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I

Abstract
The study of nonequilibrium physics is of great interest, because one can capture
novel phenomena and properties which are hidden at equilibrium, e.g., one can
study relaxation processes. A common way to study the nonequilibrium dynamics
of a sample is a pump-probe experiment. In a pump probe experiment an intense
laser pulse, the so called pump pulse, excites the sample and takes it out of equi-
librium. After a certain delay time a second pulse, the probe pulse, measures the
actual state of the sample.
In this thesis, we theoretically study the pump-probe response of superconductors.
On the one hand we are interest in the effect of a pump pulse and on the other hand
we want to provide the pump-probe response, such that experimental measurement
can be easily interpreted. In order to do this, we use the density matrix formalism to
compute the pump-probe response of the system. In the density matrix formalism
equations of motion are set up for expectation values of interest.
In order to study the dynamics induced by a pump pulse, we compute the temporal
evolution of the quasiparticle densities and the mean phonon amplitude. We find
that the induced dynamics of the system depends on characteristics of the pump
pulse. For short pulses, the system is pushed into the nonadiabatic regime. In
this regime, the order parameter is lowered during the pump pulse and shows a
1/(
√
t)-decaying oscillations afterwards. In addition, coherent phonons are gener-

ated, which is resonantly enhanced if the frequency of the order parameter oscillation
is equal to the phonon frequency. For long pulses, the system is pushed into the
adiabatic regime. In this regime, the order parameter is lowered during the pulse
and remains almost constant afterwards. Further, there is almost no generation of
coherent phonons.
For the pump-probe response we compute the conductivity induced by the probe
pulse. The conductivity is a typical observable in real pump-probe experiments.
Hence, it is possible to compare the theoretical conductivity with a measured one.
We find that the dynamics of the superconductor is reflected in oscillation of the con-
ductivity as function of delay time between pump and probe pulse. This oscillation
provides information of the frequency and decay time of the algebraically decay-
ing order-parameter oscillations. Further, the dynamics of the coherent phonons is
reflected by an oscillation of conductivity as function of delay time at the phonon
frequency.



II

Kurze Zusammenfassung
Die Physik jenseits vom Gleichgewicht ist ein sehr spannendes Forschungsfeld, weil
man neuartige Phänomene und Eigenschaften erfassen kann, die im Gleichgewicht
nicht beobachtbar sind. Zum Beispiel können Relaxationsprozesse untersucht wer-
den. Eine gängige Methode zur Untersuchung von Systemen im Nicht-Gleichgewicht
ist das sogenannte „pump-probe-Experiment“. In solchen Experimenten bringt ein
Laserpuls, der sogenannte „pump pulse“, die Probe aus dem Gleichgewicht. Nach
einer Verzögerungszeit misst ein zweiter Laserpuls, der sogenannte „probe pulse“,
den aktuellen Zustand der Probe.
In der vorliegenden Arbeit wird das Ergebnis eines solchen Experimentes an einem
Supraleiter theoretisch untersucht. Zum einen wird die vom „pump pulse“ erzeugte
Dynamik berechnet, zum anderen wird eine typische Messgröße, die Leitfähigkeit,
berechnet. Mit dieser Größe ist es möglich die theoretischen Resultate mit de-
nen eines Experiments zu vergleichen. Zur Berechnung wird der Dichtematrixfor-
malismus verwendet. In dieser Methode wird die zeitliche Entwicklung von Er-
wartungswerten, welche von Interesse sind, berechnet.
Um den Effekt des „pump pulse“ zu untersuchen, wird die zeitliche Entwicklung
der Quasiteilchendichten und der mittleren Phononamplitude bestimmt. Die Dy-
namik dieser Größen hängt von den Eigenschaften des Laserpulses ab. Kurze Laser-
pulse bringen den Supraleiter ins nichtadiabatische Regime. In diesem Regime wird
der Wert des Ordnungsparameters während des Laserpulses abgesenkt und oszil-
liert danach mit einer 1/(

√
t)-abfallenden Schwingung. Zusätzlich werden kohärente

Phononen erzeugt. Wenn die Phononfrequenz gleich der Frequenz der Ordnungs-
parameterschwingung ist, wird die kohärente Erzeugung der Phononen verstärkt.
Lange Laserpulse hingegen bringen das System ins adiabatische Regime, in welchem
der Ordnungsparameter nach dem Puls nicht oszilliert. Des Weitern werden kaum
kohärente Phononen erzeugt.
Zusätzlich wird die Leitfähigkeit, die durch den „probe pulse“ induziert wird, berech-
net. Die Leitfähigkeit ist eine typische Messgröße eines Experiments und damit
ist ein direkter Vergleich zwischen theoretischen und experimentiellen Resultaten
möglich. Es wird gezeigt, dass die Leitfähigkeit die Dynamik des System in Schwin-
gungen als Funktion der Verzögerungszeit wiederspiegeln. Diese Schwingungen
geben Aufschluss über die Frequenz und den Abfall der Ordnungsparameterschwin-
gung. Zusätzlich beinhaltet die Leitfähigkeit Hinweise auf die Dynamik der Gitteri-
onen. Schwingungen in der Leitfähigkeit als Funktion der Verzögerungszeit bei der
Absorptionfrequenz, die gleich der Phononfrequenz ist, spiegeln die Dynamik des
Gitters wieder.



Contents

1 Introduction 3

2 Methods 6
2.1 Density matrix formalism . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Iterated equation of motion . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Toy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Exact Solution of the spin boson model . . . . . . . . . . . . . 13
2.3.2 Results for Quantum Master Equation . . . . . . . . . . . . . 15
2.3.3 Results for the iEoM . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Results for the DMF . . . . . . . . . . . . . . . . . . . . . . . 23

3 Models 28
3.1 BCS superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Bogoliubov transformation . . . . . . . . . . . . . . . . . . . . 30
3.2 Coupling to phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Coupling to an electromagnetic light field . . . . . . . . . . . . . . . . 34
3.4 Quenches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Equations of motions and implementation 38
4.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Parameter and initial condition . . . . . . . . . . . . . . . . . . . . . 43
4.3 Discreatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Nonequilibriun Dynamics 48
5.1 Superconductor in absence of phonons . . . . . . . . . . . . . . . . . 48

5.1.1 Nonadiabatic regime (τ � τ∆) . . . . . . . . . . . . . . . . . . 53
5.1.2 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.3 Adiabatic regime (τ � τ∆) and intermediate regime . . . . . . 57

5.2 Superconductor in presence of optical phonons . . . . . . . . . . . . . 59
5.2.1 Coherent phonons . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Coherent phonons: ωph ≈ ω∆∞ < ω0 . . . . . . . . . . . . . . . 66
5.2.3 Coherent phonons: 2∆0 < ~ωph . . . . . . . . . . . . . . . . . 70
5.2.4 Incoherent phonons . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Superconductor in presence of acoustic phonons . . . . . . . . . . . . 76

6 Nonequilibrium Response 80
6.1 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Superconductor in absence of phonons . . . . . . . . . . . . . . . . . 82

6.3.1 Positive delay time . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 Negative delay time . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Superconductor in presence of phonons . . . . . . . . . . . . . . . . . 91
6.4.1 Positive delay time . . . . . . . . . . . . . . . . . . . . . . . . 93



6.4.2 Negative delay time . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusions and Outlook 103
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Appendix 107

A Equations of motion 107
A.1 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3 Order seperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B iEoM for superconductor 115

Bibliography 119

Publications 129

List of Figures 130

List of Tables 132

Acknowledgement 133



1 Introduction 3

1 Introduction

The study of nonequilibrium dynamics is of special interest, because it reveals a lot
of new interesting phenomena such as an induced oscillation of the order param-
eter of a superconductor. Further, one can study excitation processes, relaxation
processes, or thermalization. In this thesis, we are interested in the nonequilibrium
dynamics of superconductors induced by a short intense pump pulse. The nonequi-
librium dynamics of superconductors has been subject of considerable interest for a
long time [1, 2]. Due to a permanent development of experimental as well as theo-
retical methods, one is able to study the ultrafast time response of a superconductor
to nonadiabatic perturbations.
On the experimental side the recent advances of femtoseconds terahertz laser tech-
nology [3] lead to many experimental studies focused on the ultrafast time response
of superconductors [4–19]. Terahertz laser pulses have a pump energy ~ω which is of
the order of the superconducting gap. So one can excite some quasiparticles without
destroying the superconducting state.
One common experimental method to investigate the nonequilibrium dynamics in-
duced by a laser pulse is the THz-pump and THz-probe spectroscopy. An intense
THz-pump pulse excites the superconductor and induces nonequilibrium dynam-
ics. A second less intense pulse, the probe pulse, measures the actual state of the
superconductor after a certain delay time. For instance, the optical conductivity
or the transmittivity as function of the absorption frequency ω and the delay time
δt provides information about the nonequilibrium dynamics [4–6]. In addition, the
reflectivity can also be used as an observable [12,13]. But not only optical measure-
ment parameter can be used. In the time resolved angular resolved photoemission
spectroscopy (trARPES) the photoelectron is used as measurement parameter [15].
On the theory side, intense effort has been devoted to describe the nonequilibrium
dynamics of a superconductor. Early attempts were based on the time-dependent
Ginzburg Landau theory (TDGL) [1, 20] or Boltzmann kinetic equation [1, 21, 22].
The TDGL reduces the problem to the time evolution of a single collective order
parameter. It is only applicable if a local thermal equilibrium compatible with an
instantaneous value of the order parameter is established faster than the time scale
of the order parameter variation. This requirement limits the possible applications
to special situations, e.g. one has to be close to the critical temperature.
The Boltzmann kinetic equation uses the quasiparticle distribution function as dy-
namical variables, but the evolution of anomalous expectation values are left out,
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i.e., coherences between different quasiparticle states. This approach is only valid
if external parameters change slowly on the order parameter time scale. In other
words, this method is only applicable if adiabatic perturbations are considered.
Further, models based on effective chemical potential µ∗ and temperature T ∗ are
used to describe the nonequilibrium dynamics [23]. The excited quasiparticle distri-
bution is described as equilibrium distribution with an effective temperature or po-
tential, respectively. But similiar to the TDGL one has to assume quasi-equilibrium
and compute the time evolution of a single collective order parameter only.
Another possible description of the kinetics of a superconductor with a laser pulse
is obtained with the help of phenomenological Rothwarf and Taylor model [24]. In
this method, rate equations for the quasiparticle and phonon distribution are set up
using phenomenological parameters, e.g., a parameter for pair breaking recombina-
tion. This method is again only valid for adiabatic perturbation.
The above methods are used to describe the nonequilibrium dynamics of supercon-
ductors, but they cannot be applied to compute the nonadiabatic dynamics of a
superconductor. Hence, another method is needed to describe the nonadiabatic dy-
namics of a superconductor.
For example one can use approaches just as the time dependent dynamical mean
field theory [25, 26], the time dependent density matrix renormalization [27], the
time dependent numerical renormalization group [28], and the forward backward
continuous unitary transformation [29]. But for the study of the nonequilibrium
dynamics of a superconductor in the superconducting phase, the above methods are
not so easily implemented.
In this thesis, the density matrix formalism (DMF) is used to describe the nonequi-
librium dynamics of superconductors [30–36]. This method yields equations of mo-
tion for the expectation values of interest. Especially, a mean field BCS Hamiltonian
which interacts with a laser field can be computed essentially exactly [30]. This
method can describe the dynamics of a superconductor induced by an adiabatic as
well as by a nonadiabatic perturbation. If a non-bilinear Hamiltonian is considered,
the DMF approach has to be truncated to get a closed set of equations of motion.
Of course, the DMF approach is not the only method which is used to describe the
nonequilibrium dynamics of superconductors. If the superconductor is perturbed
by a quench even an analytic solution can be derived [37–41]. These analyses as
well as DMF simulations [30–36] predicted an 1/

√
t-decaying oscillation of the order

parameter if the perturbation are in a nonadiabatic fashion. This order parameter
oscillation can be interpreted as Higgs mode in a superconductor [42].
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Recently, the order parameter oscillations are actually measured in THz-pump and
THz-probe spectroscopy of thin Niobium nitride films by Matsunaga et al. [4–6].
They used a pump pulse of a duration of τ = 90 fs which yields a nonadiabatic
excitation of the superconductor and measured a damped oscillation in the trans-
mittivity as well as oscillation in the conductivity as function of delay time [6].
The recent developments motivate to study the outcome of a pump-probe experi-
ment theoretically. To this end, we simulate such kinds of experiments for super-
conductors. Here, we consider not only the pure BCS Hamiltonian but rather an
additional coupling to phonons. The additional phonon coupling is considered to
study the effect of the nonequilibrium quasiparticle dynamics on the lattice ions.
The lattice dynamics induced by a pump pulses has been studied experimentally for
semiconductors [43–45] as well as for high-temperature superconductors [14,46,47].
First, we will study the dynamics of the system induced by the pump pulse, e.g.
order parameter oscillation or generation of coherent phonons in the nonadiabatic
regime. Second, the response of the probe pulse is computed. In addition, the re-
sponse is analyzed for signatures of the dynamics induced by the pump pulse. As
a result, a direct comparison between theoretical predictions and the experimental
results is possible.

This thesis is organized as follows.
In Sect. 2 the employed method, namely the density matrix formalism, is introduced.
In addition to the main ideas of it this method is also applied to a simple test
model to present its advantages and disadvantages. For a better appreciation of the
strength of the DMF a comparison with two other approaches, namely the quantum
master equation [48, 49] and the iterated equation of motion methods [50, 51], are
presented for the toy model. In Sect. 3, the models under study are presented. It is a
mean field type BCS Hamiltonian with or without a coupling to additional phonons
which is perturbed by laser pulses. In Sect. 4 some numerical details about the
implementation of the DMF are discussed. The equations of motion and some details
about the numerical implementation, e.g., the discretization mesh, are presented.
The dynamics induced by pump pulse is discussed in Sect. 5. Here, the response of
the system for various pump pulse condition is studied. Afterwards, the pump-probe
response of the dynamics is studied to find signatures of the pumped dynamics.
To this end, some information about the implementation and the results of the
simulations are discussed. Finally, we conclude and give an outlook to interesting
further investigations in Sect. 7.
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2 Methods

In this section, the method is introduced which is applied in this thesis to simu-
late the nonequilibrium dynamics of a superconductor. The method is the density
matrix formalism (DMF). The main task of this technique is to derive equations of
motion (EoM) of certain (quasi-) particle densities. The DMF approach was suc-
cessfully applied to describe the nonequilibrium dynamics induced by a pump pulse
to semiconductors [52–55] as well as to superconductors [30–36,56]. One advantage
of this method is that one can compute the interaction of a light field with a BCS
mean field superconductor essentially exactly [30], except for inaccuracies due to
discretization, and cover all dynamical regimes of the system. The exact description
is caused by the mean field type Hamiltonian of the superconductor.
Certainly, if the system is described by a non-bilinear Hamiltonian, e.g. a Hamil-
tonian with electron-phonon coupling, the method yields an infinite hierarchy of
equations of expectation values higher and higher order [33, 53]. In order to obtain
a closed system of equations it is necessary to break this hierarchy. In this thesis,
we use the so called correlation expansion [53]. The method and the correlation
expansion are introduced in Sect. 2.1.
Depending on the order of the expansion different expectation values can be com-
puted more or less accurately. For instance, in the so called first order of the
correlation expansion the generation of coherent phonons can be described whereas
a damping of these phonons due to electron-phonon scattering or electron-electron
scattering is not computable [33]. The influence of different orders of the correlation
expansion is tested first on a simpler model than the BCS Hamiltonian coupled to
additional phonons. As simple toy model, we considered the spin boson model in the
limit of pure dephasing without tunneling [48,57], see Sect. 2.3. This model couples
to Bosons via a linear coupling. The same kind of coupling is used to describe the
coupling between superconductor and phonons in this thesis. In addition, the toy
model is exact solvable. Hence, the toy model is well suited to test how the cor-
relation expansion works. Further, we compare the resulting dynamics of different
orders of the correlation expansion with other approaches to verify the accuracy of
the correlations expansion.
For comparison, we solve a quantum master equation in Lindblad form [48, 49].
The quantum master equation is a standard approach to derive the temporal evo-
lution of an open quantum system. The main ideas and the results are presented in
Sect. 2.3.2.
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One other but related approach to the DMF is the iterated equation of motion
method (iEoM) introduced by Hamerla and Uhrig [50, 51]. This method derives a
systematically controlled expansion of Heisenberg equation of motion. The iEoM de-
rives equation of motion for operators instead of expectation values as in the DMF.
It has been successfully applied to describe the dynamics of a quenched Heisenberg
Hamiltonian [50,51,58,59]. The systematically controlled expansion of this method
is used to verify the correlation expansion of the DMF. The method is introduced
in Sect. 2.2 and also applied to the toy model, see Sect. 2.3.3.

2.1 Density matrix formalism

In the density matrix formalism (DMF) we set up the equation of motion (EoM)
for the expectation value of interest by

i~
d
dt
〈A〉 = i~

d
dt

Tr (ρA) = Tr
(
ρi~

d
dt
A

)
= Tr (ρ [A,H]) = 〈[A,H]〉 , (2.1)

where A denotes an operator, H the system Hamiltonian, and [A,H] the correspond-
ing commutator. As has been shown in the above equation, the time derivative of
the expectation value can be rewritten into the time derivative of the corresponding
operator. The time derivative of an operator is given by the Heisenberg equation of
motion. This leads to the commutator in Eq. (2.1).
The method consists of two parts, the first is to set up the equations of motion
for the expectation values of interest. The second part is to solve the equation of
motion. The second task is accomplished numerically by using a standard Runge
Kutta algorithm of 4th order [60].
To set up the EoM for an expectation value 〈A〉 one has to commute the correspond-
ing operator with the Hamiltonian, see Eq. (2.1). If the Hamiltonian is not bilinear
the commutation leads to additional expectation values, whose temporal evolution
must be known. So to compute the temporal evolution of these new expectation
values one have to use Eq. (2.1) once more which leads again to new values. In
the end this yields an infinite hierarchy of equation of motion. To keep the system
closed, the differential equation system has to be truncated in some way. To do so,
the correlation expansion [53] is used.
In the correlation expansion, correlation between a specific number of particles are
neglected at some point. Thereto, we factorize an expectation value including two
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operators A and B according to

〈AB〉 = 〈AB〉c + 〈A〉 〈B〉 , (2.2)

where c denotes the correction of the factorized parts. The idea of this expansion
is that the contribution of the corrections including a certain number of operators
become smaller and it can be neglected.
In the numerical implementation we use the EoM of the correlations instead of the
EoM of the full expectation value. The EoM of the correlations can be calculated
with the help of the EoM of the full expectation value and their factorized parts.
For the expectation values 〈AB〉 the EoM of the correction can be set up via

i~
d
dt
〈AB〉 = i~

d
dt
〈AB〉c +

(
i~

d
dt
〈A〉
)
〈B〉+ 〈A〉

(
i~

d
dt
〈B〉
)

(2.3)

i~
d
dt
〈AB〉c = i~

d
dt
〈AB〉 −

(
i~

d
dt
〈A〉
)
〈B〉 − 〈A〉

(
i~

d
dt
〈B〉
)
. (2.4)

Due to this the numerical effort is reduced, because the EoM for the correlations
simplifies.
In this work, the additional electron-phonon coupling leads to this infinite hierarchy
of equations for the BCS superconductor. The first commutation of a fermionic
density operator for example leads to the phonon assisted quantities like〈

c†kckbp

〉
=
〈
c†kckbp

〉c
+
〈
c†kck

〉 〈
bp
〉
. (2.5)

Here, ck stands for a fermionic annihilation operator and bp for a bosonic annihilation
operator. In addition, the factorization of these correlation is presented. If we are
only interested in the generation of coherent phonons, the correction of these phonon
assisted quantities are neglected, e.g.〈

c†kckbp

〉
≈
〈
c†kck

〉 〈
bp
〉
,

which leads to a closed system and the temporal evolution of the mean phonon am-
plitude

〈
bp
〉
can be computed. This truncation is called first order in the correlation

expansion, although we do not expand in powers of a small parameter. In particular,
the correlation expansion is no expansion in the electron-phonon coupling. As will
be discussed in Sect. 5.2.1 the correlation expansion can lead to equations of motion
which include contributions of higher order in gp. As a results we can observe a
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decaying lattice displacement even in this order. Even though, all effects arising
from electron-phonon or electron-electron scattering processes are neglected.
To include processes like electron-phonon or electron-electron scattering, one has to
compute the so called second order of the correlation expansion. In this order, the
temporal evolution of the phonon assisted correlations is taken into account. This
leads to new expectations values including two fermionic and two bosonic operators
or four fermionic operators. These new values are again factorized and the correc-
tions including four operators are neglected. Beside the temporal evolution of the
coherent phonons, we are now able to compute the one of the incoherent phonon
densities. The incoherent phonons density is given by〈

b†kbk

〉c
=
〈
b†kbk

〉
−
〈
b†k

〉〈
bk

〉
. (2.6)

To describe the nonequilibrium dynamics of the superconductor coupled to addi-
tional phonons we restrict our calculation to the second order of the correlation
expansion, i.e., including the temporal evolution of the phonon assisted correlations
and the incoherent phonon densities.

2.2 Iterated equation of motion

The iEoM approach leads a systematically controlled expansion of Heisenberg equa-
tion of motion. So instead of directly deriving the temporal evolution of certain
expectation values as in the density matrix formalism, the temporal evolution of cer-
tain operators are computed. If the time dependence of these operators are known
one can easily determine the temporal evolution of the corresponding observable by
computing the expectation value regarding the initial state.
The approach consists of two parts. The first part is to set up the equations of
motion for a set of operators and the second one is to solve these equations. For
the second part a Runge Kutta algorithm of 4th order is used again, as in the DMF
approach. The derivation of the equations of motion is presented in this section. In
order to demonstrate the functionality of this method by an example, we apply it
on the toy model, see Sect. 2.3.3.
To derive the equation of motion for an operator the Heisenberg equation of motion
is used, given by

i~
d
dt
Ak = [Ak , H] . (2.7)
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Depending on the Hamiltonian the commutator may leads to a shift in k of the
operator or to additional operators. A shift in k-space arises from Hamiltonians like
the Hamiltonian of the pump pulse, see Sect. 3.3. In the toy model no part of the
Hamiltonian leads to a shift in k-space, see Sect. 2.3.
An additional operator is put as extra contribution into the ansatz of the time
dependent operator. The ansatz of an operator reads in general

Ak(t) =
∑
δ

a0,k+δ(t)Ak+δ +
∑
δ

a1,k+δ(t)Anew,k+δ + . . . , (2.8)

where Ak denotes the operator and Anew an arbitrary new operator resulting from
the commutator calculation. The time dependence of the operator is put into the
prefactors ai,k+δ(t). The initial condition of these prefactors are given by a0,k(0) = 1

otherwise ai,k+δ(0) = 0. For t = 0 the ansatz is given by the operator itself

Ak(t = 0) = a0,k(0)Ak = Ak. (2.9)

If an extra contribution enters the ansatz one has to consider it in the Heisenberg
EoM, which means the corresponding commutator has to be computed. Of course
this will produce additional contributions to the ansatz and a truncation is neces-
sary. In this thesis, we truncate using an expansion in the electron-phonon coupling
strength with an additional self-consistent truncation. This means that the ansatz
only consists of contributions which are of the order O(gnp). Here, n denotes the
maximal order of the electron-phonon coupling which is considered. All contribu-
tions of higher orders are neglected.
To apply the additional self-consistent truncation, one has to commute the contri-
bution which are proportional to gnp once more with the Hamiltonian. This leads to
a connection to already existing contribution as well as to additional contribution
of order O(gn+1

p ). Then, the new contributions to the ansatz are neglected but con-
nection to contributions which already existed are kept in the differential equation
system. It has been successfully shown that this kind of truncation leads to better
results [50,51]. How this self-consistent truncation influences the calculation will be
also shown for the toy model in Sect. 2.3.3.
If the computation of the commutator is closed, a differential equation system for
the prefactors can be set up by comparing the coefficients. The differential equation
system can be now solved with a standard Runge Kutta algorithm numerically.
If the Hamiltonian is time independent this approach works as explained above, but
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if this is not the case the approach changes a bit. For a time dependent Hamiltonian
the time evolution operator U is given by

U(t, t0) = T

[
exp

(
−i
∫ t

t0

H(t′)dt′
)]

, (2.10)

where T is the time ordering operator. The derivation of U is given by

i~
∂

∂t
U(t, t0) = H(t)U(t, t0) (2.11)

For t0 = 0 the Heisenberg picture for an operator A is given by

A(t) = U †(t)A(0)U(t) (2.12)

and the time evolution reads

d
dt
A(t) =

(
d
dt
U †(t)

)
A(0)U(t) + U †(t)A(0)

(
d
dt
U(t)

)
(2.13)

=
i

~
[U †(t)H(t)U(t), U †(t)A(0)U(t)] (2.14)

⇒ i~
d
dt
A(t) = [U †(t)A(0)U(t), U †(t)H(t)U(t)] = [A(t), H̃(t)] (2.15)

with H̃(t) = U †(t)H(t)U(t). This short calculation shows, that the ansatz for the
time dependent operators must also be applied to the Hamiltonian. But similar to
the operator ansatz, the Hamiltonian is restricted to be correct up to the order of
interest in the expansion parameter. All higher contributions of the Hamiltonian
are neglected. Hence, not only the operator ansatz becomes larger but the structure
of the Hamiltonian becomes more complicated.
Further, the numerical effort raises for a time-dependent Hamiltonian, because to
compute the temporal evolution of a certain operator one needs the evolution of
all operators of the Hamiltonian, i.e, the equation of motion of a prefactor for a
certain operator possess also prefactors of another operator. This can be seen in the
equations of motion of the BCS Hamiltonian perturbed by a quench, see App. B.
Here, the prefactors ai(t) of α†

k mix with the prefactors bi(t) of β†
k. Instead for the

time independent Hamiltonians, only prefactors of the same operator couple with
each other, for instance see Eq. (2.54). As a results, we can compute the evolution
of a certain operator of interest only. All in all a time dependent Hamiltonian makes
the iEoM approach numerically more costly.
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In contrast, the toy model is described by a time independent Hamiltonian, see
Eq. (2.16). So the standard iEoM as explained above can be applied easily. The
controlled expansion of the iEoM will help to understand the effect of the correlation
expansion of the DMF, as will be shown in the toy model analysis.

