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Abstract

We provide a general approach for deriving the influence function for trimmed
likelihood estimators using the implicit function theorem. The approach is applied
to lifetime models with exponential or lognormal distributions possessing a linear
or nonlinear link function. A side result is that the functional form of the trimmed
estimator for location and linear regression used by Bednarski and Clarke (1993,
2002) and Bednarski et al. (2010) is not generally always the correct functional form
of a trimmed likelihood estimator. However, it is a version for which the influence
function has a treatable form. A real data example shows the effect of trimming using
a nonlinear link function for either the exponential or lognormal distribution.
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tribution.

1 Introduction

In this article, we consider simple lifetime experiments, where the observations of the life-
times are independent and identically distributed, and accelerated lifetime experiments,
where the lifetimes are observed at different stress levels, typically at stress levels at
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higher values than in practice to reduce the observation time. Usually maximum likeli-
hood estimators are considered for these experiments where typical lifetime distributions
as exponential distributions, Weibull distributions or lognormal distributions are used.
However, maximum likelihood estimators are very sensitive to outliers. Therefore, we
consider here the trimmed likelihood estimators (TLE) proposed by Müller and Neykov
(2003) which are outlier robust modifications of maximum likelihood estimators. The
trimmed likelihood estimators extend the least median squares estimators and the least
trimmed squares estimators of Rousseeuw (1984) and Rousseeuw and Leroy (1987) by
replacing the likelihood functions of the normal distribution by likelihood functions of
other distributions. Although the TLEs are constructed for a specific likelihood function,
for example like the likelihood given by the exponential distribution, the TLEs can be
applied to data from any other distribution.

The principal robustness measure used for trimmed likelihood estimators is the break-
down point, see Vandev (1993), Müller (1995), Mili and Coakley (1996), Müller (1997),
Vandev and Neykov (1998), Müller and Neykov (2003), Müller (2013a). Additionally,
Ahmed et al. (2005) provide a relative bias and a quadratic risk as robustness measures
for trimmed likelihood estimators for the exponential distribution in the case of one stress
level. They show in particular that their estimator is asymptotically equivalent with the
simple one-sided α-trimmed mean.

Another important robustness measure is the influence function introduced by Hampel
(1974). It is well known that the influence function is not only an important robustness
measure but also a useful tool for obtaining the asymptotic distribution of the estimator,
see in particular Hampel et al. (1986) and Rieder (1994).

However, even the influence function for the one-sided α-trimmed mean is not easy to
derive. In Staudte and Sheather (1990), it is given via the influence function of quantiles.
But this derivation has some drawbacks. There is a vast literature on influence functions
for many other robust estimators, also for robust methods for lifetime distributions as
that of Boudt et al. (2011). But the influence function of trimmed likelihood estimators
is not treated. The only exception is that asymptotic expansions for trimmed likelihood
estimators are derived by Bednarski and Clarke (1993, 2002) for the location and scale
case and by Bednarski et al. (2010) for the regression case. From these asymptotic
expansions, the influence function can be derived. However they consider in the main only
trimmed likelihood estimators for the normal distribution which leads to the least trimmed
squares estimators. Moreover, they allow only symmetric distributions for the asymptotic
expansions and work with a modified version of the trimmed likelihood estimator.

This modified version of the trimmed likelihood estimator is not easy to calculate but
its corresponding functionals, the modified trimmed likelihood functional (MTLF) θ̃M , is
given by a rather simple equation. Since the influence function is defined for the corre-
sponding functionals of the estimators, a simple form of the functional is advantageous.
However, this MTLF is not the functional θ̃O corresponding to the original trimmed like-
lihood estimator, which is called here the original trimmed likelihood functional (OTLF).
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The definitions of the modified and the original trimmed likelihood functional are given
in Section 2 together with the definition of the trimmed likelihood estimator and the in-
fluence function.

It is not obvious that the modified functional θ̃M should coincide with the original func-
tional θ̃O. In Section 3, we compare the both versions for two likelihood functions, namely
the likelihood given by the exponential distribution (Section 3.1) and the likelihood given
by the (log)normal distribution (Section 3.2). We show that θ̃M and θ̃O coincide if only
one stress level is used, i.e. in the one-sample case. However, for regression, where sev-
eral stress levels are used, this is not satisfied in general and we quantify the difference
between the defining equations of θ̃M and θ̃O. This is done by using the implicit func-
tion theorem. Although we base the trimmed likelihood functionals on the exponential
distribution and the (log)normal distribution, we allow quite general distributions P to
which the functionals are applied. In particular, P can be the empirical distribution PN
and then θ̃M(PN) and θ̃O(PN) coincide under some assumptions. This is important since
the original trimmed likelihood functionals θ̃O are much easier to calculate at empirical
distributions while the influence functions of the modified trimmed likelihood functionals
θ̃M show a much simpler form.

The influence functions of the modified trimmed likelihood functionals are derived in Sec-
tion 4. Here again the implicit function theorem is an important tool since the functionals
are given implicitly. The influence function of the exponential regression TLF is treated
in Section 4.1 and correspondingly the one for the (log)normal regression TLF in Section
4.2. In both cases, the influence functions are derived at quite general central distributions
P . In particular, we do not assume symmetry as Bednarski and Clarke (1993, 2002) and
Bednarski et al. (2010) did for the MTLE based on the normal distribution. However,
their results appear as special cases.

We believe that the present approach can be used also for trimmed likelihood functionals
where the likelihood function is based on other distributions and for censored data.

Section 5 provides an application of the exponential and (log)normal regression TLF for a
real data set using a nonlinear link function. Finally, we provide in Section 6 a discussion
of the results.

