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Abstract

Due to advancements of semiconductor fabrication that lead to shrinking geome-
tries and lowered supply voltages of semiconductor devices, transient fault rates
will increase significantly for future semiconductor generations [Int13]. To cope
with transient faults, error detection and correction is mandatory. However, addi-
tional resources are required for their implementation. This is a serious problem
in embedded systems development since embedded systems possess only a limited
number of resources, like processing time, memory, and energy. To cope with this
problem, a software-based flexible error handling approach is proposed in this dis-
sertation. The goal of flexible error handling is to decide if, how, and when errors
have to be corrected. By applying this approach, deadline misses will be reduced
by up to 97% for the considered video decoding benchmark. Furthermore, it will
be shown that the approach is able to cope with very high error rates of nearly 50
errors per second.
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In previous decades Information Technology (IT) was used in the context of busi-
ness, enterprise, or government to store, retrieve, transmit, and manipulate data
by applying computers and telecommunication equipment. In such contexts, com-
puters typically are operated as large mainframes. With the invention of the
Personal Computer (PC) in the nineties, IT becomes available to a vast portion
of private individuals. Nowadays, IT is pervasive in our daily life. Information is
available anytime and anywhere (ubiquitous computing). The computer systems
enabling ubiquitous computing accompany the user permanently, either as part of
systems encountered every day or as small portable devices carried around. Due to
ongoing miniaturization, small portable computer devices and also wearable com-
puters are available. Very prominent examples are smart phones and Google Glass
[Gla], respectively. While PCs and smart phones can be easily noticed as com-
puting systems, integrated products are less obvious to discover. If information
processing systems are integrated into enclosing products, they are called embed-
ded systems [Mar11]. Huge application domains for embedded systems exist in the
field of telecommunication, consumer electronics, automotive electronics, railways,
avionics, robotics, logistics, security, health sector, fabrication equipment, smart
buildings, and military equipment. Besides the functional requirements, embedded
systems often have to fulfill non-functional requirements too. An example of a very
important non-functional requirement is dependability, especially in areas where
humans can be injured.
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Since the beginning of IT, the demand for computing power is steadily increas-
ing. For example, in the entertainment and multimedia area, video codecs become
more and more complex and video resolutions are getting higher and higher. Televi-
sion broadcasting is currently preparing 8K UHDTV (rec. ITR-T BR.2020 [Int12]).
This will result in sixteen times as many pixels as in current 1080p HDTV. Further-
more, UHDTV allows for frame rates of up to 120 fps (frames per second). To cope
with the resulting high data rates, faster interconnects and/or more efficient video
codecs are required. Fortunately, advances in semiconductor fabrications allows for
production of integrated circuits (ICs) with more and more computation power.
According to Moore’s Law, the number of transistors in dense ICs will roughly
double every 18 months [Moo65]. Moore’s Law is not a real law of nature. It is
rather a prediction on the basis of observations. Until now, however, the predic-
tion is accurate. The doubling of the amount of transistors can only happen due
to advancements in semiconductor fabrication. If current integrated circuits had
been fabricated with the same technology as 10 years ago, the required chip area
would have been 210 times larger. This means a chip with an edge length of 10 mm
would have grown to a chip with an edge length of 320 mm which will be infeasi-
ble. On the one hand, there are performance penalties. Signals have to travel very
long distances leading to increased signal delay, and hence lead to reduced clock
speed. Furthermore, power consumption will rise significantly which also increases
the emitted heat of systems. On the other hand, the huge dimension of a single
integrated circuit (IC) would lead to fabrication problems. Only a few chips would
fit onto one wafer. Consequently, the production will be very expensive.

However, due to the ongoing trend of shrinking semiconductor devices, the struc-
ture sizes are getting smaller and smaller. In 2004 the 90 nm process technology
started. Now, ten years later, 14 nm is introduced. Shrinking of the structure sizes
is not only advantageous in terms of required chip area. It also allows for lowered
supply voltages. Consequently, energy consumption is reduced as well. However,
due to smaller structure sizes and lowered supply voltages, less charge is stored in
the capacities of the circuit and the distance between the voltage levels representing
a ’0’ and a ’1’ is getting smaller. Hence, devices become more and more susceptible
to external disturbances. According to forecasts of the International Technology
Roadmap for Semiconductors (ITRS) [Int13], future semiconductors will be suscep-
tible to transient faults to a much higher degree than current devices. Transient
faults are single-shot phenomena that can lead to unintended status changes in com-
ponents of a system. They are induced, for example, by natural radioactive decay,
high energy cosmic particles, disturbance in supply voltages, electromagnetic infer-
ences, or overheating. Due to the stochastic characteristics of their sources, faults
affect components of a system in an unpredictable moment in time. Fortunately,
transient faults can be corrected. They persist only until the next status change
of the affected component. Increasing the resilience against transient faults is the
target of this dissertation.
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1.1 Motivation

Resilience against transient faults was traditionally only a concern for computer
systems running in harsh environments or in fields where failures can lead to severe
damages. Due to advancements of semiconductor fabrication that lead to shrinking
geometries and lowered supply voltages of semiconductor devices, the rates of tran-
sient faults will increase significantly for future semiconductor generations. Hence,
resilience against transient faults will become an issue also for everyday comput-
ing. To cope with transient faults, error detection and correction (EDAC) will be
mandatory. However, EDAC does not come for free. Typically, additional resources
are required for the implementation. This is a serious problem, especially in embed-
ded systems development. On the one hand, transient faults have to be handled,
and on the other hand, embedded real-time systems possess only a limited number
of resources, like processing power, memory, and energy. If not enough sparse re-
sources for EDAC are available, deadline misses will occur. The goal of this thesis
is to reduce the amount of resources required for error correction while keeping the
number of deadline misses low. To achieve this goal, a software-based flexible er-
ror handling strategy is introduced. This strategy is responsible to correct already
detected errors. Hence, error detection has to be provided by other components.
Error detection, however, is not within of the scope of this thesis.

The basic idea of flexible error handling is to decide if, when, and how errors
have to be handled. This provides the necessary flexibility not available in typical
EDAC systems where every error is handled alike. When timing constraints of a
system do not allow correcting every occurring error, errors which are classified
to lead to no or negligible impact can be safely ignored. In contrast, errors with
fatal impact have to be corrected. Application knowledge is required to create such
a classification and to decide whether or not an error has to be handled. This
knowledge can be gathered from source code annotations as well as static source
code analysis. Flexible error handling is hard to implemented in hardware, since
hardware has no knowledge of the impact of an error on the application. Conse-
quently, a software-based approach is required. With the Fault Aware Microvisor
Ecosystem (FAME) a tool flow will be presented which automatically extracts the
application knowledge to generate a classification of possible error impacts. FAME
also provides a runtime system which is able to apply the classification.

The flexible error handling approach as well as its implementation (FAME) will
be discussed in detail in Chapter 4 and Chapter 5, respectively. In the next section
the terms fault, error, and failures are defined. Afterwards, some important aspects
of embedded systems are detailed which are often stressed in this thesis.

1.2 Faults, Errors, and Failures

Sorin describes the terms faults, errors, and failures as follows:

“We consider a fault to be a physical flaw, such as a broken wire or a
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transistor with a gate oxide that has broken down. A fault can manifest
itself as an error, such as a bit that is a zero instead of a one, or the
effect of the fault can be masked and not manifest itself as any error.
Similarly, an error can be masked or it can result in a user-visible incor-
rect behavior called a failure. Failures include incorrect computations
and system hangs.” (Sorin in [Sor09])

In these definitions the term “user-visible” means the software running on top
of the hardware. The view point of Sorin is hardware-centric. Hence, the previous
definitions are well suited if only hardware will be considered. In this thesis, how-
ever, the focus lies on software based fault handling. The software stack typically
consists of several layers, like, e.g., device drivers, file system, scheduling, system
libraries, and applications. Hence, the definitions have to be adopted to consider
the currently investigated layer.

Definition 1.1 (Fault) A fault is a phenomenon affecting the layer which is below
the current layer. If the current layer is already the lowest layer, then the fault will
be the physical effect.

Definition 1.2 (Error) If a fault is not masked at the lower layer, it will manifest
itself as an error in the current layer.

Definition 1.3 (Failure) If the error renders the system useless at the current
layer, the error will be called failure. The error will become also a failure if it
propagates to the next layer.

With Definitions 1.1, 1.2, and 1.3 a fault can ripple through the hardware layers
and software stack as an error. If no layer is able to mask – or to correct – the
error, the user will notice the error as failure in form of an incorrect computation
or as system crash.

1.2.1 Masking

Masking of faults and errors can happen in various layers. Logical masking happens
in combinational logic. If, for example, one of the two inputs of an OR gate is
affected by a fault while the other input is logical ’1’, the fault will be masked.
Faults in the register transfer level can be masked, if the fault event occurs outside
a clock edge and a D flip-flop is used to store the result, for example. Arithmetical
masking can be the result of an operation considering not all bits within a register,
like a right shift operation. If an instruction does not use every unit of a processor,
architectural masking can happen. For example, faults in the instruction decoding
for the source and destination register of a NOP operation have no impact on the
correct execution. Last but not least, masking can also occur at the application
level . An example is a fault affecting a memory region, which is not used by the
application.
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1.2.2 Duration

Faults can be categorized according to their duration. A permanent fault occurs
at some point in time, and persists until the faulty component is replaced. To
cope with permanent faults, the ability to avoid using the affected component is
required. Usually, this means to use a fault free spare component as replacement.
In contrast to permanent faults, transient faults can be repaired by (re-)setting the
affected component to a valid state. Transient faults are also called soft errors or
single event upsets (SEUs).

1.3 Embedded Real-Time Systems

Definition 1.4 (Embedded System) “Embedded systems are information pro-
cessing systems embedded into enclosing products.” (Marwedel in [Mar11])

Examples for embedded systems include devices used in telecommunication,
planes, trains, cars, or fabrication equipment. In such areas of application, the link
to physics and physical systems is very important. To stress the link even more,
the term cyber-physical system (CPS) was introduced:

Definition 1.5 (CPS) “Cyber-physical systems are integrations of computation
and physical processes.” (Lee in [Lee07])

Cyber-physical systems describe a subset of embedded systems. Entertainment
systems, such as smart TVs, are embedded systems but not cyber-physical systems.
In contrast, the controller of an anti-lock braking system (ABS) is an embedded
system as well as a cyber-physical system. In the remainder of this thesis the term
CPS is used whenever the link to physics should be stressed.

Embedded systems have important non-functional characteristics. The three
most important characteristics for this thesis – real-time, efficiency, and depend-
ability – are depicted in the following subsections.

1.3.1 Real-Time

In non-real-time systems, only the correct result of a computation is important.
In embedded real-time systems, however, the correctness of a result depends not
only on the logical result, but on the time at which the result is produced as well.
The latest possible point in time for a valid result is called deadline. In hard
real-time systems, every result delivered after the deadline passed is considered
wrong. Contrary, soft real-time systems can cope with results delivered too late.
For example, in a video application, a frame displayed too late would only lead to
jitter. Embedded systems and especially cyber-physical systems inherently require
timing correctness. If a robot is controlled, a too late calculated stop command can
have fatal consequences. For example, the robot might collide with another object.
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Figure 1.1: Definition of laxity, period, and activation time of a task

A typical embedded system comprises periodic real-time tasks which are sched-
uled according to the timing parameters. Figure 1.1 depicts a comprehensive
overview of important times associated with each real-time task Ti. Arrows pointing
upwards denote the point in time at which tasks become available. Deadlines are
marked by downward pointing arrows. The deadline interval di is the time between
the task’s release time and its deadline. The time between start of the system and
the first activation of Ti is called release time ri. In embedded systems, tasks are
typically executed periodically, to perform the same job, like, for example, updating
the steering command of an actuator, in previously defined intervals. The duration
between two consecutive activations is called period pi. The time in which a task is
using the processor is called execution time ci. The laxity or slack li is the difference
of the deadline and the execution time: li = di − ci. If li = 0, the task Ti has to be
started as soon as it becomes ready for execution. Otherwise, deadline misses will
occur.

The knowledge of a task’s execution time or more precisely the worst case ex-
ecution time (WCET) is often required to schedule tasks in embedded real-time
systems. Some definitions related to WCET are visualized in Figure 1.2. The
WCET is extremely hard to compute since it is the largest execution time of a
program for any initial execution state and any input. Due to the undecidability
whether or not a program terminates, the WCET is in general undecidable. How-
ever, for certain programs which, for example, are without recursion and contain
only loops with statically known iteration counts, calculation of the WCET is possi-
ble. Unfortunately, even under such constraints the calculation will be challenging
since the behavior of modern processors is hard to predict at design time. Such
systems contain caches, deep pipelines, interrupts, and virtual memory with Mem-
ory Management Unit (MMU) and Translation Lookaside Buffers (TLBs) which are
all hard to predict. Consequently, the WCET has to be estimated (WCETEST) by
computing a good upper bound. Two properties of such a bound are very important.
On the one hand, the upper bound has to be safe (WCETEST ≥ WCET). On the
other hand, the upper bound has to be tight (WCETEST − WCET � WCET).

The best case execution time (BCET) and BCETEST are defined analogously
to WCET and WCETEST, respectively. Timing analyses to calculate WCETs or
BCETs are out of the scope of this dissertation. However, timing estimations are
required later to schedule the used real-time applications.
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Figure 1.2: WCET-related terms (based on [Mar11])

1.3.2 Efficiency

Embedded systems have to be efficient in many ways:

• Energy: Energy consumption is an important factor in embedded systems. A
huge amount of embedded systems are running on battery or gain their power
via energy harvesting. Hence, the available energy is limited. For example,
nobody would spend money for a smart phone which has to be recharged
every hour due to high energy consumption.

• Weight: Reduced weight is very beneficial for cyber-physical systems. Espe-
cially, if the CPS is integrated into devices, like cars, air planes, or satellites.
Every saved gram also conserves energy or fuel required for locomotion.

• Code size: A typical hardware platform for an embedded system is a system
on a chip (SoC). In a SoC, the processing circuits as well as instruction
memories (typically ROM) are integrated into one single chip. The capabilities
of such a chip are limited and dynamic reloading of additional binary code
is very unusual in embedded systems. Hence, the footprint of the embedded
software has to be small.

• Run-time efficiency: Run-time efficiency basically means to exploit the
underlying hardware resources as good as possible.

• Cost: Cost efficiency is mainly a driving factor for embedded systems pro-
duced in high volumes, like consumer electronics. In order to reduce costs,
clock frequencies as well as supply voltages should be as low as possible, since
this would, for example, reduce energy consumption which allows integrating
a cheaper power supply. Furthermore, only required hardware components
should be integrated in the circuits to reduce packaging costs.

1.3.3 Dependability

Dependability comprises many aspects, such as safety, security, availability, main-
tainability, and reliability. Safety expresses that a system must not cause harm.
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Security guarantees authentic communication and that confidential data stay con-
fidential. Availability and maintainability describe the probability that a system
is available and that a failing system can be repaired within a given time-frame,
respectively. Last but not least, reliability expresses the probability of mission
survival. This includes, for example, the resistance against failures.

Unfortunately, efficiency and dependability are contradicting goals. For exam-
ple, to establish a secure communication, extra program code responsible for en-
cryption is required. To increase reliability redundant resources are required, since
fault tolerance methods are inherently based on some kind of redundancy (temporal
or spatial). Typically, a larger amount of redundant resources allows correcting a
higher number of errors. If maintaining real-time properties of an embedded system
has the highest priority, sufficient redundancy has to be available to handle every
possible error without missing a deadline.

The remainder of this thesis shows how to reduce the amount of redundant
resources while keeping the number of correctable errors high.

1.4 Contribution of this Work

Conventional error correction methods are not capable to consider application
knowledge to apply selective correction. Instead, every error is handled alike. To
overcome this problem, this dissertation proposes a flexible error handling approach.
The following contributions are made:

• Applicability for probabilistic as well as transient memory fault
models: The proposed flexible error handling approach is theoretically ap-
plicable to nearly every possible transient fault model. Only working error
detection schemes as well as some guaranteed fault free hardware components
are required. To demonstrate a wide range of applicability, a probabilistic as
well as a transient memory fault model are considered.

• Efficient fault injection techniques: In this thesis different approaches
to inject faults will be introduced to evaluate the developed methods. The
injection techniques range from injection via a thread running in parallel over
injection on system simulator basis to injection of faults in real systems. The
first techniques have nearly zero overhead. For the latter technique significant
overhead reductions are demonstrated.

• Error classification according to impact on application: Flexible error
handling is based on the observation that errors can have different impacts
on the application. The variety of impacts is shown using a multimedia and
a robotic application. To specify the error impact, data have to be anno-
tated. The easiest way to annotate data is to add reliability qualifiers to
variable declarations in the application source code. Therefore, the qualifiers
reliable and unreliable are used which specify that any possible error affecting
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the annotated data can have severe impact or negligible impact, respectively.
Negligible in this context means that an error cannot lead to system crashes.
The impact on the output quality is not a major concern. The primary goal
of applying these type qualifiers is to avoid crashes.

• Delayed error handling: Delayed error handling is advantageous in situa-
tions where the available time used for error correction is scarce. Sometimes
the correction can be delayed to a later point in time when more time is
available for error correction. Hence, higher prioritized tasks will not be in-
terrupted.

• Introduction of a new programming model for fine-grained resource
mapping: To determine which tasks are affected by an error a fine-grained
resource mapping is required. In a typical operating system, however, re-
sources are managed on a per-process basis. This is too coarse-grained since
a process can contain many tasks. Instead, a subscriber-based model to map
resources to tasks is introduced in this thesis. The subscriber model allows for
mapping resources on the basis of tasks. Moreover, it also helps the operating
system to determine whether or not a resource is currently used by any task.

• Significant reduction of redundant resources: By considering the sub-
scriber model also for checkpoint creation, the checkpoint size as well as the
checkpoint creation time is reduced. If the reliability annotation of data is
also taken into account, additional reductions can be observed.

• Para-virtualization to enable fault handling in software: To avoid
propagation of errors to important software components, virtualization is a
key concept for isolation. The error detection mechanisms are also shielded
by virtualization. Hence, the guest OS or the application are unable to (ac-
cidentally) deactivate error detection. The virtualization overhead is reduced
by tailoring the applied virtualization techniques to the demands of reliability
and embedded systems.

• Improvement of real-time behavior under high fault rates: Due to
the low virtualization overhead, the impact on the real-time properties of the
overall system is minimized. Furthermore, the applied techniques can handle
very high effective fault rates of nearly 50 faults per second. Evaluation shows
that such high fault rates can only be dealt with when all developed methods
of this dissertation are enabled.

• FAME: All the previously mentioned contributions are integrated in one
single ecosystem called Fault Aware Microvisor Ecosystem (FAME).

Embedded real-time systems are in the focus of this dissertation. However, most of
the developed methods are not constrained to embedded systems only and, hence,
can be applied to other computer systems as well.
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1.5 Outline

This thesis is structured as follows. In Chapter 2 related work is shown. After-
wards, different faults models and their implementation are depicted in Chapter 3.
In Chapter 4 the flexible error handling approach is discussed. FAME is presented
in Chapter 5. It is the ecosystem implementing the flexible error handling approach
presented in Chapter 4. The main demonstrator application, an H.264 video de-
coder, is detailed in Chapter 6. Thereafter, this application is used for evaluation
in Chapter 7. In Chapter 8 concluding remarks and hints for future work are given.