2.3 Toy Model

The spin boson model in the limit of pure dephasing without tunneling [48] is chosen
to test the accuracy of the correlation expansion of the DMF. This model is often
used to study the influence of decoherence in quantum computers, e.g. see Refs. [61–
63] and references therein. The Hamiltonian of this model is given by

H =
~ω0

2
σz︸ ︷︷ ︸

=HS

+
∑

k

~ωkb
†
kbk︸ ︷︷ ︸

=HB

+σz
∑

k

gk

(
b†k + bk

)
︸ ︷︷ ︸

=HI

, (2.16)

where b†k(bk) is the bosonic creation(annihilation)-operator, ωk the boson frequency,
gk the spin-boson coupling strength, and σz the Pauli matrix

σz =

1 0

0 −1

 . (2.17)

The Hamiltonian describes a two-level system HS interacting with a bosonic envi-
ronment HB. The coupling between system and environment is described by the
interaction Hamiltonian HI .
As initial condition we set the temperature T = 0. The initial state of the spin
sub-system should be a superposition of the ground-state |g〉 and excited-state |e〉

|ψ(t = 0)〉 =
1√
2

(|g〉+ |e〉) . (2.18)

Thus, the corresponding initial reduced density operator ρS of the spin system is
given by

ρS(t = 0) =

ρS,1,1 ρS,1,2

ρS,2,1 ρS.2,2

 =
1

2

1 1

1 1

 . (2.19)
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The considered toy model serves to illustrate how truncation affects the solution of
the DMF approach, which will be introduced in the following. For a quantitative
comparison the dynamics of the toy model are computed exactly.

2.3.1 Exact Solution of the spin boson model

One advantage of the toy model is that it is exact solvable [48, 61]. In this section,
we sketch calculation of the exact solution. A detailed calculation can be find for
example in Ref. [48].
The Pauli matrix σz is a conserved quantity for this model, since it commutes with
the Hamiltonian [σz , H] = 0. As a results, the populations ρS,1,1 and ρS,1,1 are
constant in time [48].
To determine the coherence ρ1,2 = ρ∗2,1 it is advantageous to use the interaction
picture. In the interaction picture, the interaction Hamiltonian is given by

H̃I(t) =
∑
k

gkσz

(
bke
−iωkt + b†ke

iωkt
)

(2.20)

and the time-evolution operator is given by

Ũ(t) = T

[
exp

(
− i
~

∫ t

0

dsH̃I(s)

)]
= φ(t)V (t), (2.21)

here φ(t) is an overall time-dependent phase factor. The operator V (t) is given by

V (t) = exp

(
σz
∑
k

gk
ωk

[{
1− eiωkt

}
b†k −

{
1− e−iωkt

}
bk

])
. (2.22)

The time evolution is governed by this operator. The temporal evolution of the
coherence are given by

ρ̃s,1,2(t) = 〈1| ρ̃s(t) |2〉 = 〈1|TrB
{
V (t)ρ̃tot(0)V −1(t)

}
|2〉 , (2.23)

with the density matrix ρtot of the complete system. This can be exactly calculated
under two standard assumption [61]. First the spin and the environment are initially
uncorrelated

ρtot = ρS ⊗ ρB. (2.24)
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Second, the environment is initially in thermal equilibrium at temperature T

ρB =
1

ZB
exp (−βHB) . (2.25)

Where, β = 1/(kBT ) and ZB is the environment partition function.
With this assumptions we can rewrite Eq. (2.23) into

ρ̃s,1,2(t) = ρ1,2(0)eΓ(t), (2.26)

with the decoherence function Γ(t) [48]

Γ(t) = TrB
{
V (t)ρ(0)V −1(t)

}
= −

∑
k

4|gk|2

ω2
k

coth
(

ωk

2kBT

)
[1− cos(ωkt)] . (2.27)

As a next step the continuum limit is used. It is given by

∑
k

g2
k →

∫ ∞
0

dωkF (ωk). (2.28)

Here, F (ωk) is the spectral function of the bath. For the spectral function one can
use an ohmic function [57], which reads [48]

F (ωk) =
α

2
ωk exp

(
−ωk

ωc

)
. (2.29)

It shows a linear increase with slope α
2
for small frequencies and an exponential

frequency cutoff at the cutoff frequency ωc.
Further, we are interested in the special case at T = 0. Hence, Γ(t) reads

Γ(t) = −
∫ ∞

0

dω
2α

ω
exp

(
−ωk

ωc

)
(1− cos(ωt)) = −α ln

(
1 + ω2

c t
2
)
. (2.30)

Finally, the temporal evolution of the reduced density matrix is given by

ρS,1,1(t) =
1

2
(2.31a)

ρS,1,2(t) =
1

2

(
1 + ω2

c t
2
)−α

exp(−iω0t) (2.31b)

ρS,2,1(t) =
1

2

(
1 + ω2

c t
2
)−α

exp(iω0t) (2.31c)

ρS,2,2(t) =
1

2
. (2.31d)
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The trace is preserved, but the coherences decay.
Knowing ρS(t) we can compute the expectation values of interest to compare the
results to the other methods. They are given by

〈σz〉 = Tr {ρS(t)σz} = 0 (2.32)

〈σ+〉 =
1

2

(
1 + ω2

c t
2
)−α

exp (iω0t) (2.33)

〈σ−〉 =
1

2

(
1 + ω2

c t
2
)−α

exp (−iω0t) . (2.34)

2.3.2 Results for Quantum Master Equation

By way of comparison to the DMF results, we also compute the dynamics of the toy
model using a quantum master equation. In this method, the temporal evolution
of a system which is coupled to an environment is determined. For the toy model
the system is given by HS and the environment by HB, see Eq. (2.16). Then the
temporal evolution of the reduced density matrix ρS can be written in the following
form1

d
dt
ρS = − i

~
[HS +HLS , ρS] + γ0(t)

(
σzρSσz −

1

2
{σzσz , ρS}

)
, (2.35)

where HLS describes the Lamb shift Hamiltonian

HLS = λ0(t)σzσz. (2.36)

The Lamb shift Hamiltonian is cancelled in this calculation, because σzσz = 1.
The decay rate γ0(t) and the Lamb-shift coupling λ0(t) are given by the real or
imaginary part of a function Γ(t, ω)

γ0(t) = 2< [Γ(t, 0)] (2.37)

λ0(t) = = [Γ(t, 0)] . (2.38)

The function Γ(t, ω) is defined to be the correlation of the bosonic bath

Γ(t, ω) =

∫ t

0

dt′ exp(iωt′)TrB
{
B†(t′)B (t)

}
, (2.39)

1A detailed derivation of this equation including all assumptions and approximations can be
found in Ref. [49].
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with the bath operator B(t) = gk

(
b†k(t) + bk(t)

)
.

For zero temperature all modes of the bosonic bath are in the ground state and the
Bose distribution is zero for all momenta. Then Γ(t, ω) reads

Γ(t, ω) =

∫ t

0

dt′
∑
k

g2
k exp (i(ω − ωk)t′) . (2.40)

Applying the continuum limit, see Eq. (2.28), and using the spectral function of
Eq. (2.29), the decay rate reads

γ0(t) =
αω2

c t

1 + ω2
c t

2
. (2.41)

With this we can set up the equation of motion for a non-Markovian master equation.
Note, for the Markovian master equation the decay rates do not depend on the time
and can be computed by letting t→∞ [49]. In this case γ0 is equal to zero.
For the non-Markovian case, the equations of motion are given by

d
dt
ρS,1,1(t) = 0 (2.42a)

d
dt
ρS,1,2(t) = (−iω0 − 2γ0(t)) ρS,1,2(t) (2.42b)

d
dt
ρS,2,1(t) = (iω0 − 2γ0(t)) ρS,2,1(t) (2.42c)

d
dt
ρS,2,2(t) = 0 (2.42d)

and can be easily solved analytically. For the temporal evolution of the reduced
density matrix we obtain

ρS,1,1(t) =
1

2
(2.43a)

ρS,1,2(t) =
1

2

(
1 + ω2

c t
2
)−α

exp(−iω0t) (2.43b)

ρS,2,1(t) =
1

2

(
1 + ω2

c t
2
)−α

exp(iω0t) (2.43c)

ρS,2,2(t) =
1

2
. (2.43d)

The dynamics obtained with the non-Markovian master equation result in the same
as the exact solution. This is caused by the simple model.
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However, the Markovian solution

ρS,1,1(t) =
1

2
(2.44a)

ρS,1,2(t) =
1

2
exp(−iω0t) (2.44b)

ρS,2,1(t) =
1

2
exp(iω0t) (2.44c)

ρS,2,2(t) =
1

2
(2.44d)

shows only an oscillation in the coherences and no decay. Hence, the Markovian
approximation not suffices to describe the dynamics of the system.
Finally, the expectation values for the non-Markovian dynamics read

〈σz〉 = Tr {ρS(t)σz} = 0 (2.45)

〈σ+〉 =
1

2

(
1 + ω2

c t
2
)−α

exp (iω0t) (2.46)

〈σ−〉 =
1

2

(
1 + ω2

c t
2
)−α

exp (−iω0t) . (2.47)

2.3.3 Results for the iEoM

Before the DMF is applied to the toy model, the results for the iterative equation of
motion approach are derived. The iEoM uses a controlled expansion in the electron-
phonon coupling strength gk instead of the correlation expansion in the DMF. Due
to this a comparison between these both truncations is of interest.
For the toy model the Hamiltonian is time independent. In the first order in gk, the
ansatz for the operators is given by

σz(t) = sz0(t)σz (2.48)

bk(t) = α0,k(t)bk + α1,k(t)gkσz (2.49)

σ+(t) = s+
0 (t)σ+ +

∑
k

(
s+

1,k(t)gkσ+b
†
k + s+

2,k(t)gkσ+bk

)
. (2.50)

The result for σ−(t) can easily be computed by Hermitian conjugation of the result
of σ+(t).
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The ansatz yields the following equations

i~
d
dt
σz(t) = i~

d
dt
sz0(t)σz = 0 (2.51)

i~
d
dt
bk = i~

d
dt
α0,k(t)bk + i~

d
dt
α1,k(t)gkσz (2.52)

= ~ωkα0,k(t)bk + α0,k(t)gkσz

i~
d
dt
σ+(t) = i~

d
dt
s+

0 (t)σ+ +
∑
k

(
i~

d
dt
s+

1,k(t)gkσ+b
†
k + i~

d
dt
s+

2,k(t)gkσ+bk

)
(2.53)

= −~ω0s
+
0 (t)σ+ −

∑
k

2gks
+
0 (t)

(
σ+b

†
k + σ+bk

)
−
∑
k

~ω0gk

(
s+

1,k(t)σ+b
†
k + s+

2,k(t)σ+bk

)
+
∑
k

~ωkgk

(
−s+

1,k(t)σ+b
†
k + s+

2,k(t)σ+bk

)
−
∑
k

g2
k
(
s+

1,k(t) + s+
2,k(t)

)
σ+.

Here, the red colored part represents the additional contributions of the self-consistent
truncation. A comparison of the coefficients leads to the equations of motion for the
prefactors, which read

i~
d
dt
sz0(t) = 0 (2.54a)

i~
d
dt
α0,k(t) = ~ωkα0,k(t) (2.54b)

i~
d
dt
α1,k(t) = α0,k(t) (2.54c)

i~
d
dt
s+

0 (t) = −~ω0s
+
0 (t)−

∑
k

g2
k
(
s+

1,k(t) + s+
2,k(t)

)
(2.54d)

i~
d
dt
s+

1,k(t) = −~ (ω0 + ωk) s+
1,k(t)− 2s+

0 (t) (2.54e)

i~
d
dt
s+

2,k(t) = −~ (ω0 − ωk) s+
2,k(t)− 2s+

0 (t). (2.54f)
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First, we ignore the self-consistency contribution and arrive following results

sz0(t) = 1, (2.55a)

α0,k(t) = exp(−iωkt) (2.55b)

α1,k(t) =
1

~ωk
(exp(−iωkt)− 1) (2.55c)

s+
0 (t) = exp(iω0t) (2.55d)

s+
1,k(t) =

2

~ωk
(− exp(−iωkt) + 1) exp(i (ωk + ω0) t) (2.55e)

s+
2,k(t) =

2

~ωk
(exp(iωkt)− 1) exp(i (−ωk + ω0) t). (2.55f)

With this knowledge we are able to compute the expectation values of interest. Note,
the initial condition are given at T = 0 and the density matrix of HS is given by
Eq. (2.19). So the expectation values are

〈σz(t)〉 = sz0(t) 〈σz〉 = 0 (2.56)〈
ak(t)

〉
= α0,k(t)

〈
ak

〉
+ gkα1,k(t) 〈σz〉 = 0 (2.57)

〈σ+(t)〉 =
1

2
s+

0 (t) =
1

2
exp(iω0t). (2.58)

The first order truncation without self-consistent loop leads to the same results as
the Markovian quantum master equation.
Considering the self-consistent truncation, we solve the equations of motion numeri-
cally. To do so, we have to discretized the coupling strength and the phonon energies.
Thereto, we discretize the spectral function of the environment, see Eq. (2.29). The
spectral function is divided into different intervals [ωm, ωm+1]. In addition, we can
rewrite HB and HI into [64]

HB =
∑
n

~wnb†nbn (2.59)

HI = σz
∑
n

γn
(
b†n + bn

)
(2.60)



20 2 Methods

with

γ2
n =

∫ ωn+1

ωn

F (ω)dω (2.61)

wn = γ−2
n

∫ ωn+1

ωn

F (ω)ωdω. (2.62)

Here, γn describes the coupling between the environment and the two-level system
and wn sets the energy of the environment. With this we are able to solve the equa-
tions of motion numerically.
The resulting evolution of 〈σ+〉 is depicted in Fig. 2.1. If we apply the self-consistent
truncation, we are able to capture the dephasing of 〈σ+〉. The results are in perfect
agreement with the exact results for small coupling strength, i.e., small values of α.
For increasing α the results deviate stronger from the exact results. This behavior is
reasonable, because we expand around orders of the coupling strength. Further, we
observe that the results are in good agreement with the exact one for short times,
even for larger α. However, with increasing time the iEoM-results starts to deviate
from the exact results.
To improve the long time behavior of the calculation we go a step further in the
expansion. If we consider the pure second order truncation without self-consistent
truncation we get the same results as for the first order truncation with self-consistent
truncation. This can be seen by comparing Eqs. (2.54) with Eqs. (2.64) and ignoring
the red contribution of Eqs. (2.64b) and (2.64c). This is caused by the simple toy
model and is not a generic feature. Hence, we consider the O(g2

k) expansion with
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self-consistent truncation. The equation of motion for σ+ reads

i~
d
dt
σ+(t) = i~

d
dt
s+

0 (t)σ+ +
∑
k

(
i~

d
dt
s+

1,k(t)gkσ+b
†
k + i~

d
dt
s+

2,k(t)gkσ+bk

)
(2.63)

+
∑
k,q

(
i~

d
dt
s+

3,k,q(t)gkgqσ+b
†
kbq + i~

d
dt
s+

4,k,q(t)gkgqσ+b
†
kbq

+ i~
d
dt
s+

5,k,q(t)gkgqσ+b
†
kbq

)
= −~ω0s

+
0 (t)σ+ −

∑
k

2gks
+
0 (t)

(
σ+b

†
k + σ+bk

)
−
∑
k

~ω0gk

(
s+

1,k(t)σ+b
†
k + s+

2,k(t)σ+bk

)
+
∑
k

~ωkgk

(
−s+

1,k(t)σ+b
†
k + s+

2,k(t)σ+bk

)
−
∑
k

g2
k
(
s+

1,k(t) + s+
2,k(t)

)
σ+

− 2
∑
k,q

gkgq

[
s+

1,k

(
σ+b

†
qb

†
k + σ+b

†
kbq

)
+ s+

2,k

(
σ+b

†
qbk + σ+bqbk

)]
+
∑
k,q

~gkgq
[

(−ω0 − ωk + ωq) s+
3,k,q + (−ω0 + ωk + ωq) s+

4,k,q

+ (−ω0 − ωk − ωq) s+
5,k,q

]
−
∑
k,q

gkgqs
+
3,k,q

(
gkσ+bq + gqσ+b

†
k

)
−
∑
k,q

gkgqs
+
4,k,q

(
gkσ+bq + gqσ+bk

)
−
∑
k,q

gkgqs
+
5,k,q

(
gkσ+b

†
q + gqσ+b

†
k

)
.
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A comparison of the coefficients leads to following equations of motion for the pref-
actors

i~
d
dt
s+

0 (t) = −~ω0s
+
0 (t)−

∑
k

g2
k
(
s+

1,k(t) + s+
2,k(t)

)
(2.64a)

i~
d
dt
s+

1,k(t) = −~ (ω0 + ωk) s+
1,k(t)− 2s+

0 (t) (2.64b)

−
∑
q

g2
q
(
s+

3,k,q(t) + s+
5,k,q(t) + s+

5,q,k(t)
)

i~
d
dt
s+

2,k(t) = −~ (ω0 − ωk) s+
2,k(t)− 2s+

0 (t) (2.64c)

−
∑
q

g2
q
(
s+

3,k,q(t) + s+
4,k,q(t) + s+

4,q,k(t)
)

i~
d
dt
s+

3,k,q(t) = ~ (−ω0 − ωk + ωq) s+
3,k,q(t)− 2

(
s+

1,k(t) + s+
2,q(t)

)
(2.64d)

i~
d
dt
s+

4,k,q(t) = ~ (−ω0 + ωk + ωq) s+
4,k,q(t)− 2s+

2,q(t) (2.64e)

i~
d
dt
s+

5,k,q(t) = ~ (−ω0 − ωk − ωq) s+
5,k,q(t)− 2s+

1,q(t). (2.64f)

The results of the second order with self-consistent truncation are also depicted in
Fig. 2.1. It shows an enhancement of the first order calculation. For the second
order also larger values of α can be computed accurately. All in all with increasing
order we are able to describe the temporal evolution of the toy model more precisely
for larger couplings and longer times.
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2.3.4 Results for the DMF

In this section, we apply the DMF approach on the toy model. Especially, we are
interested in the temporal evolution of the following expectation values

〈σz〉 ,
〈
bk

〉
, and 〈σ+〉 . (2.65)

The expectation value 〈σ−〉 can be computed by a complex conjugation of 〈σ+〉.
The equations of motion, set up by using Eq. (2.1), are given by

i~
d
dt
〈σz〉 = 0 (2.66)

i~
d
dt

〈
bk

〉
= ~ωk

〈
bk

〉
+ gk 〈σz〉 (2.67)

i~
d
dt
〈σ+〉 = −~ω0 〈σ+〉 −

∑
k

2gk

(〈
σ+bk

〉
+
〈
σ+b

†
k

〉)
. (2.68)

Due to the electron-phonon coupling, the phonon assisted quantities read〈
σ+bk

〉
and

〈
σ+b

†
k

〉
. (2.69)

For the first order in the correlation expansion, the corrections of the factorized
phonon assisted quantities are neglected, e.g.〈

σ+bk

〉
= 〈σ+〉

〈
bk

〉
+
〈
σ+bk

〉c
≈ 〈σ+〉

〈
bk

〉
. (2.70)

The resulting closed system reads

i~
d
dt
〈σz〉 = 0 (2.71)

i~
d
dt

〈
bk

〉
= ~ωk

〈
bk

〉
+ gk 〈σz〉 (2.72)

i~
d
dt
〈σ+〉 = −~ω0 〈σ+〉 −

∑
k

2gk

(
〈σ+〉

〈
bk

〉
+ 〈σ+〉

〈
b†k

〉)
(2.73)

and can be easily solved by using the initial conditions

〈σz〉 (t = 0) = 0 ⇒ 〈σz〉 (t) = 0 (2.74)〈
bk

〉
(t = 0) = 0 ⇒

〈
bk

〉
(t) = 0 (2.75)

〈σ+〉 (t = 0) =
1

2
⇒ 〈σ+〉 (t) =

1

2
exp(iω0t). (2.76)
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Figure 2.1: In panel (a), the temporal evolution of 〈σ+〉 is presented for ω0 = 1,
ωc = 0.1, and various α ∈ {0.1, 0.5, 1, 1.5, 2}. The exact results are depicted as solid
black lines, the DMF-results as dotted blue lines, the first order with self-consistent
truncation iEoM-results as dotted red lines, and the second order with self-consistent
truncation iEoM-results as dotted blue lines. In panel (b) the deviation from the
exact results is depicted for the DMF and iEoM results.
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The results of DMF in first order are in perfect agreement with the Markovian
dynamics, just as the results for the iEoM in first order without the self-consistent
truncation. The constant behavior of 〈σz〉 (t) as well as the oscillation of 〈σ+〉 (t) is
captured. Again the decay of 〈σ+〉 (t) of the exact solution cannot be captured.
In the second order of the correlation expansion the temporal evolution of the phonon
assisted quantities, e.g. 〈σ+ak〉, is taken into account. This means one has to apply
Eq. (2.1) to these quantities. For the toy model one obtains

i~
d
dt

〈
σ+bk

〉
= ~ (−ω0 + ωk)

〈
σ+bk

〉
− gk 〈σ+〉 (2.77)

−
∑
k′

2gk′
(〈
σ+b

†
k′bk

〉
+
〈
σ+bk′bk

〉)
i~

d
dt

〈
σ+b

†
k

〉
= −~ (ω0 + ωk)

〈
σ+b

†
k

〉
− gk 〈σ+〉 (2.78)

−
∑
k′

2gk′
(〈
σ+b

†
k′b

†
k

〉
+
〈
σ+b

†
kbk′

〉)
.

As already mentioned, this leads to higher order expectation correlations including
a spin operator and two bosonic operators. These quantities have to be factorized
according to〈

σ+b
†
k′bk

〉
=
〈
σ+b

†
k′bk

〉c
+ 〈σ+〉

(〈
b†k′bk

〉c
+
〈
b†k′
〉〈

bk

〉)
. (2.79)

For the purpose of the correlation expansion we neglect all corrections including
one spin operator and two bosonic operators for the second order in the correlation
expansion. As one can see in the factorization, the temporal evolution of the inco-
herent phonon density is needed. Due to

〈
a†
k

〉
= 0 =

〈
ak

〉
the incoherent phonon

density is equal to the full phonon density. The temporal evolution of this quantity
is given by

i~
d
dt

〈
a†
kap

〉
= ~ (ωp − ωk)

〈
a†
kap

〉
+ gp

〈
σza

†
k

〉
− gk

〈
σzap

〉
(2.80)

i~
d
dt

〈
akap

〉
= ~ (ωp + ωk)

〈
akap

〉
+ gp

〈
σzak

〉
+ gk

〈
σzap

〉
. (2.81)



26 2 Methods

To compute the temporal evolution of the quantities above one needs

i~
d
dt

〈
σzak

〉
= ~ωk

〈
σzak

〉
+ gk

〈
σ2
z

〉︸︷︷︸
=1

(2.82)

⇒
〈
σzak

〉
= − gk

~ωk
(1− exp(−iωkt)), (2.83)

with
〈
a†
kap

〉
(t) and

〈
akap

〉
(t) given by

〈
a†
kap

〉
=

gkgp
~2ωkωp

(
1− eiωkt − e−iωpt + e−i(ωp−ωk)t

)
(2.84)〈

akap

〉
=

gkgp
~2ωkωp

(
1− e−iωkt − e−iωpt + e−i(ωp+ωk)t

)
. (2.85)

To solve the complete differential equation system, we have to solve the equations of
motion for the phonon assisted quantities and 〈σ+〉. This task is done numerically.
Thereto, we use the same discretization as for the iEoM equations, see Sect. 2.3.3.
The temporal evolution of 〈σ+〉 is depicted in Fig. 2.1. Additionally to the oscilla-
tion of the first order calculation, we observe a damping of 〈σ+〉. For small values
of α it is in good agreement with the exact results. With increasing α the deviation
increases, too. Interestingly, the results of the iEoM seems to be more accurate than
the results of the DMF. For the DMF approach the damping is always stronger and
with this the deviation compared to the exact curve is larger.
The study of the toy model shows that the correlation expansion is no expansion
in the electron-phonon coupling strength. In fact an infinite order in the coupling
strength is taken into account if an expectation value enters its own equation of
motion in a contribution proportional to the coupling strength. This infinite order
in gk does not enhance the results. On the contrary, the iEoM with self-consistent
truncation leads to better results. This is maybe caused by the fact that neglecting
some correlations leads to a larger error than truncate in order of a small parameter
and add some self-consistency contributions as in the iEoM.
Although the iEoM approach leads to better results for the toy model, we use the
DMF method to compute the pump pulse induced nonequilibrium dynamics of a su-
perconductor. This is due to the fact that the DMF approach is successfully applied
to compute the pump pulse response of superconductors [30–35, 56]. As already
mentioned before, one can compute the effect of a pump pulse exactly due to the
mean field approximation [30], except of inaccuracies due to discretization.
Additionally, the BCS Hamiltonian is time dependent, due to the mean field descrip-
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tion, see Sect. 3.1. With this the iEoM approach is numerically more complicated
for this model than the DMF. This is another reason why the DMF is the method of
choice. Nevertheless, the iEoM was applied to the BCS model for a testing purpose,
namely for the BCS Hamiltonian which is perturbed by a quench, see Sect.5.1.
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3 Models

In this section, the model is introduced which is used to describe the nonequilibrium
dynamics of a superconductor. A standard s−wave BCS mean field Hamiltonian
Hsc is considered. To study the effects of the induced quasiparticle dynamics on
the lattice ions, the superconductor is coupled to additional phonons, which are not
involved in the pairing mechanism. We take optical as well as acoustic phonons
into account. Note, in this work either optical or acoustic phonons are considered.
The phonons, described by the free phonon Hamiltonian Hph, are coupled to the
superconductor via a Fröhlich-Hamiltonian HFr.
To bring this model out of equilibrium we examine two different approaches. First,
an intense laser pulse, the pump pulse, is used. The coupling between this external
electromagnetic field to the superconductor is given by the Hamiltonian Hem. To
simulate a pump probe experiment a second weaker pulse, the probe pulse, is also
considered. Its coupling can be likewise described by Hem.
The second approach will be a quench, e.g. a sudden reduction of the coupling
constant of the order parameter. Applying a quench instead of a light pulse move us
a little bit away from the aim to describe pump probe experiment as accurately as
possible, but it has some numerical advantages. Details will be presented in Sect. 4.
Further, it will be shown that the applied quenches yield the same dynamics as a
short pump pulse, see Sect. 5.1. The different quenches are introduced in Sect. 3.4.
All in all, the model Hamiltonian is given by

H = Hsc +Hph +HFr +Hem. (3.1)

Only parts of the model Hamiltonian are taken into account depending on the model
or the perturbation. In the following sections the different parts of the model Hamil-
tonian are discussed in detail.

