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Abstract 

 

Chemical absorption with amine solvent is the most dominated commercial technology 

adapted for CO2 capture from power plant to mitigate the climate change and global 

warming issues. However, significant energy consumption and irreversible solvent 

degradation are the major unsolved challenges occurred in the amine-based post-

combustion capture (PCC) process. It is therefore essential to develop new solvents and 

advanced technologies to overcome these drawbacks of conventional alkanolamines. In 

this paper a novel thermomorphic biphasic solvent (TBS) system has been studied as 

one of the alternative solutions to improve the solvent-based PCC process.   

A series of screening experiments have been conducted to select suitable lipophilic 

amines as activating components for CO2 absorption. The influence of molecular 

structure on absorption and desorption characteristics has also been investigated to 

predict and design potential lipophilic amine absorbents. According to the performance 

parameters, the selected lipophilic amines have been classified into two categories: 

absorption activator, for example N-methylcyclohexylamine (MCA) with rapid reaction 

kinetics, and regeneration promoter, for instance N,N-dimethylcyclohexylamine 

(DMCA) exhibiting excellent regenerability. Amine molecules with an α-carbon branch 

such as 2-ethylpiperidine (2-EPD) are of great interest due to their fast reaction rate and 

good CO2 absorption capacity. To meet the selection criteria of the ideal solvent for 

chemical absorption, solvent recipes have been optimised by blending two or three 

amines and evaluated in a 100 mL glass bubble column with varying temperatures from 

25 to 85 °C and CO2 partial pressures between 4-100 kPa. The formulated TBS 

absorbents have exhibited rapid reaction kinetics, high cyclic CO2 loading capacity, 

excellent solvent regenerability, moderate energy demand and low solvent degradation.   

However, the undesired heterogeneous solution formed in absorber and evident 

volatile losses represent new challenges for lipophilic amines. With addition of a small 

amount of solubiliser such as 2-Amino-2-methyl-1-propanol (AMP), the phase change 

temperature has been increased dramatically and a homogeneous solution can thus be 

employed in absorption. Such solubilised biphasic solvent, e.g. a blended absorbent 

comprising DMCA+MCA+AMP, forms a single phase at 40 °C in the absorber and 

converts to two phases at an elevated temperature of 80 °C in the desorber. Therefore, a 

conventional absorption column can be employed for CO2 capture using TBS without 
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any modification. To eliminate the issue of solvent vaporisation loss, an additional 

scrubbing unit with high boiling point organic solvent has been proposed to recover the 

vapour of lipophilic amine exhausted with the treated gas at the top of absorber. 

Additionally, the integration of an inter-stage cooling system into the absorption column 

has also been suggested for not only reducing the vaporisation losses but also enhancing 

the CO2 loading capacity.  

Further investigations on solvent degradation have found the thermal degradation of 

lipophilic amines is minor owing to the lower desorption temperature required, typically 

90 °C, compared to that for conventional stripping process of over 120 °C. The 

oxidative degradation of absorption activators, e.g. MCA, is significant, but it is 

negligible for regeneration promoters such as DMCA. Ketonisation and oximation were 

observed as the main reactions for MCA, while methylation and demethylation occurred 

with DMCA. The optimised solvent recipe DMCA+MCA+AMP exhibited a good 

chemical stability against both thermal and oxidative degradations.   

To exploit the low-value heat for solvent regeneration in place of steam stripping, 

preliminary studies on new desorption techniques such as nucleation, agitation, 

ultrasound and extraction have been conducted. Nucleation accelerates the CO2 

releasing from the rich solvent, but hardly achieves deep regeneration at 80-90 °C; 

while agitation and ultrasonic desorption are both comparable to the stripping method, 

but only have insignificant mechanical or electrical energy consumption. The energy 

consumption in extractive regeneration is slightly higher than other intensification 

techniques, but it reduces the required desorption temperature to only 60-70 °C and cuts 

the exergy demand further with an extended freedom for integrating the process heating 

network or even using waste heat for regeneration purposes.  

After optimisation of the solvent recipe and adaptation of novel regeneration 

techniques for CO2 capture using TBS, bench scale experiments in a 40 mm I.D. glass 

packed column with 1 m height random packings have been carried out to investigate 

the influence of amine solutions on the packing wettability. Both the pressure drop and 

liquid hold-up of TBS were observed to be higher than for MEA at the same gas load 

factor, mainly due to the higher viscosity of the CO2 loaded TBS solution. The viscosity 

of lean TBS solution is lower than that of alkanolamines, but it increases dramatically 

after CO2 loading and rises to more than 10 mPa∙s at room temperature. TBS solution 

presents a lower surface tension and a smaller contact angle on various metal and plastic 

materials compared to MEA. This thus directly indicates a good wettability of TBS on 
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packings even using certain plastic materials such as high-density polyethylene (PE-

HD) in the absorption column.   

Several modified process flow diagrams have been developed according to the 

various desorption techniques. The energy consumption has also been estimated for 

corresponding process flowsheeting. The main saving of the regeneration energy for 

TBS process is not in the heat of reaction but in the sensible heat and latent heat, since 

the reaction enthalpies for absorption activators are even higher than for the benchmark 

MEA, but the lower regeneration temperature enhances the process heat integration and 

significantly reduces the exergy demand. The outstanding performance parameters of 

such TBS system together with those novel intensified and energy-effective 

regeneration techniques make it one of the most promising candidates to assess the 

technical viability in further development work for future CO2 capture processes.  
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1 Introduction 

1.1 Response to climate change 

1.1.1 Reduction of CO2 emission  

Anthropogenic CO2 emission from fossil fuels combustion is considered to be one of 

the main causes of global climate change. Fossil fuel-fired power plant contributes the 

largest worldwide CO2 emissions. In order to mitigate the climate change, strategies 

such as improvement of energy efficiency, development of low CO2 sources of energy 

and acceleration of CO2 Capture and Storage (CCS) solutions have been proposed for 

reducing the greenhouse gas emission (IPCC, 2005; Riemer, 1996).  

Due to the present extent of fossil fuels use, CCS, including capture (separation 

from gas mixtures and compression to supercritical conditions), transport and storage 

(injection, measurement, monitoring and verification), is one of the most promising 

technologies for emission reduction (Steeneveldt et al., 2006).  

1.1.2 CO2 capture technologies 

CO2 capture is a process of removing CO2 produced by hydrocarbon combustion (coal, 

oil and gas) before its emission to the atmosphere. Both economic and energy costs are 

the major considerations in its use for large CO2 sources such as power stations and 

industrial plants. There are three major approaches for carbon capture: post-combustion 

capture, pre-combustion capture, and oxy-fuel combustion process (IPCC, 2005; Stolten 

and Scherer, 2011).  

Table 1. Typical composition of flue gases  

(unit: %) CO2 N2 O2 H2O NOx SOx Ar 

Coal-fired  12-16 75-80 2-4 10-15 400 ppm 150 ppm 0.82 

Gas-fired  3-5 70-75 10-12 7-10 <50 ppm <10 ppm 0.89 

 

Post-combustion capture is a technology removing CO2 from flue gas after 

combustion. It can be applied to conventional fossil fuel-fired power plants with an 

additional CO2 capture unit, separating CO2 from gas mixtures with N2, O2, water 

vapour and other trace gas impurities. Table 1 shows the typical composition of flue 

gases from coal- and gas-fired power plants (Rolker and Arlt, 2006). Because of the low 

CO2 partial pressure, chemical absorption is favoured for this process, but high energy 

consumption for solvent thermal regeneration is the major shortcoming. Since other 
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contaminant gases such as O2, SOx, and NOx can be present in flue gases, solvent 

degradation also becomes a challenge (MacDowell et al., 2010; Tönnies et al., 2011).  

Pre-combustion capture refers to a process removing of CO2 prior to combustion. It 

firstly transforms the gaseous hydrocarbon fuel (CH4 or gasified coal) to a synthesis gas 

(H2 and CO) and then converts CO to CO2 by reacting it with H2O to produce H2 for 

combustion. By finally separating CO2 from H2, water vapour is the main by-product 

after combustion. It is applicable to natural gas- and coal-fired integrated gasification 

combined cycle (IGCC) power plants. However, the requirement of a gas treating 

chemical plant, high investment cost for building a new plant, low efficiency of H2 

burning and less flexibility are the main disadvantages.  

Oxy-fuel combustion capture involves burning fossil fuel with pure oxygen in place 

of air, so that the flue gas consists of mainly CO2 (≈90 vol.%) and water vapour. By 

condensation of the water vapour, CO2 can be easily separated for compression. 

However, high energy penalty for O2 production is the significant shortcoming. The 

features of those capture processes are summarised in Table 2. 

 
Table 2. Comparison of CO2 capture technologies 

Process Separation Typical methods 

Post-combustion CO2 vs. N2 Chemical absorption 

Carbonate looping  

Solids adsorption 

Pre-combustion CO2 vs. H2 Chemical absorption 

Carbonate looping  

Membranes 

 H2 vs. CO2 Solids adsorption 

Membranes 

Oxy-fuel combustion O2 vs. N2 Cryogenic air separation 

Chemical looping 

Membranes 

 

1.2 Chemical absorption 

1.2.1 Conventional solvents and improvements 

Chemical absorption using amine-based solvents is the most promising commercial 

technology for post-combustion carbon capture (PCC). Amine scrubbing is presently 

both the preferred option and probably the only commercially mature technology for 
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CO2 removal. However, it has been estimated that the desorption step would be 

responsible for more than half of the overall processing costs, primarily due to the high 

energy consumption for the solvent regeneration (Meldon, 2011; Rao et al., 2002; 

Straelen and Geuzebroek, 2011; Wang et al., 2011).  

Monoethanolamine (MEA), a primary amine, is the most commonly used solvent 

for CO2 scrubbing and can also be employed in PCC process (Kohl et al., 1997; 

Rochelle, 2009), but it has several weaknesses: (a) low net CO2 loading capacity, (b) 

solvent degradation, (c) corrosion and (d) high energy consumption. For reduction of 

reaction enthalpy and enhancement of net CO2 capacity, N-methyldiethanolamine 

(MDEA) as a tertiary amine and 2-Amino-2-methyl-1-propanol (AMP) as a sterically 

hindered amine have also been suggested as alternative absorbents, but limited reaction 

kinetics is a serious shortcoming. Many research groups have thus focused on finding 

new absorbents for CO2 absorption with following criteria:  

 Reduced energy consumption 

 High reactivity and capacity with respect to CO2 

 Minor environmental impact  

 Low degradation and corrosion 

A research team at the Research Institute of Innovative Technology for the Earth 

(RITE) in Japan screened various aqueous tertiary amine solvents to mitigate the energy 

requirements by lowering absorption heat, with only a modest modification on CO2 

loading capacity and reactivity (Chowdhury et al., 2009 and 2011). Some undisclosed 

solvents, which can allegedly cut the regeneration energy by ~30% compared to MEA, 

were investigated by several researchers (Goto et al., 2009 and 2011; Kim et al., 2011; 

Knudsen, 2007; Notz et al., 2007; Puxty et al., 2009), but the desorption still needs to be 

carried out with steam stripping at over 120 °C. Blended amine solvents such as 

MEA+MDEA and MEA+AMP can be an approach to achieve better performance 

parameters in both absorption and regeneration. Recently, the CESAR project 

(Mangalapally and Hasse, 2011) undisclosed their absorbents such as piperazine (PZ) 

activated AMP and EDA (1,2-Ethanediamine) and Rochelle et al. (2011a) also 

recommended the use of PZ-activated K2CO3 or MDEA, however, the desorption 

temperature required for PZ is higher than 150 °C. In addition, Alstom proposed a 

chilled ammonia process to reduce the regeneration cost (Telikapalli et al., 2011), but 

the low temperature and high pressure required for limiting ammonia vaporisation was 

still a big challenge.  
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Singh et al. (2007, 2008, 2009 and 2011) screened various amines for identifying 

new alternative absorbents and demonstrated that alkyl and amine groups were found to 

be the most suitable substituted functional groups for enhancing CO2 loading capacity 

and solvent regeneration. However, their study was limited to single phase solutions.  

1.2.2 Conventional processes and modifications 

An absorption column and stream stripping column with associated heat exchangers 

comprise the most important units for a chemical CO2 scrubbing process. As seen in 

Figure 1, the cooled lean solvent from regenerator is fed to the top of absorber for 

scrubbing the cooled flue gas contacted counter-currently; the treated gas is then washed 

by water to scrub the vaporised solvent and vented to the atmosphere; the rich solvent 

attained at the bottom of absorber is warmed up through a cross-flow heat exchanger by 

the regenerated lean solvent and sent to the stripper; where absorbed CO2 is liberated 

form solvent by thermal treatment in stripper and sent to compression; the regenerated 

solvent is recycled to the absorber after cooling. Heat supplied to the reboiler at the 

bottom of stripper contributes the major energy penalty of the whole process. The high 

temperature applied for steam stripping leads to thermal solvent degradation and oxygen 

contained in flue gas causes oxidative solvent degradation. A reclaimer is thus required 

to remove the heat stable salts (HSSs) formed in the system.  

 

Absorber

Condenser

Cooler

Cooled Flue Gas

Treated Gas CO2
CompressorCO2 to Storage

Pump

HEX

Washing

Section

Water

Rich Solvent Lean Solvent

Reboiler

Stripper

Pump

Reclaimer

Pump

Purge

Solvent 

make-up

 

Figure 1. Basic process flow scheme for PCC 

 

To improve the absorption characteristics or to reduce the energy consumption, 

process flow sheet modifications such as inter-stage cooling in absorption, split flow, 

lean split and rich split in desorption were proposed (Cousins et al., 2011). Absorption 
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of CO2 into amine solutions is an exothermic reaction resulting in a temperature 

increase in absorber, which limits the driving force for absorption and reduces CO2 

loading capacity of amine solvent, although the kinetics becomes more favourable at 

higher temperatures. An overall consideration recommends an operating temperature for 

absorption at 40-60 °C to achieve the highest mass transfer rates (Aroonwilas, 2004). A 

process flow scheme with temperature controlling with in absorption column can 

potentially improve the vapour-liquid equilibrium. Inter-stage cooling for absorber was 

previously devised by Woertz (1966). It can be located at each available position along 

the column, where the liquid flow is withdrawn from the column and cooled to suitable 

temperature, typically at 40 °C, and then recycled to the column at the same location. 

Such process modification proved able to enhance the CO2 loading capacity but the 

reboiler duty was subsequently slightly increased.  

 

  

(A) Inter-stage cooling (B) Split flow 

Figure 2. Modified process flow diagrams with inter-stage cooling and split flow 

(Aroonwilas, 2004; Cousins et al., 2011; Shoeld, 1934) 

 

The high thermal energy required for desorption is the major challenge for 

development of amine-based absorption technology. Shoeld (1934) hence suggested a 

split flow process, where the rich solution from the bottom of the absorber is divided 

into two streams, one being fed to the top of the desorber and the other to the midpoint. 

The top stream flows downwards counter-current to the stream of rising vapours and is 

withdrawn at a point above the midpoint which is the inlet of the second portion of the 

rich solution. The liquid withdrawn from the upper portion of the desorber is not 

completely stripped and is recycled back to the absorber column at the midpoint to 

absorb the CO2 in the lower portion of the absorber column where the CO2 

concentration is still high. This semi-lean-process is thus called partial regeneration. 
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The portion of solution, which is introduced near the midpoint of the desorber, flows 

towards the bottom and is very thoroughly stripped of absorbed CO2. This solution is 

returned to the top of the absorber column where it serves to reduce CO2 content of the 

product gas to the desired low level. In this system, the quantity of vapours rising 

through the desorber is less than that in a conventional plant (Kohl et al., 1997). The 

whole process is hence called partial deep regeneration. The split-stream cycle can also 

be simplified by dividing the lean (or rich) solution before its entrance into the absorber 

(or desorber) into two unequal streams so called lean split (or rich split) process (Estep 

et al., 1962; Eisenberg et al., 1979), which may be more economical than the basic 

flowsheet, since the splitted major stream can be warmed to a higher temperature before 

it enters to stripper and the reboiler duty is thus reduced.  

1.2.3 New generation CO2 capture technologies 

Due to drawbacks of conventional MEA-based CO2 capture process, which is regarded 

1
st
 generation technology (G1), new generation technologies were proposed to 

overcome such shortcomings, especially in energy consumption and degradability. 

Development of alternative solvents or modification of process flow scheme such as 

using inter-cooling in absorber, split-flow and heat exchange integration in stripper are 

so called 2
nd

 generation technology (G2). A scope for further improvement of capture 

technology in the overall process efficiency using novel absorbent and process leads to 

more economic 3
rd

 and 4
th

 generation technologies (G3 & G4), for instance CO2 

absorption systems with polyamine solvents, non-aqueous solvents and phase change 

solvents. A comparison of the four technology generations in thermal regeneration 

energy consumption is shown in Table 3 (Feron, 2009).  

 
Table 3. Energy requirement for various generation capture technologies 

Generation  Absorbent  Process 

  Reaction enthalpy Flow rate  Thermal energy Reflux ratio 

  kJ/mol-CO2 m3/ton-CO2  GJ/ton-CO2 ton-H2O/ton-CO2 

G1  80 20  4.5 0.7 

G2  70 10  3.3 0.6 

G3  55 8  2.3 0.4 

G4  30 4  <1 0.1 
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1.2.4 Gaps in knowledge of PCC 

Amine solvents have been used to remove acid gas from natural and synthesis gases 

since the 1930s and the amine-based gas scrubbing technology has been commercialised 

for H2S and CO2 absorption for over 80 years (Kohl et al., 1997). However, such sour 

gases contain low concentrations of CO2 and minor amount of O2 and are operated at 

high pressure. Such circumstances are quite different from fossil fuel-fired flue gases, 

which comprise more CO2 and O2 and are only at atmospheric pressure. In order to 

continue use of fossil fuel and limitation of CO2 emission, CCS must be applied and 

amine scrubbing process is probably the most promising technology for PCC from 

existing fossil fuel power plant (Rochelle, 2009).  

Several PCC pilot and demonstration plants have been operated worldwide. 

Nevertheless, economic issue is one of the principal barriers for the application of PCC 

technology, since the efficiency of power generation will be reduced by ~9% for coal-

fired or ~6% for gas-fired power plant. The energy requirement for CO2-Amine thermal 

separation typically contributes more than half of the total PCC energy penalty. 

Reduction of energy consumption, especially for solvent regeneration, is thus critical to 

be developed. Thermal and oxidative degradation cannot be avoided for amine-based 

solvents, when thermal regeneration is required and O2 is present in flue gas. Such 

degradations are irreversible. It not only consumes the absorbents but also gives rise to 

another one of the main concerning - environmental impact. Since amines are volatile to 

some extent and most absorbents can be degraded to a certain degree, it is detrimental if 

the volatile components exit through the exhaust gas, a washing unit must be applied to 

absorb all the soluble substances, while the non-volatile degradation products which are 

harmful to human health and environment also must be removed. Since PCC is being 

used to solve the issue of global warming, we must avoid creating a new environmental 

problem (Svendsen et al., 2011). Although the demonstrations have shown the potential 

of using amine scrubbing for CO2 capture from flue gas, but it is still a challenge to 

scale-up the absorption and desorption columns for large power plants. It is uncertain 

that how large of the columns are required and the technical feasibility must be further 

proved.  



1. Introduction 

8 
Jiafei Zhang Chemische Verfahrenstechnik 

1.3 CO2 capture using liquid-liquid phase change systems 

1.3.1 DMX
TM

 process from IFP 

A research group at the French Institute of Petroleum (IFP) Energy Nouvelles has filed 

several patents on PCC process with demixing solvents since 2006. Dipropylamine 

(DPA) is the first solvent proposed for fractionated regeneration in the deacidification 

process (Cadours et al., 2007). However, low boiling point and precipitation are its 

disadvantages (Zhang, J. et al., 2011b). N,N,N´,N´-tetramethyl-1,3-isobutane-diamine 

(TMiBDA) is followed, exhibiting high loading capacity and stability, but it is miscible 

with water below 90°C, which indicates a poor performance of the liquid-liquid phase 

separation (LLPS) and requires a high regeneration temperature.  

 
 

 

DMBzA  TMiBDA TMHDA 

Figure 3. Structure of amines used for DMXTM process 

 

Recently, IFP has disclosed N,N-dimethylbenzylamine (DMBzA) and N,N,N´,N´-

tetramethyl-1,6-hexane-diamine (TMHDA) as new solvents for the DMX
TM

 process 

(Aleixo et al., 2011; Jacquin, 2010), but their absorption rates are not so satisfactory, 

only being comparable to that for MDEA or even slower (Qiao, 2011).  

 

 

Figure 4. Flow scheme of DMX™ process  

(Raynal et al., 2011b) 

 

Besides the solvent improvement, IFP has also developed the absorption and 

desorption processes. A basic flow scheme is shown in Figure 4. A homogeneous 

absorbent is employed for absorption and a decanter with LLPS of the loaded solution at 

N
N
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90 °C is used prior to thermal regeneration: the lean organic phase is recycled to the 

absorber and the CO2 rich aqueous phase is sent to a steam stripping column. The 

demixing process has advantages such as high CO2 capacity, low reaction enthalpy, 

regeneration with a fraction of solvents, an “abnormally” high CO2 loading in rich 

phase, considerable energy savings and low degradation. Additionally, modified process 

flow schemes, such as integration of multiple-stage cooling system into absorption 

column for CO2 loading enhancement and multiple-stage decanter into stripping column 

for regeneration intensification, were also developed by Bouillon et al. (2010a and 

2010b).  

1.3.2 “Self-concentrating” process from 3H 

This process initially used partially miscible organic solvents such as alamine as 

activated component and alcohol, e.g. isooctanol, as extractive agent (Hu, 2005). As 

shown in Figure 5, the initially homogeneous absorbent splits into two phases after 

absorption: CO2 rich aqueous phase and CO2 lean organic phase (Hu, 2009b). By 

separating the two phases in decanter, the rich phase is sent to the thermal stripper. 

After desorption, the regenerated solvent from the stripper, combining with the lean 

organic phase from decanter, forms a lean absorbent to complete the cycle.  

 

Figure 5. Flow scheme of a “Self-concentrating” process  

(Hu, 2009a) 

 

Recently, lipophilic amines, for example dibutylamine (DBA), were employed in such 

process and claimed to save energy consumption by 80% (Hu, 2010a and 2010b). 

However, those alamines are large molecular tertiary amines, and the concentration of 

activating groups is thus significantly limited, which cannot exceed 2 M; moreover, 

precipitation of protonated DBA salts also causes the problem of fouling in the absorber 
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(Zhang, J., 2008). According to the amine screening test in this work (see Section 

3.3.2.1), slow absorption rate is another shortcoming for DBA. Since DBA is insoluble 

in water, the extractant isooctanol plays a role of solubiliser to attain a homogenous 

absorbent before absorption.  

Molecular structure of 

a typical Alamine 

 

(C8H17)3N  

Trioctylamine 

Figure 6. An example of Alamine 

 

The “Self-concentrating” process has several advantages, such as high CO2 loading, 

faster reaction, low regeneration temperature ≈90 °C and reduced energy required for 

desorption. However, the estimated value was only based on the activating component, 

the additional inert solvent with more than 50 vol.% will increase the total operational 

cost, which shouldn’t be neglected. Furthermore, solvent volatile loss and high solvent 

circulation rate due to large amount of inert solvent addition will be its main 

disadvantages. 

1.3.3 iCap phase change process 

Concerning the preponderance of phase change solvent, the innovative CO2 capture 

(iCap) project also focuses to develop absorbent systems with LLPS that forms two 

liquid phases after CO2 loading, where one of the phases is CO2 lean, can directly be 

recycled to the absorber, and another has a very high CO2 concentration, thereby having 

a potential for low circulation rate and more energy efficient CO2 desorption. The 

process flow scheme is illustrated in Figure 8. It is different from the IFP’s demixing 

process by the LLPS occurring in the aqueous blended N,N-diethylethanolamine 

(DEEA) and 3-(methylamino)propylamine (MAPA) solution at low temperature ≈20 °C 

(Bruder et al., 2011).  

 

 
 

DEEA MAPA 

Figure 7. Molecular structure of amines used for iCap process 

 

This process has advantages such as high cyclic capacity, improved equilibrium curves, 

high pressure desorption, low liquid flow in desorber and retaining good liquid load in 
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the absorber; however, the disadvantages, for instance increased complexity, possibly 

higher heat of reaction and heat dissolution, must be taken into account.  

 

Figure 8. Flow scheme of iCap phase change process  

(Monteiro et al., 2011) 

 

1.3.4 Thermomorphic biphasic solvent system 

Thermomorphic biphasic solvent (TBS) was initially proposed by Agar et al. (2008a) to 

reduce the regeneration temperature down to 80 °C or even lower, enabling the 

utilisation of low temperature or even waste heat for regeneration purposes. As 

illustrated in Figure 9, the concept was first introduced by Zhang, X. (2007): due to the 

limited aqueous solubility of these “lipophilic” amines, a thermal-induced miscibility 

gap arises upon modest heating of the loaded solvent in the temperature range of 60-80 

°C. The organic phase thus formed acts as an extractive agent, removing the amine from 

the aqueous phase and thus favourably displacing the regeneration equilibrium and 

driving the reaction towards dissociation of the carbamate and bicarbonate species in the 

loaded aqueous phase according to Le Chatelier’s principle (Tan, 2010). In general, a 

comparison on the features, advantages and disadvantages of the liquid-liquid phase 

change CO2 capture processes are listed in Table 4. 

