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Abstract—Executing quasi-static time-series simulations is
time consuming, especially when yearly simulations are required,
for example, for cost-benefit analyses of grid operation strategies.
Often only aggregated simulations outputs are relevant to grid
planners for assessing grid operation costs. Among them are total
network losses and power exchange through MV/LV substation
transformers. In this context it can be beneficial to explore
alternatives to running quasi-static time-series simulations with
complete input data that can produce the results of interest with
high accuracy but in less time. This paper explores two methods
for shortening quasi-static time-series simulations through reduc-
ing the amount of input data and thus the required number of
power flow calculations; one is based on downsampling and the
other on vector quantization. The results show that execution time
reductions and sufficiently accurate results can be obtained with
both methods, but vector quantization requires considerably less
data to produce the same level of accuracy as downsampling. In
particular, when the simulations consider voltage control or when
more than one simulation with the same input data is required,
vector quantization delivers a far superior trade-off between data
reduction, time savings, and accuracy. However, the method does
not reproduce peak values in the results accurately. This makes
it less precise, for example, for detecting voltage violations.

Keywords—Power flow calculation, quasi-static time-series, vec-
tor quantization, PV generation.

I. INTRODUCTION

Distributed generation poses diverse challenges to distribu-
tion network operation and planning, such as increased voltage
violations as well as branch and transformer overloading [1].
Overcoming these challenges requires assessing the effects
distributed energy resources have on power grids and evaluat-
ing possible mitigation strategies, like voltage control or grid
reinforcement, from a cost-benefit perspective.

In the presence of distributed generation, traditional grid
analysis methods based on power flow simulations of extreme
generation and load scenarios (e.g., maximum demand with
minimum generation and vice versa) do not provide enough
insight into grid behavior [2]. One of the recommended meth-
ods for quasi-static analysis of grids with distributed generation
are quasi-static time-series simulations [3]. These simulations
consist of consecutive power flow calculations using discrete
load and generation profiles over a time horizon that in the
case of cost-benefit analyses is typically in the order of a year.

Data at high time resolution is preferred due to accuracy
concerns, which requires profiles with large numbers of time

steps, and consequently, time-series simulation that consist of a
large number of power flow calculations. As reference, a yearly
simulation at one minute resolution requires at least 525600
individual power flow calculations. Cost-benefit analyses are
typically carried out through the comparison of a base case
with variations of the base case, for example, operation with
different voltage control strategies. As the number of scenarios
to consider grows, the execution time can quickly become
excessive. In this context, the computational challenge of
quasi-static time-series simulations is twofold: their execution
time is long and the required amount of input data is high (in
the CSV file format it can reach the order of GB). Handling
such amounts of data is, in itself, time consuming.

Much attention has historically been given to the computa-
tional performance of power flow calculations from the point
of view of numerical accuracy and execution time (see for
example [4], [5]), yet the computational performance of time-
series power flows remains open for analysis. Perhaps the only
explicit attempt to reduce their execution time so far consists
in reducing a distribution feeder to a smaller equivalent circuit
connected to the bus under analysis [6], which dramatically
reduces the calculation time and keeps result accuracy high.
The disadvantage of this method is that each simulation can
only deliver results for one bus in the entire network.

Two aspects of quasi-static time-series simulations can be
explored for improving their performance: In the case of cost-
benefit analysis for LV grids, only a small set of aggregated
results needs to be determined, such as total network losses,
power exchange through the MV/LV transformer, and total
power provision from distributed generators. These results can
be translated into costs for the grid operator (see for example
[7]). Additionally, the cyclical nature of load and generation
profiles [8], [9] suggests that some time steps in the profiles
represent load and generation scenarios that reappear over time
and hence can be simulated only once.

The objective of this paper is to explore the feasibility
of shortening quasi-static time-series simulations by means of
reducing the amount of input data, and therefore, reducing the
number of required power flow calculations. Two alternatives
are compared in terms of data and execution time reduction,
and result accuracy: one consists in reducing the time resolu-
tion of the input profiles through downsampling and the other
in finding similar time steps in the input profiles through vector
quantization and simulating them once.
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This paper is structured as follows: Section II presents the
characteristics of quasi-static time-series simulations for cost-
benefit analysis. Section III introduces the shortening methods.
Section IV defines the case studies used to test the shortening
methods. Section V presents the results and their analysis.
Finally, Section VI presents the conclusions and proposes
future research.