3.1 BCS superconductor

For the superconductor a standard mean field type BCS Hamiltonian is used [65,66].
The Hamiltonian is given by

Hsc =
∑
k,σ

εkc
†
k,σck,σ −

∑
k∈W

(
∆kc

†
k,↑c

†
−k↓ + ∆∗kc−k,↓ck,↑

)
. (3.2)
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Here, ck,σ is the annihilation operator of an electron with momentum k and spin σ,
εk = ~2k2

2m
− EF is the dispersion, m is the effective electron mass, and EF denotes

the Fermi energy. The second sum is over the set W of all k vectors with |εk| ≤ ~ωc,
where ωc is a cutoff frequency. The superconducting order parameter ∆k is given
self-consistently by

∆k =
∑
k′∈W

W0(k,k′)
N

〈
c−k′,↓ck′,↑

〉
, (3.3)

with the interaction couplingW0(k,k′) and the number of lattice sites N . The order
parameter is one of the main quantities to describe the temporal evolution of the
electronic system, e.g. see Sect. 5.
The expectation value

〈
c−k′,↓ck′,↑

〉
is given by

〈
c−k′,↓ck′,↑

〉
=

∆k′

2Ek′
(1− 2f(Ek′)), (3.4)

where f(Ek′) denotes the Fermi distribution and Ek′ =
√
ε2k′ + |∆k′|2. Eq. (3.4) is

true as can be seen by applying the Bogoliubov transformation, see Sect. 3.1.1. For
T = 0 Eq. (3.3) simplifies to the self-consistency equation

∆k =
∑
k’∈W

W0(k,k′)
N

∆k′

2Ek′
. (3.5)

In this thesis, we consider a s−wave order parameter. This results in a momentum
independent coupling strength

W0(k,k′) = W0 (3.6)

and with this the order parameter is also momentum independent

∆k = ∆. (3.7)

The standard s-wave BCS Hamiltonian ensues, which is well known in literature [66].
For the simulation of the dynamics it is advantageous to perform a Bogoliubov
transformation of the electronic operators. This transformation diagonalizes the
Hamiltonian Hsc in the initial state. The Bogoliubov transformation is presented in
the following section.
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3.1.1 Bogoliubov transformation

A Bogoliubov transformation [67,68] is used to introduce the new fermionic operators
αk and βk. The transformation is given by ck,↑

c†−k,↓

 =

 u∗k vk

−v∗k uk


αk

β†
k

 ,

αk

β†
k

 =

uk −vk

v∗k u∗k


 ck,↑

c†−k,↓

 (3.8)

Here, uk and vk are set to

uk =

√
1

2

(
1 +

εk
Ek

)
(3.9)

vk =
∆0

|∆0|

√
1

2

(
1− εk

Ek

)
, (3.10)

with Ek =
√
ε2k + |∆0|2 and the initial value of the order parameter ∆0. Note, the

coefficients uk and vk are time independent and fulfil the relation |u|2k+|v|2k = 1. This
leads to a diagonal Hamiltonian for the initial condition. The temporal evolution
of quasiparticle densities will be computed with respect to a fixed time-independent
Bogoliubov-de Gennes basis.
The transformation of the Hamiltonian Hsc can be easily applied if it is rewritten in
the following way

Hsc =
∑
k

(
c†k,↑ c−k,↓

) εk −∆

−∆∗ −εk


 ck,↑

c†−k,↓

 . (3.11)

Note, the order parameter ∆ = ∆(t) depends on time.
Now, the Bogoliubov transformation is applied

∑
k

uk −vk

v∗k u∗k


 εk −∆

−∆∗ −εk


 u∗k vk

−v∗k uk

 =

Rk Ck

C∗k −Rk

 , (3.12)

where

Rk = εk(1− 2|vk|2) + vku
∗
k∆∗ + v∗ku

∗
k∆ (3.13)
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Ck = 2εkvkuk + ∆∗|vk|2 −∆|uk|2. (3.14)

To simplify the expression for Rk and Ck, the relations uk =

√
1
2

(
1 + εk

Ek

)
, vk =

∆0

|∆0|

√
1
2

(
1− εk

Ek

)
, and vkuk = |∆0|

2Ek
are used. With these, one can rewrite Rk and

Ck into

Rk =
ε2k + Re(∆∗∆0)

Ek
(3.15)

Ck = ∆∗0

(
εk
Ek

(
1− Re

(
∆

∆0

))
+ i Im

(
− ∆

∆0

))
. (3.16)

Finally, the Hamiltonian Hsc is given by

Hsc =
∑
k/∈W

|εk|
(
α†

kαk + β†
kβk

)
+
∑
k∈W

(
Rk

(
α†

kαk + β†
kβk

)
+ Ckα

†
kβ

†
k + C∗kβkαk

)
.

(3.17)

If the order parameter is equal to the initial one the coefficients Rk and Ck are given
by Rk = Ek and Ck = 0 and the Hamiltonian is diagonal by construction.
The order parameter is rewritten into terms of the presented transformation as the
Hamiltonian. It is given by

∆(t) =
∑
k∈W

W0

N

(
vkuk

(
−
〈
α†

kαk

〉
−
〈
β†

kβk

〉
+ 1
)

+ u2
k

〈
βkαk

〉
− v2

k

〈
α†

kβ
†
k

〉 )
.

(3.18)

3.2 Coupling to phonons

In order to study the response of the lattice on the nonequilibrium dynamics of
the Bogoliubov quasiparticles, the BCS superconductor is additionally coupled to
phonons.
Thereto, a free phonon Hamiltonian and a Hamiltonian which describes the coupling
is needed. In this study, the Fröhlich Hamiltonian is used for the electron-phonon
coupling [69].
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The free phonon Hamiltonian is given by

Hph =
∑
p

~ωp

(
b†pbp +

1

2

)
, (3.19)

where bp denotes the bosonic annihilation operator of a phonon with wave vector p
and frequency ωp. Here, only a phonon mode of low energy around ~ωp . 2∆0 =

2.7meV is taken into account. This mode does not generate the superconductivity.
The pairing interaction is assumed to be mediated by other bosons at higher energies,
for instance by spin fluctuations or by phonons at high energies of the order of
the Debye energy ~ωD ≈ 30 meV [36]. This energy scale is much larger than the
energy scale of the Bogoliubov quasiparticles so these other bosons influence the low-
energy dynamics only indirectly via virtual processes, and hence, they do not need
to be treated explicitly. The corresponding electron-boson couplings are assumed
to be integrated out and enter in the mean-field treatment of superconductivity via
W0(k,k′).
We considered only one phonon mode within the simulation, because phonons with
a frequency near the frequency of the order parameter oscillation are generated at
most as discussed in Sect. 5.2. All other modes are of less importance.
The Fröhlich Hamiltonian reads

HFr =
∑
k,pσ

gp√
N
c†k+p,σck,σ

(
bp + b†−p

)
. (3.20)

Here, gp denotes the electron-phonon coupling strength. According to the BCS
Hamiltonian Hsc, the Hamiltonian HFr has to be transformed with the same Bogoli-
ubov transformation. The transformed Hamiltonian is given by

HFr =
∑
p,k

gp√
N

(
bp + b†−p

)
× (3.21)

×
(
L−k,p

[
α†

k+pαk + β†
kβk+p

]
+M+

k,p

[
βk+pαk + α†

k+pβ
†
k

]
+ 2δp,0|vk|2

)
.

Following shortcuts are used to write this expression in a concise way

L±k,p = ukuk+p ± vkvk+p (3.22)

M±
k,p = vkuk+p ± ukvk+p. (3.23)
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Up to now, the Hamiltonians describing the coupling to the phonons are formulated
generally. The exact form of the phonon frequency and the coupling strength de-
pends on the kind of the considered phonons.
For optical phonons we assume the phonon frequency and the electron-phonon cou-
pling strength to be in Holstein form, i.e. that both quantities are momentum
independent. With this we set ωp = ωph and gp = gph.
For acoustic phonons the frequency and the coupling strength depend on the phonon
wave vector. The frequency depends on the absolute value of the wave vector and
is given by

ωp = v|p|, (3.24)

with the phonon velocity v.
The coupling constant gp is proportional to [70]

gp ∼ V (k1 − k2)(k1 − k2)
1
√
ωp
, (3.25)

where V (k1−k2) is the Fourier transformed potential and ωph = v|p| is the phonon
dispersion. The difference (k1 − k2) of the electron momenta is given by

(k1 − k2) = p +K, (3.26)

where K stands for possible Umklapp processes. If we now assume, that there are
no Umklapp processes, K can be set to K = 0. Further, p should be small so that
the potential is set to be constant [V (k1 − k2) = V (p) → const]. With this gp is
approximately given by

gp ∼ V (0)p
1√
v|p|

= a
√
|p|. (3.27)

A new observable of interest enters the system if phonons are included, namely
the lattice displacement U(r, t). The lattice displacement is connected to the mean
phonon amplitude

〈
bp
〉
and is given by

U(r, t) =
∑
p

√
~

2MωpN

(〈
bp
〉

+
〈
b†−p

〉)
eipr, (3.28)

where M denotes the reduced mass of the lattice ions.
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3.3 Coupling to an electromagnetic light field

In order to push the system out of equilibrium a short intensive light pulse is used,
the pump pulse. This pulse injects a nonthermal distribution of the Bogoliubov
quasiparticles, see Sect. 5 or Refs. [30–36].
The considered pump pulse is of Gaussian shape with the photon frequency ω0, full
width at half maximun (FWHM) τ0, the photon wave vector q0 = |q0|~ex = ω0/(c)~ex,
and the amplitude A0 = |A0|~ey. Using the Coulomb gauge, the pulse is characterized
by the transverse vector potential

Aq(t) = A0e
−
(

2
√
ln 2t
τ0

)2 (
δq,q0

e−iω0t + δq,−q0
eiω0t

)
. (3.29)

Note, this equation describes a laser pulse with definite wave vector, but finite uncer-
tainty in its energy ∆E ≈ ~/(2τ0). Nevertheless, we expect that the results remain
qualitatively unchanged for more realistic pulse shapes with a broader distribution
of wave vectors, because the wave vector |q0| is much smaller than the Fermi mo-
mentum.
The nonequilibrium response in the simulation is measured by a probe pulse. This
pulse follows the pump pulse after a certain delay time δt. The probe pulse has the
same shape as the pump pulse, see Eq. (3.29), but it has a much weaker intensity.
For the probe pulse, we label the probe pulse momentum with |qpr| = ωpr/(c) and
the probe pulse width with τpr. For the delay time we consider positive as well as
negative delay times, corresponding cases that the probe pulse precedes the pump
pulse δt < 0 or follows it δt > 0.
The photon energy of the pump pulse is set to a value, which is slightly larger

than twice the initial order parameter 2|∆0| ≈ 3meV of the superconductor. Due
to this the pump pulse can excite the superconductor. Further, we assume that the
pump pulse is centered in time at t = 0 ps. The probe pulse is taken to be very
short in time and the energy is chosen to be slightly smaller than 2|∆0|. Due to
the short pulse width the superconductor is probed with a broad range of frequen-
cies. Further, both pulses are cut off where their amplitude is only a thousandth of
their maximum amplitude. No overlap of the both pulses is considered, that means
|δt| > (τp + τprobe). An example of the temporal evolution of a pump pulse with
τ0 = 0.5 ps and a probe pulse τpr = 0.25 ps is given in Fig. 3.1. Here, a delay time
of δt = 2 ps is used.
The coupling of the pulse to the system is given by the standard minimal coupling.
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Figure 3.1: Temporal evolution of the pump vector potential Aq0(t) (solid lines)
and probe vector potential Aqpr(t) (dashed lines) with pulse widths τ0 = 0.5 ps and
τpr = 0.25 ps, respectively. The black solid (dashed) line represents the Gaussian
envelope of the pump (probe) pulse. The blue and red lines show the real and
imaginary parts of the vector potentials, respectively. The pump pulse is centered
at t = 0 ps and the probe pulse at t = δt = 2 ps.

The corresponding Hamiltonian reads

Hem = H(1)
em +H(2)

em (3.30)

H(1)
em =

e~
2m

∑
k,q,σ

(2k + q)Aq(t)c†k+q,σck,σ, (3.31)

H(2)
em =

e2

2m

∑
k,q,σ

(∑
q′

Aq−q′(t)Aq′(t)

)
c†k+q,σck,σ. (3.32)

Again, this Hamiltonian has to be transformed by means of the Bogoliubov trans-
formation of Eq. (3.8). The transformed Hamiltonian reads

H(1)
em =

e~
2m

∑
k,q,σ

(2k + q)Aq(t)

(
(u∗kuk+q + v∗kvk+q)α†

k+qαk (3.33)

− (u∗k+quk + v∗k+qvk)β†
kβk+q + (uk+qvk − ukvk+q)α†

k+qβ
†
k

+ (u∗kv
∗
k+q − u∗k+qv

∗
k)βk+qαk

)
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H(2)
em =

e2

2m

∑
k,q,σ

(∑
q′

Aq−q′(t)Aq′(t)

)[
(u∗kuk+q − v∗kvk+q)α†

k+qαk (3.34)

+ (u∗k+quk − v∗k+qvk)β†
kβk+q + (uk+qvk + ukvk+q)α†

k+qβ
†
k

+ (u∗kv
∗
k+q + u∗k+qv

∗
k)βk+qαk

]
.

Due to the fact that the probe pulse is much weaker than the pump pulse, it is
only treated in linear approximation, i.e., only the linear coupling H

(1)
em is taken

into account. The Hamiltonian of second order H(2)
em is neglected. The pump pulse

instead has a high intensity and as a consequence both linear and nonlinear part of
the Hamiltonian have to be considered. In order to simulate the effect of the probe
pulse further approximations are used, which will be discussed in Sect. 6.2.

3.4 Quenches

As can be seen in Eq. (3.33), the pump pulse leads to a shift of quasiparticles
in k-space. So expectation values are excited which are non-diagonal in k, e.g.〈
α†

kαk+q

〉
. Due to this the temporal evolution of these expectation values has to be

computed. The shift of quasiparticles is determined by the photon momentum. Due
to this the discretization of the Brillouin zone depends on the photon momentum,
for further details see Sect. 4.3.
Certainly a diagonal perturbation, which pushes the system out of equilibrium with-
out shifting quasiparticles, reduces the numerical effort due to a less strict discretiza-
tion mesh. This is one reason why quenches are taken into account.
To perturb the electronic system two different kinds of quenches are defined.
First, a quench is considered, which suddenly changes the value of the coupling
strength W0, see Eq. (3.3). This quench is called “interaction quench”. The new
coupling strength W̃0 is given by

W̃0 = aW0, (3.35)

with the parameter a ∈ [0, 1]. Applying this quench makes the initial state to be no
longer the equilibrium state of the system, which induces collective dynamics.
A light pulse excites quasiparticles and the quasiparticle densities become finite, e.g.,
see Sect. 5.1. This is used for the second considered quench. For this quench the
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normal expectation values
〈
α†

kαk

〉
and

〈
β†

kβk

〉
become finite in a Gaussian shape

around the Fermi momentum. This quench is called “occupation quench”. The
Gaussian shape is chosen, because a short pump pulse leads to similar expectation
values, see Sect. 5.1. As parameter of this quench one can choose the amplitude and
the FWHM.
As can be seen in Sect. 5.1, both quenches yield nearly the same dynamics of the
electronic subsystem as a short pump pulse, so both can be used as a good approx-
imation of a perturbation by a pump pulse.
The main reason why we applied quenches is that we want to test the effect of dif-
ferent discretization, see Sect. 4.3, and other numerical implementation details with
a simpler system. As already mentioned a quench simplifies the equations of motion
drastically, see Sect. 4.1.
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4 Equations of motions and implementation

In this section, some details of the numerical implementation are presented. First,
the equations of motion to describe the nonequilibrium dynamics are introduced.
To solve the system of differential equations a standard Runge-Kutta 4th order
algorithm is used [60].
In order to solve the equations of motion numerically one has to discretize the
Brillouin zone (BZ), i.e. choose the k-values, which are taken into account. How
this is done is described in Sect. 4.3.
In this section, we only concentrate on the numerical implementation of the system
perturbed by a pump pulse or a quench. The implementation of the probe pulse is
discussed in Sect. 6.1.

4.1 Equations of motion

Observables such as the order parameter, see Eq. (3.3), are fully determined by the
temporal evolution of quasiparticle densities such as

〈
α†

kαk′

〉
. The temporal evo-

lution of these expectation values is given by the equation of motion which follows
from the DMF approach. Due to the non bilinear Fröhlich Hamiltonian of the sys-
tem a truncation is needed to obtain a closed system. Here, the equations of motion
up to the second order in the correlation expansion are presented. The presented
equations can easily be simplified to the equations for other system, e.g., the pure
superconductor without additional phonons.
In the following, the differential equations of the normal quasiparticle density

〈
α†

kαk′

〉
,

the phonon assisted correlation
〈
α†

kαk′bp

〉c
, the mean phonon amplitude

〈
bp
〉
, and

the incoherent phonon density
〈
b†pbp′

〉
are shown. The equations, which are not ex-

plicitly shown in this section, are of similar form. They are given in Appendix A.2.



4 Equations of motions and implementation 39

For the normal quasiparticle density
〈
α†

kαk′

〉
, the equation of motion reads

i~
d
dt

〈
α†

kαk′

〉
= (Rk′ −Rk)

〈
α†

kαk′

〉
+ Ck′

〈
α†

kβ
†
k′

〉
− C∗k

〈
βkαk′

〉
(4.1a)

+
e~
2m

∑
q′=±q0

2kAq′

(
− L+

k,q′

〈
α†

k+q′αk′

〉
+ (4.1b)

+ L+
k′,−q′

〈
α†

kαk′−q′

〉
−M−

k′,−q′

〈
α†

kβ
†
k′−q′

〉
+M−

k,q′

〈
βk+q′αk′

〉)

+
e2

2m

∑
q′=0,±2q0

 ∑
qi=±q0

Aq′−qiAqi

(− L−k,q′ 〈α†
k+q′αk′

〉
+ (4.1c)

+ L−k′,−q′

〈
α†

kαk′−q′

〉
+M+

k′,−q′

〈
α†

kβ
†
k′−q′

〉
−M+

k,q′

〈
βk+q′αk′

〉)

+
∑
p

gp√
N

(〈
b†−p

〉
+
〈
bp
〉)(

− L−k,p
〈
α†

k+pαk′

〉
+ (4.1d)

+ L−k′,−p′

〈
α†

kαk′−p

〉
−M+

k,p

〈
βk+pαk′

〉
+M+

k′,−p

〈
α†

kβ
†
k′−p

〉)

+
∑
p

gp√
N

(
− L−k,p

(〈
α†

k+pαk′bp

〉c
+
〈
α†

k+pαk′b
†
−p

〉c)
+ (4.1e)

+ L−k′,−p′

(〈
α†

kαk′−pbp

〉c
+
〈
α†

kαk′−pb
†
−p

〉c)
−

−M+
k,p

(〈
βk+pαk′bp

〉c
+
〈
βk+pαk′b

†
−p

〉c)
+

+M+
k′,−p

(〈
α†

kβ
†
k′−pbp

〉c
+
〈
α†

kβ
†
k′−pb

†
−p

〉c))
.

Here, the line (4.1a) follows from the commutator
[
α†

kαk′ , Hsc

]
and describes the

temporal evolution of the pure superconductor. If we only consider a superconductor
which is perturbed by a quench, we only need to take this line into account. The
lines (4.1b) and (4.1c) result from

[
α†

kαk′ , Hem

]
. They have to be considered if the

system is perturbed by the pump pulse instead of a quench. The last two lines (4.1d)
and (4.1e) are derived from

[
α†

kαk′ , HFr

]
. They must be considered if the system

is coupled to additional phonons. Here, the phonon assisted quantities are already
factorized, e.g.

〈
α†

kαk′bp

〉
=
〈
α†

kαk′bp

〉c
+
〈
α†

kαk′

〉 〈
bp
〉
. For the first order in
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the correlation expansion, i.e., neglecting the corrections of the phonon assisted
quantities, only line (4.1d) must be kept.
If only the first order in the expansion is considered, the equation of motion for the
mean phonon amplitude is needed to obtain a closed system. It is given by

i~
d
dt
〈
bp
〉

= ~ω−p
〈
bp
〉

(4.2a)

+
1√
N

∑
k

g−p

(
L−k,−p

(〈
α†

k−pαk

〉
+
〈
β†

kβk−p

〉)
(4.2b)

+M+
k,−p

(〈
α†

k−pβ
†
k

〉
+
〈
βk−pαk

〉)
+ 2δ0,−p|vk|2

)
.

Here, line (4.2a) result from
[
bp , Hph

]
and line (4.2b) from

[
bp , HFr

]
.

For the second order in the expansion the temporal evolution of the phonon assisted
quantities must be known. The equations of motion for the full phonon assisted
quantities consist of expectation values including four operators, e.g. four fermionic
ones or two fermionic and two bosonic ones. For example, the factorization of such
correlations is given by〈

α†
kαk′b

†
pbp′

〉
=
〈
α†

kαk′b
†
pbp′

〉c
+
〈
α†

kαk′bp′
〉c 〈

b†p
〉

+
〈
α†

kαk′b
†
p

〉c 〈
bp′
〉

(4.3)

+
〈
α†

kαk′

〉(〈
b†p
〉 〈
bp′
〉

+
〈
b†pbp′

〉c)
.

All other factorizations are given in Appendix A.1. Note that
〈
α†

kαk′

〉
=
〈
α†

kαk′

〉c
and

〈
bp
〉

=
〈
bp
〉c. As mentioned in Sect. 2.1 it is much faster to compute the

temporal evolution of the correlation instead of the full expectation values. This
is caused by a reduced equation of motion of the correlation, e.g. the EoM for the
correlation

〈
α†

kαk′bp

〉c
is defined by

i~
d
dt

〈
α†

kαk′bp

〉c
= i~

d
dt

〈
α†

kαk′bp

〉
(4.4)

−
(
i~

d
dt

〈
α†

kαk′

〉)〈
bp
〉
− i~

〈
α†

kαk′

〉 d
dt
〈
bp
〉
,
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and reads

i~
d
dt

〈
α†

kαk′bp

〉c
= (4.5)

(−Rk +Rk′ + ~ωp)
〈
α†

kαk′bp

〉c
+ Ck′

〈
α†

kβ
†
k′bp

〉c
− C∗k

〈
βkαk′bp

〉c
+
e~
2m

∑
q′=±q0

2kAq′
(
− L+

k,q′

〈
α†

k+q′αk′bp

〉c
+ L+

k′,−q′

〈
α†

kαk′−q′bp

〉c
−M−

k′,−q′

〈
α†

kβ
†
k′−q′bp

〉c
+M−

k,q′

〈
βk+q′αk′bp

〉c )

+
e2

2m

∑
q′=0,±2q0

 ∑
qi=±q0

Aq′−qiAqi

(− L−k,q′ 〈α†
k+q′αk′bp

〉c
+ L−k′,−q′

〈
α†

kαk′−q′bp

〉c
+M+

k′,−q′

〈
α†

kβ
†
k′−q′bp

〉c
−M+

k,q′

〈
β

k+~′
αk′bp

〉c )
+
∑

r

g−q√
N

{
L−k,−p

[〈
α†

kαr

〉(
δr−p,k′ −

〈
α†

r−pαk′

〉)
+
〈
α†

kβ
†
r

〉〈
βr−pαk′

〉]
+M+

r,−p

[〈
α†

kβ
†
r

〉(
δr−p,k′ −

〈
α†

r−pαk

〉)
−
〈
α†

kαr

〉〈
βr−pαk′

〉]}
+
∑
q

gq√
N

{
− L−k,q

[〈
α†

k+qαk′bp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
α†

k+qαk′

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]
+ L−k′,−q

[〈
α†

kαk′−qbp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
α†

kαk′−q

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]
−M+

k,q

[〈
βk+qαk′bp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
βk+qαk′

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]
+M+

k′,−q

[〈
α†

kβ
†
k′−qbp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
α†

kβ
†
k′−q

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]}
.
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Figure 4.1: The temporal evolution is depicted for the order parameter (a), the
mean phonon amplitude

〈
bq0

〉
, and the real part of the conductivity for two delay

times. The blue line presents the results using Eq. (4.2) and the red dotted line
presents the results neglecting the contribution proportional to δ0,p.

As can be seen in the above equation the incoherent phonon density enters and has
to be computed by

i~
d
dt
〈
b†pbq

〉c
= ~ (ω−q − ωp)

〈
b†pbq

〉c (4.6)

+
1√
N

∑
k

{
g−q

[
L−k,−q

(〈
α†

k−qαkb
†
p

〉c
+
〈
β†

kβk−qb
†
p

〉c)
+M+

k,−q

(〈
α†

k−qβ
†
kb

†
p

〉c
+
〈
βk−qαkb

†
p

〉c) ]
− gp

[
L−k,p

(〈
α†

k+pαkbq

〉c
+
〈
β†

kβk+pbq

〉c)
+M+

k,p

(〈
α†

k+pβ
†
kbq

〉c
+
〈
βk+pαkbq

〉c) ]}
.

The temporal evolution of
〈
bpbp

〉c is presented in Appendix A.2.
The above equations together with the equations in Appendix A.2 form a closed set
of differential equations.
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4.2 Parameter and initial condition

Before the equations of motion can be solved, some parameters for the numerical
simulations have to be fixed.
The simulation starts from the BCS ground state at zero temperature T = 0K.
Thus, the quasiparticle densities are zero at the beginning of the simulation. If
the electron-phonon coupling is included we assume the BCS ground state and the
bosonic vacuum to be the starting state of the simulation. Normally, due to the
electron-phonon coupling the BCS ground state is no longer the real ground state
of the system, but for small coupling strength gp this assumption should be valid.
This initial state is not the groundstate as can be seen in the equation of motion
of the mean phonon amplitude, see Eq. (4.2). The Kronecka delta δ0,p induces a
dynamic of

〈
b0

〉
even without any perturbation, namely an oscillation given by

〈
b0

〉
= −

(∑
k

g0√
N

2|vk|2

~ω(p=0)

)(
1− exp

(
−iω(p=0)t

))
. (4.7)

In the following, we neglect the contribution proportional to δ0,p and take into
account that we make a mistake in computing

〈
b0

〉
(t). With this Eq. (4.2) simplifies

to

i~
d
dt
〈
bp
〉

= ~ω−p
〈
bp
〉

+
1√
N

∑
k

g−p

(
L−k,−p

(〈
α†

k−pαk

〉
+
〈
β†

kβk−p

〉)
(4.8)

+M+
k,−p

(〈
α†

k−pβ
†
k

〉
+
〈
βk−pαk

〉))
.

