996)].

In the CUT, we start with the singlet product state as reference state, which does not
imply any correlation between diagonally situated spins. By a change of /4, they are in a
singlet state. The CUT itself can not distinguish physical and unphysical states directly;
it considers their energy only. However, we use the CUT to derive an effective low-energy
model of the EHL. Because the unphysical states are high up in energy, essentially, this is
the physics of the STHC. During the flow, no interaction between physical and unphysical
states is introduced apart from truncation errors.

While the suppression of the unphysical states favors large absolute values for y, the
associated large off-diagonalities are expected to increase truncation errors, which spoils
an accurate description of the SIHC. In order to find a good trade-off, we treat y as
variational parameter in a similar way as the mixing angle ¥ used in the context of sCUT
in Chapter 5.

In Figure 6.5, we show the deviations of the ground state of the EHL from the ground
state energy of the STHC determined by DMRG [White & Huse(1993)] versus the ex-
pansion parameter x for various values of y. While the ground state energy of the EHL
depends strongly on y for x < 1, the result becomes nearly independent of the variational
parameter at the STHC point x = 1. In Figure 6.6, we show the tiny residual differences to
the DMRG result. The dependence on the variational parameter decreases systematically
when the order of calculation is increased and truncation errors become less pronounced.
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Figure 6.5: Left panel: Difference of the ground state energy per S=1 spin in order 14 from
the DMRG reference [White & Huse(1993)] versus expansion parameter for various values of
the variational parameter, determined using the generator 7g.,. Right panel: Triplon dispersion
in order 12 for various values of the variational parameter, determined using the generator 71.,.
For comparison, we show the dispersion obtained by MPS [Haegeman et al.(2012)].

We observed a systematic even-odd effect for calculations using the 7., generator: The
ground state energy in odd orders decreases systematically for rising y, while it decreases
for the even orders; the accuracy is visibly better for even orders. In both cases, no sta-
tionary points for y < 0 are found, but the intersections of Ey(y) for consecutive even
orders provide a very good agreement with the DMRG reference. The position of the
intersection shifts to more negative values of y with rising order. This is reasonable since
the truncation errors caused by large absolute values of y are less important in high orders,
and the unphysical states can be suppressed more effectively for strongly negative y. For
the ng., generator, we encounter no divergence of the flow equations even for extremely
negative values of y.

We investigated the ground state energy and the gap determined by 7;., generator as
well, but we did not find a systematic behavior. When investigating the dispersion, see
Fig. 6.5, we see only small variations for different y when the order of calculation is high
enough. The remaining variations are acceptable in a plateau region around the interval
y € [—5;—1], and particularly robust for y € [—3; —2]. They concentrate primarily on
those momenta where the dispersion already entered the multi-triplon continuum and the
one-quasi-particle state is ambiguous anyways. For too negative values of the variational
parameter, the deviations grow large and the calculation diverges in high orders.

So far, no rigorous criterion has been found to determine the optimal value of y. The
intersections of Fy(y) are a good choice if one is interested in the ground state energy
only, but the corresponding dispersions in the same orders show no advantages of these
parameters. As a matter of fact, these points tend to push the dispersion out of the
plateau region in high orders, which decreases the reliability of the result. We tested a
combined calculation which uses the 7., generator in a first step to decouple the ground
state and a second deepCUT using the 7., generator to decouple the dispersion. It lead
to worse results than a single deepCUT using the 7;., generator.

Based on the robustness of the dispersion, we favor the interval [—3; —2] for the varia-
tional parameter; in addition, most of the functions Fy(y) intersect in this region. In the
rest of the chapter we select y = —2.5 as representative value, but consider other values
of y to assess the robustness of our results.
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Figure 6.6: Difference of the ground state energy per S=1 spin to the DMRG reference [White
& Huse(1993)] versus the variational parameter, determined using the generator 7g.,. Left panel:
Even orders of calculation. Right panel: Odd orders.
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Figure 6.7: Triplon dispersion at y = —2.5 for various orders of calculation, determined

using the generator 7;.,. For comparison, we show the dispersion obtained by MPS [Haegeman
et al.(2012)].

In this section, we present our findings for the energy spectrum of the SIHC, ad-
dressing ground state, dispersion and multi-triplon states. We concentrate on a general
overview; the details of the S=0 and the S=1 spectrum, like the possibility of an S=0 two-
triplon bound state and the spontaneous quasi-particle decay of the triplon, are discussed
separately in the following two sections.

For the ground state energy per S=1 spin, we find the value Fy = —1.3999 for y =
—2.5 in order 16. It is in very good agreement with the findings of DMRG [White &
Huse(1993)]* and deviates by only 0.11 %.

4 More recent works using DMRG, e.g. [White & Affleck(2008)] or MPS [Haegeman et al.(2012)]
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Figure 6.8: Energy spectrum of the SIHC for y = —2.5 in order 10, determined using the
generator 7s., with vectorial optimization of the 2:3 block, targeting the two-quasi-particle
sector. The multi-triplon continuum is filled with grey. The black solid line stands for the
triplon dispersion. The red, green and blue curves stand stand for the edges of the two, three
and four quasi-particle continua. Left panel: The colored dashed lines show the lower edges of
the continua if only the dispersion, but not the two-triplon bound states are taken into account.
Right panel: The two-triplon bound states are shown by dark yellow lines (solid for S=0, dashed
for S=1, dotted for S=2). The S=1 and S=2 bound state are nearly on top of each other. For
comparison, we show the dispersion obtained by MPS [Haegeman et al.(2012)] as black dashed
line. Outside the continuum, it is nearly on top of the deepCUT result.

Although we expected that the spontaneous quasi-particle decay is problematic for the
calculation of the dispersion relation using the generator 7).,, we find that the dispersion
converges outside the continuum very well with rising orders, see Fig. 6.7. The largest
deviations between different orders of calculation happen inside the two-quasi-particle
continuum, where no simple distinction between one- and two-quasi-particle states can
be made. A comparison with the dispersion determined by MPS [Haegeman et al.(2012)]
shows a very good agreement, see Fig. 6.7. The same statement holds also for a comparison
with tDMRG data [White & Affleck(2008)] (not shown) which coincide with the MPS
data for the level of detail of our plot. We find a larger difference to a recent Gutzwiller
calculation [Liu et al.(2014)] (not shown), but we see the very good agreement with MPS
and tDMRG as confirmation of our result. For the energy gap of the dispersion at k = ,
we obtain the value A = 0.4268 for y = —2.5 in order 14, which deviates by 3.96 %
from the DMRG result [White & Huse(1993)]. The largest quantitative difference to the
MPS result outside the continuum happens close to the maximum of the dispersion in
the vicinity of k = 0.47. Here, the deepCU'T results are systematically too high in energy
and do not seem to improve for increasing order.