1.6 Author’s Contribution to this Dissertation

According to §10(2) of the “Promotionsordnung der Fakultät für Informatik der
Technischen Universität Dortmund vom 29. August 2011”, a Ph.D. dissertation re-
quires a listing of research results achieved in cooperation.

Chapter 3: The probabilistic fault model used in Chapter 3 is based on research
of Prof. Dr. Krishna Palem and Prof. Dr. Vincent Mooney. The integration into the
MPARM[BBB+05] simulator, the operating system support, as well as porting the
application that lead to publication [HMS+12] is the work of the author. The
publication was entirely designed by the author of this dissertation. The co-authors
assisted the author in writing the paper. All compiler integrations used in the paper
are developed by Florian Schmoll.

In [HKS+13] a low-cost fault injection approach is presented. Ingo Korb de-
veloped the low-level JTAG implementation used for the communication between
target and injection board. The fault injection algorithm as well as the paper is
written by the author of this thesis. Again, the other co-authors assisted in writing
the paper.

Ingo Korb also assisted integrating the transient error model for bit flips into
the CoMET/METeor simulator.

Chapter 4: The general idea to flexibly handle errors in embedded real-time sys-
tem was contributed by Prof. Dr. Peter Marwedel and Dr. Michael Engel.

Different error impact classes of an H.264 video decoder are shown in [HES+10a].
The co-authors, especially Dr. Michael Engel, assisted very much in writing of the
paper. However, the application analysis as well as the evaluation was made solely
by the author of this thesis. The error impact analyses of a robotic application was
created by Dennis Nahberger in his diploma thesis [Nah12] supervised by the au-
thor of this thesis. The feasibility of delayed error handling is shown in [HES+10b].
Again, the other co-authors assisted in writing the paper. To track data usage the
subscriber model was envisioned by the author of this dissertation and published
in [HSM+14]. The co-authors assisted in writing the paper.

Chapter 5: The FAME ecosystem and the corresponding publication [HSB+15] is
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designed by the author of this thesis. The coauthors of the paper assisted in writing
the paper.

The conception and implementation of the REPAIR compiler is solely the work
of Florian Schmoll. The corresponding publication highlighting compiler aspects is
[SHM+13]. The majority of this journal article was written by Florian Schmoll. The
author of this thesis contributed some sections, especially, the evaluation section
excluding 4.6 (Static Analysis). In [ESH+11] source code annotations are shown.
Dr. Michael Engel and Florian Schmoll contributed the majority of that paper. The
author of this dissertation performed the experiments. The transfer of information
from compiler to OS is described in [SHM+14]. This technical report was entirely
written by Florian Schmoll. The author of this thesis and the co-authors only gave
hints and assisted in writing.

All virtualization concepts presented in Chapter 5 are entirely envisioned by the
author of this thesis. Papers, such as [HKS+13] or [HSM+14], are inherently based
on the virtualization techniques.

Chapter 6: The H.264 codec used in this thesis was originally written by Martin
Fiedler [FB04]. Ingo Korb contributed many bug fixes to the source code. However,
the whole benchmark application using the H.264 codec was entirely designed by
the author of this thesis. A timing analysis of the H.264 decoder was presented in
[EHS+11]. Dr. Michael Engel provided most of the text for the paper. The author
of this thesis provided all evaluation tools as well as the evaluation section.

The split version of libh264 together with the corresponding timing model was
provided by Björn Bönninghoff.

Chapter 7: Chapter 7 highlights evaluation results of the previously mentioned
publications. All evaluations are performed by the author of this dissertation. There
is only one exception. The values presented in Table 7.1 were measured by Florian
Schmoll.

Chapter 8: The first step towards multi-core support is made with R2G [Hei10].
R2G was entirely envisioned by the author of this dissertation. The execution of au-
tomatically parallelized applications on top of R2G is shown in [CHM+11]. Daniel
Cordes is the main contributor for the latter mentioned publication. The author of
this thesis contributed the operating system, the simulation platform, and R2G.
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This thesis covers many research areas. Therefore, related work is grouped into
different categories. In Section 2.1 fault tolerance methods and fault detection are
depicted. Related work concerning reliability improvements of real-time operating
systems are discussed in Section 2.2. In Section 2.3 checkpoint and recovery methods
are presented. Injecting faults is an important method to test and verify fault
tolerance techniques. Hence, in Section 2.4 examples for fault injection are given.

Other none-reliability aspects are discussed in the remaining sections. Sec-
tion 2.5 depicts relevant scheduling algorithms. Related work concerning timing
estimations is depicted in Section 2.6.

2.1 Fault Tolerance

Fault tolerance methods are typically based on some kind of redundancy. Hereby, a
larger amount of redundant resources allows correcting a higher number of errors.
It is possible to distinguish between two types of redundancy: temporal redundancy
and spatial redundancy. Temporal redundancy means to compute the same data
value at two different moments in time, usually on the same hardware. If spatial
redundancy is used, the same data value will be computed on different pieces of
hardware, usually at the same time. Both redundancy forms can also be mixed.

Fault tolerance methods can be classified as proactive or reactive. A reactive
method will only take action on demand, for example after an error is detected.
In contrast, proactive methods tackle problems that may occur. If a fault occurs,
proactive methods already have a solution available. Proactive methods perma-
nently require resources since, for example, redundant data sets have to be stored.
In contrast, reactive methods will only require resources if an error occurs.
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TMR: Triple Modular Redundancy (TMR) is a typical proactive method to cope
with errors. The computation is executed three times and the results are compared.
If the computation results differ, a majority vote will determine the final result. The
three instances can be executed in parallel (spatial redundancy) and/or sequentially
(temporal redundancy). In the latter case TMR can be combined with a reactive
strategy. It will be sufficient to execute only the first and the second calculation if
the results are equal. Implementations of redundant computations can be found,
for example, in Boeing airplanes [Yeh98] or IBM S/390 systems [SAC+99] (now
System z). The likeliness that TMR is able to locate and to correct an error is very
high. However, the drawback of TMR is the triplication of the required resources
plus extra logic or program code needed for the voter. Another problem can be the
voter as a single point of failure, if the voter is not replicated / protected as well.

DMR: If errors only have to be detected, Double Modular Redundancy (DMR) will
be sufficient. DMR “only” doubles the amount of used resources. If the underlying
hardware can be modified, Austin [Aus99] propose the dynamic implementation
verification architecture (DIVA). In this architecture, the commit phase of the pro-
cessor’s pipeline is augmented with a functional checker unit, called DIVA checker.
The checker unit verifies the correctness of the main processor’s computation. Only
correct results are committed. DIVA assumes that all registers and memories are
protected from faults. Hence, any value the DIVA checker reads or writes will be
without errors. The DIVA checker is a simple in-order core. The main processor
can be a high-performance out-of-order core. The DIVA checker slows down the
main processor by only 3 %, on average.

Parity Bit and ECC: Using a parity bit to protect a word in memory is a low-cost
solution to detect an uneven number of bit-flips. The parity bit is calculated by an
exclusive OR (XOR) operation on all data bits. To check the stored data for an
error, an XOR including the parity bit as well as the data bits has to be performed.
If the result is ’1’ (even parity), an error has occurred. To detect more than one bit
flip, Error Correction Codes (ECC) can be used. Very prominent examples for such
codes are Hamming code [Ham50] and Reed-Solomon code [RS60]. Both are also
able to correct a certain amount of errors. However, the main drawback of ECC is
the overhead in terms of additional resources required to store the extra bits and
the additional time required by the memory controller to compute the checksum
and to correct the error.

Cache Scrubbing: Caches are one of the largest structures in today’s proces-
sors. Hence, they are most vulnerable to transient faults. Therefore, caches are
often protected by ECC which typically offer single-bit error correction and double-
bit error detection. In [MEF+04] Mukherjee et al. analyzed the susceptibility to
double bit faults in ECC-protected caches. They show that the Mean Time To
Failure (MTTF) for such double-bit errors is very large for small caches (less than
tens of megabytes in size). However, large caches need to be scrubbed to reduce the
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temporal double-bit error rate. Scrubbing is a technology which periodically reads
the content of the cache. Due to the read operation, the ECC gets evaluated and
recomputed on each access. Hence, existing single-bit errors can be corrected. If
the scrubbing interval is short enough, the probability of double-bit errors will be
very low. Examples for CPUs with integrated cache scrubbing are AMD Athlon64
and AMD Opteron64 processors [AMD06].

RAMPage: RAMpage is a tool to test memory modules while the system is online.
In the corresponding publication [SKS13], Schirmeier et al. show the integration
of RAMpage into a x86-64 Linux-based system. RAMpage consists of two parts.
The first part is a kernel module which is responsible for claiming physical pages.
This operation includes moving data from used pages to unused pages, since test-
ing a page for memory errors will overwrite the stored data. The second part of
RAMpage runs in user-space and is responsible for the actual testing. RAMpage
will remove pages from memory allocation if a permanent memory error is detected.

EDDI: In [OSM02] Sjorvani et al. introduce a pure software based technique to
detect errors. This technique, called Error Detection by Duplicated Instructions
(EDDI), is based on a customized compiler which duplicates instructions. The du-
plicated instructions use different registers and variables compared to the original
instructions. In the evaluation, the authors show high fault coverage of over 98 %
without any extra hardware for error detection.

SWIFT: Reis et al. present Software Implemented Fault Tolerance (SWIFT) in
[RCV+05] which is an evolution of the previously described EDDI. SWIFT adds
control-flow checking with software signatures to EDDI. In the paper, a SEU fault
model is used with exactly one bit flip throughout the entire program. Furthermore,
it is assumed that the memory is somehow protected, for example, with ECC. Un-
der these assumptions, it is not required to have two distinct memory locations
to store data. However, loads still have to be duplicated since all values stored in
registers require a redundant copy. In EDDI it will be possible that the control flow
is incorrect if a fault happens during branch execution, for example. To eliminate
this problem SWIFT introduces enhanced control flow checking. Therefore, a des-
ignated general purpose register stores a signature of the currently executed block.
This register is called General Signature Register (GSR). The value stored in GSR
is calculated by xor’ing GSR with a statically generated signature when entering
a new basic block of the source code. SWIFT also defines a second register called
RTS, which is storing the run-time adjusting signature. In the case of a branch, the
RTS is calculated by xor’ing the statically generated signature of the current block
with the signature of the target block. After branching the RTS is xor’ed with GSR.
If the result matches the compile-time generated signature of the target block, no
error has occurred. In this approach, the RTS together with the GSR serve as a
redundant duplicate for the program counter. EDDI as well as SWIFT are used to
detect faults. Upon detection, arbitrary user-defined error correction methods can



16 Chapter 2. Related Work

be used, like, for example, FAME which is the main contribution of this dissertation.

ACFC: Assertions for Control Flow Checking (ACFC) are proposed by Venkata-
subramanian et al. in [VHM03]. Each basic block is assigned a pre-calculated
execution parity. Control flow errors can be detected by comparing the calculated
parity bit with the pre-computed parity. In contrast to SWIFT which operates at
assembly level, ACFC operates on C code.

Containment Regions: Fault containment regions [HSL78] are used to limit
the propagation of faults. A system supporting containment regions is designed in
such a way that a fault which affects a specific containment region cannot spread
to another region. The Reliable Computing Base concept [ED12] which is used in
this dissertation can be seen as a special type of containment region.

Typically, error detection only approaches require less redundant resources than
approaches including error correction. As mentioned earlier, this dissertation is
focused on error correction. For the rest of this thesis it is assumed that at least
one of the previously described error detection methods is available. When the
applied method detects an error which cannot be handled directly, it is furthermore
assumed that the error will be reported to the operating system. This will be the
case if, for example, ECC memory is used which raises a Machine Check Exception
when a multi-bit error cannot be corrected.

2.2 Reliability in Real-Time Operating Systems

Reliability in operating systems is a very important issue. Often, reliability is
closely related to security concerns. In this section, selected approaches are shown
increasing the reliability of the overall system based on the Operating System (OS).

EROS: One important development is the EROS system [SSF99] and its follow-
up project, Coyotos. EROS is a capability-based mircokernel. A capability is a
pair of an object identifier and a set of authorized operations on that object. In
a capability system, security is assured by the properties, that (1) capabilities are
unforgeable, (2) processes are only able to obtain capabilities by using authorized
interfaces, and (3) they are given only to processes with the authorization to hold
them. EROS provides support to efficiently restructure critical applications into
small communicating components. These components can then be efficiently iso-
lated from each other and the rest of the system. Access to objects is controlled by
capabilities. In this thesis, a subscription-based model of data object ownership is
introduced which can be seen as orthogonal to capabilities. While capabilities have
been mainly used for protection against intentional errors, like intrusions, they are
useful for protection against hardware errors as well. Due to the strict isolation of
the single components, capabilities can limit the propagation of faults.
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Microvisor: The term microvisor was first used by Heiser and Leslie in [HL10].
It describes an approach where features of a microkernel are combined with fea-
tures of a hypervisor into one operating system. The basic concept of microkernels
is to reduce the kernel code to fundamental mechanisms. Liedtke formulated the
following Minimality Principle [Lie95]:

Definition 2.1 (Minimality Principle) “A concept is tolerated inside the mi-
crokernel only if moving it outside the kernel [...] would prevent implementation of
the system’s required functionality.” (Liedtke in [Lie95])

One application of this Minimality Principle is the minimization of the trusted
computing base (TCB) [SPH+06]. The TCB is a set of components which are
critical for security. Minimality has a further benefit. The number of lines of
kernel code gets reduced which possibly enables formal verification of the kernel.
In [KEH+09], Klein et al. formally verified the seL4 microkernel.

The other important component of the microvisor is virtual machine (VM) sup-
port. The classic definition of a (system-level) VM is given in [PG74]:

Definition 2.2 (Virtual Machine) “A VM is an efficient, isolated duplicate of
a real machine concept.” (Popek in [PG74])

In a VM, virtual resources are either emulated or mapped to physical resources by
a virtual machine monitor (VMM) or hypervisor. In the classic virtualization ap-
proach, virtual resources are essentially indistinguishable from physical resources.
Since the virtual resources are indistinguishable, guest operating systems can be ex-
ecuted without modifications. However, when hardware limitations and efficiency
are of major concern, a para-virtualization approach can be a better choice. In con-
trast to pure virtualization, para-virtualization provides a modified hardware ABI
to which the guest OS has to be ported. This ABI is more suited for virtualization,
and hence imposes less virtualization overhead. A hypervisor which supports para-
virtualization provides an extra hypercall API. These hypercalls are generally more
high-level than the hardware API. Typically, a hypercall can be seen as a system
call to the hypervisor.

Romain: In the L4 microkernel family, several projects provide isolation mech-
anisms in order to prevent errors in one application from affecting other tasks.
TU Dresden’s Fiasco [LW09] L4 variant is used by Döbel et. al in the Romain
framework to build a system that supports the redundant execution of threads for
typical embedded applications [DHE12]. Romain allows detecting and recovering
from SEUs by using n-way modular redundancy. The redundancy is achieved by
using software-implemented transparent multithreading. This means that a thread
gets automatically replicated and distributed appropriate over the available CPU
cores. The necessary synchronization and the state comparisons of the replicas take
place before externalizing the thread state, e.g. when system calls are invoked. The
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proposed method requires a maximum runtime overhead of 30 % for TMR. How-
ever, the majority of the executed benchmarks of the MiBench suite remain below
5 % overhead. A huge advantage of Romain is the support for applications only
available in binary form since Romain is a transparent OS service.

seL4: A formal verification of seL4 is provided by Klein et al. in [KEH+09]. SeL4
is an L4-based microkernel [Lie96]. In [KEH+09] the authors show the correctness
of the C implementation based on the high-level seL4 specification. Hereby, the cor-
rectness of the compiler, assembly code, boot code, and the hardware is assumed.
To support formal verification, Haskell is used to implement a prototype of the ker-
nel which is binary compatible to the later C implementation. Binary compatible
means that applications can be executed with the Haskell or C implementation with-
out recompiling. The used Haskell subset can be automatically translated into the
language of the theorem proving tool the authors use. Hence, the Haskell code can
be translated to the executable specification which can be verified via a refinement
proof against the abstract specification of the seL4 microkernel. However, it is not
possible to generate efficient C code out of Haskell. Therefore, the authors created
the C code manually. The C code is verified against the executable specification
via a refinement proof as well. In the end, the authors created a high-performance
microkernel which is formally verified. Especially the verification is important for
applications with high security demands, since security of a computer system can
only be as good as that of the underlying OS. However, the focus of seL4 is rather
on security than dependability.

RMK: The reliability microkernel framework (RMK) is presented by Wang et al.
in [WKG+06]. RMK is a loadable module for the Linux kernel. It provides
application-aware reliability and dynamically configurable reliability mechanisms.
RMK supports detection of application and OS failures with a high coverage and
low false positive rate and transparent application checkpointing. The modular de-
sign of RMK allows for high configurability. RMK consists of a core, a lower level
(RMK pins), and an upper level (RMK modules). RMK pins encapsulate the under-
lying hardware and low-level system services. These can be, for example, hardware
monitor registers available on modern processors. The RMK modules implement
specific error detection or recovery mechanisms. Due to this design, RMK can be
easily ported to support different platforms and operating systems, since only the
RMK pins have to be ported. The main strength of RMK will be the low overhead
if the CPU performance counters and exported kernel symbols are used. An ap-
plication hang, for example, can be detected by comparing the instruction counter
with the maximum number of instructions needed for the current code block. The
RMK approach focuses on the detection of error effects and not on the detection
of the error itself. The checkpointing is based on information about dirty memory
pages, similar to the approach used in libckpt which will be depicted in the next
section.
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Exokernel: Engler et al. describe an exokernel in [EKO95]. The main idea of
exokernels is to provide only a minimal layer of abstraction. In this architecture, all
hardware resources are exported through a low-level interface to untrusted library
operating systems. This enables the software running on top of it to have a greater
level of control. Therefore, the functionality of exokernels is limited to protection
and multiplexing of resources. In this regard, they are much less restrictive than
typical microkernels, which usually add at least a message passing-based communi-
cation mechanism.

The operating system of FAME, which is presented in this dissertation, is based on
microvisor design principles with features seen typically in exokernels. Hence, it can
be seen as a kind of specialized exokernel which provides only those abstractions
required for building fault-tolerant applications on top of it, while leaving other
crucial resource allocation decisions, such as scheduling and memory management,
to the library OS running on top of it.

2.3 Checkpoint and Recovery

Checkpoint-and-recovery is a commonly used strategy to deal with erroneous system
states. The basic idea of this approach is to restore a valid state in such a case.
Checkpoint and recovery consists of two phases:

1. In phase one, called checkpoint creation, the current system state is stored.
Different strategies exist to determine the point where a checkpoint shall be
created. One is to create checkpoints in previously defined time intervals.
Another method is to add explicit calls to the checkpoint creation routine
into the application’s source code. While the former method ensures regu-
lar checkpoints, the latter method allows for placing checkpoint creation in
strategically useful points. Such a location, for example, is a point in the ap-
plication where the current working set is small. Hence, a checkpoint method
optimized for storing only the working set can create smaller checkpoints.

