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1
Introduction

The study of gas dynamics is an important task in modern life. It is concerned with the behavior

of compressible flows like the flow of gas in pipelines or the air around high-speed aircrafts.

Depending on the ratio of the gas speed to the speed of sound, which defines the so-called Mach

number, different wave phenomenon, e.g., shock waves and rarefaction waves, can occur. The

flow behavior can also be influenced by other materials, which pollute the gas. A typical example

is an ash cloud after a volcano eruption, which consists of air and small solid particles (ash). It is

very important to understand the physical and chemical processes which take place in the flow so

that an accurate mathematical model can be established.

The next challenging step is the development of numerical methods to solve this model. For

that reason one usually starts with a simpler problem which does not take into account all phys-

ical and chemical processes and tries to find a numerical method which solves it accurately and

efficiently. The last step is then to transfer the method to the more complex problem.

A first step toward the simplification of flow problems is to investigate the behavior of a physi-

cal quantity driven by diffusion and advection. Diffusion is the process induced by a concentration

gradient where the considered quantity moves from a region of higher concentration to a region

of lower concentration. For example, considering a glass of water containing a piece of sugar, the

sugar will diffuse until the concentration is equally distributed. This process is modeled by the

diffusion equation

ut −∇ · (D∇u) = 0,

where u = u(x, t) denotes the concentration and D = D(x, t) the diffusion coefficient, both depend-

ing on space x and time t .

Advection is the transport of the considered quantity induced by the motion of the surrounding

fluid or gas. For example, considering a flowing river with a (light) object thrown into, the object

will be transported due to advection. This movement is usually modeled by the continuity equation

ut +∇ · (βββu) = 0,

where βββ is the velocity field given by the motion of the fluid/gas. The movement of the fluid/gas

is usually induced by physical forces such as gravity. Often advection and diffusion arise together,

so that we need to deal with a convection-diffusion equation

ut −∇ · (D∇u)+∇ · (βββu) = 0.

1



CHAPTER 1. Introduction

Hereby, the term convection is often used as synonym for advection.

One of the most popular numerical methods used to discretize convection-diffusion equations

with respect to space is the continuous Galerkin finite element method. It is very well suited for

solving pure diffusion problems, but has only L2-stability in the advection case meaning that oscil-

lations can occur even if the exact solution is smooth. Therefore, the continuous Galerkin method

is usually regarded as unstable in convection-dominated regimes. Popular stabilization techniques

are the streamline upwind/Petrov-Galerkin (SUPG) method [16, 18, 49] and the flux-corrected

transport (FCT) algorithm [58]. The first method adds stabilizing terms to the variational formu-

lation which gives additional control over streamline derivatives. However, it is not monotone

and therefore, if sharp layers are present, additional stabilization-improvements like the SOLD-

method need to be considered [47]. The FCT algorithm works on an algebraic level to keep the

solution local extremum diminishing and positivity preserving. Discontinuous solutions are re-

solved very well by this scheme in the sense that the discontinuity is treated as a steep gradient

and no oscillations occur. In [49] it was shown that the FCT scheme applied to time-dependent

convection-diffusion-reaction problems is the most promising stabilization scheme concerning ac-

curacy and efficiency.

Another popular approach to solving advection-diffusion equations is the discontinuous

Galerkin (DG) method which was first introduced to solve the neutron transport equation [76].

Using upwind numerical fluxes makes this method stable in the context of advection equations

[53]. In this case stability is given in a similar manner as for the SUPG method which means that

besides L2-stability one obtains control over streamline derivatives and, in contrast to continuous

methods, over jumps across element boundaries. Therefore, it is superior to the unstabilized con-

tinuous version when it comes to solving convection-dominated problems. However, the downside

of this method is the higher computational costs due to more degrees of freedom (DOFs). As with

the SUPG-method, under- and overshoots near steep gradients can occur. To prevent those, dis-

continuity capturing and slope limiting techniques have been developed [22, 41, 60].

The mentioned methods can also be applied to more complex problems like the Euler equations

which model compressible gas flows. An extension of the SUPG-method to solve systems can be

found in [44, 52]. The FCT scheme can also handle systems of conservation laws [64, 70, 88] but

was only considered for linear finite elements in these references. For the DG-method an extension

to solve the Euler equations is also given, e.g. in [27, 30]. In this context the application of slope

limiting and discontinuity capturing techniques have proven successful as well [23, 56].

In elements located near steep gradients or singularities, large errors usually occur. Therefore,

different refinement strategies like h-, p- or hp-adaptivity can be considered to improve accuracy

[83]. Thereby, h indicates the maximum mesh size and p the maximum polynomial degree. To

decide which element needs to be refined, different error indicators can be used. For example, the

Z2 estimator [89] uses the element-wise error between the gradient and a reconstructed gradient

as indicator. In the case of hp-adaptivity one also needs to decide, if h or p or both should be

refined. One possibility is to increase p in elements where the solution is expected to be smooth

and h-refine elements in non-smooth regions. A summary of different strategies can be found in

[71]. The advantage of the combined hp-adaptive approach is that in theory an exponential order

of convergence can be be expected at least for elliptic problems [7] .

1.1. Objectives

The primary goal of this research is to develop a hierarchical finite element method which can be

applied to compressible flow problems and also be used in the context of hp-adaptivity. The type

of compressible flow problems which we are interested in are modeled by the Euler equations.

These equations are given as a system of conservation laws. A peculiarity of conservation laws is

2



1.1. Objectives

the appearance of shocks, which results in discontinuous solutions traveling over time. Since such

discontinuities usually appear locally, one needs to refine only a few elements to obtain a better

resolution of those phenomena. If in addition element-wise changes of the polynomial degree

are considered, hp-adaptivity is derived resulting in a higher accuracy of the solution but lower

computational costs compared to uniform refinements. Since the simplest case of a conservation

law is the linear advection equation, the first step of our research was the development of an hp-

adaptive algorithm for this equation.

The solution of advection equations can be obtained by a stabilized continuous Galerkin

method or the DG method. In case of the DG method different hp-adaptive algorithms have

already been presented [10, 42, 43]. However, since solutions of conservation laws frequently

comprise shocks, i.e., discontinuities, additional stabilization to prevent oscillations near disconti-

nuities may be applied [22, 41].

Since the DG method is computationally more expensive than the continuous version, we

prefer the FCT scheme which is capable of handling steep gradients very well [49, 58]. Starting

from the continuous linear finite element method, which is referred to as high-order scheme in this

context, a low-order scheme is derived algebraically by applying mass-lumping and introducing

artificial diffusion. This gives a low-order approximation which is local-extremum diminishing

and positivity preserving [58]. The difference between these two schemes defines sums of anti-

diffusive fluxes. These fluxes need to be controlled since they can cause non-physical oscillations.

A multidimensional limiter was introduced by Zalesak [88] which limits the fluxes in such a way

that the so-derived solution fulfills discrete maximum principles and is free of oscillations.

In [72] an h-adaptive FCT algorithm for linear finite elements was presented. A straight-

forward extension of this scheme to hp-adaptivity is difficult, since the design of the FCT scheme

for higher-order elements is complicated [59]. Applying the strategy for the derivation of a low-

order scheme to higher order elements equipped with Lagrange basis functions can lead to low-

order approximations which are highly oscillatory. Positivity and compliance with discrete maxi-

mum principles are not guaranteed in this case. Also the design of limiters for higher-order FCT

is not clear, since besides the fluxes between vertex nodes edge-edge fluxes and edge-vertex fluxes

need to be taken into account. Therefore, the FCT scheme is usually considered for linear elements

only.

To avoid this complication with FCT for higher-order elements, we divide the mesh in smooth

and non-smooth parts and use FCT only in non-smooth parts together with linear elements. Hereby,

the smoothness refers to the regularity of the solution. Different techniques to capture discontinu-

ities have been developed in the context of the DG method [41, 60]. In the case of continuous finite

elements a parameter-free smoothness indicator based on the design of DG slope-limiters was pro-

posed in [61]. It compares the solution with a reconstructed solution which may be discontinuous.

If the continuous solution evaluated at element centers is bounded by the reconstructed approxima-

tion, the solution can be regarded as smooth. Similarly, the smoothness of higher order derivatives

can be verified. We will adopt this indicator and consider an element as smooth, if the solution or

all components of its gradient are smooth.

In smooth parts the solution can be approximated by higher-order elements without further

stabilization. One possibility may be the use of the continuous Galerkin method in these elements.

However, since the method is not stable, it cannot be guaranteed that smooth regions may stay free

of oscillations during a long-time computation. Therefore, a stable method should be applied in

smooth elements.

One possible approach is the use of the DG method which is stable but of higher computa-

tional costs. To reduce the costs different attempts have already been made. For example, in

[46] a multiscale DG method was introduced which divides the problem in continuous coarse and

discontinuous fine scales, where the continuous part has the computational costs of a continuous

3



CHAPTER 1. Introduction

finite element problem. The fine-scale part is taken into account by using an inter-scale transfer

operator. Another approach was introduced in [11] where the continuous piecewise-linear finite

element (CG1) space was enriched by discontinuous piecewise-constants. It was shown that this

approach leads to the same convergence rate as the linear DG method but with fewer degrees of

freedom.

Since we are interested in higher-order polynomials, we adopt the idea from [11] and enrich

the CG1 space with discontinuous quadratic basis functions. It can be shown that on triangular

meshes the resulting method, referred to as CG1-DG2 method, is stable and leads to the same

convergence rate as the quadratic DG method [12].

Using the FCT scheme combined with h-adaptivity in linear elements and the CG1-DG2

method in quadratic elements, gives us a stable hp-adaptive algorithm for scalar convection-

dominated problems. Since FCT is only used in non-smooth elements, the appearance of peak

clipping is also prevented. This phenomenon is well known and occurs at smooth extrema which

are smoothed out by the FCT limiter [88].

For h-adaptivity different error estimators have been developed. For example, there are residual-

based error estimators [1, 74, 85], which use the residual of the discrete solution as error indicator,

or recovery-based error estimators [1, 89, 90], which compare reconstructed solutions or solu-

tion gradients with the numerical approximation to obtain an estimate of the error. The latter

type of estimators has been further developed and been applied to FCT-schemes in [72]. Another

strategy mainly used in the context of hp-adaptivity is the so-called reference solution approach

[24, 83], which is based on the assumption that a reference solution leads to a better approxima-

tion of the exact solution than the solution on the current (coarse) space. Hereby, the reference

solution is computed on the reference space which is usually derived by h- and p-refinement of

the coarse space. We will adopt this approach and derive the reference space by h-refining non-

smooth elements and p-enriching smooth elements. The error between the reference solution and

its projection into the coarse space is used as indicator which elements should be refined.

1.2. Outline of the thesis

This thesis is concerned with two main topics: the introduction of the CG1-DG2 method and the

design of an hp-adaptive algorithm for advection-diffusion equations.

Chapters 3 and 4 give a brief introduction to the continuous and discontinuous Galerkin

method. Chapter 3 is concerned with the continuous Galerkin method and presents the assump-

tions for existence of a solution and stability. For Poisson’s equation, we show that these as-

sumptions are fulfilled and recall a priori error estimates in the H1- and L2-norm. For advection

equations the method is not stable in the sense that derivatives cannot be controlled and therefore,

only L2-a priori error estimates can be derived.

Chapter 4 presents the discontinuous Galerkin method. In the advection case we define the

upwind numerical flux to get a stable method and present a priori error estimates. For Poisson’s

equation we present different flux discretizations: Symmetric interior penalty [2], non-symmetric

interior penalty [77] and the Baumann-Oden method [10]. For all methods, a priori error estimates

are derived.

In Chapter 5 we introduce the CG1-DG2 space. For the linear advection equation on triangular

meshes we show stability and present a priori error estimates which are similar to those derived for

the DG method. In the case of Poisson’s equation the analytical results of the pure discontinuous

method can be directly adopted for the CG1-DG2 space. The analytical results are confirmed

by numerical computations in Chapter 6. Here we will present stationary and time-dependent

examples. These examples show that the new method produces similar results to those computed

by the DG method.

4



1.3. Original publications

After that, in Chapter 7 we extend the new method to systems of conservation laws. We

introduce the Euler equations and describe the derivation of the discrete system for continuous

and discontinuous methods. Chapter 8 shows numerical results for the Euler equations which

indicate that the CG1-DG2 methods lead to similar results as the DG method.

In Chapter 9 we derive the hp-adaptive algorithm for convection-dominated problems. At

first we explain the FCT algorithm and show, how positivity of the numerical approximation can

be guaranteed and which assumptions need to be satisfied to fulfill discrete maximum principles.

Then we will present a regularity estimator, which determines smooth elements. The presented

hp-adaptive algorithm is based on the reference solution approach and defines a reference space

with linear non-smooth elements and smooth quadratic elements. FCT is used on linear elements

and the CG1-DG2 method on quadratics. Finally, we present a constrained L2 projection that

guarantees that no new extrema are introduced.

Chapter 10 shows numerical results for the different topics discussed in the previous chapter.

It also shows the advantage of the hp-adaptive algorithm over pure h-refinement.

The last chapter concludes this thesis and gives an outlook for further research.

1.3. Original publications

The analytical results and part of the numerical results concerning the scalar equations for the

CG1-DG2 method have already been published or have been accepted for publication. The results

can be found in [12] and [15] which are joint work with Roland Becker and the author’s advisor

Dmitri Kuzmin. The work concerning hp-adaptivity can be found in [13] and [14] and was de-

veloped with Dmitri Kuzmin. The numerical results presented in this thesis are the author’s own

work. The list of publications is as follows:

• [12] R. Becker, M. Bittl, and D. Kuzmin. Analysis of a combined cg1-dg2 method for

the transport equation. SIAM Journal on Numerical Analysis, 53(1):445–463, 2015. doi:

10.1137/13093683X. URL http://dx.doi.org/10.1137/13093683X

• [13] M. Bittl and D. Kuzmin. An hp-adaptive flux-corrected transport algorithm for con-

tinuous finite elements. Computing, 95(1, suppl.):S27–S48, 2013. ISSN 0010-485X. doi:

10.1007/s00607-012-0223-y. URL http://dx.doi.org/10.1007/s00607-012-0223-y

• [14] M. Bittl and D. Kuzmin. The reference solution approach to hp-adaptivity in finite

element flux-corrected transport algorithms. In I. Lirkov, S. Margenov, and J. Wasniewski,

editors, Large-Scale Scientific Computing, Lecture Notes in Computer Science, pages 197–

204. Springer Berlin Heidelberg, 2014. ISBN 978-3-662-43879-4. URL http://dx.doi.

org/10.1007/978-3-662-43880-0_21

• [15] M. Bittl, D. Kuzmin, and R. Becker. The cg1-dg2 method for convection-diffusion

equations in 2d. J. Comput. Appl. Math., 270(0):21 – 31, 2014. ISSN 0377-0427. doi: http://

dx.doi.org/10.1016/j.cam.2014.03.008. URL http://www.sciencedirect.com/science/

article/pii/S0377042714001484. Fourth International Conference on Finite Element

Methods in Engineering and Sciences (FEMTEC 2013)
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2
General Notation

In this chapter we introduce the general notation used throughout the thesis. Table 2.1 provides

an overview of the mathematical notation used in the scope of partial differential equations. The

notation related to spatial discretization can be found in Table 2.2.

In the context of discontinuous Galerkin discretizations, we define for an interior side S ∈ S
int
h

of an element K, i.e., S ∈ SK , x ∈ S, and the normal vector nSK

u+SK
(x) := lim

εց0
uh(x− εnSK

), the interior trace,

and

u−SK
(x) := lim

εց0
uh(x+ εnSK

), the exterior trace,

where uh is a scalar-valued function smooth enough to admit a possibly two-valued trace. This is

also illustrated in Fig. 2.1 for an element K and its neighboring element K′.

u−SK
u+SK

K K’

nSK

Figure 2.1: Element K and neighbor element K′ with normal vector nSK
and

interior (u+SK
) and exterior (u−SK

) traces
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CHAPTER 2. General Notation

Ω open domain in R
dim, dim = 1,2,3

dim spatial dimension

Γ boundary ∂Ω

ΓD part of the boundary with Dirichlet boundary conditions

ΓN part of the boundary with Neumann boundary conditions

Γ− inflow part of the boundary,

i.e., Γ− := {x ∈ Γ : βββ ·n < 0} with prescribed velocity field βββ

Γ+ outflow part of the boundary,

i.e., Γ+ := {x ∈ Γ : βββ ·n ≥ 0} with prescribed velocity field βββ

x spatial variable (x = (x1, ...,xdim)
T ∈ R

dim )

t time variable

∂• partial derivative, e.g. ∂x = ∂/∂x

ut time derivative of function u, i.e., ut = ∂tu

∇ gradient operator, i.e., ∇ = (∂x1
, ...,∂xdim

)T ∈ R
dim

div divergence operator, i.e., divu = ∇ ·u = ∑dim
i=1 ∂xi

ui, where u is vector-valued

∆ Laplace operator, i.e. ∆u = ∇ ·∇u = ∂x1x1
u+ ...+∂xdimxdim

u

C Constant, C > 0

V,V ′,‖.‖V Hilbert-space V (i.e., a complete space with scalar product (·, ·)V ),

its dual space V ′ and the norm ‖u‖2
V = (u,u)V ,

Lp(Ω) Lp(Ω) := {u : Ω → R|u is Lebesgue measurable,‖u‖Lp(Ω) ≤ ∞}

‖u‖Lp(Ω) = (
∫

Ω up dx)
1
p , 1 ≤ p < ∞; ‖u‖L∞(Ω) = esssupΩ |u|

‖.‖ L2-norm; if not obvious, the domain is added as subscript (e.g. ‖.‖S)

‖.‖∞,‖.‖∞,K L∞-norm on Ω and domain K, respectively

Dku(x) total derivative of order k of a function u(x)
C1

0(Ω) space of functions which are continuously differentiable with compact support

W k,p(Ω) Sobolev space, W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω)∀ |α|≤ k}
Hk(Ω) Sobolev space with p = 2 : Hk(Ω) =W k,2(Ω)
Lip(Ω) space spanned by Lipschitz continous functions

‖.‖l, ‖.‖l,K H l-norm on Ω and domain K, respectively; l = 0 indicates the L2-norm

|.|l , |.|l,K H l-seminorm on Ω and domain K, respectively, e.g. |u|1,K = ‖∇u‖K .

Table 2.1: General Notation for partial differential equations
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Th conforming triangulation of Ωh

Sh set of element boundaries/sides (e.g. edges, faces) of triangulation Th

K, S element of Th and Sh, respectively

SK all sides S ∈ Sh of element K (SK = ∂K)

h maximum element size h = max
K∈Th

hK ,

as subscript: indicates a discrete quantity (e.g. Vh discrete space)

hK , hS diameter of K ∈ Th and S ∈ Sh, respectively

|K|,|S| measure of K ∈ Th and S ∈ Sh, respectively

K̂ reference element to K

TK transformation from the reference element K̂ to K

S
∂
h set of boundary sides which cover the domain boundary ∂Ω

S
int
h set of interior sides, i.e. Sh \S

∂
h

S
∂,D
h ,S

∂,N
h set of boundary sides which cover the boundary ΓD and ΓN, respectively

S
∂,−
h ,S

∂,+
h set of boundary sides which cover the boundary Γ− and Γ+, respectively

nS,n fixed unit vector normal to side S ∈ Sh, n = (nx,ny)
T ,

outward pointing for S ∈ S
∂
h

τττ tangential vector, i.e. τττ = (−ny,nx)
T

nSK
unit vector normal to side S ∈ SK , outward pointing with respect to K

S−K , S+K all sides S ∈ SK with βββ ·nSK
< 0 and βββ ·nSK

≥ 0, respectively

and prescribed velocity field βββ

Pk(A) polynomials of total degree k on the set A

Qp,q(A),Qp(A) Qp,q(A) := span{xiy j,(x,y) ∈ A, i = 0, ..., p, j = 0, ...,q}, Qp(A) := Qp,p(A)
N number of (spatial) degrees of freedom

ϕi basis functions of the discrete space Vh, i = 1, ...,N
I(= [0, tend ]) time interval

n (superscript) index for the time level tn, e.g. un = u(tn)
∆t time step size (i.e. ∆t = tn+1 − tn)

V k
h :=

{
vh ∈C(Ω̄h) : vh|K ◦T−1

K ∈ Pk(K̂)
}

V
k,Q
h :=

{
vh ∈C(Ω̄h) : vh|K ◦T−1

K ∈ Qk(K̂)
}

Table 2.2: Notation for continuous and discontinuous finite elements
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CHAPTER 2. General Notation

We fix the normal vector nS of a side S ∈ S
int
h to one direction (either nS = nSK

or nS = nSK′ for

S ∈ SK ∩SK′) and define

u+(x) := lim
εց0

uh(x− εnS), u−(x) := lim
εց0

uh(x+ εnS),

where x ∈ S and uh is a scalar-valued function smooth enough to admit a possibly two-valued

trace. This means for S ∈ S
int
h with S ∈ SK ∩SK′ , that u+ = u+SK

= u−SK′ , if nS := nSK
.

The jump and the mean value for an interior side S ∈ S
int
h and x ∈ S are defined by

[u](x) := u+(x)−u−(x), {u}(x) :=
1

2

(
u+(x)+u−(x)

)
.

In the case of a boundary side, we define [u] = u+ and {u} = u+. For vector-valued functions

jump and mean value are applied to each component separately. The jump of two functions can

be written as

[uv] = [u]{v}+{u}[v].

Note that [[u]] = 0, {{u}}= {u} and [{u}] = 0, {[u]}= [u].

For simplicity we will use the following notation:

∫

Th

= ∑
K∈Th

∫

K

,
∫

Sh

= ∑
S∈Sh

∫

S

.

The generalization of the integration by parts formula to the discontinuous case reads

∫

Th

∇ · (βββu)vdx =−
∫

Th

uβββ ·∇vdx+
∫

S
int
h

βββ ·nS[uv]ds+
∫

S
∂
h

βββ ·nSuvds, (2.0.1)

=−
∫

Th

uβββ ·∇vdx+
∫

S
int
h

βββ ·nS ([u]{v}+{u}[v]) ds+
∫

S
∂
h

βββ ·nSuvds.

We use � instead of ≤C for a constant C independent of h.
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3
The continuous Galerkin method for

scalar equations

In this chapter we give a short introduction to the continuous Galerkin method which is used to

solve partial differential equations (PDEs). The idea of this method is to replace the solution space

by a finite-dimensional subspace and obtain an approximate solution. This approach leads to the

continuous finite element method (FEM) where the subspace is defined as a space of continuous

piecewise polynomials [20].

In the following we show the derivation of the Galerkin problem for Poisson’s equation and

a linear advection equation. In a much more general framework and with certain assumptions

we show uniqueness and existence of the solution and approximation properties of the finite di-

mensional subspace. In the context of finite elements, we show how boundary conditions can be

imposed, namely in the weak and in the strong sense. Furthermore, we present error estimates for

the discussed equations. At last we show the limitation of the continuous finite element method

regarding stability when it comes to solving advection equations.

3.1. Poisson’s equation

Let us consider Poisson’s equation

−∆u = f in Ω, (3.1.1)

u = 0 on ΓD,

where f ∈ L2(Ω), Ω ⊂ R
dim is open and ΓD = ∂Ω is the Dirichlet boundary.

Multiplying (3.1.1) by a test function ϕ ∈ H1
0 (Ω) and integrating by parts lead to the following

weak formulation: ∫
Ω

∇u ·∇ϕdx =
∫

Ω
f ϕdx ∀ϕ ∈ H1

0 (Ω), (3.1.2)

where u is called weak solution. The problem can be written in a more compact form:

Find u ∈ H1
0 (Ω) such that b(u,ϕ) = f (ϕ) ∀ϕ ∈ H1

0 (Ω) (3.1.3)

11



CHAPTER 3. The continuous Galerkin method for scalar equations

with the bilinear form

b(u,ϕ) =
∫

Ω
∇u ·∇ϕdx

and the linear form

f (ϕ) =
∫

Ω
f ϕdx.

We say the problem is well-posed (according to Hadamard), if there exists one and only one

solution and this solution depends continuously on the data for the problem (e.g., right-hand side).

By choosing a finite-dimensional subspace Vh ⊂ H1
0 (Ω) of dimension N we derive the Ritz-

Galerkin approximation problem:

Find uh ∈Vh such that b(uh,ϕh) = f (ϕh) ∀ϕh ∈Vh. (3.1.4)

The solution uh is expressed as a linear combination of basis functions ϕi, i = 1, ..,N of Vh:

uh =
N

∑
i=1

uiϕi. (3.1.5)

The Galerkin method is also referred to as a projection method due to the Galerkin orthogo-

nality property:

b(u−uh,ϕh) = 0 ∀ϕh ∈Vh. (3.1.6)

In the context of continuous finite elements the space V =H1
0 (Ω) is approximated by the space

of continuous, piecewise polynomial functions with zero boundary values

V ⊃V k
h,0 :=

{
vh ∈C(Ω̄h) : vh(x) = 0,∀x ∈ ΓD, vh|K ◦T−1

K ∈ Pk(K̂)
}
, (3.1.7)

where K is an element of a conforming triangulation Th of Ω. The transformation between the

physical element K and the reference element K̂ is denoted by T−1
K . Since the boundary conditions

are directly incorporated into the space, we call them strong boundary conditions.

If we consider the space V = H1(Ω) without imposing boundary conditions, we can approxi-

mate it by the space of continuous, piecewise polynomial functions

V ⊃V k
h :=

{
vh ∈C(Ω̄h) : vh|K ◦T−1

K ∈ Pk(K̂)
}
. (3.1.8)

Note that the space can also be defined for piecewise bilinear, biquadratic etc. functions, i.e.,

V
k,Q
h :=

{
vh ∈C(Ω̄h) : vh|K ◦T−1

K ∈ Qk(K̂)
}

. For simplicity, we will skip the superscript Q.

Definition 3.1: Conforming finite elements

Finite elements with Vh ⊂V are called conforming finite elements, otherwise, i.e., if Vh �⊂V ,

non-conforming finite elements.

The continuous finite elements defining the space V k
h or V k

h,0 are conforming with respect to the

space H1(Ω) and H1
0 (Ω), respectively.
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3.2. Existence and uniqueness

3.2. Existence and uniqueness

Let us now consider the variational problem

Find u ∈V such that b(u,ϕ) = f (ϕ) ∀ϕ ∈V (3.2.1)

and its Galerkin approximation for a finite-dimensional subspace Vh ⊂V

Find uh ∈Vh such that b(uh,ϕh) = f (ϕh) ∀ϕh ∈Vh (3.2.2)

in a more general way than before, not necessarily based on the Poisson equation (3.1.1). To prove

existence and uniqueness, the following assumptions are made:

Assumptions 1:

C.1 V is a Hilbert space,

C.2 the linear form f : V → R is bounded (continuous):

∃C0 ≥ 0 : | f (ϕ)|≤C0‖ϕ‖V , ∀ϕ ∈V,

C.3 the bilinear form b : V ×V → R is bounded (continuous):

∃C1 ≥ 0 : |b(u,ϕ)|≤C1‖u‖V‖ϕ‖V , ∀u, ϕ ∈V,

C.4 the bilinear form b : V ×V → R is V-coercive:

∃C2 > 0 : b(u,u)≥C2‖u‖2
V , ∀u ∈V.

Then the following Theorem holds:

Theorem 3.2: Lax-Milgram Theorem

If Assumptions 1 are fulfilled, then for arbitrary f ∈V ′ problem (3.2.1) has a unique solution

u ∈V and

‖u‖V ≤ 1

C2

‖ f‖V ′ , (3.2.3)

where C2 is the constant from C.4.

Note that the previous theorem also gives well-posedness of the problem. The proof of the

Lax-Milgram theorem can be found, e.g., in [66]. In the case of the Poisson problem (3.1.1) for

V = H1
0 (Ω) Assumptions 1 hold and therefore existence and uniqueness of a solution u ∈ V fol-

lows from application of the Lax-Milgram theorem. In the context of finite elements we call the

method stable, if inequality (3.2.3) holds for the finite element solution uh ∈Vh and a constant C2,

which does not depend on h.

The following Lemma gives information about how well the Galerkin solution uh of (3.2.2)

approximates the solution u of (3.2.1) (see, e.g., [17]):
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Lemma 3.3: Céa’s Lemma

If Assumptions 1 are fulfilled and u∈V solves (3.2.1), then the solution uh ∈Vh ⊂V of (3.2.2)

satisfies

‖u−uh‖V ≤ C1

C2

min
vh∈Vh

‖u− vh‖V , (3.2.4)

with the constants C1 and C2 from C.3 and C.4.

If we consider a bilinear form a : V1 ×V2 → R mapping from two different Hilbert spaces V1 and

V2, V1 �=V2 , e.g., in the case of non-symmetric bilinear forms, we have the variational problem:

Find u ∈V1 such that a(u,ϕ) = f (ϕ) ∀ϕ ∈V2. (3.2.5)

For the finite-dimensional subspaces V1,h ⊂V1 and V2,h ⊂V2 we obtain the Galerkin problem:

Find uh ∈V1,h such that a(uh,ϕh) = f (ϕh) ∀ϕh ∈V2,h. (3.2.6)

In this case the coercivity assumption C.4 can be replaced by

∃C3 > 0 : sup
ϕ∈V2\{0}

a(u,ϕ)

‖ϕ‖V2

≥ C3‖u‖V1
, ∀u ∈V1, (3.2.7)

∀ϕ ∈V2, ϕ �= 0, ∃u ∈V1 : a(u,ϕ) �= 0. (3.2.8)

Equation (3.2.7) is often called the inf-sup condition and is equivalent to

∃C3 > 0 : inf
u∈V1\{0}

sup
ϕ∈V2\{0}

b(u,ϕ)

‖ϕ‖V2
‖u‖V1

≥ C3. (3.2.9)

We remark that in the finite dimensional case, if dim(V1) = dim(V2), condition (3.2.7) implies

(3.2.8) [33].

Using (3.2.7) and (3.2.8) instead of the coercivity assumption C.4 gives a more general form

of the Lax-Milgram theorem [6, 73]:

Theorem 3.4: Generalized Lax-Milgram Theorem

Let V1, V2 be Hilbert spaces and a : V1 ×V2 → R be a bounded bilinear form, i.e.,

∃C1 ≥ 0 : |a(u,ϕ)|≤C1‖u‖V1
‖ϕ‖V2

, ∀u ∈V1, ϕ ∈V2. (3.2.10)

For arbitrary linear bounded functionals f ∈V ′
2 we consider the variational problem (3.2.5).

Then the following statements are equivalent:

1. Conditions (3.2.7) and (3.2.8) hold.

2. Problem (3.2.5) has a unique solution u ∈V1 with

‖u‖V1
≤ 1

C3

‖ f‖V ′
2
. (3.2.11)

Theorem 3.4 also holds if V1 is a Banach space and V2 is a reflexive Banach space. In this form,

the theorem is often called the Banach-Nečas-Babuška Theorem.

In contrast to the coercivity assumption C.4 which holds also on subspaces Vh ⊂V we need to

define a discrete inf-sup condition for the Galerkin problem (3.2.6)

∃Ch > 0 : sup
ϕh∈V2,h\{0}

a(uh,ϕh)

‖ϕh‖V2

≥ Ch‖uh‖V1
, ∀uh ∈V1,h. (3.2.12)

14



3.3. A priori error estimates for Poisson’s equation

Using this condition Céa’s lemma can also be written in a more general form (see, e.g., [33]):

Lemma 3.5: Generalized Céa’s Lemma

Let V1, V2 be Hilbert spaces, V1,h ⊂ V1 and V2,h ⊂ V2 finite dimensional subspaces with

dim(V1,h) = dim(V2,h) and a : V1 ×V2 → R a bounded bilinear form. We assume that con-

ditions (3.2.7),(3.2.8) and the discrete inf-sup condition (3.2.12) hold. Then the variational

problem (3.2.5) and the Galerkin problem (3.2.6) have unique solutions u ∈V1 and uh ∈V1,h

and the following estimate holds

‖u−uh‖V1
≤
(

1+
C1

Ch

)
min

vh∈V1,h

‖u− vh‖V1
, (3.2.13)

with the constants C1 and Ch from (3.2.10) and (3.2.12).

