
Uniqueness and Regularity for Porous Media
Equations with x-dependent Coefficients

Dissertation

Zur Erlangung des akademischen Grades
Doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt
der Fakultät für Mathematik

der Technischen Universität Dortmund

von
Dipl.-Math. Jan-Christopher Koch

Dortmund, Dezember 2014



Die vorliegende Arbeit wurde von der Fakultät für Mathematik der Technischen Univer-
sität Dortmund als Dissertation zur Erlangung des Grades eines Doktors der Naturwis-
senschaften genehmigt.

Promotionsausschuss:

Vorsitzender: Prof. Dr. Stefan Turek
Erster Gutachter: Prof. Dr. Ben Schweizer
Zweiter Gutachter: Prof. Dr. Matthias Röger
Zusätzlicher Prüfer: Prof. Dr. Christian Meyer

Tag der Einreichung: 8. Dezember 2014
Tag der Disputation: 24. Februar 2015



Acknowledgements

In the first place, I want to thank my supervisor Prof. Dr. Ben Schweizer for introducing
me to two-phase flow equations and providing me the possibility to develop the results
presented in this thesis. Without his guidance, starting already in my graduate studies,
the time he spent on discussions and his valuable advice, I would not have been able to
finish this thesis.

In addition, my gratitude belongs to the staff members of the Lehrstuhl I and the
Biomathematics group at the TU Dortmund, including Prof. Dr. Matthias Röger, Dr.
Andreas Rätz, Dr. Agnes Lamacz, for interesting discussions, helpful advice and an
inspiring and motivating atmosphere.

Moreover, I would like to thank my colleagues Sven Badke and Stephan Hausberg for de-
bating many mathematical and other questions during the past years.

I wholeheartedly thank my parents Gerhard and Gisela, my brother Henning and my wife
Julia for unconditional support and love in the good times and in the bad.





Contents

List of Figures 7

1 Introduction 9
1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Modelling of Flow in Porous Media . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Survey of Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Notation and Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 The Unsaturated Flow Problem 23
2.1 Transformation of the Equations . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Weak Solutions and Main Result . . . . . . . . . . . . . . . . . . . . . . . 25

3 The Two-Phase Flow Problem 31
3.1 Transformation of the Equations . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Chain Rules and Integration by Parts 43
4.1 Chain Rules and Stampacchia’s Lemma . . . . . . . . . . . . . . . . . . . 46
4.2 Regularity of Truncations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 The x-independent Case . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 The x-dependent Case . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 The Steklov Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 The Model Problem Revisited . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Justification of (4.7) . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.2 Weak Convergence Towards Initial Data . . . . . . . . . . . . . . . 67
4.5.3 Formal L1-contraction and Doubling the Variables . . . . . . . . . 68

5 L1-contraction for Equations of Richards type with x-dependence 71
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 The Kato Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Extension of the Kato Inequality . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Discussion of the Proof and Outlook . . . . . . . . . . . . . . . . . . . . . 85

5



Contents

6 Local Hölder Continuity for the Two-Phase Flow Problem 87
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Main Proposition and Rescaled Cylinders . . . . . . . . . . . . . . . . . . 92
6.3 The First Alternative — Degeneracy at s = 1 . . . . . . . . . . . . . . . . 96

6.3.1 Determination of ν0. . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 A Logarithmic Estimate . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.3 The First Alternative Concluded . . . . . . . . . . . . . . . . . . . 109

6.4 The Second Alternative — Degeneracy at s = 0 . . . . . . . . . . . . . . . 113
6.4.1 A Second Logarithmic Estimate . . . . . . . . . . . . . . . . . . . 114
6.4.2 Energy Estimates in Terms of Φ . . . . . . . . . . . . . . . . . . . 118
6.4.3 Defining the Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.4 The Second Alternative Concluded . . . . . . . . . . . . . . . . . . 128

6.5 Proof of Proposition 6.10 and Theorem 3.12 . . . . . . . . . . . . . . . . . 132
6.5.1 Proof of the Main Proposition . . . . . . . . . . . . . . . . . . . . 134
6.5.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . 135

6.6 Comparison to the Literature . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6.1 Discussion of the Proof of the Main Proposition . . . . . . . . . . . 140
6.6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Summary 145

Bibliography 147

6



List of Figures

1.1 Permeabilites and Capillary Pressures. Discontinuity of the Saturation
across Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Domain with an Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Typical Shapes of Φ(x, s) and Domain of the Inverse Φ−1(x, s) . . . . . . 44

6.1 Parabolic and Rescaled Cylinders . . . . . . . . . . . . . . . . . . . . . . . 97

7





1 Introduction

The scope of this thesis is the investigation of two-phase immiscible flow. More pre-
cisely, inside a porous medium, like soil, rock or a fuel cell, we examine equations that
describe the flow of two immiscible fluids, like water and air, water and oil or water and
water vapor. Such flow processes may occur e.g. in hydrology, oil recovery or power
generation.

To describe the flow of two immiscible fluids with (reduced) saturations s1 and s2, and
pressures p1 and p2, we use the so called two-phase flow equations that have essentially
the form

∂ts1 = ∇ · (λ1(s1)(∇p1 + g)),
∂ts2 = ∇ · (λ2(s2)(∇p2 + g)),

pc(s1) = p1 − p2,

1 = s1 + s2,

(1.1)

inside a cylinder Q := Ω×(0, T ). Typically, we find Ω ⊂ R2 or R3 and we consider T > 0.
We only consider the case where s1 and the pressure difference p1 − p2 are linked by a
functional dependence pc. Typical shapes of these functions we have in mind are depicted
in Figure 1.1. Particularly, our main concern are the degenerate cases shown there, i.e.
λ1(0) = λ2(0) = 0 and lim

s1→1
pc(s1) = − lim

s1→0
pc(s1) =∞.

In many physical situations, for example in the case that one of the fluid phases is
gas and the other water, the variations in the pressure of one phase can be neglected in
comparison to the pressure variations in the other phase. In this situation it is reasonable
to assume that one pressure is constant, e.g. p2 = 0. With s = s1, p = p1 and λ1 = λ,
we reduce (1.1) to

∂ts = ∇ · (λ(s)(∇p+ g)),
pc(s) = p

(1.2)

onQ. Equation (1.2) is called the Richards equation for unsaturated flow.

To investigate these equations, we use certain transformations and realize that the trans-
formed problems of (1.1) and (1.2) are related to the generalized porous medium equa-
tion:

∂ts = ∆Φ(s) on Q (1.3)

9



1 Introduction

Here, Φ has one of the forms depicted in Figure 4.1. The degeneracies of λ1, λ2 and
pc may lead to a so-called doubly degenerate Φ. Particularly, we think of the cases
Φ′(0) = 0 and lim

s→1
Φ′(s) ∈ {0,∞}.

So far, we did not comment on the x-dependence of the coefficients. Naturally, prop-
erties of a porous medium may change from one space position to another. Hence, the
coefficient functions, i.e. λ1, λ2 and Φ in (1.1), (1.2) and (1.3) may depend on the spa-
tial position x ∈ Ω. Essentially, we consider two different types of x-dependencies. For
(1.1), we assume that the variations in x-directions of the coefficients are smooth; we
provide a local Hölder continuity result for s1. The precise problem is stated in chapter
3 and the regularity is shown in chapter 6 using the method of intrinsic scaling. The
x-dependence for the unsaturated flow problem is as follows. The porous medium Ω
is separated by an interface Γ into two subdomains Ωl and Ωr (see Figure 1.2). On
each of these subdomains the coefficients are assumed to be constant with potentially
different values. The flow of the fluid phase is given by (1.2). To pose a well-defined
problem we require transmission conditions at the interface. Under the assumption that
the pressure and the flux across the interface are continuous, we show uniqueness of the
saturation. The problem is formulated in chapter 2 and the uniqueness, particularly a
generalized L1-contraction result, is proved in chapter 5 using the method of doubling
the variables. To tackle both problems, we provide technical tools in chapter 4 motivated
and demonstrated by means of equation (1.3).

Before we turn our attention to the problems presented above, we state the main re-
sults more precisely in the next section. We briefly derive variants of equations (1.1)
and (1.2) by means of physical principles in section 1.2 and comment on the litera-
ture in section 1.3. Basic assumptions, results and notation are provided in section
1.4.

1.1 Main Results

In this section, we specifiy the equations under consideration and state our main results
more precisely. As for the unsaturated flow problem, we assume that Ω is divided by
an interface Γ into two domains Ωl and Ωr (see Figure 1.2). We write Qj = Ωj × (0, T )
for j ∈ {l, r}. We attach an index to the functions that corresponds to the domains.
For j ∈ {l, r}, the functions λj and pc,j have the shapes of λ1 and pc from Figure 1.1,
respectively. We use the Kirchhoff transform

Φj(s) :=
∫ s

0
λj(σ)p′c,j(σ) dσ

10



1.1 Main Results

and assume that Θj is an increasing function of s that that handles the continuity of the
pressure across the interface. As we see in section 2.1, we obtain

∂ts = ∇ · (∇[Φj(s)] + λj(s)gj) + fj on Qj for j ∈ {l, r},
0 = (∇[Φl(s)] + λl(s)gl]) · νl + (∇[Φr(s)] + λr(s)gr]) · νr on Γ× (0, T ),

Θl(s) = Θr(s) on Γ× (0, T ),
(1.4)

where fj are source terms and νj are the outer normal vectors of Ωj on Γ for j ∈ {l, r}.
Assuming essentially that (Φj ◦ Θ−1

j )′ is Lipschitz continuous, Theorem 2.4 states that
solutions of (1.4) possess a generalized L1-contraction property. That is, for two solutions
s1 and s2 with initial data s0,1 and s0,2 there holds

‖s1(t)− s2(t)‖L1(Ω) ≤ e
Lt ‖s0,1 − s0,2‖L1(Ω) ,

for a.e. t ∈ (0, T ). The constant L is determined by the Lipschitz constants of the
source terms fl and fr. Without the source terms, we find L = 0 and thus the classical,
non-generalized L1-contraction property. We emphasize that the L1-contraction implies
uniqueness.

Concerning the two-phase flow problem, we introduce the global pressure

p = p1 −
∫ pc(s)

pc(0)

λ2(p−1
c (u))

λ(p−1
c (u))

du

and the transformation
Φ(s) :=

∫ s

0

λ1(ξ)λ2(ξ)
λ(ξ) p′c(ξ) dξ .

Here, λ1, λ2 and pc are as in Figure 1.1. As it is pointed out in section 3.1, we ob-
tain

φ∂ts = ∇ · (κ (∇[Φ(s)]−∇xΦ(s) +B(s)) +D(s)u) on Q,
0 = ∇ · (κ [λ(s)∇p+ E(s)]) + f on Q,

(1.5)

with

B(s) = λ1(s)λ2(s)
λ(s) (∇x[pc(s)] + g1 − g2) ,

D(s) = −λ1(s)
λ(s) or λ2(s)

λ(s) ,

E(s) = −λ2(s)∇xpc(s) + λ

∫ s

0
∇x

(
λ2(ξ)
λ(ξ) p

′
c(ξ)

)
dξ+λ1(s)g1 + λ2(s)g2.

Our main result for (1.5) is stated in Theorem 3.12. Assuming that Φ′ is smooth and
behaves like a power near zero and one with the same order, we prove that the saturation
s is locally Hölder continuous. As far as we know, there is no proof for the local Hölder
continuity of s for x-dependent Φ available in the literature.

11



1 Introduction

As it is sketched in [Che02] for x-independent Φ, the method to obtain local Hölder
continuity of s leads may also be used to obtain Hölder continuity at the boundary.
From there on, also global Hölder continuity can be obtained, which, in turn, is used to
obtain an uniqueness result. Thus, the local Hölder continuity result we provide could
be the first step to obtain an uniqueness result for (1.5) in the case of x-dependent
Φ.

1.2 Modelling of Flow in Porous Media

In this section, we derive the equations describing the macroscopic flow of two immiscible
fluids in a porous medium. For further details, we refer to the books of Bear [Bea88, ch.
9], Bear and Bachmat [BB90, ch. 5] and Chavent and Jaffré [CJ86, ch. I.IV and III.II].
Additionally, for the consideration of interfaces between porous media for unsaturated
flow processes we refer to [OS06] and the references therein.

Two-Phase Flow

The porous medium is denoted by Ω ⊂ Rd. The function φ : Ω → [0, 1] describes the
porosity of the medium, i.e. the amount of pore space relative to the bulk volume. We
assume that Ω is not deformable; particularly, φ is independent of time and pressure.
For each of the two fluid phases, i.e. for the α-phase with α = 1, 2, the mass balance (or
continuity equation) is given by

φ∂t(ραsα) +∇ · (ραuα) = ραfα, (1.6)
where ρα, uα, ραuα, sα and fα are, respectively, the density, volumetric flow rate, mass
flux, (reduced) saturation, and external volumetric flow rate of the α-phase. In the
literature one often finds the notation α = w, n, where w and n denotes the wetting and
non-wetting phase, respectively.

Assuming that the fluids are homogeneous and incompressible, i.e. ρα = const, equation
(1.6) becomes

φ∂t(sα) +∇ · uα = fα. (1.7)
The fluxes uα obey Darcy’s law

uα = −κkrα(sα)
µα

(∇pα + ραg) , (1.8)

where κ is the absolute permeability of the porous medium, −g is the gravity force, and
krα, µα and pα are, respectively, the relative permeability, viscosity and pressure of the α-
phase. The permeability κ is a symmetric, positive definite matrix. Thus, κ allows to de-
scribe anisotropic porous media. We define the phase mobilities

λα(x, sα) = krα(x, sα)
µα(x) .

12



1.2 Modelling of Flow in Porous Media

1
0

sc

s

pc
λ1
λ2

1
0

sl sr

s

pc,l
pc,r

Figure 1.1: In the left picture, we see typical curves of the λ1(s), λ2(s) and pc(s). Also
the critical saturation sc such that pc(sc) = 0 is shown. The picture on
the right shows that the continuity of the pressure across an interface may
yield a discontinuity of the saturation.

The pores of the medium are completely filled by the two phases, i.e.

s1 + s2 = 1 and we choose s := s1. (1.9)

Let us assume for the moment that the 1-phase is water, i.e. s describes the water
saturation inside the porous medium. A decrease in saturation of water may lead to a
disconnectedness in the water phase. Particularly, water pools inside the porous medium
may loose their connection through pores to each other. In such a situation the water
ceases to flow, causing the permeability to vanish. For 0 ≤ sm ≤ sM ≤ 1, this occurs
at the residual saturations s = sm, sM with kr1(sm) = 0 and kr2(sM ) = 0, respectively.
With the transformation s̃ = (sM − sm)s+ sm ∈ [0, 1], we may assume s ∈ [0, 1], sm = 0
and sM = 1 in the following. Thus, we only speak of saturation instead of reduced
saturation in the remainder of this thesis.

The bulk model is completed by a functional dependence of the pressure differences and
the saturation, namely by the capillary pressure relation

pc(s) = p1 − p2. (1.10)

This relation may also depend on the spatial position x ∈ Ω. The capillary pres-
sure law (1.10) is motivated by Laplace’s law of surface tension. The pressure dif-
ference across the fluid interface depends linearly on the mean curvature of the inter-
faces between the two fluids. Furthermore, the curvature of these interface depends
on the typical size of the pores where these interfaces are located. Since the typical
pore size depends on the saturation, we obtain a relation between saturation and pres-
sure.

13



1 Introduction

We emphasize that the definition of capillary pressure presented here is different from
the usual choice in the literature. In particular, our definition leads to an increasing pc
function. Summarizing the previous deduction and redefining the functions λα in terms
of s and using s1 + s2 = 1 as well as gα = ραg for α ∈ {1, 2} we obtain the two-phase
flow system

φ∂ts = ∇ · (κλ1(s)[∇p1 + g1]) + f1,

−φ∂ts = ∇ · (κλ2(s)[∇p2 + g2]) + f2,

pc(s) = p1 − p2.

(TP)

Γ

νl

Ω

Ωl Ωr

∂Ω
ν

Figure 1.2: This picture shows the situation where the domain Ω is divided by the
interface Γ into two subdomains Ωl and Ωr

For completeness, we also consider a porous medium with a sharp interface in the case of
two-phase flow. Assume that Ω is divided by an interface Γ into two subdomains which
are denoted by Ωl and Ωr. This situation is shown in Figure 1.2. We consider (TP) on
Ωj and attach an index j ∈ {l, r} to the functions. Mass conservation yields that the
fluxes of each of the phases across the interfaces are continuous, i.e. for α ∈ {1, 2} there
holds

(κλα,l(sl)[∇pα,l + gα,l]) · νl = − (κλα,r(sr)[∇pα,r + gα,r]) · νr (1.11)
on Γ. Here νl = −νr are the outward pointing unit normal vectors of Ωl and Ωr on
Γ. Balance of forces provides the continuity of the pressures across the interface, which
is

pc,l(sl) = p1,l − p2,l = p1,r − p2,r = pc,r(sr) (1.12)
on Γ. The last assumption may yield a discontinuous saturation across the interface, i.e.
we find sl 6= sr on Γ. This situation is shown in Figure 1.1.

Unsaturated Flow

As we stated in the introduction, it is often reasonable to assume that the pressure
variations in the second phase are negligible when compared to the pressure variations

14



1.3 Survey of Literature

in the first phase. For example, in groundwater flow, one considers water and air inside
soil. Assuming that the gas inside the soil is connected to the surrounding yields a
constant atmospheric pressure p2 = patm inside the gas phase. Usually, the atmospheric
pressure is normalized to patm = 0.

With this normalization, dropping the index 1 for the first phase, and the choice φ = κ =
1 we obtain from (TP) the Richards equation for unsaturated flow:

∂ts = ∇ · [(λ(s)(∇p+ g))] + f,

p = pc(s).
(R)

In the case of a domain Ω that is divided by an interface Γ, we assume, as before,
that (R) holds on Ωl and Ωr, respectively, attach an index j ∈ {l, r} to the coefficient
functions and obtain from (1.11) and (1.12) the equations

(λl(sl)[∇pl + gl]) · νl = − (λr(sr)[∇pr + gr]) · νr
pc,l(sl) = pl = pr = pc,r(sr)

(1.13)

on Γ. In general, the coefficient functions pc(x, s) := pc,l(s)1Ωl(x) + pc,r(s)1Ωr(x) and
λ(x, s) := λl(s)1Ωl(x)+λr(s)1Ωr(x) are discontinuous in x across Γ. Hence, we call (R)
on Ωl and Ωr linked by the transmission conditions (1.13) the discontinuous Richards
equation.

1.3 Survey of Literature

Considering (R) and having the shape of λ1 and pc from Figure 1.1 in mind, we see that
we can only expect estimates of ∇p or ∇s with a weight. More precisely, with the test
function p we expect that∫

Ω
λ(s)∇p · ∇p =

∫
Ω
λ(s)(p′c(s))2 |∇s|2

is bounded and with the test function s we expect∫
Ω
λ(s)∇p · ∇s =

∫
Ω
λ(s)p′c(s) |∇s|2

is bounded. This implies a lack of regularity of p and s (in comparison to the heat
equation). Such a lack of regularity may result in a lack of compactness of sequences pk
or sk, which is needed to prove existence. One possible trick to recover compactness is
to use the so called Kirchhoff transformation

Φ(s) =
∫ s

0
λ(σ)p′c(σ) dσ . (K)

15



1 Introduction

We can expect to find estimates for ∫
Ω
|∇[Φ(s)]|2

without a weight and compactness for sequences uk = Φ(sk) can be inferred. With (K),
the Richards equation (R) is transformed into

∂ts = ∇ · (∇[Φ(s)] + λ(s)g) + f. (1.14)

Equation (1.14) is a generalization of equation (1.3). In [Váz06] the generalized porous
medium equation (1.3) has been investigated extensively. With u = Φ(s) and b = Φ−1,
we cast (1.14) into

∂tb(u) = ∇ · (∇u+ λ(b(u))g) + f (1.15)

and obtain a quasilinear elliptic-parabolic equation for which vast amounts of literature
is available. For example, existence is provided in the fundamental work of [AL83] under
standard boundary conditions. A uniqueness result for time-independent boundary data
is provided in [Ott95].

Equation (1.15) is also suited to describe so called unsaturated-saturated flow processes.
For x-independent coefficients, existence for standard and outflow boundary data is
shown in [ALV84]. A uniqueness result has been provided in [Ott97]. For unsaturated-
saturated flow processes, one may assign for each pressure value p a unique saturation
value s, but not the other way round. This corresponds to the situation of a multivalued
capillary pressure relation, i.e. p ∈ pc(s). In comparison to Figure 1.1, we find for some
p∗ the relation lims→1 pc(s) = p∗ and pc(1) = [p∗,∞] instead of merely lims→1 pc(s) =∞.
A similar behaviour may occur for lims→0 pc(s). For such a multivalued relation, one
defines a suitable analogue of (K) and obtains, instead of (1.14), under the assumption
g = 0, the equation

∂ts = ∆u+ f, u ∈ Φ(s).

This equation, supplemented with an outflow boundary condition, was investigated in
[Sch07] and an existence result in the case of x-dependent coefficients was obtained via
a regularization argument.

For nondegenerate two-phase flow equations (TP), existence is shown in [KS77]. For
degenerate two-phase flow equations under standard and outflow boundary conditions,
existence results are provided in [KL84; AD85a; Arb92; Che01] and [LS10]. All these ref-
erences have in common that at most a smooth x-dependence of the coefficients is consid-
ered. Regularity of the saturation has been investigated in [AD85a; Che01; Che02] and
recently in [DGV10]. General uniqueness results are not available in the literature. Un-
der restrictive assumptions, essentially loosing the structure of the problem, a uniqueness
result in the case of x-dependent coefficients is stated in [Che01]. For the x-independent
case, a uniqueness result is stated in [Che02].

16



1.4 Notation and Function Spaces

Multivalued capillary pressure relations are also investigated for two-phase flow equa-
tions. Usually, relations of the form p1 − p2 ∈ pc(s) are considered in the literature. In
the one-dimensional situation, existence is shown in [BLS09] considering an interface and
in [Koc09] considering outflow boundary conditions. For higher-dimensional problems
and under consideration of interfaces, an existence result has been provided in [CGP09].
The continuity of the pressures across the interfaces is translated into pα,l ∩ pα,r 6= ∅ for
α ∈ {1, 2}.

In the case of nondegenerate capillary pressures, i.e. in the case that pc is a bounded
function, existence for the two-phase flow equation with interfaces is shown in [EEM06].
For nondegenerate capillary pressures, existence and uniqueness for the discontinuous
Richards equation is provided in [Can08].

Recently, progress on existence results for capillary pressures with hysteresis for two-
phase and unsaturated flows were obtained. We refer to [KRS13; Sch12b; Sch12a] and
[LRS11] and the references therein.

1.4 Notation and Function Spaces

For d ≥ 1, let E,U, V ⊂ Rd such that U, V open, a, b ∈ R and a function f : E → R be
given. We use the following definitions and notations.

• /a, b/ := [min{a, b},max{a, b}] and R := R∪{±∞} denotes the extended real line

• For ε > 0, each of the inequalities 2ab ≤ εa2 + b2

ε and ab ≤ εa2 + b2

4ε is called
Cauchy’s inequality (see [Eva98, B.2]).

• We write V ⊂⊂ U and say V is compactly contained in U , if V ⊂ V ⊂ U and V
is compact

• |E| and Hd(E) denote the d-dimensional Lebesgue and Hausdorff measure of E,
respectively, and the characteristic function of E is denoted by 1E

• For l < k ∈ R, we write

{l < f < k} = {x ∈ E | l < f(x) < k}

and the obvious variants with, for example, only one lower or upper bound for
f(x) and relations "≤" and "="

• If E is measurable and bounded and f ∈ L1(E), we write

−
∫
E
f := 1

|E|

∫
E
f

• f+ := max{f, 0} and f− = max{−f, 0}. This implies f = f+−f− and |f | = f++f−

17



1 Introduction

• For u ∈ R and ε > 0, we define the sign-function and the approximation signε in
virtue of

sign(u) :=


1 u > 0,
0 u = 0,
−1 u < 0,

and signε(u) :=


1 u > ε,
u
ε u ∈ [−ε, ε],
−1 u < −ε

(1.16)

• For ρ > 0 and x0 ∈ Rd, the Euclidean norm of x0 is denoted by |x0| = ‖x0‖2 and
the ball of radius ρ centered at x0 by

Bρ(x0) := {x ∈ Rd | |x− x0| < ρ} and abbreviate Bρ = Bρ(0)

• We use the standard notations C∞c (U) = D(U) for the space of functions that
are compactly supported in U and arbitrarily often differentiable. The space of
distributions is denoted by D′(U)

• For ϕ ∈ C∞c (B1) with ϕ ≥ 0 and
∫
Rd ϕ = 1, and ε > 0, we call the sequence

(ϕε)ε>0 defined in virtue of

ϕε(x) = 1
εd
ϕ

(
x

ε

)
for x ∈ Rd a (standard) Dirac sequence; see for example [Alt06, 2.13]

Assume now that E is measurable. The support of f is defined as

supp(f) := {x : f(x) 6= 0}.

This definition is suitable for continuous functions. When working with equivalence
classes of functions, such as in the Lp-spaces, this definition is not adequate. A suitable
definition of the support should be independent of the representative element of the
equivalence class, but since 1Q = 0 a.e. in R and R = supp(1Q) 6= supp(0) = ∅ this is
not the case.

Proposition 1.1 (and definition of support [Bre10, Proposition 4.17]). Let f : Rd → R
be any function. Consider the family (ωi)i∈I , of all open sets of Rd, for an appropriate
index set I, such that for each i ∈ I, f = 0 a.e. on ωi. Set ω = ⋃

i∈I ωi. Then f = 0
a.e. on ω and define supp(f) := Rd \ ω.

Function spaces For d ≥ 1, let Ω ⊂ Rd be a given domain. The Sobolev spaces
W k,p(Ω,R) = W k,p(Ω) are defined by

W k,p(Ω) := {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω) for every α ∈ Nn with |α| ≤ k}

18



1.4 Notation and Function Spaces

with norm

‖u‖Wk,p(Ω) :=


(∑
|α|≤k ‖Dαu‖pLp(Ω)

)1/p
(1 ≤ p <∞)∑

|α|≤k ‖Dαu‖L∞(Ω) (p =∞)

for p ∈ [1,∞]. Equivalently, by the Theorem of Meyers and Serrin [AF03, Theorem
3.18], the space W k,p(Ω) can be characterized as the closure of C∞(Ω) under ‖·‖Wk,p(Ω).
The space W k,p

0 (Ω) is defined as the closure of C∞c (Ω) with respect to ‖·‖Wk,p(Ω). If Ω
has a Lipschitz boundary, we find the characterization

W k,p
0 (Ω) = {u ∈W k,p(Ω) | u|∂Ω = 0},

where u|∂Ω denotes the trace of u on ∂Ω. We use the abbreviationsHk(Ω) = W k,2(Ω) and
H1

0 (Ω) = W 1,2
0 (Ω). The dual space ofH1

0 (Ω) is denoted byH−1(Ω). For further reference
on Sobolev spaces, compare to [Alt06], [AF03] or [Bre10].

Concerning the local Hölder regularity for two-phase flow, we exploit the following
Poincaré type inequality.

Proposition 1.2 ([DiB93, chapter I, Proposition 2.1]). Let Ω ⊂ Rd be a bounded convex
set and let ϕ ∈ C(Ω) be such that 0 ≤ ϕ(x) ≤ 1 for every x ∈ Ω and such that the sets
{ϕ > k} are convex for every k ∈ (0, 1). Let u ∈W 1,p(Ω), 1 ≤ p <∞, and assume that
the set E := {u = 0} ∩ {ϕ = 1} has positive measure.

Then there exists a constant C depending only upon d and p, not depending on u and
ϕ, such that (∫

Ω
ϕ |u|p

) 1
p

≤ C diam(Ω)d

|E|
d−1
d

(∫
Ω
ϕ |Du|p

) 1
p

. (1.17)

We also use Bochner spaces. Let T > 0, p ∈ [1,∞] and a Banach space X be be
given. We define the space Lp(0, T ;X) as the space of strongly measurable functions
u : [0, T ]→ X, such that the Bochner norm

‖u‖Lp(0,T ;X) =
(∫ T

0
‖u(t)‖pX

)1/p

is bounded. For p = ∞, we define L∞(0, T ;X) as the space of strongly measurable
functions u : [0, T ]→ X such that

‖u‖L∞(0,T ;X) = ess sup
t∈[0,T ]

‖u(t)‖X <∞.

We remark that L∞(0, T ;L∞(Ω)) $ L∞(Ω× [0, T ]) as the example f(x, y) = 1{x≤y} =
1[0,y](x) on [0, 1]2 shows. Clearly, we find that f ∈ L∞([0, 1]2). However, the induced
map F : [0, 1] → L∞([0, 1]) given by y 7→ 1[0,y] is not strongly measurable. For further
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results on the Bochner integral, we refer to [DU77], [Boc33], [AB07, ch. 11.1] and [Sch13,
ch. 10.1].

Additionally, we define certain parabolic spaces onQ := Ω×(0, T ) in virtue of

V p(Q) = L∞(0, T, Lp(Ω)) ∩ Lp(0, T ;W 1,p(Ω))
V p

0 (Q) = L∞(0, T, Lp(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω))

both equipped with the norm

‖v‖V p(Q) = ess sup
0<t<T

‖v(·, t)‖Lp(Ω) + ‖∇v‖Lp(0,T ;Lp(Q)) .

In chapter 6, we exploit the following embedding theorem.

Theorem 1.3. Let p > 1 and let Ω ⊂ Rd be bounded. There exists a constant C
depending only on d and p such that for every v ∈ V p

0 (Q) holds

‖v‖pLp(Q) ≤ C |{|v| > 0}|
p
d+p ‖v‖pV p(Q) . (1.18)

The theorem is stated as a corollary in [DPV11, I.Corollary 4.1].

The duality pairing between a Banach space X and its dual X ′ is denoted by 〈x′, x〉X′,X .
As long as the domains are clear, we write ‖u‖p or ‖u‖Lp instead of ‖u‖Lp(Q) and likewise
for other norms.

Notation for spatial derivatives The spatial gradient of a real-valued function is de-
noted by∇. Let f : Rd+1 → R be given. For u : Rd → R, we write

∇[f(u)] = ∇[f(x, u(x))] = ∇xf(x, u(x)) + f ′(x, u(x))∇u(x) = ∇xf(u) + f ′(u)∇u.

Particularly, ∇xf(x, u(x)) denotes the evaluation of the d partial x-derivatives of f
in the point (x, u(x)) and f ′(x, u(x)) denotes the evaluation of the d + 1-st partial
derivative of f at (x, u(x)). Occasionally, for the column vector ∇xf(x, u(x)) we use the
notation

∇xf(x, u(x)) = (f1(x, u(x)), f2(x, u(x)), . . . , fd(x, u(x)))>.

In addition, we use the standard symbol D to denote the vector of the derivatives of
a function, see [Eva98, Appenidx A]. Consequently, we have ∇u = (Du)> but ∇f =
π(Df)>, where π is the projection onto the first d-coordinates. The matrix of the second
order derivatives of u is denoted by D2u.
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1.4 Notation and Function Spaces

Definition 1.4. For A,B ∈ Rd×d with A = (ajk) and B = (bjk), we define

A : B :=
d∑

j,k=1
ajkbjk.

For M ∈ C1(Ω,Rd×d), let Mk(x) be the k−th column of M . We define the column-wise
divergence of M as

∇ ·M(x) := (∇ ·M1(x), . . . ,∇ ·Md(x)).

ForA ∈ C1(Ω,Rd×d), f ∈ C1(Ω,R) and g ∈ C1(Ω,Rd), we find the product rule

∇ · (fAg) = Ag · ∇f + f∇ · (Ag) = Ag · ∇f + f(A : (Dg)>) + f(∇ ·A)g. (1.19)

Further Notation Let d ≥ 1 be given. For domains in Rd, space-time domains in Rd+1

and their boundaries, we use the following notation. Let

Ω ⊂ Rd be a bounded domain with boundary ∂Ω. (1.20)

The outward normal vector of Ω on ∂Ω is denoted by ν. We denote the Dirichlet
and Neumann parts of ∂Ω as ΓD and ΓN , respectively. The decomposition is such
that

∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅ (1.21)

holds. Let T > 0 be given. For 0 < t ≤ T we define the space-time cylinders

Qt := Ω× (0, t) denote its boundary by ∂pQt := Qt \ Ω× (0, t] (1.22)

and abbreviate Q = QT . The boundary ∂pQt is called the parabolic boundary of Qt. For
Ω with Lipschitz boundary and given ΓD ⊂ ∂Ω, we define

V :=
{
v ∈ H1(Ω) | v|ΓD = 0

}
. (1.23)

We are often concerned with Carathéodory functions, e.g. functions g : Ω× [0, 1] → R,
such that g(x, ·) : [0, 1] → R is continuous for a.e. x ∈ Ω and g(·, s) is measurable for
every s ∈ [0, 1]. Such functions are jointly measurable. Furthermore, for a measurable
function u : Ω→ [0, 1] the mapping x 7→ g(x, u(x)), or as we write g(·, u), is measurable
(see [AB07, 2.75 and 4.49-4.51]). With slight abuse of notation, we denote for measurable
u : Q→ [0, 1] the map (x, t) 7→ g(x, u(x, t)) also by g(·, u).
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Remark 1.5 (Continuity in R). Continuity with values in R is understood with respect
to the topology generated by the metric d(x, y) = |g(x)− g(y)| for x, y ∈ R, where

g(x) =


−1 for x = −∞,
x

1+|x| for x ∈ R,
1 for x =∞.

This is the topology generated by the intervals (a, b), (a,∞] and [−∞, a) for a, b ∈ R.
See also [Alt06, 0.8 and 0.11] and [AB07, 2.75] /

Definition 1.6 (Inverse of a function in one direction). Let Φ ∈ C(Ω × [0, 1]) be such
that the map Φ(x) : s 7→ Φ(x, s) is increasing for every x ∈ Ω and denote the inverse by
Φ−1

(x). For σ ∈ (0, 1
2), we define the sets

KΦ := {(x, u) | x ∈ Ω,Φ(x, 0) ≤ u ≤ Φ(x, 1)} and
Kσ

Φ := {(x, u) | x ∈ Ω,Φ(x, σ) ≤ u ≤ Φ(x, 1− σ)}.

Furthermore, with abuse of notation, we define the map

Φ−1 : KΦ → [0, 1]
(x, u) 7→ Φ−1

(x)(u).

Remark 1.7. We emphasize that Φ(x)([0, 1]) = [Φ(x, 0),Φ(x, 1)] and that KΦ and
Kσ

Φ are closed. Additionally, by definition of Φ−1 we find Φ−1(x,Φ(x, s)) = s and
Φ(x,Φ−1(x, u)) = u for fixed x ∈ Ω. The domain KΦ and Kσ

Ψ are depicted in Figure
4.1. /
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2 The Unsaturated Flow Problem

In this chapter, we state the main result concerning the problem for unsaturated flows.
We consider a Lipschitz domain Ω that is separated by an interface Γ into two Lipschitz
subdomains Ωl and Ωr as depicted in Figure 1.2. We assume that Ωl ∩ Ωr = ∅ and the
interface Γ is such that Γ = Ωl ∩ Ωr holds. The outward unit normal vectors of Ω,Ωl

and Ωr on ∂Ω, ∂Ωl and ∂Ωr are denoted by ν, νl and νr, respectively. On Γ, ∂Ωl ∩ ∂Ω
and ∂Ωr ∩ ∂Ω, we find νl = −νr, ν = νl and ν = νr, respectively. We consider the
discontinuous Richards equation such a domain Ω. Particularly, for j ∈ {l, r}, we assume
that functions λj and pc,j as well as vectors gj are given and postulate that the flow on
Ωj is described by (R) from page 15. On the interface Γ we prescribe the transmission
conditions (1.13).

To handle the discontinuous Richards equation, we require two transformations, both
similar to the Kirchhoff transform (K) from page 15. This is executed in section 2.1. For
the transformed problem, we provide a weak solution concept, and state the main result
for the discontinuous Richards equation, an L1-contraction in section 2.2. The proof of
the main result is presented in chapter 5.

Before we investigate the problem stated above, we make some notational remarks. For
j ∈ {l, r}, we abbreviate Qj := Ωj × (0, T ) and use for hj : Ωj × [0, 1] → R and
uj : Ωj → [0, 1] the notation

u := ul 1Ωl + ur 1Ωr and h(u) := h(x, u) := hl(u)1Ωl(x) + hr(u)1Ωr(x). (2.1)

2.1 Transformation of the Equations

We recall the equations we intend to consider. For j ∈ {l, r}, we use the notation (2.1)
for s and obtain in virtue of (R) from page 15 the equations

∂ts = ∇ · (λj(s)(∇pj + gj)) + fj

pj = pc,j(s)
(2.2)

onQj and from (1.13), again with abuse of notation, the equations

(λl(s)[∇pl + gl]) · νl = − (λr(s)[∇pr + gr]) · νr
pc,l(s) = pl = pr = pc,r(s)

(2.3)
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2 The Unsaturated Flow Problem

on Γ × (0, T ). As in (K), we define for j ∈ {l, r} and s ∈ [0, 1] the transforma-
tion

Φj(s) :=
∫ s

0
λj(σ)p′c,j(σ) dσ =

∫ pc,j(s)

pc,j(0)
λj(p−1

c,j (ξ)) dξ . (2.4)

Consequently, (2.2) is transformed into

∂ts = ∇ · (∇[Φj(s)] + λj(s)gj) + fj (2.5)

and the continuity of the flux from (2.3) reads

(∇[Φl(s)] + λl(s)gl]) · νl = − (∇[Φr(s)] + λr(s)gr]) · νr. (2.6)

Concerning the continuity of the pressure, we impose as a compatibility condition that
the ranges of pc,l and pc,r coincide. More precisely, we assume that pc,l and pc,r are
increasing and such that pc,l(0) = pc,r(0) ∈ [−∞,∞) and pc,l(1) = pc,r(1) ∈ (−∞,∞]
holds.

From the second equality in (2.4) we see that continuity of the pressures across Γ does
not lead to a continuity of Φ across Γ, in general. Particularly, let sl and sr ∈ [0, 1] be
arbitrary, then

Φl(sl) = Φr(sr) ∈ [0,∞] 6⇐⇒ pc,l(sl) = pc,r(sr) ∈ [−∞,∞]

except if λl(p−1
c,l (u)) = λr(p−1

c,r (u)) for any u ∈ [pc,l(0), pc,r(1)], which is not the case we
want to consider.

Following [Can08], we define a transformation similar to (2.4) that contains the continu-
ity information of the pressure across Γ. For j ∈ {l, r}, we define

Θj(s) :=
∫ s

0
min
k∈{l,r}

{√
λk(p−1

c,k(pc,j(σ)))
}
p′c,j(σ) dσ

=
∫ pc,j(s)

pc,j(0)
min
k∈{l,r}

{√
λk(p−1

c,k(ξ))
}
dξ.

(2.7)

As the second equality in (2.7) shows, for arbitrary sl, sr ∈ [0, 1] we obtain

Θl(sl) = Θr(sr) ∈ [0,∞]⇐⇒ pc,l(sl) = pc,r(sr) ∈ [−∞,∞] (2.8)

as long as pc,l(0) = pc,r(0).

Summarizing, we obtain the transformed discontinuous Richards equation

∂ts = ∇ · (∇[Φj(s)] + λj(s)gj) + fj on Qj for j ∈ {l, r},
0 = (∇[Φl(s)] + λl(s)gl]) · νl + (∇[Φr(s)] + λr(s)gr]) · νr on Γ× (0, T ),

Θl(s) = Θr(s) on Γ× (0, T ).
(TDR)
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2.2 Weak Solutions and Main Result

For j ∈ {l, r}, we consider the disjoint decomposition ∂Ωj = Γ∪ΓD,j∪ΓN,j , use νj = ν on
∂Ωj\Γ to supplement (TDR) with the boundary conditions

0 = ν · (∇ [Φj(s)] + λj(s)gj) on ΓN,j × (0, T ),
Φj(s) = ΦD,j on ΓD,j × (0, T )

(2.9)

and with the initial condition

s(x, 0) = s0(x) for x ∈ Ω (2.10)

for appropriate functions ΦD,j and s0.

2.2 Weak Solutions and Main Result

We start with the assumptions on the domain and recall the introduction of the interface
Γ at the beginning of this chapter.

Assumption A2.1. Let d ≥ 1 and Ω ⊂ Rd be a domain with Lipschitz boundary.
Additionally, there are Lipschitz domains Ωl,Ωr ⊂ Ω such that Ωl ∩ Ωr = ∅ and Ωl ∪
Ωr = Ω. Γ is such that Γ = Ωl ∩ Ωr. For j ∈ {l, r}, we assume that the disjoint
decompositions ∂Ωj = ΓN,j ∪ ΓD,j ∪ Γ and ∂Ω = ΓD ∪ ΓN hold, where ΓD = ΓD,l ∪ ΓD,r
and ΓN = ΓN,l ∪ ΓN,r.

We only use the following assumptions on the coefficients.

Assumption A2.2. For j ∈ {l, r}, we assume that fj ∈ C0,1([0, 1]), λj ∈ C([0, 1]) and
gj ∈ Rd and that there are measurable functions sD,j : Ω → [0, 1] such that ΦD,j =
Φj(sD,j) ∈ H1(Ωj). The Lipschitz constant of fj is denoted by Lj.

Assumption A2.3. Let j ∈ {l, r}. Assume that there exist functions Θj ,Φj : [0, 1] →
[0,∞], that are increasing, continuous in the sense of Remark 1.5 and that the compat-
ibility conditions Θl(0) = Θr(0) = 0 and Θl(1) = Θr(1) ∈ (0,∞] hold. If Θl(1) <∞, we
impose Θj ,Φj ∈ C1([0, 1]). Otherwise, we impose Θj ,Φj ∈ C1([0, 1)).

Remark 2.1. In the following, we only work with the regularity of Φj and Θj from
Assumption A2.3. Thus, it is not necessary to impose assumptions on p′c,j or further
assumptions on λj .

However, assuming integrability near zero, additional conditions like pc,j ∈ C1((0, 1)),
λj ∈ C0,1([0, 1]) and p′c,j(s), λj(s) > 0 for s ∈ (0, 1) and j ∈ {l, r} provide the regularity
of Φj and Θj stated in Assumption A2.3. In particular, the conditions of [Can08] are
allowed, i.e. λj(0) = λj(1) = 0 and pc,j ∈ C1([0, 1]) for j ∈ {l, r}. Moreover, choices of
λj and pc,j as in Figure 1.1 are possible and Φj and Θj can have both shapes depicted
in Figure 4.1. /
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2 The Unsaturated Flow Problem

We recall the definition and V from (1.23) and apply the notation to Ωj , i.e. we de-
fine

Vj :=
{
v ∈ H1(Ωj) | v|ΓD,j = 0

}
(2.11)

for j ∈ {l, r}. With the notation of (2.1), the abbreviations Q from (1.22) and Qj from
the beginning of this chapter, we define weak solutions for the discontinuous Richards
equation.