This approximation is valid if we consider acoustic phonons, because in this case
g0 = 0 and the neglected contribution does not enter the equation of motion. For
optical phonons the approximation is also justified, because we get almost the same
results for quantities such as the order parameter, the conductivity, and all other
mean phonon amplitudes

〈
bp 6=0

〉
(t). For example, Fig. 4.1 shows the results of

a simulation using a pump pulse with |A0| = 7 · 10−8 Js/(Cm) and τ0 = 0.5 ps,
a phonon energy of ~ωph = 2meV, and a coupling strength of gph = 0.2meV. A
detailed discussion of the presented results is given in Sects. 5 and 6.
Motivated by the numbers for lead (Pb) [71] the initial order parameter is set to
∆0 = 1.35meV. The Fermi energy is given by EFermi = 9479meV, the cutoff energy
by ~ωc = 8.3meV, and the effective mass by m = 1.9m0, with the free electron mass
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superconductor laser pulses

∆0 1.35meV ~ω0 3meV

EFermi 9479meV ~ωpr 2.5meV

~ωc 8.3meV τpr 0.25 ps

m 1.9m0 - -

Table 4.1: Parameters for numerical simulation.

m0.
For the laser pulses we use following parameters. First, the pump pulse is centered
at t = 0 ps. The pump pulse energy, which is slightly larger than the gap, is set to
~ω0 = 3meV. The probe pulse energy is set to ~ωpr = 2.5meV and the pulse width
to τpr = 0.25 ps.
The fixed parameters are additionally listed in Tab. 4.1. All other parameters of the
system, e.g., the pump pulse width, are varied. The actual value of these parameters
is given in the corresponding sections.

4.3 Discreatization

In order to solve the closed set of differential equations introduced in the previous
sections numerically, we have to restrict the number of considered points in mo-
mentum space. The discretization meshes are presented in the following. For the
superconductor with or without coupled phonons we use the same mesh.
In general, we take only expectation values with indices k and k + q ∈ W , e.g.,〈
α†

kαk+q

〉
, into account. This means that we concentrate on the k-values where the

attractive interaction takes place. Expectation values with k ∈ W and k + q /∈ W
or vice versa are neglected.
For simplicity, the simulations are done in two dimensions. A sketch of the two di-
mensional momentum space is depicted in Fig. 4.2. For all cases, especially for the
superconductor without phonons, we perform a quasi-one-dimensional calculation to
reduce the numerical effort. It has been shown that this quasi-one-dimensional sim-
ulation yields a good approximation for two- and three-dimensional systems [30].
For example, the temporal evolution of the order parameter for the quasi-one-
dimensional, as explained in the following, and a two dimensional mesh, i.e. a
radial symmetric mesh as depicted in Fig. 4.2(b), are shown in Fig. 4.3(a). Here,
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kx kx

ky ky(a) (b)

qd

qd qd
qd

Figure 4.2: Sketch of the discretization mesh. In panel (a) the quasi-one-dimensional
mesh and in panel (b) the two-dimensional mesh is sketched. The red circle denotes
the Fermi momentum kF and the black circles the momenta kF ± kc, where kc is
the cutoff momentum. The blue lines depict the position of discretization points.
A zoom to the discretization points is presented in the green boxes. The distance
between two discretization points, blue dots, is given by qd. The black dots denote
the nested mesh.

the system, consisting only of the BCS Hamiltonian Hsc, was perturbed by a inter-
action quench with a = 0.9, see Eq. (3.35). For both meshes the evolution of order
parameter matches perfectly.
The quasi-one-dimensional mesh is constructed by choosing discretization points on
a line parallel to kx for a fixed value of ky, see Fig. 4.2. The distance between two k-
points is given by the momentum qd. The pump pulse couples only in kx-direction.
Due to this the discretization is chosen in this direction. The coupling in ky-direction
enters only over the order parameter and is weak compared to the coupling to the
light field.
If a quench is considered, only expectation values diagonal in k, e.g.

〈
α†

kαk

〉
, have

to be considered. As a result qd can be chosen arbitrarily. Nevertheless, the numbers
of discretization points determine the maximal time tmax up to which the simulation
can be computed accurately. The temporal evolution of the order parameter for
various numbers of discretization points is depicted in Fig. 4.3(b). Here, the system
was perturbed by an interaction quench with a = 0.9, see Eq. (3.35). This figure
shows, that the maximal time, up to which a smooth 1/

√
t-decay is visible, increases



46 4 Equations of motions and implementation

0.90

0.95

1.00

1.05

1.10

 0  2  4  6  8  10

|∆
| 
[m

e
V

]

t [ps]

(a)

1 D
2 D

0.90

0.95

1.00

1.05

1.10

 0  5  10  15  20

|∆
| 
[m

e
V

]

t [ps]

(b)

#k=72
#k=109
#k=220

Figure 4.3: Temporal evolution of the order parameter after a quench W̃0 = aW0

with a = 0.9. In panel (a) the results for a quasi 1 D mesh and a 2 D mesh are
shown. In panel (b) the results for a 1 D mesh with various numbers of k-points are
depicted.

with increasing numbers of k-values. The decay is due to destructive interference
between expectation values with different momenta, see Sect. 5.1. If the number of
k-values is too small this behavior cannot be captured correctly.
Once the pump pulse is used as perturbation, also the expectation values with mo-
menta k and (k + q) have to be considered, but it suffices to use only the momenta
k + nq0 with an integer n. This can be easily seen in the equation of motion of the
normal density in Eq. (4.1). The external electromagnetic field breaks translational
invariance and may add or subtract the pump pulse momentum q0. As consequence
the distance qd of the discretization mesh is also determined by the pump pulse mo-
mentum, i.e. qd = q0. For small amplitudes |A0| the off-diagonal elements decrease
rapidly as n increases due to the contribution at (k, k + nq0) = O(|A0||n|) [30].
Thus, we set all entries with n > 4 to zero. With this choice of the k, k + q values,
we are able to solve the equations of motion. Due to the small value of q0 com-
pared to kFermi the number of discretization points is large so that simulations up to
tmax ≈ 100ps are possible. To expand the maximal time of the simulation a second
pattern can be nested into the old one as depicted in Fig. 4.2. This new pattern
couples to the old one over the order parameter only, but not to the pump pulse.
If also phonons are considered, the same mesh is used. For the phonon momenta
we set p = mp0 = mq0 with an integer m. As for the integer n we restrict m ≤ 4.
This restriction is well justified as can be seen in the equations of motion for the
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mean phonon amplitude, see Eq. (4.2). This equation describes a driven harmonic
oscillator, for details see Sect. 5.2. For m > 4 the driving force includes only quasi-
particle densities with n > 4 and are thus zero. Considering the initial condition,
see previous section, yields that

〈
b†p
〉

(t) remains zero for m > 4. Processes which

excite expectation values
〈
α†

kαk+p

〉
with p 6= mq0 are not taken into account in

order of the correlation expansion.



48 5 Nonequilibriun Dynamics

5 Nonequilibriun Dynamics

In this section, the nonequilibrium dynamics of a superconductor induced by a
quench or a pump pulse are discussed. Thereto, we mainly concentrate on the
temporal evolution of the order parameter and of the lattice displacement. The
main findings of the induced dynamics may be found as a signature of the pump
probe response, e.g. the optical conductivity. This will be discussed in Sect. 6.
We start our investigation with the s-wave superconductor without any additional
phonon couplings. The dynamics of this system induced either by an interaction
quench [37–41, 72] or by an ultrafast pump pulse [30–32] has already been topic of
various studies. Here, we reproduce the main findings and take a closer look to some
more details, e.g. the transition between the nonadiabatic regime and the adiabatic
regime of the system, see Sect. 5.1. Further, we use this investigation to establish
the numerical implementation.
Finally, a s-wave superconductor coupled to additional phonons is considered. Here,
the generation of coherent and incoherent optical phonons as well as of coherent
acoustic phonons is analyzed. The investigation of the coherent optical phonons
is discussed based on previous studies of Schnyder et al. [33]. Again, the previous
findings are reproduced and further aspects are studied, see Sect. 5.2

5.1 Superconductor in absence of phonons

A pump pulse with ~ω0 > 2∆0 acting on a superconductor excites Bogoliubov quasi-
particles. This breaks Cooper-pairs and thereby leads to a lowering of the absolute
value of the order parameter. The way the pump pulses excite the Bogoliubov quasi-
particle depends on the width and the intensity of the pump pulse. In Fig. 5.1, the
occupation of the normal quasiparticle densities

〈
α†

kαk

〉
just after the pulse acts

on the system is shown for various pump pulse width. The corresponding normal
densities

〈
β†

kβk

〉
look the same and are not explicitly shown. Although the simula-

tions are performed in a fixed, time independent Bogoliubov-de Gennes basis which
is determined by the initial order parameter, it is always possible to transform to an
instantaneous Bogoliubov space in which the Hamiltonian is actually diagonal. The
presented densities are given in this instantaneous Bogoliubov space. The basis is
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Figure 5.1: Quasiparticle occupation just after the pump pulse acts on the system
in the instantaneous Bogoliubov space, see Eq. (5.1), for various pulse widths. The
pump pulse intensity is kept almost constant at |A0|2τ ≈ 4 ·10−27 J2s3/(C2m2). The
momentum kF = 2.17315 · 1010 1/(m) denotes the Fermi momentum, the momenta
k+

1 = 2.17323 · 1010 1/(m) and k−1 = 2.17307 · 1010 1/(m) correspond to Ek±1
=

~ω0

2
, and k+

2 = 2.17345 · 1010 1/(m) and k−2 = 2.17285 · 1010 1/(m) correspond to
Ek±2

= ~ω0. The inset compares the occupation for three specific pulse widths (τ0 =

0.5, 1.5, and 10 ps). The results of the adiabatic regime is presented by red lines,
whereas the black depicts the results for the nonadiabatic regime. The intermediate
regime is colored in blue.

changed via α̃k

β̃†
k

 =

ũk −ṽk

ṽ∗k ũ∗k


 u∗k vk

−v∗k uk


αk

β†
k

 (5.1)

with

ũk =

√
1

2

(
1 +

εk
Ek(∆)

)
and ṽk =

∆

|∆|

√
1

2

(
1− εk

Ek(∆)

)
. (5.2)
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Figure 5.2: The relative deviation δ, as explained in the text, versus time t and
momentum k for the nonadiabatic, panel (a), and the adiabatic regime, panel (b).
The red solid line denote the Fermi momentum kF = 2.17315 · 1010 1/(m). The
momenta k+

1 = 2.17323 · 1010 1/(m) and k−1 = 2.17307 · 1010 1/(m) correspond to
Ek±1

= ~ω0

2
, and k+

2 = 2.17345 · 1010 1/(m) and k−2 = 2.17285 · 1010 1/(m) correspond
to Ek±2

= ~ω0.

Here, ũk and ṽk depend on the actual value of the order parameter and Ek(∆) =√
ε2k + |∆|2.

For a large pulse duration two strong sharp peaks symmetrical around the Fermi
momentum k = kFermi appear. These two peaks arise from processes which are linear
in the vector potential. The position of these maxima correspond approximately to
half the pump pulse energy 1

2
~ω0. It can be interpreted as the absorption of one

photon.
Further, two smaller peaks can be observed. The positions of the weaker peaks
correspond approximately to the pump pulse energy ~ω0. These peaks originate from
processes quadratic in the vector potential. In other words, it can be interpreted as
the absorption of two photons.
With decreasing pulse width the two strong peaks deform gradually into one narrow
peak around k = kFermi. The weaker peaks are still visible. On further decreasing of
the duration the narrow peak become wider resulting into one broad peak around
k = kFermi. This broad peak is caused by the larger uncertainty in the pump energy
for shorter pulse durations.



5 Nonequilibriun Dynamics 51

 0 1 2 3 4 5 6

 0
 10

 20
 30

 40
 50

 60
 70

 80

0.8

0.9

1.0

1.1

1.2

1.3

∆
∞

 [meV]

τ0 [ps] Intensity [arb. units]

∆
∞

 [meV]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

 0  10  20  30  40  50  60  70  80  90  100

∆
∞

 [
m

e
V

]

Intensity [arb. units]

τ0=0.5 ps
τ0=1.5 ps
τ0=10 ps

Figure 5.3: The asymptotical value ∆∞ as function of pump pulse intensity for
different pump pulse widths. The inset shows the same for three specific pulse
widths (τ0 = 0.5, 1.5, and 10 ps). The results of the adiabatic regime are presented
by red lines whereas the black lines depict the results for the nonadiabatic regime.
The intermediate regime is colored in blue.

The shape of the quasiparticle distribution depends on the pulse duration just as
the temporal evolution of the densities. For longer pulses, the normal densities are
almost time independent after the pulse acts, whereas for short pulses the densities
show a rapid oscillation. In this case, quasiparticle densities with different momenta
oscillates differently. This behavior is sketched in Fig. 5.2. It shows the relative
deviation

δ =

〈
α†

kαk

〉
(t)−

〈
α†

kαk

〉
(tpulse)〈

α†
kαk

〉
(tpulse)

(5.3)

between the normal quasiparticle densities at time t and the densities just after the
pulse t = tpulse. The oscillation in the quasiparticle distribution for short pulses is
clearly visible in δ, left panel in Fig. 5.2, whereas δ is constant for longer pulses,
right panel in Fig. 5.2.
This behavior can be understood by the fact that the pulse excites normal Bogoli-
ubov densities and anomalous Bogoliubov densities, e.g.

〈
α†

kβ
†
k

〉
[30]. In the case

of longer pulses, the anomalous densities vanish almost completely in the instan-
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taneous Bogoliubov space. As a consequence, the derivatives of
〈
α†

kαk

〉
,
〈
β†

kβk

〉
,

and
〈
α†

kβ
†
k

〉
become zero, see Eqs. (4.1), (A.4), and (A.5), because the prefactors

Ck become zero in the instantaneous Bogoliubov space. Thus, a stationary state is
reached.
For shorter pulses the anomalous Bogoliubov densities remain finite even in the in-
stantaneous Bogoliubov space. As a result the derivative of

〈
α†

kβ
†
k

〉
is not zero.

This leads to a change in
〈
α†

kβ
†
k

〉
, which influences the order parameter and with

this the Hamiltonian is consequently no longer diagonal. Hence, the normal Bogoli-
ubov densities will also change and the system is in a nonstationary state far from
equilibrium. The oscillation of the densities generates also an oscillation of the order
parameter, e.g. see Fig. 5.4, which will be discussed in more detail in the following.
Beside the pulse duration the intensity of the pump pulse influences its impact. For
increasing intensity the absolute value of the order parameter is lowered stronger,
because more quasiparticles are excited. In Fig. 5.3 the value of the order parameter
at ∆(t → ∞) = ∆∞ is plotted versus the width and intensity of the pump pulse.
For short pulses ∆∞ decreases very steeply compared to longer pulses. This behav-
ior is in perfect agreement with experimental results of Matsunaga et al. [6]. They
performed THz-pump and THz probe spectroscopy on thin NbN films with a pump
pulse duration of 90 fs. They also observed the asymptotic gap value versus the
pump intensity. It shows the same steep decrease as our theoretical results. More
details about these experimental results can be found in Sect. 6.3, where we compare
the theoretically computed pump probe response with the experimental one.
With increasing pulse duration the decrease of ∆∞ flattens, see Fig. 5.3. For τ0 ≈ τ∆

the decrease is almost linear. This behavior can be explained by the quasiparticle
distribution induced by the pump pulse. For a larger pulse two strong sharp peaks
appear in the quasiparticle occupation. The additional excitation of quasiparti-
cles becomes more and more difficult because of Pauli’s exclusion principle. This
is called Pauli blocking. In contrast, a short pulse creates a rather broad maxima
in the quasiparticle occupation. This means that the occupation is distributed on
many states and Pauli blocking is not efficient. As for the quasiparticle occupation
a smooth crossover between the two dynamical regimes can be seen in the shift of
∆∞.
We want shortly conclude, that depending on the pulse duration the system tune
into two dynamical regimes. Between the two regimes a smooth crossover exist,
which will be discussed later.
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Figure 5.4: (a) Temporal evolution of the order parameter for a pump pulse with
pulse width τ0 = 0.5meV and various light field amplitudes. (b) Quasiparticle
occupation just after the pulse acts on the system in the instantaneous Bogoliubov
space, see Eq. (5.1). The momentum kF = 2.17315 · 1010 1/(m) denotes the Fermi
momentum, the momenta k+

1 = 2.17323 · 1010 1/(m) and k−1 = 2.17307 · 1010 1/(m)
correspond to Ek±1

= ~ω0

2
, and k+

2 = 2.17345·1010 1/(m) and k−2 = 2.17285·1010 1/(m)
correspond to Ek±2

= ~ω0. (c) Fourier spectra of (a).

If the pump pulse width τ0 is larger than the dynamical time scale of the super-
conductor τ0 > τ∆ = π~

|∆| the system is tuned into the adiabatic regime, depicted as
red lines in Figs. 5.1- 5.3. In this regime, the order parameter is lowered during the
pulse and remains constant afterwards, because a stationary state is reached.
If τ0 < τ∆ the system is tuned into the nonadiabatic regime, where the expec-
tation value and consequently the order parameter show an oscillation after the
pulse [30–34,36]. This regime is highlighted as black curves in Figs. 5.1- 5.3. In the
nonadabtic regime the system is in a non-stationary state far from equilibrium.
Between both regimes a crossover takes place. This crossover is labeled as interme-
diate regime and depicted as blue lines in Figs. 5.1- 5.3.
In the following the temporal evolution of the order parameter is studied for the three
defined dynamical regimes. We concentrate mostly on the nonadiabatic regime, al-
though the evolution for the intermediate and adiabatic regime are also discussed.

5.1.1 Nonadiabatic regime (τ � τ∆)

As mentioned in the previous section the rapid oscillation in the quasiparticle oc-
cupation causes an oscillation of the order parameter. In Fig. 5.4 the temporal
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evolution of the order parameter for a short pulse width of τ0 = 0.5 ps is shown.
First, the order parameter is lowered during the pulse and oscillates afterwards
with one specific frequency. As can be seen in the corresponding Fourier spectra,
the frequency of the oscillation is given by ω∆∞ = 2∆∞

~ , where ∆∞ is the value of
|∆| asymptotically reached. The fact that the order parameter oscillates with only
one frequency can also be seen in temporal evolution of the expectation values in
Fig. 5.2(a). Here, we see that the oscillation around kFermi, i.e., E(kFermi) = |∆|
dominates and its frequency is given by ω∆∞ . The other frequencies of the expecta-
tion value oscillations are canceled out due to destructive interference. Interestingly,
the order parameter oscillation is decaying, although the simulations are performed
in the collisionless regime, i.e., without relaxation processes, so that no damping of
the oscillation is included. The observed decay is no true relaxation but caused by
destructive interference among quasiparticle densities with different momenta.
Upon increasing pump pulse intensity the absolute value of the order parameter de-
creases, which is caused by the stronger excitation of quasiparticles, see Fig. 5.4(b).
In addition, the amplitude of the oscillation increases with increasing intensity.
This finding is again in perfect agreement with the experimental results of Mat-
sunaga et al. [6]. The observed changed of the transmission oscillates with ω∆∞ =
2∆∞
~ reflecting the oscillation of the order parameter. A more precise discussion

about the results of Matsunaga et al. [6] is given in Sect. 6.3
For a more detailed description of the decay of the order parameter oscillation, we
study the nonequilibrium dynamics for a superconductor which is perturbed by a
quench. In comparison, in Fig. 5.5 the evolutions of the order parameter induced
by an interaction quench, by an occupation quench, and by a pump pulse with
τ0 = 0.5 ps are depicted. The results of the interaction quench were computed by
both the DMF approach and iEoM method, leading to the same dynamics. The
derivation of the equation of motion for the iEoM is given in App. B. In general, the
order parameter behaves similar for the quenches and for the pump pulse excitation.
In particular, the absolute value of |∆| is lowered while the pulse or the quench acts,
respectively. As for the laser pulse, the lowering of |∆(t)| induced by the occupation
quench is caused by an excitation of quasiparticles. For the interaction quench the
lowering is given due to the new coupling constant. As can be easily seen in the
self-consistent equation, see Eq. (3.5), the order parameter is lowered to ∆ = a∆0.
Afterwards, the order parameter oscillates and shows a decay.
Hence, we observe that the order parameter behaves similar when it is perturbed

by a quench or a pump pulse. This is of great advantage in order to describe the
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Figure 5.5: (a) Temporal evolution of the order parameter for various perturbation.
(b) Comparison of the numerical with the analytical solution, see Eq. (5.12). (c)
Fourier spectra of (a).

evolution of |∆(t)| more precisely, because for an interaction quench as perturba-
tion it is possible to derive an analytical solution for the order parameter dynam-
ics [37, 40,41,72].

5.1.2 Analytical solution

To derive an analytical solution the BCS Hamiltonian is mapped to an Anderson
pseudo spin Hamiltonian [73], given by

HBCS =
∑
k

2εkszk −
W0

N

∑
k,p

s+
k s−p . (5.4)

Here, the spin components are given by

sik =
1

2

(
c†k,↑, c−k,↓

)
σi

 ck,↑

c†−k,↓

 . (5.5)

The mean field decomposition is exact due to the infinite range of the interaction.
As a results the effective field seen by each pseudospin in Eq. 5.4 can be replaced
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by its expectation value. The effective magnetic field is given by

bk = 2 (−∆x,−∆y, εj) (5.6)

with the order parameter

∆(t) = ∆x − i∆y =
W0

N

∑
k

〈
s−k
〉

=
W0

N

∑
k

(〈sxk〉 − i 〈s
y
k〉) . (5.7)

Its equation of motion is a Bloch equation

d
dt

sk = bk × sk (5.8)

describing a precession about the magnetic field bk. Since the above equations are
linear in sk, we can use the expectation value with respect to the time-dependent
state of the system. As a results we can use classical spins instead of quantum
spins [72].
Up to now we have only rewritten the task of solving the equations of motion, but
there are still infinitely many evolutions of classical spins to be calculated, which is
normally intractable analytically.
To solve this problem analytically Volkov and Kogan [37] linearize the Bloch equa-
tions around the ground state yielding

|∆(t)| = ∆initial + a
cos (2∆initialt+ Φ)√

t
. (5.9)

This describes the behavior for small deviations from the equilibrium. To describe
the dynamics far from equilibrium Yuzbashyan et al. [40,41,72] use the integrability
of the Hamiltonian [74].
By rewrite the pseudospin Hamiltonian to

HBCS = −W0

N

∑
εjHj + const. (5.10)

it can be shown that the Hamiltnoian is integrable [40]. The Hamiltnoian Hj is
given by [40]

Hj =
∑
l

sjsl
εj − εl

−
Nszj
W0

. (5.11)
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The Hamiltonian Hj is known as Gaudin magnets. In addition, all Hj Poisson
commutes which each other, i.e. {Hj, Hi} = 0. As a result the Gaudin magnet
Hamiltonian is integrable [75,76]. Hence, the pseudospin Hamiltonian Poisson com-
mutes with all Hj’s and as a result the Hj’s are the integral of motions for HBCS,
i.e., HBCS is integrable.
With this knowledge they computed

|∆(t)| = ∆∞ + a
cos (2∆∞t+ Φ)√

t
, (5.12)

for the temporal evolution of the order parameter. Compared to the results of Volkov
and Kogan the frequency is given by ω∆∞ = 2∆∞

~ instead of ω∆0 = 2∆0

~ .
A comparison between the analytical, see Eq. (5.12), and the numerical results re-
veals a perfect agreement, also for pump pulse and occupation quench perturbation.
This is displayed in Fig. 5.5(b).

We conclude that the dynamics of the order parameter induced by a short pump
pulse is perfectly described by Eq. (5.12). In addition, a quench can be used to
approximately describe the effect of a short pump pulse.

