
SFB 
823 

On the efficiency of Gini’s 
mean difference 

D
iscussion P

aper 

 
Carina Gerstenberger, Daniel Vogel 
 
 

 
Nr. 10/2015 

 
 
 
 
 
 
 
 



 



ON THE EFFICIENCY OF GINI’S MEAN DIFFERENCE

CARINA GERSTENBERGER AND DANIEL VOGEL

Abstract. The asymptotic relative efficiency of the mean deviation with respect to the standard
deviation is 88% at the normal distribution. In his seminal 1960 paper A survey of sampling from
contaminated distributions, J. W. Tukey points out that, if the normal distribution is contaminated
by a small ε-fraction of a normal distribution with three times the standard deviation, the mean
deviation is more efficient than the standard deviation — already for ε < 1%. In the present
article, we examine the efficiency of Gini’s mean difference (the mean of all pairwise distances).
Our results may be summarized by saying Gini’s mean difference combines the advantages of the
mean deviation and the standard deviation. In particular, an analytic expression for the finite-
sample variance of Gini’s mean difference at the normal mixture model is derived by means of
the residue theorem, which is then used to determine the contamination fraction in Tukey’s 1:3
normal mixture distribution that renders Gini’s mean difference and the standard deviation equally
efficient. We further compute the influence function of Gini’s mean difference, and carry out
extensive finite-sample simulations.
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Keywords: influence function, mean deviation, median absolute deviation, normal mixture distri-
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1. Introduction

Let X be a random variable with distribution F , and define F ?a,b as the distribution of aX+b. We

call any function s that assigns a non-negative number to any univariate distribution F (potentially
restricted to a subset of distributions, e.g. with finite second moments) a measure of variability, (or
a measure of dispersion or simply a scale measure) if it satisfies

(1) s(F ?a,b) = |a| s(F ) for all a, b ∈ R.

In this article, our focus is on three very common descriptive measures of variability,

(i) the standard deviation σ(F ) = {E(X − EX)2}1/2,
(ii) the mean absolute deviation (or mean deviation for short) d(F ) = E|X − md(F )|, where

md(F ) denotes the median of F , and
(iii) Gini’s mean difference g(F ) = E|X − Y |.
Here, X and Y are independent and identically distributed random variables with distribution
function F . Recall that the variance can also be written as σ2(F ) = E(X − Y )2/2. We define
the median md(F ) as the center point of the set {x ∈ R |F (x−) ≤ 1/2 ≤ F (x)}, where F (x−)
denotes the left-hand side limit. Suppose now we observe data Xn = (X1, . . . , Xn), where the Xi,

i = 1, . . . , n, are independent and identically distributed with cdf F . Let F̂n be the corresponding
empirical distribution function. The natural estimates for the above scale measures are the func-
tionals applied to F̂n. However, we define the sample versions of the standard deviation and the
mean deviation slightly different. Let

(i) σn = σn(Xn) =
{ 1

n− 1

n∑
i=1

(
Xi − X̄n

)2 }1/2

denote the sample standard deviation,
1
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(ii) dn = dn(Xn) =
1

n− 1

n∑
i=1

|Xi −md(F̂n)| the sample mean deviation and

(iii) gn = gn(Xn) =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj | the sample mean difference.

While it is common practice to use 1/(n − 1) instead of 1/n in the definition of the sample
variance, due to the thus obtained unbiasedness, it is not so clear which finite-sample version of
the mean deviation to use. The factor 1/(n− 1) does generally not yield unbiasedness, but it leads
to a significantly smaller bias in all our finite-sample simulations, see Section 4. Little appears
to be known for which distributions dn as defined above is indeed unbiased. The computation
of E(dn) requires the knowledge of the expectations of the order statistics, which are known in
principle, but generally rather cumbersome to evaluate analytically. An exception is the uniform
distribution, where the order statistics are known to follow a beta distribution, and it turns out
that dn is unbiased for odd n, but not for even n. For details, see Lemma 4 in the Appendix. This
is also in line with the simulation results reported in Table 7.

Furthermore, there is the question of the location estimator, which applies, in principle, to the
mean deviation as well as to the standard deviation, and also to their population versions. While it
is again established to use the mean along with the standard deviation, the picture is less clear for
the mean deviation. We propose to use the median, mainly due to conceptual reasons: the median
minimizes the mean deviation as the mean minimizes the standard deviation. This also suggests
to apply the 1/(n−1) bias correction in both cases. However, our main results concern asymptotic
efficiencies at symmetric distributions, for which the choice of the location measure as well as n vs.
n− 1 question is largely irrelevant.

The standard deviation is, with good cause, the by far most popular measure of variability.
One main reason for considering alternatives is its lack of robustness, i.e. its susceptibility to
outliers and its low efficiency at heavy-tailed distributions. The two alternatives considered here
are — in the modern understanding of the term — not robust, but they are more robust than
the standard deviation. The extreme non-robustness of the standard deviation, which also emerges
when comparing it with the mean deviation, played a vital role in recognizing the need for robustness
and thus helped to spark the development of robust statistics, cf. e.g. Tukey (1960). The purpose of
this article is to introduce Gini’s mean difference into the old debate of mean deviation vs. standard
deviation (e.g. Gorard, 2005) — not as a compromise, but as a consensus. We will argue that Gini’s
mean difference combines the advantages of the standard deviation and the mean deviation.

When proposing robust alternatives to any normality-based standard estimator, the gain in
robustness is usually paid by a loss in efficiency at the normal model. The two aspects, robustness
and efficiency, have to be analyzed and be put into relation with each other.

As far as the robustness properties are concerned, it is fairly easy to see that all three estimators
have an asymptotic breakdown point of zero and an unbounded influence function. There are
some slight advantages for the mean deviation and Gini’s mean difference: their influence functions
increase linearly as compared to the quadratic increase for the standard deviation, and they require
only second moments to be asymptotically normal, as compared to the 4th moments for the standard
deviation. The influence functions of the three estimators are given explicitely in Section 3. For the
standard normal distribution, they are plotted (Figure 2) and compared to the respective empirical
sensitivity curves (Figure 3). The influence function of Gini’s mean difference appears to not have
been published elsewhere.

However, the main concern in this paper is the efficiency of the estimators. We compute and
compare their asymptotic variances at several distributions. We restrict our attention to symmetric
distributions, since we are interested primarily in the effect of the tails of the distribution, which
arguably have the most decisive influence on the behavior of the estimators. We consider in partic-
ular the tν distribution and the normal mixture distribution, which are both prominent examples
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of heavy-tailed distributions, and are often employed in robust statistics to investigate the behavior
of estimators in heavy-tailed scenarios. To summarize our findings, in all relevant situations where
Gini’s mean difference does not rank first among the three estimators in terms of efficiency, it
does rank second with very little difference to the respective winner. A more detailed discussion is
deferred to Section 5.

We complement our findings by also giving the respective values for the median absolute devi-
ation1 (MAD, Hampel, 1974) and the Qn by Rousseeuw and Croux (1993). The sample version
of the median absolute deviation, which we denote by mn = mn(Xn) is the median of the values

|Xi − md(F̂n)|, 1 ≤ i ≤ n, and the corresponding population value m(F ) is the median of the
distribution of |X −md(F )|, where X ∼ F . The Qn scale estimator is the kth order statistic of

the
(
n
2

)
values |Xi − Xj |, 1 ≤ i < j ≤ n, with k =

(bn/2c+1
2

)
and will be denoted by Qn(Xn). Its

population version Q(F ) is the lower quartile of the distribution of |X − Y |, where X and Y are
independent with distribution F .2 So for the MAD as well as the Qn, we omit any consistency
factors, which are often included to render them consistent for σ at the normal distribution. These
can be deduced from Table 4. However, these estimators are included in the comparison, but not
studied here in detail. For the derivation of the respective results, we will refer to the literature.
We neither attempt a complete review of scale measures. For background information on robust
scale estimation see, e.g., Huber and Ronchetti (2009, Chapter 5). A numerical study comparing
many robust scale estimators is given, e.g., by Lax (1985).