Definition 2.2. We call s ∈ L∞(Q, [0, 1]) a weak solution of (TDR) with initial data
s0 ∈ L∞(Ω, [0, 1]), if the following properties hold:

1. ∂ts ∈ L2(0, T ;V ′) and∫ T

0
〈∂ts, ξ〉V ′,V +

∫
Q
s∂tξ = −

∫
Ω
s0ξ(·, 0) (2.12)

for every ξ ∈ L2(0, T ;V ) ∩W 1,1(0, T ;L1(Ω)) such that ξ(·, T ) = 0

2. Φj(s) ∈ L2(0, T ;Vj) + ΦD,j for j ∈ {l, r} and∫
Q
〈∂ts, ξ〉V ′,V +

r∑
j=l

∫
Qj

[∇Φj(s) + λj(s)gj ] · ∇ξ =
∫
Q
f(s)ξ (2.13)

for every ξ ∈ L2(0, T ;V )

3. Θ(s) ∈ L2(0, T ;V ).

Remark 2.3. In Definition 2.2 item 1 states s(0) = s0, item 2 covers the continuity of
the flux and item 3 covers the continuity of the pressure on Γ. We emphasize that item
3 needs to be read with the notation from (2.1). The only assumptions on Θj are those
imposed in Assumption A2.3. In particular, different definitions of Θj than that of (2.7)
may be used.

In the case without an interface we consider Γ = ∅, Ωl = Ωr, λl(s) = λr(s) and pc,l(s) =
pc,r(s). Consequently, item 3 in Definition 2.2 is not required and the sum in (2.13) is
replaced by a single integral over Q.

In [Can08] an existence result for nondegenerate capillary pressures, λj(0) = λj(1) = 0
and the same solution concept is shown. We are not going to provide existence for our
more general choice of Θ. /

To prove the L1-contraction, we have to impose the following assumption.

Assumption A2.4. For j ∈ {l, r}, we assume that λj ◦Θ−1
j is Lipschitz continuous on

[0,Θj(1)) and that Φj ◦Θ−1
j is differentiable on (0,Θj(1)). We define Λj := (Φj ◦Θ−1

j )′
and assume additionally that Λj is Lipschitz continuous and bounded on (0,Θj(1)).
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The Lipschitz continuity of Λj is also required in [Can08] and is crucial to infer the
L1-contraction. In addition, we require bounds on Λj since we consider potentially
unbounded functions Θj . Our main result on the discontinuous Richards equation (TDR)
from page 24 is the following:

Theorem 2.4 (L1-contraction and uniqueness). Let Assumptions A2.1, A2.2, A2.3
and A2.4 hold. Let s1, s2 be weak solutions of (TDR) in the sense of Definition 2.2 with
initial data s0,1 and s0,2, respectively. Then there holds∫

Q
(|s0,1 − s0,2| − |s1 − s2|)∂tγ+

+
∑

j∈{l,r}

∫
Qj

sign(Φj(s1)− Φj(s2))∇[Φj(s1)− Φj(s2)] · ∇γ

+
∑

j∈{l,r}

∫
Qj

sign(Φj(s1)− Φj(s2))[λj(s1)− λj(s2)]gj · ∇γ

≤
∫
Q

sign(s1 − s2) [f(s1)− f(s2)] γ

(2.14)

for every non-negative γ ∈ C∞c ((−∞, T ) × Rn). Moreover, for L = max{L1, L2}, there
holds the following generalized L1-contraction property

‖s1(t)− s2(t)‖L1(Ω) ≤ e
Lt ‖s0,1 − s0,2‖L1(Ω) , (2.15)

for almost every t ∈ (0, T ). Consequently, there is at most one solution to the discon-
tinuous Richards equation (TDR).

The proof of the theorem is presented in chapter 5 and uses the method of doubling
the variables. This method was introduced by [Kru70] and is presented, for example,
in [Ott95] or [Can08]. An important tool required to perform the method of doubling the
variables is the integration by parts formula from Lemma 4.36.

We provide two examples of coefficient functions, such that Λj is Lipschitz continu-
ous though pc,j is unbounded. In [Can08] only bounded capillary pressure functions
are considered. Consequently, Theorem 2.4 generalizes Theorem 3.1 from [Can08] in a
substantial way.

For simplicity, both examples only show that Λj is Lipschitz continuous sufficiently close
to zero. We use the inverse function theorem to obtain the identity

Λj(u) =
λj(Θ−1

j (u))

min
k∈{l,r}

√
λk(p−1

c,k(pc,j(Θ−1
j (u))))

, (2.16)

where 0 < u is sufficiently small and j ∈ {l, r}.
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2 The Unsaturated Flow Problem

Example 2.5 (Logarithmic Pressures). For j ∈ {l, r}, let αj , Aj , Bj > 0, and Cj ∈ R
be given. On a small interval near zero, we assume

λj(s) = Ajs
αj for s ≥ 0 and pc,j(s) = Bj ln(s) + Cj for s > 0.

The coefficients are chosen such that

αjBk = αkBj , (2.17)

where k ∈ {l, r} with k 6= j.

We find

p−1
c,k(pc,j(s)) =

s, k = j

s
Bj
Bk exp(Cj−CkBk

), j 6= k

and with (2.17) also

min
k∈{l,r}

√
λk(p−1

c,k(pc,j(s))) = min
k∈{l,r}

{√
Ak exp

(
αk
Cj − Ck

2Bk

)}
s
αj
2 =: Djs

αj
2 .

For j ∈ {l, r}, this leads to
Θj(s) = 2

αj
BjDjs

αj
2 .

Inversion of Θj and application to (2.16) yields

Θ−1
j (u) =

(
αju

2BjDj

) 2
αj

and Λj(u) = Aj
Dj

(
αj

2BjDj

)2

u

for u close to zero; thus, Λj is Lipschitz continuous near zero. Particularly, the case
where pc,l and pc,r differ only by a vertical shift is allowed.

Example 2.6 (Higher Order Pressures). For j ∈ {l, r}, let αj , βj , Aj and Bj > 0 be
given. For s sufficiently small, we assume

λj(s) = Ajs
αj for s ≥ 0 and pc,j(s) = −Bj

sβj
for s > 0.

The coefficients are chosen such that

αlβr = αrβl and αj > 2βj . (2.18)

We find

p−1
c,k(pc,j(s)) =

s, j = k(
Bk
Bj

) 1
βk s

βj
βk , j 6= k.
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2.2 Weak Solutions and Main Result

Due to (2.18), we infer for j ∈ {l, r} also

min
k∈{l,r}

√
λk(p−1

c,k(pc,j(s))) = min
k∈{l,r}

√Ak
(
Bk
Bj

) αk
2βk

 sαj2 =: Djs
αj
2 .

Under consideration of (2.18), this leads to

Θj(s) = 2DjBjβj
αj − 2βj

s
αj−2βj

2 .

Inversion of Θj and application to (2.16) yields

Θ−1
j (u) =

(
αj − 2βj
2DjBjβj

) 2
αj−2βj

u
2

αj−2βj and Λj(u) = Aj
Dj

(
αj − 2βj
2DjBjβj

) αj
αj−2βj

u
αj

αj−2βj

for u close to zero; thus, due to (2.18), Λj is Lipschitz continuous near zero.

In both examples, the assumptions on the coefficients are made to reduce complexity
and to obtain straight forward calculations.
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3 The Two-Phase Flow Problem

In this chapter, we state the main result concerning the two-phase flow problem (TP)
from page 14. Prior to that, we provide two ways to transform the system into a coupled
system of an elliptic and a parabolic partial differential equation (section 3.1). In section
3.2, we provide assumptions required to derive existence for the transformed problems
(TP1) and (TP2). We specify assumptions needed to derive local Hölder continuity of the
saturation for weak solutions of (TP1) in section 3.3. Throughout this chapter, we usu-
ally suppress the x-dependence of the occurring functions.

3.1 Transformation of the Equations

In this section, we transform the system (TP) into a system consisting of one parabolic
and one elliptic equation. To this end, we introduce the so called global pressure and a
transformation that resembles the Kirchhoff transformation (K). Having done that, we
complete the problem by adding boundary and initial data.

We add the two elliptic-parabolic equations in (TP) from page 14, neglect the source
terms, i.e. we assume f1 = f2 = 0, and use the capillary pressure relation to ob-
tain

0 = ∇ · (κ[λ1(s)∇p1 + λ2(s)∇p2 + λ1(s)g1 + λ2(s)g2])

= ∇ ·
(
κ

[
λ(s)

(
∇p1 −

λ2(s)
λ(s) ∇[pc(s)]

)
+ λ1(s)g1 + λ2(s)g2

])
,

(3.1)

with the definitions λ(s) := λ1(s)+λ2(s) and gj := ρjg. Equation (3.1) can be expressed
with∇p2 instead of∇p1, in which case−λ2/λ changes to λ1/λ.

We define a global pressure

p := p1 −
∫ s

0

λ2(ξ)
λ(ξ) p

′
c(ξ) dξ = p2 +

∫ s

0

λ1(ξ)
λ(ξ) p

′
c(ξ) dξ (3.2)

and find with a substitution

p = p1 −
∫ pc(s)

pc(0)

λ2(p−1
c (u))

λ(p−1
c (u))

du . (3.3)
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3 The Two-Phase Flow Problem

The global pressure p is often regarded as a mean pressure; particularly, in the case
λ1 = λ2 we obtain p = p1+p2

2 . The gradients of the global and capillary pressure
are

∇p = ∇p1 −
λ2(s)
λ(s) p

′
c(s)∇s−

∫ s

0
∇x

(
λ2(ξ)
λ(ξ) p

′
c(ξ)

)
dξ,

∇[pc(s)] = p′c(s)∇s+∇xpc(s)
(3.4)

and we refer to the notation from section 1.4. Definitions (3.2) and (3.4) applied to
(3.1), yield

0 (3.1)= ∇ ·
(
κ

[
λ(s)

(
∇p1 −

λ2(s)
λ(s) ∇[pc(s)]

)
+ λ1(s)g1 + λ2(s)g2

])
= ∇ · (κ [λ(s)∇p+ E(s)])

(3.5)

with

E(s) := −λ2(s)∇xpc(s) + λ

∫ s

0
∇x

(
λ2(ξ)
λ(ξ) p

′
c(ξ)

)
dξ+λ1(s)g1 + λ2(s)g2.

For α ∈ {1, 2}, the fluxes uα specified in (1.8) read

uα = −κλα(s)(∇pα + gα). (3.6)

We define the global flux u := u1 + u2 and find

u = u1 + u2 = −κ(λ(s)∇p+ E(s)). (3.7)

To reformulate one of the parabolic equations in (TP) in a way that it contains the
information of u, we use the identity

λu1 = (λ1 + λ2)u1 = λ2u1 − λ1u2 + λ1(u1 + u2) = λ2u1 − λ1u2 + λ1u. (3.8)

For the equation of p1 in (TP), we obtain

φ∂ts = ∇ · (κλ1(s)[∇p1 + g1]) (3.6)= ∇ · (−u1)
(3.8)= ∇ ·

( 1
λ(s)(λ1(s)u2 − λ2(s)u1)− λ1(s)

λ(s) u
)

(3.6)= ∇ ·
(
κ

1
λ(s) [λ1(s)λ2(s)∇[p1 − p2] + λ1(s)λ2(s)(g1 − g2)]− λ1(s)

λ(s) u
)
.

(3.9)

Using the equation for p2 and a similar reasoning, we obtain (3.9) with λ2(s)/λ(s)u in-
stead of −λ1(s)/λ(s)u. For further manipulations, we define a pseudo pressure in the
spirit of the the Kirchhoff transformation (K) and emphasize that the functions are
x-dependent

Φ(s) :=
∫ s

0

λ1(ξ)λ2(ξ)
λ(ξ) p′c(ξ) dξ . (3.10)
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3.1 Transformation of the Equations

We remark the identity

∇xΦ(s) =
∫ s

0
∇x

(
λ1(ξ)λ2(ξ)

λ(ξ) p′c(ξ)
)

dξ =
∫ s

0
∇xΦ′(s). (3.11)

Using the definition of Φ and the gradient of the capillary pressure pc from (3.4) in (3.9),
we derive

φ∂ts = ∇ · (κ (∇[Φ(s)]−∇xΦ(s) +B(s)) +D(s)u) (3.12)

with

B(s) = λ1(s)λ2(s)
λ(s) (∇x[pc(s)] + g1 − g2) and D(s) = −λ1(s)

λ(s) or λ2(s)
λ(s) .

WithD(s) = −λ1(s)/λ(s) and the definition of u, we can express (3.12) as

φ∂ts = ∇ · (κ (∇[Φ(s)] + λ1(s)∇p+ γ1(s))) , (3.13)

where

γ1(s) := −∇xΦ(s) +B(s) + λ1(s)
λ(s) E(s)

= λ1(s)
∫ s

0
∇x

(
λ2(ξ)
λ(ξ) p

′
c(ξ)

)
dξ−

∫ s

0
∇x

(
λ1(ξ)λ2(ξ)

λ(ξ) p′c(ξ)
)

dξ+λ1(s)g1.

(3.14)

Likewise, with D(s) = λ2(s)/λ(s) we may write (3.12) as

φ∂ts = ∇ · (κ (∇[Φ(s)]− λ2(s)∇p+ γ2(s))) , (3.15)

where

γ2(s) := λ2(s)∇x[pc(s)]− λ2(s)
∫ s

0
∇x

(
λ2(ξ)
λ(ξ) p

′
c(ξ)

)
dξ

−
∫ s

0
∇x

(
λ1(ξ)λ2(ξ)

λ(ξ) p′c(ξ)
)

dξ−λ2(s)g2.

(3.16)

On the other hand, under consideration of the elliptic equation (3.5), we can deduce
(3.15) also from (3.13), and vice verca.

We recall Ω, Q, ∂Ω,ΓN and ΓD from (1.20)–(1.22). Summarizing the previous consid-
erations, we may write (TP), formally equivalent, in one of the two forms below:

φ∂ts = ∇ · (κ (∇[Φ(s)]−∇xΦ(s) +B(s)) +D(s)u) on Q, (TP11)
0 = ∇ · (κ [λ(s)∇p+ E(s)]) on Q (TP12)
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3 The Two-Phase Flow Problem

or

φ∂ts = ∇ · (κ (∇[Φ(s)] + λ1(s)∇p+ γ1(s))) on Q, (TP21)
0 = ∇ · (κ [λ(s)∇p+ E(s)]) on Q. (TP22)

To complete these problems, we prescribe initial and Dirichlet boundary data. Particu-
larly, we assume ΓN = ∅. On ΓD×(0, T ] = ∂Ω×(0, T ] we prescribe

p = pD and Φ(s) = ΦD on ΓD × (0, T ]. (3.17)

and complete the systems by prescribing initial data

s(0) = s0 on Ω× {0}. (3.18)

Remark 3.1 (Comparison to [AD85a]). The article of Alt and DiBenedetto considers
existence of the two-phase flow problem in the form of (TP) with various boundary
conditions. As is shown there, solutions to this problem provide, via approximation,
a solution to the bulk two-phase flow problem in a form similar to (TP1). In their
transformed setting local uniform continuity, i.e. continuity on sets K ⊂⊂ Q, of the
saturation is shown. Particularly, continuity of the saturation at the parabolic boundary
of Q is not provided there.

In the remainder of this remark, we compare our notation to the notation of Alt and
DiBenedetto and assume for simplicity that κ = 1. In their notation the saturations
s1 and s2 are functions of the pressure difference p1 − p2 and of x. Comparing this to
our notation, we realize that the capillary pressure function pc(x, s) can be inverted for
every x ∈ Ω, as long as pc(x, ·) has the shape as shown in Figure 1.1. This leads to
s1(x, p1 − p2) = s = p−1

c (x, p1 − p2) with the notation from Definition 1.6.

The definition of global pressure Alt and DiBenedetto use is again slightly different and
reads p = p1 −

∫ pc(s)
0

λ2
λ . If we introduce a critical saturation sc, i.e. sc ∈ [0, 1] such

that p1 − p2 = pc(x, s) = 0 ⇐⇒ s = sc (see [CJ86, chapters I, III.3.2 and equation
III.(2.13)]), we deduce with a change of variables p = p1 −

∫ s
s0

λ2
λ p
′
c. This coincides with

(3.2) as long as sc ≡ 0. We infer that the global pressures in [AD85a] and the one we
use differ only by an x-dependent function. In particular, if the capillary pressure curves
are independent of x, then the pseudo pressures differ only by a constant.

Starting from (3.9) Alt and DiBenedetto arrive at

φ∂ts = ∇ ·
(
λ1(s)λ2(s)

λ(s) p′c(s)∇s+B(s) +D(s)u
)
. (3.19)

With Φ from (3.10) and realizing that

λ1(s)λ2(s)
λ(s) p′c(s)∇s = Φ′(s)∇s = ∇[Φ(s)]−∇x[Φ(s)],
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3.2 Weak Solutions

we might cast (3.19) into the form of (3.12). However, this is not done in [AD85a]. In
the derivation of the local uniform continuity of the saturation equation (3.19) appears,
but as a limit problem.

We remark that ∂zs−1
1 (x, ·) in their notation coincides with p′c(x, ·) in our notation. At

first glance, a difference occurs in the terms b in their notation and B in our notation.
However, this difference is based on a typing error in [AD85a, (1.19)] where instead of
∇z( s1

s0
) it should be ∇x( s1

s0
). Assuming s0 = 1, this can be seen in the following way.

For x ∈ Ω and z ∈ [0, 1], we find the identity pc(x, p−1
c (x, z)) = z. The chain rule yields

0 = ∇[pc(x, p−1
c (x, z))] = ∇xpc(x, p−1

c (x, z)) + p′c(x, p−1
c (x, z))∇xp−1

c (x, z)

and hence
∇xp−1

c (x, z) = − 1
p′c(x, p−1

c (x, z))
∇xpc(x, p−1

c (x, z)). (3.20)

With the previous considerations, we see that (3.20) corresponds to

∇xs1(x, z) = − 1
∂zs
−1
1 (x, s1(x, z))

∇xs−1
1 (x, s1(x, z)).

Using this in [AD85a, (1.19)], we find that b and B coincide. /

Remark 3.2 (Comparison to [Che01] and [Arb92]). We mention that the articles
[Che01] and [Arb92] are quite similar. The main differences are a slightly different
definition of the pseudo pressure and a more general right-hand side of the equation in
Arbogast’s article. However, since we use the same pseudo pressure as Chen does, we
comment mainly on his article.

The article of Chen uses the second form (TP2) of the two-phase flow system. Implicitly,
it is assumed in [Che01, (A4)] that pc is nonincreasing. This is explained more detailed
in [Arb92, (A5b∗)]. Compared to our deduction, Chen uses the negative of the pseudo
pressure Φ and s = s2 instead of s1. Essentially, our definitions of γ1 and γ2 coincide
with γ3 and γ2 in Chen’s notation, except for signs due to the different choices of s, pc
and Φ and the orientation of gj . /

3.2 Weak Solutions

Following [Che01], we briefly state assumptions required to derive an existence result for
(TP2) modified due to our choices of Φ, s and boundary conditions.

Assumption A3.1. Let d ≥ 1 and Ω ⊂ Rd be a bounded Lipschitz domain.
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3 The Two-Phase Flow Problem

Assumption A3.2. We assume that φ ∈ L∞(Ω) is such that 0 < φ∗ ≤ φ(x) ≤ φ∗ <∞
and that κ(x) is a bounded, symmetric and uniformly positive definite matrix, i.e.

0 < κ∗ ≤ |ξ|−2
n∑

i,j=1
κij(x)ξiξj ≤ κ∗ <∞, x ∈ Ω, 0 6= ξ ∈ Rd

Assumption A3.3. For α ∈ {1, 2}, let λα(x, s) be bounded Carathéodory functions as
introduced in section 1.4. Additionally, assume that λ1(0) = 0 and λ1(s) > 0 for s > 0,
λ2(1) = 0 and λ2(s) > 0 for s < 1, and

0 < λ∗ ≤ λ(x, s) ≤ λ∗ <∞ for x ∈ Ω and s ∈ [0, 1].

Assumption A3.4. Φ : Ω × [0, 1] → R is a Carathéodory function, such that Φ(x, s)
is strictly increasing in s for every x ∈ Ω. In addition, assume that Φ(x, 0) = 0 and
0 < Φ(x, 1) for every x ∈ Ω and Φ(·, 1) ∈ H1(Ω).

As in [Che01] and [Arb92], we introduce the following notation. For v = v(x, s) and any
norm ‖·‖ for x-dependent functions, we define the norm |||·|||by

|||v|||=
∥∥∥∥∥ sup
s∈[0,1]

|v(·, s)|
∥∥∥∥∥ . (3.21)

Assumption A3.5. E and γ1 are Carathéodory functions and the norms

|||E|||L∞(0,T ;L2(Ω)) and |||γ1|||L2(Q)

are bounded. Furthermore, pD ∈ L∞(0, T ;H1(Ω)), ΦD ∈ L2(0, T ;H1(Ω)), ∂tΦD ∈
L1(Q) and 0 ≤ ΦD(x, t) ≤ Φ(x, 1) almost everywhere on Q. The initial data fulfill

0 ≤ Φ(s0) ≤ Φ(1) a.e. in Ω and Φ(s0) ∈ L2(Ω).

Since we only consider the Dirichlet problem here, we find ΓD = ∂Ω. Thus, considering
(1.23) we have V = H1

0 (Ω) and V ′ = H−1(Ω).

Definition 3.3 (Weak solutions for (TP2)). A weak solution of system (TP2) with
boundary and initial data (3.17)–(3.18) is a pair of functions (s, p) with p ∈ L∞(0, T ;V )+
pD, Φ(s) ∈ L2(0, T ;V ) + ΦD, φ∂ts ∈ L2(0, T ;V ), 0 ≤ s(x, t) ≤ 1 a.e. (x, t) ∈ Q and
such that the following identities hold:∫

Ω
κ(λ(s)∇p+ E(s)) · ∇w = 0 ∀w ∈ L∞(0, T ;V ),∫ T

0
〈φ∂ts, v〉V ′,V dt+

∫
Q
κ(∇[Φ(s)] + λ1(s)∇p+ γ1(s)) · ∇v = 0 ∀v ∈ L2(0, T ;V ),∫ T

0
〈φ∂ts, v〉V ′,V dt+

∫ T

0

∫
Ω
φ(s− s0)∂tv dt = 0

∀v ∈ L2(0, T ;V ) ∩W 1,1(0, T ;L1(Ω)), v(x, T ) = 0.
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3.2 Weak Solutions

An adaption of [Che01, Theorem 2.1] yields existence of weak solutions.

Theorem 3.4. Under Assumptions A3.1–A3.5, the system (TP2) has a weak solution
in the sense of Definition 3.3.

We define weak solutions of (TP1) in the following sense.

Definition 3.5 (Weak solutions of (TP1)). A weak solution of system (TP1) with bound-
ary and initial data (3.17)–(3.18) is a pair of functions (s, p) with p ∈ L∞(0, T ;V )+pD,
Φ(s) ∈ L2(0, T ;V ) + ΦD, φ∂ts ∈ L2(0, T ;V ′), 0 ≤ s(x, t) ≤ 1 a.e. (x, t) ∈ Q and such
that the following identities hold:∫

Ω
κ(λ(s)∇p+ E(s)) · ∇w = 0 ∀w ∈ L∞(0, T ;V ), (3.22)∫ T

0
〈φ∂ts, v〉V ′,V dt+

∫
Q

(κ[∇[Φ(s)]−∇xΦ(s) +B(s)] +D(s)u) · ∇v = 0

∀v ∈ L2(0, T ;V ), (3.23)∫ T

0
〈φ∂ts, v〉V ′,V dt+

∫ T

0
φ(s− s0)∂tv dt = 0 (3.24)

∀v ∈ L2(0, T ;V ) ∩W 1,1(0, T ;L1(Ω)), v(x, T ) = 0.

To obtain weak solutions of (TP1) from weak solutions of (TP2) provided by Theorem
3.4, we need to ensure that∫

Q
κ(λ1(s)∇p+ γ1(s)) · ∇v =

∫
Q

[κ(−∇xΦ(s) +B(s)) +D(s)u] · ∇v (3.25)

holds for every v ∈ L2(0, T ;V ). Particularly, we have to take the alternatives in the
definition of D(s) into account.

Lemma 3.6 (Equivalence of weak solutions). Let Assumptions A3.1 – A3.5 hold, and
assume that the functions ∇xΦ(s) and B are bounded Carathéodory functions on Ω ×
[0, 1]. Then any weak solution (s, p) of (TP2) in the sense of Definition 3.3 is a weak
solution of (TP1) in the sense of Definition 3.5 and vice versa. In particular, there
exists a weak solution of (TP1) in the sense of Definition 3.5.

Proof. To show that the solution concepts are equivalent, it suffices to show that (3.25)
holds for every v ∈ L2(0, T ;V ). Due to the assumptions, we obtain that the integrals in
(3.25) are well-defined.

Let (s, p) be a weak solution of in the sense of Definition 3.5. We choose the alter-
native D(s) = −λ1(s)/λ(s). Using the definitions of γ1(s) and u from (3.14) and (3.7),
respectively, we obtain the pointwise identity

κ (−∇xΦ(s) +B(s))− λ1(s)
λ(s) u = κ (λ1(s)∇p+ γ1(s))
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a.e. on Q. Consequently, for our choice of D(s), we infer that (3.25) holds for every
v ∈ L2(0, T ;V ).

Concerning the alternative D(s) = λ2(s)/λ(s), we need to take the elliptic equation into
account. For v ∈ C∞c (0, T ;V ), we use (3.22) to infer∫

Q
κ(∇Φ(s) + λ1(s)∇p+ γ1(s)) · ∇v

=
∫
Q
κ(∇Φ(s) + λ∇p− λ2(s)∇p+ γ1(s)) · ∇v∫

Q
κ(∇Φ(s)− E(s)− λ2(s)∇p+ γ1(s)) · ∇v.

From
λ1(s)
λ(s) E(s)− E(s) = −λ2(s)

λ(s) E(s),

we derive the identity

κ(γ1(s)− E(s)− λ2(s)∇p) = κ(−∇xΦ(s) +B(s)) + λ2(s)
λ(s) u

a.e. on Q as above. Consequently, (3.25) holds for every v ∈ C∞c (0, T ;V ) and the choice
D(s) = λ2(s)/λ(s). With a density argument, we infer that the argument also holds for
v ∈ L2(0, T ;V ). Thus, (s, p) is a weak solution of (TP2) in the sense of Definition 3.3.

Considering the previous arguments, we realize that starting from weak solutions of
(TP2) in the sense of Definition 3.3 yields a weak solution to (TP1) in the sense of
Definition 3.5. This concludes the proof.

3.3 Main Result

We specify assumptions on the coefficients needed to derive the local Hölder continuity
of the saturation.

Assumption A3.6. We assume that pc is differentiable in x for every (x, s) in Ω× [0, 1]
and in s for (x, s) ∈ Ω× (0, 1). We assume that

0 < p∗ := inf
x∈Ω
s∈(0,1)

p′c(x, s) <∞ and 0 ≤ p∗ := max
x∈Ω
s∈[0,1]

|∇xpc(x, s)| <∞. (3.26)

For a typical shape of the function Φ, we refer to Figure 4.1. The assumptions imposed
on Φ from Assumption A4.1 (page 51) are also contained in the following assumptions.
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Assumption A3.7. Let Φ ∈ C1(Ω× [0, 1]) be such that Φ′(x, s) > 0 for s ∈ (0, 1) and
every x ∈ Ω, and Φ′(x, 0) = Φ′(x, 1) = Φ(x, 0) = 0 for every x ∈ Ω.

Let δ0 ∈ (0, 1
8) be given. We define

λ2,∗ := min
x∈Ω

s∈[0,4δ0]

λ2(x, s), λ1,∗ := min
x∈Ω,

s∈[1−4δ0,1]

λ1(x, s)

and λ1,2,∗ := min
x∈Ω,

s∈[δ0,1−δ0]

min{λ1(x, s), λ2(x, s)}
(3.27)

and assume that there are constants 0 < C∗ < C∗ such that

C∗ ≤ min {λ∗, φ∗, κ∗, p∗, λ2,∗, λ1,∗, λ1,2,∗}

and max
{ 1
C2
∗
, λ∗, κ∗, φ∗, 3p

∗

p∗
, 3 |g1|

p∗
, 3 |g2|

p∗

}
≤ C∗.

(3.28)

In addition, we demand κ ∈W 1,∞(Ω;Rd×d),

‖Φ‖C1(Ω×[0,1]) + ‖κ‖W 1,∞ + |||E|||L∞(0,T ;L2(Ω)) + ‖pD‖L∞(0,T ;H1(Ω)) ≤ C
∗ and

|B(x, s)|+ |D(x, s)|+ |E(x, s)| ≤ C∗ for every x ∈ Ω and s ∈ [0, 1].
(3.29)

Furthermore, we impose that Φ′(x, s) and D(x, s) are differentiable with respect to x,
and that for every x ∈ Ω and s ∈ [0, 1] there holds

∇xΦ(x, s) =
∫ s

0
∇xΦ′(x, σ) dσ and

∣∣∇xΦ′(x, s)
∣∣+ |∇xD(x, s)| ≤ C∗. (3.30)

Concerning the structure of Φ′, we assume that for every x ∈ Ω there holds

Φ0,l(s) ≤ Φ′(x, s) ≤ Φ0,u(s), for s ∈ [0, 4δ0]
Φ1,l(1− s) ≤ Φ′(x, s) ≤ Φ1,u(1− s), for s ∈ [1− 4δ0, 1].

(3.31)

For j ∈ {0, 1} and k ∈ {l, u}, we consider positive constants cj,k and αj such that
Φj,k(v) := cj,kv

αj holds for v ∈ [0, 4δ0]. In addition, we assume C∗ ≤ Φ′(x, s) ≤ C∗ for
s ∈ [δ0, 1− δ0] and every x ∈ Ω. For the powers αj, we assume that

α0 = α1. (3.32)

Remark 3.7. The assumption α0 = α1 is crucial to obtain Hölder continuity. In the
x-indepedent case, Hölder continuity for the cases α1 6= α0 is stated in the literature.
However, there seem to be flaws in the given proofs in that case. We comment on these
issues more detailed in section 6.6.1. /
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3 The Two-Phase Flow Problem

Remark 3.8. Some of the assumptions in (3.28) are only made to simplify calculations
later. Particularly, we derive the following estimates. Due to the choices of p∗ and p∗,
we infer

|B(s)| ≤
∣∣∣∣λ1(s)λ2(s)

λ(s) (∇xpc + g1 − g2)
∣∣∣∣ ≤ λ1(s)λ2(s)

λ(s)p∗
p′c(s) (|∇xpc|+ |g1|+ |g2|)

≤ Φ′(s)p
∗ + |g1|+ |g2|

p∗
≤ C∗Φ′(s).

The assumption on λ1,∗, λ2,∗ and λ1,2,∗ are connected to the alternative in the definition
of D(s). Assume for the moment that s ∈ [0, 4δ0]. Thus, we obtain

|D(x, s)| ≤
∣∣∣∣ λ1(s)λ2(s)
λ(s)λ2(s)p∗

∣∣∣∣ p′c(s) ≤ 1
C2
∗

Φ′(s) ≤ C∗Φ′(s). (3.33)

With the same argument, we obtain the estimate of equation (3.33) also on [1− 4δ0, 1]
and on [δ0, 1 − δ0]. This is used as follows. In the analysis in chapter 6, we use test
functions that are only supported in either [0, 4δ0], [1− 4δ0, 1] or [δ0, 1− δ0]. Depending
on the test function, we then choose D such that (3.33) holds.

We remark that the assumption on p∗ is not needed in the case without x-dependence. /

Definition 3.9 (Parabolic Metric and Distance). On Rd+1 we define the parabolic metric
d2 as

d2((x1, t1), (x2, t2)) = |x1 − x2|+ |t1 − t2|
1
2

for x1, x2 ∈ Rd and t1, t2 ∈ R. According to this metric for A,B ⊂ Rd+1 we define the
parabolic distance

dist2(A,B) := inf
z1∈A, z2∈B

d2(z1, z2). (3.34)

Definition 3.10. The constants C∗, C∗, cj,k and αj, for j ∈ {0, 1} and k ∈ {u, l} from
Assumption A3.7 and the dimension d from Assumption A3.1 are called the data. We
say that a constant γ depends only on the data, if γ can be determined only in terms of
these quantities.

Furthermore, let K ⊂ Q be given. We say that a constant γ ∈ R depends only on the data
and on K, if γ can be determined only in terms of the data and in terms of the distance
from K to ∂pQ, i.e. of d2(K, ∂pQ). In this case, we write γ = γ(data,K). Additionally,
if we write γ = γ(data,K, l), we mean that γ can be determined only in terms of the
data, K and some quantity l.

Remark 3.11. Since we only intend to provide local Hölder continuity of s on sets
compactly contained in Q, initial and boundary data for s do net enter in Definition
3.10. Due to (3.27), the constants C∗ and C∗ also depend on the choice of δ0. Thus,
when speaking of a quantity depending on the data, the dependence on δ0 is implied.

We emphasize that, if for the saturation s of (TP1) on a domain K a constant γ =
γ(data,K) is determined, then we emphasize that γ is particularly independent of s. /
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3.3 Main Result

Remark 3.11 also applies to the previous definition. Our main result for two-phase flows
reads as follows.

Theorem 3.12 (Local Hölder continuity of s). We assume that Assumptions A3.1 –
A3.7 hold. Let (s, p) be any weak solution of problem (TP1) in the sense of Definition
3.5. Then s is locally Hölder continuous on Q. For any compact set K ⊂ Q, there are
constants γ ∈ R and α ∈ (0, 1), depending only on the data and on K, such that

|s(x1, t1)− s(x2, t2)| ≤ γ (d2((x1, t1), (x2, t2)))α (3.35)

for every (x1, t1), (x2, t2) ∈ K.

We emphasize that γ and α do not depend on the solution. The proof is presented
in chapter 6 and uses the method of intrinsic scaling. To apply the technique, it is
necessary to show that truncations of s are regular. This is shown in the next chap-
ter.

Remark 3.13. We emphasize again that the proof of the local Hölder continuity we
present in chapter 6 only works in the case α0 = α1. For an easier comparison to the
literature as well as a potential extension, we chose the given presentation. Particularly,
we do not simplify the notation from (3.31).

In view of Theorem 6.3 and Remark 6.4, we see that dropping the dependence of C∗
on pD in (3.29) yields a constant γ which also depends on the L∞(0, T ;L2(Ω))-norm of
p. We emphasize that C∗ is independent of ΦD and that Assumption A3.4 is contained
completely in Assumption A3.7.

In the literature, statements similar to that of Theorem 3.12 can be found for so-called
local weak solutions. Essentially, these are solutions as in Definition 3.5 but the integrals
are restricted to sets E ⊂⊂ Q. Particularly, boundary and initial data are not specified
there. Since the result we provide is a local result, the theorem could also be stated with
minor changes in the setting of local weak solutions. /
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4 Chain Rules and Integration by Parts

Due to the similarities of the Richards equation (R) from page 15 and the parabolic
equation of the two-phase flow equations (TP1) from page 33, we consider the model
problem

∂ts = ∆[Φ(x, s)] on Q,
Φ(x, s) = ΦD on ΓD × (0, T ),
∂νΦ(x, s) = 0 on ΓN × (0, T ),
s(x, 0) = s0(x) on Ω,

(MP)

where s(x, t) ∈ [0, 1] for (x, t) ∈ Q. We recall Ω,ΓD,ΓN , Q and V from (1.20)–
(1.23).

Equation (MP) is the so-called generalized porous medium equation [Váz06]. The function
Φ : Ω× [0, 1]→ [0,∞] is smooth in Ω× [0, 1] and increasing in s. When considering the
Richards equation one usually finds Φ such that Φ(x, 0) = Φ′(x, 0) = 0 and Φ(x, s) →
c > 0 as s→ 1, where c is usually infinity.

For the transformed two-phase flow equations (TP1), the function Φ does in general not
tend to infinity when s approaches one. Typically, we find that Φ is flat near one, i.e.
Φ′(x, 1) = 0. Common shapes of Φ are depicted in figure 4.1.

Though we are not going to show the existence of weak solutions, let us fix a setting
where we expect to find solutions in.

Definition 4.1 (Weak solutions of (MP)). A function s ∈ L∞(Q; [0, 1]) with ∂ts ∈
L2(0, T ;V ′) and Φ(·, s) ∈ L2(0, T ;V ) + ΦD is called a weak solution of (MP) provided
the following two properties are fulfilled:

1. For every ξ ∈ L2(0, T ;V ), there holds∫ T

0
〈∂ts, ξ〉V ′,V +

∫
Q
∇Φ(·, s)∇ξ = 0. (4.1)

2. The initial data s(0) = s0 are assumed in the sense of traces, i.e. there holds∫ T

0
〈∂ts(t), ξ(., t)〉V ′,V dt+

∫
Q
s∂tξ = −

∫
Ω
s0ξ(., 0) (4.2)

for every ξ ∈ L2(0, T ;V ) ∩W 1,1(0, T ;L1(Ω)) with ξ(·, T ) = 0.
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4 Chain Rules and Integration by Parts

0 1
0 s

Φ1
Φ2

Rd

R

Φ(x, 0)

KΦ

Φ(x, 1)

Ω

Φ(x, 1− σ)

Φ(x, σ)
Kσ

Φ
x0

Figure 4.1: The left picture shows typical shapes of Φ for fixed x ∈ Ω. For Richards
equations, Φ typically looks like Φ1. In the case of the transformed two-
phase flow equations (TP1) the shape of Φ is typically as that of Φ2. The
picture on the right shows the domain of the function Φ−1 in the sense of
Definition 1.6. Particularly, the sets KΦ and Kσ

Φ are depicted modulo a
cross section. For fixed x0 ∈ Ω, the function s 7→ Φ(x0, s) is increasing
and we consider it to have the shape of Φ2 depicted in the left picture.

For the sake of simplicity, let us assume for the rest of this section that ΦD = 0. An
important subclass of weak solutions in the sense of definition 4.1 are so called weak
energy solutions; existence of such solutions is shown in [Váz06, chapter 5.4] and [AL83].
Weak energy solutions rely on the energy estimate∫

Ω
Ψ(·, s(t)) +

∫
Qt
|∇Φ(·, s)|2 ≤

∫
Ω

Ψ(·, s0), (4.3)

where Ψ is a primitive of Φ with respect to s and such that Ψ(x, 0) = 0. Formally, this
estimate is obtained by testing (MP) with Φ(x, s(x)). For a rigorous proof of (4.3), the
crucial point is to show the chain rule∫ t

0
〈∂ts,Φ(s)〉V ′,V =

∫
Qt
∂tΨ(s) =

∫
Ω

Ψ(s(t))−
∫

Ω
Ψ(s0). (4.4)

Essentially, the literature contains two methods to prove this chain rule. For the first
approach, e.g. found in [Váz06, chapter 5], one constructs a sequence of smooth functions
sn that converges to s. For such smooth functions, (4.4) is nothing but the classical
chain rule; one obtains (4.3) for the approximations sn. Passing to the limit n → ∞,
the estimate for s is maintained. The downside of this procedure is, that the energy
estimate (4.3) is only deduced for functions s that are the limits of an appropriate
sequence sn.

The second approach is due to Alt and Luckhaus [AL83]; there, the chain rule (4.4)
is shown for any function in the function space of interest. In particular, the en-
ergy estimate (4.3) is obtained without explicitly constructing an approximating se-
quence.
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We follow the method of Alt and Luckhaus and show in section 4.4 chain rules and
related integration by parts formulae similar to (4.4), with Φ(·, s) replaced by more
general functions. Preliminary to that, we collect properties of the Steklov average
that are presented in section 4.3. Additionally and more importantly for our objec-
tives is that these more general chain rules can be used to derive an L1-contraction
property for weak solutions. We provide a formal proof in section 4.5.3 that also uses
the so called method of doubling the variables. To derive a uniqueness result from an
L1-contraction property, it is mandatory to infer the L1-contraction property for all
solutions in the considered functions spaces. If one seeks uniqueness, it does not suf-
fice to show an L1-contraction only for solutions that are merely the limits of certain
approximations.

Further typical choices of test functions for (MP) are s and sξ2, where ξ is a smooth and
compactly supported function. The latter test function leads to so called Caccioppoli es-
timates [GM12, chapter 4]. However, for the cases of Φ we want to consider s does in gen-
eral no possess a weak gradient. As the formal calculation

∇[Φ(x, s(x))] = ∇xΦ(x, s(x)) + Φ′(x, s(x))∇s(x), (4.5)

indicates and since Φ′(x, 0) = Φ′(x, 1) = 0, we can only expect control of ∇s with a
weight. We emphasize that for smooth s, e.g. s ∈ H1(Ω), Stampacchia’s Lemma yields
that ∇s = 0 a.e. on the level sets {s = 0} and {s = 1}. Due to the lack of regularity of
s this information cannot be used here.

However, if s was bounded away from zero and one, then we could bound Φ′ away
from zero and expect s to have a weak gradient. To this end, consider 0 < ε < 1

2 ,
use Φ−1(x,Φ(x, s)) = s, the chain rule and the same reasoning as in (3.20), to in-
fer

∇s1{ε<s<1−ε} = ∇[Φ−1(·, (Φ(·, s))]1{ε<s<1−ε}

=
(
∇xΦ−1(·,Φ(·, s)) + 1

Φ′(·, s)∇[Φ(·, s)]
)
1{ε<s<1−ε}

= 1
Φ′(·, s) (−∇xΦ(·, s) +∇[Φ(·, s))]) 1{ε<s<1−ε}.

(4.6)

In the situation that Φ does not depend explicitly on x Stampacchia’s Lemma implies
that

lim
ε→0
∇[Φ(s)]1{ε<s<1−ε} = ∇[Φ(s)].

This raises the question whether we can perform the limit also in the case where Φ
depends on x. We ask, whether

∇[Φ(·, s)] = lim
ε→0

[Φ′(·, s)∇s+∇xΦ(·, s)]1{ε<s<1−ε} (4.7)

holds in an appropriate sense or not. To investigate this question, we present well
known results in the environment of Stampacchia’s lemma in section 4.1. Starting from
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4 Chain Rules and Integration by Parts

Stampacchia’s Lemma, we show in section 4.2 that truncations of s are regular and prove
in section 4.5.1 the validity of (4.7).

In section 4.4, we show integration by parts formulae as an replacement for the formal
chain rule ∂tsg(s) = G(s), where G is a primitive of g. These formulae are tailored to
handle truncations of s as test functions, but are not suited to treat time dependent
Dirichlet data ΦD.