In the context of finite elements inequalities (3.2.4) and (3.2.13) are usually the starting point to

derive a priori estimates of the form ‖u−uh‖ ≤Chp |u| where p is called the order of convergence

and ‖.‖ and |.| are a norm and seminorm, respectively. In the following, we will demonstrate this

approach for the Poisson equation.

3.3. A priori error estimates for Poisson’s equation

Let us consider inequality (3.2.4) which holds in the case of the Poisson problem (3.1.1) and

V =H1
0 (Ω),Vh =V k

h,0. The minimizer vh on the right-hand side can be exchanged with an arbitrary

vh ∈ Vh and the inequality stays true. For that reason, we introduce an interpolation operator

Ih : V →Vh and replace vh by the interpolant Ih(u).

Definition 3.6: Interpolation operator Ih

Let ϕi, i = 1, ...,N, be nodal basis functions of Vh with

ϕi(x j) =

{
1 if i = j,
0 otherwise,

where x j, j = 1, ..,N, are the corresponding nodal points of Vh. Then the interpolation oper-

ator Ih : V →Vh is defined as

Ih(u) :=
N

∑
i=1

u(xi)ϕi. (3.3.1)

For the interpolation on V k
h the following estimate can be derived (see, e.g., [37, 54].

Lemma 3.7: Interpolation estimate

Let Th be a conforming triangulation of Ω and Ih an interpolation operator on V k
h for k ≥ 1.

Then there exists a constant CI , independent of h, such that for 0 ≤ m ≤ k+1 we have

‖u− Ih(u)‖m ≤CIh
k+1−m |u|k+1 , ∀u ∈ Hk+1(Ω). (3.3.2)

This leads directly to an H1-error estimate for the Poisson problem (3.1.1). In order to obtain an

estimate in the L2-norm one usually applies a duality argument from Aubin and Nitsche (see, e.g.,

[54]) and derives the following a priori error estimates:
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Theorem 3.8: A priori error estimates

Let u ∈ Hk+1
0 (Ω) and uh ∈V k

h,0 be the solutions to (3.1.2) and (3.1.4), respectively. Then

‖u−uh‖ ≤Chk+1 |u|k+1 , (3.3.3)

‖u−uh‖1 ≤Chk |u|k+1 . (3.3.4)

Let us now briefly summarize the results obtained for the Poisson equation. By applying the

Lax-Milgram theorem, we have seen, that there exists a unique solution of the weak problem

(3.1.3). The corresponding finite element method is stable and has also a unique solution. The

application of Céa’s lemma gives an estimate for the error between the weak solution and the

Galerkin solution. This estimate can also be applied to the finite element solution and is the

starting point to derive the a priori estimates (3.3.3) and (3.3.4).

3.4. Linear advection

Let us now consider the linear advection equation

∇ · (βββu)+ cu = f in Ω, (3.4.1)

u = g on Γ−, (3.4.2)

with f ∈ L2(Ω), βββ∈ [Lip(Ω)]dim, c∈ L∞(Ω) and g∈ L2(Γ−). Note that Lip(Ω)⊂W 1,∞(Ω) (details

can be found in [17]) and therefore, there exist constants Cβββi
> 0 such that

‖∇βββi‖[L∞(Ω)]dim ≤Cβββi
, i = 1, ..,dim. (3.4.3)

We also assume

c(x)+
1

2
∇ ·βββ(x)≥ c0 > 0, ∀x ∈ Ω (3.4.4)

to guarantee L2-coercivity (see Lemma 3.9), and

sup
x∈Ω

|c(x)+∇ ·βββ(x)|=: c1 < ∞ (3.4.5)

to obtain boundedness.

For the variational formulation we define the function space

H1,βββ(Ω) = {u ∈ L2(Ω) : ∇ · (βββu) ∈ L2(Ω)}, (3.4.6)

which is called graph space [26] and is equipped with the scalar product

(u,v)H1,βββ(Ω) := (u,v)L2(Ω)+(βββ ·∇u,βββ ·∇v)L2(Ω) (3.4.7)

and the norm ‖u‖2
1,βββ := ‖u‖2

H1,βββ(Ω)
= (u,u)H1,βββ(Ω).

Following [37] we will show, how boundary conditions can be weakly imposed. At first, we

multiply (3.4.1) by a test function ϕ ∈ H1,βββ(Ω) and integrate by parts over the domain Ω

∫
Ω
−(βββu) ·∇ϕ+ cuϕdx+

∫
Γ+

βββnuϕds =
∫

Ω
f ϕdx−

∫
Γ−

βββngϕds ∀ϕ ∈ H1,βββ(Ω), (3.4.8)

16



3.4. Linear advection

where βββn = βββ · n. A second integration by parts gives the variational formulation with weak

boundary conditions:

Find u ∈ H1,βββ(Ω) such that a(u,ϕ) = f (ϕ) ∀ϕ ∈ H1,βββ(Ω), (3.4.9)

where

a(u,ϕ) =
∫

Ω
(∇ · (βββu)+ cu)ϕdx−

∫
Γ−

βββnuϕds, (3.4.10)

f (ϕ) =
∫

Ω
f ϕdx−

∫
Γ−

βββngϕds. (3.4.11)

For the discretization with continuous finite elements we consider the space of continuous,

piecewise polynomial functions (3.1.8). This gives the discrete problem:

Find uh ∈V k
h such that a(uh,ϕh) = f (ϕh) ∀ϕh ∈V k

h . (3.4.12)

We will now check if Assumptions 1 are fulfilled. We have that H1,βββ(Ω) equipped with the

scalar product (·, ·)H1,βββ(Ω) is a Hilbert space (see, e.g., [26]). It is also easy to verify that the linear

form f (ϕ) and the bilinear form a(u,ϕ) are continuous in H1,βββ(Ω). However, the following lemma

shows that we obtain coercivity only with respect to the L2-norm but not in the H1,βββ-norm.

Lemma 3.9: L2-coercivity

The bilinear form a(·, ·) as defined in (3.4.10) is coercive with respect to the L2-norm, i.e.,

there exists a constant C > 0 such that

a(u,u)≥C‖u‖2
L2(Ω), ∀u ∈ H1,βββ(Ω). (3.4.13)

Proof. Choosing ϕ = u in (3.4.10) gives

a(u,u) =
∫

Ω

(
∇ · (βββu)u+ cu2

)
dx−

∫
Γ−

βββnu2 ds.

The first part of the volume integral can be simplified in the following way:

∫
Ω

∇ · (βββu)udx =
∫

Ω
(∇ ·βββ)u2 +(βββ ·∇u)udx =

∫
Ω
(∇ ·βββ)u2 +

1

2
βββ ·∇u2 dx

=
∫

Ω
(∇ ·βββ)u2 +

1

2

(
∇ · (βββu2)− (∇ ·βββ)u2

)
dx

=
∫

Ω

1

2
(∇ ·βββ)u2 +

1

2
∇ · (βββu2)dx.

Applying the divergence theorem gives

a(u,u) =
∫

Ω

(
1

2
(∇ ·βββ)+ c

)
u2 +

1

2
∇ · (βββu2)dx−

∫
Γ−

βββnu2 ds

=
∫

Ω

(
1

2
(∇ ·βββ)+ c

)
u2 dx+

1

2

∫
Γ

βββnu2 ds−
∫

Γ−
βββnu2 ds

=
∫

Ω

(
1

2
(∇ ·βββ)+ c

)
u2 dx+

1

2

∫
Γ+

βββnu2 ds− 1

2

∫
Γ−

βββnu2 ds.
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CHAPTER 3. The continuous Galerkin method for scalar equations

Taking into account that βββn ≥ 0 on Γ+, βββn < 0 on Γ− and assumption (3.4.4) we obtain

a(u,u)≥ c0‖u‖2 +
1

2

∫
Γ
|βββn|u

2 ds

≥ c0‖u‖2,

which completes the proof.

Since we do not have H1,βββ-coercivity, we cannot control the derivative part ‖βββ ·∇u‖ , which

directly influences the stability [37]. This will be motivated in the following example.

Example 3.10: 1D convection problem

Following [33] we will illustrate the problem concerning stability for

βu′(x)+u(x) = f (x), x ∈ Ω := (0,1), (3.4.14)

u(0) = 0, (3.4.15)

with constant velocity β > 0 and f ∈ L2(Ω).
We define the bilinear form a : V1 ×V2 → R by

a(u,ϕ) =
∫ 1

0
βu′ϕ+uϕdx.

Let V1 = {v ∈ H1(Ω) : v(0) = 0} and V2 = L2(Ω). We obtain the problem:

Find u ∈V1 such that a(u,ϕ) = f (ϕ) ∀ϕ ∈V2. (3.4.16)

By application of Theorem 3.4 with conditions (3.2.7) and (3.2.8) we obtain existence

and uniqueness of a solution u ∈V1. For details see [33].

Now we discretize (3.4.16) by using the Galerkin method with the continuous linear

finite element space V 1
h,0 ⊂V1 as defined in (3.1.7). The discretized problem is as follows

Find uh ∈V 1
h,0 such that a(uh,ϕh) = f (ϕh) ∀ϕh ∈V 1

h,0 ⊂V2. (3.4.17)

To show existence and uniqueness of the discrete solution uh ∈V 1
h,0 the discrete inf-sup con-

dition (3.2.12) needs to be fulfilled. In [33] it was shown that the inf-sup condition (3.2.12)

holds with Ch = ch where c > 0 is independent of h. For h → 0, Ch deteriorates, which indi-

cates the instability of the method. Note that this constant is also used in equation (3.2.11)

where for h → 0 the right-hand side goes to infinity and therefore the solution can blow up.

In numerical experiments this instability manifests itself in oscillations, see Chapter 6.

Example 3.10 showed that Theorem 3.4 can be applied to prove the existence of a unique

solution u ∈V1 for the 1D case, if the test functions are in L2(Ω). An extension of this example to

the multidimensional space was presented in [26], where it was proven that problem (3.4.9) is well-

posed, even for test functions in H1,βββ(Ω). Similar to the 1D case, the discrete inf-sup condition

(3.2.12) can be derived. However, the constant εh depends on h also in the multidimensional case,

which means that the finite element method is not stable.

If the solution u is smooth enough, the following a priori error estimate holds:
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Theorem 3.11: A priori error estimate

For k ≥ 1 let u ∈ Hk+1(Ω) be the solution to (3.4.1) and uh ∈ V k
h the solution to (3.4.12).

Then

‖u−uh‖L2(Ω) ≤Chk |u|Hk+1(Ω) . (3.4.18)

The proof can be found, e.g., in [37]. In comparison to the a priori error estimates of the Poisson

equation in Theorem 3.8 we get one power of h less in the L2-norm. Furthermore, we do not obtain

any H1-error estimate [33].

We also mention that in order to stabilize the continuous Galerkin method for convection-

dominated problems and improve the order of convergence in estimate (3.4.18) the so-called

streamline diffusion method can be used (see, e.g., [37]). In this method, the test function ϕ

in (3.4.9) is replaced by ϕh+σhβββ ·∇ϕh with σ > 0 on Ω and by ϕh on Γ. Assuming that ∇ ·βββ = 0,

c is constant and h small enough, it can be shown that the resulting bilinear form is coercive with

respect to the ‖.‖SD-norm defined by

‖u‖2
SD := h‖βββ ·∇u‖2

L2(Ω)+‖u‖2
L2(Ω)+

∫
Γ
|βββn|u

2 ds, (3.4.19)

which is a norm on H1,βββ(Ω). This leads to a stable method for which a priori estimates with half

an order more than in (3.4.18) can be obtained

‖u−uh‖SD ≤Chk+ 1
2 |u|Hk+1(Ω) . (3.4.20)

In summary, we have seen that the standard continuous finite element method is stable and

achieves optimal L2-and H1-error estimates in the context of Poisson’s equation. For the linear

advection equation only suboptimal error estimates can be derived and stabilization to control

streamline derivatives is necessary. Therefore, the standard continuous finite element method is

better suited for elliptic problems (e.g. Poisson’s equation) than for hyperbolic problems (e.g.

linear advection).
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4
The discontinuous Galerkin method for

scalar equations

In this chapter we give a brief introduction to the discontinuous Galerkin (DG) method. In contrast

to the continuous Galerkin method the weak formulation is derived for a mesh-dependent space,

the so-called broken Sobolev space consisting of functions which may be discontinuous across

element boundaries. In the context of advection equations, where solution may have jumps, the

DG method can resolve discontinuities, if those are captured by an element edge. The broken

Sobolev space can be approximated by discontinuous piecewise polynomials, which leads to the

discontinuous finite element method (DG FEM).

In the following we explain the DG method for the same equations as in the previous chapter,

i.e., for the linear advection and the Poisson equation. Since the derivation of the DG method

is more intuitive for the advection case and was also first defined in this context [76], we will

begin with that one. We will see that the upwind DG formulation applied to advection equations

has better stability properties than the standard continuous Galerkin method in the sense that it

gives not only L2-stability but also control over the streamline derivatives and the jumps across

element boundaries [51]. For the Poisson equation we present two penalty methods, namely the

symmetric interior penalty Galerkin (SIPG) method [2] and the non-symmetric interior penalty

Galerkin (NIPG) method [77], which enforce continuity of the solution by a penalty term. In this

context another method is introduced as well, the Baumann-Oden method [8, 10], which is similar

to the NIPG method but free of penalty terms.

4.1. Broken Sobolev spaces

At first, we introduce the so-called broken Sobolev space [26, 28].
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CHAPTER 4. The discontinuous Galerkin method for scalar equations

Definition 4.1: Broken Sobolev space

Let Th be a conforming triangulation of Ω. The broken Sobolev space is defined by

W k,p(Th) := {v ∈ Lp(Ω) : v|K ∈W k,p(K)∀K ∈ Th}, (4.1.1)

where k ≥ 0 is an integer and 1 ≤ p ≤ ∞ a real number.

For p = 2, we have Hk(Th) =W k,2(Th) with the corresponding seminorm

|v|2Hk(Th)
:= ∑

K∈Th

|v|2
Hk(K), v ∈ Hk(Th), (4.1.2)

where |.|2
Hk(K)

is the Sobolev seminorm on K.

Furthermore, we define the broken counterpart of (3.4.6)

H1,βββ(Th) = {v ∈ L2(Ω) : v|K ∈ H1,βββ(K)∀K ∈ Th }. (4.1.3)

We remark that W m,p(Ω)⊂W m,p(Th) and H1,βββ(Ω)⊂ H1,βββ(Th).

Note that the operators on the broken Sobolev spaces should also be defined as broken operators

(see, e.g., [26]).

Definition 4.2: Broken gradient

The broken gradient ∇h : W 1,p(Th)→ [Lp(Ω)]dim is defined such that

(∇hv)|K := ∇(v|K), ∀K ∈ Th,∀v ∈W 1,p(Th). (4.1.4)

Similarly, the broken Laplace operator ∆h : H2(Th)→ L2(Th) can be defined.

For a proper definition of the broken divergence operator, we first introduce the space H(div;Ω)
and its broken counterpart.

Definition 4.3: H(div;Ω) and H(div;Th)

We define the following function space

H(div;Ω) := {τττ ∈ [L2(Ω)]dim : ∇ · τττ ∈ L2(Ω)} (4.1.5)

and its broken counterpart

H(div;Th) := {τττ ∈ [L2(Ω)]dim : τττ|K ∈ H(div;K)∀K ∈ Th}. (4.1.6)

This leads to the definition of the broken divergence operator:

Definition 4.4: Broken divergence operator

The broken divergence operator ∇h· : [H(div;Th)]
dim → L2(Ω) is defined such that

(∇h · τττ)|K := ∇ · (τττ|K), ∀K ∈ Th,∀τττ ∈ H(div;Th). (4.1.7)

For simplicity, we skip the subscript h in the following.

In order to check, if a function of the broken space belongs to the usual Sobolev space, i.e.,

W 1,p(Ω) and H(div;Ω), respectively, we can apply the following lemmata [26].
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4.2. Linear advection

Lemma 4.5: Characterization of functions in W 1,p(Ω)

Let 1 ≤ p ≤ ∞. A function v ∈W 1,p(Th) belongs to W 1,p(Ω), if and only if

[v] = 0, ∀S ∈ S
int
h . (4.1.8)

Lemma 4.6: Characterization of functions in H(div;Ω)

A function τττ ∈ H(div;Th)∩ [W 1,1(Th)]
dim belongs to H(div;Ω), if and only if

[τττ] ·nS = 0, ∀S ∈ S
int
h . (4.1.9)

We have now defined the spaces related to the DG method and can now derive the weak formula-

tions for the linear advection and the Poisson equation.

4.2. Linear advection

Let us consider the linear advection equation:

∇ · (βββu)+ cu = f in Ω, (4.2.1)

u = g on Γ−, (4.2.2)

where f ∈ L2(Ω), βββ ∈ [Lip(Ω)]dim, c ∈ L∞(Ω) and g ∈ L2(Γ−). We assume that (3.4.4) and (3.4.5)

hold.

4.2.1. The upwind DG formulation

In the following, we will show, how the upwind DG formulation is derived. Let K be an element

of Th. We multiply (4.2.1) by a test function ϕ ∈ H1,βββ(Th) and integrate over K:∫
K
(∇ · (βββu)+ cu)ϕdx =

∫
K

f ϕdx. (4.2.3)

Integration by parts leads to∫
K
−(βββu) ·∇ϕ+ cuϕdx+

∫
SK

βββnK
uϕds =

∫
K

f ϕdx, (4.2.4)

where βββnK
= βββ ·nSK

.

The crucial point in DG methods is the treatment of
∫

SK
βββnK

uϕds, since the solution is, in

general, discontinuous across the edges. One possible way is the upwind formulation. Hereby, we

impose the external trace u−SK
on the inflow part of SK∫

K
−(βββu) ·∇ϕ+ cuϕdx+

∫
S+K

βββnK
u+SK

ϕ+
SK

ds+
∫

S−K
βββnK

u−SK
ϕ+

SK
ds =

∫
K

f ϕdx. (4.2.5)

For simplicity, we will skip the subscript SK of the external and internal traces. Now we sum over

all elements K ∈ Th:
∫

Th

−(βββu) ·∇ϕ+ cuϕdx+ ∑
K∈Th

(∫
S+K \Γ

βββnK
u+ϕ+ ds+

∫
S−K \Γ

βββnK
u−ϕ+ ds

)
+

∫

S
∂,+
h

βββnuϕds

=
∫

Th

f ϕdx−
∫

S
∂,−
h

βββngϕds. (4.2.6)
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CHAPTER 4. The discontinuous Galerkin method for scalar equations

Introducing the upwind value

û(x) =





u−(x) if βββ(x) ·nS < 0∧x /∈ ∂Ω,
g(x) if βββ(x) ·nS < 0∧x ∈ Γ−,
u+(x) otherwise,

(4.2.7)

which gives

∑
K∈Th

(∫
S+K \Γ

βββnK
u+ϕ+ ds+

∫
S−K \Γ

βββnK
u−ϕ+ ds

)
= ∑

K∈Th

∫
SK\Γ

βββ ·nSûϕ+ ds, (4.2.8)

the problem related to (4.2.6) can be written in compact form:

Find u ∈ H1,βββ(Th) such that aDG(u,ϕ) = fDG(ϕ) ∀ϕ ∈ H1,βββ(Th), (4.2.9)

where

aDG(u,ϕ) =
∫

Th

−(βββu) ·∇ϕ+ cuϕdx+ ∑
K∈Th

∫
SK\Γ

βββ ·nSûϕ+ ds+
∫

S
∂,+
h

βββnuϕds, (4.2.10)

fDG(ϕ) =
∫

Th

f ϕdx−
∫

S
∂,−
h

βββngϕds. (4.2.11)

In the context of finite elements the broken Sobolev space is approximated by the discontinu-

ous finite element space

V k
DG,h :=

{
vh ∈ L2(Ωh) : vh|K ◦T−1

K ∈ Pk(K̂)
}
. (4.2.12)

As in the continuous case, a similar definition can be derived for bilinear, biquadratic, etc. func-

tions. For simplicity we use V k
DG,h to indicate both spaces. Furthermore, we introduce the DG-

norm

‖uh‖DG :=

√√√√c0‖uh‖2 +
1

2

∫

S
∂
h

|βββn|u
2
h ds+

1

2

∫

S
int
h

|βββn|[uh]2 ds. (4.2.13)

Note that V k
DG,h ⊂ Hm(Th) ⊂ H1(Th) ⊂ H1,βββ(Th), m > 1 but V k

DG,h �⊂ H1,βββ(Ω) [37]. Therefore

discontinuous finite elements are non-conforming. Hence Céa’s lemma cannot be applied.

The discretized finite element problem is given by:

Find uh ∈V k
DG,h such that aDG(uh,ϕh) = fDG(ϕh) ∀ϕh ∈V k

DG,h. (4.2.14)

The DG solution uh is piecewise polynomial like the solution of the continuous FEM . However,

the difference is that uh may be discontinuous across element boundaries.

We will now come back to the treatment of the boundary integral
∫

SK
βββnK

uϕds.

4.2.2. Numerical fluxes

The expression βββ ·nSû is called upwind flux and defines the numerical flux

Hup(u
+,u−,nS) := βββ ·nSû(x). (4.2.15)

The upwind flux Hup(u
+,u−,n) can also be replaced by some other numerical flux H(u+,u−,n)

to approximate βββ · nSu at S ∈ S
int
h . For example, there is the mean value flux Hmv(u

+,u−,n) :=
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4.2. Linear advection

βββ ·n{u}, also called centered or central flux (see, e.g., [26, 37, 39]). This leads to a more general

weak formulation:

Find u ∈ H1,βββ(Th) such that aDG(u,ϕ) = fDG(ϕ) ∀ϕ ∈ H1,βββ(Th), (4.2.16)

where

aDG(u,ϕ) =
∫

Th

−(βββu) ·∇ϕ+ cuϕdx+ ∑
K∈Th

∫
SK\Γ

H(u+,u−,nSK
)ϕ+ ds+

∫

S
∂,+
h

βββnuϕds, (4.2.17)

fDG(ϕ) =
∫

Th

f ϕdx−
∫

S
∂,−
h

βββngϕds, (4.2.18)

for an arbitrary numerical flux H(u+,u−,n).
We assume that the numerical flux H(u+,u−,n) is consistent and conservative.

Definition 4.7: Consistent and conservative flux

The numerical flux H(u+,u−,n) is

1. consistent, if

H(u,u,n) = βββ ·nu. (4.2.19)

2. conservative, if

H(u1,u2,n) =−H(u2,u1,−n). (4.2.20)

The upwind flux Hup(u
+,u−,n) and the mean value flux Hmv(u

+,u−,n) are conservative and con-

sistent. However, the use of upwind fluxes leads to improved stability properties compared to the

use of mean value fluxes. For details see, e.g., [37].

Since nSK
= −nSK′ for a common edge S ∈ ∂K ∩ ∂K′, the sum ∑K∈Th

∫
SK\Γ can be simplified

for conservative fluxes:

∑
K∈Th

∫
SK\Γ

H(u+,u−,nSK
)ϕ+ ds =

∫

S
int
h

H(u+,u−,nS)[ϕ]ds, (4.2.21)

where nS is a fixed normal vector to side S ∈ S
int
h . Note that for a side S = ∂K2 ∩ ∂K1 the fixed

normal vector nS is either nS = nSK1
or nS = nSK2

(nSK1
= −nSK2

) depending on how the normal

vector was fixed.

The following lemmata (see, e.g., [37]) show that a consistent numerical flux leads to a con-

sistent discretization and a conservative flux leads to a conservative discretization.

Lemma 4.8: Consistency

The discretization (4.2.17) - (4.2.18) is consistent, i.e., the exact solution uex ∈ H1,βββ(Ω) of

(4.2.1) satisfies

aDG(uex,ϕ) = fDG(ϕ) ∀ϕ ∈ H1,βββ(Th),

if and only if (4.2.19) is fulfilled.

We remark that consistency leads to Galerkin orthogonality

aDG(uex −u,ϕ) = 0 ∀ϕ ∈ H1,βββ(Th), (4.2.22)

where uex is the exact solution of (4.2.1) and u the weak solution of (4.2.16).
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Lemma 4.9: Conservation

The discretization (4.2.17) - (4.2.18) with c = 0 is conservative, i.e.,

∫

S
∂,+
h

βββnS
uds+

∫

S
∂,−
h

βββnS
gds =

∫

Th

f dx,

if and only if (4.2.20) is fulfilled.

The application of these lemmata shows that the DG discretization with upwind or mean value

flux is consistent and conservative. Note that the continuous Galerkin discretization is also con-

sistent and conservative.

4.2.3. Coercivity and a priori error estimates for the upwind DG formulation

In the following we assume H(u+,u−,n) = Hup(u
+,u−,n). The following coercivity result indi-

cates the stability of the upwind formulation:

Lemma 4.10: Coercivity

The bilinear form (4.2.17) is coercive with respect to the DG-norm:

aDG(v,v)≥ ‖v‖2
DG ∀v ∈ H1,βββ(Th). (4.2.23)

Proof. Applying the discontinuous integration by parts formula (2.0.1) to equation (4.2.10) and

taking into account (4.2.21) give:

∫

Th

−(βββv) ·∇ϕ+ cvϕ dx+
∫

S
int
h

βββnS
v̂[ϕ]ds+

∫

S
∂,+
h

βββnS
vϕds (4.2.24)

=
∫

Th

∇ · (βββv)ϕ+ cvϕ dx+
∫

S
int
h

βββnS
(v̂[ϕ]− [vϕ]) ds−

∫

S
∂,−
h

βββnS
vϕds. (4.2.25)

We sum up (4.2.24) and (4.2.25), choose ϕ = v and obtain:

2aDG(v,v) =
∫

Th

−(βββv) ·∇v+∇ · (βββv)v+2cv2 dx+
∫

S
int
h

βββnS

(
2v̂[v]− [v2]

)
ds

+
∫

S
∂,+
h

βββnS
v2 ds−

∫

S
∂,−
h

βββnS
v2 ds.

Let us now consider the different terms. For the volume integral we have:

∫

Th

−(βββv) ·∇v+∇ · (βββv)vdx =
∫

Th

−(βββv) ·∇v+(∇ ·βββ)v2 +(βββ ·∇v)vdx

=
∫

Th

(∇ ·βββ)v2 dx.
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4.2. Linear advection

Using βββnS
< 0 on Γ− gives for the boundary integrals:

∫

S
∂,+
h

βββnS
v2 ds−

∫

S
∂,−
h

βββnS
v2 ds =

∫

S
∂,+
h

∣∣βββnS

∣∣v2 ds+
∫

S
∂,−
h

∣∣βββnS

∣∣v2 ds

=
∫

S
∂
h

|βββn|v
2 ds.

For the edge integrals we have to make the following distinction:

• For βββnS
< 0 we have v̂ = v−, which yields

∫

S
int
h

βββnS

(
2v−[v]− [v2]

)
ds =

∫

S
int
h

βββnS

(
2v−(v+− v−)− (v+v+− v−v−)

)
ds

=−
∫

S
int
h

βββnS
[v]2 ds =

∫

S
int
h

∣∣βββnS

∣∣ [v]2 ds.

• For βββnS
≥ 0 we have v̂ = v+ and obtain

∫

S
int
h

βββnS

(
2v+[v]− [v2]

)
ds =

∫

S
int
h

βββnS
[v]2 ds =

∫

S
int
h

∣∣βββnS

∣∣ [v]2 ds.

Overall, we find that

2aDG(v,v) =
∫

Th

(2c+∇ ·βββ)v2 dx+
∫

S
∂
h

|βββn|v
2 ds+

∫

S
int
h

|βββn| [v]
2 ds.

Applying (3.4.4) completes the proof.

Coercivity leads to well-posedness of the discrete problem (4.2.14). Inserting the discrete solution

uh ∈V k
DG,h into (4.2.23) yields

‖uh‖2
DG ≤ aDG(uh,uh) = fDG(uh)≤C f ‖uh‖DG. (4.2.26)

This directly leads to the stability estimate

‖uh‖DG ≤C f , (4.2.27)

where C f is a constant which is independent of h.

We can even obtain a stronger stability result by introducing the norm

‖|u|‖2
DG := ‖u‖2

DG + ∑
K∈Th

δK‖βββ ·∇u‖2
K , δK =

hK

‖βββ‖∞
, (4.2.28)

which gives control over the streamline derivatives. Following [26], we assume that

h ≤ ‖βββ‖∞

max(‖c‖∞,Cβββ)
, (4.2.29)

where Cβββ := max1≤i≤dimCβββi
and Cβββi

defined by (3.4.3). For this norm a discrete inf-sup condition

can be derived:
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CHAPTER 4. The discontinuous Galerkin method for scalar equations

Lemma 4.11: Discrete inf-sup condition

There exists a mesh-independent constant γ > 0 such that

sup
vh∈V k

DG,h\{0}

aDG(uh,ϕh)

‖|ϕh|‖DG

≥ γ‖|uh|‖DG, ∀uh ∈V k
DG,h. (4.2.30)

This condition leads directly to stability in the ‖|.|‖DG-norm.

Furthermore, one can also derive a priori error estimates (see, e.g., [26] or in the case of

constant velocity field βββ [50, 51]):

Theorem 4.12: A priori error estimate

Let u∈Hk+1(Ω) be the solution to (3.4.9) and uh ∈V k
DG,h the solution to (4.2.14) with upwind

flux Hup(u
+,u−,nS) . Then the following a priori estimates hold

‖u−uh‖DG ≤C′hk+ 1
2 ‖u‖Hk+1 , (4.2.31)

‖|u−uh|‖DG ≤C′′hk+ 1
2 ‖u‖Hk+1 , (4.2.32)

where C′ and C′′ are independent of h.

Estimate (4.2.31) also holds in the L2-norm. Therefore, we gain a half power of h in com-

parison to the estimate of Theorem 3.11 for the continuous Galerkin method. Note that estimate

(4.2.32) is equivalent to (3.4.20), which holds for the streamline diffusion method.

We have now seen how the linear advection equation can be discretized by the upwind DG

method and how well the DG solution can approximate the exact solution.

In the following we will show, how diffusive terms can be discretized by the DG method.

4.3. Poisson’s equation

Let us consider Poisson’s equation

−∆u = f in Ω, (4.3.1)

u = 0 on ∂Ω,

where f ∈ L2(Ω).
For a proper analysis we introduce the space for the traces of functions in H1(Th) [4]:

T (Sh) := ∏
K∈Th

L2(SK).

Note that functions g ∈ T (Sh) have two values on S ∈ S
int
h , namely g+ and g−, and one value on

S ∈ S
∂
h.

Following [4], we write the Poisson problem as a first-order system

b = ∇u

−∇ ·b = f

}
in Ω, (4.3.2)

u = 0 on ∂Ω, (4.3.3)
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4.3. Poisson’s equation

where u is called potential and ∇u diffusive flux. Multiplying by test functions ϕ ∈ H2(Th) and

τττ ∈ H(div;Th), respectively, and integrating by parts over K ∈ Th gives
∫

K
b · τττdx =−

∫
K

u∇ · τττdx+
∫

SK

unSK
· τττds, (4.3.4)

∫
K

b ·∇ϕdx =
∫

K
f ϕdx+

∫
SK

b ·nSK
ϕds. (4.3.5)

Similarly to the advection case, the treatment of the edge integrals
∫

SK
unSK

· τττds and
∫

SK
b ·

nSK
ϕds is a crucial point, since u and b are, in general, discontinuous across element boundaries.

Therefore, we replace u and b in the edge integrals by numerical flux functions

û : H1(Th)→ T (Sh)

and

b̂ : H2(Th)×H(div;Th)→ [T (Sh)]
dim.