The paper is organized as follows: In Section 2, asymptotic efficiencies of the scale estimators
are compared. We study in particular their asymptotic variances at the normal mixture model. In
Section 3, the influence functions are computed, and finite-sample simulations results are reported
in Section 4. Section 5 contains a summary. Proofs are given in the Appendix.

2. Asymptotic efficiencies

We gather the general expressions for the population values and asymptotic variances of the
three scale measures (Section 2.1) and then evaluate them at several distributions (Section 2.2).
We study the two-parameter family of the normal mixture model in some detail in Section 2.3.

2.1. General results. If EX2 <∞, Gini’s mean difference and the mean deviation are asymptoti-
cally normal. For the asymptotic normality of σn, fourth moments are required. Strong consistency
and asymptotic normality of gn and σ2

n follow from general U -statistic theory (Hoeffding, 1948),
and thus for σn by a subsequent application of the continuous mapping theorem and the delta
method, respectively. Letting

dn(Xn, t) =
1

n− 1

n∑
i=1

|Xi − t|,

the asymptotic normality of dn(Xn, t) for any fixed location t holds also under the existence of
second moments and is a simple corollary of the central limit theorem. Consistency and asymptotic
normality of dn(Xn, tn), where tn is a location estimator, is not equally straightforward (cf. e.g.
Bickel and Lehmann, 1976, Theorem 5 and the examples below). A set of sufficient conditions is
that

√
n(tn − t) is asymptotically normal and F is symmetric around t. See also Babu and Rao

(1992, Theorem 2.5).
Letting sn be any of the estimators above and s the corresponding population value, we define

the asymptotic variance ASV (sn) = ASV (sn;F ) of sn at the distribution F as the variance of

1Here, the choice of the location estimator is unambiguous: high breakdown point robustness is the main selling
feature of the MAD.

2For simplicity, we define the p-quantile of distribution F as the value of the quantile function F−1(p) =

inf{x|F (x) ≤ p}. For all population distributions we consider, there is no ambiguity, but note that F̂−1
n (1/2)

and the sample median md(F̂n) as defined above are generally different.



4 CARINA GERSTENBERGER AND DANIEL VOGEL

the limiting normal distribution of
√
n(sn − s), when sn is evaluated at an independent sample

X1, . . . , Xn drawn from F . We note that, in general, convergence in distribution does not imply
convergence of the second moments without further assumptions (uniform integrability), but it is
usually the case in situations encountered in statistical applications. Specifically it is true for the
estimators considered here, and we may write

ASV (sn) = lim
n→∞

n var(sn).

We are going to compute asymptotic relative efficiencies of gn and dn with respect to σn. Generally,

for two estimators an and bn with an
p−→ θ and bn

p−→ θ for some θ ∈ R, the asymptotic relative
efficiency of an with respect to bn at distribution F is defined as

ARE(an, bn;F ) = ASV (bn;F )/ASV (an;F ).

In order to make two scale estimators s
(1)
n and s

(2)
n comparable efficiency-wise, we have to standard-

ize them appropriately, and define their asymptotic relative efficiency at the population distribution
F as

(2) ARE(s(1)
n , s(2)

n ;F ) =
ASV (s

(2)
n ;F )

ASV (s
(1)
n ;F )

{
s(1)(F )

s(2)(F )

}2

,

where s(1)(F ) and s(2)(F ) denote the corresponding population values of the scale estimators s
(1)
n

and s
(2)
n , respectively.

The exact finite-sample variance of the empirical variance σ2
n is

(3) var(σ2
n) =

1

n

{
µ4 − 4µ3µ1 + 3µ2

2 − 2σ4 2n− 3

n− 1

}
,

where µk = EXk, k ∈ N, is the kth non-central moment of X, in particular σ2 = σ2(F ) = µ2−µ2
1.

Thus ASV (σ2
n) = µ4 + 3µ2

2 − 4
{
µ3µ1 + σ4

}
, and hence we have by the delta method

(4) ASV (σn) =
µ4 − 4µ3µ1 + 3µ2

2

4σ2
− σ2.

Formula (3) appears to be a classical textbook example, but we did not find a reference for this
general form. The special case µ1 = 0 is stated, e.g., in Kenney and Keeping (1951, p. 164).

If the distribution F is symmetric around E(X) = µ1 and has a Lebesgue density f , the mean
deviation d = d(F ) can be written as

(5) d =

∫ ∞
−∞
|x− µ1|f(x) dx = 2

∫ ∞
µ1

(x− µ1)f(x) dx

The asymptotic variance of dn is ASV (dn) = σ2 − d2. See, e.g., Pham-Gia and Hung (2001) for a
review on the properties of the mean deviation.

For any F possessing a Lebesgue density f , Gini’s mean difference g = g(F ) is

(6) g =

∫ ∞
−∞

∫ ∞
−∞
|x− y| f(x) f(y) dy dx = 2

∫ ∞
−∞

∫ ∞
x

(y − x) f(x) f(y) dy dx,

which can be further reduced to

(7) g = 4

∫ ∞
−∞

∫ ∞
x

y f(y) dy f(x) dx = 8

∫ ∞
0

∫ ∞
x

y f(y) dy f(x) dx

if F is symmetric around 0. Lomnicki (1952) gives the variance of the sample mean difference gn
as

(8) var(gn) =
1

n(n− 1)

{
4(n− 1)σ2 + 16(n− 2)J − 2(2n− 3)g2

}
,
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Table 1. Densities and non-central moments of several parametric families. The
scaling factor for the tν distribution is cν = Γ(ν+1

2 )/(
√
νπ Γ(ν2 )).

distribution density f(x) parameters moments

normal 1√
2πσ2

exp
{
− (x−µ)2

2σ2

}
µ ∈ R, σ2 > 0

µ1 = µ, µ2 = σ2 + µ2,

µ3 = µ3 + 3µσ2,

µ4 = µ4 + 6µ2σ2 + 3σ4

Laplace 1
2α exp

{
−|x−µ|

α

}
µ ∈ R, α > 0

µ1 = µ, µ2 = µ2 + 2α2,

µ3 = µ3 + 6α2µ,

µ4 = µ4 + 12α2µ2 + 24α4

uniform
1

b− a
1[a,b](x) −∞ < a < b <∞

µ1 = 1
2(a+ b),

µ2 = 1
3

{
(a+ b)2 − ab

}
,

µ3 = 1
4(a+ b)(a2 + b2),

µ4 = 1
5

{
(a+ b)(a3 + ab2) + b4

}
tν cν

(
1 +

x2

ν

)− ν+1
2

ν > 0

µ1 = µ3 = 0,

µ2 = ν/(ν − 2),

µ4 = 3ν2/{(ν − 2)(ν − 4)}

normal
mixture

ε 1√
2πλ

exp {− x2

2λ2
}+

(1− ε) 1√
2π

exp {−x2

2 }
0 ≤ ε ≤ 1, λ ≥ 1

µ1 = µ3 = 0,

µ2 = ελ2 + (1− ε),
µ4 = 3ελ4 + 3 (1− ε)

where

(9) J = J(F ) =

∫ ∞
x=−∞

∫ x

y=−∞

∫ ∞
z=x

(x− y)(z − x)f(z)f(y)f(x) dz dy dx.

Thus, the asymptotic variance of gn is ASV (gn) = 4{σ2 + 4J − g2}.

2.2. Specific distributions. Table 1 lists the densities and first four moments of the following
distribution families: normal, Laplace, uniform, tν and normal mixture.

The normal mixture distribution NM(λ, ε), sometimes also referred to as contaminated normal
distribution, is defined as

NM(λ, ε) = (1− ε)N(0, 1) + εN(0, λ2), 0 ≤ ε ≤ 1, λ ≥ 1.