This ’buckling” may be caused by the interaction with the two-quasi-particle con-
tinuum at lower values of momentum. In the left panel of Figure 6.8, we show the
dispersion together with the multi-triplon continuum. When the dispersion enters the
two-quasi-particle continuum at k. &~ 0.26, it is pushed to the lower edge of the contin-
uum by the 7., generator. Because the number of Fourier coefficients that parametrize
the dispersion is limited due to the treatment in real space, the dispersion behaves 'rigid’
to some extend and is affected also outside the continuum.

calculate the ground state energy with even higher accuracy, but these corrections are much smaller that
the difference to the deepCUT result.
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To determine the boundaries of the two-triplon continuum [Fischer(2012a)], we eval-
uated the maximal and minimal values of the two-triplon dispersion

wa(k, q) = w2+ q) + w(¥/2—q). (6.29)

This formula can be generalized to higher quasi-particle sub-spaces, but here one has to
make sure to consider bound states as well. This leads to a significant lowering of the
edges of the multi-quasi-particle continua, see left panel of Fig. 6.8. We find a strong
overlap between the two-, three- and four-quasi-particle continua; the lower edges of all
continua are close to each other so that, in fact, the two-triplon continuum is located in
the low-energy part of the three- and higher triplon continuum. Around k = 7, the three-
triplon continuum comes even below the lower edge of the two-triplon continuum. This
counter-intuitive quasi-particle picture explains the large problems that the standard 7.,
generator encounters for rotating away the 2:3 block. Even the four-triplon continuum
comes low in energy and, in some calculations, we found that the four-quasi-particle edge
around k£ = 0.7m was even lower than the other continua. The distinction between the
contributions of the different sub-spaces is important to understand the challenges for the
CUT. However, we have to stress that this distinction is more a matter of interpretation
by the effective quasi-particle picture.

In the right panel of Figure 6.8, we show the discrete two-triplon bound states found
by a diagonalization of the effective Hamiltonian in the two-quasi-particle sub-space. The
S=1 and S=2 bound state have only a small binding energy and merge into the three-
quasi-particle continuum for large values of k. We do not expect that they are physically
relevant for the STHC.

The S=0 bound state is more interesting since it has a much larger binding energy
and is below the three-triplon continuum for all £ > 7/2. To our knowledge, no bound
state has been found in the STHC so far. Therefore, it is important to clarify whether it
is a physical result or an artifact of the CUT or of the mapping to the EHL, respectively.
We discuss the properties of this state in detail in the following section, together with the
spectral properties of the S=0 sub-space. In the section thereafter, we address the S=1
sub-space.

6.5 Details of the S=0 spectrum

In this section, we focus on the spectral properties of the SIHC in the S=0 sub-space.
At first, we investigate the energy of the S=0 bound state found in the last section in
more detail. Afterwards, we discuss the static and dynamical structure factors in the
two-triplon sub-space.

To our knowledge, an S=0 bound state in the STHC has not been found in other inves-
tigations so far. In 1993, White and Huse reported a slightly repulsive interaction in the
S=0 channel, but their analysis focussed on low-lying two-triplon states composed of two
triplon with k& &~ 7 only, which were located in the vicinity of £ = 0, while the deepCUT
bound state is stable for large values of k. A Gutzwiller study [Liu et al.(2014)] reported a
repulsive interaction for S=0 as well, but we have to bring to mind the deviations for the
one-triplon dispersion. Finally, we mention the MPS reference [Hacgeman et al.(2012)],
which explored higher excited states as well. At k = 7, they find that the lowest state
above the dispersion is indeed S=0, but with a high energy F ~ 4A. However, we stress
that in the thermodynamic limit, the lower edge of the three-triplon continuum at £k =
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Figure 6.9: Energy of the S=0 bound state in the STHC for the 9., generator with scalar
optimization of the 2:3 block, determined by a diagonalization of the two-triplon sub-space. Left
panel: Bound state for y = —2.5 and various orders. Right panel: Bound state for order 11 and
various values of y. In addition, the dispersion and the lower edges of the two- and three triplon
sub-space determined by the same generator in order 11 at y = —2.5 are shown.

can be constructed from three triplons with k& = 7, which leads to a lower edge of at most
E = 3A. From this, we conclude that the MPS study for the presented matrix dimension
clearly overestimates the lowest S=0 state at k = 7.

Altogether, we do not see a compelling reason to rule out a S=0 bound state beforehand
and find a detailed investigation of the deepCUT result to be in order.

In our analysis of the effective Hamiltonian by a numerical diagonalization in the
two-triplon subspace, we found the S=0 bound state to be stable for all tested generator
schemes, the 7., generator scheme and the 7)., based generator schemes with scalar,
vectorial and tensorial optimization of the 2:3 block. In Figures (Figs.) 6.9 and 6.10, we
show the results of scalar and vectorial optimization for various orders and various values
of y. In the highest orders of the 7., based generator schemes, the bound state leaves
the two-triplon continuum around k£ =~ 0.527 and remains stable up to & = w. Here, the
binding energy with respect to the two-triplon continuum is large; however, the lower edge
of the three-triplon continuum comes close. With respect to the three-triplon continuum,
the largest binding energy happens around k ~ 0.77.

In lower orders, the binding energy is stronger, so that the bound state appears for
lower momenta down to k = 0, but follows the continuum tightly. We consider this as a
numerical artifact. Due to the curvature of the continuum, this happens often in the region
where the dispersion enters the continuum. Even though the binding energy decreases
with rising order also for £ > 0.527, we can not decide whether it would destabilize
completely in infinite order.