II. QUASI-STATIC TIME-SERIES SIMULATIONS

Quasi-static time-series simulations are consecutive power
flows calculated on each time step of a set of load, generation
and slack voltage profiles. The results of such simulations
are profiles that represent the behavior of the grid over the
simulated period. Traditionally, the slack voltage is considered
constant (1 p.u.), but in time-series simulations it can be a
profile as well. This allows to simulate the influence of the
MV level on the LV level.

A block diagram of a quasi-static time-series simulation is
shown in Fig. 1. Its main aspects are described in this section.

Input profiles
(M time steps)

Power flow
calculation

(for M time steps)

Result profiles
(M time steps)

Grid
model

Figure. 1. Block diagram of a quasi-static time-series simulation.

A. Simulation Inputs: Load, Generation and Voltage Profiles

In an LV network, loads and PV generators are associated
with either residential or commercial buildings. The simulation
inputs for a network with N load/PV buses are the following
discrete time-dependent profiles:

• PLn : active load at the nth load/PV bus
• QLn

: reactive load at the nth load/PV bus
• PPVn

: active PV generation at the nth load/PV bus
• QPVn : reactive PV generation at the nth load/PV bus
• Uslack: slack voltage (MV side of the MV/LV transformer)

with n = 1, 2, . . . , N . If each profile has M time steps, the
set of input profiles can be represented as a matrix X with
at most 4N + 1 columns and M rows. Each column in X
represents a profile and each row represents a time step. Table
I shows an example of input profiles at one minute resolution
for a network with two loads and two PV generators. In the
example, the PV generators are operating at unity power factor.

TABLE I. EXAMPLE OF SIMULATION INPUTS (MATRIX X)

t PL1
PL2

QL1
QL2

PPV1
PPV2

QPV1
QPV2

Uslack

[min] [kW] [kW] [kvar] [kvar] [kW] [kW] [kvar] [kvar] [p.u.]

1 0.40 0.58 0.10 0.18 -0.31 -0.21 0.0 0.0 1.03
2 0.41 0.60 0.11 0.17 -0.32 -0.22 0.0 0.0 1.03
3 0.20 0.41 0.05 0.10 -0.40 -0.32 0.0 0.0 0.99
4 0.39 0.60 0.09 0.20 -0.29 -0.23 0.0 0.0 1.03
...

...
...

...
...

...
...

...
...

...
M 0.21 0.43 0.05 0.09 -0.41 -0.30 0.0 0.0 0.98

B. Simulation Outputs: Result Profiles

The simulation outputs to consider when the target applica-
tion is a cost-benefit analysis are the following discrete time-
dependent profiles:

• PX : active power exchange through the MV/LV trans-
former

• QX : reactive power exchange through the MV/LV trans-
former

• Plosses: total network power losses
• PPV : total active power provision from PV generators
• Un: voltage at the nth load/PV bus

with n = 1, 2, . . . , N . The total energy losses Elosses are of
interest as well. The outputs have M time steps and can be
described as a matrix Y where each column represents a result
profile and each row represents a time step. Table II shows an
example of result profiles at one minute resolution.

TABLE II. EXAMPLE OF SIMULATION OUTPUTS (MATRIX Y)

t PX QX Plosses PPV U1 . . .
Un . . .

[min] [kW] [kvar] [kW] [kW] [p.u.] [p.u.]

1 0.47 0.28 0.01 0.52 0.99 . . . 1.00 . . .
2 0.48 0.28 0.01 0.54 0.98 . . . 0.99 . . .
3 -0.08 0.15 0.03 0.72 0.95 . . . 0.94 . . .
4 0.49 0.29 0.02 0.52 0.98 . . . 0.99 . . .
...

...
...

...
...

...
...

M -0.04 0.14 0.03 0.71 0.94 . . . 0.95 . . .

C. Power Flow Calculation

The solution to the power flow equations of a network is
denoted by a (multivariate) function fpf of a given time step
in the simulation inputs. If xm is the mth time step (row) in
the input matrix X, then the mth time step (row) in the output
matrix Y is given by

ym = fpf (xm). (1)

Thus, a quasi-static time-series simulation consists in calculat-
ing ym from (1) for m = 1, 2, . . . ,M .