Possible definitions of those functions will be discussed later.

If we sum over all elements K ∈ Th, we obtain
∫

Th

b · τττdx =−
∫

Th

u∇ · τττdx+ ∑
K∈Th

∫
SK

ûnSK
· τττ+ ds, (4.3.6)

∫

Th

b ·∇ϕdx =
∫

Th

f ϕdx+ ∑
K∈Th

∫
SK

b̂ ·nSK
ϕ+ ds. (4.3.7)

As in the advection case we assume that the numerical fluxes are consistent and conservative.

Definition 4.13: Consistent and conservative fluxes

The numerical fluxes û and b̂ are

1. consistent, if

û(v) = v|S, b̂(v,∇v) = ∇v|S ∀S ∈ Sh,

for functions v ∈ H1
0 (Ω)∩W 2,1(Ω).

2. conservative, if they are single-valued on S, ∀S ∈ Sh.

Note that functions v ∈ H1
0 (Ω)∩W 2,1(Ω) satisfy [26]

[v] = 0 and [∇v] ·nS = 0, ∀S ∈ S
int
h . (4.3.8)

In the following, we will make use of

∑
K∈Th

∫
SK

qv ·nSK
ds =

∫

Sh

[q]nS · {v}ds+
∫

S
int
h

{q}nS · [v]ds, (4.3.9)

where q ∈ T (Sh) and v ∈ [T (Sh)]
2.

Inserting this relation in (4.3.6) - (4.3.7) yields
∫

Th

b · τττdx =−
∫

Th

u∇ · τττdx+
∫

Sh

[û]nS · {τττ}ds+
∫

S
int
h

{û}nS · [τττ]ds, (4.3.10)

∫

Th

b ·∇ϕdx =
∫

Th

f ϕdx+
∫

Sh

{b̂} ·nS[ϕ]ds+
∫

S
int
h

[b̂] ·nS{ϕ}ds. (4.3.11)
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CHAPTER 4. The discontinuous Galerkin method for scalar equations

We now replace τττ by ∇ϕ in (4.3.10) and integrate by parts on the right-hand side:

∫

Th

b ·∇ϕdx =
∫

Th

∇u ·∇ϕdx+
∫

Sh

[û−u]nS · {∇ϕ}ds+
∫

S
int
h

{û−u}nS · [∇ϕ]ds. (4.3.12)

Substituting (4.3.12) into (4.3.11) yields the primal flux formulation:

Find u ∈ H2(Th) : bDG(u,ϕ) =
∫

Ω
f ϕdx ∀ϕ ∈ H2(Th), (4.3.13)

where bDG(·, ·) : H2(Th)×H2(Th) is defined by

bDG(u,ϕ) :=
∫

Th

∇u ·∇ϕdx+
∫

Sh

[û−u]nS · {∇ϕ}−{b̂} ·nS[ϕ]ds

+
∫

S
int
h

{û−u}nS · [∇ϕ]− [b̂] ·nS{ϕ}ds (4.3.14)

Consistency of the numerical fluxes leads to consistency of the primal flux formulation (see,

e.g., [37]):

Lemma 4.14: Consistency

The discretization (4.3.13) of (4.3.1) is consistent, i.e., the exact solution u∈H2(Ω) of (4.3.1)

satisfies

bDG(u,ϕ) =
∫

Th

f ϕdx ∀ϕ ∈ H2(Th), (4.3.15)

if and only if the numerical fluxes û and b̂ are consistent.

There are different possibilities to define numerical fluxes û and b̂. In Table 4.1 some defini-

tions for consistent and conservative fluxes are listed. Note that u = 0 on ∂Ω, which simplifies the

definition of the fluxes on the boundary.

Method û(u) b̂(u,∇u) additional term α(u,ϕ)

Symmetric interior penalty (SIPG) {u} {∇u}
∫
Sh

µ[u][ϕ]

Non-symmetric interior penalty (NIPG) {u}+[u] {∇u}
∫
Sh

µ[u][ϕ]

Baumann-Oden (BO) {u}+[u] {∇u} -

Table 4.1: Numerical fluxes for the Poisson equation

Using these definitions the following bilinear forms are obtained

bSIPG(u,ϕ) :=
∫

Th

∇u ·∇ϕdx−
∫

Sh

([u]nS · {∇ϕ}+{∇u} ·nS[ϕ]) ds+
∫

Sh

µ[u][ϕ]ds, (4.3.16)

bNIPG(u,ϕ) :=
∫

Th

∇u ·∇ϕdx+
∫

Sh

[u]nS · {∇ϕ}−{∇u} ·nS[ϕ]ds+
∫

Sh

µ[u][ϕ]ds, (4.3.17)

bBO(u,ϕ) :=
∫

Th

∇u ·∇ϕdx+
∫

Sh

[u]nS · {∇ϕ}−{∇u} ·nS[ϕ]ds, (4.3.18)
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4.3. Poisson’s equation

where

µ : Sh → R is a penalty weighting function defined by µ =
ηS

hS

, ∀S ∈ Sh, ηS > 0. (4.3.19)

Note that the penalty term
∫
Sh

µ[u][ϕ] enforces continuity of the solution. Consistency of the pre-

sented methods follows directly from Lemma 4.14.

The discretization of (4.3.13) by discontinuous finite elements leads to the following problem

Find uh ∈V k
DG,h such that bDG(uh,ϕh) =

∫

Th

f ϕh dx ∀ϕh ∈V k
DG,h. (4.3.20)

We remark that the Baumann-Oden method is not stable for k ≤ 1. However, numerical results

indicate, that stability is given for k ≥ 2 [10].

For all presented methods the same optimal H1-error estimate can be derived. For the L2-error

we obtain optimal rates only for the SIPG method. The estimates are summarized in the following

theorem (see, e.g., [4, 75, 77]):

Theorem 4.15: A priori error estimates

Let u ∈ Hk+1(Ω) be the exact solution of (4.3.1) and uh ∈V k
DG,h the solution of (4.3.20). Then

1. For bDG(·, ·) = bSIPG(·, ·):

‖u−uh‖ ≤Chk+1 |u|k+1 , (4.3.21)

‖u−uh‖1 ≤Chk |u|k+1 , (4.3.22)

2. For bDG(·, ·) = bNIPG(·, ·):

‖u−uh‖ ≤Chk |u|k+1 , (4.3.23)

‖u−uh‖1 ≤Chk |u|k+1 , (4.3.24)

3. For bDG(·, ·) = bBO(·, ·) and k ≥ 2:

‖u−uh‖ ≤Chk |u|k+1 , (4.3.25)

‖u−uh‖1 ≤Chk |u|k+1 . (4.3.26)

To prove this theorem we define the following norms:

‖v‖2
µ = |v|2H1(Th)

+
∫

Sh

µ̃[v]2 ds, (4.3.27)

‖|v|‖2
µ = ‖v‖2

µ +
∫

Sh

µ̃−1({∇v} ·nS)
2 ds, (4.3.28)

where

µ̃ =

{
µ for NIPG, SIPG,
1 for BO.

(4.3.29)

In the continuous case we made use of the interpolation operator Ih (see Def. 3.6) to derive a

priori error estimates. However, this operator is only well-defined for u ∈C(Ω̄), so that we cannot

use it in the discontinuous case. Therefore we introduce the L2 projection for functions u ∈ L2(Ω):
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CHAPTER 4. The discontinuous Galerkin method for scalar equations

Definition 4.16: L2 projection

Let u ∈ L2(Ω) and k ≥ 0. Then the L2 projection onto V k
DG,h is defined by

∫

Th

πk
huvh dx =

∫

Th

uvh dx ∀vh ∈V k
DG,h, (4.3.30)

where πk
h is the L2 projection operator. Furthermore, it satisfies the local projection property:

∫
K

πk
huvh dx =

∫
K

uvh dx ∀vh ∈V k
DG,h and ∀K ∈ Th. (4.3.31)

For simplicity we write πh neglecting the superscript k, if it is clear onto which space we project.

Furthermore, the following estimates hold (see, e.g., [37, 51]):

Lemma 4.17: Local approximation estimates for the L2 projection

Let k ≥ 0 and πhu be the L2 projection onto V k
DG,h as defined in (4.3.30). For u|K ∈

HrK+1(K), rk ≥ 0 for K ∈ Th we have

‖u−πhu‖m,K ≤Ch
lk+1−m
K |u|lk+1,K , (4.3.32)

where lk = min(rK ,k) and m ≤ lk +1. Furthermore, for u ∈ Hk+1(K) the following estimate

holds

‖u−πhu‖∂K ≤Chk+ 1
2 |u|k+1,K . (4.3.33)

We will now prove Theorem 4.15.

Proof. The proof for the Baumann-Oden method can be found in [77]. We will focus on the proof

of the L2-error estimate for the SIPG method following [4]. At first, we prove

‖|u−uh|‖µ ≤Chk |u|Hk+1(Th)
, (4.3.34)

which is satisfied by the SIPG and the NIPG method.

Let πh be the L2 projection operator as defined in (4.3.30). Then we have

‖|u−uh|‖µ ≤ ‖|u−πhu|‖µ +‖|πhu−uh|‖µ. (4.3.35)

Using the trace inequalities as defined in Theorem A.8 we obtain the following estimate for the

first term with µ = η
h

as defined in (4.3.19)

‖|u−πhu|‖2
µ = |u−πhu|21,Th

+
∫

Sh

µ[u−πhu]2 ds+
∫

Sh

µ−1({∇(u−πhu)} ·nS)
2

� |u−πhu|21,Th
+ ∑

K∈Th

µ

(
1

h
‖u−πhu‖2

K +h |u−πhu|21,K

)

+ ∑
K∈Th

µ−1

(
1

h
|u−πhu|21,K +h |u−πhu|22,K

)

� |u−πhu|21,Th
+

1

h2
‖u−πhu‖2

Th
+h2 |u−πhu|22,Th

.
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4.3. Poisson’s equation

Applying the local error estimates of the L2 projection as in (4.3.32) yields

‖|u−πhu|‖µ ≤Chk |u|k+1,Th
. (4.3.36)

The bilinear form bDG(·, ·) is bounded (cf. Lemma 5.12) and in the case of the SIPG and NIPG

method coercive (cf. Lemma 5.13). If we also take into account Galerkin orthogonality which is

based on the consistency of the method (cf. Lemma 4.14), we can approximate the second term in

(4.3.35) as follows:

C‖|πhu−uh|‖2
µ ≤ bDG(πhu−uh,πhu−uh)

= bDG(πhu−u,πhu−uh)+bDG(u−uh,πhu−uh)︸ ︷︷ ︸
=0

� ‖|πhu−u|‖µ‖|πhu−uh|‖µ

� hk |u|k+1,Th
‖|πhu−uh|‖µ.

This gives (4.3.34) for the SIPG and the NIPG method.

To obtain the L2-error estimate for the SIPG method, we make use of adjoint consistency.

Adjoint consistency means that the following equality holds

bDG(ϕh,Ψ) =
∫

Th

ϕhgdx, ∀ϕh ∈ H2(Th) (4.3.37)

for the solution Ψ ∈ H2(Ω) of the adjoint problem

−∆Ψ = g in Ω, Ψ = 0 on ∂Ω, (4.3.38)

where g ∈ L2(Ω).
The SIPG method satisfies this equality, whereas for the NIPG method we obtain

bNIPG(ϕh,Ψ) =
∫

Th

ϕhgdx + 2

∫

Sh

{∇Ψ} ·nS[ϕh]ds. (4.3.39)

Therefore, the L2-error estimate cannot be improved for the NIPG method. In the case of the SIPG

method we can set g = u−uh and obtain

bSIPG(ϕh,Ψ) =
∫

Th

ϕh(u−uh)dx ∀ϕh ∈ H2(Th). (4.3.40)

Choosing ϕh = (u−uh) yields

bSIPG(u−uh,Ψ) =
∫

Th

(u−uh)
2 dx = ‖u−uh‖2

Th
. (4.3.41)

Since πhΨ ∈V k
DG,h and the bilinear form bSIPG(·, ·) is bounded, we obtain

‖u−uh‖2
Th

= bSIPG(u−uh,Ψ) = bSIPG(u−uh,Ψ−πhΨ)

≤C‖|u−uh|‖µ‖|Ψ−πhΨ|‖µ ≤Ch |Ψ|2,Th
‖|u−uh|‖µ.

If Ω is convex, the following inequality holds

|Ψ|2,Th
≤C‖g‖L2(Th) =C‖u−uh‖Th

and we derive the optimal estimate

‖u−uh‖Th
≤Chk+1 |u|k+1,Th

. (4.3.42)
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CHAPTER 4. The discontinuous Galerkin method for scalar equations

The proof showed that adjoint consistency is necessary to prove optimal L2-convergence rates.

This is similar to the continuous case, where a duality argument from Aubin and Nitsche leads to

optimal rates. The only adjoint consistent method presented here is the SIPG method.

In summary, we have seen, how advection and diffusion terms can be discretized by the DG

method. A proper definition of numerical fluxes leads to stable methods for advection and diffu-

sion equations.
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5
The CG1-DG2 method for scalar

equations in 2D

In this chapter, we introduce a new method which combines the continuous and the discontinu-

ous Galerkin method and is called the CG1-DG2 method. The motivation for this method is the

fact that the continuous Galerkin method is unstable for convection-dominated problems (see sec-

tion 3.4) whereas the discontinuous Galerkin method with upwind numerical fluxes is stable (see

section 4.2) but has higher computational costs. The key idea is to use linear continuous finite

elements and enrich them with quadratic basis functions which are discontinuous across element

edges but vanish at mesh vertices. The resulting space is a subspace of the discontinuous quadratic

space (DG2) therefore containing the space of continuous quadratic elements (CG2). On triangu-

lar meshes, it can be shown that the method is stable for advection equations (unlike CG2) and

converges with the same rate as DG2 but has lower computational costs than DG2 due to fewer

degrees of freedom. For Poisson’s equation, the analysis of the DG method is directly applicable

to the CG1-DG2 method so that we derive the same a priori error estimates.

In the following we introduce the method for scalar equations and follow our work already

presented in [12] and [15].

5.1. The CG1-DG2 space

In this section, we define the CG1-DG2 space for triangular and quadrilateral meshes. For the

latter we also take into account spaces consisting of so-called serendipity elements [3].

5.1.1. Triangular mesh

At first, we define the space of discontinuous quadratic basis functions. Let Th be a shape-regular

triangulation of Ω and K an element of Th, which is a triangle. There are 3 nodes xi, i = 1,2,3, of

K ordered in a counter-clockwise sense such that edge ei joins nodes xi and xi+1 (modulo 3). Each

node corresponds to a linear Lagrange basis function φi
K . For each side ei we set ψi

K := φi
Kφi+1

K

and define

DK := span{ψi
K : 1 ≤ i ≤ 3}.
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CHAPTER 5. The CG1-DG2 method for scalar equations in 2D

Note that ψi
K(x j) = 0, ∀ i, j = 1,2,3.

The space of discontinuous quadratic basis functions is defined by

Dh :=
{

vh ∈ L2(Ω) : vh|K ∈ DK

}
.

Adding linear continuous basis functions to Dh gives the CG1-DG2 space:

V
1,2

tri,h :=V 1
h ⊕Dh. (5.1.1)

Figure 5.1: CG1-DG2 finite element with discontinuous DOFs (white) and continuous DOFs

(blue)

In Fig. 5.1 an element of the CG1-DG2 space with continuous and discontinuous degrees of

freedom is displayed. This distribution of continuous and discontinuous degrees of freedom leads

to functions v ∈ V
1,2

tri,h which are continuous at the vertices of mesh elements but may have jumps

across the edges.

Figure 5.2: CG1-DG2 function

In Fig. 5.2 an example of a function v ∈V
1,2

tri,h is shown. This CG1-DG2 function is constant in

all elements but one. Furthermore, it can be seen that the function is continuous at the vertices but

discontinuous across the edges.

5.1.2. Quadrilateral mesh

In the case of quadrilateral meshes, we distinguish between Q2 elements (cf. Fig. 5.3a) and

(quadratic) serendipity elements [3] (cf. Fig. 5.3b).
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5.1. The CG1-DG2 space

(a) Q2 element (b) Serendipity element

Figure 5.3: Quadrilateral elements with continuous DOFs (blue) and discontinuous DOFs (white)

In the following example we will show how basis functions can be defined on these elements.

Example 5.1: Linear and quadratic basis functions for Q2- and serendipity elements

In this example, we consider hierarchical basis functions based on Lobatto shape functions

[83] defined by

l0(x) =
1

2
(1− x), l1(x) =

1

2
(x+1), l2(x) =

√
3

8
(x2 −1).

Let us consider the reference quadrilateral {x = (ξ,η)|−1 ≤ ξ,η ≤ 1} with nodes

x1 = (−1,−1), x2 = (1,−1), x3 = (1,1), x4 = (−1,1).

At first, we define vertex basis functions

φ1(x) = l0(ξ)l0(η), φ2(x) = l1(ξ)l0(η),

φ3(x) = l1(ξ)l1(η), φ4(x) = l0(ξ)l1(η). (5.1.2)

Each vertex function φi corresponds to a vertex xi in such a way that

φi(x j) =

{
1 if i = j,
0 otherwise.

The edge ei joins vertices xi and xi+1 (modulo 4). For each edge ei we define an edge basis

function ψi by

ψ1(x) = l2(ξ)l0(η), ψ2(x) = l1(ξ)l2(η),

ψ3(x) = l2(ξ)l1(η), ψ4(x) = l0(ξ)l2(η), (5.1.3)

where ψi(x j) = 0, ∀1 ≤ i, j ≤ 4 and ψi(x) = 0, ∀x ∈ e j, i �= j.

The vertex and edge basis functions define the basis for the serendipity element. This

gives the reduced biquadratic space

S2 := span{1,x,y,xy,x2,y2,x2y,xy2},
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CHAPTER 5. The CG1-DG2 method for scalar equations in 2D

where dim(S2) = 8. For the Q2-element an additional bubble basis function is defined by

ψ5(x) = l2(ξ)l2(η), (5.1.4)

which vanishes on the element boundary. This leads to the biquadratic space

Q2 := span{1,x,y,xy,x2,y2,x2y,xy2,x2y2},

where dim(Q2) = 9. These spaces satisfy

P2 ⊂ S2 ⊂ Q2,

where P2 = span{1,x,y,xy,x2,y2} is the quadratic space corresponding to triangles. Further-

more, we have S2 ⊂ P3 [3].

For the definition of CG1-DG2 spaces we introduce the spaces of the quadratic basis functions

corresponding to S2 and Q2. Let Th be a regular triangulation of Ω and K a rectangular element of

Th. There are four nodes xi, i = 1, ...4, of K ordered in a counter-clockwise sense such that edge

ei joins nodes xi and xi+1 (modulo 4). Each node corresponds to a vertex basis function φi
K , see

(5.1.2). For each side ei we have the edge function ψi
K , see (5.1.3). In addition, we have a bubble

function ψ5
K , see (5.1.4). We define

Dl
K := span{ψi

K : 1 ≤ i ≤ 3+ l}, l = 1,2.

Now, we have two spaces of discontinuous quadratic basis functions defined by

Dl
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Dl

K

}
, l = 1,2,

corresponding to the serendipity element for l = 1 and to the Q2 element for l = 2. Adding bilinear

continuous basis functions to Dl
h yields the two CG1-DG2 spaces:

V
1,2
ser,h :=V

1,Q
h ⊕D1

h and V
1,2
Q2,h :=V

1,Q
h ⊕D2

h. (5.1.5)

We will call V
1,2
ser,h the serendipity CG1-DG2 space and V

1,2
Q2,h the Q2-CG1-DG2 space.

Remark 5.2: Implementation

The different CG1-DG2 spaces have been implemented in the open-source C++ library HER-

MES [82] which provides continuous and discontinuous Galerkin methods as well as hierar-

chical basis functions. For the implementation of the CG1-DG2 space, we started with the

continuous quadratic finite element space and changed all quadratic edge functions to be dis-

continuous. Since HERMES distinguishes between vertex, edge and bubble functions where

bubble functions are functions which are only defined element-wise, switching from a con-

tinuous to a discontinuous representation can be done just by changing the function type

from edge to bubble functions.

In the following, we will show how advection and diffusion equations can be discretized using

the CG1-DG2 method. To simplify notation we will skip the subscripts tri, Q2 and ser and use V
1,2
h

if it is clear which mesh type we consider. To simplify the distinction between the triangular and

the quadrilateral case, we call the method on triangular meshes the triangular CG1-DG2 method.

38



5.2. The CG1-DG2 method for the advection equation

5.2. The CG1-DG2 method for the advection equation

As in Chapter 4 we will start with the discretization of the linear advection equation

∇ · (βββu)+ cu = f in Ω, (5.2.1)

u = g on Γ−, (5.2.2)

where c ∈ L∞(Ω) and βi ∈W 1,∞(Ω) for each component βi, i = 1,2 of βββ.

We require

c(x)+
1

2
∇ ·βββ(x)≥ c0 > 0, ∀x ∈ Ω (5.2.3)

to ensure L2-coercivity, and

sup
x∈Ω

|c(x)+∇ ·βββ(x)|=: c1 < ∞ (5.2.4)

to obtain boundedness of the bilinear form. Following [5], we assume that

βββ has no closed curves and |βββ(x)| �= 0 ∀x ∈ Ω. (5.2.5)

Discretization in the sense of discontinuous Galerkin with upwinding gives:

∫

Th

−(βββuh) ·∇ϕh + cuhϕh dx+
∫

S
int
h

βββnS
ûh[ϕh]ds+

∫

S
∂,+
h

βββnS
uhϕh ds

=
∫

Th

f ϕh dx−
∫

S
∂,−
h

βββnS
gϕh ds. (5.2.6)

This leads to the bilinear and linear forms of the CG1-DG2 discretization,

aCD(uh,ϕh) =
∫

Th

−(βββuh) ·∇ϕh + cuhϕh dx+
∫

S
int
h

βββnS
û[ϕh]ds+

∫

S
∂,+
h

βββnS
uhϕh ds, (5.2.7)

f (ϕh) =
∫

Th

f ϕh dx−
∫

S
∂,−
h

βββnS
gϕh ds. (5.2.8)

If we integrate (5.2.7) by parts, we obtain

aCD(uh,ϕh) =
∫

Th

((∇ ·βββ+ c)uh +βββ ·∇uh)ϕh dx+
∫

S
int
h

βββnS
(û[ϕh]− [uhϕh]) ds

−
∫

S
∂,−
h

βββnS
uhϕh ds.

The integral over the inner sides can be simplified if we define the downwind value

ũ(x) =

{
u+(x) if βββ(x) ·nS < 0,
u−(x) otherwise.

(5.2.9)
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This yields

aCD(uh,ϕh) =
∫

Th

((∇ ·βββ+ c)uh +βββ ·∇uh)ϕh dx−
∫

S
int
h

βββnS
[uh]ϕ̃h ds

−
∫

S
∂,−
h

βββnS
uhϕh ds. (5.2.10)

Since the bilinear form aCD = aDG and V
1,2
h ⊂V 2

DG,h ⊂H1,βββ(Th), we obtain the same coercivity

result as for the DG method (see Lemma 4.10):

Lemma 5.3: Coercivity

The bilinear form (5.2.7) is coercive with respect to the DG-norm:

aCD(uh,uh)≥ ‖uh‖2
DG, ∀uh ∈V

1,2
h (5.2.11)

where ‖.‖DG is defined by (4.2.13).

This result is similar to the continuous case, where we only obtain coercivity with respect to the

L2-norm but do not control βββ ·∇u.

In the following we will restrict ourselves to triangular meshes and show as in the DG case (cf.

Lemma 4.11) how to improve this result to derive stability in a stronger norm.

Stability on triangular meshes

In the following, we will use the projection operators:

1. π1
K : the L2(K) projection on P1(K) defined by

∫

K

(v−π1
Kv)w = 0 ∀w ∈ P1(K),

where v ∈ L2(K).

2. πD
K : the L2(K) projection on DK defined by

∫

K

(v−πD
Kv)w = 0 ∀w ∈ DK ,

where v ∈ L2(K).

3. πD
h : L2 projection on Dh defined by

πD
h = ∑

K

πD
K .

At first, we need to define a norm which controls the term βββ ·∇u. Therefore, we introduce the

following seminorm which gives control over the weighted streamline derivatives

‖|uh|‖βββ :=
√

∑
K∈Th

δK‖π1
Kβββ ·∇uh‖2

K , δK =
hK

‖βββ‖∞,K
. (5.2.12)
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This seminorm together with the DG-norm defines the augmented DG-norm

‖|uh|‖ :=
√

‖uh‖2
DG +‖|uh|‖2

βββ
, (5.2.13)

which controls also the streamline derivative part. Note that this norm is similar to the ‖|.|‖DG-

norm defined by (4.2.28).

To prove stability with respect to the ‖|.|‖-norm, we need the following lemma, which is only

applicable to triangular elements.

Lemma 5.4

For any p ∈ P1(K) there exists a mesh-independent constant 1 ≥ cp > 0 such that

sup
q∈DK\{0}

∫
K pqdx

‖q‖L2(K)

≥ cp ‖p‖L2(K). (5.2.14)

Proof. Without loss of generality we assume ‖p‖L2(K) > 0.

On a reference triangle K̂ we consider linear Lagrange basis functions φ̂i and quadratic basis

functions ψ̂i := φ̂iφ̂i+1 with i = 1,2,3. By straightforward computation we find that the matrix M

with Mi j :=
∫

K̂ φ̂iψ̂ j dx has full rank.

This means that for p ∈ P1(K̂) there exists q ∈ DK̂ such that

∫
K̂

pqdx ≥ cp‖p‖2
L2(K̂)

, ‖q‖L2(K̂) ≤ ‖p‖L2(K̂).

This becomes clear, if we choose p =
3

∑
i=1

biφ̂i and q =
3

∑
i=1

diψ̂i and derive

∫
K̂

pqdx = bT Md ≥ cpbT Mpb,

where d = cpM−1Mpb and (Mp)i j :=
∫

K̂ φ̂iφ̂ j dx.

Since ‖q‖L2(K̂) ≤ ‖p‖L2(K̂), we can choose

cp ≤
‖p‖L2(K̂)

‖
3

∑
i=1

(M−1Mpb)iψi‖L2(K̂)

.

Note that we have cp > 0 due to the assumption ‖p‖L2(K) > 0.

Transformation to the physical element K completes the proof.

An extension of Lemma 5.4 to quadrilateral elements would require p ∈ Q1(K). However, the

proof cannot be directly transferred to quadrilateral elements since the matrix M is not regular in

the quadrilateral case.
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We also will make use of the following inverse inequalities [66, 75] :

Lemma 5.5: Inverse estimates

Let K ∈ Th and S ⊂ SK . Then, for all vh ∈ V
1,2
h there exists a mesh-independent constant

CI > 0 such that

‖vh‖L2(S) ≤CIh
− 1

2

K ‖vh‖L2(K), (5.2.15)

‖∇vh‖L2(K) ≤CIh
−1
K ‖vh‖L2(K). (5.2.16)

Furthermore, we need the following estimate:

Lemma 5.6

There exists a mesh-independent constant c̃p > 0 such that

∑
K∈Th

δK‖π1
Kβββ ·∇vh‖2

K ≤ c̃−1
p ∑

K∈Th

δK‖πD
Kπ1

Kβββ ·∇vh‖2
K , ∀vh ∈V

1,2
h . (5.2.17)

Proof. We set p = π1
Kβββ ·∇vh ∈ P1(K). Applying Lemma 5.4 and the definition of πD

K gives

‖p‖K ≤ c−1
p sup

q∈DK\{0}

∫
K pqdx

‖q‖K

= c−1
p sup

q∈DK\{0}

∫
K(π

D
K p)qdx

‖q‖K

≤ c−1
p ‖πD

K p‖K .

Using the squared norm, multiplying by δK and summing up completes the proof.

The stability of the method can now be derived by the following inf-sup condition:

Lemma 5.7

There exists a mesh-independent constant γ > 0 such that

sup
vh∈V

1,2
h \{0}

aCD(uh,vh)

‖|vh|‖
≥ γ‖|uh|‖, ∀uh ∈V

1,2
h . (5.2.18)

Proof. We will now show that for a given uh ∈V
1,2
h there exists vh ∈V

1,2
h such that

aCD(uh,vh)≥ γ′‖|uh|‖2 and ‖|vh|‖ ≤C‖|uh|‖. (5.2.19)

Choosing γ = γ′/C yields (5.2.18).

Let wh := ∑K δKπD
Kπ1

Kβββ ·∇uh ∈ Dh. We choose ϕh = wh in (5.2.10) and obtain

aCD(uh,wh) =
∫

Th

(c+∇ ·βββ)uhwh dx+
∫

Th

βββ ·∇uhwh dx−
∫

S
int
h

βββnS
[uh]w̃h ds

−
∫

S
∂,−
h

βββnS
uhwh.
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5.2. The CG1-DG2 method for the advection equation

Adding 0 =
∫
Th

π1
Kβββ ·∇uhwh dx− ∫

Th

π1
Kβββ ·∇uhwh dx leads to

aCD(uh,wh) =
∫

Th

(c+∇ ·βββ)uhwh dx+
∫

Th

(βββ ·∇uh −π1
Kβββ ·∇uh)wh dx

−
∫

S
int
h

βββnS
[uh]w̃h ds−

∫

S
∂,−
h

βββnS
uhwh ds+

∫

Th

π1
Kβββ ·∇uhwh dx. (5.2.20)

If we now use the definition of πD
h , we have

∑
K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K =

∫

Th

π1
Kβββ ·∇uhwh dx. (5.2.21)

Combining equations (5.2.20) and (5.2.21) gives

∑
K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K =aCD(uh,wh)−

∫

Th

(c+∇ ·βββ)uhwh dx−
∫

Th

(βββ ·∇uh −π1
Kβββ ·∇uh)wh dx

+
∫

S
int
h

βββnS
[uh]w̃h ds+

∫

S
∂,−
h

βββnS
uhwh ds.

Now we use (5.2.4), Hölder’s inequality and Theorem A.4 and derive

∑
K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K

≤ aCD(uh,wh)+‖βββ ·∇uh −π1
Kβββ ·∇uh‖‖wh‖+ c1‖uh‖‖wh‖

+‖|βββn|
1
2 [uh]‖Sint

h
‖|βββn|

1
2 w̃h‖Sint

h
+‖|βββn|

1
2 uh‖S∂

h
‖|βββn|

1
2 wh‖S∂

h

≤ aCD(uh,wh)+‖βββ ·∇uh −π1
Kβββ ·∇uh‖‖wh‖

+
(

c0‖uh‖2 +‖|βββn|
1
2 [uh]‖2

S
int
h

+‖|βββn|
1
2 uh‖2

S
∂
h

) 1
2

(
c2

1

c0

‖wh‖2 +‖|βββn|
1
2 w̃h‖2

S
int
h

+‖|βββn|
1
2 wh‖2

S
∂
h

) 1
2

≤ aCD(uh,wh)+‖βββ ·∇uh −π1
Kβββ ·∇uh‖‖wh‖

+
√

2‖uh‖DG

(
c2

1

c0

‖wh‖2 +‖|βββn|
1
2 w̃h‖2

S
int
h

+‖|βββn|
1
2 wh‖2

S
∂
h

) 1
2

≤ aCD(uh,wh)+C
(
‖uh‖2

DG +‖βββ ·∇uh −π1
Kβββ ·∇uh‖2

) 1
2

·

(
c2

1 + c0

c0

‖wh‖2 +‖|βββn|
1
2 w̃h‖2

S
int
h

+‖|βββn|
1
2 wh‖2

S
∂
h

) 1
2

. (5.2.22)

The boundary and edge integrals can be estimated using the inverse estimate (5.2.15) as follows:

‖|βββn|
1
2 w̃h‖2

S
int
h

+‖|βββn|
1
2 wh‖2

S
∂
h

≤C2
I ∑

K∈Th

h−1
K ‖βββ‖∞,K‖δKπD

Kπ1
Kβββ ·∇uh‖2

K

=C2
I ∑

K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K . (5.2.23)

43



CHAPTER 5. The CG1-DG2 method for scalar equations in 2D

Furthermore, due to the stability of the projection ‖πKu‖ ≤ ‖u‖ and the inverse estimate (5.2.16)

we obtain

‖wh‖2 = ∑
K∈Th

δ2
K‖πD

Kπ1
Kβββ ·∇uh‖2

K ≤ ∑
K∈Th

δ2
K‖βββ ·∇uh‖2

K

≤ ∑
K∈Th

δ2
K‖βββ‖2

∞,K‖∇uh‖2
K ≤C2

I ∑
K∈Th

δ2
K‖βββ‖2

∞,Kh−2
K ‖uh‖2

K

=C2
I ‖uh‖2. (5.2.24)

Combining inequalities (5.2.22)-(5.2.24) and applying Young’s inequality yield

∑
K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K ≤ aCD(uh,wh)+C̃

(
‖uh‖2

DG +‖βββ ·∇uh −π1
Kβββ ·∇uh‖2

) 1
2

·

(
‖uh‖2 + ∑

K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K

) 1
2

≤ aCD(uh,wh)+
C̃2

2

(
‖uh‖2

DG +‖βββ ·∇uh −π1
Kβββ ·∇uh‖2

)

+
1

2
‖uh‖2 +

1

2
∑

K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K .