For these distribution families, expressions for σ(F ), d(F ) and the asymptotic variances of their
sample versions are given in Table 2, and for Gini’s mean difference, including the integral J , in
Table 3. The contents of Table 2 are well known and straightforward to derive. The results for
Gini’s mean difference require the evaluation of the integrals (7) and (9), which is non-trivial for
many distributions. The expressions for the normal case are due to Nair (1936). Results for the
normal mixture distribution and the tν are subject of the following two theorems.

Theorem 1. At the normal mixture distribution NM(λ, ε), 0 ≤ ε ≤ 1, λ ≥ 1, the value of Gini’s
mean difference is

g(NM(λ, ε)) =
2√
π

{
λε2 + (1− ε)2 + ε(1− ε)

√
2 (1 + λ2)

}
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Table 2. Specific values of σ, d and the respective asymptotic variances for the
distribution families given in Table 1. cν = Γ(ν+1

2 )/(
√
νπ Γ(ν2 ))

distribution σ(F ) ASV (σn) d(F ) ASV (dn)

normal σ
σ2

2

2σ√
2π

σ2

{
1− 2

π

}

Laplace
√

2α
5

2
α2 α α2

uniform
b− a
2
√

3
1
60(b− a)2 b− a

4
1
48(b− a)2

tν

√
ν

ν − 2

ν(ν − 1)

2(ν − 2)(ν − 4)

2νcν
ν − 1

ν

ν − 2
−
{

2νcν
ν − 1

}2

normal
mixture

√
ελ2 + (1− ε)

{4
(
ελ2 + 1− ε

)
}−1

{3
(
ελ4 + 1− ε

)
−
(
ελ2 + 1− ε

)2}
√

2
π{ελ+

(1− ε)}
ελ2 + 1− ε

− 2
π{ελ+ (1− ε)}2

and the value of the integral J , cf. (9), is

J(NM(λ, ε)) =
(1

3
+

√
3

2π

)
{ε3λ2 + (1− ε)3} − ελ2 + 1− ε

2

+ ε2(1− ε)
[
λ2

2
+

1

4
+

3λζ(λ)

2π
+
λ2

π
atan

{ λ

ζ(λ)

}
+

1

2π
atan

{ 1

λζ(λ)

}]
+ ε(1− ε)2

[
λ2

4
+

1

2
+

3
√

1 + 2λ2

2π
+
λ2

2π
atan

{ λ

ζ(1/λ)

}
+

1

π
atan

{ 1

λζ(1/λ)

}]
,

where ζ(λ) =
√

2 + λ2.

Theorem 2. The value of Gini’s mean difference at the tν distribution, ν > 1, is

g(tν) =
4
√
ν

ν − 1

B
(
ν
2 + 1

2 , ν −
1
2

)
B
(
ν
2 ,

1
2

)
B
(
ν
2 , ν

) ,
where B( · , · ) denotes the beta function. The value of the integral J , cf. (9), at the tν distribution,
ν > 2, is

J(tν) =
2 ν

(ν − 1)2

B
(

3ν
2 − 1, 1

2

)
B
(
ν
2 ,

1
2

)3 − ν

2(ν − 2)
+

∫ ∞
−∞

x2fν(x)F 2
ν (x) dx.

where Fν and fν are the cdf and the density, respectively, of the tν distribution.

Resulting numerical values of the three scale measures and their asymptotic variances are listed
in Tables 4 and 5. Table 6 contains the corresponding asymptotic relative efficiencies, cf. (2), with
respect to the standard deviation. In particular, we have at the normal model

ARE(gn, σn) =

{
2

3
π + 4(

√
3− 2)

}−1

= 0.9779,
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Table 3. Population values, cf. (6), expressions for J , cf. (9), and resulting as-
ymptotic variances for Gini’s mean difference at the parametric families of Table 1.
Abbreviations used: ζ(λ) =

√
2 + λ2, Kν =

∫∞
−∞ x

2fν(x)F 2
ν (x) dx with fν , Fν being

density and cdf of the tν distribution. B(·, ·) denotes the beta function.

distribution g(F ) J ASV (gn)

normal
2σ√
π

(√
3

2π
− 1

6

)
σ2

{
4
3 + 8

π (
√

3− 2)
}
σ2

Laplace
3

2
α

5

24
α2

7

3
α2

uniform
1

3
(b− a)

1

120
(b− a)2

1

45
(b− a)2

tν 4
√
ν

ν−1

B
(
ν
2

+ 1
2
, ν− 1

2

)
B
(
ν
2
, 1
2

)
B
(
ν
2
, ν
) 2 ν

(ν−1)2
B
(

3ν
2
−1, 1

2

)
B
(
ν
2
, 1
2

)3 − ν
2(ν−2) +Kν

4{σ2+4J−g2}

normal
mixture

2√
π

{
λε2 + (1− ε)2 +

ε(1− ε)
√

2 (1 + λ2)
}

(
1

3
+

√
3

2π
){ε3λ2+(1−ε)3}− ελ

2 + 1− ε
2

+ ε2(1− ε)
[
λ2

2
+

1

4
+

3λζ(λ)

2π

+ λ2

π atan( λ
ζ(λ) ) + 1

2π atan( 1
λζ(λ) )

]
+ ε(1− ε)2

[
λ2

4
+

1

2
+

3
√

1 + 2λ2

2π

+ λ2

2π atan( λ
ζ(1/λ) ) + 1

π atan( 1
λζ(1/λ) )

]
4{σ2+4J−g2}

ARE(dn, σn) =
1

π − 2
= 0.876,

and at the Laplace (or double exponential) model

ARE(gn, σn) = 135/112 = 1.2054, ARE(dn, σn) = 5/4.

The mean deviation (with scaling 1/n) is the maximum likelihood estimator of the scale parameter
α of the Laplace distribution, cf. Table 1. Thus, at the normal as well as the Laplace distribution,
Gini’s mean difference has an efficiency of more than 96% with respect to the respective maximum
likelihood estimator.

Furthermore, we observe that Gini’s mean difference gn is asymptotically more efficient than the
standard deviation σn at the tν distribution for ν ≤ 40. The mean deviation dn is asymptotically
more efficient than σn for ν ≤ 15 and more efficient than gn for ν ≤ 8. Thus in the range 9 ≤ ν ≤ 40,
Gini’s mean difference is the most efficient of the three.

One can view the uniform distribution as a limiting case of very light tails. While our focus is
on heavy-tailed scenarios, we include the uniform distribution in our study as a simple approach
to compare the estimators under light tails. We find a similar picture as under normality: Gini’s
mean difference and the standard deviation perform equally well, while the mean deviation has
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Table 4. Values of the standard deviation σ, Gini’s mean difference g, the mean
absolute deviation d, the median absolute deviation m and the Qn scale measure at
the standard normal distribution N(0, 1), the standard Laplace distribution L(0, 1),
the uniform distribution U(0, 1) and several members of the tν family and the normal
mixture family NM(λ, ε).

distribution σ g d m Q

N(0, 1) 1 1.128 0.798 0.675 0.451

L(0, 1) 1.414 1.5 1 0.693 0.518

U(0, 1) 0.289 0.333 0.25 0.25 0.134

t5 1.291 1.384 0.949 0.727 0.512

t6 1.225 1.332 0.919 0.718 0.501

t7 1.183 1.297 0.898 0.711 0.494

t10 1.118 1.240 0.865 0.700 0.480

t15 1.074 1.200 0.841 0.691 0.470

t16 1.069 1.195 0.838 0.690 0.469

t25 1.043 1.170 0.823 0.684 0.462

t40 1.026 1.154 0.813 0.681 0.458

t41 1.025 1.153 0.813 0.681 0.458

t100 1.010 1.138 0.804 0.677 0.454

NM(3, 0.008) 1.032 1.151 0.811 0.679 0.457

NM(3, 0.00175) 1.007 1.133 0.801 0.675 0.452

NM(3, 0.000309) 1.001 1.129 0.798 0.675 0.451

a substantially lower efficiency. However, it must be noted that the uniform distribution itself is
rarely encountered in practice. The limited range is a very strong information, which allows a
super-efficient inference.