2 Definitions

Let z1N , . . . , zNN be realizations of independent random variables Z1N , . . . , ZNN , zN =
(z1N , . . . , zNN), and θ̂(zN) an estimate of a parameter θ ∈ Θ of the underlying distri-
bution. Typically it is difficult to measure the influence of an outlier z∗ on the estimate
θ̂(zN). Therefore Hampel (1974) proposed to consider the influence of an outlier z∗ on
the asymptotic value of θ̂(ZN). Usually, the estimator θ̂(ZN) converges for N → ∞
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in probability or almost surely to a value θ̃(P ), where P is the underlying distribution.
If θ̃(P ) is defined for a class P of distributions then θ̃ : P → Θ is called a statistical
functional. Usually, also the contaminated distribution (1 − ε)P + εδz∗ , where δz∗ is the
one-point (Dirac) measure on z∗, lies in P so that θ̃((1− ε)P + εδz∗) is defined. Then the
influence function at z∗ is the directional derivative of θ̃ in the direction of (1− ε)P + εδz∗
and measures the influence of an outlier z∗ on the asymptotic value of the estimator.

Definition 1 (See Hampel et al. 1986). The influence function IF (θ̂, P, z∗) of a statistical
functional θ̂ at a probability measure P and an observation z∗ is defined as

IF (θ̃, P, z∗) = lim
ε↓0

θ̃((1− ε)P + εδz∗)− θ̃(P )

ε
.

To take into account accelerated lifetime experiments, set z1N = (t1N , s1N), . . . , zNN =
(tNN , sNN), where tnN is the observed lifetime at stress level snN . Let fθ,s be the density
of the lifetime distribution at stress s, then l given by l(θ, t, s) = log(fθ,s(t)) denotes the
loglikelihood function.

Definition 2 (See Müller and Neykov 2003). A h-trimmed likehood estimator (TLE) θ̂(zn)
at zN is defined as

θ̂(zn) = arg maxθ∈Θ

∑N

n=h+1
l(n)(θ, zN),

where ln(θ, zN) = l(θ, tnN , snN) and l(1)(θ, zN) < l(2)(θ, zN) < . . . < l(N)(θ, zN).

In a h-trimmed likelihood estimator the observations with the h smallest likelihood values
are not used.

The functional form of this estimator is given in Definition 3. Thereby, we use α =
limN→∞

hN
N

with hN = h. Moreover, to model stress levels s given by an experimenter,
the distribution is given by P = P T |S⊗P S , where T is the random variable for the lifetime
and S the random variable for the stress. If fixed designs for the stress variables are used,
then P S is the asymptotic distribution of the stress variables and can be interpreted as a
generalized design, see e.g. Müller (1997).
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Definition 3. The original α-trimmed likelihood functional (OTLF) θ̃O(P ) at P = P T |S⊗
P S is given by

θ̃O(P ) = arg maxθ∈Θ

∫ ∫
1I{l(θ, t, s) ≥ b(θ)} l(θ, t, s)P T |S=s(dt)P S(ds)

where b(θ) satisfies

b(θ) = arg max

{
b ;

∫ ∫
1I{l(θ, t, s) ≥ b}P T |S=s(dt)P S(ds) ≥ 1− α

}
(1)

and 1I{x ∈ A} = 1IA(x) denotes the indicator function.

The functional form of the modified version used by Bednarski and Clarke (1993, 2002)
and Bednarski et al. (2010) is given in Definition 4.

Definition 4. The modified α-trimmed likelihood functional (MTLF) θ̃M = θ̃M(P ) at
P = P T |S ⊗ P S is a solution of

0 =

∫ ∫
1I{l(θ̃M , t, s) ≥ b(θ̃M)} l̇(θ̃M , t, s)P T |S=s(dt)P S(ds)

where b(θ) is defined by (1) and l̇(θ, t, s) = ∂
∂θ
l(θ, t, s).

3 Comparison of MTLF and OTLF

To check whether the MTLF given by Definition 4 and the OTLF given by Definition 3
coincide, we have to check the equality of∫ ∫

1I{l(θ, t, s) ≥ b(θ)} l̇(θ, t, s)P T |S=s(dt)P S(ds) (2)

and

∂

∂θ

∫ ∫
1I{l(θ, t, s) ≥ b(θ)} l(θ, t, s)P T |S=s(dt)P S(ds). (3)

We will consider here only the case where b(θ) given by (1) satisfies

1− α =

∫
1I{l(θ, t, s) ≥ b(θ)}P T |S=s(dt)P S(ds) (4)

for all θ in a neighborhood of θ̃M(P ) and θ̃O(P ), respectively. This is in particular the case
for continuous distributions P T |S=s but not restricted to them. Hence b(θ) is implicitly
defined by (4).
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3.1 Exponential regression TLFs

If the lifetimes at different stress levels have exponential distributions then the loglikeli-
function is given by

l(θ, t, s) = log(λs(θ))− λs(θ)t (5)

where λs(θ) is the link function between the stress levels and the parameter of the ex-
ponential distribution. Typical link functions in accelerated lifetime experiments are
λs(θ) = θs with θ ∈ (0,∞), λs(θ) = exp(ϑ0 +ϑ1s) with θ = (ϑ0, ϑ1)> ∈ IR×(0,∞), or
λs(θ) = exp(−ϑ0 + ϑ1s− ϑ2s

−ϑ3) with θ = (ϑ0, ϑ1, ϑ2, ϑ3)> ∈ [0,∞)4, see e.g. Müller
(2013b) or the real data example in Section 5.

Definition 5. The exponential regression OTLF and MTLF are the OTLF and the MTLF
where l(θ, t, s) is given by (5).

Then we have

l(θ, t, s) ≥ b(θ)⇐⇒ t ≤ log(λs(θ))− b(θ)
λs(θ)

.

Set

ηs(θ, b) :=
log(λs(θ))− b

λs(θ)

and use l̇(θ, t, s) =
(

1
λs(θ)
− t
)
λ̇s(θ) with λ̇s(θ) := ∂

∂θ
λs(θ). Then we obtain for expres-

sion (2) with partial integration of
∫
t P T |S=s(dt)∫ ∫

1I{l(θ, t, s) ≥ b(θ)} l̇(θ, t, s)P T |S=s(dt)P S(ds) (6)

=

∫ ∫ ηs(θ,b(θ))

0

(
1

λs(θ)
− t
)
λ̇s(θ)P

T |S=s(dt)P S(ds)

=

∫ [
Fs(ηs(θ, b(θ)))

(
1

λs(θ)
− ηs(θ, b(θ))

)
+ Fs(ηs(θ, b(θ)))

]
λ̇s(θ)P

S(ds)

=: UM
P (θ),

whereFs is the cumulative distribution function of an arbitrary lifetime distribution P T |S=s

on [0,∞) and Fs is the antiderivative of Fs, i.e. ∂
∂t
Fs(t) = Fs(t). In particular, it is not

necessary to assume an exponential distribution for P T |S=s. Hence we arrive at the fol-
lowing lemma.