This raises the question whether the bound state might be an unphysical state that
originates in the mapping of the STHC to the EHL. We expect that a state with consid-
erable doping of unphysical states would respond strongly on a variation of the Lagrange
multiplier. But as can be seen in the right panels of Figs. 6.9 and 6.10, the bound state
energy is only slightly affected when y is tuned. At this point, we remind the reader that
the ED of a finite system at £k = m, see Fig. 6.4, shows that the unphysical states are
shifted at y = —2.5 to an energy out of the scale of the presented spectra. In order to
clarify this point, we did a finite size scaling of the ED results; however, our extrapola-
tions for infinite chain size were not conclusive and, and it depends on the extrapolation
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Figure 6.10: Energy of the S=0 bound state in the STHC for the 7., generator with vectorial
optimization of the 2:3 block, determined by a diagonalization of the two-triplon sub-space. Left

panel: Bound state for y = —2.5 and various orders. Right panel: Bound state for order 10 and
various values of y. In addition, the dispersion and the lower edges of the two- and three triplon
sub-space determined by the same generator in order 10 at y = —2.5 are shown.
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Figure 6.11: Energy of the S=0 bound state in the STHC for y =
state in order 10 for the 71., generator as well as the 7o., generator with scalar and vectorial
optimization of the 2:3 block. Solid lines stand for the energies after a diagonalization in the
two-triplon sub-space, dashed lines stand for the diagonalization in the combined two- and
three-triplon sub-space. In addition, the dispersion and the lower edges of the two- and three-
triplon sub-space determined for the vectorial optimization are shown. Right panel: Bound state
determined by the 71., generator scheme targeting two quasi-particles and a diagonalization in
the two-triplon subspace for various orders.

—2.5. Left panel: Bound
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Figure 6.12: Statical structure factor Sg—o qp2(k) of the S=0 two-particle sub-space of the
S1HC, determined by the 7., generator with vectorial optimization of the 2:3 block. Left panel:
Structure factor for y = —2.5 and various orders. Right panel: Structure factor for order 10 and
various values of y.

scheme used whether the lowest S=0 state is extrapolated below the lower edge of the
continuum.

Another uncertainty to be accounted for is the experimental nature of the variational
generator schemes itself. In Chapter 4, we studied the variational generator schemes in
the two-boson model, but so far, no application to a lattice problem has been studied. For
this reason, we investigated the diagonalization of the effective Hamiltonian determined
by the well-studied 7., generator scheme as well. Because large 2:3 coupling are being
neglected in this way, we expect that the diagonalization gives us an upper bound of the
real energy of the lowest two-triplon states. In Figure 6.11, we show the results of the
various generator schemes in the left panel, and the results of the 7., generator scheme
for various orders in the right panel.

We see that the binding energy increases when a stronger level of decoupling between
the two- and three-triplon sector is reached. The vectorial optimization yields a slightly
stronger bound state energy than the scalar optimization; both of them see the bound
state below the three-triplon continuum at k& = w. For the 7., the diagonalization in
the two-triplon sub-space gives a lower binding energy that leads to a merging with the
three-triplon continuum around k& = 7 in lower orders, but it is pushed down to the lower
edge of the continuum when the order of calculation is increased. In any way, the bound
state found to be stable for k < 7.

Because the diagonalization in a finite sub-space is expected to provide only an upper
bound of the lowest eigenvalues, we investigated the diagonalization in the combined two-
and three-triplon sector as well, see the left panel of Fig. 6.11. We find that the result
changes little for the scalar and the vectorial optimization, but for the 7)., generator
scheme, we obtain an unphysically strong binding, that leads to energies below the ground
state. We attribute this to the enormous remaining off-diagonalities in the 2:3 block, see
Fig. 6.3, which spoil a meaningful evaluation.

In addition to the energy spectrum, we also investigated the statical structure factor
for the two-triplon sub-space, which increases systematically with rising momentum, see
Fig. 6.12. Tt is affected little by the variational parameter and the order of calculation.
By calculating the overlap of the state Og—o(k) |0) with the eigenstates in the two-triplon
subspace, we can determine the individual contributions of these states, see Fig. 6.13.



6.5 Details of the S=0 spectrum 157

order 8 — order 9 — order 10 —
0.40 T T T L T T T T T
035 F |I."l|l 1 035 T
it 030 |
030 ¢ =. ] -
530.25 | AN 3 %0-25 g
2020 f ;i ] 020 |
=0.15 | AR ; S015 |
g I\ £70.10
0.10 £ LN ] 20010 }
0.05 £ E 0.05 b \
-§.’ \"\_ N\
0.00 b NOU YL 0.00 4 : i
0.0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
k[n] k[m]

Figure 6.13: Statical structure factor SgionPQ(k:) of the lowest discrete S=0 two-triplon states
in the SIHC relative to the total S=0 two-triplon structure factor, determined by the 7.,
generator with vectorial optimization of the 2:3 block. Solid lines represent the lowest state,
dashed lines stand for the state second in energy. Left panel: Structure factor for y = —2.5 and
various orders. Right panel: Structure factor for order 10 and various values of y.

We expect that the weight practically vanishes for states inside the continuum when
sufficiently large ranges are taken into account in the diagonalization, but that it takes a
finite value when the bound state stabilizes below the continuum. Instead, we find that
a large share of the spectral weight concentrates on the lowest S=0 state even before it
detaches from the continuum at k& ~ 0.527. Around this value, the lowest S=0 state also
looses a large share of the spectral weight, which shifts mostly to the second S=0 state.
The statical structure factor of the bound states drops to zero in the vicinity of k ~ 0.7
where the binding energy is particularly large. At k& = 7, the bound state takes only 5.4 %
of the spectral weight of the two-triplon subspace for the vectorial optimization in order
10 at y = —2.5. For both the scalar and the vectorial optimization, the relative spectral
weight is nearly independent of the variational parameter, but decreases when the order
of calculation is increased.

We will summarize the facts about the S=0 bound state in the conclusions of this
chapter. Before we shift our focus to the properties of the S=1 sub-space, we discuss
the properties of the continuum. In Figure 6.14 and in the left panel of 6.15, we show
the S=0 dynamical structure factor in the two-triplon channel. Both scalar and vectorial
optimization show similar structures, but the vectorial results show sharper structures
when the same order of calculation is used. In addition to the bound state discussed
above, an anti-bound state, which resides deep in higher continua and is expected to
become a resonance, we see a rich structure within the two-triplon continuum.