2. The second phase is checkpoint recovery. This phase is reactive and will be
only executed if an error affects the application or operating system. There-
fore, a (previously) stored system state is used to override the current state.
After restoring, execution is continued with the stored system state. Hence,
the recovery returns to a previous point in time of program execution and all
calculations from that point on have to be redone.

The following references depict different strategies to minimize the overhead of the
checkpoint creation process.

Flashback: Srinivasan et al. [SKA+04] developed Flashback. Flashback is a
tool for light-weight checkpointing of Linux processes. To create a checkpoint, a
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snapshot of a process, called shadow process, is stored. A shadow process con-
tains the state information of the original process including memory, registers, file
descriptors, and signal handlers. Copy-on-write semantics are used to keep the cre-
ation overhead as low as possible. The basic idea of copy-on-write is to map pages
read-only, hence a write access generates a page fault. When such a page fault
occurs, the operating system triggers the creation of a copy of the old data. The
drawback of copy-on-write, however, is a possibly high page fault rate, especially
for applications which write to a variety of different memory locations. Each page
fault will slow down the system due to the necessary processor mode switches.

libckpt: To reduce the amount of data which has to be stored in a checkpoint,
libckpt [PBK+94] implements two optimizations. The first optimization is incre-
mental checkpointing. Incremental checkpointing only stores data changed since
the previous checkpoint. Data not stored in the current checkpoint can be found
in previous checkpoints. The second optimization used by libckpt is the usage of
copy-on-write semantics to determine whether or not data was changed. Like in
Flashback, the drawback can be high page fault rates. However, the authors of the
corresponding paper show huge savings in the checkpoint creation overhead which
amortize the mode switching overhead. Mode switches occur, for example, at every
page fault.

To further reduce the overhead, “dirty” and “accessed” bits of the page table
can be used to track modified and accessed memory. In this solution, the MMU
automatically keeps track of pages which are changed (dirty) and pages which are
used (accessed). The operating system simply has to traverse the page table to find
modified pages. However, this approach requires special hardware features which
are not available on all architectures. For example, ARM processors do not imple-
ment the necessary functionality in the page table entries.

Sequoia: Bernstein describes the Sequoia multiprocessor in [Ber88]. To increase
the resilience against faults in a processing element, accessed memory ranges are
determined by tracking cache accesses. All dirty memory blocks are flushed and a
copy of the processor registers is stored at each cache flush. Hence, there always
a memory image available that is executable on another processor element. If the
fault happens while the processor is not flushing its cache, the operating system
needs only to identify the process assigned to the faulty processor and return it to
the ready queue. Faults while flushing the cache are problematic. Therefore, the
Sequoia System flushes the cache twice. The first flush is stored into a backup copy.
When this flush is completed, the second flush will target the primary storage loca-
tion. If a fault occurs during the backup phase, the primary storage location will be
still intact. In the other case, if a fault occurs during flushing to the primary storage
location, the backup will contain a consistent state. In both cases, the inconsistent
copy can be restored by reading the consistent copy. The main drawback of this is
that the underling hardware has to be modified.
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Most highly optimized checkpoint approaches either require special hardware fea-
tures or are limited to create only application checkpoints. In this dissertation,
however, full-system checkpoints are mandatory to recover also from faults affect-
ing the operating system. The checkpoint mechanism integrated in FAME is able
to significantly reduce the checkpoint time without requiring special hardware fea-
tures.

2.4 Fault Injection

In order to create effective fault-tolerance techniques, system designers require
methods to assess the effectiveness of the applied EDAC techniques already in
the design phase. This evaluation is commonly performed by exploring the effects
of faults on the combined hardware/software system. To cover most of the pos-
sible faults, numerous fault injection experiments have to be performed. Many
approaches to fault injection have been described in the literature so far. However,
fault injection is limited. The system under test can only be stressed with the
type of faults the injection system supports. In this section, an overview of typical
injection approaches and their limits is given.

Hsueh et al. developed a classification of different fault injection techniques in
[HTI97]. A global distinction is made between hardware and software fault injection
techniques.

Hardware-Based Fault Injection

Hsueh et al. define hardware fault injection as a technique that uses additional
hardware to inject faults into the target system. The injection can be with direct
physical contact, e.g., using pin-level probes and sockets, or without contact by
exposing the circuit to a particle beam using lasers or electromagnetic inferences.
Especially the contactless methods have the ability to inject faults in a realistic way.
An alpha particle emitted by the particle beam, for example, will hit the circuit in
a random location, which reflects the stochastic nature of faults quite accurately.
However, this makes it hard to reproduce a specific fault sequence.

MESSALINE: An example for a tool injecting faults with direct physical contact
is MESSALINE developed by Arlat et al. [ACL89]. The fault injection component
of MESSALINE supports two modes. In the forcing mode, a fault is directly applied
by means of multipin probes on the pins of the IC. For the second mode, called
insertion, the IC under test is removed from the target system and inserted into
a special test system where transistor switches isolate the IC from the rest of the
system. Stuck-at faults can be evaluated with both methods. Stuck-at faults are
pins which are permanently ’0’ or ’1’. Physical bridging and intermediate voltage
level simulation is only possible within the forcing mode. Intermediate voltages are
voltages in between the ranges defining a logical ’0’ and ’1’. For example, in 5 V
CMOS, 0 V - 1.5 V and 3.5 V - 5V defines ’0’ and ’1’, respectively. Hence, all volt-
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ages in between 1.5 V and 3.5 V can result in undefined behavior. In the insertion
mode, logical bridging, inversion and open wires can be evaluated.

Velazco: In [VKC+92], Velazco et al. propose to validate and to verify the ef-
ficiency of detection mechanisms for faults induced by heavy ions. Therefore, the
authors used a particle accelerator firing heavy ions on a Motorola 68020 micropro-
cessor and its 68882 co-processor. The main goals of the authors are to study the
influence of caches on the microprocessor sensitivity, the influence of the executed
program on the error rate, the impact of the co-processor, and the interception
and classification of faults. In the case of the 68020 processor, the cache has a
huge influence on the heavy ion sensitivity. With caching enabled, the error rates
are significantly higher. The executed program also has influence on the observed
error rate. In the paper, it was shown that programs heavily using registers are
more susceptible to faults. Faults within the co-processor are often detected by the
main processor due to the communication protocol which will sometimes be per-
turbed by faults. Other errors are detected by the internal control mechanism of the
main processor related to the co-processor management. The main reasons of errors
are classified as wrong addresses, corrupted messages, and sequencing perturbation.

Ecoffet: Another ion based injection method is presented by Ecoffet et al. in
[ELD+92]. The focus of the paper lies on sensitivity tests of different memory types
from various technologies. Like in [VKC+92], a particle accelerator is used to emit
ions. The used linear energy transfer (LET) ranges from 0.3 to 57 MeV · cm2/mg.
The authors concluded that the pattern stored in the memory have influence on
the sensitivity. In particular, they observed that a higher number of stored ’1’ bits
leads to a higher sensitivity to faults.

Pouget: Pouget et al. [PLF03] use a pulsed laser to inject transient fault into an
analog-to-digital converter (ADC). In contrast to the previously mentioned radia-
tion based fault injection, laser beams have the advantage that transient localized
perturbation of the device under test is possible. Hence, lasers enable deterministic
transient fault injection experiments. In addition to injection, the authors also use
lasers to scan the internals of the used ADC. With the latter method, it is possible
to image the information propagation and to extract critical phases.

Vargas: An EMI-based fault injection technique is presented by Vargas et al. in
[VCG+05]. A GigaHertz Transverse Electromagnetic (GTEM) cell is employed to
inject faults into the system under test. The number of injected faults depends
on the radio frequency modulation and the electromagnetic field value. A typical
experimental setup to inject EMI-based faults is depicted in Figure 2.1. A probe is
used that can expose a small part of the board to the disturbance.

MARS: To validate the Maintainable Real-Time System (MARS) Karlsson et al.
[KFA+95] evaluate three different hardware-based fault injection techniques: pin-
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Figure 2.1: EMI injection setup

level, heavy ion, and electromagnetic injection. The goal of the authors is to com-
pare fault injection techniques to identify similarities and differences in the error sets
generated. Their evaluation results show fairly large differences of the implemented
error detection mechanism depending on the applied fault injection technique. This
suggests that the different methods generate different types of errors. Hence, the
applied injection approaches are rather complementary. However, according to the
authors, the heavy ion radiation method stresses the system the most while EMI-
based injection generates only a very restricted set. Pin-forcing exercises error
detection methods located outside of the chip under test more than the other tech-
niques.

In general, hardware-based solutions have the advantage that no resources of the
system under test itself are required to inject the fault. Hence, the real-time be-
havior of the system is not influenced by the injection process. However, hardware-
based injection brings along a number of disadvantages. Either the hardware of the
target system has to be modified or special expensive equipment, e.g., a radiation
source or an ion-beam injector, is required. The statistical nature of the injection
often results in a low precision of fault injection, since neither the exact location nor
the exact point in time at which the injection should take place can be controlled.

Software-Based Fault Injection

Software-based fault injection methods resolve some of the problems discussed
above. However, depending on the specific approach used, new problems arise,
which are discussed below.

Off-line: Different ways to inject faults exist. In an off-line approach, selected in-
structions are modified at compile time. This kind of injection generates a software
image with hard-coded permanent faults. Due to these specific modifications, faults
are only activated when the particular code locations are executed. An approach
very similar to code modification is code insertion. Here, additional instructions
are added to the target program that allow fault injection to occur before a par-
ticular instruction. A disadvantage is that the configuration used for testing the
fault tolerance is different to the one deployed on the final system. Due to these
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disadvantages, the remainder of this subsection only considers on-line approaches.

Velazco: In order to randomly inject faults into any process of a target appli-
cation, an interrupt-based method in used by Velazco et al. [VRE00]. One of the
simplest ways to trigger fault injection is to use a timer circuit which can generate
external interrupts based on a specified time interval. If an interrupt request is re-
ceived, a bit flip, called Code Emulated Upsets (CEU), will be injected concurrently
with the execution of the program in accessible sensitive areas, like, e.g., registers
and memory. The results obtained by the authors converge on experiments exe-
cuted with radiation based injection. Thus, CEU-injection allows for prediction of
error rates for a given application. The drawback of this approach, however, is the
required modification of the interrupt handler code of the operating system.

Xception: In [CMS98], Carreira et al. describe Xception, an approach using
debugging features of modern processors. The basic idea is to insert a breakpoint
to stop the processor when accessing a specific memory area. On access, the target
processor is stopped and the host debugger can insert a fault. By using the perfor-
mance monitoring unit of the processor, Xception can furthermore record detailed
information on the behavior of the processor after fault injection. Such information
can include, for example, the number of executed instructions and the number of
memory read and write cycles. If the exception triggers provided by the debugging
hardware and the performance monitor features are combined, Xception will be
able to detect memory areas accessed after fault injection. Hence, non-standard
behavior of the application can be easily detected. However, target systems have to
be modified to support Xception. Low-level exception handlers as well as the fault
injection code have to be added.

FIMBUL: A further approach which also uses debug capability is FIMBUL [FSK98].
Here, fault injection is used to test error correction and detection of the Thor CPU.
When a breakpoint condition is fulfilled, a fault will be injected. FIMBUL has the
drawback that only a single bit flip is performed per run.

Other Injection Approaches

Beside the ’classical’ software-based and hardware-based fault injection techniques
further approaches exist. Hybrid fault injection approaches comprise methods of
software-based and hardware-based fault injection. One candidate in this area is the
usage of the On-Chip Debugger (OCD) unit via a JTAG link. Another approach to
inject faults is simulation based. Here, faults are injected into a simulation model
of the target system.

Garcia: Like Xception, the approach proposed by Garcia et al. [PGLOGV+07]
uses the debugging capabilities of the target processor. In contrast to Xception,
no modification of the target systems is required, since the OCD is now controlled
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externally via JTAG. The authors injected faults into an ARM7TDMI processor
with a JTAG injection system running on an FPGA. With only 2 ms fault injection
time the proposed solution is very fast. However, the main drawbacks of the FPGA
solution are the low flexibility and low adaptability. Due to the complexity of FPGA
programming, it is very difficult to implement complex fault models or to exchange
the fault model. Furthermore, the simulation of real-world error reporting is hard
to implement. Therefore, an instruction decoder running on the FPGA would be
required to keep track of currently used hardware components. Implementing such
a decoder for the FPGA is generally possible. However, due to the high complexity
of FPGA programming, such a solution will be very expensive.

FAIL*: Schirmeier et al. present FAIL* [SHK+12] which tackles the problem
of non-reusable fault injection code when using multiple system simulators. Espe-
cially if fault injection tools are highly platform specific, a tight coupling between
simulator and injection code complicates exchanging of the tool’s target backend.
Therefore, FAIL* allows for switching target backends. A framework API abstract-
ing backend details and hence fostering injection experiment code reuse is proposed
as well. FAIL* currently supports Bochs [Law96] and Open Virtual Platform [Bai08]
for x86 and ARM architecture, respectively.

In this dissertation a subset of the previously mentioned methods are used to inject
faults. In particular, these will be a software-based, a hybrid, and two simulator-
based approaches.

2.5 Scheduling of Real-Time Tasks

Scheduling strategies for embedded systems have to take real-time properties of
the application into account. This typically includes the relative deadline di and
the period pi of each task Ti. In this thesis, a scheduling method will be called
optimal if it will find a schedule if a feasible schedule exists.

Scheduling has a long history in computer science. Hence, a huge variety of
scheduling methods exist. This section only provides an overview of classic real-
time scheduling approaches and the scheduling strategy which is used later in this
dissertation.

EDF: Earliest Deadline First (EDF) [Hor74] is a priority-based scheduling method
for tasks. The priority of a task is a monotonically decreasing function of the task’s
deadline. This means that the task with the earliest deadline has the highest prior-
ity and hence will be scheduled to the CPU. EDF is an optimal scheduling strategy
for independent tasks on a single SPU if preemption of tasks is allowed or if all
tasks are ready at t = 0. Due to its optimality, EDF can determine a schedule
even for processor utilizations of up to 100 %, if a schedule exists. However, EDF
also has drawbacks. One is that EDF cannot give any guarantees of the task’s la-
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tency. Latency is the total time between the point in time where the task gets ready
and its completion. Another drawback will be the domino-effect when a deadline
is missed. Under EDF, it is very likely that other tasks will also miss their deadline.

RMS: Rate Monotonic Scheduling (RMS) was proposed by Liu and Layland in
[LL73]. RMS is a priority-based scheduling strategy with preemption. The priority
of a task is static and depends on the period. The shorter the period, the higher
the priority. Typically, the relative deadline di of task Ti is considered equal to its
period pi. Furthermore, the execution time ci of each task is assumed to be known
and constant. It can be proven that RMS is optimal if the previous assumptions
hold and the utilization of the processor does not exceed n( n

√
2−1) for n tasks, on a

single processor machine (alternative bounds also exist, like, e.g. [BBB01]). 100 %
CPU utilization can be achieved when the periods of the tasks are harmonic. This is
provided if all task periods are multiples of the tasks having the next shorter period.

QRMS: To relax the strict constraint that each task scheduled under RMS re-
quires a fixed known execution time, Hamann et al. introduce Quality Rate Mono-
tonic Scheduling (QRMS) in [HRR+07]. QRMS divides a task into mandatory and
optional parts. Mandatory parts have to fulfill the real-time requirements. For
optional tasks, developers can specify a probability to which such tasks have to
reach their deadline. For example, it is possible to specify that on average 90 %
of all optional parts of a task have to obey to their deadline. For each new task,
the admission control part of QRMS checks whether or not the task can be sched-
uled and calculates the reservation time. Therefore, the probability distribution of
all execution times is required. Such times can be determined experimentally, for
example. QRMS allows for high processor utilization while keeping the admission
overhead small. However, QRMS is not applicable in this dissertation since this
thesis follows a data-centric approach. Hence, it is not possible to split the code in
mandatory and optional parts.

LST: Least Slack Time First (LST) is a scheduling strategy shown by Liu in [Liu00].
The priority of a task under LST is inverse to its laxity. The less laxity, the higher
the priority. Laxities can become negative. This is an early indication for a possible
deadline miss in future. It can be shown that LST is an optimal scheduling strategy
for single processor systems. However, due to the dynamically changing priority of
the tasks, the priorities have to be recomputed during runtime. In contrast to EDF,
LST needs to know the execution time of the executed tasks.

Blazewicz: A very early method to schedule dependent tasks with precedences
and different arrival times is presented by Blazewicz in [Bla76]. In his paper EDF
is used to schedule the task set. It was shown that preemption is not necessary if
all tasks have the same arrival time. However, if arrival times differ, preemption
will be necessary for an optimal scheduling algorithm. To handle the precedences
it was proposed to change the deadline of each task in such a way that tasks which
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have successors have earlier deadlines than all their successors.

EDF*: EDF was extended by Henn [Hen78] and Chetto et al. [CSB90]. In addition
to modifying deadlines, the authors propose to modify the release times too. The
following algorithm, called EDF*, is able to schedule sporadic tasks with precedence
relations and different activation times. EDF* consists of two basic principles.

1. The relative deadline of a task depends on its deadline and on the deadline of
its successors.

The relative deadline d∗
i for a task Si is calculated by taking the minimum of

its deadline di and the relative deadlines of all its successor tasks d∗
j minus

the execution time of the successor Cj :

d∗
i := min(di, min(d∗

j − Cj : Si → Sj)) (2.1)

Si has to be completed by time dj − Cj which represents the latest possible
start time of its immediate successor

2. The relative release time of a task depends on its release time and on the
completion time of its predecessors.

The relative release time r∗
i for a task Si is calculated by taking the maximum

of its release time ri and the relative release times of all its predecessor tasks
r∗

j plus the execution time of the predecessor Cj :

r∗
i := max(ri, max(r∗

j + Cj : Sj → Si)) (2.2)

By applying both equations, an equivalent scheduling problem is obtained with
modified release times and deadlines. Whenever a task Si has a successor Sj it
holds that r∗

i < r∗
j and d∗

i < d∗
j . Hence, ordinary EDF can be used to schedule this

modified task set.

Scheduling is not primarily in the focus of this dissertation. The aim is rather
to provide mechanisms to allow for using well-known algorithms to schedule error
correction. However, a scheduling strategy is required in this thesis as well. Due
to the advantages of EDF*, a slightly modified version of EDF* is used to schedule
error correction and the application.

2.6 Timing Estimations

Timing is an important characteristic of embedded systems. Although not all
scheduling strategies require the execution time of all tasks, execution time estima-
tions are still important to calculate CPU utilization. Especially for cyber-physical
systems, to not overload the CPU is mandatory since overloading can lead to dead-
line misses. It is also required to know the execution time of all tasks to calculate
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the global slack time. The slack time can be used later to schedule sporadic tasks,
such as error corrections.