Lemma 1. The exponential regression MTLE θ̃M at P is given as a solution of 0 =
UM
P (θ).
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Similarly, the integral in (3) is given by∫ ∫
1I{l(θ, t, s) ≥ b(θ)} l(θ, t, s)P T |S=s(dt)P S(ds) (7)

=

∫ ∫ ηs(θ,b(θ))

0

(log(λs(θ))− λs(θ)t) P T |S=s(dt)P S(ds)

=

∫ [
Fs(ηs(θ, b(θ))) [log(λs(θ))− λs(θ)ηs(θ, b(θ))] + λs(θ)Fs(ηs(θ, b(θ)))

]
P S(ds).

To calculate the derivative of (7), we need the derivative of b(θ) which is implicitly given
by W1(θ, b(θ)) = 0, where

W1(θ, b) :=

∫ ∫ ηs(θ,b)

0

P T |S=s(dt)P S(ds)−(1−α) =

∫
Fs(ηs(θ, b))P

S(ds)−(1−α).

We assume here that

Fs is differentiable in a neighborhood of ηs(θ, b(θ)) with derivative fs (8)
for all s in the support of P S .

Since
∂

∂θ
ηs(θ, b) =

1 + b− log(λs(θ))

λs(θ)2
λ̇s(θ)

and
∂

∂b
ηs(θ, b) = − 1

λs(θ)

we have

∂

∂θ
W1(θ, b) =

∫
fs(ηs(θ, b))

1 + b− log(λs(θ))

λs(θ)2
λ̇s(θ)P

S(ds)

and
∂

∂b
W1(θ, b) = −

∫
fs(ηs(θ, b))

1

λs(θ)
P S(ds).

If ∂
∂b
W1(θ, b)|b=b(θ) 6= 0, then the implicit function theorem provides

ḃ(θ) :=
∂

∂θ
b(θ) =

∫
fs(ηs(θ, b(θ))) [1 + b(θ)− log(λs(θ))] λs(θ)

−2 λ̇s(θ)P
S(ds)∫

fs(ηs(θ, b(θ))) λs(θ)−1 P S(ds)
.

If ∂
∂b
W1(θ, b)|b=b(θ) = 0, then fs(ηs(θ, b(θ))) = 0 for all s of the support of P S , so that

∂
∂θ
W1(θ, b)|b=b(θ) = 0 holds as well. Hence we can use ḃ(θ) = 0 in this case.

Setting

η̇s(θ) :=
∂

∂θ
ηs(θ, b(θ)) =

1 + b(θ)− log(λs(θ))

λs(θ)2
λ̇s(θ)−

ḃ(θ)

λs(θ)
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and using b(θ) = log(λs(θ))− λs(θ) ηs(θ, b(θ)), the derivative of (7) is

UO
P (θ) :=

∫ [
fs(ηs(θ, b(θ))) η̇s(θ) b(θ)

+ Fs(ηs(θ, b(θ)))

[
1

λs(θ)
− ηs(θ, b(θ))

]
λ̇s(θ) + λ̇s(θ)Fs(ηs(θ, b(θ)))

]
P S(ds).

Hence we obtain the following lemma.

Lemma 2. Under the assumption (8), the exponential regression OTLE θ̃O at P is given
as a solution of 0 = UO

P (θ).

Corollary 1. The difference between (2) and (3) for exponential regression trimmed like-
lihood functionals is given by∫

fs(ηs(θ, b(θ))) η̇s(θ) b(θ)P
S(ds). (9)

The difference (9) is zero if η̇s(θ) = 0 or fs(ηs(θ, b(θ))) = 0 holds for all stress levels s in
the support of P S . In general, this will not be the case. However, if only one stress level
s0 is used, i.e. we have the one-sample case, and fs0(ηs(θ, b(θ))) 6= 0 is satisfied, then we
obtain

ḃ(θ) =
1 + b(θ)− log(λs0(θ))

λs0(θ)
λ̇s0(θ)

and thus η̇s0(θ) = 0 which is also clear from the definition of ηs(θ).

For empirical distributions satisfying (8), the difference (9) is zero since then the deriva-
tive of Fs is zero. Hence if we prefer to work with the modified trimmed likelihood
functional, then frequently the h-trimmed likelihood estimator will provide the correct
corresponding estimator in the finite sample case.

Example 1 (One-sample case).

If P S is given by a one-point measure at s0, then the TLF θ̃ := θ̃M(P ) = θ̃O(P )

can be given more explicitly. Setting η := ηs0(θ̃, b(θ̃)) and using Fs(η) = ηFs(η) −∫ η
0
tdP T |S=s(dt), we have Fs0(η) = 1− α and the TLF at P satisfies

0 =

[
Fs0(η)

(
1

λs0(θ̃)
− η

)
+ Fs0(η)

]
λ̇s0(θ̃)

=

[
(1− α)

1

λs0(θ̃)
−
∫ η

0

t dP T |S=s0(dt)

]
λ̇s0(θ̃)

⇐⇒ 1

λs0(θ̃)
=

1

1− α

∫ η

0

t dP T |S=s0(dt).