Some of its properties, like the concentration of spectral weight close to the maximum
of the lower edge of the two-triplon continuum, or the resonance close to the upper edge of
the two-triplon continuum for 7/2 < k£ < m, can be understood in terms of the dispersion
alone. For this, we consider the density of states of the two-triplon continuum, which is
approximated by

0w+ g) + w(te — q) — )
i) = [ V0 @02+ 0) T (e — )] (6.30)

—Tr

when two-particle interactions are neglected. For comparison, we show it in the right
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Figure 6.14: Dynamical structure factor Ss—o qp2(k,w) of the STHC in the S=0 sub-space for
y = —2.5, determined by the 72., generator with vectorial optimization of the 2:3 block in order
10 with 1 % broadening. In addition, the lower edges of the two- and three-triplon sub-space by
dashed and dotted black lines, respectively. .
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Figure 6.15: Left panel: Dynamical structure factor Ss—o qp2(k,w) of the STHC in the S=0
sub-space for y = —2.5, determined by the 7., generator with scalar optimization of the 2:3
block in order 11 with 1 % broadening. In addition, the lower edges of the two- and three-
triplon sub-space by dashed and dotted black lines, respectively. Right panel: Approximated
two-triplon density of states pa(w,€) of the SIHC for y = —2.5, derived from the dispersion
obtained by the 79., generator with vectorial optimization of the 2:3 block in order 10.
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panel of Figure 6.15.

The most dominant structure in the dynamical structure factor is a resonance at k = 7
in the middle of the two-triplon continuum that extends to the center of the Brillouin
zone and is not visible in the approximated density of states, but originates in the matrix
elements of the S=0 observable.

6.6 Details of the S=1 spectrum
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Figure 6.16: Contributions of the one-, two- and three-triplon channels to the statical struc-
ture factor Sg—1(k) of the observable Og—1, determined by the 7., generator with vectorial
optimization of the 2:3 block aiming at the blocks of at most three triplons in order 9.
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Figure 6.17: Two-triplon contribution to the statical structure factor of the observable Og_1,
determined by the 79., generator with vectorial optimization of the 2:3 block.

Left panel: Two-triplon contribution Ss—; qp2(k) in various orders of calculation for y = —2.5.
Right panel: Two-triplon contribution Sg—; qp2(k) in order 10 for various values of y.

In this section, we discuss the details of the S=1 spectrum of the SITHC. In contrast
to the S=0 sub-space investigated in the previous section, a diagonalization of the effec-
tive Hamiltonian in the two-triplon sub-space reveals only a small binding energy with
respect to the two-triplon continuum for the lowest S=1 state for k& > 7/2, see Fig. 6.8.
Moreover, this state enters the three-triplon continuum for larger momenta. Therefore,
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Figure 6.18: Dynamical structure factor Ss—;(k,w) of the STHC in the S=1 sub-space for
y = —2.5, determined by the 79., generator with vectorial optimization of the 2:3 block in order
10 without broadening. In addition, the lower edges of the two- and three-triplon sub-space by
dashed and dotted black lines, respectively.
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Figure 6.19: Dynamical structure factor Sg—;(k,w) of the SIHC in the S=1 sub-space for

y = —2.5, determined by the 2., generator with vectorial optimization of the 2:3 block in order

10 with 1 % broadening. In addition, the lower edges of the two- and three-triplon sub-space by

dashed and dotted black lines, respectively.

we do not attach importance to binding phenomena in the S=1 sector. Instead, we focus
on the decay of one triplon into two triplons for low momenta k < k. ~ 0.267 where the
dispersion enters the continuum. To this end, we study the statical structure factor and
the dynamical structure factor of the S=1 observable Og_;.

When the spectral density is evaluated by the Lanczos algorithm in a sub-space of
a finite number of triplons, interaction processes to higher quasi-particle sub-spaces that
are neglected. To justify this approach, only weak couplings to higher quasi-particle sub-
spaces may be present in the effective Hamiltonian. As mentioned in Subsection 6.2.3,
the large off-diagonalities in the STHC are a particular challenge for the CUT method.
To this end, we use the 7)., generator scheme with scalar and vectorial optimization of
the 2:3 block.

The decoupling of the low-lying quasi-particle sub-spaces including the one-triplon
sector comes for the price that also the 1:2 term, which mediate the decay of one triplon
into two triplons, contribute to the generator and are rotated away by the CUT. However,
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Figure 6.20: Properties of the SIHC in the S=1 sub-space for y = —2.5, determined by the
No.n, generator with vectorial optimization of the 2:3 block in order 10, aiming at at most two
quasi-particles. Left panel: Dynamical structure factor ngll +2(k, w) in the S=1 sub-space with-
out broadening. Right panel: Quasi-particle weight Z(k) relative to the total weight ngll +2(k:)in
the combined one- and two-triplon sub-space.

we stress that this is no contradiction to a meaningful description of spontaneous quasi-
particle decay by the effective model in terms of the dynamical structure factor.

In an exact calculation, we expect that the full decoupling of all quasi-particle sub-
spaces by the particle-conserving generator scheme 7, pushes the one-triplon dispersion
to the lower edge of the continuum and shift the spectral weight completely to the states
within the continuum simultaneously. Briefly speaking, a stable quasi-particle with no
spectral weight can be an equivalent interpretation for a decaying quasi-particle that
couples to higher quasi-particle sub-spaces.

We stress that this scenario differs significantly from the ansatz of Fischer et al. [Fi-
scher et al.(2010), Fischer(2012a)], where interactions between the one-triplon and the
higher quasi-particle sub-spaces were kept in the effective Hamiltonian and evaluated in
a finite sub-space. In a calculation of finite order, truncation errors may leave a finite
fraction of the spectral weight in the one-triplon sub-space even when it is decoupled
completely. However, the incomplete decoupling of the 2:3 sub-space by the scalar and
vectorial optimization also results in a finite amount of 1:2 interaction in the effective
Hamiltonian, see Fig. 6.21, which are taken into account in the calculation of spectral
densities. It is a subject of this section to clarify which of these effects are important and
whether the spontaneous quasi-particle decay can be described satisfactory.

In order to asses the quality of our results for the transformation of observables, we
check the sum rule (6.28) for the S=1 Og_; observable deduced in Subsection 6.2.4. For a
calculation aiming at at most three-triplons using the generator schemes 7,.,, with vectorial
optimization of the 2:3 block, we find a total weight I, = I; + I + I3 = 0.6994, which
exceeds the value obtained by the sum rule by 4.9 %. We find that 92.98 % of the spectral
weight are concentrated in the one-triplon channel, 5.58 % are in the two-triplon channel
and only 1.43 % are in the three-triplon channel.

