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Bladder cancer is a smoking- and occu-
pational exposure-related disease with a sub-
stantial genetic component (Boffetta, 2008; 
Golka et al., 2012; Roth et al., 2012; Rushton 
et al., 2012; Schwender et al., 2012; Burger 
et al., 2013). Approximately 30 % of all uri-
nary bladder cancer cases can be attributed to 
genetic risk factors (Lichtenstein et al., 2000; 
Selinski, 2012; Hammad, 2013). Both family 
studies and large genome-wide association 
analyses support a polygenetic basis for uri-
nary bladder carcinomas, mainly because 
there is no evidence for a major gene (Aben 
et al., 2006; Kiemeney, 2008; Kiemeney et 
al., 2010; Rafnar et al., 2011; Stewart and 
Marchan, 2012; Bolt, 2013a, b), and all 
known susceptibility variants show moderate 
risks (Grotenhuis et al., 2010; Lehmann et 
al., 2010; Golka et al., 2011; Selinski et al., 
2012a, b; Dudek et al., 2013; Selinski, 2014). 
Several of these moderate-risk variants, es-
pecially those categorized as phase II metab-
olism genes, have been shown to modulate 
bladder cancer risk depending on exposure to 
bladder carcinogens, in particular, aromatic 
amines and polycyclic aromatic hydrocar-
bons (Garcia-Closas et al., 2005, 2013; Gol-
ka et al., 2009; Rothman et al., 2010; Moore 
et al., 2011; Selinski et al., 2011, 2012b). 
These gene-environment interactions are 
well-investigated for several phase II genes, 
including the deletion variant of glutathione-
S-transferase M1 (GSTM1) and the N-
acetyltransferase 2 (NAT2) polymorphisms, 
both of which are particularly relevant in the 

presence of their carcinogenic substrates due 
to occupational or tobacco smoke exposure 
(Engel et al., 2002; Golka et al., 2002, 2008, 
2009; Garcia-Closas et al., 2005; Kopps et 
al., 2008; Hengstler, 2010; Moore et al., 
2011; Ovsiannikov et al., 2012; Selinski, 
2013, 2014; Selinski et al., 2013a, b, 2014). 
Current studies focus on a broader range of 
polymorphisms identified by genome-wide 
association studies (GWAS) and the interac-
tion of these polymorphisms with tobacco 
smoke exposure. Garcia-Closas et al. (2013) 
investigated the interaction between smoking 
habits and the well-known panel of eleven 
single nucleotide polymorphisms (SNPs) 
from GWAS, in addition to GSTM1, in  stud-
ies, which were all part of the NCI bladder 
cancer GWAS. The NCI bladder cancer 
GWAS led to the discovery of several of 
these bladder cancer susceptibility SNPs. 
The authors found additive interactions be-
tween exposure and six of the variants, in 
particular, rs1495741 (NAT2), rs17863783 
(UDP glucuronosyltransferase 1 family, po-
lypeptide A6 UGT1A6), GSTM1, rs2294008 
(prostate stem cell antigen PSCA), 
rs9642880 (v-myc avian myelocytomatosis 
viral oncogene homolog MYC) and 
rs1014971 (chromobox homolog 6 CBX6, 
apolipoprotein B mRNA editing enzyme, ca-
talytic polypeptide-like 3A APOBEC3A) 
(Garcia-Closas et al., 2013). Figueroa et al. 
(2014) searched genome-wide for SNP × 
smoking interactions in the same multi-
centric case-control series. Two novel SNPs 
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could be validated in independent study 
groups: the non-smoker SNP rs1711973 near 
forkhead box F2 (FOXF2) and the ever 
smoker SNP rs12216499 in an intergenic 
region between the radial spoke 3 homolog 
(Chlamydomonas) (RSPH3), T-cell activa-
tion RhoGTPase activating protein (TAGAP) 
and ezrin (EZR) genes (Figueroa et al., 
2014). Meanwhile, further studies focused 
on the common effects of several genetic 
variants on urinary bladder cancer risk in-
stead of analysing single variants or their 
gene-environment interactions. The ap-
proaches used encompassed SNP-SNP and 
gene-gene interaction analysis (Andrew et 
al., 2012; Binder et al., 2012; Schwender et 
al., 2012; Hu et al., 2013), pathway analysis 
(Menashe et al., 2012; Pan et al., 2014) and 
polygenetic scores (Garcia-Closas et al., 
2013; Wang et al., 2014a, b). Results from 
recent genetic interaction studies are summa-

rised in Table 1. Generally, SNP-SNP or 
gene-gene interaction analyses aim to identi-
fy single genetic variants that interact in an 
additive or multiplicative way to modify the 
outcome of interest, e. g. bladder cancer risk. 
Pathway analyses consider sets of variants 
associated with genes that belong to the 
same biological or artificial pathway. The 
association with a phenotype of interest is 
often tested via enrichment analysis, i. e., a 
significant overrepresentation of variants of a 
particular pathway. Polygenic risk scores are 
calculated as weighted or unweighted sums 
of risks alleles of a set of risk variants. The 
unweighted variant usually sums up all risk 
alleles of the SNP set whereas, the weighted 
variant uses the individual variant odds ratio 
(OR) to account for higher or lower impact 
of each polymorphism. Usually, higher ver-
sus the lowest quartiles are compared but 
thresholds are also common.  