As already mentioned in the introduction, the most important time for schedul-
ing is the estimated worst case execution time (WCETEST). Timing estimations are
not in the focus of this dissertation. However, since the WCETEST will be required
later, a very short overview of the techniques used in this thesis is given in this
subsection.

aiT: aiT [WEE+08] is a WCET analyzer developed by AbsInt. It is used to
statically compute tight bounds of the WCETEST of tasks in embedded real-time
systems. Binary executables can be directly analyzed. Hence, the source code of
an application is not required which enables to analyze also legacy code. However,
sometimes an annotation file is required. For example, if loop-bounds cannot be
determined statically, they have to be annotated manually. aiT also supports anno-
tations specifying the values of registers and variables. This is, for example, useful
to analyze software that is running in different modes depending on a value stored
in a variable. To calculate the WCETEST, aiT transforms the program code and
the annotations into an annotated CRL (control-flow representation language). In
the next step value analyses are preformed to determine possible addresses and to
detect infeasible code paths. The most challenging part of the WCET estimation is
the cache analysis since aiT has to consider the cache replace strategy implemented
by the processor. After the cache analysis, the processor pipeline behavior is pre-
dicted. Finally, the timing information is generated for each basic block and the
worst-case execution path is calculated. The worst-case execution path determines
the WCETEST.

aiT is well suited for applications where the execution time is not too depen-
dent on the input. For the H.264 video decoder application, which will be used
as a demonstrator later in this dissertation, aiT calculates a WCET estimation of
several seconds per frame. In reality, frame decoding takes under 100 ms. Due to
this huge over-estimation, the WCETEST computed by aiT cannot be used in this
dissertation thesis.

Huang: To reduce the previously mentioned over-estimation, Huang et al. use
a scenario-based approach in [HKB+14]. The basic idea of such a scenario-based
approach is to have precalculated WCETs, so called scenario-WCETs, for different
code paths the application can take. The key of this solution is to exclude infeasible
code paths for the actually used scenario and to tighten the scenario-specific loop-
bounds. Hence, if a certain input structure is known, like for example the sequence
of I- and P-frames, different scenarios can be used to estimate the WCET for the
different frame types. By using this approach, the authors achieved reductions of
the over-estimation by 10-70 %.

Roitzsch: In [Roi07] Roitzsch proposes to use slice-balancing to enable scalable
decoding of H.264 videos on multi-core systems. The H.264 standard allows that
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one frame1 can be decoded from multiple slices2. Roitzsch added decoding time
prediction on the encoder stage to create several slices for each frame. Due to the
decoding time prediction, it is possible to balance the amount of work necessary to
decode each slice. Apart from a decoder which has to be capable of slice-parallel
decoding to gain decoding speed-up, no changes of the client system are required.
The encoded bitstream is still full compliant to the H.264 standard. The methods
presented in the paper to predict the decoding time look very promising. However,
in this dissertation a prediction method on the decoder-side is required which is
able to predict the execution time for arbitrary input.

Bönninghoff: The approach of Bönninghoff et. al (not published yet) extend the
work of Roitzsch by moving the prediction to the decoder-side. The main goal of
the authors is to predict the decoding time for arbitrary input. Since the input is
not known, the prediction at the beginning of the decoding process is highly over-
estimated. However, during decoding of a slice, the prediction becomes more and
more accurate. Therefore, the authors divide the decoding process into four stages.

1. Slice header parsing: This stage only parses the slice header. After com-
pletion, the number of macro blocks to decode as well as the slice type is
known.

2. Slice parsing: During slice parsing the whole slice input is read. The infor-
mation is stored in the corresponding arrays which are required in later stages.
After completion of this steps all macro block types, intra subdivisions and
modes, and motion vector deltas are available. These are important data to
significantly lower the over-estimation of the decoding time prediction.

3. Slice deriving: Since motion vectors have a resolution of a quarter pixel, it
is not possible for the previous step to decide how many filtering steps will
be necessary. In this stage the actual motion vectors are derived. After the
slice deriving stage a good estimation for the execution time of the final slice
rendering stage is available.

4. Slice rendering: This stage is responsible for writing the decoded frame.

The prediction of the execution time becomes more and more precise with every
stage. Due to the fact that stage one till three can be executed very quickly, suffi-
cient precise execution time estimation is available very early. Another advantage
of the presented solution is that the operating system can query the predictor at
any point in time, like, for example, when an error has occurred, for the actual ex-
ecution time prediction. This allows the OS to get a good overview of the available
slack which is important for scheduling error correction. Therefore, this disserta-
tion thesis is using the approach of Bönninghoff to predict the execution time of
the main H.264 decoder benchmark application.

1frame = the picture displayed on the screen
2slice = a part or the whole raw input for decoding a frame
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This dissertation is based on several models which are explained in this chapter.
In Section 3.1, the Reliable Computing base is introduced. It is a model which
describes the susceptibility to transient faults for different classes of system com-
ponents. The resilience articulation point model is discussed in Section 3.2. This
model enables the usage of bit flips as a starting point to research the outcome of
errors for higher architectural layers without respecting low-level physical effects.
Section 3.3 discusses different approaches to inject transient bit flips into memory.
An application of the resilience articulation point model is shown in Section 3.4.
With HSPICE, low-level bit flip probabilities of probabilistic full adders are deter-
mined. These values are later used to inject bit flips in high-level models of multi-bit
adders and multipliers. Section 3.5 clarifies the usage of different terms related to
scheduling and task management. Last but not least, the used quality of service
metrics are introduced in Section 3.6.

3.1 Reliable Computing Base

Handling errors in software has a serious weak spot: The software parts which
handle errors are susceptible to errors as well. This can lead to situations in which
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the error handling mechanism tries to handle an error which occurred during error
handling. This may result in a livelock. To deal with this problem, guaranteed fault
free hardware components are required to execute software-based fault-tolerance
mechanisms. Together with the error handling software parts, these components
form the Reliable Computing Base (RCB):

Definition 3.1 (RCB) “The Reliable Computing Base is a subset of software and
hardware components that implements all of or ensures the operation of software-
based fault-tolerance methods and that we distinguish from a much larger amount of
components that can tolerate errors without affecting the program’s desired results.”
(Engel and Döbel in [ED12])

Basically, this definition divides the system into two parts. On the one hand,
a small set of components exists – the RCB – which cannot tolerate errors at all.
However, when these components are error-free, the software-based fault-tolerance
methods are able to operate as intended. On the other hand, a large number of
components can tolerate errors, since the error handling methods are operational,
as ensured by the RCB components. Hence, as long as the RCB is intact, error
handling in software is possible. To keep the RCB intact, the components within
the RCB have to be protected from error propagation. Therefore, the following
invariant has always to be fulfilled:

Invariant 3.1 Only (software) components which are part of the Reliable Comput-
ing Base are allowed to change the state of the Reliable Computing Base.

To enforce this invariant, (para-)virtualization techniques are applied by the
microvisor developed in this dissertation. The microvisor represents the software
part of the RCB. All other software parts – including the guest operating system
– are outside the RCB which leads to a small RCB size. The primarily goal of
the microvisor is to provide low-level error handling for components not part of the
RCB.

3.2 RAP Model

The Resilience Articulation Point (RAP) [HAE+14] model serves as an abstraction
for fault and error propagation. It is assumed that physically induced faults at the
device layer will manifest as bit flips if not masked. In the RAP model, such single
or multiple bit flips are the connection point of low-level fault origins and high-
level error models of hardware/software system abstraction. This correlation can
be visualized with an hour glass-model (cf. Figure 3.1). The bottom layer contains
the physical effects, like, e.g., thermal hotspots, aging, and radiation. These effects
can lead, for example, to noise which can be the cause for an erroneously interpreted
signal. Hence, the originating physical effect will manifest itself as a bit flip if such
an erroneous signal is not being masked. In such a situation, the bit flip is the
outcome of the physical effect.
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Figure 3.1: Bit flips as Resilience Articulation Point (based on [HAE+14])

In the upper half, bit flips have different levels of abstraction. An overview is
depicted in Figure 3.2. Individual signals or bits stored in flip flops are the target
of faults in the lower hardware levels. In [HAE+14], the probability of such an
error is described as Pbit(�x, t) considering the space �x and time t. At the macro
and architecture levels, several bits are typically grouped into words. Pword(�x, t)
expresses the probability that a word is erroneous at time t. This probability can be
derived from the error probabilities at bit-level. If operands are stored in memory,
Pword(�x, t) will describe the probability of an error in the corresponding memory
cells. In contrast, Pword(�x, t) can be different if the same data will be stored in a reg-
ister. Compounds of words are referred to as interfaces at higher abstraction levels.
Like Pword(�x, t), the probability Pinterface(�x, t) can also be derived from the error
probabilities at word-level or bit-level and by taking into account the knowledge
of the internal IP (intellectual property) block architecture. Above the architec-
ture level, different software levels can be found. Software is typically operating on
variables. Consequently, Pvariable(�x, t) can be used to express the probability of an
erroneous variable.

The RAP model is well suited for researchers working at different levels of
abstraction. It allows for a clear and quantitative description of the error and fault
relationships. For example, in an ECC protected memory cell, a flipped bit does
not automatically mean an erroneous word. Only if the amount of flipped bits is
larger than the number of bits correctable by the ECC mechanism, the stored word
will be affected. In this case, Pword(�x, t) expresses the probability that at least
k +1 bits are flipped, where k is the amount of bits correctable by ECC. To use this
high-level relationship, the knowledge of the lower level models is not necessary. It
is sufficient to know the probability of a bit flip Pbit(�x, t). The detailed technology
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Figure 3.2: Bit flip abstraction in higher system levels (based on [HAE+14])

and implementation aspects of the system are considered in the underlying levels.
This approach allows for deriving the probabilistic error functions at higher levels
from the probabilistic error functions describing the low-level bit flips.

If the lower layers in the RAP model are modeled correctly, the higher layer
SoC behavior – hardware and software – can be investigated without maintaining
the complete set of low-level models, since, for example, Pword(�x, t) can serve as
a good representation of the low-level fault model. In the next sections, the error
models used in this dissertation are presented exploiting the previously mentioned
advantage. To implement these models, different approaches will be used to inject
faults directly into adequate positions, thereby replacing complex low-level models.

3.3 Transient Memory Fault Model

The main fault model considered in this thesis is a transient memory fault model.
Within such a model, bits are flipped at random positions in memory. The bit flips
are not permanent. Hence, the affected memory cells will normally operate again if
they are overwritten by new data. One requirement of the transient memory fault
model used is that the memory ranges where bits are flipping are freely configurable
by the designer. This dissertation distinguishes between high reliable silicon and
low reliable silicon. High reliable silicon denotes hardware components which op-
erate fault-free. In contrast, low reliable silicon is susceptible to transient faults.
Dividing the hardware into these two classes enables the developer to divide the
software stack into two parts by applying a suitable mapping. The part which has
to be tested under transient memory faults is mapped to low reliable components
and the remainder is mapped to high reliable hardware components. This allows,
for example, simulating ECC-protected reliable memory ranges without physically
requiring the related ECC hardware.

Error detection is out of the scope of this dissertation. It is assumed that
error detection is provided and that detected errors are reported to the operating
system. Such an error reporting shall be as realistic as possible. Typically, real-
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world hardware with error reporting capabilities, like memory protected by parity
bits, will report an error only if the affected cell is accessed. Only on access the
memory controller computes the checksum of the stored data and checks the stored
parity information. Most likely, memory controllers which can detect errors cannot
determine the exact location of the faulty bit. Otherwise, the correction would be
very simple – just flipping the bit again. Depending on the implemented granularity
of the memory controller’s check routine, the main processor is notified of an error
in a memory range, e.g., with the granularity of a cache line. Within this range,
one or more bits may be affected by transient errors.

The error reporting capabilities as well as the distribution of the faults depend on
the realization of the transient memory fault model. The next subsections describe
different ways to realize the fault module using fault injection.

3.3.1 Thread-Based Fault Injection

To get a first idea of different error impacts in applications, a fault injection method
is desired which is easily applicable. A straightforward approach fulfilling this
requirement is to inject transient memory faults at the application level. Hereby, an
additional thread is executed concurrently to the application. This thread provides a
reproducible, deterministic error scenario by injecting memory faults into different
memory locations. The memory ranges where the errors are injected are freely
configurable. All injected errors are registered by the injection thread and can be
reverted on demand to simulate error correction taking place, which corresponds to
a delayed error correction. However, this will not correct errors which already have
been propagated to other locations. The error model employed is quite simple: a
randomized uniform distribution of flipped bits. To deterministically execute the
injection experiment, the fault injection sequence can be programmed. Additionally,
error injection can be suspended by the application at any arbitrary point in time.
To investigate the effects of errors, artificially high error rates can be used. Thus,
fatal errors, like a crashed application, can be found in a short amount of time.

The advantage of the presented approach is its easy applicability. Since the
additional thread is running in the same process as the other application threads, it
is possible to directly access global symbols of the application. To inject faults in the
stack, the corresponding addresses can be communicated to the injection thread via
memory mapped interfaces. The main drawback of this approach is the limitation
to the running process. It is not possible to inject faults into the operating system
or into memory not owned by the process.

3.3.2 Fault Injection in CoMET

The main evaluation platform used in this dissertation is based on the Synopsys
CoMET/METeor Simulator [Syn14]. CoMET/METeor provides fast and accurate
models enabling hardware and software co-design. Such models include processor
cores, peripheral devices, buses, and bus interface units. To simulate a complete
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SoC, these models can be combined. Synopsys already provides a library of generic
components. Furthermore, custom modules written in C, C++, or SystemC can be
easily incorporated and simulated with CoMET and METeor. The latter option is
used in this thesis to realize fault injection into memory by the implementation of an
additional memory module. This module behaves like any other memory module in
CoMET/METeor, except that the memory is erroneous. At each memory access the
module determines if new faults have to be injected. To control the amount of faults
to inject, a Poisson distribution with configurable parameter λ is used. The time
base used for the Poisson distribution is memory bus ticks. Faults are randomly
injected and are equally distributed over the memory. Hence, the locations of the
accesses have no influence on the fault distribution.

The developed memory module also simulates error detection. Therefore, each
injected memory fault is stored in a bitmap. On access, it is checked whether or not
the actual used memory is affected. If an error is detected, a special error-detected
pin will be set to ’1’ signaling error detection. This pin can be connected to the
interrupt controller of the CPU to immediately stop normal program execution and
to trigger error handling. The pin remains active until the error is acknowledged.
The error will be acknowledged if any of the following three exported memory
mapped registers is accessed:

1. Error Type Register: This register stores the type of the error and the
amount of data possibly affected by the error. Possible error types are ER-
ROR_TYPE_MEMORY and ERROR_TYPE_REGISTER. The CoMET
based injection uses ERROR_TYPE_MEMORY since only memory errors
are injected. In a later section, JTAG-based fault injection is described which
can use both types.

2. Error Location Register: The base address of the last occurred error is
stored in the location register. It is also possible to write to the type and the
location register. In this case, error injection to the written address and size
will be triggered.

3. Configuration Register: The configuration register can be used to get or set
configuration settings of the memory module during runtime. The following
settings can be changed:

(a) EnableGeneration: If activated, new faults will be generated based on λ.

(b) EnableInject: Bits will only be flipped in random locations if EnableInject
is enabled. If this option is disabled, faults will be virtually injected. This
means the affected memory location is marked as erroneous although no
bit was changed by the injection. This mode is very useful to test error
reporting.

(c) EnableReport: Faults will only be signaled (the error detection pin is set
to “1”) if this option is enabled. Otherwise, erroneous data is returned.
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This option is introduced to test error detection mechanisms. However,
as stated earlier, error detection is not part of this dissertation thesis.

Although the implemented error detection reports the location of the error, the
exact bit position cannot be determined. To simulate the semantics of existing error
detection and correction methods as close as possible, a minimal granularity exists
in which errors are detected. In the implemented module, this is the size of a word
(4 bytes on a 32 bit platform). This matches, for example, the granularity of parity
bits or ECC which also operates on words or multiples of words. In addition to the
minimal granularity of one word, the actual used detection granularity depends also
on the requested amount of bytes of the corresponding bus transfer. Consequently,
if, for example, a cache triggers a burst transfer to replace a complete cache line, the
detection granularity will be the whole cache line. Hence, the error location register
will contain the start address of the burst transfer and the error type register will
contain the size of a cache line. By reading these report registers, the error handling
method receives the base address of the fault but cannot make any assumption on
the exact location of the faulty bit(s). Thus, it has to be assumed that all bits are
erroneous.

To sum up, errors are reported on access in the granularity of the corresponding
bus request, but at least with 4 byte granularity. The main advantage of this
implementation of a transient memory fault model is that the system under test is
not disturbed by the injection process. Consequently, this memory model is used
to study real-time impacts imposed by error handling.

3.3.3 Injection into Demonstrator Platform

To show the feasibility of the flexible error handling approach presented in the
next chapter, a real hardware platform is used as demonstrator. The platform is
based on an ARM926-based system [ARM14] implemented by a Marvell Kirkwood
88F681 SoC [Mar14]. To interface the Kirkwood SoC, a TK71 development board
[Kar14] is employed (cf. Figure 3.3(a)). Injection of faults is realized by using the
On-Chip Debugger (OCD) provided by the Kirkwood processor. The next subsec-
tion demonstrates interfacing the OCD with a Joint Test Action Group (JTAG)
interface. Thereafter, the injection procedure is detailed.

3.3.3.1 JTAG-based Fault Injection

The IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture, also
known as JTAG – from the Joint Test Action Group created that standard – is a
four-wire serial interface. Its original purpose was to facilitate automated connec-
tivity test of populated printed circuit boards (PCBs). Due to the extensible design,
JTAG is nowadays also used as a hardware interface for in-circuit programming and
debugging of code running on microcontrollers and SoCs. Typically, JTAG consists
of the following components:
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(a) TK71 board with attached Kirkwood SoC (b) mbed LPC1768 SoC

Figure 3.3: Demonstrator platform and injection board

1. Test Access Port (TAP): The test access port, also called JTAG port, is
the physical connector to the TAP controller.

2. TAP Controller: The TAP controller is a state machine controlling the test
logic. It is controlled by the clock (TCK) and mode select (TMS) signals.
By moving through the states, the JTAG host can select one of several shift
registers. For reading and writing registers, the data out (TDO) and data
input (TDI) signals are used. The shift registers are also clocked by TCK,
but only when the state machine is in one of two specific states. The first
state has to be used to write the instruction register. The instruction register
selects a data register which will be accessed if the TAP controller is in the
second state. Within those two states the state machine is only sensitive to
changes on TMS. Hence, bits can be shifted at the frequency of the clock
signal without any delays imposed by additional state changes. However, this
also creates a challenge. Two signals have to be altered at the same point in
time at the end of a data transfer: TMS has to signal a change of state while
the last bit is moved into the shift register.

3. Shift Registers: The shift registers can be used to build a system that
can arbitrarily access chip internals. The JTAG standard only specifies an
interface used for boundary scans. This is direct access to the chip pins to
check for short and open circuits on a PCB. However, proprietary extensions
can be implemented as well. The bit width of the registers is not specified by
the standard. In the case of the Kirkwood SoC it varies from 4 to 67 bits.

The first approach realized to inject faults was to use OpenOCD [Ope14] and a
USB-JTAG adapter to interface a PC with the Kirkwood SoC. OpenOCD is an open
source JTAG debugger software supporting a huge variety of different architectures
and OCDs. Scripting OpenOCD is supported via Tcl. Injection scripts are used to
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Figure 3.4: JTAG injection setup

regularly stop the target CPU to modify a value in memory. Due to the overhead
imposed by USB transfers, those operations require 38.90 milliseconds every time
the processor is accessed. This time is too long to meet real-time requirements,
since the processor cannot execute any instruction during this period.