 

 

Figure 9. Principle concept of CO2 absorption using TBS system  



1. Introduction 

12 
Jiafei Zhang Chemische Verfahrenstechnik 

 
Table 4. Comparison of liquid-liquid phase change systems 

Process Solvent Apparatus         Pros     Cons Reference 

DMX Alkylamine Absorber, 

decanter, 

stripper 

High net CO2 capacity 

Low liquid flow for 

desorber to reduce the 

regeneration energy  

Volatile loss  

High viscosity 

Raynal et 

al., 2011a 

3H Alamine + 

isooctanol 

Similar to 

DMX 

High CO2 loading 

Low regeneration 

Temperature: 90 °C 

Reduced desorption 

energy consumption 

Significant 

solvent volatile 

loss  

High solvent 

circulation rate 

Hu, 2010b 

iCap DEEA + 

MAPA 

Similar to 

DMX 

High net CO2 capacity  

Low liquid flow for 

desorber to reduce the 

regeneration energy  

High pressure 

desorption to save the 

compression cost  

High viscosity 

High reaction 

enthalpy 

Bruder et 

al., 2011 

TBS Lipophilic 

amine  

Absorber, 

phase 

separator 

High net CO2 capacity 

Low desorption 

temperature: 80-90 °C 

Use of waste heat for 

regeneration  

Volatile loss  

High viscosity 

This work 

 

1.4 Research background 

Improvement of CO2 loading capacity, reaction kinetics, mass transfer, regenerability 

and solvent stability as well as reduction of the energy consumption are the most 

significant challenges facing the post-combustion carbon capture process. The TBS 

absorbent, comprising lipophilic amines as activating component, exhibits a 

thermomorphic phase transition upon heating, giving rise to extractive behaviour, which 

enhances desorption at temperatures well below the boiling point of the solution (Agar 

et al., 2008a). In comparison to conventional alkanolamines, the vapour liquid 

equilibrium (VLE) data for lipophilic amines indicate their considerable potential for 

the CO2 absorption process, in particular the high cyclic loading capacity approaching 

0.9 mol-CO2/mol-absorbent and the low regeneration temperature, which enables the use of 

low value heat utilities for desorption purposes. The absorption enthalpies of selected 

amine solvents were determined by an indirect method and the solvent degradation with 

respect to that of alkanolamines was also investigated.  
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1.4.1 Previous studies 

The lipophilic amine solvents, for example N,N-dimethylcyclohexylamine (DMCA) and 

dipropylamine (DPA) in blends or individually, have been studied extensively in 

previous work with respect to their CO2 loading capacities, kinetics, regeneration rates, 

residual loadings and so forth (Zhang, X., 2007). The tertiary amine DMCA acts as the 

main absorbent, because of its high CO2 loading capacity in absorption and low residual 

loading upon regeneration. DPA is regarded as an activator, due to its rapid CO2 

absorption kinetics (Tan, 2010). Blending DMCA and DPA in aqueous solution 

combines the advantages of both.  

Screening studies to identify new lipophilic amine solvents were conducted both 

theoretically and experimentally (Zhang, J., 2008). A novel absorbent system 

comprising aliphatic amines di-sec-butylamine (DsBA) with remarkable regeneration 

characteristics and MCA exhibiting a significantly faster absorption rate, were selected 

from a comparison of over thirty different lipophilic amines. The outstanding 

performance parameters of the new blended DsBA+MCA and DMCA+MCA solvents 

make them the promising candidates for assessing the technical viability in future 

development work. However, there are still several challenges, solvent vaporisation 

loss, two phase problem in absorption, degradation, non-stripping regeneration 

techniques and packing wettability of the TBS system, therefore, further study must be 

carried out to determine their behaviour and solve those issues if they arise.  

1.4.2 Research objectives and outline 

This project has focused on development of new generation CO2 capture technologies to 

overcome the challenges, for instance high energy consumption in stripping and 

elevated temperature required for solvent regeneration as well as amine degradation in 

the absorber and desorber, that occurred in the conventional alkanolamine. Using novel 

lipophilic amine solvent systems has proved advantages such as remarkable CO2 

loading capacity, rapid absorption rate, high regenerability, low regeneration 

temperature and moderate reaction enthalpy, but there are still some unsolved issues: its 

lower critical solution temperature (LCST) was not satisfied, vaporisation was found to 

be a significant challenge, degradation was not measured, feasible techniques for 

regeneration at 80-90 °C was not devised and a suitable process scheme was not 

developed. Therefore, the objective of this work is not only to improve the solvent 

recipe but also to ameliorate those existing and potential issues.  
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In Chapter 2, basic knowledge and theoretical studies of aqueous solubility, novel 

concept of biphasic system and fundamentals of gas scrubbing have been summarised. 

According to the structural influence of amine molecule for CO2 absorption and 

desorption, new lipophilic amines were continuously explored by screening tests and the 

LLPS behaviour was also observed, which are presented in Chapter 3. After 

classification and selection of suitable amines, blended lipophilic amine solvents were 

formulated by varying concentrations and proportions for optimising absorbent system. 

To control the phase change behaviour, solubilisation with partial protonation and 

foreign solvent addition was also investigated for regulating the LCST. Those results 

are given in Chapter 4. Volatility and degradability of lipophilic amines solvents were 

studied and countermeasures for reduction of solvent losses were also proposed, which 

are discussed in Chapter 5. Further research was conducted to intensify the solvent 

regeneration without steam stripping at temperatures lower than 85 °C, thus permitting 

the use of waste heat for desorption. Chapters 6-7 disclose novel techniques, such as 

nucleation, agitation, ultrasound and extraction, devised to enhance CO2 regeneration. 

After the solvent and process amelioration, the bench-scale unit with a 1 m height 

packed absorption column was employed for packing wettability tests and the energy 

consumption was also estimated, which is described in Chapters 8-9.  

 

 

 

 

 

 

Figure 10. Structural overview of this dissertation 
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2 Theoretical background 

2.1 Aqueous solubility 

The solubility of one substance dissolving in another is determined by the balance of 

intermolecular forces between the solvent and solute. In addition, solvation behaviour is 

always accompanied with change of entropy. The solubility can be modified by altering 

the parameters, such as temperature and pressure, to shift the balance. All the absorption 

experiments in this work were conducted at ambient pressure and hence temperature 

became the major influence factor for the miscibility study between amine and water. 

Most aliphatic amines exhibit a weak miscibility with water, along with forming 

hydrogen bonds, and the aqueous solubility decreases with an increase in the number of 

carbon atoms in the molecule. When the carbon atom number is greater than 7, most 

corresponding alkylamines are insoluble in water.  

2.1.1 Amine-water system: Solubilisation 

Lipophilic amines are constituted of hydrophilic (amino) and hydrophobic (alkyl) 

groups (see Figure 11). To some extent, the solubility depends on the structure of alkyl 

groups. Upon experience a popular aphorism used for predicting solubility is “Like 

dissolves like”, which indicates a solute will dissolve best in a solvent that has a similar 

polarity to itself. It is a rather simplistic view, since it ignores many solvent-solute 

interactions, but it is a useful rule of thumb. For example, alcohol-water mixtures both 

have a similar structure “-OH” group. But the validity of this rule is limited by many 

exceptions, such as methanol and benzene which are chemically dissimilar compounds.  

 

     

HA (I) DPA (II) DsBA (II) DMCA (III) EPD (III) 

Figure 11. Examples of lipophilic amines 

Red: hydrophobic alkyl group(s); blue: hydrophilic amino group 

 

However, rather than the rule of “like dissolves like”, the mutual solubility is 

determined by the intermolecular interaction between solvent and solute molecules. The 

solute (A) dissolves in the solvent (B) only when their respective intermolecular 

attraction forces KAA and KBB can be overcome by the interaction force KAB in solution. 

H2N

 

NH

 

NH

 

N
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The sum of the interaction forces between the solute and solvent molecules can be 

described by the term “polarity” (Reichardt, 2003). The compounds with large 

respectively interactions are regarded as polar, and those with small interaction as 

nonpolar. A qualitative prediction of solubility is indicated in Table 5 (Pimentel, 1963). 

In cases 2 and 3, the solubility might be low because it is difficult to break up the strong 

interaction A-A or B-B. 

Table 5. Relationship of solubility and polarity 

Case Solute Solvent Interaction Solubility 

 A B A-A B-B A-B A in B 

1 nonpolar nonpolar weak weak weak can be high 

2 nonpolar polar weak strong weak probably low 

3 polar nonpolar strong weak weak probably low 

4 polar polar strong strong strong can be high 

 

In aqueous lipophilic amine systems, water is a strong self-associate component, 

and lipophilic amine is contributed by hydrophilic and hydrophobic groups. The 

hydrophilic group plays a major role in primary amine, so it is typically water soluble 

while the tertiary amine has low aqueous solubility due to its hydrophobic groups. 

Several examples are given in Table 6. With an increase of carbon number in the alkyl 

group, the aqueous solubility decreases, because the influence of the hydrophobic group 

is enhanced. Additionally, amines with branched or cyclic structures have higher 

solubility than those which have the same carbon number with only linear chains. 

Because the alkyl chains are shortened by branched and cyclic structures, the influence 

of hydrophobic groups is weakened. 

 
Table 6. Solubility of amines in water at room temperature 

(unit: g/L) 

Primary amine Solub.  Secondary amine Solub.  Tertiary amine Solub. 

Propylamine    c.s.*  Dipropylamine 49  Trimethylamine c.s. 

Isopropylamine    c.s.  Diisopropylamine 110  Triethylamine 170 

Hexylamine    14  Dihexylamine 0.3  Tripropylamine 2.6 

Cyclohexylamine    c.s.  Dicyclohexylamine 1  Tributylamine 0.4 

* c.s.: completely soluble 
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2.1.2 Amine-alkane-water system: Extraction 

Liquid-liquid extraction is a separation technology based on the relative solubility of the 

component in two different immiscible liquids to be distributed between the two phases. 

This depends on the mass transfer of the component to be extracted from one of the 

liquid phases to another. In this work, an extraction system involving alkanes as 

extractant was studied for amine regeneration to reduce the required desorption 

temperature (Agar et al., 2008b), and thus to enhance the feasibility of using waste heat 

for solvent regeneration to cut the exergy demand.  

Hamborg et al. (2011) have described a method for enhancing the regeneration of 

MDEA by adding water-soluble organic solvents, such as methanol and ethanol, which 

reduces the dielectric constant of the mixed solution, leading to the conversion of a 

protonated alkanolamine to a non-ionised molecule. Extractive regeneration using 

additional inert hydrophobic solvents reduces the dielectric constant still further, 

resulting in a displacement of the equilibrium in the loaded solution and giving rise to 

CO2 release with simultaneous extraction of the amine into the inert solvent at very low 

temperatures of ≈50 °C or even less (Zhang, J. et al., 2011c).  

2.2 Novel concepts 

2.2.1 Switchable-polarity solvents 

A switchable polarity solvent is a liquid whose polarity can be changed between two 

forms by a trigger (Phan et al., 2007). With addition of CO2 as the switching agent, the 

lipophilic amines can be switched to a higher polarity solvent and be turned back to a 

lower polarity solvent by removal of CO2 with thermal or N2 stripping (see Figure 12). 

Therefore, it can be used as an extraction agent for mixtures comprising polar and 

nonpolar solvents due to such switchable-polarity characteristics. In the blended amine 

solutions, the easily regenerated amines such as DMCA and DsBA can be regarded as 

switchable polarity solvents, switching from polar to nonpolar during regeneration to 

extract the less regenerable amines, for example MCA and DPA, from the polar 

aqueous solution to enhance the overall depth of desorption.  

 

 

Figure 12. Switch of solvent polarity 

higher polarity solvent lower polarity solvent 

+ CO2

- CO2

(+  HCO3
-)(H2O  +)
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2.2.2 Lower critical solution temperature  

Since lipophilic amines possess both the hydrophilic and hydrophobic functional 

groups, most of them are partially miscible in water and exhibit lower critical solution 

temperature (LCST) behaviour. As illustrated in Figure 13(C), LCST is the critical 

temperature below which the components of a mixture are miscible (Yalkowsky, 1999). 

It differs from the regular binary mixture system depicted in Figure 13(A) since the 

miscibility of most binary liquid systems increases with the temperature rising, for 

examples phenol-water and n-butanol-water both exhibit upper critical solution 

temperatures (UCST).  

 

 

Figure 13. Partial miscibility curves for binary liquid-liquid mixtures  

(A) UCST; (B) Both UCST and LCST; (C) LCST 

 

The lipophilic amine and water system, on the other hand, is miscible at low 

temperatures and separates into two immiscible phases with temperature increase. The 

miscibility gap of the binary system is explained by a specific solute-solvent interaction: 

the LCST is initiated by the breakdown of strong cohesive interactions between the 

solute and solvent. A typical example is the triethylamine-water system (Counsell et al., 

1961). The triethylamine does not self-associate at low temperatures, due to the absence 

of hydrogen bonding, and it is completely soluble in water. However, the cohesive 

interaction can be reduced by increasing the temperature resulting in phase separation 

by self-association of the hydrophobic groups (Yalkowsky, 1999). The phase transition 

behaviour can be resolved into the following stages: 

 At temperatures below LCST, the lipophilic amine is completely dissolved in water 

and the molecular system is in an orientational configuration.  

 With increasing temperature, the extent of hydrogen bonds diminishes: the amine-

water hydrogen bonding (9 kJ/mol) is first destroyed and the breakage of the amine-

amine intra-molecular hydrogen bonding (13 kJ/mol) follows, while the water-water 

hydrogen bonding remains strong (21 kJ/mol).  
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 When LCST temperature is achieved, the amine molecules are driven out of the 

aqueous phase and an organic phase is formed by the molecular self-association 

behaviour. Two separate phases thus arise with the water-water hydrogen bonding 

decreasing at still higher temperatures.  

However, most binary liquid-liquid systems with a miscibility gap usually exhibit 

UCST, because they do not have the interactions observed in solutions with LCST.  

2.2.3 Liquid-liquid phase separation  

Due to the benefits of using LCST characteristics to reduce the regeneration temperature 

required, lipophilic amines have been employed as novel absorbents for circumventing 

the energy demands for CO2 capture through the thermomorphic liquid-liquid phase 

separation (LLPS). Initial development work focussed on the miscibility of organic and 

aqueous phases and their temperature dependent phase transition behaviour. The 

concept of the phase transition CO2 capture process is primarily determined by two 

processes: 

 The homogeneous loaded lipophilic amine solution separates into two phases upon 

heating at temperature of around 80 °C during regeneration; the organic phase 

formed mainly contains the regenerated lipophilic amine, while the aqueous phase 

comprises water, carbamate, bicarbonate and protonated amine species. 

 The regenerated lean biphasic solvent reverts to a single phase upon cooling to the 

critical solution temperature of ca. 40 °C, i.e., the absorbent becomes homogeneous 

again at the operating temperature of the absorber. 

Such a biphasic system potentially offers considerable advantages (Svendsen et al., 

2011). Since the absorbent is resolved into one phase highly concentrated in CO2 and 

another phase low in CO2, only the concentrated phase needs be sent to the stripper. 

This is equivalent to a system operated with an extremely high CO2 capacity. In 

addition, the concentrated phase can be loaded up to a very high level, enabling 

desorber operation at elevated pressure, reduced temperature or both. Furthermore, there 

is no deterioration of wetting in the absorber operation, even when a very concentrated 

solution is circulated to the absorber. This could facilitate the use of an absorber with a 

greater cross-sectional area and thus a lower pressure drop. 

Recognising the advantages of integrating LLPS in the post-combustion capture 

(PCC), a new CO2 capture technology - the DMX™ process - has been developed by 

IFP to reduce energy consumption with a demixing unit prior to thermal regeneration: 
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the lean organic phase is returned to the absorber while the CO2 rich aqueous phase is 

sent to a steam stripping column (Raynal et al., 2011a and 2011b). The activating 

solvent used in such a process has a LCST of 50 °C, however, the LLPS temperature is 

higher than 90 °C, being elevated by the solubilisation effect of the ionised CO2. In the 

TBS process illustrated in Figure 14, on the other hand, the LLPS unit is designed to 

achieve “deep” solvent regeneration (>90%) with simultaneous CO2 release (Zhang, X., 

2007). By removing the regenerated CO2 from the LLPS unit, the required LLPS 

temperature of the partially protonated amine solution is reduced and equilibrium is 

driven in the direction of desorption.  

 

Figure 14. Basic concept of TBS system  

 

According to the screening tests, several of the selected alternative lipophilic amine 

absorbents studied, such as hexylamine (HA), dipropylamine (DPA) and N-

methylcyclohexylamine (MCA), exhibit critical solution behaviour around 40 °C, but 

the required LLPS temperature is too high (≈90 °C) to permit utilisation of waste heat in  

regeneration. However, for other less soluble lipophilic amines, such as N,N-

dimethylcyclohexylamine (DMCA) and di-sec-butylamine (DsBA), the LLPS can be 

reduced to temperatures of lower than 80 °C, but the critical solution temperature is 

even lower - below 20 °C, which makes it possible to exploit low value heat for 

regeneration but renders a homogeneous solution for absorption unfeasible. Blended 

lipophilic amine solutions were therefore used in the TBS system to enable a 

compromise overcoming these drawbacks.  
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2.3 Chemistry of reactions between CO2 and amine 

The chemical reaction of CO2 and amines in aqueous solution is extraordinary complex 

and the mechanism is significantly difficult to describe. Referring to the previous 

researches on alkanolamines, such as MEA, diethanolamine (DEA), 2-amino-2-methyl-

1-propanol (AMP) and methyldiethanolamine (MDEA), some stable carbamates and 

bicarbonates were found in their absorbed solutions (Dang et al., 2003; Hagewiesche et 

al., 1995; Horng et al., 2002; Jou et al., 1995; Mandal et al., 2001 and 2003). 

(1) Primary and secondary amines 

Primary and secondary amines, for instance MEA and DEA, have been extensively 

studied on their reaction kinetics and the following main reactions are considered: 

    CF 
 RNHCOORNHRNHCO

322
2  (R. 2.1) 

    BF 



33222

HCORNHOHRNHCO  (R. 2.2) 

    CR 



3322

22 HCORNHOHRNHCOOCO  (R. 2.3) 

During absorption process, carbamate formation (CF) takes place in the condition of 

amine excess; bicarbonate formation (BF) occurs in the condition of CO2 excess; and 

carbamate reversion (CR) happens while the mole ratio of CO2 to amine is above 0.5. In 

order to reach high recover ratio of CO2, excess absorbent is used for the reactions; R. 

2.1 is thus the leading reaction (Astarita, 1983), which can be established to a 

mechanism with formation of zwitterions in two steps: 

 


  COOHNRRNHCO
Slow

222
 (R. 2.4) 

 


  RNHCOORNHRNHCOOHNR
Fast

322
 (R. 2.5) 

During the first step, CO2 reacts with amine and forms zwitterion intermediate, 




COOHNR
2

 or 




COONHR
2

; the zwitterions then donate the protons to bases such as 

RNH2 or R2NH and forms carbamate. 

Bicarbonate formation is the only overall reaction to take place. A possible 

mechanism with formation of zwitterion intermediate is given by R. 2.4 and 2.6. 

 



3322

HCORNHOHCOOHNR  (R. 2.6) 

The mechanism of carbamate reversion to bicarbonate is a little complicated. The 

sequence of elementary steps is shown below: 

 
223

RNHCOOHNRRNHRNHCOO 



  (R. 2.7) 

 
222

CORNHCOOHNR 




 (R. 2.8) 
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

 HOHOH
2

 (R. 2.9) 

 



32

HCOOHCO
slow  (R. 2.10) 

 



32

RNHHRNH  (R. 2.11) 

(2) Tertiary amines 

Theoretically, tertiary amines, e.g. MDEA, could form zwitterions 


COONR
3

, but they 

cannot form the neutral carbamic acid. Therefore, the main reaction is: 

It is comparable to R. 2.2, and its mechanism can be conjectured as: 

 


  COONRNRCO
Slow

332
 (R. 2.13) 

 



3323

HCONROHCOONR  (R. 2.14) 

(3) Sterically hindered amines 

Sterically hindered amines such as AMP have attracted attention because of their 

potential high CO2 capacities and their low regeneration energies, but there is no 

universal agreement on the relevant kinetic expressions (Gabrielsen et al., 2007). It has 

experimentally been confirmed by Nuclear magnetic resonance (NMR) spectroscopy 

that bicarbonate anion predominantly exists at equilibrium when CO2 is absorbed in 

aqueous AMP solutions (Chakraborty et al., 1986). Theoretical investigations on the 

AMP-H2O-CO2 system are very limited. Ismael et al. (2009) studied the carbamate 

formation mechanism (R. 2.15) for CO2 and AMP in both gas and aqueous phases.  

It was also confirmed by the intrinsic reaction coordinate (IRC) calculation that the 

zwitterion formation exists in aqueous solution:  

According to the IRC calculation with comparison of the activation energies for various 

reactions and conformations (Yamada et al., 2011), carbamate forms easily and 

decomposes reversibly in nonequilibrium states (see R. 2.15), bicarbonate forms from 

AMP, H2O and CO2 by a single-step termolecular mechanism (see R. 2.2), while the 

carbamate hardly undergoes hydrolysis to form the bicarbonate (see R. 2.17). 

    BF 



33232

HCONHROHNRCO  (R. 2.12) 

 OHNHCOOHCHCHOCHCOOHNHCHCHOCH
2232222232

)()(   (R. 2.15) 

 


 COOHNCHCHOCHCONHCHCHOCH
223222232

)()(  (R. 2.16) 

 


322322232
)()( HCONHCHCHOCHOHNHCOOCHCHOCH  (R. 2.17) 
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2.4 Fundamentals of packed column for gas-liquid system 

2.4.1 Column packing 

The column packing plays an important role in the mass transfer between the gas and 

liquid phases. It provides wide surface area for enhancing liquid and gas contact. Its 

open structure also attains uniform liquid distribution and gas vapour flow across the 

column. There are two type of packings commonly used in absorption columns: random 

and structured packings. For the convenience of operation to test the wettability of 

various packing materials, random packing was studied in this work. The geometric 

parameters of packings were calculated by the following equations (Maćkowiak, 2003; 

Walzel, 2006).  

I. Porosity (ε):  

      
      

  
 

       

  
       Eq. 2.1 

where VC is the volume of the column, VP is the total volume of the packings.  

II. Particle diameter (dP):  

         
  

  
       Eq. 2.2 

where AP is the surface area of the packings.  

III. Specific surface (a):  

      
  

  
         

 

  
       Eq. 2.3 

where AP is the total surface area of packings.  

2.4.2 Fluid dynamics  

To understand the motion of fluid flow in the absorption column, several parameters, 

e.g. Reynolds number, liquid hold-up and pressure drop, were studied in this section and 

calculated by the equations below (Billet, 1995; Górak, 2006).  

I. Hydraulic diameter (dh): 

        
     

     
 

 

 
 

 

   
              Eq. 2.4 

where Aw is the wall area. 

II. Wall factor (K):  

    
 

 
   

 

 
 

 

   
 
  

   
       Eq. 2.5 

where dC is column diameter.  
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III. Reynolds number  

The Reynolds number (Re) is an important parameter used in fluid mechanics to help 

predict similar flow patterns in different fluid flow situations. In the column model 

(Maćkowiak, 2003), the Reynolds number of the gas phase is defined as following:  

        
 

 
 
 ̅    

  
  

 

 
  

 ̅ 

 
 
  

  
        Eq. 2.6 

where   ̅  is the effective gas velocity,    is the kinematic viscosity, and    is the 

dynamic viscosity. By inserting Eq. 2.4 into Eq. 2.6, the ReG can be calculated as 

        
     

        
   

  

     
 
  

  
          Eq. 2.7 

The Reynolds number of liquid phase is defined as below:  

         
  

    
 

     

    
       Eq. 2.8 

IV. Gas load factor:  

         √
  

     
       Eq. 2.9 

  or       √      (if      )     Eq. 2.10 

where uG is the gas velocity,    the density of the gas and    is the density of the liquid. 

V. Pressure drop 

The pressure drop is a major criterion for selecting packings in absorption columns. It is 

usually expressed as a function of the gas load factor:  

    
  

 
         (at a constant liquid-gas ratio)   Eq. 2.11 

VI. Liquid hold-up 

The liquid hold-up (hL) in packed column consists of two parts: the static hold-up (hst) 

and the dynamic hold-up (hdyn). The static remains within the bed and the dynamic 

flows downwards; the latter, depending upon the hydrodynamics of the flow, provides 

the more valuable information on the column operation.  

          
  

  
               Eq. 2.12 

where VL is the volume of the retained liquid.  
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3 Selection of new lipophilic amines 

3.1 Chemicals: Lipophilic amines 

More than thirty lipophilic amines with varying molecular structures have been studied 

in the screening experiment; some of them are representatively listed in Table 7. The 

full list is presented in Appendix A. All the amines studied in this work were purchased 

from chemical suppliers with high purity (≥97%).  

Table 7. List of advanced tested lipophilic amines 

Chemical Abbr. CAS Structure 
Mr 

(g/mol) 
Supplier 

Hexylamine HA 111-26-2  101.19 Merck 

Di-n-propylamine DPA 142-84-7 
 

101.19 Fluka 

Di-sec-butylamine 
DsBA  

(B1) 
626-23-3 

 

129.25 Aldrich 

N-Methylcyclo 

hexylamine 
MCA  

(A1) 
100-60-7 

 
113.20 Acros 

N,N-Dimethylcyclo 

hexylamine 
DMCA 98-94-2 

 
127.23 Merck 

N-Methylbenzyl 

amine 
MBzA 103-67-3 

 
121.18 Merck 

N,N-Dimethyl 

benzylamine 
DMBzA 103-83-3 

 

135.21 Merck 

2-Ethylpiperidine 2EPD 1484-80-6 

 

113.20 Aldrich 

N-Ethyl piperidine EPD 766-09-6 
 

113.20 Fluka 

 

3.2 Experiment: Test tube amine screening  

The screening experiment was initially carried out in Schott GL-18 test tubes at 25 °C 

with 20 mL/min of CO2 gas flow for absorption and then stepwise increased the 

temperature from 40 to 90 °C for desorption. Both the barium chloride (Jou et al., 1995) 

and weight methods were used to determine the mass of CO2 loaded into the amine 

solution. The detailed setup is illustrated in Appendix B.1. 
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3.3 Preliminary amine screening 

3.3.1 Performance of screened amines 

The preliminary amine screening was conducted in the test tube experiment for 

determination of suitable amines as alternative CO2 absorbents (Zhang, J., 2008; Zhang, 

J. et al., 2012a). A comparison of their performance is presented in Table 8. MCA was 

identified as an excellent solvent with high CO2 loading and rapid reaction kinetics; 

additionally, DsBA was also selected due to its remarkable net CO2 capacity and 

regenerability during the screening test over 40 amines.  

Further researches on exploring more potential lipophilic amines were carried out 

over more than 20 other lipophilic amines, e.g. cyclic amines, derivatives of 

benzylamine (BzA), N-methylmorpholine (MMP) and diamines in this work. 2-

ethylpiperidine (2EPD) and N-methylbenzylamine (MBzA) were selected as alternative 

absorbents from structure study and also experimentally proved in the test according to 

their outstanding performance in absorption. Figure 15 indicates the performance 

parameters of 2EPD are as good as MCA with respect to reactivity and capacity in 

absorption. MBzA also exhibits fast reaction rate, but the loading is a little lower. 

