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Abstract— In modern distribution grids, the task of fault
localization using conventional techniques is increasingly
becoming a challenge due to the rising domination of inverter-
based, volatile, distributed power generation. Since approved
methods from high voltage level such as reactance-based methods
lack accuracy in distribution level topology, alternative
approaches for accurate fault localization are required. Within
the scope of this work, an artificial neural network (ANN) based
solution for the localization of electric faults at distribution level
has been developed, evaluated and implemented on standard
hardware from industrial automation technology ie. a
programmable logic controller (PLC). A reduced yet
representative model of a distribution grid incorporating a
variety of aspects influencing the accuracy of fault localization
such as distributed generation, ring network topology with open
or closed loop as well as variable fault resistance has been
developed. Current and voltage measurements generated under
various fault conditions have been used for training of an ANN.
Different ANNs have been trained with various network
structures and training algorithms and after thorough analysis
and comparison of their performance, the most suitable networks
have been implemented on hardware and tested in hardware-in-
the-loop configuration. Thereby a real-time simulator suitable for
application testing and rapid prototyping provided process
values of the modeled distribution grid.
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I. INTRODUCTION

During the last decade there has been a development
towards building smaller generation units which are connected
directly to distribution networks, designated as distributed
generation (DG) [1]. Generally, DG units with a generation
capacity of up to 10MW are connected directly to the
distribution network [2]. However, adding extra generators in a
power system designed for a fixed number of sources raises the
system short circuit level, on the basis of which the whole
power distribution switchgear is designed.

Another problem arising from having DG in a distribution
network is the detection and localization of faults in the system.
In case of a fault, the DG unit connected to a feeder feeds a
fault on another feeder thus resulting in tripping of the healthy
feeder as well [3]. The decision to operate a network in open or
close loop further complicates the situation as fault current has

even more paths available to flow from DG towards the
location of fault. Reference [4] provides a comprehensive
explanation of the impact a DG source can have on a
distribution network. Not only does it compromise the very
integrity of distribution switchgear in case of short circuit but
may also result in maloperation of protective relaying schemes
and tripping of multiple feeders. This can make the job of fault
localization all the more challenging and calls for innovative
solutions in order to ensure quick power restoration after an
interruption.

The purpose of this work is to design and evaluate a
hardware prototype for precise fault localization in modern
distribution networks using techniques from the field of
computational intelligence. References [5], [6] and many other
similar works have proven the practicability of fault
localization in transmission lines using artificial neural
networks (ANNs) with a high degree of accuracy. However,
compared to a transmission line, a distribution network consists
of more feeding circuits and has a non-unidirectional flow of
current in case of a fault.

The presented work is intended to explore practicability and
performance of ANNs for fault localization in a distribution
grid and to implement them in hardware which can be used in
conjunction with the existing switchgear in a substation.
Thereby a distribution grid model is simulated for various fault
cases and the generated voltage and current values are used for
training of an ANN. The trained network is then implemented
on hardware and its performance is evaluated by means of a
hardware-in-the-loop (HiL) test whereby the developed
hardware is connected with a real-time simulator running the
grid model. The purpose of HiL testing is to evaluate the
feasibility of the said prototype to serve as a standalone device
which can be networked with distribution switchgear.

II.  DISTRIBUTION GRID MODEL

Fig. 1 shows the elementary single line diagram (SLD) of
the distribution network to be modeled. Only measurement
devices (current and voltage transformers) relevant for fault
localization have been depicted in the SLD. No protection
devices and protection schemes have been shown since system
protection is not the primary focus of this work. A Simulink®
model based on this SLD has been developed.
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Since faults are to be simulated only on the distribution
line, the loads being fed have been modeled as lumped loads.
The coupling circuit breaker allows forming a closed loop with
the other distribution circuit. DG source gets a tie in to the
distribution line 1 where first load transformer is located.
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Figure 1. Distribution system single line diagram