Since 1
1−α

∫ η
0
t dP T |S=s0(dt) is the functional of the one-sided trimmed mean, we see that

the TLF is given by the one-sided trimmed mean in the one-sample case. This corre-
sponds to a result of Ahmed et al. (2005) who showed that the TLE for the exponential
distribution behaves asymptotically like a one-sided trimmed mean.
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3.2 TLFs for (log)normal distribution

Another often used lifetime distribution is the lognormal distribution, where the logarithm
of the lifetime T has a normal distribution. For simplicity, we use here directly the normal
distribution, i.e. we work with Y = log(T ). A typical link between the mean of the
normal distribution and the stress level, is a linear link given by ms(θ) = x(s)>θ with
e.g. x(s) = 1

s
with θ ∈ (0,∞) or x(s) = (1,−s)> with θ = (ϑ0, ϑ1)> ∈ [0,∞)2. But

also nonlinear links like ms(θ) = ϑ0 + ϑ1(1
s
)ϑ2 with θ = (ϑ0, ϑ1, ϑ2)> ∈ [0,∞)3 or

ms(θ) = ϑ0 − ϑ1s+ ϑ2s
−ϑ3 with θ = (ϑ0, ϑ1, ϑ2, ϑ3)> ∈ [0,∞)4 are used in accelerated

lifetime experiments, see e.g. the real data example in Section 5. The loglikelihood
function is then given up to a constant by

l(θ, y, s) = −(y −ms(θ))
2. (10)

Definition 6. The (log)normal regression OTLF and MTLF are the OTLF and the MTLF
where l(θ, t, s) is given by (10).

Then we have

l(θ, y, s) ≥ b(θ) =: −a(θ)2

⇔ |y −ms(θ)| ≤ a(θ)⇔ ms(θ)− a(θ) ≤ y ≤ ms(θ) + a(θ).

With partial integration of
∫
y P Y |S=s(dy) and l̇(θ, y, s) = 2(y − ms(θ))ṁs(θ) where

ṁs(θ) = ∂
∂θ
ms(θ), we obtain for expression (2)

∫ ∫
1I{l(θ, y, s) ≥ b(θ)} l̇(θ, y, s)P Y |S=s(dt)P S(ds) (11)

= 2

∫ ∫ ms(θ)+a(θ)

ms(θ)−a(θ)

(y −ms(θ)) ṁs(θ)P
Y |S=s(dy)P S(ds)

= 2

∫ [
a(θ) [Fs(ms(θ) + a(θ)) + Fs(ms(θ)− a(θ))]

− Fs(ms(θ) + a(θ)) + Fs(ms(θ)− a(θ))
]
ṁs(θ)P

S(ds)

=: V M
P (θ),

where Fs is again the cumulative distribution function of P Y |S=s and Fs is the antideriva-
tive of Fs. Thereby Fs can be any distribution function on IR. Hence the following lemma
is shown.

Lemma 3. The (log)normal regression MTLE θ̃M at P is given as a solution of 0 =
V M
P (θ).
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For the integral in (3), we get using partial integration of
∫
y P Y |S=s(dy) and

∫
y2 P Y |S=s(dy)∫ ∫

1I{l(θ, t, s) ≥ b(θ)} l(θ, t, s)P Y |S=s(dy)P S(ds) (12)

= −
∫ ∫ ms(θ)+a(θ)

ms(θ)−a(θ)

(y −ms(θ))
2 P Y |S=s(dy)P S(ds)

= −
∫ {

a(θ)2 [Fs(ms(θ) + a(θ))− Fs(ms(θ)− a(θ))]

− 2 [Hs(ms(θ) + a(θ))− Hs(ms(θ)− a(θ))]

+ 2ms(θ) [Fs(ms(θ) + a(θ))−Fs(ms(θ)− a(θ))] } P S(ds),

where Hs is the antiderivative of Hs given by Hs(y) = y Fs(y). To obtain the deriva-
tive of (12), we have to calculate the derivative of a(θ) which is implicitly given by
W1(θ, a(θ)) = 0, where

W1(θ, a) :=

∫ ∫ ms(θ)+a

ms(θ)−a
P Y |S=s(dy)P S(ds)− (1− α)

=

∫
[Fs(ms(θ) + a)− Fs(ms(θ)− a)] P S(ds)− (1− α).

We assume here that

Fs is differentiable in a neighborhood of ms(θ) + a(θ) and ms(θ)− a(θ) (13)
with derivative fs for all s in the support of P S .

Since
∂

∂a
W1(θ, a) =

∫
[fs(ms(θ) + a) + fs(ms(θ)− a)] P S(ds)

and
∂

∂θ
W1(θ, a) =

∫
[fs(ms(θ) + a)− fs(ms(θ)− a)] ṁs(θ)P

S(ds)

the implicit function theorem provides

ȧ(θ) :=
∂

∂θ
a(θ)

= −
(∫

[fs(ms(θ) + a(θ)) + fs(ms(θ)− a(θ))] P S(ds)

)−1

·
∫

[fs(ms(θ) + a(θ))− fs(ms(θ)− a(θ))] ṁs(θ)P
S(ds)

if ∂
∂a
W1(θ, a)|a=a(θ) 6= 0. If ∂

∂a
W1(θ, a)|a=a(θ) = 0 then also ∂

∂θ
W1(θ, a)|a=a(θ) = 0 so

that we can set ȧ(θ) = 0 in this case. Hence the derivative of (12) is

V O
P (θ) := −

∫ {
a(θ)2 [fs(ms(θ) + a(θ))− fs(ms(θ)− a(θ))] ṁs(θ)

+ a(θ)2 [fs(ms(θ) + a(θ)) + fs(ms(θ)− a(θ))] ȧ(θ)

− 2 a(θ) [Fs(ms(θ) + a(θ)) + Fs(ms(θ)− a(θ))] ṁs(θ)

+ 2 [Fs(ms(θ) + a(θ))−Fs(ms(θ)− a(θ))] ṁs(θ) } P S(ds).

10



Lemma 4. Under the assumption (13), the (log)normal regression OTLE θ̃O at P is given
as a solution of 0 = V O

P (θ).

Corollary 2. The difference between (2) and (3) for (log)normal regression trimmed like-
lihood functionals is given by∫ {

a(θ)2 [fs(ms(θ) + a(θ))− fs(ms(θ)− a(θ))] ṁs(θ) (14)

+ a(θ)2 [fs(ms(θ) + a(θ)) + fs(ms(θ)− a(θ))] ȧ(θ)
}
P S(ds).