Precipitation (Pr) was found in both BzA and N-ethylbenzylamine (EBzA), which is 

similar to cyclohexylamine (CHA) and N-ethylcyclohexylamine (ECA). As a diamine, 

N,N,N´,N´-Tetramethyl-1,6-hexane-diamine (TMHDA) exhibits high CO2 loading but 

low absorption rate; both DMBzA and MMP were unsatisfactory due to their slow 

reaction and undesirable solubility behaviour. In combination with previous screening 

results, lipophilic amines with an α-carbon branch ( ), e.g. MCA and 2EPD, are 

greatly interested, owing to the remarkable absorption kinetics and CO2 capacities.  
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Figure 15. Absorption characteristics of 3M lipophilic amines 
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Table 8. Performance and evaluation of preliminary screened lipophilic amines 

No. Solvent Abbr. Typea Sub.b Phe.c αd Reg.d 

1 Hexylamine HA I L / 2 3 

2 Heptylamine HpA I L Gl 5 \ 

3 Octylamine OtA I L Gl 5 \ 

4 Di-n-propylamine DPA II L Pr 1 2 

5 Diisopropylamine DIPA II B Sa 2 5 

6 N-Ethylbutylamine EBA II L Pr 1 4 

7 Di-n-butylamine DBA II L Pr 2 1 

8 Diisobutylamine DIBA II B Sa 3 1 

9 Di-sec-butylamine DsBA II B / 2 1 

10 N-sec-Butyl-n-propylamine SBPA II B Sa 2 \ 

11 Triethylamine TEA III L / 3 \ 

12 Tripropylamine TPA III L / 5 \ 

13 Tributylamine TBA III L / 5 \ 

14 N,N-Diisopropyl methylamine DIMA III B / 3 3 

15 N,N-Diisopropyl ethylamine DIEA III B / 4 \ 

16 N,N-Dimethyl butylamine DMBA III L / 2 2 

17 N,N-Dimethyl octylamine DMOA III L / 2 1 

18 Cyclohexylamine CHA I O Sa 2 3 

19 Cycloheptylamine CHpA I O Pr 2 2 

20 Cyclooctylamine COA I O Pr 3 \ 

23 2-Methylcyclohexyl amine 2MCA I O Pr 4 \ 

21 N-Methylcyclohexyl amine MCA II O / 1 3 

22 N-Ethylcyclohexyl amine ECA II O Sa 2 4 

24 N-Isopropyl cyclohexylamine IPCA II O,B Sa 2 \ 

25 Dicyclohexylamine DCHA II O Sa 3 \ 

26 N,N-Dimethyl Cyclohexyl amine DMCA III O / 2 1 

27 N,N-Diethyl Cyclohexyl amine DECA III O / 3 \ 

28 2,6-Dimethyl piperidine 2,6-DMPD II P Sa 1 4 

29 3,5-Dimethyl piperidine 3,5-DMPD II P Pr 3 \ 

30 2,2,6,6-Tetramethyl piperidine TMPD II P Gl \ \ 

31 2-Methyl piperidine 2MPD II P / 2 3 

32 2-Ethyl piperidine 2EPD II P / 1 3 

33 N-Methyl piperidine MPD III P / 2 1 

34 N-Ethyl piperidine EPD III P / 2 2 

35 Benzylamine BzA I Z / 2 \ 

36 N-Methyl benzylamine MBzA II Z / 2 3 

37 N-Ethyl benzylamine EBzA II Z Pr 2 \ 

38 N,N-Dimethyl benzylamine DMBzA III Z / 4 1 

39 Phenylethylamine PhEA II Z / 2 \ 

40 N-Methylmorpholine MMP III  / 4 \ 

 
    Benchmarks 

 
     

41 Monoethanolamine MEA I L / 3 5 

42 N-Methyldiethanolamine MDEA III L / 4 3 

43 2-Amino-2-methyl-1-propanol AMP I B / 2 3 

44 Piperazine PZ II  / 1 5 

a Type: I - primary amine, II - secondary amine, III - tertiary amine;  
b Substitute (Sub.): L - liner chain, B - branched chain, O - cycloalkane, P - piperidine, Z - benzyl group; 
c Phenomenon (Phe.): Gl - gel formation, Pr - precipitation, Sa - salts formation, / - none;  
d CO2 loading (α) & Regenerability (Reg.): 1 - excellent, 2 - good, 3 - moderate, 4 - unsatisfactory, 5 - poor, \ - 

untested (no value for further experiment).  
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3.3.2 Main screening criteria 

The overall screening among those amines is based on the comprehensive performance 

in absorption and regeneration, which mainly include absorption capacity, reaction rate, 

and cyclic capacity as well as absence of precipitation, salts or gel formation and 

presence of thermomorphic phase transition. The phase change behaviour is the most 

significant phenomenon observed in the lipophilic amine solutions and it will be 

discussed in detail in Section 3.5, while other performance parameters are studied in the 

this section.  
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Figure 16. Cyclic CO2 capacity and absorption rate of selected amine solutions  

(Test tube solvent screening experiment, camine=2.7M) 

 

3.3.2.1 Reaction rate 

The reaction rate in absorption is mainly influenced by aqueous solubility, steric 

structure and basicity of amine. According to the experimental investigation, aqueous 

solubility is the key factor on reaction rate for TBS since the fast reactions were found 

in amine solutions, such as MCA and 2EPD, which were completely or partially 

aqueous miscible whereas the slow reactions were detected in those, DMCA and DsBA 

for instance, that were slightly aqueous miscible or immiscible (see Figure 16). This is 

principally due to the biphasic behaviour obstructing the mass transfer between the 

aqueous and gas phases. Large hydrocarbon substituents can also hinder the reaction 

between CO2 and amino group and thus slows the absorption kinetics. Basicity is a 

minor influence factor for reaction rate, the more basic solvent can stabilise the reaction 

products and leads to a fast absorption rate.  
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The most interesting case is MCA, which is partially miscible with water but 

achieves the highest absorption rate in the experiment. In addition, very fast initial 

reaction rate is also found in most partially aqueous soluble amines, when the solution is 

still heterogeneous. This phenomenon can be explained by the shuttle mechanism, 

(Astarita, 1983; Versteeg et al., 1990; Hagewiesche et al., 1995).  

 

 

Figure 17. Illustration of shuttle mechanism in biphasic amine solution 

 

As illustrated in Figure 17, the reaction system is in three phases: gas, amine and 

water. Reactions take place when CO2 is supplied into the solvent: 

(i) In organic phase and at the interface of gas and organic phases (G-O), 

carbamate formation (CF) takes place; 

(ii) At the interface of organic and aqueous phases (O-A), the hydrophilic ions 

R2NH2
+
 and R2NCOO

-
 which are produced in organic phase transmit to 

aqueous phase; 

(iii) In aqueous phase and at the interface of organic and aqueous phases, 

carbamate reversion (CR) and bicarbonate formation (BF) occur; 

(iv) Due to limitation of solubility, the aqueous phase is a saturated amine 

solution; as more and more dissolved amine is consumed by reaction BF, 

more and more free amine is supplied from organic phase; 
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(v) When amine is consumed by reactions CF and BF, the organic phase is 

reduced continuously until all the amine molecules are “dissolved” into 

aqueous phase. 

Initially, CF is the main reaction, since it takes place immediately. While more and 

more carbamate is accumulated in liquid phase, CR takes place sequentially. In the 

partially miscible amine solutions, BF also occurs in the aqueous phase because CO2 

has opportunity to contact both amine and water simultaneously; the reaction rate is thus 

accelerated. Conversely, BF is considered in the slight soluble or insoluble amine 

solutions, since there is little amine in aqueous phase and it is hard for CO2 to contact 

both amine and water simultaneously; the reaction rate is therefore unable to be kept 

fast after the achievement of the half reaction (α = 0.5 mol-CO2/mol-amine).  

3.3.2.2 Absorption capacity 

The capacity of CO2 absorption theoretically depends on the reaction mechanism, such 

as typically tertiary amine is able to achieve higher capacity than primary and secondary 

amines. However, according to the experimental results, it is very complicated in 

practice; because sterically hindrance is also an important influence on the capacity. 

Based on the reaction mechanism introduced in section 2.3, tertiary amine can 

react with equivalent moles of carbon dioxide and water, the direct formation of 

bicarbonate is the only main reaction that needs be considered; the formation of 

carbamate, as well as the formation of bicarbonate and reversion of carbamate all should 

be considered in primary and secondary amine solutions. If precipitation or salt 

formation takes place, the produced carbamate is unable to reverse to bicarbonate and 

the capacity is thus reduced. However, if the reactions are carried out in aqueous 

environment, additional water will promote both the carbamate reversion and 

bicarbonate formation, hence, the capacity is comparable to tertiary amine. As shown in 

Figure 15(B), the CO2 loading in secondary amines MCA and 2EPD can approach 1 

mol-CO2/mol-amine, due to the shuttle mechanism illustrated in Figure 17.  

3.3.2.3 Precipitation and salts formation 

Both precipitation and salts formation are undesired phenomena in absorption (see 

Figure 18). They reduce the CO2 loading capacity by impediment of carbamate 

reversion to bicarbonate and they also can damage the equipment by fouling; however, 

they have positive influence on reaction rate. Due to different reaction mechanisms, 
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precipitation and salts formation do not take place in tertiary amine solutions. However, 

the phenomena in primary and secondary amine solutions are irregular or unpredictable. 

In this experiment, those discovered potential amines without precipitation or salts 

formation are DsBA, MCA, HA, CHpA and all the tertiary amines. 

According to experimental observation, salt formation usually takes place very 

early, between 5-15 min, because it is caused by carbamate formation in the organic 

phase. The solid salts are self-associated and adhering on the glass wall and carbamate 

reversion cannot be carried out since no carbamate is dissolved into aqueous phase; 

therefore, the capacity is reduced. In contrast, precipitation typically occurs near the end 

of reaction, because carbamate formation is much faster than carbamate reversion, then 

more and more carbamate is accumulated in the aqueous phase; after it is saturated, the 

pairs of ions salt out. In some cases, the precipitate suspends in the saturated solution 

and the liquid becomes a non-Newtonian fluid, which results in high viscosity and even 

leads to gel formation.  

 

   

Precipitation of DPA solution: 

R2NH2
+ + HCO3

- 

Salts formation of DIPA solution: 

R2NH2
+ +R2NCOO- 

Both precipitation and salts 

formation of ECA solution 

Figure 18. Precipitation and salts formation of CO2 into lipophilic amine solutions 

 

3.3.2.4 Regenerability 

Thermomorphic phase transition is the most expected phenomenon in regeneration 

experiments and the amount or fraction of desorbed CO2 is a quantitative presentation 

of an amine’s regeneration property. The thermomorphic phase transition was found in 

most tertiary amines (III), some secondary amines (II) and a few primary amines (I) in 

experiment. Those amines are listed below:  

 Amines with thermomorphic phase transition at all the concentrations: 

DBA (II), DIBA (II), DSBA (II), DMCA (II), DMOA (III), DECA (III); 

 Amines with thermomorphic phase transition at high concentration, ≥2.7M: 

HA (I), DPA (II), SBPA (II), ECA (II), DIEA (III), DMBA (III), MPD (III), EPD (III). 
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As shown in Figure 19, secondary amine DsBA and tertiary amines DMCA, MPD and 

EPD have exhibited the relative higher regenerability compared to others. They are the 

most potential solvents for further study on the phase change based desorption 

behaviour.  
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Figure 19. Regenerability of CO2 loaded lipophilic amine solutions 

 

3.4 Structural influence of amine molecule  

According to the selection criteria: (a) reactivity, (b) CO2 capacity, (c) regenerability, 

(d) physical and chemical stability, (e) biological degradability, (f) toxicity, etc., 

screening investigation to identify new lipophilic amines was conducted both 

theoretically and experimentally. Several phenomena, such as liquid-liquid phase 

transition, gel formation, insoluble carbamate salts formation and precipitation of 

bicarbonate, were observed in the absorption process during the absorbent screening, 

but only the miscibility gap was of interest in this work, and the remaining features were 

detrimental to performance. Aliphatic amines with varying structures, such as primary, 

secondary and tertiary amines, linear, branched and cyclic chains, have thus been 

studied. The influence of amine molecules structure on the physical and chemical 

properties is evident. Due to either low boiling point or high viscosity, most primary 

amines are unfavourable; because of their high basicity, secondary amines are 

preferred; on account of their extensive loading capacity, outstanding regenerability and 

remarkable chemical stability, tertiary amines are thus also recommended.  
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3.4.1 Primary and secondary amines 

Most primary and secondary amines have fast absorption rate, but precipitation is a 

major problem in many of their aqueous solutions. Linear chain primary and secondary 

amines are not suitable as alternative absorbents, because of the following 

disadvantages with varying carbon numbers:  

 Linear chain primary amine 

C5:   Significant volatile loss (bp. 104 °C) 

C6:   High volatile loss (bp. 131 °C) 

C7 & C8:  Gel formation 

 Linear chain secondary amine 

C3+C3:  Precipitation, high volatile loss (bp. 105 °C) 

C2+C4:  Precipitation, high volatile loss (bp. 108 °C) 

C4+C4:  Precipitation, very slow reaction 

The branched or cyclic chain primary and secondary amines have various 

performances in absorption. According to the branch position, they are classified by: 

 α-carbon branch(es) 

 β-carbon branch(es) 

 α and β carbon branches 

Branch at the α-carbon has the remarkable advantage of enhancing the absorption 

kinetics; for instance, rapid reaction rate has been observed in MCA, 2MPD and 2EPD 

solutions. However, it also has potential to induce insoluble carbamate salts formation, 

examples are given in Appendix C. Branch at the β-carbon can also result in insoluble 

salts formation; for example, it was found in 3,5-DMPD and DiBA solutions, but 

MBzA is an exception, since it is quite comparable to MCA and no detrimental 

phenomenon was observed. Lipophilic amines with branches at both the α- and β-

carbons such as 2MCA were not suggested to be used as alternative absorbents since 

insoluble carbamate salts formation was detected as well.  

3.4.2 Tertiary amine 

Due to different reaction mechanisms, neither insoluble carbamate salts formation nor 

bicarbonate precipitation was found in tertiary amine solutions. But slow absorption rate 

is it weakness, mainly caused by the sterically hindered structure-induced poor aqueous 

solubility. Therefore, the carbon numbers must be limited for obtaining a desired 

molecule as an alternative solvent.  
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3.4.3 Sterically hindered amine 

According to the definition by Sartori et al (1987), a sterically hindered amine has a 

bulky alkyl group attached to the amino group. It is more specifically defined as 

belonging to either of these classes: 

 a primary amine in which the amino group is attached to a tertiary carbon; 

 a secondary amine in which the amino group is attached to at least one secondary 

or tertiary carbon. 

Generally, secondary amine presents high activities compared to tertiary amine. 

However, DsBA is exception, since it is highly sterically hindered - a secondary amine 

in which the amino group is attached to two secondary carbons. Since the amine 

functional group is surrounded by a crowded steric environment, the performance of 

sterically hindered amines is very similar to that for tertiary amines. Therefore, highly 

sterically hindered secondary amines, for instance DsBA, can achieve high 

regenerability in the experiment.  

3.4.4 Overall comparison  

As shown in Table 9, compared to alkanolamine, lipophilic amine is a less polar 

solvent with a lower dielectric constant (εr) due to absence of the hydroxyl group (-OH), 

it thus has a weaker interaction with water, which is a polar solvent (Reichardt, 2003). 

This facilitates the separation of organic phase from the aqueous solution and hence 

enhances CO2 release and solvent regeneration.  

 
Table 9. Comparison of dielectric constant for amines and water 

 HA DPA DiBA MCA DMCA MPD MEA DEA AMP Water 

εr * 4.1 2.9 2.7 3.6 2.9 2.6 37.7 25.8 20.6 80.4 

T (°C) 25 21 22 20 20 20 25 20 20 20 

* Provided by the suppliers in the material safety data sheet.  

 

According to the influence of molecular structures observed during the amine 

selection tests, an increase in the length of chain leads to gel formation for primary 

amines and results in a slower reaction rate but an improved regenerability for all other 

amines, e.g. DPA and DMBA exhibit a faster absorption rate but lower regenerability 

compared to DBA and DMOA. Branched chain shows a positive influence on reaction 

rate but also has potential to cause insoluble carbamate salts formation of primary and 

secondary amines, such as DIPA, DIBA and IPCA. Cyclic structure is recommended to 
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increase the aqueous solubility and reaction kinetics, precipitation is however still its 

unpredictable weakness in some primary and secondary amines.  

Tertiary amine is the most favourable solvent to act as regeneration promoter due to 

the low dielectric constant and aqueous immiscibility. Secondary amine is the most 

likely one to achieve rapid reaction kinetics because of its high basicity and partially 

miscibility. Both cycloalkylamine and cyclic amine exhibit better performances than 

chain amine and aromatic amine, owing to less detrimental phenomena observed in 

experiment. The major structural influence on ab-/desorption performances is presented 

in Table 10. Since none of single amine solvents was found to meet all the screening 

criteria, blended solvents were studied to improve the drawbacks of the single amine 

solutions in the next Chapter.  

 

Table 10. Summary of structural effects  

Type Functional group Examples         Pros         Cons 

  According to the number of organic substituents  

Primary 

    (I)  

HA Fast reaction rate  

 

High volatility 

High viscosity (R=C7+)  

Low regenerability 

Secondary 

    (II) 
 

DPA,  

MCA 

Fast reaction rate High volatility 

 

Tertiary 

    (III) 

 

DMBA,  

DMCA 

Good regenerability 

No precipitation  

Slow reaction rate 

  According to the substructure of organic substituent for primary and secondary amines 

Linear 
 

HA, 

DPA 

Fast reaction rate  High volatility 

Gel formation (R=C8+)  

Precipitation (II) 

Branched or Cyclic    

  α-carbon  

 

DsBA 

MCA 

Rapid reaction rate  

High CO2 loading 

Potential of 

precipitation 

  β-carbon 

 

DiBA 

35DMPD 

Rapid reaction rate High potential of 

precipitation 
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3.4.5 Ideal molecular structure 

According to the screen results and the investigation of structure influence, the most 

potential molecules of lipophilic amines are proposed to comprise the following desired 

substitutes (R
i
): 

Secondary amine (II):  R
1
=H,  

R
2
=C1,  

R
3
=C5-C8 with a branch at α carbon;  

Example: MCA  

Tertiary amine (III):  R
1
=C1,  

R
2
=C1-C2,  

R
3
=C5-C6 with branch(es);  

Example: DMCA  

For secondary amines, the reaction kinetics can be significantly decreased if the 

substitute R
2
 contains more carbons, such as DsBA; precipitation is very likely to occur 

if the substitute R
3
 is linear or with a branch at β carbon; gel formation will take place if 

the substitute R
3
 contains more carbons or becomes high volatile if less carbons. For 

tertiary amines, the reaction kinetics can also be decreased if the substitute R
1
 or R

2
 

contains more carbons; high volatile loss will be caused by less carbon in the substitute 

R
3
; branches can shorten the chain and reduce the solvent viscosity.  

3.5 Phase change behaviour 

3.5.1 Experimental determination of phase change temperatures 

The critical solution temperature measurement was carried out in test tubes (Schott GL-

18) with 5 mL aqueous amine solutions at various concentrations from 0.02 to 0.95 

wt.%. The temperatures were regulated by thermostats (Julabo F33 / HAAKE F3) with 

water or oil bath. The phase transition behaviour was observed by varying temperatures 

in preloaded selected amine solutions at different CO2 loadings between 0.2 and 0.6 

mol-CO2/mol-amine. Once the phase transition occurred, the exact temperature was 

determined by adjusting heating or cooling system stepwise with internal of 1 °C.  

3.5.2 LCST for amine-water system 

The lipophilic amine and water are not completely miscible in all proportions at certain 

temperatures, since lipophilic amine has a hybrid molecule with hydrophilic and 

hydrophobic functional groups. Due to the restricted miscibility, the characteristics of 
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lower critical solution temperature (LCST) behaviour were found in mixtures, e.g. DPA 

and water (Davison, 1986; Zhang, X., 2007). The aqueous solubility of lipophilic amine 

decreases with increasing temperature and thus exhibits a phase separation upon 

heating. Figure 20 illustrates the LCST of the selected aqueous fresh amine solutions is 

at concentrations of 30-60 wt.% and between -10 and 30 °C, while in the regenerated 

lean solutions it rises to 10-60 °C, since the aqueous soluble species, such as protonated 

amines, carbamates and bicarbonates, play the role of solubilisers in dissolving all the 

non-protonated amine in water, which significantly improves the technical feasibility by 

providing more degree of freedom for regulating the phase transition behaviour in the 

absorption process. 
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Figure 20. LCST of lipophilic amines solutions 

 

3.5.3 LLPS in regeneration 

The temperature-induced liquid-liquid phase separation (LLPS) is a distinctive and very 

beneficial phenomenon in the regeneration process using lipophilic amine absorbents 

(see Figure 21). It was observed in the aqueous solutions of some primary (I) and 

secondary (II) amines as well as most tertiary (III) amines at 60-90 °C (see Table 11). In 

the DMX™ process proposed by IFP, the CO2 lean phase is split off from the rich phase 

by using LLPS and the lean phase recycled directly to the absorber to save energy in the 

stripping step (Raynal et al., 2011b). However, in the TBS process, the regeneration 

technology has been developed still further to the point where steam stripping becomes 

superfluous. Due to the excellent performance characteristics of the lipophilic amines 

selected, deep regeneration was achieved without steam stripping, i.e. only by LLPS and 

the extractive regeneration behaviour of blended lipophilic amine systems.  
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Before regeneration: 

Single phase 

 During regeneration: 

Emulsion 

 After regeneration:  

Two phases 

 

Figure 21. LLPS behaviour observed in experiment 

 

As seen from Table 11, the temperature difference between the LCST and LLPS is 

at least 70 °C, which means that steam stripping is still required for absorption 

activators to attain deep regeneration, and regeneration promoters remain as two phase 

systems in the absorber feed at 40 °C. Therefore, an important objective of solvent 

formulation is to reconcile these differences.  

 

Table 11. LCST and LLPS temperatures of lipophilic amine solutions 

 Amine Type LCST 
LLPS Temp. of  

3 M solution 

Regenerability 

at 80°C 

   °C °C % 

Activator HA I 20 90 ~40% 

 DPA II -5 90 ~50% 

 MCA II 10 90 ~50% 

 2EPD II 10 90 ~50% 

Promoter DsBA II -20 60 >95% 

 DMCA III -15 70 >90% 

 EPD III 10 80 >80% 

 

3.5.4 Explanation of biphasic concept with the van't Hoff equation 

Low temperature swing between absorption (at 30-40 °C) and desorption (at 80-90 °C) 

is a remarkable advantage for the TBS system in comparison to conventional 

alkanolamines with ∆T > 80 °C. According to the van't Hoff equation:  
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To attain the same depth of CO2 desorption from the loaded amine solution, a lower 

temperature swing (∆T) will lead to a higher ab-/desorption enthalpy. However, the heat 

of desorption (∆Hdes) for lipophilic amines comprises not only the reaction enthalpy 
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(∆rH) but also additional heat (∆Hmix) when phase separation occurs (Eq. 3.2), since an 

exothermic mixing of lipophilic amine and water was observed.  

                  Eq. 3.2 

The desorption enthalpy of lipophilic amines measured in experiment is comparable 

to that for alkanolamines. In tertiary amines, the absorption enthalpy is 48.7 kJ/mol-CO2 

for 30 wt.% MDEA (Carson et al., 2000), while it is ≈69 kJ/mol-CO2 for DMCA (Tan, 

2010); in secondary amines, it is 70.3 kJ/mol-CO2 for DEA, while ≈84 for kJ/mol-CO2 for 

DPA (see Table 12). In this case, to achieve the same reaction equilibrium of MDEA 

(40-120 °C), the required temperature swing for DMCA is only (40-75 °C); while 

compared to DEA at the same condition the required temperature swing for DPA is (40-

90 °C), based on van't Hoff equation. Therefore, the TBS system cannot save the energy 

cost in terms of absorption enthalpy, but rather in the sensible heat and stripping energy. 

The most remarkable advantage is it enables the use of waste heat for solvent 

regeneration purpose due to the low required desorption temperature together with high 

CO2 loading capacity and excellent regenerability.   

 
Table 12. Heat of reaction of CO2 with 3M amine solutions 

(kJ/mol-CO2) 

Absorbent 
MEA 

(5M) 
MDEA DPA b DMCA b 

DMCA+DPA 

(3:1) b 
DsBA 

DsBA+MCA 

(3:1) 

Experiment a 79 48 84 69 74 56 61 

Literature c 82 49 - - - - - 

a measured by the thermodynamic method at rich CO2 conditions; b from Tan, 2010; c from Carson et al., 

2000.  

 

3.5.5 Challenges for thermodynamic modelling 

Some thermodynamic modelling works using the COSMO-RS program were carried 

out with support from the Chair of Separation Science & Technology at Friedrich-

Alexander-Universität Erlangen-Nürnberg (FAUEN). COSMO-RS is a novel predictive 

method for thermodynamic properties of pure and mixed fluids. It calculates the 

thermodynamic data from molecular surface polarity distributions, which result from 

quantum chemical calculations of the individual compounds in the mixture. It has 

recently proved to be one of the most reliable and efficient tools for the prediction of 

vapour-liquid equilibrium (VLE) among those presently available (Klamt et al. 2010). It 

is expected to simulate the phase change behaviour and resolve the enthalpy-

temperature paradox, as well as to predict solvent basicity and reaction kinetics.  
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During the collaboration with FAUEN, various thermodynamic data, such as pKa, 

vapour-liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE) for amine-water 

systems as well as the partition coefficients for amine-water-alkane systems, were 

calculated with COSMOthermX software. The model was initially validated with the 

MEA-water system, however, the results for lipophilic amine-water systems were 

unsatisfactory because of large deviations between the experimental and simulated 

values. In the previous study, Tan (2010) also conducted an empirically modified Kent-

Eisenberg thermodynamic model to predict the concentration of ionic species but it did 

not fit the biphasic system so well, since a discontinuity of the concentrations of ionic 

species was observed at the phase change point.  

Additionally, flowsheet simulations using AspenPlus
TM

 with an electrolyte NRTL 

model was also conducted and worked well with conventional alkanolamines but poorly 

with lipophilic amines (Hussain, 2012). This was primarily due to the LCST behaviour 

of lipophilic amine-water systems, which cannot be recognised by those models.   