In Fig. 1, switchgear feeding the distribution grid and the
upstream network has been modeled by a 33kV generator
connected to a 33/10kV step down transformer. A combined
heat and power (CHP) generation facility has been modeled by
a 10 kV, 10 kVA generator, designated as ‘DG Source’. A 1:1
transformer with a delta connected winding on the generator
side is connected to prevent ground faults from travelling to the
generator side. ‘Dist. Linel’ and ‘Dist. Line2’ are underground
cable distribution system lines modeled by three phase pi-

section line masks. In order to generate the training data for
ANN, the model has to be simulated multiple times with
different simulation parameters. Each simulation has to be run
for 0.4 seconds i.e. 20 AC cycles. In every simulation, fault is
introduced after 10 cycles in phasor simulation mode. Current
and voltage samples generated during this time are enough for
ANN training.

III.  GRID MODEL SIMULATION AND FAULT DATA
GENERATION

After developing a comprehensive model incorporating
aspects like distributed generation and closed loop operation
which affect the accuracy of conventional fault localization
methods, it has to be simulated repeatedly with various fault
locations and fault resistances. The resulting current and
voltage measurements are to be stored and later used for
development of a mathematical model for fault localization by
ANN training.

A.  Model simulation

Following aspects have been taken into consideration for
simulation of grid model in order to generate fault data for
ANN training.

Table 1. Model parameters for fault simulation

Simulated Phase to ground, Phase to phase, Double
faults phase to ground, Three phase
Range of fault | 0.01Q, 0.05Q, 0.1Q, 0.5Q, 1Q, 2Q, 5Q,
resistance 10Q, 15Q, 20Q, 25Q, 30Q), ...... , 75Q
Voltage In addition to nominal system voltage
variation (10kV) -5%, -2.5%, -1%, +1% and +2.5%
Fault An incremental distance of 0.2 km (5 faults
locations locations per km of line) along the complete
length of the distribution lines
Open loop | Fault measurements obtained by running a
operation separate simulation for each feeder. A
(coupling distinct neural network is to be trained for
circuit breaker | each feeder since both the feeders generate
open) completely different fault measurements
Close loop | Both distribution lines joined together to
operation form a ring. Both feeder currents and
(coupling voltages are to be obtained by running a
circuit breaker | single simulation with feeder 1 as the
closed) starting point and feeder 2 as the end point of
the loop
Fault data | Outgoing feeder currents and voltages in
recording substation. Hardware is to be installed in the
location substation and receives the required data
from relays for fault location estimation
thorough serial communication / networking

B.  Fault data generation

Following is a brief description of the measurements
needed and how they are organized in a single input data
matrix for ANN training.

Table 2. No. of model simulations for each fault type

Opera- | Dist. Measurement No. of voltage | No. of fault resist- | Length of dist. Total no. of simulations to be
tion line points / km (A) levels (B) ance values (C) line (km) (D) run (AxBxCxD)
Open 1 5 6 21 12 7560
loop 2 5 6 21 8 5040
Closed loop 5 6 21 20 (12 +8) 12600
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e Feeder current and voltage has 3 phases namely I, I, I,
and V,, V,, and V. which can be stored in 6 variables.

e Current and voltage phasors have real as well as
imaginary parts. With voltages and currents of all phases
having 2 parts, the input vector now has 12 columns.

e Both pre- and post-fault values of all currents and
voltages are to be recorded. Therefore two variables (for
pre fault and post fault values) have to be defined for
both real and imaginary parts of every phase of current
and voltage vectors. This increases the dimensions of
measurement matrix to 24 distinct columns.

Table 2 provides an exact count of the number of times the
grid model has to be simulated in various configurations with
various combinations of model parameter values. The final
count in each case gives the number of rows that will be
added to the measurement matrix which has 24 columns as
described above.