To speedup the injection process a microcontroller-based designed is used. In
this dissertation the microcontroller is a NXP mbed LPC1768 [NXP14] (cf. Fig-
ure 3.3(b)). This microcontroller, referred to as JTAG host for the remainder of
this section, consists of an ARM Cortex M3 Core clocked at 96 MHz, 32 KiB RAM,
and 512 KiB Flash. The injection setup is shown in Figure 3.4. The JTAG host is
connected to the system under test (SUT) via JTAG. To measure the duration of
a single fault injection, an oscilloscope is attached to the JTAG clock line. Most of
the speedup is achieved due to direct connection of the microcontroller to the JTAG
port without using USB. For fast data transfer, the SPI unit of the microcontroller
is used. As mentioned previously, the TAP controller has to change the state while
the last bit is moved into the shift register. This means to alter two signals at the
same point in time. The SPI unit does not support such an operation. Hence, the
last byte is transfered in software. Only in this way it is possible to change two
signals at the same point in time.

The fault injection procedure is described in the next subsection. The perfor-
mance of the microcontroller-based injection is evaluated afterwards.

3.3.3.2 Fault Injection Procedure

The basic idea of using debug units is to periodically interrupt the normal operation
of the SUT to inject faults. However, the most challenging part is the implemen-
tation of error reporting due to the goal that the behavior of real world hardware
should be simulated as close as possible. As described in the previous sections,
hardware will typically report an error if the requested resource is affected. This
results in two challenges. First, the used components have to be known. Second,
the affected components have to be determined. To resolve the first problem, the
currently executed instruction on the target processor is decoded as soon as the
processor is interrupted by the OCD. By taking the content of the registers into
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Figure 3.5: JTAG fault injection algorithm

account, it is possible to determine the set of used components. In case of load /
store operations it is furthermore possible to compute the source / target addresses,
respectively. The solution of the second problem could be a map which records all
injected faults. Such a map would allow checking whether the target system ac-
cesses a faulty component or not. In the first case, a fault is reported. However,
using such a map would lead to a huge disadvantage. It would require decoding
and checking every executed instruction of the target system. On each write access,
fault markings have to be cleared since overwriting would eliminate all transient
faults in the written range. Whereas, on each read access the corresponding error
markings will have to be checked to determine if the actually used components
are erroneous. Decoding and checking every instruction means running the target
system in single step mode. Consequently, the execution speed of instructions of
the target system is defined by the execution speed of JTAG, the OCD, and the
algorithms executed on the injection hardware.

To deal with this problem, the approach applied in this thesis, turns this order
around. Instead of reporting previously injected faults when they are accessed,
faults are reported when they are injected. In other words: Fault injection is aware
of the instruction currently executed. Hence, after decoding, faults are directly
injected into low reliable components used by the currently executed instruction.
The corresponding fault injection procedure is depicted in Figure 3.5. All operations
involving communication via JTAG are shaded dark. The whole injection procedure
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Used path Reporting Time [ms]

No fault – 1.55
Memory fault yes 4.48
Memory fault no 2.64
Register fault yes 3.82
Register fault no 1.94

Table 3.1: JTAG injection results

is repeated periodically at each timer interrupt of the JTAG host. The time between
two interrupts is freely configurable. The first step is to stop the SUT by sending
a debug request via JTAG. At this point in time, the OCD takes control over the
CPU. Hence, no instructions of the SUT’s application are executed anymore until
target resume is called in the last step. To keep jitter as low as possible, it is very
important that all steps between target halt and target resume are executed as fast
as possible. Directly after interrupting the target system, the register contents are
fetched to completely decode the interrupted instruction. Based on the components
used and decisions of the fault model, memory or register faults can be injected.
It is also possible that no fault at all will be injected. This can be the case if, for
example, the decoded operation is a co-processor instruction.

To inject a memory fault, the decoded address is used as base. Depending on
the memory access granularity of the target instruction, the range in which bits are
flipped is specified. In the used model, the minimum range is the size of a word. In
cases of half word or byte loads, the memory address will be aligned to the closest
lower possible word aligned address and the size will be set to word length. A
register fault is injected by flipping bits in one of the used registers of the target
instruction. Register bit flips are always performed on the full register, regardless
of the instruction’s access pattern. Depending on the fault model the injected fault
can be reported to the SUT via interrupt or not. In case of an injected memory
fault, the address and injection range are reported. In the register fault case, the
affected register is reported.

3.3.3.3 Fault Injection Performance

To evaluate the performance of the previously described approach, every path of
the fault injection procedure is measured. The results are depicted in Table 3.1.
Obviously, the fastest path is the one with no injected fault. This can be the
case if the interrupted instruction only uses high reliable silicon or the desired low
reliable component was not used. In contrast to injecting a register fault, injecting
a memory fault requires additional read and write operations via JTAG. The read
fetches the memory range in which bits have to be flipped. After flipping, the
modified values have to be written back. This reflects in higher injection durations.
Reporting the fault to the operating system also involves additional communication
via JTAG. Consequently, the required time to execute the injection procedure will
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increase as well.
As mentioned earlier, OpenOCD requires 38.90 ms to perform a single fault

injection with reporting. Decoding the instruction was not implemented. Com-
pared to OpenOCD, the solution used in this thesis is more than 8.5 times faster.
However, far more interesting is the comparison with the FPGA-based JTAG im-
plementation of Garcia et al. in [PGLOGV+07]. For injecting one memory bit flip
their implementation needs 2 ms. To be comparable, the microcontroller-based so-
lution was modified by turning off error reporting and instruction decoding. Since
instruction decoding is turned off, faults are injected into random locations inside
the memory. With an injection time of 2.24 ms, the speed of the FPGA-based
solution is nearly reached. However, the main drawbacks of the FPGA-based so-
lution are low flexibility and low adaptability. Due to the complexity of FPGA
programming, it is very difficult to implement complex fault models or to exchange
the fault model. Furthermore, the simulation of real-world error reporting is hard
to implement. Therefore, an instruction decoder running on the FPGA would be
required to keep track of currently used hardware components. Implementing such
a decoder for the FPGA is generally possible. However, due to the high complexity
of FPGA programming, such a solution will be very expensive.

In contrast to expensive equipment, like particle beams, the approach used in
this dissertation is very cheap. However, some drawbacks exist. Using the OCD
limits the possible components to which faults can be injected. In fact, injection is
possible on every component writable by the CPU using normal machine instruc-
tions. This includes the register file and the memory. Theoretically, peripheral
devices can also be accessed if they are memory mapped. A further limitation is
the fault coverage. Due to the instruction-aware injection, no guarantees can be
given whether the whole memory and register space is covered or not. In one ex-
treme, a program which idles most of the time is likely to never experience a fault
injection. A while(1) loop in the idle body, for example, neither requires a register
nor a memory transaction. The other extreme is a program permanently using the
same memory range. With a very high probability, a huge amount of memory faults
is injected in this range only. The presented approach has a further limitation. Due
to generating faults on access, faults cannot accumulate.

However, since this injection approach is only used to inject faults into the physi-
cally available demonstrator platform, it is possible to cope with the limitations. To
investigate the behavior of the flexible error handling approach under more realistic
fault injection scenarios, the CoMET-based injection solution is used.

3.4 Probabilistic Error Model

The term probabilistic CMOS (PCMOS) was first introduced by Palem [Pal05]
in the context of probabilistic bits (PBITS) and probabilistic computing [Pal03].
Instead of avoiding errors in ICs, PCMOS-based computing proposes to tolerate
occasional errors in order to exploit the trade-off between correctness of circuit op-
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Figure 3.6: Three-Stage Models for circuits (taken from [SBL+11])

eration, energy consumption, and performance. The basic idea is to allow bits to
have a probability of being zero or one. Consequently, logic functions have proba-
bilistic outputs instead of deterministic outputs. In this section, probabilistic com-
ponents considered in this thesis are described and their use in a system simulation
environment is demonstrated.

3.4.1 Supply Voltage Schemes

In the context of silicon-based computation, noise is predicted to lead to PCMOS
behavior in the future [SBL+11; BLL+10]. If the average noise level injected into
such systems is constant, the probability p of jitter at the output of a chip depends
on the supply voltage v. By lowering v, p will increase. While the susceptibility
of an erroneous output will increase, the power consumption will be quadratically
reduced if the supply voltage is decreased. One important property of the probabilis-
tic components is that each low-level probabilistic circuit element, like a single-bit
probabilistic full adder (PFA), can be supplied with a different voltage. By combin-
ing single-bit PFAs to form larger circuits, this leads to various non-uniform biased
voltage scaling (BIVOS) schemes. In such BIVOS schemes, more significant bits are
typically provided with a higher supply voltage than less significant bits. Hence,
the probability of noise-induced errors in more significant bits of a word is reduced.
For small benchmarks, [CML+08] and [PCK+09] show that by using BIVOS, the
accuracy of a probabilistic ripple carry adder can be increased compared to uni-
form voltage scaling (UVOS). In UVOS-based circuits, all bits are supplied with
the same voltage. To be comparable, the power budgets for the UVOS-based and
BIVOS-based adders are the same in all the experiments.

3.4.2 Three-Stage Model

Low-level circuit simulators like HSPICE are used to determine the susceptibility
to noise of PCMOS-based hardware. The goal of the HSPICE simulation is to
determine the probability of a bit flip at the circuit’s output. The probabilities
gained by such a simulation are very accurate. However, HSPICE simulations of
whole ICs are complex and hence have a long runtime. Therefore, Singh et al.
propose a divide and conquer strategy to cope with this problem [SBL+11]. The
basic idea is to characterize subcomponents of the circuit with HSPICE and to
compose the results in a mathematical model [LML+10]. The three-stage model
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Figure 3.7: The used Three-Stage Models of different full adders (based on [SBL+11])

is used to characterize a probabilistic circuit element. Thereby, the filter effects of
succeeding circuits are taken into account. In the model, three components play a
central role (cf. Figure 3.6):

1. Probabilistic Circuit Element Under Characterization (PCEUC):
This is the circuit that has to be characterized.

2. Filter Circuit (FC): The load of the PCEUC can be referred to as filter
circuit due to its filter effect for errors generated by the PCEUC.

3. Load of Filter Circuit (LOFC): The load of the load of the PCEUC
determines the filter capability of the FC.

It can be shown that the load of a circuit plays a major role for the propagation
delay1 of errors. Therefore, the load of the PCEUC has to be considered during
characterization. The FC and LOFC have to be deterministic during simulation.
Hence, only the filter effects are taken into account. Furthermore, the FC and LOFC
have to be configured in a way that no logical masking can occur. For example, if
the FC is an AND gate, the input not driven by the PCEUC has to be set to ’1’.

This thesis considers probabilistic behavior of adders and multipliers. The three-
stage models for probabilistic full adders (PFA) are used as basic components for
building multi-bit adders and multipliers. The three-stage model yields fast simula-
tion time while the accuracy is within 7–8 % of more complex SPICE-based models

1The propagaion delay is the duration between the point in time when the input of a logic gate
becomes stable and the point in time when the output of that gate becomes stable.
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1.1 V 1.0 V 0.9 V 0.8 V
Model ps pc ps pc ps pc ps pc

1 4.17e-08 0 4.17e-06 4.17e-06 8.33e-06 8.33e-06 3.75e-05 1.67e-05
2 4.17e-08 0 4.17e-06 0 8.33e-06 4.17e-06 4.17e-05 2.08e-05
3 4.17e-08 0 8.33e-06 0 1.67e-05 8.33e-06 4.17e-05 1.67e-05
4 4.17e-08 0 4.17e-07 0 1.25e-05 0 1.25e-05 3.75e-05
5 4.17e-08 0 4.17e-07 0 1.25e-05 0 5.00e-05 8.22e-06
6 4.17e-08 0 4.17e-07 0 1.25e-05 0 4.17e-05 4.17e-06

Table 3.2: Effective error rates

for such components. However, complex SPICE simulations take orders of magni-
tude more time to execute. The error rates calculated with the three-stage models
of [SBL+11] are fairly accurate and fast to compute, which enables their use in a
full system simulation of a complex application. The models required to build a
probabilistic ripple carry adder and a probabilistic Wallace tree multiplier are de-
picted in Figure 3.7. As can be seen, the PCEUC is always a full adder. However,
the filter circuit and the load of the filter circuit are different in each model. While
Model 1 has a full adder as load for the sum as well as the carry output, Model 4
has only drivers as load. The load of the sum and carry output can be different as
well. This is the case, for example, in Model 6. Due to the different filter effects,
the probability of a wrong output is varying.

Table 3.2 shows the measured probabilities of a flipped bit using HSPICE. The
depicted values show the probability of an erroneous sum output ps(t, m, v, n) and
carry output pc(t, m, v, n) of a probabilistic full adder. The probability depends
on the technology t, the model m, the supply voltage v, and the noise n. In all
experiments, t is fixed to 90 nm technology and n is within 0 V and +0.12 V. This
noise level equals ten percent of the nominal supply voltage of 90 nm ICs which is
1.2 V. The measured results for 1.2 V are omitted in Table 3.2 since the noise is too
low to affect the circuit when operating at this voltage level. However, if the supply
voltage is lowered while the maximum noise level remains at 0.12 V, the probability
of an erroneous output will increase. The lower the supply voltage, the higher the
probability of an error. Consequently, the FA operating at 0.8 V experiences the
highest probability of an erroneous output. As described previously, the load of the
PCEUC also influences its resilience against noise. This behavior can be seen in
Table 3.2. For example, Model 1 is more susceptible to noise in the carry output
than the other models.

In the next subsections the usage of the different three-stage models of a PFA
is demonstrated for a probabilistic adder and a probabilistic multiplier.

3.4.2.1 Adder Implementation

The probabilistic adder considered in this thesis is a probabilistic ripple carry adder
(PRCA). The PRCA simulation uses different models of the PFA, depending on
the different output loads of each full adder in the overall circuit. For clarity,
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Figure 3.8: Probabilistic ripple carry adder (PRCA)

Figure 3.9: Probabilistic Wallace tree multiplier (PWTM)

Figure 3.8 shows a four-bit adder instead of the 32-bit adder actually used. In order
to construct a PRCA using the three-stage-model, three different PFA models are
required. The PRCA simulation starts with the PFA calculating the least significant
bit s0 on the right hand side of Figure 3.8. The sum and carry bits are calculated
deterministically. Thereafter, probabilistic behavior is modeled by bit-flips on the
interconnections. These bit-flips will occur according to the error probabilities pc

and ps as determined by the previous HSPICE simulation.
The different colors of the PFAs denote different supply voltages for a BIVOS

scheme with four available voltages. In this configuration, for example, the PFA
calculating s0 is supplied with the lowest voltage, s1 with the second lowest, s2 with
the second highest, and the PFA for s3 with the highest voltage. Consequently,
the likeliness for an erroneous output in more significant bits is lower than in less
significant bits.

3.4.2.2 Multiplier Implementation

The multiplier used in this dissertation is a probabilistic version of a Wallace tree
multiplier (PWTM) [Wal64]. A four-bit PWTM is depicted in Figure 3.9. Like
the PRCA, the PWTM is constructed from multiple probabilistic full adders. For
clarity, only a four bit multiplier is shown. Bit-flips occur analogously to the PRCA
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case. In the multiplier case, all three-stage models depicted in Figure 3.7 are used.
Each PFA can be supplied with a different supply voltage enabling the analysis

of different BIVOS configurations. Again, the coloring of the PFAs shows the dis-
tribution of four different supply voltages. Like in the PRCA case, more significant
bits are supplied with higher voltages to decrease the probability of an erroneous
output in higher bits.

3.4.3 Probabilistic ARM Platform

In order to perform an analysis of a complex real-world application, an execution
platform for the application binary is required. In this dissertation, the MPARM
ARMv3m architecture simulator [BBB+05] was extended to include PRCA and
PWTM components in the CPU core in addition to the standard deterministic
ALU and multiplier. MPARM uses SystemC to interface a software based ARM
core, called SWARM [Dal03]. The probabilistic version of a ripple carry adder and
a Wallace tree multiplier are added to SWARM. These probabilistic components are
used by four new instructions. All other instructions continue to use deterministic
components only. The new instructions are addition (padd), subtraction (psub),
and reverse subtraction (prsb) using the PRCA, as well as multiplication (pmul)
using the PWTM.

Listing 3.1: Function without probabilistic instructions
1 void enter( unreliable uchar *ptr , unreliable int q_delta ) {
2 unreliable int i = *ptr + (( q_delta + 32) >> 6);
3 *ptr=Clip(i);
4 }

To support the different mnemonics of the probabilistic instructions, different
functions exist. For example, to transform the code depicted in Listing 3.1, the
add-operations have to be substituted by __addsw and __addisw. Hereby, __addsw
means an addition of two signed words and __addisw performs a probabilistic add
of a signed word with an immediate value. The transformed code is shown in
Listing 3.2. This transformation can be automated by using a customized compiler
[SHM+13]. Since *ptr, q_delta, and i are unreliable, this compiler can substitute
all operations calculating i with probabilistic versions. Details of the compiler and
the usage of unreliable are explained in detail in Section 5.1 and Section 4.2.4.1,
respectively.

Listing 3.2: Code transformed to use the PRCA
1 void enter(uchar *ptr , int q_delta ) {
2 int i = __paddsw ((* ptr), ( __paddisw (q_delta , 32) >> 6));
3 *ptr = Clip(i);
4 }
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3.5 Task Model

The previous sections described all models which are important for this disserta-
tion regarding faults and errors. This section briefly introduces the task model used
later on. The task model is based on the task model of library operating systems,
specifically RTEMS [OAR14]. A library OS is a special type of OS where the OS
is provided in form of a library which is linked to the application by an ordinary
linker. In such a system, only one address space and one process exist. An ad-
dress space defines a range of discrete uniquely identifiable addresses to make an
address unambiguous. A process is an entity to which resources are bound to. Such
resources can be file handles or allocated heap data. A process can be comprised
of multiple tasks. At least one task is required in a process to have an executable
process. The terms task and thread are used equally in this dissertation. The tasks
considered are periodic real-time tasks.

A task set T is defined as:

T = {T1, . . . , Tn} i = 1, . . . , n (3.1)

where n is the number of tasks.

A task Ti is a tuple:
Ti = (ci, di, pi) (3.2)

where ci is the execution time, di is the relative deadline, and pi is the period of
task Ti.

Tasks can have dependencies. The resulting precedence system G is defined as
directed graph:

G = (T, E) (3.3)

where T is the previously defined task set. An edge e = (Tv, Tw) is element in E,
iff Tw depends on Tv. An alternative writing is Tv ≺ Tw.

3.6 Quality of Service Metrics

The flexible error handling approach presented in this dissertation is based on a
best-effort approach. Hence, it is to be expected that some errors will propagate to
the output. Nevertheless, it has to be evaluated whether the output is acceptable
for the user. In order to distinguish between perceptible and non-perceptible errors,
different metrics can be used. Since the main application used in this dissertation
is a H.264-based video decoder, the next subsections describe quality of service
metrics used in image compression.
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Figure 3.10: QTNetview showing QoS metrics

3.6.1 ΔE

The ΔE metric is standardized in ISO 12647, which describes the distance between
two colors. ΔE is the Euclidean distance between two colors. Higher distance
means higher deviation. In this dissertation a ΔE value smaller than 5.0 is defined
as a non-perceptible error. In Figure 3.10 a tool is shown which visualizes the ΔE

metric for each pixel. In the upper left corner the frame under error injection is
shown. The correctly decoded frame is depicted on the right hand side. A difference
frame shows perceptible and non-perceptible errors (indicated by the intensity of
the colors). In addition, statistics giving the percentage of errors accumulated over
the whole video and statistics of the current frame are displayed.