The numerical results of Tables 1, 2 and 3 are rounded off by the respective values for the
MAD and Qn. Analytical expressions are generally not available for these estimators, and their
population values and asymptotic variances are obtained from the general expressions given in Hall
and Welsh (1985) and Rousseeuw and Croux (1993), respectively.

Finally, we take a closer look at the normal mixture distribution and explain our choices for λ
and ε in Table 6.

2.3. The normal mixture distribution. The normal mixture distribution captures the notion
that the majority of the data stems from the normal distribution, except for some small fraction
ε which stems from another, usually heavier-tailed, contamination distribution. In case of the
normal mixture model, this contamination distribution is the Gaussian distribution with standard
deviation λ. This type of contamination model has been popularized by Tukey (1960), who also
argues that λ = 3 is a sensible choice in practice.

It is sufficient to consider the case λ ≥ 1, since the parameter pair (λ, ε) yields (up to scale) the
same distribution as (1/λ, 1 − ε). Now, letting λ > 1, the case where ε is small is the interesting
one. In this case the mixture distribution is heavy-tailed (measured, say, by the kurtosis) which
strongly affects the behavior of our scale measures. The case ε close to 1 is of lesser interest: it
corresponds to a normal distribution with a contamination concentrated at the origin, which affects
the scale measures to a much lesser extent.
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Table 5. Asymptotic variances of the standard deviation σn, Gini’s mean difference
gn, the mean absolute deviation dn, the median absolute deviation mn and the Qn
scale estimator at the standard normal distribution N(0, 1), the standard Laplace
distribution L(0, 1), the uniform distribution U(0, 1) and several members of the tν
family and the normal mixture family NM(λ, ε).

distribution ASV (σn) ASV (gn) ASV (dn) ASV (mn) ASV (Qn)

N(0, 1) 0.5 0.651 0.36 0.619 0.124

L(0, 1) 2.5 2.333 1 1 0.332

U(0, 1) 0.017 0.022 0.021 0.063 0.002

t5 3.333 1.784 0.766 0.792 0.224

t6 1.875 1.453 0.656 0.759 0.204

t7 1.4 1.269 0.593 0.737 0.188

t10 0.938 1.014 0.502 0.698 0.168

t15 0.734 0.865 0.447 0.670 0.152

t16 0.714 0.848 0.441 0.667 0.148

t25 0.621 0.768 0.410 0.649 0.140

t40 0.570 0.721 0.391 0.638 0.132

t41 0.568 0.719 0.391 0.637 0.132

t100 0.526 0.678 0.374 0.626 0.128

NM(3, 0.008) 0.890 0.791 0.407 0.628 0.132

NM(3, 0.00175) 0.590 0.682 0.373 0.621 0.125

NM(3, 0.000309) 0.516 0.656 0.365 0.619 0.124

From the expressions for σ, d and the corresponding asymptotic variances, as given in Table 2,
we obtain the asymptotic relative efficiency ARE(dn, σn) as a function of λ and ε. This function is
plotted in Figure 1 (top left). The parameter ε is on a log-scale since we are primarily interested
in small contamination fractions. Fixing λ = 3, we find that for ε = 0.00175, the mean deviation
is as efficient as the standard deviation. It is interesting to note that Tukey (1960) gives a value
of ε = 0.008, which is frequently reported. In Huber and Ronchetti (2009, p. 3), correct values are
given. The more precise value of 0.00175 is also in line with the simulation results of Section 4, and
it supports even more so Tukey’s main message: the percentage of contamination in the 1:3 normal
mixture model for which the mean deviation becomes more efficient than the standard deviation is
surprisingly low.

The asymptotic relative efficiency ARE(gn, σn) of Gini’s mean difference with respect to the
standard deviation is depicted in the upper right plot of Figure 1. For λ = 3, Gini’s mean difference
is as efficient as the standard deviation for ε as small as 0.000309. In the lower plot of Figure 1,
equal-efficiency curves are drawn. They represent those parameter values (λ, ε) for which each
two of the scale measures have equal asymptotic efficiency. So for instance, the solid black line
corresponds to the contour line at height 1 of the 3D surface depicted in the top right plot.

3. Influence functions

The influence function IF (·, s, F ) of a statistical functional s at distribution F is defined as

IF (x, s, F ) = lim
ε↘0

1

ε
{s(Fε,x)− s(F )},
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Table 6. Asymptotic relative efficiencies of Gini’s mean difference gn, the mean
absolute deviation dn, the median absolute deviation mn and the Qn scale estima-
tor at the standard normal distribution N(0, 1), the standard Laplace distribution
L(0, 1), the uniform distribution U(0, 1) and several members of the tν family and
the normal mixture family NM(λ, ε).

distribution ARE(gn, σn) ARE(dn, σn) ARE(mn, σn) ARE(Qn, σn)

N(0, 1) 0.9779 0.876 0.3675 0.8206

L(0, 1) 1.2054 1.25 0.6006 1.0103

U(0, 1) 1 0.6 0.2 1.7950

t5 2.1468 2.3514 1.3332 2.3403

t6 1.5250 1.6071 0.8477 1.5374

t7 1.3256 1.3607 0.6864 1.2985

t10 1.1373 1.1163 0.5259 1.0292

t15 1.0591 1.0064 0.4534 0.9248

t16 1.0517 0.9954 0.4462 0.9286

t25 1.0181 0.9440 0.4123 0.8703

t40 1.0006 0.9156 0.3936 0.8605

t41 1 0.9145 0.3929 0.8591

t100 0.9862 0.8908 0.3773 0.8303

NM(3, 0.008) 1.3995 1.3511 0.6130 1.3220

NM(3, 0.00175) 1.0953 0.9998 0.4272 0.9510

NM(3, 0.000309) 0.9999 0.8988 0.3783 0.8442

where Fε,x = (1− ε)F + ε∆x, 0 ≤ ε ≤ 1, x ∈ R, and ∆x denotes Dirac’s delta, i.e., the probability
measure that puts unit mass in x. The influence function describes the impact of an infinitesimal
contamination at point x on the functional s if the latter is evaluated at distribution F . For further
reading see, e.g., Huber and Ronchetti (2009) or Hampel et al. (1986). The influence functions of
the standard deviation and the mean deviation are well known:

IF (x, σ(·);F ) = (2σ(F ))−1{(E(X)− x)2 − σ2(F )},
IF (x, d(·);F ) = |x−md(F )| − d(F ).

For the formula for d(·) to hold in the last display, F has to fulfill certain regularity conditions
in the vicinity of its median md(F ). Specifically, (md(Fε,x)−md(F )) = O(ε) as ε→ 0 for all x ∈ R
and F (md(Fε,x)) → 1/2 are a set of sufficient conditions. They are fulfilled, e.g., if F possesses
a positive Lebesgue density in a neighborhood of md(F ). The influence function of Gini’s mean
difference appears to not have been published before.

Proposition 3. The influence function of Gini’s mean difference g at the distribution is

IF (x, g(·);F ) = 2
{
x[F (x) + F (x−)− 1] + E[X1{X≥x}]− E[X1{X≤x}]− g(F )

}
.