IV. DEVELOPMENT OF A MATHEMATICAL MODEL FOR
FAULT LOCALIZATION BY ANN TRAINING

The objective in this step is to use the generated fault data
to establish a mathematical relation between the observed
effects (i.e. current and voltage measurements generated as a
result of a fault) and causes of these particular effects (i.e. fault
locations). A fitting function to model the system behavior has
to be found using ANN training. Once the system is identified
and a fitting function is developed, it can be used for
determining fault locations (causes) using fault measurements
(effects) that are not part of the previous knowledge base.
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Figure 2. Graphical representation of ANN training

A.  Quantification of training tasks

Since, in addition to fault location, the fault data also
contains information about the fault resistance, it is worthwhile
to train another ANN that provides a fit between fault
measurements (24 inputs) and both fault location and fault
resistance (2 outputs). Fault resistance data can be used for
fault analysis and be included in public disturbance records.
Valuable historic data like this can also prove helpful in later
research. Since ANNs with both one output (fault distance
only) and two outputs (fault distance as well as resistance) are
to be trained for 12 cases (4 faults for 3 feeder configurations)
the total number of scenarios becomes 24. For every test case,
two ANNSs are to be trained (using the same training data) and
their outputs are to be averaged. Doing so improves the overall
accuracy of ANN model output. Since two ANNs with their
output averaged are to be trained for each scenario, the final
count of ANNSs to be trained stands at 48.

B.  ANN training parameters

Before creating a feedforward ANN object, its structure has
to be specified. The default feedforward net object has 2 layers.
70% of the training data has been allocated for training

whereas 15% each is used for validation and testing. Division
of data is random. Instead of selecting random initial values for
weights and biases for neurons in the net, Nguyen-Widrow
initial conditions have been used for both layers of the net
thereby reducing the training time by an order of magnitude

[7].

Owing to good convergence and fitting characteristics in all
the trials, a neural net with 24 inputs, 15 inner layer neurons,
and (depending on the number of outputs) 1 or 2 neurons in the
output layer is to be used for training of ANNs for fault
location estimation. Levenberg-Marquardt optimization with
bayesian regularization is the training algorithm of choice [8].

Hidden Output
Input Output
24 2
is 2

Figure 3. Graphical representation of ANN training

C. ANN training results

Having finalized all the training parameters, network
structure and training algorithm, development of mathematical
models for fault localization is then carried out. Target value of
mean squared error (mse) is 0.0005. In some cases, training has
been allowed to continue beyond this error value as long as no
over fitting is observed. ANNs for both single model output
(fault location only) and two model outputs (fault location as
well as resistance) have been trained. Training results for all
the faults have been presented in the Table 3.

For A-B fault, the satisfactory training performance can
only be achieved for low resistances (up to 5Q) due to the fact
that for higher resistance values, the voltages of phase A and B
reach close to that of phase C (the healthy unfaulted phase).
Since all voltage values become almost constant with very little
variation and accordingly very low fault current flows (almost
close to normal load current), it becomes difficult to find a
fitting function for a system which, apart from some large
voltage and current variations for low value of a parameter
(resistance), is almost constant.

This difficulty can be avoided by considering the fact that
in an underground cable distribution system, usually a fault
between two phases occurs when the insulation between them
breaks down which leads to a low resistance fault. An arcing
fault can be encountered when the insulation breaks down only
partially. Reference [9] provides an estimate of arc resistance
in overhead distribution system (1.1Q2) which usually depends
on many other parameters and in overhead systems, the
separation between two phase conductors is much larger as
compared to two cores of a cable. This observation therefore
justifies limiting the upper bound on the fault resistance value
for A-B fault to 5C which is still way above the arc resistance
value. Since fault resistance has to be limited to only 5Q for A-
B faults, the grid model has to be simulated for more values of
fault resistance between 1Q and 5Q. The additional values in
this range for which faults on the distribution line are
introduced are 1.5Q, 2.5Q, 3Q, 3.5Q, 4Q, 4.5Q in order to
ensure better fitting and generalization.
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Table 3. ANN training errors for all faults in open and close loop

MSEs of ANN Training for A-Gnd Fault Localization

Three phase fault is a symmetric fault and when a network
for only fault location has to be trained, very good results are
obtained. However ANN training for two outputs is not