The dominance of the one-triplon contribution seems to be surprising in a model in
which quasi-particle decay is expected. More insight can be gained when the momentum-
resolved statical structure factors for the one-, two- and three-triplon channels are inves-
tigated, see Fig. 6.16. We see that the largest contribution to the total spectral weight
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Figure 6.21: Properties of the SIHC for y = —2.5, determined by the 7., generator with
vectorial optimization of the 2:3 block in order 9, aiming at at most two quasi-particles. Left
panel: Residual off-diagonalities of the generator versus flow parameter for various sub-blocks
of the Hamiltonian. Right panel: Evolution of the spectral density Sgi)ll +2(k = 0.167,w) in the
course of the flow over /.

stems from the vicinity of k &~ 7 where the triplon is stable and the two-triplon sub-space
is unimportant. In the decay region k < k. however, the largest part of the spectral
weight is transferred to the two-triplon channel, while the contribution of the one-triplon
channel is still significant. The weight in the three-triplon channel Sgglf(k) is insignifi-
cant in the in the whole Brillouin zone. The spectral weight of the different quasi-particle
sub-spaces Sey (k), S22 (k) and S22 (k) is affected only little by the order of calculation
and practically independent of the variational parameter, see Fig. 6.17.

Before we concentrate on the decay region, we give an overview over the spectral
densities in the full Brillouin zone. To this end, we show the dynamical structure factor
of the S=1 observable evaluated in the combined one- and two-triplon sub-space for the
vectorial optimization in Figures 6.18 for a square root terminator without any broadening
is used. In the vicinity of the points (k = 0.2m,w = 2.5),(k = 0.5m,w = 3.5) and
(k = 0.8m,w = 5), we find concentrations of spectral weight that can be attributed
to the van-Hove singularities in the approximated two-triplon density of states ps(k,w),
see the right panel of Fig. 6.15. In addition, we find a sharp concentration of spectral
weight where the dispersion, that will become more visible when we focus on k < k.. In
Figure 6.19, we show the same data with a 1 % Lorentzian broadening, which makes the
dispersion outside the continuum visible. The spectral densities of the scalar optimization
are very similar to the results for the vectorial optimization, but shows less details which
we attribute to the lower degree of decoupling.

In the following, we concentrate on the spectral density S?Ell+2(k,w) evaluated in
the combined one- and two-triplon sub-space in the region of the decay, i. e., for momenta
k < k. where the dispersion enters the continuum. We show the dynamical structure factor
for various values of momentum in the left panel of Fig. 6.20. We find a broad maximum
of the dynamical structure factor as a function of w for low values of momentum, which
shifts to the lower edge of the continuum when k approaches k. from below. The structure
of the continuum is very robust with respect to variations in y. On top of this structure,
we find a very sharp peak at the position of the dispersion. For a perfect decoupling of the
one-triplon sub-space by the CUT, we expect a that the one-triplon state is a Dirac-Peak
of fixed energy, but all its weight is lost during the flow to the continuum states of two
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or more triplons, which form structures of finite width. In the effective Hamiltonian, the
decoupling is incomplete and finite 1:2 processes remain that lead to a finite broadening
of the peak. In order to assess whether the description of the spontaneous quasi-particle
decay by the effective model is reasonable, we evaluate how much much total weight is
accumulated under the peak, and how strong the remaining interaction due to the finite
1:2 off-diagonalities in the effective model is, i.e., how strong the broadening of the peak
is.

To address the question of the total weight, we evaluate the quasi-particle weight Z (k)
known from the context of Fermi liquid theory. It is can be obtained from the real part
of the Green’s function with respect to the spectral density

1
G(k,w)

Z k) = O,R (6.31)

— 1 —
w=wo, Rty =0

We present the result relative to the statical structure factor in Figure 6.20. Outside the
continuum, the quasi-particle peak has a relative weight close to one, with a small dip
around k = 0.87 where the dispersion comes close to the three-triplon continuum. The
relative weight decreases strongly when the dispersion enters the continuum for k£ < k., but
a large share of the weight of ~ 60 % of the statical structure factor is still concentrated
in the quasi-particle peak. We come to a similar result when we integrate the area under
the peak numerically with a deviation of a few percent.

The question arises whether the peak is actually a resonance, i. e., whether it is broad-
ened significantly and forms a structure of small, but finite width due to the remaining
interactions in the 1:2 block. However, it turns out that even the tiny width, which can
be seen in the right panel of Figure 6.21 at ¢ = 200, is not a result of a broadening due
to the 1:2 interactions, but only an effect of the terminator. The broadening due to the
1:2 interactions is not perceptible. Therefore, we see it as justified to speak of a stable
quasi-particle with a finite weight, which is generated as an artifact of the transformation.
We see the reason of this behaviour in truncation errors that stop the transfer of spectral
weight and the lowering of the one-triplon dispersion to the lower edge of the two-triplon
continuum.

We did not find an improvement of our results if the spectral densities are evaluated in
the sub-space of up to three quasi-particles. The larger restriction in the ranges and, as a
consequence, the stronger limitation in the number of continued fraction coefficients lead
to a stronger artificial broadening by the terminator, but the weight of the peak is not
affected. The shape of the peak inside the continuum is identical for the 7., generator
scheme, but in this approach large matrix elements between the two- and three-triplon
sub-space are neglected.

In order to describe the quasi-particle decay by the calculation in a finite Hilbert space,
it is desireble to keep sufficiently large 1:2 matrix elements in the effective Hamiltonian. To
this end, we suggest to switch from the 7., generator scheme with vectorial optimization
of the 2:3 block to a different generator scheme, that does not rotate away the 1:2 block,
at a finite value of the flow parameter ¢*.

In order to assess in which range a parameter ¢* can be expected, we consider the
evolution of the ROD decomposed into individual blocks, see the left panel of Fig. 6.21,
and the evolution of the spectral densities during the flow, see the right panel of the
same figure. We see that the position of the peak is visible even at low values of the flow
parameter ¢ =~ 3. For rising values of ¢, the peak grows thinner and taller, while the area
remains nearly constant. This development is reflected by the continuous decrease of the
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2:1 block of the ROD. At ¢ = 7, the spectral density is nearly indistinguishable from the
result at £ = 200. This sets an upper bound ¢* < 7, which means that the generators can
be switched in a range of the flow parameter where the transformation is well-controlled.