4.1 Chain Rules and Stampacchia’s Lemma

In this section, we provide a brief overview on chain rules for Sobolev functions and Stam-
pacchia type lemmas. Consider the classical chain rule

∇[g ◦ u](x) = g′(u(x))∇u(x) (4.8)

for g ∈ C1(R), u ∈ C1(Ω) and x ∈ Ω. With an approximation argument one infers that
(4.8) holds for a.e. x ∈ Ω if u ∈W 1,p(Ω) and g ∈ C1(R).
Proposition 4.2 ([GM12, Proposition 3.22]). Let a bounded domain Ω ⊂ Rd, g ∈ C1(R)
with g′ ∈ L∞(R), and u ∈ W 1,p(Ω) for some p ∈ [1,∞] be given. Then g ◦ u ∈ W 1,p(Ω)
and (4.8) holds for almost every x ∈ Ω.

Remark 4.3. Similar results can be found in [KS00, Lemma A.3; DiB02, VII.Proposition
20.1] and [GT98, Lemma 7.5 and p. 154]. For unbounded domains one requires that
g(0) = 0. Under that additional assumption the chain rule is proved in [Bre10, Propo-
sition 9.5]. /

With an approximation argument, the chain rule can be extended to the case where g is
piecewise C1 with finitely many discontinuities of g′. In particular, for the choice g(u) =
(u)+ the chain rule is often referred to as Stampacchia’s lemma.
Lemma 4.4 (Stampacchia’s lemma [see GM12, Proposition 3.23]). Let Ω ⊂ Rd be a
bounded domain, u ∈ W 1,p(Ω) and p ∈ [1,∞]. Then u+, u− and |u| belong to W 1,p(Ω)
with

∇(u+) = ∇u 1{u>0}, ∇(u−) = −∇u 1{u<0}, and ∇ |u| = ∇(u+) +∇(u−). (4.9)

Furthermore, given any y ∈ R, we find ∇u = 0 a.e. on every level set {u = y}.

With induction one obtains
Corollary 4.5 ([GM12, Proposition 3.24]). Let Ω ⊂ Rd be a bounded domain and
let g ∈ C(R) be piecewise C1(R), i.e. for l ∈ N there are points t1, . . . , tl such that
g ∈ C1(−∞, t1]), g ∈ C1([t1, t2]), . . ., g ∈ C1([tl,∞)). Additionally, assume that g′ ∈
L∞(R). For p ∈ [1,∞] and every u ∈W 1,p(Ω), there holds g ◦ u ∈W 1,p(Ω) and

∇(g ◦ u) = g′(u)∇u 1{u6={t1,...,tl}}. (4.10)
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4.1 Chain Rules and Stampacchia’s Lemma

Further references for either Stampacchia’s lemma or the corollary are [Sch13, Lemma
7.4; KS00, Appendix A; DiB02, chapter 7, Proposition 20.2] and [GT98, Lemma 7.6,
Theorem 7.8].

Corollary 4.6. For p ∈ [1,∞], let u, v ∈ W 1,p(Ω) be given. There holds max{u, v} ∈
W 1,p(Ω) and min{u, v} ∈W 1,p(Ω) with

∇max{u, v} = ∇u1{u≥v} +∇v 1{u<v} and ∇max{u, v} = ∇u1{u≤v} +∇v 1{u>v}.

Proof. We recall

max{u, v} = u+ v + |u− v|
2 and min{u, v} = u+ v − |u− v|

2 ,

and apply Lemma 4.4.

Remark 4.7 (Coordinate wise chain rules). The previous results admit also coordinate-
wise chain rules. For example, Proposition 4.2 implies

∂j(g ◦ u)(x) = g′(u(x))∂ju(x) (4.11)

for a.e. x ∈ Ω and every j ∈ {1, . . . n}. In each coordinate this equation is well defined
for u ∈ Lp(Ω) and ∂ju ∈ Lp(Ω). This raises the question whether (4.11) also holds
if one merely assumes u ∈ Lp(Ω) and ∂ju ∈ Lp(Ω). Thanks to Proposition [GT98,
Theorem 7.4] this question can be answered positively; u and its partial derivative uj , for
j ∈ {1, . . . , d} can always be approximated by a sequence of smooth uk with ∂juk → ∂ju
and uk → u in L1

loc(Ω). In particular, the previous chain rules are applicable if one has
e.g. a time dependent function u ∈ Lp(Q) that lacks spatial regularity but has a regular
time derivative ut ∈ Lp(Q). /

Formula (4.8) extends to the case where g is merely a Lipschitz continuous function. The
proof of this result requires a different technique; one exploits thatW 1,p(Ω) functions are
absolutely continuous on a.e. line-segments parallel to the coordinate axes [see Leo09,
Theorem 10.37 and Exercise 10.37; LM07; Zie89, Theorem 2.1.11] and [KS00, Appendix
A]. In this case the right-hand side of (4.8) is interpreted to be zero whenever ∇u(x) is
zero irrespective of whether g′(u(x)) is defined or not.

Let us turn our attention to chain rules for functions that depend also on x ∈ Ω. For
g ∈ C1(Ω×R) and u ∈ C1(Ω), the classical chain rule reads

∇[g(x, u(x))] = ∇xg(x, u(x)) + g′(x, u(x))∇u(x) (4.12)

for every x ∈ Ω. If g is smooth on Ω, has bounded derivatives and u ∈W 1,p(Ω), we can
easily extend the proof of Proposition 4.2 to the case here. We present the proof under
the weaker assumption of regularity in a single coordinate direction: u, ∂ju ∈ Lp(Ω).
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4 Chain Rules and Integration by Parts

Proposition 4.8. Let a bounded domain Ω ⊂ Rd and p ∈ [1,∞] be given. For g ∈
C1(Ω×R) with bounded partial derivatives and u ∈ Lp(Ω) with ∂ju ∈ Lp(Ω), there holds
g(·, u), ∂jg(·, u) ∈ Lp(Ω) and

∂j [g(x, u(x))] = gj(x, u(x)) + g′(x, u(x))∂ju(x) for a.e. x ∈ Ω. (4.13)

Proof. It suffices to prove the proposition in the case p = 1. If u, ∂ju ∈ Lp(Ω), then,
due to the boundedness of Ω, we find u, ∂ju ∈ L1(Ω). Application of the proposition
in the case p = 1 yields that the jth weak partial g(·, u) is determined by the right-
hand side of (4.13) which belongs to Lp(Ω). Hence, let us assume p = 1. Since Ω is
compact and g is continuous, we deduce |g(x, 0)| < C for an appropriate constant C > 0.
Potentially increasing C and using that the partial derivatives of g are bounded, we infer
|g(x, s)| ≤ supσ∈R |g′(x, σ)| |s|+ |g(x, 0)| ≤ C(1 + |s|) and obtain g(·, u) ∈ L1(Ω).

Thanks to [GT98, Theorem 7.4] there is a sequence uk ∈ C∞(Ω) such that uk → u and
∂juk → ∂ju in L1

loc(Ω) as k →∞. Since (4.13) holds for smooth functions u, we obtain
for ϕ ∈ C∞c (Ω) using integration by parts the identity∫

g(·, uk)∂jϕ = −
∫

Ω
∂j [g(·, uk)]ϕ = −

∫
Ω

[
gj(·, uk) + g′(·, uk)∂juk

]
. (4.14)

From
|g(x, uk(x))− g(x, u(x))| ≤

∥∥g′∥∥∞ |uk(x)− u(x)| , for a.e. x ∈ Ω,

we deduce g(·, uk) → g(·, u) in L1
loc(Ω). Consequently the left-hand side in (4.14) has

the desired limit. Moreover, up to extracting a subsequence, uk → u a.e. in Ω. Hence,
we also find gj(x, uk(x))→ gj(x, u(x)) and g′(x, uk(x))→ g′(x, u(x)) a.e. in Ω. Since g
has bounded derivatives, Lebesgue’s dominated convergence theorem implies gj(·, uk)→
gj(·, u) ∈ L1(Ω) and∫

Ω

∣∣g′(·, uk)∂juk − g′(·, u)∂ju
∣∣ |ϕ|

≤
∥∥g′∥∥∞ ∫Ω

|∂j(u− uk)| |ϕ|+
∫

Ω

∣∣g′(·, uk)− g′(·, u)
∣∣ |∂ju| |ϕ| −−−→

k→∞
0.

The limit k → ∞ of (4.14) yields that gj(·, u) + g′(·, u)∂ju ∈ L1(Ω) is the jth weak
partial derivative of g(·, u) and we conclude.

Corollary 4.9. Let p ∈ [1,∞], a bounded domain Ω ⊂ Rd and g ∈ C1(Ω̄ × R) with
bounded partial derivatives be given. For u ∈W 1,p(Ω), there holds g(·, u) ∈W 1,p(Ω) and

∇[g(·, u)] = ∇xg(·, u) + g′(·, u)∇u. (4.15)
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4.2 Regularity of Truncations

On the case of an (x, u)-dependent Lipschitz function g In the case where g : Ω×R→
R is merely Lipschitz and u ∈ H1(Ω) one obtains that g(·, u) ∈ H1(Ω). But, as the
following example shows, a chain rule, as in (4.12), can not be expected in general.

Example 4.10. Let Ω ⊂ R be an open interval, consider g(x, v) := max{x, v} and
choose u(x) = x ∈ C1(I). Then g is not differentiable on the set B := {(x, v) ⊂ R2|x =
v} and B has measure zero by Rademacher’s theorem [EG92, chapter 3.1.2]. We find
g(x, u(x)) = x ∈ C1(Ω) and consequently ∇[g(x, u(x))] = 1. We find that the left-hand
side of (4.12) equals one. However, the right-hand side of (4.12) is nowhere defined,
since (x, u(x)) = (x, x) ∈ B for any x ∈ Ω.

The previous example and further results on general chain rules can be found in [LM07],
[MM72] and the references therein.

4.2 Regularity of Truncations

The preliminary results of the previous section are used to investigate the regularity of
truncations of s.

Definition 4.11 (Truncations). Let a, b ∈ R, a ≤ b be given. For s ∈ R, we define
truncations of s at levels a and b as

Ta(s) := max{s, a}, T b(s) = min{s, b} and T ba(s) = max{min{s, b}, a}.

We mention the identities Ta ◦ T b = T b ◦ Ta = T ba . In the following we investigate the
cases where Φ is x-independent and x-dependent separately. We refer to them simply
as the x-independent case and the x-dependent case, respectively. We also recall Figure
4.1 where a typical shape of Φ and, for the x-dependent case, the sets KΦ and Kσ

Φ are
shown.

4.2.1 The x-independent Case

Lemma 4.12 (Characterization of Φ(T ba(s))). Let Ω ⊂ Rd be a bounded domain. Let
Φ : [0, 1] → R be continuous and increasing and let s ∈ L∞(Ω, [0, 1]) be such that
Φ(s) ∈ H1(Ω). For 0 ≤ a ≤ b ≤ 1 and a.e. x ∈ Ω, the identities

Φ(s(x)) = (Φ(s(x))− Φ(b))+ + Φ(T ba(s(x)))− (Φ(s(x))− Φ(a))−,
Φ(s(x)) = (Φ(s(x))− Φ(b))+ + Φ(T b(s)),
Φ(s(x)) = Φ(Ta(s(x)))− (Φ(s(x))− Φ(a))−

(4.16)
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hold. Additionally, Φ(T ba(s)),Φ(T b(s)) and Φ(Ta(s)) ∈ H1(Ω) with

∇[Φ(T ba(s))] = ∇[Φ(s)]1{a<s<b} = ∇[Φ(s)]1{a≤s<b} = ∇[Φ(s)]1{a≤s≤b},
∇[Φ(T b(s))] = ∇[Φ(s)]1{s<b} = ∇[Φ(s)]1{s≤b},
∇[Φ(Ta(s))] = ∇[Φ(s)]1{a<s} = ∇[Φ(s)]1{a≤s}.

(4.17)

Proof. The identities in (4.16) follow directly from the definition of positive and negative
part of a function. Since Φ(a) and Φ(b) are constants and Φ(s) ∈ H1(Ω), we obtain from
Lemma 4.4 that (Φ(s)−Φ(b))+ and (Φ(s)−Φ(a))+ belong both to H1(Ω). Consequently,
Φ(T ba(s)),Φ(T b(s)) and Φ(Ta(s)) ∈ H1(Ω). Furthermore, with repeated application of
Lemma 4.4 and since Φ is increasing we infer that

∇(Φ(s)− Φ(b))+ = ∇(Φ(s))1{Φ(b)<Φ(s)} = ∇Φ(s) 1{b<s} = ∇Φ(s) 1{b≤s}.

Analogous formulae hold for (Φ(s)−Φ(a))−. Combination of these results yields (4.17).

With the previous lemma, the regularity of T ba(s) is a direct consequence, provided Φ is
smooth.

Proposition 4.13 (Regularity of truncations I). Let a, b ∈ (0, 1) and a bounded domain
Ω ⊂ Rd be given. Furthermore, let Φ ∈ C1([0, 1]) be such that Φ′(s) > 0 for s ∈ (0, 1),
Φ′(0) = 0, and Φ′(1) = 0. For s ∈ L∞(Ω, [0, 1]) with Φ(s) ∈ H1(Ω), there holds
T ba(s) ∈ H1(Ω) and

Φ′[T ba(s)]∇[T ba(s)] = ∇[Φ(T ba(s))]. (4.18)

Proof. With (Φ−1)′(u) > 0 for u ∈ [Φ(a),Φ(b)], the inverse function theorem implies that
Φ−1 ∈ C1([Φ(a),Φ(b)]). We extend Φ−1 linearly and continuously differentiable onto R
and denote the extension by Φ̃−1. Application of Proposition 4.2, i.e. of the chain rule,
and Lemma 4.12 yields T ba(s) = Φ̃−1(Φ(T ba(s))) ∈ H1(Ω). With this information and
realizing that, due to the assumptions, the continuous and constant extension of Φ is in
C1(R) with bounded derivative, we apply Proposition 4.2 and deduce

∇[Φ(T ba(s))] = Φ′(T ba(s))∇[T ba(s)].

Remark 4.14. The statement of Proposition 4.13 may be extended to the case where
a = 0 or b = 1, provided Φ′(0) > 0 or Φ′(1) > 0, respectively. In that case the argument
presented above remains unchanged. /

Lemma 4.12 and Proposition 4.13 imply the following identities for∇[T ba(s)].
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Corollary 4.15. Let the assumptions of Proposition 4.13 be fulfilled. Then, there holds

∇[T ba(s)] = 1
Φ′(s)∇[Φ(s)]1{a≤s<b} = 1

Φ′(s)∇[Φ(s)]1{a<s≤b}

= 1
Φ′(s)∇[Φ(s)]1{a≤s≤b}.

(4.19)

Furthermore, for every y ∈ [0, 1] there holds ∇[T ba(s)] = 0 a.e. on {s = y}.

4.2.2 The x-dependent Case

We recall the main steps to obtain the result of Proposition 4.13. Firstly, we used the
inverse function theorem to derive that Φ−1 is smooth on an interval bounded away
from zero and one. Secondly, we extended the function smoothly with bounded deriva-
tives. Thirdly, the characterization of Φ(T ba(s)) together with the chain rule provided
that T ba(s) ∈ H1(Ω). Lastly, we applied the chain rule again to obtain the identity in
(4.18).

In the x-dependent case, we want to implement the same program. With Corollary
4.9 the chain rule is already proven. On Φ we impose assumptions that resemble those
of Proposition 4.13 adapted to the x-dependent problem. A typical shape of such a
function Φ is depicted in Figure 4.1 and labeled Φ2.

Assumption A4.1. Let Φ ∈ C1(Ω× [0, 1]), be such that Φ′(x, s) > 0 for s ∈ (0, 1) and
every x ∈ Ω, and Φ′(x, 0) = Φ′(x, 1) = Φ(x, 0) = 0 for every x ∈ Ω.

The inverse of Φ needs to be understood in the sense of Definition 1.6 and we denote it
by Φ−1. As in the x-independent case, regularity properties of Φ provide regularity of
Φ−1.

Lemma 4.16 (Properties of Φ−1). Let Ω ⊂ Rd be a bounded domain, let Φ be as
in Assumption A4.1 and let Φ−1, σ,KΦ and Kσ

Φ be as in Definition 1.6. There holds
Φ−1 ∈ C(KΦ) and Φ−1 ∈ C1(Kσ

Φ). On Kσ
Φ we find

∂uΦ−1(x, u) = 1
Φ′(x,Φ−1(x, u)) (4.20)

and
∇x[Φ−1(x, u)] = − 1

Φ′(x,Φ−1(x, u))∇xΦ(x,Φ−1(x, u)). (4.21)

We recall that the setsKΦ andKσ
Φ are depicted in Figure 4.1.
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Proof. Step 1: Uniform continuity of Φ−1. We start with the uniform continuity of
Φ−1. Let (x, u) ∈ KΦ be given and (xk, uk) ∈ KΦ be a sequence with (xk, uk)→ (x, u).
Thanks to the properties of Φ, we find for each pair (x, u), (xk, uk), for k ∈ N, a unique
s, sk ∈ [0, 1] such that Φ(x, s) = u and Φ(xk, sk) = uk, respectively. The corresponding
sequence sk is bounded and thus admits a convergent subsequence sk′ → s̃. Thanks to
the continuity of Φ and the convergence of (xk, uk)→ (x, u) we obtain

Φ(x, s̃)← Φ(xk′ , sk′) = uk′ → u = Φ(x, s).

Consequently, due to the properties of Φ, we conclude s = s̃ and, by a standard argument
[DiB02, I.1.1], that the whole sequence sk converges to s. Furthermore, we obtain

Φ−1(xk, uk) = sk → s = Φ−1(x, u)

and we conclude, due to the compactness of KΦ, that Φ−1 is uniformly continuous.

Step 2: Uniform continuity of ∂uΦ−1(x, u). Due to the first step of the proof
and the compactness of Kσ

Φ, it suffices to show that the partial derivatives of Φ−1 are
uniformly continuous in int(Kσ

Φ) to infer Φ−1 ∈ C1(Kσ
Φ). From the properties of Φ

and the inverse function theorem in one dimension we infer equation (4.20) on int(KΦ).
Since Kσ

Φ is compact and due to the properties of Φ, there exists ε > 0 such that
(x,Φ−1(x, u)) ∈ Ω× [ε, 1− ε] for (x, u) ∈ Kσ

Φ. Hence, there exists a positive c such that
Φ′(x, s) > c > 0 on Ω × [ε, 1 − ε] and together with the uniform continuity of Φ′ on
Ω× [ε, 1− ε], the uniform continuity of Φ−1 on KΦ and equation (4.20) on int(Kσ

Φ), we
infer that ∂uΦ−1 is uniformly continuous on int(Kσ

Φ).

Step 3: Uniform continuity of ∂jΦ−1(x, u). To consider the x-derivatives, we are
going to exploit the implicit function theorem. Let (x0, u0) ∈ int(Kσ

Φ) be given and
let s0 ∈ (0, 1) be the unique solution of Φ(x0, s0) = u0. Since Φ′(x, s) > 0 for every
x ∈ Ω and s ∈ (0, 1), the implicit function theorem states that there is locally a unique,
continuously differentiable function gu0(x) with gu0(x0) = s0 and Φ(x, gu0(x)) = u0.
Since Φ−1(x, u0) also has these properties we infer Φ−1(x, u0) = gu0(x). For the partial
derivatives, we apply again the implicit function theorem and compute

∂j [Φ−1(x, u0)] = − 1
Φ′(x,Φ−1(x, u0))Φj(x,Φ−1(x, u0)) (4.22)

for (x, u0) ∈ int(KΦ) and j ∈ {1, . . . , n}. Due to the assumptions on Φ and using
the results of the first and second step we infer that ∂jΦ−1 is uniformly continuous
on int(Kσ

Φ) for every j ∈ {1, . . . , n}. From (4.22) we infer (4.21) which concludes the
proof.

Using a reflection, we next show an abstract extension lemma. Later, we apply this
lemma to Φ−1.
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Lemma 4.17 (Extension lemma). Let Ω ⊂ Rd be a bounded domain and let g0, g1 ∈
C1(Ω) be such that g0(x) < g1(x) for every x ∈ Ω. For G1

0 := {(x, t) |x ∈ Ω, g0(x) ≤ t ≤
g1(x)} let f ∈ C1(G1

0) be given. Then, there is an constant C > 0 and an extension f̃
of f such that

f̃ ∈ C1(Ω× R), f̃ |G1
0

= f and ‖f‖C1(Ω×R) ≤ C.

Proof. Step 1: G1
0 = Ω × [0, 1]. We assume that g0 ≡ 0 and g1 ≡ 1. Consequently,

G1
0 = Ω× [0, 1]. We extend f smoothly on Ω× [0,∞) with a reflection. The function

f1(x, t) =

f(x, t) for (x, t) ∈ Ω× [0, 1],
2f(x, 1)− f

(
x, 1

t

)
for (x, t) ∈ Ω× (1,∞)

has the desired properties and, particularly, ‖f‖C1(Ω×[0,∞) is bounded. With a reflection
at the set where t = 0, we obtain the extension

f̃(x, t) =
{
f1(x, t) for (x, t) ∈ Ω× [0,∞)
2f1(x, 0)− f1(x,−t) for (x, t) ∈ Ω× (−∞, 0).

with the desired properties.

Step 2: General case. We define the transformation

F : Ω× R→ Ω× R
(x, τ) 7→ (x, τg1(x) + (1− τ)g0(x))

with inverse
F−1(x, t) :=

(
x,

t− g0(x)
g1(x)− g0(x)

)
in t for fixed x ∈ Ω. By the properties of g0 and g1 we see that F, F−1 ∈ C1(Ω × R).
Furthermore, we obtain

F |Ω×[0,1](Ω× R) = G1
0 and F−1(G1

0) = Ω× [0, 1].

Hence, h := f ◦F ∈ C1(Ω× [0, 1]). Extend h by the first step and obtain h̃ ∈ C1(Ω×R).
Choosing f̃ = h̃ ◦ F−1 completes the proof.

Remark 4.18. We emphasize that the proof of the extension lemma does not rely
on boundary regularity of Ω since we only extended perpendicular to Ω. In typical
situations, Ω is assumed to have Lipschitz boundary and an alternative proof can be
obtained with the remarkable Whitney extension theorem. It provides a C1 extension
of f to an open domain in Rd+1 if G1

0 is quasiconvex; see e.g. [BB11, Theorem 2.64],
the classical articles by Whitney [Whi34a], [Whi34b], or the book [EG92, chapter 6.5].
For a Lipschitz domain Ω, we find that G1

0 is also Lipschitz and thus quasiconvex; this
is essentially the content of [Alt06, section 8.4]. /
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4 Chain Rules and Integration by Parts

It remains to show the characterization of Φ(·, T ba(s)) to have the tools required to per-
form the program presented at the beginning of this section.

Lemma 4.19 (Characterization of Φ(·, T ba(s))). Let Ω ⊂ Rd be a bounded domain, let
Φ be as in Assumption A4.1 and let s ∈ L∞(Ω, [0, 1]) be such that Φ(·, s) ∈ H1(Ω). For
0 < a < b < 1, there holds

Φ(x, s(x)) = (Φ(x, s(x))− Φ(x, b))+ + Φ(x, T ba(s(x)))− (Φ(x, s(x))− Φ(x, a))−
Φ(x, s(x)) = (Φ(x, s(x))− Φ(x, b))+ + Φ(x, T b(s(x)))
Φ(x, s(x)) = Φ(x, Ta(s(x)))− (Φ(x, s(x))− Φ(x, a))−.

(4.23)

Additionally, there holds Φ(·, T ba(s)),Φ(·, Tb(s)) and Φ(·, Ta(s)) ∈ H1(Ω) with

∇[Φ(·, T ba(s))] = ∇[Φ(·, s)]1{a<s<b} +∇[Φ(·, a)]1{s≤a} +∇[Φ(·, b)]1{b≤s}
= ∇[Φ(·, s)]1{a≤s<b} +∇[Φ(·, a)]1{s<a} +∇[Φ(·, b)]1{b≤s}
= ∇[Φ(·, s)]1{a≤s≤b} +∇[Φ(·, a)]1{s<a} +∇[Φ(·, b)]1{b<s}

(4.24)

and

∇[Φ(·, T b(s))] = ∇[Φ(·, s)]1{s<b} +∇[Φ(·, b)]1{b≤s}
= ∇[Φ(·, s)]1{s≤b} +∇[Φ(·, b)]1{b<s}

∇[Φ(·, Ta(s))] = ∇[Φ(·, s)]1{a<s} +∇[Φ(·, a)]1{s≤a}
= ∇[Φ(·, s)]1{a≤s} +∇[Φ(·, a)]1{s<a}.

(4.25)

Proof. The proof is performed along the lines of the proof of Lemma 4.12; it suffices to
take the x-dependence of Φ(x, b) and Φ(x, a) into account in each step of the proof.

Remark 4.20. In equations (4.24) and (4.25) we may use the identities ∇[Φ(x, a)] =
∇xΦ(x, a) and ∇[Φ(x, b)] = ∇xΦ(x, b) for a.e. x ∈ Ω. /

Gathering the previous statements permits to obtain regularity of truncations of s also
in the x-dependent case.

Proposition 4.21 (Regularity of truncations II). For a bounded domain Ω ⊂ Rd, Φ as
in Assumption A4.1, s ∈ L∞(Ω, [0, 1]) with Φ(·, s) ∈ H1(Ω) and 0 < a < b < 1, there
holds T ba(s) ∈ H1(Ω). Furthermore, we find

∇[Φ(·, T ba(s))] = Φ′(·, T ba(s))∇[T ba(s)] +∇xΦ(·, T ba(s)). (4.26)

Proof. For σ < min{a, b}, we infer from Lemma 4.16 that Φ−1 ∈ C1(Kσ
Φ); thus, with

g0(x) = Φ(x, a) and g1(x) = Φ(x, b) and G1
0 defined in Lemma 4.17, Φ−1 ∈ C1(G1

0).
Application of the extension lemma yields a C1 extension of Φ−1 from G1

0 onto Ω × R
that is denoted by Φ̃−1.
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From Lemma 4.19 we infer that Φ(·, T ba(s)) ∈ H1(Ω). Consequently, Corollary 4.9 ap-
plied with g = Φ̃−1 and u = Φ(x, T ba(s(x))) yields T ba(s) ∈ H1(Ω). Due to Assumption
A4.1, the extension

Φ̃(x, s) :=


0 s < 0,
Φ(x, s) s ∈ [0, 1],
Φ(x, 1) s > 1

of Φ is in C1(Ω×R) with bounded derivatives. Thus, we can apply the chain rule from
Corollary 4.9 again and obtain (4.26).

Remark 4.22. A remark similar to Remark 4.14 applies to Proposition 4.21. The
proposition holds for a = 0 and b = 1 provided Φ′(x, 0) > 0 and Φ′(x, 1) > 0 for every
x ∈ Ω, respectively. Furthermore, the assumption Φ(x, 0) = 0 is not essential; we only
require that Φ(x, 0) is a smooth curve. /

Analogously to section 4.2.1, we derive from Lemma 4.19 and Proposition 4.21 the
following identities for ∇[T ba(s)].

Corollary 4.23. Let the assumptions of Proposition 4.21 be fulfilled. Then there holds

∇[T ba(s)] = 1
Φ′(·, s) [∇[Φ(·, s)]−∇xΦ(·, s)]1{a<s<b}

= 1
Φ′(·, s) [∇[Φ(·, s)]−∇xΦ(·, s)]1{a≤s<b}

= 1
Φ′(·, s) [∇[Φ(·, s)]−∇xΦ(·, s)]1{a≤s≤b}

(4.27)

Furthermore, for every y ∈ [0, 1] there holds ∇[T ba(s)] = 0 a.e. on {s = y}.

4.3 The Steklov Average

Throughout this section, let I = (a, b) ⊂ R with −∞ ≤ a < b ≤ ∞ be an open interval
and X be a Banach space. We use the Bochner-integral to define Banach-space valued
integrals, see e.g. [Boc33], [DU77] or [Sch13].

Definition 4.24. For p ∈ [1,∞], let u ∈ Lp(I;X) be a function extended by zero on
R \ I. For h 6= 0, the Steklov average of u is defined as

uh(t) := 1
h

∫ t+h

t
u(s) ds ∈ X.
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Remark 4.25. The Steklov average of u can be written as a convolution

uh(t) =
(
u ∗

1/−h,0/
|h|

)
(t),

where we used the notation for /a, b/ introduced in section 1.4. Consequently, we obtain
the estimate ‖uh‖p ≤ ‖u‖p for any u ∈ Lp(I;X) with p ∈ [1,∞]; see [Alt06, chapter
2.12]. /

Lemma 4.26. Let p, p′ ∈ [1,∞] with 1
p + 1

p′ = 1, h 6= 0, f ∈ Lp(R;X) and g ∈ Lp′(R)
be given. Then there holds∫ b

a

∫ t+h

t
f(s) ds g(t) dt =

∫ b

a

∫ t

t−h
g(s) ds f(t) dt

+
∫ b+h

b

∫ b

t−h
g(s) ds f(t) dt−

∫ a+h

a

∫ a

t−h
g(s) ds f(t) dt ∈ X.

(4.28)

Remark 4.27. For unbounded intervals, we use the convention ∞+ h =∞ and analo-
gous definitions. Then, for a = −∞ or b = ∞, the last two integrals in equation (4.28)
may vanish depending on the form of I. For negative h, we exploit

∫ t+h
t = −

∫ t
t+h. /

Proof. We only consider the case of a bounded interval I. The proof for unbounded
intervals works along the lines of this proof with the obvious modifications.

From Remark 4.25, we infer∥∥∥∥∥
∫ t+h

t
f(s)

∥∥∥∥∥
p

= |h| ‖fh‖p ≤ |h| ‖f‖p .

An analogous result also holds for g. Hence, the integrals in (4.28) are well-defined.
Using Fubini’s theorem and several substitutions we deduce∫ b

a

∫ t+h

t
f(s) ds g(t) dt =

∫ h

0

∫ b

a
f(t+ s)g(t) dt ds =

∫ h

0

∫ b+s

a+s
f(t)g(t− s) dt ds

=
∫ h

0

∫ b

a
f(t)g(t− s) dtds+

∫ h

0

[∫ b+s

b
f(t)g(t− s) dt−

∫ a+s

a
f(t)g(t− s) dt

]
ds

=
∫ b

a

∫ t

t−h
g(s) ds f(t) dt+

∫ b+h

b

∫ b

t−h
g(s) ds f(t) dt−

∫ a+h

a

∫ a

t−h
g(s) ds f(t) dt .

Lemma 4.28 (Properties of the Steklov average). The Steklov average, as given by
Definition 4.24, of a function u ∈ Lp(I;X) has the properties

1. uh ∈ C(Ī;X)
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2. For 1 ≤ p <∞, we find the convergence uh → u in Lp(I;X) as h→ 0

3. uh ∈W 1,p(I;X) with weak derivative ∂t[uh(t)] = u(t+h)−u(t)
h ∈ X for almost every

t ∈ I
4. Let I be a bounded interval and u ∈ W 1,1(I;X). Then ∂t[uh(t)] = [∂tu]h(t) in X

for a.e. t ∈ (max{a, a− h},min{b, b− h}).

Proof. Ad 1. Let a < s < t < b be given and estimate

‖uh(t)− uh(s)‖X = 1
h

∥∥∥∥∥
∫ t+h

t
u(τ) dτ −

∫ s+h

s
u(τ) dτ

∥∥∥∥∥
X

= 1
h

∥∥∥∥∥
∫ t+h

s+h
u(τ) dτ −

∫ t

s
u(τ) dτ

∥∥∥∥∥
X

≤ 1
h

∫ t

s
‖u(τ)‖X + ‖u(τ + h)‖X dτ .

Due to the absolute continuity of the Lebesgue integral, see e.g. [DiB02, III.Theorem
11.1], we conclude that uh is uniformly continuous in t. We emphasize that due to the
definition of the Steklov average, u = 0 on R \ I.

Ad 2. Since the Steklov average can be regarded as a convolution, the convergence in
Lp(I;X) follows from standard Lp-theory [see Alt06, section 2.14].

Ad 3. Let ϕ ∈ C∞c (I) and h 6= 0 be given. We extend u on R \ I by zero. We apply
Lemma 4.26, take into account that supp(u), supp(ϕ) ⊂ I, and exploit the summation
by parts formula to obtain∫

I
uh(t)ϕ′(t) dt =

∫
I

1
h

∫ t

t−h
ϕ′(s) ds u(t) dt

=
∫
I

ϕ(t)− ϕ(t− h)
h

u(t) dt = −
∫
I

u(t+ h)− u(t)
h

ϕ(t) dt .

Ad 4. Since u ∈ W 1,1(I;X), it possesses an absolutely continuous representative, see
e.g [Sch13, Proposition 10.8] and [Eva98, section 5.9, Theorem 2]. Hence, we find for a.e.
t ∈ (max{a, a− h},min{b, b− h}) the identity

u(t+ h)− u(t) =
∫ t+h

t
∂tu(τ) dτ ∈ X.

Division by h proves 4.

Remark 4.29. Occasionally, we require pointwise properties of integrable functions f .
Such properties are often deduced in Lebesgue points, i.e. points t such that

−
∫ t+h

t
‖f(s)− f(t)‖X → 0 as h→ 0 (4.29)
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holds. For real-valued functions we refer to [Rud99, 7] and for vector valued functions we
refer to [DU77, II.Theorem 9]. We emphasize that the Lebesgue differentiation theorem
holds in both cases, i.e. (4.29) holds for a.e. t in the domain of f . Consequently, with
the properties of the Steklov average one derives from (4.28) for u ∈ W 1,p(I;X) and
ϕ ∈ C∞c (R) the classical integration by parts formula

∫ t2

t1
∂tuϕ = u(t2)ϕ(t2)− u(t1)ϕ(t1)−

∫ t2

t1
u∂tϕ ∈ X (4.30)

for a.e. t1 < t2 ∈ I. With a density argument and properties of the Bochner integral, this
formula can be extended to the case ϕ ∈W 1,p′(I;X ′) for suitable p, p′ and spaces X,X ′.
In this case the product needs to be replaced by an appropriate duality pairing. /

When considering the product of an integrable function f with a Lipschitz function g,
we find Lebesgue points of the product in zeroes of g.

Lemma 4.30 (Lebesgue points of products). Let f ∈ L1(I;X) and g : I → R be
Lipschitz continuous. Let t0 ∈ I be such that g(t0) = 0. Then t0 is a Lebesgue point of
the product fg, i.e.

−
∫ t0+h

t0
‖f(t)g(t)‖X −−−→h→0

0.

Proof. For |h| < h0 small enough, we find Bh(t0) ⊂ Bh0(t0) ⊂⊂ I and, with the Lipschitz
constant L of g on Bh0(t0) and g(t0) = 0, we compute

1
h

∫ t0+h

t0
‖f(t)g(t)‖X dt ≤ 1

h

∫ t0+h

t0
‖f(t)[g(t)− g(t0)]‖X dt

≤ L
∫ t0+h

t0
‖f(t)‖X

|t− t0|
h

dt ≤ L
∫ t0+h

t0
‖f(t)‖X dt −−−→

h→0
0

due to the absolute continuity of the Lebesgue integral.

Lemma 4.31 (Lebesgue points of a composition). Let g : X → X be Lipschitz contin-
uous, let f ∈ L1(I;X) and let t0 ∈ I be a Lebesgue point of f . Then t0 is a Lebesgue
point of g ◦ f .

Proof. The lemma follows from (4.29) and the Lipschitz continuity of g with respect
to the X-norm. More precisely, we find i.e. ‖g(f(t))− g(f(s))‖X ≤ L ‖f(t)− f(s)‖X ,
where L is the Lipschitz constant of g and t, s ∈ I are arbitrary.
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4.4 Integration by Parts

With the properties of the Steklov average, we are in the position to derive integration
by parts formulas related to (4.4).

Lemma 4.32 (Integration by parts I). Let Ω, Q and V be as in (1.20)–(1.23). Let
s ∈ L∞(Q; [0, 1]) be such that ∂ts ∈ L2(0, T ;V ′) and assume there exists ε > 0 such that
T 1−ε
ε (s) ∈ L2(0, T ;H1(Ω)). Let a Lipschitz continuous function g : [0, 1] → R be given

such that g is constant on [0, ε] ∪ [1− ε, 1]. For any antiderivative G of g, there holds∫ t2

t1
〈∂ts, g(s)ξ〉V ′,V =

∫
Ω
G(s(t))ξ(t)

∣∣∣∣t=t2
t=t1
−
∫ t2

t1

∫
Ω
G(s)∂tξ (4.31)

for every ξ ∈ C∞c (Ω× R) and a.e. 0 < t1 < t2 < T .

Proof. It suffices to show the lemma for nondecreasing g. Since Lipschitz continuous
functions are of bounded variation, we may decompose g = g1 − g2, where g1, g2 are
nondecreasing functions. Particularly, choosing g1 and g2 via the Jordan decomposition,
we obtain that both functions are Lipschitz continuous and constant on [0, ε] ∪ [1 −
ε, 1], see [DiB02, chapter IV.1]. Furthermore, thanks to linearity, it suffices to consider
nonnegative ξ ∈ C∞c (Ω× R). Hence, let us assume that g is a nondecreasing, Lipschitz
continuous function and that ξ ∈ C∞c (Ω× R) is nonnegative.

From s ∈ L∞(Q) we deduce g(s), G(s) ∈ L∞(Q). Furthermore, g(s) = g(T 1−ε
ε (s)) ∈

L2(0, T ;H1(Ω)) and hence g(s)ξ ∈ L2(0, T ;H1
0 (Ω)) ⊂ L2(0, T ;V ). Consequently, for

a.e. t ∈ (0, T ) the duality pairing 〈∂ts(t), g(s(t))ξ(t)〉V ′,V and the right hand side of
(4.31) are well-defined. Using the properties of the Steklov average from lemma 4.28
and integration with respect to t over (t1, t2), we obtain∫ t2

t1
〈∂ts, g(s)ξ〉V ′,V ←−−−

h→0

∫ t2

t1

∫
Ω

[∂ts]hg(s)ξ.

The monotony of g implies the convexity of G. For 0 < h < T − t2 we use again Lemma
4.28, exploit the boundedness and the convexity of G, i.e. G(b) − G(a) ≥ g(a)(b − a),
and compute with summation by parts∫ t2

t1

∫
Ω

[∂ts]hg(s)ξ =
∫ t2

t1

∫
Ω

s(t+ h)− s(t)
h

g(s(t))ξ(t) dt

≤
∫ t2

t1

∫
Ω

G(s(t+ h))−G(s(t))
h

ξ(t) dt =
∫ t2+h

t2

∫
Ω

G(s(t))ξ(t− h)
h

dt

−
∫ t1+h

t1

∫
Ω

G(s(t))ξ(t− h)
h

−
∫ t2

t1

∫
Ω
G(s(t))ξ(t)− ξ(t− h)

h
dt

h→0−−−→
∫

Ω
G(s(t))ξ(t)

∣∣∣∣t=t2
t=t1
−
∫ t2

t1

∫
Ω
G(s(t))∂tξ dt,

(4.32)

59



4 Chain Rules and Integration by Parts

for a.e. 0 < t1 < t2 < T . The convergence on the right hand side of (4.32) follows
from the continuity of ξ, the uniform boundedness of difference quotients of ξ and their
uniform convergence towards ∂tξ, and from Lebesgue’s differentiation theorem [DiB02,
chapter IV.11]. For negative h with 0 < −h =: η < t1, we see that [∂ts]h is a backward
difference quotient and, similarly to (4.32), we obtain∫ t2

t1

∫
Ω

[∂ts]hg(s)ξ =
∫ t2

t1

∫
Ω

[∂ts]−ηg(s)ξ =
∫ t2

t1

∫
Ω

s(t)− s(t− η)
η

g(s(t))ξ(t) dt

≥
∫ t2

t1

∫
Ω

G(s(t))−G(s(t− η))
η

ξ(t) dt =
∫ t2

t2−η

∫
Ω

G(s(t))ξ(t+ η)
η

dt

−
∫ t1

t1−η

∫
Ω

G(s(t))ξ(t+ η)
η

dt−
∫ t2

t1

∫
Ω
G(s(t))ξ(t+ η)− ξ(t)

η
dt

h→0−−−→
∫

Ω
G(s(t))ξ(t)

∣∣∣∣t=t2
t=t1
−
∫ t2

t1

∫
Ω
G(s(t))∂tξ dt,

(4.33)

for a.e. 0 < t1 < t2 < T . With reasoning as in (4.32) we obtain convergence to the same
limit and we conclude.

Remark 4.33. Without a proof, the previous lemma can be found in [AD85a, p. 366]
for more general ξ lying in an appropriate Sobolev space. Furthermore, the proof of
Lemma 4.32 remains unchanged if ξ ∈ C∞c (Ω ∪ ΓN × R) or if g(s) ∈ L2(0, T ;V ). In the
latter case ξ ∈ C∞(Rd+1) is also allowed. /

Lemma 4.32 provides, at least locally, the admissibility of certain truncations of s as
test functions in (MP). We emphasize that, in general, the lemma is not suited to take
either Dirichlet boundary or initial data into account.

We turn our attention to the justification of e.g. Φ(·, s) as a test function in (MP) from
page 43. We are interested in shapes of Φ(x, ·) as depicted in Figure 4.1 for x ∈ Ω. In
these cases Φ is not necessarily Lipschitz continuous, flat near zero and one, and it is
x-dependent. Hence, Lemma 4.32 does not suffice to justify the use of Φ(·, s) as a test-
function. Imitating the previous proof, while using the definition of initial data in the
sense of traces (4.2), we obtain a formula similar to (4.31) that is suited to treat initial
and time-independent boundary data. Before proving such an improved integration
by parts formula, we define a primitive of a function g subject to a function h with
g(x, h(x)) = 0.

Definition 4.34. Let h(x) ∈ L∞(Ω; [0, 1]) and a Carathéodory function g : Ω×[0, 1]→ R
be given. We assume that for every x ∈ Ω there holds that g(x, ·) is nondecreasing and
g(x, h(x)) = 0. Furthermore, we assume that −∞ < g(x, s) < ∞ holds on Ω × (0, 1).
We define G : Ω× [0, 1]→ R as

G(x, s) =
∫ s

h(x)
g(x, σ) dσ (4.34)
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4.4 Integration by Parts

for (x, s) ∈ Ω× [0, 1] and say that G is the (nonnegative) primitive of g with respect to
h.

From the previous definition we infer that G(x, h(x)) = 0 for x ∈ Ω. Since g(x, ·) is non-
decreasing we obtain thatG(x, ·) is nonnegative and convex for every x ∈ Ω.