Output: Outputs: . e . -
' Fault Fault possﬂ?le: The training algo.rlthm fails to converge. The reason
Configuration and feeder number | | ocation | resistance for this is that for all the different values of fault resistance in
only and location the ground path, all the phase voltages and currents have same
Open Loop - feeder I (ANN#1) | 0.000248 0.000313 values and fault measurements and change only With either pre
fault voltage or fault location. Therefore, for this periodic
Open Loop - feeder 1 (ANN #2) | 0.000344 0.000366 function. ANN trainine i d wh function is o b
Open Loop - feeder 2 (ANN#1) | 0.000099 | 0.000101 unction, raming 1s very good when a tunction 1s 1o be
found that provides a relation between fault measurements and
Open Loop - feeder 2 (ANN #2) | 0.000099 0.000103 . - . .
Close L ANNZ | 0.000099 0.000892 fault location only. However the training fails when the fitting
ose Loop ) : : function has to include fault resistance as well since fault
Close Loop (ANN # 1) — 0.000099 9'0905 66 resistance has no effect on fault measurements. Thus a relation
MSEs of ANN Training for A']é P:[au![t Loceéllztatlton cannot be established between fault measurements and a
utput. utputs: combination of fault resistance and location.
Configuration and feeder number Fault Fault
L(Lcla}tltlon Is;?lscisltggz;eion D. ANN model testing
Open Loop - feeder | (ANN# 1) | 0.028451 0.012789 A test 'da'ltaset consisting of fault measurements that are not
part of training data has been used for testing the fault location
Open Loop - feeder 1 (ANN#2) | 0.019033 0.013188 S o )
Open Loop - feeder 2 (ANN #1) | 0.000178 0.000089 estimation capability of the developed model. Test inputs
P P . . generated for all cases are to be applied to the corresponding
Open Loop - feeder 2 (ANN#2) | 0.000143 | 0.000096 developed models and the outputs generated by them are then
Close Loop (ANN # 1) 0.000010 0.000010 compared to the true test outputs for calculation of error. The
Close Loop (ANN # 1) 0.000157 |  0.000170 next section presents all the test results obtained.
MSEs of ANN Training for A-B-Gnd Fault Localization
Outputs: E.  ANN model test results
. Output: Fault | Fault Test results in graphical form have been presented for A-
Configuration and feeder number location only | resist & Gnd fault in the figure below.
location Fault location estimation (Feeder 1. Open loop)
Open Loop - feeder | (ANN#1) | 9.957x 10” | 0.000139 e i ot e et et ® Tt ramom.
- K 8 %4 %48 8 %8 F & & § O Modloupn
Open Loop - feeder 1 (ANN # 2) 9.901 x 10_9 0.000141 S A
Open Loop - feeder 2 (ANN # 1) 9.992x 10 0.000099 N e o 2 8 2 @ 8 & & & & & & & &
Open Loop - feeder 2 (ANN # 2) 9.978 x 10 | 0.000094 fg s degesryiegerreereesg
Close Loop (ANN # 1) 9.992x 107 | 0.000099 —gl®®e® e bt e e 80 8 ¢ o @
Close Loop (ANN # 1) 9.981x 107 | 0.000198 5 R A B A A O O O A A O
MSEs of ANN Training for A-B-C-Gnd Fault Localization S |2 88 %% % 88888588 88248§
= L F e & & & & & & & & & B & B & & b
Outputs: A
. (=]
Configuration and feeder number 82;2:1(;] 1;?1111“ f:slﬁ & % A
Y| loeation Sqisrragprezrrasie
Open Loop - feeder | (ANN#1) | 9.714x 10” -- ; ::; ;:; ;:;’ ; : ; :; ; ;
Open Loop - feeder 1 (ANN # 2) 9.714x 107 -- 2k 4 4 & P E B BB B OGS & B b B O
Open Loop - feeder 2 (ANN # 1) 9.576 x 107 -- T A L
Open Loop - feeder 2 (ANN #2) | 9.982x 107 - Lsclcesaiesedigsd
Close Loop (ANN # 1) 9943 X 10'9 - U[] 50 100 N 150 it EUtUd : EEUt i][][] 350 400 450
Close Loop (ANN # 1) 9.955x 10" - 0- ot test dalaset valies
Figure 4. A-Gnd fault locations for various resistances

As highlighted in Table 3, the target error value (0.0005)
has not been obtained when an ANN for faults on distribution
line 1 in open loop operation is trained, even though training
has been performed for a much lower range of resistance. The
reason for this is that the distribution line 1 has a DG source
connected to it so the voltage drop in case of a fault with
resistance on this particular line is not very high. Only for very
low fault resistance is there a real fault condition. The lesser
drop in voltage on this line makes it difficult to reduce the error
and the training stops after maximum value of ‘Mu’ (training

iteration step) is reached.