This leads to

1

2
∑

K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K ≤ aCD(uh,wh)+

C̃2

2

(
‖uh‖2

DG +‖βββ ·∇uh −π1
Kβββ ·∇uh‖2

)
+

1

2
‖uh‖2.

Next we estimate ‖βββ ·∇uh −π1
Kβββ ·∇uh‖. On each element K we have

βββ ·∇uh −π1
K(βββ ·∇uh) = (βββ−βββK) ·∇uh +βββK ·∇uh −π1

K(βββ ·∇uh), (5.2.25)

where βββK := βββ(xK), xK denotes the centroid of K. Since βββK is constant on K and (∇uh)|K ∈P1(K),
βββK ·∇uh = π1

K(βββK ·∇uh) holds.

Using the stability of the projection, the inequality ‖βββ− βββK‖K � hK |βββ|1,K [17] and the inverse

estimate (5.2.15) yield

‖βββ ·∇uh −π1
K(βββ ·∇uh)‖K = ‖(I −π1

K)((βββ−βββK) ·∇uh)‖K

≤ ‖βββ−βββK‖K‖∇uh‖K ≤CI|βββ|1,K ‖uh‖K . (5.2.26)

It follows that

1

2
∑

K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K ≤ aCD(uh,wh)+C′‖uh‖2

DG.

Applying Lemma 5.6 we obtain

c̃p

2
∑

K∈Th

δK‖π1
Kβββ ·∇uh‖2

K ≤ aCD(uh,wh)+C′‖uh‖2
DG.

Now we choose vh := uh + εwh with ε > 0 sufficiently small.
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Taking into account coercivity with respect to the DG-norm gives

aCD(uh,vh) = aCD(uh,uh)+ εaCD(uh,wh)

≥ ‖uh‖2
DG + ε

(
c̃p

2
∑

K∈Th

δK‖π1
Kβββ ·∇uh‖2

K −C′‖uh‖2
DG

)

= (1− εC′)‖uh‖2
DG + ε

c̃p

2
∑

K∈Th

δK‖π1
Kβββ ·∇uh‖2

K

≥ γ′‖|uh|‖2,

where γ′ = c̃p/(c̃p +2C′) for ε = 2/(c̃p +2C′).
The last step is to check if

‖|wh|‖=
√
‖wh‖2

DG +‖|wh|‖2
βββ
≤C‖|uh|‖

is fulfilled.

By applying (5.2.23) and (5.2.24) and taking into account the stability of the projection, it is easy

to verify that ‖wh‖DG ≤C‖|uh|‖. For the streamline part we obtain

‖|wh|‖2
βββ = ∑

K∈Th

δK‖π1
Kβββ ·∇wh‖2

K ≤ ∑
K∈Th

δK‖βββ ·∇wh‖2
K ≤ ∑

K∈Th

δK‖βββ‖2
∞,K‖∇wh‖2

K

≤C2
I ∑

K∈Th

δK‖βββ‖2
∞,Kh−2

K ‖wh‖2
K =C2

I ∑
K∈Th

δ−1
K ‖wh‖2

K

=C2
I ∑

K∈Th

δK‖πD
Kπ1

Kβββ ·∇uh‖2
K

≤C2
I ∑

K∈Th

δK‖π1
Kβββ ·∇uh‖2

K =C2
I ‖|uh|‖2

βββ,

which leads to (5.2.19).

The inf-sup condition leads directly to the stability of the method. The next step is to derive a

priori error estimates.

A priori error analysis for triangular meshes

In the following we will make use of the Clément operator [21] based on local L2 projections on

element patches. The exact definition of this operator can be found in the Appendix (Def. A.10).

In our case it maps onto the space V 2
h . In Fig. 5.4 element patches with respect to an element K

and an edge S are displayed. Furthermore, we will need the following interpolation error estimates

(cf. Appendix, Lemma A.12):

Lemma 5.8

Let 0 ≤ l ≤ 1 and 0 ≤ k ≤ 2. Then the Clément operator Ch has the following local interpo-

lation properties

‖∇l(u−Chu)‖K ≤Chk+1−l
K ‖u‖k+1,ωK

, ∀u ∈ Hk+1(ωK), (5.2.27)

‖u−Chu‖S ≤Ch
k+ 1

2

K ‖u‖k+1,ωS
, ∀u ∈ Hk+1(ωS), (5.2.28)

where ωK and ωS denote the patches of cells around K and S, respectively.
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K

ωK

S

ωS

Figure 5.4: Element patches

For the proof of the a priori error estimate, we will need the following estimate of the consis-

tency error:

Lemma 5.9

Let 0 ≤ k ≤ 2, u ∈ Hk+1(Ω) and h := maxK∈Th
hK . Then the consistency error is bounded by

sup
vh∈V

1,2
h \{0}

aCD(Chu−u,vh)

‖|vh|‖
≤Chk+ 1

2 ‖u‖k+1. (5.2.29)

Proof. The bilinear form is given as

aCD(Chu−u,vh) =
∫

Th

−(Chu−u)βββ ·∇vh + c(Chu−u)vh dx

+
∫

S
int
h

βββnS

̂(Chu−u)[vh]ds+
∫

S
∂,+
h

βββnS
(Chu−u)vh ds.

Now we will bound the different terms. At first we obtain for the boundary and side integrals

∫

S
int
h

βββnS

̂(Chu−u)[vh]ds+
∫

S
∂,+
h

βββnS
(Chu−u)vh ds

≤
∫

S
int
h

∣∣βββnS

∣∣ |(Chu−u)| |[vh]| ds+
∫

S
∂,+
h

∣∣βββnS

∣∣ |(Chu−u)| |vh| ds

≤ ∑
S∈Sint

h

‖|βββn|
1
2 (Chu−u)‖S‖|βββn|

1
2 [vh]‖S +‖|βββn|

1
2 (Chu−u)‖∂Ω‖|βββn|

1
2 vh‖∂Ω

≤C‖βββ‖
1
2
∞hk+ 1

2 ‖u‖k+1







∫

S
int
h

|βββn|[vh]
2




1
2

+‖|βββn|
1
2 vh‖∂Ω


 .
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Next we have
∫

Th

c(Chu−u)vh dx ≤ cmax‖(Chu−u)‖‖vh‖ ≤Chk+1‖u‖k+1‖vh‖,

where cmax := max
x∈Ω

c(x).

The last term to bound can be written as
∫

Th

(u−Chu)βββ ·∇vh dx =
∫

Th

(u−Chu)π1
Kβββ ·∇vh dx+

∫

Th

(u−Chu)
(
βββ ·∇vh −π1

Kβββ ·∇vh

)
dx.

The first part can be easily estimated by

∫

Th

(u−Chu)π1
Kβββ ·∇vh dx ≤

(

∑
K∈Th

δ−1
K ‖(u−Chu)‖2

K

) 1
2
(

∑
K∈Th

δK‖π1
Kβββ ·∇vh‖2

K

) 1
2

≤C‖βββ‖
1
2
∞hk+ 1

2 ‖u‖k+1‖|vh|‖βββ.

For the second part we use (5.2.26) and obtain

∫

Th

(u−Chu)
(
βββ ·∇vh −π1

Kβββ ·∇vh

)
dx ≤ ‖(u−Chu)‖‖βββ ·∇vh −π1

Kβββ ·∇vh‖

≤Chk+1‖u‖k+1|βββ|1,K ‖vh‖K .

In summary, we have

aCD(Chu−u,vh)≤Chk+ 1
2 ‖u‖k+1‖|vh|‖,

which completes the proof.

We obtain the following a priori error estimate:

Theorem 5.10

Let 0 ≤ k ≤ 2 and u ∈ Hk+1(Ω). Then we have the a priori error estimate

‖|u−uh|‖ ≤Chk+ 1
2 ‖u‖Hk+1(Ω). (5.2.30)

Proof. By the triangle inequality we have

‖|u−uh|‖ ≤ ‖|u−Chu|‖+‖|Chu−uh|‖.

The first term can be estimated by using Lemma 5.8 as follows:

‖|u−Chu|‖ ≤c0‖u−Chu‖+
√√√√

1

2

∫

S
∂
h

|βββn|(u−Chu)2 +
1

2

∫

S
int
h

|βββn|[u−Chu]2

+ ∑
K∈Th

δ
1
2

K‖π1
Kβββ ·∇(u−Chu)‖K

≤C1hk+1‖u‖k+1 +C2hk+ 1
2 ‖u‖k+1 +C3hk+ 1

2 ‖u‖k+1 ≤Chk+ 1
2 ‖u‖k+1.
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Applying Lemma 5.7 to the second term yields

‖|Chu−uh|‖ ≤
1

γ
sup

vh∈V
1,2
h \{0}

aCD(Chu−uh,vh)

‖|vh|‖
.

Using Galerkin orthogonality and the consistency error estimate (5.2.29) gives

sup
vh∈V

1,2
h \{0}

aCD(Chu−uh,vh)

‖|vh|‖
= sup

vh∈V
1,2
h \{0}

aCD(Chu−u,vh)

‖|vh|‖
≤Chk+ 1

2 ‖u‖Hk+1(Ω),

which completes the proof.

We have shown that the CG1-DG2 method is stable in the context of advection equations on

triangular meshes and converges with the same rate as the DG method or the streamline diffusion

method. In the following we will extend the method to solve diffusion problems.

5.3. The CG1-DG2 method for Poisson’s equation

The following results are valid for triangular and quadrilateral meshes. Let us consider Poisson’s

equation

−∆u = f in Ω, (5.3.1)

u = 0 on ∂Ω,

where f ∈ L2(Ω). Following the primal flux formulation of the DG method (4.3.13), we discretize

the numerical fluxes in the sense of the symmetric interior penalty Galerkin (SIPG), the non-

symmetric interior penalty Galerkin (NIPG) and the Baumann-Oden (BO) method (see Table 4.1)

and define the following forms

bCD(u,ϕ) =
∫

Th

∇u ·∇ϕdx−
∫

Sh

{∇u} ·nS[ϕ]ds− s

∫

Sh

{∇ϕ} ·nS[u]ds,

J
µ

h (u,ϕ) =
∫

Sh

µ[u][ϕ]ds,

BCD(u,ϕ) := bCD(u,ϕ)+ J
µ

h (u,ϕ),

where

s =

{
−1 for NIPG, BO,
+1 for SIPG,

and µ =

{ ηS

hS
for NIPG, SIPG,

0 for BO,

with ηS > 0 as defined in (4.3.19).

The discretized CG1-DG2 problem is then given by

Find uh ∈V
1,2
h : BCD(uh,ϕh) =

∫

Th

f ϕh dx ∀ϕh ∈V
1,2
h . (5.3.2)

The norms induced by this problem are ‖.‖µ and ‖|.|‖µ as defined in (4.3.27). Note that ‖|.|‖µ

is a norm on V
1,2
h , not just a seminorm.

In the following we will show consistency, boundedness and coercivity. We remark that the

results can easily be extended to the DG method.
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Lemma 5.11: Consistency

The discretization (5.3.2) of (5.3.1) is consistent, i.e., the exact solution u ∈ H2(Ω) of (5.3.1)

satisfies

BCD(u,ϕh) =
∫

Th

f ϕh dx ∀ϕh ∈V
1,2
h . (5.3.3)

Proof. If we integrate by parts in the first integral of the bilinear form bCD(u,ϕh), we obtain
∫

Th

∇u ·∇ϕh dx =−
∫

Th

∆uϕh dx+
∫

S
int
h

{∇u} ·nS[ϕh]ds+
∫

S
int
h

[∇u] ·nS{ϕh}ds+
∫

S
∂
h

∇u ·nΩϕh ds,

for any ϕh ∈V
1,2
h . Inserting this into the bilinear form we derive

bCD(u,ϕh) =−
∫

Th

∆uϕh dx+
∫

S
int
h

[∇u] ·nS{ϕh}ds+
∫

S
∂
h

∇u ·nΩϕh ds

− s

∫

Sh

{∇ϕh} ·nS[u]ds−
∫

S
∂
h

{∇u} ·nS[ϕh]ds.

Using [u] = 0, {∇u}= ∇u and [∇u] ·nS = 0 gives

bCD(u,ϕh) =−
∫

Th

∆uϕh dx,

J
µ

h (u,ϕh) = 0,

independently of s and µ. Applying (5.3.1) leads to (5.3.3).

Note that consistency also follows directly from Lemma 4.14, since V
1,2
h ⊂V 2

DG,h.

Lemma 5.12: Boundedness

The bilinear form BCD(·, ·) can be bounded as follows

|BCD(v,ϕ)|≤ 2‖|v|‖µ‖|ϕ|‖µ, ∀v,ϕ ∈ H2(Th). (5.3.4)

Note that BCD(·, ·) = bCD(·, ·) in the case of the Baumann-Oden method.

Proof. We follow [75] and obtain

|BCD(v,ϕ)|≤ |bCD(v,ϕ)|+
∣∣Jµ

h (v,ϕ)
∣∣ ,

where v,ϕ ∈ H2(Th). The first term gives

|bCD(v,ϕ)|=

∣∣∣∣∣∣

∫

Th

∇v ·∇ϕdx−
∫

Sh

{∇v} ·nS[ϕ]ds− s

∫

Sh

{∇ϕ} ·nS[v]ds

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∫

Th

∇v ·∇ϕdx

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

Sh

{∇v} ·nS[ϕ]ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

Sh

{∇ϕ} ·nS[v]ds

∣∣∣∣∣∣

≤ ‖|v|‖µ‖|ϕ|‖µ.
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In the case of the SIPG and NIPG method we also have to bound the second term

∣∣Jµ

h (v,ϕ)
∣∣=

∫

Sh

µ[v][ϕ]ds ≤
√√√√

∫

Sh

µ[v]2 ds

√√√√
∫

Sh

µ[ϕ]2 ds

≤ ‖|v|‖µ‖|ϕ|‖µ,

where µ > 0. This completes the proof.

Details of the proof can be found in [15].

Lemma 5.13: Coercivity - NIPG/SIPG

Let BCD(·, ·) be the bilinear form from (5.3.2). Then for s =±1 and µ > 0 large enough there

exists a constant C > 0 such that

BCD(vh,vh)≥C‖|vh|‖2
µ, ∀vh ∈V

1,2
h . (5.3.5)

Coercivity for the SIPG and NIPG method can also be extended to the discontinuous space V k
DG,h

(see, e.g., [75]).

In the case of the Baumann-Oden method we only have weak stability [4]:

bCD(v,v) = |v|2H1(Th)
∀v ∈V

1,2
h . (5.3.6)

Since numerical results indicate stability of the Baumann-Oden method for the DG space V k
DG,h

with k ≥ 2 [10], we assume that the Baumann-Oden method is also stable in the context of the

CG1-DG2 space.

The a priori error estimates from Theorem 4.15 are also satisfied by the CG1-DG2 solution

uh ∈ V
1,2
h and are summarized in Table 5.1. In contrast to the DG method, we need to restrict

0 ≤ k ≤ 2.

Method order of L2-error order of H1-error

SIPG k+1 k

NIPG k k

BO, k ≥ 2 k k

Table 5.1: Order of convergence in the L2- and H1-norms

This section showed that the analytical results obtained for the DG method can be directly

transferred to the CG1-DG2 method if diffusion problems are considered.
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6
Numerical results for scalar equations

In this chapter we will verify the analytical results presented in the previous chapters by numerical

studies. We apply the CG1-DG2 method to advection-dominated problems as well as diffusion

problems and compare the numerical solutions with those obtained by the following standard

finite element methods

CG1 continuous Galerkin, linear elements;

CG2 continuous Galerkin, quadratic elements;

DG1 discontinuous Galerkin, linear elements;

DG2 discontinuous Galerkin, quadratic elements.

In the case of convection-dominated problems we will also compare the numerical results with

those obtained by the streamline upwind Petrov-Galerkin (SUPG) method [18] which stabilizes

CG1/CG2 by using the modified test functions

ṽh = vh + τβββ ·∇vh, (6.0.1)

where τ is a free parameter. For our computations we choose

τ =
h

2‖βββ‖K

.

A priori error estimates for the SUPG method result in the same order of convergence as for the

DG method (see (4.2.32)).

In order to compare these methods in a quantitative way, we will estimate the expected order

of convergence by the formula [69]

EOC = log2

(
E(2h)

E(h)

)
, (6.0.2)

where E(h) = ‖u−uh‖ is the error in a specific norm between the exact solution u and the numer-

ical approximation uh and h denoting the mesh size.

51



CHAPTER 6. Numerical results for scalar equations

h CG1 CG2 CG1-DG2 DG1 DG2

1/32 1089 4225 7233 6144 12288

1/64 4225 16641 28801 24576 49152

1/128 16641 66049 114945 98304 196608

1/256 66049 263169 459265 393216 786432

Table 6.1: Numbers of DOFs on triangular meshes

h CG2 serendipity CG1-DG2 Q2-CG1-DG2 DG2

1/32 4225 5185 6209 9216

1/64 16641 20609 24705 36864

1/128 66049 82177 98561 147456

1/256 263169 328193 393729 589824

Table 6.2: Numbers of DOFs on quadrilateral meshes

In Tables 6.1 and 6.2 the numbers of degrees of freedom (DOFs) are displayed for Ω =
(0,1)× (0,1) using different mesh sizes. The number of DOFs for the CG1-DG2 method lies

between the numbers for the DG2 method and the CG2 method. Due to the lack of the bubble

functions the serendipity CG1-DG2 space has fewer DOFs than the Q2-CG1-DG2 space.

In the following numerical studies we will illustrate that the CG1-DG2 method converges

with the same rates as the DG method, and has improved stability properties compared to the CG

method, in the context of triangular and serendipity elements. All computations were carried out

on uniform meshes.

The presented methods have been implemented in the open-source hp-FEM/hp-DG library

Hermes [82]. Temporal discretization was performed using the Crank-Nicolson scheme.

6.1. Steady advection with a constant velocity field

In the first numerical example, we consider the steady advection equation

∇ · (βββu) = 0 in Ω = (0,1)× (0,1), (6.1.1)

with the constant velocity field

βββ(x,y) = (1,1). (6.1.2)

The exact solution which is also used to prescribe the inflow boundary conditions (see Fig.

6.1) is given by

u(x,y) =

{
cos
(

π(x−y−0.25)
0.5

)
, if 0 < x− y < 0.5,

0, otherwise.
(6.1.3)

We will start with the results obtained on triangular meshes. In Table 6.3 the EOCs for the

different methods are shown. CG1-DG2 exhibits similar rates as DG2 and SUPG2, namely ≈ 3.0
in the L2-norm and ≈ 2.4 in the ‖|.|‖-norm. The linear methods (CG1,DG1,SUPG1) as well as

the CG2 method have the same order in the ‖|.|‖-norm, namely ≈ 1.5. In the L2-norm CG1 and

CG2 deliver the same rates of ≈ 2.0. We remark that the expected rate for CG1 is 1.0. For DG1

the calculated EOCs vary between 2.3 and 2.6 and for SUPG1 between 1.1 and 2.9.
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6.1. Steady advection with a constant velocity field

Figure 6.1: Steady advection with constant velocity: exact solution

CG1 CG2

h ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC

1/32 6.9972e-03 - 2.5456e-01 - 1.0519e-03 - 5.1675e-02 -

1/64 1.6188e-03 2.12 8.6183e-02 1.56 2.5814e-04 2.03 1.7786e-02 1.54

1/128 3.9877e-04 2.02 3.0203e-02 1.51 6.4265e-05 2.01 6.2461e-03 1.51

1/256 9.9353e-05 2.00 1.0655e-02 1.50 1.6050e-05 2.00 2.2045e-03 1.50

SUPG1 SUPG2

h ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC

1/32 6.4745e-02 - 1.7141e-01 - 3.1723e-03 - 2.5839e-02 -

1/64 1.5688e-02 1.12 7.5725e-02 1.18 1.7070e-04 4.21 4.9682e-03 2.38

1/128 2.3256e-03 2.75 2.7950e-02 1.44 1.3525e-05 3.66 8.9850e-04 2.47

1/256 3.0710e-04 2.92 9.9267e-03 1.49 1.5217e-06 3.15 1.5988e-04 2.49

DG1 DG2

h ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC

1/32 1.7634e-02 - 1.5672e-01 - 5.5899e-04 - 1.6385e-02 -

1/64 3.2256e-03 2.45 6.4826e-02 1.27 6.0418e-05 3.21 2.8573e-03 2.52

1/128 5.5026e-04 2.55 2.3804e-02 1.45 7.3572e-06 3.04 5.0193e-04 2.51

1/256 1.1047e-04 2.32 8.4874e-03 1.49 9.1422e-07 3.01 8.8556e-05 2.50

CG1-DG2

h ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC

1/32 1.1379e-03 - 5.1738e-02 -

1/64 1.7835e-04 2.67 1.2261e-02 2.08

1/128 2.5369e-05 2.81 2.4555e-03 2.32

1/256 3.3222e-06 2.93 4.5222e-04 2.44

Table 6.3: Steady advection with constant velocity on triangular meshes

In Fig. 6.2 the solutions and the corresponding error distributions of the continuous schemes

are shown. It can be seen that the continuous Galerkin solutions exhibit oscillations in elements

where the solution is constantly zero. In the case of the SUPG method the errors are concentrated

in the region where the solution is not equal to zero. This supports the theoretical results stating

that the SUPG method has better stability properties than the CG method.
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(a) CG1 solution (b) CG1 error distribution

(c) SUPG1 solution (d) SUPG1 error distribution

(e) CG2 solution (f) CG2 error distribution

(g) SUPG2 solution (h) SUPG2 error distribution

Figure 6.2: Steady advection with constant velocity: continuous schemes on triangular meshes
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6.1. Steady advection with a constant velocity field

(a) DG1 solution (b) DG1 error distribution

(c) DG2 solution (d) DG2 error distribution

(e) CG1-DG2 solution (f) CG1-DG2 error distribution

Figure 6.3: Steady advection with constant velocity: (semi-)discontinuous schemes on triangular

meshes
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In Fig. 6.3 the solutions and the corresponding error distributions for the (semi-)discontinuous

schemes (DG and CG1-DG2) are shown. All methods exhibit similar error profiles as those de-

rived for the SUPG method (cf. Fig. 6.2).

We will now present the results obtained on quadrilateral meshes. In Fig. 6.4 the error distri-

butions for the different methods are plotted. They are in good agreement with the results obtained

on triangular meshes. We see that the CG2 method produces oscillations in elements where the so-

lution is constantly zero. The DG2 and the serendipity CG1-DG2 method have errors only where

the solution is not constant. The Q2-CG1-DG2 method also produces local errors and in a larger

domain than the serendipity version.

(a) CG2 error distribution (b) DG2 error distribution

(c) Q2-CG1-DG2 error distribution (d) Serendipity CG1-DG2 error distribution

Figure 6.4: Steady advection with constant velocity field on quadrilateral meshes

In Table 6.4 the L2-error and the ‖|.|‖-error with the corresponding EOCs for different mesh

sizes are given. The convergence rates for the CG2 and DG2 methods are the same as in the trian-

gular cases, namely 2.0 and 3.0 in the L2-norm and 1.5 and 2.5 in the ‖|.|‖-norm. The serendipity

CG1-DG2 method exhibits the same rates as the DG2 method. In the Q2-CG1-DG2 case the rates

are lower than in the serendipity case. Also the absolute error values are larger in the Q2 case.
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6.2. Steady advection-reaction with a constant velocity field

CG2 DG2

h ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC

1/32 5.4864e-04 - 1.7115e-02 - 2.1228e-04 - 8.7242e-03 -

1/64 1.3385e-04 2.04 5.8799e-03 1.54 2.5498e-05 3.06 1.5444e-03 2.50

1/128 3.3264e-05 2.01 2.0632e-03 1.51 3.1680e-06 3.01 2.7306e-04 2.50

1/256 8.3040e-06 2.00 7.2797e-04 1.50 3.9543e-07 3.00 4.8277e-05 2.50

Q2-CG1-DG2 serendipity CG1-DG2

h ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC ‖u−uh‖L2 EOC ‖|u−uh|‖ EOC

1/32 6.2317e-04 - 2.2607e-02 - 2.6530e-04 - 1.0100e-02 -

1/64 1.0251e-04 2.60 5.7333e-03 1.98 3.1024e-05 3.10 1.8128e-03 2.48

1/128 1.6175e-05 2.66 1.3079e-03 2.13 3.8258e-06 3.02 3.2175e-04 2.49

1/256 2.3692e-06 2.77 2.7219e-04 2.26 4.7663e-07 3.00 5.6941e-05 2.50

Table 6.4: Steady advection with constant velocity on quadrilateral meshes

In summary, we see that all methods which are known to be stable (SUPG, DG) as well as the

CG1-DG2 method exhibit only local errors, i.e., only errors in elements where the solution is not

constant, whereas the continuous Galerkin method produces global errors.

In the following we will restrict the computations to piecewise-quadratic spaces and compare

the CG1-DG2 method only with the continuous and the discontinuous method, i.e., we neglect the

SUPG method, since this method gives similar results as those obtained by the DG method.

6.2. Steady advection-reaction with a constant velocity field

In the following we will consider the advection-reaction equation

u+∇ · (βββu) = f in Ω = (0,1)× (0,1) (6.2.1)

with the constant velocity field

βββ(x,y) = (0.5,1). (6.2.2)

An exact solution which is also used to prescribe the inflow boundary conditions (see Fig. 6.5) is

given by

u(x,y) = sin(2πx)sin(2πy). (6.2.3)

The right-hand side can be calculated as f := u+∇ · (βββu), where u is the exact solution given

by (6.2.3). This example can also be found in [12].

In Fig. 6.6 the L2-errors and the ‖|.|‖-errors versus mesh size are plotted for CG2, CG1-DG2

and DG2 method on triangular meshes in log-scale. The DG2 and CG1-DG2 method exhibit a

convergence rate of 3.0 whereas the CG2 method yields only a rate of 2.0 in the L2-norm. In the

‖|.|‖-norm the rates are 2.5 and 1.5, respectively.

In Fig. 6.7 the L2-error and the ‖|.|‖-error versus different mesh sizes are displayed for quadri-

lateral meshes. For the CG2, DG2 and the serendipity CG1-DG2 method we obtain the same rates

as in the triangular case. For the Q2-CG1-DG2 method we have the same rates as for the CG2

method, namely 2.0 in the L2-norm and 1.5 in the ‖|.|‖-norm.
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Figure 6.5: Steady advection-reaction with constant velocity: exact solution

(a) L2-error versus mesh size (b) ‖|.|‖-error versus mesh size

Figure 6.6: Steady advection-reaction with constant velocity on triangular meshes

(a) L2-error versus mesh size (b) ‖|.|‖-error versus mesh size

Figure 6.7: Steady advection-reaction with constant velocity on quadrilateral meshes
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6.3. Steady advection with a rotating velocity field

6.3. Steady advection with a rotating velocity field

In this example, we consider the steady advection equation

∇ · (βββu) = 0 in Ω = (0,1)× (0,1), (6.3.1)

with the rotating velocity field

βββ(x,y) = (y,1− x). (6.3.2)

The exact solution, which also implies the inflow boundary condition, can be seen in Fig. 6.8.

Figure 6.8: Steady advection with rotating velocity field: exact solution

In Fig. 6.9 the solutions and the error distributions for the CG2, the DG2 and the CG1-DG2

method are displayed for triangular meshes. It can be seen that there are oscillations in the contin-

uous case where the solution should be constantly zero. The DG2 as well as the CG1-DG2 method

produce large errors only where the solution is not equal to zero.

In Fig. 6.10 the errors of the different methods are shown for quadrilateral meshes. As in the

triangular case the CG2 method exhibits oscillations in elements where the solution is constant.

The error profiles of the DG2 and the serendipity CG1-DG2 method look very similar. In both

cases the errors are found in elements where the solution is not constantly zero. In the Q2-CG1-

DG2 case we observe errors in a larger domain than in the serendipity case.
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(a) CG2 solution (b) CG2 error distribution

(c) DG2 solution (d) DG2 error distribution

(e) CG1-DG2 solution (f) CG1-DG2 error distribution

Figure 6.9: Steady advection with rotating velocity field on triangular meshes
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6.3. Steady advection with a rotating velocity field

(a) CG2 error distribution (b) DG2 error distribution

(c) Q2-CG1-DG2 error distribution (d) Serendipity CG1-DG2 error distribution

Figure 6.10: Steady advection with rotating velocity field on quadrilateral meshes
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6.4. Steady advection-reaction with a non-constant velocity field

This example is adopted from [43] and considers the advection-reaction equation

βββ ·∇u+ cu = f in Ω = (−1,1)× (−1,1), (6.4.1)

where the velocity field βββ and the coefficient c are given by

βββ(x,y) = (2− y2,2− x), c(x,y) = 1+(1+ x)(1+ y)2. (6.4.2)

The term f on the right-hand side is chosen in such a way that the exact solution (see Fig. 6.11) is

given by

u(x,y) = sin
(π

8
(1+ x)(1+ y)2

)
+1. (6.4.3)

Figure 6.11: Steady advection-reaction with non-constant velocity: exact solution

In Fig. 6.12 the L2-errors and the ‖|.|‖-errors versus mesh size are plotted for CG2, CG1-DG2

and DG2 on triangular meshes. As in section 6.2 we see that DG2 and CG1-DG2 converge with

a rate of 3.0 in the L2-norm whereas CG2 converges only with a rate of 2.0. In the ‖|.|‖-norm we

obtain convergence rates of 2.5 and 1.5, respectively.

(a) L2-error versus mesh size (b) ‖|.|‖-error versus mesh size

Figure 6.12: Steady advection-reaction with non-constant velocity on triangular meshes

In Fig. 6.13 the errors in the L2- and ‖|.|‖-norm versus mesh size are displayed for quadrilateral

meshes. As before, we see that CG2 and Q2-CG1-DG2 exhibit the same EOCs, namely ≈ 2.0 in

the L2-norm and ≈ 1.5 in the ‖|.|‖-norm. The DG2 and the serendipity CG1-DG2 method converge

with one order more than the other methods.
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6.5. Solid body rotation problem

(a) L2-error versus mesh size (b) ‖|.|‖-error versus mesh size

Figure 6.13: Steady advection-reaction with non-constant velocity on quadrilateral meshes

6.5. Solid body rotation problem

In the following we will consider the so-called solid body rotation problem [48, 69]. We solve

ut +∇ · (βββu) = 0 in Ω = (0,1)× (0,1), (6.5.1)

where the velocity field

βββ(x,y) = (0.5− y,x−0.5) (6.5.2)

describes counterclockwise rotations about the center of Ω. After each full rotation (t = 2πk, k ∈
N) the exact solution u coincides with the initial data u0. This is the challenge of this test problem

since numerical schemes for advection problems often fail to preserve the shape of u0.