For the standard normal distribution, these expressions for the influence functions of the three
scale measures reduce to

IF (x, σ(·);N(0, 1)) = (x2 − 1)/2,

IF (x, d(·);N(0, 1)) = |x| −
√

2/π,

IF (x, g(·);N(0, 1)) = 4φ(x) + 2x{2Φ(x)− 1} − 4/
√
π,
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Figure 1. Top row: Asymptotic relative efficiencies of the mean deviation (left)
and Gini’s mean difference (right) wrt the standard deviation in the normal mixture
model as a function of λ and log(ε). Bottom: The curves for which values of λ and
ε the scale measures have the same asymptotic efficiency.

where φ and Φ denote the density and the cdf of the standard normal distribution, respectively.
These curves are depicted in Figure 2. Figure 3 shows empirical versions of the influence functions.
Let Xn be a sample of size n drawn from N(0, 1), and let X′n(x) be the sample obtained from Xn
by replacing the first observation by the value x ∈ R. Then n{sn(X′n(x)) − sn(Xn)} is called a
sensitivity curve for the estimator sn (e.g. Huber and Ronchetti, 2009, p. 15). Sensitivity curves
usually strikingly resemble the corresponding influence function also for very moderate n. In
Figure 3, average sensitivity curves for σn, dn and gn are drawn (averaged over 10 000 samples of
size n = 100). Figures 2 and 3 confirm the general impression mediated by Table 6 that Gini’s
mean difference is in-between the standard and the mean deviation, and support our claim that it
combines the advantages of the other two: its influence function grows linearly for large |x|, but it
is smooth at the origin.

The influence functions of the MAD and the Qn can be found in Huber and Ronchetti (2009,
p. 136) and Rousseeuw and Croux (1993), respectively.
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Figure 2. Influence functions of the standard deviation, the mean deviation and
the Gini’s mean difference at the standard normal distribution.
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Figure 3. Empirical influence functions (averaged sensitivity curves for n = 100,
averaged over 10 000 samples) of the standard deviation, the mean deviation and
the Gini’s mean difference at the standard normal distribution.

4. Finite sample efficiencies

In a small simulation study we want to check if the asymptotic efficiencies computed in Section 2
are useful approximations for the actual efficiencies in finite samples. For this purpose we consider
the following nine distributions: the standard normal N(0, 1), the standard Laplace L(0, 1) (with
parameters µ = 0 and α = 1, cf. Table 1), the uniform distribution U(0, 1) on the unit interval, the
tν distribution with ν = 5, 16, 41 and the normal mixture with the parameter choices as in Tables 4,
5 and 6. The choice ν = 5 serves as a heavy-tailed example, whereas for ν = 16 and ν = 41 we
have witnessed at Table 6 that the mean deviation and the Gini mean difference, respectively, are
asymptotically as efficient as the standard deviation.

For each distribution and each of the sample sizes n = 5, 8, 10, 50, 500, we generate 100,000
samples and compute from each sample five scale measures: the three moment-based estimators
σn, dn, gn, and the two quantile-based estimators mn and Qn. The results for N(0, 1), L(0, 1) and
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U(0, 1) are summarized in Table 7, for the tν distributions in Table 8, and for the normal mixture
distributions in Table 9.

For each estimate, population distribution and sample size, the following numbers are reported:
the sample variance of the 100,000 estimates multiplied by the respective value of n (the “n-
standardized variance” which approaches the asymptotic variance given in Table 5 as n increases),
the squared bias relative to the variance, and the relative efficiencies with respect to the stan-
dard deviation. With this information (variance and the squared-bias-to-variance ratio) the mean
squared error is also implicitely given. For the relative efficiency computation, it is important to
note that the standardization, cf. (2), is done not by the asymptotic value, but by the empirical
finite-sample value, i.e. the sample mean of the 100,000 estimates. For Gini’s mean difference, the
simulated variances are also compared to the true finite-sample variances, cf. (8).

We observe the following: For large and moderate sample sizes (n = 50, 500), the simulated values
are near the asymptotic ones from Tables 4, 5 and 6, and we may conclude that the asymptotic
efficiency generally provides a useful indication for the actual efficiency in large samples, although
to a much lesser extent for the quantile-based estimators.

In small samples, however, the simulated relative efficiencies may substantially differ from the
asymptotic values. The ranking of the three moment-based estimators stays the same, but for the
quantile-based estimators the picture is different: they exhibit quite a heavy bias for small samples,
potentially of the same magnitude as the standard deviation of the estimator, complicating the
comparison of the estimators. It is known that the finite-sample behavior, in terms of bias as well
as variance, of robust quantile-based estimators in general may largely differ from the asymptotic
approximation, particularly so in the case of the Qn. Most striking certainly is the bias increase
from n = 5 to n = 8 for the mean deviation dn and, much more tremendously, for the Qn. In case
of the mean deviation, the reason lies in the different behavior of the sample median for odd and
even numbers of observations, cf. also Lemma 4 in the Appendix. As for the Qn, the definition of
its sample version (see end of Section 1) also implies a qualitatively different behavior depending
on whether n is odd or even. Specifically, for n = 5, the 3rd order statistic of 10 values is taken,
whereas for n = 8, the 10th order statistic out of 28 observations is taken, both being compared
to the 1/4 quantile of the respective population distribution. To reduce the bias as well as finite-
sample variance, a smoothed version of the Qn (i.e. a suitable linear combination of several order
statistics) is certainly worth considering, for which the price to pay would be a small loss in the
breakdown point.

We also include the mean deviation with factor 1/n instead of 1/(n−1) in the study, denoted by
d∗n in the tables. Since dn and d∗n differ only by multiplicative factor, the efficiencies are the same,
and we only report the (squared) bias (relative to the variance). We find that d∗n is quite heavily
biased for small samples for all distributions considered, whereas dn has in all situations a smaller
bias than σn. Particularly, note that the bias of dn at the uniform distribution is indeed zero for
n = 5, but not for even n, cf. Lemma 4 in the Appendix.

Finally, the simulations confirm the unbiasedness of Gini’s mean difference and the formula (8),
due to Lomnicki (1952), for its finite-sample variance.

The simulations were done in R (R Development Core Team, 2010), using the function Qn() from
the package robustbase (Rousseeuw et al., 2014), the function mad() from the standard package
stats, and an implementation for Gini’s mean difference by A. Azzalini.3 The default setting for
both functions Qn() and mad() is to multiply the result by the asymptotic consistency factor for
the standard deviation at normality, which is, for both functions, controlled by the parameter
constant. This parameter was set to 1 in our simulations.

3https://stat.ethz.ch/pipermail/r-help/2003-April/032820.html
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Table 7. Simulated variances, biases and relative efficiencies of σn, gn, dn, mn and
Qn at N(0, 1), L(0, 1) and U(0, 1) for several sample sizes, d∗n: mean deviation with
1/n scaling.

estimator n = 5 n = 8 n = 10 n = 50 n = 500

N(0, 1)

σn n·variance 0.577 0.548 0.541 0.507 0.505
bias2/variance 0.031 0.019 0.014 0.003 1.0e-04

gn n·variance (empirical) 0.850 0.767 0.743 0.666 0.655
n·variance (true) 0.852 0.766 0.740 0.667 0.653
bias2/variance 3.4e-08 4.7e-07 7.8e-06 1.0e-05 4.7e-06

rel. efficiency wrt σn 0.986 0.982 0.980 0.979 0.978
dn n·variance 0.482 0.454 0.427 0.374 0.365

bias2/variance 0.009 0.020 0.012 0.001 1.2e-04
rel. efficiency wrt σn 0.938 0.902 0.894 0.880 0.876

d∗n bias2/variance 0.296 0.118 0.101 0.021 0.002
mn n·variance 0.524 0.486 0.521 0.603 0.615

bias2/variance 0.140 0.095 0.063 0.010 0.001
rel. efficiency wrt σn 0.385 0.431 0.415 0.375 0.370

Qn n·variance 0.410 0.431 0.351 0.163 0.126
bias2/variance 0.082 0.912 0.873 0.344 0.042

rel. efficiency wrt σn 0.453 0.619 0.634 0.746 0.810

L(0, 1)