3.6 Summary 

According to the preliminary screening results and amine molecular structure study, 

primary amines HA and CHpA as well as secondary amines DPA, MCA and 2EPD 

were selected due to their rapid reaction kinetics; tertiary amines DMBzA, DMCA and 

EPD together with secondary amine DsBA, were recommended because of their 

remarkable desorption performance. The ideal molecular structure of alkylamines has 

been proposed: the major substituent (R
3
) should contain 5-7 carbons and the other 

minor two (R
1
 and R

2
) should comprise no more than 3 carbons; secondary amine has 

the highest potential to achieve rapid absorption rate, and tertiary amine are competent 

to attain good regenerability; cyclic and branched structures at α-carbon position are 

favoured to not only reduce the solvent viscosity but also to increase the absorption rate. 

Phase change behaviours are also determined in the selected amines, but the LCST for 

most of them is lower than 40 °C, which is the typical operation temperature in the 

absorber; further improvement is therefore required.   
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4 Optimisation of solvent recipe 

4.1 Experiment: Bubble column solvent screening   

The absorption experiments were conducted in a 100 mL glass bubble column 

containing 40 mL of the aqueous amine solution at 40 °C. Selected amines with varying 

amine concentrations and CO2 partial pressures were tested. Desorption was initially 

carried out by N2 stripping and afterwards by magnetic agitation at 70-80 °C. The gas 

phase was monitored online by gas chromatography (GC) and the CO2 loading in the 

liquid phase was ascertained by the barium chloride method, total amine concentration 

was determined by acid-base titration and the blended amine compositions were 

determined by GC analysis. The detailed method is described in Appendix B.2.  

4.2 Absorbents classification 

After the screening experiments of more than 60 lipophilic amines, solvents such as 

cycloheptylamine (CHpA), methylbenzylamine (MBzA), methylcyclohexylamine 

(MCA), N,N-dimethylcyclohexylamine (DMCA), 2-ethylpiperidine (2EPD) and di-sec-

butylamine (DsBA) have been selected as alternative absorbents. Tertiary amine is the 

most favourable solvent for promoting regeneration by its low dielectric constant and 

thermal-induced liquid-liquid phase separation (LLPS). Secondary amine has the most 

potential for achieving rapid reaction kinetics due to its high basicity and partially 

miscibility with water. Increasing the length of chain improves solvent regenerability 

but leads to slower absorption rate. Branched chain has positive influence on reaction 

rate but enhances the detrimental insoluble carbamate salts formation of protonated 

primary and secondary amines. Cyclic structure is recommended to increase the 

aqueous solubility and reaction kinetics, because it relatively reduces the chain length. 

Since none of the single amine solvents was found to be a perfect solvent to meet all the 

screening criteria, blended solvents have been considered and studied to improve the 

drawbacks of the individual amines and combine the advantages of each.  

According to the performance parameters in absorption and desorption, lipophilic 

amines are classified into two categories: absorption activator (ACV), for instance, 

CHpA, MBzA and MCA, with rapid reaction kinetics, as well as regeneration promoter 

(PRM), such as DsBA, DMBzA and DMCA, exhibiting outstanding regenerabilities. 

Based on the reaction mechanism and results from screening experiments, primary and 

some secondary amines can be considered as activator, but most of them were excluded 
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in this study due to the detrimental phenomena and low CO2 loadings. Tertiary and a 

few secondary amines can be regarded as promoter; the reactivity was however limited.  

Figure 22 shows fast absorption rate and high CO2 loading have been achieved in 

MCA solution, but its regenerability is not so satisfactory as it requires higher 

temperatures >90°C for deep regeneration; however, it still performs much better than 

conventional MEA. Additionally, the rapid desorption and lower regeneration 

temperature can be obtained in DsBA or DMCA solution, but slow absorption is its 

weakness; nevertheless, it is superior to alkanolamine MDEA.  
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Figure 22. Absorption of CO2 into 3M single amine solutions in bubble column test 

(Treated with 30 vol.% CO2 at 40°C) 

 

Due to the difficult circumstance of obtaining a single lipophilic amine as a perfect 

solvent to meet all the screening criteria, i.e. both of high reactivity and good 

regenerability, blended solvent (BLD), activator + promoter, has been recommended to 

improve the drawbacks of the individual amines and combine the advantages of both. 

Several formulations, e.g. MCA+DMCA and MCA+DsBA, have been studied and 

present good performance with respect to the loading capacity, reaction kinetics, 

desorption temperature and regenerability. Some examples are given in Table 13 and 

more details are discussed in the following section.  

4.3 Blended solvents 

Since no single amine can achieve all the desired selection criteria in both absorption 

and desorption, blended solvents were considered to optimise the absorbent 

formulations. In the MCA-based solvents, regeneration promoters were added to 

improve the performance in desorption, while in DMCA-based solvents absorption 

activators were added to accelerate the reactions in absorption.  
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Table 13. Performance of some selected amines and their blends 

Type Absorbents 

(3:1 in blend) 

CO2 

loading a 

Absorption 

rate b 

Residual 

loading c 

Cyclic 

capacity 

Note 

 
Units mol/L 

×105 

mol/(L∙s) 
mol/L mol/L 

 

ACV 3M MCA 2.95 45.5 0.81 2.14 this work 

 5M MCA 3.87 42.6 0.59 3.28 this work 

 5M MEA 3.12 35.7 1.62 1.50 benchmark 

PRM 3M DMCA 2.71 27.8 0.18 2.53 this work 

 3M DsBA 1.27 11.8 0.15 1.25 this work 

 3M MDEA 0.87 8.3 0.10 0.77 benchmark 

BLD d 3M DMCA+MCA 2.76 44.9 0.25 2.51 this work 

 4M MCA+DMCA 3.56 43.1 0.36 3.20 this work 

 4M MCA+DsBA 3.47 42.9 0.29 3.18 this work 

 3M DMCA+DPA  2.34 42.3 0.23 2.11 Tan, 2010 

 3M MDEA+MEA  2.01 33.4 0.31 1.70 benchmark 

a Absorption with CO2 partial pressure 14.6 kPa at 40 °C; 
b Measured at CO2 loading of 0.6 mol/L;  
c Desorption with 200 mL/min N2 gas stripping at 75 °C; 
d Solvents are blended in proportion of 3:1. 

 

The optimisation experiments were carried out at various temperatures between 25-

90 °C and amine concentrations as well as for different proportions of the main 

absorbent and activator. The best amine concentrations and ratios were observed at 3-

4M total amine concentration with a 3:1 ratio (mol-PRM/mol-ACV). An increase in amine 

concentration generally reduces the solution circulation rate required and hence cuts the 

capital and operational expenses (Kohl and Nielsen, 1997). However, no significant 

loading capacity increase was found when the concentration was raised to a high level 

>4M, since water is also a reactant in the absorption process. Increasing the proportion 

of promoter to activator slows down the reaction kinetics, but improves solvent 

regeneration. The most suitable absorption temperature was found to be 40 °C. 

Although the exothermic reaction means that low temperatures favour high CO2 

loadings, reaction kinetics are enhanced by higher temperatures. When the temperature 

exceeds 50 °C, the thermomorphic phase transition may take place and the loading 

capacity can be significantly reduced. The optimal regeneration temperature is believed 

to lie in the range of 70-80 °C, since a deep desorption can be achieved by using waste 

heat for regeneration.  
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4.3.1 Activator as principal component 

In order to improve the regenerability of MCA-based solvent, additional regeneration 

promoters such as DMCA, N,N-dimethylbenzylamine (DMBzA) and di-sec-butylamine 

(DsBA) have been used in the blended solvent. Most promoters could significantly 

increase the desorption rate of loaded solutions with minor influence of absorption rate 

and CO2 capacity when the proportion of promoter and MCA was limited to no more 

than 1:2. Addition of DMBzA can ameliorate the desorption but negative influence was 

found in absorption due to its slow reaction kinetics. As a regeneration promoter, DsBA 

performs a little better than DMCA, but more significant volatile loss becomes the 

major weakness for DsBA. Therefore, DMCA is considered as the most suitable 

promoter to improve the performance of MCA-based solvent in further studies.  

 

Figure 23. CO2 absorption into solutions using MCA as principal component 
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Figure 24. CO2 desorption from rich solutions using MCA as principal component 
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Figure 23 and Figure 24 present the ab-/desorption characteristics in MCA-based 

solvents blended with DMCA, which proved the positive effect in regeneration but 

limited influences on absorption rate and loading capacity. Figure 25 illustrates the net 

CO2 capacity (Δα = αrich - αlean) of MCA-based solvent is much higher than conventional 

MEA and also better than DMX-1 solvent in the vapour-liquid equilibrium (VLE) test 

with CO2 partial pressures from 50 to 500 mbar. 
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Figure 25. VLE of MCA-based solvent 

(MEA: 30wt%; DMX-1: data from Raynal et al., 2011a; pMCA: MCA+DMCA, 4+1M) 

4.3.2 Promoter as principal component 

DMCA, DsBA, DMBzA and N-ethylpiperidine (EPD) with their high loading capacity 

and outstanding regenerability were identified as alternative solvents for CO2 

absorption, but activators are required to improve their reaction rates. Due to 

unfavourable degradation of EPD and low reactivity of DMBzA, neither of them was 

recommended as principal components.  
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Figure 26. CO2 absorption into 4M solutions using DMCA as principal component 
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Figure 27. CO2 desorption from 4M solutions using DMCA as principal component 

 

To investigate the influence of activators on the ab-/desorption characteristics of 

DMCA-based solvents, experiments with varying amine proportions were conducted in 

bubble column test. Figure 26 and Figure 27 demonstrate addition of MCA has a 

positive influence on absorption kinetics and CO2 loadings but minor effect on 

regenerability. Figure 28 proves the net loading capacities of DMCA-based solutions 

are much higher than that for conventional MEA (30wt% ≈ 5M) at CO2 partial pressures 

from 0.04 to 0.15 bar, which is the typical range for flue gas from fossil fuel 

combustion. Deep regeneration at 75-80 °C is the most remarkable superiority to 

conventional amines.  
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Figure 28. VLE of DMCA-based solvents 
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4.4 Solubilisation 

Since most of the preliminarily formulated absorbents still exhibit a biphasic behaviour, 

which is undesired for absorption, several countermeasures such as varying of 

concentration, decrease of temperature and addition of solubiliser were used to convert 

the heterogeneous solvent to single phase under absorption conditions.  

4.4.1 Influence of molecular structure and concentration  

Most lipophilic amines present a lower critical solution temperature (LCST) at mass 

fraction 0.1-0.3 in aqueous solutions. When increasing the concentration to >30 wt.%, 

the corresponding phase transition temperature will also be elevated. For example, the 

LCST of MCA is 7 °C at 10 wt.%, while it increases to 30 °C at 50 wt.% and to 40 °C 

at 55 wt.%, which can meet the requirement for absorption. The absorption process 

typically prefers a high amine concentration to reduce the solvent circulation flow rates, 

but it is limited to no more than 5M for TBS.  

In the aliphatic amine solutions, the LCST is influenced by the hydrophobic 

group(s), which means more carbons in the substituent, lower LSCT and also in the 

order of primary amine > secondary amine > tertiary amine, for chain structured amines 

(see Figure 20). Since the cyclic structure reduced the length of amine molecule, the 

derivatives of piperidine present higher LCST in comparison to aliphatic amines. 

Proportion of blended compositions also has an influence on the phase change 

temperature. As illustrated in Figure 29, both the LCST and phase separation 

temperature (PST) are enhanced by decreasing the proportion of DMCA and MCA.  
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Figure 29. LCST and LPST of blended DMCA+MCA solutions 
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4.4.2 Solubilisation by partially protonated lipophilic amine 

Influences of CO2 loadings on the phase separation behaviour and temperature on 

solvent regenerability were also observed in this work. The LCST of the most aliphatic 

amines is elevated by protonation, but the derivatives of piperidine and N,N,N´,N´-

Tetramethyl-1,6-hexane-diamine (TMDAH) are exceptions (see Figure 30A and Figure 

31A), where both the LCST and PST are reduced by increasing the CO2 dissolution into 

the N-methylpiperidine (MPD) or EPD solutions at loadings <0.25 mol-CO2/mol-amine. A 

similar phenomenon was also found in high concentration DMCA solutions at low CO2 

loadings (see Figure 30B).  
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Figure 30. Influence of CO2 loading on LCST in single amine solvents 

 

In the MCA-based blended solvents, the protonated lipophilic amines were found 

competent to play the role of solubiliser for elevating the critical solution temperature, 

As illustrated in Figure 31B, the LCST of unloaded 5M MCA+DsBA (4:1) solution is 

15 °C, while in the lean loaded (0.05 mol/mol) solution it increases to 40 °C, which 

demonstrates the technical feasibility for implementing absorption. Therefore, most of 

the solutions, comprising only activators or activators as primary solvent, can directly 

be used for CO2 absorption since they are homogeneous at 40°C with lean CO2 loadings 

<0.1 mol/mol. However, in solutions using promoters as principal solvent, the LCST is 

still lower than 30°C, even with 0.2 mol/mol CO2 loading (see Figure 31A), it is thus 

inconvenient for absorption and solubiliser addition should be considered for elevating 

the LCST. 
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Figure 31. Influence of CO2 loading on LCST in blended solvents 

 

4.4.3 Solubilisation by foreign solvent 

Thermal-induced phase transition is a distinctive property for TBS systems. The 

homogeneous solution converts to heterogeneous upon heating after achieving the 

LCST; contrarily, the regenerated biphasic solution reverses to single phase by cooling. 

Most of the aliphatic amines exhibit the phase transition behaviour in aqueous solutions, 

but very few of them can be employed as absorbent, because of the high volatile loss of 

lower alkylamines (C5-C7) due to low boiling point and low LCST of fatty alkylamines 

(C8-C10) whose LCST is lower that the freezing point of water. To improve the 

solubility property of those lipophilic amines, aqueous solubiliser was employed for 

regulating the phase transition behaviour. Varying organic solvents, e.g. alkanols, 

alkanolamines and diamines (see Table 14), were hence studied in screening tests. The 

ideal solubiliser should meet the following criteria:  

 Effectively elevate LCST of lipophilic amine solutions with only a small 

amount,  

 No negative influence on absorption or desorption, 

 High chemical stability, no significant degradation, 

 Low volatility. 

Figure 32 demonstrates 2-Amino-2-methyl-1-propanol (AMP) has a more effective 

performance on the regulation of LCST than other tested solubilisers, such as MDEA 

and ethylene glycol (EG). An increase in mass fraction of AMP exhibits a positive 

influence on the LCST of DMCA+MCA solutions (see Figure 33). But the percentage 
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of AMP is limited, since the regenerability is significantly depressed when 20 wt% of 

AMP is added in TBS systems.  

 

Table 14. List of studied solubilisers 

Chemical CAS Structure 
Mr 

(g/mol) 

bp. 

(°C) 
Supplier 

Alkanol      

1-Propanol 71-23-8  60.09 97 Merck 

1,4-Butandiol 110-63-4 
 

90.12 236 Merck 

1-Pentanol 71-41-0  88.15 137 Merck 

Ethylglycol (EG) 110-80-5 
O

HO  62.07 197 Merck 

2-Ethylhexanol 104-76-7 

 

130.23 180 Merck 

Alkanolamine      

N-Methyl-diethanolamine 

(MDEA) 
105-59-9 

 
119.16 247 Merck 

2-Amino-2-methyl-1-

propanol (AMP) 
124-68-5 

 

89.14 165 Merck 

2-Amino-2-methyl-1,3-

Propandiol (AHMP) 
115-69-5 

 

105.14 151 Sigma 

Diamine      

Piperazine (PZ) 110-85-0 
 

86.14 146 Merck 

N,N-dimethyl-1,3-propyl-

diamine (DMPDA) 
109-55-7 

 
102.18 135 Fluka 
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Figure 33. Influence of solubiliser AMP on LCST of DMCA-based solutions 

 

As illustrated in Figure 34, the critical solution temperature (CST) is enhanced by 

MDEA addition and CO2 dissolving. Figure 35 shows addition of 9 wt.% AMP 

increases the CST of DMCA solution by 15 or 20 °C at varying amine concentrations 

with minor influence on CO2 capacity of the original TBS system. Figure 36 proves 

AMP also successfully elevates the CST of DMCA+MCA solutions at different 

proportions. Only limited influence was found on the absorption and desorption 

performances for lipophilic amine solutions with small amount of AMP addition (see 

Figure 37), since AMP is also an active component for CO2 capture.  

 

 

Figure 34. Influence of MDEA and CO2 loading 

on LCST of DMCA+MCA solution 

 

Figure 35. Influence of concentration and AMP 

addition on CST of DMCA 
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Figure 36. Influence of concentration, 

proportion and AMP addition on CST 

 

 

Figure 37. Influence of AMP on the ab-

/desorption characteristics 

The experimental results above prove an effective solubiliser such as AMP can 

competently elevate the CST of lipophilic amine solvents without any negative 

influence on the ab-/desorption performance parameters compared to the original TBS 

solutions. It offers a great facility for selecting more lipophilic amines with low CST to 

formulate new TBS absorbents.  

4.4.4 Influence of foreign solubiliser on ab-/desorption 

The introduction of foreign solubilisers has successfully increased the LCST of 

corresponding amine solutions, but their influence on CO2 absorption and desorption 

must be controlled within a reasonable range. Experimental study on various 

solubilisers with suitable weight percentages of additions was conducted in the bubble 

column screening unit. It showed that amine solubilisers performed better than alkanols 

and no significant influence on ab-/desorption was found in solvents with less than 10 

wt.% additives. Therefore, the optimised solvent formulations typically consist of 

additional 8-10 wt.% of solubiliser in the original TBS solutions.  

Alkanols such as 1-propanol, 1,4-butandiol, 1-pentanol and 2-ethyl-1-hexanol were 

initially considered as foreign solubilisers for biphasic solvents. As presented in Figure 

38, negative effects were observed in absorption since CO2 loading capacity was 

reduced. It is expected to have a positive influence on desorption, according to the study 

from Hamborg et al. (2011), by the low polarity of those alkanols. However, the 

regenerability was depressed by 1,4-butandiol, because LLPS was postponed.  
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(A) Absorption 

 
(B) Desorption 

Figure 38. Influence of alkanol addition on CO2 ab-/desorption characteristics 

 

Sterically hindered amine AMP and diamine N,N-dimethyl-1,3-propyldiamine 

(DMPDA) were selected as effective amine-based foreign solubilisers. As illustrated in 

Figure 39, they both exhibited positive influences on CO2 absorption owing to the 

increase of total amine concentration. However, the regenerability was decreased with 

addition of DMPDA, since the required phase separation temperature was increased by 

an additional hydrophilic amino group on the DMPDA molecule; but with AMP 

addition, no negative effect was observed.  

 

 
(A) Absorption 

 
(B) Desorption 

Figure 39. Influence of AMP and DMPDA addition on CO2 ab-/desorption 

 

4.5 Summary 

Blended solvents comprising an absorption activator and a regeneration promoter are 

recommended to formulate an advanced solvent recipe for CO2 absorption, since single 

amine solutions cannot meet all the selection criteria, but blending is able to combine 

the advantages of both. Solvents using activator as principal component with addition of 

promoter such as DMCA+MCA (1:3) achieve both rapid absorption kinetics and good 

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140

A
b

so
rb

ed
 C

O
2

[m
o

l/
L

]

Time [min]

4M DMCA+MCA 2-1

4M DMCA+MCA 1-1 + 16wt.% 1,4 Butandiol

4M DMCA+MCA 2-1 + 17wt.% 1,4 Butandiol 

4M DMCA+MCA 2-1 + 45wt.% 1-Propanol

Order: high to low
0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120

D
es

o
rb

ed
 C

O
2

[m
o

l/
L

]

Time [min]

4M DMCA+MCA 2-1

4M DMCA+MCA 2-1 + 45wt.% 1-Propanol

4M DMCA+MCA 1-1 + 16wt.% 1,4 Butandiol

4M DMCA+MCA 2-1 + 17wt.% 1,4 Butandiol 

Order: high to low

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140

A
b

so
rb

ed
 C

O
2

[m
o

l/
L

]

Time [min]

4M DMPDA

4M DMCA+MCA 2-1 + 15wt.% DMPDA

4M DMCA+MCA 2-1 + 11wt.% AMP

4M DMCA+MCA 2-1

Order: high to low
0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140

D
es

o
rb

ed
 C

O
2

[m
o

l/
L

]

Time [min]

4M DMCA+MCA 2-1 + 11wt.% AMP

4M DMCA+MCA 2-1

4M DMCA+MCA 2-1 + 15wt.% DMPDA

4M DMPDA

Order: high to low



4. Optimisation of solvent formulations 

54 
Jiafei Zhang Chemische Verfahrenstechnik 

regenerability, however, oxidative degradation becomes a challenge and regeneration 

temperature requires over 90 °C; contrarily, solvents containing promoter as principal 

component with addition of activator e.g. DMCA+MCA (2:1) exhibit remarkable 

absorption and desorption characteristics, but their LCST is lower than 40 °C and 

present an biphasic behaviour before absorption. Solubiliser is thus introduced to 

improve such problems. The solubilised solvent, for example DMCA+MCA+AMP 

(3:1:1), dramatically increased the LCST to 40 °C or above without any negative 

influence on absorption and regeneration performances.   
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5 Solvent losses and countermeasures 

5.1 Foaming 

5.1.1 Literature review on foaming 

Foaming is one of the most severe operational problems encountered in both absorber 

and regenerator at amine scrubbing plants. It can be caused by high gas velocity and 

chemical contaminants entering the process, for example fine particulates from feed gas, 

condensed liquid hydrocarbon, water-soluble surfactants, amine degradation products 

and additives (Stewart and Lanning, 1994; Thitakamol and Veawab, 2008). To 

investigate the cause of foaming, the effect of amine concentration, degradation 

products, ferrous/ferric ions, liquid hydrocarbon, corrosion/oxidation inhibitors and 

antifoam agent was measured by Chen et al. (2011) and a foaming model with 

parameters such as bubble radius, difference in density of gas and liquid, surface tension 

of liquid, viscosity of liquid and superficial gas velocity was established by Thitakamol 

and Veawab (2009) for the MEA-based CO2 absorption process.  

5.1.2 Foaming in TBS system 

Solvent foaming was found to be serious for some biphasic systems, i.e. regeneration 

promoter-based solvents. It is mainly influenced by gas velocity, amine concentration, 

CO2 loading, temperature and contaminants. Due to the low surface tension of the 

lipophilic amine formed as a supernatant phase on top of the aqueous solvent, foaming 

becomes significant with accumulation of organic phase. Low CO2 loading, high amine 

concentration, solvent volume and temperature, promoting the formation of two liquid 

phases, will thus enhance the foaming. It was frequently observed in the lipophilic 

amines N,N-dimethylcyclohexylamine (DMCA) and di-sec-butylamine (DsBA) and 

also alkanolamine dimethylethanolamine (DMMEA) solutions in the bubble column 

experiment, and DMCA is the most serious. Figure 40 indicates that foaming can be 

initially enhanced by increasing gas velocity and temperature, but suppressed afterwards 

with higher gas flow rates under low temperature operating conditions due to 

turbulence. It was intensified by increasing the concentration of DMCA or the 

proportion of DMCA in blended solution and by the contaminants accumulated by 

recycling the solvent. Foaming wasn’t found in activator N-methylcyclohexylamine 

(MCA), blended DMCA+MCA+AMP or benchmark MEA solutions in the same 

experimental conditions.   
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Figure 40. Influence of gas flow rate and temperature on foaming  

Solvent: 3 M DMCA+MCA (3:1) solution  

5.2 Volatility 

5.2.1 Literature review on volatility 

Vaporisation loss was found in CO2 absorption process using volatile amine solvent, 

which is transferred to the flue gas and vented into atmosphere (Rochelle et al., 2011a). 

It significantly influences process economics and environmental impact. There are a few 

publications on vapour pressure of amines in aqueous systems but only very limited 

measurements on volatility. Nguyen et al. (2010 and 2011) have studied the volatility of 

several amine solvents and the heats of vaporisation loss with the influence of 

temperature, amine concentration and CO2 loading. The volatility of their studied 

amines is in the following order: AMP > 1-MPZ (1-methylpiperazine) > MEA > EDA 

(ethylenediamine) > MAPA (3-methylaminopropylamine) > 2-MPZ (2-

methylpiperazine) > PZ (piperazine) > DGA (2-aminoethoxyethanol) > MDEA.  

5.2.2 Vapour pressure and volatility measurement 

Vapour pressure measurement was carried out in a 500 mL three-neck glass flask. A 

condenser was connected to one of the necks for minimising the vaporisation loss. The 

system was initially degassed by vacuum pump and the solvent was then heated by oil 

bath with thermostat (HAAKE F3) and was maintained at boiling conditions during the 

measurement. The temperature and corresponding total vapour pressure were 

determined stepwise from 25 to 130 °C.  

5.2.3 Vapour pressure and volatile loss 

Solvent losses, including vaporisation and degradation, were observed during the 

experiments. The vaporisation of the amine solution is a function of temperature and 
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amine concentration, reflecting volatility and vapour pressure, which must thus be 

determined for the design of absorption and desorption columns preventing solvent loss. 

Figure 41 depicts the vapour pressures of the lipophilic amines DMCA and MCA, 

whose values lie between those of alkanolamine MEA and water. The higher volatility 

with respect to alkanolamine leads to greater vaporisation losses during operation. The 

experimental data were fitted using an empirically modified Clausius-Clapeyron 

relation (Eq. 5.1). The results indicated a good agreement for vapour pressures below 

500 mbar. In the aqueous lipophilic amine solution, the total vapour pressures of which 

are a little higher than those of water (see Figure 42), may exhibit azeotrope formation. 

