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Abstract

This paper investigates the problem if the difference between two parametric models

m1,m2 describing the relation between the response and covariates in two groups is of

no practical significance, such that inference can be performed on the basis of the pooled

sample. Statistical methodology is developed to test the hypotheses H0 : d(m1,m2) ≥ ε

versus H1 : d(m1,m2) < ε of equivalence between the two regression curves m1,m2,

where d denotes a metric measuring the distance between m1 and m2 and ε is a pre

specified constant. Our approach is based on an estimate d(m̂1, m̂2) of this distance and

its asymptotic properties. In order to improve the approximation of the nominal level for

small sample sizes a bootstrap test is developed, which addresses the specific form of the

interval hypotheses. In particular, data has to be generated under the null hypothesis,

which implicitly defines a manifold for the vector of parameters. The results are illustrated

by means of a simulation study, and it is demonstrated that the new methods yield a

substantial improvement with respect to power compared to all currently available tests

for this problem.

Keywords and Phrases: dose response studies; nonlinear regression; equivalence of curves;

constrained parameter estimation; parametric bootstrap

1 Introduction

A frequent problem in statistics is the comparison of two regression models which are used for

the description of the relation between the response variable and covariates for two different
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groups, respectively. An important aspect in this type of problems is to investigate whether

the differences between the two models for the two groups are of no practical significance,

so that only one model can be used for both groups. Such problems appear for example in

population pharmacokinetics (PK) where the goal is to establish the PK bio-equivalence of the

concentration versus time profiles, say m1, m2, of two compounds. “Classical” bio-equivalence

methods usually establish equivalence between real valued quantities such as the area under the

curve (AUC) or the maximum concentrations (Cmax) [see Chow and Liu (1992); Hauschke et al.

(2007)]. However, such an approach may be misleading because the two profiles could be very

different although they may have similar AUC or Cmax values. From this perspective it might

be more reasonable to work directly with the underlying PK profiles instead of summaries of

this type.

The problem of establishing the equivalence of two regression models at a controlled type I

error has found considerable attention in the recent literature. For example, Liu et al. (2009)

proposed tests for the hypothesis of equivalence of two regression functions, which are applicable

in linear models. Gsteiger et al. (2011) considered non-linear models and suggested a bootstrap

method which is based on a confidence band for the difference of the two regression models.

Both references use the unit intersection principle to construct the test. We will demonstrate

in the present paper that this approach yields to a rather conservative method with very low

power. As an alternative, we propose to estimate the distance, say d(m1,m2), between the

regression curves directly and to decide for the equivalence of the two curves if the estimator is

smaller than a given threshold. The critical values of this test can be obtained by asymptotic

theory, which describes the limiting distribution of an appropriately standardized estimated

distance. In order to improve the approximation of the nominal level for small samples sizes a

non-standard bootstrap approach is proposed to determine critical values of this test.

In Section 2 we introduce the general problem of equivalent regression curves. While the concept

of similarity of the two profiles is formulated here for a general metric d, we concentrate in the

subsequent discussion on two specific cases. Section 3 is devoted to the comparison of curves

with respect to L2-distances. Such distances are attractive for PK models because they measure

the squared integral of the difference between the two curves and are therefore related to the

area under the curve. We prove asymptotic normality of the corresponding test statistic and

construct an asymptotic level α-test. Moreover, a new bootstrap procedure is introduced, which

addresses the particular difficulties arising in the problem of testing interval hypotheses. In

particular resampling has to be performed under the null hypothesis H0 : d(m1,m2) ≥ ε, which

defines (implicitly) a manifold in the parameter space. We prove consistency of the bootstrap

test and demonstrate by means of a simulation study that it yields to an improvement of the

approximation of the nominal level for small sample sizes. In Section 4 the maximal deviation

between the two curves is considered as a measure of similarity, for which corresponding results

are substantially harder to derive. For example, we prove weak convergence of a corresponding
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test statistic, but the limit distribution depends in a complicated way on the extremal points of

the “true” difference. This problem is again solved by developing a bootstrap test. The finite

sample properties of the new methodology are illustrated in Section 5, where we also provide a

comparison with the method of Gsteiger et al. (2011). In particular, it is demonstrated that the

methodology proposed in this paper yields a substantially more powerful procedure than the

test proposed by these authors. Finally, all technical details and proofs (which are complicated)

are deferred to an appendix in Section 6.

2 Equivalence of regression curves

We use two regression models to describe the relationship between the response variables and

covariates for the two different groups, that is

Y1,i,j = m1(x1,i, β1) + ε1,i,j , j = 1, . . . , n1,i, i = 1, . . . , k1 (2.1)

Y2,i,j = m2(x2,i, β2) + ε2,i,j , j = 1, . . . , n2,i, i = 1, . . . , k2 (2.2)

Here the covariate region is denoted by X ⊂ Rd, x`,i represents the ith dose level (in group `),

n`,i is the number of patients treated at dose level x`,i and k` denotes the number of different

dose levels in group ` (= 1, 2). The sample size in each group is denoted by n` =
∑k`

i=1 n`,i
(` = 1, 2), n = n1 + n2 is the total sample size, and in (2.1) and (2.2) the functions m1 and m2

define the (non-linear) regression models with p1- and p2-dimensional parameters β1 and β2,

respectively. The error terms are assumed to be independent and identically distributed with

mean 0 and variance σ2
` for group ` (= 1, 2). Let (M, d) denote a metric space of real valued

functions of the form g : X → R with metric d. We assume (for all β1, β2) that the regression

functions satisfy m1(·, β1),m2(·, β2) ∈ M, identify the models m` by their parameters β` and

denote the distance between the two models by d(β1, β2)(= d(m1,m2)).

We consider the curves m1 and m2 as equivalent if the distance between the two curves is

small, that is d(β1, β2) < ε, where ε is a positive constant specified by the experimenter. In

order to establish “equivalence” of the two dose response curves at a controlled type I error,

we formulate the hypotheses

H0 : d(β1, β2) ≥ ε versus H1 : d(β1, β2) < ε. (2.3)

In the following sections we are particularly interested in the metric space of all continuous

functions with metric

d∞(β1, β2) = max
x∈X
|m1(x, β1)−m2(x, β2)| (2.4)

and of all square integrable functions with metric

d2(β1, β2) =
(∫
X
|m1(x, β1)−m2(x, β2)|2dx

)1/2
. (2.5)
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The choice of the distance d depends on the specific problem under consideration. The metric

d∞ is of interest in drug stability studies, where one investigates whether the maximum differ-

ence in mean drug content between two batches is no larger than a pre-specified threshold. The

metric d2 might be useful if the distance should also reflect important pharmaceutical quantities

such as the area under the curve.

The metric (2.4) has also been considered in Liu et al. (2009) and Gsteiger et al. (2011), who

constructed a confidence band for the difference of the two regression curves and used the

intersection-union-test [see for example Berger (1982)] to derive a test for the hypothesis that

the two curves are equivalent. In linear models (with normally distributed errors) this test

keeps its level not only asymptotically but also for fixed sample size. However, the resulting

test is extremely conservative, and as it will be demonstrated in Section 5, has a very low power.

In the following discussion we will develop alternatives and substantially more powerful tests

for the equivalence of the two regression curves. Roughly speaking, we consider for ` = 1, 2 the

estimate m`(·, β̂`) of the regression curve m` and reject the null hypothesis in (2.3) for small

values of the statistic d̂ = d(β̂1, β̂2). The critical values can be obtained by asymptotic theory

deriving the limiting distribution of
√
n (d̂− d) as n1, n2 →∞, which will be developed in the

following sections. This approach leads to a satisfactory solution for the L2-distance (2.5) based

on the quantiles of the normal distribution (see Section 3). However, for the maximal deviation

distance (2.4), the limiting distribution depends in a complicated way on the extremal points

E = {x ∈ X | |∆(x, β1, β2)| = d∞(β1, β2)}

of the “true” difference

∆(x, β1, β2) = m1(x, β1)−m2(x, β2). (2.6)

Moreover, in small population trials the approximation of the nominal level of tests developed by

asymptotic theory may not be very precise. In order to obtain a more accurate approximation of

the nominal level a non-standard bootstrap procedure is proposed and its consistency is proved.

This procedure has to be constructed in a way such that it addresses the particular features of

the hypothesis of equivalence of the curves, which is defined in (2.3). In particular, data has

to be generated under the null hypothesis d(β1, β2) ≥ ε, which implicitly defines a manifold for

the vector of parameters (βT1 , β
T
2 )T ∈ Rp1+p2 of both models. The non-differentiability of the

metric d∞ exhibits some technical difficulties of such an approach, and for this reason we begin

the discussion with the L2-distance d2.
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3 Comparing curves by L2-distances

In this chapter we construct a test for the equivalence of the two regression curves with respect

to the squared L2−norm, i.e. we consider the hypotheses of the form

H0 :

∫
X

(m1(x, β1)−m2(x, β2))
2dx ≥ ε versus H1 :

∫
X

(m1(x, β1)−m2(x, β2))
2dx < ε. (3.1)

To be precise, note that under regularity assumptions [see Section 6 for details] the ordinary

least squares (OLS) estimators, say β̂1 and β̂2, of the parameters β1 and β2 can usually be

“linearized” in the form

√
n` (β̂` − β`) =

1
√
n`

k∑̀
i=1

n`,i∑
j=1

φ`,i,j + oP(1), ` = 1, 2, (3.2)

where the functions φ`,i,j are given by

φ`,i,j =
ε`,i,j
σ2
`

Σ−1`
∂
∂b`
m`(x`,i,, b`)

∣∣
b`=β`

, ` = 1, 2, (3.3)

and the p1 × p1 and p2 × p2 dimensional matrices Σ1 and Σ2 are defined by

Σ` =
1

σ2
`

k∑̀
i=1

ζ`,i
∂
∂b`
m`(x`,i,, b`)

∣∣
b`=β`

(
∂
∂b`
m`(x`,i,, b`)

∣∣
b`=β`

)T
, ` = 1, 2. (3.4)

For these arguments we assume (besides the regularity assumptions commonly made for OLS-

estimation) that the matrices Σ` are non-singular and that the sample sizes n1 and n2 converge

to infinity such that

lim
n`→∞

n`,i
n`

= ζ`,i > 0 , i = 1, . . . , k` , ` = 1, 2 (3.5)

and

lim
n1,n2→∞

n

n1

= λ ∈ (1,∞). (3.6)

It follows by a straightforward calculation that the ordinary least squares estimators are asymp-

totically normal distributed, i.e.