Following LeVeque [69], we simulate the rotation of a slotted cylinder, a sharp cone, and a

smooth hump as displayed in Fig. 6.14. Initially, the shape of each body is described by a function

G(x,y) which is defined within the circle

r(x,y) =
1

r0

√
(x− x0)2 +(y− y0)2 ≤ 1

of radius r0 = 0.15 and center (x0,y0).

For the slotted cylinder, the center is given by (x0,y0) = (0.5,0.75) and

G(x,y) =

{
1 if |x− x0|≥ 0.025 or y ≥ 0.85,

0 otherwise.

The peak of the cone is located at (x0,y0) = (0.5,0.25) and its shape function is

G(x,y) = 1− r(x,y).

The hump is centered at (x0,y0) = (0.25,0.5) and its geometry is given by

G(x,y) =
1+ cos(πr(x,y))

4
.
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Figure 6.14: Solid body rotation: initial data and exact solution at t = 2π

In Figures 6.15 and 6.16 the numerical solutions and the corresponding error distributions

are displayed for triangular meshes. The CG2 solution exhibits large under- and overshoots in

the whole domain whereas the DG2 and the CG1-DG2 method produce only small oscillations

near the boundary of the slotted cylinder. The hump and the cone, apart from the sharp peak, are

preserved very well by the DG2 and the CG1-DG2 method.

(a) CG2 solution (b) CG2 error distribution

Figure 6.15: Solid body rotation problem: solution and error distribution at t = 2π on a triangular

mesh

In Fig. 6.17 we see the error profiles obtained by the Q2- and the serendipity CG1-DG2

method. As in the triangular case there are large errors in the neighborhood of the cylinder and

smaller errors at the peak of the cone and at its bottom. The hump is very well resolved so that no

error is visible.

We have now seen that the CG1-DG2 method converges with the expected rates on triangular

meshes and that the results are comparable with those obtained by the DG method. On quadri-

lateral meshes the serendipity CG1-DG2 method seems to have better stability properties than the

Q2-CG1-DG2 method and also higher convergence rates in the case of advection-reaction equa-

tions.
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6.5. Solid body rotation problem

(a) CG1-DG2 solution (b) CG1-DG2 error distribution

(c) DG2 solution (d) DG2 error distribution

Figure 6.16: Solid body rotation problem: solution and error distribution at t = 2π for triangular

meshes

(a) Q2-CG1-DG2 (b) Serendipity CG1-DG2

Figure 6.17: Solid body rotation problem: error distribution at t = 2π
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6.6. Poisson’s equation

In the following, we will investigate the behavior of the different methods when it comes to solving

Poisson’s equation

−∆u = f in Ω. (6.6.1)

Let us consider the domain Ω = (0,1)× (0,1). The right-hand side is chosen in such a way that

the exact solution (see Fig. 6.18) is given by [37]

u(x,y) = sin(
1

2
πx)sin(

1

2
πy). (6.6.2)

On the boundary ∂Ω we prescribe Dirichlet boundary conditions which correspond to the exact

solution (6.6.2).

Figure 6.18: Poisson’s equation: exact solution

In Tables 6.5 and 6.6 the L2- and H1-errors as well as the corresponding EOCs are displayed

for triangular meshes. The CG2 method has rates of ≈ 3.0 in the L2-norm and ≈ 2.0 in the H1-

norm. The same rates are achieved by the SIPG-method for the DG2 and the CG1-DG2 space.

The Baumann-Oden and the NIPG method have the same rates in the H1-norm. In the L2-norm

the rate decreases to ≈ 2.0. These results are in good agreement with analysis (see Theorem 3.8

and Theorem 4.15).

CG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/16 5.1804e-05 - 3.2354e-03 -

1/32 6.6666e-06 2.96 8.3182e-04 1.96

1/64 8.4518e-07 2.98 2.1064e-04 1.98

1/128 1.0639e-07 2.99 5.2982e-05 1.99

1/256 1.3346e-08 2.99 1.3285e-05 2.00

Table 6.5: Poisson’s equation: EOCs for the continuous Galerkin method (triangular meshes)
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Baumann-Oden

CG1-DG2 DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/16 3.7815e-04 - 4.4344e-03 - 1.8044e-04 - 3.3486e-03 -

1/32 7.9723e-05 2.25 1.1541e-03 1.94 5.1225e-05 1.82 8.1250e-04 2.04

1/64 1.7454e-05 2.19 2.9382e-04 1.97 1.3716e-05 1.90 1.9963e-04 2.03

1/128 4.0168e-06 2.12 7.4072e-05 1.99 3.5490e-06 1.95 4.9444e-05 2.01

1/256 9.5915e-07 2.07 1.8592e-05 1.99 9.0258e-07 1.98 1.2301e-05 2.01

SIPG, σS = 10

CG1-DG2 DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/16 6.1559e-05 - 4.7917e-03 - 4.7230e-05 - 4.0811e-03 -

1/32 6.9938e-06 3.14 1.1031e-03 2.12 4.9121e-06 3.27 9.1047e-04 2.16

1/64 8.2661e-07 3.08 2.6234e-04 2.07 5.4114e-07 3.18 2.1235e-04 2.10

1/128 1.0028e-07 3.04 6.3807e-05 2.04 6.2612e-08 3.11 5.1064e-05 2.06

1/256 1.2342e-08 3.02 1.5723e-05 2.02 7.4934e-09 3.06 1.2505e-05 2.03

NIPG, σS = 1

CG1-DG2 DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/16 2.9743e-04 - 3.8718e-03 - 1.8201e-04 - 3.0715e-03 -

1/32 6.2010e-05 2.26 1.0015e-03 1.95 4.9540e-05 1.88 7.5354e-04 2.02

1/64 1.3533e-05 2.20 2.5446e-04 1.98 1.2946e-05 1.94 1.8629e-04 2.02

1/128 3.1131e-06 2.12 6.4106e-05 1.99 3.3086e-06 1.97 4.6290e-05 2.01

1/256 7.4344e-07 2.07 1.6086e-05 1.99 8.3623e-07 1.98 1.1536e-05 2.00

Table 6.6: Poisson’s equation: EOCs for different methods (triangular meshes)

In Tables 6.7 - 6.10 we present the results of the convergence study for quadrilateral meshes.

As expected we get the same rates as in the triangular case. The CG2 method and the SIPG method

have a rate of ≈ 3.0 in the L2-norm and ≈ 2.0 in the H1-norm. We obtain an order of ≈ 3.0 in the

L2-norm and ≈ 2.0 in the H1-norm for the Baumann-Oden method and the NIPG method. In the

CG1-DG2 case the EOCs are independent of the element type.

CG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/8 3.0698e-05 - 1.5960e-03 -

1/16 3.8450e-06 3.00 3.9898e-04 2.00

1/32 4.8087e-07 3.00 9.9743e-05 2.00

1/64 6.0117e-08 3.00 2.4936e-05 2.00

1/128 7.5148e-09 3.00 6.2339e-06 2.00

Table 6.7: Poisson’s equation: EOCs for the continuous Galerkin method (quadrilateral meshes)
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Baumann-Oden

serendipity CG1-DG2 Q2-CG1-DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/8 2.9990e-04 - 2.9139e-03 - 3.2660e-04 - 2.9673e-03 -

1/16 7.2372e-05 2.05 7.2824e-04 2.00 7.5614e-05 2.11 7.3429e-04 2.01

1/32 1.7583e-05 2.04 1.8175e-04 2.00 1.7964e-05 2.07 1.8246e-04 2.01

1/64 4.3185e-06 2.03 4.5381e-05 2.00 4.3639e-06 2.04 4.5465e-05 2.00

1/128 1.0691e-06 2.01 1.1337e-05 2.00 1.0746e-06 2.02 1.1347e-05 2.00

DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/8 5.5841e-04 - 3.8445e-03 -

1/16 1.4638e-04 1.93 9.7730e-04 1.98

1/32 3.7076e-05 1.98 2.4592e-04 1.99

1/64 9.3004e-06 2.00 6.1645e-05 2.00

1/128 2.3271e-06 2.00 1.5430e-05 2.00

Table 6.8: Poisson’s equation: EOCs for the Baumann-Oden method (quadrilateral meshes)

SIPG, σS = 10

serendipity CG1-DG2 Q2-CG1-DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/8 2.5201e-05 - 1.9519e-03 - 2.4864e-05 - 1.9420e-03 -

1/16 2.9051e-06 3.12 4.6062e-04 2.08 2.8870e-06 3.11 4.5973e-04 2.08

1/32 3.4569e-07 3.07 1.1142e-04 2.05 3.4467e-07 3.07 1.1133e-04 2.05

1/64 4.2044e-08 3.04 2.7365e-05 2.03 4.1984e-08 3.04 2.7355e-05 2.03

1/128 5.1800e-09 3.02 6.7786e-06 1.40 5.1763e-09 3.02 6.7774e-06 2.01

DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/8 2.2371e-05 - 1.8988e-03 -

1/16 2.5237e-06 3.15 4.5149e-04 2.07

1/32 2.9543e-07 3.09 1.0969e-04 2.04

1/64 3.5560e-08 3.05 2.7005e-05 2.02

1/128 4.3554e-09 3.03 6.6976e-06 2.01

Table 6.9: Poisson’s equation: EOCs for the SIPG method (quadrilateral meshes)
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NIPG, σS = 1

serendipity CG1-DG2 Q2-CG1-DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/8 2.2674e-04 - 2.4052e-03 - 2.4117e-04 - 2.4217e-03 -

1/16 5.3339e-05 2.09 5.9708e-04 2.01 5.5071e-05 2.13 5.9890e-04 2.02

1/32 1.2813e-05 2.06 1.4863e-04 2.01 1.3015e-05 2.08 1.4884e-04 2.01

1/64 3.1310e-06 2.03 3.7068e-05 2.00 3.1550e-06 2.04 3.7093e-05 2.00

1/128 7.7329e-07 2.02 9.2554e-06 2.00 7.7619e-07 2.02 9.2585e-06 2.00

DG2

h ‖u−uh‖L2 EOC ‖u−uh‖H1 EOC

1/8 3.5382e-04 - 2.6782e-03 -

1/16 8.8853e-05 1.99 6.6725e-04 2.01

1/32 2.2083e-05 2.01 1.6637e-04 2.00

1/64 5.4918e-06 2.01 4.1526e-05 2.00

1/128 1.3685e-06 2.00 1.0373e-05 2.00

Table 6.10: Poisson’s equation: EOCs for the NIPG method (quadrilateral meshes)

We have seen, that the CG1-DG2 method achieves the same convergence rates as the DG2

method in the context of pure diffusion. We will now add an advective term to investigate the

behavior for convection-diffusion problems.

6.7. Time-dependent convection-diffusion equation

In the following, we consider a time-dependent problem, which was already presented in [15] and

describes a moving cone-like object diffusing as time goes on. The underlying equation is given

by

∂u

∂t
+∇ · (βββu− ε∇u) = 0 in Ω = (−1,1)× (−1,1) (6.7.1)

with velocity field βββ = (−y,x) and diffusion coefficient ε = 10−3. The object is defined by

u(x, t) =
1

4πεt
e−

r2

4εt , r2 = (x− x̂)2 +(y− ŷ)2, (6.7.2)

where x̂ and ŷ are the time-dependent coordinates of the moving peak

x̂(t) = x0 cos t − y0 sin t, ŷ(t) =−x0 sin t + y0 cos t. (6.7.3)

At time t = 0 the solution is u(x,0) = δ(x0,y0), where δ is the Dirac delta distribution. Since we

cannot directly obtain a reasonable initial value, we start the numerical computations at tstart =
π
2

and stop those after one full rotation (T = 2.5π). The initial peak is set to (x0,y0) = (0,0.5).
The exact solution at tstart =

π
2

and at T = 2.5π can be seen in Figures 6.19a and 6.19b. Note

that both pictures are scaled with respect to their maximum values.

The CG1-DG2 solution obtained by the Baumann-Oden method is displayed in Fig. 6.19c for

triangular meshes. In Fig. 6.19d the exact solution is compared with the CG1-DG2 solution along

the line y = 0. They match almost everywhere, however, the top of the numerical solution is a

little bit lower than the one of the exact solution.

In Figures 6.20 and 6.21 the L2-error versus mesh size are plotted for triangular and quadrilat-

eral meshes, respectively. It can be seen that the Baumann-Oden method has a convergence rate of

≈ 2.0 whereas the SIPG and the CG2 method converge at a rate of ≈ 3.0. The errors of the SIPG

and CG2 method nearly match such that the error curves are superimposed.
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(a) Exact solution at tstart =
π
2

(b) Exact solution at T = 2.5π

(c) CG1-DG2 solution at T = 2.5π
using the Baumann-Oden method

(d) CG1-DG2 solution and exact solution

at T = 2.5π along y = 0

Figure 6.19: Time-dependent convection-diffusion equation on triangular meshes
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6.7. Time-dependent convection-diffusion equation

Figure 6.20: Time-dependent convection-diffusion equation: L2-error vs. mesh size on triangular

meshes

Figure 6.21: Time-dependent convection-diffusion equation: L2-error vs. mesh size on

quadrilateral meshes
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6.8. A hump changing its height

This example was taken from [49] where different stabilization techniques (e.g., the SUPG method)

for continuous finite element methods were compared. The problem is a convection-diffusion-

reaction equation

ut +βββ ·∇u− ε∆u+ cu = f in Ω = (0,1)× (0,1), (6.8.1)

where

βββ(x,y) = (2,3), ε = 10−6, c = 1. (6.8.2)

The exact solution is given by

u(x,y; t) = 16sin(πt)x(1− x)y(1− y)

·

(
1

2
+

1

π
arctan

[
2√
ε
(0.252 − (x−0.5)2 − (y−0.5)2)

])
, (6.8.3)

which prescribes a hump changing its height over time.

In Fig. 6.22 the exact solution at t = 0.5 can be seen. At t = 2.0 the hump vanishes so that the

exact solution is constantly zero.

Figure 6.22: Hump changing its height: exact solution at t = 0.5

We will first present the results obtained for triangular meshes. In Fig. 6.23 the CG2 solutions

and their error distributions for different times are shown. It can be seen that the CG2 solution

exhibits global oscillations. The DG2 and CG1-DG2 solution for the Baumann-Oden method (see

Figures 6.24 and 6.25) have oscillations at the hump and behind the hump in the direction of the

velocity field. We mention that in [49] it was observed that the tested stabilization techniques

cannot prevent the occurrence of oscillations in the direction of the convection. This observation

is in good agreement with results obtained here for the DG2 and the CG1-DG2 method.

In Fig. 6.26 the solutions and error distributions at t = 0.5 for the Q2- and the serendipity

CG1-DG2 method are presented. In both cases the Baumann-Oden method for the discretization

of the diffusive part was used. It can be seen that there are oscillations in the direction of the

velocity field. In contrast to the triangular case under- and overshoots are also present in front of

the hump. However, these oscillations are larger in the Q2 case and in a larger domain than in the

serendipity case.
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6.8. A hump changing its height

(a) Solution at t = 0.5

(b) Error distribution at t = 0.5 (c) Error distribution at t = 2.0

Figure 6.23: Hump changing its height: CG2 method on triangular meshes

In Fig. 6.27 the error distributions at t = 2.0 are displayed. The hump has vanished at this

time. Using the Q2-CG1-DG2 method we obtain oscillations in the streamline direction from the

lower left to the upper right corner, whereas the serendipity CG1-DG2 method produces errors

only in the region of the vanished hump and behind it. It can be seen that the serendipity CG1-

DG2 method produces better results than the Q2-CG1-DG2 method.

In summary, our numerical experiments for advection(-reaction) and (advection-)diffusion

problems showed that the triangular and the serendipity CG1-DG2 method produce results similar

to those obtained by the DG2 method. In the context of advection equations, we have seen that we

have better stability properties than the CG method, which can produce oscillations in the whole

domain even for smooth solutions.
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(a) CG1-DG2 solution (b) DG2 solution

Figure 6.24: Hump changing its height: numerical solutions at t = 0.5 on triangular meshes

(a) CG1-DG2 error distribution at t = 0.5 (b) CG1-DG2 error distribution at t = 2.0

(c) DG2 error distribution at t = 0.5 (d) DG2 error distribution at t = 2.0

Figure 6.25: Hump changing its height: error distributions on triangular meshes

74



6.8. A hump changing its height

(a) Q2-CG1-DG2 solution (b) Q2-CG1-DG2 error distribution

(c) Serendipity CG1-DG2 solution (d) Serendipity CG1-DG2 error distribution

Figure 6.26: Hump changing its height at t = 0.5 on quadrilateral meshes

(a) Q2-CG1-DG2 error distribution (b) Serendipity CG1-DG2 error distribution

Figure 6.27: Hump changing its height at t = 2.0 on quadrilateral meshes
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7
The Euler equations in 2D

In this chapter we give a brief introduction to the Euler equations which are used to model com-

pressible gas flows. These equations are of hyperbolic type like the scalar advection equation that

has already been presented in Section 3.4. Since the continuous Galerkin method is not stable in

the hyperbolic case, different kinds of stabilization techniques have been developed or extended

from the scalar case, e.g. streamline diffusion/Petrov Galerkin method [45, 52], artificial viscosity

[79] or algebraic flux correction [64, 70]. Another approach similar to the scalar case is the use of

the discontinuous Galerkin method [9, 23, 28, 38], which leads to a stable method.

The last chapters have shown, that the CG1-DG2 method can be used to discretize and solve

scalar advection equations. The analytical and numerical results have been similar to those derived

for the DG method. Therefore, we extend the CG1-DG2 method to solve the Euler equations and

expect similar behavior of the solutions as those computed by the DG method.

In the following we will explain how the Euler equations are derived from the compressible

Navier-Stokes equations and which solution features (e.g. shock waves) can arise. Since those

features also occur in the context of scalar nonlinear conservation laws, we will explain some of

those in more detail for the scalar case. Then we explain the discretization using the continuous

Galerkin method. At last we introduce the CG1-DG2 method for the Euler equations which gives

a discretized system similar to that for the DG method.

7.1. Modeling of a compressible gas flow

When it comes to modeling compressible flows, the compressible Navier-Stokes equations are

usually the model of choice. They are based on the conservation of mass, momentum and energy

where the conservation of momentum is based on Newton’s second law and the conservation of

energy on the first law of thermodynamics [86]. These conservation laws are given by

∂ρ

∂t
+∇ · (ρv) = 0,

∂(ρv)

∂t
+∇ · (ρv⊗v+T) = Fb,

∂(ρE)

∂t
+∇ · (ρEv+v ·T+q) = v ·Fb +Q,
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where ρ denotes the density and v = (vx,vy)
T the velocity. E is the total energy, q is the heat flux,

Q is the external heat source and Fb is the sum of body forces.

The stress tensor T depends on the type of fluid, e.g., in the case of a Newtonian fluid the stress

tensor is given by

T = pI−µ
(
∇v+(∇v)T

)
+

2

3
µI∇ ·v,

where p is the pressure, µ is the dynamic viscosity and I is the identity tensor.

In the context of gas flows, viscous terms can often be ignored [68]. If additionally heat

conduction, heat sources and body forces are neglected, we obtain a simplified model, the so-

called Euler equations.

Definition 7.1: Euler equations

The Euler equations are defined by

∂ρ

∂t
+∇ · (ρv) = 0, (7.1.1)

∂(ρv)

∂t
+∇ · (ρv⊗v+ pI) = 0, (7.1.2)

∂(ρE)

∂t
+∇ · (ρEv+ pv) = 0. (7.1.3)

Since there are more unknowns (ρ, v, E, p) than equations, we have to close the system by

defining a relation between those unknowns. This is done by the equation of state [68]

p = (γ−1)

(
ρE − ρ|v|2

2

)
(7.1.4)

for a polytropic gas, where γ is the heat capacity ratio. For air this ratio is given by γ = 1.4 [87].

Additionally, we introduce the following quantities:

Definition 7.2: Enthalpy, speed of sound and Mach number

The total enthalpy is defined by

H = E +
p

ρ
. (7.1.5)

The speed of sound c is given by

c =

√
γp

ρ
=
√

γRT , (7.1.6)

where R is the ideal gas constant and T the temperature.

The ratio of the speed of gas to the speed of sound is called the Mach number

M =
|v|

c
. (7.1.7)

The last quantity helps to classify compressible flow regimes as follows:
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Definition 7.3: Flow regimes

The Mach number M characterizes the flow as

1. subsonic for 0 < M < 1,

2. transonic for M ≈ 1,

3. supersonic for M > 1,

4. hypersonic for M > 5,

5. high-hypersonic for M > 10.

Note that the gas becomes incompressible, when the Mach number tends to zero [87]. In the hy-

personic and high-hypersonic case thermal effects become more important but cannot be modeled

by the Euler equations [72].

We have now derived the Euler equations as model for compressible gas flows, if subsonic,

transonic or supersonic flows are considered. Next, we will have a closer look at particular analyt-

ical solutions of these equations.

7.2. Solution of nonlinear conservation laws

Scalar advection equations are the simplest form of conservation laws. We considered an advection

equation in our numerical example in Section 6.5, where we have transported initial data in a

counterclockwise rotation about the center of the domain. The challenge of this test problem was

that the numerical solution should coincide with the initial data after each full revolution. This

conservation of either continuous or discontinuous data is a property of the exact solution. For

nonlinear conservation laws discontinuities can arise not only from discontinuous initial data but

even from smooth data. Therefore, we will at first consider scalar nonlinear conservation laws and

explain two typical solution features, namely shock waves and rarefaction waves. These features

can frequently be observed in the context of the Euler equations. Then we will explain contact

discontinuities for the Euler equations.

7.2.1. Shock waves and rarefaction waves

We will follow [68] to introduce the concept of shock and rarefaction waves. Let us consider a

scalar nonlinear conservation law of the form

ut + f (u)x = 0, (7.2.1)

where f is a nonlinear function of u. For simplicity, we set f (u) = 1
2
u2 and obtain the so-called

inviscid Burgers equation, which can be written in quasi-linear form as

ut +uux = 0. (7.2.2)

For this equation, we will explain when a shock is formed, and why we have to extend the concept

of classical solutions to weak solutions.

The solution u of (7.2.2) is constant along the characteristic curve x(t), which satisfies x′(t) =
u(x(t), t). In the linear case ut +aux = 0, this is also true for the characteristic x̃(t), where x̃′(t) = a.

Hereby, the initial data u0(x) is transported over time in such a way that the solution profile does
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not change its shape, only its position. Therefore, the exact solution of the linear problem is given

by u(x, t) = u0(x−at).
Coming back to the nonlinear case, we have

d

dt
u(x(t), t) =

∂

∂t
u(x(t), t)+

∂

∂x
u(x(t), t)x′(t) = 0, (7.2.3)

which yields that u is constant along x(t). Since x′(t) is also constant, the characteristics are

straight lines. If the characteristics do not cross, we can derive the exact solution as follows

x = x0 +u0(x0)t, u(x, t) = u0(x0). (7.2.4)

However, if characteristics cross, the so calculated solutions are not unique. The first time, when

the characteristics intersect, the function u(x, t) has an infinite slope and a shock forms. This shock

is given as a jump in the solution. Since classical solutions do not exist from this time instant, we

introduce the concept of weak solutions (see, e.g., [68]).

Definition 7.4: Weak solutions

The function u(x, t) is called a weak solution of the conservation law (7.2.1) if

∫ ∞

0

∫ ∞

−∞
ϕtu+ϕx f (u)dxdt =−

∫ ∞

−∞
ϕ(x,0)u0(x)dx (7.2.5)

for all test functions ϕ(x, t) ∈C1
0(R×R

+
0 ).

Since weak solutions may not be unique, we have to identify conditions to select the physically

relevant solution, which is called entropy solution. This refers to solutions of gas dynamics, which

satisfy the second law of thermodynamics stating that entropy is nondecreasing. Similarly, condi-

tions for scalar conservation laws can be derived which are called entropy conditions by analogy

with gas dynamics [68].

We have already seen, that the solution becomes discontinuous, when a shock forms. We

will now investigate what kinds of weak solutions can occur, if our initial data is discontinuous.

Therefore, we will consider the so-called Riemann problem for the inviscid Burgers equation in

1D.

Definition 7.5: Riemann problem

The Riemann problem consists of a conservation law endowed with initial data which is

piecewise constant and has a single jump discontinuity.

The initial data is given by

u0(x) =

{
ul if x < 0,
ur otherwise.

(7.2.6)

There are two different cases to be considered: ul > ur and ul < ur.

Let us begin with ul > ur. This gives a unique weak solution

u(x, t) =

{
ul if x < st,
ur otherwise,

(7.2.7)

where s is the shock speed. The shock speed s must satisfy the so-called Rankine-Hugoniot con-

dition

f (ul)− f (ur) = s(ul −ur). (7.2.8)
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ul

ur

x = 0
| |

x = st

(a) Weak solution

x0

x = stt

(b) Characteristics and shock

Figure 7.1: Shock wave

This leads to s= ul+ur

2
for the Burgers equation. In Fig. 7.1 this type of solution and corresponding

characteristics are displayed. We see that the solution stays discontinuous and the characteristics

go into the shock. Note that the weak solution (7.2.7) is unique [68].

The other case ul < ur yields infinitely many weak solutions. One possibility would again be

a shock which propagates with speed s. However, this solution is not stable to perturbations and

is called a entropy-violating shock. In Fig. 7.2 we see that this entropy-violating solution stays

discontinuous and the characteristics come out of the shock.

ur

ul

x = 0
| |

x = st

(a) Weak solution

x0

x = st
t

(b) Characteristics and shock

Figure 7.2: Entropy-violating shock

This behavior is physically incorrect and therefore, another solution, the rarefaction wave, is

considered

u(x, t) =





ul if x < ult,
x/t if ult ≤ x ≤ urt,
ur if x > urt,

(7.2.9)

which results in a smooth transition from ul to ur and gives the entropy solution. This is displayed

in Fig. 7.3, where we see that the discontinuous solution becomes a continuous transition. There

are now infinitely many characteristics starting at the point x = 0.

A weak solution is an entropy solution and therefore physically correct, if the following con-
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ur

ul

x = 0
| |

x = ult
|

x = urt

(a) Weak solution

x0

t

(b) Characteristics

Figure 7.3: Rarefaction wave

dition is fulfilled

f (u)− f (ul)

u−ul

≥ s ≥ f (u)− f (ur)

u−ur

, ∀u = θul +(1−θ)ur, 0 < θ < 1. (7.2.10)

This condition is called Oleinik’s entropy condition. In the case of convex functions, this simplifies

to

f ′(ul)> s > f ′(ur). (7.2.11)

For the Burgers equation, we have f ′(u) = u and condition (7.2.11) is violated for ul < ur.

We have now seen that we need to extend the concept of classical solutions to weak solu-

tions, to solve nonlinear conservation laws. Smooth solutions can lead to so-called shocks, if

characteristics cross. These shocks are weak solutions and satisfy the Rankine-Hugoniot condi-

tion. Furthermore, discontinuous initial data can result either in shock waves or rarefaction waves.

If the weak solution is not unique, we can use the entropy condition to test if a weak solution is

entropy-violating and therefore should not be considered as physically relevant.

This theory can also be extended to the Euler equations (see, e.g., [67, 68]). Therefore, we

consider the Euler equations in 1D

Ut +F(U)x = 0 (7.2.12)

where

U =




ρ

ρv

ρE


 , F(U) =




ρv

ρv2 + p

ρEv+ pv


 . (7.2.13)

In analogy to the scalar case, this system can be written in quasi-linear form

Ut +A(U)Ux = 0, (7.2.14)

where

U =




ρ

ρv

ρE


 A(U) = F ′(U) =




0 1 0

0.5(γ−3)v2 (3− γ)v (γ−1)
0.5(γ−1)v3 − vH H − (γ−1)v2 γv


 . (7.2.15)
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The left state Ũ and the right state Û with respect to a shock have to fulfill the Rankine-

Hugoniot jump condition [68]

F(Ũ)−F(Û) = s(Ũ −Û), (7.2.16)

where s is the shock speed and F the flux function. The shock speed also has to satisfy Lax’s

entropy condition [68]

λi(Ũ)> s > λi(Û), i = 1,2,3, (7.2.17)

where λi is the i-th eigenvalue of A(U).

In the case of rarefaction waves, the following condition holds

λi(Ũ)< λi(Û), (7.2.18)

which yields a smooth transition form state Ũ to Û .

7.2.2. Contact discontinuity

Another feature occurring in the context of conservation laws is a contact discontinuity. To explain

it in more detail we will consider the Euler equations in 1D. The solution can be described by

conservative variables ρ, ρv and ρE or by primitive variables ρ, v and p. Latter ones lead to a

system in quasi-linear form

Qt +A(Q)Qx = 0, (7.2.19)

where

Q =




ρ

v

p


 , A(Q) =




v ρ 0

0 v 1
ρ

0 γp v


 . (7.2.20)

This system is strictly hyperbolic, i.e., the matrix A = A(Q) has only distinct real eigenvalues

λ1 = v− c, λ2 = v and λ3 = v+ c [67]. Therefore, we can decompose the matrix

A = RΛR−1, (7.2.21)

where R = [r1,r2,r3] is the matrix of right eigenvectors

r1 =



−ρ

c

1

−ρc


 , r2 =




1

0

0


 , r3 =




ρ
c

1

ρc


 , (7.2.22)

and Λ = diag{λ1,λ2,λ3} the diagonal matrix of eigenvalues λi.

Defining

δW = R−1δQ, (7.2.23)

where δ denotes either ∂t or ∂x, (7.2.19) can be written as

Wt +ΛWx = 0, (7.2.24)
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where W = [w1,w2,w3] is the vector of so-called characteristic variables. Recall that R and Λ

depend on Q. If this system were linear, we would obtain three decoupled scalar advection equa-

tions. However, this system can be understood as three waves each traveling with wave speed λi.

The change of the primitive variables δQ can be expressed as

δQ =
3

∑
i=1

δwiri. (7.2.25)

If we consider the wave corresponding to λ2, we see that a jump across this wave results in a

change in density, whereas pressure and velocity remain constant. This behavior is called contact

discontinuity and can only take place for linearly degenerated characteristic fields [68], i.e.,

∇λi(Q) · ri(Q)≡ 0,∀Q. (7.2.26)

In the context of scalar conservation laws ut +a(u)ux contact discontinuities are characterized

by jumps in the solution from ul to ur where a(ul) = a(ur) [65].

If we consider the Riemann problem for the Euler equations, we will obtain a solution which

consists of a contact discontinuity and two nonlinear waves, i.e., shock and/or rarefaction waves

[68].

We have now seen what features the solution of the Euler equations has. In the following, we

will summarize some mathematical aspects of the Euler equations in 2D, that will turn out useful

for the derivation of the discretized system.

7.3. Mathematical aspects

As we have already seen in the last chapter for the one dimensional case, the Euler equations

(7.1.1) - (7.1.3) can be written in the conservative form

∂U

∂t
+∇ ·F = 0, (7.3.1)

where

U =




ρ

ρv

ρE


 , F = F(U) =




ρv

ρv⊗v+ pI

ρEv+ pv


 ,

or in the quasi-linear form

∂U

∂t
+A ·∇U = 0, (7.3.2)

where A = ∂F
∂U

= ( ∂F(x)

∂U
, ∂F(y)

∂U
) is the Jacobian tensor. The components of the flux vector F =

(F(x),F(y)) are given by [35, 40]

F(x) =




ρvx

ρv2
x + p

ρvxvy

ρEvx + vx p


 and F(y) =




ρvy

ρvxvy

ρv2
y + p

ρEvy + vy p


 .

The matrices A1 := ∂F(x)

∂U
and A2 := ∂F(y)

∂U
can be found in Definition A.14.