III. SHORTENING METHODS

A block diagram of a shortened quasi-static time-series
simulation is shown in Fig. 2. The main aspects of this diagram
are detailed in this section.

Input profiles
(M time steps)

Profile
reduction

Reduced
profiles

(k time steps)

Power flow
calculation

(for k time steps)

Reduced
result profiles
(k time steps)

Profile
reconstruction

Reconstructed
result profiles

(M time steps)

Grid
model

Figure. 2. Block diagram of a shortened quasi-static time-series simulation.
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A. Profile Reduction

1) Downsampling: Downsampling a profile consists in
reducing its time resolution. If the original resolution is not
a whole divisor of the new resolution, this procedure requires
interpolation. To keep the execution time short, linear inter-
polation has been chosen. Downsampling, for example, the
profiles from Table I to two minute resolution is equivalent to
selecting the time steps at t = 1, 3, 5, . . . , minutes. Interpola-
tion is not required in this case.

2) Vector Quantization: Applying vector quantization to
the input profiles means partitioning the input matrix X into
disjoint sets of similar time steps and mapping each set to
a representative time time step. The classic algorithm for
vector quantization is k-means [10]. A modified version of k-
means called k-means++ has been chosen as it produces better
partitions [11]. With k-means++ X can be partitioned into k
sets of similar time steps, also called clusters. A value for k
must be given. The similarity between time steps is established
through Euclidean distance. The algorithm maps the ith cluster
to its centroid, denoted by ci, with i = 1, 2, . . . , k. Each cluster
centroid is calculated as the average of all the time steps in
the cluster. For convenience, a vector l of labels that indicate
to which cluster each time step in X belongs is defined.

Table III shows an example of the mapping of clusters
to centroids and the structure of vector l. In this example,
similar time steps can be recognized by simple inspection. In
a good partition each centroid represents each time step in its
corresponding cluster well, so power flows calculations for M
time steps are no longer required, but only for k centroids.

B. Profile Pre-processing for Vector Quantization

1) Standardization: There is empirical evidence of the
benefits of standardizing data before applying clustering al-
gorithms based on Euclidean distance when the variables lay
on different scales (e.g., PLn

between 100W and 1 kW, Uslack

in the vicinity of 1 p.u.). In this paper the standardization is
achieved dividing each profile by its standard deviation [12].

2) Dimensionality Reduction: The execution time of k-
means++ is influenced by the dimensionality of the data [13],
defined in this case by the number of profiles in X. If a
set of profiles is highly correlated with one another, it is
sufficient to use only one of them when searching for similar

TABLE III. EXAMPLE OF VECTOR QUANTIZATION

l xm
PL1

PL2
QL1

QL2
PPV1

PPV2
Uslack

[kW] [kW] [kvar] [kvar] [kW] [kW] [p.u.]
1 x1 0.40 0.58 0.10 0.18 -0.31 -0.21 1.03
1 x2 0.41 0.60 0.11 0.17 -0.32 -0.22 1.03
2 x3 0.20 0.41 0.05 0.10 -0.40 -0.32 0.99
1 x4 0.39 0.60 0.09 0.20 -0.29 -0.23 1.03
...

...
...

...
...

...
...

...
...

2 xM 0.21 0.43 0.05 0.09 -0.41 -0.30 0.98

ci
PL1

PL2
QL1

QL2
PPV1

PPV2
Uslack

[kW] [kW] [kvar] [kvar] [kW] [kW] [p.u.]
c1 0.40 0.59 0.10 0.18 -0.31 -0.22 1.03
c2 0.21 0.42 0.05 0.10 -0.41 -0.31 0.99
...

...
...

...
...

...
...

...
ck 0.32 0.33 0.02 0.05 -0.21 -0.43 0.98

time steps. The profiles used in this paper consider constant
power factor loads and generators, which produce completely
correlated active and reactive power profiles, and PV profiles
from reduced geographical areas, which are highly correlated
(see Section IV-A5). This property can thus be exploited
for reducing the dimensionality of X, so k-means++ can be
applied to a profile subset composed of the active power load
profiles, one active power PV profile and the slack voltage
profile, reducing the dimensionality from 4N + 1 to N + 2.