√
n`(β̂` − β`)

D→ N (0,Σ−1` ) , ` = 1, 2, (3.7)

where the symbol
D−→ means weak convergence (convergence in distribution for real valued

random variables). The asymptotic variance in (3.7) can easily be estimated by replacing the

parameters β` and ζ`,i in (3.4) by their estimates β̂`, and n`,i/n` (` = 1, 2). The resulting

estimator will be denoted by Σ̂` throughout this paper. The null hypothesis in (3.1) is rejected,

whenever the inequality

d̂2 := d2(β̂1, β̂2) =

∫
X

(m1(x, β̂1)−m2(x, β̂2))
2dx < c (3.8)
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is satisfied, where c is a pre-specified constant which defines the level of the test. In order

to determine this constant we will derive the asymptotic distribution of the statistic d̂2. The

following result is proved in Appendix 6.1.

Theorem 3.1. If Assumptions 6.1 - 6.5 from the Appendix, (3.5) and (3.6) are satisfied, we

have √
n(d̂2 − d2)

D−→ N (0, σ2
d2

), (3.9)

where the asymptotic variance is given by

σ2
d2

= σ2
d2

(β1, β2) = 4

∫
X×X

∆(x, β1, β2)∆(y, β1, β2)k(x, y)dxdy, (3.10)

∆(x, β1, β2) and the kernel k(x, y) are defined by (2.6) and

k(x, y) := λ
(

∂
∂β1
m1(x, β1)

)T
Σ−11

∂
∂β1
m1(y, β1) + λ

λ−1

(
∂
∂β2
m2(x, β2)

)T
Σ−12

∂
∂β2
m2(y, β2), (3.11)

respectively.

Theorem 3.1 provides an asymptotic level α test for the hypothesis (3.1) of equivalence of the

two regression curves. More precisely, if σ̂2
d2

= σ2
d2

(β̂1, β̂2) denotes the (canonical) estimator of

the asymptotic variance in (3.10), then the null hypothesis in (3.1) is rejected if

d̂2 < ε+
σ̂d2√
n
uα, (3.12)

where uα is the α-quantile of the standard normal distribution. The finite sample properties of

this test will be investigated in Section 5.1.

Remark 3.2. It follows from Theorem 3.1 that the test (3.12) has asymptotic level α and is

consistent if n1, n2 → ∞. More precisely, if Φ denotes the cumulative distribution function of

the standard normal distribution we have for the probability of rejecting the null hypothesis in

(3.1)

P
(
d̂2 < ε+

σ̂d2√
n
uα

)
= P

(√n
σ̂d2

(d̂2 − d2) <
√
n

σ̂d2
(ε− d2) + uα

)
.

Under continuity assumptions it follows that σ̂2
d2

P−→ σ2
d2

and Theorem 3.1 yields
√
n (d̂2 −

d2)/σ̂d2
D−→ N (0, 1). This gives

P
(
d̂2 ≤ ε+

σ̂d2√
n
uα

)
−→

n1,n2→∞


0 if d2 > ε

α if d2 = ε

1 if d2 < ε

.
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The test (3.12) can be recommended if the sample sizes are reasonable large. However, we will

demonstrate in Section 5 that for very small sample sizes, the critical values provided by this

asymptotic theory may not provide an accurate approximation of the nominal level, and for

this reason we will also investigate a parametric bootstrap procedure to generate critical values

for the statistic d̂2.

Algorithm 3.3. (parametric bootstrap for testing precise hypotheses)

(1) Calculate the OLS-estimators β̂1 and β̂2, the corresponding variance estimators

σ̂2
` =

1

n`

k∑̀
i=1

n`,i∑
j=1

(Y`,i,j −m`(x`,i, β̂`))
2; ` = 1, 2,

and the test statistic d̂2 = d2(β̂1, β̂2) defined by (3.8).

(2) Define estimators of the parameters β1 and β2 by

ˆ̂
β` =

{
β̂` if d̂2 ≥ ε

β̃` if d̂2 < ε
` = 1, 2, (3.13)

where β̃1, β̃2 denote the OLS-estimators of the parameters β1, β2 under the constraint

d2(β1, β2) =

∫
X

(m1(x, β1)−m2(x, β2))
2dx = ε. (3.14)

Finally, define
ˆ̂
d2 = d2(

ˆ̂
β1,

ˆ̂
β2) and note that

ˆ̂
d2 ≥ ε.

(3) Bootstrap test

(i) Generate bootstrap data under the null hypothesis, that is

Y ∗`,i,j = m`(x`,i,
ˆ̂
β`) + ε∗`,i,j , i = 1, . . . , n`,i, ` = 1, 2, (3.15)

where the errors ε∗`,i,j are independent normally distributed such that ε∗`,i,j ∼ N (0, σ̂2
` )

(` = 1, 2).

(ii) Calculate the OLS estimates β̂∗1 and β̂∗2 from the bootstrap data and the test statistic

d̂∗2 = d2(β̂
∗
1 , β̂

∗
2) =

∫
X

(m1(x, β̂
∗
1)−m2(x, β̂

∗
2))2dx

from the bootstrap data. The quantile of the distribution of the statistic d̂∗2 (which

depends on the data {Yl,i,j|l = 1, 2; j = 1, ...nl,i; i = 1, ..., kl} through the estimates
ˆ̂
β1 and

ˆ̂
β2) is denoted by q̂α.
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The steps (i) and (ii) are repeated B times to generate replicates d̂∗2,1, . . . , d̂
∗
2,B of d̂∗2. If

d̂
∗(1)
2 ≤ . . . ≤ d̂

∗(B)
2 denotes the corresponding order statistic, the estimator of the quantile

of the distribution of d̂∗2 is defined by q̂
(B)
α := d̂

∗(bBαc)
2 , and the null hypothesis is rejected

whenever

d̂2 < q̂(B)
α . (3.16)

The following result shows that the bootstrap test (3.16) is a consistent asymptotic level α-test.

Theorem 3.4. Assume that the conditions of Theorem 3.1 are satisfied.

(1) If the null hypothesis in (3.1) holds, then we have for any α ∈ (0, 0.5)

lim
n1,n2→∞

P(d̂2 < q̂α) =

{
0 if d2 > ε

α if d2 = ε
. (3.17)

(2) If the alternative in (3.1) holds, then we have for any α ∈ (0, 0.5)

lim
n1,n2→∞

P(d̂2 < q̂α) = 1. (3.18)

4 Comparing curves by their maximal deviation

This section is devoted to a test for the hypotheses (2.3), where d denotes the maximal absolute

deviation defined by (2.4). The corresponding test statistic is given by the maximum distance

d̂∞ = d∞(β̂1, β̂2) = max
x∈X
|m1(x, β̂1)−m2(x, β̂2)| (4.1)

between the two estimated regression functions, where β̂1, β̂2 are the OLS-estimates from the

two samples. In order to describe the asymptotic distribution of the statistic d̂∞ we define

E =
{
x ∈ X

∣∣ |m1(x, β1)−m2(x, β2)| = d∞
}

(4.2)

as the set of extremal points and introduce the decomposition E = E+ ∪ E−, where

E∓ =
{
x ∈ X

∣∣ m1(x, β1)−m2(x, β2) = ∓ d∞
}
. (4.3)

The following result is proved in Section 6.3 of the Appendix.

Theorem 4.1. If d∞ > 0 and the assumptions of Theorem 3.1 are satisfied, then
√
n (d̂∞ − d∞)

D−→ Z := max
{

max
x∈E+

G(x),max
x∈E−

(−G(x))
}
, (4.4)

where {G(x)}x∈X denotes a Gaussian process defined by

G(x) =
(

∂
∂β1
m1(x, β1)

)T√
λΣ
−1/2
1 Z1 −

(
∂
∂β2
m2(x, β2)

)T√ λ
λ−1Σ

−1/2
2 Z2, (4.5)

and Z1 and Z2 are p1- and p2-dimensional standard normal distributed random variables, re-

spectively, i.e. Z` ∼ N (0, Ip`), ` = 1, 2.
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In principle, Theorem 4.1 provides an asymptotic level α-test for the hypotheses

H0 : d∞(β1, β2) ≥ ε versus H1 : d∞(β1, β2) < ε (4.6)

by rejecting the null hypotheses whenever d̂∞ < qα,∞, where qα,∞ denotes the α-quantile of the

distribution of the random variable Z defined in (4.4). However, this distribution has a very

complicated structure, which depends on the unknown location of the extremal points of the

“true” difference ∆(·, β2, β2) = m1(·, β1)−m2(·, β2). For example, if E = {x0} the distribution

of Z is a centered normal distribution but with variance

σ2
∞ = λ

(
∂
∂β1
m1(x0, β1)

)T
Σ−11

∂
∂β1
m1(x0, β1) + λ

λ−1

(
∂
∂β2
m2(x0, β2)

)T
Σ−12

∂
∂β2
m2(x0, β2) (4.7)

which depends on the location of the (unique) extremal point x0. In general (more precisely

in the case #E > 1) the distribution of Z is the distribution of a maximum of dependent

Gaussian random variables, where the variances and the dependence structure depend on the

location of the extremal points of the function ∆(·, β1, β2). Because the estimation of these

points is very difficult, we propose a bootstrap approach to obtain quantiles. The bootstrap

test is defined in the same way as described in Algorithm 3.3, where the distance d2 is replaced

by the maximal deviation d∞. The corresponding quantile obtained in Step 3(ii) of Algorithm

3.3 is now denoted by q̂α,∞. The following result is proved in Section 6.4 of the Appendix and

shows that the test, which rejects the null hypothesis in (4.9), whenever

d̂∞ < q̂α,∞ (4.8)

has asymptotic level α and is consistent if the cardinality of the set E is one.