A useful relation between A and F can be derived by considering the homogeneity property [40]

F(αU) = αF(U), ∀α ∈ R. (7.3.3)
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Differentiating with respect to α and setting α = 1, one obtains

F(U) =
∂F

∂U
U = AU. (7.3.4)

Furthermore, the system of the Euler equations is hyperbolic, since the matrix

A(U,e) = e1A1 + e2A2, A = (A1,A2), e = (e1,e2), |e|= 1, (7.3.5)

is diagonalizable with real eigenvalues (cf. Def. A.13). It admits the factorization

A(U,e) = R(U,e)Λ(U,e)R(U,e)−1, (7.3.6)

where Λ(U,e) = diag{e ·v−c,e ·v,e ·v+c,e ·v} is the diagonal matrix of eigenvalues and R(U,e)
is the matrix of right eigenvectors. The analytical expression of these matrices can be found in

Definition A.14. Note that we have strict hyperbolicity only for the 1D case.

7.4. The continuous Galerkin method for the Euler equations

In the following we will explain how the Euler equations are discretized in space using the con-

tinuous Galerkin method. Hereby, we follow the derivation of the high-order scheme presented in

[35, 72] and [64]. A matter of particular importance is the treatment of the boundary conditions

which we will also adopt for the CG1-DG2 method.

7.4.1. Group finite element formulation

For the discretization of the Euler equations in conservative form we multiply (7.3.1) by a suitable

test function W and integrate by parts. This gives

∫
Ω

(
W

∂U

∂t
−∇W ·F

)
dx+

∫
Γ

W n ·Fds = 0, ∀W, (7.4.1)

where n = (nx,ny) is the unit outward normal. The numerical solution as well as the numerical

flux function are given by the group finite element formulation [31]

Uh(x, t) = ∑
j

U j(t)ϕ j(x), (7.4.2)

Fh(x, t) = ∑
j

F j(t)ϕ j(x), (7.4.3)

where {ϕi} is a set of basis functions. This formulation leads to the discretization

∑
j

(∫
Ω

ϕiϕ j dx

)
dU j

dt
= ∑

j

(∫
Ω

∇ϕiϕ j dx

)
·F j −

∫
Γ

ϕin ·Fds, ∀ i. (7.4.4)

By (7.3.4) we have F j = A jU j resulting in the semi-discrete problem

MC

dU

dt
= KU +S(U), (7.4.5)

where MC denotes the consistent block mass matrix, K is the discrete Jacobian operator and S(U)
is the boundary vector. The matrix MC consists of blocks of size 4×4 in 2D and is defined by

MC = {Mi j}= {mi jI}, mi j =
∫

Ω
ϕiϕ j dx, (7.4.6)
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where I is the 4×4 identity matrix. The entries of the matrix K = {Ki j} are given by

Ki j = c ji ·A j, ci j =
∫

Ω
ϕi∇ϕ j dx, (7.4.7)

and the entries of the boundary vector S(U) by

Si =−
∫

Γ
ϕin ·Fds. (7.4.8)

7.4.2. Boundary conditions

The discretization of (7.4.4) implies the use of weak boundary conditions. In comparison to the

scalar case, where boundary conditions are only imposed on the inflow part of the boundary, we

have to distinguish between the different components and flow regimes. At first we discuss how to

approximate the boundary fluxes n ·F when an internal and an external flow is given. In the scalar

case the external flow corresponds to the prescribed inflow boundary condition. The second step

is the definition of the external flow for the different flow regimes.

Approximated boundary flux

For the calculation of the boundary term
∫

Γ ϕin ·Fds we replace the boundary flux n ·F by the

solution of a Riemann problem n · F̂h (see Def. 7.5) , which can be approximated by the flux

formula of Roe

n · F̂h = Fn(U,U∞) =
1

2
n · (F(U)+F(U∞))−

1

2
|n ·A(U,U∞)|(U∞ −U), (7.4.9)

where U is the internal state, U∞ is the external state and A(U,U∞) is the Roe matrix for both

states. The internal state is the numerical solution to the Euler equation. The derivation of the

external state, also referred to as free stream values, is explained later. Note that this approach

is similar to the scalar case where the boundary flux βββnu is approximated by the upwind flux (cf.

(4.2.15)) so that on the inlet part the value of u is prescribed and on the outlet part the unknown

solution u is used (cf. (3.4.8)). The prescribed solution would correspond to the external state, the

other one to the internal state.

The Roe matrix A(Ui,U j) can be obtained by replacing ρ, v and the stagnation enthalpy H by

the Roe mean values

ρi j =
√

ρiρ j, (7.4.10)

vi j =

√
ρivi +

√
ρ jv j√

ρi +
√

ρ j

, (7.4.11)

Hi j =

√
ρiHi +

√
ρ jH j√

ρi +
√

ρ j

. (7.4.12)

Similarly to (7.3.5) we have

A(U,U∞,n) := n ·A(U,U∞) = nxA1(U,U∞)+nyA2(U,U∞), (7.4.13)

where A(U,U∞) = (A1(U,U∞),A2(U,U∞)). The factorization is similar to (7.3.6) so that the ab-

solute value is given by

|A(U,U∞,n)|= R(U,U∞,n) |Λ(U,U∞,n)|R(U,U∞,n)
−1, (7.4.14)

where |Λ(U,U∞,n)|= diag{|λ1| , ..., |λ4|} with λ1, ...,λ4 being the eigenvalues of A(U,U∞,n).
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Boundary types

For the derivation of the free stream values U∞ we need to distinguish between the different types

of boundaries which can occur in the context of the Euler equations. These are:

• supersonic inlet,

• supersonic outlet,

• subsonic inlet,

• subsonic outlet,

• solid surface boundary.

The first four boundaries (supersonic and subsonic boundaries) can be summarized as open or

far-field boundaries. Depending on the type, physical boundary conditions (PBC) need to be

prescribed. These PBC are used for the derivation of the free stream values.

Riemann invariants

To determine the boundary type, we transform the Euler equations from conservative variables

to local characteristic variables associated with the unit outward normal vector n and the unit

tangential vector τττ. The derived system consists of four decoupled equations [64]

∂tWk +λk

∂Wk

∂n
= 0, k = 1, ..4, (7.4.15)

where Wk are the so-called Riemann invariants and λk the eigenvalues of the directional Jacobian

A(U,n). Each Riemann invariant Wk propagates along the corresponding characteristic with con-

stant speed λk and is conserved along this characteristic if no discontinuities occur [72]. The sign

of the eigenvalues indicates the direction of the propagation. If the sign is negative, boundary con-

ditions need to be prescribed for the corresponding Riemann invariant. The Riemann invariants

and eigenvalues are explicitly given by

W1 = vn −
2c

γ−1
, W2 = s, W3 = vτ, W4 = vn +

2c

γ−1
, (7.4.16)

λ1 = vn − c, λ2 = λ3 = vn, λ4 = vn + c, (7.4.17)

where vn = v ·n is the normal velocity, vτ = v · τττ is the tangential velocity and s = cv log
(

p
ργ

)
is

the entropy with the constant-volume heat capacity cv. Following [35] we replace W2 = s by

W2 =
p

ργ
. (7.4.18)

If we consider the local Mach number M = |vn|
c

and the normal velocity vn, we can identify the

boundary types as follows [64]

• Supersonic inlet: vn < 0, M > 1. All eigenvalues are negative.

• Supersonic outlet: vn > 0, M > 1. All eigenvalues are positive.

• Subsonic inlet: vn < 0, M < 1. Only λ4 is nonnegative.

• Subsonic outlet: vn > 0, M < 1. Only λ1 is negative.

• Solid surface boundary: vn = M = 0. Only λ1 is negative.
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If the Riemann invariants are given, the primitive (ρ, p,v) and conservative variables (ρ,ρv,ρE)

can be calculated by

ρ =

(
c2

γW2

) 1
γ−1

, (7.4.19)

p =
c2ρ

γ
, (7.4.20)

v =
W1 +W4

2
n+W3τττ, (7.4.21)

ρv = ρ

(
W1 +W4

2
n+W3τττ

)
, (7.4.22)

ρE =
p

γ−1
+

1

2
ρ |v|2 , (7.4.23)

where c = γ−1
4
(W4 −W1).

Calculation of the external state U∞

To obtain the external state in (7.4.9) we make the following steps [64]:

• Compute the Riemann invariants W (U) corresponding to the given numerical solution U .

• Set

W k
∞ :=

{
Wk(U) if λk ≥ 0,
W k

PBC if λk < 0,

where W k
PBC are the prescribed physical boundary conditions.

• Calculate the free stream values U∞ by using (7.4.19)-(7.4.23) for W∞ = (W 1
∞, ...,W

4
∞) .

7.4.3. Prescribed open boundary conditions

Supersonic inlet

At a supersonic inlet all eigenvalues are negative and therefore boundary conditions need to be

prescribed for all Riemann invariants. This means that W∞ =WPBC. To simplify the calculation of

the external state we directly prescribe the free stream values U∞ so that no transformation of the

Riemann invariants to conservative variables is required.

Supersonic outlet

At a supersonic outlet all eigenvalues are positive and therefore no boundary conditions need to be

prescribed, i.e., W∞ =W (U) and U∞ =U . Therefore no transformation to and from the Riemann

invariants is necessary and the flux formula (7.4.9) simplifies to

Fn(U,U∞) = Fn(U,U) = n ·F(U). (7.4.24)

Subsonic inlet

At a subsonic inlet the fourth eigenvalue is nonnegative. Therefore we obtain

W∞ = (W 1
PBC,W

2
PBC,W

3
PBC,W4(U)). (7.4.25)
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It is common practice to prescribe the density ρin, pressure pin and the tangential velocity vin
τ

[35]. The boundary conditions for the Riemann invariants can be calculated by

W 1
PBC =W4(U)− 4c

γ−1
, (7.4.26)

W 2
PBC =

pin

ρ
γ
in

, (7.4.27)

W 3
PBC = vin

τ , (7.4.28)

where c is given by

c =

√
γpin

ρin

. (7.4.29)

This gives the external state U∞ = (ρ∞,(ρv)∞,(ρE)∞) by

ρ∞ = ρin, (7.4.30)

v∞ =

(
W 1

PBC +W4(U)

2
n+ vin

τ τττ

)
, (7.4.31)

(ρv)∞ = ρ∞v∞, (7.4.32)

(ρE)∞ =
pin

γ−1
+

1

2
ρin |v∞|

2 . (7.4.33)

Subsonic outlet

At a subsonic outlet only the first eigenvalue is negative. This gives

W∞ = (W 1
PBC,W2(U),W3(U),W4(U)). (7.4.34)

We prescribe the exit pressure pout [35] and obtain the boundary condition of the first Riemann

invariant

W 1
PBC =W4(U)− 4

γ−1

√
γpout

ρ

(
p

pout

) 1
γ

, (7.4.35)

where ρ and p are the values of the interior state.

7.4.4. Solid surface boundary

Since there is no convective flux across a solid surface, the normal velocity vanishes

v ·n = 0. (7.4.36)

This is called a free-slip or no-penetration condition [64]. For the calculation of the boundary flux

by Roe’s flux formula (7.4.9) we derive the external state by using the mirror/reflection condition

n · (v∞ +v) = 0 (7.4.37)

which gives

U∞ =




ρ

ρv∞

ρE


 , v∞ = v−2n(v ·n). (7.4.38)
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Another way to enforce zero boundary flux is given by [27]

n · F̂h =




0

nx p

ny p

0


 . (7.4.39)

On curved boundaries the definition of the normal vector is very important. If the boundary of

the mesh is linearly approximated and therefore a poor approximation of a curved boundary, we

would get numerically a constant normal vector along these sides which may cause large errors.

For this reason whenever it is possible we will use the physical normal vector. In [55] it was

shown that in the case of mirror conditions it is sufficient to use the physical normal vector in the

calculation of the free stream values whereas for the solution of the Riemann problem Fn(U,U∞)
the standard numerical normal vector can be used. A way to approximate the physical normal

vector, if there is no analytical description of the boundary, is described in [55].

For the discretization in time we will use the same procedure as for the CG1-DG2 method.

Therefore, we will first introduce this method and then explain time discretization.

7.5. The CG1-DG2 method for the Euler equations

We will now derive the weak formulation for the CG1-DG2 method which is similar to the DG

weak formulation.

7.5.1. Variational formulation

Let Th be a conforming triangulation of Ω ⊂ R
2. We consider equation (7.3.1) on an element

K ∈ Th. Multiplying (7.3.1) by a suitable vector-valued test function W and integrating by parts

gives

∫
K

(
W

∂U

∂t
−∇W ·F

)
dx+

∫
SK

W+ nSK
·Fds = 0. (7.5.1)

If we sum over all elements K ∈ Th, we obtain

∫

Th

(
W

∂U

∂t
−∇W ·F

)
dx+ ∑

K∈Th

∫
SK\Γ

W+ nSK
·Fds+

∫

S
∂
h

W n ·Fds = 0. (7.5.2)

Similarly to the linear advection case in section 4.2, F may be discontinuous across the inner

element edges. Therefore, we introduce the numerical flux H(U+,U−,nS), which satisfies

∑
K∈Th

∫
SK\Γ

W+ nSK
·Fds ≈ ∑

K∈Th

∫
SK\Γ

H(U+,U−,nSK
)W+ ds. (7.5.3)

Possible definitions of this flux will be discussed later. We assume that the numerical flux

H(U+,U−,n) is consistent, i.e.,

H(U,U,n) = n ·F, (7.5.4)

and conservative, i.e.,

H(U+,U−,n) =−H(U−,U+,−n). (7.5.5)
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Furthermore, following [30] we assume that H(U+,U−,n) is locally Lipschitz-continuous.

Taking into account that the numerical flux is conservative, we derive

∫

Th

(
W

∂U

∂t
−∇W ·F

)
dx+

∫

S
int
h

[W ]H(U+,U−,nS)ds+
∫

S
∂
h

W n ·Fds = 0, ∀W, (7.5.6)

where nS is a fixed normal vector to side S ∈ S
int
h .

Like in the scalar case there are different possibilities for the definition of the numerical flux.

Here we will present the Lax-Friedrichs and the Vijayasundaram flux, which are both consistent

and conservative [36]. Let S ∈ Sh. The Lax-Friedrichs flux is defined by

H(U+,U−,nS) =
1

2
(F(U+) ·nS +F(U−) ·nS +α[U ]), (7.5.7)

where α is the largest absolute eigenvalue of A(U+,nS) and A(U−,nS) given by

α = max{
∣∣v+ ·nS

∣∣+ c+,
∣∣v− ·nS

∣∣+ c−}, (7.5.8)

where c is the speed of sound.

For the definition of the Vijayasundaram flux we introduce

A±(U,nS) = R(U,nS)Λ
±(U,nS)R(U,nS)

−1, (7.5.9)

where Λ− = diag{min(λi,0)}, Λ+ = diag{max(λi,0)} for eigenvalues λi of A(U,nS) and R(U,e)
is the matrix of right eigenvectors of A(U,nS) (cf. Def. 7.3.6).

This yields the definition of the Vijayasundaram flux

H(U+,U−,nS) = A+({U},nS)U
++A−({U},nS)U

−. (7.5.10)

Note that Roe’s flux formula (7.4.9) can also be used as numerical flux H(U+,U−,nS) =
Fn(U

+,U−).

7.5.2. The discretized system

Let us assume that we have a consistent and conservative flux,e.g., the Lax-Friedrichs flux, and

the weak formulation is given by

∫

Th

W
∂U

∂t
dx =

∫

Th

∇W ·Fdx−
∫

S
int
h

[W ]H(U+,U−,nS)ds−
∫

S
∂
h

W n ·Fds. (7.5.11)

Let {ϕi} be the basis of the space [V 1,2
h ]4.

Similarly to (7.4.5) we obtain the semi-discrete system

MC

dU

dt
= KU +S(U)+H(U), (7.5.12)

where MC, K and S(U) are defined as in the continuous case (7.4.5)-(7.4.8). H(U) is the vector

corresponding to the numerical flux which consists of entries

Hi =− ∑
K∈Th

∫
SK\Γ

H(U+,U−,nSK
)ϕi

+ ds. (7.5.13)
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Using the backward Euler scheme for the integration in time yields a nonlinear system

MC

Un+1 −Un

∆t
= Kn+1Un+1 +S(Un+1)+H(Un+1), (7.5.14)

where the superscript n refers to the time level n. The terms on the right-hand side are now

linearized [27, 35] using the Taylor series expansion

Kn+1Un+1 ≈ KnUn +

(
∂K

∂U

)n

(Un+1 −Un), (7.5.15)

S(Un+1)≈ S(Un)+

(
∂S

∂U

)n

(Un+1 −Un), (7.5.16)

H(Un+1)≈ H(Un)+

(
∂H

∂U

)n

(Un+1 −Un). (7.5.17)

This gives

[
1

∆t
MC −

(
∂K

∂U
+

∂S

∂U
+

∂H

∂U

)n]
(Un+1 −Un) = KnUn +S(Un)+H(Un). (7.5.18)

We neglect the nonlinearity of K and approximate
(

∂K
∂U

)n

by Kn. This leads to

Kn+1Un+1 ≈ KnUn+1. (7.5.19)

The definition of the approximated boundary flux Jacobian
(

∂S
∂U

)n

can be found in [35].

For the derivation of the numerical flux Jacobian we take (7.3.4) into account and write the

Lax-Friedrichs numerical flux in the following form

H(U+,U−,nS) =
1

2
(A+U+ ·nS +A−U− ·nS +α(U+−U−)). (7.5.20)

The Jacobian of the numerical flux corresponding to the state vector Uk at node k is given by

∂H(U+,U−,nS)

∂U+
K

=
1

2
(A+ ·nS +αI)), (7.5.21)

∂H(U+,U−,nS)

∂U−
K

=
1

2
(A− ·nS −αI)), (7.5.22)

where I is the 4×4 identity matrix.

The Jacobian of the Vijayasundaram flux can be found in [36].

In the case of the stationary Euler equations

KU +S(U)+H(U) = 0 (7.5.23)

we use a (pseudo-)time stepping scheme, i.e., we apply (7.5.18). To "boost" the convergence we

start with a small time step size and increase it when the residual falls below a certain error bound.

Note that the discretized DG system can be derived in a similar way.
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8
Numerical results for the Euler

equations

In this chapter, we will focus on the numerical solution of the Euler equations. This can be very

challenging also for stable methods since shock waves, contact discontinuities and rarefaction

waves may occur. The first two phenomena produce discontinuous solutions which can cause

oscillations if no further stabilization is applied. For example, in the scalar case those oscillations

can be observed in the solid body rotation problem in section 6.5 where under- and overshoots at

the boundary of the cylinder occurred also for the stable CG1-DG2 and DG2 method.

In the following we will compare the numerical results derived by the CG2, DG2 and CG1-

DG2 method. We will see that the CG1-DG2 method produce similar results as those obtained by

the DG2 method.

8.1. Nozzle flow problem

At first we consider a stationary problem with a subsonic flow through a converging-diverging

nozzle [35, 38]. The upper and lower walls are given by

w±(x)





±1 if −2 ≤ x ≤ 0,
±0.25(cos(0.5πx)+3) if 0 < x ≤ 4,
±1 if 4 < x ≤ 8.

(8.1.1)

At the subsonic boundary we set ρ= 1,v=(0.2,0)T , p= 1
γ . These are also our initial condition

for the stationary solver.

In Figures 8.1 - 8.3 the DG2 and CG1-DG2 solutions for density, pressure and Mach number

are given in the case of triangular meshes. It can be seen that both methods produce similar results.

The results for the serendipity CG1-DG2 method look similar and therefore are not shown here.

We remark that the stationary solver did not converge for the CG2 and the Q2-CG1-DG2 method.

The densities in Fig. 8.1 vary between 0.94 and 1.0 and the pressures in Fig. 8.2 between 0.66

and 0.72. Both quantities reach their minimum at the boundary of the throat of the nozzle.
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(a) CG1-DG2 solution

(b) DG2 solution

Figure 8.1: Converging-diverging nozzle on triangular meshes:

density (blue = 0.94, red = 1.0)

(a) CG1-DG2 solution

(b) DG2 solution

Figure 8.2: Converging-diverging nozzle on triangular meshes:

pressure (blue = 0.66, red = 0.72)

The Mach number, shown in Fig. 8.3, varies between 0.14 and 0.39 which means the flow is

subsonic in the whole domain. In contrast to density and pressure the maximum is reached at the

most narrow part of the nozzle.
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8.2. Radially symmetric problem

(a) CG1-DG2 solution

(b) DG2 solution

Figure 8.3: Converging-diverging nozzle on triangular meshes:

Mach number (blue = 0.14, red = 0.39)

8.2. Radially symmetric problem

We now consider the time-dependent Euler equations with smooth initial conditions

ρ =

{
1+cos(πr(x,y))

4
+1 if r(x,y)< 1,

1 otherwise.
(8.2.1)

v = (0,0), (8.2.2)

p =
1

ρ
, (8.2.3)

where

r(x,y) = 2

√
(x2 + y2).

We assume that all boundaries are solid walls. At T = 0.5 we stop the computation. All methods

produce similar results so that we will only present those computed by the CG1-DG2 method on

triangular meshes.

In Fig. 8.4 the Mach number is displayed. It can be seen that the Mach number is 0 at the

center, on the circumference of a circle with radius ≈ 0.22 and outside the circle with radius 1.

In Fig. 8.5 it is shown how the density and the pressure change over time. Both quantities

increase inside a circle of radius ≈ 0.35−0.4 whereas they decrease elsewhere.
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CHAPTER 8. Numerical results for the Euler equations

(a) Mach number 3D (b) Mach number at x = 0

Figure 8.4: Radially symmetric problem: Mach number at T = 0.5

(a) Density

(b) Pressure

Figure 8.5: Radially symmetric problem: temporal change of the solution at x = 0

(blue: initial data, red: numerical solution at T = 0.5)
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8.3. Shock tube problem

8.3. Shock tube problem

We now consider a Riemann problem for the time-dependent Euler equations. This problem is

adopted from [80] where the domain Ω = (0,1) is initially separated by a membrane into two

sections. We extend it to two dimensions and define the initial data

ρ1 = 1.0, ρ2 = 0.125, (8.3.1)

v1 = (0,0)T , v2 = (0,0)T , (8.3.2)

p1 = 1.0, p2 = 0.1. (8.3.3)

At the beginning of the computation (t = 0) the membrane is removed. This results in a shock wave

which propagates into the direction of lower pressure and is followed by a contact discontinuity.

The shock wave manifests itself as discontinuity in all primitive variables, i.e., density, velocity

and pressure. Only the density is discontinuous across the contact discontinuity whereas pressure

and velocity are constant. Furthermore, there is a rarefaction wave propagating in the opposite

direction which manifests itself in a smooth transition to the initial values.

At the beginning of the computation the initial data needs to be projected into the finite element

space. Since the density and the pressure are discontinuous, the L2 projection of those would cause

oscillations. Therefore, we project the initial data into the continuous linear finite element space

using a constrained L2 projection (see section 9.5). This leads to an approximated initial data

which is free of oscillations. The discontinuity of the pressure and the density is resolved as a

steep gradient. If this data is projected into the CG2 space and the CG1-DG2 space, respectively,

the projection is free of oscillations, see Fig. 8.6.

Figure 8.6: Shock tube problem: projected pressure and density

In Fig. 8.7 the CG2 solution is compared with the serendipity CG1-DG2 solution. We see

that both methods resolve the rarefaction wave very well. Between the rarefaction wave and the

shock the CG2 method produces large oscillations. The CG1-DG2 method produces under- and

overshoots near the shock and small perturbation between the shock and the rarefaction wave. The

contact discontinuity is captured by the CG1-DG2 method but smeared out a bit.

The results presented in this chapter indicate that the CG1-DG2 method is also applicable to

the Euler equations and seems to be stable. However, for more challenging problems like flows

with shock waves and contact discontinuities we need to investigate how the CG1-DG2 method

can be modified to capture those more accurately.
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(a) Pressure

(b) Density

(c) Velocity

Figure 8.7: Shock tube problem at T = 0.231: CG2 solution (black) and CG1-DG2 solution (red)
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9
H p-Adaptivity

In our numerical examples in Chapters 6 and 8 we have seen that the numerical solution can

approximate the exact solution very well in some elements (e.g., where the solution is constant)

whereas large errors occur in other elements (e.g. near discontinuities). To achieve a higher

accuracy of the approximation different adaptivity strategies can be considered:

• h-adaptivity: polynomial degree p is constant, mesh size h is variable,

• p-adaptivity: polynomial degree p is variable, mesh size h is constant,

• hp-adaptivity: polynomial degree p and mesh size h are variable.

In the context of elliptic equations, e.g. Poisson’s equation (3.1.1), it was shown in [7] that

‖u−uhp‖1 ≤C
hµ

pm−1
‖u‖m, (9.0.1)

where µ=min(p,m−1). This means that if the solution is smooth enough, increasing the polyno-

mial degree can give higher convergence rates than mesh refinement since the rate for h-refinement

is bounded by the polynomial degree. However, in most simulations the solution is not smooth so

that h-refinement is preferred. If both adaptivity strategies are combined we may also expect an

exponential rate of convergence with respect to the degrees of freedom whereas the other strategies

only give polynomial rates [34].

In this chapter we present an hp-adaptive algorithm for convection-dominated problems in

2D and take into account that the CG1-DG2 space is a hierarchical space in the sense that if we

neglect the quadratic basis functions we get the continuous linear finite element space. The use of

the CG1-DG2 space leads to the restriction of the polynomial degree to p = 1,2.

The idea of the hp-adaptive algorithm is that we use linear finite elements stabilized by the

flux-corrected transport (FCT) algorithm [58] in regions where the solution is non-smooth (e.g., at

steep gradients) and the CG1-DG2 method in regions where the solution is smooth. We emphasize

that no further stabilization of the CG1-DG2 method is necessary in this case whereas the CG2

method may need stabilization. This use of higher-order elements is in good agreement with the

common practice to use p-adaptivity only in regions where the solution is smooth and h-refinement

elsewhere [71]. In our case, this strategy is combined with the reference solution approach for h-

adaptivity.
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In the following we introduce the general FCT algorithm [58, 62], a criterion for measuring

the smoothness of a solution [61] and present the resulting hp-adaptive algorithm. Thereby, we

follow our work already presented in [13] and [14].

9.1. Flux-corrected transport

At first we will explain a stabilization technique known as FCT scheme. It guarantees that the so-

lution fulfills discrete maximum principles and is positivity preserving under certain assumptions.

The FCT algorithm can be applied to convection-diffusion equations but for simplicity we will

consider only the unsteady linear convection equation

ut +∇ · (βββu) = 0 in Ω, (9.1.1)

where u is a conserved quantity and βββ a given velocity field. For more details about the treatment

of diffusive terms we refer to [58].

The FCT algorithm is divided in three parts. The first part is the derivation of a low-order

approximation which is positivity preserving and fulfills the discrete maximum principle (see Ap-

pendix Theorem A.15). The second part considers the calculation of the numerical fluxes which

are the difference between the low-order and the high-order scheme (standard Galerkin method).

The last step is adding a limited amount of antidiffusive numerical fluxes to the low-order ap-

proximation. At this step, limiting is done in such a way that the updated solution remains non-

oscillatory and positivity preserving.

9.1.1. High-order method

For the discretization in space we use linear continuous finite elements which yields a system of

equations

MC

du

dt
= Ku, (9.1.2)

where u is the vector of unknowns, MC = {mi j} is the consistent mass matrix and K = {ki j} is the

discrete transport operator. To discretize the time derivative we use the θ-scheme and obtain the

fully-discretized scheme
[

MC

∆t
−θK

]
un+1 =

[
MC

∆t
+(1−θ)K

]
un, (9.1.3)

where un is the coefficient vector from the previous time step solution and un+1 the unknown

coefficient vector. This system corresponds to the CG1 method for convection equations which is

not stable and can therefore produce non-physical oscillations, cf. Section 3.4 and Chapter 6.

9.1.2. Algebraic flux correction

For the derivation of a low-order scheme we take system (9.1.2) and replace the matrix MC by its

lumped counterpart

ML := diag{mi}, mi = ∑
j

mi j. (9.1.4)

On the right-hand-side we add a discrete diffusion operator D = {di j} defined by [58, 62]

dii :=−∑
j �=i

di j, di j = max{−ki j,0,−k ji}= d ji, ∀ j �= i, (9.1.5)
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9.1. Flux-corrected transport

so that K +D has no negative off-diagonal entries and D is symmetric with zero row sums. The

low-order scheme is then given by

ML

du

dt
= (K +D)u. (9.1.6)

The difference of the low-order and high-order scheme defines the sum of antidiffusive fluxes

f (u) = (ML −MC)
du

dt
−Du. (9.1.7)

Using these fluxes the high-order scheme (9.1.2) can be rewritten in the following form

ML

du

dt
= (K +D)u+ f (u). (9.1.8)

The entries of f (u) can be simplified in the following way [58]

((ML −MC)u)i = uimi −∑
j

mi ju j = ui ∑
j

mi j −∑
j

mi ju j = ∑
j �=i

mi j(ui −u j), (9.1.9)

(Du)i = ∑
j

di ju j = ∑
j �=i

di ju j +diiui = ∑
j �=i

di ju j −∑
j �=i

di jui = ∑
j �=i

di j(u j −ui). (9.1.10)

This gives

fi = ∑
j �=i

fi j, fi j =

(
mi j

d

dt
+di j

)
(ui −u j), ∀ j �= i. (9.1.11)

These fluxes can now be limited in regions where they would cause under- or overshoots, which

yields the semi-discrete problem

ML

du

dt
= (K +D)u+ f̄ (u). (9.1.12)

Here, f̄ (u) is the vector containing the sums of limited antidiffusive fluxes

f̄i = ∑
j �=i

αi j fi j, 0 ≤ αi j ≤ 1. (9.1.13)

The fluxes should be limited in such a way that in elements where no oscillations occur the solution

tend to the high-order solution (αi j ≈ 1) whereas in oscillatory regions the low-order solution is

adopted (αi j = 0). In the following section we will present a limiter which fulfills these conditions.

For the discretization in time we apply the standard θ-scheme

Aun+1 = Bun + f̄ , (9.1.14)

where f̄ is the fully discrete limited flux term,

A =
1

∆t
ML −θ(K +D), (9.1.15)

B =
1

∆t
ML +(1−θ)(K +D). (9.1.16)

The implicit part of the flux term f depends on the unknown solution un+1. Therefore, it

must be linearized or calculated in an iterative way [58]. Here we make use of the unconstrained

Galerkin solution uH of (9.1.3) to determine the fluxes [62] by

fi j =
(mi j

∆t
+θdi j

)
(uH

i −uH
j )−

(mi j

∆t
− (1−θ)di j

)
(un

i −un
j). (9.1.17)

101



CHAPTER 9. H p-Adaptivity

Remark 9.1: Theoretically, it is also possible to define an FCT scheme for higher-order

elements. However, the derivation is more complicated [59], so that it is usually applied to

linear elements. One main problem with higher-order elements is that mass lumping may

produce negative or zero diagonal entries for which the discrete maximum principle and

positivity preservation cannot be guaranteed (see Appendix, Theorem A.15).

We have now seen that the idea of the FCT scheme is to switch between a high-order and

a low-order solution, in such a way that no oscillations in the actual solution occur. We will

now show, how to limit the antidiffusive fluxes, such that the solution fulfills discrete maximum

principles and stays positivity preserving.

9.2. Zalesak’s limiter

Let us consider the limiter used in Zalesak’s multidimensional FCT algorithm [88]. It is based on

a solution update of the form

miūi = miũi +∆t ∑
j �=i

αi j fi j, (9.2.1)

where ũ is a low-order approximation and ū the final time-step solution. The correction factors αi j

are calculated by Scheme 9.2 in such a way that the local discrete maximum principle

umin
i ≤ ūi ≤ umax

i , ∀ i, (9.2.2)

holds, where
umin

i := min
j∈Si∪i

ũ j and umax
i := max

j∈Si∪i
ũ j

are the local extrema of ũ and Si = { j �= i |mi j �= 0} denotes the set of nearest neighbors of node i.