Remark 4.35 (On the subdifferential of G). Assume g ∈ C(Ω × [0, 1]) in Definition
4.34. Then, the fundamental theorem of calculus yields that G′(x, v) = g(x, v) for every
v ∈ [0, 1] and x ∈ Ω. Additionally, for given v ∈ [0, 1] the subdifferential relation
G(x, u) ≥ G(x, v) + g(v)(u − v) holds for every u ∈ [0, 1]. With the subdifferential
notation, this is written as ∂G(x, v) = g(x, v).

We remark that neither of the mentioned identities needs to hold in points that satisfy
g(x, v) = ∞. Exemplary, assume h(x) ≡ 0, g(x, 1) = ∞ and 0 ≤ g(x, v) < ∞ for x ∈ Ω
and v ∈ [0, 1). In that situation we obtain G(x, 1) = ∞, but the differential of G(x, v)
is undefined for v = 1. By definition of the subdifferential, we obtain ∂G(x, 1) = ∅ but
∞ = g(x, 1). Particularly, the subdifferential relation is not satisfied for v = 1. /

Lemma 4.36 (Integration by parts II). Let Ω, Q and V be as in (1.20)–(1.23) and
let h, g and G be as in Definition 4.34. Let s0 ∈ L∞(Ω, [0, 1]) and s ∈ L∞(Q, [0, 1])
be given. Furthermore, we assume that ∂ts ∈ L2(0, T ;V ′), g(·, s) ∈ L2(0, T ;V ) and
s(·, 0) = s0 in the sense of traces, i.e. such that (4.2) holds. If G(·, s0) ∈ L1(Ω), then
G(·, s) ∈ L∞(0, T ;L1(Ω)) and∫ t0

0
〈∂ts, g(s)ξ〉V ′,V ≥

∫
Ω
G(s(t0))ξ(t0)−

∫
Ω
G(s0)ξ(0)−

∫ t0

0

∫
Ω
G(s(t))∂tξ(t) (4.35)

for every nonnegative ξ ∈ C∞c (Rd × [0, T )) and a.e. t0 ∈ (0, T ). Furthermore, if, for
some p ∈ [1,∞), there exists a set E ⊂ (0, T ) of measure zero such that s(t) ⇀ s0 in
Lp(Ω) for t→ 0, t ∈ (0, T ) \ E , then equality holds in (4.35).

In Lemma 4.43 we observe that the convergence s(t) ⇀ s0 can often be obtained by
means of the differential equation.

Proof of Lemma 4.36. Let h > 0 and t0 ∈ (0, T ) be given (0 < h < T − t0). We extend
s on −h < t < 0 via s(t) := s0; since (4.2) holds, i.e. s0 = s(0) in the sense of traces,
this extension is in W 1,1(−h, T ;V ′), see [Sch13, Lemma 10.10]. Due to the assumptions,
the left-hand side in (4.35) is well-defined.

To show that the right-hand side of (4.35) is well-defined, we need to exploit the convexity
of G and the subdifferential propberties of G under consideration of Remark 4.35. Since
g(·, s) ∈ L2(0, T ;V ) we infer that g(·, s(t)) ∈ L2(Ω) for a.e. t ∈ (0, T ) and, hence, for
a.e. t ∈ (0, T ) there holds −∞ < g(x, s(x, t)) <∞ for a.e. x ∈ Ω. In particular, we find
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for a.e. t that g(x, s(x, t)) ∈ ∂G(x, s(x, t)) for a.e. x ∈ Ω. Hence, the convexity of G in
s implies for a.e. t > 0 that

(s(t)− s(t− h))g(·, s(t)) ≥ G(·, s(t))−G(·, s(t− h)) (4.36)

pointwise almost everywhere in Ω. Since G is nonnegative, we infer

0 ≤ G(·, s(t)) ≤ g(·, s(t))(s(t)− s(t− h)) +G(·, s(t− h)).

Due to the assumptions and particularly since G(·, s0) ∈ L1(Ω) we deduce with an
inductive argument that G(·, s) ∈ L1(Ω× (−h, t0 + h)).

With the integrability of G(·, s), Lemma 4.28, particularly with the identity [∂ts]−h =
∂t[s−h] ∈ V ′ a.e. on (0, t0) for the backward difference quotient, and equation (4.36), we
proceed as in (4.33) with t1 = 0 and t2 = t0 to obtain equation (4.35) for a.e. t0 ∈ (0, T ).
We want to point out the difference in comparison to the proof of Lemma 4.32. The
integral regarding t1 = 0 is treated with the extension of s; particularly, we obtain∫ 0

−h

∫
Ω

s(t)ξ(t+ h)
h

=
∫ 0

−h

∫
Ω

s0ξ(t+ h)
h

−−−→
h→0

∫
Ω
s0ξ(0).

Furthermore, with ξ ≡ 1 on [0, t0] we infer from (4.35) that G(·, s) ∈ L∞(0, T ;L1(Ω)).

With reasoning as above and as in equation (4.32) but taking the inferior limit, we infer
the upper estimate∫ t0

0
〈∂ts, g(s)ξ〉V ′,V ≤

∫
Ω
G(·, s(t0))ξ(t0)

− lim sup
h→0

1
h

∫ h

0

∫
Ω
G(·, s(t))ξ((t))−

∫ t0

0

∫
Ω
G(·, s(t))∂tξ(t)

(4.37)

for a.e. t0 ∈ (0, T ). Comparing (4.35) and (4.37), we conclude

lim sup
h→0

1
h

∫ h

0

∫
Ω
G(s(t))ξ(t) ≤

∫
Ω
G(s0)ξ(0).

Consequently, for the proof of the reverse inequality (4.37) it suffices to show that

lim inf
h→0

1
h

∫ h

0

∫
Ω
G(·, s(t))ξ(t) ≥

∫
Ω
G(·, s0)ξ(0). (4.38)

Lemma 4.37 is applicable to f = Gξ(0) and we find s0 ∈Mf . We conclude that MGξ(0)
is a convex set and that the corresponding functional is weakly lower semicontinuous.
Since s(t) ⇀ s0 in Lp(Ω) for some p ∈ [1,∞) and t ∈ (0, T ) \ E, we infer that

lim inf
t→0,t6∈E

∫
Ω
G(·, s(t))ξ(0) ≥

∫
Ω
G(·, s0)ξ(0).
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We denote the limit inferior by c and define η(t) =
∫

ΩG(·, s(t))ξ(0). By definition, we
obtain for every ε > 0 a δ > 0 such that η(t) ≥ c− ε for every t ∈ (0, δ) \E. For h0 = δ
we deduce −

∫ h
0 η(t) ≥ c− ε for every 0 < h < h0. Hence, we infer

lim inf
h→0

−
∫ h

0
η(t) ≥ lim inf

t→0,t6∈E
η(t) ≥

∫
Ω
G(·, s0)ξ(0), (4.39)

which is (4.38), and we conclude.

Lemma 4.37. Let Ω ⊂ Rd be a bounded domain and f : Ω × [0, 1] → [0,∞] be a
Carathéodory function such that s 7→ f(x, s) is convex for a.e. x ∈ Ω. Define

Mf := {v ∈ L∞(Ω, [0, 1]) | f(·, v) ∈ L1(Ω)}
and let p ∈ [1,∞). If Mf 6= ∅, then Mf ⊂ Lp(Ω) is a convex set and F : Mf → [0,∞]
defined by

F (v) =
∫

Ω
f(x, v(x)) dx (4.40)

is a convex functional. Furthermore, F is lower semicontinuous with respect to the weak
convergence on Lp(Ω).

Proof. Since Ω is bounded, any L∞(Ω) function is in Lp(Ω) and consequently Mf ⊂
Lp(Ω). The convexity of f in s implies thatMf is a convex set and that F : Mf → [0,∞]
is a convex functional.

Let vk, v ∈ Mf with vk → v ∈ Lp(Ω). By definition of the inferior limit, there exists
a subsequence kl such that liml→∞ F (vkl) = lim infk→∞ F (vk). The subsequence can
be chosen such that vkl → v pointwise a.e. in Ω. The continuity of f implies that
f(x, vkl(x)) → f(x, v(x)) for l → ∞ for a.e. x ∈ Ω. Since f(x, vkl(x)) ≥ 0, we apply
Fatou’s lemma to deduce

lim inf
k→∞

F (vk) = lim
l→∞

∫
Ω
f(x, vkl(x)) dx ≥

∫
Ω
f(x, v(x)) dx = F (v),

i.e. the lower semi-continuity of F with respect to the strong convergence in Lp(Ω). From
the separation theorem for convex sets we derive that F is weakly lower semi-continuous
in Lp(Ω), see [Sch13, Theorem 13.8].

Remark 4.38 (Extensions of the integration by parts formulae). We consider the proofs
of the integration by parts formulae again and take Lemma 4.30 into accounts. After a
suitable extension of s for t > T , e.g. extension by its trace value at t = T , we realize
that 4.32 and 4.36 also hold for t2 = T and t0 = T , respectively. We find also that
Lemma 4.32 holds for x-dependent g as in Definition 4.34.

We also intend to apply both integration by parts formulae to equation (3.23) of the two-
phase problem. Hence, we require integration by parts formulae that take the porosity
φ into account. Since the porosity φ is time-independent, we find in φ∂ts = ∂t(φs) ∈
L2(0, T ;V ′). Using this in the proofs of Lemmas 4.32 and 4.36, we obtain equations
(4.31) and (4.35) with a factor φ inside every duality pairing or integral over Ω. /
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Boundary Data in Lemma 4.36 and Comparison to the Literature We emphasize that
the proof of the integration by parts formulae relies on the convexity estimate (4.36).
Particularly, we use that g and G do not depend explicitly on the time t. Hence, the
previous integration by parts formulae are only appropriate to treat time-independent
boundary data ΦD ∈ H1(Ω). As a consequence the test function g(x, s) = Φ(x, s) −
ΦD(x) can be applied to (MP).

Integration by parts formulae, similar to the ones stated above, can also be found in
the literature. With the notation b = Φ−1, i.e. Φ(s) = u we cast (MP) into the
form

∂t[b(u)] = ∆u on Q,
u = uD on ΓD × (0, T ),
∂νu = 0 on ΓN × (0, T ),
b(u(x, 0)) = b0(x) on Ω,

(4.41)

and explain the use of integration by parts formulae with respect to (4.41). Typi-
cally, only results for x-independent b are proven in the literature, but generalizations
for the x-dependent case are stated. The following references have in common, that
b needs not to be strictly increasing. This implies that multivalued pressures and, in
contrast to the work at hand, that the unsaturated-saturated flow problem can be han-
dled.

In [AL83, Lemma 1.5] time-dependent Dirichlet boundary data are treated. Particularly,
an integration by parts formulae for the function u− uD applied to (4.41) is used. The
formulae is shown in the case that b is independent of x and is used to obtain an existence
result. Without a proof it is stated that the formula can be extended to the case where
b depends on x. As we saw above, our argument confirms this claim in the case that uD
is time-independent and Φ is as in Assumption A4.1.

In [Car99, Lemma 4, p.324], [CW99, Lemma 4.3] and [Ott95, Lemma 1] integration by
parts formulae are shown to derive an L1-contraction result. In view of (4.41), the use
of the test function ψ(u− f) is justified, where ψ is a sufficiently smooth function that
is used to approximate the sign-function and f depends on x or is constant. As in
[AL83, Lemma 1.5], the integration by parts formulae are stated in the case that b is x-
independent, but extensions are possible. To apply the method of doubling the variables
assumptions on f must be made. In [Car99] and [CW99] the space and time variables are
being doubled, which necessitates that f is constant. In [Ott95] only the time variable
is being doubled, whence f is allowed to depend on x. Particularly, f is chosen such
that ψ(u − f) has the right boundary data. In [Car99] and [CW99] only homogeneous
Dirichlet data are considered, whereas in [Ott95] time-independent Dirichlet data uD
and also Neumann boundary data are treated. Translating this to our notation, we
find that g(x, s) = signε(Φ(x, s)−ΦD(x)) is a valid test-function for the model problem
(MP). However, we need to use the test function g(x, s) = signε(Θ(x, s) − Θ(x, f(x))
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to perform the method of doubling the variables applied to the discontinuous Richards
equation (TDR) from page 24. Since Θ is nonlinear, this case is not covered by the
references mentioned above.

In the succeeding article [Ott97], Otto was able to obtain L1-contraction in the setting of
outflow boundary problems; particularly, time dependent boundary data uD are involved
and, again, the test function ψ(u−uD) is applied to a variant of (4.41).

4.5 The Model Problem Revisited

In this section, we apply the results of sections 4.1 – 4.4 to the model problem (MP) from
page 43. Particularly, we show that the formal calculation (4.7) can be made rigorous.
We show that s(t) ⇀ s0 as t → 0 and sketch the proof of an L1-contraction result for
weak solutions of (MP).

4.5.1 Justification of (4.7)

As before, we consider the x-independent and x-dependent case separately.

Lemma 4.39. Let Ω ⊂ Rd be a bounded domain. Let Φ ∈ C1([0, 1]) be as in Proposition
4.13 and let s ∈ L∞(Ω, [0, 1]) be such that Φ(s) ∈ H1(Ω). For given 0 < ε < 1

2 , we obtain
with Tε := T 1−ε

ε the identity

∇[Φ(s)] = lim
ε→0

Φ′(s)∇[Tε(s)]. (4.42)

Proof. Since Tε(s)→ s uniformly and since Φ is continuous, we obtain

Φ′(s)∇[Tε(s)] = ∇[Φ(Tε(s))] −−−→
ε→0

∇[Φ(s)] in D′(Ω), (4.43)

where we applied the Proposition 4.13 and Corollary 4.15 to obtain the first equality.
The corollary is used to justify the replacement of Φ′(Tε(s)) by Φ′(s). Hence, a potential
L2-limit is identified. To show the L2-convergence we use the same corollary to find
almost everywhere on Ω the identity

Φ′(s)∇[Tε(s)]1{ε<s<1−ε} = ∇[Φ(s)]1{ε<s<1−ε}. (4.44)

Determining the pointwise limit on the right-hand side of (4.44) and using Φ(s) ∈ H1(Ω),
we infer

Φ′(s)∇[Tε(s)]1{ε<s<1−ε} −−−→
ε→0

∇[Φ(s)]1{0<s<1} in L2(Ω) (4.45)

from Lebesgue’s theorem. Since the distributional limit is unique and since L2-convergence
implies D′-convergence, we obtain (4.42).
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Lemma 4.40. Let Φ fulfill Assumption A4.1 and let s ∈ L∞(Ω, [0, 1]) be such that
Φ(·, s) ∈ H1(Ω). For 0 < ε < 1

2 , let Tε := T 1−ε
ε be as in Definition 4.11. Then there

holds

∇[Φ(·, s)] = lim
ε→0

(
∇xΦ(·, Tε(s)) + Φ′(·, s)∇[Tε(s)]

)
= ∇xΦ(·, s) + lim

ε→0

(
Φ′(·, s)∇[Tε(s)]

) (4.46)

in L2(Ω) and the identity

∇[Φ(·, s)]1{0<s<1} +∇xΦ(·, s)1{{s=0}∪{s=1}} = ∇[Φ(·, s)].

Proof. The proof is similar to that of Lemma 4.39. Since Φ is continuous and Tε(s)→ s
uniformly ad ε → 0, we deduce, using Proposition 4.21 and Corollary 4.23, the conver-
gence

∇xΦ(·, Tε(s)) + Φ′(·, s)∇[Tε(s)] = ∇[Φ(·, Tε(s))] −−−→
ε→0

∇Φ(·, s) in D′(Ω). (4.47)

As in the proof of Lemma 4.39, Corollary 4.23 is only needed to justify the replacement of
Φ′(Tε(s)) by Φ′(s). With (4.47) a potential L2-limit is identified. Due to the assumptions
on Φ and the uniform convergence of Tε(s)→ s we infer that∇xΦ(·, Tε(s))→ ∇x(Φ(·, s))
in L2(Ω). With Corollary 4.23, we derive

Φ′(·, s)∇[Tε(s)] = [∇[Φ(·, s)]−∇xΦ(·, s)]1{ε<s<1−ε} (4.48)

for a.e. in Ω. Determining the pointwise limit in (4.48) and using that ∇Φ(·, s),
∇xΦ(·, s) ∈ L2(Ω) we obtain by Lebesgue’s theorem that

Φ′(·, s)∇[Tε(s)] −−−→
ε→0

[∇[Φ(·, s)]−∇xΦ(·, s)] 1{0<s<1} in L2(Ω). (4.49)

Since L2-convergence implies D′-convergence and since the distributional limit is unique
we obtain (4.46). Collecting the previous identities also

∇[Φ(·, s)]1{0<s<1} +∇xΦ(·, s)1{{s=0}∪{s=1}} = ∇[Φ(·, s)]

and conclude.

Remark 4.41. Taking in Lemmas 4.39 and 4.40 the ”simultaeneous” limit T 1−ε
ε was

only done to simplify notation. One obtains similar results if one merely considers the
upper or lower limits. /

With the results from this section, we see that the formal identity (4.7) can be justified
by replacing ∇s1{ε<s<1−ε} essentially by ∇[Tε(s)].
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4.5 The Model Problem Revisited

Remark 4.42. We want to continue Remarks 3.1 and 3.2. In [AD85a, Lemma 3.3 and
p. 389] a solution is constructed that fulfills (3.19) only in the sense that

φ∂ts = ∇ ·
(

lim
ε→0

λ1(s)λ2(s)
λ(s) p′c(s)∇Tε(s) +B(s) +D(s)u

)
. (4.50)

Under certain assumptions on Φ, the previous two lemmas show that (4.50) is equivalent
to

φ∂ts = ∇ · (∆[Φ(s)]−∇xΦ(s) +B(s) +D(s)u) (4.51)

and essentially (3.23) holds. /

4.5.2 Weak Convergence Towards Initial Data

Lemma 4.43 (Weak convergence towards initial data). Let s be a weak solution of the
model problem (MP) in sense of Definition 4.1. Then, there is a set E ⊂ (0, T ) with
|E| = 0 and such that

s(t) ⇀ s0 ∈ L2(Ω)

as t→ 0 for t ∈ (0, T ) \ E.

Proof. Let β ∈ C∞c (Ω) be given and ,for δ > 0, let αδ,t∗ ∈ W 1,1(0, T ) be a sequence of
continuous piecewise linear cut off functions of the interval [0, t∗], i.e.

αδ,t∗(t) =


1 0 ≤ t ≤ t∗,
0 t ≥ t∗ + δ,

linear t∗ < t < t∗ + δ.

Particularly, there holds
∣∣∣α′δ,t∗ ∣∣∣ ≤ 1/δ. For 0 < t∗ < T and δ small enough, we may

choose ξ = αδ,t∗β in (4.1) and (4.2), and we obtain

−
∫ t∗+δ

t∗

∫
Ω
sβ +

∫ t∗+δ

0

∫
Ω
αδ,t∗∇[Φ(·, s)]∇β =

∫
Ω
s0β. (4.52)

To pass with δ → 0, we apply Lebesgue’s differentiation theorem. This yields a set
E ⊂ (0, T ) with |E| = 0 such that∫

Ω
s(t∗)β +

∫ t∗

0

∫
Ω
∇[Φ(·, s)]∇β =

∫
Ω
s0β (4.53)

for any t∗ ∈ (0, T ) \ E. Due to the absolute continuity of the Lebesgue integral, we
obtain passing with t∗ → 0 the convergence

s(t) t→0−−−−−−→
t∈(0,T )\E

s0 in D′(Ω).
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4 Chain Rules and Integration by Parts

Furthermore, since s(t) ∈ L∞(0, T ;L2(Ω)), we find that {s(t)}t∈(0,T )\E ⊂ L2(Ω) is a
bounded set. Hence, up to a subsequence and since the distributional limit is unique, we
obtain s(t) ⇀ s0 in L2(Ω) for any sequence t→ 0 subject to t ∈ (0, T ) \E. We conclude
with a standard argument, see [DiB02, I.1.1].

Remark 4.44. The previous proof exploits that s ∈ L∞(0, T ;Lp(Ω)) for p = 2. The
same reasoning can be used for any p ∈ [1,∞). For p = 1, we require additionally
that {s(t)} is uniformly or equi-integrable to apply the Dunford-Pettis theorem [Bre10,
Theorem 4.30]; this hint is also given in [Ott95, p. 36]. /

Application of Lemma 4.43 and Lemma 4.36, to the model problem (MP), yields with
the test function Φ(x, s)αδ,tβ, where β ≡ 1 on Ω, under the assumption ΦD = h(x) = 0
the a priori estimate (4.3) for a.e. t ∈ (0, T ). For more general Dirichlet data, we require
ΦD = Φ(x, h(x)) ∈ H1(Ω) for some h ∈ L∞(Ω, [0, 1]).

4.5.3 Formal L1-contraction and Doubling the Variables

In this section, we assume that Φ does not depend on x. The basic idea to show
L1-contraction for the model problem (MP) is to multiply the equations for any two
solutions s1 and s2 by sign(Φ(s1)−Φ(s2)) = sign(s2− s2). To obtain the latter identity,
the monotony of Φ(s) is used. For j ∈ {1, 2}, we obtain∫

Ω
∂tsj sign(s1 − s2) +∇(Φ(sj))∇[sign(Φ(s1)− Φ(s2))]. = 0 (4.54)

Subtracting the equations for s1 and s2, and using the total time derivative ∂tu sign(u) =
∂t |u| yields ∫

Ω
∂t |s1 − s2|+ |∇(Φ(s1)− Φ(s2))|2 sign′(Φ(s1)− Φ(s2)) = 0. (4.55)

We interpret sign′ to be nonnegative and obtain, after integration over τ ∈ (0, t) with the
initial data s0,1 and s0,2 of s1 and s2, respectively, the estimate∫

Ω
|s1 − s2| (t) ≤

∫
Ω
|s0,1 − s0,2| .

This estimate implies uniqueness of solutions and completes a first formal proof.

Remark 4.45. In the case of x-dependent Φ an additional term of the form∫
Ω
∇(Φ(s1)− Φ(s2)) sign′(Φ(s1)− Φ(s2))(∇x(Φ(s1)− Φ(s2))

would appear in (4.55). Such a term does, in general, not possess a sign and the argument
fails. /
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4.5 The Model Problem Revisited

There are several issues in this formal proof which all are related to the validity of the test
function. The most obvious problem is the lack of regularity; in general sign(Φ(s1) −
Φ(s2)) 6∈ L2(0, T ;V ). To tackle this issue, one approximates the sign function by a
regularized function signε. The downside of this approximation is that the equality
sign(s1 − s2) = sign(Φ(s1) − Φ(s2)) is not maintained under this approximation. The
use of this equality was essential in the in the step from (4.54) to (4.55). Furthermore,
due to the non-linearity of Φ we cannot expect that ∂t(s1 − s2) sign(Φ(s1)− Φ(s2)) is a
total time derivative of any function.

At this point the chain rule and doubled time variables come into play. However, the
chain rule is not directly applicable since

∂ts1 signε(Φ(s1)− Φ(s2))

is not a total time derivative unless s2 is constant in t. Assuming that for the moment,
we obtain

∂ts1gε(s1, s2) := ∂ts1 signε(Φ(s1)− Φ(s2))

= ∂t

[∫ s1

s2
signε(Φ(u)− Φ(s2))

]
=: ∂tGε(s1, s2).

(4.56)

Hence, let us assume that s1 is a solution for the time variable t and s2 is a solution for the
time variable τ . We repeat the procedure obtained to deduce (4.55) with the following
changes. We use the total time deriative (4.56) for s1 and s2, respectively, exploit the
symmetry of the sign function to obtain −∂τs2 signε(Φ(s1)− Φ(s2)) = ∂τGε(s2, s1) and
infer, similarly to (4.55), the identity∫

Ω
∂tGε(s1(t), s2(τ)) + ∂τGε(s2(t), s1(τ))

+
∫

Ω
|∇(Φ(s1(t))− Φ(s2(τ)))|2 sign′ε(Φ(s1(t))− Φ′(s2(τ))) = 0.

(4.57)

The last integral has a sign and we pass formally to the limit ε→ 0. This yields∫
Ω
∂tG(s1(t), s2(τ)) + ∂τG(s2(t), s1(τ)) ≤ 0

Linking the times again by choosing τ = t, using that G(s1, s2) = |s1 − s2| and integra-
tion over (0, t0) yields the L1-contraction∫

Ω
|s1(t0)− s2(t0)| ≤

∫
Ω
|s0,1 − s0,2|

and we finish the second formal proof.

The lack of rigor in this second proof on L1-contraction essentially affects the limit-
ing process ε → 0. Particularly, the convergence of e.g. ∂tGε → ∂tG and choosing
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4 Chain Rules and Integration by Parts

t = τ afterwards is unclear. As we are going to see, the tool to cope with these is-
sues is the integration by parts formula provided by Lemma 4.36. Using this lemma,
the time derivative acts on a smooth function ξ instead of G(s1, s2) and G(s2, s1), re-
spectively. Consequently, we only need to show convergence Gε(s1, s2) → Gε(s1, s2)
instead of ∂tGε(s1, s2) → ∂tGε(s1, s2). There are two terms coming into play due to
the occurrence of ξ. The ∇ξ-term vanishes by simply choosing ξ constant in space
and the term containing ∂tξ + ∂τξ is used to approximate a Dirac measure in t =
τ .

Remark 4.46. The method of doubling the variables was introduced by Kruzhkov
[Kru70] in the context of conservation laws. Otto [Ott95; Ott97] and Carrillo[Car99]
extended the method to degenerate parabolic equations. In Otto’s works it suffices to
double on the time variable, whereas in Kruzhkov’s and Carrillo’s articles it is required
to double the space and time variable. For a survey on recent results in the environment
of the method of doubling the variables, we refer to [AI12]. /

70



5 L1-contraction for Equations of Richards
type with x-dependence

In this chapter, we provide a proof of Theorem 2.4, following closely the ideas presented in
the formal L1-contraction proof of section 4.5.3. There it was used that Φ is independent
of x. The x-dependence of Φ in our problem makes adaptions necessary. In section 5.1,
we provide notation and results to treat the problem with an x-dependent Φ. In section
5.2, we state the main proposition, which is extended in section 5.3. The extension is
used to prove the main theorem, Theorem 2.4.

In the following, we use the notation introduced at the beginning of chapter 2 in equation
(2.1) and usually suppress the x-dependence of the functions.

5.1 Preliminaries

In contrast to the formal L1-contraction proof in section 4.5.3, we choose signε(Θ(s1)−
Θ(s2)) instead of signε(Φ(s1) − Φ(s2)). The first function is weakly differentiable on
Ω. The second function is only weakly differentiable on Ωl and Ωr separately. As seen
in (4.56) we need to define a transformation similar to Gε adapted to our problem.

Definition 5.1. Let j ∈ {l, r}, v ∈ [0, 1] and ε > 0 be given and let Θj be as in
Assumption A2.3. We define the mappings qε,j and qj : [0, 1]2 → R as

qε,j(u, v) =
∫ u

v
signε(Θj(ξ)−Θj(v)) dξ

and
qj(u, v) = |u− v| .

Lemma 5.2 (Properties of qε,j). Let j ∈ {l, r} and ε > 0 be given. Let qε,j and qj be as
in Definition 5.1. For u, v ∈ [0, 1], the following properties hold

1. The mapping qε,j(·, v) : [0, 1]→ R is convex for every v ∈ [0, 1]

2. 0 ≤ qε,j(u, v)↗ qj(u, v) as ε→ 0.

3. qε,j ∈ C([0, 1]2)

71



5 L1-contraction for Equations of Richards type with x-dependence

4. qε,j → qj uniformly as ε→ 0.

Proof. Ad 1. We consider two cases. If Θj is bounded or if v < 1, then the integrand of
qε is nondecreasing in ξ. Consequently, qε(·, v) is convex. In the remaining case, i.e. in
the caseΘj(1) =∞ and v = 1, we obtain that the integrand in qε,j equals −1 for u ∈ [0, 1)
and consequently we obtain for u ∈ [0, 1] the relation qε,j(u, 1) = qj(u, 1) = |u− 1| which
is clearly convex.

Ad 2. Let Θj be bounded or v < 1. With 0 ≤ sign(u− v) signε(Θj(u)−Θj(v)) ≤ 1, we
find

0 ≤ qε,j(u, v) ≤ |u− v| = qj(u, v)
Since Θj is an increasing function we obtain

sign(u− v) signε(Θj(u)−Θj(v))↗ 1− δuv
as ε → 0 and δ denotes the Kronecker delta. Thus, from the monotone convergence
theorem [Alt06, A1.12], we infer qε,j(u, v) ↗ |u− v| = qj(u, v) for u ∈ [0, 1] as ε → 0.
The remaining case, i.e. Θj(1) =∞ and v = 1, is immediate since signε(Θj(u)−Θj(1)) =
−1 for u ∈ [0, 1). Hence qε(u, 1) = 1− u = |u− 1| for every u ∈ [0, 1].

Ad 3. Let uk, vk ∈ [0, 1] for k ∈ N be such that uk → u and vk → v. With Lebesgue’s
dominated convergence theorem, we conclude

|qε,j(u, v)− qε,j(uk, vk)|

=
∣∣∣∣∫ 1

0
1/u,v/(ξ) signε(Θj(ξ)−Θj(v))− 1/uk,vk/(ξ) signε(Θj(ξ)−Θj(vk)) dξ

∣∣∣∣
≤
∫ 1

0

∣∣∣1/u,v/ − 1/uk,vk/

∣∣∣ (ξ) + |signε(Θj(ξ)−Θj(v))− signε(Θj(ξ)−Θj(vk))| dξ

−−−→
k→∞

0.

Ad 4. Thanks to items 2 and 3, we can apply Dini’s theorem [DiB02, I.Theorem 7.3].
This proves the claim.

Lemma 5.3. We assume that Assumptions A2.1–A2.3 hold. Let s be a weak solution of
(TDR) in the sense of Definition 2.2. Let v ∈ L∞(Ω; [0, 1]) be such that Θ(·, v) ∈ H1(Ω)
and Θ(·, s)−Θ(·, v) ∈ L2(0, T ;V ). Then there holds∫

Q
[qε(s0, v)− qε(s, v)]∂tγ

+
∑

j∈{l,r}

∫
Qj

[∇Φj(s) + λj(s)gj ] · ∇[signε(Θj(s)−Θj(v))γ]

≤
∫
Q
f(s) [signε(Θ(s)−Θ(v))γ]

(5.1)

for every nonnegative γ ∈ C∞c ([0, T )× Rd) and ε > 0.
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Proof. Since Θ(·, s) − Θ(·, v) ∈ L2(0, T ;V ) and since signε is Lipschitz continuous, we
infer from Corollary 4.5 that g(·, s) = signε(Θ(·, s)−Θ(·, v)) ∈ L2(0, T ;V ). Hence, it is
allowed to choose ξ = g(·, s)γ in (2.13) and we obtain (5.1) modulo the inequality and
the term containing the time derivative.

To treat the term containing the time derivative, let G be the primitive of g with respect
to v in the sense of Definition 4.34. Since g is bounded on Ω× (0, 1), we find G(x, s) =
qε(x, s, v) for x ∈ Ω and s ∈ [0, 1]. Thus, under consideration of Remark 4.38 with
t0 = T , we apply Lemma 4.36 and obtain∫

Q
〈∂ts, g(·, s)γ〉V ′,V ≥ −

∫
Ω
qε(s0, v)γ(0)−

∫
Q
qε(s, v)∂tγ

=
∫
Q

[qε(s0, v)− qε(s, v)]∂tγ.

Summarizing, we obtain (5.1) and conclude the proof.

5.2 The Kato Inequality

The next steps in the formal proof of Section 4.5.3 were to double the time variable,
send the regularization parameter of signε to zero and finally reduce the doubling of
the time variable. These steps are performed in Proposition 5.4 and yield the so called
Kato-inequality.

As in [Ott95], the Kato-inequality presented here requires test functions that vanish
in t = 0. In section 5.3, the Kato-inequality is extended to test functions with arbi-
trary values at t = 0. It is also possible to prove this extended Kato-inequality di-
rectly, which requires, in comparison to our proof, a different choice of test functions.

Proposition 5.4 (Kato inequality). Let s1, s2 be weak solutions of (TDR) in the sense
of Definition 2.2. Under Assumptions A2.1, A2.2, A2.3 and A2.4 there holds∫

Q
(− |s1 − s2|)∂tγ +

∑
j∈{l,r}

∫
Qj

sign(Φj(s1)− Φj(s2))∇[Φj(s1)− Φj(s2)] · ∇γ

+
∑

j∈{l,r}

∫
Qj

sign(s1 − s2)[λj(s1)− λj(s2)]gj · ∇γ

≤
∫
Q

sign(s1 − s2)[f(s1)− f(s2)]γ

(5.2)

for every γ ∈ C∞c ((0, T )× Rd) with γ ≥ 0.
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5 L1-contraction for Equations of Richards type with x-dependence

Proof of the Kato Inequality

As indicated in section 4.5.3, the proof of the Kato inequality consists of three steps.
Firstly, we double the time variable. Secondly, we pass with ε → 0, i.e. we consider
signε → sign. Lastly, we reduce the doubling of the time variable.

Step 1: Doubling the time variable

Let (t1, t2, x) ∈ (0, T )2 × Ω := Q̃ and define Q̃j := (0, T )2 × Ωj for j ∈ {l, r}. Consider
s1(x, t1, t2) := s1(x, t1) as a function on Q̃ independent of t2 and s2(x, t1, t2) := s2(x, t2)
as a function on Q̃ independent of t1.

Let γ̃ ∈ C∞c ((0, T )2 × Rd) be such that γ̃ ≥ 0. For ε > 0 and a.e. t2 ∈ (0, T ), we
infer from Lemma 5.3 with v = s2(t2), t = t1 and with the choice γ(t) = γ̃(t, t2) the
estimate

−
∫
Q
qε(s1, s2(t2))∂t1 γ̃(t2)

+
∑

j∈{l,r}

∫
Qj

[∇Φj(s1) + λj(s1)gj ] · ∇[signε[Θj(s1)−Θj(s2(t2))]γ̃(t2))]

≤
∫
Q
f(s1) [signε[Θ(·, s1)−Θ(·, s2(t2))]γ̃(t2)] .

(5.3)

Exchanging the roles of s1 and s2, we obtain for a.e. t1 ∈ (0, T )

−
∫
Q
qε(s2, s1(t1))∂t2 γ̃(t1)

+
∑

j∈{l,r}

∫
Qj

[∇Φj(s2) + λj(s2)gj ] · ∇[signε[Θj(s2)−Θj(s1(t1))]γ̃(t1))]

≤
∫
Q
f(s2) [signε[Θ(·, s2)−Θ(·, s1(t1))]γ̃(t1)] .

(5.4)

Integrating (5.3) and (5.4) with respect to t2 ∈ (0, T ) and t1 ∈ (0, T ), respectively, adding
the resulting equations and exploiting the symmetry of signε, i.e. signε(σ) = − signε(−σ)
yields

−
∫
Q̃
qε(s1, s2)∂t1 γ̃ + qε(s2, s1)∂t2 γ̃

+
∑

j∈{l,r}

∫
Q̃j

[∇Φj(s1)−∇Φj(s2)] · ∇[signε[Θj(s1)−Θj(s2)]γ̃)]

+
∑

j∈{l,r}

∫
Q̃j

[λj(s1)− λj(s2)]gj · ∇[signε[Θj(s1)−Θj(s2)]γ̃)]

≤
∫
Q̃

[f(s1)− f(s2)] [signε[Θ(·, s1)−Θ(·, s2)]γ̃] .

(5.5)
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5.2 The Kato Inequality

Step 2: The Limit ε→ 0

To treat the first integral on the left-hand side of (5.5), we use the properties of qε
from Lemma 5.2 to obtain qε(s1, s2), qε(s2, s1) ↗ |s1 − s2| a.e. on Q̃ as ε → 0. The
boundedness of |s1 − s2| and the regularity of γ̃ allow to apply Lebesgue’s theorem.
This yields

−
∫
Q̃
qε(s1, s2)∂t1 γ̃ + qε(s2, s1)∂t2 γ̃ −−−→

ε→0
−
∫
Q̃
|s1 − s2| (∂t1 + ∂t2) γ̃. (5.6)

Concerning the second integral on the left-hand side of (5.5), we compute∫
Q̃j

[∇Φj(s1)−∇Φj(s2)] · ∇[signε[Θj(s1)−Θj(s2)]γ̃)]

=
∫
Q̃j

signε[Θj(s1)−Θj(s2)] [∇Φj(s1)−∇Φj(s2)] · ∇γ̃

+
∫
Q̃j

sign′ε[Θj(s1)−Θj(s2)] [∇Φj(s1)−∇Φj(s2)] · [∇Θj(s1)−∇Θj(s2)] γ̃

= Iε1 + Iε2 ,

(5.7)

where we use Corollary 4.5 from Stampacchia’s lemma to understand the right-hand
side, i.e. sign′ε(Θj(s1)−Θj(s2)) = 1

ε 1{|Θj(s1)−Θj(s2)|<ε}.

For k ∈ {1, 2}, we infer from Θj(sk) ∈ L2(Q) that Θj(sk) <∞ a.e. in Q̃. Consequently,
we deduce the pointwise convergence signε(Θj(s1) − Θj(s2)) → sign(Θj(s1) − Θj(s2))
a.e. in Q̃ as ε → 0. Using that Θj and Φj are strictly increasing, thus sign(Θj(s1) −
Θj(s2)) = sign(Φj(s1) − Φj(s2)), and Lebesgue’s dominated convergence theorem, we
infer

Iε1 −−−→
ε→0

∫
Q̃j

sign[Φj(s1)− Φj(s2)] [∇Φj(s1)−∇Φj(s2)] · ∇γ̃.

Concerning Iε2 , we introduce Eεj := Q̃j ∩ {|Θj(s1)−Θj(s2)| < ε}, use Assumption A2.4
and compute

Iε2 = 1
ε

∫
Eεj

∇[Φj(s1)− Φj(s2)] · ∇[Θj(s1)−Θj(s2)]γ̃

= 1
ε

∫
Eεj

(Λj(Θj(s1))∇[Θj(s1)]− Λj(Θj(s2))∇[Θj(s2)]) · ∇[Θj(s1)−Θj(s2)]γ̃

= 1
ε

∫
Eεj

Λj(Θj(s1)) |∇[Θj(s1)−Θj(s2)]|2 γ̃

+ 1
ε

∫
Eεj

[Λj(Θj(s1))− Λj(Θj(s2))]∇[Θj(s2)] · ∇[Θj(s1)−Θj(s2)]γ̃.

(5.8)

Particularly, the boundedness of Λj implies that the integrals are well-defined. Since
Λj is nonnegative, the first integral on the right-hand side of (5.8) is estimated by zero
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5 L1-contraction for Equations of Richards type with x-dependence

from below. Let Lj denote the Lipschitz constant of Λj . On Eεj we find the pointwise
estimate

1
ε
|Λj(Θj(s1))− Λj(Θj(s2))| 1{|Θj(s1)−Θj(s2)|<ε} ≤ Lj . (5.9)

Together with (5.9), Stampacchia’s lemma and the notation

Eε,0j := Eεj ∩ {|Θj(s1)−Θj(s2)| 6= 0}

we obtain∣∣∣∣∣1ε
∫
Eεj

[Λj(Θj(s1))− Λj(Θj(s2))]∇[Θj(s2)] · ∇[Θj(s1)−Θj(s2)]γ̃
∣∣∣∣∣

≤
∫
Eε,0j

Lj |∇[Θj(s2)]| |∇[Θj(s1)−Θj(s2)]| γ̃ = Ljµj(Eε,0j ) −−−→
ε→0

0,

where µj is the nonnegative measure generated by |∇[Θj(s2)]| |∇[Θj(s1)−Θj(s2)]| γ̃.
The convergence is inferred from Eε1,0

j ⊂ Eε2,0
j for ε1 < ε2 and ⋂ε>0E

ε,0
j = ∅ [Rud99,

1.19 and 1.29]. Hence, the previous considerations provide that the second integral on
the right-hand side of (5.8) is nonnegative in the limit ε → 0. Consequently, we ob-
tain

lim inf
ε→0

Iε2 ≥ 0. (5.10)

The third integral one the left-hand side of (5.5) is treated similar to second integral.
We compute∫

Q̃j

[λj(s1)− λj(s2)]gj · ∇[signε[Θj(s1)−Θj(s2)]γ̃)]

=
∫
Q̃j

signε[Θj(s1)−Θj(s2)][λj(s1)− λj(s2)]gj · ∇γ̃)

+
∫
Q̃j

sign′ε[Θj(s1)−Θj(s2)][λj(s1)− λj(s2)]gj · ∇[Θj(s1)−Θj(s2)]γ̃

= Iε3 + Iε4 .

(5.11)

Concerning Iε3 we proceed similarly to Iε1 ; we exploit the pointwise a.e. convergence
signε(Θj(s1)−Θj(s2))→ sign(Θj(s1)−Θj(s2)) = sign(s1−s2), as ε→ 0, and Lebesgue’s
dominated convergence theorem to infer

Iε3 −−−→
ε→0

∫
Q̃j

sign(s1 − s2)[λj(s1)− λj(s2)]gj · ∇γ̃.

As to Iε4 , under consideration of Assumption A2.4, we denote the Lipschitz constant of
λj ◦ Θ−1

j by lj . We obtain (5.9) with Λj replaced by λj ◦ Θ−1
j and Lj by lj , respec-

tively. Using the notation of the set Eε,0j introduced above and Stampacchia’s lemma,
we deduce

|Iε4 | ≤
1
ε

∫
Eε,0j

lj |gj | |∇[Θj(s1)−Θj(s2)]| |γ̃| ≤ ljµ̃j(Eε,0j ) −−−→
ε→0

0,
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5.2 The Kato Inequality

where µ̃j is the nonnegative measure generated by |∇[Θj(s1)−Θj(s2)]| |γ̃| |gj |. The
convergence is justified as that in Iε2 .

Concerning the right-hand side of (5.5), we use signε(Θj(s1)−Θj(s2))→ sign(Θj(s1)−
Θj(s2)) = sign(s1 − s2) almost everywhere on Q̃j as ε → 0 and Lebesgue’s dominated
convergence theorem to obtain∫

Q̃
(f(s1)− f(s2)) signε(Θ(s1)−Θ(s2))γ̃ −−−→

ε→0

∫
Q̃

sign(s1 − s2)(f(s1)− f(s2))γ̃.

Collecting the previous estimates, we find

−
∫
Q̃
|s1 − s2| (∂t1 + ∂t2) γ̃

+
∑

j∈{l,r}

∫
Q̃j

sign(Φj(s1)− Φj(s2))∇[Φj(s1)− Φj(s2)] · ∇γ̃

+
∑

j∈{l,r}

∫
Q̃j

sign(s1 − s2)(λj(s1)− λj(s2))gj · ∇γ̃

≤
∫
Q̃

sign(s1 − s2)(f(s1)− f(s2))γ̃.