Theorem 4.2. If the assumptions of Theorem 4.1 are satisfied and the set E defined in (4.2)

consists of one point, then the test (4.8) is a consistent asymptotic level α-test, that is

(1) If the null hypothesis in (4.6) is satisfied, then we have for any α ∈ (0, 0.5)

lim
n→∞

P
(
d̂∞ < q̂α,∞

)
≤ α, (4.9)

(2) If the alternative in (4.6) is satisfied, then we have for any α ∈ (0, 0.5)

lim
n→∞

P
(
d̂∞ < q̂α,∞

)
= 1. (4.10)

Note that the condition that the set E should only contain one point in Theorem 4.2 above is

critical. If the set E contains more than one point, the corresponding bootstrap test will usually

be conservative [see Section 5.2 for some numerical results]. Intuitively, this behavior can be

explained by the fact that the limiting distribution in Theorem 4.1 depends on the parameters

in a discontinuous way.
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5 Finite sample properites

In this section we investigate the finite sample properties of the test proposed in Section 3.

We study the power and the approximation of the nominal level for the asymptotic tests and

bootstrap tests. For the distance d∞ we also provide a comparison with the approach suggested

by Gsteiger et al. (2011). In order to describe the method proposed by these authors note that

it follows from (3.5) - (3.7) and an application of the Delta method [see Van der Vaart (1998)]

that the variance of the prediction m1(x, β̂1) − m2(x, β̂2) for difference of the two regression

models at the point x is approximately normally distributed, that is

m1(x, β̂1)−m2(x, β̂2)

τ̂n1,n2(x, β̂1, β̂2)

D−→ N (0, 1),

where

τ̂ 2n1,n2
(x, β̂1, β̂2) =

2∑
`=1

1
n`

(
∂
∂β`
m`(x, β`)

∣∣
β`=β̂`

)T
Σ̂−1`

∂
∂β`
m`(x, β`)

∣∣
β`=β̂`

(5.1)

and Σ̂` denotes the estimator of the variance in (3.4), which is obtained by replacing the

parameters β` and ζ`,i by their estimates β̂`, and n`,i/n` (` = 1, 2). Gsteiger et al. (2011) define

a confidence band by

m1(x, β̂1)−m2(x, β̂2)± z1−ατ̂n1,n2(x, β̂1, β̂2),

where z1−α is the (1− α)-quantile of the distribution of the random variable

D := max
x∈X

| 1√
n1

∂
∂β1

(
m1(x, β1)

∣∣
β1=β̂1

)T
Σ̂
−1/2
1 Z1 − 1√

n2

(
∂
∂β2
m2(x, β2)

∣∣
β2=β̂2

)T
Σ̂
−1/2
2 Z2|

τn1,n2(x, β̂1, β̂2)

and Z1 and Z2 are independent p1- and p2-dimensional standard normal distributed random

variables, respectively. They proposed to determine this quantile by simulation, but they did

not prove that this parametric bootstrap method is in fact a valid procedure. On the other hand,

they demonstrated by means of a simulation study that the confidence bands obtained by this

method have rather accurate coverage probabilities. A test for the hypotheses (4.6) is finally

obtained by rejecting the null hypothesis, if the maximum (minimum) of the upper (lower)

confidence band is smaller (larger) than ε (−ε). A particular advantage of this test is that it

directly refers to the distance (2.4), which has a nice interpretation in applications. Moreover, in

linear models (with normally distributed errors) this test keeps its level not only asymptotically

but also for fixed sample size. However, the resulting test is extremely conservative and - as it

will be demonstrated in Section 5.2 - has very low power compared to the methods proposed

in this paper.

10



5.1 Tests based on the distance d2

All presented results in this and the following section are based on 1000 simulation runs and

the quantiles of the bootstrap tests have been obtained by B = 300 bootstrap replications. For

the sake of brevity we restrict ourselves to a comparison of two shifted EMAX-models, i.e.

m1(x, α) = δ +
5x

1 + x
, m2(x, β) =

5x

1 + x
. (5.2)

The dose range is given by the interval X = [0, 4] and an equal number of observations was

taken at five dose levels x`,1 = 0, x`,2 = 1, x`,3 = 2, x`,4 = 3, x`,5 = 4 in both groups (that is

k1 = k2 = 5). In Table 1 and 2 we present the simulated type I error of the bootstrap test

(3.16) and the asymptotic test (3.12) respectively, where the threshold ε in the hypothesis (3.1)

was chosen as ε = 1. Various configurations of σ2
1, σ2

2, n1, n2 and δ were considered. In the

interior of the null hypothesis (that is d2 > ε) the type one errors of the tests (3.12) and (3.16)

are substantially smaller than the nominal level as predicted by Remark 3.2. For both tests

we observe a rather precise approximation of the nominal level (even for small sample sizes) at

the boundary of the null hypothesis (i.e. ε = 1). In some cases the asymptotic test (3.12) does

not keep its 10%-level and for this reason we recommend to use the bootstrap test (3.16) to

establish equivalence of two regression models with respect to the L2-distance.

α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d2 (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 1 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(10, 10) 0.75 2.25 0.004 0.002 0.001 0.002 0.000 0.002 0.000 0.012

(10, 10) 0.5 1 0.051 0.064 0.052 0.043 0.101 0.120 0.118 0.115

(10, 20) 1 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(10, 20) 0.75 2.25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005

(10, 20) 0.5 1 0.055 0.060 0.051 0.051 0.104 0.111 0.101 0.102

(20, 20) 1 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(20, 20) 0.75 2.25 0.001 0.002 0.000 0.017 0.004 0.005 0.001 0.031

(20, 20) 0.5 1 0.057 0.058 0.050 0.067 0.125 0.107 0.097 0.127

(50, 50) 1 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(50, 50) 0.75 2.25 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000

(50, 50) 0.5 1 0.057 0.048 0.054 0.052 0.097 0.114 0.093 0.114

Table 1: Simulated level of the d2-bootstrap test (3.16) for the equivalence of two shifted EMAX

models defined in (5.2). The threshold in (3.1) is chosen as ε = 1.
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α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d2 (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 1 4 0.002 0.002 0.002 0.000 0.000 0.002 0.003 0.005

(10, 10) 0.75 2.25 0.005 0.005 0.009 0.008 0.007 0.011 0.016 0.013

(10, 10) 0.5 1 0.080 0.042 0.049 0.032 0.102 0.061 0.071 0.050

(10, 20) 1 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(10, 20) 0.75 2.25 0.007 0.012 0.007 0.015 0.017 0.015 0.012 0.017

(10, 20) 0.5 1 0.055 0.063 0.060 0.048 0.081 0.078 0.084 0.070

(20, 20) 1 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(20, 20) 0.75 2.25 0.000 0.001 0.002 0.012 0.017 0.003 0.006 0.013

(20, 20) 0.5 1 0.060 0.066 0.080 0.066 0.090 0.091 0.096 0.092

(50, 50) 1 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(50, 50) 0.75 2.25 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002

(50, 50) 0.5 1 0.041 0.058 0.052 0.086 0.071 0.087 0.073 0.117

Table 2: Simulated level of the asymptotic d2-test (3.12) for the equivalence of two shifted

EMAX models defined in (5.2). The threshold in (3.1) is chosen as ε = 1.

In Tables 3 and 4 we display the power of the two tests for various alternatives specified

by the value δ in model (5.2). We observe a reasonable power of both tests in all cases under

consideration. In the cases where the asymptotic test (3.12) keeps (or exceeds) its nominal level

it is slightly more powerful than the bootstrap test (3.16). On the other hand the opposite

behaviour can be observed in the cases where the asymptotic test is conservative (for example,

if α = 10%, n1 = n2 = 10). We also note that the power of both tests is a decreasing function

of the distance d2, as predicted by the asymptotic theory.