The difference (14) is zero if only one stress level s0 is used or if fs is symmetric around
ms(θ) for P S-almost all s. Bednarski et al. (2010) considered symmetric distributions for
the central distribution. However, any neighborhood around a central symmetric distribu-
tion contains also asymmetric distributions. But again we can argue that the difference
(14) is zero for empirical distributions satisfying (13) since the derivative of Fs is then
zero. Hence frequently the h-trimmed likelihood estimator will provide the correct cor-
responding estimator of the modified trimmed likelihood functional in the finite sample
case.

4 The influence function of TLFs

Although we have seen that the modified trimmed likelihood functional of Definition 4
does not coincide in general with the original trimmed likelihood functional of Definition
3, we will derive the influence function for the MTLF since its form is simpler. That the
treatment of the MTLF instead of the OTLF makes sense is due to the fact that the MTLF
applied on the empirical distribution coincides with the h-trimmed likelihood estimator
of Definition 2 in many cases. This is important since only the h-trimmed likelihood
estimator can be calculated efficiently. I.e. for small sample sizes, the TLEs can be
obtained by calculating the maximum likelihood estimator for all subsamples with N −h
elements. For larger samples sizes, special methods for the TLE have been developed, see
e.g. Neykov and Müller (2003) or Rousseeuw and Driessen (2006).

Since the stress levels are given by the experimenter, only contamination with respect to
P T |S is considered. Set Pε = P

T |S
ε ⊗ P S with

P T |S=s
ε = (1− ε)P T |S=s + εQT |S=s

and corresponding distribution function

Fs,ε = (1− ε)Fs + εGs.

We will derive

lim
ε↓0

θ̃M(Pε)− θ̃M(P )

ε
=

∂

∂ε
θ̃M(Pε)

∣∣∣∣
ε=0

,

11



which provides for the special case of QT |S=s∗ = δt∗ and QT |S=s = P T |S=s for s 6= s∗ the
influence function at P and z∗ = (t∗, s∗) of Definition 1. Thereby, θ̃M(Pε) is implicitly
given by

W2(ε, θ̃M(Pε)) = 0

where

W2(ε, θ) =

∫ ∫
1I{l(θ, t, s) ≥ b(ε, θ)} l̇(θ, t, s)P T |S=s

ε (dt)P S(ds) (15)

and b(ε, θ) is implicitly given by

W1(ε, θ, b(ε, θ)) = 0

with

W1(ε, θ, b) =

∫ ∫
1I{l(θ, t, s) ≥ b} P T |S=s

ε (dt)P S(ds)− (1− α). (16)

4.1 The influence function of the exponential regression MTLF

Here, (15) becomes according to (6)

W2(ε, θ) =

∫ [
Fs,ε(ηs(θ, b(ε, θ)))

(
1

λs(θ)
− ηs(θ, b(ε, θ))

)
+ Fs,ε(ηs(θ, b(ε, θ)))] λ̇s(θ)P S(ds),

and W1 of (16) is given by, see Section 3.1,

W1(ε, θ, b) =

∫
Fs,ε(ηs(θ, b))P

S(ds)− (1− α).

As in Section 3.1, we have

∂

∂θ
W1(ε, θ, b) =

∫
fs,ε(ηs(θ, b))

1 + b− log(λs(θ))

λs(θ)2
λ̇s(θ)P

S(ds)

and
∂

∂b
W1(ε, θ, b) = −

∫
fs,ε(ηs(θ, b))

1

λs(θ)
P S(ds).

Additionally, we use here

∂

∂ε
W1(ε, θ, b)

∣∣∣∣
ε=0

=

∫
(Gs − Fs)(ηs(θ, b))P S(ds).

Setting θ0 = θ̃M(P0) = θ̃M(P ), b0 = b(0, θ0), we make the following assumption:

Fs and Gs are differentiable in a neighborhood of ηs(θ0, b0) (17)
for all s in the support of P S .

12



Clearly this is satisfied for Fs since the central distribution Ps should be a continuous dis-
tribution. However, Gs could be also the distribution function of a one-point measure so
that the differentiability is not everywhere satisfied. However, we consider here only the
cases where the differentiability is satisfied. Then the implicit function theorem provides

ḃθ(0) :=
∂

∂θ
b(ε, θ)

∣∣∣∣
(ε,θ)=(0,θ0)

=

∫
fs(ηs(θ0, b0)) [1 + b0 − log(λs(θ0))] λs(θ0)−2 λ̇s(θ0)P S(ds)∫

fs(ηs(θ0, b0)) λs(θ0)−1 P S(ds)

and

ḃε(0) :=
∂

∂ε
b(ε, θ)

∣∣∣∣
(ε,θ)=(0,θ0)

=

∫
(Gs − Fs)(ηs(θ0, b0))P S(ds)∫
fs(ηs(θ0, b0)) λs(θ0)−1 P S(ds)

.

Using this notation, we obtain for the derivatives of ηs(θ, b(ε, θ)) = log(λs(θ))−b(ε,θ)
λs(θ)

η̇s,θ(0) :=
∂

∂θ
ηs(θ, b(ε, θ))

∣∣∣∣
(ε,θ)=(0,θ0)

=
1 + b0 − log(λs(θ0))

λs(θ0)2
λ̇s(θ0)− ḃθ(0)

λs(θ0)

and

η̇s,ε(0) :=
∂

∂ε
ηs(θ, b(ε, θ))

∣∣∣∣
(ε,θ)=(0,θ0)

= − ḃε(0)

λs(θ0)
.