6.7 Conclusions

In this chapter, we derived an effective model for the S=1 Heisenberg chain (SITHC) in
terms of S=1 triplon quasi-particles by means of deepCUT. To this end, we mapped the
SIHC to an effective S=1/2 Heisenberg ladder with nearest neighbour and next-nearest
neighbour interactions [White(1996)], denoted as EHL. This transformation was moti-
vated by the construction of the VBS ground state of the related AKLT model [Affleck
et al.(1987), Affleck et al.(1988)]. Due to this transformation, the Hilbert space has been
extended by unphysical states which were lifted to the high-energy part of the spec-
trum by a Lagrange parameter y that we treated as a variational parameter in the CUT.
Our investigation of the ground state and the dispersion relation showed a large region
y € [—5; —1], where the physical quantities depend only little on the variational parame-
ter, with y = —2.5 as the optimal value. In order to treat the model by deepCUT using
simplification rules, we introduced an abstract expansion parameter x. For the descrip-
tion of the SIHC, we are confined to the case x = 1, so that no small control parameter
exists.

In order 16 we found the result £y = —1.3999 for the ground state energy per S=1
spin. For the energy gap, we obtained A = 0.4268 in a calculation of order 14. These
values deviate from the DMRG reference [White & Huse(1993)] by 0.11 % and 3.96 %.
Our results for the triplon dispersion in the whole Brillouin zone determined using the
M., generator scheme show a very good agreement with the findings of tDMRG [White
& Affleck(2008)] and MPS [Haegeman et al.(2012)].

A particular challenge in this model the large energy overlap and the strong interac-
tion processes between the two- and three-triplon sub-space. As a consequence, the con-
ventional particle-sorting generator 7)., fails to decouple the two-triplon sector and the
remaining off-diagonalities for the 7., are too large to be discarded. We have been able
to overcome this problem using the variational generator schemes developed in Chapter
4. In this way, we derived an effective low-energy model in which the 2:3 interactions are
sufficiently small that a diagonalization in a finite sub-space of at most two quasi-particles
is justified. By this, we were able to investigate binding phenomena and to calculate both
statical and dynamical structure factors in the S=0 and S=1 channel.

So far, we can not settle the question about the existence of an S=0 bound state in
the STHC. Up to now it is has not been found by other groups and we were not able
to confirm it with ED as an independent method. According to the deepCUT results,
it is present in the energy spectrum of the EHL. We can rule out an artifact of the
variational generators as an explanation, since it has been found also for the standard
M.n generator scheme. The investigation of the energy eigenvalues of the EHL and the
S1HC by ED also showed that, for the selected values of the variational parameter, the
unphysical eigenstates are too high in energy for a direct interpretation as the S=0 bound
state. Even more, its binding energy and spectral weight are mostly unaffected by the
changes of the variational parameter. However, we also found that the binding energy
decreases systematically with rising order, while the spectral weight of the bound state
decreases. This might be seen as indication that the bound state originates in truncation
errors, and that it may merge with the continuum or that its coupling to the ground
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state by the physical observable may vanish completely in an exact calculation. At this
point, we emphasize that the particularity of our treatment is that, on the one hand, the
mapping from the STHC to the EHL extends the Hilbert space by unphysical states that
do not interfere with the physical sub-space that is pushed up in energy, but on the other
hand, an effective model for the EHL is derived by the deepCUT in second quantization.
It might be that this subtlety leads to a model not with unphysical states sufficiently high
in energy, but with unphysical interaction processes which affect the low-energy states as
well.

One of the most interesting features of the SIHC is the spontaneous quasi-particle
decay of one triplon into two triplons. While the S=1 spectrum is dominated by the
one-triplon channel for large momenta, the larger part of the spectral weight in trans-
ferred to the two-triplon channel when the dispersion enters the two-triplon continuum
for |k| < k. =~ 0.26w. The effective Hamiltonian obtained by the 7., generator scheme
with vectorial optimization of the 2:3 block still contains finite interactions between the
one- and the two-triplon sub-space. This lead us to the question whether the quasi-particle
peak dissolves completely due to the interaction with the continuum, when the spectral
density of the observable Os—; with respect to the combined one- and two-triplon sub-
space is calculated. It turns out that the remaining 1:2 couplings are too weak for a
considerable interaction with the continuum and that the triplon behaves like a stable
quasi-particle inside the continuum with a reduced weight. We attribute this incomplete
loss of weight of the decaying triplon to truncation errors in the transformation of the
observable.

In summary, we observed some important aspects of the decay such as the entering
of the dispersion into the continuum and a strong, but incomplete loss of weight of the
quasi-particle. Yet, further improvements are needed to obtain a quantitative description
of spontaneous quasi-particle decay in the STHC by CUT.

6.8 Outlook

We see an accurate description of the transfer of spectral weight to the continuum due to
the spontaneous quasi-particle decay as the most promising topic for further investigation.
So far, our best effective Hamiltonians kept about half of the spectral weight in one-triplon
mode inside the continuum, while the remaining coupling in the 1:2 block are too small
to yield a significant broadening in the Lanczos tridiagonalization in a finite sub-space.
To address this problem, we suggest an alternative approach is to use the 7)., generator
scheme with vectorial optimization only as first step in order to decouple the ground state
and to reduce the 2:3 couplings to a suitable threshold. Before the 1:2 processes are too
weak, the flow is stopped at a finite value of the flow parameter and a different generator
scheme is selected for a second CUT step. To this end, either the ground state generator
scheme 7)o., as used by Fischer et al. [Fischer et al.(2010), Fischer(2012a)] or a modified
M. generator scheme that does not decouple the 1:2 block [Fischer(2012b)] can be used.
After the second CUT step, the effective Hamiltonian is evaluated in a finite sub-space.
In order to clarify the existence of an S=0 bound state in the SIHC, a detailed inves-
tigation by an independent, numerical method that gives access to large lattice dimension
is in order. Due to the lower energy of the two-triplon continuum in the vicinity of k = 0,
it is necessary to use a method that is sensitive to the total momentum of the energy
eigenstates, such as tDMRG or MPS. Up to now, the MPS method has not found this
state [Haegeman et al.(2012)]. Because of the large binding energy with respect to the
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two-triplon continuum, a investigation should concentrate around the momentum k£ ~ 0.7.
However, at this point the coupling to the NN S=0 observable Og—, vanishes, so that a
different observable has to be considered if the investigation relies on the calculation of
the dynamical structure factor. In order to rule out an artifact of the mapping, we suggest
to investigate both the SIHC and the EHL simultaneously.