α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d2 (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 0.25 0.25 0.210 0.118 0.134 0.080 0.300 0.212 0.256 0.214

(10, 10) 0.1 0.04 0.294 0.132 0.186 0.086 0.427 0.250 0.312 0.164

(10, 10) 0 0 0.351 0.145 0.176 0.090 0.467 0.286 0.340 0.160

(10, 20) 0.25 0.25 0.257 0.125 0.191 0.105 0.392 0.234 0.305 0.226

(10, 20) 0.1 0.04 0.395 0.164 0.254 0.121 0.535 0.305 0.395 0.238

(10, 20) 0 0 0.437 0.158 0.291 0.148 0.598 0.290 0.474 0.260

(20, 20) 0.25 0.25 0.392 0.171 0.225 0.140 0.534 0.302 0.382 0.230

(20, 20) 0.1 0.04 0.560 0.308 0.418 0.165 0.720 0.460 0.562 0.287

(20, 20) 0 0 0.610 0.314 0.390 0.180 0.757 0.462 0.555 0.307

(50, 50) 0.25 0.25 0.724 0.460 0.554 0.245 0.825 0.595 0.825 0.452

(50, 50) 0.1 0.04 0.961 0.691 0.821 0.485 0.982 0.824 0.973 0.647

(50, 50) 0 0 0.984 0.734 0.865 0.508 0.998 0.861 0.999 0.684

Table 3: Simulated power of the d2-bootstrap test (3.16) for the equivalence of two shifted

EMAX models defined in (5.2). The threshold in (3.1) is chosen as ε = 1.
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α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d2 (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 0.25 0.25 0.264 0.103 0.175 0.082 0.311 0.131 0.217 0.102

(10, 10) 0.1 0.04 0.351 0.139 0.196 0.068 0.431 0.183 0.247 0.100

(10, 10) 0 0 0.381 0.120 0.222 0.078 0.468 0.168 0.279 0.097

(10, 20) 0.25 0.25 0.305 0.147 0.256 0.112 0.382 0.192 0.317 0.153

(10, 20) 0.1 0.04 0.468 0.218 0.359 0.135 0.536 0.268 0.438 0.170

(10, 20) 0 0 0.510 0.220 0.358 0.110 0.570 0.272 0.455 0.161

(20, 20) 0.25 0.25 0.423 0.271 0.321 0.172 0.493 0.328 0.341 0.216

(20, 20) 0.1 0.04 0.640 0.328 0.501 0.208 0.716 0.407 0.585 0.260

(20, 20) 0 0 0.690 0.351 0.501 0.206 0.781 0.438 0.573 0.272

(50, 50) 0.25 0.25 0.659 0.475 0.534 0.382 0.740 0.562 0.649 0.446

(50, 50) 0.1 0.04 0.965 0.750 0.868 0.556 0.974 0.813 0.911 0.637

(50, 50) 0 0 0.980 0.848 0.937 0.601 0.991 0.893 0.946 0.668

Table 4: Simulated power of the asymptotic d2- test (3.12) for the equivalence of two shifted

EMAX models defined in (5.2). The threshold in (3.1) is chosen as ε = 1.

5.2 Tests based on the distance d∞

In this section we investigate the maximum deviation distance and also provide a comparison

with the test for the hypotheses (4.6), which has recently been proposed by Gsteiger et al.

(2011). We begin with a comparison of an EMAX and an exponential model, that is

m1(x, β1) = 1 +
2x

1 + x
, m2(x, β2) = δ + 2.2 · (exp (x

8
)− 1). (5.3)

The dose range is given by the interval X = [0, 4] and an equal number of patients was allocated

at five dose levels x`,1 = 0, x`,2 = 1, x`,3 = 2, x`,4 = 3, x`,5 = 4 in both groups (that is

k1 = k2 = 5). In Table 5 we display the simulated rejection probabilities of the the bootstrap

test (4.8) under the null hypothesis in (4.6), where ε = 1. The results for the asymptotic test are

given in Table 6. We note that this test can be used in the present context, because in example

(5.3) the cardinality of the set E of extremal points of the ”true” difference m2(x, β1)−m2(x, β2)

is one. Thus, if the unique extremal point has been estimated, we obtain by (4.7) an estimate,

say σ̂2
∞, of the asymptotic variance of the statistic d̂∞. The null hypothesis is now rejected (at

asymptotic level α), whenever

d̂∞ < ε+
σ̂∞√
n
uα , (5.4)

where uα is α−quantile of the standard normal distribution. We observe that the bootstrap

test (4.8) keeps it nominal level at the boundary of the null hypothesis, where the level is

smaller in the interior (this confirms the theoretical results from Section 4). The approximation

is less precise for small sample sizes. Compared to the d2-bootstrap test, the test (4.8) is

conservative. On the other hand the asymptotic test (5.4) is extremely conservative, even for

relative large sample sizes (see Table 6). In Table 5 we also display the rejecting probabilities of

the corresponding test of Gsteiger et al. (2011) in brackets. This test is described in Section 2

and we observe that it is extremely conservative. The level of the test of Gsteiger et al. (2011)
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is practically 0 in nearly all cases under consideration.

The simulated power of the bootstrap and the asymptotic d∞-test are displayed in Table 7 and

8. We observe a substantially better performance of the bootstrap test (4.8) in all cases of

consideration. In Table 7 we also display the rejecting probabilities of the test of Gsteiger et al.

(2011) in brackets. This test has practically no power, and the method proposed in this paper

yields a substantial improvement.

α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d∞ (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 0.25 1.5 0.000 (0.000) 0.001 (0.000) 0.000 (0.000) 0.001 (0.000) 0.000 (0.000) 0.004 (0.000) 0.000 (0.000) 0.007 (0.000)

(10, 10) 0.5 1.25 0.000 (0.000) 0.003 (0.000) 0.001 (0.000) 0.010 (0.000) 0.003 (0.000) 0.014 (0.000) 0.005 (0.000) 0.018 (0.000)

(10, 10) 0.75 1 0.035 (0.001) 0.027 (0.000) 0.023 (0.000) 0.032 (0.000) 0.075 (0.000) 0.095 (0.000) 0.066 (0.001) 0.072 (0.000)

(10, 20) 0.25 1.5 0.000 (0.000) 0.002 (0.000) 0.000 (0.000) 0.001 (0.000) 0.000 (0.000) 0.002 (0.000) 0.000 (0.000) 0.002 (0.000)

(10, 20) 0.5 1.25 0.004 (0.000) 0.003 (0.000) 0.001 (0.000) 0.008 (0.000) 0.008 (0.000) 0.009 (0.000) 0.009 (0.000) 0.020 (0.000)

(10, 20) 0.75 1 0.045 (0.000) 0.026 (0.000) 0.028 (0.000) 0.031 (0.000) 0.112 (0.002) 0.086 (0.000) 0.079 (0.000) 0.080 (0.001)

(20, 20) 0.25 1.5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

(20, 20) 0.5 1.25 0.001 (0.000) 0.001 (0.000) 0.000 (0.000) 0.002 (0.000) 0.003 (0.000) 0.007 (0.000) 0.001 (0.000) 0.007 (0.000)

(20, 20) 0.75 1 0.034 (0.000) 0.021 (0.000) 0.021 (0.000) 0.018 (0.000) 0.082 (0.000) 0.074 (0.000) 0.063 (0.000) 0.060 (0.000)

(50, 50) 0.25 1.5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

(50, 50) 0.5 1.25 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 0.000 (0.000) 0.000 (0.000)

(50, 50) 0.75 1 0.051 (0.000) 0.026 (0.000) 0.022 (0.000) 0.015 (0.000) 0.106 (0.000) 0.078 (0.000) 0.062 (0.000) 0.057 (0.000)

Table 5: Simulated level of the d∞-bootstrap test (4.8) for the equivalence of an EMAX and an

exponential model defined by (5.3). The threshold in (4.6) is chosen as ε = 1.

α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d∞ (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 0.25 1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(10, 10) 0.5 1.25 0.001 0.001 0.000 0.000 0.003 0.004 0.001 0.000

(10, 10) 0.75 1 0.012 0.005 0.003 0.000 0.029 0.010 0.001 0.001

(10, 20) 0.25 1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

(10, 20) 0.5 1.25 0.000 0.005 0.001 0.000 0.000 0.007 0.003 0.001

(10, 20) 0.75 1 0.019 0.006 0.009 0.004 0.038 0.014 0.023 0.009

(20, 20) 0.25 1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(20, 20) 0.5 1.25 0.000 0.000 0.001 0.002 0.000 0.001 0.001 0.001

(20, 20) 0.75 1 0.011 0.036 0.009 0.004 0.033 0.025 0.027 0.0016

(50, 50) 0.25 1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(50, 50) 0.5 1.25 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

(50, 50) 0.75 1 0.016 0.015 0.012 0.008 0.039 0.039 0.041 0.026

Table 6: Simulated level of the asymptotic d∞-test (5.4) for the equivalence of an EMAX and

an exponential model defined by (5.3). The threshold in (4.6) is chosen as ε = 1.
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α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d∞ (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 1 0.75 0.160 (0.002) 0.093 (0.000) 0.125 (0.000) 0.102 (0.000) 0.297 (0.005) 0.225 (0.000) 0.229 (0.001) 0.216 (0.000)

(10, 10) 1.5 0.5 0.237 (0.003) 0.133 (0.000) 0.164 (0.000) 0.120 (0.000) 0.383 (0.008) 0.231 (0.000) 0.309 (0.005) 0.232 (0.000)

(10, 20) 1 0.75 0.185 (0.003) 0.123 (0.000) 0.159 (0.000) 0.120 (0.000) 0.320 (0.006) 0.226 (0.000) 0.283 (0.003) 0.219 (0.000)

(10, 20) 1.5 0.5 0.300 (0.006) 0.175 (0.000) 0.269 (0.000) 0.133 (0.000) 0.457 (0.007) 0.305 (0.000) 0.414 (0.005) 0.255 (0.000)

(20, 20) 1 0.75 0.214 (0.010) 0.138 (0.000) 0.171 (0.002) 0.118 (0.000) 0.393 (0.018) 0.271 (0.001) 0.345 (0.002) 0.232 (0.001)

(20, 20) 1.5 0.5 0.401 (0.020) 0.229 (0.000) 0.363 (0.003) 0.168 (0.000) 0.604 (0.047) 0.398 (0.002) 0.523 (0.010) 0.317 (0.000)

(50, 50) 1 0.75 0.473 (0.122) 0.255 (0.013) 0.363 (0.043) 0.200 (0.001) 0.662 (0.178) 0.436 (0.037) 0.562 (0.072) 0.357 (0.003)

(50, 50) 1.5 0.5 0.851 (0.262) 0.550 (0.022) 0.740 (0.061) 0.385 (0.002) 0.927 (0.361) 0.716 (0.068) 0.845 (0.148) 0.565 (0.013)

Table 7: Simulated power of the d∞-bootstrap test (4.8) for the equivalence of an EMAX and

an exponential model defined by (5.3). The threshold in (4.6) is chosen as ε = 1.