(5.12)

Step 3: Reducing the doubling of the time variable

Let γ ∈ C∞c ((0, T ) × Rd) be nonnegative and for δ > 0, let ϕδ ∈ C∞c (R) be a Dirac se-
quence as introduced in section 1.4. For δ sufficiently small, the function

γδ(t1, t2, x) := ϕδ (t1 − t2) γ
(
t1 + t2

2 , x

)
.

is an admissible choice for γ̃ in (5.12). Thanks to

(∂t1 + ∂t2)γδ(t1, t2, x) = ϕδ (t1 − t2) ∂tγ
(
t1 + t2

2 , x

)
,

∇γδ(t1, t2, x) = ϕδ (t1 − t2)∇γ
(
t1 + t2

2 , x

)
,

the derivatives of ϕδ, which are singular in the limit δ → 0, cancel. We change the
variables in virtue of t = t1 and τ = t1 − t2. We find τ ∈ (−T, T ) and the identity
t− τ/2 = (t1 + t2)/2. With the notation wτ (t) := w(t− τ), exploiting the compactness
of the supports of ϕ and γ, and Fubini’s theorem, we infer∫

R
ϕδ(τ)

[
−
∫
Q
|s1 − sτ2 | ∂tγ

τ/2 −
∫
Q

sign(s1 − sτ2)(f(s1)− f(sτ2))γτ/2 dτ

+
∑

j∈{l,r}

∫
Qj

sign(Φj(s1)− Φj(sτ2))∇[Φj(s1)− Φj(sτ2)] · ∇γτ/2

+
∑

j∈{l,r}

∫
Qj

sign(s1 − sτ2)(λj(s1)− λj(sτ2))gj · ∇γ
τ/2
]

dτ ≤ 0.

(5.13)
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5 L1-contraction for Equations of Richards type with x-dependence

Concerning the limit δ → 0 in (5.13) we show that the function G : (−2T, 2T ) → R,
extended trivially onto R, defined by

G(τ) :=−
∫
Q
|s1 − sτ2 | ∂tγ

τ/2 −
∫
Q

sign(s1 − sτ2)(f(s1)− f(sτ2))γτ/2

+
∑

j∈{l,r}

∫
Qj

sign(Φj(s1)− Φj(sτ2))∇[Φj(s1)− Φj(sτ2)] · ∇γτ/2

+
∑

j∈{l,r}

∫
Qj

sign(s1 − sτ2)(λj(s1)− λj(sτ2))gj · ∇γ
τ/2 =:

4∑
k=1

Gk(τ)

(5.14)

is continuous in τ = 0, where

G(0) =−
∫
Q
|s1 − s2| ∂tγ −

∫
Q

sign(s1 − s2)(f(s1)− f(s2))γ

+
∑

j∈{l,r}

∫
Qj

sign(Φj(s1)− Φj(s2))∇[Φj(s1)− Φj(s2)] · ∇γ

+
∑

j∈{l,r}

∫
Qj

sign(s1 − s2)(λj(s1)− λj(s2))gj · ∇γ.

(5.15)

From the continuity of translation operator in Lp(Q) for 1 ≤ p <∞, cf. e.g. [Alt06, 2.14],
and the Lipschitz continuity of the modulus function, we infer

G1(τ) = −
∫
Q
|s1 − sτ2 | ∂tγ

τ/2 −−−→
τ→0

−
∫
Q
|s1 − s2| ∂tγ.

For h ∈ C([0, 1]) define the function Fh : [0, 1]2 → R in virtue of

Fh(u, v) := sign(u− v)(h(u)− h(v)).

Since Fh is continuous, we deduce from Assumption A2.2 the continuity of G2 and G4
in zero. In particular the integrands in G2(τ) and G4(τ) converge pointwise a.e. to the
integrands of G2(0) and G4(0), respectively. Since the occuring functions are bounded,
we apply Lebesgue’s dominated convergence theorem and obtain Gk(τ) → Gk(0) as
τ → 0 for k ∈ {2, 4}.

The limiting relation for G3 is more intricate to handle. To simplify notation and
concentrate on the essential parts we exploit again the monotonicity of Φj and use
sign(Φj(s1) − Φj(s2)) = sign(s1 − s2). Realizing that h(sτ ) = h(s)τ for any time inde-
pendent function h, we write

sign(s1 − sτ2)∇(Φj(s1)− Φj(s2)τ ) · ∇γτ/2 − sign(s1 − s2)∇(Φj(s1)− Φj(s2)) · ∇γ
= [sign(s1 − sτ2)− sign(s1 − s2)]∇(Φj(s1)− Φj(s2)) · ∇γ

+ sign(s1 − sτ2)[∇(Φj(s1)− Φj(s2)τ ) · ∇γτ/2 −∇(Φj(s1)− Φj(s2)) · ∇γ]
=: T τ1 + T τ2 .
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5.2 The Kato Inequality

For T τ2 , we exploit the Cauchy-Schwarz inequality and a standard argument to de-
duce ∫

Qj

|T τ2 | ≤ ‖∇(Φj(s1)− Φj(sτ2))‖2
∥∥∥∇(γ − γτ/2)

∥∥∥
2

+ ‖∇γ‖2 ‖∇(Φj(s2)− Φj(sτ2))‖2 → 0,
(5.16)

due to the uniform continuity of∇γ and the continuity of the translation operator.

Concerning T τ1 , we define
Sj := {s1 = s2} ∩Qj ,

realize that sign(s1−s2) = 0 on Sj and use Stampacchia’s lemma to compute
∫
Sj

|[sign(s1 − sτ2)− sign(s1 − s2)]| |∇(Φj(s1)− Φj(s2))| |∇γ|

≤
∫
Sj

|∇(Φj(s)− Φj(s2))| |∇γ| = 0.
(5.17)

On the complement S{
j of Sj , we use that sτ2 → s2 in L2(Qj). Thus, for any sequence τ →

0, we obtain the convergence sτ2 → s2 a.e. on S{
j . This implies a.e. on S{

j the convergence
|sign(s1 − sτ2)− sign(s1 − s2)| → 0 as τ → 0, up to a subsequence. Lebesgue’s dominated
convergence theorem yields the strong convergence∫

S{
j

[sign(s1 − sτ2)− sign(s1 − s2)]∇(Φj(s1)− Φj(s2)) · ∇γ −−−→
τ→0

0 (5.18)

for this subsequence. With a standard argument [DiB02, I.1.1], we obtain the con-
vergence in (5.18) for any sequence τ → 0. Combining (5.17) and (5.18), we in-
fer

lim sup
∫
Qj

|T τ1 | = 0.

Summarizing, we have shown the continuity of Gk(τ) in τ = 0 for k ∈ {1, . . . , 4} with
G(0) given by (5.15).

With the continuity ofG in zero, G ∈ L1(R) and the properties of ϕδ, we find

lim
δ→0

∫
R

1
δ
ϕ

(
τ

δ

)
G(τ) dτ = lim

δ→0

∫
R

1
δ
ϕ

(
τ

δ

)
G(0) dτ = G(0). (5.19)

From (5.13) we derive G(0) ≤ 0, conclude the Kato inequality (5.2) and the proof is
complete.
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5 L1-contraction for Equations of Richards type with x-dependence

5.3 Extension of the Kato Inequality

In this section, we provide tools to close the gap between the Kato inequality (5.2) and
(2.14) from Theorem 2.4. In Proposition 5.8 we show that t = 0 is a right Lebesgue
point of s with s(0) = s0. To prove Theorem 2.4 in the next section, this is used to
dispose the restriction of γ vanishing in t = 0 in the Kato inequality (5.2) and yields
the extended Kato inequality (2.14). To obtain the generalized L1-contraction from the
extended Kato inequality, we require the auxiliary Lemma 5.5 and a Gronwall inequality
stated in Lemma 5.6.

Lemma 5.5 (Weak differential inequality). Let functions u, θ ∈ L1((0, T )) and constants
u0 ∈ R and L,K ≥ 0 be given. If

−
∫ T

0
α′(t)(u(t)− u0) dt ≤

∫ T

0
α(t)(Lu(t) +Kθ(t)) dt (5.20)

for every nonnegative α ∈ C∞c ((−∞, T )), then there holds

u(t∗) ≤ u0 +
∫ t∗

0
Lu(s) +Kθ(s) ds (5.21)

for every Lebesgue point t∗ of u(t) and thus for a.e. t∗ ∈ (0, T ).

Proof. Let t∗ ∈ (0, T ) be a Lebesgue point of u and let η ∈ C∞(R) be non-decreasing
and such that η+(σ) = 0 for σ ≤ 0 and η(σ) = 1 for σ ≥ 1. For δ > 0, we define the
sequence η̃δ(σ) = η((−σ + t∗ + δ)/δ). With Cη := max |η′|, we infer |(η̃δ)′| ≤ Cη/δ. Let
β ∈ C∞c (R) be nonnegative and such that β ≡ 1 on [0, T ]. Then α = η̃δβ is admissible
in (5.20) for δ sufficiently small. We compute

−
∫ t∗+δ

t
(η̃δ)′(s)u(s) ds ≤ u0η̃δ(0) +

∫ t∗+δ

0
η̃δ(s)(Lu(s) +Kθ(s)) ds

= u0 +
∫ t∗

0
(Lu(s) +Kθ(s)) ds+

∫ t∗+δ

t∗
η̃δ(s)(Lu(s) +Kθ(s)) ds

−−−→
δ→0

u0 +
∫ t∗

0
Lu(s) +Kθ(s) ds

(5.22)

To pass with δ → 0 on the left-hand side of (5.22), we claim that u(t∗) is the desired
limit. Indeed, we find∣∣∣∣∣

∫ t∗+δ

t∗
−(η̃δ)′(s)u(s) ds− u(t∗)

∣∣∣∣∣ ≤ Cη
δ

∫ t∗+δ

t∗
|u(s)− u(t∗)| ds

≤ 2Cη−
∫
Bδ(t∗)

|u(s)− u(t∗)| ds −−−→
δ→0

0

since t∗ is a Lebesgue point of u and (5.21) is proven.
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5.3 Extension of the Kato Inequality

To obtain the L1-contraction property, we need a simple version of Gronwall’s inequality.
In [Eva98, Appendix B.2] we find some variants of Gronwall’s inequality and adapt the
proof to our needs.

Lemma 5.6 (A Gronwall Inequality). Let u(t) ∈ L1(0, T ) with u(t) ≥ 0 for almost
every t ∈ (0, T ) and u0, L ≥ 0 be given. Furthermore, assume that

u(t) ≤ u0 + L

∫ t

0
u(s) ds for a.e. t ∈ (0, T ). (5.23)

Then there holds
u(t) ≤ eLtu0 (5.24)

for almost every t ∈ (0, T ).

Proof. We define the absolutely continuous function η(t) =
∫ t

0 u(s) ds. Hence, for a.e.
τ ∈ [0, T ], we infer

∂s
(
η(s)e−Ls

)
= e−Ls

(
η′(s)− Lη(s)

)
≤ e−Lsu0

using (5.23) in the last inequality. Integration over s ∈ [0, t], multiplication by eLt and
using that η(0) = 0 yields

η(t) ≤ eLt
(
u0

∫ t

0
e−Ls ds

)
= u0e

Lt 1
L

(
1− e−Lt

)
for a.e. t ∈ [0, T ]. Inserting this in (5.23) yields

u(t) ≤ u0 + L

∫ t

0
u(s) ds ≤ u0e

Lt
(
e−Lt + 1− e−Lt

)
= u0e

−Lt

for a.e. t ∈ [0, T ]

In the following proposition, we use the concept of essential limit, which is the usual
limit except for a set of zero measure.

Definition 5.7 (Essential limit). Let g ∈ L1(0, T ). We say that c ∈ R is the essential
limit of g in zero, i.e.

c := ess lim
t↓0

g(t)

if there exists a subset E ⊂ (0, T ) with |E| = 0 such that

c = lim
t↓0,
t6∈E

g(t).
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5 L1-contraction for Equations of Richards type with x-dependence

Proposition 5.8 (Essential continuity in t = 0). Let s be a weak solution of (TDR) in
the sense of Definition 2.2 with initial data 0 ≤ s0(x) ≤ 1 for a.e. x ∈ Ω. Then there
holds

ess lim
t↓0

∫
Ω
|s(t)− s0| = 0. (5.25)

Proof. We aim to use Lemma 5.3 with v = s0. Since v has to fulfill Θ(v) ∈ H1(Ω)
and Θ(s) − Θ(v) ∈ L2(0, T ;V ), we need to approximate v = s0. Due to the density
of C∞c (Ωj) in L1(Ωj), we find two sequences C∞c (Ωj) 3 vn,j → s0 ∈ L1(Ωj) for j ∈
{l, r}. The sequence vn := vn,l 1Ωl + vn,r 1Ωr is such that vn → s0 in L1(Ω), vn|Γ = 0,
Θ(vn) ∈ H1

0 (Ω). Moreover, extending Θ(vn) constantly in time, we obtain Θ(s)−Θ(vn) ∈
L2(0, T ;V ).

With the choice v = vn in (5.1), we fix sequences ε = εk → 0 and vn → s0 as k, n→∞,
and define the functions

hk,n(t) :=
∫

Ω
qεk(s(t), vn), hn(t) :=

∫
Ω
|s(t)− vn| and the sets

Ek,n := {t ∈ [0, T ] | t is not a Lebesgue point of hk,n(t)}

for k, n ∈ N. Since |Ek,n| = 0 for k, n ∈ N, the countable union E := ⋃∞
k=1

⋃∞
n=1Ek,n also

fulfills |E| = 0. Consequently, any t 6∈ E is a Lebesgue point of hk,n for every k, n ∈ N.
Choosing γ(x, t) = α(t)β(x) with β ≡ 1 on Ω and α ∈ C∞c (R), α nonnegative, leads in
equation (5.1) to the weak differential inequality

−
∫ T

0

∫
Ω

[qεk(s, vn)− qεk(s0, vn)]α′(t) ≤
∫ T

0
α(t)θk,n(t). (5.26)

for some θk,n(t) ∈ L1(0, T ). Lemma 5.5 yields for every Lebesgue point t∗ and conse-
quently for every t∗ 6∈ E with L = 0 and K = 1 the relation∫

Ω
qεk(s(t∗), vn) ≤

∫
Ω
qεk(s0, vn) +

∫ t∗

0
θk,n(t). (5.27)

Since θk,n ∈ L1(0, T ), we conclude

lim sup
t↓0,t6∈E

∫
Ω
qεk(s(t), vn) ≤

∫
Ω
qεk(s0, vn). (5.28)

Concerning the right-hand side of (5.28), we exploit item 2 of Lemma 5.2 and the strong
convergence vn → s0 to find

lim sup
t↓0,t6∈E

∫
Ω
qεk(s(t), vn) ≤

∫
Ω
qεk(s0, vn) ≤

∫
Ω
|s0 − vn| .→ 0 (5.29)
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5.4 Proof of Theorem 2.4

We emphasize that the set E is independent of n. Concerning the left hand side of
(5.28), we want to pass with the limit k → ∞ first. With the uniform convergence
qεk,j → qj from item 4 of Lemma 5.2, we find∣∣∣∣∫

Ω
|s(t)− vn| − qεk(s(t), vn)

∣∣∣∣ =
∑

j∈{l,r}

∣∣∣∣∣
∫

Ωj
|s(t)− vn,j | − qεk,j(s(t), vn,j)

∣∣∣∣∣
≤

∑
j∈{l,r}

|Ωj | ‖|s(t)− vn,j | − qεk,j(s(t), vn,j)‖∞ → 0
(5.30)

as k → ∞ uniformly in t ∈ (0, T ) \ E and n ∈ N. Due to the uniform convergence, we
find for ε̃ > 0 a k0 > 0 such that for every K ≥ k0 and every t ∈ (0, T ) \ E there holds
|hK,n(t)− hn(t)| < ε̃ and consequently hn(t) ≤ hK,n(t) + ε̃. Since (5.29) holds for every
k and since E was chosen independent of k and n, we find

lim
n→∞

lim sup
t↓0,t6∈E

hn(t) ≤ lim
n→∞

lim sup
t↓0,t 6∈E

hK,n(t) + ε̃ ≤ ε̃.

This implies
lim
n→∞

lim sup
t↓0,t6∈E

∫
Ω
|s(t)− vn| ≤ 0. (5.31)

Combining (5.31) and the convergence vn → s0 in L1(Ω), using that the latter conver-
gence is independent of t ∈ (0, T ) \ E, that E is independent of n and exploiting the
triangle inequality, we find

lim sup
t↓0,t6∈E

∫
Ω
|s(t)− s0| ≤ lim

n→∞
lim sup
t↓0,t 6∈E

∫
Ω
|s(t)− vn|+ lim

n→∞

∫
Ω
|vn − s0| ≤ 0. (5.32)

Hence, observing that

0 = lim sup
t↓0,t6∈E

∫
Ω
|s(t)− s0| = ess lim

t↓0

∫
Ω
|s(t)− s0|

concludes the proof.

5.4 Proof of Theorem 2.4

To prove Theorem 2.4, we perform two steps. Firstly, we derive the extended Kato
inequality (2.14) from Propositions 5.4 and 5.8. Secondly, we use Gronwall argument to
infer (2.15), i.e. the generalized L1-contraction property.

Proof of Theorem 2.4. We start from the Kato-inequality (5.2). An approximation yields
that (5.2) holds for γ ∈ H1(ΩT ) with γ(0) = γ(T ) = 0. Specifically, the left hand side of
(5.2) defines a bounded linear functional on a dense subset of {v ∈ H1(ΩT ) : v(T, x) =
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5 L1-contraction for Equations of Richards type with x-dependence

v(0, x) = 0}. We define the function η : R → R with η(s) = 0 for s ≤ 0, η(s) = 1 for
s ≥ 1 and linear in between. With ηδ(s) = η(s/δ) and θ ∈ C∞c ((−∞, T )× Rd), we find
the admissibility of γ = θηδ in (5.2). By Lebesgue’s dominated convergence theorem we
infer ∫

Qj

ηδ sign(Φj(s1)− Φj(s2))∇[Φj(s1)− Φj(s2)] · ∇θ

−−−→
δ→0

∫
Qj

sign(Φj(s1)− Φj(s2))∇[Φj(s1)− Φj(s2)] · ∇θ,∫
Qj

ηδ sign(s1 − s2)[λj(s1)− λj(s2)]gj · ∇θ

−−−→
δ→0

∫
Qj

sign(s1 − s2)[λj(s1)− λj(s2)]gj · ∇θ

for j ∈ {l, r}, as well as∫
Q
ηδ sign(s1 − s2)[f(s1)− f(s2)]θ −−−→

δ→0

∫
Q

sign(s1 − s2)[f(s1)− f(s2)]θ.

Concerning the integral containing the time derivative, we compute∫
Q
|s1 − s2| ∂t(ηδθ) =

∫
Q
|s1 − s2| ηδ∂tθ +

∫
Q
|s1 − s2| θ∂tηδ

≤
∫
Q
|s1 − s2| ηδ∂tθ +

∫ δ

0

∫
Ω

1
δ

(|s1 − s0,1|+ |s0,1 − s0,2|+ |s2 − s0,2|)θ

≤
∫
Q
|u| ηδ∂tθ + 1

δ

∫ δ

0

∫
Ω
|s0,1 − s0,2| θ

+ C

δ

∫ δ

0

∫
Ω

(|s1 − s0,1|+ |s2 − s0,2|)θ

−−−→
δ→0

∫
Ω
|s0,1 − s0,2| θ(0) +

∫
Q
|s1 − s2| ∂tθ =

∫
Q

(|s1 − s2| − |s0,1 − s0,2|)∂tθ.

The convergence in the last step follows from the continuity of θ in zero and from
Proposition 5.8. More precisely, we argue similar to (4.39) and obtain

ess lim
t↓0

∫
Ω
|sk(t)− s0,k| = lim

δ→0
−
∫ h

0

∫
Ω
|sk(t)− s0,k|

for k = 1, 2. Collecting the previous identities we infer (2.14).

To prove the L1-contraction property (2.15), we choose γ(t, x) = α(t)ψ(x) with nonneg-
ative α ∈ C∞c ((−∞, T )) and nonnegative ψ ∈ C∞c (Rd) as a test function in the extended
Kato-inequality (2.14). We even choose ψ ≡ 1 on Ω, use the properties of f to infer that
sign(s1 − s2)(f(s1)− f(s2)) ≤ L |s1 − s2| and derive∫ T

0
α′(t)

∫
Ω

(|s0,1 − s0,2| − |s1(t)− s2(t)|) dt ≤
∫ T

0
Lα(t)

∫
Ω
|s1(t)− s2(t)|dt . (5.33)

Application of Lemma 5.5 and the Gronwall inequality 5.6 concludes the proof.
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5.5 Discussion of the Proof and Outlook

The presented proof also works in the case without an interface. In particular, the
proof of the Kato inequality is more direct and we do not need the particular treat-
ment of the integral Iε2 in (5.8). In that situation, we obtain directly the expres-
sion

Iε2 = 1
ε

∫
Eεj

|∇[Φ(s1)− Φ(s2)]|2 γ̃ ≥ 0.

Particularly, the result in the case without interfaces is a special case of [Ott95]. There
more general elliptic are terms are considered.

In Cancès article [Can08] a specialized variant of Lemma 4.36 is stated implicitly in the
proof of Theorem 3.1. In addition, the L1-contraction is shown exploiting time continuity
of solutions. This is a consequence of the Lipschitz continuity of the Kirchhoff transform
Φj(s) and was shown by Cancès and Gallouët in [CG11].

In our setting Φj is not necessarily Lipschitz continuous. Hence, we prove the L1-
contraction by a different argument that is strongly inspired by [Ott95]. Of outmost
importance is item 4 of Lemma 5.2, which is the uniform convergence of qε → q. For
bounded Θ and Φ as in Assumption A2.3, this convergence is immediate as long as there
is only a finite amount of interfaces. We emphasize, that Dini’s theorem is exploited to
obtain the uniform convergence and no further assumptions on the growth of e.g. Θj(s)
for s→ 1 are necessary.

The strict monotony of Θj is necessary to exploit the identities signε(Θj(s1)−Θj(s2))→
sign(s1 − s2) and to invert Θj , which is used to exploit Assumption A2.4. We empha-
size that the Lipschitz continuity of Λj is essential to obtain the Kato inequality. For
example, the conclusion starting from (5.9) seems to be impossible if Λj merely Hölder
continuous.

Similarly to [Can08], the L1-contraction result we provide here can also be obtained for
Ω divided by several interfaces into n subdomains. Another point of interest is to provide
an existence result for (TDR) for degenerate capillary transformations as in Assumption
A2.3. As far as we know, such a result is not available in the literature. However, due to
the integration by parts formulae from chapter 4.4 there are several possibilities to tackle
this problem. One could for example attempt to proceed with the idea introduced in
[AL83] or start from [Can08] and regularize the pressures. However, the latter approach
still enforces that λj(1) = 0. Hence, showing existence using a regularization argument,
in the situation that λj(1) 6= 0 and pc,j is bounded, should be viable. In addition, the
definition of Θj is not fixed. Different choices of Θj could make a modification of the
proof in [Ott95] possible and lead to L1-contraction results in the case of multivalued
capillary pressures.
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6 Local Hölder Continuity for the
Two-Phase Flow Problem

In this chapter, (s, p) is always a weak solution of the two-phase problem (TP1) in
the sense of Definition 3.5. We show that the saturation s is locally Hölder continu-
ous. For convenience, we usually suppress the x-dependencies of the occurring func-
tions.

A standard approach to obtain (local) Hölder continuity of a function u : Rd → R is to
show that the oscillation of u on balls of radius R > 0 is proportional to a positive power
of R. The oscillation of u is defined as the difference of its supremum and infimum on a
given set. For example, the estimate

|u(x)− u(y)| ≤ osc
BR(x)

u ≤ CRα

implies local Hölder continuity of u immediately. Here, x, y ∈ Rd, C > 0 and α ∈
(0, 1), and the estimate holds for every BR(x) ⊂ Ω in some bounded open set Ω ⊂
Rd.

If it is possible to quantitatively measure the decrease of oscillation of u on nested and
shrinking balls with the same center, then also Hölder continuity can be obtained. For
example, if an estimate of the type

osc
BR(x)

u ≤ (1− δ) osc
B4R(x)

u

holds for 0 < δ < 1 independent of x, then (local) Hölder continuity can be obtained by
iteration argument.

The method of intrinsic scaling implements the iteration idea on certain cylinders that
reflect the structure of the differential equation. Particularly, we consider cylinders that
are related to the standard parabolic cylinders defined below and reflect the degeneracy
of the equation. These cylinders depend on the oscillation of the solution itself, which
makes them intrinsic. However, during the upcoming proofs we may transform the
cylinders to the standard parabolic ones. To describe the method precisely, it is necessary
to investigate its technical implementation. Summarizing the idea of the method in one
sentence, we quote from [Urb08, p. 6]:
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The punch line of the theory is that the equation behaves, in its own geometry,
like the heat equation.

This chapter is structured as follows. In section 6.1, we provide notation and some
technical results needed later. Particularly, we infer from elliptic regularity theory that
the pressure p is locally Hölder continuous. In section 6.2, we state the main proposition
to infer the Hölder continuity. The proof of the main proposition unfolds along two
alternatives, which are executed in sections 6.3 and 6.4. The proof is concluded in
section 6.5. From there on, we prove Theorem 3.12 in the same section. In section
6.6, we discuss the literature and provide an outlook towards extensions of the local
result.

6.1 Preliminaries

We define the parabolic cylinders and refer to Figure 6.1, where the cylinder (x0, t0) +
Q(ρ, τ) is depicted.

Definition 6.1 (Parabolic Cylinders). Let ρ, τ, θ > 0 and (x0, t0) ∈ Rd+1 be given. We
define the cylinders

Q(ρ, τ) = Bρ × (−τ, 0), (x0, t0) +Q(ρ, τ) = Bρ(x0)× (t0 − τ, t0),
Qρ = Q(ρ, ρ2) and Qρ(θ) = Q(ρ, θρ2).

A cylinder of the type Qρ is often called standard parabolic cylinder and reflects the nat-
ural homogeneity between the space and time variables for the heat equation: For any
solution u(x, t) to the heat equation, the rescaled function u(εx, ε2t), ε ∈ R, is again a
solution to the heat equation, i.e. the equation remains invariant under similarity trans-
formations of the space and time variables that leave the ratio |x|2 /t constant. In general,
such an invariance is not recovered for degenerate parabolic equations. In particular,
such a scaling may result in a factor that depends on the solution itself as is pointed out
in [Urb08, section 3.1] for the parabolic p-Laplace equation.

Lemma 6.2 (Fast geometric convergence [DiB93, I.4.Lemma 4.1]). Let Xn be a sequence
of nonnegative real numbers, let b > 1 and C,α > 0 be such that the recurrence relation

Xn+1 ≤ CbnX1+α
n (6.1)

holds. If
X0 ≤ C−

1/αb−
1/α2 (6.2)

then Xn → 0 as n→∞.

Since there seems to be no complete proof in the literature and the constant C is usually
stated to be larger than 1, we provide a proof.
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Proof. To prove the Lemma, it suffices to show that

Xn ≤
X0

b
n
α

(6.3)

holds for 1 ≤ n ∈ N We show inequality (6.3) by induction. For the base case n = 1, we
infer

X1 ≤ Cb0X1+α
0 ≤ X0

(
Cb0

(
C−

1
α b−

1
α2
)α)

= X0

b
1
α

.

For the inductive step, we assume that (6.3) holds for n. To show that the relation also
holds for n+ 1, we compute

Xn+1 ≤ CbnX1+α
n ≤ Cbn

(
X0

b
n
α

)1+α
≤ X0Cb

−n
αXα

0 ≤
X0

b
n+1
α

and conclude the proof.

From elliptic theory, in particular from [GT98, Theorem 8.24], we infer the local Hölder
regularity of the pressure

Theorem 6.3 (Hölder Regularity of the pressure p). Let Assumptions A3.1, A3.2, A3.3
and A3.5 hold and let (s, p) be a weak solution of (TP1) in the sense of Definition 3.5.
Then p(t) is locally Hölder continuous in Ω uniformly in t ∈ (0, T ). More precisely,
for C∗ and C∗ from Assumption A3.7 and some set K ⊂⊂ Ω, there exist γp > 0 and
β ∈ (0, 1) independent of t and depending only the data and the distance of K to ∂Ω,
such that

‖p(t)‖Cβ(K) ≤ γp
(
1 + ‖p‖L2(Ω)

)
(6.4)

for almost every t ∈ (0, T ).

Remark 6.4. We emphasize that only the bounds on κ, λ and E from Assumptions A3.2,
A3.3 and A3.5 enter in the statement of the last result. Those bounds are contained
in the definitions of C∗ and C∗. Furthermore, due to Assumption A3.7, the Dirichlet
data pD are also estimated by C∗. Thus, we can estimate the L2(Ω) of p(t) only in
terms of the data. To see this, use p− pD as a test function in (3.22). Absorption yields
that ‖∇p(t)‖2 ≤ C for some C depending only on the data. Then, an application of
Poincaré’s inequality provides the estimate ‖p(t)‖2 ≤ C for some different C depending
only on the data.

After a redefinition of γp, we find that equation (6.4) reads

|p(x, t)− p(y, t)| ≤ γp |x− y|β for every x, y ∈ K and ‖p(t)‖L∞(K) ≤ γp (6.5)

for almost every t ∈ (0, T ). Consequently, the Hölder norm of p(t) on a given setK ⊂⊂ Ω
can be determined only in terms of the data and the distance from K to ∂Ω uniformly
in t. /
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6 Local Hölder Continuity for the Two-Phase Flow Problem

Using (6.5), the redefined γp and the properties on E from equation (3.29) we obtain
the following Caccioppoli estimate.

Proposition 6.5 (Caccioppoli estimate of p). Let Assumptions A3.1–A3.7 hold and
let (s, p) be a weak solution of (TP1) in the sense of Definition 3.5. For any open set
K ⊂⊂ Ω with diam(K) ≤ 2r, there is a constant Cp ≥ 1 that depends only the data and
the distance of K to ∂Ω, such that∫

K
|∇p(t)|2 f2 ≤ Cp

(
r2β

∫
K
|∇f |2 +

∫
K
f2
)
, (6.6)

for any f ∈ H1
0 (K) and almost every t ∈ (0, T ). Particularly, Cp is independent of t.

Proof. Fix x0 ∈ K and use w = [p(x, t) − p(x0, t)]f2(x) as a test function in equation
(3.22). Using the definition of C∗ and C∗, particularly using |E(x, s)| ≤ C∗ for every
x ∈ Ω and s ∈ [0, 1], we obtain

C2
∗

∫
K
|∇p(x, t)|2 f2(x) dx ≤(C∗)2

∫
K
|∇p(x, t)| |p(x, t)− p(x0, t)|

∣∣∣∇f2(x)
∣∣∣ dx

+ (C∗)2
∫
K

∣∣∣∇ ([p(x, t)− p(x0, t)]f2(x)
)∣∣∣ dx

for a.e. t ∈ (0, T ). For ε > 0 and using Cauchy’s inequality, we compute

C2
∗

∫
K
|∇p(x, t)|2 f2(x) dx

≤ 2ε
∫
K
|∇p(x, t)|2 |f(x)|2 dx+

(
(C∗)4

4ε + (C∗)2
)∫

K
f2(x) dx

+
(

(C∗)4

4ε + (C∗)2
)∫

K
|p(x, t)− p(x0, t)|2 |∇f(x)|2 dx

(6.7)

for a.e. t ∈ (0, T ). We absorb the first integral on the right-hand side of (6.7) choosing
4ε = C2

∗ . To fill the gap between (6.7) and (6.6), we exploit Theorem 6.3. More
precisely, we use (6.5) and and |p(x, t)− p(x0, t)| ≤ γp |x− x0|2β ≤ γp(2r)2β. Thus,
we find a constant Cp depending on the same quantities as γp and β such that (6.6)
holds.

The following Lemma is usually referred to as DeGiorgi’s lemma.

Lemma 6.6 (DeGiorgi’s lemma [DiB93, I.2.Lemma 2.2]). Let u ∈ W 1,1(Br(y)) and let
k < l ∈ R be given. There exists a constant C depending only on d, p, not depending on
r, y, k, l, such that

(l − k) |{u > l}| ≤ C rd+1

|{u < k}|

∫
{k<u<l}

|∇u| (6.8)
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Proof. From Stampacchia’s lemma, more precisely from Corollary 4.5, we infer that
v := (min{u, l} − k)+ ∈ W 1,1(Br(y)). We assume that |{v < k}| > 0, otherwise the
right-hand side of (6.8) is interpreted to be equal to ∞ and the conclusion holds for any
C > 0.

We apply Proposition 1.2 to v with ϕ ≡ 1 and p = 1. We remark that∇v = ∇u1{k<u<l},
due to Stampacchia’s lemma. Since |{u < k}| ≤ |B1(0)| rd on Br(y), we compute

(l − k) |{u > l}| ≤
∫
Br(y)

|v| ≤ C 2drd

|{u < k}|1−
1
d

∫
Br(y)

|∇v|

≤ C2d rd+1

|{u < k}|

∫
{k<u<l}

|∇u|

and remark that the integrals are only extended on Br(y).

In the next sections we also make use of so-called logarithmic estimates. To this end, we
introduce a certain logarithmic function. We write log+(v) = (log(v))+ for v > 0 and
extend the function trivially to (−∞, 0].
Definition 6.7. Let 0 < a < b be given, we define for v < a+ b the function

Ψa,b(v) = ln+

(
b

b− v + a

)
. (6.9)

Lemma 6.8 (Properties of Ψa,b). Let a, b, v and Ψa,b be as in Definition 6.7. For
a < v < a+ b, there holds

Ψ′a,b(v) = 1
b− v + a

, Ψ′′a,b(v) =
(
Ψ′a,b(v)

)2
(6.10)

and (
Ψ2
a,b(v)

)′′
= 2(1 + Ψa,b(v))(Ψ′a,b(v))2, (6.11)

as well as the estimate

2Ψa,b(v)Ψ′a,b(v) ≤ Ψa,b(v) + Ψa,b(v)Ψ′2a,b(v) ≤ Ψa,b(v) + (1 + Ψa,b(v))Ψ′2a,b(v). (6.12)

Furthermore, we find

Ψ2
a,b ∈ C1,1([0, b]), max

0≤v≤b
{Ψa,b(v)} ≤ ln

(
b

a

)
and max

a<v≤b
{Ψ′a,b(v)} ≤ 1

a
. (6.13)

Proof. Since Ψa,b ∈ C∞(a, a+b), we obtain (6.10) and (6.11). Using Cauchy’s inequality
we deduce (6.12). The inequalities in (6.13) are derived by monotonicity.

Since Ψa,b(a) = 0 we deduce that Ψa,b ∈ C([0, a+ b)). For v < a, we find (Ψ2
a,b)′(v) = 0

and for v > a we find (Ψ2
a,b)′(v) = 2Ψ′a,b(v)Ψa,b(v) → 0 as v ↘ a. Consequently, since

Ψ2
a,b ∈ C1([0, b] \ {a}) we infer Ψ2

a,b ∈ C1([0, b]). Since 2Ψa,bΨ′a,b(a) = 0 we infer from
(6.10), the bounds in (6.13) and the mean value theorem that 2Ψa,bΨ′a,b ∈ C0,1([0, b])
and conclude.
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To justify the use of test functions in the following section, we exploit the integration by
parts formula from Lemma 4.32. The following lemma is used to calculate the primitives
of certain functions. We emphasize, that a and b are not related to the logarithmic
function.

Lemma 6.9 (Primitives). Let 0 < a < b and α, β ∈ R be given. Let g : [0, 1] → R be
Lipschitz continuous and such that g|[0,a] = α and g|[b,1] = β. If α = 0, a primitive G of
g with G(a) = G(0) = 0 is given by

G(u) =
∫ u

0
g(v) dv =

∫ T ba(u)

a
g(v) dv+g(b)(u− b)+ (6.14)

for any u ∈ [0, 1]. If β = 0, a primitive G of g with G(b) = G(1) = 0 is given by

G(u) =
∫ u

1
g(v) dv = −

∫ b

T ba(u)
g(v) dv−g(a)(u− a)− (6.15)

for any u ∈ [0, 1].

Proof. We only prove (6.14). The proof of (6.15) is similar and uses that (u − a)− =
a− T a(u). With Tb(u)− b = (u− b)+, we compute

G(u) =
∫ u

0
g(v) dv =

∫ T ba(u)

a
g(v) dv+

∫ Tb(u)

b
g(b) dv =

∫ T ba(u)

a
g(v) dv+g(b)(u− b)+.

6.2 Main Proposition and Rescaled Cylinders

Let (x0, t0) ∈ Q be given. We fix sets K ⊂⊂ Ω and [τ1, τ2] ⊂ (0, T ) such that (x0, t0) ∈
K × [τ1, τ2] =: K̃. We assume that d2(K̃, ∂pQ) = dist(K, ∂Ω), where d2 was introduced
in Definition 3.9. Then the constants β, γp and Cp from Theorem 6.3, equation (6.5)
and Proposition 6.5 depend only on the data and on K̃ in the sense of Definition 3.10.
Otherwise, K̃ needs to be suitably redefined.

Due to a translation argument, we may assume that (x0, t0) = (0, 0). We recall the
cylinders from Definition 6.1. For some ε ∈ (0, 1) to be chosen, let R > 0 be small
enough to ensure that Q(2R, (2R)2−ε) ⊂ K̃ ⊂ Q. In addition, we assume for sake of
simplicity that R ≤ 1. This is only used to show that for 0 < r ≤ R and p < q also
rp ≤ rp holds. If R > 1, we infer with R := diamK and any 0 < r ≤ R ≤ R the
inequality rp ≤ R

p−q
rq. R is bounded from above by the size of Ω and depends on

d2(K̃, ∂pQ).
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On Q(2R, (2R)2−ε), we define the essential supremum, infimum and oscillation of s to
be

µ+ = ess sup
Q(2R,(2R)2−ε)

s, µ− = ess inf
Q(2R,(2R)2−ε)

s and ω = µ+ − µ− := ess osc
Q(2R,(2R)2−ε)

s. (6.16)

To take the degeneracies of Φ into account, we introduce subcylinders of Q(2R, (2R)2−ε)
of the type QR(θ) for a suitable θ. Concerning the degeneracy near s = 0, we introduce
the cylinder

QR(θm), where 1
θm

:= 1
θm(ω) = Φ0,l

(
ω

2m
)
≤ min

x∈Ω
Φ′
(
x,

ω

2m
)
. (6.17)

The number 0 < m ∈ N is chosen later and is determined depending only on the
data and K̃. In particular, m is going to be independent of ω. For such fixed m, we
may assume QR(θm) ⊂ Q(2R, (2R)2−ε), that is −(2R)2−ε ≤ −θmR2. This inclusion
implies

ess osc
QR(θm)

s ≤ ω. (6.18)

If the inclusion does not hold, we infer

− θmR2 < −(2R)2−ε ⇐⇒ Φ0,l

(
ω

2m
)

= θ−1
m < 2ε−2Rε. (6.19)

If m and ε can be determined depending only on the data and on K̃, then (6.19)
yields

ess osc
Q(2R,(2R)2−ε)

s = ω < γR
ε
α0 (6.20)

for some γ = γ(data, K̃) and α0 from Assumption A3.7. Equation (6.20) coincides with
the first alternatives in Proposition 6.10 and there is nothing to show. Later, we also
assume that Q(2R, θmR2) ⊂ Q(2R, (2R)2−ε). If this inclusion fails to hold, we also
obtain (6.20).

To accommodate the degeneracy at s = 1, we choose m0 > 3 to be the smallest integer
such that

ω

2m0
≤ 1

2m0
< δ0, (6.21)

where δ0 was introduced in Assumption A3.7. Having chosen m0, consider m to be large
enough to ensure

1
θm
≤ Φ0,u

(
ω

2m
)
≤ 1

2Φ1,l

(
ω

2m0+1

)
=: 1

2
1
θm0

. (6.22)

For any t∗ < 0, we define the intrinsic subcylindersQt∗R ofQR(θm) in virtue of

Qt
∗
R := (0, t∗) +QR(θm0) = BR × (t∗ − θm0R

2, t∗). (6.23)
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Indeed, Qt∗R ⊂ QR(θm) provided

0 > t∗ −R2θm0 > −R2θm ⇐⇒ R2(θm0 − θm) < t∗ < 0. (6.24)

Before we state the main proposition, we fix the setting we intend to work in.

Assumption A6.1. Let Assumptions A3.1–A3.7 hold and let (s, p) be a weak solution of
(TP1) in the sense of Definition 3.5. Let (x0, t0) ∈ K̃ ⊂⊂ Q be given, with the structure
K̃ = [τ1, τ2]×K ⊂⊂ Q. Without loss of generality, we assume that (x0, t0) = (0, 0). On
the set K̃, we determine, as described above, β be from Theorem 6.3, γp from (6.5) and
Cp from Proposition 6.5. Furthermore, we recall α0 from Assumption A3.7.

Furthermore, let ε ∈ (0, 1) be given and let 0 < R ≤ 1 be such that Q(2R, (2R)2−ε) ⊂ K̃.
Let µ+, µ− and ω be as in (6.16) and let m0 > 3 be the smallest integer such that (6.21)
holds. Lastly, let θm(ω) = θm be as in (6.17) and assume that m is large enough to
ensure (6.22).

Proposition 6.10. Assume the setting from Assumption A6.1 is fulfilled. For arbitrary

0 < ε ≤ βα0
4 max{α0, 1}

, (6.25)

consider the cylinder Q(2R, (2R)2−ε). The constant m can be determined depending only
on the data and on K̃, independent of ε and ω, such that at least one of the following
alternatives hold. Either there exists a constant γ = γ(data, K̃) with

ω ≤ γR
ε
α0 (6.26)

or there are positive constants C, γ and σ ∈ (0, 1) that depend only on the data and on
K̃ with the following properties. Defining for n = 0, 1, 2, . . . the sequence

Rn := C−nR,

we find sequences ωn ↘ 0 and θm,n ↗∞ with the properties

ωn+1 = max
{
σωn, γR

ε
α0
n

}
and θm,n = θm(ωn), (6.27)

and cylinders Qn := QRn(θm,n) such that Qn+1 ⊂ Qn and

ess osc
Qn

s ≤ ωn.