Another point is the extension of the model to the bilinear biquadratic STHC [Fath
& Solyom(1991)], see Eq. (6.2). In this way, we can use the deepCUT to investigate
the Haldane phase and to compare our findings with Bethe ansatz calculations for the
phase boundaries [Uimin(1970), Babujian(1982), Takhtajan(1982)]. In addition, we would
be able to study the VBS ground state and its excitations at the AKLT point [Affleck
et al.(1987), Affleck et al.(1988)].

So far, we have restricted ourselves to the point z = 1 in the limit of large y, where
the low-energy spectrum of the EHL describes the STHC. In the broader context of the
EHL, however, it is possible to explore the full phase diagram in x and y. Especially
the variation of the expansion parameter x would allow us observe the entering of the
dispersion into the continuum and the emergence of the S=0 bound state from the limit
of decoupled dimers.

From the methodological point of view, the good results for the partial decoupling
of the strongly overlapping two- and three-quasi-particle sub-spaces by the variational
generator schemes raises the question whether a full decoupling is within reach. On
the one hand, the strong decoupling lets the tensorial optimization appear as an ideal
candidate, but it is computationally too demanding for a application in high orders. On
the other hand, the vectorial optimization allows for a fast and computationally efficient
reduction of large off-diagonalities, but its slow asymptotic convergence impedes a full
decoupling. To this end, we suggest to examine a combined generator scheme that uses
the vectorial optimization to eliminate the largest part of the off-diagonalities in a first
step, before one switches to the tensorial optimization in a second step to obtain full
decoupling.
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Summary

The emergence of complex behavior out of simple elementary building blocks is a typ-
ical property of condensed matter systems. While the individual constituents may be
well-studied, strongly interacting many-particle systems can give rise to novel collective
behavior that can not be understood by considering the individual properties alone.

Effective models are a powerful tool to handle this complexity: Instead of aiming at
a full description a complex many-particle system on the high-energy scale, an effective
model covers only those degrees of freedom which are essential for the low-energy physics.
While the high-energy degrees of freedom are integrated out, they influence the low-
energy degrees of freedom due to a renormalization of the effective coupling constants.
In particular, the concept of the quasi-particle allows for the description of a strongly-
interacting many-particle excitations in terms of a simple objects with similar degrees of
freedom as a dispersive elementary particle, which gives rise to phenomena like quasi-
particle bound states or quasi-particle decay.

This thesis aims at the application and methodological improvement of a systematic
and well-controlled framework to derive effective low-energy models, denoted as continu-
ous unitary transformation (CUT). In this method, a Hamiltonian is mapped continuously
to an effective basis, in which the low-energy degrees of freedom can be interpreted as
quasi-particles. Mathematically, the transformation is parametrized by a flow parameter
and is represented as a differential equation, denoted as flow equation, while the direction
of the transformation is controlled by the generator scheme.

As foundation of our studies, we use the self-similar CUT (sCUT) method, in which
the types of possible interaction terms are fixed by a truncation scheme.

In a common project, we established a new flavor of CUT, called enhanced pertur-
bative CUT (epCUT). It allows us to derive the effective Hamiltonian in a perturbation
series. In contrast to the already existent perturbative CUT (pCUT) method, epCUT
can handle system with a non-equidistant spectrum as well. Moreover, we discovered
the directly evaluated epCUT (deepCUT) method, the non-perturbative twin of epCUT.
While it bears large similarities to sCUT, it replaces the cumbersome definition of an
appropriate truncation scheme by the order of the flow equation system. Compared to
sCUT, deepCUT offers a larger robustness while the ambiguities of the truncation scheme
are eliminated. My contribution comprises the computational, parallelized construction
of the flow equation system as well.

In another project, we investigated the breakdown of the conventional, particle-sorting
generator schemes in system with strongly overlapping quasi-particle (quasi-particle) sub-
spaces and identified the emergence of a spectrum unbounded from below due to trun-
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cation errors as origin of the divergence. As a testing ground, we used a system of two
coupled bosonic degrees of freedom. To overcome these problems, we developed a family
of three novel variational generator schemes, denoted as scalar, vectorial and tensorial
optimization.

After this, we investigated the dimerized, two-dimensional S=1/2 Heisenberg model
with an emphasis on the quantum phase transition between a magnetically disordered
and a magnetically ordered phase using sCUT. Parametrizing the starting point by a
variational parameter, we were able to describe the spontaneous breaking of the SU(2)
spin symmetry by CUT for the first time. We were able to calculate the ground state
energy and the dispersion of triplons, and magnons, respectively, in both phases. How-
ever, we were not able to provide quantitative results for the spontaneous magnetization.
Furthermore, we found a way to derive an optimal starting point for the integration of
the flow equations that is independent on the particularities of the model and does not
require a parametrization by a variational parameter.

As a further application, we analyzed the S=1 Heisenberg chain by means of deepCUT.
To this end, we mapped the system to an extended S=1/2 Heisenberg ladder with the help
of a variational parameter. Using the variational generator schemes developed before, we
were able to decouple the low-energy spectrum and to calculate spectral densities. In
this investigation, we found an indication for a S=0 bound state. Furthermore, we were
able to find some signs of spontaneous quasi-particle decay, but a quantitatively correct
description is pending.



Chapter 8

Zusammenfassung

Das Ganze ist mehr als die Summe seiner Teile — so liefle sich das Grundproblem der
Physik kondensierter Materie in aller Kiirze zusammenfassen. Auch wenn das Verhalten
aller Grundbausteine im Detail bekannt ist, so konnen sich durch starke Wechselwirkungen
vieler Teilchen untereinander neuartige, kollektive Phanomene ergeben, die sich durch das
Studium der einzelnen Bestandteile nur schwerlich verstehen.

Einen Ausweg aus dieser Problematik bieten effektive Modelle: Anstatt ein komplexes
System mit vielen Freiheitsgraden auf hohen Energieskalen vollstandig zu beschreiben,
bildet ein effektives Modell nur die Freiheitsgrade ab, die bei niedrigen Energien wichtig
sind. Hochenergetische Freiheitsgrade werden aus dem effektiven Modell weggelassen,
ihre indirekten Auswirkungen auf niedrige Energien aber durch modifizierte, effektive
Wechselwirkungen berticksichtigt.

Als besonders hilfreich hat sich in der Festkorperphysik das Modell des Quasiteilchens
erwiesen: Eine Anregung eines Systems vieler, stark wechselwirkender Teilchen wird durch
ein Objekt beschrieben, das sich wie ein einzelnes Elementarteilchen bewegen, Bindungen
eingehen und zerfallen kann.