α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d∞ (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 1 0.75 0.042 0.006 0.011 0.001 0.109 0.017 0.046 0.007

(10, 10) 1.5 0.5 0.064 0.008 0.014 0.002 0.140 0.026 0.047 0.009

(10, 20) 1 0.75 0.114 0.014 0.048 0.004 0.199 0.047 0.106 0.023

(10, 20) 1.5 0.5 0.129 0.018 0.059 0.006 0.228 0.052 0.127 0.025

(20, 20) 1 0.75 0.151 0.036 0.064 0.009 0.285 0.093 0.170 0.035

(20, 20) 1.5 0.5 0.209 0.060 0.104 0.012 0.360 0.120 0.202 0.044

(50, 50) 1 0.75 0.417 0.206 0.303 0.111 0.569 0.337 0.440 0.221

(50, 50) 1.5 0.5 0.706 0.267 0.408 0.146 0.826 0.462 0.630 0.303

Table 8: Simulated power of the asymptotic d∞-test (5.4) for the equivalence of an EMAX and

an exponential model defined by (5.3). The threshold in (4.6) is chosen as ε = 1.

We conclude this section with an investigation of the models in (5.2). In this case the set of

extremal points of the ”true” difference is given by E = [0, 4] and an asymptotic test based on

the maximum deviation is not available. In Table 9 we display the rejection probabilities of

the bootstrap test (4.8) under the null hypothesis. The numbers in brackets show again the

corresponding values for the test Gsteiger et al. (2011). We observe that in this case both tests

are conservative.

Corresponding results under the alternative are shown in Table 10, where it is demonstrated

that the bootstrap test (4.8) yields again a substantial improvement in power compared to the

test of Gsteiger et al. (2011). While this test has practically no power, the new bootstrap test

proposed in this paper is able to establish equivalence between the curves with a reasonable

type II error, if the total sample size is larger than 50.
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α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ = d∞ (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 1 0.000 (0.000) 0.004 (0.000) 0.001 (0.000) 0.005 (0.000) 0.007 (0.000) 0.019 (0.000) 0.010 (0.000) 0.024 (0.000)

(10, 10) 0.75 0.000 (0.000) 0.008 (0.000) 0.006 (0.000) 0.015 (0.000) 0.013 (0.002) 0.041 (0.000) 0.020 (0.000) 0.043 (0.000)

(10, 10) 0.5 0.015 (0.001) 0.040 (0.000) 0.016 (0.000) 0.030 (0.000) 0.050 (0.005) 0.104 (0.000) 0.054 (0.002) 0.074 (0.001)

(10, 20) 1 0. 000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.003 (0.000) 0.005 (0.000) 0.002 (0.000) 0.003 (0.000) 0.012 (0.000)

(10, 20) 0.75 0.001 (0.000) 0.004 (0.000) 0.000 (0.000) 0.006 (0.000) 0.005 (0.000) 0.023 (0.000) 0.006 (0.000) 0.036 (0.000)

(10, 20) 0.5 0.018 (0.000) 0.016 (0.000) 0.012 (0.000) 0.030 (0.000) 0.045 (0.000) 0.051 (0.000) 0.037 (0.000) 0.077 (0.000)

(20, 20) 1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 0.000 (0.000) 0.004 (0.000) 0.006 (0.000) 0.006 (0.000)

(20, 20) 0.75 0.000 (0.000) 0.002 (0.000) 0.000 (0.000) 0.005 (0.000) 0.003 (0.000) 0.010 (0.002) 0.002 (0.000) 0.016 (0.000)

(20, 20) 0.5 0.006 (0.001) 0.019 (0.000) 0.016 (0.000) 0.026 (0.000) 0.027 (0.001) 0.051 (0.000) 0.046 (0.000) 0.067 (0.000)

(50, 50) 1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 0.000 (0.000)

(50, 50) 0.75 0.006 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.004 (0.000) 0.007 (0.000) 0.002 (0.000) 0.006 (0.000)

(50, 50) 0.5 0.003 (0.000) 0.005 (0.000) 0.004 (0.000) 0.008 (0.000) 0.018 (0.000) 0.027 (0.000) 0.034 (0.000) 0.031 (0.000)

Table 9: Simulated level of the bootstrap d∞-test (4.8) for the equivalence of two shifted EMAX-

models defined by (5.2). The threshold in (4.6) is chosen as ε = 0.5.

α = 0.05 α = 0.1

(σ2
1 , σ

2
2) (σ2

1 , σ
2
2)

(n1, n2) δ = d∞ (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.5, 1)

(10, 10) 0.25 0.062 (0.000) 0.050 (0.000) 0.053 (0.000) 0.059 (0.000) 0.147 (0.000) 0.118 (0.000) 0.118 (0.000) 0.129

(10, 10) 0.1 0.100 (0.000) 0.070 (0.000) 0.099 (0.000) 0.066 (0.000) 0.195 (0.000) 0.137 (0.000) 0.190 (0.000) 0.129 (0.000)

(10, 10) 0 0.109 (0.000) 0.090 (0.000) 0.092 (0.000) 0.067 (0.000) 0.216 (0.000) 0.143 (0.000) 0.176 (0.000) 0.139(0.000)

(10, 20) 0.25 0.077 (0.000) 0.077 (0.000) 0.074 (0.000) 0.062 (0.000) 0.157 (0.000) 0.142 (0.000) 0.141 (0.000) 0.130 (0.000)

(10, 20) 0.1 0.118 (0.001) 0.077 (0.001) 0.100 (0.000) 0.078 (0.000) 0.227 (0.002) 0.163 (0.002) 0.176 (0.000) 0.148 (0.000)

(10, 20) 0 0.151 (0.001) 0.078 (0.001) 0.118 (0.000) 0.077 (0.000) 0.275 (0.004) 0.165 (0.003) 0.213 (0.000) 0.151 (0.000)

(20, 20) 0.25 0.085 (0.000) 0.060 (0.000) 0.076 (0.000) 0.061 (0.000) 0.171 (0.001) 0.134 (0.001) 0.162 (0.000) 0.121 (0.000)

(20, 20) 0.1 0.158 (0.000) 0.090 (0.000) 0.112 (0.000) 0.079 (0.000) 0.309 (0.003) 0.184 (0.002) 0.220 (0.001) 0.174 (0.000)

(20, 20) 0 0.178 (0.003) 0.108 (0.001) 0.120 (0.003) 0.083 (0.000) 0.324 (0.012) 0.209 (0.001) 0.219 (0.008) 0.157 (0.000)

(50, 50) 0.25 0.162 (0.000) 0.086 (0.000) 0.098 (0.000) 0.063 (0.000) 0.283 (0.000) 0.178 (0.000) 0.218 (0.000) 0.153 (0.000)

(50, 50) 0.1 0.390 (0.019) 0.212 (0.002) 0.232 (0.012) 0.137 (0.001) 0.568 (0.054) 0.349 (0.006) 0.398 (0.025) 0.265 (0.003)

(50, 50) 0 0.457 (0.096) 0.211 (0.012) 0.266 (0.032) 0.151 (0.001) 0.630 (0.194) 0.363 (0.033) 0.438 (0.069) 0.261 (0.004)

Table 10: Simulated power of the bootstrap d∞-test (4.8) for the equivalence of two shifted

EMAX-models defined by (5.2). The threshold in (4.6) is chosen as ε = 0.5.

Acknowledgements This work has been supported in part by the Collaborative Research

Center ”Statistical modeling of nonlinear dynamic processes” (SFB 823, Project C1) of the
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6 Appendix: Technical details

The theoretical results of this paper are proved under the following assumptions.

Assumption 6.1. The errors εi,j,` have finite variance σ2
` .

Assumption 6.2. The covariate region X ⊂ Rd is compact and the number and location of

dose levels k` does not depend on n`, ` = 1, 2.

Assumption 6.3. All estimators of the parameters β1, β2 are computed over compact sets

B1 ⊂ Rp1 and B2 ⊂ Rp2.

Assumption 6.4. The regression functions m1 and m2 are twice continuously differentiable

with respect to the parameters for all b1, b2 in neighbourhoods of the true parameters β1, β2 and

all x ∈ X . The functions (x, b`) 7→ m`(x, b`) and their first two derivatives are continuous on

X ×B`.

Assumption 6.5. Defining

ψ
(n)
a,` (b) :=

k∑̀
i=1

n`,i
n`

(m`(x`,i, a)−m`(x`,i, b))
2,

we assume that for any u > 0 there exists vu,` > 0 such that

lim inf
n→∞

inf
a∈B`

inf
|b−a|≥u

ψ(n)
a (b) ≥ vu,` ` = 1, 2.