Remark 6.11. We emphasize that the constants from Proposition 6.10 that depend
only on the data and K̃ are independent of the vertex (x0, t0). /

The proof of Proposition 6.10 unfolds along two alternatives. So far, ε and m still need
to be determined and we increase complexity by adding a constant ν0 ∈ (0, 1). For such
fixed ν0, we need to examine the following two alternatives.
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First Alternative: There exists a cylinder of typeQt∗R ⊂ QR(θm) such that∣∣∣∣{s > µ+ −
ω

2m0

}
∩Qt∗R

∣∣∣∣ ≤ ν0
∣∣∣Qt∗R ∣∣∣ . (6.28)

Second Alternative: For every cylinder of typeQt∗R ⊂ QR(θm), there holds∣∣∣∣{s > µ+ −
ω

2m0

}
∩Qt∗R

∣∣∣∣ > ν0
∣∣∣Qt∗R ∣∣∣ . (6.29)

We emphasize that these are all the cases. Since we require several constants and
points in time in the next two sections, we provide a brief overview on these objects.
Furthermore, we introduce a convention for the constant γ.

Remark 6.12. In the subsequent calculations, γ denotes a generic constant, that can
be determined only in terms of the data and K̃. Particularly, γ is independent of the
solution itself.

• m0 is defined in (6.21), appears in Lemma 6.14 and Lemma 6.16 and depends only
on δ0.

• m has been introduced in (6.19) with the restriction that (6.22) holds. In Propo-
sition 6.31 the additional restriction m > m1 is made. The definition of m is
performed in Definition 6.25 under consideration of Remark 6.28 by a bootstrap
argument. The definition of m yields the constants µ and n0. The purpose of the
alternative argument is to show that m can be determined depending only on the
data and on K̃.

• m1 is introduced in Proposition 6.31 depending on the data, K̃ and a temporary
parameter λ0. For the determination of λ0 and thus m1, we refer to Remark 6.28.
Furthermore, there holds m1 > q2.

• ν0 has been introduced to state the two alternatives (6.28) and (6.29). It is deter-
mined in Lemma 6.14 and depends only on the data and on K̃.

• l1 is introduced in Lemma 6.16 and l2 in Proposition 6.18. l1 is only used in an
intermediate step to determine l2. To this end, the constant ν1 in Lemma 6.16 is
introduced. l2 depends on the data, K̃ and m.

• q1 and q2 are introduced in Lemma 6.22 and in Proposition 6.24, respectively. Both
constants depend only on the data and on K̃.

• The numbers q3 and q4 are introduced in Lemma 6.29 and in Proposition 6.31. q3
is only used in an intermediate step to determine q4. To this end, the constant ν1 in
Lemma is 6.29 introduced. m is determined before q4. Thus, q4 can be determined
only in terms of the data and K̃.
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• t∗ is chosen such that (6.24) holds, t̂ is defined in (6.51) and σ1 is defined in
Corollary 6.32 and depends in particular on m. t◦ is defined in Corollary 6.21, tσ
is defined in (6.115) and depends on j0. The number j0 depends on n0 and λ0 and
is introduced in Lemma 6.26. t̃ is defined in (6.123) and σ0 is defined in Corollary
6.21. σ and t� are determined in Proposition 6.33.

/

Remark 6.13 (Remark on upcoming proofs). We will restrict ourselves to the cases
where µ+ ∈ [1− δ0] and µ− ∈ [0, δ0]. The other cases are more favorable since at most
one degeneracy occurs. We comment on these cases at the beginning of section 6.5. In
addition, the result is trivial if ω = 0. Hence, we assume that ω > 0. Additionally, the
result ω = 0 is also contained in the case (6.26).

The lemmas and propositions stated in the treatment of the two alternatives are usually
based on their predecessors and are linked through the properties of the constants that
are enlisted in Remark 6.12.

In the upcoming proofs, we perform similar estimates and calculations as those found
in the proof of Lemma 6.14. We will not point out these arguments as explicitly as in
the proof of that lemma. In particular, the chain rule from Proposition 4.21, Lemma
4.19 and Corollary 4.23 are used. In addition, we will not keep track of the constants as
explicit as in the proof of Lemma 6.14, but rather write γ under consideration of Remark
6.12, reuse the constant Cξ and the notations I1 to I4, etc., for integrals containing the
spatial derivatives. /

Assumption A6.2. We assume µ+ ∈ [1− δ0], µ− ∈ [0, δ0] and ω > 0. Additionally, for
given 0 < R ≤ 1 we assume that m is large enough to ensure QR(θm) ⊂ Q(2R, θmR2) ⊂
Q(2R, (2R)2−ε).

6.3 The First Alternative — Degeneracy at s = 1

In this section, we examine the first alternative and assume that, for some ν0 ∈ (0, 1)
to be determined, there exists a cylinder of type Qt∗R such that (6.28) holds. We pro-
ceed as follows. In Lemma 6.14 we determine ν0 and infer that s is bounded away
from µ+ on Qt

∗
R/2, see Figure 6.1. This information is extended by means of loga-

rithmic estimates from Lemma 6.16 and with Proposition 6.18 up to the subcylinder
Q(R8 , t̂) ⊂ QR(θm). We emphasize, that neither m nor ε are determined during the first
alternative.

96



6.3 The First Alternative — Degeneracy at s = 1

t0

t0 − τ

(x0, t0) +Q(ρ, τ)

(x0, t0)
ρ

t∗

−t̂

RR
2

θm0

(x0, t0)

QR(θm)

Qt
∗
R Qt

∗
R
2

Q(R8 , t̂)

Figure 6.1: The left picture shows a parabolic cylinder introduced in Definition 6.1.
In the right picture, the cylinders occurring in the first alternative are
presented. These cylinders are distorted in the x direction. The outer,
black cylinder QR(θm) ⊂ Q(2R, (2R)2−ε) contains the red cylinder Qt∗R .
On the green cylinder Qt∗R/2, constructed in Lemma 6.14, we find that s is
bounded away from µ+. This result is extended in Proposition 6.18 up to
t = t0 at the cost of shrinking the cylinder in the x-direction and leads to
the blue, striped cylinder Q(R8 , t̂).

6.3.1 Determination of ν0.

Lemma 6.14 (Truncated Energy Estimate). Let Assumptions A6.1 and hold A6.2.
There exists a constant ν0 ∈ (0, 1), with ν0 = ν0(data, K̃), such that if (6.28) is in force
for some cylinder Qt∗R , then either

min
{

Φ1,l

(
ω

2m0+1

)
,
ω

2m0

}
≤ γRβ/4 (6.30)
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6 Local Hölder Continuity for the Two-Phase Flow Problem

for a specific constant γ = γ(data, K̃), or

s < µ+ −
ω

2m0+1 a.e. on Qt∗R
2
. (6.31)

Proof. Step 1. Preliminaries: Let m0 be as in (6.21) and a, b ∈ R, such that

µ+ −
ω

2m0
≤ a < µ+ −

ω

2m0+1 = b ≤ 1− ω

2m0+1 . (6.32)

With sb := min{s, b}, we infer from Proposition 4.21 that (sb − a)+ = T ba(s) − a ∈
L2(0, T ;H1(Ω)). In particular, we find ∇(sb − a)+ = ∇[T ba(s)] pointwise almost ev-
erywhere in Q. The definition of δ0, the minimality of m0 and the assumption on µ+
imply

b > a > µ+ −
ω

2m0
≥ 1− δ0 −

ω

2m0
> 1− 2δ0 > 1− ω

2m0−2 > 1− 4δ0, (6.33)

which leads to the estimate

max{(s− b)+, (b− a)} ≤ (µ+ − b) ≤
ω

2m0+1 < 1. (6.34)

Due the monotony of Φ1,l and Φ1,u on [1−4δ0, 1] and equations (3.31), (6.32) and (6.33),
we infer

Φ1,l

(
ω

2m0+1

)
≤ Φ′(x, s) ≤ Φ1,u

(
ω

2m0−2

)
a.e. on {s > a}. (6.35)

For later purposes, we write r = R and introduce, for 0 < σ < η ≤ 1, a nonnegative
smooth cutoff function ξ on Qt∗ηr that equals one on Qt∗σr, vanishes on ∂pQt

∗
ηr and is such

that 0 ≤ ξ ≤ 1. Moreover, we demand the form ξ(x, t) = ξ1(x)ξ2(t), where
ξ1 = 1 on Bσr,
ξ1 = 0 on ∂Bηr,
|∇ξ1| ≤

Cξ
(η−σ)r ,

∣∣D2ξ1
∣∣ ≤ Cξ

(η−σ)2r2

(6.36)

and 
ξ2 = 0 for t ≤ t∗ − θm0(ηr)2

ξ2 = 1 for t ≥ t∗ − θm0(σr)2

0 ≤ ξ2,t ≤
Cξ

(η2−σ2)r2θm0
for t ∈ (t∗ − θm0(ηr)2, t∗ − θm0(σr)2).

(6.37)

The constant Cξ > 1 depends only on the dimension d and on the order of derivatives,
see [Alt06, 2.18]. On the range of η and σ we find

(η − σ)2 ≤ (η − σ)(η + σ) = η2 − σ2. (6.38)

We introduce the abbreviations τη := t∗− θm0(ηr)2 and Ut := Br× (τη, t), define the set

Ma,η := {s > a} ∩Qt∗ηr = {sb > a} ∩Qt∗ηr = {s > a} ∩ Ut∗ (6.39)
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and mention that {s > a} ∩ Ut ⊂Ma,η.

Step 2: Truncated energy estimates. We infer from the previous considerations
that v := (sb − a)+ξ

2 1[τη ,t] ∈ L2(0, T ;H1
0 (Ω)) ⊂ L2(0, T ;V ) for t ∈ (τη, t∗). Hence, v is

admissible in equation (3.23).

We remark that τη is a Lebesgue point of v(t) due to Lemma 4.30. To estimate the terms
containing the time derivative, we apply Lemma 4.32 under consideration of Remark
4.38. Particularly, we use Lemma 6.9 with g(u) = T ba(u)− a which gives G(s) = 1

2(sb −
a)2

+ + (b− a)(s− b)+. We obtain for almost every t ∈ (τη, t∗) the identity∫ t

τη
〈φ∂ts, (sb − a)+ξ

2〉 = 1
2

∫
Bηr×{t}

φ(sb − a)2
+ξ

2 − 1
2

∫
Bηr×{τη}

φ(sb − a)2
+ξ

2

+ (b− a)
∫
Bηr×{t}

φ(s− b)+ξ
2 − (b− a)

∫
Bηr×{τη}

φ(s− b)+ξ
2

−
∫
Ut
φ(sb − a)2

+ξξt − 2(b− a)
∫
Ut
φ(s− b)+ξξt.

(6.40)

The third term on the right-hand side is nonnegative and, exploiting the properties of
ξ, we see that the second and fourth term on the right-hand side vanish. With the
properties of Ma,η and from equation (6.38), we infer the lower estimate∫ t

τη
〈φ∂ts, (sb − a)+ξ

2〉

≥ C∗
2

∫
Bηr×{t}

(sb − a)2
+ξ

2 − CξC
∗

(η − σ)2r2

(
ω

2m0

)2
Φ1,l

(
ω

2m0+1

)
|Ma,η| .

(6.41)

Before we consider the terms containing the spatial derivatives, we refer to the main
tools required to perform the following estimates. Without further mentioning, we ex-
ploit the results of chapter 4.2 applied to (sb − a)+; particularly, the chain rule from
Proposition 4.21, Lemma 4.19 and Corollary 4.23 to characterize the support of the oc-
curring functions. We emphasize that integrals containing (sb− a)+ and ∇(sb− a)+ are
only extended onto {s > a} and {b > s > a}, respectively. Thus, (6.35) may be used to
estimate expressions containing Φ′(s).

Considering the integrals containing the spatial derivatives, we split the expression ac-
cording to∫

Ut
[κ (∇[Φ(s)]−∇xΦ(s) +B(s)) +D(s)u] · ∇

[
(sb − a)+ξ

2
]

= I1 + I2 + I3 + I4

and consider the integrals I1 to I4 separately. Concerning I1, we write

I1 =
∫
Ut

(κ∇[Φ(s)]ξ2) · ∇(sb − a)+ + 2(κ∇[Φ(s)](sb − a)+ξ) · ∇ξ = I11 + I12
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and estimate I11 in virtue of

I11 =
∫
Ut

(κξ2[Φ′(s)∇(sb − a)+ +∇xΦ(s)]) · ∇(sb − a)+

≥ C∗
∫
Ut

Φ′(s) |∇(sb − a)+|2 ξ2 +
∫
Ut

(κ∇xΦ(s)ξ2) · ∇(sb − a)+.

For I12, we compute

I12 = 2
∫
Ut

(
κ∇

[
(Φ(s)− Φ(b))+ + Φ(T b(s))

]
(sb − a)+ξ

)
· ∇ξ

= 2
∫
Ut

(κ(b− a)ξ∇(Φ(s)− Φ(b))+) · ∇ξ +
(
κ(sb − a)+ξ∇[Φ(T ba(s))]

)
· ∇ξ

= 2
∫
Ut

(κ(b− a)ξ∇(Φ(s)− Φ(b))+) · ∇ξ +
(
κ(sb − a)+ξΦ′(s)∇(sb − a)+

)
· ∇ξ

+ 2
∫
Ut

(
κ(sb − a)+∇xΦ(T ba(s))ξ

)
· ∇ξ

= J11 + J12 + J13.

Since ξ1 is compactly supported and since ξ, κ,∇ξ are sufficiently smooth we may inte-
grate by parts in J11 with respect to x. To this end, we use equation (1.19) with the
notation of Definition 1.4, the smoothness of ξ1 and deduce the upper estimate

|J11| = 2(b− a)
∣∣∣∣∫
Ut
∇(Φ(s)− Φ(b))+ · (ξκ∇ξ)

∣∣∣∣
≤ 2(b− a)

∫
Ut

(Φ(s)− Φ(b))+
∣∣∣(κ∇ξ) · ∇ξ + ξκ : D2ξ + ξ(∇ · κ) · ∇ξ

∣∣∣
≤ 2C∗(b− a)

∫
Ut

(∫ s

b
Φ′(v) dv

)
+

(
|∇ξ|2 + ξ

∣∣∣D2ξ
∣∣∣+ ξ |∇ξ|

)
≤ C∗C2

ξ

(
ω

2m0

)2
Φ1,u

(
ω

2m0−2

) 1 + r

(η − σ)2r2 |Ma,η| .

Application of Cauchy’s inequality to J12 yields

|J12| ≤ 2
∫
Ut
C∗Φ′(s)(sb − a)+ |∇(sb − a)+| ξ |∇ξ|

≤ C∗
2

∫
Ut

Φ′(s) |∇(sb − a)+|2 ξ2 + C∗

C∗
Φ′(s)(sb − a)2

+ |∇ξ|
2

≤ C∗

2

∫
Ut

Φ′(s) |∇(sb − a)+|2 ξ2 +
C∗C2

ξ

C∗

(
ω

2m0

)2
Φ1,u

(
ω

2m0−2

) 1
(η − σ)2r2 |Ma,η| .

Concerning I2, we find

I2 = −
∫
Ut

(
κ∇xΦ(s)ξ2

)
· ∇(sb − a)+ + (2ξ(sb − a)+κ∇xΦ(s)) · ∇ξ

= −
∫
Ut

(
κ∇xΦ(s)ξ2

)
· ∇(sb − a)+ − 2

∫
Ut

(
ξ(sb − a)+κ∇xΦ(T ba(s))

)
· ∇ξ

− 2
∫
Ut

(ξ(b− a)κ [∇xΦ(s)−∇xΦ(b)]) · ∇ξ 1{s>b} = I21 + I22 + I23
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The integrals I21 and I22 cancel with the second integral in I11 and with J13, respectively.
We use ∇xΦ(s) =

∫ s
0 ∇xΦ′ and |∇xΦ′| ≤ C∗ from (3.30), and equation (6.34) to obtain

|I23| ≤ 2C∗(b− a)
∫
Ut

(∫ s

b

∣∣∇xΦ′(v)
∣∣ dv)

+
ξ |∇ξ| ≤ Cξ(C∗)2

(
ω

2m0

)2 r

(η − σ)2r2 |Ma,η| .

To estimate I3, we use the bound |B(x, s)| ≤ C∗Φ′(x, s) for (x, s) ∈ Ω× [0, 1], as derived
in Remark 3.8, and Cauchy’s inequality to obtain

|I3| ≤
(C∗)2

2

∫
Ut

Φ′(s) |∇(sb − a)+| ξ2 + Φ′(s)(sb − a)+ξ |∇ξ|

≤ C∗
4

∫
Ut

Φ′(s) |∇(sb − a)+|2 ξ2 + (C∗)4

4C∗
r2

(η − σ)2r2 Φ1,u

(
ω

2m0−2

)
|Ma,η|

+ Cξ(C∗)2

2
r

(η − σ)2r2

(
ω

2m0

)
Φ1,u

(
ω

2m0−2

)
|Ma,η| .

Concerning I4, we split the integrals according to

I4 =
∫
Ut
D(s)u · ∇(sb − a)+ξ

2 + 2
∫
Q
κ(sb − a)+ξD(s)u · ∇ξ = I41 + I42.

We treat I41, exploiting the identity

∇
(∫ T ba(s)

a
D(v) dv

)
= D(s)∇(sb − a)+ +

∫ T ba(s)

a
∇xD(v) dv,

integrate by parts and use that ∇ · u = 0 to obtain

I41 =
∫
Ut
ξ2u · ∇

(∫ T ba(s)

a
D(v) dv

)
− ξ2u ·

(∫ T ba(s)

a
∇xD(v) dv

)

= −
∫
Ut

2
(∫ T ba(s)

a
D(v) dv

)
u · ξ∇ξ − ξ2u ·

(∫ T ba(s)

a
∇xD(v) dv

)
.

Consequently, we estimate I4 as

|I4| ≤ 2
∫
Ut

[(∫ T ba(s)

a
|D(v)|dv

)
+ |D(s)| (sb − a)+

]
|u| ξ |∇ξ|

+ 2
∫
Ut
ξ2 |u|

(∫ T ba(s)

a
|∇xD(v)| dv

)

≤ 2C∗
∫
Ut

(sb − a)+ |u| [ξ |∇ξ|+ ξ2] ≤ 2(C∗)3
∫
Ut

(sb − a)+(|∇p|+ 1)[ξ |∇ξ|+ ξ2]

≤ C∗
16 r

−β
∫
Ut
|∇p|2 (sb − a)2

+ξ
2 + 132

C2
ξ (C∗)6

C∗
rβ

1 + r2

(η − σ)2r2 |Ma,η|

+ Cξ(C∗)3
(
ω

2m0

)
r + r2

(η − σ)2r2 |Ma,η| ,

101



6 Local Hölder Continuity for the Two-Phase Flow Problem

where we exploit Cauchy’s inequality and the estimates on D(s) presented in Remark
3.8. The Caccioppoli estimate from Proposition 6.5 leads to

|I4| ≤
C∗
8 Cpr

β
∫
Ut
|∇(sb − a)+|2 ξ2 +

C2
ξC∗Cp

8

(
ω

2m0

)2 rβ

(η − σ)2r2 |Mα,η|

+ C∗Cp
16

(
ω

2m0

)2 r2−β

(η − σ)2r2 |Ma,η|+ 32
C2
ξ (C∗)6

C∗
rβ

1 + r2

(η − σ)2r2 |Ma,η|

+ Cξ(C∗)3
(
ω

2m0

)
r + r2

(η − σ)2r2 |Ma,η| .

We collect the previous estimates, absorb the terms containing |∇(sb − a)+|2, divide by
C∗, estimate all constants from above by

C̄ := 32
C2
ξ (C∗)6Cp

C2
∗

,

to obtain
1
2

∫
Bηr×{t}

(sb − a)2
+ξ

2 + 1
4Φ1,l

(
ω

2m0+1

)∫
Ut
|∇(sb − a)+|2 ξ2

≤ C̄

(η − σ)2r2

[(
ω

2m0

)2
Φ1,u

(
ω

2m0−2

)
(2 + r) +

(
ω

2m0

)2
Φ1,l

(
ω

2m0+1

)

+
(
ω

2m0

)2
(r + rβ + r2−β) + Φ1,u

(
ω

2m0−2

)
r2

+ ω

2m0
Φ1,u

(
ω

2m0−2

)
r + ω

2m0

(
r + r2

)
+ rβ + r2+β

]
|Ma,η|

+ 1
8Cpr

β
∫
Ut
|∇(sb − a)+|2 ξ2.

(6.42)

From now on, we assume that (6.30) is violated with the choice γ = Cp, i.e.

Cpr
β/4 ≤ min

{
Φ1,l

(
ω

2m0+1

)
,
ω

2m0

}
≤ min{C∗, 1} = 1, (6.43)

which implies rα ≤ 1 for all α ∈ [0, 1]. Hence, we may absorb the last term on the right-
hand side of (6.42). Estimating the terms on the right hand side of (6.42), exploiting
(6.35) and (6.43), and taking afterwards the essential supremum over all t ∈ (τη, t∗)
yields

ess sup
τη≤t≤t∗

∫
Bηr×{t}

(sb − a)2
+ξ

2 + Φ1,l

(
ω

2m0+1

)∫
Qt∗ηr

|∇(sb − a)+|2 ξ2

≤ 104C̄
(η − σ)2r2

(
ω

2m0

)2
Φ1,u

(
ω

2m0−2

)
|Ma,η| .

(6.44)
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The change of variables t̄ = (t− t∗)θ−1
m0 transforms the interval (τη, t∗) into (−(ηr)2, 0).

Define s̄(·, t̄) := s(·, t), ξ̄(·, t̄) = x(·, t) and M̄a,η = {s̄ > a} ∩ Qηr. Applying this
transformation to (6.44), adding on both sides the term∫

Qηr
(s̄b − a)2

+

∣∣∣∇ξ̄∣∣∣2
and using C2

ξ ≤ C̄, we deduce the estimate

∥∥∥(s̄b − a)+ξ̄
∥∥∥2

V 2(Qηr)
≤ 104C̄

(η − σ)2r2

(
ω

2m0

)2
[

Φ1,u (ω/2m0−2)
Φ1,l (ω/2m0+1) + 1

] ∣∣∣M̄a,η

∣∣∣ . (6.45)

Step 3: Iteration. Inequality (6.44) is the starting point of an iteration process. We
define for k = 0, 1, 2, . . . the numbers

ak := b− ω

2m0+1 2−k, ηk := 1
2 + 2−(k+1), rk := ηkr and Ak :=

∣∣∣M̄ak,rk

∣∣∣ ,
and choose a = ak, η = ηk and σ = ηk+1 in (6.44) to deduce

2−2(k+1)
(

ω

2m0+1

)2
Ak+1 = |ak+1 − ak|2Ak+1

≤
∫
Qrk+1

(s̄b − ak)2
+ 1{s̄b>ak+1} ≤ ‖(s̄b − ak)+‖22,Qrk+1

≤
∥∥∥(s̄b − ak)+ξ̄

∥∥∥2

2,Qrk
≤ C

∥∥∥(s̄b − ak)+ξ̄
∥∥∥2

V 2(Qrk )
A

2
d+2
k

≤ γ̃ 22(k+2)

r2
k

(
ω

2m0

)2
[

Φ1,u (ω/2m0−2)
Φ1,l (ω/2m0+1) + 1

]
A

1+ 2
d+2

k .

(6.46)

We exploit Theorem 1.3 in the fourth inequality and emphasize that the constant C only
depends on the dimension d and the exponent p = 2. In the last inequality we use the
abbreviation γ̃ = 104CC̄ and ηk − σk = 2−(k+2) as well as rk ≤ r. Isolating Ak+1 on the
left-hand side of (6.46) yields

Ak+1 ≤ γ̃
24(k+2)

r2
k

[
Φ1,u (ω/2m0−2)
Φ1,l (ω/2m0+1) + 1

]
A

1+ 2
d+2

k . (6.47)

We define the numbers
Xk := Ak

|Qrk |
and divide (6.47) by

∣∣Qrk+1

∣∣. To obtain the term Xk on the right-hand side, we observe
that∣∣Qrk+1

∣∣ r2
k = |B1| (rk+1)d+2r2

k ≥ |B1|
1

2(d+2) (rk)d+4

= 2−(d+2) |B1|−
2
d+2 (|B1| rd+2

k )
d+4
d+2 = 2−(d+2) |B1|−

2
d+2 |Qrk |

1+ 2
d+2

(6.48)
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where the estimate 2rk+1 ≥ rk is used. Combining (6.47) and (6.48) we infer

Xk+1 ≤ γ̃2(d+10) |B1|
2
d+2

[
Φ1,u (ω/2m0−2)
Φ1,l (ω/2m0+1) + 1

]
42kX

1+ d
d+2

k .

From Lemma 6.2 we obtain Xk → 0 as k →∞, provided that

X0 ≤
(
γ̃2(d+10) |B1|

2
d+2

[
Φ1,u (ω/2m0−2)
Φ1,l (ω/2m0+1) + 1

])− d+2
2

4−2( d+2
2 )2

=: ν0 ∈ (0, 1). (6.49)

But the first alternative (6.28) is identical to (6.49). Hence, we infer Ak → 0 and
observing that rk → R

2 and ak → b we find∣∣∣{s̄ ≥ b} ∩QR
2

∣∣∣ =
∣∣∣∣{s ≥ b} ∩Qt∗R

2

∣∣∣∣ = 0.

Thus, Lemma 6.14 is proven if the choice of ν0 is independent of ω. In fact, this follows
since the quotient

Φ1,u (ω/2m0−2)
Φ1,l (ω/2m0+1) = c1,u

c1,l
23α1 . (6.50)

is independent of ω due to (3.31) from Assumption A3.7.

Remark 6.15. The independence of ν0 on ω depends crucially on the structure of Φ1,l
and Φ1,u and particularly on both functions being power functions near one. /

6.3.2 A Logarithmic Estimate

To continue the treatment of the first alternative, we intend to extend the statement of
Lemma 6.14 from Qt

∗
R/2 up to t = 0 eventually shrinking the ball in that procedure. We

define the time level
− t̂ := t∗ − θm0

(
R

2

)2
(6.51)

and refer to Figure 6.1. In a first step, the information of Lemma 6.14 is used to show that
the measure of the set where s(t) is near its supremum on BR/4 is relatively small indepen-
dent of t ∈ (−t̂, 0). To this end we utilize the logarithmic function from Definition 6.7 and
derive so-called logarithmic estimates in the next lemma.

Lemma 6.16 (Logarithmic estimates). Let Assumptions A6.1 and A6.2 hold. Given
ν1 ∈ (0, 1), there exists N 3 l1 > m0 + 2, l1 = l1(data, K̃, ν1,m) such that either

min
{

Φ1,u

(
ω

2m0−2

)
,
ω

2l1

}
≤ γRβ/4 (6.52)

for some γ = γ(data, K̃) or∣∣∣∣{s(t) > µ+ −
ω

2l1

}
∩BR

4

∣∣∣∣ ≤ ν1
∣∣∣BR

4

∣∣∣ , for a.e. t ∈ (−t̂, 0). (6.53)
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Proof. Step 1: Preliminaries. With ā = ω
2n and b̄ = ω

2m0+1 we abbreviate Ψ = Ψā,b̄,
where Ψ is the function of Definition 6.7 and m0 + 2 < n ∈ N is to be chosen later. Let
r = R/2, σ ∈ (0, 1) and ξ be a smooth, time-independent cut-off function on Br that
equals one on Bσr and is such that 0 ≤ ξ ≤ 1, |∇ξ| ≤ Cξ 1

(1−σ)r and
∣∣D2ξ

∣∣ ≤ Cξ
(1−σ)2r2 .

Let a = µ+ − ω
2m0+1 and b = µ+ − ω

2n . Then (sb − a)+ ≤ ω
2m0+1 − ω

2n ≤
ω

2m0+1 and
analogously to (6.33) we find b > a ≥ 1 − ω

2m0−2 . Using the notation and properties of
(sb − a)+ indicated in the proof of Lemma 6.14 we deduce that 2Ψ((sb − a)+)Ψ′((sb −
a)+)ξ2 ∈ L2(0, T ;H1

0 (Ω)) since 2ΨΨ′ ∈ C0,1([0, b̄]) by Lemma 6.8. To keep the notation
compact, we introduce ψ = ψ(s) = Ψ((sb − a)+) and, with abuse of notation, also
ψ′ := ψ′(s) := Ψ′((sb − a)+). We emphasize that the formal derivative of ψ vanishes for
s > b but our choice of ψ′ does not. We find the identity

2ψ(s)ψ′(s) =
{

(ψ2)′(s) = (Ψ2)′((sb − a)+) s < b,

2Ψ(b− a)Ψ′(b− a) s ≥ b,
(6.54)

as well as 2ψψ′ξ2 ∈ L2(0, T ;H1
0 (Ω)). With the properties of Ψ from Lemma 6.8, we infer

ψ ≤ ln(2n−m0−1) ≤ (n −m0 − 1) ln(2) ≤ n and ψ′ ≤ 2n
ω . For t ∈ (−t̂, 0), we define the

cylinders Ut := Br × (−t̂, t). Due to the definition of t̂ and choice of t∗, we find

t̂ < (2r)2θm and |Ut| ≤ t̂ |Br| ≤ 4θmr2 |Br| . (6.55)

Step 2: Logarithmic Estimates. For t1 ∈ (−t̂, t∗) and t ∈ (t1, 0), the function
v = 2ψψ′ξ2 1[t1,t] is admissible in equation (3.23). Using Lemma 4.32 under consideration
of Remark 4.38 and Lemma 6.9, we integrate by parts to obtain∫ t

t1
〈φ∂ts, 2ψψ′ξ2〉 =

∫
Br
φψ2ξ2 + 2φΨ(b− a)Ψ′(b− a)(s− b)+ξ

2
∣∣∣∣t
t1

=
∫
Br×{t}

φψ2ξ2 + 2φΨ(b− a)Ψ′(b− a)(s− b)+ξ
2 ≥ C∗

∫
Br×{t}

ψ2ξ2
(6.56)

for a.e. t1 ∈ (−t̂, t∗) and t ∈ (t1, 0). For such t1, the integral evaluated at t1 vanishes
due to Lemma 6.14, i.e. s < µ+ − ω

2m0+1 a.e. in Qt∗r . In particular, the function v = 0
a.e. on Br × (−t̂, t∗)

As in the second step in the proof of Lemma 6.14 we exploit the properties of (sb − a)+
and its gradient. Furthermore, since v = 0 a.e. on Br × (−t̂, t∗) we may extend the
integrals from Br × (t1, t) onto Ut.

Concerning the integrals containing the spatial derivatives, we write∫
Ut

[κ (∇[Φ(s)]−∇xΦ(s) +B(s)) +D(s)u] · ∇
[
2ψψ′ξ2

]
= I1 + I2 + I3 + I4
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and consider the integrals I1 to I4 separately. From the properties of Ψ we infer the
pointwise identity

∇
[
2ψψ′ξ2

]
= 2(ψ′)2(1 + ψ)∇(sb − a)+ξ

2 + 4ψψ′ξ∇ξ (6.57)

almost everywhere on Ut and emphasize that the first term on the right-hand side van-
ishes a.e. on the sets {(sb−a)+ = c}, for c ∈ {a, b, ā}, due to Corollary 4.23. Concerning
I1, we write

I1 =
∫
Ut

(κ∇[Φ(s)]ξ2) ·
[
2(ψ′)2[1 + ψ]∇(sb − a)+ξ

2 + 4ψψ′ξ∇ξ
]

= I11 + I12

and estimate I11 in virtue of

I11 ≥ C∗
∫
Ut

(ψ′)2(1 + ψ)Φ′(s) |∇(sb − a)+|2 ξ2

+ 2
∫
Ut

(κ∇xΦ(s)ξ2)(ψ′)2(1 + ψ) · ∇(sb − a)+

For I12, we compute

I12 = 4
∫
Ut

(
κ∇

[
(Φ(s)− Φ(b))+ + Φ(T b(s))

]
ψψ′ξ

)
· ∇ξ

= 4
∫
Ut

(
κΨ(b− a)Ψ′(b− a)ξ∇(Φ(s)− Φ(b))+

)
· ∇ξ

+ 4
∫
Ut

(
κψψ′Φ′(s)∇(sb − a)+ξ

)
· ∇ξ + 4

∫
Ut

(
κψψ′∇xΦ(T ba(s))ξ

)
· ∇ξ

= J11 + J12 + J13

analogously to I12 in the previous proof. In the spirit of the treatment of J11 in the
proof of Lemma 6.14, we use integration by parts to obtain

|J11| ≤ γΨ(b− a)Ψ′(b− a)Φ1,u(b)(µ+ − b)
∣∣∣∣∫
Ut
∇ · (ξκ∇ξ)

∣∣∣∣
≤ γΨ(b− a)Ψ′(b− a)Φ1,u(b)(µ+ − b)

1 + r

(1− σ)2r2 |Ut| .

Application of Cauchy’s inequality to J12 under consideration of (6.12) yields

|J12| ≤ ε
∫
Ut

Φ′(s) |∇(sb − a)+|2 ξ2(ψ′)2(1 + ψ) + γ

(1− σ)2r2

∫
Ut

Φ′(s)ψ

for some ε > 0. Concerning I2, we write

I2 = −2
∫
Ut

(
κ(ψ′)2(1 + ψ)∇xΦ(s)ξ2

)
· ∇(sb − a)+ − 4

∫
Ut

(
κψψ′∇xΦ

(
T ba(s)

)
ξ
)
· ∇ξ

− 4
∫
Ut

(
κψψ′ [∇xΦ(s)−∇xΦ(b)] ξ

)
· ∇ξ 1{s>b} = I21 + I22 + I23
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The integrals I21 and I22 cancel with the second integral in I11 and with J13, respectively.
Using equation (3.30) from Assumption A3.7, we estimate

|I23| ≤ γΨ(b− a)Ψ′(b− a)
∫
Ut

(∫ s

b

∣∣∇xΦ′(v)
∣∣ dv)

+
ξ |∇ξ|

≤ γΨ(b− a)Ψ′(b− a)(µ+ − b)
r

(1− σ)2r2 |Ut|

Concerning I3, we use the bound |B(s)| ≤ C∗Φ′(s) from Assumption A3.7 and Cauchy’s
inequality under consideration of (6.12), to derive

|I3| ≤ γ
∫
Ut

Φ′(s) |∇(sb − a)+| (ψ′)2(1 + ψ)ξ2 + Φ′(s)ψψ′ξ |∇ξ|

≤ ε
∫
Ut

Φ′(s) |∇(sb − a)+|2 (ψ′)2(1 + ψ)ξ2 + γ

∫
Ut

Φ′(s)(ψ′)2(1 + ψ)ξ2

+ γ

(1− σ)2r2

∫
Ut

Φ′(s)ψ.

The reamining integral I4 is treated differently in comparison to the proof of Lemma 6.14.
From Remark 3.8 and due to the support of (sb − a)+, we estimate |D(s)| ≤ C∗Φ′(s).
We split I4 according to

I4 =
∫
Ut
D(s)u ·

[
2(ψ′)2(1 + ψ)∇(sb − a)+ξ

2 + 4ψψ′ξ∇ξ
]

= I4,1 + I4,2

With Cauchy’s inequality, we infer

|I41| ≤ ε
∫
Ut

Φ′(s) |∇(sb − a)+|2 (ψ′)2(1 + ψ)ξ2 + γ

∫
Ut

Φ′(s)ξ2 |u|2 (ψ′)2(1 + ψ)

and

|I42| ≤
γ

(1− σ)2r2

∫
Ut

Φ′(s)ψ + γ

∫
Ut

Φ′(s)(ψ′)2(1 + ψ) |u|2 ξ2.

We choose ε = C∗
3 and collect the previous estimates to obtain∫

Br×{t}
ψ2ξ2 ≤ γ

(1− σ)2r2 Ψ(b− a)Ψ′(b− a)(µ+ − b)+ |Ut| (r + Φ1,u(b)(1 + r))

+ γ

(1− σ)2r2

∫
Ut

Φ′(s)ψ + γ

∫
Ut

Φ′(s)(ψ′)2(1 + ψ)ξ2

+ γ

∫
Ut

Φ′(s)(ψ′)2(1 + ψ) |u|2 ξ2

(6.58)

for a.e. t ∈ (−t̂, 0). From Proposition 6.5 with f = ξ and ξ ≤ 1, we derive∫
Ut
|∇p|2 f2 ≤ Cp

(
r2β

(1− σ)2r2 |Ut|+ |Ut|
)
. (6.59)

107



6 Local Hölder Continuity for the Two-Phase Flow Problem

Exploiting this, the pointwise identity |u|2 ≤ 4(|∇p|2 + 1), using the preliminaries of the
proof, particularly that (µ+ − b)+ ≤ ω2−n, b ≥ 1− ω

2m0−1 as well as the properties of ψ,
and that ξ = 1 on Bσr we deduce from (6.58) the estimate∫

Bσr×{t}
ψ2 ≤ γn

(1− σ)2r2

[
r + Φ1,u

(
ω

2m0−2

)
(1 + r)

]
|Ut|

+ γn

(1− σ)2r2 Φ1,u

(
ω

2m0−2

)(2n
ω

)2 (
r2β + r2

)
|Ut|

(6.60)

for a.e. t ∈ (−t̂, 0).

Assume that
γr

β/4 < min
{

Φ1,u

(
ω

2m0−2

)
,
ω

2n
}

(6.61)

holds. Otherwise, equation (6.52) is fulfilled and there is nothing left to show. With
rα ≤ 1 for any α ∈ [0, 1] and r2β(2n/ω)2 ≤ 1, equation (6.60) transforms into∫

Bσr×{t}
ψ2 ≤ γn

(1− σ)2r2 Φ1,u

(
ω

2m0−2

)
|Ut|

(6.55)
≤ γnθm

(1− σ)2 Φ1,u

(
ω

2m0−2

)
|Br| . (6.62)

Step 3: Conclusion. We choose σ = 1
2 and define the sets

S(t) :=
{
s(t) > µ+ −

ω

2n
}
∩BR

4
⊂ BR

2

for a.e. every t ∈ (−t̂, 0). On S(t) we find ξ = 1, (sb − a)+ = ω
2m0+1 − ω

2n and, together
with the properties of ψ, also

ψ2 ≥ ln2
+(2n−m0−2) = ln2(2)(n−m0 − 2)2.

Application to (6.62) yields

ln2(2)(n−m0 − 2)2 |S(t)| ≤ 4γnθmΦ1,u

(
ω

2m0−2

) ∣∣∣BR
2

∣∣∣ .
Since

∣∣∣BR
2

∣∣∣ = 2d
∣∣∣BR

4

∣∣∣ we find
∣∣∣∣{s(t) > µ+ −

ω

2n
}
∩BR

4
× {t}

∣∣∣∣ ≤ γ n

(n−m0 − 2)2
Φ1,u (ω/2m0−2)

Φ0,l (ω/2m)
∣∣∣BR

4

∣∣∣
for a.e. t ∈ (−t̂, 0).

Note that n ≥ 2p+ 1
α for p, α > 0 implies

2p+ 1
α
≤ n⇒ 2p+ 1

α
≤ n+ p2

n
⇔ n

(n− p)2 ≤ α. (6.63)
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Hence, choosing
n ≥ 2(m0 − 1) + γ

ν1

Φ1,u (ω/2m0−2)
Φ0,l (ω/2m) =: Hn (6.64)

provides (6.53) with l1 = n modulo the independence of ω. Observe also that with such
a choice of l1, the complementary case to (6.61) is nothing but (6.52).

Concerning the independence of ω, we observe that ω ≤ 1 and α1 ≥ α0 from Assumption
A3.7. Consequently, the quotient

Φ1,u
(

ω
2m0−2

)
Φ0,l

(
ω

2m
) =

c1,u
(

ω
2m0−2

)α1

c0,l
(
ω

2m
)α0 = c1,u

c0,l
2mα0−(m0−2)α1ωα1−α0 ≤ c1,u

c0,l
2mα0

is estimated independent of ω. The choice

Hn ≤ 2(m0 − 2) + γ

ν1

c1,u
c0,l

2mα0 ≤ l1 (6.65)

for l1 is independent of ω, depends only on ν1, m, Cp, and thus only the data and K̃.
This implies (6.64).

Remark 6.17 (On the choice of b). In the previous proof it suffices to choose a < b < 1
such that (µ+ − b)+ ≤ ω2−n. In particular, if µ+ < 1 we may choose b > µ+ and the
integrals containing (µ+ − b) vanish. However, in these cases the definition of ψ and ψ′
is more complicated. This remark also applies to the logarithmic estimates we perform
later. /

6.3.3 The First Alternative Concluded

Proposition 6.18. Assume that the setting described Assumption A6.1 is given and
that Assumption A6.2 holds. There exists a constant N 3 l2 > l1, l2 = l2(data, K̃,m),
such that if (6.28) is in force for some cylinder Qt∗R , then there holds either

min
{
ω

2l2 ,Φ1,l

(
ω

2l2

)}
≤ γRβ/4

for some γ = γ(data, K̃), or there holds

s < µ+ −
ω

2l2 a.e on Q
(
R

8 , t̂
)
.

Proof. Step 1: Preliminaries. For n ≥ l1 to be chosen, consider b = µ+ − ω
2n+1 and

µ+ − ω
2n ≤ a < b. As in (6.33) we obtain a > 1 − ω

2m0−2 . For 0 < σ < η ≤ 1 and with
r = R/4, consider a time-independent cut-off function ξ on Bηr that equals one on Bσr,
satisfying

0 ≤ ξ ≤ 1, |∇ξ| ≤ Cξ
(η − σ)r and

∣∣∣D2ξ
∣∣∣ ≤ Cξ

(η − σ)2r2 .
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We define
Ma,η := {s > a} ∩Q(ηr, t̂) (6.66)

and derive an energy estimate on Q(ηr, t̂) and proceed similar to the proof of Lemma
6.14.

Step 2: Energy estimates. We emphasize that, in contrast to the proof of Lemma
6.14, we consider time-independent functions ξ and that we seek to integrate with respect
to a different cylinder. Observe that Lemma 6.14 yields

s(·, t) < µ+ −
ω

2m0
≤ a a.e. on Br for a.e. t ∈ (−t̂− δ,−t̂+ δ)

for some δ > 0, which implies that

(sb − a)+(·, t) = 0 a.e. on x ∈ Br for a.e. t ∈ (−t̂− δ,−t̂+ δ).

With these considerations, similarly to the decution of (6.40), we obtain∫ t

t1
〈φ∂ts, (sb − a)+ξ

2〉 = 1
2

∫
Bηr×{t}

φ(sb − a)2
+ξ

2 + (b− a)
∫
Bηr×{t}

φ(s− b)+ξ
2 (6.67)

for a.e. −t̂ < t1 < t < 0. The integrals concerning the spatial derivatives are treated
as in the second step of the proof of Lemma 6.14. Hence, in comparison to (6.43) and
(6.44), we find that either

min
{
ω

2n ,Φ1,l

(
ω

2n+1

)}
≤ γrβ/4 (6.68)

or

ess sup
−t̂<t<0

∫
Bηr×{t}

(sb − a)2
+ξ

2 + Φ1,l

(
ω

2n+1

)∫
Q(ηr,t̂)

|∇(sb − a)+|2 ξ2

≤ γ

(η − σ)2r2

(
ω

2n
)2

Φ1,u

(
ω

2m0−2

)
|Ma,η| .