The plot in Fig. 4 shows the fault locations estimated by
ANN model superimposed on the actual fault locations for
different values of fault resistance. (17 different values of fault
resistance represented by 17 slanted vertical lines formed by
fault location points). Results for other faults have been
summarized in tabular form. The purpose of presenting fault
location plots for at least one of the faults is to provide a vivid
illustration of the quality of test results.

Table 4 provides information about the percentage of test
cases in all operational scenarios where the estimation error for
fault location (and fault resistances) is less than or equal to 5%
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Table 4. Summary of test results for all test cases

. Total Cases with > | Yoage of cases with Cases with > %age of cases with
Oper- | Dist. | Fault test £5% location >95% accuracy £5% resistance >95% accuracy
ation line | type cases (A) error (B) 2 JL' ;M error (C) (%} 5
Open 1 425 8 98.12 1 output only
loop 2 289 7 97.58 (Location)
Closed loop A- 714 4 99.44
Open 1 Gnd 425 6 98.56 21 95.06
loop 2 289 11 96.19 4 98.62
Closed loop 714 16 97.76 55 92.3
Open 1 275 74 73.09 1 output only
loop 2 187 7 96.26 (Location)
Closed loop AB 462 7 98.48
Open 1 275 67 75.64 79 71.27
loop 2 187 12 93.58 15 91.98
Closed loop 462 3 99.35 62 86.58
Open 1 425 0 100 | outout onl
loop 2 289 0 100 output on'y
(Location)
Closed loop A-B- 714 0 100
Open 1 Gnd 425 0 100 12 97.18
loop 2 289 0 100 4 98.62
Closed loop 714 0 100 11 98.46
Open 1 425 0 100 | outout onl
loop 2 | g 28 0 100 (Loga tion)y
Closed loop C- 714 0 100
Open 1 Gnd 425
loop 2 289 Not applicable (Model with 2 outputs can’t be trained)
Closed loop 714

(in other words, where an accuracy of greater than or equal to
95% has been achieved).

Another observation in Table 4 is that the accuracy of fault
location estimation gets better as the degree of symmetry in
faults increases. The results for asymmetrical fault (A-Gnd)
are also very good. Since the training performance (mse) for
A-B fault on distribution line 1 (with a tie-in for DG) in open
loop is off by two orders of magnitude from the target mse
(0.0005), the percentage of test cases having an error value of
less than 5% is also rather low.

The models for which test results have been presented are
to be implemented in hardware. These are the models trained
using the measurements in substation. Two separate hardware
programming projects have been created for these
implementations. The implementation with only one output
(fault location) is the preferred one for use since it has higher
accuracy and works in all scenarios. Furthermore, no model for
fault resistance estimation is available for three phase faults.

V. HARDWARE IMPLEMENTATION OF ANN MODEL AND
HARDWARE-IN-THE-LOOP TESTING

After development and testing of mathematical models for
localization of wvarious faults in a software simulation
environment, the final step is to develop a hardware prototype
with an ANN model as the underlying algorithm which can be
used in conjunction with the existing electrical control gear in a
substation. A programmable logic controller (PLC) has been
the hardware platform of choice. After the developed model

has been implemented on the PLC, its performance has to be
tested for various faults and in different modes of grid
operation.