In particular, under Assumptions 6.1 - 6.5 the least squares estimator can be linearized. To be

precise, consider arbitrary sequences (β`,n)n∈N and (σ`,n)n∈N in B` and R+ such that β`,n → β`
and σ`,n → σ` > 0 as n1, n2 →∞ (` = 1, 2) and denote by Y

(n)
`,i,j data of the form given in (2.1),

(2.2) with β` replaced by β`,n and ε`,i,j independent and identically distributed (for each fixed

n) with mean 0 and finite variances σ2
`,n. Then the least squares estimators β̂

(n)
` computed from

Y
(n)
`,i,j satisfy

√
n` (β̂` − β`,n) =

1
√
n`

k∑̀
i=1

n`,i∑
j=1

φ`,i,j + oP(1), ` = 1, 2, (6.1)

where the functions φ
(n)
`,i,j are given by

φ`,i,j =
ε`,i,j
σ2
`,n

Σ−1`,n
∂
∂bl
m`(x`,i, b`)

∣∣
bl=β`,n

, ` = 1, 2, (6.2)

and Σ`,n takes the form

Σ`,n =
1

σ2
`,n

k∑̀
i=1

ζ`,i
∂
∂bl
m`(x`,i, b`)

∣∣
bl=β`,n

(
∂
∂bl
m`(x`,i, b`)

∣∣
bl=β`,n

)T
, ` = 1, 2. (6.3)
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6.1 Proof of Theorem 3.1:

Let `∞(X ) denote the space of all bounded real valued functions of the form g : X → R. The

mapping

Φ :


Rp1+p2 → `∞(X )

(θ1, θ2) 7→ Φ(θ1, θ2) :

{
X 7→ R
x 7→

(
∂
∂β1
m1(x, β1)

)T
θ1 −

(
∂
∂β2
m1(x, β2)

)T
θ2

, (6.4)

is continuous due to Assumptions 6.2-6.4, where we use the Euclidean and the supremum norm

on Rp1+p2 and `∞(X ), respectively. Consequently, the continuous mapping theorem [see Van der

Vaart (1998)] and (3.7) yield that the process

{
√
nGn(x)}x∈X :=

{√
n
(
( ∂
∂β1
m1(x, β1))

T (β̂1 − β1)− ( ∂
∂β2
m2(x, β2))

T (β̂2 − β2)
)}

x∈X

converges weakly to a centered Gaussian process {G(x)}x∈X in `∞(X ), which is defined by

G(x) =
(

∂
∂β1
m1(x, β1)

)T√
λΣ
−1/2
1 Z1 −

(
∂
∂β2
m2(x, β2)

)T√ λ
λ−1Σ

−1/2
2 Z2, (6.5)

where Z1 and Z2 are p1- and p2-dimensional standard normal distributed random variables, re-

spectively, i.e. Z` ∼ N (0, Ip`), ` = 1, 2. A straightforward calculation shows that the covariance

kernel of the process {G(x)}x∈X is given by (3.11). Now a Taylor expansion gives

pn(x) :=
(
m1(x, β̂1)−m1(x, β1)

)
−
(
m2(x, β̂2)−m2(x, β2)

)
= Gn(x) + oP

(√ 1

n

)
, (6.6)

uniformly with respect to x ∈ X , and it therefore follows that

{
√
npn(x)}x∈X

D−→ {G(x)}x∈X . (6.7)

Recalling the definition of ∆(x, β1, β2) in (2.6), observing the representation

√
n(d̂2 − d2) =

√
n
(∫
X

∆2(x, β̂1, β̂2)dx−
∫
X

∆2(x, β1, β2)dx
)

=
√
n

∫
X

(
pn(x) + 2∆(x, β1, β2)

)
pn(x)dx

=

∫
X

√
np2n(x)dx+ 2

√
n

∫
X

∆(x, β1, β2)pn(x)dx,

and the continuous mapping theorem we therefore obtain

√
n(d̂2 − d2)

D→ 2

∫
X

∆(x, β1, β2)G(x)dx,

whereG denotes the Gaussian process defined in (6.5). Now it is easy to see that the distribution

on the right-hand side is a centered normal distribution with variance σ2
d2

defined in (3.10). This

completes the proof of Theorem 3.1. 2
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6.2 Proof of Theorem 3.4

Proof of (1). First we will derive the asymptotic distribution of the bootstrap estimators β̂∗1
and β̂∗2 . Then we use similar arguments as given in the proof of Theorem 3.1 to derive the

asymptotic distribution of the statistic d̂∗2 (appropriately standardized). Finally, in a third

step, we establish the statement (3.17).

Recall the definition of the estimators in (3.13) and note that it follows from Assumptions

6.1-6.5 that under the null hypothesis H0 : d2 ≥ ε

ˆ̂
β`

P−→ β` ` = 1, 2, whenever d2 ≥ ε. (6.8)

For ` = 1, 2 let χ` = σ(Y`,i,j|i = 1, . . . , k`, j = 1, . . . , n`,i) denote the σ-field generated by the

random variables {Y`,i,j|i = 1, . . . , k`, j = 1, . . . , n`,i} and χ := σ(χ1, χ2) (note that we do not

display the dependence of these quantities on the sample size). Given (6.8) and the consistency

of σ̂`, the discussion after Assumption 6.5 yields

√
n`(β̂

∗
` −

ˆ̂
β`) =

1
√
n`

k∑̀
i=1

n`,i∑
j=1

φ∗`,i,j + oP(1) , ` = 1, 2, (6.9)

where the quantities φ∗`,i,j are given by

φ∗`,i,j =
ε∗`,i,j
σ̂2
`

ˆ̂
Σ−1`

∂
∂β`
m`(x`,i,, β`)

∣∣
β`=

ˆ̂
β`
, (6.10)

and the p1 × p1 and p2 × p2 dimensional matrices
ˆ̂
Σ−11 and

ˆ̂
Σ−12 are defined by

ˆ̂
Σ` =

1

σ̂2
`

k∑̀
i=1

ζ`,i
(
∂
∂β`
m`(x`,i,, β`)

∣∣
β`=

ˆ̂
β`

)(
∂
∂β`
m`(x`,i,, β`)

∣∣
β`=

ˆ̂
β`

)T
.

This yields the representation

√
n`(β̂

∗
` −

ˆ̂
β`) =

k∑̀
i=1

1

σ̂`

ˆ̂
Σ−1`

∂
∂β`
m`(x`,i,, β`)

∣∣
β`=

ˆ̂
β`

1
√
n`

n`,i∑
j=1

ε∗`,i,j
σ̂`

+ oP(1) , ` = 1, 2.

Since by construction the
ε∗`,i,j
σ̂`

are i.i.d. with unit variance and independent of χ, the classical

central limit theorem implies that, conditionally on χ in probability

√
n` · Σ

1
2
` (β̂∗` −

ˆ̂
β`)

D−→ N (0, Ip`) , ` = 1, 2, (6.11)

where the matrix Σ` is defined in (3.4).

We will now use this result to derive the weak convergence of the statistic

d̂∗2 = d2(β̂
∗
1 , β̂

∗
2) =

∫
X

(m1(x, β̂
∗
1)−m2(x, β̂

∗
2))2dx.
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For this purpose we can proceed as in the proof of Theorem 3.1, where we discussed the weak

convergence of the statistic d̂2. Recall that under the null hypothesis condition (6.8) is satisfied.

It then follows by a Taylor expansion that

p∗n(x) :=
(
m1(x, β̂

∗
1)−m1(x,

ˆ̂
β1)
)
−
(
m2(x, β̂

∗
2)−m2(x,

ˆ̂
β2)
)

= G∗n(x) + oP

( 1√
n

)
(6.12)

(uniformly with respect to x ∈ X ), where the process G∗n(x) is given by

G∗n(x) = ( ∂
∂β1
m1(x, β1))

T (β̂∗1 −
ˆ̂
β1)− ( ∂

∂β2
m2(x, β2))

T (β̂∗2 −
ˆ̂
β2). (6.13)

Now the same arguments as given in the proof of Theorem 3.1 together with (6.11) - (6.13) and

Proposition 10.7 in Kosorok (2007) show that, conditionally on χ in probability{√
np∗n(x)

}
x∈X

D→ {G(x)}x∈X (6.14)

where {G(x)}x∈X is the centered Gaussian process defined in (6.5). A further application of

Proposition 10.7 in Kosorok (2007) therefore now yields

√
n

σd2
(d̂∗2 −

ˆ̂
d2)

D→ N (0, 1) (6.15)

conditionally on χ in probability.

Now recall that q̂α is the α-quantile of the bootstrap statistic d̂∗2 conditionally on χ and note

that, almost surely,

α = P(d̂∗2 < q̂α| χ) = P
(√n(d̂∗2 −

ˆ̂
d2)

σd2
<

√
n(q̂α − ˆ̂

d2)

σd2

∣∣∣ χ). (6.16)

Letting

p̂α :=

√
n(q̂α − ˆ̂

d2)

σd2

it follows from (6.15), (6.16) and Lemma 21.2 in Van der Vaart (1998) that

p̂α
P−→ uα, (6.17)

where uα denotes the α-quantile of the standard normal distribution. This relation implies for

any α < 0.5 that

lim
n→∞

P(q̂α − ˆ̂
d2 > 0 ) = lim

n→∞
P (p̂α > 0) = 0. (6.18)

After these preparations we are able to prove the first part of Theorem 3.4, i.e. we show that

the bootstrap test has asymptotic level α as specified in (3.16). It follows from (3.13) that in the

case d̂2 = d2(β̂1, β̂2) ≥ ε the constrained estimators
ˆ̂
β1 and

ˆ̂
β2 coincide with the unconstrained
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OLS-estimators β̂1 and β̂2, respectively. This yields in particular
ˆ̂
d2 = d2(

ˆ̂
β1,

ˆ̂
β2) = d̂2 whenever

d̂2 ≥ ε.

If d2 > ε we have

P(d̂2 < q̂α) = P(d̂2 < q̂α, d̂2 ≥ ε) + P(d̂2 < q̂α, d̂2 < ε)

≤ P(d̂2 < q̂α,
ˆ̂
d2 = d̂2) + P(d̂2 < ε)

≤ P(
ˆ̂
d2 < q̂α) + P

(√n(d̂2 − d2)
σd2

<

√
n(ε− d2)
σd2

)
.