C. Result Reconstruction

1) From Downsampled Profiles: If, for example, the input
profiles from Table I downsampled to two minute resolu-
tion are used to calculate the time-series power flow, the
results will only consist of {fpf (x1), fpf (x3), fpf (x5), . . .} =
{y1,y3,y5, . . .}. To obtain the remaining time steps, that
is {y2,y4,y6, . . .}, interpolation is required. To keep the
execution time short, linear interpolations has been chosen.

2) From Vector-Quantized Profiles: Once the power flow
of each centroid has been calculated, result profiles with k time
steps are obtained. To transform these profiles into profiles with
M time steps, the k time steps need to be reordered according
to the labels in vector l. An example of the reconstruction
process is shown in Table IV.

IV. CASE STUDIES

In order to evaluate and compare the considered shortening
alternatives, a set of case studies using a benchmark network
is developed.

A. Simulation Assumptions

1) Shortening Methods: Shortening through downsampling
and vector quantization is tested.

2) Distribution Grid: The “Kerber Dorfnetz”, designed to
represent a German rural grid [14], is considered . Its one-line
diagram is shown in Fig. 3.

3) PV Penetration: The low PV penetration scenario con-
siders 7×5 kWp, 15×10 kWp and 2×30 kWp PV genera-
tors. The high PV penetration scenario considers 13×5 kWp,
26×10 kWp and 3×30 kWp PV generators. All generators are
specified by their nominal power. The generators are randomly

TABLE IV. EXAMPLE OF RESULT RECONSTRUCTION

ci
PL1

PL2
QL1

QL2
PPV1

PPV2
Uslack

[kW] [kW] [kvar] [kvar] [kW] [kW] [p.u.]
c1 0.40 0.59 0.10 0.18 -0.31 -0.22 1.03
c2 0.21 0.42 0.05 0.10 -0.41 -0.31 0.99
...

...
...

...
...

...
...

...
ck 0.32 0.33 0.02 0.05 -0.21 -0.43 0.98

l ym
PX QX Plosses PPV U1 . . .
[kW] [kvar] [kW] [kW] [p.u.]

1 fpf (c1) ≈ y1 0.48 0.28 0.01 0.53 0.98 . . .
1 fpf (c1) ≈ y2 0.48 0.28 0.01 0.53 0.98 . . .
2 fpf (c2) ≈ y3 -0.06 0.15 0.03 0.72 0.95 . . .
1 fpf (c1) ≈ y4 0.48 0.28 0.01 0.53 0.98 . . .
...

...
...

...
...

...
...

2 fpf (c2) ≈ yM -0.06 0.15 0.03 0.72 0.95 . . .

S01.1



Figure. 3. One-line diagram of the Kerber rural network.

assigned to the 57 possible PV connection points that are
shown in Fig. 3.

4) Voltage Control: The Q(U)/P70% voltage control
strategy is a distributed strategy that uses the reactive power
provision capabilities of some PV inverters. Reactive power
is provided once the voltage at the PV bus reaches a lower
threshold, and increases until said voltage reaches an upper
threshold. If the voltage continues to increase after this point,
the reactive power provision remains constant. This strategy
limits the active power provision to 70% of the peak power of
the PV module [15].

5) Input Profiles: The load profiles are generated using the
methodology introduced in [16] and have a constant power
factor of 0.98. An irradiation profile measured in Munich,
Germany, is scaled to match the order of magnitude of the
rated power of each PV module [17]. The slack voltage profile
is obtained from the yearly simulations of MV grids carried
out in [7]. The time resolution of all profiles is one minute.

6) Number of Time Steps After Profile Reduction: The
number of time steps in the reduced profiles (k) must be spec-
ified. This number affects simulation accuracy and duration.
Given the nonlinearity of the power flow equations, relating
k and result accuracy is challenging, especially in the case of
vector quantization [18]. This relationship is thus investigated
experimentally running every simulation for different values
of k.