Let here Gs be the antiderivative of Gs so that Fs,ε = (1− ε)Fs + εGs = Fs + ε(Gs−Fs)
and set λ̈s(θ) = ∂

∂θ
λ̇s(θ)

>. Now, we can calculate the derivatives of W2(ε, θ)>:

∂

∂θ
W2(ε, θ)>

∣∣∣∣
(ε,θ)=(0,θ0)

=

∫ [
fs(ηs(θ0, b0)) η̇s,θ(0)

(
1

λs(θ0)
− ηs(θ0, b0)

)
− Fs(ηs(θ0, b0))

λ̇s(θ0)

λs(θ0)2

]
λ̇s(θ0)> P S(ds)

+

∫ [
Fs(ηs(θ0, b0))

(
1

λs(θ0)
− ηs(θ0, b0)

)
+ Fs(ηs(θ0, b0))

]
λ̈s(θ0)P S(ds)

=: A(P )

and

∂

∂ε
W2(ε, θ)>

∣∣∣∣
(ε,θ)=(0,θ0)

= −B(P )

∫
(Gs − Fs)(ηs(θ0, b0))P S(ds)

+

∫ [
(Gs − Fs)(ηs(θ0, b0)) as(P ) +

∫ ηs(θ0,b0)

0

(Gs − Fs)(t) dt

]
λ̇s(θ0)> P S(ds),
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where

as(P ) :=

(
1

λs(θ0)
− ηs(θ0, b0)

)
and

B(P ) :=

∫
fs(ηs(θ0, b0)) λs(θ0)−1∫

fs̃(ηs̃(θ0, b0)) λs̃(θ0)−1 P S(ds̃)
as(P ) λ̇s(θ0)> P S(ds).

Hence with the implicit function theorem, we obtain the following theorem.

Theorem 1. Under the assumption (17), the exponential regression MTLF θ̃M of Defini-
tion 5 satisfies

lim
ε↓0

θ̃M(Pε)− θ̃M(P )

ε
= −A(P )−1

[
−B(P )

∫
(Gs − Fs)(ηs(θ0, b0))P S(ds)

+

∫ [
(Gs − Fs)(ηs(θ0, b0)) as(P ) +

∫ ηs(θ0,b0)

0

(Gs − Fs)(t) dt

]
λ̇s(θ0)> P S(ds)

]
.

Using Gs∗(t) = 1I[t∗,∞)(t) if QT |S=s∗ = δt∗ and Gs(t) = Fs(t) for s 6= s∗, assumption
(17) is satisfied if t∗ 6= ηs∗(θ0, b0). Hence we get at once the following influence function.

Corollary 3. If P S has finite support and t∗ 6= η∗ := ηs∗(θ0, b0), then the influence
function of the exponential regression MTLF θ̃M at z∗ = (t∗, s∗) ∈ [0,∞)2 is given by

IF (θ̃M , P, z∗)

= −A(P )−1

[{(
η∗ − t∗

)
1I[0,η∗](t∗)−

∫ η∗

0

Fs∗(t) dt
}
λ̇s∗(θ0)> P S({s∗})

+
(

1I[0,η∗](t∗)− Fs∗(η∗)
)(
as∗(P ) λ̇s∗(θ0)> −B(P )

)
P S({s∗})

]
.

Obviously, this influence function is a bounded function in t∗ so that outliers t∗ at s∗ have
a bounded influence on the trimmed likelihood estimator.

Example 2 (One-sample case).

If P S is given by a one-point measure at s0, then the results of Theorem 1 and Corollary
3 concern also the original trimmed likelihood function as shown in Section 3.1. In this
case, we have as in Section 3.1 η̇s,θ(0) = 0. Moreover, θ should be one-dimensional and
reasonable choices for λs(θ) are λs(θ) = θs or λs(θ) = θ. Then it holds λ̈s(θ) = 0 so that
A(P ) becomes

A(P ) = −Fs0(ηs0(θ0, b0))
λ̇s0(θ0)2

λs0(θ0)2
= −(1− α) θ−2

0 .

With B(P ) = as0(P ) λ̇s0(θ0) and setting η∗ = ηs0(θ0, b0), θ̃ = θ0 = θ̃M(P ) = θ̃O(P ) we
obtain

lim
ε↓0

θ̃M(Pε)− θ̃M(P )

ε
=

θ̃2

1− α

∫ η∗

0

(Gs0 − Fs0)(t) dt λ̇s0(θ̃).
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Using partial integration of
∫ η∗

0
Fs0(t) dt, the influence function is given by

IF (θ̃M , P, z∗) = IF (θ̃O, P, z∗) (18)

=

 θ̃2
(
η∗ α−t∗

1−α + 1

λs0 (θ̃)

)
λ̇s0(θ̃) if t∗ < η∗,

θ̃2
(
−η∗ + 1

λs0 (θ̃)

)
λ̇s0(θ̃) if t∗ > η∗,

since according to Example 1 Fs0(η∗) = 1− α and

1

λs0(θ̃)
=

1

1− α

∫ η∗

0

t dP T |S=s0(dt). (19)

Note that the influence function of the one-sided trimmed mean µ̃ = µ̃(P ) =
1

1−α

∫ η∗
0
t dP (dt) is given by, see e.g. Staudte and Sheather (1990) pp.55,

IF (µ̃, P, t∗) =

{
t∗−η∗ α

1−α − µ̃ if t∗ < η∗,

η∗ − µ̃ if t∗ > η∗.

This coincides with (18) using (19) and λs(µ) = 1
µ

. Note that in contrast to the result
of Staudte and Sheather (1990), it holds IF (µ̃, P, t∗) = t∗

1−α − µ̃ for t∗ = η∗ so that
IF (µ̃, P, t∗) is not continuous in t∗. But this cannot be shown with the implicit function
theorem since differentiability at t∗ is not given forG = 1I[t∗,∞). This can only be obtained
by studying the influence function of quantiles.

4.2 The influence function of the (log)normal regression MTLF

Here, (15) becomes according to (11)

W2(ε, θ) = 2

∫
[a(ε, θ) [Fs,ε(ms(θ) + a(ε, θ)) + Fs,ε(ms(θ)− a(ε, θ))]

− Fs,ε(ms(θ) + a(ε, θ)) + Fs,ε(ms(θ)− a(ε, θ))] ṁs(θ)P
S(ds)

and W1 of (16) is given by, see Section 3.2,

W1(ε, θ, a) =

∫
[Fs,ε(ms(θ) + a)− Fs,ε(ms(θ)− a)] P S(ds)− (1− α).