σn n·variance 1.946 2.076 2.134 2.387 2.495
bias2/variance 0.055 0.034 0.027 0.006 4.8e-04

gn n·variance (empirical) 2.629 2.514 2.456 2.359 2.345
n·variance (true) 2.625 2.500 2.463 2.357 2.336
bias2/variance 2.8e-06 8.4e-09 8.4e-08 1.3e-05 8.3e-10

rel. efficiency wrt σn 1.037 1.071 1.088 1.167 1.201
dn n·variance 1.343 1.232 1.169 1.041 1.005

bias2/variance 0.025 0.028 0.021 0.005 4.5e-04
rel. efficiency wrt σn 1.061 1.101 1.123 1.206 1.245

d∗n bias2/variance 0.106 0.040 0.031 0.006 0.001
mn n·variance 0.979 0.881 0.897 0.975 0.994

bias2/variance 5.9e-03 1.3e-03 7.6e-04 1.7e-05 2.4e-07
rel. efficiency wrt σn 0.537 0.627 0.622 0.599 0.610

Qn n·variance 0.869 1.006 0.833 0.412 0.338
bias2/variance 0.116 0.729 0.685 0.249 0.031

rel. efficiency wrt σn 0.607 0.798 0.827 0.944 1.004

U(0, 1)

σn n·variance 0.031 0.025 0.022 0.018 0.017
bias2/variance 0.021 0.010 0.007 0.001 2.6e-04

gn n·variance (empirical) 0.045 0.035 0.032 0.024 0.023
n·variance (true) 0.044 0.035 0.032 0.024 0.022
bias2/variance 1.9e-05 6.2e-07 9.4e-07 3.0e-05 5.1e-08

rel. efficiency wrt σn 0.985 0.967 0.962 0.985 0.998
dn n·variance 0.030 0.028 0.026 0.022 0.021

bias2/variance 6.1e-06 4.7e-03 2.3e-03 6.8e-05 1.7e-05
rel. efficiency wrt σn 0.829 0.694 0.672 0.614 0.603

d∗n bias2/variance 0.657 0.285 0.236 0.059 0.006
mn n·variance 0.040 0.042 0.046 0.059 0.062

bias2/variance 0.880 0.575 0.456 0.082 0.009
rel. efficiency wrt σn 0.275 0.272 0.255 0.210 0.200

Qn n·variance 0.027 0.024 0.019 0.004 0.002
bias2/variance 0.067 1.310 1.296 0.944 0.210

rel. efficiency wrt σn 0.340 0.483 0.500 0.963 1.875
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Table 8. Simulated variances, biases and relative efficiencies of σn, gn, dn, mn and
Qn at tν distributions for several sample sizes and values of ν; d∗n: mean deviation
with 1/n scaling.

estimator n = 5 n = 8 n = 10 n = 50 n = 500

t5

σn n·variance 1.584 1.686 1.762 2.313 2.880
bias2/variance 0.050 0.034 0.028 0.007 0.001

gn n·variance (empirical) 2.050 1.942 1.890 1.805 1.790
n·variance (true) 2.047 1.935 1.901 1.806 1.787
bias2/variance 4.0e-06 1.3e-05 2.5e-05 5.1e-06 1.4e-05

rel. efficiency wrt σn 1.073 1.150 1.185 1.499 1.811
dn n·variance 1.036 0.949 0.901 0.791 0.760

bias2/variance 0.014 0.018 0.014 0.003 2.3e-04
rel. efficiency wrt σn 1.105 1.208 1.282 1.673 1.977

d∗n bias2/variance 0.160 0.066 0.053 0.011 0.001
mn n·variance 0.788 0.692 0.717 0.786 0.792

bias2/variance 0.052 0.036 0.025 0.003 2.5e-04
rel. efficiency wrt σn 0.577 0.759 0.781 0.954 1.160

Qn n·variance 0.678 0.741 0.611 0.282 0.228
bias2/variance 0.101 0.808 0.750 0.294 0.036

rel. efficiency wrt σn 0.664 0.967 1.024 1.560 2.001

t16

σn n·variance 0.745 0.722 0.722 0.710 0.705
bias2/variance 0.034 0.021 0.015 0.003 2.3e-04

gn n·variance (empirical) 1.064 0.977 0.949 0.862 0.850
n·variance (true) 1.065 0.972 0.945 0.866 0.850
bias2/variance 1.4e-07 5.0e-06 7.9e-07 7.6e-06 2.4e-05

rel. efficiency wrt σn 0.999 1.009 1.016 1.043 1.050
dn n·variance 0.588 0.547 0.517 0.454 0.445

bias2/variance 0.012 0.018 0.012 0.002 1.3e-04
rel. efficiency wrt σn 0.972 0.956 0.963 0.989 0.991

d∗n bias2/variance 0.259 0.106 0.085 0.017 0.002
mn n·variance 0.596 0.546 0.574 0.649 0.667

bias2/variance 0.105 0.069 0.051 0.007 0.001
rel. efficiency wrt σn 0.421 0.486 0.474 0.452 0.446

Qn n·variance 0.480 0.513 0.421 0.198 0.154
bias2/variance 0.089 0.877 0.822 0.329 0.039

rel. efficiency wrt σn 0.488 0.670 0.687 0.836 0.906

t41

σn n·variance 0.640 0.611 0.605 0.574 0.575
bias2/variance 0.032 0.020 0.014 0.003 8.0e-05

gn n·variance (empirical) 0.925 0.835 0.817 0.740 0.720
n·variance (true) 0.925 0.837 0.811 0.736 0.720
bias2/variance 1.1e-05 3.6e-06 1.5e-06 9.5e-08 7.1e-07

rel. efficiency wrt σn 0.990 0.992 0.991 0.999 1.001
dn n·variance 0.519 0.482 0.462 0.399 0.390

bias2/variance 0.010 0.018 0.013 0.002 1.1e-04
rel. efficiency wrt σn 0.950 0.918 0.921 0.916 0.919

d∗n bias2/variance 0.276 0.113 0.094 0.019 0.002
mn n·variance 0.555 0.509 0.538 0.617 0.638

bias2/variance 0.120 0.086 0.059 0.008 0.001
rel. efficiency wrt σn 0.396 0.451 0.435 0.403 0.393

Qn n·variance 0.439 0.457 0.377 0.172 0.137
bias2/variance 0.087 0.910 0.867 0.338 0.041

rel. efficiency wrt σn 0.470 0.638 0.650 0.771 0.841
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Table 9. Simulated variances, biases and relative efficiencies of σn, gn, dn, mn and
Qn at normal mixture distributions for λ = 3 and ε = 0.008, 0.00175, 0.000309; d∗n:
mean deviation with 1/n scaling.

estimator n = 5 n = 8 n = 10 n = 50 n = 500

NM(3, 0.008)

σn n·variance 0.710 0.698 0.711 0.815 0.875
bias2/variance 0.034 0.024 0.018 0.004 0.001

gn n·variance (empirical) 0.997 0.910 0.876 0.804 0.790
n·variance (true) 0.996 0.908 0.882 0.808 0.793
bias2/variance 4.6e-06 2.1e-10 1.6e-05 3.4e-06 8.4e-07

rel. efficiency wrt σn 1.023 1.060 1.083 1.257 1.385
dn n·variance 0.540 0.507 0.480 0.423 0.405

bias2/variance 0.010 0.016 0.013 0.002 1.6e-04
rel. efficiency wrt σn 1.000 1.016 1.039 1.204 1.332

d∗n bias2/variance 0.264 0.112 0.087 0.020 0.002
mn n·variance 0.541 0.492 0.526 0.612 0.627

bias2/variance 0.132 0.094 0.067 0.008 0.001
rel. efficiency wrt σn 0.442 0.538 0.527 0.562 0.601

Qn n·variance 0.429 0.448 0.367 0.168 0.133
bias2/variance 0.079 0.877 0.832 0.300 0.005

rel. efficiency wrt σn 0.523 0.760 0.779 1.092 1.312

NM(3, 0.00175)