5.1.3 Adiabatic regime (τ � τ∆) and intermediate regime

For a larger pump pulse width τ0 � τ∆, e.g. τ0 = 10 ps, the system is in the adi-
abatic regime. The corresponding evolution of the order parameter is presented in
Fig. 5.6(a). During the pulse the absolute value of |∆| is reduced and afterwards it
remains almost constant, i.e., it does not oscillate like in the nonadiabatic regime.
The only effect which appears by increasing the intensities is to lower ∆∞, but |∆(t)|
does not show any oscillation. This is in perfect agreement with the temporal evo-
lution of the quasiparticle densites.
The simulation for the intermediate regime is performed for a pump pulse width
τ0 = 1.5 ps, see Fig. 5.7. This value of τ is chosen, because it is close to the dy-
namical time scale of the superconductor τ0 ≈ τ∆. In this regime, an oscillation
of the order parameter can be detected after the pulse, too. Again the oscillation
can be described with Eq. (5.12). The corresponding frequencies, see Fourier spec-
tra in Fig. 5.7(c), fit again ω∆∞ = 2|∆∞|

~ , but compared to the oscillation of the
nonadiabatic regime the amplitude is much smaller. With increasing pulse width
the amplitude decreases, see also Fig. 5.8, so that finally the adiabatic regime is
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Figure 5.6: (a) Temporal evolution of the order parameter for a pump pulse with
pulse width τ0 = 10meV and various light field amplitudes. (b) Quasiparticle occu-
pation just after the pulse in the instantaneous Bogoliubov space, see Eq. (5.1). The
momentum kF = 2.17315 · 1010 1/(m) denotes the Fermi momentum, the momenta
k+

1 = 2.17323·1010 1/(m) and k−1 = 2.17307·1010 1/(m) correspond to Ek±1
= ~ω0

2
, and

k+
2 = 2.17345 · 1010 1/(m) and k−2 = 2.17285 · 1010 1/(m) correspond to Ek±2

= ~ω0.

reached.
If the pump pulse intensity increases the amplitude of the order parameter oscilla-
tion increases. In other words, by increasing the intensity an oscillation of |∆(t)| can
be generated, even for a pump pulse width equal or larger than the dynamical time
scale. This is due to nonlinear effects of the pump pulse [35]. The impact of the
nonlinear effect increases with increasing intensity, as can be seen in the quasipar-
ticle occupation in Fig. 5.7(b). The two photon peaks in the distribution enhance
with increasing intensity .
The intensity dependence of the amplitude a of |∆(t)| for various pump pulse widths
is depicted in Fig. 5.8. The amplitude has been obtained by fitting Eq. (5.12) to the
simulated data. The amplitude of the order parameter oscillation increases mono-
tonically with increasing intensity. The increase is almost linear for short pulses.
This was to be expected, because short pulses τ0 � τ∆ always induce nonadiabatic
dynamics.
For longer pulses we observe an increasing of the amplitude with increasing intensity.
This time the slope of the increase is near zero at the beginning and increases with
higher intensities. Longer pulses normally induce only adiabatic dynamics, but with
higher intensity the pulse excites oscillations. Upon increasing pump pulse intensity
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Figure 5.7: (a) Temporal evolution of the order parameter for a pump pulse with
pulse width τ0 = 1.5meV and various light field amplitudes. (b) Quasiparticle occu-
pation just after the pulse in the instantaneous Bogoliubov space, see Eq. (5.1). The
momentum kF = 2.17315 · 1010 1/(m) denotes the Fermi momentum, the momenta
k+

1 = 2.17323·1010 1/(m) and k−1 = 2.17307·1010 1/(m) correspond to Ek±1
= ~ω0

2
, and

k+
2 = 2.17345 · 1010 1/(m) and k−2 = 2.17285 · 1010 1/(m) correspond to Ek±2

= ~ω0.
(c) Fourier spectra of (a).

the nonlinear effects become more important. As a result the nonadiabatic dynam-
ics can be reached even if the pump pulse width is not shorter than the dynamical
time scale [35].
The previous investigations help to define specific pulse widths for the three dy-

namical regimes. If not otherwise specified the following values are used for the
further investigation

τnon = 0.5 ps (5.13)

τadi = 20 ps (5.14)

τint = 1.5 ps, (5.15)

where τnon denotes the width for the nonadiabatic regime, τadi for the adiabatic
regime, and τint for the intermediate regime.

5.2 Superconductor in presence of optical phonons

In this section, we investigate the dynamics of the s-wave superconductor, which is
additionally coupled to optical phonons.
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Figure 5.8: Amplitude a of the order parameter oscillation, see Eq. (5.12), as
function of pump pulse intensity and different pump pulse width. The results of the
adiabatic regime is presented by red lines whereas the black depict the results for
the nonadiabatic regime. The intermediate regime is colored in blue.

The induced dynamics of the Bogoliubov quasiparticle densities leads to a generation
of phonons. Here, we split the phonon dynamics into two parts, namely the coherent
phonon part and the incoherent phonon part. The phonon density, given by

〈
b†pbp

〉
=
〈
b†p
〉 〈
bp
〉︸ ︷︷ ︸

Ncoh.

+
〈
b†pbp

〉c︸ ︷︷ ︸
Nincoh.

, (5.16)

can be separated into a coherent and incoherent part. The coherent part is given
by the mean phonon amplitude and the incoherent part by the correction of the
phonon density.
First, we study only the generation of coherent phonons, which means that we ne-
glect the incoherent part Nincoh. = 0. The dynamics are given by the first order
correlation expansion. Here, we investigate the generation of the coherent phonon
for various initial condition, e.g. different pump pulses or phonon energies.
Second, we include the incoherent phonons into the system, which induces a com-
puting of the second order of the correlation expansion. With this we take processes
like electron-phonon scattering into account, which were neglected in the first order
calculation.
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Figure 5.9: Sketches of the three generation mechanism of coherent phonons as
discussed for semiconductors. Depicted are (a) the impulsive mechanism, (b) the
DECP, and (c) the resonant phonon generation in a simple pendulum picture. The
temporal evolution of the oscillation is depicted below.

5.2.1 Coherent phonons

The generation of coherent phonons by pump pulses has been studied for various
materials, like semiconductors [43–45,77], semiconductor quantum wells [54,55,78–
80], superlattices [81, 82], and high-temperature superconductors [14, 46, 47]. The
generation of coherent phonons in BCS superconductor is studied theoretically by
Schnyder et al. [33], on which our following studies are based on.
For semiconductors several generation mechanism are discussed. For example, in
the impulsive mechanism an effective coupling from the laser field to the lattice
ions is assumed [44]. This coupling leads to a force acting on the ions and they start
to oscillate. This mechanism is sketched in a simple pendulum picture in Fig. 5.9(a).
In the displacive excitation of coherent phonons (DECP) mechanism [45, 77] the
generation of coherent phonons happens by an excited electronic state. It leads
to a different position of the potential minimum for the lattice ions than in the
groundstate and hence give rise to an oscillation around the new minimum, see
sketch in Fig. 5.9(b).
In both mechanism the dynamics of the electronic subsystem is neglected. If the
electronic subsystem oscillates close to or exact with the phonons frequency, its
dynamics cannot be neglected. In this case, a resonant enhanced generation of
coherent phonons can be obtained, see sketch in Fig. 5.9(c). This resonant phonon
generation has been observed experimentally in semiconductor quantum wells [79]
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as well as in superlattices [81,82].
In this section, we study the generation of coherent phonons in BCS superconductors.
The temporal evolution of the mean phonon amplitude is described by a driven
oscillator

i~
d
dt
〈
bp
〉

= ~ωph
〈
bp
〉

(5.17)

+
∑
k

gph√
N

[
L−k,−p

(〈
α†

k−pαk

〉
+
〈
β†

kβk−p

〉)
+M+

k,−p

(〈
α†

k−pβ
†
k

〉
+
〈
βk−pαk

〉)]
︸ ︷︷ ︸

=Fp(t)

= ~ωph
〈
bp
〉

+ Fp(t), (5.18)

with the driving force Fp(t), which is a function of the Bogoliubov quasiparticles
densities. In general, the evolution of the mean phonon amplitude is given by

〈
bp
〉

(t) =
−i
~

∫ ∞
−∞

dt′Fp(t′)eiωph(t′−t). (5.19)

Knowing the evolution of the driving force, we are able to compute
〈
bp
〉

(t), but
Fp(t) is not explicit known. Due to the fact that the driving force is a function
of quasiparticle densities, we know that its dynamics depend on the parameters of
the pump pulse, e.g. the pump pulse width. As discussed in Sect. 5.1 the tempo-
ral evolution of the quasiparticle densities differs depending on the characteristics
of the pump pulse. In general, the quasiparticle densities oscillate, except for the
adiabatic regime where the temporal evolution of the quasiparticle densities is al-
most constant. As a consequence the driving force will be an oscillating one for the
nonadiabatic regime whereas it is almost constant in the adiabatic regime.
The phononic dynamics also influences the quasiparticle dynamics, for instance see
Eq. (4.1). Thus, the dynamics of the quasiparticle densities can be changed by the
feedback of the phonon dynamics. How strong the phonons influence the quasipar-
ticle subsystem depend for instance on the electron-phonon coupling strength and
how strong coherent phonons are generated. Therefore, the exact dynamics of the
driving force cannot be generally known.
To understand better how the driving force influences the coherent phonons, we con-
centrate on the numerical simulation. Thereto, we have to identify initial conditions
which are worthwhile to observe, because new model parameters enter the simula-
tion, namely the phonon frequency ωph and the electron-phonon coupling strength
gph. To do so, we perform a simulation for various initial conditions and identify the
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Figure 5.10: Temporal evolution of the lattice displacement U(t, 0) for various initial
conditions. In panel (a) the amplitude dependences of U(t, 0) for ~ωph = 2meV and
gph = 0.1meV are depicted and in panel (b) the phonon energy dependence for
|A0| = 10 · 10−8 Js/(Cm). The corresponding Fourier spectra are presented in the
lowest plots.
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most interesting sets of it, which will be discussed in more detail later.
We use the lattice displacement as observable. It is proportional to the real part of
the mean phonon amplitude, see Eq. (3.28), and is well suited for a description of
the generation of coherent phonons.
For the overview, we fix the pump pulse width to τ0 = 0.5 ps corresponding to the
nonadiabatic regime. As will be shown later, the dynamics of this regime generates
coherent phonons most effectively. Further, the coupling strength gph is for now set
to gph = 0.1meV.
To study the dependence of the lattice displacement U(t, 0) on the pump pulse
amplitude, in other words on the frequency of the order parameter, the phonon
frequency is fixed to ~ωph = 2meV. In Fig. 5.10(a) the temporal evolution of the
lattice displacement is depicted for various pump pulse amplitudes. For the phonon
frequency dependence, we fix the pump pulse amplitude to |A0| = 10 ·10−8 Js/(Cm)
and computed U(t, 0) for various phonon frequencies. The corresponding lattice
displacements are presented in Fig 5.10(b).
In general, the lattice displacement is a superposition of two oscillations. One is
oscillating with the phonon frequency, as can be seen by the strong sharp peak in
the Fourier spectra at ω = ωph. The other one oscillates with the frequency of the
order parameter oscillation ω∆∞ , see second weaker peak in the Fourier spectra.
This shows, that the evolution of the driving force is in general given by the pure
quasiparticle subsystem dynamics without any feedback of the phonon subsystem.
Hence, it oscillates like the order parameter with only one frequency given by ω∆∞ .
For the amplitude of the lattice displacement we observe, that it increases drasti-
cally if both frequencies of U(t, 0) are close to each other, i.e. ωph ≈ ω∆∞ . The
observed generation of coherent phonons can be interpreted in terms of the reso-
nant phonon generation mechanism. Hence, the temporal evolution of the coherent
phonons should show for example a beating phenomena if both frequencies of the
lattice displacement are close to each other and an enhanced generation at reso-
nance. Due to this, the resonant, i.e. ωph = ω∆∞ , and near resonant case will be
discussed in more detail below. In addition, it shows that the ansatz of using only
one phonon mode is justified, because the phonon mode which is near resonant with
ω∆∞ influences the lattice displacement at most and the others are of less impor-
tance.
If the phonon energy is much smaller than the asymptotic value of the gap ~ωph �
2∆∞, e.g. see black curve in Fig. 5.10(a), the dynamical time scale τ∆∞ = π~

∆∞

is much shorter than the phonon period τph = 2π
ωph

. For this case, the generation



5 Nonequilibriun Dynamics 65

-0.2

0.2

0.6

1.0

1.4

1.8
U

(t
,0

) 
[a

rb
. 

u
n

it
s
]

-hωph=0.6 meV(a)

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

U
(t

,0
) 

[a
rb

. 
u

n
it
s
]

-hωph=2 meV

-1.0

0.0

1.0

2.0

3.0

4.0

 0  10  20  30  40  50  60  70  80

U

t [ps]

-hωph=3.3 meV
gph=0.1 meV
gph=0.2 meV
gph=0.4 meV
gph=0.6 meV
gph=0.8 meV

0.0⋅10
0

4.0⋅10
-4

8.0⋅10
-4

1.2⋅10
-3

1.6⋅10
-3

U
(t

,0
) 

[a
rb

. 
u

n
it
s
]

(b)

0.0⋅10
0

4.0⋅10
-3

8.0⋅10
-3

1.2⋅10
-2

δ
|∆

(t
)|

 [
m

e
V

]

0.0⋅10
0

2.0⋅10
-3

4.0⋅10
-3

 0  10  20  30  40  50  60  70  80  90 100

U
(t

,0
) 

t [ps]

Figure 5.11: (a) Temporal evolution of the envelope of U(t, 0). The results for three
different phonon frequencies and various coupling strengths are depicted in panel
(a). The deviation |∆(t)gph=0.1−∆(t)gph=a| with a ∈ {0.2, 0.4, 0.6, 0.8} for the three
different phonon frequencies is depicted in panel (b).

of coherent phonons is similar to the DECP mechanism. The lattice displacement
oscillates almost with one frequency given by ωph. Further, it oscillates around a
new minimum unequal the initial value U(0, tinitial) = 0. The generation of coherent
phonons are weaker compared to the case where ωph ≈ ω∆∞ . Due to this we mostly
concentrate on the resonant generation.
The dependence on the coupling strength is depicted in Fig. 5.11. Here, the lattice
displacement is shown for a pump pulse of |A0| = 10 · 10−8 Js/(Cm), three dif-
ferent phonon energies ~ωph = 0.6meV, 2meV, and 3.3meV, and various coupling
strengths.
In panel (a) the envelope of U(t, 0) is shown. With increasing coupling strength the
amplitude of the lattice displacement increases. Interestingly, for ~ωph = 3.3meV
the lattice displacement shows some decay with increasing coupling strength. For
phonon energies smaller than the initial gap this behavior is not visible. The decay
is only observed for ~ωph > 2∆ and will be discussed in more detail below.
In addition, the contributions proportional to gph of the equation of motion for the
quasiparticle densities, e.g. see Eq. (4.1), become more and more important if the
coupling strength and the value of mean phonon amplitude increase. Thus, the
phonon dynamics strongly influence the quasiparticle dynamics. As a consequence,
this leads to a change of temporal evolution of the order parameter. For small
coupling strength the contributions proportional to gph in the equations of motion
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for the quasiparticle densities are negligible small. In Fig. 5.11(b) the deviation
δ∆(t) = |∆gph=0.1 meV(t) − ∆gph(t)| of the order parameter with gph = 0.1meV and
the larger coupling strengths are depicted. With increasing coupling strength the
deviations of ∆(t) increase. This is most visible for the resonant case, because in
this case the generation of coherent phonons is large. If ~ωph > 2∆0 the deviation
of the order parameter decreases for increasing time. This is caused by the decaying
amplitude of the lattice displacement and as a result the contributions proportional
to gph become weaker.
We state that if the coupling strength gph is small the quasiparticle dynamics are al-
most independent of the phononic dynamics. But with increasing coupling strength
the phononic subsystem influence more and more the quasiparticle subsystem.
Due to the above investigation, the following frequency regimes are chosen to study
the generation of coherent phonons in more detail

ωph ≈ ω∆∞ < ω0 (5.20)

ω∆∞ < ωph. (5.21)

In words, we observe the case when the phonon and order parameter oscillation
frequency are near or at resonance and the case where the phonon energy is larger
than the initial gap.

5.2.2 Coherent phonons: ωph ≈ ω∆∞ < ω0

The temporal evolution of the lattice displacement for the case where the order pa-
rameter oscillation frequency is near the phonon frequency is depicted in Fig. 5.12.
Here, the results for the three dynamical regimes, namely the nonadiabatic, the
intermediate, and the adiabatic regime, are presented. For the phonons we set the
energy to ~ωph = 2meV and the coupling strength to gph = 0.1meV.
For the nonadiabatic regime a pump pulse with τ0 = 0.5 ps and various pump
pulse amplitudes are used. The amplitudes are chosen in such a way that the in-
duced order parameter oscillation has a frequency near the phonon frequency. As
mentioned before, the lattice displacement oscillates with two frequencies, namely
ωph and ω∆∞ . Both frequencies can be observed as two sharp peaks in the corre-
sponding Fourier spectra. Due to the fact that these frequencies are very similar a
pronounced beating phenomenon can be detected.
For the intermediate regime, a pump pulse with τ0 = 1.5 ps is used. The lat-
tice dynamics show the same behavior as in the nonadiabatic case as displayed in
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Figure 5.12: Panel (a) shows the temporal evolution of the lattice displacement
U(t, 0) near resonance ωph ≈ ω∆∞ for coupling strength gph = 0.1meV and ~ωph =
2meV. The results for the three dynamical regime are depicted. In panel (b)
the corresponding Fourier spectra are shown. For τ0 = 20, ps (adiabatic regime)
additionally the Gaussian shape of the pump pulse is included.

Fig. 5.12. However, the generation of coherent phonons is weaker compared to the
nonadiabatic case, as the smaller amplitude of U(0, t) shows. This is in good agree-
ment with the observed evolution of the order parameter in this regime. Compared
to the nonadiabatic order parameter oscillation the oscillation in the intermediate
regime has a smaller amplitude. This yields a weaker driving force and leads to a
weaker generation of the coherent phonons.
In the adiabatic regime, the order parameter is almost constant. The coherent
phonons are still driven by an oscillating forcing term, but with a much smaller
amplitude, see Fig. 5.12. In this figure, the lattice displacement for a pump pulse
with τ0 = 20 ps is depicted. Furthermore, we observed that during the pump pulse
the lattice displacement shows a large transient oscillation. The frequency of this
oscillation is given by the pump pulse frequency ω0, see strong peak at ~ω = 3meV
in the Fourier spectra. After this transient oscillation the weak generation of coher-
ent phonons is observed, but compared to the both other regimes this generation is
negligibly small.
If the phonon energy lies in the interval 0 < ~ωph < 2∆0 we are able to bring the
system into perfect resonance by adjusting the pump pulse intensity. In Fig. 5.13
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Figure 5.13: In panel (a), the temporal evolution of the lattice displacement U(t, 0)
at resonance ωph = ω∆∞ is shown for coupling strength gp = 0.1meV and ~ωph =
2meV. The results for the three dynamical regime are depicted. The dotted black
lines present the function f(t) = a

√
t and agrees well with the envelope of U(t, 0).

In panel (b), the Fourier spectra of the lattice displacement are shown.

the results for the resonant case for all dynamical regimes are presented. In this
case, the lattice displacement oscillates with only one frequency as displayed by the
sharp peak at ω = ωph in the corresponding Fourier spectrum. Certainly, an addi-
tional transient oscillation still appears in the adiabatic regime. Furthermore, the
amplitude of the lattice displacement grows with

√
t in contrast to the 1√

t
-decay. We

conclude that the system is not yet in the stationary state up to the times studied.
Even in the adiabatic regimes the

√
t increase can be observed, albeit with a much

smaller amplitude.
The
√
t increase can also be seen in the general solution of the lattice displacement.

To see this, the real part of the general solution of Eq. (5.19) is needed. It reads

Up(0, t) ∝
∫

dt′Fp(t′) sin (ωph(t′ − t)) . (5.22)

Here, Up(0, t) is the contribution of phonon momentum p to the total displacement
given by U(0, t) =

∑
p Up(0, t). If we now assume small coupling strengths, the

driving force is determined by the dynamics of the quasiparticle subsystem charac-
terized by the evolution of the order parameter. Hence, we approximate the driving
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force as

Fp(t) = Θ(t)

(
Ap +Bp

cos (ω∆∞t)√
(t)

)
, (5.23)

where Θ(t) denotes the Heavyside stepfunction. With this driving force we solve
Eq. (5.22) for the resonant case ωph = ω∆∞ . The result reads

Up(0, t) ∝ −Ap

ωph
(1− cos(ωpht))−Bp

√
t sin(ωpht) (5.24)

+
Bp
√
π

√
ωph

(
cos(ωpht)S

(
2
√
ωpht√
π

)
− sin(ωpht)C

(
2
√
ωpht√
π

))
,

where S and C denote the two Fresnel integrals given by

S(x) =

∫ x

0

sin

(
1

2
πt2
)
dt (5.25)

C(x) =

∫ x

0

cos

(
1

2
πt2
)
dt. (5.26)

As t increases the second term dominates and the lattice displacement shows a
√
t

increase agreeing perfectly with the numerics.
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5.2.3 Coherent phonons: 2∆0 < ~ωph
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Figure 5.14: (a) Temporal evolution of the lattice displacement U(t, 0) for the case
ω∆∞ < ωph = 3.3meV/~ and a pump pulse with τ0 = 0.5 ps and amplitude |A0| =
7·10−8 Js/(Cm). The results for two different coupling stengths are depicted, namely
gph = 0.1meV and gph = 0.8meV. (b) The envelope of the oscillation with ωph, solid
lines, and of the oscillation with ω∆∞ , dashed lines, extracted from a fit of Eq. (5.27)
are presented for various coupling strengths. (c) The dependence of the rate a, see
Eq. (5.27), on the coupling strength is shown. The data is perfectly describe by
a ∝ g2

ph as shown by the dashed lines.

Figure 5.11 shows that the lattice displacement can decay if the phonon energy is
larger than the initial gap. This is due to the fact that a phonon can decay into a
particle-hole pair in the Bogoliubov quasiparticle basis if ~ωph > 2∆0. To study this
decay in more detail we concentrate on the nonadiabatic regime only, because there
is almost no generation of coherent phonons in the two other regimes.
In Fig. 5.14(a), the temporal evolution of two lattice displacements is presented for
a pump pulse with τ0 = 0.5 ps and |A0| = 7 · 10‘−8 Js/(Cm) and different coupling
strengths. The phonon energy is set to ~ωph = 3.3meV. For the larger coupling
strength of gph = 0.8meV a strong decay of the oscillations of the lattice displace-
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ment is visible, but the lattice displacement does not vanish completely. This is
caused by the driving force, which is given by the dynamics of the quasiparticle sub-
system. The driving force decays only algebraically with 1√

t
as the order parameter.

Only the strong decay at the beginning is presumably caused by an exponential
decay of the oscillation with phonon frequency. To test this statement we fit the
numerical date with the function

U(0, t) = C1 exp(−at) cos(ωpht+ Φ1) + C2t
−b cos(ω∆∞t+ Φ2). (5.27)

Here, C1, C2,Φ1,Φ2, a, b, ωph, and ω∆∞ are the fit parameters. In Tab. 5.1 the re-
sulting fit parameters are listed. All in all, the fits match quite well (not explicit
shown). For larger values of gph the fit matches even better. The fitted parameters
for the frequencies are in good agreement with the exact values. For the algebraic
decay, we expect a fit parameter of b = 0.5, the same behavior as for the decay
of the order parameter. The fitted parameter b agrees well with this expectation.
The deviation can be explained by the fact that the square root decay is very slow
and due to the finite computed time interval we are not able to capture the correct
behavior within the fits. Furthermore, the rate a increases with increasing coupling
strength, namely with a(gph) ∝ g2

ph. This can be seen in Fig. 5.14(c). Here, the rate
a versus gph in a ln-ln plot is presented. It clearly shows a linear behavior with a
slope of 2, as displayed by the dashed lines.
The g2

p-dependence of a is in excellent agreement with Fermi’s golden rule [83, 84].
In Fermi’s golden rule the transition rate from a state into another state is given by
the squared matrix element of the perturbation between both states. In our case
the perturbation is given by the Fröhlich Hamiltonian. As a result, the transition
rate based on the golden rule is proportional to ∝ g2

ph.
The fact that the decay in the lattice displacement can be observed in this low order
of truncation is caused by the correlation expansion. As can be seen in Eqs. (4.1)
and. (4.8), the phonon dynamics influence the quasiparticle dynamics and vice versa.
With this, higher order of gph are involved in correlation expansion, even though
quasiparticle-phonon scattering contributions are neglected in the expansion.
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Figure 5.15: (a) Temporal evolution of the lattice displacement U(t, 0) for the adi-
abatic regime [τ0 = 20 ps, |A0| = 1 · 10−8 Js/(Cm)] in presence of optical phonons
in resonance with the pump pulse energy, i.e., ~ω0 = ~ωph, and gph = 0.1meV. (b)
Corresponding Fourier spectrum.

Knowing the fit function, we are able to extract the envelopes of the different os-
cillations of the lattice displacement, see Fig. 5.14(b). This figure shows that for
gph . 0.6 meV the exponentially decaying envelope prevails the algebraic one. For
gph = 0.1 meV the parameter a is very small, so it might be that Eq. 5.27 does
not capture the correct behavior. For gph > 0.6 meV the algebraically decaying
envelope crosses the exponential one. So for large times the lattice displacement
oscillates only with the oscillation induced by the driving force. For phonon energy
~ωph � 2∆0 the lattice displacement shows only an oscillation decaying with 1√

t

with ω∆∞ induced by the driving force, even for small times.
If the phonon energy is larger than the initial gap, we can set it to resonance with
the photon energy, ~ω0 = ~ωph. Note, there is no explicit light-phonon coupling
taken into account, so that the upcoming investigation has to be treated with care.
However, on the experimental side this case is of great interest, because if one knows
the phonon energy one is able to tune the photon energy to exact resonance.
As can be seen in Fig. 5.10(b), the nonadiabatic case behaves similar to the case
with ~ωph = 3.3meV and no special features can be observed. But for the adia-
batic regime in resonance the lattice displacement behaves peculiar. In Fig. 5.15
the temporal evolution of the lattice displacement is depicted for a pump pulse with
τ0 = 20 ps, |A0| = 1 · 10−8 Js/(Cm), and a coupling strength of gph = 0.1meV. The



5 Nonequilibriun Dynamics 73

resonant pumping of the phonons leads to undamped coherent phonon oscillations,
which persist even after the pump pulse has passed. As can be seen in the Fourier
spectra, the lattice displacement oscillates with ωp only.

~ω∆∞ [meV] ~ωph [meV] a b

reference value 2.542 3.3 - 0.5

gph = 0.1 meV 2.542731 3.291196 0.000577 0.376857

gph = 0.2 meV 2.571932 3.291684 0.002251 0.557545

gph = 0.3 meV 2.542403 3.292517 0.005139 0.370095

gph = 0.4 meV 2.571345 3.293702 0.009076 0.555516

gph = 0.5 meV 2.570644 3.295276 0.014161 0.556068

gph = 0.6 meV 2.570483 3.297269 0.020296 0.559500

gph = 0.7 meV 2.539838 3.299638 0.027741 0.331318

gph = 0.8 meV 2.538818 3.302429 0.036021 0.314463

reference value 2.249 3.3 - 0.5

gph = 0.1 meV 2.249760 3.291095 0.000368 0.380221

gph = 0.2 meV 2.249798 3.291401 0.001425 0.378953

gph = 0.3 meV 2.249789 3.291923 0.003199 0.377157

gph = 0.4 meV 2.249671 3.292679 0.005696 0.374362

gph = 0.5 meV 2.249399 3.293692 0.008914 0.371589

gph = 0.6 meV 2.248989 3.294986 0.012839 0.366845

gph = 0.7 meV 2.248409 3.296585 0.017461 0.361529

gph = 0.8 meV 2.247688 3.298506 0.022770 0.355451

Table 5.1: Fit parameters for two pump pulses, characterized by τ = 0.5 ps and
|A0| = 7 · 10−8 Js/(Cm) or |A0| = 10 · 10−8 Js/(Cm), and various electron-phonon-
coupling strengths gph.
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Figure 5.16: The temporal evolution of the incoherent phonon densities
〈
b†pbp

〉c is
depicted for a pump pulse with τ0 = 0.5 ps and |A0| = 7 · 10−8 Js/(Cm) and an
electron-phonon coupling of gph = 0.1meV. The phonon energy is set to ~ωph =
2meV. In panel (b) the point in time t∗ when

〈
b†pbp

〉
becomes negative is shown for

various pump pulse amplitudes. The red solid line presents the maximal time up to
which is simulated.