As in Section 3.2, we have

∂

∂θ
W1(ε, θ, a) =

∫
[fs,ε(ms(θ) + a)− fs,ε(ms(θ)− a)] ṁs(θ)P

S(ds)

and
∂

∂a
W1(ε, θ, a) =

∫
[fs,ε(ms(θ) + a) + fs,ε(ms(θ)− a)] P S(ds).
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Additionally, we use here

∂

∂ε
W1(ε, θ, a)

∣∣∣∣
ε=0

=

∫
[(Gs − Fs)(ms(θ) + a)− (Gs − Fs)(ms(θ)− a)] P S(ds).

Setting θ0 = θ̃M(P0) = θ̃M(P ), a0 = a(0, θ0), we make the following assumption:

Fs and Gs are differentiable in a neighborhood of (20)
ms(θ0) + a0 and ms(θ0)− a0 for all s in the support of P S .

Under this assumption, the implicit function theorem provides

ȧθ(0) :=
∂

∂θ
a(ε, θ)

∣∣∣∣
(ε,θ)=(0,θ0)

= −
(∫

[fs(ms(θ0) + a0) + fs(ms(θ0)− a0)] P S(ds)

)−1

·
∫

[fs(ms(θ0) + a0)− fs(ms(θ0)− a0)] ṁs(θ0)P S(ds)

and

ȧε(0) :=
∂

∂ε
a(ε, θ)

∣∣∣∣
(ε,θ)=(0,θ0)

= −
(∫

[fs(ms(θ0) + a0) + fs(ms(θ0)− a0)] P S(ds)

)−1

∫
[(Gs − Fs)(ms(θ0) + a0)− (Gs − Fs)(ms(θ0)− a0)] P S(ds).

Let here Gs be the antiderivative of Gs so that Fs,ε = (1− ε)Fs + εGs = Fs + ε(Gs−Fs)
and set m̈s(θ) = ∂

∂θ
ṁs(θ)

>. Now, we can calculate the derivatives of W2(ε, θ)>:

∂

∂θ
W2(ε, θ)>

∣∣∣∣
(ε,θ)=(0,θ0)

= 2

∫ {
a0

[
fs(ms(θ0) + a0)(ṁs(θ0) + ȧθ(0)) + fs(ms(θ0)− a0)(ṁs(θ0)− ȧθ(0))

]
−
[
Fs(ms(θ0) + a0)− Fs(ms(θ0)− a0)

]
ṁs(θ0)

}
ṁs(θ0)>P S(ds)

+ 2

∫ {
a0

[
Fs(ms(θ0) + a0) + Fs(ms(θ0)− a0))

]
−Fs(ms(θ0) + a0)

+ Fs(ms(θ0)− a0)
}
m̈s(θ0)P S(ds)

=: C(P )

and
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∂

∂ε
W2(ε, θ)>

∣∣∣∣
(ε,θ)=(0,θ0)

= D(P )

+ 2 a0

∫ [
(Gs − Fs)(ms(θ0) + a0) + (Gs − Fs)(ms(θ0)− a0)

]
ṁs(θ0)>P S(ds)

− 2

∫ ∫ ms(θ0)+a0

ms(θ0)−a0
(Gs − Fs) (y) dy ṁs(θ0)>P S(ds)

where

D(P ) := 2

∫ {
a0 ȧε(0)

[
fs(ms(θ0) + a0)− fs(ms(θ0)− a0)

]}
ṁs(θ)

> P S(ds).

As before, the implicit function theorem provides the following theorem.

Theorem 2. Under the assumption (20), the (log)normal regression MTLF θ̃M of Defini-
tion 6 satisfies

lim
ε↓0

θ̃M(Pε)− θ̃M(P )

ε
= −C(P )−1

{
D(P )

+2 a0

∫ [
(Gs − Fs)(ms(θ0) + a0) + (Gs − Fs)(ms(θ0)− a0)

]
ṁs(θ0)P S(ds)

−2

∫ ∫ ms(θ0)+a0

ms(θ0)−a0
(Gs − Fs)(y) dy ṁs(θ0)> P S(ds)

}
.

Using here Gs∗(y) = 1I[y∗,∞)(y) if QY |S=s∗ = δy∗ and Gs(y) = Fs(y) for s 6= s∗,
assumption (20) is satisfied if y∗ 6= ms∗(θ0) + a0 and y∗ 6= ms∗(θ0) − a0. Hence we get
at once the following influence function.

Corollary 4. If P S has finite support and ms∗(θ0) − a0 6= y∗ 6= ms∗(θ0) + a0, then the
influence function of the (log)normal regression MTLF θ̃M at z∗ = (y∗, s∗) is given by

IF (θ̃M , P, z∗)

= −C(P )−1
{
D(P ) + 2

(
(y∗ −ms∗(θ0))1I(ms∗ (θ0)−a0,ms∗ (θ0)+a0](y∗)

− a0

[
Fs∗(ms∗(θ0) + a0) + Fs∗(ms∗(θ0)− a0)

]
+

∫ ms∗ (θ0)+a0

ms∗ (θ0)−a0
Fs∗(y) dy

)
ṁs∗(θ0)> P S({s∗})

}
.

Obviously, this influence function is again a bounded function in y∗.
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Example 3 (Symmetric case).

If fs is symmetric about ms(θ0) for all s of the support of P S , then the results of Theorem
2 and Corollary 4 concern also the original trimmed likelihood functional θ̃O as shown
in Section 3.2. In this case, fs(ms(θ0) + a) = fs(ms(θ0) − a) and Fs(ms(θ0) − a) =
1− Fs(ms(θ0) + a) for any a > 0 so that with partial integration

Fs(ms(θ0) + a)−Fs(ms(θ0)− a) = aFs(ms(θ0) + a) + a(1− Fs(ms(θ0) + a)) = a

implying

a
[
Fs(ms(θ0) + a) + Fs(ms(θ0)− a)

]
−Fs(ms(θ0) + a) + Fs(ms(θ0)− a) = 0

(21)

for any a > 0. The equality (21) provides at once W2(0, θ0) = 0 for any a0 := a(0, θ0)
given by

W1(0, θ0, a0) = 2
∫
Fs(ms(θ0) + a0)P S(ds)− 2 + α = 0. (22)

Hence we obtain D(P ) = 0, ȧθ(0) = 0, and

C(P )

= 2

∫ {
a0 2 fs(ms(θ0) + a0)−

[
2Fs(ms(θ0) + a0)− 1

]}
ṁs(θ0)ṁs(θ0)>P S(ds),

so that the influence function at y∗ with ms∗(θ0)− a0 6= y∗ 6= ms∗(θ0) + a0 is given by

IF (θ̃M , P, z∗) = IF (θ̃O, P, z∗)

= −C(P )−1
{

2 (y∗ −ms∗(θ0)) 1I(ms∗ (θ0)−a0,ms∗ (θ0)+a0](y∗) ṁs∗(θ0) P S({s∗})
}
.