3.6.2 Peak Signal-To-Noise Ratio

The peak signal-to-noise ratio is most commonly used to measure the quality of
reconstruction of lossy compression codecs. PSNR is defined as

PSNR = 10 log10
2B − 1
MSE

dB (3.4)

where MSE denotes the mean squared error between reconstructed and original
frame, and B is the number of bits per sample. A higher PSNR indicates higher
quality. The QTNetview tool also displays the PSNR QoS metric (cf. Figure 3.10).
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In this chapter, the core subject of this dissertation – the flexible error handling
approach – is discussed. The necessity of flexible error handling is justified by the
observation that errors can have different impacts on the quality of service of an
application. The differences are shown by several examples within this chapter.
If every error was handled alike, the different impacts would not be exploited.
However, just these differences together with flexibility are the keys to build a light-
weight error handling solution which is applicable especially to embedded systems
where resources like available memory and computing power are scarce. Flexibility
in this sense means to decide how to cope with errors occurring during runtime
based on the system state.

The key concepts of flexible error handling are depicted in this chapter. In the
next chapter the realization and combination of these concepts is shown.

4.1 Flexible Error Handling Strategy

The idea of flexible error handling is shown in Figure 4.1. In the depicted scenarios
an application is running and at some point in time an error occurs. This point in
time is indicated by the flash. In a naive approach, every error would be handled
alike without considering the available resources. This can lead to deadline misses.
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Figure 4.1: Flexible error handling

In the flexible error handling approach presented in this dissertation, the error is
classified first, labeled as “C”. The objective of the classification is to determine if,
how, and when errors have to be corrected.

(if) Whether errors have to be handled or not depends mainly on the error im-
pact. Errors which lead to high impacts are, for example, errors which lead to
exceptions due to wrong memory accesses. If an error has a high impact, error
correction will be mandatory. In contrast, if an error has only low impact, e.g.
an unused memory cell is affected, further handling is optional. In between these
two extremes, errors exist which do not lead to crashes, but have an impact on
the quality of service (QoS). Such a QoS impact can be multifaceted. Examples
are jitter, deadline misses, lower signal-to-noise ratios, etc. To distinguish between
errors with high impact potentially leading to crashes and errors which do not lead
to crashes, static code analysis methods are used.

(how) Error handling depends on the available error correction methods, the error
impact, and the available resources. To realize the flexible error handling approach
it is assumed that two generic correction methods are always available. The first
one is checkpoint-and-recovery. The second method is ignore, which is the empty
recovery method (case 4 in Figure 4.1). In addition to these two methods, the appli-
cation programmer can provide further error correction methods (labeled as “R∗”
in Figure 4.1). An example for such a method can be a specialized correction of an
erroneous motion vector in video decoders. Since the motion vector is responsible
to copy a macro block into another location inside a frame, a corrupted vector can
have fatal consequences, like copying the macro block outside of the frame memory
location. However, if the motion vector is set to zero, no fatal behavior can be
observed. Hence, an application specific method to transform a corrupted motion
vector into a valid – but incorrect – state is to reset the corresponding vector com-
ponents to zero. This avoids application crashes due to erroneous motion vectors,
but also leads to degradation in the QoS.
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Each correction method has different properties, like worst case correction du-
ration and correction quality. In the case of checkpoint-and-recovery, the correction
quality will be optimal if all data affected by errors are stored in the checkpoint
are corrected. However, the execution time can be rather high. On the contrary,
if ignore is used, the execution time will be nearly zero, but the error effect on the
data will still remain. Other methods are located in between these two extremes.
For example, setting an affected motion vector to zero would lead to a small dis-
turbance in the video output. However, this method would be very fast and hence
the probability is higher that the application adheres to its deadline.

(when) The scheduling algorithm has major influence on the question when an
error correction method should be scheduled. Typically, the task with the highest
priority is executed. Hence, if a high priority task is affected, error correction has
to be scheduled immediately (cases 1 and 2 in Figure 4.1). If a low priority task is
affected, the high priority task can continue execution and the error handling will
be delayed (case 3).

By considering if, when, and how an error has to be corrected, the flexible er-
ror handling approach is able to select an error handling method which is suited for
the current situation. In the worst case, the same error correction method as in the
naive approach has to be scheduled immediately, since the highest prioritized task
is affected by an error which has severe impact. Compared to the naive approach,
this results in an additional overhead caused by the classification phase. In the best
case, however, flexible error handling can completely ignore the error and hence
save resources and adhere to the deadline. Between both extremes, the presented
approach is able to schedule error correction by considering the available slack time
and the QoS requirements of the application.

To be able to determine if, how, and when errors have to be corrected, error
impact and mapping of tasks to errors have to be known during runtime. The
next section shows different error impacts and shows how to specify possible error
impacts in the source code of the application. Afterwards, mapping of errors to
tasks is considered.

4.2 Error Classification

Faults can manifest themselves in different ways. It can be easily observed that not
every fault has the same outcome. A fault can lead, for example, to errors respon-
sible for application crashes, or just to disturbance in the output of the application.
Consequently, a classification is required that provides information on the severity
of detected errors. The goal of the classification is to partition possible errors ac-
cording to their impact on the QoS of the application. Hence, such a classification
can provide a basis to determine error correction precedence. If not enough time
for error correction is available, errors with higher impact will be handled while



54 Chapter 4. Flexible Error Handling

correction of low-impact errors can be skipped. Thus, the classification provides an
important feature of the flexible error handling approach by providing support for
the question if an error has to be handled or not.

The other important aspect of the classification is to specify a set of applicable
error correction methods for the error classes. This set defines the basis to solve
the question how errors can be handled. To specify possible correction methods,
designers have to annotate the applications. Annotations are introduced in Sec-
tion 4.2.4. In the next subsections, different kinds of applications are investigated
to show a variety of possible error impacts and the resulting classifications.

4.2.1 H.264 Application Analysis

H.264 or ISO/IEC 14496-10 [Dra03] is a video compression standard used for Blue-
ray discs, videoconferencing, digital video broadcasting, and many others. It is
typically considered as an embedded application with soft real-time requirements.
H.264 supports different profiles. The profile with the highest quality is the High
4:4:4 Predictive Profile (Hi444PP). It supports 4:4:4 chroma sampling, up to 14 bits
per sample, and lossless region coding. The Constrained Baseline Profile (CBP)
yields the lowest quality. In this dissertation, the source code of a simple CBP-
based decoder is used [FB04]. The decoder consists of about 3000 lines of C code
and 1000 lines of header files. It implements the following subset of CBP:

• I and P slices

• 4:2:0 chroma format

• 8 bit sample depth

• CAVLC entropy coding

Arbitrary slice ordering, redundant slices, and multiple reference frames are not
supported in this implementation. More implementation details of the H.264 video
application are shown in Chapter 6. To investigate different outcomes of errors,
fault injection is used. For the injection purpose, thread based injection is used,
as described in Section 3.3.1. Therefore, the H.264 decoder application is executed
on a Linux system with an additional thread executed concurrently. This thread is
responsible for fault injection.

The fault injection experiment reveals different behaviors of the decoder appli-
cation. The resulting classification is depicted in Table 4.1. Program terminations
(crashes) have the highest impacts on the QoS since the playback of the video
is stopped. In such situations only restoring a checkpoint is feasible. The most
critical part of decoding is the processing of header information. Here, a flipped
bit can have fatal consequences for the decoding of the whole frame and even of
subsequent frames. If, for example, the frame type is decoded incorrectly, the
header bits will be misinterpreted, since different frame types use different layouts
for header data. The majority of header and data words are integers encoded with
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Impact Possible cause Error handling methods
High Program termination Rollback

Corrupted frame input Rollback,
Redisplay last frame

Disturbance in
frame header

Rollback,
Spare frame,
Redisplay last frame

Disturbance in
motion vector

Rollback,
Set to zero

Disturbance in
macro block

Rollback,
Copy neighbor block,
Ignore

Disturbance in
single pixel

Rollback,
Copy neighbor pixel,
Ignore

None Unused memory Ignore

Table 4.1: Error classification for H.264 decoder

Exponential-Golomb codes, which can encode arbitrary positive integer numbers.
The construction scheme favors small numbers by assigning them shorter codes. A
value of x is represented by:

x = 2n − 1 + v v, n ∈ N (4.1)

n and v are directly related to the encoding in the bit stream. n is the number
of “0” bits in a continuous series of only “0” bits. v is a binary encoded offset
represented by n bits. The separation of the n part and v part is a single “1”
bit. For example, the decimal value “6” is represented as 6 = 22 − 1 + 3 which is
encoded as “00111”. Errors affecting the bits representing n or the separator “1” bit
not only change the decoded value. Due to the run-length encoding implemented
by Exponential-Golomb codes, this leads to reading the input stream either not far
enough or too far. Consequently, any subsequent read will automatically start at a
wrong position in the stream. This leads to high deviations from the optimal video
quality. Leaving such errors unattended will most likely causes crashes as well.
Hence, error handling is mandatory. However, exact reconstruction of the original
data is not always required. It is possible, for example, to redisplay the last frame
and move forward to the next frame. On the one hand, this lowers the PSNR of the
current frame and all following frames which are referencing the current frame. But,
on the other hand, only a small impact on the real-time behavior of the application
will be imposed, compared to restoring a complete checkpoint.

Disturbances in motion vectors can be classified as medium impact. In H.264
motion vectors are used to shift a macro block to a new location within a frame.
Motion vectors are hence well suited to encode movements in the video. If motion
vectors are corrupted, two possible outcomes can be observed: incorrectly placed
macro blocks and application crashes. Misplacement of macro blocks will occur if
the source macro block is moved to a wrong destination address within the frame.
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But, it can also happen that the corresponding macro block gets shifted out of the
frame. Hereby, other memory will be overwritten which can lead to application
crashes. Consequently, motion vectors have to be corrected. Besides recovery of a
checkpoint, setting the motion vector to zero resets corrupted motion vectors in a
valid state. This corresponds to no movement of the macro block.

The last category includes faults which have low impact without the possibility
to crash the application. It is obvious that errors in unused memory regions can be
ignored. Other faults, leading to errors which result only in minor disturbance of
the output, can be ignored as well. Such examples are flipped bits in the luminance
or chrominance pixel data of a frame. However, if such errors are (optionally)
corrected, the QoS can be increased.

To conclude, errors affecting a video decoder application can lead to loss of
precision, wrong calculation results, or crashes. In the next section software con-
trolling a robot is considered to show the applicability of error classification in other
application domains as well.

4.2.2 LEGO Mindstorms Application

The previously described H.264 decoder is a typical representative for multimedia
applications. In the field of multimedia it is obvious that faults can have impacts
reaching from fatal consequences, like application crashes, to only minor distur-
bances in the video output, like a wrong colored pixel. To show the applicability
of the flexible error handling approach to control applications, a LEGO Mindstorm
example is considered in this section. The application consists of two Mindstorm
Robots referred to as Mindstorm A and Mindstorm B. In Figure 4.2 a robot is
depicted. It consists of one NXT brick, one light sensor, one ultrasonic proxim-
ity detector, and two servo motors. The NXT brick is the processing unit of the
Mindstorms. The light sensor measures the brightness. The measured values range
from 0 (no light) to 1023 (very bright). To measure distances to other objects, the
ultrasonic proximity detector emits pulses. With the integrated control unit the
return interval of the reflected signal is measured and the resulting object distances
are calculated. The two servo motors are responsible for locomotion of the robot.
The motors also integrate a sensor measuring the rotation angle of the wheels. This
allows querying the motor for the current position with the resolution of one degree.

The task of the robot A is to follow a line marked on the ground. The goal of B is
to follow the line as fast as possible without colliding with A. Hereby, Mindstorm A
acts as an obstacle for B. Mindstorm A follows the line but periodically randomizes
its speed. Hence, B has to respond to the changing environment. The corresponding
setup is depicted in Figure 4.3. Each Mindstorm has its own start and finish line
at which the round trip times can be measured individually.

The maximum QoS can only be reached if neither the track of the line is lost nor
collisions occur and B arrives in finish at the same moment in time as A arrives. The
resulting classification is shown in Table 4.2. Like in the H.264 example, possible
error handling methods are depicted as well. For the classification process, faults
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Figure 4.2: LEGO Mindstorm-based robot

Figure 4.3: Experimental setup for robotic application
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Impact Possible cause Error handling methods
High Collision -

Lost track of line Search for line
Program termination Rollback

Over-steering Rollback,
Ignore

Wrong acceleration Rollback,
Ignore

Unnecessary braking Rollback,
Ignore

None Unused memory Ignore

Table 4.2: Error classification for robotic application

are only injected in Mindstorm B via a second thread.
Errors which only lead to longer round-trip times have low impact on the quality

of service. This is the case, for example, if errors lead to unnecessary braking due
to a wrongly calculated distance to Mindstorm A. In contrast, errors will have very
high impact if they lead to application crashes, loss of line tracking, or collision.
The latter outcome is worse. No error correction method exists in the case of a
collision. Hence, errors which can lead to such an event have to be treated as fatal.

Although over-steering as well as wrong acceleration can lead to loss of line
tracking or to collision, errors which lead to such effects are classified as medium
impact. The reason therefore is that the application has an integrated resiliency
against such errors due to the used proportional-integral-derivative (PID) controller
paradigm. An overview of PID design is given by Ang et al. in [ACL05]. Briefly,
the aim of a PID-based algorithm is to periodically adjust a control variable based
on the measured state. However, the adjustment is not realized directly by using
the difference to the expected value. Instead, the update u of control variable y

is calculated by summation of a proportional part, integral part, and a derivative
part. The PID formula considered in this dissertation is defined as follows:

u(t) =
∫ 0

0
KP ∗ e(t)

∫ 0

0︸ ︷︷ ︸
proportional

+
∫ 0

0
KI ∗

∫ t

τ=0
e(τ)

∫ 0

0︸ ︷︷ ︸
integral

−
∫ 0

0
KD ∗ d

dt
y(t)

∫ 0

0︸ ︷︷ ︸
differential

(4.2)

where e(t) is the deviation from the expected value for y(t): e(t) = r(t) − y(t),
with r(t) is the expected value. KP , KI , and KD are constants used to adjust the
controller.

One example of the application of a PID controller within the Mindstorm sce-
nario is the distance control of B. The PID controller is used to adjust the motor
speed according to the distance to A. In the following example it is assumed that
an error affects the distance calculation of B. If the calculated distance is less than
the real distance, B will brake unnecessary which will lead to no fatal consequences.
However, if the wrong calculated distance is orders of magnitude higher than the
real distance, B will accelerate to its maximum speed to close the gap. Without
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a PID controller this leads most likely to a crash. In the case of the PID-based
control algorithm, the robot is not immediately accelerated to its maximum speed
due to the differential part of the PID equation. Only when the wrongly calculated
distance is present over a longer period of time, the robot will accelerate to its
maximum speed.

To sum up, errors affecting the presented robotic application also have different
impacts depending on the affected component. Unlike H.264, errors exists which
can lead to system states where recovery is not possible anymore. However, the
robotic application inherits some kind of resilience against transient faults from the
PID controller.

4.2.3 Further Examples

In the previous two subsections representatives from the domains of multimedia
and control applications were presented. In addition, further examples exists where
errors can be ignored or have only minor impact.

Li et al. give examples for artificial intelligence as well as compression algorithms
in [LY07]. In an artificial intelligence example, it is shown by the authors that some
errors only lead to small changes in the automated classification of web page types.
In the case of compression algorithms, errors exist leading to larger sizes of the
compressed data, but without errors in the data encoding.

All the examples show the potential of handling not every error alike. Hence, it is
worthwhile to use the flexible error handling method presented in this dissertation.
However, as shown in the previous section, the impact of errors on applications can
be manifold. Consequently, a mechanism is required to specify the error impact
classification individually. This mechanism is presented in the next subsection.

4.2.4 Classification Annotation

As mentioned earlier, the goal of the flexible error handling approach is to decide
if, how, and when errors have to be corrected. The if and how part is covered
by the classification. However, as the previous examples suggest, error impact and
possible correction methods are highly application dependent. Hence, the semantics
of the application has to be known. Unfortunately, this knowledge will be typically
not available if not provided by the application designer. To provide the necessary
information, annotation of the source code is required. Thereafter, the classification
information can be extracted by a customized compiler for ANSI C-code, detailed
in the next chapter. Source code can contain two kinds of annotations with which
the application programmer can express application knowledge: Reliability type
qualifiers and error correction annotations.

4.2.4.1 Reliability Type Qualifiers

Reliability type qualifiers express the error impact. In the current version, the
compiler supports two qualifiers called reliable and unreliable which correspond
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Listing 4.1: Frame annotated with reliable and unreliable
1 typedef struct {
2 reliable int Lwidth , Lheight , Lpitch ;
3 reliable int Cwidth , Cheight , Cpitch ;
4 unreliable unsigned char * L, * C[2];
5 } frame_t ;

to high and low impact classification, respectively. The type qualifiers are data-
centric. Reliable data are expected to be error free, otherwise high impacts, like
system crashes, cannot be excluded. Hence, if an error affects reliable data, error
correction will be mandatory. It is only allowed for data to be annotated as unre-
liable if affecting errors cannot lead to crashes or unrecoverable system states. By
definition, data classified as unreliable need not to be corrected. However, it is not
precluded that uncorrected errors can lead to huge deviations in the application’s
output.

Listing 4.1 demonstrates the usage of both type qualifiers in the definition of
the frame data type used in the considered H.264 video decoder application. The
pixel color information stored in the L and C fields are annotated as unreliable since
errors affecting these entries can only lead to wrong colored pixels. In contrast, the
width, height, and pitch values have to be reliable. Otherwise, loops iterating over
the pixel data can exceed the allocation which possibly leads to accessing unmapped
memory locations or to overwriting other data.

4.2.4.2 Correction Method Annotations

The other kind of annotation is used to specify and to assign possible error correction
methods. This kind of annotation consists of two parts. The first part qualifies
an arbitrary function as error correction method. In Listing 4.2 an example is
depicted. In this example, the function MoCompDefaultValue is tagged as error
correction method by the “#pragma eca” directive. Eca is an abbreviation for
error correction annotation. Properties, like WCET, of the error correction method
can be specified as well. In the depicted example, the purpose of the correction
method is to correct a corrupted motion vector by assigning a default value. In
this way, consequences, like a system crash due to corrupted motion vectors, can
be prevented.