σn n·variance 0.617 0.587 0.576 0.573 0.590
bias2/variance 0.032 0.019 0.017 0.003 3.0e-04

gn n·variance (empirical) 0.889 0.791 0.764 0.704 0.675
n·variance (true) 0.883 0.797 0.771 0.698 0.684
bias2/variance 1.6e-07 3.0e-07 4.8e-08 1.8e-05 1.0e-05

rel. efficiency wrt σn 0.995 1.002 1.009 1.056 1.092
dn n·variance 0.500 0.462 0.441 0.385 0.370

bias2/variance 0.011 0.017 0.013 0.002 3.9e-05
rel. efficiency wrt σn 0.951 0.931 0.931 0.971 0.992

d∗n bias2/variance 0.283 0.115 0.100 0.022 0.003
mn n·variance 0.532 0.491 0.519 0.602 0.623

bias2/variance 0.133 0.092 0.068 0.010 0.001
rel. efficiency wrt σn 0.397 0.457 0.441 0.418 0.424

Qn n·variance 0.415 0.433 0.353 0.163 0.128
bias2/variance 0.082 0.911 0.876 0.333 0.031

rel. efficiency wrt σn 0.470 0.648 0.670 0.831 0.935

NM(3, 0.000309)

σn n·variance 0.584 0.558 0.543 0.517 0.515
bias2/variance 0.031 0.017 0.014 0.003 3.2e-04

gn n·variance (empirical) 0.853 0.775 0.744 0.667 0.655
n·variance (true) 0.857 0.771 0.746 0.673 0.658
bias2/variance 1.3e-05 4.8e-06 5.1e-07 1.3e-06 8.3e-06

rel. efficiency wrt σn 0.986 0.986 0.985 0.993 0.999
dn n·variance 0.484 0.452 0.434 0.375 0.365

bias2/variance 0.009 0.018 0.012 0.002 1.8e-04
rel. efficiency wrt σn 0.941 0.900 0.903 0.899 0.903

d∗n bias2/variance 0.291 0.122 0.096 0.021 0.002
mn n·variance 0.527 0.484 0.517 0.600 0.618

bias2/variance 0.133 0.096 0.068 0.009 0.001
rel. efficiency wrt σn 0.388 0.439 0.421 0.384 0.379

Qn n·variance 0.414 0.432 0.351 0.161 0.126
bias2/variance 0.085 0.919 0.866 0.347 0.042

rel. efficiency wrt σn 0.459 0.626 0.643 0.764 0.835
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5. Summary and discussion

Several authors have argued that, when comparing the standard deviation with the mean devi-
ation, the better robustness of the latter is a crucial advantage, which outweighs its disadvantages,
and that the mean deviation is hence to be preferred out of the two. We share this view. However,
we recommend to use Gini’s mean difference instead of the mean deviation. While it has quali-
tatively the same robustness and the same efficiency under long-tailed distributions as the mean
deviation, it lacks its main disadvantage as compared the standard deviation: the lower efficiency at
strict normality. For near-normal distributions — and also for very light-tailed distribution, as the
results for the uniform distribution suggest —, Gini’s mean difference and the standard deviation
are for all practical purposes equally efficient. For instance, at the normal and all tν distributions
with ν ≥ 23, the (properly standardized) asymptotic variances of gn and σn are within a three
percent margin of each other. At heavy-tailed distributions, Gini’s mean difference is, along with
the mean deviation, substantially more efficient than the standard deviation.

To summarize our efficiency comparison, Gini’s mean difference performs well over a wide range
of distributions, including much heavier than normal tails. Here we basically consider the range up
to the t5 distribution, where no higher than fourth moments exist, and within this range, Gini’s
mean difference is clearly non-inferior to all competitors considered here.

However, the main advantage of Gini’s mean difference is its finite-sample performance. First of
all, being a U -statistic, it is unbiased — at all distributions with finite first moments. We do not
know any other scale measure satisfying (1) of practical relevance for which this is true. Second, its
finite-sample variance is known, which allows for instance better approximative confidence intervals.
Neither of that is true for the standard deviation, and one can consequently argue that Gini’s mean
difference is a superior scale estimator even under strict normality. The latter statement is also
a remark on the discussion by Yitzhaki (2003), who compares Gini’s mean difference primarily to
the variance.

When comparing Gini’s mean difference to the mean deviation, both being similar L1-type
measures, the question arises, if an intuitive explanation can be given to why the former is more
efficient at the normal distribution but less efficient at heavy tails. We leave this as an open question
here. However, since Gini’s mean difference can be viewed as a symmetrized version of the mean
deviation, we remark that a similar effect can be observed in many instances of symmetrization.
Other examples include the Hodges–Lehmann location estimator as a symmetrized version of the
median, or Kendall’s tau as a symmetrized verion of the quadrant correlation. In both cases,
the original estimator has a rather low efficiency under normality, which is considerably increased
by symmetrization, but the symmetrized estimator performs slightly worse at very heavy-tailed
models. The median, for instance, is more efficient than the Hodges–Lehmann estimator at a t3
distribution. But in general, symmetrization is a successful technique to increase the efficiency of
highly robust estimators while retaining a large degree of robustness. The most prominent example
may be the Qn, the symmetrized version of the MAD.
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Appendix A. Proofs

Towards the proof of Theorem 1, we spare a few words about the derivation of the corresponding
result for the normal distribution. When evaluating the integral J , cf. (9), for the standard normal
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distribution, one encounters the integral

I1 =

∫ ∞
−∞

x2φ(x)Φ(x)2dx,

where φ and Φ denote the density and the cdf of the standard normal distribution, respectively.
Nair (1936) gives the value I1 = 1/3 + 1/(2π

√
3), resulting in J =

√
3/(2π) − 1/6, but does not

provide a proof. The author refers to the derivation of a similar integral (integral 8 in Table I, Nair,
1936, p. 433), where we find the result as well as the derivation doubtful, and to an article by Hojo
(1931), which gives numerical values for several integrals, but does not contain an explanation for
the value of I1 either. We therefore include a proof here. Writing Φ(x) as the integral of its density
and changing the order of the integrals in thus obtained three-dimensional integral yields

I1 = (2π)−3/2

∫ 0

y=−∞

∫ 0

z=∞

∫ ∞
x=−∞

x2ex
2/2e(y+x)2/2e(z+x)2/2 dx dz dy.

Solving the inner integral, we obtain

I1 = (18π
√

3)−1

∫ ∞
y=0

∫ ∞
z=0

[(y + z)2 + 3] exp

{
−1

3

[
y2 + z2 − yz

]}
dz dy.

Introducing polar coordinates α, r such that y = r cosα, z = r sinα, and solving the integral with
respect to r, we arrive at

I1 =
1

4π
√

3

∫ π

α=0

4 + sinα

(2− sinα)2
dα.

This remaining integral may be solved by means of the residue theorem (e.g. Ahlfors, 1966, p. 149).
Substituting γ = eiα and using sinα = (eiα − e−iα)/(2i), we transform I1 into the following line
integral in the complex plane,

(10) I1 =
1

4π
√

3

∫
Γ0

γ2 + 8iγ − 1

(γ2 − 4iγ − 1)2
dγ,

where Γ0 is the upper unit half circle in the complex plane, cp. Figure 4. Let us call h the integrand
in (10), its poles (both of order two) are γ1/2 = (2 ±

√
3)i, so that γ2 lies within the closed upper

half unit circle Γ. The residue of h in γ2 is −
√

3i/2. Integrating h along Γ1, i.e. the real line from
-1 to 1, cf. Figure 4, and applying the residue theorem to the closed line integral along Γ completes
the derivation.