If we additionally assume fs(y) = f∗(y −ms(θ0)) for all s of the support of P S , where
f∗ is symmetric about 0, then equality (22) is equivalent to

F∗(a0) = 1− α

2
,

so that a0 = F−1
∗
(
1− α

2

)
is the 1 − α

2
-quantile of the distribution given by F∗. In this

case we get

C(P ) = 2
{

2 a0 f∗(a0)− (1− α)
}∫

ṁs(θ0)ṁs(θ0)>P S(ds)

so that the influence function is given by

IF (θ̃M , P, z∗) = IF (θ̃O, P, z∗)

=


(∫

ṁs(θ0)ṁs(θ0)>P S(ds)
)−1

ṁs∗(θ0) y∗−ms∗ (θ0)
1−α−2 a0 f∗(a0)

P S({s∗})
if y∗ ∈ (ms∗(θ0)− a0,ms∗(θ0) + a0),

0 if y∗ /∈ [ms∗(θ0)− a0,ms∗(θ0) + a0].
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For the special case of ms(θ) = x(s)>θ, this influence function appears in the expansion
which Bednarski et al. (2010), p. 212, derived for the least trimmed squares estimator for
linear regression. The matrix

∫
IF (θ̃M , P, z) IF (θ̃M , P, z)

> P Y |S ⊗ P S(dz) is also the
asymptotic covariance matrix of the least trimmed squares estimator which Vı́̌sek (1999)
derived for linear regression and Čı́žek (2005) for nonlinear regression.

5 Application to a real data set

As an example of the TLE we consider accelerated lifetime experiments carried out on
freerunning pre-stressed steel within the SFB 823 at TU Dortmund University. In these
experiments 25 steel samples were exposed to cyclic loads with stress s from an interval
of [300, 1050] N/mm2. The recorded times t1, . . . , t25 describe the number of applied
load cycles until the first tension wire in the material broke. A parametric approach used
within the SFB to model the influence of s on t is given by the relation

g(θ, s) := ϑ0 − ϑ1s+ ϑ2s
−ϑ3 (θ = (ϑ0, ϑ1, ϑ2, ϑ3)> ∈ [0,∞)4). (23)

It combines a nonlinear influence of stress levels with a linear one and models the expec-
tation of the random variable T given S = s on the log scale, i.e. log(Eθ(T |S = s)) =
g(θ, s).

At first we assume T |S = s ∼ Exp(λs(θ)). As equation (23) is used to model the
expectation of T given S = s on the log scale, it must hold that

log(E(T |S = s)) = log

(
1

λs(θ)

)
= g(θ, s) = ϑ0 − ϑ1s+ ϑ2s

−ϑ3 .

Therefore, the link function λs(θ) is given by

λs(θ) = exp(−ϑ0 + ϑ1s− ϑ2s
−ϑ3) = exp(−g(θ, s)).

When we assume a lognormal distribution for T given S = s, we have log(T )|S = s ∼
N (ms(θ), σ

2). Hence, the link function is directly given by ms(θ) = g(θ, s).

The resulting loglikelihood functions can be maximized numerically for both distribu-
tions for the N = 25 observations. For the computation of the h-trimmed likelihood
estimator the Fast TLE algorithm from Neykov and Müller (2003) was used. In Figure 1
we compare the results for the untrimmed likelihood estimator to the TLE with h = 5 for
both distributions. In the case of the exponential distribution the shape of the fitted curve
changes noticeably. When h = 5 observations are trimmed the fitted curve describes the
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remaining observations very well, whereas the untrimmed fit is a straight line which does
not fit well to the data at all. For the (log)normal distribution the effect of the trimming is
not that large but the fit is also better. Moreover, using the trimmed estimators, the fitted
curves do not differ much if the likelihood is based on the exponential or the lognormal
distribution.
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Figure 1: Estimated regression function assuming exponential or lognormal distribution
with 5 trimmed observations and without trimming

6 Discussion

Since the influence function is defined for the functional defining an estimator, we consid-
ered at first two versions of the functional of a trimmed likelihood estimator, one, called
the original trimmed likelihood functional (OTLF), which corresponds to the original
trimmed likelihood estimator, and a modified version, called modified trimmed likeli-
hood functional (MTLF), used by Bednarski and Clarke (1993, 2002) and by Bednarski
et al. (2010). We showed that these two versions do not coincide in general and indicated
situations for coincidence. Since we used the implicit function theorem, we could not
show the coincidence at any empirical distribution. Moreover, often no parameter will
satisfy the defining equations of the MTLF for empirical distributions. Nevertheless, we
derived the influence function only for the modified version using again the implicit func-
tion theorem. However, the influence function could be derived similarly for the original
version. On the other hand the results will be more complicated since then additionally
derivatives of the densities of the central distribution are necessary. The approach was
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only demonstrated for trimmed likelihood functionals based on the exponential and the
(log)normal distribution in regression models with linear and nonlinear link function. It is
possible that it can be used also for other distributions. We expect that censoring, an im-
portant issue in lifetime experiments, can be treated with this approach as well. Another
extension of the presented work will be to derive tests, confidence intervals and predic-
tion intervals using the asymptotic distribution. In this context it would be important to
know whether the trimmed estimators are asymptotically linear in the derived influence
functions. For that it is useful to note that the presented results show Gâteaux differen-
tiability of the modified trimmed likelihood functionals. A question is whether stronger
differentiability notions like Hadamard differentiability can be shown.
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