Observing that ε − d2 < 0, it now follows from Theorem 3.1 that the second term is of order

o(1). On the other hand, we have from (6.18) that the first term is of the same order, which

gives limn1,n2→∞ P(d̂2 < q̂α) = 0 and proves the first part of Theorem 3.4 in the case d2 > ε.

For a proof of the corresponding statement in the case d2 = ε we note that it follows again

from (6.18)

P(d̂2 < q̂α) = P(d̂2 < q̂α, d̂2 ≥ ε) + P(d̂2 < q̂α, d̂2 < ε)

= P(d̂2 < q̂α,
ˆ̂
d2 = d̂2) + P(d̂2 < q̂α,

ˆ̂
d2 = ε)− P(d̂2 < q̂α, d̂2 = ε)

= P(d̂2 < q̂α,
ˆ̂
d2 = d̂2) + P(d̂2 < q̂α,

ˆ̂
d2 = ε) + o(1)

d2=ε= P
(√n(d̂2 − d2)

σd2
<

√
n(q̂α − ˆ̂

d2)

σd2
,

ˆ̂
d2 = ε

)
+ o(1)

= P
(√n(d̂2 − d2)

σd2
<

√
n(q̂α − ˆ̂

d2)

σd2

)
− P

(
d̂2 − d2 < q̂α − ˆ̂

d2,
ˆ̂
d2 > ε

)
+ o(1), (6.19)

where the third equality is a consequence of the fact that
√
n(d̂2−d2) is asymptotically normal

distributed, which gives

P(d̂2 < q̂α, d̂2 = ε) ≤ P(d̂2 = ε) −→ 0.

If
ˆ̂
d2 > ε it follows that d̂2 =

ˆ̂
d2 > ε = d2 and consequently the second term in (6.19) can be

bounded by (observing again (6.18))

P(d̂2 − d2 < q̂α − ˆ̂
d2, d̂2 > ε) ≤ P(q̂α − ˆ̂

d2 > 0) = o(1).

Therefore we obtain from Theorem 3.1, (6.17) and (6.19) that limn→∞ P(d̂2 < q̂α) = Φ(uα) = α,

which completes the proof of part (1) of Theorem 3.4.

Proof of (2). Finally, we consider the case d2 < ε and show the consistency of the test (3.16).

Theorem 3.1 implies that d̂2
P−→d2. Since d2 < ε, there exists a constant δ > 0 such that P(d̂2 <

ε−δ)→ 1. Hence the assertion will follow if we establish that P(q̂α > ε−δ)→ 1. To show this,
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denote by F
(n)
b1,b2,s1,s2

the conditional distribution function of d̂∗2 given
ˆ̂
β` = b`, σ̂` = s`, ` = 1, 2.

Since P(max`=1,2 |σ̂` − σ`| ≤ r)→ 1 for any r > 0, it suffices to establish that for some r > 0

sup
{
F

(n)
b1,b2,s1,s2

(ε− δ) | b` ∈ B`, ` = 1, 2; max
`=1,2
|s` − σ`| ≤ r

}
→ 0.

By uniform continuity of the map (b1, b2) 7→ d2(b1, b2) it suffices to prove that for all η > 0 and

` = 1, 2

sup
{
P(|β̂∗` − b`| ≥ η | ˆ̂

βk = bk, σ̂k = sk, k = 1, 2)
∣∣∣ (b`, s`) : |s` − σ`| ≤ r, b` ∈ B`, ` = 1, 2

}
→ 0.

(6.20)

We will only prove the above statement for ` = 1 since the case ` = 2 follows by exactly the

same arguments. For i = 1, ..., k1, j = 1, ..., n1,i let ei,j i.i.d. ∼ N (0, 1) and define

ψ
(n)
a,1 (b) :=

k1∑
i=1

n1,i

n1

(m1(x1,i, a)−m1(x1,i, b))
2,

γ̂s :=
1

n1

k1∑
i=1

n1,i∑
j=1

(sei,j)
2

ψ̂a,s(b) :=
1

n1

k1∑
i=1

n1,i∑
j=1

(m1(x1,i, a) + sei,j −m1(x1,i, b))
2.

By construction, the conditional distribution of β̂∗1 given
ˆ̂
β1 = a, σ̂1 = s is equal to the distribu-

tion of the random variable b̂a,s := arg minb∈B1 ψ̂a,s(b). On the other hand, arg minb∈B1 ψ̂a,s(b) =

arg minb∈B(ψ̂a,s(b)− γ̂s), and

ψ̂a,s(b)− γ̂s = ψ
(n)
a,1 (b) + 2s

k1∑
i=1

(m1(x1,i, a)−m1(x1,i, b))
1

n1

n1,i∑
j=1

ei,j.

Observing that the terms |m1(x1,i, a) − m1(x1,i, b)| are uniformly bounded (with respect to

a, b ∈ B1 and x1,i ∈ X ) it follows that

Rn := sup
|s−σ`|≤r

sup
a,b∈B1

∣∣∣2s k1∑
i=1

(m1(x1,i, a)−m1(x1,i, b))
1

n1

n1,i∑
j=1

ei,j

∣∣∣ = oP(1)

since maxi=1,...,k1 | 1n1

∑n1,i

j=1 ei,j| = oP(1). Now we obtain from Assumption 6.5 that, for suffi-

ciently large n,

sup
(a,s):|s−σ`|≤r

P(|β̂∗` − a| ≥ η| ˆ̂β` = a, σ̂` = s) ≤ sup
(a,s):|s−σj |≤r

P(|b̂a,s − a| ≥ η) ≤ P(Rn ≥ vη/4) = o(1).

Thus (6.20) follows, which completes the proof of Theorem 3.4. 2
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6.3 Proof of Theorem 4.1

Recall the definition of the estimate d̂∞ in (4.1) and define the random variables

Dn =
√
n (d̂∞ − d∞) =

√
n
(

max
x∈X
|m1(x, β̂1)−m2(x, β̂2)| − d∞

)
, (6.21)

Zn =
√
n
(

max
x∈E
|m1(x, β̂1)−m2(x, β̂2)| − d∞

)
. (6.22)

We will use similar arguments as given in Raghavachari (1973) and show in the following

discussion that

Rn = Dn − Zn = oP(1), (6.23)

Zn
D−→ Z, (6.24)

which proves the assertion of Theorem 4.1. For a proof of (6.23) we recall the definition of the

”true” difference ∆(x, β1, β2) in (2.6) and the definition of the process {pn(x)}x∈X in (6.6). It

follows from (6.7) and the continuous mapping theorem that

lim
n1,n2→∞

P
(

max
x∈X
|pn(x)| > an

)
= 0 (6.25)

as n1, n2 → ∞, n/n1 → λ ∈ (1,∞), where an = log n/
√
n. By the representation pn(x) =

Gn(x) + oP(n−1/2) uniformly in x ∈ X and the definition of Gn in (6.6) we have for every η > 0

lim
δ↓0

lim
n1,n2→∞

P
(

sup
‖x−y‖<δ

√
n|pn(x)− pn(y)| > η

)
= 0, (6.26)

where ‖ · ‖ denotes a norm on X ⊂ Rd. In the following discussion define the sets

E∓n =
{
x ∈ X | | ∓ d∞ −∆(x, β1, β2)| ≤ an

}
(6.27)

and En = E+n ∪ E−n , then it follows from the definition of Rn and (6.25) that

0 ≤ Rn =
√
n
(

max
x∈X
|∆(x, β̂1, β̂2)| −max

x∈E
|∆(x, β̂1, β̂2)|

)
=
√
n
(

max
x∈En
|∆(x, β̂1, β̂2)| −max

x∈E
|∆(x, β̂1, β̂2)|

)
+ oP(1)

≤ max(R−n , R
+
n ) + oP(1),

where the quantities R−n and R+
n are defined by

R∓n =
√
n
(

max
x∈E∓n
|∆(x, β̂1, β̂2)| −max

x∈E∓
|∆(x, β̂1, β̂2)|

)
.

We now prove the estimate R∓n = oP(1), which completes the proof of assertion (6.23). For this

purpose we restrict ourselves to the random variable R+
n (the assertion for R−n is obtained by
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similar arguments). Note that E+ ⊂ E+n and therefore it follows that

0 ≤ R+
n =

√
n
(

max
x∈E+n

∆(x, β̂1, β̂2)−max
x∈E+

∆(x, β̂1, β̂2)
)

+ oP(1) (6.28)

≤ max
x∈E+n

√
npn(x)−max

x∈E+

√
npn(x) +

√
n
{

max
x∈E+n

∆(x, β1, β2)− d∞
}

+ oP(1)

= max
x∈E+n

√
npn(x)−max

x∈E+

√
npn(x) + oP(1).

Now define for γ > 0 the set

E+(γ) = {x ∈ X | ∃ y ∈ E+ with ‖x− y‖ < γ}

and δn = 2 inf{γ > 0 | E+n ⊂ E+(γ)}. Obviously E+n ⊂ E+(δn) and the sequence (δn)n∈N is

decreasing, such that δ := limn→∞ δn exists. By the definition of δn we have E+n 6⊂ E+(δn/4).

Consequently, there exist xn ∈ E+n ⊂ X such that ‖xn− y‖ ≥ δn/4 for all y ∈ E+ and all n ∈ N.

The sequence (xn) contains a convergent subsequence (because X is compact), say (xnk)k∈N
which satisfies

lim
k→∞

xnk = x ∈ X , d∞ = lim
k→∞

∆(xnk , β1, β2) = ∆(x, β1, β2).

Consequently, x ∈ E+, but by construction ‖xnk − x‖ ≥ δn/4 for all k ∈ N, which is only

possible if δ = limn→∞ δn = 0.