Die vorliegende Arbeit widmet sich dem Einsatz und der Verbesserung eines Ver-
fahrens zur systematischen, kontrollierten Ableitung effektiver Niederenergiemodelle: Die
Methode der kontinuierlichen, unitéren Transformationen (englisch: Continuous Unitary
Transformations, CUT). Hierbei wird der Hamiltonoperator eines physikalischen Sys-
tems kontinuierlich durch Losen einer Differentialgleichung, der Flussgleichung, in eine
effektive Darstellung tiberfiihrt, bei der die Niederenergiefreiheitsgrade als Quasiteilchen
interpretiert werden konnen. Die Art der Transformation wird hierbei tiber das Genera-
torschema der CUT gesteuert. Als Ndherung geht in der sCUT (selbstédhnliche CUT, en-
glisch: self-similar CUT), der hier als Grundlage dienenden Variante, das Trunkierungss-
chema ein.

Als methodische Verbesserung wurde in einem gemeinsamen Projekt eine neue Vari-
ante der CUT, genannt (erweiterte perturbative CUT, englisch: enhanced perturbative
CUT), etabliert, die eine Beschreibung des effektiven Hamiltonoperators des Systems als
Reihe im Sinne einer Storungsrechnung bis zu einer vorgegebenen erlaubt. Dieser Ansatz
ist allgemeiner als die bereits existierende pCUT Methode (perturbative CUT, englisch:
perturbative CUT), da sich auch Systeme mit nicht dquidistantem Energiespektrum be-
handeln lassen. Dariiber hinaus wurde mit deepCUT (direkt ausgewertete epCUT, en-
glisch: directly evaluated epCUT) eine verwandte, nichtperturbative Methode entdeckt,
die der sCUT ahnelt, aber das komplizierte Trunkierungsschema durch die Ordnung im
Sinne einer epCUT-Rechnung ersetzt. Die deepCUT zeichnet sich hierbei gegentiber der
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sCUT durch eine hohere Robustheit und geringere Mehrdeutigkeit aus. Einen besonderen
Anteil meiner Arbeit nahm hierbei die rechnergestiitzte, parallelisierte Implementierung
des Aufstellens der Flussgleichungen.

In einem weiteren Projekt wurde das Versagen der bisher iiblichen teilchensortieren-
den Generatoren in Systemen mit stark iiberlappenden Quasiteilchenraumen untersucht
und das Auftreten eines zu niedrigen Energien unbeschrankten Spektrums als Ursache
festgestellt. Als Beispielsystem dienten hierbei zwei gekoppelte bosonische Freiheits-
grade. Daraufhin entwickelten wir eine Familie aus drei neuartigen Generatorschemata,
die skalare, vektorielle und tensorielle Optimierung, die diese Probleme umgehen.

Danach untersuchten wir das dimerisierte, zweidimensionale S=1/2 Heisenberg mit
besonderem Schwerpunkt auf dem Quantenphaseniibergang zwischen der magnetisch un-
geordneten und der magnetisch geordneten Phase mittels sSCUT. Durch Parametrisierung
des Startpunktes mit einem Variationsparameter gelang uns erstmals die Beschreibung der
spontanen Brechung der kontinuierlichen SU(2) Spinsymmetrie mittels CUT. Wir konnten
die Grundzustandsenergie und die Disperisionsrelationen der Triplonen und Magnonen in
beiden Phasen bestimmen, erhielten jedoch keine zufriedenstellenden Resultate fiir die
spontane Magnetisierung. Ferner entwickelten wir in einem verwandten, eindimension-
alen System ein Verfahren, um modellunabhéngig und ohne Parametrisierung durch einen
Variationsparameter einen optimalen Startzustand zu wahlen.

Als weitere Anwendung analysierten wir die S=1 Heisenbergkette mittels deepCUT.
Hierzu bildeten wir das System unter Einfiihrung eines Variationsparameters auf eine
S=1/2 Heisenbergkette ab. Unter Verwendung der zuvor entwickelten variationellen Gen-
eratorschemata gelang uns trotz des starken Uberlapps zwischen Zwei- und Dreiteilchen-
raum die Entkopplung des Niederenergiespektrums und die Berechnung spektraler Dichten.
Wir fanden hierbei Anhaltspunkte fiir einen gebundenen S=0 Zustand. Weiterhin kon-
nten wir wichtige Merkmale fiir den Zerfall eines Triplons in zwei Triplonen nachweisen;
eine vollstandige und quantitative Beschreibung steht jedoch noch noch aus.
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Dispersions of the Two-dimensional
Dimerized S=1/2 Heisenberg Model
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Figure A.1: Magnon dispersion of the 2dDH for A = 0.6, B = 0 for various values of 1,
calculated using the generator 7;., and the truncation d = (6,4,4,3,3). The momentum is
measured with respect to the dimer lattice. Top panel: Solid and dashed lines denote the two
transverse modes. Bottom panel: Longitudinal mode.
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Figure A.2: Magnon dispersion of the 2dHH for B = 0 for various values of ¥, calculated using
the genrator 7., and the truncation d = (6,4, 4, 3,3). The momentum is measured with respect
to the dimer lattice. Solid and dashed lines denote the two transverse modes.



Abbreviations

1dDH one-dimensional dimerized S=1/2 Heisenberg model
1dHH one-dimensional homogeneous S=1/2 Heisenberg model
2dDH two-dimensional dimerized S=1/2 Heisenberg model
2dHH two-dimensional homogeneous S=1/2 Heisenberg model
AASHL asymmetric antiferromagnetic spin S=1/2 Heisenberg ladder
AFASHL asymmetric ferro-antiferromagnetic spin S=1/2 Heisenberg ladder
AFM anti-ferromagnetic

CUT continuous unitary transformation

deepCUT directly evaluated epCUT

epCUT enhanced perturbative CUT

gCUT graph-theory based CUT

pCUT perturbative CUT

sCUT self-similar CUT

DES differential equation system

DMRG density matrix renormalization group

ED exact diagonalization

EHL extended S=1/2 Heisenberg ladder

HTSC high-temperature superconductor

MPS matrix product states

NNN next-nearest neighbour

NN nearest neighbour

QCP quantum-critical point

QMC quantum Monte-Carlo

QPT quantum phase transition

ROD residual off-diagonality

S1HC S=1 Heisenberg chain

VBS valence bond solid
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