(6.69)

We change the time variable according to

t̄ =
(
R

8

)2 t

t̂

and define the transformed function s̄(·, t̄) = s(·, t) as well as the transformed set M̄a,η =
{s̄ > a} ∩Q(ηr, (R8 )2). After multiplication of the whole expression (6.69) with

H(n) := (R/8)2

Φ1,l (ω/2n+1) t̂
> 0,
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this change of time variables leads to

H(n) ess sup
−(R/8)2<t<0

∫
Bηr×{t}

(s̄b − a)2
+ξ

2 +
∫
Q(ηr,(R8 )2)

|∇(s̄b − a)+|2 ξ2

≤ γ

(η − σ)2r2

(
ω

2n
)2 Φ1,u (ω/2m0−2)

Φ1,l (ω/2n+1)
∣∣∣M̄a,η

∣∣∣ . (6.70)

For n large enough, we find H(n) ≥ 1 and obtain, after adding the term∫
Q(ηr,(R8 )2)

(s̄b − a)2
+ |∇ξ|

2

on both sides, the simplified inequality

‖(s̄b − a)+ξ‖2V 2(Q(ηr,(R/8)2)) ≤
γ

(η − σ)2r2

(
ω

2n
)2
[

Φ1,u (ω/2m0−2)
Φ1,l (ω/2n+1) + 1

] ∣∣∣M̄a,η

∣∣∣ . (6.71)

Step 3: Iteration. We procceed similarly to the iteration presented in the third step
of the proof of Lemma 6.14. For k = 0, 1, 2, . . ., define

ak := b− ω

2n+1 2−k, ηk := 1
2 + 2−(k+1), rk := ηkr and Ak :=

∣∣∣M̄ak,rk

∣∣∣ ,
and choose a = ak, η = ηk and σ = ηk+1 in (6.71). With rk ≥ R

8 we obtain, analogously
to (6.46), the estimate

2−2(k+1)
(

ω

2n+1

)2
Ak+1 ≤ γ

22(k+2)

(R/8)2

(
ω

2m0

)2
[

Φ1,u (ω/2m0−2)
Φ1,l (ω/2n+1) + 1

]
A

1+ 2
d+2

k . (6.72)

Define the numbers
Xk := Ak

|Q(rk, (R/8)2)|

and divide (6.72) by
∣∣Q(rk, R2)

∣∣. Similarly to (6.48), we derive∣∣∣∣∣Q
(
rk+1,

(
R

8

)2
)∣∣∣∣∣
(
R

8

)2
≥ 2−d |B1|−

2
d+2

∣∣∣Q(rk, (R/8)2)
∣∣∣1 2
d+2

and find
Xk+1 ≤ 2d+10 |B1|

2
d+2 γ

[
Φ1,u (ω/2m0−2)
Φ1,l (ω/2n+1) + 1

]
42kX

1+ d
d+2

k .

From Lemma 6.2 we conclude that if

X0 ≤
(

2d+10 |B1|
2
d+2 γ

[
Φ1,u (ω/2m0−2)
Φ1,l (ω/2n+1) + 1

])− d+2
2

4−2( d+2
2 )2

=: ν1 ∈ (0, 1) (6.73)
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holds, then Xk → 0 as k →∞. Apply Lemma 6.16 with this ν1 and infer the existence
of l1 = l1(data, K̃, ν1,m), such that

M(t, l1) :=
∣∣∣∣{s(t) > µ+ −

ω

2l1

}
∩BR

4

∣∣∣∣ ≤ ν1
∣∣∣BR

4

∣∣∣ , for a.e. t ∈ (−t̂, 0). (6.74)

Step 4: Conclusion. We need to verify, that indeed the choice X0 ≤ ν1 is possible.
To this end, observe M(t, n) ⊂ M(t, l1) since n ≥ l1. Recall that M is defined in terms
of s whereas A0 is defined in terms of s̄, and conclude

X0 = A0∣∣∣Q (R4 , (R8 )2
)∣∣∣ =

(R8 )2

t̂

∫ 0
−t̂ |M(t, n)|∣∣∣Q (R4 , (R8 )2

)∣∣∣ ≤ (R8 )2

t̂
t̂ ess sup
−t̂<t<0

|M(t, l1)|(
R
8

)2 ∣∣∣BR
4

∣∣∣ ≤ ν1. (6.75)

Since rk ↘ R, ak ↗ µ+ − ω
2n+1 and Xk → 0 implies Ak → 0, we obtain∣∣∣∣∣

{
s̄ ≥ µ+ −

ω

2n+1

}
∩Q

(
R

8 ,
(
R

8

)2
)∣∣∣∣∣ =

∣∣∣∣{s ≥ µ+ −
ω

2n+1

}
∩Q

(
R

8 , t̂
)∣∣∣∣ = 0

and the proposition is proved if we choose l2 = n + 1 > l1 modulo the independence of
ν1 and l2 on ω.

Concerning the definition of ν1, we observe that ν1 is independent of ω since, due to
Assumption A3.7, the quotient

Φ1,u
(

ω
2m0−2

)
Φ1,l

(
ω

2n+1

) = c1,u
c1,l

2α1(n−m0−1)

is independent of ω. To take the independence of l2 on ω into account we recall that
H(l2) ≥ 1. With t̂ ≤ θmR2, α1 ≥ α0 and 0 < ω ≤ 1, it suffices to choose

l2 ≥ max
{
l1,
mα0 + 3 + log2( c1,l

c0,l
)

α1

}
to ensure

H(l2) ≥ 2−3 Φ0,l
(
ω

2m
)

Φ1,l
(
ω

2l2

) = c0,l
c1,l

ωα0−α12l2α1−mα0−3 ≥ 1.

The choice of l2 is independent of ω but still depends onm and we conclude the proof.

Corollary 6.19. Let Assumptions A6.1 and A6.2 hold. Then there exists a constant
σ1 ∈ (0, 1) depending only on the data, K̃ and l2, thus on m, such that if (6.28) holds
for some cylinder Qt∗R , then either

min
{
ω

2l2 ,Φ1,l

(
ω

2l2

)}
≤ γRβ/4 (6.76)

for some γ = γ(data, K̃), or
ess osc
Q(R8 ,t̂)

s ≤ σ1ω. (6.77)
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Proof. Proposition 6.18 provides an l2 such that

ess sup
Q(R8 ,t̂)

s ≤ µ+ −
ω

2l1+1 .

From this we get

ess osc
Q(R8 ,t̂)

s = ess sup
Q(R8 ,t̂)

s− ess inf
Q(R8 ,t̂)

s ≤ µ+ −
ω

2l2+1 − µ− =
(

1− ω

2l2+1

)
ω.

Collection of the alternatives in Lemma 6.14, Lemma 6.16 and Proposition 6.18 and
choosing γ as the maximum of the corresponding constants provides (6.76).

6.4 The Second Alternative — Degeneracy at s = 0

In this section, we examine the situation where the first alternative (6.28) fails to hold. In
this case, the second alternative is in force, i.e. for every cylinder of type Qt∗R ⊂ QR(θm)
there holds (6.29), where ν0 ∈ (0, 1) is given by Lemma 6.14.

Let us fix such a cylinderQt∗R for the moment. Sincem0 > 1 we find

µ+ −
ω

2m0
≥ ω + µ− + 2m0 − 1

2m0
≥ µ− + 2m0 − 1

2m0
ω > µ− + ω

2m0

and under consideration of{
s < µ− + ω

2m0

}
⊂
{
s ≤ µ+ −

ω

2m0

}
=
{
s > µ+ −

ω

2m0

}{

,

we infer ∣∣∣∣{s < µ− + ω

2m0

}
∩Qt∗R

∣∣∣∣ ≤ (1− ν0)
∣∣∣Qt∗R ∣∣∣ . (6.78)

For convenience, we define the intervals I(t∗) := (t∗−θm0R
2, t∗−ν0

2 θm0R
2).

Lemma 6.20. Let Assumptions A6.1 and A6.2 hold. For any cylinder Qt∗R ⊂ Qr(θm)
as in (6.23) and such that (6.78) is in force, there is a subset E ⊂ I(t∗) with |E| 6= 0
such that for all t ∈ E there holds∣∣∣∣{s(t) < µ− + ω

2m0

}
∩BR

∣∣∣∣ ≤
(

1− ν0
1− ν0

2

)
|BR| .

Proof. Assume |E| = 0. Hence for a.e. t ∈ I(t∗), we infer∣∣∣∣{s(t) < µ− + ω

2m0

}
∩BR

∣∣∣∣ >
(

1− ν0
1− ν0

2

)
|BR| .
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Together with |I(t∗)| = (1− ν0
2 )R2θm0 , we derive∣∣∣∣{s < µ− + ω

2m0

}
∩Qt∗R

∣∣∣∣
≥
∫
I

∣∣∣∣{s(t) < µ− + ω

2m0

}
∩BR

∣∣∣∣ dt
> (1− ν0) |BR| θm0R

2 = (1− ν0)
∣∣∣Qt∗R ∣∣∣

which contradicts (6.78).

Corollary 6.21. Let the setting from Assumption A6.1 be given and let Assumption
A6.2 hold. For any cylinder Qt∗R ⊂ QR(θm) such that (6.78) holds, there is a Lebesgue
point t◦ ∈ I(t∗) of s(t) such that

∣∣∣∣{s(t◦) < µ− + ω

2m0

}
∩BR

∣∣∣∣ ≤
(

1− ν0
1− ν0

2

)
|BR| .

6.4.1 A Second Logarithmic Estimate

Lemma 6.22 (A second logarithmic estimate). Under Assumptions A6.1 and A6.2
consider a cylinder Qt∗R ⊂ QR(θm) as in (6.23) and let (6.78) hold. There exists a
constant m0 + 2 < q1 ∈ N with q1 = q1(data, K̃), such that either

min
{
ω

2q1
,Φ0,u

(
ω

2m0−2

)}
≤ γRβ/4 (6.79)

for some specific constant γ = γ(data, K̃), or
∣∣∣∣{s(t) < µ− + ω

2q1

}
∩BR

∣∣∣∣ ≤
[
1−

(
ν0
2

)2
]
|BR| (6.80)

for a.e. t ∈ [t∗ − ν0
2 θm0R

2, t∗].

Proof. Step 1: Preliminaries Let N 3 n > m0 + 2 to be chosen and abbreviate
Ψ = Ψā,b̄ with ā = ω

2n and b̄ = ω
2m0 , where Ψ is the function of Definition 6.7. Choose

r = R and for σ ∈ (0, 1) let ξ be a smooth, time-independent cut-off function on Br that
equals one on B(1−σ)r where and such that 0 ≤ ξ ≤ 1, |∇ξ| ≤ Cξ 1

σr and
∣∣D2ξ

∣∣ ≤ Cξ
σ2r2 .

Let a = µ− + ω
2m0 and b = ā. In contrast to the first alternative, we use the different

notation sb := max{s, b}. Then (sb − a)− ≤ ω
2m0 − ω

2n and, analogous to (6.33), we find
b < a ≤ ω

2m0−2 . Due to Proposition 4.21 we find (sb−a)− = a−T ab (s) ∈ L2(0, T ;H1(Ω))
and hence ∇(sb − a)− = −∇T sb (s). As in the proof of Lemma 6.16, we abbreviate ψ :=
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ψ(s) := Ψ((sb − a)−) and, again with abuse of notation, ψ′ := ψ′(s) := −Ψ′((sb − a)−).
We emphasize that ψ′ is only the formal derivative of ψ for b < s. Particularly, we find

ψ′(s) :=
{
−Ψ′((sb − a)−) b < s

−Ψ′(a− b) s ≤ b

as well as

2ψ(s)ψ′(s) =
{

(ψ2)′(s) = −Ψ((sb − a)−)Ψ′((sb − a)−) s > b

−2Ψ(a− b)Ψ′(a− b) s ≤ b

and 2ψψ′ξ2 ∈ L2(0, T ;H1
0 (Ω)). Analogously to (6.57), we infer the pointwise identity

∇[ψψ′] = ∇[−Ψ((sb − a)−)Ψ′((sb − a)−)]
= −Ψ′2((sb − a)−)(1 + Ψ)((sb − a)−)∇(sb − a)− = −ψ′2(1 + ψ)∇(sb − a)−.

(6.81)

With the properties of Ψ from Lemma 6.8, we infer ψ ≤ ln(2n−m0) ≤ (n−m0) ln(2) ≤ n
and |ψ′| ≤ 2n

ω . For t ∈ (t◦, t∗), with t◦ from Corollary 6.21, we define the cylinder
Ut := Br × (t◦, t) and remark that

0 ≤ t∗ − t◦ ≤ t∗ − t∗ + θm0r
2 ≤ θm0r

2. (6.82)

Step 2: Logarithmic Estimates. From Lemma 4.31 we infer that t◦ is also a Lebesgue
point of 2ψψ′ξ2 since ψψ′ is Lipschitz continuous in s. For t◦ and t ∈ (t◦, t∗), the function
v = 2ψψ′ξ2 1[t◦,t] is admissible in equation (3.23). In comparison to the proof of the first
logarithmic estimate in Lemma 6.16, we need to take certain integrals evaluated in t◦

into account. Similar to (6.56) and with (6.15), we obtain∫ t

t◦
〈φ∂ts, 2ψψ′ξ2〉

≥ C∗
∫
Br×{t}

ψ2ξ2 −
∫
Br×{t◦}

ψ2ξ2 − 2C∗Ψ(a− b)Ψ′(a− b)(µ− − b)− |Br| .
(6.83)

In difference to the proof of Lemma 6.16, definition of ψ′ and (6.81) contain a sign.
However, this is not an issue since terms containing this sign cancel or are estimated by
its absolute value. We do not comment on this issue in the following and, furthermore,
we only point out the differences to the proof of Lemma 6.16.

Concerning the integrals containing the spatial derivatives, the first difference is spotted
in the first integral of I12 and we replace the corresponding term by [−(Φ(s)−Φ(b))−+
Φ(Tb(s))] which leads to the modified estimate

|J11| ≤ γΨ(a− b)Ψ′(a− b)Φ0,u(b)(µ− − b)−
1 + r

σ2r2 |Ut| .
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We emphasize that (µ− − b)− ≤ ω2−n and Φ0,u(b) ≤ Φ0,u(ω2−(m0−2)). The second
difference is found in the integral I2, where we replace the corresponding term by
∇xΦ(T ab (s)) + [∇xΦ(s)−∇xΦ(b)]1{s<b} and estimate

|∇xΦ(s)−∇xΦ(b)| 1{s<b} =
∫ b

s

∣∣∇xΦ′(v) dv
∣∣ 1{s<b} ≤ C∗(s− b)−

to obtain
|I23| ≤ γΨ(a− b)Ψ′(a− b)(µ− − b)−

r

σ2r2 |Ut| .

We infer from Remark 3.8 that I4 may be estimated as before. With these considerations,
we obtain, assuming that

γr
β/4 < min

{
Φ0,u

(
ω

2m0−2

)
,
ω

2n
}
, (6.84)

the estimate ∫
B(1−σ)r×{t}

ψ2 ≤
∫
Br×{t◦}

ψ2ξ2 + γ ln(2n−m0) |Br|

+ γn

σ2r2 Φ0,u

(
ω

2m0−2

)
(t∗ − t◦) |Br| .

(6.85)

The first and second term on the right-hand side originate from (6.83) under considera-
tion of ψ′(a− b)(µ− − b)− ≤ 1.

Step 3: Conclusion. With the properties of ψ from (6.82) and from Corollary 6.21,
we infer ∫

B(1−σ)r×{t}
ψ2 ≤ ln2(2)(n−m0)2

(
1− ν0
1− ν0

2

)
|Br|+ γn ln(2) |Br|

+ γnθm0

σ2 Φ0,u

(
ω

2m0−2

)
|Br|

(6.86)

and
S(t) :=

{
s(t) < µ− + ω

2n
}
∩B(1−σ)r ⊂ Br

for a.e. every t ∈ (t◦, t∗). On S(t) we find ξ = 1 and (sb−a)− = ω
2m0 − ω

2n , which implies

ψ2 ≥ ln2
+(2n−m0−1) = ln2(2)(n−m0 − 1)2.

Application to (6.86) yields

|S(t)| ≤
(

n−m0
n−m0 − 1

)2 1− ν0
1− ν0

2
|Br|+ γ

n−m0
(n−m0 − 1)2 |Br|

+ γnθm0

ln2(2)(n−m0 − 1)2σ2 Φ0,u

(
ω

2m0−1

)
|Br| .
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We use the identity
∣∣∣Br \B(1−σ)r

∣∣∣ = |B1| rdσd = |Br|σd and observe that
∣∣∣∣{s(t) < µ− + ω

2n
}
∩Br

∣∣∣∣
≤
∣∣∣∣{s(t) < µ− + ω

2n
}
∩B(1−σ)r

∣∣∣∣+ ∣∣∣Br \B(1−σ)r

∣∣∣
≤ |S|+ σd |Br| .

With σd ≤ dσ for σ ∈ (0, 1), we conclude that∣∣∣∣{s(t) < µ− + ω

2n
}
∩Br

∣∣∣∣
≤
[(

n−m0
n−m0 − 1

)2 1− ν0
1− ν0

2
+ dσ

]
|Br|

+
[

γn

(n−m0 − 1)2 + γnθm0

(n−m0 − 2)2σ2 Φ0,u

(
ω

2m0−1

)]
|Br|

(6.87)

Choose σ such that dσ ≤ 1
4ν

2
0 and then q1 = n so large that

(
n−m0

n−m0 − 1

)2
≤ (1 + ν0)

(
1− ν0

2

)
,

γn

(n−m0 − 1)2 ≤
1
4ν

2
0

and γnθm0

(n−m0 − 1)2σ2 Φ0,u

(
ω

2m0−1

)
≤ 1

4ν
2
0 .

(6.88)

Since ν0 is a constant that only depends on the data and on K̃, so is σ. Furthermore,
the first condition for the choice of q1 is possible independent of ω since ν0 ∈ (0, 1) and
(1 − ν0/2)(1 + ν0) = 1 + ν0/2 − (ν2

0/2) > 1. Trivially, the second condition for q1 is
possible and independent of ω. To consider the third condition for q1 we consider the
quotient

Φ0,u (ω/2m0−2)
Φ1,l (ω/2m0+1) = c0,u

c1,l
23α0 (6.89)

which is independent of ω. Hence, choosing q1 = n such that even

γq1
(q1 −m0 − 1)2σ2

c0,u
c1,l

23α0 ≤ 3
8ν

2
0 ,

we obtain from (6.87) the conclusion∣∣∣∣{s(t) < µ− + ω

2q1

}
∩Br

∣∣∣∣ ≤
(

1−
(
ν0
2

)2
)
|Br|

for a.e. t ∈ (t◦, t∗). We emphasize that the choice of q1 is independent of ω and the
lemma is shown.
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Corollary 6.23. Let Assumptions A6.1 and A6.2 hold. Then, there exists a constant
q1 = q1(data, K̃) such that either

min
{
ω

2q1
,Φ0,u

(
ω

2m0−2

)}
≤ γRβ/4

for some specific constant γ = γ(data, K̃) or∣∣∣∣{s(t) < µ− −
ω

2q1

}
∩BR

∣∣∣∣ ≤
[
1−

(
ν0
2

)2
]
|BR|

for a.e. t ∈
(
− θm

2 R
2, 0
)
.

Proof. Since the first alternative fails to hold, the conclusion of Lemma 6.22 holds for
every cylinder of type Qt∗R . Recalling from (6.24) that 0 ≥ t∗ ≥ R2(θm0 − θm), we
conclude that the assertion of Lemma 6.22 holds for a.e.

0 ≥ t ≥ t∗ − ν0
2 θm0R

2 ≥ R2
[(

1− ν0
2

)
θm0 − θm

]
.

Above all, using (6.22), i.e. 2θm0 ≤ θm, the conclusion of Lemma 6.22 holds for a.e.

0 ≥ t ≥ −θm2 R2 ≥ −
(

1 + ν0
2

)
θm
2 R2 = R2

[1
2

(
1− ν0

2

)
− 1

]
θm

≥ R2
[(

1− ν0
2

)
θm0 − θm

]
and we conclude the corollary.

6.4.2 Energy Estimates in Terms of Φ

The information from Corollary 6.23 is used to derive a statement that resembles (6.28)
from the first alternative written in terms of µ−.

We emphasize that, contrary to the usual approach found in the literature, we will not
be able to use DeGiorgi’s lemma in the following proof. Essentially, we cannot apply the
lemma since we need to cut-off at contour lines of Φ(x, s). To overcome this problem,
we use the more general Proposition 1.2.

Proposition 6.24. Assume that the setting described in Assumption A6.1 is given and
that Assumption A6.2 holds. For every λ0 ∈ (0, 1), there exist constants q2 > q1 ∈ N,
q2 = q2(data, K̃) and q2 < m1 ∈ N, m1 = m1(data, K̃, λ0), such that, if m > m1, then
either

min
{

Φ0,u

(
ω

2m1

)
,Φ0,l

(
ω

2q2

)
,
ω

2q2

}
≤ γRβ/4 (6.90)
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for some specific constant γ = γ(data, K̃), or∣∣∣∣{s < µ− −
ω

2q2

}
∩Q

(
R,

θm
2 R2

)∣∣∣∣ ≤ λ0

∣∣∣∣Q(R, θm2 R2
)∣∣∣∣ . (6.91)

Proof. Step 1. Preliminaries: We abbreviate k = k(n) = µ− + ω
2n for n ≥ q1

and find, similar to (6.33), that k(n) ≤ ω
2m0−2 . Since Φ ∈ C1(Ω × [0, 1]) and Φ(s) ∈

L2(0, T ;H1(Ω)), we infer from Lemma 4.4 that −(Φ(s)− Φ(k))− ∈ L2(0, T ;H1(Ω)).

Consider a smooth cut-off function ξ on Q(2R, θmR2) that equals one on Q(R, θm2 R2)
and zero on the parabolic boundary ∂pQ(2R, θmR2) and is such that

0 ≤ ξ ≤ 1, |∇ξ| ≤ Cξ
R

and 0 ≤ ∂tξ ≤
Cξ
θmR2 .

We define the set Ut = B2R × (−θmR2, t).

Step 2. Energy Estimates. We use −(Φ(s)− Φ(k))−ξ2 ∈ L2(0, T ;H1
0 (Ω)) in (3.23).

Considering the integral concerning the time derivative, we intend to exploit Lemma
4.36 under consideration of Remark 4.38. To use the lemma, we need to introduce g and
h as in Definition 4.34.

We choose the function g : (x, s) 7→ −(Φ(x, s) − Φ(x, k))− which is nondecreasing for
every x ∈ Ω. With h(x) = k, we find g(x, h(x)) = 0. Consequently, with (4.34) and the
non-negativity of this expression, we infer∫ t

−θmR2
〈φ∂ts,−(Φ(s)− Φ(k))−ξ2〉 ≥ −

∫
Ut
φ

∫ k

s
(Φ(σ)− Φ(k))− dσ ξ∂tξ (6.92)

for a.e. t ∈ (−θmR2, 0). Concerning the spatial integrals, we write∫
Ut

[κ (∇[Φ(s)]−∇xΦ(s) +B(s)) +D(s)u] · ∇
[
−(Φ(s)− Φ(k))−ξ2

]
= I1 + I2 + I3 + I4

and consider the integrals I1 to I4 separately.

We recall the identity ∇(u)− = −∇u1{u<0} from Lemma 4.4 and obtain under consid-
eration of the support of (Φ(s) − Φ(k))−, Cauchy’s inequality, from |∇[Φ(x, k)]| ≤ C∗

and with an analogous notation in comparison to the previous proof, the estimates

I11

∫
Ut
κ∇[Φ(s)] · (−∇(Φ(s)− Φ(k))−ξ2)

=
∫
Ut
κ(−∇[Φ(s)− Φ(k)]) · ∇(Φ(s)− Φ(k))−ξ2 − κ∇[Φ(k)] · ∇(Φ(s)− Φ(k))−ξ2

≥ C∗
2

∫
Ut
|∇(Φ(s)− Φ(k))−ξ|2 − γ

∣∣∣Q(2R, θmR2)
∣∣∣
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and

|I12| ≤
∣∣∣∣∫
Ut
κ∇[Φ(s)] · (−(Φ(s)− Φ(k))−2ξ∇ξ)

∣∣∣∣
= 2

∣∣∣∣∫
Ut
κ[∇(Φ(s)− Φ(k))− −∇Φ(k)] · [(Φ(s)− Φ(k))−ξ∇ξ]

∣∣∣∣
≤ ε

∫
U0
|∇(Φ(s)− Φ(k))−ξ|2 + γ

R2

∫
U0

(Φ(s)− Φ(k))2
− + γ

∣∣∣Q(2R, θmR2)
∣∣∣

For I2 and I3, we exploit the regularity of Φ, |B(s)| ≤ C∗ and Cauchy’s inequality to
obtain

|I2|+ |I3| ≤ ε
∫
Ut
|∇(Φ(s)− Φ(k))−|2 ξ2 + γ

∣∣∣Q(2R, θmR2)
∣∣∣+ γ

R2

∫
U0

(Φ(s)− Φ(k))2
−.

Concerning I4, we use |D(x, s)| ≤ C∗, Cauchy’s inequality and (6.59) to infer

|I4| ≤ ε
∫
U0
|∇(Φ(s)− Φ(k))−ξ|2 + γ

∫
U0
u2ξ2 + γ

R2

∫
U0

(Φ(s)− Φ(k))2
−

≤ ε
∫
U0
|∇(Φ(s)− Φ(k))−ξ|2 +

(
R2β

R2 + 1
) ∣∣∣Q(2R, θmR2)

∣∣∣
+ γ

R2

∫
U0

(Φ(s)− Φ(k))2
−.

Collecting the previous estimates and choosing ε appropriately yields∫
U0
|∇(Φ(s)− Φ(k))−ξ|2 ≤

(
R2β

R2 + 1
) ∣∣∣Q(2R, θmR2)

∣∣∣+ γ

R2

∫
U0

(Φ(s)− Φ(k))2
−

+ γ

θmR2

∫
U0

∫ k

s
(Φ(σ)− Φ(k))− dσ .

(6.93)

Since Φ′ is increasing on [0, 4δ0] for every x ∈ Ω and since k < ω
2m0−2 , we obtain

(Φ(σ)− Φ(k))− ≤ Φ′(k)(σ − k)− ≤ Φ0,u(k)(σ − k)−.

Application to (6.93) yields∫
U0
|∇(Φ(s)− Φ(k))−ξ|2 ≤

γ

R2 Φ0,u (k)
(
w

2n
)2 (

Φ0,u (k) + 1
θm

) ∣∣∣Q(2R, θmR2)
∣∣∣

+
(
R2β

R2 + 1
) ∣∣∣Q(2R, θmR2)

∣∣∣ . (6.94)

We assume that

γR
β/4 ≤ min

{
Φ0,u

(
ω

2m1

)
,Φ0,l

(
ω

2n+1

)
,
ω

2n
}
< 1 (6.95)
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for m1 > m0 − 2 sufficiently large and chosen in the next step. We use∣∣∣Q(2R, θmR2)
∣∣∣ = 2d−1

∣∣∣∣Q(R, θm2 R2)
∣∣∣∣ ,

integrate on the left-hand side over the smaller set where ξ = 1 and exploit

Φ0,l

(
ω

2n+1

)
≤ Φ0,u

(
ω

2n+1

)
≤ Φ0,u (k)

to obtain

‖∇(Φ(s)− Φ(k))−‖2Q(R, θm2 R2)

≤ γ

R2 Φ0,u (k)
(
w

2n
)2 (

Φ0,u (k) + 1
θm

) ∣∣∣∣Q(R, θm2 R2
)∣∣∣∣ . (6.96)

Step 3: Iteration and Conclusion. Since Φ(x, ·) is increasing for every x ∈ Ω, there
holds

{Φ(s) < Φ(k(n))} = {s < k(n)} (6.97)

and analogous results for different relations. The notation k(n) was introduced, but not
yet used, in the preliminaries of this proof.

From Corollary 6.23 and since n ≥ q1, we deduce∣∣∣∣{s(t) ≥ µ− + ω

2n
}
∩BR

∣∣∣∣ ≥ |BR| − ∣∣∣∣{s(t) < µ− + ω

2q1

}
∩BR

∣∣∣∣
≥ |Br| −

(
1−

(
ν0
2

)2
)
|BR| =

(
ν0
2

)2
|BR|

(6.98)

for a.e. t ∈
(
− θm

2 R
2, 0
)
. We define

An(t) := |{s(t) < k(n)} ∩BR| and An =
∫ 0

− θm2 R2
|An(t)|dt .

As in (6.97), these sets can be interpreted in terms of Φ; particularly, we find

An(t)−An+1(t) = {k(n+ 1) ≤ s < k(n)} ∩BR
= {Φ (k(n+ 1)) ≤ Φ(s) < Φ(k(n))} ∩BR.

(6.99)

Pointwise a.e. on An+1(t) we find

[max{Φ(s(t)),Φ(k(n+ 1))} − Φ(k(n))]− =
[
Φ
(
T
k(n+1)
k(n) (s(t))

)
− Φ(k(n))

]
−

= [Φ(k(n+ 1))− Φ(k(n))]− ≥ Φ0,l(k(n+ 1))[k(n)− k(n+ 1)].

121



6 Local Hölder Continuity for the Two-Phase Flow Problem

Hence, for a.e. t ∈
(
− θm

2 R
2, 0
)
and with the definition of k(n) we deduce

ω

2n+1 Φ0,l(k(n+ 1)) |An+1(t)| ≤
∫
An+1(t)

[
Φ
(
T
k(n+1)
k(n) (s(t))

)
− Φ(k(n))

]
−

≤
∫
BR

[
Φ
(
T
k(n+1)
k(n) (s(t))

)
− Φ(k(n))

]
−
.

Next, we apply Proposition 1.2 with ϕ ≡ 1, p = 1 and define for the moment

u(t) :=
(
Φ
(
T
k(n+1)
k(n) (s(t))

)
− Φ(k(n))

)
−
.

We find E = {u(t) = 0} = {s(t) ≥ k(n)} ∩ BR and infer from (6.98) that |BR| ≥ |E| ≥(ν0
2
)2 |BR|. Thus, we obtain

ω

2n+1 Φ0,l(k(n+ 1)) |An+1(t)| ≤ γ R
d |BR|

1
d(ν0

2
)2 |BR|

∫
BR

|∇u(t)| ≤ γ R
ν2

0

∫
BR

|∇u(t)| (6.100)

for a.e. t ∈
(
− θm

2 R
2, 0
)
. With Lemma 4.19, Stampacchia’s lemma and (6.97), we infer

for a.e. t ∈
(
− θm

2 R
2, 0
)
the identity

∇u(t) = −∇
(
Φ
(
T
k(n+1)
k(n) (s(t))

)
− Φ(k(n))

)
1An(t)

= ∇ [Φ(k(n))− Φ(k(n+ 1))] 1An+1(t) +∇[Φ(k(n))− Φ(s(t))]1An(t)\An+1(t)

= ∇ [Φ(k(n))− Φ(k(n+ 1))] 1An+1(t) +∇(Φ(s(t))− Φ(k(n)))− 1An(t)\An+1(t)

(6.101)

a.e. on BR. We integrate (6.100) in time over t ∈
(
− θm

2 R
2, 0
)
, insert (6.101) and use

the regularity of Φ to infer

ω

2nΦ0,l(k(n+ 1))An+1 ≤ γ
R

ν2
0

∫ 0

− θm2 R2

∫
An+1(t)

∇ [Φ(k(n))− Φ(k(n+ 1))]

+ γ
R

ν2
0

∫ 0

− θm2 R2

∫
An(t)\An+1(t)

∇(Φ(s)− Φ(k(n)))−

≤ γ R
ν2

0
An+1 + γ

R

ν2
0

∫ 0

− θm2 R2

∫
An(t)\An+1(t)

∇(Φ(s)− Φ(k(n)))−

(6.102)

We absorb the first term on the right-hand side of (6.102) using (6.95). Particularly, we
choose m1 large enough to ensure that

γR

ν2
0
≤ ω

2nΦ0,l

(
ω

2n+1

) Φ0,u
(
ω

2m1

)1−β
ν2

0

≤ ω

2nΦ0,l (k(n+ 1))
Φ0,u

(
1

2m1

)1−β

ν2
0

≤ 1
2
ω

2nΦ0,l (k(n+ 1)) .

(6.103)
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6.4 The Second Alternative — Degeneracy at s = 0

Up to now, the choice of m1 depends only on ν0, on β and on the structure conditions
of Φ from Assumption A3.7, thus m1 = m1(data, K̃). We insert this into (6.102), square
both sides and use Hölder’s inequality. This yields(

ω

2n
)2

Φ0,l(k(n+ 1))2A2
n+1 ≤ γ

R2

ν4
0

(An −An+1) ‖∇(Φ(s)− Φ(k))−‖2Q(R, θm2 R2)

≤ γ

ν4
0

(An −An+1)Φ0,u (k(n))
(
w

2n
)2 (

Φ0,u(k(n)) + 1
θm

) ∣∣∣∣Q(R, θm2 R2
)∣∣∣∣ ,

where we exploited the energy estimate (6.96) in the second inequality. Division by
ω2−nΦ(k(n+ 1))2 leads to

A2
n+1 ≤

γ

ν4
0

(An −An+1)
(

Φ0,u(k(n))
Φ0,l(k(n+ 1))

)2 ∣∣∣∣Q(R, θm2 R2
)∣∣∣∣

+ γ

ν4
0

(An −An+1)
(

Φ0,u(k(n))
Φ0,l(k(n+ 1))

Φ0,l
(
ω

2m
)

Φ0,l(k(n+ 1))

) ∣∣∣∣Q(R, θm2 R2
)∣∣∣∣

(6.104)

Recall that k(n) = µ− + ω2−n and, with the elementary inequality a+b
a+c ≤

b
c for 0 ≤ a

and 0 < c ≤ b, we find

Φ0,u(k(n))
Φ0,l(k(n+ 1)) ≤

Φ0,u
(
ω
2n
)

Φ0,l
(

ω
2n+1

) ≤ c0,u
c0,l

2α0 .

Using that Φ0,l is increasing on [0, 4δ0], we infer also

Φ0,l
(
ω

2m
)

Φ0,l(k(n+ 1)) ≤
Φ0,l

(
ω

2m
)

Φ0,l
(

ω
2n+1

) ≤ 2n+1−m ≤ 1 (6.105)

for m ≥ m1 ≥ n + 1. This choice of m is independent of ω modulo the potential
dependence of n on ω. With these considerations, (6.104) simplifies to

A2
n+1 ≤

γ

ν4
0

(An −An+1)
∣∣∣∣Q(R, θm2 R2

)∣∣∣∣ . (6.106)

Adding these inequalities for n = q1, q1 + 1, . . . , q2 − 1, where q2 needs to be chosen,
yields

q2−1∑
n=q1

A2
n+1 ≤

γ

ν4
0

(Aq1 −Aq2)
∣∣∣∣Q(R, θm2 R2

)∣∣∣∣ . (6.107)

Since Aq1 −Aq2 ≤
∣∣∣Q (R, θm2 R2

)∣∣∣ and
q2−1∑
n=q1

A2
n+1 ≥ (q2 − q1)A2

q2
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we conclude that
Aq2 ≤

γ

ν2
0

(q2 − q1)−
1
2

∣∣∣∣Q(R, θm2 R2
)∣∣∣∣

To prove the result, we choose q2 so large that
γ

ν2
0

(q2 − q1)−
1
2 ≤ λ0 (6.108)

This choice depends only on the data, on K̃, on λ0, and on q1. Thus, q2 independent of
ω. Consequently, the choice of m1 > q2 is independent of ω but still depends on λ0.

6.4.3 Defining the Geometry

In this section, we determine the value form and thus fix the geometry of the initial cylin-
der Qr(θm). Once m is determined, we are also in the position to conclude the first alter-
native, i.e. we can determine l2 and σ1 from Corollary 6.19.

We determine m with a kind of bootstrap argument. Assume for the moment that λ0 is
already determined. Then, by Proposition 6.24, we are able to choosem1.

Definition 6.25 (Choice of m). Assume that the setting described Assumption A6.1 is
given and that Assumption A6.2 holds. Let

φ1 := Φ0,u

(
ω

2q2

)
, φ2 := Φ0,l

(
ω

2q2+1

)
, Γ := φ1

φ2
, and µ := φ2Γ

d+2
2

and choose m > m1 as the smallest real number such that
µ

Φ0,l
(
ω

2m
) = n0 (6.109)

for some integer n0 ∈ N.

Since Φ0,l is a power function,m is independent of ω; in particular, we find that

Γ = c0,u
c0,l

2α0 . (6.110)

is independent of ω. Thus, alsom is independent of ω and we find
µ

Φ0,l
(
ω

2m
) = Γ

d+2
2 2m−(q2+1) = n0. (6.111)

For fixedm, we breakQ
(
R, θm2 R

2
)
into n0 subcylinders of the form

QjR := BR ×
(
−jR

2

µ
,−(j − 1)R

2

µ

)
for j = 1, 2, . . . , n0. (6.112)

Since these cylinders are disjoint and exhaust Q
(
R, θm2 R

2
)
, we infer from Proposition

6.24, assuming that is in force, the following statement.
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6.4 The Second Alternative — Degeneracy at s = 0

Lemma 6.26. Let Assumptions A6.1 and A6.2 hold and assume that (6.91) is in force.
For any λ0 ∈ (0, 1), there exists j0 ∈ {1, . . . , n0} such that∣∣∣∣{s < ω

2q2

}
∩Qj0R

∣∣∣∣ ≤ λ0
∣∣∣Qj0R ∣∣∣ . (6.113)

Proof. Let λ0 ∈ (0, 1) be given. Assume that for every cylinder QjR, with j = 1, 2, . . . , n0,
the condition (6.113) fails to hold, i.e. there exists ε > 0 such that for every such j there
holds ∣∣∣∣{s < µ− + ω

2q2

}
∩QjR

∣∣∣∣ > λ0
∣∣∣QjR∣∣∣ ≥ (λ0 + ε)

∣∣∣QjR∣∣∣ (6.114)

The choice for ε may be independent of j since n0 is finite. The cylinders QjR are disjoint
and exhaust Q

(
R, θm2 R

2
)
. We add (6.114) over j = 1, 2, . . . , n0 and infer

∣∣∣∣{s < ω

2q2

}
∩Q

(
R,

θm
2 R2

)∣∣∣∣ ≥ (λ0 + ε)Q
(
R,

θm
2 R2

)
which contradicts Proposition 6.24.

We fix j0 for the moment and introduce the notation

tσ := −(σR)2 − (j0 − 1)R2

µ
for σ ∈ [0, 1] (6.115)

and introduce the cylinder

Qj0R,η = (0, t0) +Q

(
ηR,

(ηR)2

µ

)
⊂ Rd+1

for 0 < η ≤ 1 and emphasize that Qj0R,1 = Qj0R .

Lemma 6.27. Under Assumptions A6.1 and A6.2, there exists λ0 ∈ (0, 1), λ0 =
λ0(data, K̃), such that if (6.113) is in force for Qj0R , then either

min
{

Φ0,l

(
ω

2q2+1

)
,
ω

2q2

}
≤ γR

β
4

for some γ = γ(data, K̃), or

s(x, t) > µ− + ω

2q2+1 a.e. on Qj0
R, 1

2
.

Proof. Step 1: Energy estimates. The proof is similar to the proof of Lemma 6.14
and, basically, we only point out the differences. Let µ− + ω

2q2 ≤ a < b := µ− + ω
2q2+1 be
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6 Local Hölder Continuity for the Two-Phase Flow Problem

given. For 0 < σ < η ≤ 1, let ξ be a smooth, nonnegative cut-off function with 0 ≤ ξ ≤ 1
and we demand ξ(x, t) = ξ1(x)ξ2(t) with

ξ1 = 1 on BσR,
ξ1 = 0 on ∂BηR,
|∇ξ1| ≤

Cξ
(η−σ)R ,

∣∣D2ξ1
∣∣ ≤ Cξ

(η−σ)2R2

and, with the notation (6.115), also
ξ2 = 0 for t ≤ tη
ξ2 = 1 for t ≥ tσ
0 ≤ ξ2,t ≤

Cξµ
(η2−σ2)R2 for tη < t < tσ.

We choose v = −(sb−a)−ξ2 with sb = max{s, b} in (3.23), defineMa,η := {s > a}∩Qj0R,η
and proceed as in Lemma 6.14 with the obvious modifications due to the sign. We assume
that

γR
β/4 < min

{
Φ0,l

(
ω

2q2+1

)
,
ω

2q2

}
(6.116)

and obtain

ess sup
tη<t<t0

∫
BηR×{t}

(sb − a)2
−ξ

2 + Φ0,l

(
ω

2q2+1

)∫
Q
j0
R,η

|∇(sb − a)−|2 ξ2

≤ γ

(η − σ)2R2

(
ω

2q2

)2 [
Φ0,u

(
ω

2m0−2

)
+ µ

]
|Ma,η| .

(6.117)

We emphasize that, in contrast to the proof of Lemma 6.14, that the term containing
Φ1,l(ω2−(m0+1)) coming from the ∂tξ-term is not estimated by Φ1,u(ω2−(m0−2)) from
above. This explains the appearance of µ on the right hand side of (6.117).