However, this was not observed at atmospheric pressure until 90 °C and thus does not 

arise for low temperature operation below 80 °C.  
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Figure 41. Vapour pressure of various amines  

(fitted by Clausius-Clapeyron equation) 
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Figure 42. Vapour pressure of aqueous amine 

solutions 

 

Solvent loss through vaporisation is measured by the difference in amine 

concentrations before and after the reaction. The concentration reduction of DMCA-

MCA solution is a much higher value for the alkanolamine MEA and it approaches 10 

%/day in a 100 mL bubble column with 300 mL/min gas flow rate at 40 °C (see Table 

15). The vaporised amine should, therefore, be recovered in subsequent 

experimentation. According to the Gas chromatography (GC) analysis results, the 

volatility loss of the activator MCA is minor, even though its vapour pressure is higher, 

since not only the aqueous solubility of MCA is much higher than for DMCA, but also 

the reaction rate of MCA is extremely rapid and the ionised MCA dissolved in aqueous 

phase hinders its vaporisation. 
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5.2.4 Reduction of volatile loss 

Since volatile loss is the main challenge in the biphasic lipophilic amine system, which 

contributes more than 90% of total solvent loss during the DMCA+MCA-based 

absorption process, countermeasures for reducing solvent vaporisation have hence been 

studied. Operating temperature is one of the major influence factors, the vaporisation 

loss can thus be effectively reduced by more than 60% by decreasing the temperature 

from 40 °C to 30 °C in the absorber (see Table 15). Compared to alkanolamine, the 

volatile loss for lipophilic amine is also caused by the separate supernatant organic 

phase, a significant solvent loss reduction of 70% can be achieved by regulating phase 

transition, i.e. converting the two phases to single phase by means of cooling or foreign 

solubiliser addition.  

Table 15. Vaporisation loss of 3M amine solutions 

Amine Temperature Loss 

 °C %/day 

MCA 
30 <0.5 
40     1.8 

DMCA 
30     4.8 
40 12 

DMCA+MCA 
    (3:1) 

30     4.1 
40 10 
50 14 

MEA 40     0.7 

AMP 40     1.6 

 

In alkanolamine systems, water scrubbers have been successfully employed for 

solvent recovery and to cut vaporisation losses. Due to the lower aqueous solubility of 

lipophilic amines, the efficacy of such a water scrubber is much lower than that in 

alkanolamine system. Only 15-20% of the vaporised amines from solution 

DMCA+MCA were captured in a single water absorption stage at room temperature, 

but 50-55% of them were scrubbed by thermally stable hydrophobic solvent in the same 

condition. The process is still technically feasible when multistage counter-current 

operation is considered, since more than 80% of amine vapour has been recovered by 

hydrophobic solvent scrubbing in a three-stage equilibrium. Condensation with chilled 

water at 5 °C rather than 20 °C was also evaluated and a vaporisation loss reduction of 

over 50% was achieved. Moreover, foaming was observed to be a serious problem 
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during absorption when contaminants were present in the solution. However, after 

removal of the contaminants, the formation of foam was clearly reduced. A water 

scrubber was able to achieve efficient defoaming and recover 80% of the foaming 

losses.  

5.3 Thermal degradation 

5.3.1 Literature review on thermal degradation 

Thermal degradation of amine solvent was primarily observed in the stripping column at 

temperatures above 100 °C. It is quantified as a function of amine concentration, CO2 

loading, pressure and temperature at stripper conditions (Davis and Rochelle, 2009, 

Rochelle 2012). The mechanisms for thermal degradation of MEA and DEA were 

described by Kennard (1980 and 1985), Meisen (1982) and Polderman et al. (1955). 

Davis (2009), Freeman et al. (2011b) and Rochelle et al. (2011b) have reported the 

thermal degradation of aqueous amines with varying solvent concentrations, CO2 

loadings and temperatures. Significant degradation of MEA was detected at high 

concentrations, high CO2 loadings, elevated pressures and temperatures over 120 °C, 

while minor degradations were found in MDEA, AMP and PZ solutions. The chemical 

stability of amines against thermal degradation is in the following order: cyclic amines 

with no side chains < long chain alkanolamines < alkanolamines with steric hindrance < 

tertiary amines < MEA < straight chain di- and triamines. 

CO2 plays the roles of not only reactant but also catalyst for degradation in most 

commercial amines. It reacts with MEA to form a substituted imidalidone and also 

catalyses polymerisation of DEA (Polderman et al., 1955; Meisen et al, 1982). 

Therefore, CO2 loading significantly enhances the thermal degradation of the 

corresponding amine solvent (Lepaumier et al., 2011). A comparison study of CO2-

induced thermal degradation among 12 amines was conducted by Lepaumier et al. 

(2009a) in a 100 mL batch reactor at 140 °C and 2 MPa CO2 pressure for 15 days. The 

amount of amines and degradation products were determined by GC and GC-MS. 

Cyclic, tertiary and sterically hindered amines were identified as stable structures while 

secondary amines were the most unstable. Oxazolidinones/imidazolidinones formation 

and demethylation/methylation were observed as main reactions.  
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5.3.2 Experimental method 

The thermal degradation tests were conducted in 20 ml glass test tubes with 10 ml CO2 

saturated amine solution for each immersed in an oil bath at 120 °C for 5 weeks. Before 

analysis, the solution was treated with 15% CO2, so that the results could be compared 

with those in the VLE test. The collected samples were degassed and then analysed by 

Shell Method Series (SMS, 2006) for determination of the heat stable salts (HSSs) and 

by GC-MS (HP 5973) for identification of volatile oxidation products.  

5.3.3 Amine losses and HHSs formation 

Due to high temperature, typically 120-140 °C for alkanolamines, applied in the 

desorber, thermal degradation occurs during solvent regeneration. For lipophilic amines, 

the desorption takes place at ≈80 °C, thermal degradation is therefore negligible 

(Nwani, 2009, Zhang, J. et al., 2011b and 2012b). To explore the thermal degradation of 

such biphasic solvents, the investigation was carried out at an elevated temperature of 

120 °C. It is much higher than the regeneration temperature required for lipophilic 

amines, but the thermal degradation products can thus been determined in a relative 

short term. Figure 43 presents the total amine losses, including degradation and 

vaporisation losses, after a 6-week thermal degradation test. It proves CO2 has a 

significant influence in inducing thermal degradation, MCA is unstable at high 

temperatures and DMCA performs better than the benchmark solvent MEA. Therefore, 

it is recommended to use DMCA as the principal component in the optimised biphasic 

solvents.  
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Figure 43. Thermal degradation of amine solvents in presence of CO2  
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5.3.4 Thermal degradation products and mechanisms 

According the analysis of degradation products, the CO2 involving oxazolidinone 

formation (R. 5.1 and 5.2) is the major degradation reaction for alkanolamines MEA 

and AMP, while demethylation and methylation (R. 5.3) are the main reactions for 

lipophilic amines MCA and DMCA. Thermal degradation reforms a lipophilic amine to 

other amines which are still active to react with CO2 and also have capability to be 

regenerated and recycled for absorption. Table 16 shows the main degradation 

components formed in a thermal condition with presence of CO2 at 2 bar. 

Table 16. Main thermal degradation products  

Amine Degradation compounds 

MEA 
 

 
 

 

 1-(2-hydroxyethyl)-2-imidazolidone N-(2-hydroxyethyl)-ethylenediamine 

AMP 
N
H

HO

    

 2-Methylamino-2-

methyl-1-propanol 

4,4-dimethyl-2-

Oxazolidinone 

3,4,4-trimethyl-2-

Oxazolidinone 

4,4-dimethyl-2-

imidazolidinone  

DMCA HN

  
 

 

 MCA ECA   

MCA H2N

 
N

 

N

 

 

 CA DMCA N-Methyl dicyclohexylamine 

 

Oxazolidinones Formation 

 

R. 5.1 

 

R. 5.2 

 

Demethylation / Methylation Reactions 

 

R. 5.3 
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5.4 Oxidative degradation 

Oxygen is typically presented in flue gas with 4-10 vol.% after fossil fuel combustion, 

hence, oxidative degradation must be taken into account in the post-combustion capture 

(PCC) process. It is a lengthy effect and is influenced by temperature, pressure, amine 

concentration and CO2 loading. To reduce the experimental time, intensive conditions 

such as high oxygen concentration at 98 vol.% and elevated temperature at 50 °C were 

applied to accelerate solvent oxidation. Both the total amine losses and HHSs were 

analysed in this study.  

5.4.1 Literature review on oxidative degradation 

Oxidation of amines to organic salts was determined in the presence of O2 during 

absorption. This reaction can be catalysed by iron which is present in steel column and 

packings and by copper that is added as a corrosion inhibitor (Sexton and Rochelle, 

2009). Oxidative degradation of MEA was extensively studied and the main products 

were volatile components, other amines, aldehydes and carboxylic acids (Bello et al., 

2006; Chi, 2000; Goff, 2004; Strazisar et al., 2003). High temperature and O2 partial 

pressure can increase degradation rates without any influence on reaction mechanisms.  

Generally, tertiary and sterically hindered amines are more stable than primary and 

secondary amines. Demethylation, methylation, dealkylation and carboxylic acids 

formation are the major reaction in oxidative degradation of most ethanolamines and 

ethylenediamines (Lepaumier et al., 2009b). Ring closure reaction also takes place if the 

amine molecule can easily form a five- or six-membered ring (Lepaumier et al., 2010). 

Piperazine, as a cyclic amine, oxidises only at high temperatures over 160 °C (Rochelle 

et al., 2011b; Sexton, 2008).  

5.4.2 Experimental method 

The oxidative degradation experiment was carried out in a 300 ml glass bubble column 

containing 200 mL amine solution at 50 °C with 2 mL/min CO2 and 98 mL/min O2. An 

intensified condition, such as high O2 partial pressure, was applied to reduce the 

reaction time. A condenser with chilled water at 10 °C was used to minimise the solvent 

vaporisation and a control experiment with N2 in place of O2 was performed for the 

purposes of comparison and to distinguish oxidative degradation from other losses. Fe 

(II/III) ions (0.2 mM) were also added in solvents to catalyse the oxidation.  
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The samples were taken at an interval of 2 days and analysed by acid-base titration 

to determine total amine losses. After completion of two weeks oxidation, the solution 

was degassed and HSSs and volatile oxidation products were subsequently analysed by 

the same method presented in Section 5.3.2.  

5.4.3 Amine losses and HHSs formation 

Lipophilic amines, for instance MCA and DMCA, exhibit more significant amine losses 

in comparison to MEA and AMP (see Figure 44). This is mainly caused by volatility 

loss since the test was conducted in an open system. As discussed in section 5.2.3, 

controlled experiments demonstrated that vaporisation of activating components during 

absorption is the major loss for lipophilic amines. HHSs are the most harmful products 

formed in oxidative degradation and must be measured. Figure 45 illustrates that the 

blended lipophilic amine solvent (DMCA+MCA+AMP, 3+1+1M) and DMCA 

presented good chemical stabilities against oxidation while MCA significantly degrades 

to form HHSs in presence of O2; therefore, as an activator it must be controlled at low 

concentrations in blends (Wang, 2012; Zhang, J. et al., 2013). Further studies in 

solvents with presence of Fe
2+

 / Fe
3+

 found oxidative degradations were catalysed by 

such ions. Additionally, as demonstrated in Figure 48, oxidation was also slightly 

enhanced by increasing amine concentrations.  
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Figure 44. Total amine losses in oxidative 

degradation 
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Figure 45. HSSs formed by oxidative 

degradation  

 

5.4.4 Oxidative degradation products and mechanisms 

The mechanisms of MEA oxidative degradation have already been elucidated by Chi, 

(2000) and Goff and Rochelle (2004). Sexton and Rochelle (2006) analysed the MEA 

solution after oxidative degradation, which includes formate, formamide and trace of 
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acetate, oxalate, oxamide, nitrite and nitrate in the form of HHSs in liquid, as well as 

trace of acetate formaldehyde and acetaldehyde in vapour. As seen in Table 17, N-

methylformamide and 4-methylpiperazin-2-one are the most abundant degradation 

products from MEA observed in this study. Those components are inactive for CO2 

absorption, thus must be removed from the recycle stream and lean MEA needs to be 

made up for the feed stream.   

 
Table 17. Main oxidative degradation products of MEA 

No. Component Mr (g/mol) Structure Abundance  

1 N-Methylformamide  59.07 
 

major 

2 Oxazolidin-2-one 87.08 

HN

O
O  

moderate 

3 4-Methylpiperazin-2-one 114.15 

 

major 

4 N,N,N'-Triethylethylenediamine 114.26 

 

moderate 

5 
N,N'-bis-(2-Hydroxyethyl)- 

oxamide 
176.17 

N
H

H
N

OH

OH

O

O  

minor 

 

 

(A) MEA 

 

(B) AMP 

Figure 46. GC-MS chromatograms for degradation products of alkanolamines  
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Oxidative degradation products of MEA and AMP as benchmarks were initially 

determined in this work. Figure 46 shows the chromatograms for degradation products 

of MEA and AMP and their mass spectra are presented in Appendix D. Those 

components listed in Table 17 and Table 18 were identified using the National Institute 

of Standards and Technology (NIST) Standard Reference Database - Chemistry 

Webbook. The oxidative degradation of MEA is much more significant compared to 

AMP. The major degradation products of MEA are its oxidative components while 

those for AMP are formed by oxidation and methylation. They are in good agreement 

with the study from Lepaumier et al. (2009b).  

 
Table 18. Main oxidative degradation products of AMP 

No.  Component Mr (g/mol) Structure Abundance  

0 
2-(Methylamino)-2-methyl-1-

propanol 
103.16 

N
H

HO

 
moderate 

1 
4,4-Dimethyl-2-

Oxazolidinone 
115.13 

O

N

O

 
moderate 

2 
1-(4,4-Dimethyl-2-

oxazoline)-Ethylamine 
142.20 

 

minor 

3 
2-(Ethylamino)-2-methyl-1-

propanol 
117.19 

 
minor 

4 
2-(Propylamino)-2-methyl-1-

propanol 
131.22 

 
minor 

5 
2-(Dimethylamino)-2-methyl-

1-propanol 
117.19 

 

minor 

6 

1,5,5-

Tetramethylimidazolidine-

2,4-dione 

142.16 

 

moderate 

7 

1,3,5,5-

Tetramethylimidazolidine-

2,4-dione 

156.18 

 

minor 

 

Due to different molecular structures, the degradation products of lipophilic amines 

are quite distinctive from alkanolamines. Figure 47 presents the chromatograms for 

degradation products of MCA and DMCA. Cyclohexanone and cyclohexanone oxime 

were determined as the most considerable oxidised components for MCA (see Table 19) 

via ketonisation (R. 5.4) and oximation (R. 5.5) while other trace components were 
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restructured alkylamines via dealkylation and alkylation by shifting -CH3 or -C6H11 

groups described by R. 5.3.  

 

Ketonisation 

   
R. 5.4 

Oximation 

 
R. 5.5 

 

 

(A) MCA 

 

(B) DMCA 

Figure 47. GC-MS chromatograms for degradation products of lipophilic amines 

 

Compared to MCA, the oxidative degradation of DMCA is very low, which is a typical 

preponderance for tertiary amines. No oxidised product was observed in DMCA 

solutions. Dealkylation and alkylation are the major reactions and the main degradation 

products are the reformed alkylamines (see Table 20), which are still active for CO2 

absorption. DMCA is thus proved to be a chemically stable solvent for capturing CO2 

from flue gases. However, the less stable MCA can only be used as an activator with 

limited concentrations or low proportions in the blend solutions to reduce the 

degradation rate.  
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Table 19. Main oxidative degradation products of MCA 

No. Component Mr (g/mol) Structure Abundance 

1 CHA 99.17 H2N

 
minor 

2 Cyclohexanone 98.14 
  

O

 
minor 

3 Cyclohexanone oxime 113.16 N

HO  
major 

4 DMCA 127.23 
  

N

 
minor 

5 IPCA 141.25 

H
N

 
minor 

6 DCA 181.32 
HN

 

minor 

7 
N-Methyldicyclo 

hexylamine 
195.34 

N

 

moderate 

 

Table 20. Main oxidative degradation products of DMCA 

No. Component Mr (g/mol) Structure Abundance 

1 CHA 99.17 H2N

 
minor 

2 MCA 113.20 HN

 
moderate 

3 IPCA 141.25 

H
N

 
minor 

4 DECA 155.28 N

 
moderate 

5 
N-Butyl- 

cyclohexanamine 
155.28 

HN

 

minor 

 

5.4.5 Inhibitation  

To minimise the oxidation of amine solvents in CO2 absorption, inhibitation is 

considered for preventing amine degradation. Several inhibitors were proposed by Goff 

(2005), Sexton (2008), Sexton and Rochelle (2009) and Supap et al. (2011), but their 

effectiveness for lipophilic amines should be measured due to different oxidation 

mechanisms and some of the specified inhibitors are only valid for specific solvents. As 

an effective inhibitor, it must scavenge O2 at ambient temperature with more favourable 
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kinetics than the partial oxidation reactions involved in the degradation (Veldman, 

2000). Rochelle et al. (2011b) suggested the inhibitor selection should be followed by 

the criteria of thermal stability, water solubility, low volatility and non-corrosion.  

In this study, inhibitors such as ascorbic acid (IHB-1, 0.01 M), sodium sulfite (IHB-

2, Na2SO3, 0.05 M) and potassium sodium tartrate tetrahydrate (IHB-3, 

KNaC4H4O6·4H2O, 0.01 M) were applied to prevent the oxidation of lipophilic amine, 

i.e. MCA, which exhibits a high degradability at 120 °C. Figure 49 demonstrates all the 

inhibitors can depress the degradation rate of MCA, and KNaC4H4O6·4H2O is the most 

effective.  
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Figure 48. HHSs from oxidative degradation of 

MCA with varying concentrations 
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Figure 49. HHSs from oxidative degradation of 

49 wt.% MCA with inhibitors 

 

5.5 Summary 

Due to lower operating temperature for lipophilic amines (≈90°C) compared to that for 

conventional alkanolamines (120-140 °C) in solvent regeneration, TBS system exhibits 

a lower thermal degradation. The less reactive regeneration promoters are quite stable in 

the presence of O2 and the degradation components are still active amines reformed by 

alkylation and dealkylation; however, the oxidative degradation of absorption activators 

is significant, since oxime was found as one of the major oxidation products. The 

optimised ternary blended amine solvent (DMCA+MCA+AMP) presents a good 

chemical stability. However, vaporisation loss becomes the major weakness of the TBS 

system. It can be reduced by an additional inter-stage cooling system and recovered by a 

water wash or hydrophobic solvent scrubbing process, since it is much easier to 

eliminate such physical loss compared to those irreversible chemical losses via thermal 

and oxidative degradations.  
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6 Intensification of solvent regeneration 

Lipophilic amine solvent regeneration with thermomorphic liquid-liquid phase 

separation (LLPS) has been proved to be an effective means for cutting the exergy 

demands and reducing the quality of heat source required for solvent regeneration. 

However, the slow desorption rate becomes a challenge if steam stripping is not used. 

To accelerate CO2 release from loaded solutions, measures for intensifying solvent 

regeneration without gas stripping were hence studied.  

6.1 Experimental methods 

CO2 loaded amine solutions for intensified regeneration methods such as extraction, 

agitation, nucleation, ultrasound, etc., were first prepared in a 500 mL glass bubble 

column at 30 °C. Regeneration was initially conducted by nitrogen gas stripping as 

benchmark and then using other intensive means in a 100 mL cylindrical glass reactor 

with 50 mL loaded solution at 70-85 °C. Agitation was carried out with a magnetic 

stirrer to agitate the rich solution for accelerating CO2 desorption. Nucleation was 

performed with different materials and various porous sizes, for instance, silica beads, 

aluminium oxide spheres, active carbon spheres, zeolite chips, PTFE boiling stones, 

molecular sieves, cotton and wood fibres, etc., placed in the glass column.  

Ultrasonic desorption was initially carried out in the test tube screening unit 

immerse into an Economic Ultrasonic Bath and the electronic energy consumption was 

measured by an ammeter. A bench-scale ultrasonic-assisted desorption rig with batch 

systems and continuous flow devices was also employed for further investigations in the 

Brandenburg Technical University of Cottbus. The detailed experimental setups are 

described in Appendix B.3.  

6.2 Nucleation 

Nucleation was studied as an intensification method for accelerating CO2 regeneration 

in loaded solutions. It usually arises at nucleation sites on surfaces contacting liquids or 

gases. Nucleation sites in this study are generally provided by suspended particles or 

minute bubbles, so-called heterogeneous nucleation, which occurs much more common 

than homogeneous nucleation that takes place without preferential nucleation sites. 

Bubble formation at nucleation sites depends on the surface roughness, fluid properties 

and operating conditions (Maruyama et al., 2000; Thome, 2010).  
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Various porous materials were used to enhance nucleate bubble formations in the 

desorption experiments. Since they provide extensive nucleation sites, CO2 regeneration 

can hence be intensified. Significantly rapid CO2 desorption was observed by using 

particles such as zeolite chips, Al2O3 spheres and PTFE boiling stones. Those porous 

materials with cavities on the surface, which are poorly wetted by the liquid, have the 

greatest tendency to entrap gases and show a positive influence on bubble nucleation 

according to classical nucleation theory (Cole, 1974). The effective surface energy is 

lowered at such preferential sites, thus diminishing the free energy barrier and 

facilitating bubble nucleation. However, acceleration of amine degradation was found 

with ceramic materials and Sylobeads, decolourisation was detected with active carbons 

and gel formation was observed with fibres and silica beads, those materials were hence 

not employed in further investigations.  

0 10 20 30 40

0.0

0.4

0.8

1.2

1.6

2.0

 

 

D
e

s
o

rb
e

d
 C

O
2
 (

m
o

l/
L

)

Time (min)

 1/40 wt.

 1/60 wt.

 1/80 wt.

 N
2
 stripping

 w/o any method 

Solution: MCA+DsBA, 2+1M at 75 °C

 
Figure 50. Solvent regeneration by nucleation with Al2O3 spheres  

 

Before desorption, the CO2 concentration of the loaded solution prepared from 

absorption is quite high. By raising the temperature, the equilibrium of dissolved CO2 in 

the aqueous phase is displaced toward the dissociation of the carbamate and bicarbonate 

species, and the solution attains a supersaturated state. The additional porous particles 

thus provide active nucleation sites for reducing the free energy barrier of bubble 

nucleation and initiating the formation of “excess” CO2 bubbles. Thus, nucleation 

promotes CO2 releasing from loaded solutions. However, the particles only influence 

the desorption rate but not the reaction equilibrium, since they are inert in terms of the 

absorption. Figure 50 shows the good experimental results achieved by using porous 
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particles, Al2O3 spheres, at levels of only 1.25-2.5 wt.% in amine solvents, to accelerate 

CO2 evolution from the loaded solution.  

6.3 Agitation 

Bubble formation was observed in stirred vessels and is typically influence by speed of 

agitation and surface tension of solvent. The low surface tension promotes the bubble 

breakage and reformation, leading to more bubbles regenerated with smaller sizes 

(Laakkonen et al, 2005). Agitation also breaks the surface tension of the solution to 

increase the cavitation level, bubbles are thus more likely to be formed.  

Agitated regeneration was hence applied in a continuous stirred tank reactor 

(CSTR) as a substitute for steam stripping. Figure 51 illustrates that the desorption rate 

with agitation is comparable to that with gas stripping in blended MCA+DsBA 

solutions. Agitation speed also has a positive influence on CO2 desorption, with more 

CO2 being desorbed at higher agitation rates. Because cavitation is formed by agitation 

and it is enhanced by increase of agitation speed. By immediate implosion of cavities in 

the liquid solution, CO2 is consequently liberated from liquid phase to gas phase, 

reaction is therefore driven towards CO2 desorption. The higher speed of agitation 

creates more cavitation bubbles and thus intensifies CO2 releasing. In addition, agitation 

also promotes the mass transfer in the reactor and accelerates the reaction towards CO2 

releasing.  
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Figure 51. Influence of agitation speed on CO2 evolution 

 

Figure 52 illustrates that the regeneration rate of the loaded DMCA+MCA solution 

is very slow without any enhancement technique, releasing only 30 g/L/hr of CO2 in the 
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initial 20 min, but that it becomes much faster upon 250 rpm agitation (180 g/L/hr) and 

even more rapid at 1000 rpm agitation (240 g/L/hr). The corresponding desorption rate 

with 200 mL/min N2 stripping is 220 g/L/hr as reference. This indicates the tremendous 

potential of exploiting agitation to reduce solvent loss and operating costs in the 

regeneration step still further. Therefore, a CSTR was employed for desorption in the 

further experiment and this achieved very deep regeneration, for instance, 95% amine 

recovery from 3 M loaded DMCA+MCA solution at 75 °C.  
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Figure 52. Enhancement of solvent regeneration by agitation 

 

According to the calculation method described by Geuzebroek et al. (2009) and 

Oexmann et al. (2008 and 2010), the total energy consumption in agitated desorption for 

TBS system is estimated to be only less than 2.0 MJ/kg-CO2, which mainly includes 1.2 

MJ/kg-CO2 of reaction enthalpy, 0.14 MJ/kg-CO2 of agitation energy, 0.4 MJ/kg-CO2 of 

sensible heat and 0.2 MJ/kg-CO2 of heat loss. Compared to the MEA-based “state-of-the-

art” technology with steam stripping (4.0 MJ/kg-CO2), it significantly limits the 

consumption of latent heat and saves half of the required desorption energy.  

A comparison study between nucleation and agitation indicates that solvent 

regeneration has been intensified more deeply by agitation (see Figure 53), since a more 

effective mechanical force is involved for cavities formation. Nucleation is more 

suitable for solvents with more regeneration promoter, such as formulations 

DsBA+MCA+AMP (2+1+1 M) and DMCA+MCA+AMP (3+1+1 M), since they are 

more easily to be regenerated; while agitation is preferred for solvents with more 
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activators, due to their higher CO2 loading capacity. Additionally, by combining 

agitation and nucleation, the regeneration rate were enhanced synergistically by 10-

20%, compared to employing the measures individually.   
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Figure 53. Comparison of nucleation and agitation for solvent regeneration at 80 °C 

 

6.4 Ultrasonic desorption 

Ultrasonic desorption has also been investigated for enhancing the solvent regeneration, 

using high frequency sound waves to agitate the aqueous solution and encourage bubble 

formation, since the compression waves in the liquid tears the liquid apart, leaving 

behind many millions of microscopic “voids” or “partial vacuum bubbles” – cavitations 

(Reidenbach, 1994). The ultrasonic cavitations create a population of seed bubbles 

above a critical radius and the bubbles expand and shrink in the ultrasonic field, which 

enables a biased transfer of dissolved gas (i.e., CO2) into the bubble from solution by 

rectified diffusion and the grown bubbles are removed from the solution before 

dissolving back into the liquid (Salmon et al., 2012). The ultrasonic wave initiates 

microscopic cavities, which facilitates bubble formation and thus enhances CO2 

desorption only at moderate temperatures without steam stripping.   