7) Computer and Software Specifications: The simulations
are run on a computer cluster. Each node has two Intel Xeon
CPUs (8 cores at 2.60 GHz), 126 GB of working memory
shared between all cores, and runs Scientific Linux 2.6.32 (64
bits). All simulations are run on the same node, sixteen in
parallel. The Pypower power flow solver, a Python port of
Matpower [19], is used.

B. Cases

The cases defined in Table V are investigated under the
conditions described in Section IV-A. Each case study consists
of a quasi-static time-series simulation (reference simulation)
and a set of shortened simulations using different values of k.
Cases 1 and 2 consider yearly simulations, but their shortened
versions are broken down into twelve monthly simulations.
Since the execution time of vector quantization also depends
on the number of time steps in each profile [13], this prevents

TABLE V. SUMMARY OF CASE STUDIES

Case Method PV penetration Voltage control Month

1 Downsampling Low No control January to December
2 Vector quantization Low No control January to December
3 Downsampling High No control June
4 Vector quantization High No control June
5 Downsampling Low Q(U)/P70% June
6 Vector quantization Low Q(U)/P70% June

an execution time escalation and allows a seasonal analysis.
The remaining simulations consider only the month of June,
as it has the highest PV feed-in.

V. RESULTS

This section presents only a selection of results, however,
their analysis is valid for all the results specified in Section
II-B. Result accuracy is measured by the coefficient of deter-
mination (R2) and the RMS error (RMSE). Accurate results
have an R2 close to one and a low RMSE. The RMSE is more
sensitive to large deviations and can increase steeply even if
the duration of the deviations is short and the profiles under
comparison have similar overall shapes [20], therefore the R2

is also calculated.

A. Influence of Seasonal Profile Variations

Fig. 4 and 5 indicate that result accuracy depends on
seasonal profile characteristics. Regardless of the shortening
method, the most accurate months are December and January,
both winter months, while the least accurate months are June
and July, both summer months. Seasonal variations are present
in the load, PV and slack voltage profiles, thus, the accuracy
variations cannot be attributed in this case to a single factor.

B. Influence of PV Penetration Level

Fig. 6 shows that result accuracy changes between PV
penetration scenarios. This result, together with the yearly
simulation from Fig. 5, show that the accuracy is affected by
the level of PV feed-in, however, comparing only two scenarios
it is not possible to establish with generality in what way the
PV penetration level affects the accuracy of the results.

C. Influence of Voltage Control

The accuracy comparison of simulations with and without
voltage control shown in Fig. 6 reveals that the results with
voltage control are always more accurate by a small margin.
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Figure. 4. Accuracy comparison of PX profiles for every month in a year.
Data reduced through downsampling (case 1). Value of k in percentage of M .
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Figure. 5. Accuracy comparison of PX profiles for every month in a year.
Data reduced through vector quantization (case 2). Value of k in percentage
of M .

An explanation can be found in Fig. 7, which shows a section
of reference and reconstructed profiles, without voltage control
(left) and with voltage control (right) from cases 2 and 6.
Following the dashed line at U = 1.04 p.u. it is apparent that
the most difficult section to reconstruct are the fast-occurring
peaks between approximately 13:30 and 15:00 hours. Shorten-
ing simulations through vector quantization implies calculating
power flows of averaged time steps, which eliminates fast
profile variations and clips peaks. A similar clipping effect is
found due to the interpolation required for result reconstruction
from downsampled data. Fig. 7 shows how voltage control
reduces the highest peaks, allowing the reconstructed profile
to get closer to the reference profile.

Fig. 8 shows that, with and without voltage control, the
execution time of the shortened simulations is similar even
though the reference simulations differ in about 8 minutes. As
an example, using vector quantization the time savings with
voltage control for k = 20% of M are of about 52% while
40% savings are registered without voltage control.