To assign a correction method to the actual data object, the second part of
the error correction annotation has to be used. Hereby, the definition of a vari-
able is annotated. An example for the assignment of MoCompDefaultValue to the
corresponding variables is depicted in Listing 4.3. In lines 1 and 2, a mode predic-
tion data structure is allocated with reliable assignment. Line 6 allocates memory
for the X-vector component of all motion vectors of a frame. The annotation of
MoCompDefaultValue as possible correction methods is done in line 4. Therefore,
the “#pragma eca ecm” directive is used. Ecm is the abbreviation for error correc-
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Listing 4.2: Annotated correction method
1 #pragma eca qos =... wcet =...
2 void MoCompDefaultValue (fault , object , start , private_data ) {
3 int offset = fault2offset_int (fault , object , start);
4 mode_pred_info_t * mpi = ( mode_pred_info_t *) private_data ;
5 mpi ->MVx[ offset ] = 0;
6 mpi ->MVy[ offset ] = 0;
7 }

Listing 4.3: Corretion method assigned to data
1 reliable mode_pred_info_t * mpi = ( reliable mode_pred_info_t *)
2 malloc ( sizeof ( mode_pred_info_t ));
3 mpi ->MVx = ( reliable int *)
4 #pragma eca ecm = MoCompDefaultValue ;
5 #pragma eca private_data = (void *) mpi;
6 malloc (x * y * sizeof (int));

tion method. In line 5 an optional annotation is used to specify the private_data
parameter for the correction method. This parameter can be used by the appli-
cation designer to provide additional information for the correction method. In
the case of the depicted example, it is used to specify the base address of the mpi
structure.

4.2.5 Implications

The source code annotations come along with some implications. Obviously, ap-
plication programmers have to annotate their source code. This process can be
tedious and error-prone and wrong annotations can have severe consequences. Due
to the fact that correction of errors affecting unreliable annotated data can be
skipped during runtime, the application designer has to ensure that no error af-
fecting such data can lead to system crashes or unrecoverable states. Fortunately,
the customized compiler shown in Chapter 5 assists in annotating the application.
On the one hand, this compiler checks whether or not unreliable annotations have
influence on the control flow, pointers, or offset calculations. In such cases the an-
notations are rejected since errors affecting such kind of data are very likely to lead
to system crashes due to the execution of wrong code paths or due to accessing
wrong memory locations. On the other hand, the compiler is able to automatically
annotate variables in the source code with reliable and unreliable type qualifiers.
This automatic annotation is done with static code analysis techniques and type
inferencing.

Another implication concerns customized correction methods, like used in the
example depicted in Listing 4.2. If such methods correct reliable data, corrections
have to be done in such a way that the corrected data cannot lead to system crashes.
However, as shown in the previous example, the applied correction method is not
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required to restore the erroneous data object to the same state as before affected
by an error. Moreover, flexible error handling explicitly allows for setting erroneous
data to arbitrary values as long as the application remains in a valid state. By
setting the motion vectors to zero it is assured that no crashes can occur and the
QoS impact stays very low. In this sense, the video decoder application is in a valid
state.

To sum up, the classification is responsible for providing essential information
required to decide if and how errors have to be handled. Therefore, reliable and
unreliable type annotations divide data objects into two sets. Error handling for
the set containing reliable data is mandatory. If an error affects the other set,
error handling will be optional. However, handling errors in the latter case can
increase the quality of service. To define a set of possible error correction methods
for a data object, error correction methods can be annotated as well. This kind of
annotation is optional. As described in Chapter 5, checkpoint-and-recovery will be
always available as a fallback if no correction method is annotated.

So far, one aspect of flexible error handling is not described: the question when
to handle errors. The foundation to answer this question is provided in the next
section.

4.3 Real-Time Aspect

In embedded systems, real-time plays an important role. The correctness of a
computation result depends on both, the logical result and the point in time it is
delivered. Results delivered after the deadline may be considered as wrong, de-
pending on the type of embedded system (exact definitions are provided by Kopetz
in [Kop97]). To avoid such situations, tasks are planned using a real-time aware
scheduling method. If a task has to be added to the application’s task set, a fea-
sibility algorithm will check whether the task can be scheduled without violating
real-time constraints. If this feasibility test succeeds, the new task will be sched-
uled. In this thesis, it is assumed that the tasks of all considered applications pass
the feasibility test. Hence, if no errors occur, it is guaranteed that no deadlines
will be missed. In cases of errors affecting the application, the real-time behavior
is unpredictable. This unpredictability is caused by the error correction overhead
imposed by the handling routine. Basically, the error handling routine can be seen
as an additional task which has to be executed during run-time. However, one ex-
ception to ordinary tasks exists. The result of the feasibility test is of no relevance
for the error correction task since errors have to be handled anyway. Otherwise,
the system can crash which would automatically fail every future deadline. Con-
sidering Figure 4.1 from the beginning of this chapter, this can lead to deadline
misses even if the flexible error handling approach is used (case 1). Sometimes the
situation occurs (case 3) that error handling can be delayed to a future point in
time. This leads to the third question of flexible error handling: When shall an
error be handled?
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The time span in which an occurring error has to be handled can be bounded.
Obviously, the lower bound is the time when the error occurred respectively is
detected. However, error detection is not part of this dissertation. It is assumed
that errors will be detected when the erroneous object is accessed. The upper
bound is the point in time where the affected data objects are used again by the
corresponding tasks. In this dissertation, error correction is always executed as a
separate task. Hence, the question when error correction has to be executed can
be reduced to a task precedence problem. Every task which is using the affected
objects inherits a dependency to the correction task. In return, the correction task
inherits the priority of the highest prioritized task affected by the corresponding
error. Consequently, a scheduler supporting precedence can now answer the when-
question.

However, to enable this setup a fine grained mapping of affected object to tasks
is necessary. Otherwise, problems can occur where higher prioritized tasks are
interrupted by low-priority error correction tasks. This phenomenon is detailed in
the next subsection. To solve this problem the subscriber model is used which is
described afterwards.

4.3.1 A kind of Priority Inversion Problem

Before a process is started by the operating system, different resources are allocated.
These consist of memory for data (.data, .bss) and, depending on the OS, a
program stack for the initial task. During execution, a task can request additional
resources from the OS via appropriate system calls. A resource is considered to be
used as long as the process – or the processes sharing the resource – is not destroyed
or a task within the process explicitly releases the resource to the OS.

If an error is reported to the OS, the affected resources are determined by
traversing the allocation tables. However, the affected tasks cannot be determined,
since resources are typically mapped to processes only. In other words: When
a fault occurs, the OS will suspend all tasks of all affected processes until the
error is handled. This can be problematic when unaffected high priority tasks are
suspended as well. To solve this problem the subscriber model is introduced in
the next subsection. With this model it is possible to determine the affected task
within a process. Furthermore, it can also be decided whether or not the affected
resources are currently in use and hence have live data stored.

4.3.2 Subscriber Model

To get a very fine-grained mapping of resources to tasks, the subscriber model
is used. The subscriber model defines a new programming paradigm where tasks
have to explicitly subscribe() to resources prior usage. After usage, tasks can
unsubscribe() from the resources. Hence, each data object possesses a set of
tasks currently using the object. Before the semantics of the subscriber model are
discussed, the terms object, existence, and liveness are defined.
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Figure 4.4: Object existence and liveness

4.3.2.1 Objects and Liveness

In the subscriber model, an object is the representation of an arbitrary resource. For
example, when the process requests additional heap memory by calling malloc(),
a new object will be created by the OS. This new object now exactly represents
the allocated memory. In addition to information like the allocation’s base address
and size, the object subscribers are stored as well. After creation the object exis-
tence begins (cf. Figure 4.4). Existence of an objects ends as soon as, for example,
free() is called. A task can subscribe to an existing object using the subscribe()
functionality. An object with at least one task subscribed is called subscribed object.
Such a subscribed object is considered as live. This means valuable data are stored.
As soon as the data represented by the object is not needed anymore, the corre-
sponding task can use the unsubscribe() call. If no tasks are subscribed anymore,
the object will be called unsubscribed object.

A special type of objects are system objects. System objects are always in the
subscribed state. They are used to support legacy code. Therefore, it is also
required that all system calls and standard library calls will produce system objects
when called through the standard interfaces. To obtain an object which can be
subscribed/unsubscribed, new interfaces have to be implemented. For example,
the malloc() library call always returns system objects. In this way, legacy code
as well as application code will run out of the box with the subscriber model.
To support subscribable objects, a second interface has to be implemented. For
allocation of subscribeable objects the functions malloc_reliable() and malloc_-
unreliable() can be used. These functions combine the reliable and unreliable
type qualifiers and the subscriber model. The main difference of both functions is
the return value which is reliable void * and unreliable void *, respectively.
The memory is allocated usually on the same heap. However, if a memory hierarchy
is available with different reliability characteristics, it is possible to use the allocation
functions to allocate reliable objects on more reliable memory modules.
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(a) Possible data corruption
due to unsubscribed object

(b) Extended live time of object
due to weak unsubscribe

Figure 4.5: Producer and consumer problem

4.3.2.2 Producer and Consumer Problem

As mentioned earlier, the resource allocation list of a typical OS contains only
information on the resource state – e.g., allocated or not – and the processes/address
spaces using the resource. To extend this information, the subscriber model is
employed to express liveness of an object and the set of tasks using this object. The
basic idea is that only subscribed objects are ’live’. This is a very important
point when handling errors, since errors need not to be handled in unused/not live
resources. However, this has severe consequences for the data usage. If a task
subscribes a previously unsubscribed object again, the task must not make any
assumptions on the data stored in this object. This implies a new programming
model. Before resources can be used, they have to be subscribed and initialized
(cf. Figure 4.4). If an object is used by multiple tasks, each task – even in the
same process – has to subscribe to the object. When a task does not need the
object anymore, it can unsubscribe itself from the object. It is important here to
stress the term “itself”. The subscriber model only allows for the subscribed task
to unsubscribe itself. It is not possible to unsubscribe a different task. Unsubscribe
generally means that the resource is of no interest for the task anymore. As soon
as all tasks are unsubscribed, the liveness of the object ends. In the case of a crash,
the operating system unsubscribes all subscribed objects.

Unfortunately, this model can provoke pitfalls. To detail this pitfall, a producer
task P and a consumer task C is considered. To produce an object O, P allocates
memory and subscribes the corresponding object. After finishing calculations, P
adds the object O into a buffer and unsubscribes itself from O to produce the next
object. The consumer C can now take O from the buffer to process the data. In the
meantime, O is in an unsubscribed state which means that occurring errors will not
be corrected (cf. Figure 4.5a). Hence, if data is exchanged between tasks in this
way, they can be corrupted by errors. A solution to cope with this problem would be
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Figure 4.6: Subscription states of an object

to insert extra synchronization, so that the producer has to delay the unsubscribe
call until the consumer subscribes the object. Unfortunately, this requires either
usage of semaphores or polling status variables. To solve this problem a third state
is introduced: weak unsubscribed object (cf. Figure 4.5b). Weak unsubscribing an
object will be only possible if the task already holds a subscription. Literally, weak
unsubscribing means that data represented by the object have no relevance for the
weak unsubscribing task anymore, but perhaps for other (unknown) tasks in future.

4.3.2.3 Subscriber States

In Figure 4.6 all subscription states are depicted. Each object is associated with two
sets S and Ŝ tracking the subscribed and weak unsubscribed tasks, respectively. If
S contains subscribers, Ŝ will be empty and vice versa. As can be seen, a weak un-
subscribed object has exactly one task in Ŝ. If more than one task is in S (|S| > 1)
and a task performs a weak unsubscribe() operation, it will be interpreted just
as normal unsubscribe() call. In the opposite case, if |Ŝ| = 1 and another task
subscribes to the object, the weak unsubscribed task gets unsubscribed automati-
cally. This behavior perfectly matches the producer and consumer problem. Before
putting an object into a buffer, the producer weak unsubscribes the object. As
soon as the consumer task subscribes to the object, the producer gets unsubscribed
by the OS. With this methodology no periods of time exist where important data
are unsubscribed. However, in the case that a mixture of weak unsubscribe and
unsubscribe operations are used on the same object, the application programmer
is responsible to appropriately synchronize the operations. Otherwise, race condi-
tions can occur. An example for such a situation is an object subscribed by two
tasks where the first task performs a weak unsubscribe operation and the second
task concurrently uses normal unsubscribe. Depending on the execution order, the
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Task Period pi Deadline di Execution Time ci

T1 4 4 1
T2 5 5 3
T3 40 40 3

Table 4.3: Example task set

object can be in the weak unsubscribed or in the unsubscribed state, respectively.
To summarize, an object – and hence the resource it represents – can be in

exactly one of the following states:

1. Unsubscribed: No task is using the resource. The resource contains no live
data.

2. Subscribed: One or several tasks are using the resource. The resource con-
tains live data.

3. Weak unsubscribed: No task is using the resource. The resource contains
live data.

These states can directly be used in error handling. Only those tasks (which are
in set S) have to be suspended which are subscribed to the object that is affected by
a fault. If the object is unsubscribed (S as well as Ŝ are empty), no error correction
will be necessary. Hence, the subscriber model complements the reliability type
qualifiers. As discussed earlier, data annotated as reliable have to be corrected
always. With the subscriber model this rule can be softened. Error correction is
only mandatory for objects which are reliable and subscribed.

4.3.3 Using the Subscriber Model to Schedule Error Correction

To illustrate the advantages of the subscriber model the example task set defined
in Table 4.3 is considered. All tasks belong to the same process and are assumed
to be preemptable. As scheduling strategy Earliest Deadline First (EDF) is used.
If two tasks have the same dynamic priority, the static priority will be used to
determine the task for execution. The static priorities of the tasks are defined as:
T1 > T2 > T3. Figure 4.7(a) shows the corresponding EDF schedule for a complete
hyper-period without faults. There are three idle slots available at tick 29, 34, and
39. The resulting CPU utilization is 92.5 %. For the remaining scenarios (b), (c),
and (d), a transient fault is assumed to occur at the end of time slot nine. The
corresponding error correction method shall take three time units. Hence, the CPU
load rises to 100 %.

Figure 4.7(b) shows the situation without the subscriber model. Without the
subscriber model no mapping of (affected) objects to tasks is available. Hence,
a conservative error handling approach is required. Since every task has to be
assumed to be affected by the fault, the error correction method has to be executed
immediately. This means to switch to task TC which executes the correction. In
the depicted scenario, this leads to three deadline misses.
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(a) Normal execution without fault

(b) Naive approach (always assume that all activities are affected by a fault)

(c) Only T3 affected by fault

(d) T1 and T3 affected by fault

Figure 4.7: Fault correction and real-time
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The key to adhere to deadlines under fault influence is to schedule error cor-
rection according to the currently used scheduling strategy. Therefore, a mapping
of faulty objects to tasks using these objects is mandatory. If the affected tasks
are known, it will be possible to schedule the error correction method with the
maximum dynamic priority of the affected tasks. Hence, higher prioritized tasks
can continue execution. The subscriber model developed in this dissertation can be
used to provide the required mapping. In scenario (c), it is assumed that only T3
is subscribed to the objects affected by the fault. Consequently, error correction is
scheduled with the priority of T3 which means that TC inherits the deadline of T3.
In this scenario, all deadlines will be kept if the affected tasks can continue their
execution without a restart.

An example case where two tasks (T1 and T3) are affected by an error is depicted
in scenario (d). T1 has a higher priority than T3. Thus, the error correction task
TC inherits the priority of T1. Since T2 is fault-free and has the highest priority,
T2 is executed immediately. After T2 finishes execution, TC is scheduled to correct
the error. In this scenario, T1 and T2 misses a deadline each. As can be seen at the
end of time slot 20, it is possible that uninvolved tasks still miss their deadlines.
This leads to the conclusion that the subscriber model cannot give any guaranties
that no deadlines will be missed. In fact, the number of deadline misses depends on
the slack time available for error correction. In the previously described scenarios,
the EDF scheduling was chosen intentionally. The reason for choosing EDF is its
optimality. By using EDF, it is automatically ensured that no valid scheduling
exists, since if enough slack time had been available, no deadline misses would have
been occurred. However, by using the subscriber model, a number of scenarios exists
where the number of deadline misses can be reduced. With the knowledge of which
task is using which faulty object, it is possible to schedule error correction with
respect to task priorities. The possibility to schedule error correction guarantees
that higher prioritized tasks not affected by faults can be executed before the actual
error correction. While this approach can reduce the amount of deadline misses, it
is not guaranteed that all tasks will keep their deadlines. However, the scheduling
invariant – the task with the highest priority gets executed – is maintained all times.

4.4 Summary

In this chapter, the flexible error handling strategy was described. The flexible error
handling strategy is a data-centric approach. It is based on the observation that
the impact of errors on the quality of service of an application can be manifold.
Indeed, the depicted examples showed impacts reaching from application crashes to
negligible deviation in the application’s output. By not handling every error alike,
this observation is exploited by the proposed flexible approach. Hereby, errors are
handled according to their impact on the application. The goal of flexible error
handling is to decide if, how, and when errors have to be corrected. If the current
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Figure 4.8: Will error correction be needed?

timing conditions do not allow for correcting every occurred error, only errors with
severe impact are handled. To distinguish between errors with severe impact and
errors with minor impact, a classification is used. Therefore, possible error impacts
have to be analyzed and annotated in the source code. Two error classes are defined:
reliable and unreliable. The reliable class contains all data objects where errors
can lead to severe consequences if not handled. All other data can be classified
as unreliable. However, data classified as unreliable automatically adds the option
for the runtime system to ignore errors affecting the corresponding objects. To
further reduce the number of errors where correction is mandatory the subscriber
model is used. This model provides both, liveness information of an object and a
mapping of objects to tasks. The former can be used to decide whether an error
should be handled or not. There is no need to correct errors in unused objects. An
object will be treated as alive/used if at least one task is subscribed or weak-
unsubscribed. In both cases the object is called subscribed object. If all subscribed
tasks unsubscribe from the object, the object is called unsubscribed object. In the
latter case, the object will be treated as not alive/unused. In combination with the
classification this leads to the decision tree depicted in Figure 4.8. Error correction
will only be mandatory if reliable subscribed objects are affected. Correction of
unreliable subscribed objects is optional. However, handling of errors affecting the
latter object type can improve the quality of service.

Another important aspect of the flexible error handling strategy is to enable
scheduling of error correction methods as ordinary tasks. This reduces the question
when to handle errors to a task scheduling with precedence problem. Therefore, the
object to task mapping provided by the subscriber model is used. With this mapping
it is possible to map errors to the tasks which are affected. Hereby, the affected
tasks get a dependency to the error correction task. The correction task inherits
the priority of the highest prioritized affected task. Thus, unaffected tasks with
higher priority can continue execution without interferences of error correction. A
phenomenon comparable to priority inversion where a low-priority error correction
suppresses the execution of high-priority tasks can be ruled out.