A positive influence of ultrasound on the CO2 desorption rate is illustrated in Figure 

54, where an economic Ultrasonic Bath was employed to degas the CO2 from 40 mL 

loaded solvent. Although the rich solvent, for example MCA+DMCA, cannot be 

regenerated by nucleation or ultrasound as deeply as with gas stripping - typically 5-

20% less - the regeneration rate is comparable or even faster than for N2 stripping. Since 
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the frequency of ultrasonic wave was found to have minor influence on desorption 

(Gantert and Möller, 2011), a constant frequency was adopted in this study. The total 

energy consumption in ultrasonic desorption for TBS system is also around 2.0 MJ/kg-

CO2, where only 0.15 MJ/kg-CO2 of ultrasonic energy is consumed.  
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Figure 54. Intensification of CO2 release with various methods  

 

The bench-scale test was carried out in a bath unit equipped with an ultrasonic bath. 

The experimental measurements and detailed calculations were described in the paper 

from Gantert and Möller (2011). Figure 55 demonstrates the advantage of using 

biphasic solvent (5M DMCA+DPA+AMP, 3:1:1) in ultrasonic desorption, which 

exhibits a much faster CO2 release rate and deeper regeneration compared to 

conventional alkanolamine solution (30 wt.% MEA+MDEA, 1:1).  
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Figure 55. Ultrasonic desorption in bench-scale test 
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6.5 Hybrid technology 

To further enhance the solvent regeneration, hybrid technologies with combination of 

two or more intensification methods has also been investigated in this paper. A glass 

cylinder desorber combining the nucleation and agitation has been designed and used in 

experimental study (see Figure 91C in Appendix). The initial CO2 desorption rate in the 

combined method is faster that either, however the depth of regeneration is the same as 

that with the agitation technique, while nucleation only has limited contribution to the 

overall CO2 desorption. Table 21 summarises the principle and features of those 

techniques; enhanced bubble formation and accelerated CO2 desorption are their 

common characteristics.  

The design of hybrid technologies in solvent regeneration is dependent on the 

application of CO2 capture for the particular industrial process; for example, the 

combination of nucleation and agitation methods is suitable for a refinery and that of 

nucleation and stripping can be employed for a power plant due to the availability of 

proper energy sources for thermal regeneration. The detailed processes are discussed in 

section 9.1 presenting various flowsheets.  

 

Table 21. Comparison of intensified regeneration techniques 

  Method Equipment         Principle         Features 

Nucleation Fixed bed 

reactor 

Add porous particles with active 

nucleation sites to lower surface 

energy and facilitate bubble 

formation 

Accelerate CO2 desorption 

No power consumption 

Agitation Stirred tank Break the surface tension and 

increase the cavitation level to 

enhance bubble formation 

Accelerate CO2 desorption 

Deep regeneration 

Ultrasound Ultrasonic 

bath 

Create voids for cavitation to 

encourage bubble formation 

Accelerate CO2 desorption 

regeneration 

Nucleation + 

Agitation 

  Further enhance desorption 

rate with deep regeneration 

Nucleation + 

Ultrasound 

  Same as above 
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6.6 Summary 

The objective of regeneration intensification was to accelerate desorption by physical 

means, e.g. nucleation, agitation and ultrasonic desorption instead of gas stripping, 

which involves an additional downstream separation. The regeneration temperature 

required for TBS system is much lower than for conventional solvents, only at 80-90 

°C, which enables the implementation of such techniques and the use of low-value heat 

from other industrial processes to reduce operational costs. Laboratory tests of those 

methods have all achieved comparable solvent regenerability and significant energy 

savings compared to the stripping process. These measures provide a great potential to 

intensify the CO2 desorption process and to integrate heat recovery networks for 

developing a low-cost CO2 capture technology.   
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7 Extractive solvent regeneration  

7.1 Concept of extractive regeneration 

Since gas stripping by N2 is not feasible in industrial applications, a novel technology 

using additional hydrophobic solvents to extract loaded amines from the aqueous phase 

into the organic phase was investigated for enhancing the CO2 release and further 

reducing the regeneration temperature for desorption (Agar et al., 2008b; Misch, 2008). 

Figure 56 illustrates the solvent regeneration process with inert solvent addition. It 

commences with CO2 absorption into the biphasic lipophilic amine solution forming a 

homogeneous loaded amine solution. The extractive regeneration of the loaded solution 

is carried out by addition of an inert solvent, which is insoluble in water, with 

simultaneous CO2 release. Due to the similar hydrophobic properties, the inert solvent 

acts as an extracting agent removing the lipophilic organic from the loaded solution and 

thus displacing the prevailing chemical equilibrium within it. CO2 desorption from the 

loaded solution will consequently be enhanced. Moreover, the mixture of the extracted 

lipophilic amine and inert solvent can be separated by a variety of fluid separation 

techniques, with distillation being the preferred option (Tan, 2010).  

 

 
 

Figure 56. Concept of CO2 absorption with extractive regeneration  
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The criteria for inert solvent selection are (1) molecular polarity - similar to the 

lipophilic amine, leading to highly selective extraction; (2) thermal separability - the 

inert solvent should have a boiling point at least 50 °C lower than the lipophilic amine; 

(3) chemical inertness - minimal influence on the overall absorption process if residual 

trace amounts are present in amine solution; (4) chemical stability - no side reactions 

and minimal solvent degradation.  

 

Table 22. Solubility parameters of various inert solvents 

Compounds δD δP δH Vm b δT c 

 MPa0.5 MPa0.5 MPa0.5 cm3/mol MPa0.5 

n-Butane 14.1 0 0 101.4 14.1 

n-Pentane 14.5 0 0 116.2 14.5 

Cyclopentane 16.4 0 1.8 94.9 16.5 

Cyclopentene 16.7 3.8 1.7 89.0 17.2 

2-Methyl butane 13.7 0 0 117.4 13.7 

2-Methyl-2-butene 14.3 2.0 3.9 106.7 15.0 

n-Hexane 14.9 0 0 131.6 14.9 

Cyclohexane 16.8 0 0.2 108.7 16.8 

3-methyl pentane 14.7 0 0 130.0 14.7 

n-Heptane 15.3 0 0 147.4 15.3 

Methyl-tert-butylether 14.8 4.3 5.0 119.8 16.2 

Dichloromethane 18.2 6.3 6.1 63.9 20.2 

n-Decane 15.7 0 0 195.9 15.7 

n-Dodecane 16.0 0 0 228.6 16.0 

DPA 15.3 1.4 4.1 136.9 15.9 

MCA a 17-18 2-3 5-6 - 18.3 

DMCA a 16-17 1-2 3-4 151.5 17.8 

MEA 17.0 15.5 21.2 59.8 31.3 

CO2 15.7 6.3 5.7 38.0 17.9 

Water 15.5 16.0 42.3 18.0 47.8 

a Estimated according to influence of function group on solubility parameters 
b Molar volume of the pure solvent 
c Total solubility parameter δT = (Evap/Vm)0.5 = (δD

2 + δP
2 + δH

2)0.5 

 

The crucial issue in the extractive regeneration is to select solvents with polarities 

similar to those of the lipophilic amines, since this promotes amine solubility in the inert 

solvent and increases both the selectivity and capacity of the process (Bart, 2001). The 

solubility parameter (δ), reflecting the energy needed to separate molecules in a fluid 

and create ‘cavities’ to accommodate solute molecules (Reichardt, 2003), is used for 

solvent characterisation purposes. It considers cohesive, adhesive and hydrogen bonding 

interaction contributions (Barton, 1991). The cohesion is the dominant effect in 

determining the solubility, since it is derived from the energy needed to convert a liquid 
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to a gas, i.e. the latent heat of evaporation (Evap), viz. that holding the liquid molecules 

together (Hildebrand and Scott, 1962). There are three major types of interaction 

parameters in common organic solvents: dispersion solubility parameter - δD, polar 

solubility parameter - δP and hydrogen bonding solubility parameter - δH (Hansen, 

2000). According to the basic principle for predicting the solvent solubility “like 

dissolves like”, the miscible solvents should have similar solubility parameters. Based 

on this criterion and a detailed literature survey, more than ten inert solvents were 

selected for further experimental investigation. Their solubility parameters, as well as 

those of the lipophilic amines, are given in Table 22. Since most selected solvents have 

similar dispersion solubility parameters, the polar and hydrogen bonding solubility 

parameters become the decisive factors.  

7.2 Experiment: Extraction  

CO2 loaded amine standard solutions for extractive regeneration tests were initially 

prepared in a 500 mL glass bubble column at 30 °C. The screening tests on inert 

solvents for extractive regeneration were carried out in a 150 mL double-wall glass 

reactor from 25 to 70 °C. The experimental setup of the inert solvent screening unit is 

shown in Appendix B.4. To improve the capture efficiency, three- and four-stage 

extractions were used for lipophilic amine regeneration. To minimise inert solvent 

vaporisation, pressurised extraction was applied in further studies.  

7.3 Inert solvent selection 

Based on the prerequisites given above, the inert solvent selection was first conducted 

by theoretical study. Butane and Heptane, as well as their isomers, were eliminated in a 

preliminary screening due to their boiling points, which were either too low or too high. 

The screening tests for the potential inert solvents were carried out with saturated and 

unsaturated hydrocarbons having a carbon number of 5 or 6, for a variety of structures 

and functional groups. Preloaded 3M lipophilic amine solutions a-DMCA 

(DMCA+MCA at 3:1) were used as a standard for purposes of comparison. Figure 57 

illustrates the performance of the inert solvents determined in a single-stage-equilibrium 

extractive regeneration at 40 °C. The solubility interaction alone could be used to 

regenerate the loaded amine solution with the release of more than 35% of the CO2 at 

only 40 °C.  
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Figure 57. Single-stage extractive regeneration by various inert solvents 

 

Dichloromethane is very reactive under basic conditions and is not inert toward amine 

solutions, because it can react with the lipophilic amines through a nucleophilic 

substitution mechanism to form mixtures of amines with various states of alkylation 

(Clayden et al., 2005); although its extractive behaviour is much better than for the other 

inert solvents, recovering 80% amine from aqueous phase in a single equilibrium, by 

virtue of its small molar volume and similar hydrogen bonding solubility parameter to 

lipophilic amines. Ethers with comparable polar and hydrogen bonding solubility 

parameters to lipophilic amines have outstanding extraction efficiency, but also proved 

somewhat unsuitable, since the ether group is chemically unstable during the subsequent 

thermal separation, resulting in solvent oxidation and formation of explosive vapour 

mixtures. A single alkenyl function group has positive influence on the extraction effect, 

but the unsaturated carbon-carbon bond might cause unexpected reactions such as 

oligomerisation and electrophilic addition (McMurry, 1999). Consequently, alkanes 

with their high chemical stability were selected for extraction. In particular, pentane, 

which performed best in the screening tests based upon its extraction properties and 

chemical stability, was chosen for further study. Hexane exhibits almost equivalent 

solubility parameters to those of pentane, but its performance in the extractive 

regeneration is much inferior to that of pentane. This is probably primarily a 

consequence of the critical condition of pentane at the experimental temperatures 

around its boiling point, which creates larger free volume in the inert solvent and 

enhances its solubilisation properties.  
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The extractive regeneration of 3M loaded aqueous DMCA solution was also carried 

out at 40-50°C, with the results acquired showing a 5% difference from the comparable 

values for the solution a-DMCA. Due to the weak polarity of the DMCA molecule, it 

preferentially dissolves in pentane and performs a little better than DPA and MCA in 

extraction. Moreover, an increase in temperature at first improved the extraction of 

lipophilic amines resulting in greater CO2 liberation (see Figure 58). However, a further 

increase of the temperature above 60°C is not advisable, due to the high volatility of the 

inert solvent while reducing temperatures to 30 °C also has a negative impact on the 

extraction efficiency and regeneration rate. A reasonable operating temperature for the 

extractive regeneration process was thus stipulated to be 40-50°C, which is also a 

typical operating temperature for conventional CO2-absorbers (Kohl and Nielsen, 1997) 

and the optimal temperature in lipophilic amine absorption systems.  
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Figure 58. Single-stage extractive regeneration by pentane at various temperatures  

(Vpentane:Vamine=1:2) 

 

7.4 Multi-stage test 

In order to improve the depth of solvent regeneration, multiple-stage extraction systems 

were assessed in the experimental work. Figure 59 and Figure 60 illustrate the 

performance parameters of cross-current extractions using pentane for the blended 

lipophilic amine solutions DMCA+MCA (3M, 3:1) and DsBA+MCA (3M, 3:1). Due to 

the volatile loss of inert solvents i.e. pentane, the volume ratios of the extract and the 

initial amine raffinate solution (Vinert/Vaq) used for calculation were 4:5 (initial value 

1:1) in the three-stage extraction and only 1:5 (initial value 1:3) in the four-stage 
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extraction. Following extraction, the inert solvent and amines without CO2 were found 

in the extract while the raffinate was comprised of fully loaded amines, water and 

physically absorbed CO2. Since the physical absorption is so weak at atmospheric 

pressure and only contributes to less than 5% of the total CO2 capture, more than 90% 

of CO2 can be released, while more than 95% of the lipophilic amines are regenerated 

by extraction into the inert solvent. Together with optimisation of the operating 

temperature (ca. 40-50 °C), these results underpin the economic and technical viability 

of scaling-up an extractive regeneration to reduce the exergy requirement. 
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Figure 59. Three-stage cross-flow extractive 

regeneration  

(volume ratio Vpentane:Vamine=4:5 in each stage) 
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Figure 60. Four-stage cross-flow extractive 

regeneration  

(volume ratio Vpentane:Vamine=1:5 in each stage) 

For large-scale operation and more efficient use of the solvent, counter-current 

mixer-settlers or columns would usually be employed for such an industrial liquid-

liquid extraction. According to the experiment results, the partition coefficient (Kc) of 

lipophilic amines measured lies around 3.0 at 40 °C (see Eq. 7.1). The extraction 

coefficient (E) is proportional to volume ratio of extract and raffinate in a given system 

(see Eq. 7.2). On this basis, the process was predicted to achieve an extraction of 95% 

of the lipophilic amine and release 90% of the CO2. An analytical calculation was used 

to estimate the performance of the counter-current extraction and the number of stages 

(n) was calculated by the Kremser formula in Eq. 7.3 (Müller et al., 2005). Table 23 

indicates that only 4 stages would be required to extract a-DMCA from the loaded 

aqueous amine solutions using pentane. 
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Table 23. Performance of inert solvents for extractive regeneration  

 Atmospheric pressure  Elevated pressure (≈3 bar) 

Inert solvent  
Partition 

coefficient 

Volatile 

loss 

Required 

stages* 
T  

Partition 

coefficient 

Volatile 

loss 

Required 

stages* 
T 

 mol/mol %  °C  mol/mol %  °C 

Pentane 3.2 45 4.5 40  2.1 20 6.0 60 

Hexane 3.5 4 4.3 60  1.8 <1 7.0 70 

Cyclohexane  3.6 2 4.2 60  1.9 <1 6.6 70 

Iso-hexane 3.0 10 4.6 60  - - - - 

* calculated by Eq. 7.3 for counter-current extraction with 96% amine recovery and Vinert=Vamine.  

 

7.5 Inert solvent loss and its reduction 

Inert solvent loss via vaporisation was found to be significant during extractive 

regeneration, due to the low boiling point of the inert solvents employed. A cooling 

water condenser (15°C) was hence used to reduce the volatility losses, recovering over 

50% of the vaporised solvent. The residual vapour can subsequently be scrubbed out 

with high boiling point hydrophobic solvents, e.g. n-decane, n-dodecane, or even higher 

alkanes. In experiments, it has proven possible to recover more than 90% pentane by a 

scrubber with Diphyl (from Lanxess) in three equilibrium stages. Since the boiling point 

of Diphyl is very high ≈257 °C, the separation of inert solvent from Diphyl is very easy. 

Another alternative would be to use other inert solvents with a slightly higher boiling 

point, such as cyclopentane and hexane. The volatility losses could thus be significantly 

reduced by more than 80%, but the extraction efficiency would decrease by 20-55%, 

which would have to be compensated for by additional extraction stages.  

 

 

Figure 61. Composition of Diphyl 

 

7.6 Pressurised extraction test 

To achieve fast absorption kinetics, lipophilic activator is includes in most of the TBS 

solutions, but they are only partially regenerated without steam stripping at 80 °C. 
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Therefore, extractive regeneration with inert solvent was developed to improve 

performance. Inert solvents, such as pentane, hexane and cyclohexane, were selected for 

achieving an extensive regeneration at temperatures well below 70 °C, giving more 

degrees of freedom for integrating waste heat sources from industrial energy recovery 

networks in the solvent regeneration process. However, the large amount of inert 

solvent involved in the regeneration process may cause problems such as negative 

environmental impact and additional heat demand. The extraction process and operating 

parameters must be optimised.  

In the system examined, an aqueous MCA+DMCA solution (4M, 3:1) was used as 

the activated solvent. A high proportion of MCA was present in order to increase the 

absorption rate and capacity; a small amount of DMCA ass incorporated to decrease the 

LLPS temperature to 80 °C. The loaded solution was separated into two phases in the 

pre-regeneration stage. More than 50% of the amines were recovered and an organic 

lean phase was formed. The organic phase was recycled to the absorber. The CO2 is 

highly concentrated in the aqueous rich phase. As shown in Figure 62, this was passed 

to the extraction unit with an inert solvent. Compared to the previous extraction method 

(cf. Figure 56), the developed process reduced both inert solvent requirement and 

energy consumption in desorption. But vaporisation loss of inert solvent was found to 

be a significant drawback.  

 

 

Figure 62. Concept of LLSP with inert solvent extractive regeneration 
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In order to reduce the volatile losses of the inert solvent, the system pressure at 

regeneration was increased to up to 3 bar at 50-70 °C. Due to the different miscibility 

properties of the solvent system, lipophilic amines were preferably dissolved in the 

organic phase, the residual amine was thus extracted by the inert solvent with 

simultaneous CO2 release. The desorbed CO2 from the pre-regenerator and extractor can 

be compressed for storage; the lean aqueous phase from the extractor was recycled to 

the absorber and the organic phase containing inert solvent and lipophilic amines was 

sent to a low temperature distillation unit. Since the boiling point of the inert solvent is 

lower than 70 °C and for lipophilic amine is higher than 130 °C, the thermal separation 

is very easy. Following separation, the recovered lipophilic amines can be recycled to 

the absorber and the inert solvent can be recycled to the extraction unit.  

One of the key tasks in this extractive regeneration is the selection of appropriate 

inert solvent. Pentane with an excellent partition coefficient was initially employed, but 

the significant volatile losses represent a major weakness. Other organic solvents such 

as hexane, cyclohexane and isohexane were further evaluated. Using less volatile 

hexane can effectively reduce the vaporisation loss, but the partition coefficient is 

inferior. This shortcoming can be overcome by increasing the extraction temperature 

and the number of stages. Since the carbon capture technology is being developed to 

mitigate global climate change, a negative environmental impact of the CO2 capture 

process should be avoided. Therefore, a high boiling point hydrophobic solvent 

scrubbing unit is employed to remove the low boiling point inert extracting agent 

vapour. Table 23 demonstrates the practicability of using inert solvent extraction at an 

elevated pressure for CO2 regeneration in 4M loaded DMCA+A1 (3:1) solution.  

7.7 Summary 

Extractive regeneration using foreign hydrophobic inert solvents has been proposed to 

reduce the regeneration temperature for CO2 desorption still further for facilitating the 

use of waste heat. More than 95% of lipophilic amine recovery can be achieved by a 

multi-stage extraction process and the extracted amine can subsequently be recovered 

from the inert solvent by low temperature (<80 °C) distillation. This measure offers a 

more flexible and expedient thermal integration of CO2 desorption system into the low-

value heat recovery network to regenerate CO2 from loaded solutions at only 50-70 °C. 

However, volatile loss of low boiling point extractants becomes the major weakness. 
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Elevation of extraction pressure and use of less volatile inert solvent reduce vaporisation 

loss but depress the partition coefficient, however, this drawback can be overcome by 

increasing the extraction temperature and the number of stages. Additional distillation 

processes required for separation of amine and extractant together with a solvent 

scrubbing process to recover the significant foreign solvent loss via vaporisation lead to 

some extra costs; however, they are minor compared to steam stripping. To adapt such 

technology for CO2 capture, inert solvent loss must be well controlled, and it still has 

potential to achieve a better saving than a conventional stripping process, since waste 

heat at temperatures of 80 °C is available in most process heat network systems.  
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8 Packing wettability test  

To observe the characteristics of the fluid dynamics of the packed column in the 

absorption process, basic parameters, such as pressure drop, liquid hold-up and flooding 

point, were measured in the bench-scale experiment and some physical properties, e.g. 

density, viscosity, surface tension and contact angle of lean and rich solvent, were also 

determined for a better understanding of the fluid dynamics in CO2 absorption.  

8.1 Experiment: Bench-scale test  

The experiments were performed in a glass column with 0.04 m inner diameter and a 

packed height of 1 m at 30 °C and atmospheric pressure. As shown in Table 24, Raschig 

rings with different materials, e.g. ceramic (C), plastic (P) and stainless steel (M), were 

investigated in this work. Water and amine solutions were used as the liquid phase. 10-

75 L/min (containing 15 mol% CO2) of gas and 60-200 mL/min of liquid flow were 

applied. Liquid leaving the column outlet at the phase separator was collected and 

weighed on a balance to determine the dynamic liquid hold-up. The pressure drop 

across the packed bed was detected with differential pressure transducers connected at 

different positions between the top and the bottom of the column. The experimental data 

were collected by a system-design platform National Instruments LabVIEW 8.5 

installed on a PC. The detailed setup is demonstrated in Appendix B.5.  

 
Table 24. Specification of random packings 

Type Code Material Diameter 
Specific 

surface area 
Porosity 

   mm m2/m3 m3/m3 

Raschig Ring RR-3-G Glass 3 1571 0.411 

 RR-5-M Metal 5 1012 0.857 

 RR-6-M Metal 6 859 0.877 

 RR-6-P Plastic 6 779 0.666 

 RR-6-C Ceramic 6 850 0.362 

 RR-8-C Ceramic 8 514 0.589 

Wilson Ring WS-3-M Metal 3 1918 0.662 

Berl-Saddle BS-5-C Ceramic 5 572 0.593 

Raschig Super 

Ring 
RS-10-M Metal 10 451 0.956 

 



8. Packing wettability test 

 

88 
Jiafei Zhang Chemische Verfahrenstechnik 

8.2 Pressure drop 

As a major criterion to evaluate the packing performance in an absorption column, the 

pressure drop through various random packings was experimentally measured in the 

glass column (Misch, 2010; Hussain, 2012). The calculations followed the instructions 

from the textbooks (Behr et al., 2010; Billet, 1995; Hölemann and Górak, 2006; Górak, 

2006; Maćkowiak, 2003; Walzel, 2006).  

To control the experiment conditions, a blank test using N2 with various gas load 

factors (FG) against dry packings was initially conducted. As seen from Figure 63, the 

influence factor of those packings on pressure drop is in the order of RR-6-C > RR-6-P 

> RR-6-M, primarily due to their different porosities. To validate the measurement of 

the gas-liquid system, a benchmark test using N2 and water with various packings was 

also carried out. Figure 64 shows the specific pressure drop (Δp/H) with varying gas 

load factors and the pressure drops are in the same order as the previous results in the 

dry packing test. The flooding points were observed at FG = 0.35 for RR-6-C (low 

porosity) with 200 mL/min of liquid flow and at FG = 0.8 for RR-6-M (high porosity) 

with 100 mL/min of liquid flow.  
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Figure 63. Pressure drop with dry packing 
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Figure 64. Pressure drop with water 
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Further tests were performed with the CO2-N2-Amine-Water system, compared to 

MEA solution, MCA has created higher pressure drop at the same experimental 

conditions and its flooding point also appears at a lower gas load factor (see Figure 65 

and Figure 66). It is primarily due to the higher viscosity of the MCA solution.  
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Figure 65. Pressure drop with 5M MEA 
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Figure 66. Pressure drop with 5M MCA 

The advanced test was carried out with the blended solvent DMCA+MCA+AMP 

(3+1+1.5M). The pressure drop in such blend amine solution is even higher than that in 

the MCA solution. As shown in Figure 67, unloaded solvent (α-CO2 = 0) was used at the 

1
st
 run, the pressure drops were relative low; at the 2

nd
 run, lean solvent (α-CO2 = 0.12) 

was applied, the pressure drops were significantly increased; at the 3
rd

 run, the pressure 

drops were even higher, when the rich solvent (α-CO2 = 0.20) was employed. This is 

mainly due to the viscosity enhancement by CO2 loading in solvent.  

The viscosity of lipophilic amine solution is considerable higher than that of 

alkanolamine solution and the values of pressure drops for lipophilic amine solution are 

higher, higher porosity packings are suggested to be applied to reduce the pressure drop 

and eliminate the negative effect. As illustrated in Figure 67, by increasing the diameter 

of the metal Raschig ring, the pressure drop was prominently decreased. Increase of 
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packing porosity can also obtain large operation range, because the flooding point was 

found at FG = 0.3 for 6mm metal Raschig ring, while it was observed at FG = 0.35 for 

8mm metal Raschig ring.  
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Figure 67. Pressure drop with blended solvent 

 

8.3 Liquid hold-up 

To study another important parameter for the fluid dynamics in the absorption column, 

the dynamic liquid hold-up (hdyn) was measured in bench-scale experiment with varying 

random packings. Metal Raschig rings with different diameters of 5 mm, 6 mm and 8 

mm, respectively, as well as 6 mm plastic and ceramic Raschig rings in the packing 

height of 1 m were employed.  

In the control test, water was initially employed to validate the measurement 

method and apparatus. Figure 68 shows the results with various materials of 6 mm 

Raschig rings below the flooding point. Both the liquid velocity and gas velocity have 

influence on the dynamic liquid hold-up: the hdyn increases by increase of the gas 

velocity or by decrease of the liquid velocity. 
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Figure 68. Liquid hold-up with water 
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Figure 69. Liquid hold-up with 5M MEA 

 

Further investigation with MEA solution exhibited a higher dynamic liquid hold-up 

compared to water (see Figure 69). The dynamic holdup is primarily a function of the 

liquid flow rate and the gas/liquid system properties, while the static hold up is 

dependent upon the packing surface area, the roughness of the packing surface and the 

contact angle between the packing surface and the liquid. However, in the experimental 

results, the packing material also showed a minor influence on the dynamic hold-up, 

which is in the order of: Ceramic > Metal > Plastic.  