−1.0 −0.5 0.0 0.5 1.0

0.0

0.5

1.0

γ2

Γ0

Γ1

Figure 4. Residue theorem: the line integral over h along the closed curve Γ =
Γ0 ∪ Γ1 is determined by the residue of h in γ2.
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Proof of Theorem 1. Evaluating the integral J for the normal mixture distribution, we arrive after
lengthy calculations at

J =
[
ε3λ2 + (1− ε)3

][
2A(1) + C(1) + E(1)

]
− (ελ2 + 1− ε)B

+ ε2(1− ε)
[
2(2 + λ2)A(1/λ) + C(λ) + 2λ2D(1/λ) + λ(2 + λ2)E(1/λ)

]
+ ε(1− ε)2

[
2(2λ2 + 1)A(λ) + λ2C(1/λ) + 2D(λ) + (λ−1 + 2λ)E(λ)

]
,

where

A(λ) =

∫ ∞
−∞

xφ2(x)Φ(x/λ)dx =
1

4π
√

1 + 2λ2
, B =

∫ ∞
−∞

x2φ(x)Φ(x)dx =
1

2
,

C(λ) =

∫ ∞
−∞

x2φ(x)Φ2(x/λ)dx =
1

4
+

λ

π(1 + λ2)
√

2 + λ2
+

1

2π
arctan

(
1

λ
√

2 + λ2

)
,

D(λ) =

∫ ∞
−∞

x2φ(x)Φ(x)Φ(x/λ)dx =
1

4
+

3λ2 + 1

4π(1 + λ2)
√

2λ2 + 1
+

1

2π
arctan

(
1√

2λ2 + 1

)
,

E(λ) =

∫ ∞
−∞

φ2(x)φ(x/λ)dx =
1

2π
√

1 + 2λ2
,

for all λ > 0. As before, φ and Φ denote the density and the cdf of standard normal distribution.
The tricky integrals are C(λ) and D(λ), which, for λ = 1, both reduce to the integral I1 above.
Proceeding as before for the integral I1, solving the respective two inner integrals yields

C(λ) =
λ3

2π
√

2 + λ2

∫ π/2

0

3 + λ2 + sin(2α)

{1 + λ2 − sin(2α)}2
dα,

D(λ) =
1

2π
√

1 + 2λ2

∫ π/2

0

2 + λ2(2 + sin(2α)) + (3λ4 − λ2 − 2) sin2(α)

{2− sin(2α) + (λ2 − 1) sin2(α)}2
dα.

These integrals are again solved by the residue theorem, which completes the proof.
�

For the proof of Theorem 2, the following identities are helpful:

(11)
∫
x
(

1 + x2

β

)α
dx = β

2(α+1)

(
1 + x2

β

)α+1
, α 6= −1, β 6= 0.

(12)
∫∞
−∞

(
1 + x2

ν

)−ν
dx = 1

c2ν−1

√
ν

2ν−1 , ν > 0,

(13)
∫∞
−∞

(
1 + x2

ν

)− 3ν−1
2
dx = 1

c3ν−2

√
ν

3ν−2 , ν > 0,

where cν is the scaling factor of the tν density, cf. Table 1. The identities (12) and (13) can be
obtained by transforming the respective left-hand sides into a tν-densities by substituting y =
((2ν − 1)/ν)1/2 x and y = ((3ν − 2)/ν)1/2 x, respectively.

Proof of Theorem 2. For computing g, we evaluate (7), successively making use of (11) and (12),
and obtain

g = 4
ν c2

ν

ν − 1

∫ ∞
−∞

(
1 +

x2

ν

)−ν
dx =

4 ν3/2 c2
ν

(ν − 1)
√

2ν − 1 c2ν−1
,
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which can be written as in Theorem 2 by using B(x, y) = Γ(x)Γ(y)/Γ(x+ y). For evaluating J , we
write J as J =

∫
R
A(x)fν(x) dx with fν being the tν density and

A(x) =

∫ x

−∞

∫ ∞
x

xzfν(z)fν(y) dz dy −
∫ x

−∞

∫ ∞
x

yzfν(z)fν(y) dz dy

−
∫ x

−∞

∫ ∞
x

x2fν(z)fν(y) dz dy +

∫ x

−∞

∫ ∞
x

xyfν(z)fν(y) dz dy

= A1(x)−A2(x)−A3(x) +A4(x).

Using (11), we obtain

A1(x) +A4(x) =
cν ν x

ν − 1

(
1 +

x2

ν

)− ν−1
2
∫ x

−x
fν(y) dy,

and

−A2(x) =

(
cν ν

ν − 1

)2 (
1 +

x2

ν

)−ν+1

.

Hence, J = B1 +B2 −B3 with

B1 =
∫∞
−∞

cν ν x
ν−1

(
1 + x2

ν

)− ν−1
2
fν(x)

∫ x
−x fν(y) dy dx,

B2 =
∫∞
−∞

(
cν ν
ν−1

)2 (
1 + x2

ν

)−ν+1
fν(x) dx,

B3 =

∫ ∞
−∞

x2Fν(x) (1− Fν(x)) fν(x) dx =
ν

2(ν − 2)
−
∫ ∞
−∞

x2fν(x)F 2
ν (x) dx,

where Fν is the cdf of the tν distribution. By employing (11) and (13), we find

B1 = B2 =
2

c3ν−2

(
cν ν

ν − 1

)2 √ ν

3ν − 2

and arrive, again by employing B(x, y) = Γ(x)Γ(y)/Γ(x + y), at the expression for J given in
Theorem 2.

�

The remaining integral

Kν =

∫ ∞
−∞

x2fν(x)F 2
ν (x) dx

cannot be solved by the same means as the analogous integral I1 for the normal distribution, and
we state this as an open problem. However, this one-dimensional integral can easily be approxi-
mated numerically, and the expression is quickly entered into a mathematical software like R (R
Development Core Team, 2010).

Proof of Proposition 3. We have

g(Fε,x) = 2

∫ ∞
−∞

∫ ∞
y

(z − y) dFε,x(z) dFε,x(y),

= (1− ε)2g(F ) + 2ε(1− ε)
∫ ∞
−∞

(x− z)
{
1(−∞,x](y)− 1[x,∞)(y)

}
dF (y)

and hence

IF (x, g(·);F ) = lim
ε↘0

1

ε
{g(Fε,x)− g(F )}

= −2g(F ) + 2
{
x[F (x) + F (x−)− 1] + E[X1{X≥x}]− E[X1{X≤x}]

}
,
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which completes the proof.
�

With the influence function known, it is also possible use the relationship

ASV (sn;F ) =

∫
R

IF (x, s, F )2F ( d x)

instead of referring to the terms given in Section 2 to compute the asymptotic variance of the
estimators. This leads to the same integrals.

Appendix B. Miscellaneous

Lemma 4. For X1, . . . , Xn being independent and U(a, b) distributed for a, b ∈ R, a < b, we have
for the sample mean deviation (about the median)

E(dn) =

(b− a)/4 for odd n (n ≥ 3),

b− a
4

n2

n2 − 1
for even n.

Proof. For notational convenience we restrict our attention to the case a = 0, b = 1. Let X(i)

denote the ith order statistic, 1 ≤ i ≤ n. The random variable X(i) has a Beta(α, β) distribution
with parameters α = i and β = n+ 1− i, and hence E(X(i)) = i/(n+ 1). If n is odd, we write dn

as dn = (n− 1)−1
∑bn/2c

i=1 (X(n+1−i) −X(i)) and obtain

E(dn) =
1

n− 1

bn/2c∑
i=1

(
n+ 1− i
n+ 1

− i

n+ 1

)
=

1

4
.

If n is even, we have dn = (n− 1)−1
∑n/2

i=1(X(n+1−i) −X(i)), and hence

E(dn) =
1

n− 1

n/2∑
i=1

(
n+ 1− i
n+ 1

− i

n+ 1

)
=

n2

4(n2 − 1)
,

which completes the proof.
�
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