Now it follows from inequality (6.28) for the sequence (δn)n∈N

oP(1) ≤ R+
n ≤ max

x∈E+(δn)

√
npn(x)−max

x∈E+

√
npn(x) + oP(1)

≤ max
‖y−x‖≤δn

√
n|pn(x)− pn(y)|+ oP(1) = oP(1),

where the last estimate is a consequence of (6.26). A similar statement for R−n completes the

proof of (6.23).

For a proof of the second assertion (6.24) we define the random variable

Z̃n = max
{

max
x∈E+

√
npn(x); max

x∈E−
(−
√
npn(x))

}
,

then it follows from (6.7) and the continuous mapping theorem that Z̃n
D−→ Z, where the

random variable Z is defined in (4.4). Observing the uniform convergence in (6.25) we have as

n1, n2 →∞

P(Zn ≤ t) = P
(
Zn ≤ t, max

x∈X
|pn(x)| < d∞

2

)
+ o(1) = P

(
Z̃n ≤ t, max

x∈X
|pn(x)| < d∞

2

)
+ o(1)

= P(Z̃n ≤ t) + o(1) = P(Z ≤ t) + o(1).

This proves the remaining statement and completes the proof of Theorem 4.1. 2
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6.4 Proof of Theorem 4.2

Throughout this proof, let
ˆ̂
β1 and

ˆ̂
β2 denote the estimators defined in (3.13). Similarly to the

proof of Theorem 3.4, it is possible to establish that

ˆ̂
β`

P−→ β` ` = 1, 2, whenever d∞ ≥ ε, (6.29){√
np∗n(x)

}
x∈X

D−→ {G(x)}x∈X (6.30)

p∗n(x) = G∗n(x) + oP(n−1/2)

uniformly with respect to x ∈ X where p∗n, G
∗
n are defined as in (6.12), (6.13), respectively and

G(x) denotes the Gaussian process defined in (6.5). As #E = 1, we can assume without loss

of generality that E = E+ = {x0}. This gives

d∞ = max
x∈X
|m1(x, β1)−m2(x, β2)| = m1(x0, β1)−m2(x0, β2),

and Theorem 4.1 yields √
n (d̂∞ − d∞)

D−→ G(x0). (6.31)

We begin with a proof of (4.9), i.e. the null hypothesis d∞ ≥ ε is satisfied, and define F∗n =

F+∗
n ∪ F−∗n , where

F∓∗n =
{
x ∈ X | m1(x,

ˆ̂
β1)−m2(x,

ˆ̂
β2) = ∓ ˆ̂

d∞
}
.

From (6.29) and the continuous mapping theorem we obtain the existence of a sequence (γn)∈N
such that γn → 0 and

sup
x∈X
|∆(x,

ˆ̂
β1,

ˆ̂
β2)−∆(x, β1, β2)| = oP(γn), sup

x∈X
|∆(x, β̂∗1 , β̂

∗
2)−∆(x,

ˆ̂
β1,

ˆ̂
β2)| = oP(an), (6.32)

where an = log n/
√
n and the second statement follows from (6.30). Moreover, from the

representation p∗n = G∗n + oP(n−1/2) we have for every η > 0

lim
δ↓0

lim
n1,n2→∞

P
(√

n sup
‖x−y‖<δ

|p∗n(x)− p∗n(y)| > η
)

= 0. (6.33)

Now define bn = max{γn, an} and consider the sets

F±n = {x ∈ X | | ± d∞ −∆(x, β1, β2)| ≤ bn}

and Fn = F+
n ∪ F−n . Defining the random variables

D∗n =
√
n (d̂∗∞ −

ˆ̂
d∞) =

√
n
(

max
x∈X
|m1(x, β̂

∗
1)−m2(x, β̂

∗
2)| − ˆ̂

d∞
)
,

Z∗n =
√
n
(

max
x∈F∗n
|m1(x, β̂

∗
1)−m2(x, β̂

∗
2)| − ˆ̂

d∞
)
,
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and observing (6.32) yields the estimate

0 ≤ R∗n = D∗n − Z∗n =
√
n
(

max
x∈X
|∆(x, β̂∗1 , β̂

∗
2)| −max

x∈F∗n
|∆(x, β̂∗1 , β̂

∗
2)|
)

=
√
n
(

max
x∈Fn
|∆(x, β̂∗1 , β̂

∗
2)| −max

x∈F∗n
|∆(x, β̂∗1 , β̂

∗
2)|
)

+ oP(1)

≤ max(R−
∗

n , R+∗

n ) + oP(1),

where the quantities R−
∗

n and R+∗
n are defined by

R∓
∗

n =
√
n
(

max
x∈F∓n

|∆(x, β̂∗1 , β̂
∗
2)| − max

x∈F∓∗n
|∆(x, β̂∗1 , β̂

∗
2)|
)
,

and we define the maximum of the empty set as zero. We now prove the estimate R+∗
n = oP(1).

By the definition of the set F+
n we have

sup
x/∈F+

n

∆(x,
ˆ̂
β1,

ˆ̂
β2)−∆(x0,

ˆ̂
β1,

ˆ̂
β2) ≤ sup

x/∈F+
n

∆(x, β1, β2)−∆(x0, β1, β2) + oP(bn) < −bn + oP(bn).

Consequently, P (F+∗
n ⊂ F+

n ) −→ 1 and it follows

P
(

max
x∈F+

n

∆(x,
ˆ̂
β1,

ˆ̂
β2) =

ˆ̂
d∞
)
−→ 1.

Therefore 0 ≤ R+∗
n + oP(1) and

oP(1) ≤ R+∗

n =
√
n
(

max
x∈F+

n

∆(x, β̂∗1 , β̂
∗
2)− max

x∈F+∗
n

∆(x, β̂∗1 , β̂
∗
2)
)

+ oP(1)

≤ max
x∈F+

n

√
np∗n(x)− max

x∈F+∗
n

√
np∗n(x) +

√
n
{

max
x∈F+

n

∆(x,
ˆ̂
β1,

ˆ̂
β2)− ˆ̂

d∞

}
+ oP(1)

= max
x∈F+

n

√
np∗n(x)− max

x∈F+∗
n

√
np∗n(x) + oP(1).

Now we construct a set F∗(δn) containing the point x0 and the set F+
n . For this purpose

consider the ball with center x0 and radius γ

F∗(γ) := {x ∈ X | ‖x− x0‖ < γ}

and define δn = 2 · inf{γ > 0 | F+
n ⊂ F∗(γ)}. Obviously x0 ∈ F∗(δn). Moreover, without loss

of generality we assume that the sequence bn is decreasing. As a consequence (δn)n∈N is also

decreasing, such that δ := limn→∞ δn exists. By the definition of δn we have F+
n 6⊂ F∗(δn/4).

Consequently, there exists an xn ∈ F+
n such that ‖xn − x0‖ ≥ δn/4. As X is compact, there

exists a convergent subsequence, say (xnk)k∈N with limit limk→∞ xnk = x ∈ X and

d∞ = lim
n→∞

∆(xnk , β1, β2) = ∆(x, β1, β2).
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Consequently x = x0, and from ‖xnk − x0‖ ≥ δ/4 for all k ∈ N we obtain δ = limn→∞ δn = 0.

Note that F+∗
n ⊂ F+

n ⊂ F∗(δn) with probability tending to one, which yields

oP(1) ≤ R+∗

n ≤ max
x∈F+

n

√
np∗n(x)− max

x∈F+∗
n

√
np∗n(x) + oP(1)

≤
√
n max
x,y∈F∗(δn)

|p∗n(x)− p∗n(y)|+ oP(1)

≤ max
‖x−y‖<2δn

√
n|p∗n(x)− p∗n(y)|+ oP(1) = oP(1)

where the last equality follows from (6.33). Moreover, since we assumed that E = E+ it can be

shown that F−n ,F−∗n will be empty with probability tending to one and thus R∗n = oP(1). Now,

by (6.32), (6.33) and the estimate supx∈F+∗
n
‖x− x0‖ = oP(1) we have

Z̃∗n :=
√
nmax

{
max
x∈F+∗

n

p∗n(x), max
x∈F−∗n

(−p∗n(x))
}

=
√
np∗n(x0) + oP(1)

D−→ G(x0),

and it follows as in the previous proof that Z∗n = Z̃∗n + oP(1), which gives Z∗n
D−→ G(x0)

conditionally on χ in probability. This finally yields

√
n(d̂∗∞ −

ˆ̂
d∞)

D→ G(x0)

conditionally on χ in probability.

As q̂α,∞ is the α-quantile of the bootstrap test statistics d̂∗∞ conditionally on χ it holds that

α = P
(
d̂∗∞ < q̂α,∞

∣∣χ) = P
(√

n(d̂∗∞ −
ˆ̂
d∞) <

√
n(q̂α,∞ − ˆ̂

d∞)
∣∣χ),

almost surely. Thus the α-quantile of the distribution of
√
n(d̂∗∞−

ˆ̂
d∞) conditionally on χ is of

the form p̂α,∞ :=
√
n(q̂α,∞ − ˆ̂

d∞) and satisfies p̂α,∞
P−→ zα, where zα denotes the α-quantile of

the distribution of G(x0). With σ2
d∞

:= Var(G(x0)), it now follows from Lemma 21.2 in Van der

Vaart (1998)
p̂α
σd∞

P−→ uα,

where uα denotes the α-quantile of the standard normal distribution. This result is the analogue

of (6.17) in the proof of Theorem 3.4, and the assertion now follows by exactly the same

arguments as given in the proof of this result.

Finally, for a proof of the remaining statement (3.18) we note that the map (b1, b2) 7→ d∞(b1, b2)

is uniformly continuous. Therefore, the result follows by exactly the same arguments as given

in the proof of Theorem 3.4. The details are omitted for the sake of brevity. 2
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