5.2.4 Incoherent phonons

Up to now processes, such as electron-phonon or electron-electron scattering, are ne-
glected. In this section, we want to take these processes into account. This maybe
will give rise to a finite lifetime of the coherent phonons [33].
To include these processes in the simulations, we go a step further in the correlation
expansion, i.e. computing additionally the evolution of the phonon assisted quan-
tities and the incoherent phonon densities. The corresponding equations of motion
are given in Sect. 4.1 and App. A.2. Due to the fact that coherent phonons are
generated at most in the nonadiabatic regime, we only focus our studies on this
regime, i.e., setting τ0 = 0.5 ps. Further, we set the phonon energy to ~ωph = 2meV
and the coupling strength to gph = 0.1meV.
As new quantity of interest the incoherent phonon density can be computed. The
corresponding equation of motion, see Eq. (4.6), shows that the temporal evolution
of the incoherent densities are determined by the temporal evolution of the correc-
tion of the phonon assisted quantities.
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In Fig. 5.16(a) the incoherent phonon densities are depicted for a pump pulse with
|A0| = 7 · 10−8 Js/(Cm). The simulation shows unphysical results, namely a nega-
tive incoherent phonon densities. Incoherent phonon densities for larger momentum
become faster unphysical whereas the density for p = 0 remains positive in the
simulated time interval. If and how fast the density becomes negative depends on
the pump pulse characteristics. In Fig.5.16(b) the point in time t∗ when

〈
b†pbp

〉
becomes negative is depicted for various pump pulse amplitudes. Interestingly, if
the pump pulse intensity induces a frequency ω∆∞ ≤ ωph the incoherent phonon
densities remains positive for all phonon momenta in the simulated time interval.
Due to the unphysical results the simulation of the correlation expansion in second
order is not trustable. Hence, we try to discuss why the correlation expansion failed
and how we can maybe prevent the unphysical densities. Note, the first order cor-
relation expansion, i.e., computing the generation of coherent phonons, do not show
any unphysical results.
First of all, the effect is not caused by possible errors in the implementation of the
equations of motion rather it is a uncertainty of the truncation, because the same
effect also appears in the simulation of semiconductors [80].
One source of trouble is the chosen initial condition. As initial condition the BCS
groundstate without phonons and

〈
b†pbq

〉
= 0 is chosen, but this state is not the

true groundstate of the coupled system. The argument that this is a good approxi-
mation for small coupling strength, which works in the first order, may not be valid
anymore. To prevent this error, one may has to use a correct groundstate. It can
be computed by an additional diagonalization of the considered Hamiltonian. The
Hamiltonian can be diagonalized for example by a Fröhlich transformation [69] or
by a continuous unitary transformation (CUT) [85–88]. A short discussion of the
transformation of an electron-phonon interaction using CUT is given in Ref. [89].
Another source of trouble is that the correlation expansion mixes some expecta-
tion values that have renormalized energies with other expectation values without
renormalized energies [80]. In the DMF, the energy renormalization is expressed by
the feedback of a density matrix on itself, i.e. the density matrix enters in its own
equation of motion [52]. For example, in the model the electron-phonon coupling
leads to this renormalization.
In order to prevent the mixing Papenkort suggested to change the truncation scheme
to the order separation sheme [80]. For the order separation the equation of motion
are set up as in the DMF with correlation expansion, but without setting any cor-
relation to zero. In addition, every density matrix gets additionally indices, which
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denote the order in gph or in |A0|. The derivative of such a density depends on
contributions of the same order in the coupling strength and vector potential.
We study superconductors instead of semiconductors and due to the mean field de-
scription a separation in order of the vector potential is more complicated. Because
of that we apply an order separation truncation in gph only. The corresponding
equation of motion is given in Appendix A.3. However, as in the correlation expan-
sion negative densities occurs in this calculation, too. (Not explicitly shown.)
Another possibility to describe the influence of electron-phonon or electron-electron
scattering is to change the method. For example, one can use the iterative equation
of motion approach as introduced in Sect. 2.2. In this approach we cannot get nega-
tive densities per construction. In the iEoM the temporal evolution of an operator is
computed. To compute a quasiparticle density one has to multiply an operator with
the Hermitian conjugation of it, resulting in a real expectation value. In addition,
the toy model calculation in Sect. 2.3 showed that the iEoM leads to more reliable
results than the DMF approach if relaxation processes are taken into account.
However, the explicit time dependent Hamiltonian and the second order in gph make
the computation task numerically more costly than the DMF approach. In addition,
it is not clear if other complications appear in these computations.
On these grounds the method was not applied in this thesis but it is an interesting
task for future projects.
The observed problems in the correlation expansion might be taken as an indication
that the simulation in the first order are no longer trustable. However, the results of
Sects. 5.2.1- 5.2.3 show no unphysical behavior. Furhter, the toy model calculation
shows no hint that the first order is not trustable, see Sect. 2.3. In addition, the
generation of coherent phonons in semiconductor computed with the DMF in cor-
relation expansion is in good agreement with experimental results [54,55,80]. All in
all, one can trust the results of the first order in the correlation expansion but one
has to be careful in the second order.

5.3 Superconductor in presence of acoustic phonons

In this section, we consider acoustic instead of optical phonons. As the investigation
of optical phonons shows, the correlation expansion yield only reliable results in the
first order. Hence, we will only compute the generation of coherent acoustic phonons.
In addition, we only concentrate on the nonadiabatic regime, where the generation
of coherent phonons is strongest.
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Figure 5.17: Panel (a) shows the temporal evolution of the lattice displacement and
the mean phonon amplitudes in the nonadiabatic regime with ~ωmax = 2.63meV
and gmax = 0.5meV. Panel (b) displays the corresponding Fourier spectra. The
gray line denotes ω∆∞ .
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In contrast to the optical phonons in Holstein form, the acoustic phonons possess
a momentum dependent frequency and coupling strength. The actual value of this
parameter are set as follows.
As discussed in Sect. 4.3, the phonon momentum is given by p = mq0 with |m| ≤
4 = mmax thus 9 phonon momenta are taken into account. The frequency of each
momentum is set via

ωp =
ωmax

4
|m| (5.28)

and the coupling strength is set by

gp = gmax

√
|m|
4
. (5.29)

Here, ωmax and gmax are the maximal value of the frequency and the coupling
strength, respectively.
Interestingly, large momenta have the strongest coupling strength but couple to
quasiparticle densities which are excited weakest by the pump pulse, see Eq. (4.8).
In the following, we perform a simulation with ~ωmax = 2.63meV, gmax = 0.5meV,
τ0 = 0.5 ps, and |A0| = 10 · 10−8 Js/(Cm). The temporal evolution of the real
part of mean phonon amplitudes Re

[〈
bp
〉]

are depicted in Fig. 5.17. As for opti-
cal phonons, each phonon amplitude is described by the forced harmonic oscillator
given by Eq. (4.8). Hence, the evolution of

〈
bp
〉

(t) is given by a superposition of
two oscillations. One is oscillating with the frequency of the quasiparticle subsystem
ω∆∞ , see weak peak in the corresponding Fourier spectra. The other one oscillates
with the phonon frequency ωp as can bee seen by the strong peak in the Fourier
spectra. In contrast to the optical phonons, every mean phonon amplitude possess
a different phonon frequency depending on the corresponding phonon momentum.
Hence, every oscillation of Re

[〈
bp
〉]

behaves differently. For m = 1, i.e. small
phonon energies, we observe a generation which can be interpreted in terms of the
DECP mechanism. For m = 3 both frequencies are close to each other, which leads
to the resonant generation mechanism. If the phonon energy is larger than the ac-
tual gap, see case m = 4, we observe again a decay in

〈
bp
〉

(t).
The corresponding lattice displacements are also depicted in Fig. 5.17. The lattice
displacement is a superposition of the oscillation of the mean phonon amplitude.
The simulation leads to a finite lattice displacement. Due to the fact that

〈
bp
〉
os-

cillates differently for every p, one would expect that the lattice displacement would
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vanish due to destructive interference. This is not seen in the simulation, because
only a few mean phonon amplitudes become finite. This is caused by the definite
wave vector of the vector potential, which is assumed in the simulation. Only spe-
cific quasiparticle expectation values become finite, e.g.

〈
α†

kαk+nq0

〉
.

If we consider more realistic pulse shapes with a broader distribution of wave vec-
tors more mean phonon amplitudes can be generated. As a result, the lattice dis-
placement should vanish. But a broader distribution of wave vectors will make the
numerical simulation more complicated. One has to construct a new discretization
mesh which regards the uncertainties in the momentum. If one constructs such
a mesh, the numerical effort will consequently increase due to more discretization
points which has to take into account.
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6 Nonequilibrium Response

In Sect. 5 we presented the nonequilibrium dynamics of a superconductor. The tem-
poral evolution of the order parameter was one of the main quantities of interest.
So it will be of great advantage if we can predict which signatures of a common
observable provides information about the dynamics of the system. For that reason,
we compute the conductivity σ(δt, ω) as it can be measured by the probe pulse. We
will show that the conductivity provides signatures as function of delay time, which
displays the oscillatory behavior of the order parameter as well as the evolution of
the lattice displacement.
Before we discussed the signatures in the conductivity, we explain how the probe
pulse is included in the DMF formalism and how the conductivity is actual com-
puted. Next, the results for the s-wave superconductor with and without coupling
to coherent phonons will be presented. Parts of the following investigations are
published in Ref. [36].

6.1 Conductivity

In order to simulate the pump-probe conductivity, the temporal evolution of the
electric current density jqpr

(δt, t) needs to be known. It is given by [30,90]

jqpr
(δt, t) =

−e~
2mV

∑
k,σ

(2k + qpr)
〈
c†k,σck+qpr,σ

〉
(δt, t) (6.1)

− e2

mV

∑
k,q,σ

Aqpr−q

〈
c†k,σck+q,σ

〉
(δt, t),

where qpr is the wave vector of the probe pulse. For the numerical calculations we
neglect the second term in Eq. (6.1) since it only results in a constant offset of the
imaginary part of the conductivity spectra [30].
Formally, the current depends on two times, namely the delay time δt between
pump and probe pulse and the actual time t at which it is measured or computed,
respectively. Then, the pump-probe conductivity σ(δt, ω) is obtained from Eq. (6.1)
via

σ(δt, ω) =
j(δt, ω)

iωA(δt, ω)
, (6.2a)
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where

j(δt, ω) =

∫ ∞
−∞

dt êy · jqpr(δt, t) e
iωt (6.2b)

and

A(δt, ω) =

∫ ∞
−∞

dt êy ·Aqpr(δt, t) e
iωt (6.2c)

denote the Fourier transformed y-components of the current density jqpr(δt, t) and
the vector potential Aqpr(δt, t) of the probe pulse, respectively. Hence, the pump-
probe conductivity is fully determined by the time evolution of the expectation
values 〈c†k,σck+qpr,σ

〉(δt, t), which we numerically compute by integrating the corre-
sponding equations of motion.
In literature, there are also other ways discussed to determine the conductivity, see
for instance Ref. [91]. However, in the present context of a pump and a probe
pulse the above procedure suggests itself and is closest to what is experimentally
done. Consequently, the conductivity is fully determined by the temporal evolution
of
〈
c†k,σck+qpr,σ

〉
(δt, t).

To keep the notation light, we omit the dependence on the delay time in the follow-
ing, because it is fixed externally. For the numerical computation, the current in
terms of Bogoliubov quasiparticle is needed, it is given by

jqpr(t) =
−e~
2mV

∑
k

(2k + qpr)
[
(ukvk+qpr − vkuk+qpr)

(
〈α†

kβ
†
k+qpr

〉 − 〈βkαk+qpr
〉
)
(6.3)

+ (ukuk+qpr + vkvk+qpr)
(
〈α†

kαk+qpr
〉 − 〈β†

kβk+qpr
〉
)]
.

6.2 Implementation

In order to compute the current induced by the probe pulse, we need the temporal
evolution of the off-diagonal expectation values

〈
α†

kβ
†
k+qpr

〉
,
〈
βkαk+qpr

〉
,
〈
α†

kαk+qpr

〉
,

and
〈
β†

kβk+qpr

〉
. All of these off-diagonal terms are zero before the probe pulse is

switched on.
Further, we use the following approximation to compute the effects of the probe
pulse. Although pump and probe pulse possess different momenta q0 6= qpr and
by association act on different discretization meshes, we use the same discretization
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mesh for both pulses. This is done, because the differences between the momenta
∆q = q0 − qpr is irrelevant small compared to the momentum k. Due to this,
the previous approximation is well justified. In addition, we approximate for the
diagonal elements 〈

α†
k+qpr

β†
k+qpr

〉
≈
〈
α†

k+q0
β†

k+q0

〉
etc. (6.4)

and restrict the off-diagonal elements to〈
α†

k+mqpr
β†

k+nqpr

〉
= 0 if |m− n| > 1. (6.5)

As mentioned in Sect. 3.3, the probe pulse is computed only in linear order in Apr(t).
So we neglect the parts in the equations of motion which are proportional to e2

2m
.

Additionally, all contributions in linear order of Apr(t) and the ones proportional to
gph, if phonons are included, simplify due to the approximation in Eq. (6.5). Not
every addend in Eq. (4.1) has to be taken into account, because the corresponding
expectation value is set to zero. For example, the equations of motion for

〈
α†

kαk+qpr

〉
without phonons is given by

i~
d
dt

〈
α†

kαk+qpr

〉
= (−Rk +Rk+qpr

)
〈
α†

kαk+qpr

〉
(6.6)

+ Ck+qpr

〈
α†

kβ
†
k+qpr

〉
− C∗k

〈
βkαk+qpr

〉
+
e~
2m

2kAqpr

(
− L+

k,qpr

〈
α†

k+q0
αk+q0

〉
+ L+

k,qpr

〈
α†

kαk

〉
+M−

k,qpr

〈
α†

kβ
†
k

〉
+M−

k,qpr

〈
βk+q0

α†
k+q0

〉)
.

6.3 Superconductor in absence of phonons

First, the pump-probe response of the pure s-wave superconductor is presented.
Again, we distinguish the three dynamical regimes, namely nonadiabatic, interme-
diate, and adiabatic regime for instance see Sect. 5. The conductivity is computed
for positive and negative delay times. As a reminder the main findings for the dy-
namics induced by the pump pulse are depicted in the following, as well. A detailed
discussion of this dynamics can be found in Sect. 5.
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Figure 6.1: (a) Real part of the pump-probe response, Re[σ(δt, ω)], versus ω and
δt > 0 for the nonadiabatic regime, induced by a pulse with τ0 = 0.5 ps and
|A0| = 8 · 10−8 Js/(Cm). (b), (c) Pump-probe signal Re[σ(δt, ω)] as a function of
delay time δt for (b) ω = ω∆∞ and (c) ω = 0.81ω∆∞ . The gray lines in panels (b)
and (c) represent the best fits of Eq. (6.7) to the numerical data as discussed in
the text. (d),(e) Temporal evolution of |∆(t)| and spectral distribution of the gap
oscillation, respectively, for the same parameters as in panel (a).

6.3.1 Positive delay time

Nonadiabatic regime

The real part of the conductivity versus the delay time and frequency for the nona-
diabatic regime is presented in Fig. 6.1. Here, a pump pulse with τ0 = 0.5 ps and
|A0| = 8 · 10−8 Js/(Cm) is used. The corresponding imaginary part is depicted in
Fig. 6.2. First, the results for the real part are discussed; the imaginary part shows
similar features.
The oscillatory dynamics of the pumped system, see Sect. 5 or Fig. 6.1(d) and (e),
is reflected in the conductivity through an algebraically decaying oscillation as func-
tion of delay time depicted in Fig. 6.1(a)-(c). These oscillations are best visible at
the frequency ω∆∞ , where the conductivity exhibits a sharp edge as a function of ω,
see Fig. 6.1(a) and (b). The position of the sharp edge at ω = ω∆∞ as function of ω
is fixed and does not depend on the delay time.
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Figure 6.2: (a) Imaginary part of the pump-probe response, Im[σ(δt, ω)], versus ω
and δt > 0 for the nonadiabatic regime, induced by a pulse with τ0 = 0.5 ps and
|A0| = 8 · 10−8 Js/(Cm). (b), (c) Pump-probe signal Im[σ(δt, ω)] as a function of
delay time δt for (b) ω = ω∆∞ and (c) ω = 0.81ω∆∞ . The gray lines in panels (b)
and (c) represent the best fits of the numerical data with Eqs. (6.8) and (6.7).

The delay-time dependence of Re[σ(δt, ωf )] for fixed ωf is approximately given by

Re[σ(δt, ωf )] = A+B
cos(ω∆∞δt+ Φ)√

δt
+ Cδt, (6.7)

as shown by the excellent fits to the numerical data in Figs. 6.1(b) and 6.1(c). Here,
Φ is an overall phase and A, B, and C are fit parameters depending on ωf . Hence,
like the order parameter oscillations, the oscillations in the pump-probe signal are
characterized by an amplitude decaying as 1/

√
δt and a frequency ω∆∞ = 2∆∞/~

that is determined by the asymptotic gap value ∆∞. We note that the linear increase
in the pump-probe signal of Fig. 6.1(b) can be attributed to slow oscillations which
are related to the finite size of the system. So they are numerical artefacts.
The same signatures, i.e., the oscillatory behavior as a function of δt and the sharp
edge at ω = ω∆∞ as function of ω, can be detected in the imaginary part of the
conductivity in Fig. 6.2. For all frequencies except ω = ω∆∞ Eq. (6.7) describes the
delay time dependence of the pump probe response. As an example, the conductivity
at ω = 0.81ω∆∞ is shown in Fig. 6.2(c). Here an almost perfect match of the fit
and the data is shown. For ω = ω∆∞ , where the sharp edge in the conductivity as a
function of ω is observed, the oscillation is defined by two frequencies. One is given
by ω∆∞ and the other by 2ω∆∞ . This is due to the fact that in the imaginary part of
the conductivity we can observe additionally higher harmonics of this oscillation. To
describe the delay-time dependence of the conductivity at this frequency, we have
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to modify Eq. (6.7) in the following way:

Im[σ(δt, ωf )] = A+
B1 cos(ω∆∞δt+ Φ1) +B2 cos(2ω∆∞δt+ Φ2)√

δt
+ Cδt. (6.8)

Here, A,B1, B2, C, and Φ are again fit parameters. The perfect match of this mod-
ified fit shown in Fig. 6.2(b) revealing the excellent approximation.
Due to the fact that the imaginary part of the conductivity provides the same in-
formation about the dynamics of the system, we will skip the discussion of the
imaginary part for brevity in the following.

All in all, the nonadiabatic BCS state dynamics is clearly visible in σ(δt, ω) in terms
of oscillations as a function of delay time δt. This is one of the key findings of our
investigation. It is in contrast to the statement of Papenkort et al., who claimed
that only the value of ∆∞ can be identified but not the oscillation itself [30,31,35].
They stated that the oscillation cannot be observed in the conductivity due to the
trade-off between temporal resolution and energy resolution [35]. The time interval,
which is needed to energetically resolve the energy gap, must be larger than ~/∆∞,
but during this interval the oscillation average out [30]. But their look only at the
conductivity as function of ω, which in fact shows only signatures reflecting ∆∞,
namely the sharp edge at ω = ω∆∞ . As we already stated, the information about
the oscillation of |∆(t)| is provided by the pump probe response as function of delay
time.
Further, our results are in qualitative agreement with recent pump-probe experi-
ments [6]. As already mentioned, Matsunaga et al. used THz-pump and THz-probe
spectroscopy and studied thin Nb1−xTixN films. They used a pulse duration of 90 fs,
which induces nonadiabatic dynamics of the superconductor. As observables they
studied the change in the transmission of the probe field δEprobe and the conductiv-
ity. In δEprobe they observed oscillations which are algebraically damped and their
frequency corresponds to twice the asymptotic gap energy. These dynamics describe
the temporal evolution of the order parameter quite well and are in good agreement
with our results in Sect. 5.1.
For the conductivity they observed oscillation as function of delay time. They sug-
gested that these oscillation can be interpret as the order parameter oscillation.
Our studies shows, that these oscillation are in fact caused by the order parameter
oscillation.
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Figure 6.3: (a) Real part of the pump-probe conductivity, Re[σ(δt, ω)], versus ω
and δt > 0 for the adiabatic regime, induced by a pump pulse with τ0 = 20 ps and
|A0| = 0.5 · 10−8 Js/(Cm). Panel (b) shows a detail of the pump-probe response
for frequencies just below the pump frequency ω0 = 1.21ω∆∞ . The small dip near
ω ≈ 1.15ω∆∞ is due to Pauli blocking. (c) Time dependence of |∆(t)| for the same
parameters as in panel (a).

Adiabatic regime

The real part of the conductivity for the adiabatic regime as a function of delay time
δt and frequency ω is shown in Fig. 6.3(a) for a pump pulse with τ0 = 20 ps � τ∆

and |A0| = 0.5 · 10−8 Js/(Cm). As explained in Sect.5.1, the excited quasiparticle
densities remain almost constant after the pump pulse, see Fig. 5.2. Hence, the order
parameter ∆(t) does not oscillate, instead it decreases monotonically towards the
asymptotic value ∆∞ as displayed in Fig. 6.3(c) and already discussed in Sect. 5.1.
Correspondingly, the pump-probe signal σ(δt, ω) does not exhibit any oscillations as
a function of delay time as shown in Fig. 6.3(a). As function of ω, the real part of the
conductivity Re[σ(δt, ω)] has a sharp edge at the frequency ω = ω∆∞ corresponding
to twice the energy of the asymptotic gap value ∆∞, like the conductivity for the
nonadiabatic regime. However, it is almost featureless except for a small dip just
below the pump frequency ω0, see Fig. 6.3(b). This reduced absorption in the
vicinity of ω0 is due to Pauli blocking which leads to a saturation in the narrowly
peaked quasiparticle distributions, e.g. see Fig.5.1.
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Figure 6.4: (a1) Real part of the pump-probe conductivity, Re[σ(δt, ω)], versus ω
and δt > 0 for the intermediate regime with τ0 = 1.5 ps and |A0| = 7 ·10−8 Js/(Cm).
(a2) Time dependence of |∆(t)| for the same parameters as in panel (a1). (b) same
as (a) for a pump pulse width of τ0 = 6 ps and |A0| = 3 · 10−8 Js/(Cm)

Intermediate regime

Figure 6.4 shows how the transition between the nonadiabatic and adiabatic regimes
is mirrored in the pump-probe response. Here, the real part of the conductivity
Re[σ(δt, ω)] are presented exemplarily for τ0 = 1.5 ps and τ0 = 6 ps. All pump-probe
responses, independent of the pump pulse width, show a sharp edge at ~ω = 2∆∞

as a function of ω. As a function of delay time the conductivity shows an oscil-
latory behavior of which the amplitude decays ∼ 1√

t
, as like in the nonadiabatic

regime. For increasing pump pulse width the amplitude of this oscillation gradually
decreases leading to the almost featureless shape of the conductivity of the adiabatic
regime. In addition, the dip at ω ≈ ω0 evolves with increasing pump pulse width
(not shown). This is in perfect agreement with the transition from a rather broad
peak to two sharp peaks in the quasiparticle distributions, see Fig. 5.1.

As a first short conclusion we state, that the pump probe response for positive de-
lay times contains signatures which provides information about the dynamics of the
system. For the nonadiabatic regime, the conductivity as function of delay time
shows an oscillation which behaves as the oscillation of the order parameter. The
frequency with ω∆∞ = 2∆∞

~ as well as the 1√
t
-decay is clearly visible, especially at

the absorption frequency ω = ω∆∞ . For the adiabatic regime instead the conduc-
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Figure 6.5: (a) Absorption spectrum Re[σ(δt, ω)] versus ω and δt < 0 for the
nonadiabatic regime and negative delay time, induced by a pump pulse with τ0 =
0.5 ps and |A0| = 13 · 10−8 Js/(Cm). (b) Fourier transform of the data in panel
(a), i.e., Re(σ) as a function of Fourier frequency ωδt and absorption frequency ω.
(c), (d) Time dependence of |∆(t)| and spectral distribution of the gap oscillation,
respectively, for the same parameters as in panel (a).

tivity as function of δt is almost featureless as the corresponding evolution of the
order parameter. Even the crossover between the both regimes is reflected in the
conductivity as function of delay time.
In contrast, the conductivity as function of ω provides no information, which helps
to identify the dynamics of the system. All in all, we state that one has to study
the pump-probe response as function of delay time to obtain information about the
induced dynamics.

6.3.2 Negative delay time

Here the situation where the probe pulse precedes the pump pulse is considered.

Nonadiabatic regime

In Fig. 6.5(a), the real part of the pump-probe response Re[σ(δt, ω)] is presented
versus negative delay time δt and frequency ω for the nonadiabatic regime. We use
a pump pulse with τ0 = 0.5 ps and |A0| = 13 · 10−8 Js/(Cm).
Both the energy gap before and after the pump pulse are clearly visible in the
frequency dependence of σ(δt, ω). The pump-probe signal displays two sharp edges
as function of frequency, one at twice the initial gap ~ω∆0 = 2∆0 = 2.7 meV and one
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at twice the asymptotic gap ~ω∆∞ = 2∆∞ = 1.677 meV, see green and blue lines in
Fig. 6.5(a). The effect of the pump pulse can be seen due to the fact that the pump
pulse modifies the dynamics of the current, which is induced by the preceding probe
pulse. The main oscillation of the current is determined by the oscillation frequency
of the order parameter ω∆ = 2∆

~ . This frequency changes from the initial value to
the reduced value provided by the pump pulse. Between the edges the conductivity
shows spectral oscillations in ω with a period δω, that is inversely proportional to
δω ∼ (2π)/|δt| [30]. Such spectral oscillation with δω ∼ (2π)/|δt| are also known
and measured in semiconductors [92, 93].
As function of delay time the conductivity shows a rich oscillatory behavior with
multiple frequencies that depend on the absorption energy ~ω. This is revealed
most clearly in Fig. 6.5(b), which shows the Fourier transformed response in two-
dimensional frequency space, i.e., Re(σ) as a function of the Fourier frequency ωδt
of the delay time and of the absorption frequency ω. We observe that for the
absorption energy ~ω within the interval 0 < ~ω < ~ω∆∞ , Re[σ(δt, ω)] oscillates in
δt with the frequency ω∆0 . The oscillatory behavior of Re[σ(δt, ω)] in the interval
~ω∆∞ < ~ω < ~ω∆0 is even more intriguing. It shows signatures of how the gap
decreases while the pump pulse acts on the sample, see Fig. 6.5(c). In other words,
it is found that for these absorption energies Re[σ(δt, ω)] oscillates in δt with three
frequencies that are approximately given by ω∆0 , ω∆0 + ω, and ω∆0 − ω.