The advanced tests were conducted with the biphasic solutions. Figure 70 and 

Figure 71 presents the even higher dynamic liquid hold-ups of the MCA and 

DMCA+MCA+AMP solutions compared to MEA. It is mainly due to the higher 

viscosity and lower contact angle of the biphasic solutions. These indicate a better 

wettability of biphasic solvent on packing surface in the CO2 absorption. However, the 

flooding point of the biphasic solvent system was observed at lower gas and liquid 

velocities, which limits the operation range of the absorption process. Therefore, high 

efficient packings should be studied in future tests.  
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Figure 70. Liquid hold-up with 5M MCA 

0.24 0.26 0.28 0.30 0.32 0.34 0.36

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

 

 

h
d

y
n
 (

m
3
/m

3
)

F
G
 (Pa

0.5
)

 RR-5-M [1]*

 RR-5-M [2]

 RR-6-M [1]

 RR-8-M [1]

 RR-6-P [1]

 RR-6-P [2] * [1] 1st Run

   [2] 2nd Run

 
Figure 71. Liquid hold-up with blended solvent 

 

8.4 Physical properties 

Physical properties were found to be important for amine scrubbing, for example, 

density, viscosity and surface tension are essential parameters for the calculation of 

fluid dynamics as well as the selection of absorber packings, and contact angle advises 

the use of packing materials. Such fundamental parameters are hence studied in 

experiments with various apparatus.   

8.4.1 Density 

The density was measured in a DIN standard pycnometer (DURAN) with a determined 

volume at room temperature. It was initially verified by determining the densities of 

deionised water with varying temperatures at atmospheric pressure. Then, the densities 

of pure amines and their lean aqueous solutions were measured in the temperature range 

of 25 to 60 °C. Samples with varying CO2 loadings (α) from the absorption experiment 

were also determined at 30 °C. The detailed experimental method is presented in 

Appendix E.1.  
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According to the operation conditions, the density of amine solvents was measured 

with varying temperatures (30-60 °C) and CO2 loadings (0-2.5 mol/L). Figure 72 shows 

the density decreases by the increase of temperature and Figure 73 illustrates it 

increases with enhancing CO2 loadings. The influence of CO2 loading on the density of 

rich amine solutions is a linear equation, since the effect of CO2 dissolution into 

aqueous solution on liquid volume is negligible at low temperatures. The tendency of 

the density of lipophilic amines with varying CO2 loadings is the same as that of 

alkanolamines. Table 25 presents both the values for lean and rich solvents. Lipophilic 

amine solutions typically exhibit a slightly lower density compared to alkanolamine 

solutions.  
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Figure 72. Influence of temperature on solvent density 
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Figure 73. Influence of CO2 loading on solvent density  

(lit.: Weiland et al., 1998) 
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Table 25. Density of lean and rich solutions at 30 °C 

Absorbent α ρ  Absorbent α ρ 

 mol/L kg/L   mol/L kg/L 

5M MEA 0 1.007  
DMCA+MCA+AMP 

(3+1+1.25M) 
0 0.926 

 2.5 1.117   2 1.014 

5M MCA 0 0.925  
DMCA+MCA+AMP 

(3+1+1.5M) 
0 0.924 

 2.5 1.035   2 1.012 

 

8.4.2 Viscosity 

8.4.2.1 Literature review of viscosity 

The viscosity of aqueous amine solutions was extensively studied in literatures listed in 

Table 26, but very few have presented the values with CO2 loadings. The measurement 

techniques mainly include capillary and rotational methods. Due to unfavourable bubble 

formation at high temperatures, the measurement is typically below 80 °C.  

Table 26. Literature review of viscosity measurement for amine solutions 

Author Year Amine Method T (oC) α-CO2 

Rinker et al. 1994 MDEA, DEA capillary 20-100 - 

Li et al.  1994 MEA, MDEA, AMP capillary 30-80 - 

Hsu et al. 1997 Blends: MEA, DEA, 

MDEA, AMP, 2-PE 

capillary 30-80 - 

Weiland et al. 1998 MEA, DEA, MDEA capillary 25 0-0.64 

Park et al. 2002 AHPD capillary 30-70 - 

Mandal et al. 2003 Blends: MDEA, AMP, 

MEA, DEA 

capillary 25-50 - 

Paul et al. 2006 MDEA+PZ, AMP+PZ capillary 15-60 - 

Rebolledo-

Librers et al. 

2006 Blends: MDEA, DEA, AMP capillary 30-70 - 

Murshid et al. 2011 AMP capillary 25-60 - 

Amundsen et al. 2009 MEA rotational 25-80 0-0.5 

Freeman et al. 2011a PZ rotational 20-60 0-0.53 

Song et al. 2011 amino acid salts rotational 25-80 - 

Aronu et al. 2012 amino acid salts rotational 20-70 - 

Fu et al. 2012 MDEA, MEA rotational 20-70 0-0.5 

Fu et al.  2013 MDEA+DEA rotational 20-70 0.25-0.5 

Zhao et al. 2010 ionic liquids  falling ball 30-70 - 
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8.4.2.2 Viscosity of amine solutions 

The kinematic viscosity (ν) was initially measured by a certified Ubbelohde viscometer 

(SCHOTT) with glass capillaries sizes I and II for samples in the ranges of 1.2-10 

mm
2
/s and 10-100 mm

2
/s. The viscometer was initially verified by measuring the 

viscosity of deionised water at various temperatures, and then the viscosity of pure 

amine substances and their aqueous solutions with varying temperatures and CO2 

loadings were further studied. The dynamic viscosity (μ) was calculated by the 

multiplication of the kinematic viscosity and density. The detailed experimental setup is 

shown in Appendix E.2.  

The measured viscosity of pure solvents is in the order of MEA > MCA > Water, 

but that for the lean solutions is [MCA+Water] > [MCA+Water] > Water (see Table 

27). A particular behaviour was found in the MCA solution, since the viscosity of the 

binary [MCA+Water] solution is higher than both pure MCA and water. This can be 

explained by the interaction of the molecules (refer to Section 2.1.1), principally 

because the dissolution of MCA in water destroys the initial hydrogen bonds between 

water molecules and reforms new hydrogen bonds between MCA and water at low 

temperatures so as to prolong the molecular chains and enhance the interaction between 

MCA and water molecules.  

 
Table 27. Dynamic viscosity of lean solutions at 25-60 °C  

(Unit: mPa∙s) 

T (°C) H2O MEA MCA 5M MEA 5M MCA 5M MEA (ref.)* 

25  0.99 19 1.5 2.5 6.5 2.48 

30  0.80 15 1.3 2.2 5.3 / 

40  0.66 9.8 1.0 1.7 3.8 1.67 

50  0.55 7.6 0.8 1.4 / 1.33 

60  0.48 5.5 0.7 1.1 / 1.08 

* Data from Amundsen et al. (2009).  

 

Figure 74 indicates the viscosity of amine solutions is increased by CO2 loading 

after absorption. The values for the dynamic viscosity of CO2 dissolved solutions were 

fitted by Eq. 8.1 from the study of Weiland et al. (1998) and the calculation parameters 

are listed in Table 28.  
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Table 28. Parameters for calculation of the dynamic viscosity of amine solutions 

Solution Parameter Source 

 a b c d e f g  

MEA 0 0 21.186 2373 0.01015 0.0093 -2.2589 Weiland 

MCA -0.0376 0.00067 21.186 2320.411 0.01047 0.01093 -2.2589 this work 

 

 
(A) 5M MEA 

 
(B) 5M MCA 

Figure 74. Dynamic viscosity of amine solutions with varying loadings at 30 °C 

 

The Weiland’s correlation was developed with conventional alkanolamines and has 

exhibited a good agreement with experimental data in MEA solutions with varying CO2 

loadings at 25-80 °C (see Figure 75), as well as for DEA and MDEA solutions. 

However, the deviation was increased while applying it for TBS system. As presented 

in Figure 74, for a specific solvent with certain temperature and definite concentration, 

an exponential function can be adapted to fit the measured values with the influence of 

CO2 loading. Due to the significant effect of CO2 dissolution, the viscosity of MCA 

solution increases rapidly with CO2 loading (see Figure 74B) and value for rich TBS 

solutions is much higher than for MEA (see Table 29), which becomes a challenge for 

the pump and piping systems and it is also suggested to increase the porosity of the 

packings to reduces the pressure drop along the absorption column.  
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Figure 75. Dynamic viscosity of 30wt% MEA fitted with Weiland’s correlation 

 

Table 29. Viscosity of lean and rich solutions at 30 °C 

Absorbent α μ  Absorbent α μ 

 mol/L mPa∙s   mol/L mPa∙s 

5M MEA 0 1.5  4M DMCA+MCA (1:3.5) 3 17.5 

 2.5 5.5  4M DMCA+MCA (2:1) 2.5 20.1 

5M MCA 0 5.2  3M DMCA+MCA (2:1) + 5g AMP 2.4 13.5 

 2.5 15.0  4M DMCA+MCA (2:1) + 4g AMP 2.6 16.4 

3M DMCA 0 1.3  DMCA+MCA+AMP (3+1+1.5M) 0 7.4 

 2 6.9   2 11.8 

 

8.4.3 Surface tension 

8.4.3.1 Literature review of surface tension  

The surface tension for amine solutions has typically been measured by the Wilhemy 

plate, capillary rise and pendant drop methods (see Table 30). There are few literatures 

that have studied the influence of CO2 loadings and the temperature was also limited up 

to 60 °C for rich solvents. A theoretical model was proposed by Fu et al. (2012b) to fit 

the experimental data, but large deviations were observed and a polynomial function 

was presented Jayarathna et al. (2013a) to correlate the measured values for CO2 loaded 

amine solutions, but it is only validated with MEA.  
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Table 30. Literature review of surface tension measurement for amine solutions 

Author Year Amine Method T (oC) α-CO2 

Rinker et al. 1994 MDEA, DEA Wilhemy plate 20-80 - 

Vazquez et al. 1997 MEA, AMP Wilhemy plate 25-50 - 

Alvarez et al. 1998 MDEA, MEA, DEA, 

AMP 

Wilhemy plate 25-50 - 

Fu et al. 2012b MDEA+PZ Wilhemy plate 20-50 0-0.8 

Fu et al. 2013b MDEA+MEA Wilhemy plate 20-50 0-0.5 

Maham et al. 2001 MEA, DEA, TEA, 

MDEA, DMEA 

capillary-rise 25-55 - 

Aguila-

Hernandez et al. 

2001 DEA, MDEA capillary-rise & 

pendant drop 

20-90 - 

Aguila-

Hernandez et al. 

2007 MDEA, AMP, DEA pendant drop 20-70 - 

Alvarez et al. 2003 Blends: AP, MIPA, 

DEA, TEA, AMP 

pendant drop 20-50 - 

Murshid et al. 2011 AMP pendant drop 25-60 - 

Han et al. 2012 MEA pendant drop 30-60 - 

Jayarathna et al. 2013a 80 wt% MEA pendant drop 40-70 0-0.5 

Jayarathna et al. 2013b 20-70 wt% MEA pendant drop 30-60 0-0.5 

Sanchez et al., 2007 Ionic liquids Du Noüy ring 20-70 - 

Song et al. 2011 amino acid salts max. bubble 

pressure 

25 - 

 

8.4.3.2 Surface tension of amine solutions 

The surface tension measurement was conducted with the maximum bubble pressure 

method using a capillary tensiometer equipped with a precisely adjusted distance gauge 

and a U-tube manometer was used for measuring the dynamic surface tension of various 

solutions. The detailed measuring technique is illustrated in Appendix E.3. 

 

 

Figure 76. Surface tension of water and amine solutions at various temperatures 
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The apparatus is initially validated with the measurement of deionised water at 

various temperatures from 25 to 60 °C (see Figure 76). Amine solutions with varying 

temperatures and CO2 loadings were further tested. Table 31 shows the surveyed values 

of the lean solutions are in the order of Water > [MEA+Water] > MEA > 

[MCA+Water] > MCA. The lower surface tension has important positive influence on 

the mass transfer in the absorber (Tsai et al., 2009), which is an advantage of TBS 

systems.  

Table 31. Surface tension of lean solutions at 25-60 °C  

(Unit: mN/m) 

T (°C) Water MEA MCA 5M MEA 5M MCA MEA (ref.)* 

25  72 50 30 65 34 49 

40  69 48 28 62 32 46 

60  65 45 26 58 28 - 

* Data from Vázquez et al. (1997). 

 

As illustrated in Figure 77 and Figure 78, the MCA solution presents a much lower 

surface tension compared to MEA, at both lean and rich CO2 loadings. Surface tension 

of amine solutions is increased by CO2 dissolution or by a decrease in temperature.  

 

 
Figure 77. Surface tension of MEA solution with 

varying loadings at 30 °C 

 

 
Figure 78. Surface tension of MCA solution with 

varying loadings at 30 °C 
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8.4.4 Contact angle 

Contact angle (θ) is a quantitative measure of the wetting of a solid by a liquid. It is 

defined geometrically as the angle formed by a liquid at the three phase boundary where 

a liquid, gas and solid intersect as shown in Figure 79. A low value of θ indicates that 

the liquid spreads, or wets well, while a high contact angle indicates poor wetting. If θ < 

90 degrees the liquid is wet the solid. If θ > 90 degrees it is non-wetting. A zero contact 

angle represents complete wetting.  

 

 

Figure 79. Illustration of contact angle for liquid samples (AttensionLab) 

 

It is very difficult to find a literature which studies the contact angle of amine and 

packing material in CO2 capture. Some investigations of the contact angle of water, 

MEA and DEA solution on polypropylene hollow fibre membranes for CO2 absorption 

were presented by Lv et al. (2012) and Wang et al. (2004).  

The measurement of contact angle was conducted with sessile drop method using a 

Krüss G40 analytical system at room temperature. Various metal and plastic materials 

were tested with the lean and rich solutions. The goniometer is shown in Appendix E.4.  

The contact angle directly indicates the wettability of column packing with amine 

solvent. Figure 80 together with Figure 81 proves the values of the tested packing 

materials for example steel and aluminium are more wettable to lipophilic amine than 

for alkanolamine. Especially, the plastic material PE-HD (high-density polyethylene) 

has exhibited a good wettability for both the lean and rich MCA solutions. As seen in 

Figure 81, the contact angle is generally increased by CO2 loading. Other plastic 

materials such as H-PVC (hard polyvinyl chloride) and PP-H (polypropylene 

homopolymer) exhibit comparable values with metal for lean lipophilic amine solutions 

but become less wettable for rich solutions. However, the contact angle of both 

alkanolamine and lipophilic amine solutions on PTFE (polytetrafluoroethylene) is much 

higher than for other tested materials.  

 



8. Packing wettability test 

 

101 
Jiafei Zhang Chemische Verfahrenstechnik 

 

Figure 80. Contract angle of water, MEA and MCA solutions on various materials 

(H-PVC = hard polyvinyl chloride, PE-HD = high-density polyethylene, 

PP-H = polypropylene homopolymer, PTFE = polytetrafluoroethylene.) 

 

 

 

(A) 5M MEA solution 

 

(B) 5M MCA solution 

Figure 81. Contact angle of CO2 loaded amine solutions on various materials 
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8.5 Summary 

Compared to conventional MEA solvent, higher pressure drop has been observed in 

biphasic solvents, which is mainly caused by the higher viscosity of CO2 loaded 

solutions. Packings with higher porosity were thus recommended to be used in the 

bottom section of column. Lower surface tension, smaller contact angle and higher 

liquid hold-up indicate the better wettability of packing materials to biphasic solvents, 

and plastic packings such as PE-HD can also be employed to reduce the capital cost and 

Fe-catalysed degradation as well as corrosion issues.   
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9 Process development 

Since an innovative concept with a new type of amine was studied in this work, novel 

CO2 capture processes were proposed in order to adapt the characteristics of the new 

TBS system. Compared to a conventional alkanolamine based process, the modified 

lipophilic amine based process should be more economic and efficient.  

9.1 Novel TBS processes 

9.1.1 Flowsheet for CO2 capture from refinery  

The initial purpose of the process flow sheet design is to fit the biphasic system for CO2 

capture from a refinery where there exists a lot of waste heat <100 °C, thus the 

regeneration temperature was set at 90 °C and the reboiler was not considered for 

solvent regeneration. In place of steam stripping, other techniques such as nucleation, 

agitation and extraction have been proposed.  

According to the concept of phase change and low temperature regeneration, the 

major modifications of novel TBS process were found in the desorption technology. 

The regenerated TBS solution becomes homogeneous upon cooling to the lower critical 

solution temperature (LCST) of 30-40 °C, and the loaded solution separates into two 

immiscible phases upon heating to ca. 80 °C. In the improved TBS process (see Figure 

82), deep regeneration is enhanced by the liquid-liquid phase separation (LLPS), which 

permits the exploitation of the low value heat at 85-95 °C from the other processes and 

cuts the energy consumption by more than 35% compared to the conventional 

alkanolamine monoethanolamine (MEA) based solvent system.  

 

 

Figure 82. Simplified TBS process flow scheme 
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To intensify CO2 regeneration from the loaded solvent, improved methods such as 

agitation and phase split were employed. In the agitated regeneration (Figure 83), A 

continuous stirred-tank reactor (CSTR) was applied for desorption purpose, in place of 

conventional steam stripping. Porous particles can be placed in the regenerator to 

accelerate CO2 release by nucleation. Due to the difficulty of heating the rich solvent in 

the CSTR unit, a pre-heater must be installed for the rich stream before filling into the 

regenerator. Because of the high volatility of lipophilic amines, washing units were 

employed for the treated gas stream from the absorber and CO2 stream from the 

regenerator to recover the vaporised amines. Since the CO2 absorption is an exothermic 

reaction, the temperature in the absorption column will be increased, inter-stage cooling 

(refer to Figure 2) is recommended to improve the CO2 loading capacity and to reduce 

the solvent vaporisation loss. In this case, the total heat requirement, i.e. the heat duty of 

the pre-heater, will be slightly increased, but only waste heat is used in this regeneration 

process.  

 

Absorber

Condenser

Cooler

Raw Gas

Treated Gas CO2
Compressor

CO2 to Storage

Pump

Pump

HEXPump

Regenerator

Washing

Section
Water (in)

Water (out)

Hot Stream (in)

Hot Stream (out)

Washing

Section

Rich Solvent

Lean Solvent

Pre-

heater

80 °C

 

Figure 83. TBS process flowsheet with agitation 
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Another alternative is introducing a phase separator with preheat device before 

regeneration. As illustrated in Figure 84, the loaded rich solvent is preheated by the hot 

lean stream from the regenerator and pre-regenerated by nucleation in the phase 

separator at ca. 60 °C. A supernatant organic phase containing recovered lipophilic 

amines can be formed, which can directly be recycled to absorption after cooling, with 

simultaneous partial CO2 release; the remaining aqueous phase comprising concentrated 

rich solvent can be forwarded to the regenerator for deep desorption. Such a process 

with additional phase split can reduce the energy consumption still further.  
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Figure 84. TBS process flowsheet with phase split and agitation 

 

Figure 85 shows that the extractive regeneration process involves extraction, inert 

solvent / amine separation and vaporised inert solvent recovery units. Compared to the 

conventional regeneration technologies, the extractive regeneration requires additional 

inert solvent recovery processes, which consumes more heat, and the whole extractive 

regeneration process hence has a relatively high energy requirement of 3.5 GJ/t-CO2, but 

it enables using waste heat at temperatures of 60-70 °C for CO2 desorption, which can 

integrate the industrial energy recovery networks to the solvent regeneration system. 

The operating costs can thus be significantly reduced.  
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Figure 85. Flowsheet of an extractive regeneration process 
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9.1.2 Flowsheet for CO2 capture from power plant 

Since CO2 emission from fossil fuel fired power plant is the largest source, a modified 

flowsheet is also designed for the post-combustion capture (PCC) from power plant, 

where existing internal steam from boiler. Figure 86 presents a flow scheme with phase 

split for rich solvent stream: after nucleation or/and agitation in the phase separator, the 

loaded solvent was separated into two phases – the supernatant organic phase mainly 

contains the recovered lipophilic amines which can recycled to the absorber, the lower 

aqueous phase comprises the protonated amine, carbamate and bicarbonate which 

should be sent to the stripper for deep regeneration. The stream split reduces the rich 

solvent flow fed into the stripper; it reduces both the stripping column size and steam 

requirement. Since the operating temperature in the stripper at ~120 °C is higher than 

that using other intensification methods at ~90 °C, the temperature in the phase 

separator is also elevated and more than half of the loaded amines can be regenerated; 

by control of the pressure of outlet gas (minor CO2 stream), the concentration of CO2 in 

the aqueous phase will be enhanced. This enables a higher operating pressure in the 

stripping column and saves the power consumption of the compressor.  
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Figure 86. Process flowsheet with phase split and stripping 

 

This flow sheet is very similar to the DMX
TM

 process (Raynal et al., 2011a), however, 

nucleation is considered to accelerate the phase separation in the TBS system rather 
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than the high speed agitation which was employed in the DMX
TM

 process. Further 

energy save can be achieved, since nucleation doesn’t consume any electrical power. In 

addition, the temperature required for phase separation in the TBS system is only 70-80 

°C, while it is 90 °C in the DMX
TM

 process. This proves a higher feasibility of 

integrating the process heating networks for the TBS process.  

9.2 Estimation of energy consumption 

Improved alkanolamine-based solvents have reduced the energy consumption by 22-

27% in comparison to conventional 30 wt.% MEA (Rochelle, 2009). However, the TBS 

system has proved itself to be a promising advanced absorbent for CO2 capture, since it 

is chemically very stable and exhibits low degradation rates, due to the lower operating 

temperature, and reduces the regeneration energy consumption still further by ≈40%, 

down to ca. 2.5 GJ/t-CO2, compared to the MEA process (see Table 32). This is mainly 

owing to the energy saving in sensible heat by avoiding steam stripping. However, it 

requires additional mechanical or electrical power for regeneration if agitation or 

ultrasound is employed, but such energy consumption is minor, only ca. 0.15 GJ/t-CO2. 

The extractive regeneration process still consumes relatively high energy, ca. 3.5 GJ/t-

CO2, which is primarily caused by the additional distillation processes used for 

separating amine from inert solvent and vaporised inert solvent recovery from Diphyl 

scrubbing. But it permits the use of low grade heat for solvent regeneration, which can 

cut the exergy demand.  

 

Table 32. Estimation of regeneration energy consumption  
(Unit: GJ/t-CO2

) 

 Sensible heat Heat of reaction Stripping energy Heat loss Total 

MEA 0.9 1.8 1.1 0.2 4.0 

TBS-1a 0.5 1.6 0.3 0.1 2.5 

TBS-2 +  

Agitation 
0.4 1.35 

0.15  

(Mechanical energy) 
0.1 2.0 

TBS-1 +  

Extraction 
0.6 1.6 

0.9 + 0.2 

(Distillation energy b) 
0.2 3.5 

a TBS-1 using MCA as principal component, TBS-2 using DMCA as principal component;  
b Separation of inert solvent and amine by waste heat & recovery of inert solvent from Diphyl.  
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The equations for calculating the required heats are shown in the following and the 

major parameters are listed in Table 33.  

 Sensible heat TCFQ
psolsen
  Eq. 9.1 

 Heat of reaction  HFQ
rCOr


2

 Eq. 9.2 

 Stripping energy vsteamstr
LFQ   Eq. 9.3 

 Heat loss ATQ
los

   Eq. 9.4 

 Distillation energy HFQ
vinertdis

  Eq. 9.5 

where F is the specific mass flow, Cp is the heat capacity, ΔT is the temperature 

difference, ΔrH is the reaction enthalpy, Lv is specific latent heat for vaporisation, Φ is 

the heat loss coefficient, A is the heat transfer surface area, ΔvH is the specific 

vaporisation enthalpy.  

 

In the regeneration for TBS, the power (P) of agitation can be calculated using the 

following Equation:  

  P = Ne∙n
3
∙d

5
∙ρ  Eq. 9.6 

where Ne is the Newton number; n is the stirrer speed; d is the stirrer diameter; ρ is the 

density. The Reynolds number is determined first and the corresponding value of Ne can 

be read from the chart of power characteristics of the stirrer types (Zlokarnik, 2005).  

Table 33. Parameters for calculation of energy consumption 

Solvent cam Cp,mix ∆T1 ∆T2 ∆α ∆rH R Tdes pvap 

 mol/L kJ/(kg K) °C °C mol-CO2
/kg-sol kJ/mol-CO2

  °C kPa 

MEA 

solution  
5 3.9 15 90 1.5 80 2 120 200 

Previous 

TBS 
3 3.6 15 50 2.8 70 1 90 70 

Improved 

TBS 
5 3.1 20 50 3.2 60 0.6 80 47 

(∆vH=25.8 kJ/mol-pentane) 

 

Since the heat of reaction typically contributes roughly half of the energy 

consumption for regeneration in the CO2 capture process, it represents an important 

parameter in assessing the overall heat requirement. The absorption enthalpies of CO2 

and lipophilic amines were measured by means of the van’t Hoff thermodynamic 

equation at TU Dortmund and the data were also confirmed with using a reaction 
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calorimeter at Shell Global Solutions International B.V. in Amsterdam, NL and at 

Thermal Hazard Technology (THT) in Bletchley, UK. As discussed in section 3.5.4, the 

reaction enthalpies for lipophilic amines lie between those of the conventional 

alkanolamine solutions MEA and MDEA. Notz et al. (2007) introduced a 

thermodynamic method for solvent comparison by ranking of solvent flow rate and 

desorber vapour flow rate in relation to MEA. According to this evaluation technique, 

the energy consumption can be cut by 30-35% compared to the benchmark aqueous 

absorbent MEA (see Figure 87). In addition, the low regeneration temperature required 

for TBS system enables the use of waste heat for CO2 desorption, which makes it one of 

the most potential technologies get through the economic evaluation for the next 

generation CO2 capture processes.  
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10 Conclusions and outlook 

A new CO2 absorption system with thermal-induced liquid-liquid phase change has 

been developed in this work. The TBS absorbents comprising lipophilic amines as 

activating components potentially enable an extensive regenerability over 90% at 75-85 

°C without gas stripping, when other alternative process intensification measures are 

adopted, thus permitting a more flexible and expedient thermal integration for the CO2 

capture process. The performance of TBS observed is comparable, if not superior, to 

that of conventional alkanolamines such as MEA. In particular, the cyclic loading 

capacity (40-85°C: 3.5 mol-CO2/kg-5M-TBS) is markedly improved compared with the 

benchmark amine solvent (40-120°C: 1.6 mol-CO2/kg-30wt%-MEA).  