 
 

 

Table 1: Genetic interactions and pathways that confer urinary bladder cancer in recent studies 

Approach Methods Results Reference 

SNP-SNP, 
gene-gene 
interaction 
analysis 

Logistic Regression, 
Multifactor Dimensionali-
ty Reduction (MDR), 
Statistical Epistasis 
Networks (SEN) 

 Rs569421 (GATA3) × rs708155 (CD81): 
OR=0.41, P = 0.0003 

 Rs2304204 (IRF3) × rs1800795 (IL6): 
OR=0.39, P<0.0001 

 Rs6518591 (COMT) × rs1800481 
(APOB): OR=0.35, P<0.0001 

Andrew et al., 2012 

Cluster-Localized  
Regression (CLR) 

13 interactions of 18 SNPs requiring valida-
tion 

Binder et al., 2012 

Logistic regression 2-fold – 4 fold interactions in the total study 
group and subgroups of smokers and non-
smokers 
Ever smokers:  
 rs11892031 (UGT1A) × GSTM1: 

OR=1.48, P=0.0024 
 rs8102137 (CCNE1) × rs11892031 

(UGT1A) × GSTM1: OR=1.58, P=0.0059 
Non-smokers: 
 rs9642880 (MYC) × rs1014971 (CBX6, 

APOBEC3A): OR=1.91, P=0.0015 
 rs9642880 (MYC) × rs710521 (TP63) × 

rs1014971 (CBX6, APOBEC3A): 
OR=1.98, P=0.0044 

Schwender et al., 
2012 

SEN, MDR 3-locus interaction 
FANCA × PMS2 × IL1RN: P=1 × 10−5 

Hu et al., 2013 
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Table 1 (cont.): Genetic interactions and pathways that confer urinary bladder cancer in recent studies 

Approach Methods Results Reference 

Pathway 
analysis 

GSEA: Gene-Set  
Enrichment Analysis 
(GSEA),  
ARTP: Adapted Rank-
Truncated Product 
(ARTP) 

 Aromatic amine metabolism: P≤ 0.0100 
 NAD biosynthesis: P≤0.0086 
 NAD salvage: P = 0.0068 
 Clathrin derived vesicle budding: 

P=0.0018 
 Lysosome vesicle biogenesis:  

P≤ 0.0023 
 Retrograde neurotrophin signaling: 

P=0.00840 
 Mitotic metaphase/anaphase transition: 

P=0.0040 

Menashe et al., 2012 

Synthetic Feature Ran-
dom Forest (SF-RF), 
SEN 

 Telomere: P<0.001 
 Proliferation: P=0.003 
 Neural: P<0.001 
 Hormone: P<0.001 

Pan et al., 2014 

Polygenic 
scores 

OR weighted 12-SNP 
Polygenic Risk Score 
(PRS)  

 PRS 2nd quartile1: OR=1.87 (1.46-2.39) 
 PRS 3rd quartile1: OR=2.22 (1.74-2.82) 
 PRS 4th quartile1: OR=2.94 (2.32-3.73) 

Garcia-Closas et al., 
2013 

Unweighted and OR 
weighted 7-SNP PRS 

Unweighted PRS 
 PRS=52: OR=1.56, P=2.97×10-4 
 PRS=62: OR=1.71, P=1.16×10-5 
 PRS=72: OR=2.25, P=1.06×10-9 
 PRS≥82: OR=2.52, P=1.90×10-10 
Weighted PRS: 
 PRS 2nd quartile1: OR=1.59, P=1.39×10-4 
 PRS 3rd quartile1: OR=2.27, P=1.48×10-11 
 PRS 4th quartile1: OR=2.50, P=4.53×10-14 

Wang et al., 2014a 

OR weighted 3-SNP 
PRS 

 PRS >1.004: OR= 1.58, P=0.0007 Wang et al., 2014b 

OR:  Odds Ratio 
P:  P value 
GATA3:  GATA binding protein 3 
CD81:  CD81 molecule 
IRF3:  interferon regulatory factor 3 
IL6:  nterleukin 6 catechol-O-methyltransferase 
APOB:  apolipoprotein B 
UGT1:  UDP glucuronosyltransferase 1 family, polypeptide A complex locus 
CCNE1:  cyclin E1 
TP63:  tumor protein p63 
FANCA:  Fanconi anemia, complementation group A 
PMS2:  PMS2 postmeiotic segregation increased 2 (S. cerevisiae) 
IL1RN:  interleukin 1 receptor antagonist 
1Reference is the 1st quartile of the PRS (25 % lowest scores) 
2Reference is PRS≤4 (0-4 risk alleles) 
3Reference is PRS≤1.00 (corresponding to the mean score in the general population)

 
 

Genetic interaction studies are currently 
an important issue in cancer research. A 
number of approaches aim to elucidate the 
complex processes and interactions that lead 
to tumor development and progression, 
which has also recently been intensively 
studied in breast cancer (Chuang et al., 2013; 
Sapkota et al., 2013; Milne et al., 2014; 
Yang et al., 2014), prostate cancer (Lin et al., 

2008, 2013; Lavender et al., 2012), lung 
cancer (Chu et al., 2014) and colorectal can-
cer (Jiao et al., 2012). Therefore, a new era 
has begun after successful identification of 
the most influential genetic variants. One of 
the goals of the post GWAS era is to under-
stand and quantify SNP × SNP and SNP × 
environment interactions. The discussion on 
the most adequate techniques is still ongo-
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ing. A relatively easy and straight forward 
method is to sum up all risk alleles of rele-
vant SNPs and study the association of the 
sum (‘risk score’) with cancer risk. A more 
challenging strategy is to calculate odds rati-
os for all combinations of variants and iden-
tify the most powerful interactions of high 
risk alleles. Although this approach is theo-
retically superior to simple ‘risk score’ ap-
proaches, it requires high computing capaci-
ty and very high case numbers. Currently, 
only few studies are available and the most 
critical interactions have most probably not 
yet been identified. However, the post 
GWAS era has only just begun.  
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