In order to test a PLC in a lab, test signals similar to the
ones generated by metering devices installed in MV switchgear
are required. For this purpose, a real time (RT) simulator
simulating the behavior of a real grid is used. The ANN model
implemented on PLC is trained using the measurements
generated by simulation of a grid model. The same Simulink®
model is to be simulated now by the RT simulator for testing of
PLC. Data exchange between the hardware under test and the
RT simulator takes place via TCP/IP. Doing so eases the limit
on the number of values that can be transmitted from the RT
simulator to PLC using hardwired analog signals since both of
these devices have limited number of analog I/O ports.
Moreover, in an analog signal all the values are mapped to a 4-
20mA current signal which can result in inaccuracies when a
value with a span of 20000V (from -10000V to +10000V) is to
be mapped on a signal with a span of only 16mA. In addition to
feeder current and voltage values, feeder statuses (fault / no
fault) and the state of coupling circuit breaker (open / close
loop operation) is also transmitted to PLC.

For ANN model implementation, the available hardware is
a Beckhoff C6920 industrial PC (IPC) with the PC based
control software TwinCAT 3 for application engineering. The
flow chart in Fig. 5 shows the organization of PLC application
for ANN based fault localization and the order in which
different blocks are called and executed.
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First stage deals with establishing TCP/IP communication
with the simulator. After a connection is established and the
transfer of TCP frames to PLC begins, every incoming frame is
processed and required fault data is extracted from the received
TCP frame. Along with data extraction and storage in
appropriate variables, the PLC keeps on monitoring all the
variables in a cyclic fashion.

Whenever a fault is detected, (fault detection variable
returns a non-zero value) the fault type and the mode of grid
operation are examined and an ANN function with appropriate
values of weights and biases is invoked. The number of
neurons in the output layer is equal to the number of ANN
outputs. PLC applications for both a single output (fault
location) and two outputs (fault resistance and location) have
been developed. Even though extensive testing of the model
performance and accuracy has been carried out in software
before hardware implementation could be proceeded with, it is
important to test the programmed hardware as well before
deployment using some test cases whose results are already
known from testing in software. This is to ensure that the
translation of Matlab” code of ANN model into IEC 61131-3
structured text (ST) has been carried out correctly. Speed and
stability of application can also be put to test this way. Test
results show that the fault location estimation error in hardware
deviates slightly (1-2%) from the ones obtained in software
testing. This is due to the mismatch between the fault
measurements generated by Simulink” grid model and the
actual grid i.e. model transferred to the RT simulator for HiL
testing (considered the real grid).

As far as the speed of computation is concerned, all
computations are completed within the default PLC cycle time
of 10ms which means that, even though the numerical effort is
quite high for matrix operations in ANN model, PLC is a
suitable platform for such an application.

Socket opened. Server
(eJ(lams listening forincoming
connection requests

Connection
request from RT
Simulator (Client)

Close loop

Fault localization
block for close loop

Connection
established YES

TCP Data frame

from RT Simulator TeP/

Open loop

2
Received data stored l
in global variables Fault Fault

Header and data separation
from received TCP frame

localization
block for
distribution
feeder2in
open loop

localization
block for
distribution
feeder 1in
openloop

NO Sorting incoming bits into
preand post fault data

Fault?

Figure 5. Organization of the PLC application for fault localization

CONCLUSION

An ANN for fault localization in distribution grids has been
designed, implemented on hardware and its characteristics such
as accuracy and speed have been evaluated. For training of
ANNSs, voltage and current measurements in the substation
have been used. As hardware platform for the designed
algorithm, a PLC has been used. The developed hardware is
then connected to the grid model using a real time simulator for
HiL testing. The results are encouraging and PLC has proved
to be an economical and reliable platform for such applications
with real-time capability, reproducibility and deterministic
behavior. Using both primary and secondary substation
measurements for the training of an ANN can yield even more
accurate results. The number of generated fault measurements
would then double but this is where TCP/IP communication
can come really handy since no additional hardware is
required.

In general, the results obtained using ANNs for fault
localization have been very encouraging and show that they
can be employed as an alternative to the conventional
impedance based or travelling waves methods. The greatest
effort however is required for ANN training since it has to be
performed multiple times when the training algorithm either
doesn’t converge or gets stuck in a local minimum. The
training has to be performed once again if changes are made in
the grid structure (e.g. new elements are added). If the size of
network increases, the time required for generation of fault
measurements and ANN training also increases.
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