D. Vector Quantization versus Downsampling

According to Fig. 4, 5 and 6, vector quantization sub-
stantially outperforms downsampling in terms of accuracy.
However, considering the execution time shown in Fig. 8
and the accuracy shown in Fig. 6, without voltage control
downsampling yields an accuracy of R2 = 0.97 in 17 minutes
(k = 50% of M ) while vector quantization requires 20 minutes
to reach the same accuracy (k = 25% of M ). Despite the
slight superiority of downsampling in terms of execution time
in this specific case, vector quantization requires much less
data to reach the same accuracy. This is beneficial in terms
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Figure. 6. Accuracy comparison of Plosses profiles from simulations of the
month of June (cases 1 to 6). Value of k in percentage of M .
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Figure. 7. Comparison of U33 profiles from reference and vector quantized
simulations on June 22nd without voltage control (left) and with voltage control
(right) in the low PV penetration scenario (cases 2 and 6).

of data handling and when more than one simulation needs
to be run using the same input profiles, for example, for
comparing different voltage control strategies. Fig. 9 shows the
time savings achieved when more than one simulation is run
with the same input profiles with a Plosses target accuracy of
R2 = 0.97, and the reduction process is run only once. Vector
quantization yields higher time savings than downsampling if
at least two simulations without voltage control are run. If
five simulations are run, the time savings rapidly increase to
65% with vector quantization while with downsampling they
remain at 44%. The benefits are larger with voltage control.
According to Fig. 9, five simulations yield savings of 70% for
vector quantization and of 43% for downsampling. It should be
noted that with voltage control, vector quantization yields the
highest time savings regardless of the number of simulations.

E. Accuracy of Energy Losses

The energy losses (Elosses), calculated as the area under the
Plosses profile, are estimated with very high accuracy with both
methods and under every tested condition. Even with k = 5%
of M , Elosses can be estimated with an error lower than 0.7%.
The error quickly drops below 0.2% for k = 25% of M .

F. Choosing the Number of Time Steps After Profile Reduction

The accuracy curves shown in Fig. 5 and 6 have an elbow
located before k = 20% of M . This elbow represents the
best possible trade-off between accuracy and execution time
reduction, nevertheless, its location cannot be generalized from
these results, and a computationally inexpensive method for
finding it needs to be developed.
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Figure. 8. Comparison of the execution time of simulations with low PV
penetration, month of June (cases 1, 2, 5 and 6). The data reduction time of
downsampling is negligible. Dashed lines represent the execution time of the
reference simulations at 1 min. resolution. Value of k in percentage of M .
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Figure. 9. Execution time savings running multiple simulations with the
same input profiles in the low PV penetration scenario for a Plosses target
accuracy of R2 = 0.97 (cases 1, 2, 5 and 6). For downsampling k = 50%
of M and for vector quantization k = 25% of M .

VI. CONCLUSION

In this paper, the feasibility of shortening the execution
time of quasi-static time-series simulations through downsam-
pling and vector quantization of input profiles is studied in
terms of result accuracy and execution time savings. The
results show that the accuracy of shortened simulations is
affected by the level of PV feed-in. The use of Q(U)/P70%
voltage control has a positive albeit marginal effect on result
accuracy. The highest time savings and accurate results can be
achieved thorough downsampling only when one simulation
without voltage control is run and the input profiles are not
drastically reduced. Accurate results and time savings, as well
as a considerable profile reduction, can be obtained through
vector quantization under every tested condition. For a total
power losses profile with an accuracy of R2 = 0.97, the
smallest time saving registered with vector quantization is
of 34%. At constant accuracy, the time savings with vector
quantization increase if either voltage control is used or if
more than one simulation is run using the same input profiles,
as in both cases the time proportion spent on profile reduction
decreases. With voltage control, time savings reach 70% if five
simulations are run for a total power losses profile with an
accuracy of R2 = 0.97. Total energy losses can be estimated
with errors in the order of 0.2% or lower. The results suggests
that vector quantization can be particularly useful for cost-
benefit analyses that compare scenarios with variations in
the network model but use the same input profiles. Such is
the case of cost-benefit analyses of different voltage control
strategies. The main drawback of this method is its inaccuracy
for reproducing peak values in the results profiles. This makes
the method unsuitable, for example, for detection of voltage
violations.

Future work should establish the generality of the results
for other networks and other voltage control strategies. A
clear relationship between result accuracy and PV feed-in
must be determined. A computationally inexpensive procedure
for choosing the level of profile reduction that guarantees
the desired trade-off between time savings and result accu-
racy needs to be developed. Investigating improvements that
allow accurate reconstruction of profile peaks would make
the method suitable for more diverse applications. A possible
research path is developing a criterion for selecting a time step
from each cluster instead of calculating power flows of cluster
centroids.
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