Scheme 9.2: Calculation of the correction factors αi j [58]

1. Compute the sums of positive and negative antidiffusive fluxes

P+
i = ∑

j �=i

max{0, fi j}, P−
i = ∑

j �=i

min{0, fi j}. (9.2.3)

2. Define the upper and lower bounds for admissible increments

Q+
i =

mi

∆t
(umax

i − ũi), Q−
i =

mi

∆t
(umin

i − ũi). (9.2.4)

3. Compute the nodal correction factors for the components of P±
i

R+
i = min

{
1,

Q+
i

P+
i

}
, R−

i = min

{
1,

Q−
i

P−
i

}
. (9.2.5)

4. Check the sign of the unconstrained flux and multiply fi j by

αi j =

{
min{R+

i ,R
−
j } if fi j > 0,

min{R−
i ,R

+
j } if fi j < 0.

(9.2.6)
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Fluxes fi j that have the same sign as (ũ j − ũi) flatten the solution profile instead of steepening

it [25, 58]. This can cause spurious ripples. To prevent this an optional ’prelimiting’ step [25, 88]

can be applied

fi j := 0, if fi j(ũ j − ũi)> 0. (9.2.7)

The easiest way to derive the final FCT solution is to solve the low-order scheme (9.1.6) to

get a low-order approximation and then update the solution like (9.2.1). Here, we favor another

approach and calculate ū and the low-order approximation ũ to u(tn+1/2) by

1

∆t
MLū = Bun + f̄ , (9.2.8)

1

∆t
MLũ = Bun. (9.2.9)

By Theorem A.20 the positivity of un carries over to ũ under the CFL-like condition [58, 62]

∆t ≤− mi

(kii +dii)(1−θ)
, ∀i, (9.2.10)

and the assumption that (kii +dii)< 0, ∀i. Note that dii ≤ 0 by definition.

If in addition ∑ j ki j = 0,∀i, then the discrete maximum principle is fulfilled, i.e. ,

minun ≤ ũ ≤ maxun. (9.2.11)

By Applying Zalesak’s limiter we obtain a solution ū of (9.2.8) which fulfills the local discrete

maximum principle (9.2.2).

At last we compute the final solution un+1 of (9.1.14). Using (9.2.8) the system (9.1.14) can

be rewritten as

Aun+1 =
1

∆t
MLū. (9.2.12)

If A fulfills the M-matrix properties, positivity of ū carries over to un+1. If in addition ∑ j ki j = 0,∀i,

the discrete maximum principle holds

minun ≤ un+1 ≤ maxun. (9.2.13)

We have now shown that the presented FCT algorithm, summarized in Scheme 9.3, is posi-

tivity preserving and fulfills the discrete maximum principle, if the matrices A and B as defined

in (9.1.15) and (9.1.16) fulfill the assumptions of Theorem A.20. Note that this scheme has also

better stabilization properties than the CG1-DG2 method in the sense that it can handle steep

gradients without causing oscillations.
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Scheme 9.3: FCT algorithm

1. Compute the high-order solution uH ≈ u(tn+1) using (9.1.3).

2. Evaluate the raw antidiffusive fluxes fi j by (9.1.17).

3. Compute the low-order solution ũ by (9.2.9).

4. Use ũ to calculate αi j by Scheme 9.2 and limit the fluxes f̄ .

5. Compute the final solution un+1 ≈ u(tn+1) using (9.1.14).

Remark 9.4: Implementation of Zalesak’s limiter

Algorithm 9.5 presents the edge-based implementation of Zalesak’s limiter written as a

pseudo-code. It takes advantage of the fact that fi j = − f ji and αi j = α ji. In the case of

hp-adaptivity we skip all DOFs which belong to higher-order elements.

Algorithm 9.5: Edge-based Implementation of Zalesak’s limiter [58]

P± := 0,Q± := 0, f̄ := 0

for all i do

for all j ∈ Si, j > i do

P±
i = P±

i +
max

min
{0, fi j}

P±
j = P±

j +
max

min
{0,− fi j}

Q±
i =

max

min
{Q±

i ,
mi

∆t
(u j −ui)}

Q±
j =

max

min
{Q±

j ,
m j

∆t
(ui −u j)}

end for

end for

for all i do

R±
i = min{1,

Q±
i

P±
i

}

end for

for all i do

for all j ∈ Si, j > i do

if fi j > 0 then

αi j = min{R+
i ,R

−
j }

else

αi j = min{R−
i ,R

+
j }

end if

f̄i = f̄i +αi j fi j

f̄ j = f̄ j −αi j fi j

end for

end for

In the following, we will present another important component of our hp-adaptive framework,

which helps us to identify elements for p-refinement.
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9.3. Regularity estimator

9.3. Regularity estimator

The idea of our p-refinement strategy is to increase the polynomial degree only in elements where

the solution can be regarded as smooth. In those elements the CG1-DG2 method guarantees

enough stability, such that the FCT scheme does not need to be applied. For that reason we

estimate the local regularity of the numerical solution uh and obtain the information if the solution

is smooth enough to use the CG1-DG2 method.

In order to estimate the smoothness of uh in a neighborhood of an element K ∈ Th, we compare

uh with a linear approximation of the form [61]

ûh(x) = uh(xc)+Rhuh(xc) · (x−xc), (9.3.1)

where xc denotes the center of K and Rh : Vh → Vh ×Vh is a gradient recovery operator. Here

we will use an L2 projection to construct Rhuh = (R1
huh,R

2
huh)

T (see Section 9.3.1). This gradient

approximation is continuous even if ∇uh is not. Note that the approximation ûh is defined element-

wise and may be discontinuous across element boundaries.

The solution on an element K is regarded as smooth if the value of ûh at each vertex xi ∈ K is

bounded by the values of uh at the centers of surrounding elements [61]

umin
i < ûh(xi)< umax

i , ∀xi ∈ K, (9.3.2)

where

umax
i := max{uh(xc) | ∃K ∈ Th : xi,xc ∈ K}, (9.3.3)

umin
i := min{uh(xc) | ∃K ∈ Th : xi,xc ∈ K}. (9.3.4)

Remark 9.6: Implementation of strict inequalities

For implementation purposes we replace (9.3.2) by

umin
i + ε < ûh(xi)< umax

i − ε, (9.3.5)

where ε is a small positive number.

In (9.3.2) we use strict inequalities, which implies that constant functions are not regarded as

smooth. In the context of our hp-adaptive algorithm this is a reasonable assumption since a higher

polynomial degree, which is used for smooth functions, does not lead to a higher accuracy for the

approximation of constant functions. Elements, in which local extrema occur, violate condition

(9.3.2). To motivate this a simple 1D-example is presented in the following.

Example 9.7: Smoothness indicator for the hat function

Let us consider the hat function and its derivative

u(x) =





0 if 0 ≤ x < 1

x−1 if 1 ≤ x ≤ 2

3− x if 2 < x ≤ 3

0 if 3 < x ≤ 4

u′(x) =





0 if 0 ≤ x < 1

1 if 1 ≤ x ≤ 2

−1 if 2 < x ≤ 3

0 if 3 < x ≤ 4

(9.3.6)

on the interval [0,4]. To determine the smoothness on each element, i.e., on interval Ii =
[i, i+1], i = 0, ..,3, we project the derivative of u(x) into the space of linear finite elements.
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In Fig. 9.1 the discontinuous derivative of the hat function and its continuous projection

are displayed. The next step is to determine the linear approximation (9.3.1). In Fig. 9.3 this

approximation as well as the hat function are displayed.

Figure 9.1: Derivative of hat function

(blue) and its L2 projection (black)

Figure 9.2: Hat function (blue) and

linear approximation (black)

The last step is to check for which intervals Ii, i = 0, ...,3, (9.3.2) holds. For interval I0

we have to check two vertices, namely v0 = 0 and v1 = 1. For vertex v0 we obtain û(v0)< 0

and as surrounding neighbor element I0. Note that in 1D all boundary vertices have only

one neighboring element. In this case we introduce a ghost neighbor I−1. As solution value

at the midpoint of this ghost element we use the constant extension of the boundary, i.e.

u(xc)|I−1
= u(v0). Evaluating the solution at the midpoints of I0 and I−1 gives umin

0 = umax
0 = 0.

Therefore condition (9.3.2) is not fulfilled and we can mark the element I0 as non-smooth.

For the next element I1 we have for the vertices v1 = 1 and v2 = 2: 0 < û(v1) < 0.5
and 0.5 < û(v2). The surrounding neighbors of v1 are I0 and I1 which leads to umin

1 = 0

and umax
1 = 0.5 and therefore condition (9.3.2) is fulfilled for v1. It remains to check v2.

The neighbors for this element are I1 and I2 and therefore umin
2 = umax

2 = 0.5. This gives

umax
2 < ûh(v2) and therefore the solution on this element is regarded as non-smooth.

For the remaining elements we get similar results so that all elements will be marked as

non-smooth.

Since the regularity estimator applied to the solution cannot distinguish between smooth peaks

and spurious under-/overshoots, and therefore both would be marked as non-smooth, we addition-

ally need to determine the smoothness of each component of the gradient ∇uh = (ux,uy)
T [61]. If

the solution and/or both components of its gradient are smooth, the element can be regarded as

smooth. Note that only the function and not the gradient was used to determine the smoothness in

Example 9.7.

Following [61] we define the linear reconstruction

ĝ1
h(x) =

∂uh

∂x
(xc)+∇(R1

huh)(xc) · (x−xc), (9.3.7)

ĝ2
h(x) =

∂uh

∂y
(xc)+∇(R2

huh)(xc) · (x−xc), (9.3.8)

where Rhuh = (R1
huh,R

2
huh)

T is the recovered gradient. To estimate the regularity of the gradient

we compare the solution gradient ∇uh and its linear reconstruction ĝh = (ĝ1
h, ĝ

2
h)

T . This is done

similar to the function case.
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The gradient ∇uh on an element K is regarded as smooth if the values of ĝ1
h and ĝ2

h at all

vertices xi ∈ K are bounded by the centroid values of ∂uh

∂x
and ∂uh

∂y
, respectively [13]:

(
∂uh

∂x

)min

i

< ĝ1
h(xi)<

(
∂uh

∂x

)max

i

, ∀xi ∈ K, (9.3.9)

(
∂uh

∂y

)min

i

< ĝ2
h(xi)<

(
∂uh

∂y

)max

i

, ∀xi ∈ K, (9.3.10)

where
(

∂uh

∂x

)max

i

:= max

{
∂uh

∂x
(xc) | ∃K ∈ Th : xi,xc ∈ K

}
, (9.3.11)

(
∂uh

∂x

)min

i

:= min

{
∂uh

∂x
(xc) | ∃K ∈ Th : xi,xc ∈ K

}
, (9.3.12)

(
∂uh

∂y

)max

i

:= max

{
∂uh

∂y
(xc) | ∃K ∈ Th : xi,xc ∈ K

}
, (9.3.13)

(
∂uh

∂y

)min

i

:= min

{
∂uh

∂y
(xc) | ∃K ∈ Th : xi,xc ∈ K

}
. (9.3.14)

In summary, we mark an element K as smooth, if the solution is regarded as smooth, i.e.,

(9.3.2) holds, and/or both components of the gradient are regarded as smooth, i.e.,(9.3.9) and

(9.3.10) hold.

In the following example we apply the regularity estimator to a function with a smooth peak

and show that the smoothness of the gradient has to be taken into account.

Example 9.8: Regularity estimator applied to a smooth function

Let us consider the following function and its derivative

u(x) = 4− (x−2)2, u′(x) = 4−2x, (9.3.15)

on the interval [0,4]. To determine the smoothness on each element, i.e., on interval Ii = [i, i+
1], i = 0, ..,3, we project the derivative of u(x) into the space of linear finite elements. Since

u′(x) is a continuous linear function, we obtain Rhu(x) = u′(x). The next step is to determine

the linear approximation (9.3.1). In Fig. 9.3 this approximation as well as u(x) are displayed.

Figure 9.3: Function u(x) (blue) and its linear approximation (black)
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The next step is to check for which intervals Ii, i = 0, ...,3, (9.3.2) holds. For interval I0

we have to consider vertices v0 = 0 and v1 = 1. For vertex v0 we obtain û(v0) = 0.25. The

surrounding neighbor elements are I0 and the ghost neighbor I−1, where u(xc)|I−1
= u(v0).

Evaluating the solution at the midpoints of I0 and I−1 gives umin
0 = 0 and umax

0 = 1.75, which

means that condition (9.3.2) is fulfilled for this vertex. For vertex v1 we obtain û(v1) = 3.25,

umin
1 = 1.75 and umax

1 = 3.75. Therefore, condition (9.3.2) is fulfilled for both vertices and

we can mark the element I0 as smooth. Due to symmetry the same holds for element I3.

Since the linear approximation is continuous, we have û(v1)|I0
= û(v1)|I1

. However,

û(v2)|I1
= û(v2)|I2

= 4.25 and umin
2 = umax

2 = 3.75, which means that condition (9.3.2) is not

fulfilled for elements I1 and I2. Therefore, we have to check the derivative and its approxi-

mation for elements I1 and I2. We obtain that the linear approximation ĝ(x) of the derivative

u′(x) is continuous and can be simplified to ĝ(x) = u′(x). Since u′(x) is strictly monotoni-

cally decreasing, it is easy to verify that condition (9.3.9) holds on all elements. Therefore,

the derivative is regarded as smooth on all elements and we mark all elements as smooth.

We remark that we obtain for the L2 projection π1
hu of u into the linear finite element

space that it is smooth on I0 and I3 and its derivative is smooth on I1 and I2. Therefore, all

elements are marked as smooth.

Remark 9.9: Implementation

For implementation purposes we introduce the smoothness sensors η0
i ,η

x
i ,η

y
i , i = 1, ...,Nvert ,

where Nvert is the number of vertices. If (9.3.2) holds in all elements containing the vertex xi,

then ηi
0 = 1, else we set ηi

0 = 0. This means that the solution in a small neighborhood of ver-

tex xi can be regarded as smooth if ηi
0 = 1. Similarly we get the values of ηx

i and η
y
i by testing

conditions (9.3.9) and (9.3.10) which gives information about the regularity of the derivatives

w.r.t. x and y. Since the marker η0 can fail to distinguish between smooth peaks and oscilla-

tions, we combine the informations of all markers and define ηmax = max(η0,min(ηx,ηy)).
If ηmax

i = 1, we mark vertex xi as smooth. Only if all vertices xi in an element K are marked

as smooth, do we mark element K as smooth. In this context we will also use ηelem = 1 to

identify smooth elements. Note, that this smoothness sensor is more restrictive than only

the conditions (9.3.2) and/or (9.3.9) and (9.3.10) which can also be seen in the following

example.

Example 9.10: Marking elements in 2D

Let us assume we have a uniform mesh with 64 elements.

Step 1: Determine the elements for which (9.3.2) and/or (9.3.9) and (9.3.10) hold.

Figure 9.4: Step 1: Smooth elements (light blue)
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Step 2: Apply sensor ηmax to all vertices and mark vertex xi as smooth if ηmax
i = 1 .

Figure 9.5: Step 2: Smooth vertices (blue circle)

Step 3: Mark an element K as smooth if ηmax
i = 1 for all vertices xi ∈ K.

Figure 9.6: Step 3: Updated smooth elements (dark blue)

An important part of the regularity estimator is the approximation of the gradient. In the

following, we explain how to derive a continuous approximation by using the L2 projection.

9.3.1. Gradient reconstruction

Let us consider a finite element solution uh ∈Vh, where Vh = span{ϕ1, . . . ,ϕN}. To get a gradient

approximation in Vh we define the operator Rh : Vh →Vh ×Vh by

Rk
huh =

N

∑
j=1

rk
jϕ j, k = 1,2, (9.3.16)

where r1
j ≈ ∂uh

∂x
(x j) and r2

j ≈ ∂uh

∂y
(x j). In our case we will determine the coefficients r1

j ,r
2
j , j =

1, ...,N, using the L2 projection
∫

Ω
ϕiRhuh dx =

∫
Ω

ϕi∇uh dx, i = 1, . . . ,N. (9.3.17)

This gives for each component Rk
h,k = 1,2 a linear system

MCrk = bk, (9.3.18)

where MC = {mi j} is the consistent mass matrix and bk = {bk
j}, k = 1,2, is the load vector asso-

ciated with the k-th derivative

(b1,b2)T =
∫

Ω
ϕi∇uh dx. (9.3.19)
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9.4. Reference solution approach

In the last sections, we have introduced different components of our hp-adaptive framework. Now

we will bring them together, add a h-refinement strategy and derive an hp-adaptive algorithm. As

h-adaptive strategy we adopt the reference solution approach usually considered for hp-adaptivity

[81–83]. This strategy is based on the assumption that the reference solution leads to a better

approximation of the exact solution than the solution on the current space. In the context of hp-

adaptivity, the reference solution is computed on a reference space which is created by increasing

the polynomial degree and refining the mesh size of the current (coarse) space. In contrast to

this original approach, we create the reference space by increasing the polynomial degree only in

elements which are marked as smooth and h-refining all non-smooth elements. Here, the regularity

estimator from the last section helps to determine the smooth elements. For our computations we

use FCT only in matrix blocks associated with the P1/Q1 approximation. Note that due to the use

of the CG1-DG2 space we also restrict the polynomial degree to p ≤ 2.

The hp-adaptive algorithm works iteratively. We start with an initial coarse space and initial

data u0 and update these in each time step in the following way [13]:

Scheme 9.11: H p-adaptive algorithm

1. Adaptivity loop:

(a) Construct the reference space by setting p = 2 in smooth elements and p = 1 in

non-smooth elements. Additionally, all non-smooth elements are h-refined.

(b) Project the old solution un into the reference space and compute the reference

solution ure f .

(c) Project the reference solution into the coarse space and calculate the difference

between the reference solution and its projection.

(d) Adjust the local mesh size of the coarse mesh/space according to the error indi-

cator in (c).

2. Set un+1 = ure f .

We finish the adaptivity loop if either no refinement was done or a user-defined number of

adaptivity steps has been reached. Note that the solution on the coarse space/mesh is never explic-

itly computed. The problem is only solved on the reference space. Since this algorithm does not

coarsen the mesh, an additional coarsening step can be included where the coarse space is either

set to the initial mesh or the previous refinement is reversed.

Remark 9.12: Implementation

In our implementation we distinguish between smooth elements and smooth vertices. For

the construction of the reference space we increase the polynomial degree only in smooth

elements. Since we use an edge-based version of Zalesaks limiter (see Algorithm 9.5), FCT

is only applied to edges whose vertices do not belong to an higher-order element. This

means that after increasing p we start with identifying the degrees of freedom which belong

only to Q1/P1 elements. Only for these degrees of freedom, corresponding to linear vertex

functions, mass lumping and the derivation of artificial diffusion is necessary. For all other

DOFs the standard mass matrix is kept and no artificial diffusion is added. During the process

of calculating α (see Scheme 9.2 and Algorithm 9.5) all these smooth-element-DOFs are

skipped.
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As we have seen in Example 9.10, there can be smooth vertices (ηmax = 1) which are

surrounded by Q1/P1 elements only. At such vertices we set R+
i = R−

i = 1 in Algorithm 9.5

and obtain the high-order solution [61].

In the following, we will show a possible approach to keep the number of DOFs low.

9.4.1. Hanging nodes

Since often only a few elements need to be refined, it is easier to use irregular meshes to keep the

number of DOFs low. These irregular meshes feature hanging nodes which are vertices on one

element but interior points of another element’s edge [57, 84]. If an element of a regular mesh is

refined in such a way that a hanging node occurs, we call this node a 1-level hanging node. If the

element containing this hanging node is refined again, we get a 2-level hanging node and so on.

These different levels are shown in Fig. 9.7 for quadrilateral meshes. Vertices which correspond

1-level

2-level

3-level

Figure 9.7: Meshes with 1,2 and 3-level hanging nodes

to hanging nodes are not degrees of freedom. The solution values at these vertices are constrained

by neighboring nodes, which are called constraining nodes (see Fig. 9.8 of Example 9.13). Note

that constraining nodes can also be constrained nodes. A detailed description of hanging nodes

and the resulting definition of global basis functions in 3D can be found in [57].

In the following example we show, how global basis functions are defined in the context of

hanging nodes.

Example 9.13: Global basis functions

v1 v2

constrained vertex

constraining vertex

local basis function

Figure 9.8: Constrained and constraining vertices
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Let us consider the mesh from Fig. 9.8 which consists of three elements E1, E2 and E3. The

vertices of interest are v1, v2 (constraining vertices) and the hanging node v12 (constrained

vertex). For the definition of global basis functions ϕ1 and ϕ2 corresponding to nodes v1

and v2, respectively, we iterate over all elements. On each element Ek we have local basis

function ϕ̂Ek

i , i = 1,2,3,4. Note that ϕ̂Ek

i (x) = 0∀x /∈ Ek, i = 1, ...,4.

For element E1 we get the standard basis function

ϕ1|E1
= ϕ̂E1

1 ,

where ϕ̂E1

1 is the corresponding local basis function on E1.

On element E2 we get

ϕ1|E2
= ϕ̂E2

4 +
1

2
ϕ̂E2

3 ,

where ϕ̂E2

4 is the corresponding local basis function on E2 and ϕ̂E2

3 is the local basis function

corresponding to the constrained vertex.

On element E3 we get

ϕ1|E3
=

1

2
ϕ̂E3

4 ,

which corresponds again to the constrained vertex.

Similarly we can define

ϕ2 = ϕ̂E1

2 + ϕ̂E3

3 +
1

2
ϕ̂E3

4 +
1

2
ϕ̂E2

3 ,

where ϕ̂E3

4 and ϕ̂E2

3 are the local basis functions of the constrained vertex on element E3 and

E2, respectively.

The transition from one element to another is continuous as we will see in the following.

W.l.o.g. we assume v1 = (0,0), v12 = (0.5,0) and v2 = (1,0). Let x be a point at the edge

between vertices v1 and v12 and we wish to evaluate ϕ1(x). If we regard this point as part of

E1 we get ϕ1(x) = ϕ̂E1

1 (x). If we assume x ∈ E2, we get ϕ1(x) = ϕ̂E2

4 (x)+ 1
2
ϕ̂E2

3 (x).
In order to satisfy the continuity requirement, the relation

ϕ̂E1

1 (x) = ϕ̂E2

4 (x)+
1

2
ϕ̂E2

3 (x), ∀x = (x,0), x ∈ [0,0.5], (9.4.1)

must hold.

This is true, since if we look at the definition of the basis function on the edge, we get

ϕ̂E1

1 (x) = 1− x, ∀x = (x,0), x ∈ [0,1],

ϕ̂E2

4 (x) = 1−2x and ϕ̂E2

3 (x) = 2x, ∀x = (x,0), x ∈ [0,0.5].

Since x ∈ [0,0.5] and x = (x,0), we obtain (9.4.1).

In our computations we use hanging nodes in combination with the FCT scheme, which is

directly applied to DOFs, such that the fluxes in hanging nodes are not directly influenced.
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9.4.2. Adjusting the local mesh size

We will now explain step (c) and (d) of the adaptivity loop in Scheme 9.11 in more detail. In step

(c) we project the reference solution into the coarse space using the L2 projection and assume that

this is the coarse solution. The relative error between these solutions measured in an arbitrary norm

indicates if the reference space should be further refined or the adaptivity loop can be terminated.

In step (d) the real refinement of the coarse space is done. At first we decide which elements should

be refined and then select the type of refinement. If the error between the reference solution and

the coarse solution on a coarse element is larger than the maximal element error multiplied by

a user-defined threshold we mark this element for refinement. Next a list of possible refinement

candidates including the coarse element is defined. In Fig. 9.9 different h-refinement options

for quadrilateral meshes with anisotropic refinement are shown. Note that in the context of hp-

adaptivity the range of candidates is much larger due to different possibilities for the polynomial

degree. For each element and each refinement candidate the error between the reference solution

and its projection on the refinement candidate is calculated. If for one candidate the error is

larger than the error corresponding to the coarse solution, we neglect this candidate. The optimal

candidate for each refinement is then chosen by taking into account the error as well as the resulting

DOFs. For more details we refer to [71]. Note that the optimal candidate can also be the coarse

element itself such that no refinement is done.

Figure 9.9: Candidates for anisotropic h-refinement

9.5. Constrained L2 projection

In the presented Scheme 9.11 the previous time step solution needs to be projected onto the refer-

ence space. This projection should be conservative and not cause any oscillations. However, the

standard L2 projection can fail to fulfill these conditions. The lumped-mass L2 projection in the lin-

ear continuous finite element space satisfies the maximum principle but can be too diffusive. The

difference between the consistent and the lumped-mass L2 projections can be decomposed into

fluxes [63] so that we can apply the FCT limiter in the case of matrix blocks associated with the

P1/Q1 approximation. In the context of the hp-adaptive algorithm 9.11 it is safe to use the stan-

dard L2 projection in smooth elements, i.e., matrix blocks associated with the P2/Q2/serendipity

approximation.
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For simplicity, let us consider the space of continuous linear finite elements Vh = span{ϕ1, . . . ,ϕN}.

The standard L2 projection of a function u into Vh is defined by

∫

Ω

uhwh dx =
∫

Ω

uwh dx, ∀wh ∈Vh, (9.5.1)

where uh is the numerical approximation. This gives a system of equations

MCuH = R, (9.5.2)

where MC = {mi j} is the consistent mass matrix and R is the load vector with components Ri =∫
Ω ϕiudx. Replacing MC by its lumped counterpart (9.1.4) gives the lumped-mass L2 projection

MLuL = R. (9.5.3)

The L2 projection (9.5.2) can be rewritten in the following form

MLuH = MLuL + f pro j, (9.5.4)

where the flux f pro j is defined as the difference of (9.5.2) and (9.5.3)

f
pro j
i j = mi j(u

H
i −uH

j ), f
pro j
i = ∑

j �=i

f
pro j
i j . (9.5.5)

In the spirit of algebraic flux correction, we limit the fluxes f
pro j
i j in such a way that no under- or

overshoots occur and derive the vector of limited fluxes

f̄
pro j
i = ∑

j �=i

αi j f
pro j
i j , 0 ≤ αi j ≤ 1. (9.5.6)

Hereby we use Zalesak’s limiter (see Scheme 9.2 with ũ = uL and ∆t = 1) to calculate the correc-

tion factors αi j. The last step is the calculation of the final solution by

MLu = MLuL + f̄ pro j. (9.5.7)

The use of this constrained projection guarantees that the previous time-step/adaptivity-step

solution is transfered to the actual space in such a way that no oscillations occur.

In summary of this chapter, we have presented an hp-adaptive framework which guarantees

that the solution stays oscillation free by using the FCT scheme in non-smooth and the CG1-DG2

method in smooth elements. The smoothness is determined by a regularity estimator and also

implies p-enrichment. The application of the reference solution approach leads to h-refinement.

In the following numerical examples, we will show the advantage of this hp-adaptive frame-

work over pure h-refinement in the context of FCT schemes.
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Numerical results

In this chapter we present numerical results related to the topics discussed in the previous chapter.

The presented algorithms have been implemented in the open-source C++ library HERMES [82].

It provides a framework for hp-adaptive continuous as well as discontinuous Galerkin methods.

We will start with some examples for the regularity estimator. Thereby, we will also show the

influence of the parameter ε from equation (9.3.5). The next section will then be concerned with

different types of projections to motivate the use of the constrained L2 projection. Then we will

present results for FCT on uniform meshes and in combination with h-and hp-adaptivity. These

examples indicate the advantage of the hp-adaptive strategy over pure h-refinement in the context

of FCT schemes.

10.1. Regularity estimator

We will now show the ability of the regularity estimator to distinguish between smooth and non-

smooth parts of the solution. At first we consider the initial data from the solid body rotation prob-

lem from Section 6.5, see Fig. 6.14. According to Remark 9.9 the different smoothness markers

are displayed in Fig. 10.1 . Hereby, all smooth elements are marked in light blue whereas all non-

smooth elements are marked in dark blue. Note that an element K is regarded as smooth if ηi = 1

for all vertices xi ∈ K. We can see that η0 indicates the smoothness of the hump and the cone with-

out the peaks. The markers ηx and ηy also exclude the smoothness at the top of the cone. However,

in both cases the top of the hump is regarded as smooth. The marker ηall = max(η0,min(ηx,ηy))
combines both smoothness criteria so that the hump as well as the boundaries of the cone without

the peak are marked as smooth. In accordance with Remark 9.6 we set ε = 10−8.
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(a) η0
elem on triangular mesh (b) η0

elem on quadrilateral mesh

(c) ηx
elem on triangular mesh (d) ηx

elem on quadrilateral mesh

(e) η
y
elem on triangular mesh (f) η

y
elem on quadrilateral mesh

(g) ηall
elem on triangular mesh (h) ηall

elem on quadrilateral mesh

Figure 10.1: Smoothness sensor on triangular and quadrilateral meshes for the solid body

rotation problem: smooth (light blue) and non-smooth (dark blue),

isoline of the data for z = 0.001 (red)
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In the next example we consider the exact solution at t = 0.5 of the hump changing height

problem from section 6.8, see Fig. 6.22. By this problem we show the influence of the free pa-

rameter ε (see Remark 9.6) which is responsible for the identification of constant solution parts

as non-smooth. If the parameter is chosen too small constant functions are regarded as smooth.

In Fig. 10.2 we compare the results for ε = 10−8 and ε = 10−3 on triangular and quadrilateral

meshes. In both cases the top of the hump is regarded as smooth. However, for ε = 10−8 also a lot

of elements in which the solution should be constant are marked as smooth. If we increase ε these

elements become non-smooth. In both cases the elements at the steep boundaries of the hump are

marked as non-smooth.

(a) ηall
elem on triangular mesh for ε = 10−8 (b) ηall

elem on quadrilateral mesh for ε = 10−8

(c) ηall
elem on triangular mesh for ε = 10−3 (d) ηall

elem on quadrilateral mesh for ε = 10−3

Figure 10.2: Smoothness sensor on triangular and quadrilateral meshes for the hump changing

height problem: smooth (light blue) and non-smooth (dark blue),

isoline of the data for z = 0.5 (red)

We remark, that the initial data is often not given as a function of the finite element space.

Therefore, it can first be projected into that space using the L2 projection before the regularity esti-

mator is applied. This procedure is feasible since the L2 projection does not change the smoothness

of a function (cf. section 10.2).

The presented results indicate that the regularity estimator identifies non-smooth data in a

very reliable way. If the parameter ε is too small, elements, on which the solution is constant, may

be regarded as smooth. In the following remark, we will discuss this problem in the context of

hp-adaptivity.
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Remark 10.1: Regularity estimator in the context of hp-adaptivity

In the context of the hp-adaptive algorithm presented in section 9.4 the identification of non-

smooth elements in the neighborhood of steep fronts is the most important task of the regular-

ity estimator since we apply FCT to prevent over- and undershoots only on these non-smooth

elements. Note that the CG1-DG2 method may produce oscillations on these non-smooth

elements if the gradients are too steep. This can be observed for example in Section 6.5. In

regions where the solution is constant we usually do not need to apply the FCT scheme since

the solution is smooth in the analytical sense. However, since we have seen in the numerical

studies in Chapter 6 that the CG method can also produce oscillations in regions where the

solution is constant, we prefer to use a stable method in these elements. Thereby, it is safe to

either use FCT or the CG1-DG2 method.

From a computational point of view it is less memory consuming to use linear finite

elements than the CG1-DG2 method. Also from an analytical point of view it is reasonable

to use linear elements since a quadratic approximation of a constant function does not lead

to a higher accuracy. For that reason if ε is small enough, the choice of ε in (9.3.5) should

only influence the number of higher order elements and therefore the computational costs but

not the solution. If ε is too large, also smooth parts are regarded as non-smooth. If FCT is

applied in these parts, peak clipping can occur. This is a well known phenomenon occurring

at smooth extrema which are then smoothed out by the FCT scheme [88].