Adiabatic regime

The real part of the conductivity Re[σ(δt, ω)] versus negative delay δt time and
frequency ω is depicted in Fig. 6.6 for the adiabatic regime.
As for the nonadiabatic case presented in Fig. 6.5 the response as function of ω
displays two sharp edges at ~ω∆0 and ~ω∆∞ and the spectra oscillation period δω ∼
(2π)/|δt| in between [30]. As function of delay time the conductivity shows an
oscillatory behavior in the interval ~ω∆∞ ≤ ~ω ≤ ~ω∆0 only. Figure 6.6(b) illustrates
the Fourier transformed response in two-dimensional frequency space. It shows that
Re[σ(δt, ω)] oscillates with ω∆(ti) − ω. Once more, the pump-probe response for
negative delay time shows a signature which reflects how the absolute value of the
order parameter decreases during the pump pulse, but compared to the nonadiabatic
regime the signature is hardly visible. In addition, we cannot observe an oscillation
with frequency ω∆0 or ω∆0 + ω as in the nonadiabatic case.



90 6 Nonequilibrium Response

ω/ω
∆

∞ 

δt [ps]

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Re(σ) [arb. units]

(a)

 0.7  0.8  0.9  1  1.1  1.2  1.3  1.4
-42

-40
-38

-36
-34

Re(σ) [arb. units]
(b)

 0.9  1  1.1  1.2
ω/ω∆∞ 

 0

 1

 2

 3

 4

 5

 6

- h
ω

δ
t 
[m

e
V

]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.25

 1.3

 1.35

 1.4

-40 -30 -20 -10  0  10  20  30  40  50  60  70  80

|∆
| 
[m

e
V

]

t [ps]

(c)

Figure 6.6: (a) Absorption spectrum Re[σ(δt, ω)] versus ω and δt < 0 for the
adiabatic regime and negative delay time, induced by a pump pulse with τ0 = 20
ps and |A0| = 1 · 10−8 Js/(Cm). (b) Fourier transform of the data in panel (a), i.e.,
Re(σ) as a function of Fourier frequency ωδt and absorption frequency ω. (c) Time
dependence of |∆(t)| for the same parameters as in panel (a).

Intermediate regime

How the crossover between both dynamical regimes is reflected in the conductivity
for negative delay time is discussed in this section. The real part of conductiv-
ity Re[σ(δt, ω)] between both dynamical regimes shows two sharp edges at ~ω∆0

and ~ω∆∞ as a function of ω. In addition, the spectral oscillation with period
δω ∼ (2π)/|δt| can be observed. This is not shown explicitly, but it is presented in
Ref. [30].
The oscillatory behavior of Re[σ(δt, ω)] as a function of delay time is more interest-
ing. For illustration the Fourier transformed response in two-dimensional frequency
space is depicted in Fig. 6.7 for two different pump pulse with τ0 = 1.5 ps and τ0 = 6

ps.
In the nonadiabatic regime we observed three different frequencies ω = ω∆0 ±ω and
ω = ω∆0 , see Fig. 6.5. If we increase the pump pulse width, the oscillation with
ω = ω∆0 + ω is vanished first, see Fig. 6.7(a). By further increase of the pump
pulse width the oscillation with ω = ω∆0 vanishes, too. Only the oscillation with
ω = ω∆0−ω remains visible leading the pump-probe response of the adiabatic regime.

In contrast to the results for positive delay times, the results for negative delay
time provide not only signatures which reflect the dynamics of the order parameter
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Figure 6.7: (a) Fourier transform of the absorption spectrum Re[σ(δt, ω)] for a
pump pulse with τ0 = 1.5 ps and |A0| = 7 · 10−8 Js/(Cm), i.e., Re(σ) as a function
of Fourier frequency ωδt and absorption frequency ω. (b) same as (a) for a pump
pulse with τ0 = 6 ps and |A0| = 3 · 10−8 Js/(Cm).

after the pump pulse. The oscillatory behavior of the conductivity as function of δt
provides also information about the dynamics of superconductor before and while
the pump pulse acts. In order to study the excitation process it can be useful to use
negative delay times.

6.4 Superconductor in presence of phonons

In this section, the pump probe response of the superconductor with additional op-
tical phonon is discussed. We study how the dynamics of the lattice is reflected in
the pump-probe conductivity. This may lead to an direct comparison to experimen-
tal studies. As already mentioned in Sect. 5.2 there are some experimental stud-
ies which observed coherent phonons in semiconductors [43, 44, 77], semiconductor
quantum wells [78, 79], superlattices [81, 82], and high-temperature superconduct-
cors [14, 46,47].
For example, Mansart et al. observed coherent optical phonons in iron pnictide
superconductor Ba(Fe1−xCox)2As2 [14]. They used the time-resolved pump-probe
reflectivity to detect the coherent phonons. More precisely, they observed an oscil-
lation in the reflectivity as function of delay time. This oscillation can be identified
as coherent phonon modes by comparison of the measured frequency with standard
Raman measurements.
In this thesis, we compute again the conductivity as observable for the pump probe
response, but it is possible to compute the reflectivity from the conductivity [94].
As shown in Sect. 5.2 coherent phonons are efficiently generated in the nonadiabatic
regime. Thus we concentrate the following studies on this regime. Nevertheless,
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Figure 6.8: Real part of the pump-probe signal, Re[σ(δt, ω)], versus ω and δt >
0 for the nonadiabatic regime, induced by a pump pulse with τ0 = 0.5 ps and
|A0| = 10 · 10−8 Js/(Cm), in the presence of an optical phonon mode with energy
~ωph = 2 meV and coupling strength gph = 0.1 meV. (b), (c) Pump-probe response
Re[σ(δt, ω)] as a function of delay time δt for (b) ω = ω∆∞ and (c) ω = ωph. The gray
lines in panels (b) and (c) represent the best fits of Eqs. (6.7) and (6.9), respectively,
to the numerical data. (d), (e) Time evolution of the order parameter amplitude
|∆(t)| and the lattice displacement U(0, t), respectively, for the same parameters
as in panel (a). (f) Fourier spectra of the order parameter and coherent phonon
oscillations are depicted as dashed blue and solid red lines, respectively.

some results concerning the adiabatic regime are also shown. We quit on discussing
the intermediate regime due to a lack of interesting new features, see Sect. 5.2.
Again, also the pump induced dynamics are presented briefly for sake of complete-
ness.
The pump probe response of a superconductor with additional acoustic phonons is
not discussed. As already mentioned in Sect. 5.3 the generation of acoustic phonons
is weak. Hence, the signatures which reflect the dynamic of the phonons are almost
not visible in the conductivity. As a result, the conductivity looks similar to the
case without phonons.
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6.4.1 Positive delay time

Nonadiabatic regime

As discussed in Sect. 5.2, the most interesting case corresponds to the situation
where the pump pulse drives the quasiparticle oscillation with a frequency that is
close to resonance with the phonon frequency. If the two frequencies are close to
resonance a beating phenomenon in the lattice displacement can be observed. In
Fig. 6.8 the corresponding pump-probe spectra is shown for a pump pulse with
τ0 = 0.5 ps, |A0| = 10 · 10−8 Js/(Cm). The optical phonon mode is characterized
by the energy ~ωph = 2 meV and coupling strength gph = 0.1 meV. As for the case
without phonons, we concentrate on the real part of the conductivity, because the
imaginary part shows the same features. Figures 6.8(d)-(f) serve as a short reminder
of the temporal evolution of the system induced by the pump pulse.
We observe two distinct edges in the frequency dependence of σ(δt, ω), one at twice
the asymptotic gap value ~ω∆∞ = 2∆∞ = 2.2491 meV and the other at the phonon
energy ~ωph = 2 meV, see blue and red lines in Fig. 6.8(a). Again, the position of
these sharp edges is independent of the delay time. The maxima of these two edges
show an oscillatory behavior as a function of delay time, see Figs. 6.8(b) and 6.8(c),
reflecting the nonadiabatic dynamics of both the phonon mode and the Bogoliubov
quasiparticles. The delay-time evolution of Re[σ(δt, ω)] at ω∆∞ is well described by
Eq. (6.7), as can be seen by the good fit in Fig. 6.8(b). Particularly, Re[σ(δt, ω∆∞)]

oscillates with the frequency ω∆∞ and an amplitude decaying with 1/
√
δt.

The oscillations at ωph exhibit a beating phenomenon approximately given by

Re[σ(δt, ωph)] = A+B cos (ω+δt+ Φ1) cos (ω−δt+ Φ2) , (6.9)

where ω± = (ω∆∞ ± ωph)/2, and A, B, Φ1, and Φ2 are fit parameters. As demon-
strated by the gray lines in Fig. 6.8(c), Eq. (6.9) fits the numerical results well. Just
as the lattice displacement U(r, t), Re[σ(δt, ωph)] exhibits quantum beats, i.e., it os-
cillates with frequency ω+ and has an amplitude that is modulated with frequency
ω−. Note that the deviations between the fit function (6.9) and the numerical results
of Fig. 6.8(c) for δt . 7 ps are due to a transient oscillatory behavior.
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Figure 6.9:

Real part of the pump-probe signal, Re[σ(δt, ω)],
versus ω and δt > 0 induced by a pump pulse
with τ0 = 0.5 ps and |A0| = 10 · 10−8 Js/(Cm),
in the presence of an optical phonon mode with
energy ~ωph = 2 meV and three different
coupling strengths gph, (a) gph = 0.1 meV, (b)
gph = 0.3 meV, and (c) gph = 0.5 meV. In panel
(d) Re[σ(δt, ω∆∞)] and in panel (e)
Re[σ(δt, ωph)] is depicted for the three gph,
respectively. The gray line represents the best
fits of Eqs. (6.7) and (6.10), respectively. |∆(t)|
is shown in (f) and U(0.t) in (g).

How the conductivity changes with increasing electron-phonon coupling strength
gph is depicted in Fig. 6.9. Here we use the same pump pulse as in Fig. 6.8 and



6 Nonequilibrium Response 95

compute σ(δt, ω) for two additional coupling strength, namely gph = 0.3meV and
gph = 0.5meV.
The real parts of the conductivity, see Fig. 6.9(a)-(c), show a sharp edges at ω = ωph

and ω = ω∆∞ as function of ω and an oscillatory behavior as function of δt. How-
ever, the edge at the phonon frequency increases with increasing coupling strength.
This is caused by a stronger generation of coherent phonons, for instance see the
corresponding lattice displacement in Fig. 6.9(g). The conductivity Re[σ(δt, ωph)] as
function of delay time shows an oscillation, which is perfectly captures by Eq. (6.9)

Re[σ(δt, ωph)] = A+B1 cos (ωphδt+ Φ1) +B2 cos (ω∆∞δt+ Φ2) , (6.10)

as demonstrated by the fits in Fig. 6.9(e). In Eq. (6.10) A,B1, B2,Φ1, and Φ2 are
fit parameter. If B1 = B2 Eq. (6.10) simplifies to Eq. (6.9).
The edge at ω = ω∆∞ changes also with increasing coupling strength. The amplitude
of the oscillation of σ(ω∆∞ , δ) increases if gph increases. In addition, the oscillation
are no longer described by Eq. (6.7), as can be seen by the gray lines in Fig. 6.9(d).
This change in the conductivity is caused by the feedback of the phonon subsystem
on the quasiparticle subsystem. Interestingly, the conductivity is effected more by
the phonon subsystem as the order parameter. The order parameter is only slightly
changed as can be seen in Fig. 6.9(f), whereas σ(ω∆∞ , δt) shows a huge change. This
observation can be explained by the influence of the contribution proportional to
gph on the expectation values, which are needed to compute the quantity of interest,
in the equations of motion.
To compute the order parameter one needs the expectation values

〈
α†

kαk

〉
,
〈
β†

kβk

〉
,

and
〈
α†

kβ
†
k

〉
. These expectation values are strongly excited by the pump pulse. As

a result, the contributions proportional to gp are weak in relation to the pump pulse
effect. Thus, the order parameter is only slightly changed with increasing gph.
In order to compute the conductivity one needs the expectation values

〈
α†

kαk+qpr

〉
,〈

β†
kβk+qpr

〉
,
〈
α†

kβ
†
k+qpr

〉
, and

〈
βkαk+qpr

〉
. These values are excited only by the

probe pulse. The probe pulse has a weaker intensity than the pump pulse and with
this these expectation values are not so strong excited. In addition, these values
describe a shift of quasiparticles in k-space. As explained in Sect. 4.3, expectation
values which are non-diagonal in k are weaker excited than the one diagonal in k.
Thus, the lower intensity of the probe pulse as well as the shift of quasiprticle in
k-space lead to a weaker excitation of

〈
α†

kαk+qpr

〉
,
〈
β†

kβk+qpr

〉
,
〈
α†

kβ
†
k+qpr

〉
, and



96 6 Nonequilibrium Response

ω/ω
∆

∞ 

δt [ps]

-4

-2

 0

 2

 4

 6

 8

Re(σ) [arb. units]

(a)

 0.85
 0.95

 1.05
 1.15

 2  4  6  8  10  12  14

Re(σ) [arb. units]

 0.95

 1.05

 1.15

 1.25

 1.35

 0  3  6  9  12 15

|∆
| 
[m

e
V

]

t [ps]

(d)

-1

 0

 1

 0  8  16  24

U
(0

,t
) 

[a
rb

. 
u

n
it
s
]

t [ps]

(e)

 0

 0.25

 0.5

 0.75

 1

 1.7  2  2.3

F
T

-A
m

p
.

ω [meV]

(f)

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

R
e
[σ

(ω
=

ω
∆

∞
 =

ω
p
h
)]

 [
a
rb

. 
u
n
it
s
]

(b)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

 3  5  7  9  11  13  15  17  19  21  23  25
R

e
[σ

(ω
=

0
.8

7
5
 ω

∆
∞

 )]
 [
a
rb

. 
u
n
it
s
]

δt [ps]

(c)

Figure 6.10: (a) Real part of the pump-probe response, Re[σ(δt, ω)], versus ω and
δt > 0 for the nonadiabatic regime, induced by a pump pulse with τ0 = 0.5 ps and
|A0| = 11.64 ·10−8 Js/(Cm), in the presence of an optical phonon mode with energy
at resonance with the order parameter oscillations, i.e., ωph = ω∆∞ = 2 meV. Here
the electron-phonon coupling strength is gph = 0.1 meV. (b), (c) Pump-probe signal
Re[σ(δt)] as a function of delay time δt for (b) ω = ω∆∞ = ωph and (c) ω = 0.875ω∆∞ .
The gray lines in panels (b) and (c) represent the best fits of Eqs. (6.9) and (6.7),
respectively, to the numerical data. (d), (e) Time dependence of the order parameter
amplitude |∆(t)| and the lattice displacement U(0, t), respectively, for the same
parameters as in panel (a). (f) Spectral distribution of the order parameter and
coherent phonon oscillations are depicted as dashed blue and solid red, respectively.

〈
βkαk+qpr

〉
than the pump pulse excites

〈
α†

kαk

〉
,
〈
β†

kβk

〉
, and

〈
α†

kβ
†
k

〉
. As a re-

sults, the influence of the contribution proportional to gph is larger on
〈
α†

kαk+qpr

〉
,〈

β†
kβk+qpr

〉
,
〈
α†

kβ
†
k+qpr

〉
, and

〈
βkαk+qpr

〉
than on

〈
α†

kαk

〉
,
〈
β†

kβk

〉
, and

〈
α†

kβ
†
k

〉
,

resulting in a stronger gph dependence of the conductivity than of the order param-
eter.
By adjusting the pump-pulse intensity, we can tune the order parameter oscillations
into exact resonance with the phonon mode, see Sect. 5.2 or Ref. [33]. This is illus-
trated in Fig. 6.10, where we plot Re[σ(δt, ω)], |∆(t)|, and U(r, t) for a pump pulse
with τ0 = 0.5 ps and |A0| = 11.64 · 10−8 Js/(Cm). In this resonant case, the lattice
displacement oscillates with frequency ωph = ω∆∞ = 2 meV/~ and an amplitude
that grows like

√
t, see Fig. 6.10(e).

At resonance, the frequency dependence of the pump-probe conductivity σ(δt, ω)

shows just one sharp edge at ~ω∆∞ = ~ωph = 2 meV, whose maximum oscillates
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Figure 6.11: (a) Real part of the pump-probe signal, Re[σ(δt, ω)], versus ω and
δt > 0 for the nonadiabatic regime, induced by a pulse with τ0 = 0.5 ps and
|A0| = 7 · 10−8 Js/(Cm), in the presence of an optical phonon mode with energy
~ωph = 3.3 meV and coupling strength gph = 0.8 meV. (b), (c) Pump-probe response
Re[σ(δt, ω)] as a function of delay time δt for (b) ω = ω∆∞ and (c) ω = ωph. The
gray lines in panels (b) and (c) represent the best fits of Eqs. (6.7) and (6.11),
respectively, to the numerical data. (d), (e) Time evolution of the order parameter
amplitude |∆(t)| and the lattice displacement U(0, t), respectively, for the same
parameters as in panel (a). (f) Fourier spectra of the order parameter and coherent
phonon oscillations depicted as dashed blue and solid red lines, respectively.

as a function of δt, see blue line in Fig. 6.10(a). Remarkably, these oscillations are
undamped and their amplitude is considerably larger than in the off-resonant case,
compare Fig. 6.8(b) to Fig. 6.10(b). In fact, the δt dependence of Re[σ(δt, ω)] at
ω∆∞ is very well captured by formula (6.9) with ω+ = ω∆∞ and ω− = 0, as demon-
strated by the fits in Fig. 6.10(b).
At absorption energies ~ω different from ~ω∆∞ , Re[σ(δt, ω)] shows 1/

√
δt-decaying

oscillations in δt with frequency ω∆∞ . In Fig. 6.10(c) the delay-time evolution of
the conductivity for ω 6= ω∆∞ is depicted. It is well described by Eq. (6.7) as the
perfect match of the fit shows.
Fig. 6.11 shows the pump probe spectra for a phonon energy larger than the initial
gap. Here, a pump pulse with τ0 = 0.5 ps and |A0| = 7 · 10−8 Js/(Cm) is used.
Further, the phonon energy is set to ~ωph = 3.3 meV and the coupling strength to
gph = 0.8 meV. As mentioned in Sect. 5.2, the oscillation of the lattice displacement
which oscillates with the phonon frequency decays exponentially, whereas the oscil-
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lation with ω∆∞ decays algebraically, see Fig. 6.11(e). This dynamic is also reflected
in the pump-probe response as function of delay time. The temporal evolution of the
real part of the conductivity Re[σ(δt, ω)] at ω = ωph shows a decaying oscillations,
see Fig. 6.11(c). It is approximately described by

Re[σ(δt, ωph)] = C1 exp(−at) cos(ωpht+ Φ1) + C2t
−b cos(ω∆∞t+ Φ2), (6.11)

where C1, C2,Φ1,Φ2, a, and b are fit parameters. This function is similar to Eq. (5.27)
which describes the evolution of the lattice displacement, see Sect. 5.2. The gray
line in Fig. 6.11(c) shows a good agreement of the fit. In addition, the resulting rate
a = 0.03573 is almost equal to the parameter of the direct lattice displacement fit,
see Tab. 5.1.
The delay-time evolution of the conductivity at ω = ω∆∞ displays an oscillation
with a large amplitude. In addition, this evolution is still described by Eq. (6.7), as
demonstrated by the gray lines in Fig. 6.11(b). This is caused by the large coupling
strength of gp = 0.8meV used in the simulation. As it is discussed above in this
section, the phonon dynamics influence the dynamics of the quasiparticle densities
which are needed to compute σ(δt, ω) stronger than the one which are needed to
compute ∆. As a consequence, the order parameter is only changed slightly with
increasing coupling strength whereas the conductivity shows a huge change.

Adiabatic regime

We contrast the results for the nonadiabatic regime, see Figs. 6.8 - 6.11, with those
for the adiabatic case shown in Fig. 6.12(a1). We present the pump-probe signal for
a superconductor excited by a long pump pulse with pulse duration τ0 = 20 ps � τ∆.
Further, we set |A0| = 0.5 · 10−8 Js/(Cm), ~ωph = 2 meV, and gph = 0.1 meV. As
shown in Sect. 5.2 the lattice displacement exhibits large transient oscillations with
frequency ω0 in this regime that occur in the interval ≈ [−τ0,+τ0] while the pump
laser acts on the system, see Figs. 6.12(c1) and 6.12(d1). Afterwards, there is only
a negligible generation of coherent phonons. The probe signal Re[σ(δt, ω)] is almost
featureless as a function of delay time δt. It only displays a sharp edge in the fre-
quency dependence at ~ω∆∞ = 2∆∞ and a small dip just below the pump pulse fre-
quency ω0 which arises due to Pauli blocking like in the case without phonons. How-
ever, since almost no coherent phonons with frequency ωph are created, Re[σ(δt, ω)]

exhibits no feature at the phonon energy ~ωph, see red line in Fig. 6.12(a1).
For the special case where the pump pulse energy is in resonance with the phonon
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Figure 6.12: Absorption spectrum Re[σ(δt, ω)] versus ω and δt > 0 for the adiabatic
regime, induced by a pump pulse with τ0 = 20 ps and |A0| = 0.5 · 10−8 Js/(Cm),
in the presence of an optical phonon mode with energy ~ωph = 2 meV (panel a1)
or ~ωph = ~ω0 = 3 meV (panel a2) and coupling strength gph = 0.1 meV. (b), (c)
Time dependence of the order parameter amplitude |∆(t)| and the lattice displace-
ment U(0, t), respectively, for the same parameters as in panel (a). (d) Spectral
distribution of the coherent phonon oscillations.

energy, i.e., ~ωp = ~ωph, the resonant pumping of the phonon leads to undamped
coherent phonon oscillations which persist even after the pump pulse has finished,
see Fig. 6.12(c2). This feature is also reflected in the pump probe response. The
real part of the pump-probe signal Re[σ(δt, ω)] is presented in Fig. 6.12(a2). Except
of the phonon energy we use the same parameter as in Fig 6.12(a1). It shows an en-
hanced oscillatory behavior in the delay-time dependence of the absorption spectrum
Re[σ(δt, ω)] at the phonon frequency ωph, see red curve in Fig 6.12(a2). In addition,
the edge at ω = ω∆∞ , see blue curves, shows an oscillation as a function of δt. Due
to the enhanced phonon dynamics, the influence on the quasiparticle dynamics is
larger compared to the off-resonance case, see Fig. 6.12(a1). As already discussed
the conductivity is more sensitive to the phonon dynamics than the order parameter.

We shortly conclude, the conductivity as function of positive delay time shows clear
signatures which reflect the dynamics of the coherent phonons. The information
about the evolution of the lattice displacement is encoded in delay-time evolution of
the conductivity at the phonon frequency σ(δt, ωph). It shows for example the same
beating phenomena as the lattice displacement.
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Figure 6.13: (a) Real part of the pump-probe signal, Re[σ(δt, ω)], versus ω and
δt < 0 for the nonadiabatic regime and negative delay time, induced by a pump
pulse with τ0 = 0.5 ps and |A0| = 13 · 10−8 Js/(Cm), in the presence of a phonon
mode with energy ~ωph = 2 meV ≈ 1.19 ~ω∆∞ and coupling strength gph = 0.1 meV.
(b) Fourier transform of the data in panel (a), i.e., Re(σ) as a function of Fourier
frequency ωδt and absorption frequency ω. (c), (d) Time dependence of the order
parameter amplitude |∆(t)| and the lattice displacement U(0, t), respectively, for the
same parameters as in panel (a). (e) Spectral distribution of the order parameter
and coherent phonon oscillations as dashed blue and solid red lines, respectively.

The pump probe response can be amplified if the phonon frequency and the order
parameter oscillation frequency are in resonance. In this case, the conductivity
shows an oscillation with ω∆∞ and a larger amplitude. This feature can be use to
improve the resolution of an experimental measurement.
Another interesting feature is observed in the adiabatic case if ω0 = ωph. In this
case, the conductivity shows a clear oscillation as function of delay time reflecting
the enhanced lattice displacement. But as already mentioned, due to the fact that
there is no explicit light-phonon coupling taken into account, the results of this case
have to be treated with care.

6.4.2 Negative delay time

Nonadiabatic regime

In Fig. 6.13(a), the real part of the pump-probe signal is plotted versus negative delay
time δt and frequency ω for a short pump pulse with τ0 = 0.5 ps and |A0| = 13 ·10−8
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Js/(Cm). In addition we set ~ωph = 2 meV and gph = 0.1 meV.
Similar to the case without phonons in Fig. 6.5(a), we observe two sharp edges in
the frequency dependence of Re[σ(δt, ω)], one at twice the energy of the asymptotic
gap value ~ω∆∞ = 1.677 meV and another smaller one at twice the gap energy of
the unperturbed superconductor ~ω∆0 = 2∆0 = 2.7 meV. They are depicted by
the blue and green lines in Fig. 6.13(a). In addition, a third edge appears at the
phonon frequency ~ωph ≈ 1.19~ω∆∞ , indicated by the red line in Fig. 6.13(a). As
function of delay time the pump-probe signal shows an intricate oscillatory behav-
ior, which reflects the nonadiabatic dynamics of both the Bogoliubov quasiparticle
and phonon subsystems. The spectral distribution of these oscillations in δt is
depicted in Fig. 6.13(b). It is quite similar to the one without phonons, for compar-
ison see Fig. 6.5. For absorption frequencies ω within the interval ω∆∞ < ω < ω∆0 ,
Re[σ(δt, ω)] oscillates in general with three different frequencies, approximately given
by ω∆0 , ω∆0 + ω, and ω∆0 − ω. The oscillations with ω∆0 ± ω in this interval reflect
how the absolute value of the order parameter reduces during the pump pulse. The
oscillation with ω∆0 = 2∆0

~ reflects the initial value of the order parameter.
The Fourier spectrum of Re[σ(δt, ω)] at the absorption energy ω = ωph also shows
a peak at the phonon energy ~ωph = 2 meV, see white arrow in Fig. 6.13(b). The
oscillation with ωph of σ(δt, ωph) is a signature of the dynamics of the lattice dis-
placement.