To optimise the solvent recipe, more than 60 lipophilic amines were screened in the 

experiment. The selected amines were classified into two categories: (A) absorption 

activator due to its rapid reaction kinetics, and (B) regeneration promoter according to 

the outstanding regenerability. Blended amine solvents were formulated to combine the 

advantages of both and thus to achieve high net CO2 capacity and fast absorption rate as 

well as low degradation. Additionally, solubiliser was also introduced to regulate the 

lower critical solution temperature (LCST) for attaining desired phase change 

behaviours: it was converted to homogeneous at 30-40 °C at lean conditions and 

separated to two phases at 70-80 °C at rich conditions.  

Lipophilic amines exhibited a more significant vaporisation loss compared to MEA. 

This loss however can be substantially reduced by 80% or even more using a chilled 

water or hydrophobic solvent scrubber. Foaming is another disadvantage for DMCA-

based solvents, but it can be well controlled or eliminated by means of a liquid spray, 

foam breakers, water scrubbing and solubiliser addition. Irreversible chemical 

degradation of optimised TBS absorbents is less than for MEA. Both the aqueous 

chemistry of the oxidative reaction and the lower operating temperature contribute to 

the improved chemical stability, one of the major unresolved weaknesses of 

conventional amines in the CO2 separation from flue gases.  

Several potential intensified regeneration techniques were investigated to replace 

the conventional steam stripping method. Nucleation accelerates CO2 desorption 

without further mechanical or electrical energy consumption; agitation and ultrasound 

enhance solvent regeneration in both the rate and depth of desorption; extractive 

regeneration with low boiling point foreign hydrophobic solvents reduces the 

regeneration temperature still further down to 50-70 °C and offers a higher freedom for 

the use of waste heats in desorption.   
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The lean TBS solution shows a lower viscosity compared to the MEA solution, but 

it becomes much more viscous after CO2 loading, and leads to a higher pressure drop 

and lower flooding point in the absorption column. Both the surface tension and contact 

angle of TBS are lower than for MEA at various CO2 loadings and on different packing 

materials. It indicates a better wettability of packing materials with lipophilic amines 

and results in a higher liquid hold-up. Due to the rapid rise in viscosity along the 

absorption column, higher porosity packings are suggested to be applied at the bottom 

of the absorber. According to the good wettability, plastic packings such as PE-HD can 

also be used to reduce the corrosion and degradation.  

Since the reaction enthalpy of lipophilic amines is not lower than for conventional 

alkanolamines, savings in total energy consumption are mainly contributed by reducing 

sensible heat and getting rid of steam stripping. The lower desorption temperature 

provides further degrees of freedom to cut the exergy demand and thus to improve the 

technical feasibility of using waste heat for CO2 regeneration. Such an intensified TBS 

process offers significant advantages for enhancing the efficiency of CO2 capture and 

reducing the process costs due to the rapid reaction kinetics, high loading capacity, 

moderate regeneration temperature, excellent regenerability and low energy 

consumption.   

 

However, volatile loss is still the most significant challenge for lipophilic amines. It is 

better to develop a non-volatile solvent than to use an additional scrubbing process to 

recover the vaporised amines. New TBS absorbents are therefore expected to be 

developed, which should not be restricted to only lipophilic amines but also some 

blends comprising well performed aqueous soluble amines with a small amount of 

lipophilic additives. The vaporisation loss thus can be reduced. For a better 

understanding of the phase change behaviour, more thermophysical data such as the 

heat capacity of TBS and demixing enthalpy of lipophilic amine and water are required 

to be measured.  

To deploy the CO2 absorption process using TBS system, a further scaled-up work 

is expected to be conducted. Using a steel absorption column to determine the corrosion 

and Fe-catalysed oxidations is important to adapt such solvent for industrial 

applications. More efficient structured packings can be employed in the absorber to 

further study the influence of lipophilic amines on packing wettability. Thermodynamic 

modelling can also be carried out to predict the column dynamics for CO2 absorption 

with Novel TBS system after acquiring sufficient experimental data.  
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Appendix 

A List of screened amines  

All the screened lipophilic amines and benchmark amines are listed in the following 

tables.  

Table 34. List of chain amines 

Chemical Abbr. CAS Structure Supplier 

Hexylamine HA 111-26-2  Merck 

Heptylamine HpA 111-68-2  Acros 

Octylamine OtA 111-86-4  Merck 

Di-n-propylamine DPA 142-84-7 
 

Fluka 

Diisopropylamine DIPA 108-18-9 

 

Merck 

Di-n-butylamine DBA 111-92-2 
 

Merck 

Diisobutylamine DIBA 110-96-3 
 

Acros 

Di-sec-butylamine 
DsBA 

(B1) 
626-23-3 

 

Aldrich 

N-sec-Butyl-n-

propylamine 
SBPA 39190-67-5 

 

ABCR 

N,N-Diisopropyl 

methylamine 
DIMA 10342-97-9 

 

Fluka 

N,N-Diisopropyl 

ethylamine 
DIEA 7087-68-5 

 

Acros 

N,N-Dimethyl 

butylamine 
DMBA 927-62-8 

 
Fluka 

N,N-Dimethyl 

octylamine 
DMOA 7378-99-6 

 
Acros 
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Table 35. List of cycloalkylamines 

Chemical Abbr. CAS Structure Supplier 

Cyclohexylamine CHA 108-91-8 
 

Merck 

Cycloheptylamine CHpA 5452-35-7 

 

Fluka 

Cyclooctylamine COA 5452-37-9 
 

Aldrich 

2-Methylcyclohexyl 

amine 
2MCA 7003-32-9 

 

Fluka 

N-Methylcyclohexyl 

amine 
MCA 

(A1) 
100-60-7 

 
Acros 

N-Ethylcyclohexyl amine ECA 5459-93-8 
 

ABCR 

N-Isopropylcyclo 

hexylamine 
IPCA 1195-42-2 

 

Fluka 

N,N-Dimethylcyclo 

hexylamine 
DMCA 98-94-2 

 
Merck 

N,N-Diethylcyclo 

hexylamine 
DECA 91-65-6 

 

ABCR 

Dicyclohexylamine DCA 101-83-7 
 

Acros 

 

Table 36. List of aromatic amines 

Chemical Abbr. CAS Structure Supplier 

Benzylamine BzA 100-46-9 
 

Merck 

N-Methylbenzyl 

amine 
MBzA 103-67-3 

 
Merck 

N-Ethylbenzylamine EBzA 14321-27-8 
 

Merck 

N-Isopropylbenzyl 

amine 
IPBzA 102-97-6 

 

Merck 

Phenylethylamine PhEA 64-04-0 
 

Aldrich 

N,N-Dimethyl 

benzylamine 
DMBzA 103-83-3 

 

Merck 

 

NH2

 H2N

 
H2N

 H2N

 

NH

 

NH

 

N
H

 

N

 

N

 

N
H
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Table 37. List of cyclic amines 

Chemical Abbr. CAS Structure Supplier 

2,6-Dimethylpiperidine 2,6-DMPD 504-03-0 

 

Aldrich 

3,5-Dimethylpiperidine 3,5-DMPD 35794-11-7 

 

Acros 

2-Methylpiperidine 2MPD 109-05-7 

 

Aldrich 

2-Ethylpiperidine 2EPD 1484-80-6 

 

Aldrich 

2,2,6,6-Tetramethyl piperidine TMPD 768-66-1 

 

Aldrich 

N-Methyl piperidine MPD 626-67-5 
 

Acros 

N-Ethyl piperidine EPD 766-09-6 
     

Fluka 

 

Table 38. List of other amines 

Chemical Abbr. CAS Structure Supplier 

Monoethanolamine MEA 141-43-5 
 

Merck 

N-Methyldiethanolamine MDEA 105-59-9 
 

Merck 

2-Amino-2-methyl-1-

propanol 
AMP 124-68-5 

 

Merck 

2-Amino-2-methyl-1,3-

Propandiol 
AMPD 115-69-5 

 

Merck 

N,N,N´,N´-Tetramethyl-

1,6-hexane-diamine 
TMHDA 111-18-2 

 

Aldrich 

N-Methylmorpholine MMP 109-02-4 

 

Merck 

N,N-dimethyl-1,3-propyl-

diamine 
DMPDA 109-55-7 

 
Fluka 

Piperazine PZ 110-85-0 

 

Merck 
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N
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B Detailed experimental setups for CO2 absorption and desorption 

B.1 Test tube screening rig 

The screening experiment was initially carried out in test tubes (Schott GL-18) with 18 

mm O.D. and 180 mm length containing ≈6 mL aqueous amine solutions at varying 

concentrations from 0.9 to 4.2 M (see Figure 88). 1/16 inch PTFE tubing with 1 mm 

I.D. and 240 mm length were used as gas inlet pipe through the rubber septum.  

Absorption was conducted in a water bath at 25 °C with CO2 gas flow rate at 20 

mL/min, saturated with water vapour, under atmospheric pressure. The weight of the 

test tube was measured every 5 min to observe the amount of absorbed CO2, until the 

reaction was completely in equilibrium. The final CO2 loading was determined by the 

barium chloride method with titration (Jou et al., 1995).  

Desorption was carried out by heating in the thermal oil bath, regulated with a 

thermostat (HAAKE F3), stepwise from 40 to 90 °C with internal of 10 °C. In order to 

limit the effect of vaporisation, cotton sponge was applied as a demister for condensing 

water and volatile amine vapours. Magnetic stirrers were laid into each test tube to 

intensify CO2 release and the oil bath to homogenise the temperature in the heating 

system. The weight was also measured stepwise to determine the mass of CO2 desorbed.  

 

Figure 88. Experimental set-up for preliminary amine screening with a test tube 
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B.2 Bubble column screening rig 

The absorption experiments for solvents selection were conducted in a 100 mL glass 

bubble column containing 40 mL of the aqueous amine solution at 40 °C (see Figure 

89). Various amines with concentrations between 3-5 M and CO2 partial pressures from 

4 to 100 kPa were employed over contact times of 2-5 hours, to ensure that equilibrium 

was achieved. Desorptions were initially carried out by N2 stripping and afterwards by 

magnetic agitation with PTFE coated round stir bar (30 mm length and 9 mm diameter) 

at 250-1000 rpm between 70-80 °C only in excess of the phase separation temperature 

of the corresponding solvent while N2 was only used as a reference gas for online gas 

chromatography (GC) analysis. Both the feed and reference gas flows were saturated 

with water in order to make up the vaporisation loss and regulated by mass flow 

controllers (Bronkhorst EL-FLOW) so as to be constant in the absorption and 

desorption tests. During experiments, the outlet gas was monitored online by GC HP 

6890 with GS-GasPro capillary column 30.0 m × 320 μm at an oven temperature 35 °C. 

After the reaction had been completed, the CO2 loading was ascertained by the barium 

chloride method, total amine concentration was determined by acid-base titration and 

the blended amine compositions were determined by GC analysis with a J&W CP-

Volamine capillary column 60.0 m × 320 μm and programmed oven temperatures from 

60 to 260 °C. Figure 90 presents an example of good separation performance for CO2, 

water and amines determination using GC analysis with a thermal conductivity detector 

(TCD).  
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Figure 89. Experimental set-up for solvent screening with a bubble column 
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Figure 90. GC chromatogram of a CO2 rich amine solution 

 

B.3 Regeneration intensification experiments 

The CO2 loaded amine standard solutions for regeneration experiments with intensified 

methods such as extraction, agitation, nucleation, ultrasound, etc., were prepared in a 

500 mL glass bubble column with ca. 320 mL aqueous amine solutions and a gas flow 

comprising 15 mol% CO2 balanced with N2 at 30 °C. The feed gas was saturated with 

water vapour to prevent losses in the bubble column and the flow rate was regulated by 

mass flow controllers (Bronkhorst EL-FLOW) in order to be constant in the absorption 

and regeneration tests. A chilled-water condenser was employed to minimise the 

vaporisation loss of volatile lipophilic amines. Lipophilic amines with concentrations of 

3-5 M were employed over contact times between 3-5 hours, to ensure that equilibrium 

was achieved.  

Regeneration was carried out by nitrogen gas stripping or other intensive means in 

a 100 mL vessel with 50 mL CO2 loaded solution at 70-85 °C (see Figure 91). For the 

intensification techniques, nitrogen was only used as a carrier gas and as a reference for 

online GC monitoring of the outlet gas after desorption. Agitation was carried out on a 

heating plate stirrer (RCT basic IKAMAG) with a magnetic stirring bar, laid at the 

bottom of the cylindrical glass reactor to agitate the loaded amine solution for 

accelerating the CO2 desorption. The bath temperature was measured with a Pt1000 

sensor and regulated by an integrated temperature control programme. After the 

ab/desorption had been completed, liquid samples were collected and analysed by the 

CO2 

AMP 
MCA 

DMCA 
H2O 
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same methods as presented in Appendix B.2 for ascertaining the CO2 loading, the total 

amine concentration and the blended amine compositions.  

  

 

 

 

 

 

 

 

 

    combination 

  (A)         (B)      (C) 

Figure 91. Sketch of regeneration reactors for gas stripping, nucleation and agitation 

 

Nucleation was also performed in a 100 mL cylindrical glass reactor with different 

materials and various porous sizes, for instance, silica beads, aluminium oxide spheres, 

active carbon spheres, zeolite chips, PTFE boiling stones, ceramic Raschig rings, 

ceramic Berl-Saddle, molecular sieves, cotton fibre and wood fibre. Solid particles with 

various materials, shapes, sizes and diameter of pore openings (DPO) used for 

nucleation in the desorption are listed in Table 39. The same liquid solvent analysis 

method was adopted as before.  

 
Table 39. Specification of solid particles 

Particle Specification Supplier 

Silica beads 0.2-0.5 mm with DPO 60 Å Merck 

Al2O3 spheres ≈3 mm Degussa 

Active carbon spheres ≈2.5 mm and ≈5 mm Merck 

Zeolite chips ≈4 mm Merck 

Polytetrafluoroethylene (PTFE) 

boiling stones 
≈4 mm Bola 

Ceramic Raschig rings 5 mm N/A 

Ceramic Berl-Saddles 5 mm N/A 

SYLOBEAD molecular sieves 
grade 562c, 3.2 mm and grade 564, 1.6 

mm with DPO 3 Å 
Grace 

Cotton and wood fibres N/A N/A 
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The ultrasonic desorption was initially carried out in an Economic Ultrasonic Bath 

(Elmasonic E) with a constant wave frequency 37 kHz and the electronic energy 

consumption was measured by an ammeter. During desorption, a 20 mL test tube 

containing 10 mL of CO2 loaded solution was immerse into the ultrasonic bath and 

maintained the solution level below the surface of the bath. Hot water at 70-80 °C was 

circulated in the ultrasonic bath to heat the amine solution. The same weight method as 

described in Appendix B.1 was used to determine the amount of desorbed CO2.  

A bench-scale ultrasonic-assisted desorption unit with batch systems as well as 

continuous flow devices was also employed for further investigation in the Brandenburg 

University of Technology Cottbus. This unit comprises an ultrasonic tube reactor and an 

ultrasonic bath (BANDELIN electronic GmbH). The cumulative volume of desorbed 

CO2 was measured by a Remus 3 G1.6 gas meter (Contador). The temperature profiles 

were obtained using Pt100 sensors in connection with a data logger (Combilog) and the 

CO2 loadings in lean and rich solvents were determined by the density measurement. 

The detailed experimental setup was described in Gantert and Möller’s paper (2011).  

B.4 Extraction reactor 

The loaded lipophilic amine standard solutions for extractive regeneration tests were 

prepared in a 500 mL glass bubble column at amine concentrations between 3-4 M and 

a total gas supply of 300 mL/min, comprising 30 mol% CO2 balanced with N2 at 30 °C. 

The preloading of the amine solution is completed when the component of the outlet gas 

online measured by GC is constant. The screening tests of inert solvents for extractive 

regeneration were carried out in a 150 mL double-wall glass reactor and the temperature 

of the extraction was controlled using an external thermostat (HAAKE F3). During the 

extraction process, the solution was agitated by an externally driven magnetic stirrer 

(PTFE-coated cross-shaped bars) operated at a constant speed 600 rpm. 50 mL CO2 

loaded solution were extracted with the same volume of inert solvent for 2-4 hours. The 

extractor was connected to a reflux condenser operated at 15 °C to minimise the 

volatility losses of inert solvent. The components in the organic and aqueous phases 

were determined by analysis of the liquid phase using GC. The experimental setup of 

the inert solvent screening unit is shown in Figure 92. 
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Figure 92. Experimental set-up for inert solvent screening 

 

To improve the capture efficiency, three- and four-stage extractions were used for 

lipophilic amine regeneration. The experiment was carried out in the inert solvent 

screening unit. After a single stage extraction, the raffinate (aqueous phase) from the 

previous stage was separated from the extract (organic phase) and sent to the next stage. 

In each stage, the initial 75 mL of the CO2 loaded solution was extracted with 75 mL or 

25 mL of the corresponding inert solvent at 40 °C.  

 

Table 40. List of inert hydrophobic solvent 

Chemical CAS Structure Mr (g/mol) bp. (°C) 

n-Pentane 109-66-0  72.15 36 

Cyclopentane 287-92-3 
 

70.10 49 

n-Hexane 110-54-3  86.18 69 

Cyclohexane 110-82-7 
 

84.16 81 

iso-Hexane 107-83-5 
 

86.18 60 

 

For minimising solvent vaporisation, pressurised extraction was applied for 

regeneration. It was conducted in a closed system at 3 (±0.2) bar and 50-70 °C. The 

liberated CO2 was purged when the pressure in the extractor was in excess of 3.2 bar. 
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Agitation was also applied for intensifying mass transfer during extraction. The selected 

alkanes (purchased from Merck) used as inert hydrophobic solvents for extractive 

regeneration are listed in Table 40. For an easy separation of inert solvents from amines 

by distillation, the boiling points of the selected alkanes are all lower than 90 °C. 

B.5 Bench-scale absorption column 

The experiments were performed in a glass column of 0.04 m inner diameter and a 

packed height of 1 m at 30 °C and atmospheric pressure (see Figure 93). The packings 

mainly consisted of 5, 6 and 8 mm Raschig rings with varying materials such as 

ceramic, plastic and metal with the bed porosity of 0.36-0.88 (see Table 24).  

 

 

Figure 93. Experimental set-up of a bench-scale absorber  
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Figure 94. Bench-scale absorption column 

 

Water, conventional 30 wt.% MEA (≈ 5M), 5M MCA and 5.5 M blended 

DMCA+MCA+AMP (3:1:1.5) solutions were used as the liquid phase. Liquid surface 

tension was varied from 0.028 to 0.075 N/m for viscosity of 1-30 mPa·s. The gas and 

liquid mass flow rates applied ranged from 10 to 75 L/min (containing 15 mol% CO2) 

and 60 to 200 mL/min, respectively. Gas flow rates were controlled by Bronkhorst EL-

FLOW controllers and liquid flow rates were measured by Peltonturbine flowmeter 

(Flo-Sensor 101, McMillan). Liquid leaving the column outlet at the phase separator 

was collected and weighed on a balance (Sartorius 3862) to determine the dynamic 

liquid hold-up. The pressure drop across the packed bed was detected with differential 

pressure transducers (HBM PD1) connected at different positions between the top and 

the bottom of the column (see Figure 94).  

The experimental data were collected by a system-design platform National 

Instruments LabVIEW 8.5 installed on a PC. Liquid samples from the bottom of column 

were taken at each run and were analysed by GC to check the amine concentration, CO2 

loading as well as the physiochemical properties presented in section 8.4. The treated 

gas was also monitored online by GC to observe the CO2 removal ratio. The detailed 

analysis method has been elucidated in Appendix B.2.  
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C Influence of amine molecular structure on CO2 absorption 

The influence of amine molecular structure on absorption characteristics are illustrated 

in this section. The amines are classified according to the branch at the position of the 

carbon. Precipitation and salts formation are the most common but undesired 

phenomena found in the lipophilic amine solution during CO2 absorption.  

I. Branch at the α-carbon 

Single branch 
N
H

R

R
 

 

 

(1)  Excellent performance: fast reaction, high loading, no salts formation or 

precipitation 

HN

 

H
N

 

H
N

 

MCA 2MPD 2EPD 

 

(2)  Precipitation: primary amines, ring structure 

H2N

 
H2N

 H2N  

CHA CHpA (when > 4M) COtA 

 

(3)  Salts formation: secondary amines 

N
H  

HN

 

 

sBPA ECA  

 

Double branches 
N
H

RR
 

 

 

Salts formation was found in all the follow amine solutions except DsBA.  

N
H  N

H  

H
N

 

DiPA DsBA: no 26DMPD 
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HN

 
HN

 

H
N

 

iPCA DCA TMPD: gel 

 

 

II. Branch at the β-carbon 

β-carbon branch 
N
H

R R

 

 

 

(1)  No salts formation or precipitation was observed: 

 
N
H

 

 

 MBzA  

 

(2)  Precipitation: 

NH2

 

 
N
H

 

BzA  EBzA 

 

(3)  Salts formation: 

H
N

 

 
N
H

 

35DMPD  DiBA 

 

III. Branches at both the α- and β-carbons 

(3)  Salts formation: 

 

H2N  

N
H

 

 2MCA iPBzA 
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D MS spectra for main oxidative degradation products 

D.1 Components from oxidation of alkanolamines 

Corresponding to the GC-MS chromatogram of MEA shown in Figure 46 (A).  
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4-Methylpiperazin-2-one 

 
Figure 95. MS spectra for oxidative degradation products of MEA 
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Corresponding to the GC-MS chromatogram of AMP shown in Figure 46 (B).  

 

 

AMP 

 

2-(Methylamino)-2-methyl-1-propanol 

 

 

4,4-Dimethyl-2-Oxazolidinone 

 

1,5,5-Tetramethylimidazolidine-2,4-dione 

 

Figure 96. MS spectra for oxidative degradation products of AMP 
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D.2 Components from oxidation of lipophilic amines 

Corresponding to the GC-MS chromatogram of MCA shown in Figure 47 (A).  
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      Cyclohexanone oxime 

 

 

      N-Isopropylcyclohexylamine 

 

      N-Methyldicyclohexylamine 

 

Figure 97. MS spectra for oxidative degradation products of MCA 
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Corresponding to the GC-MS chromatogram of DMCA shown in Figure 47 (B).  

 

 

DMCA 
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      N-butyl-cyclohexanamine 

 

Figure 98. MS spectra for oxidative degradation products of DMCA 
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E Measurement of physical properties 

E.1 DIN standard Pycnometer 

The density was measured by DIN standard pycnometers (DURAN) with determined 

volume of 25.268 and 52.486 cm
3
 at room temperature (see Figure 99). The glass flask 

was filled with the liquid sample until approaching the neck of the flask and placed it in 

the water bath for a certain time to keep the sample at a desired temperature. 

Subsequently, a glass stopper with a capillary tube was placed in the neck and allowed 

the excess liquid to escape from the flask through the capillary tube. By weighing the 

unfilled and filled pycnometer, the density of sample can be determined with the 

following equation:  
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mm

mm
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


      Eq. A.1 

 

  

Figure 99. DIN standard pycnometer 

 

E.2 Ubbelohde viscometer 

The kinematic viscosity was initially measured by a certified Ubbelohde viscometer 

(SCHOTT) with glass capillaries sizes I and II for samples in the ranges of 1.2-10 

mm
2
/s and 10-100 mm

2
/s (see Figure 100). After filling the viscometer with ca. 20 ml of 

sample, it was immersed into a water bath and an electronic timepiece ViscoClock 

(SCHOTT) was carefully installed. The measurement was conducted at least three times 

per sample when the thermostat (HAAKE F3) indicated a constant temperature for at 

least 10 minutes, and the measurement was carried out in the temperature range of 25-

60 
o
C. The kinematic viscosity (ν) was calculated with a capillary constant K, the 

52.486 

ml 

20 °C 
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average value of the measured flow time tm as well as the Hagenbach-Couette correction 

time tH using the equation A.2. The dynamic viscosity (µ) was calculated by Eq. A.3 

together with the previously determined densities ρ.  

)(
Hm

ttK         Eq. A.2 

          Eq. A.3 
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E
t


         Eq. A.4 

 

  

 

Figure 100. Ubbelohde viscometer with ViscoClock 

E.3 Capillary tensiometer 

The surface tension measurement was conducted with the maximum bubble pressure 

method in the laboratory of Physical Chemistry at TU Dortmund. A capillary 

tensiometer (see Figure 101 ) equipped with a precisely adjusted distance gauge and a 

U-tube manometer was used for measuring the dynamic surface tension of various 

solutions. After filling 30 ml of sample into the double-walled measuring vessel and 

heating it to a desired temperature, the capillary was immersed in the liquid sample at a 

constant distance (a = 6 mm in this experiment) above the distance indicator in each 

measurement. By opening the connection valve (V1), water flowed from the storage 

tube into the U-tube manometer. Simultaneously, bubbles continuously formed at the 

opening of the capillary and were broken at the maximum pressure drop (∆pmax), which 

was recorded by an analogue chart recorder with an electronic measuring device. 

Therefore, the dynamic surface tension can be calculated by Eq. A.5 and A.6.  
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Figure 101. Apparatus for surface tension measurement  
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       Eq. A.6 

The measuring range of the recorder is 0 - 10 hPa and 100 scale divisions resulting in an 

accuracy of 10 Pa. In order to determine the radius (r) of the capillary, a control 

measurement with deionised water at 20 ° C was carried out using literature value σw = 

0.072736 N/m for calculation.  

E.4 Goniometer 

The contact angle was measured with the sessile drop method using a Krüss G40 

analytical system (see Figure 102) at 20 °C in the Lehrstuhl für Biomaterialien und 

Polymerwissenschaften at TU Dortmund. Various metals such as stainless steel, 

aluminium, copper, brass, as well as plastics, e.g. hard polyvinyl chloride (H-PVC), 

polyethylene high-density (PE-HD), polypropylene homopolymer (PP-H) and 

Polytetrafluoroethylene (PTFE), were tested with the lean and rich solutions.  

 

Figure 102. Krüss G40 analytical system  
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