10.2. Constrained L2 projection

In the following we will compare the L2 projection with its constrained version.

We mention that the solution on quadrilateral meshes and on triangular meshes look very

similar so that only the results for the quadrilateral meshes are shown in the following.

10.2.1. Solid body rotation: Projection of the initial data

In Fig. 10.3 the initial data of the solid body rotation problem and its projections are displayed.

It can be seen, that the hump is resolved very well by all projections. At the boundaries of the

cylinder the L2 projection produces oscillations whereas the lumped-mass and the constrained L2

projection does not. This can also be seen in Fig. 10.4 where the different projections versus the

initial data are plotted at x = 0.5 and y = 0.75. The peak of the cone is a little bit smeared by the

lumped-mass and the constrained projection whereas it is very well resolved by the L2 projection.

The difference between the constrained L2 and the lumped-mass projection is very small, e.g.,

the areas where the objects touch the z = 0 line as well as the inner boundary of the cylinder are

a little bit better resolved by the constrained version. However, during long-time computations

these small differences can accumulate such that the solution would be more smeared out if using

the lumped-mass projection. For that reason the constrained L2 projection is preferred.
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(a) Initial data (b) L2 projection

(c) Lumped-mass L2 projection (d) Constrained L2 projection

Figure 10.3: Initial data and its projections for the solid body rotation problem
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(a) L2 projection at x = 0.5 (b) L2 projection at y = 0.75

(c) Lumped-mass L2 projection at x = 0.5 (d) Lumped-mass L2 projection at y = 0.75

(e) Constrained projection at x = 0.5 (f) Constrained projection at y = 0.75

Figure 10.4: Initial data (red) and its projections for different cuts
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10.2.2. Hump changing height: Projection of the exact solution at t = 0.5

In the next example we consider the exact solution at t = 0.5 of the hump changing height problem

from Section 6.8, see Fig. 10.5a. In Figures 10.5b and 10.5c the L2 and the constrained L2

projection are displayed. It can be seen that the L2 projection produces oscillations at the steep

fronts of the hump which is shown in more detail in Fig. 10.6a. The constrained L2 projection

smooths these oscillations so that only a small spike is left (see Figures 10.5c and 10.6b).

(a) Exact solution (b) L2 projection (c) Constrained L2 projection

Figure 10.5: Projection of the exact solution of the hump changing height problem at t = 0.5

(a) L2 projection (b) Constrained L2 projection

Figure 10.6: Hump changing height problem at t = 0.5 for x = 0:

exact solution (red) and its projection

In summary, these examples show the advantage of the constrained L2 projection when it

comes to dealing with discontinuous data.

In the following examples we use the constrained L2 projection whenever a projection onto

linear elements is needed. For quadratic elements we use the standard L2 projection.
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10.3. Solid body rotation problem: FCT, h- and hp-adaptivity

In this section we present numerical results for the solid body rotation problem from Section 6.5,

which describes a counterclockwise rotation of a slotted cylinder, a cone and a hump about the

center of the domain. The initial data can be seen in Fig. 10.3a. We will start with the solution on

uniform meshes using the FCT algorithm presented in section 9.1. Then we show the results using

h-adaptivity in combination with the FCT-algorithm. At the end we present the solution derived

by Scheme 9.11 which indicates the advantage of that strategy over h-refinement.

10.3.1. Flux-corrected transport on uniform meshes

At first, we will present the numerical results calculated on uniform meshes. In Figures 10.7

and 10.9 the numerical solutions and the corresponding error distributions on quadrilateral and

triangular meshes are displayed. The corresponding spaces have 16381 DOFs. It can be seen

that no oscillations occur and the solution has no negative values and no values larger than the

maximum value 1. Note that large errors at the boundary of the cylinder occur since the solution in

the corresponding elements is continuous unlike the discontinuous exact solution. In comparison

to the error profiles of the DG2 and CG1-DG2 solution (see Fig. 6.16) the errors at the cylinder

are more concentrated on the boundary. At the top of the hump and the cone peak clipping occurs.

In Fig. 10.8 this phenomenon is shown in more detail. It can be seen that the top of hump and the

cone, respectively, looks like they have shrinked. Remember that in the DG2 and CG1-DG2 case

the hump was resolved very well, whereas the top of the cone was also smeared out.

(a) FCT solution (b) FCT error distribution

Figure 10.7: Solid body rotation problem: solution and error distribution at t = 2π on

quadrilateral mesh
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(a) Hump at y = 0.5 (b) Cone at x = 0.25

Figure 10.8: Peak clipping phenomenon: comparison of exact solution (red)

and FCT solution (blue)

(a) FCT solution (b) FCT error distribution

Figure 10.9: Solid body rotation problem: solution and error distribution at t = 2π on

triangular mesh

10.3.2. Reference solution approach: h-adapativity

Next, we will show the results for h-adaptivity. In Figures 10.10 and 10.11 the reference solutions

and the corresponding meshes for linear finite elements with FCT are displayed. The element size

on the reference meshes varies between h = 1
64

and h = 1
512

. The spaces have ≈ 24000 DOFs. In

both cases the top of the hump and the cone have shrinked due to peak clipping.

In Fig. 10.12 the h-adapted solution on the quadrilateral mesh is compared with the exact

solution and the solution on two different uniform meshes. The first uniform mesh corresponds to

the initial coarse mesh, the other to the initial reference mesh. We see that the h-adapted solution

resolves the cylinder best. At the cone peak clipping occurs in all cases. However, the finest

uniform mesh solution has least shrinked. The reason that in this case the h-adapted solution

is worse is due to the fact that in each adaptivity step of the h-adapted algorithm the reference

solution needs to be projected onto the new space. As we have seen in section 10.2 the constrained

L2 projection smears the top of the cone. This inserts additional errors into the solution.
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(a) Reference solution (b) Reference mesh

Figure 10.10: H-adaptivity for the solid body rotation problem at t = 2π on quadrilateral mesh

(a) Reference solution (b) Reference mesh

Figure 10.11: H-adaptivity for the solid body rotation problem at t = 2π on triangular mesh

(a) Cylinder at y = 0.75 (b) Cone at y = 0.25

Figure 10.12: Comparison of uniform FCT-solution and h-adapted FCT solution
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10.3.3. Reference solution approach: hp-adaptivity

At last we present the hp-adaptivity results. We used triangular and quadrilateral meshes where

in the later case we distinguished between serendipity and Q2 elements in the case of quadratic

elements. In all cases the reference spaces have ≈ 20000 DOFs. In Fig. 10.13 - 10.15 the reference

solution at t = 2π is shown, where quadratic elements are marked as red. We can see that the

regularity estimator handled the top of the cone and the cylinder as non-smooth so that FCT was

used in these elements. Here, the top of the cone is smeared out as in the h-adaptive and the

uniform case. The hump was marked as smooth so that the CG1-DG2 method was used in these

elements and no peak clipping occurred. This can also be seen in more detail in Fig. 10.16 where

the resolution of the hump for h- and hp-adaptivity is compared. The cylinder and the cone are

resolved nearly identically to the h-adaptive case.

(a) Reference solution at t = 2π (b) Reference space/mesh at t = 2π

Figure 10.13: H p-adaptivity for the solid body rotation problem using Q2-elements in

higher-order regions

(a) Reference solution at t = 2π (b) Reference space/mesh at t = 2π

Figure 10.14: H p-adaptivity for the solid body rotation problem using serendipity elements in

higher-order regions
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(a) Reference solution at t = 2π (b) Reference space/mesh at t = 2π

Figure 10.15: H p-adaptivity for the solid body rotation problem on triangular mesh

Figure 10.16: Comparison between the h- and hp-adapted hump of the solid body rotation

problem at t = 2π and y = 0.5 (serendipity version)
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In the following examples, we will use serendipity elements in the case of higher-order ele-

ments on quadrilateral meshes. At first we consider an example which has a smooth solution.

10.4. Reference solution approach: time-dependent advection equa-

tion with constant velocity field

Here we adapt the stationary problem from section 6.1 and consider its time-dependent version

ut +∇ · (βββu) = 0 in Ω, (10.4.1)

with the constant velocity field

βββ(x,y) = (1,1). (10.4.2)

The initial data and the exact solution are shown in Fig. 10.17. In the case of triangular elements

we will use a triangle domain defined by the points (0,0), (1,0), (1,1), for a quadrilateral mesh

we use Ω = (0,1)2. For a proper comparison of the solution, we stop the computation at t = 0.3.

At this point the exact solution would already have reached steady-state.

In Fig. 10.18 the hp-adapted meshes are displayed. We can see that the regularity estimator

marked most of the elements, where the solution is not constantly zero, as smooth, but has some

problems with elements near the boundary which are marked as non-smooth.

In Fig. 10.19 the L2-errors versus number of DOFs are plotted. In both cases and for almost

all numbers of DOFs the hp-solution exhibits smaller errors than the h-solution. One reason why

we do not see a convergence rate of exponential order is that we restricted the polynomial order to

1 ≤ p ≤ 2.

(a) Initial data (b) Exact solution (steady-state)

Figure 10.17: Initial data and the exact solution
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(a) Quadrilateral mesh/space (b) Triangular mesh/space

Figure 10.18: H p-adapted mesh/space: quadratic elements (red) and linear elements (white)

(a) Quadrilateral mesh (b) Triangular mesh

Figure 10.19: L2-error vs. number of DOFs
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10.5. Reference solution approach: time-dependent advection equa-

tion with rotating velocity field

We consider now the time-dependent version of the stationary problem from section 6.3. The

exact solution on Ω = (0,1)2 can be seen in Fig. 10.20. As in the previous example we use as

initial data a part of the exact solution, that means we take the exact solution for x < 0.7 and for

x ≥ 0.7 we set zero. In Fig. 10.21 and 10.22 the solutions for h- and hp-adaptivity are shown. It

can be seen that the regularity estimator marked most elements of the solution as smooth but has

again problems with elements near the boundary. The hp-space has ≈ 4600 DOFs, whereas the

h-adapted has ≈ 4700. The absolute error in the L2-norm for the hp-solution is 3.7349e−03 and

for the h-solution 3.8294e− 03. In Fig. 10.23 the adapted solutions are compared with the exact

solution. On the first picture we see that the hp-solution is less smeared than the h-solution. In the

h-adapted case peak clipping is clearly visible. At the second picture we see that the hp-adapted

solution resolves the exact solution very well whereas the h-solution is smeared.

Figure 10.20: Exact solution

(a) H-adapted solution (b) Reference mesh

Figure 10.21: H-adaptivity for advection equation
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(a) H p-adapted solution

(b) Reference mesh/space (red for CG1-DG2

element)

Figure 10.22: H p-adaptivity for advection equation

(a) Cut at the diagonal y = 1− x

(magnification)

(b) Cut at y = 0.5

Figure 10.23: Comparison between exact and approximated solutions
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10.6. Reference solution approach: time-dependent advection-diffusion

equation

In this example we present a problem with a diffusive term. Therefore, we consider the time-

dependent advection-diffusion equation from section 6.7. We used the Baumann-Oden method

and serendipity elements in the case of higher-order elements. In Fig. 10.24 we see the reference

solution and the corresponding mesh for h-adaptivity. The hump was marked for refinement. In

Fig. 10.25 we see the hp-adapted solution and the reference space/mesh. The hump was marked

as smooth so that it was computed by the CG1-DG2 method. In Fig. 10.26 we see the direct

comparison of the h- and hp-adapted solution. As we have already seen in the previous examples

peak clipping occurs in the h-adapted case, so that the hp-solution is more accurate.

(a) Reference solution (b) Reference mesh

Figure 10.24: H-adaptivity for the time-dependent advection diffusion equation

(a) Reference solution (b) Reference space/mesh

Figure 10.25: H p-adaptivity for the time-dependent advection diffusion equation
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(a) Hump (b) Enlarged peak

Figure 10.26: Comparison between exact and approximated solutions

In summary, we have seen that the advantage of the presented hp-adaptive strategy over the

pure h-adaptivity is that in smooth elements the solution is much better resolved since no peak

clipping induced by FCT occurs. Therefore, the presented hp-adaptive algorithm provides a great

benefit if one has to deal with problems where the solution is at least partly smooth.
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11
Summary and outlook

11.1. Summary

The first part of this thesis was concerned with the introduction of the CG1-DG2 method. This

method combines the continuous Galerkin method with the discontinuous Galerkin method in

the context of finite elements. Hereby, the linear continuous finite element space is enriched

with discontinuous quadratic basis functions. For the analysis we considered a scalar advection

equation and Poisson’s equation.

In the case of advection problems, the discontinuous fluxes have been approximated by up-

wind fluxes. While the standard continuous Galerkin method has only L2-stability, the CG1-DG2

method for triangular meshes is stable with respect to an augmented DG norm giving additional

control over streamline derivatives. A priori error estimates showed that the method delivers the

same convergence rate as the DG method.

For Poisson’s equation different strategies from the DG method have been adopted to approx-

imate the numerical fluxes: the symmetric and non-symmetric interior penalty method as well as

the Baumann-Oden method. Since the CG1-DG2 space is a subspace of the quadratic DG space,

most analytical results like boundedness and coercivity of the bilinear form have been directly

transferred from the DG space to the CG1-DG2 space. Furthermore, a priori error estimates for

the DG method hold for the CG1-DG2 approximation as well.

In numerical studies the analytically expected orders of convergence for advection and diffu-

sion problems have been confirmed for different test problems. In the case of quadrilateral meshes

and advection problems, the use of serendipity elements lead to convergence behavior similar to

that obtained on triangular meshes whereas the use of standard Q2-elements can decrease conver-

gence rates. We have also seen that the CG1-DG2 method is more stable than the CG2 method in

the sense that smooth solutions do not exhibit oscillations like in the CG2 case. In the context of

discontinuous initial data, the numerical CG1-DG2 solutions showed similar behavior as the DG

solutions where oscillations occurred only locally near steep gradients.

The CG1-DG2 method was then extended to solve the Euler equations. The treatment of

boundary conditions was adopted from [35], where boundary fluxes have been approximated using

the flux formula of Roe. The discontinuous numerical fluxes have been approximated by Lax-

Friedrichs fluxes. For the discretization in time we used the backward Euler scheme. Hereby, the

non-linearity was linearized using the Taylor series expansion presented in [27]. The numerical
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examples showed that the triangular and the serendipity CG1-DG2 method applied to systems of

conservations laws give results similar to those obtained by the DG method in the case of subsonic

and supersonic flow regimes. In the context of a shock tube problem, we have compared the

results of the serendipity CG1-DG2 method with those obtained by the CG2 method. We have

seen that the CG1-DG2 solution exhibits oscillations only near the discontinuities, whereas the

CG2 solution has undershoots and overshoots in a larger vicinity and with a higher amplitude.

In summary, the analytical and numerical results showed the advantages of the CG1-DG2

method over the CG2 method for triangular meshes and quadrilateral meshes combined with

serendipity elements. The numerical experiments indicated, that the use of serendipity elements

instead of Q2-elements improves the accuracy of the method. The advantage of the CG1-DG2

method over the DG2 method are the lower computational costs due to fewer degrees of freedom.

The second part of this thesis introduced an hp-adaptive framework for convection-dominated

problems. The idea of the presented algorithm was to divide the mesh in smooth and non-smooth

parts, where the smoothness refers to the regularity of the approximated solution. Hereby, a

parameter-free regularity estimator was used to determine the smoothness of a function and its

gradient by comparing those with reconstructed approximations. In smooth elements we applied

the CG1-DG2 method, which implies a quadratic approximation of the solution in those elements.

Even if the use of the CG method with quadratic or higher polynomial degrees would be possible

(see [13]), the CG1-DG2 method is preferred since it can control streamline derivatives leading to

an improved stability. In non-smooth elements we used h-adaptivity in the sense of the reference

solution approach and applied the FCT scheme for stabilization. Constant functions have been re-

garded as non-smooth, since a higher-polynomial degree would not lead to higher approximation

accuracy in this case. For the projection of initial and previous time-step data onto the current

space, we used the L2 projection in smooth elements and a constrained version in non-smooth

elements. The latter is based on the FCT scheme and prevents the appearance of oscillations near

steep gradients. The presented framework operates in two steps: First p-adaptivity as indicated by

the regularity estimator is applied, where p is restricted to p ≤ 2. Then h-adaptivity realized by

the reference solution approach is applied in a second step.

Numerical experiments have been performed for advection and advection-diffusion equations.

Those showed the advantage of the hp-adaptive algorithm over pure h-refinement in the context of

FCT schemes. The hp-solution benefits from a higher accuracy in smooth elements, since FCT is

not applied in those and therefore, no peak-clipping occurs. Hereby, the good performance of the

regularity estimator was essential to identify smooth elements.

11.2. Outlook

In future work, we will extend the analysis for the scalar advection equation to quadrilateral

meshes consisting of serendipity elements. Even if the analysis for triangles cannot directly be

transferred to the serendipity case, numerical results indicated stability properties and conver-

gence rates similar to those on triangular meshes. Also the use of higher order polynomials will

be considered. Hereby, we have to analyze two different possibilities: The first would be adding

discontinuous cubic basis function to the CG1-DG2 space, the other enriching the quadratic con-

tinuous space (CG2) with discontinuous cubic basis functions. These approaches can also be

extended to higher order polynomials. If the so derived methods are stable, they could be used

to improve the hp-adaptive algorithm in the sense that also higher polynomials, i.e., p > 2, are

considered. In this case, we will also have to improve the criteria for regularity in order to de-

cide which polynomial degree should be used in an element. Hereby, p-enrichment could be done

adaptively in the sense that we increase the polynomial degree p only once per adaptivity step and
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if higher-order (p+ 1) derivatives are regarded as smooth. However, since this may significantly

increase the costs, other p-adaptivity criteria should also be considered. For example, the pre-

sented algorithm could be extended in such a way, that the reference solution approach is not only

used for h-refinement, but also for p-enrichment in smooth elements. The regularity estimator

would then handle the identification of elements which can be considered for p-adaptivity, and the

reference solution approach would decide which polynomial degree is set.

The CG1-DG2 method is currently implemented only in 2D. However, an extension to 3D

seems possible. Hereby, different strategies should be tested. One possibility is the use of con-

tinuous vertex basis functions and discontinuous edge and face functions. Alternatively, vertex

and edge functions could be continuous and only face functions discontinuous. The first approach

would lead to solutions which are continuous at the vertices but discontinuous across edges and

faces, whereas the other approach yields solutions which are continuous at vertices and edges and

discontinuous across faces. Especially the latter would result in significantly fewer degrees of

freedom compared to the DG method.

Furthermore, we will investigate how discontinuous data can be captured more accurately. A

first step will be to analyze different numerical fluxes and see if they can improve the stability

and convergence properties of the method. The next step is to check if stabilization techniques for

the CG and DG method can be transferred to the CG1-DG2 method. One possibility is to apply

shock capturing edge stabilization techniques like those presented in [19] for convection-diffusion-

reaction problems. These techniques penalize gradient jumps across edges. An extension to the

CG1-DG2 method seems to be possible. DG techniques are not easy to transfer. For example,

slope limiting techniques as presented in [60] benefit from the property of local basis functions,

i.e., basis functions which are non-zero only on a single element. Since the CG1-DG2 method has

also continuous basis functions, which are globally defined, i.e., those are non-zero on element

patches, we cannot extend the DG techniques in a straight-forward way. A combination of contin-

uous and discontinuous techniques could be considered, such that the continuous part is stabilized

by continuous techniques and the discontinuous part by discontinuous techniques.

In future work, we will also extend our hp-adaptive framework to solve systems of conser-

vation laws. Since the reference solution approach is relatively expensive (all computations are

done on the reference space), other h-refinement techniques should be considered for systems. An

alternative approach was already presented in [13] in the context of scalar equations, where the

Z2 error estimator [89] was used to identify elements for h-refinement. Also coarsening of ele-

ments should be considered. The final and most challenging goal will then be the extension of the

hp-adaptive framework to solve two-phase flow problems.
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A
Appendix

Let us recall some definitions.

1.1. Triangulation

Definition A.1 (Triangulation,[54]): A triangulation Th of Ω ⊂R
dim consists of a finite number of

subsets K of Ω with the following properties:

1. Every K ∈ Th is closed.

2. For every K ∈ Th its nonempty interior int(K) is a Lipschitz domain.

3. Ω̄ = ∪K∈Th
K.

4. For K1, K2 of Th, K1 �= K2 : int(K1)∩ int(K2) = /0.

Definition A.2 (Conforming and regular triangulations,[54]): A triangulation Th is called con-

forming if

1. Every side S of some K ∈ Th is either a subset of the boundary Γ or identical to a side of

another K̃ ∈ Th.

2. The boundary sets ΓN, ΓD, Γ+ and Γ− admit a decomposition into sides of elements K ∈ Th.

A family of triangulation (Th)h is called regular if there exists σ > 0 such that for all hK > 0 and

all K ∈ Th

ρK ≥ σhK , (A.1)

where ρK := sup{diam(B)|B is a ball in R
dim with B ⊂ K}.
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1.2. Estimates and inequalities

Theorem A.3 (Hölder’s inequality): Let p, q ∈ [1,∞] with 1
p
+ 1

q
= 1. Then

‖ f g‖L1(Ω) =
∫

Ω
f gdx ≤ ‖ f‖Lp(Ω)‖g‖Lq(Ω). (A.2)

In the case of p = q = 2 it is also called the Cauchy-Schwarz inequality.

Theorem A.4 (Discrete Cauchy-Schwarz inequality): For x, y ∈ R
N we have

(
N

∑
i=1

xiyi

)2

≤
(

N

∑
i=1

x2
i

)(
N

∑
i=1

y2
i

)
. (A.3)

Theorem A.5 (Young’s inequality): Let p, q > 0 with 1
p
+ 1

q
= 1 and a, b ≥ 0. Then

ab ≤ ap

p
+

bq

q
. (A.4)

Furthermore, for ε > 0 the following inequality holds:

ab ≤ a2

2ε
+

εb2

2
. (A.5)

In the following, let Th be a regular conforming triangulation.

Lemma A.6 (Multiplicative trace inequality, [75]): Let K ∈ Th and S ⊂ SK ⊂ Sh. Then, for all

v ∈ H1(K) there exists a mesh-independent constant C > 0 such that

‖v‖2
L2(S) ≤C

(
h−1

K ‖v‖2
L2(K)+‖v‖L2(K)‖∇v‖L2(K)

)
. (A.6)

Lemma A.7 (Inverse estimate, [75]): Let K ∈ Th and S ⊂ SK ⊂ Sh. Then, for all v ∈ Pk(K) there

exists a constant C > 0 such that

‖∇v‖L2(K) ≤CI

k2

hK

‖v‖L2(K). (A.7)

Theorem A.8 (Trace inequalities, [2]): For each element K ∈ Th and corresponding edge S ∈ Sh

the following estimates hold

‖v‖2
L2(S) ≤C

(
1

hS

‖v‖2
L2(K)+hS |v|

2
H1(K)

)
∀v ∈ H1(K), (A.8)

‖∇v ·n‖2
L2(S) ≤C

(
1

hS

|v|2H1(K)+hS |v|
2
H2(K)

)
∀v ∈ H2(K). (A.9)
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1.3. Projection

Definition A.9 (Orthogonal projection): Let V be a Hilbert space with the inner product (·, ·) and

U be a closed subspace of V . Then there exists an operator PU : V →V with

1. imPU =U ,

2. kerPU =U⊥.

PU is a continuous linear operator with following properties:

1. P2
U = PU ,

2. (PU v,v)≥ 0,∀v ∈V ,

3. ‖PU v− v‖= infu∈U ‖u− v‖,

4. ‖PU‖= 1, if U �= {0},

5. ‖I −PU‖= 1, if U �=V ,

6. ‖Pv‖ ≤ ‖v‖,∀v ∈V .

1.4. Clément operator

For the interpolation of non-smooth functions we make use of the Clément operator.

Definition A.10 (Clément operator, [29]): Let a j, j = 1, ...,N be Lagrange nodes corresponding to

the global basis functions φ j in V k
h . For each node ai we define the macroelement Ai which consists

of all elements containing node ai. Since there are only a finite number nr f of configurations

possible for the macroelement, we denote by {Ân}1≤n≤nr f
the list of reference configurations and

define the mapping j : {1, ...,N}→ {1, ...,nr f } which associates reference configuration Â j(i) with

the macroelement Ai. Let us now define the C0-diffeomorphism FAi
: Â j(i) → Ai such that FAi|K̂

is

affine ∀K̂ ∈ Â j(i). Then we define the local L2 projection π̂k
n on a macroelement Ân such that∫

Ân

(û− π̂k
nû)p = 0 ∀ p ∈ Pk(Ân), (A.10)

for û ∈ L1(Ân). The Clément operator Ch : L1(Ω)→V k
h is defined as

Chu =
N

∑
i=1

π̂k
j(i) (u◦FAi

)(FAi

−1(ai))φi. (A.11)

Lemma A.11 (Stability of the Clément operator, [29]): Let 1 ≤ p ≤ ∞ and 0 ≤ m ≤ 1. There exists

a constant C such that ∀h

‖Chu‖W m,p(Ω) ≤C‖u‖W m,p(Ω) ∀u ∈W m,p(Ω). (A.12)

Lemma A.12 (Approximation property of the Clément operator, [29]): For K ∈ Th we define the

patch ωK as the set of elements in Th sharing at least one node with K. The patch ωS for a side

S ∈ Sh is defined similarly. Let l,m and p satisfy 1 ≤ p ≤ ∞ and 0 ≤ m ≤ l ≤ k+ 1. Then there

exists a constant C such that ∀h and ∀K ∈ Th

‖u−Chu‖W m,p(K) ≤Chl−m
K ‖u‖W l,p(ωK) ∀u ∈W l,p(ωK). (A.13)

If m+ 1
p
≤ l ≤ k+1, then there exists a constant C such that ∀h and ∀K ∈ Th

‖u−Chu‖W m,p(S) ≤Ch
l−m− 1

p

K ‖u‖W l,p(ωS) ∀u ∈W l,p(ωS). (A.14)
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1.5. Hyperbolic system

Definition A.13 (Hyperbolic system [32]): A system of the form

∂U

∂t
+∇ ·F = 0, F = (F1, ...,Fdim), U,F i ∈ R

k, i = 1, ..,dim

is called hyperbolic, if for all admissible vectors U and all e ∈ R
dim,e �= 0, the matrix

A(U,e) =
dim

∑
i=1

eiAi(U), Ai(U) =
∂F i

∂U
, i = 1, ..,dim

has k real eigenvalues λ1(U,e)≤ λ2(U,e)≤ ...≤ λk(U,e) and k linearly independent right eigen-

vectors ri(U,e), i = 1, ...,k. It is called strictly hyperbolic if all eigenvalues are distinct.

1.6. Flux Jacobian

Definition A.14 (Linear combination of the flux Jacobian tensor [72, 78]): Let us consider the

Jacobian tensor A = (A1,A2), where

A1 =




0 1 0 0

−v2
x +(γ−1) |v|

2

2
(3− γ)vx (1− γ)vy (γ−1)

−vxvy vy vx 0

−γvxE +(γ−1)(v3
x + vxv2

y) γE − (γ−1)(3
2
v2

x +
1
2
v2

y) (1− γ)vxvy γvx


 ,

A2 =




0 0 1 0

−vxvy vy vx 0

−v2
y +(γ−1) |v|

2

2
(1− γ)vx (3− γ)vy (γ−1)

−γvxE +(γ−1)(v3
y + vyv2

x) (1− γ)vxvy γE − (γ−1)(3
2
v2

y +
1
2
v2

x) γvy


 .

The linear combination of these matrices

A(U,e) = e1A1 + e2A2, e = (e1,e2), |e|= 1 (A.15)

is given by

A(U,e) =




0 e1 e2 0

(γ−1)qe1 − vxve ve − (γ−2)vxe1 vxe2 − (γ−1)vye1 (γ−1)e1

(γ−1)qe2 − vyve vye1 − (γ−1)vxe2 ve − (γ−2)vye2 (γ−1)e2

((γ−1)q−H)ve He1 − (γ−1)vxve He2 − (γ−1)vyve γve


 , (A.16)

where ve = e ·v, q = 1
2
|v|2 and H is the total enthalpy given by H = E + p

ρ .

Furthermore this linear combination is diagonalizable

A(U,e) = R(U,e)Λ(U,e)R(U,e)−1, (A.17)

where the diagonal matrix of eigenvalues is given by

Λ(U,e) = diag{ve − c,ve,ve + c,ve}. (A.18)
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The matrix of right eigenvectors R(U,e) and the matrix of left eigenvectors L(U,e) = R(U,e)−1

are as follows:

R(U,e) =




1 1 1 0

vx − ce1 vx vx + ce1 e2

vy − ce2 vy vy + vye2 −e1

H − cve q H + cve vxe2 − vye1


 , (A.19)

L(U,e) =




1
2

(
bq+ ve

c

)
1
2

(
−bvx − e1

c

)
1
2
(−bvy − e2

c
) 1

2
b

1−bq bvx bvy −b
1
2

(
bq− vn

c

)
1
2

(
−bvx +

e1

c

)
1
2

(
−bvy +

e2

c

)
1
2
b

e1vy − e2vx e2 −e1 0


 , (A.20)

where b = γ−1

c2 .

1.7. Maximum principle

Theorem A.15 (Semi-discrete maximum principle and positivity preservation [58]): Consider a

semi-discrete problem of the following form:

∑
j

mi j

du j

dt
= ∑

j

ki ju j, i = 1, ...,N, (A.21)

where u = u(t) is the unknown vector of size N. Assume that

mii > 0, mi j = 0, ki j ≥ 0, ∀ j �= i. (A.22)

Then the following estimates hold

1. ∑ j ki j = 0 ∧ ui ≥ u j, ∀ j �= i ⇒ dui

dt
≤ 0 ,

2. u j(0)≥ 0, ∀ j ⇒ u j(t)≥ 0, ∀ j, ∀ t > 0.

Definition A.16 (Local extremum diminishing (LED) [58]): A space discretization of the form

dui

dt
=

1

mii
∑
j �=i

ki j(u j −ui), (A.23)

where mii > 0 and ki j ≥ 0 for all i and i �= j is called local extremum diminishing.

Theorem A.17 (Local discrete maximum principle and positivity preservation [58]): The i-th

equation of a fully-discrete system Au = Bg is given by

aiiui = biigi + ∑
j∈Si

(bi ju j −ai ju j) , (A.24)

where Si := { j �= i|ai j �= 0∧bi j �= 0} is the set of neighbors of node i. Assume that

aii > 0, ai j ≤ 0, bii ≥ 0, bi j ≥ 0, ∀ j ∈ Si. (A.25)

Then the following estimates hold for ui
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1. ∑ j ai j = ∑ j bi j ⇒ umin
i ≤ ui ≤ umax

i ,

2. umin
i ≥ 0 ⇒ ui ≥ 0,

where

umax
i = max{max

j∈Si∪i
g j,max

j∈Si

u j},

umin
i = min{ min

j∈Si∪i
g j,min

j∈Si

u j}.

Definition A.18 (Monotone matrix [58]): A regular matrix A is called monotone if

A−1 ≥ 0

or, equivalently,

u ≥ 0 ⇒ Au ≥ 0.

Definition A.19 (M-matrix [58]): A regular matrix A which is monotone and satisfies

ai j ≤ 0, ∀ j �= i

for all i is called an M-matrix.

Theorem A.20 (Global discrete maximum principle and positivity preservation [58]): Consider a

fully-discrete system Au = Bg. Assume that the coefficients of A and B satisfy (A.25) for all i. If

A is strictly or irreducibly diagonally dominant, then A is an M-matrix and

1. ∑ j ai j = ∑ j bi j ∀i ⇒ ming ≤ u ≤ maxg,

2. g ≥ 0 ⇒ u ≥ 0.
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