Adiabatic regime

The real part of the conductivity versus negative delay time δt and frequency ω for
the adiabatic regime is depicted in Fig. 6.14. Here, we use τ0 = 20 ps, |A0| = 0.5·10−8

Js/(Cm), ~ωph = 2 meV, and gph = 0.1 meV. As for the case without phonons, see
Fig. 6.6, two sharp edges in the frequency dependence at ω = ω∆∞ and ω = ω∆0

can be observed, see blue and green curves in Fig. 6.14. Just as the conductivity
for positive delay time, the conductivity shows no edge at ω = ωph in the adiabatic
regime. As a function of delay time the pump-probe response oscillates in the fre-
quency interval ω∆∞ < ω < ω∆0 , which reflects the dynamics of the Bogoliubov
quasiparticles, as the Fourier transform in Fig. 6.14(b) shows. The conductivity
oscillates with ω∆0 − ω in this interval. It reflects how the gap reduces during the
pump pulse. In addition, even a signature of the large transient oscillation appears
in the δt dependence of Re[σ(δt, ω)]. At the absorption frequency ω = ω0 an oscil-
lation with frequency ω0 is visible, see white arrow in Fig. 6.14(b).
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Figure 6.14: (a) Real part of the pump-probe signal, Re[σ(δt, ω)], versus ω and δt <
0 for the adiabatic regime, induced by a pulse with τ0 = 20 ps and |A0| = 0.5 · 10−8

Js/(Cm), in the presence of a phonon mode with energy ~ωph = 2 meV, coupling
strength gph = 0.1 meV, and negative delay time. (b) Fourier transform of the
data in panel (a), i.e., Re(σ) as a function of Fourier frequency ωδt and absorption
frequency ω. (c), (d) Time dependence of the order parameter amplitude |∆(t)| and
the lattice displacement U(0, t), respectively, for the same parameters as in panel
(a). (e) Spectral distribution of coherent phonon oscillations.

As for the case without phonons, the conductivity for negative delay times provides
information about the dynamics of the system before, during, and after the pump
pulse. In contrast, the conductivity for positive delay times shows only signatures
of the dynamics after the pump pulse.
The conductivity for negative delay times reveals the same signatures such as the one
without phonons. In addition the δt evolution of the conductivity at the phonon
frequency reflects also the dynamics of the lattice displacement. Especially, the
transient oscillation of the lattice displacement in the adiabatic regime is reflected
in the conductivity for negative delay times. This features is not visible in the
conductivity with positive delay time, because it only appears during the pump
pulse.
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7 Conclusions and Outlook

7.1 Conclusions

In this thesis, we used the density matrix formalism to simulate the nonequilib-
rium dynamics of a s-wave BCS superconductor with or without coupled additional
phonons. We simulated the temporal evolution of both the quasiparticle and the
phonon subsystems. Thereto, we considered different pump pulses, e.g., varying the
pulse width and intensity, and different phonon modes, e.g. varying the phonon
energy.
All considered pump pulses excite quasiparticle and consequently leads to a lowering
of the absolute value of the order parameter during the pump pulse. The tempo-
ral evolution of the order parameter afterwards depdens on the pump pulse width.
Short pulses excite oscillations of the quasiparticle densities resulting in oscillations
of the order parameter. These oscillations display an algebraic 1√

t
decay. The fre-

quency of the order parameter oscillation ω∆∞ = 2∆∞
~ depends on the pump pulse

intensity as well as on the amplitude. In contrast, the order parameter stays almost
constant after large pulses.
The dynamics of the quasiparticle densities generate coherent phonons. The gen-
eration of coherent phonons is essentially described by a driven oscillator. The
corresponding driving force is a function of the Bogoliubov quasiparticle expecta-
tion values. We have shown, that coherent phonons are generated most efficiently if
the phonon frequency ωph and frequency of the order parameter oscillation ω∆∞ are
near or at resonance. In the near resonance case, a beating phenomenon is observed
in the lattice displacement. At resonance the lattice oscillations are enhanced show-
ing a

√
t-increase. If the phonon energy lies in the interval 0 < ~ωph < 2∆0 we can

bring the system into resonance by adjusting the pump pulse intensity. Coherent
phonons are mostly generated in the nonadiabatic regime, e.g. short pulses, because
a short pulse excite oscillation of the quasiparticle densities. If the phonon energy is
larger than the gap it should be possible that a phonon decays into a quasiparticle-
hole pair. Also this phenomenon was observed in this thesis. We showed that the
oscillation of the lattice displacement which oscillates with the phonon frequency is
exponentially decaying. The decay rate increases with the coupling strength with
a ∝ gph, which is in perfect agreement with Fermi’s golden rule.
In order to study relaxation we include electron-phonon and electron-electron scat-
tering processes into the simulation. However, these simulations resulted in unphys-
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ical results. We observed negative phonon densities. The origin of these unphysical
results was discussed, e.g. uncertainties of the correlation expansion and the fact
that the initial state is not the true groundstate.
In addition to the pump response, e.g. ∆(t), the pump-probe conductivity was
simulated. This allows a direct comparison between experiments and theoretical
predictions. We have shown, that the pump pulse absorption spectrum as a func-
tion of positive and negative delay times shows clear signatures of the dynamics of
both the quasiparticle and the phonon subsystems.
For positive delay times, the absorption spectrum exhibits algebraically decaying
oscillations in δt with the same frequency as the order parameter oscillations. This
is most visible at twice the frequency of the asymptotic gap value, where the con-
ductivity as function of ω shows a sharp edge. If also phonons are included, the
conductivity as function of δt shows the coherent dynamics of the phonons at the
phonon frequency. Near resonance the conductivity at ωph shows a beating phe-
nomenon as a function of δt in the absorption spectrum, as the lattice displacement
does. Interestingly, this oscillatory response in the probe spectra can be strongly
amplified by tuning the frequency of the order parameter oscillations into resonance
with the phonon energy. The above mentioned decay of the lattice displacement
of the case ~ωph > 2∆0 is reflected in the pump probe response at ω = ωph. The
temporal evolution of σ(δt, ωph) shows the same dynamics as U(0, t), namely an
exponential damping of the oscillation with ωph and an algebraically decay of the
oscillation with ω∆∞ .
For negative delay times, the pump-probe signal shows an even richer oscillatory
response in the delay-time dependence, with multiple frequencies that change as a
function of absorption energy. This intricate behavior contains information on how
the superconducting condensate is depleted while the pump pulse acts on the sam-
ple.
In addition, our theoretical findings are qualitatively consistent with recent pump-
probe experiments by Matsunaga et al. [6], who have observed order parameter os-
cillations in the pump-probe conductivity of Nb1−xTixN thin films. They observed
oscillation in the conductivity as function of delay time suggesting the oscillation of
the order parameter. Our studies show that these oscillation are in fact signatures
of the order parameter oscillation.
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7.2 Outlook

In this thesis, we perform the simulation in the collisionless regime only, i.e. pro-
cesses which lead to relaxation are not taken into account. However, relaxation
takes place as can be seen in experiments [8]. The relaxation processes remain as
an important direction for future research. However, the DMF approach as per-
formed in this thesis is not able to describe relaxation due to unphysical negative
densities in the higher order of the expansion. Thus, one is forced either to mod-
ify the truncation scheme of the DMF or to use a new method. One candidate is
the iterated equation of motion approach. For the presented toy model, the iEoM
approach leads to reliable results. In addition, the rising negative phonon densities
of the DMF approach are impossible in the iEoM. This is due to the fact, that in
this approach the phonon densites are computed by multiplying an operator bph(t)

with its Hermitian conjugate b†ph(t). Due to this we get a positive number. These
are good reasons to try the iEoM approach for the nonequilibrium dynamics of
superconductors. However, the numerical effort is much larger compared to DMF
approach. Due to the explicit time dependent Hamiltonian, the operator ansatz and
the Hamiltonian become more complicated resulting in more complicated equations
of motion.
Beside the relaxation processes other investigations are also of large interest, for
example the computation of the pump-probe response of multiband superconduc-
tors [95], e.g. iron-based superconductors [96] and MgB2 [97]. The pump response,
e.g. ∆(t), of such superconductors is already studied in terms of the DMF approach
by Akbari et al. [34]. With the knowledge of the conductivity, one can compare the
recent experimental findings [98,99] to the theoretically predictions.
In this thesis, we concentrate only on the standard s-wave BCS superconductors,
but the nonequilibrium dynamics of high Tc superconductors [100] is also very in-
teresting. For example, one can study the nonequilibrium dynamics of d-wave su-
perconductors. How the order parameter behaves after a nonadiabatic perturbation
is an interesting question. Does it oscillate? If yes, what is the frequency of the
oscillation and how does the oscillation decay? Certainly, due to the k-dependence
of the d-wave order parameter it is no longer valid to use a quasi one dimensional
mesh for the simulation. As a results a two dimensional mesh has to be used. If we
want to use pump pulse to bring the system out of equilibrium, the numerical effort
increases drastically. A quench is suited for a first test, because it is numerically
less costly. In addition, a quench induce the same dynamics as a short pump pulse
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as has been shown for the s-wave superconductor.

In spite of the recent developments on the experimental and on the theoretical
side, the field of nonequilibrium dynamics of superconductors is at its infancy. As
the outlook shows, there are still a lot of open questions. Consequently, it is still
a long journey to the complete understanding of the nonequilibrium dynamics of
superconductors, but the first steps are made.
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Appendix

A Equations of motion

A.1 Decomposition

In order to apply the correlation expansion we have factorized the higher order
density matrices. For the first order of this expansion the phonon assisted quantities
have to be factorized, e.g.〈

α†
kαqbp

〉
=
〈
α†

kαqbp

〉c
+
〈
α†

kαq

〉 〈
bp
〉
. (A.1)

For the next order new expectation values including four operators have to factor-
ized. The decomposition are given in this section.
First, the expectation values including only fermionic operators are decomposed:〈
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†
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†
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=
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Second, the expectation values including two fermionic and two bosonic operators
are decomposed:〈
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A.2 Equations of motion

In this section the remaining equations of motion, which are not shown in the main
text, are presented.
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k′−q′bp

〉c
+M−

k′,−q′

〈
α†

kαk′−q′bp

〉c
−M−

k,q′

〈
β†

k′βk+q′bp

〉c )

+
e2

2m

∑
q′=0,±2q0

 ∑
qi=±q0

Aq′−qiAqi

(− L−k,q′ 〈α†
k+q′β

†
k′bp

〉c
− L−k′,−q′

〈
α†

kβ
†
k′−q′bp

〉c
+M+

k′,−q′

〈
α†

kαk′−q′bp

〉c
+M+

k,q′

〈
β†

k′βk+~′
bp

〉c )
+
∑

r

g−q√
N

{
L−k,−p

[
−
〈
α†

kβ
†
r

〉〈
β†

k′βr−p

〉
−
〈
α†

r−pβ
†
k′

〉〈
α†

kαr

〉]
+M+

r,−p

[
−
〈
α†

kβ
†
r

〉〈
α†

r−pβ
†
k′

〉
+
〈
α†

kαr

〉〈
β†

k′βr−p

〉]}
+
∑
q

gq√
N

{
− L−k,q

[〈
α†

k+qβ
†
k′bp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
α†

k+qβ
†
k′

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]
− L−k′,−q

[〈
α†

kβ
†
k′−qbp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
α†

kβ
†
k′−q

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]
+M+

k,q

[ 〈
β†

k′βk+qbp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
(〈
β†

k′βk+q

〉
− δk′,k+q

)(〈
b†−qbp

〉c
+
〈
bqbp

〉c) ]
+M+

k′,−q

[〈
α†

kαk′−qbp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
α†

kαk′−q

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]}
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i~
d
dt

〈
βkαk′bp

〉c
= (A.8)

(Rk +Rk′ + ~ωp)
〈
βkαk′bp

〉c
− Ck′

〈
α†

kαk′bp

〉c
+ Ck

〈
β†

k′βkbp

〉c
+
e~
2m

∑
q′=±q0

2kAq′
(
− L+

k,q′

〈
βk+q′αk′bp

〉c
+ L+

k′,−q′

〈
βkαk′−q′bp

〉c
+M−

k′,−q′

〈
β†

k′−q′βkb
†
k′−q′

〉
pc −M−

k,q′

〈
α†

k+q′αk′bp

〉c )

+
e2

2m

∑
q′=0,±2q0

 ∑
qi=±q0

Aq′−qiAqi

(+ L−k,q′
〈
βk+q′αk′bp

〉c
+ L−k′,−q′

〈
βkαk′−q′bp

〉c
−M+

k′,−q′

〈
β†

k′−q′βkbp

〉c
−M+

k,q′

〈
α†

k+~′
αk′bp

〉c )
+
∑

r

g−q√
N

{
L−k,−p

[〈
βkαr

〉(
δr−p,k′ −

〈
α†

r−pαk′

〉)
+
〈
βr−pαk′

〉(
δr,k −

〈
β†

rβk

〉)]
+M+

r,−p

[(
δr−p,k′ −

〈
α†

r−pαk′

〉)(
δr,k −

〈
β†

rβk

〉)
−
〈
βrαk

〉〈
βr−pαk′

〉]}
+
∑
q

gq√
N

{
L−k,q

[〈
βk+qαk′bp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
βk+qαk′

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]
+ L−k′,−q

[〈
βkαk′−qbp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
βkαk′−q

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]
−M+

k,q

[〈
α†

k+qαk′bp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
〈
α†

k+qαk′

〉(〈
b†−qbp

〉c
+
〈
bqbp

〉c)]
−M+

k′,−q

[ 〈
β†

k′−qβkbp

〉c (〈
bq
〉

+
〈
b†−q

〉)
+
(〈
β†

k′−qβk

〉
− δk,k′−q

)(〈
b†−qbp

〉c
+
〈
bqbp

〉c) ]}

i~
d
dt
〈
bpbq

〉c
= ~ (ω−q + ω−p)

〈
bpbq

〉c (A.9)

+
1√
N

∑
k

{
g−q

[
L−k,−q

(〈
α†

k−qαkbp

〉c
+
〈
β†

kβk−qbp

〉c)
+M+

k,−q

(〈
βk−qαkbp

〉c
+
〈
α†

k−qβ
†
kbp

〉c) ]
+ g−p

[
L−k,−p

(〈
α†

k−pαkbq

〉c
+
〈
β†

kβk−pbq

〉c)
+M+

k,−p

(〈
α†

k−pβ
†
kbq

〉c
+
〈
βk−pαkbq

〉c) ]}
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A.3 Order seperation

In this section, we present the equations of motion for the order separation trun-
cation. For reasons of clarity we introduce not every equation of motion according
to Sect. 4.1. The equations of motion which are not shown are similar to the one
shown. Further, every expectation value gets an additional index which state the

order in gp, e.g.
〈
α†

kαk

〉(O(gp))

.

i~
d
dt

〈
α†

kαk′

〉(0)

= (Rk′ −Rk)
〈
α†

kαk′

〉(0)

+ Ck′
〈
α†

kβ
†
k′

〉(0)

− C∗k
〈
βkαk′

〉(0)

(A.10)

+
e~
2m

∑
q′=±q0

2kAq′

(
− L+

k,q′

〈
α†

k+q′αk′

〉(0)

+

+ L+
k′,−q′

〈
α†

kαk′−q′

〉(0)

−M−
k′,−q′

〈
α†

kβ
†
k′−q′

〉(0)

+M−
k,q′

〈
βk+q′αk′

〉(0)
)

+
e2

2m

∑
q′=0,±2q0

 ∑
qi=±q0

Aq′−qiAqi

(− L−k,q′ 〈α†
k+q′αk′

〉(0)

+

+ L−k′,−q′

〈
α†

kαk′−q′

〉(0)

+M+
k′,−q′

〈
α†

kβ
†
k′−q′

〉(0)

−M+
k,q′

〈
βk+q′αk′

〉(0)
)

i~
d
dt
〈
bp
〉(1)

= ~ω−p
〈
bp
〉(1) (A.11)

+
1√
N

∑
k

g−p

(
L−k,−p

(〈
α†

k−pαk

〉(0)

+
〈
β†

kβk−p

〉(0)
)

+M+
k,−p

(〈
α†

k−pβ
†
k

〉(0)

+
〈
βk−pαk

〉(0)
))
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i~
d
dt

〈
α†

kαk′bp

〉c,(1)

= (A.12)

(−Rk +Rk′ + ~ωp)
〈
α†

kαk′bp

〉c,(1)

+ Ck′
〈
α†

kβ
†
k′bp

〉c,(1)

− C∗k
〈
βkαk′bp

〉c,(1)

+
e~
2m

∑
q′=±q0

2kAq′
(
− L+

k,q′

〈
α†

k+q′αk′bp

〉c,(1)

+ L+
k′,−q′

〈
α†

kαk′−q′bp

〉c,(1)

−M−
k′,−q′

〈
α†

kβ
†
k′−q′bp

〉c,(1)

+M−
k,q′

〈
βk+q′αk′bp

〉c,(1) )

+
e2

2m

∑
q′=0,±2q0

 ∑
qi=±q0

Aq′−qiAqi

(− L−k,q′ 〈α†
k+q′αk′bp

〉c,(1)

+ L−k′,−q′

〈
α†

kαk′−q′bp

〉c,(1)

+M+
k′,−q′

〈
α†

kβ
†
k′−q′bp

〉c,(1)

−M+
k,q′

〈
β

k+~′
αk′bp

〉c,(1) )
+
∑

r

g−q√
N

{
L−k,−p

[〈
α†

kαr

〉(0)
(
δr−p,k′ −

〈
α†

r−pαk′

〉(0)
)

+
〈
α†

kβ
†
r

〉(0) 〈
βr−pαk′

〉(0)
]

+M+
r,−p

[〈
α†

kβ
†
r

〉(0)
(
δr−p,k′ −

〈
α†

r−pαk

〉(0)
)
−
〈
α†

kαr

〉(0) 〈
βr−pαk′

〉(0)
]}

i~
d
dt
〈
b†pbq

〉c,(2)
= ~ (ω−q − ωp)

〈
b†pbq

〉c,(2) (A.13)

+
1√
N

∑
k

{
g−q

[
L−k,−q

(〈
α†

k−qαkb
†
p

〉c,(1)

+
〈
β†

kβk−qb
†
p

〉c,(1)
)

+M+
k,−q

(〈
α†

k−qβ
†
kb

†
p

〉c,(1)

+
〈
βk−qαkb

†
p

〉c,(1)
)]

− gp
[
L−k,p

(〈
α†

k+pαkbq

〉c,(1)

+
〈
β†

kβk+pbq

〉c,(1)
)

+M+
k,p

(〈
α†

k+pβ
†
kbq

〉c,(1)

+
〈
βk+pαkbq

〉c,(1)
)]}

B iEoM for superconductor

In this section, we set up the equation of motion for the iEoM for a superconductor
perturbed by an interaction quench.
To set up the equations of motion we have to consider that the Hamiltonian is
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explicit time dependent and is given by

H̃sc =
∑
k∈W

(
Rk(t)

(
α†

k(t)αk(t) + β†
k(t)βk(t)

)
+ Ck(t)α†

k(t)β†
k(t) + C∗k(t)βk(t)αk(t)

)
.

(B.1)

The ansatz for the operators is given by

α†
k(t) = a0(t)α†

k + a1(t)βk (B.2)

β†
k(t) = b0(t)β†

k + b1(t)αk, (B.3)

with the initial conditions a0(0) = 1 = b0(0) and a1(0) = 0 = b1(0). With these the
Hamiltonian can be rewritten into

H̃sc =
∑
k∈W

(
α†

kαk[Rk(t){|a0(t)|2 − |b1(t)|2}+ Ck(t)a0(t)b1(t) + C∗k(t)a∗0(t)b∗1(t)]

(B.4)

+ β†
kβk[Rk(t){|b0(t)|2 − |a1(t)|2} − Ck(t)a1(t)b0(t)− C∗k(t)a∗1(t)b∗0(t)]

+ α†
kβ

†
k[Rk(t){a0(t)a∗1(t)− b0(t)b∗1(t)}+ Ck(t)a0(t)b0(t) + C∗k(t)a∗1(t)b∗1(t)]

+ βkαk[Rk(t){a1(t)a∗0(t)− b1(t)b∗0(t)}+ Ck(t)a1(t)b1(t) + C∗k(t)a∗0(t)b∗0(t)]

+Rk(t){|b1(t)|2 + |a1(t)|2}+ Ck(t)a1(t)b0(t) + C∗k(t)a∗1(t)b∗0(t)
)
.

Now, we are able to calculate the equations of motion for the operators α†
k(t) and

β†
k(t). For this we commute these with H̃sc. For α†

k(t) we get

i~
d
dt
α†

k(t) = i~
(

d
dt

a0(t) α†
k +

d
dt

a1(t) βk

)
(B.5)

= [α†
k(t), H̃sc] = [a0(t)α†

k + a1(t)βk, H̃sc]

= −a0(t)[Rk(t){|a0(t)|2 − |b1(t)|2}+ Ck(t)a0(t)b1(t) + C∗k(t)a∗0(t)b∗1(t)] α†
k

−a0(t)[Rk(t){a1(t)a∗0(t)− b1(t)b∗0(t)}+ Ck(t)a1(t)b1(t) + C∗k(t)a∗0(t)b∗0(t)] βk

+a1(t)[Rk(t){|b0(t)|2 − |a1(t)|2} − Ck(t)a1(t)b0(t)− C∗k(t)a∗1(t)b∗0(t)] βk

−a1(t)[Rk(t){a0(t)a∗1(t)− b0(t)b∗1(t)}+ Ck(t)a0(t)b0(t) + C∗k(t)a∗1(t)b∗1(t)] α†
k,
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and for β†
k(t)

i~
d
dt
β†

k(t) = i~
(

d
dt

b0(t) β†
k +

d
dt

b1(t) αk

)
(B.6)

= [β†
k(t), H̃sc] = [b0(t)β†

k + b1(t)αk, H̃sc]

= −b0(t)[Rk(t){|b0(t)|2 − |a1(t)|2} − Ck(t)a1(t)b0(t)− C∗k(t)a∗1(t)b∗0(t)] β†
k

+b0(t)[Rk(t){a1(t)a∗0(t)− b1(t)b∗0(t)}+ Ck(t)a1(t)b1(t) + C∗k(t)a∗0(t)b∗0(t)] αk

+b1(t)[Rk(t){|a0(t)|2 − |b1(t)|2}+ Ck(t)a0(t)b1(t) + C∗k(t)a∗0(t)b∗1(t)] αk

+b1(t)[Rk(t){a0(t)a∗1(t)− b0(t)b∗1(t)}+ Ck(t)a0(t)b0(t) + C∗k(t)a∗1(t)b∗1(t)] β†
k.

A comparison of the coefficients leads to the equations of motion for the prefactors,
see red and green boxes in the equations above.

i~
d
dt
a0(t) = −Rk(t)

(
a0(t){|a0(t)|2 + |a1(t)|2 − |b1(t)|2} − a1(t)b0(t)b∗1(t)]

)
(B.7)

− Ck(t) (a0(t)a0(t)b1(t) + a0(t)b0(t)a1(t))− C∗k(t)
(
b∗1{|a0|2 + |a1|2}

)

i~
d
dt
a1(t) = Rk(t)

(
a1(t){−|a0(t)|2 − |a1(t)|2 + |b0(t)|2}+ a0(t)b1(t)b∗0(t)]

)
(B.8)

− Ck(t) (a0(t)a1(t)b1(t) + a1(t)b0(t)a1(t))− C∗k(t)
(
b∗0{|a0|2 + |a1|2}

)

i~
d
dt
b0(t) = Rk(t)

(
b0(t){|a1(t)|2 − |b1(t)|2 − |b0(t)|2}+ b1(t)a0(t)a∗1(t)]

)
(B.9)

+ Ck(t) (a0(t)b0(t)b1(t) + a1(t)b0(t)b0(t)) + C∗k(t)
(
a∗1{|b0|2 + |b1|2}

)

i~
d
dt
b1(t) = Rk(t)

(
b1(t){|a0(t)|2 − |b1(t)|2 − |b0(t)|2}+ b0(t)a1(t)a∗0(t)]

)
(B.10)

+ Ck(t) (a1(t)b0(t)b1(t) + a0(t)b1(t)b1(t)) + C∗k(t)
(
a∗0{|b0|2 + |b1|2}

)
To solve the equations of motion one has also to compute the order parameter, which
means that one needs the temporal evolution of the expectation values,e.g.

〈
α†

kαk

〉
,
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which can be computed as follows.

〈
α†
c(t)αc(t)

〉
=
〈(
a0(0, t)α†

c + a1(0, t)βc
) (
a∗0(0, t)αc + a∗1(0, t)β†

c

)〉
(B.11)

=
〈
a0(0, t)α†

ca
∗
0(0, t)αc

〉
+
〈
a0(0, t)α†

ca
∗
1(0, t)β†

c

〉
+
〈
a1(0, t)βca

∗
0(0, t)αc

〉
−
〈
a∗1(0, t)β†

ca1(0, t)βc
〉

+ |a1(0, t)|2 〈|〉
〈0|A|0〉

= |a1(0, t)|2〈
β†
c(t)βc(t)

〉 〈0|A|0〉
= |b1(0, t)|2 (B.12)

〈
α†
c(t)β

†
c(t)
〉

=
〈(
a0(0, t)α†

c + a1(0, t)βc
) (
b0(0, t)β†

c + b1(0, t)αc
)〉

(B.13)
〈0|A|0〉

= a1(0, t)b0(0, t)〈
βc(t)αc(t)

〉 〈0|A|0〉
= b∗0(0, t)a∗1(0, t) (B.14)

Here, 〈0|A|0〉 denotes that we have to compute the expectation value concerning the
initial groundstate.
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