We perform a change in the time variable; putting t̄ =
(
t+ (j0 − 1)R2

µ

)
transforms

(tη, t0) to (−(ηR)2, 0) and Qj0R,η into QηR. Define s̄(·, t̄) = s(·, t), ξ̄(·, t̄) = ξ(·, t) as well
as M̄a,η = {s̄ > a} ∩QηR and obtain the inequality

ess sup
−(ηR)2<t<t0

∫
BηR×{t}

(sb − a)2
−ξ

2 +
Φ0,l

(
ω

2q2+1

)
µ

∫
Q
j0
R,η

|∇(sb − a)−|2 ξ2

≤ γ

(η − σ)2R2

(
ω

2q2

)2
Φ0,u

(
ω

2m0−2

)
µ

+ 1

 ∣∣∣M̄a,η

∣∣∣ .
(6.118)

With Γ from Definition 6.25, we multiply by Γ d+2
2 and obtain with the properties of φ1

and φ2, and with (6.110) that

Γ
d+2

2 ess sup
−(ηR)2<t<t0

∫
BηR×{t}

(sb − a)2
−ξ

2 +
∫
Q
j0
R,η

|∇(sb − a)−|2 ξ2

≤ γ

(η − σ)2r2

(
ω

2q2

)2 [
2q2−m0 + 1

] ∣∣∣M̄a,η

∣∣∣ . (6.119)
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We add on both sides the term ∫
Qηr

(s̄b − a)2
+

∣∣∣∇ξ̄∣∣∣2
to infer ∥∥∥(s̄b − a)−ξ̄

∥∥∥2

V 2(Qηr)
≤ γ

(η − σ)2r2
[
2q2−m0 + 1

] ∣∣∣M̄a,η

∣∣∣ . (6.120)

Step 2: Iteration. The iteration is performed as in the proof of Lemma 6.14. For
k = 0, 1, 2, . . ., define

ak := b− ω
q2+1 2−k, ηk := 1

2 + 2−(k+1), Rk = ηkR and Ak :=
∣∣∣M̄ak,Rk

∣∣∣ ,
and choose a = ak, η = ηk and σ = ηk+1 in (6.120). We infer, as in (6.46) and (6.47),
the estimate

Ak+1 ≤ γ
24(k+2)

R2
k

[
2q2−m0 + 1

]
A

1+ 2
d+2

k . (6.121)

Define
Xk := Ak

|QRk |

and divide (6.121) by |QRk |. With the calculation in (6.48), we obtain

Xk+1 ≤ γ
[
2q2−m0 + 1

]
42kX

1+ 2
d+2

k

and Lemma 6.2 implies that Xk → 0 as k →∞, provided that

X0 ≤
(
γ
[
2q2−m0 + 1

])− d+2
2 4−2( d+2

2 )2
=: λ0 ∈ (0, 1). (6.122)

This choice of λ0 is independent of ω and depends only on the data, K̃, q2 and m0.
Hence, for this λ0, we choose m1 as in Proposition 6.24 and then m as above. Thus

X0 ≤ λ0 ⇐⇒
∣∣∣∣{s < ω

2q2

}
∩Qj0R

∣∣∣∣ ≤ λ0
∣∣∣Qj0R ∣∣∣

is true. Consequently, we infer Ak → 0 and, observing that Rk → R
2 and ak → b, we

find ∣∣∣{s̄ ≤ b} ∩QR
2

∣∣∣ =
∣∣∣∣{s ≤ b} ∩Qj0R, 1

2

∣∣∣∣ = 0.

Remark 6.28 (Bootstrapping). Let us examine the reasoning in this section. The
number q2 = q2(data, K̃) was determined independent of m in Proposition 6.24. With
q2, we choose λ0 as in (6.122) independent of m. Once λ0 is given, m1 in Proposition
6.24 can be chosen depending only on the data and K̃, and thus, we define m in terms
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6 Local Hölder Continuity for the Two-Phase Flow Problem

of Definition 6.25. Consequently, n0 is given by (6.109) and we may split the cylinder
Q(R, θm2 R2) as in (6.112).

Then Lemma 6.26 provides the existence of a cylinder Qj0R such that (6.113) holds and
we may apply the reasoning of Lemma 6.27 to this cylinder. We emphasize that (6.113)
plays the same role as (6.28) in the first alternative. In addition Lemma 6.27 is the
corresponding analogue of Lemma 6.14. /

6.4.4 The Second Alternative Concluded

In view of the previous section and, particularly, of Remark 6.28, we conclude the second
alternative starting from Lemma 6.27 with analogues of Lemma 6.16 and Proposition
6.18.

For convenience, we define

t̃ =
(
j0 −

3
4

)
R2

µ
= −t 1

4
(6.123)

and emphasize that q2, m, m1 and λ0 are completely determined by means of the data
and K̃. Additionally, we remark that for t ∈ (t̃, t0) there holds s(t) > µ− + ω

2q2+1

a.e. on BR
2
× {t} due to Lemma 6.27. This is used in the proof of the next lemma.

Lemma 6.29. Let Assumptions A6.1 and A6.2 hold and let ν1 ∈ (0, 1) be given. There
exists max{l2,m} < q3 ∈ N, q3 = q3(data, K̃, ν1), such that either

min
{

Φ0,u

(
ω

2m0−2

)
,
ω

2q3

}
≤ γR

β
4 ,

for some γ = γ(data, K̃), or∣∣∣∣{s(t) ≤ µ− + ω

2q3

}
∩BR

4

∣∣∣∣ ≤ ν1
∣∣∣BR

4

∣∣∣ for a.e. t ∈ (t̃, 0). (6.124)

Remark 6.30. The choice q3 > max{l2,m} is made for convenience and is used in
Proposition 6.33. /

Proof. We choose ā = ω
2n , b̄ = ω

2q2+1 in the function Ψā,b̄ from Definition 6.7, where
n > q2 + 2 is to be chosen later. Let a = µ− + ω

2q2+1 and b = µ− + ω
2n . Let R

2 = r and
σ ∈ (0, 1) be given. Let ξ be a time-independent cut-off function that equals one on Bσr,
vanishes on ∂Br and is such that

0 ≤ ξ ≤ 1, |∇ξ| ≤ Cξ
1

(1− σ)r and
∣∣∣D2ξ

∣∣∣ ≤ Cξ
(1− σ)2r2 .
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Define the cylinders Ut := Br × (−t̃, t) for t ∈ (−t̃, 0). With ψ as in the proof of Lemma
6.22, we use −ψ(s)ψ′(s)ξ2 in (3.23). We proceed as in the proof of Lemma 6.16 and
treat the differences as in the proof of Lemma 6.22. We assume

γr
β
4 < min

{
Φ0,u

(
ω

2m0−2

)
,
ω

2n
}

and infer from (6.109)

t̃ ≤ n0
µ
R2 ≤ R2

Φ0,l( ω
2m ) .

This leads to the estimate∫
Bσr×{t}

ψ2 ≤ γn

(1− σ)2r2 Φ0,u

(
ω

2m0−2

)
|Ut| ≤

γt̃n

(1− σ)2r2 Φ0,u

(
ω

2m0−2

)
|Br|

≤ γn

(1− σ)2

Φ0,u
(

ω
2m0−2

)
Φ0,l

(
ω

2m
) |Br| .

(6.125)

for a.e. t ∈ (−t̃, 0). We used the definition of t̃ and (6.109) in the last inequality. As in
the third step of the proof of Lemma 6.16, we choose σ = 1

2 and define the sets

Sn(t) :=
{
s(t) < µ− + ω

2n
}
∩BR

4
⊂ BR

2
for a.e. t ∈ (t̃, 0).

On Sn(t) we infer the estimate ψ2 ≥ ln2(2)(n− q2 − 2) and obtain also

|Sn(t)| ≤ γn

(n− q2 − 2)2

Φ0,u
(

ω
2m0−2

)
Φ0,l

(
ω

2m
) ∣∣∣BR

4

∣∣∣
for a.e. t ∈ (−t̃, 0) after rescaling the ball. To prove the lemma we choose, under
consideration of (6.63) and

Φ0,u
(

ω
2m0−2

)
Φ0,l

(
ω

2m
) ≤ c0,u

c0,l
2m−m0−2,

q3 such that

q3 = n ≥ 2(q2 − 2) + γ

ν1

c0,u
c0,l

2m−m0−2 and q3 > max{l2,m}.

This choice is indepenedent of ω and clearly depends only on the data, on K̃ and on
ν1.
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Proposition 6.31. Under Assumptions A6.1 and A6.2, there exists a constant q3 ∈ N
with max{l2,m} < q3 < q4 ∈ N and q4 = q4(data, K̃) such that either

min
{
ω

2q4
,Φ0,l

(
ω

2q4

)}
≤ γR

β
4 ,

for some γ = γ(data, K̃), or

s > µ− + ω

2q4
, a.e. in Q

(
R

8 , t̃
)
.

Proof. We proceed analogous to the proof of Proposition 6.18.

Step 1: Preliminaries. For n ≥ q3 to be chosen, consider b = µ+− ω
2n+1 and µ+− ω

2n ≤
a < b. As in (6.33) we obtain a > 1 − ω

2m0−2 . For 0 < σ < η ≤ 1 and with r = R
4 , we

consider a time-independent cut-off function ξ on Bηr that equals one on Bσr, satisfying

0 ≤ ξ ≤ 1, |∇ξ| ≤ Cξ
(η − σ)r and

∣∣∣D2ξ
∣∣∣ ≤ Cξ

(η − σ)2r2 .

We define
Ma,η := {s > a} ∩Q(ηr, t̃) (6.126)

and derive an energy estimate on Q(ηr, t̂).

Step 2: Energy estimates. With the same reasoning as in the proof of Proposition
6.18, we infer, using −(sb − a)−ξ2 as a test function, that either

min
{
ω

2n ,Φ1,l

(
ω

2n+1

)}
≤ γrβ/4 (6.127)

or

ess sup
−t̃<t<0

∫
Bηr×{t}

(sb − a)2
−ξ

2 + Φ0,l

(
ω

2n+1

)∫
Q(ηr,t̃)

|∇(sb − a)−|2 ξ2

≤ γ

(η − σ)2r2

(
ω

2n
)2

Φ0,u

(
ω

2m0−2

)
|Ma,η| .

(6.128)

We change the time variable according to

t̄ =
(
R

8

)2 t

t̃
=
(
r

2

)2 t

t̃
(6.129)

and define the transformed function s̄(·, t̄) = s(·, t) as well as the transformed set M̄a,η =
{s̄ > a} ∩Q(ηr, (R8 )2). With n such that

H(n) := (R/8)2

Φ0,l (ω/2n+1) t̃ ≥ 1,
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we infer, as in the transition from (6.70) to (6.71), the estimate

‖(s̄b − a)−ξ‖2V 2(Q(ηr,(R/8)2)) ≤
γ

(η − σ)2r2

(
ω

2n
)2
[

Φ0,u (ω/2m0−2)
Φ0,l (ω/2n+1) + 1

] ∣∣∣M̄a,η

∣∣∣ . (6.130)

Step 3: Iteration. We proceed similarly to the iteration presented in the third step of
the proof of Proposition 6.18. With the same notation for ak, ηk, rk and Ak, with

Xk := Ak
|Q(rk, (R/8)2)|

and under consideration of∣∣∣∣∣Q
(
rk+1,

(
R

8

)2
)∣∣∣∣∣
(
R

8

)2
≥ 2−d |B1|−

2
d+2

∣∣∣Q(rk, (R/8)2)
∣∣∣1 2
d+2 ,

we find
Xk+1 ≤ 2d+10 |B1|

2
d+2 γ

[
Φ0,u (ω/2m0−2)
Φ0,l (ω/2n+1) + 1

]
42kX

1+ d
d+2

k .

From Lemma 6.2 we conclude that if

X0 ≤
(

2d+10 |B1|
2
d+2 γ

[
Φ0,u (ω/2m0−2)
Φ0,l (ω/2n+1) + 1

])− d+2
2

4−2( d+2
2 )2

=: ν1 ∈ (0, 1) (6.131)

then Xk → 0 as k →∞. Apply Lemma 6.29 with this ν1 and conclude the existence of
q3, depending only on the data, K̃ and ν1, such that

M(t, q3) :=
∣∣∣∣{s(t) < µ− + ω

2q3

}
∩BR

4

∣∣∣∣ ≤ ν1
∣∣∣BR

4

∣∣∣ , for a.e. t ∈ (−t̃, 0). (6.132)

Step 4: Conclusion. We proceed as in (6.75) with l1 and t̂ replaced by q3 and t̃,
respectively, and we obtain X0 ≤ ν1. Since rk ↘ R, ak ↗ µ−+ ω

2n+1 and Xk → 0 implies
Ak → 0, we obtain∣∣∣∣∣

{
s̄ ≥ µ− + ω

2n+1

}
∩Q

(
R

8 ,
(
R

8

)2
)∣∣∣∣∣ =

∣∣∣∣{s ≥ µ− + ω

2n+1

}
∩Q

(
R

8 , t̂
)∣∣∣∣ = 0

and the proposition is proved if we choose q4 = n+ 1 ≥ q3 modulo the independence of
ν1 and q4 on ω.

Concerning the definition of ν1, we observe that ν1 only depends on the data and K̃. In
addition, ν1 is independent of ω since the quotient

Φ0,u
(

ω
2m0−2

)
Φ0,l

(
ω

2n+1

) = c0,u
c0,l

2α0(n−m0−1).
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is independent of ω, due to Assumption A3.7. To take the independence of q4 on ω into
account, we recall that H(q4) ≥ 1 was exploited to show (6.130). With t̃ ≤ n0R2

µ and
(6.110), we find

H(q4) ≥ 2q4−q2

(
c0,u
c0,l

) d+2
2

.

Since q2 already has been determined in terms of the same quantities, this expression
can be made larger than one independent of ω and depending only on the data and
K̃,

We gather the results of the second alternative in the following corollary.

Corollary 6.32. Let Assumptions A6.1 and A6.2 hold. The constant m, and thus also
l2 and σ1, depend only on the data and on K̃. Furthermore, there exists a constant
σ0 ∈ (0, 1), σ0 = σ0(data, K̃), such that if (6.29) holds for every cylinder of type Qt∗R ⊂
QR(θm), then either

min
{
ω

2q4
,Φ0,l

(
ω

2q4

)}
≤ γRβ/4 (6.133)

for some γ = γ(data, K̃), or
ess osc
Q(R8 ,t̃)

s ≤ σ0ω. (6.134)

Proof. From Proposition 6.31 we find q4 such that even

ess inf
Q(R8 ,t̃)

s ≥ µ− + ω

2q4
.

From this we get

ess osc
Q(R8 ,t̃)

s = ess sup
Q(R8 ,t̂)

s− ess inf
Q(R8 ,t̂)

s ≤ 1− ω

2q4
=
(

1− ω

2q4

)
ω.

As in the proof of Corollary 6.19 we collect the alternatives appearing in the second
alternative and obtain (6.133) under consideration of Remark 6.30.

6.5 Proof of Proposition 6.10 and Theorem 3.12

Before we link the results from Corollary 6.19 and Corollary 6.32, we discuss briefly the
cases µ− > δ0 or µ+ < 1 − δ0, i.e. the cases where at most one degeneracy occurs. In
[PV93] and [Iva91] local Hölder regularity to certain parabolic equations with a degen-
eracy only at zero saturation is shown. Adapting these results to our situation, provides
an extension to the case where µ− = 0. Due to symmetry also the case where µ+ = 1
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can be treated. In the case where no degeneracy occurs, we may even use the classical
result provided in [LSU88, V.Theorem 1.1].

However, at the moment there seems to be no complete result present in the literature for
our problem. Thus, we provide an elementary idea on how to extend our result to the case
µ− = 0. We assume that the growth conditions from (3.31) hold on [0, 1−δ0] for Φ0,l and
Φ0,u and on [δ0, 1] for Φ1,l and Φ1,u. Applying this in the arguments in sections 6.3 and
6.4, provides always an upper estimate of Φ′ in terms of Φj,u(ω) for at least one j ∈ {0, 1}
and a lower estimate in term of Φj,l(ω2−n) for at least one j ∈ {0, 1} and a suitable n.
Hence, the previous proofs can be performed completely analogous and we only need to
modify the constant cj,k for j ∈ {0, 1} and k ∈ {l, u}.

In the following, we take the parameter ε introduced in the definition of Q(2R, (2R)2−ε)
into account and require smallness of this parameter. With the previous considerations
in this section, we may dispose the assumptions on µ+, µ− and ω. Sincem is independent
of R, we may even dispose Assumption A6.2 completely.

Proposition 6.33. Assume the setting from Assumption A6.1 is fulfilled. For arbitrary

0 < ε ≤ βα0
4 max{α0, 1}

,

consider the cylinder Q(2R, (2R)2−ε). The constant m can be determined depending
only on the data and on K̃, independent of ε, such that at least one of the following
alternatives hold. Either there exists a constant γ = γ(data, K̃)

ω ≤ γR
ε
α0 (6.135)

or there is a constant σ ∈ (0, 1) that depends only on the data and on K̃ and a cylinder
Q(R8 , t�) ⊂ QR(θm) such that

ess osc
Q(R8 ,t�)

s ≤ σω. (6.136)

Proof. The previous two sections, showed that m = m(data, K̃). Particularly, m does
not depend on R and ε. Remark 6.30 implies that q4 ≥ q3 ≥ max{l2,m}. As we
mentioned at the beginning of this paragraph, the assumptions from A6.2 on µ+, µ−
and ω can be disposed.

Concerning the assumption on the inclusions QR(θm) ⊂ Q(2R, θmR2) ⊂ Q(2R, (2R)2−ε),
we recall equations (6.19) and (6.20) for the case that any of these inclusions fails to
hold.

Otherwise, if both inclusions hold, we may perform the alternative argument performed
in the last sections and use either the results of Corollaries 6.19 or 6.32.

Assume that either (6.77) from Corollary 6.19 or that (6.134) from Corollary 6.32 holds.
With t� = min{t̂, t̃} and σ = max{σ0, σ1}, we conclude (6.136) in both cases.
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On the other hand, if (6.77) and (6.134) both fail to hold, we find the estimate

min
{
ω

2q4
,Φ1,l

(
ω

2q4

)
,Φ0,l

(
ω

2q4

)}
≤ γR

β
4 . (6.137)

We combine (6.137) with (6.19) and (6.20), use the structure condition of Φ from As-
sumption A3.7 and estimate the constants roughly from above. Using 0 < R ≤ 1, this
implies

ω ≤ γmax
{
R

β
4 max{α0,1} , R

ε
α0

}
≤ γR

ε
α0

and we conclude.

6.5.1 Proof of the Main Proposition

Having linked the results of the alternatives, we are in the position to prove the main
proposition.

Proof of Proposition 6.10. We start from Proposition 6.33 and assume that (6.135) is
violated. Thus, also (6.26) is violated.

Consequently, the "starting" condition (6.18) is fulfilled, i.e.

ess osc
QR(θm)

s ≤ ω.

We estimate t� = min{t̂, t̃} ≥ 0 from below. We recall the definition of t̃ from (6.123),
the definition from µ and Γ from Definition 6.25 and that j0 ≥ 1. Since m > m1 > q2,
we infer from (6.111) that n0 ≥ Γ d+2

d . Summarizing, we obtain

t̃ ≥ 1
4
θm

Γ d+2
2
R2

(6.22)
≥ θm0

2Γ d+2
2
R2. (6.138)

Concerning t̂, defined in (6.51), we realize that

t̂ = θm0

(
R

2

)2
− t∗ ≥ θm0

4 R2. (6.139)

Exploiting that Γ > 1 and combining (6.138) and (6.139), we obtain

t� >
θm0

4Γ d+2
2
R2.

With the notation from (6.17), we infer

t� >
θm0

4Γ d+2
2
R2 = θm(σω) θm0

4Γ d+2
2 θm(σω)

R2 = θm(σω)

σα0 c0,l

c1,lΓ
d+2

2
2m0−m−1

R2.
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Choosing C > 0 such that

1
C2 < min

σα0 c0,l

c1,lΓ
d+2

2
2m0−m−1, 64

 ,
we infer QR

C
(θm(σω)) ⊂ Q

(
R
8 , t
�
)
and thus

ess osc
QR
C

(θm(σω))
s ≤ ess osc

Q(R8 ,t�)
s ≤ σω. (6.140)

The previous consideration shows how to decrease the oscillation once (6.135) is violated.

Thus, with R0 = R, R1 = R
C , ω0 = ω, ω1 = σω, θm,0 = θm(ω) and θm,1 = θm(ω1) we

find the sequences stated in Proposition 6.10 for n = 0 and n = 1.

To pass from n to n+ 1 for n ≥ 1, we define Rn = C−nR. Assuming that ωn and θm,n
are determined, we make the following choices. If we find that (6.135) is violated on
QRn(θm,n) , i.e.

ωn ≤ γR
ε/α0
n on QRn(θm,n),

we conclude from the previous step and from

ess osc
QRn(θm,n)

s ≤ ωn that also ess osc
QRn+1 (θm,n)

s ≤ ωn.

We emphasize that, the cylinders are included in each other and the oscillation may only
decrease in that case. Hence, we choose ωn+1 = ωn and θm,n+1 = θm,n. In the other
case, we argue as above and choose ωn+1 = σωn and θm,n+1 = θm(ωn+1). Particularly,
we obtain ωn ↘ 0, Qn+1 ⊂ Qn and also θm,n ↗∞.

Remark 6.34. We remark that the introduction of the cylinder Q(2R, (2R)2−ε) was
necessary to obtain a subcylinder of type QR(θm) such that (6.18) holds; thus the itera-
tion process could be started. In general, this relation is not verifiable for a cylinder of
type QR(θm) since its definition depends on the essential oscillation within it. /

6.5.2 Proof of the Main Theorem

To derive the Hölder continuity we need an adaption of [DiB93, III.Lemma 3.1]. To this
end, we fix ε, determine α from Theorem 3.12 and obtain in the situation of Proposition
6.10 the following quantitative estimate.

Lemma 6.35. Let the setting of Proposition 6.10 be given. Then there exists ε0 =
ε0(data, K̃), such that for the cylinder Q(2R, (2R)2−ε0) we find either

ω ≤ γRε0 (6.141)
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for some γ = γ(data, K̃), or there exist constants γ > 1 and α ∈ (0, ε0
2 ] that can be

determined depending only on the data and on K̃, such that for the cylinders

Qρ(θm(ω)) with 0 < ρ ≤ R

there holds
ess osc
Qρ(θm(ω))

s ≤ γ(ω +R2α)
(
ρ

R

)α
. (6.142)

Proof. We start from Proposition 6.10, choose some ε such that (6.25) holds and define

ε0 := 1
2 min

{− ln(σ)
ln(C) ,

ε

α0

}
.

This implies σ ≤ C−ε0 which is used in the following.

From the estimate on ωn from Proposition 6.10, we infer ωn+1 ≤ σωn + γRε0
n . Iterating

this estimate and using the definition of Rn leads to

ωn ≤ σnω + γRε0
n∑
k=1

σk−1C−(n−k)ε0 . (6.143)

Thus, (6.143) together with the definition of ε0 implies

ωn ≤ σnω + γn

(
R

Cn

)ε0

. (6.144)

For fixed 0 < ρ ≤ R, there exists a nonnegative integer n such that

C−(n+1)R ≤ ρ ≤ C−nR. (6.145)

Since C > 1, this is equivalent to

n ≤ −
ln ρ

R

lnC ≤ n+ 1. (6.146)

With
α̃ = − lnC

ln σ there holds C = σ−α̃

and from the first inequality in (6.145), we infer

σ
n+1
α ≤ ρ

R
which implies σn ≤ σ−1

(
ρ

R

)α̃
.

In addition, we find

n

(
R

Cn

)ε0

= n

(
R

ρCn

)ε0

ρε0 ≤ Cε0ρε0

(
−

ln ρ
R

lnC

)
≤ Cε0ρ

ε0
2

(
R

Cn

) ε0
2
n+ 1

≤ γ̃(ε0)R
ε0
2 ρ

ε0
2 ≤ γ̃(ε0)Rε0

(
ρ

R

) ε0
2
,
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since C−n
ε0
2 (n + 1) is bounded from above by a constant depending only on C and ε0.

Therefore, for a constant γ = γ(data, K̃) we infer from (6.144) the estimate

ωn ≤ γ(ω +R2α)
(
ρ

R

)α
for α := min

{
α̃,
ε0
2

}
.

Since ωn ≤ ω and ρ ≤ Rn, we find Qρ(θm) ⊂ Qn and

ess osc
Qρ(θm)

s ≤ ess osc
Qn

s ≤ ωn.

This concludes the proof.

As was already stated in Remark 6.34, the inclusion of QR(θm) in Q(2R, (2R)2−ε) is
necessary to start the iteration process stated in Proposition 6.10. The estimate (6.142)
has been derived in Lemma 6.35 using this inclusion. We also require an oscillation esti-
mate if the inclusion QR(θm) ⊂ Q(2R, (2R)2−ε) fails to hold. To this end, we investigate
(6.141) more extensively.

Lemma 6.36. Let the setting of Proposition 6.10 be given, consider Q(2R, (2R)2−ε0)
from Proposition 6.10 and assume that (6.141) holds. For C from Proposition 6.10, we
define the sequence Rn = RC−n. Then, either there exists n0 such that

ess osc
Qρ(θm)

s ≤ γ(Rε0 +R2α)
(
ρ

R

)α
(6.147)

for every ρ ≤ Rn0 and for every n ≤ n0 − 1 there holds

ess osc
Q(2Rn,(2Rn)2−ε0 )

s ≤ γCε0Rαn+1, (6.148)

or (6.148) holds for every n ∈ N.

Proof. In this proof we consider the cylinders Qn := (2Rn, (2Rn)2−ε0) and define the
numbers

ωn := ess osc
Q(2Rn,(2Rn)2−ε0 )

s.

With these numbers, we find either that ωn ≤ γRε0
n for every n ∈ N and, since α ≤ ε0,

we infer
ess osc

Q(2Rn,(2Rn)2−ε0 )
s ≤ γRε0

n ≤ γCε0Rαn+1,

which is (6.148) for every n. Elsewise, there exists n0 ∈ N such that ωn ≥ γRn. Par-
ticularly, n0 > 0 since (6.141) holds. Consequently, we may apply Lemma 6.35 for the
cylinder Qn0 with ωn0 . Hence, we infer

ess osc
Qρ(θm(ωn0 ))

s ≤ γ(ωn0 +R2α
n0 )

(
ρ

Rn0

)α
(6.149)
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for every 0 < ρ ≤ Rn0 . Since Qn+1 ⊂ Qn, we infer also ωn+1 ≤ ωn for any n ∈ N.
Particularly, we find ωn0 ≤ ω and thus, since θm is decreasing, even

ess osc
Qρ(θm(ω))

s ≤ ess osc
Qρ(θm(ωn0 ))

s.

To conclude (6.147), we estimate the right hand side of (6.149). Since

ωn0 ≤ ωn0−1 ≤ γRε0
n0−1 ≤ γC

ε0Rε0
n0 ,

C > 1 and α ≤ ε0
2 , we obtain

γ(ωn0 +R2α
n0 )

(
ρ

Rn0

)α
≤ γ(γcε0Rε0

n0 +R2α
n0 )

(
ρ

Rn0

)α
≤ γ

(
γcε0 R

ε0

Cnε0
+ R2α

C2nα

)(
ρ

R

)α
Cnα ≤ γ(Rε0 +R2α)

(
ρ

R

)α
.

Summarizing, we obtain (6.147) and (6.148) is concluded as before.

Exploiting both previous lemmas, we conclude the local Hölder continuity of the satura-
tion s with a covering argument. This proves the main theorem.

Proof of Theorem 3.12 Let K ⊂ Q be given and determine 4R̃ = dist2(K, ∂pQ). We
cover K by cylinders of type Q2R̃, take the closure of this cover and denote it by K̃. On
the set K̃, we determine the constants γ, α and m stated in Lemma 6.35. We define
R := min{R̃, 1}.

For convenience, we assume that we have already shown that a continuous representative
of s exists. This follows with a standard argument from e.g Proposition 6.10 or even
from the estimate we present in the following.

Furthermore, we will only show the Hölder continuity in time. The reasoning to obtain
the Hölder regularity in space follows along the same lines. Due to the triangle inequality,
we can combine both results to conclude.

Let (x, t1) and (x, t2) ∈ K be arbitrary. We assume that t1 < t2 and define ρ :=
√
t2 − t1.

We introduce the cylinder (x, t2)+Q(2R, (2R)2−ε0) and we need to take several cases for
t1, t2 related to this cylinder into account. If ρ > R we obtain, since s ∈ L∞(Q, [0, 1]),
directly

|s(x, t1)− s(x, t2)| ≤
(
ρ

R

)α
=
(√

t2 − t1
R

)α
.

For the other cases, we exploit Lemma 6.35 and Lemma 6.36. Thus, ρ is such that one
of the estimates (6.142), (6.148) or (6.149) holds. In all of these cases we obtain an
estimate of the form

|s(x, t1)− s(x, t2)| ≤ γ
(
ρ

R

)α
= γ

(√
t2 − t1
R

)α
,
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where γ is a constant that can be determined a priori only in terms of the data and K̃.
From here on, we conclude as stated above.

6.6 Comparison to the Literature

In [Urb08, chapter 5], we find a local Hölder continuity result for the model Problem
(MP) without x-dependence. The proof of the local Hölder continuity for the saturation
of the two-phase flow problem (TP1) presented here follows closely the arguments of
Urbano. However, we require several modifications, due to the different structure of the
equation. In particular, the additional issues we need to face were the following: The
saturation s is not necessarily continuous in time, the occurrence of lower order and
divergence free terms, and the x-dependence of the coefficient functions, Φ and κ. We
provide a brief overview of the literature on continuity for the two-phase flow problem
and compare also to these additional issues.

In [Che01] the local Hölder continuity of the saturation for the two-phase flow problem
with x-dependence in the form of (TP2) under the assumption that at most one degen-
eracy occurs and that λ is independent of s is stated. The growth of the Φ′ near the
degeneracy must be bounded above and below by different power functions. The proof is
not complete, and, essentially, only the first alternative is investigated. From the Hölder
continuity and the regularity of the pressure a uniqueness result is obtained in virtue of
a method introduced in [Fri10, Theorem 10.1].

The next articles we comment on, inspired our treatment of the lower order and di-
vergence free terms. Essentially, differences only occur due to the x-dependence of the
coefficient functions.

In [Che02], the local Hölder continuity of the saturation for the two-phase flow problem
in the form of (TP1) is stated. It is assumed that the growth of Φ′ is bounded above and
below by some power function near the degeneracies of Φ. An x-dependence only occurs
in κ and, since κ is differentiated during the derivation of energy estimates, one should re-
strict the assumptions from κ ∈ L∞(Ω,Rd×d) to κ ∈W 1,∞(Ω,Rd×d) as we do. The treat-
ment of the second alternative and thus the definition of the geometry is skipped in this
article; essentially the reference [DiB93] is given where only equations of p-Laplace type
are investigated. Such equations are of a different type.

In [AD85b; DiB87] and in the more recent article [DGV10] continuity of the saturation
for the two-phase flow problem without x-dependence in the form of (TP1) is shown.
Only strict monotony of Φ′ near zero and one is required. In [AD85b] a Hölder continuity
result is stated without providing a proof.

In [AD85a] the continuity of the saturation for a problem similar to (TP1) with x-
dependence and one or two degeneracies is shown. Requirements on Φ′ are strict
monotony near one degeneracy and a log like growth near the other. In particular,
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the equation considered is obtained as a limit problem and we also refer to Remarks 3.1,
3.2 and 4.42.

6.6.1 Discussion of the Proof of the Main Proposition

In this section, we compare the proof of the previous results to the analogues found
in the literature. A first difference, when compared to the literature presented above,
is that we do not assume that the saturation s is continuous in time. The existence
result in [AD85a], [Arb92] and [Che01] do not state such a continuity. Also the result
of [AL83, Theorem 2.3] is not applicable since Φ−1 is in general not Lipschitz continu-
ous.

Justification of the test functions To justify the use of the test functions in, e.g.
Lemma 6.14, Lemma 6.16 and Proposition 6.24 we used the integration by parts formulae
from Lemma 4.32 or Lemma 4.36. To show these formulae, we exploited the Steklov
average. Except for [AD85a, Remark 3.4] and [Urb08], this justification is not performed
in the references given above. In [Urb08, p. 56] the justification seems to have a flaw. The
averaging operation (·)h is interchanged with the positive part operation (·)+. Since the
positive part is not a linear function, this is not possible.

In addition we needed to justify that truncations of s are regular, which is studied
in section 4.2. In all the references given above this justification is missing and for-
mally ∇[Φ(s)] = Φ′(s)∇s is used. In particular, though the necessary condition s ∈
H1(Ω) is not established, Stampacchia’s Lemma is applied to s. For examples, we
refer to [Urb08, p. 57f], [Che02, p. 354ff] and [DGV10, p. 2051] and compare this to
the corresponding terms in the proof of Lemma 6.14. Nevertheless, thanks to the re-
sults of section 4.2 these formal calculations can be justified and we refer to section
4.5.1.

To show the logarithmic estimates, for example see [Urb08, Lemma 5.4], [DGV10, Propo-
sition 3.3] or [Che02, Lemma 2.4], we find as a part of the test function the expression
Ψ((s − a)±)Ψ′((s − a)±). Since s is only truncated from below, if the positive part is
chosen, or from above, if the negative part is chosen, it is not apparent if these test func-
tions are weakly differentiable. For example, in the proof of Lemma 6.16 we truncate s
a second time to end up with Ψ((sb − a)+)Ψ′((sb − a)+) and we may use the regularity
of these truncations. A hint on this already has been given in [AD85a, p. 389]. These
truncations lead to additional terms, e.g. to the term J11. Those terms are estimated
using that b is sufficiently close near µ+. In addition, if µ+ < 1, we could truncate at
the level 1 > b ≥ µ+ and this makes J11 disappear directly.
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Differences to the literature The main difference, when comparing the presented proof
to the literature occurs in Proposition 6.24. The differences are highly influenced by the
x-dependence of Φ. Comparing the proof of the proposition to the proofs of [Urb08,
Propositions 5.10 and 5.12], [DGV10, Proposition 4.6] or [AD85b, Lemma 4.4] we see
that, in contrast to our proof, the parabolic equation is transformed into an equation of
type

∂tb(v) = ∇ · (∇v + h(v, u)), (6.150)

with the inverse b = Φ−1 and h contains the lower order terms. We emphasize that
the function b is independent of x. In the following steps of the proofs found in the
references, certain truncations of u are used as test functions and Lemma 6.6 plays a
major role. To use the lemma it is necessary to truncate functions at constant val-
ues.

Transferring these proofs to the case with an x-dependent Φ and not using a transfor-
mation like (6.150), leads to x-dependent truncations at e.g. Φ(x, k) for an appropriate
k. Hence, it is not possible to apply Lemma 6.6. To overcome this issue, we exploit the
more general Proposition 1.2.

Another minor difference occurs in (6.119) in the proof of Lemma 6.27, due to the
special choice α0 = α1 from Assumption A3.7. This special choice yields in a sim-
pler proof compared to the literature. In particular, we do not need to use [AD85b,
Lemma 6.1] as it is done in [AD85b, Lemma 4.7] or referred to in [Urb08, Lemma
5.13].

Further comments It seems that Urbano’s proof of local Hölder regularity, though
stated for α0 < α1 only works for the case α0 = α1, and, essentially, that is why we
impose this strong assumption.

First, we demonstrate Urbano’s approach in view of our proof and notation. In (6.89)
we proceed differently and exploit (6.22) to infer

Φ0,u (ω/2m0−2)
Φ1,l (ω/2m0+1) ≤ 2α0(m−m0+2)+1. (6.151)

In that case, one does not use that α1 = α0 at the cost of a dependence of q1 on m,
as can be seen from (6.88). Roughly speaking we find the relation 2m . q1, where .
denotes < up to a constant. In Proposition 6.24, we need to choose m > m1 and q2 > q1
such that (6.105) and (6.108) are fulfilled. The last relation necessitates that q2 > q1,
whereas the first relation requires that q2 ≤ m1 ≤ m. In addition, also (6.103) requires
m1 to be large. Combining these results we obtain

q1 < q2 ≤ m ≤ 2m . q1

which yields a contradiction since the intention is to choosem large.
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6 Local Hölder Continuity for the Two-Phase Flow Problem

In Urbano’s argumentation and notation, we find in the proof of [Urb08, Lemma 5.8 and
p. 71], i.e. the corresponding analogue of Lemma 6.22, the relation 2m . s2. Due to
the transformation of the equation described in the previous paragraph a new constant
s2 ≤ s4 is introduced, see [Urb08, p. 72]. Thus, also 2m . s4 and s2 and s4 correspond
to q1 in our notation. In [Urb08, Proposition 5.12], i.e. the corresponding analogue to
Proposition 6.24, the existence of s5 > s4 and m0 ∈ N with m > m0 is claimed, such
that particularly

C

ν2
0
√
s5 − s4

≤ λ0√
2
, (6.152)

see [Urb08, p. 75] and
(p2 + 1)2s5−

s4
p2+1 ≤ 2m0p2 , (6.153)

see [Urb08, p. 76], are fulfilled. Here m0, s5 and p2 corresponds to m1, q2 and α0 in our
notation. Summarizing these results, we obtain

s4 < s5 . m0 ≤ m ≤ 2m . s4

which is again a contradiction sincem needs to be chosen large.

In [Che02, p. 349, (A3)], the local Hölder regularity is stated for the cases that the
function Φj,k from Assumption A3.7 have a different power like growth, i.e. Φj,k(s) =
cj,ks

αj,k for j ∈ {0, 1} and k ∈ {l, u}, which is clearly a more desirable configuration
in comparison to our assumptions. Furthermore, the proof is only presented in the
case αj,k = αj̃,k̃ for j, j̃ ∈ {0, 1} and k, k̃ ∈ {l, u}, i.e. for the case α0 = α1 in our
notation. It is claimed that at least the proof for the case α0,l = α0,u = α0 6= α1 =
α1,l = α1,u can be traced back to the case α0 = α1, see [Che02, Remark 2.1, Remark
2.2]. However, as was stated above, the second alternative, i.e. the part where the flaw
in Urbano’s proof occurs, is not executed. Thus, the statement seems questionable and
the implementation of this idea yields to ω dependent constants as we are going to
see.

Let us assume cj,k = 1 for j ∈ {0, 1} and k ∈ {l, u} for simplicity, as well as Φ0,l(s) =
Φ0,u(s) = sα0 =: Φ0(s) and Φ1,l(s) = Φ1,u(s) = sα1 =: Φ1(s) with α0 6= α1. Following
[Che02, Remark 2.1], we define the cylinder θm for the cylinderQR(θm) as

1
θm

:= Φα1
0

(
ω

2m
)
,

and we adapted to the situation that we treat the degeneracy at one instead of zero first.
The degeneracies at zero and one are connected through

Φα1
0

(
ω

2m
)
≤ 1

2Φα0
1

(
ω

2m0+1

)
=: 1

θm0

instead of (6.22).
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6.6 Comparison to the Literature

Let us examine the proof of Lemma 6.14 with this choice of θm0 . Since terms containing
Φ′(s) can only be estimated in terms of Φ1(s) or Φ0(s) the only occurrence of θm orig-
inates from (6.41), the term containing the time derivatives. Continuing the proof, we
find in (6.45) an additional term of the form

Φα1
0 (ω/2m0+1)

Φ1(ω/2m0+1) = ωα1α02(m0+1)α1

ωα12α0α1(m0+1)

which clearly depends on ω. Thus, ν0 depends on ω and the argument breaks down.

We remark that the result we obtained also holds if only one degeneracy of Φ, say at
zero, is present. Essentially, the idea on how to obtain this result is explained at the
beginning of section 6.5.

6.6.2 Outlook

In the literature, the method of intrinsic scaling is also suitable to provide continuity
and Hölder continuity results up to the boundary or up to t = 0, see [AD85a; DGV10]
or [PV93]. To obtain these results, analogous estimates of those in e.g. Lemma 6.14,
Lemma 6.16 and Proposition 6.24 for cylinders that contain a part of the parabolic
boundary of Q need to be shown. To obtain such results, a certain regularity of the
boundary or initial data is needed.

In the remaining explanations of [Che02], the interior Hölder regularity was used to
provide gradient regularity for the pressure p, that is regularity for the flux u, from
elliptic regularity theory. These local results were assumed to hold on the full do-
main Q. From there on, under some assumptions on the coefficients [Che02, p. 366
(A11) and Proposition 3.5], a uniqueness result for the system (TP1) exploiting a dual
problem was shown. The extension of the uniqueness result to the x-dependent case
as well as possible relaxations of the assumptions on the coefficients still need to be
shown.

As we saw in the previous section, a local Hölder continuity result for the saturation
in two-phase flow problem only seems to be available under the assumption that the
two degeneracies of Φ′ are power functions with same exponent. Consequently, ex-
tension of the regularity to the cases stated in [Che02, p.349 (A3)] or [Urb08, p. 53
(A3)] or even to degeneracies with an e.g. exponential growth are still open ques-
tions.

Comparing our result to [DGV10], we see that the continuity of the saturation without
any assumptions on the growth of Φ′ near zero and one in the case of x-dependent co-
efficient functions is also a desirable result. Regarding the extension of the continuity
for two-phase flow problems up to the boundary, one could also ask if such an exten-
sion holds with interfaces inside the domain under the assumption of continuity of the
pressure. This leads, as seen before, to a discontinuity of saturation across the interface,
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6 Local Hölder Continuity for the Two-Phase Flow Problem

but the height of the discontinuity of the saturation is in some way controlled by the
two capillary pressure functions pc,1 and pc,2. Hence, a decrease of the oscillation of the
saturation on one side of the interface should effect in a decrease of the oscillation of the
saturation on the other side of the interface.
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7 Summary

The work at hand provides regularity and uniqueness results for certain equations occur-
ring in porous medium flow. The main focus lies on x-dependent coefficient functions.
Starting from the generalized porous medium equation

∂ts = ∆[Φ(x, s)] on Ω× (0, T )

with Φ′(x, 0) = 0 in chapter 4, we have shown that truncations of s are H1-regular in
space and proved integration by parts formulae of the form∫

Q
∂tsg(·, s)ξ =

∫
Q
G(·, s)∂tξ (7.1)

for certain functions g with primitive G. Both results are essential for the consideration
of the main problems of this thesis. In chapter 2, we stated the problem for the discon-
tinuous Richards equation, that is we consider, on a domain Ω divided by an interface
Γ into two subdomains Ωl and Ωr, the Richards equation

∂ts = ∇ · (∇[Φj(s)] + λj(s)gj) + fj on Ωj × (0, T )

assuming the continuity of flux and pressure across the interface. For this equation,
we have proven an L1-contraction and uniqueness result in chapter 5. To this end, we
exploited (7.1) and used the method of doubling the variables to obtain a Kato inequality
away from t = 0. With a Gronwall argument, the Kato inequality was extended up to
t = 0 and an L1-contraction could be concluded. In this regime, the new contribution of
this thesis is the L1-contraction result also if lims→1 Φ′j(s) =∞. Particularly, Φj needs
not to be Lipschitz continuous.

In the regime of two-phase flows, we used a standard transformation to obtain a system
of the form

∂ts = ∇ · (∇[Φ(x, s)]−∇xΦ(x, s) +B(x, s) +D(x, s)u)
0 = ∇ · u = ∇ · (λ(s)∇p+ E(s))

on Ω×(0, T ) (see chapter 3). From there on, we recalled and compared solution concepts
found in the literature and stated the local Hölder continuity result under the assumption
that Φ′(x, s) ∼ sα0 and Φ′(x, s) ∼ (1− s)α0 for s near zero and one and α0 > 0, respec-
tively. The local Hölder continuity was proven in chapter 6 using the method of intrinsic
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7 Summary

scaling. The regularity of truncations of s as well as (7.1) is essential to justify the calcu-
lations presented there. The new contribution of this thesis is the local Hölder continuity
for an x-dependent Φ. Particularly, the method of intrinsic scaling needs to be modified
since DeGiorgi’s lemma, Lemma 6.6, can not be applied and one has to apply the more
general Poincaré type inequality from Proposition 1.2.

In the first chapter we provided a brief introduction and derived the equations by means
of physical principles.

The author gratefully acknowledges the support by DFG-grant SCHW 639/3-1.
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