Chapter 5

FAME: Fault Aware Microvisor
Ecosystem

Contents
5.1 REPAIR Compiler . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Classification Parsing . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 Subscriber Model Support . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Runtime Overview . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Microvisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 RCB Components . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Virtualization Concepts . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Memory Management . . . . . . . . . . . . . . . . . . . . . . 85
5.3.4 Subscriber Model Support and Data Object Management . . 88
5.3.5 Checkpoint-and-Recovery . . . . . . . . . . . . . . . . . . . . 89
5.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 FAMERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.1 Para-Virtualization Support . . . . . . . . . . . . . . . . . . . 93
5.4.2 Checkpoint-and-Recovery . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Scheduling and Subscriber Model Support . . . . . . . . . . . 94
5.4.4 Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.5 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Para-Virtualizing RTEMS for FAME . . . . . . . . . . . . . 96
5.5.1 RTEMS Overview . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.2 Board Support Package and Infrastructure . . . . . . . . . . 97
5.5.3 Context Switching . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.4 Memory Management . . . . . . . . . . . . . . . . . . . . . . 98
5.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Flexible Error Handling - Realization . . . . . . . . . . . . . 101
5.6.1 Stage 1: Low-Level Error Handling . . . . . . . . . . . . . . . 102
5.6.2 Stage 2: Mapping Errors to Tasks . . . . . . . . . . . . . . . 102
5.6.3 Stage 3: Classification and Handling Method Selection . . . . 103



72 Chapter 5. FAME: Fault Aware Microvisor Ecosystem

5.6.4 Stage 4: Error Correction and Acknowledgment . . . . . . . . 103
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

To enable flexible error handling, the concepts presented in Chapter 4 have to
be combined. This means application knowledge gathered offline has to be in-
corporated with data only available during runtime. The Fault Aware Microvisor
Ecosystem (FAME) realizes this incorporation. An overview of FAME is depicted
in Figure 5.1. The Reliable Error Propagation And Impact Restricting (REPAIR)
compiler [SHM+14], a customized compiler for ANSI C99, processes annotated
source code. After processing, the application knowledge is encoded in a classi-
fication data base and a runtime classification library is created. The runtime
components can efficiently extract error handling information with the help of this
library. In the case of an error, the error correction method most suitable for the
current runtime conditions can be selected and scheduled by the operating system.
Section 5.1 briefly introduces the compiler components shown in Figure 5.1. The
remainder of this chapter details the runtime components, since this is in the focus
of the dissertation. An overview of the runtime components is shown in Section 5.2.

As the letter “M” in FAME suggests, the ecosystem is based on a microvisor. As
already defined in Section 2.2, the term microvisor describes an approach in which
features of a microkernel are combined with features of a hypervisor. The employed
virtualization concepts and the FAME microvisor are detailed in Section 5.3. Af-
terwards, in Section 5.4, the FAME Runtime Environment (FAMERE) is described.
FAMERE is embedded into the guest operating system and is responsible for er-
ror handing. In this dissertation, RTEMS is used as guest OS. The virtualization
of RTEMS is depicted in Section 5.5. Finally, in Section 5.6, all components are
integrated to realize the flexible error handling approach.

5.1 REPAIR Compiler

Flexible error handling would not be possible without interfacing knowledge gath-
ered during compile time (offline) and information only available during runtime
(online). The Reliable Error Propagation And Impact Restricting (REPAIR) com-

Figure 5.1: FAME - Fault Aware Microvisor Ecosystem
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piler implements the offline part. By parsing the source code of the application, a
classification of possible error impacts is created. After parsing, REPAIR creates
a classification data base and a library, called librecon, which can be used by the
operating system to access the created data base.

The next subsections describe the parsing of the classification, the subscriber
model support, and the creation of librecon. However, these subsections are only
intended to give a very coarse-grained overview. More details can be found in
[SHM+13] and [SHM+14].

5.1.1 Classification Parsing

In the previous chapter, the concept of classification of data based on error impacts
was described. To exploit this classification during runtime, the corresponding
information has to be prepared during compile time. Therefore, the source code of
the application is analyzed. The goal of this analysis is to determine error correction
options for the individual data objects of the application. The necessary input has to
be provided by the application designer via annotations. As shown in the previous
chapter, the source code can contain two kinds of annotations: Reliability type
qualifiers and error correction annotations.

The type qualifiers reliable and unreliable classify if error handling of affected
data will be mandatory or not. Reliable data are expected to be correctly com-
puted, otherwise it cannot be excluded that the system may crash. Hence, if an
error affects reliable data, error correction will be mandatory. The REPAIR com-
piler automatically classifies data as reliable based on their use in the application
and inserts the type qualifiers into the source code of the application [SHM+13].
Hence, reliability type qualifiers need not to be contained in the initial source code.
The REPAIR compiler checks and automatically annotates reliable and unreliable
type qualifiers based on the following two rules:

Definition 5.1 (Prohibit Rules) Data must not be erroneous, if:

• they have influence on the control flow,

• they represent memory addresses, or

• they can lead to arithmetic exceptions.

Definition 5.2 (Propagation Rule) Data which can have influence on the cal-
culation of reliable data have to be reliable too.

If at least one condition violates one of these rules, only reliable classification
will be allowed. To check annotated source code, REPAIR propagates the unreliable
attribute. An example is depicted in Figure 5.2. It shows the syntax tree for the
program code in Listing 5.1. The arrows in Figure 5.2 demonstrate the propagation
of the unreliable type qualifier of variable u. The propagation starts at the leaves.
Since the root of the syntax tree is an assignment operator, the left branch has to
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Listing 5.1: Example Code
1 unreliable int u, x;
2 int y, z;
3 x = y - (z + u) * 4

Figure 5.2: Propagation of unreliable attribute (taken from [SHM+13])

be unreliable. Otherwise, the compiler would raise an error. In the depicted exam-
ple, the type annotations are correct. During the propagation of the annotation,
REPAIR also determines whether an operation is unreliable or not. As soon as one
input operand is unreliable the complete operation is considered as unreliable as
well. In terms of the probabilistic error model presented in Section 3.4, this allows
for the replacement of deterministic operations with probabilistic versions. In the
depicted example, the reliability qualifier of variables y and z are of no importance
since all operations can be marked as unreliable.

For automatic annotation of type qualifiers, type inference is used. To maximize
the amount of unreliable data, the compiler assumes that all data are unreliable.
Each time one of the prohibit rules is broken, a reliable annotation is inserted.
Thereafter, this reliable annotation is recursively inherited to all operands to fulfill
the propagation rule.

The second type of annotation – error correction information – is also pro-
cessed by REPAIR. During parsing, REPAIR searches for #pragma ecm statements
annotated to error correction functions. If such an annotation is discovered, the
corresponding function will be added to a table containing all possible correction
methods. Metadata, such as the WCETEST and the QoS impact of the correction
method, are also added to the table. With the table index of an error correction
method and the object identifiers, REPAIR can efficiently encode the correction
methods applicable to an object. Hence, during runtime, available correction meth-
ods and their parameters can be queried by the operating system.
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5.1.2 Subscriber Model Support

Another important aspect of REPAIR is the support for the subscriber model.
To support the subscriber model introduced in Section 4.3.2, applications have
to be adapted. Each malloc call has to be converted into malloc_reliable or
malloc_unreliable to allow for usage of the subscriber semantics. REPAIR can
optionally rewrite all memory calls used by the application to match the reliability
type qualifiers. In the case that a memory allocation is assigned to an unreli-
able or reliable variable, REPAIR rewrites the allocation to malloc_unreliable
or malloc_reliable, respectively. In comparison to the standard malloc call, the
malloc_(un)reliable calls provide a different API which is depicted in Listing 5.2.

Listing 5.2: malloc_reliable/malloc_unreliable API
1 reliable void * malloc_reliable ( size_t size , objid_t object ,

reliable void * private_data );
2 unreliable void * malloc_unreliable ( size_t size , objid_t object ,

reliable void * private_data );

The API change is required to fit the needs of the REPAIR compiler. The second
parameter is used to denote an object identifier which is freely assignable by the
compiler. This identifier is important during runtime to map data allocated dy-
namically on the heap to the corresponding data type information extracted offline.
The third parameter is the private data argument which can be used by the cor-
rection method. This parameter can only be stored by the runtime system since
private_data can be dependent on the current program state at the time of the
memory allocation. Listing 5.3 shows the automatically translated source code of
the example depicted in Listing 4.3. All non-standard C expressions are replaced
by expressions which can be parsed by ordinary C compilers. For example, the an-
notation of private data for the correction method is translated into the appropriate
function parameter.

Listing 5.3: Soruce-to-source translated code of Listing 4.3
1 mode_pred_info_t * mpi = ( mode_pred_info_t *)
2 malloc ( sizeof ( mode_pred_info_t ));
3 mpi ->MVx = (int *)
4 malloc_reliable (x * y * sizeof (int), 42, (void *) mpi);

The replacement of malloc calls has a pitfall. The application designer has
to assure the correct usage of the subscriber model by inserting subscribe and
unsubscribe calls where appropriate. Otherwise, it can happen that reliable data
will not be corrected even though they are used by the application. To avoid
this problem, REPAIR will only replace mallocs if annotations are found. It is
assumed that developers will only annotate source code if they can ensure the
correct subscriber states. In Listing 5.3, only the second allocation is replaced since
annotations are provided in lines four and five in Listing 4.3.
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5.1.3 Code Generation

After extracting the data classification and assigning identifiers to dynamically cre-
ated objects, REPAIR is able to integrate this knowledge into the binary. The
knowledge is integrated in form of two entities. The first one is the classification
database which comprises the following entries:

• Object information: For each object allocated on the data segment, bss
segment, or the heap, an object identifier and type information are stored.
Data objects allocated on the heap are called dynamic objects. Objects resid-
ing in a data or bss segment are called static objects. For dynamic objects, the
object identifiers have to be specified when malloc_(un)reliable is used. In
Listing 5.3, the object identifier is set to 42. During runtime only the operat-
ing system has the knowledge of the current allocations. Since the allocation
of objects on the heap is not known during compile time, REPAIR cannot
distinguish between different dynamic objects. The object identifiers bridge
the gap between the runtime and compile time world. Now, the dynamic ob-
jects can be identified since the operating system stores the object identifier
for each allocation.

• Corrections methods: Any supported correction method is listed in a table.
For each method, the entry point and additional data, like the WCETEST of
the correction, is encoded.

• Application tasks: Another important task of REPAIR is to identify which
static objects are used by which task. Therefore, REPAIR parses each task
entry point of the application and stores the corresponding task information.
Based on the entry points, static code analysis techniques are used to statically
map each global object to all tasks which are using the object.

• Classification table: The core component of the classification data base
is the classification table. For each object, this table stores possible error
correction methods and the tasks which are using the object. To get the
corresponding classification of an object, the object identifier is used as an
index.

The second entity REPAIR creates is the library for runtime error classification,
(librecon). This library provides a common API to access the classification data
base. Functions are provided to query details of error correction methods and to
map an address to a static object. The API is used by the operating system,
specifically FAMERE, during error correction.

The most important functionality of librecon is to provide a possible correction
solution for occurred errors. If several correction methods are available, multiple
solutions will exist which are able to correct the errors. However, these solutions are
likely to have different non-functional parameters, like, e.g., WCETEST or QoS im-
pact of the correction. This leads to a multi-criteria optimization problem. Hence,
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Figure 5.3: Software stack

a Pareto-optimal front containing possible error correction scenarios is required. An
error correction solution will be part of the front, if it dominates other solutions for
at least one optimization parameter. The front is created on request during runtime
by librecon and is based on the currently occurred errors. Each point of the front
is a Fault Correction Graph (FCG). A FCG is a directed graph G = (V, E). By
applying an FCG which is part of the generated Pareto-optimal front, all errors
are corrected. A vertex V in an FCG represents a correction method that has to
be applied. An edge e = (vi, vj) will be present if correction method vi has to be
executed prior correction method vj . As long as the dependencies are respected,
the operating system can apply the correction methods in any order. The selection
of a suitable FCG is detailed in Section 5.6.3.

5.1.4 Summary

In this section, the compiler aspects of the flexible error handling approach were
introduced. The compiler is responsible for transforming the application knowledge
into a form which can be efficiently parsed during runtime. For extracting informa-
tion how to handle occurred errors, REPAIR creates librecon during compile time.
The operating system can later use librecon to obtain possible error correcting so-
lutions.

The remainder of this chapter is focused on the runtime system. From now on,
the compiler is treated as a black box and only the services provided by librecon
are used to access application knowledge.

5.2 Runtime Overview

Figure 5.3 provides an overview of the runtime components. An application with in-
tegrated classification information is running on a virtualized guest OS. The guest
OS is linked against the FAME Runtime Environment (FAMERE). FAMERE is
responsible for the flexible error handling as well as the interfacing with the micro-
visor. The microvisor runs low-level error correction and ensures the feasibility of
software-based error handling. In the next sections, the aspects of the runtime sys-
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tem are described in more detail. Currently, FAME is designed for single processor
systems and implemented for ARM926-based platforms. Hence, some concepts are
based on the peculiarities of single-core ARM926 processors.

5.3 Microvisor

The FAME microvisor is the foundation to enable software-based flexible error han-
dling. The main purpose of the microvisor is to isolate critical system components
from possible error propagation. Critical components in this context are resources
required to keep error detection and correction running. Depending on the underly-
ing hardware, the actual critical resources vary. If, for example, errors are signaled
via interrupts, the interrupt controller will be part of the critical resources set. The
microvisor itself is also part of the critical resources set. Like for all software-based
fault-tolerance mechanisms, this is a weak spot, since the microvisor cannot pro-
tect itself. If software parts critical for error handling are susceptible to errors as
well, situations will occur where the error handling routine has to cope with errors
affecting the error handling itself. This can result in a livelock. To deal with this
problem, some guaranteed fault free hardware components are required to execute
software-based fault-tolerance mechanisms. Those reliable hardware components
and the microvisor form a minimal set, the so called Reliable Computing Base
(RCB) [ED12]. In the next subsection, the components which have to be reliable
are detailed.

As already mentioned, virtualization plays an important role in FAME. Virtu-
alization is essential to shield the RCB against error propagation and to keep the
low-level error handling components of FAME running. The employed virtualiza-
tion concepts are described in Subsection 5.3.2.

Another important task of the microvisor is the realization of the subscriber
model (cf. Section 4.3.2). Due to the fact that the subscriber model stores impor-
tant information for error correction, the implementation inside the microvisor is
compulsory. Otherwise, if the subscriber information is corrupted, it would be pos-
sible that errors would not be corrected. This would be the case, if errors changed
a subscribed to an unsubscribed object. In Subsection 5.3.3, memory management
and functionality used to realize the subscriber model is described.

A further important functionality the FAME microvisor provides is checkpoint-
and-recovery. Three major reliability concerns force checkpointing to be imple-
mented inside the microvisor. First, the recovery of a checkpoint will be the last
resort if error handling is mandatory and no application-specific correction method
is available. Second, even if an application-specific method error correction method
exists, it can happen that this method will be not executable due to other errors
which render the guest OS or FAMERE unusable. In such a case, the microvisor is
still able to recover a checkpoint. Third, the checkpoint has to store and restore also
data belonging to the RCB. While the storing process can in theory be executed
by the guest operating system, the restore-part would violate RCB Invariant 3.1.
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This invariant defines that only components inside the RCB are allowed to change
the state of the RCB. Checkpointing is discussed in detail in Subsection 5.3.5.

5.3.1 RCB Components

As described in Section 3.1, the RCB classifies all components of a system into two
sets based on the importance for error handling. Components will be important if
they implement or ensure the operation of software-based fault-tolerance methods.
In both cases, such components are part of the RCB. The RCB should be as small
as possible. This avoids invoking – potentially expensive – error handling routines.

The microvisor has to be part of the RCB software-side since the microvisor
is a single point of failure. Without the microvisor, handling errors in software
would not be possible. The hardware components of the RCB are defined as all
components required for execution of the microvisor. The following components
have to be part of the RCB:

• CPU: The majority of the CPU components have to be reliable except for the
probabilistic error model where the ALU can support probabilistic operations.
Otherwise, it cannot be guaranteed that the microvisor executes correctly.
The memory management unit (MMU) has to be reliable as well. Without
a reliable MMU, memory virtualization off ARM926-based systems would be
impossible.

• ROM/Flash: Since the program image including the application and the
initial data are stored in ROM or FLASH, it has to be reliable.

• Reliable Memory: Very important data, like the page table, is stored in
reliable memory. In contrast to main memory or ROM, the size of the reliable
memory can be rather small (128 KiB for ARM926-based systems). Therefore,
reliable memory can also be implemented with ECC-protected scratch pads
directly inside the processor.

• Timer and IRQ: The timer is typically not a first-class concern for reliability.
However, since embedded systems are considered, timing errors have a huge
probability to directly affect the program’s desired results. To receive timer
ticks and fault notifications, the interrupt controller has to be reliable as well.

• Other Components: There are also further components which are not cov-
ered so far. These are, for example, the power supply or the clocking system.

5.3.2 Virtualization Concepts

To shield the RCB from error propagation, the developed microvisor uses different
virtualization concepts. Compared to other virtualization solutions, like, e.g. Xen
[BDF+03], the FAME microvisor is tailored to the needs of embedded systems
and fault tolerance. Therefore, features most commonly found in other solutions
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are not supported. In contrast, specialized features are integrated complementing
flexible error handling. The used virtualization concepts are detailed in the following
subsections.

5.3.2.1 Para-Virtualization

Para-virtualization is a technology providing a software interface which is similar
to the real underlying hardware. However, the interface is not identical. For exam-
ple, execution of privileged operations is not allowed. Hence, the guest operating
system has to be ported to be runnable under this kind of virtual machine. This
is contrary to pure virtualization where a guest OS can run out of the box. Like
shown in [BDF+03], para-virtualization allows for higher performance by reducing
the virtualization overhead due to the specialized software interface and the porting
of the guest OS.

Para-virtualization is the key concept to keep the code size of the microvisor
small. The guest OS can be granted direct access to specific hardware components.
Hence, the microvisor can out-source the implementation of device drivers to the
guest. This is another advantage of para-virtualization since only device drivers
important to secure the RCB have to be provided by the microvisor. All other
drivers are implemented by the guest OS running outside the RCB. In the case of
FAME, the microvisor implements device drivers for the IRQ and timer hardware
as well as the power and clock manager.

5.3.2.2 Library-Based Guest OS

To keep the virtualization overhead even lower, the FAME microvisor supports only
one guest operating system during runtime. In contrast to other hypervisors, this
releases from the burden to provide virtual CPUs and CPU multiplexing. Fur-
thermore, caches and TLB entries need not to be switched between different OS
instances.

The target guest operating system is a library based embedded real-time oper-
ating system. The idea behind a library OS is that the entire OS runs in the same
address space as the application. The OS is linked to the application as an ordinary
library. OS functionalities are provided as normal API calls. Library operating sys-
tems usually have better performance than other OS approaches since they can be
easily tailored to application demands. Due to the single address space, using a
library OS also has advantages for virtualization. Once the address space is initial-
ized, there is typically no need to change address mappings anymore. Hence, the
microvisor only has to provide simple mechanisms to support page manipulations.
In the case of the FAME microvisor, it is sufficient to provide functionalities for
I/O mapping and for cache management.

Together with the limitation to execute only one guest operating system, the
required code base in the microvisor can be reduced further. In the next two
subsections the communication between guest OS and microvisor is described.
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5.3.2.3 Hypercalls: Communication between Guest OS and Microvisor

Like other hypervisors, the FAME microvisor can be interfaced via hypercalls. Hy-
percalls have to be used whenever a privileged operation or a protected operation
has to be performed by the guest operating system. Examples for such operations
are changing processor status registers or changing the page table, respectively. A
complete list of all available hypercalls can be found in Appendix A. Performing a
hypercall also implies that data is submitted to the microvisor. Since the microvisor
is part of the RCB, submitting data to the microvisor from components outside the
RCB violates Invariant 3.1. However, communicating with the microvisor is essen-
tial for para-virtualized operating systems. To allow for the passing of parameters
without harming the RCB invariant, hypercalls are divided into two phases. This
division is an important design principle for fault tolerance. Hereby, the problem
of the transition from an unreliable to a reliable state is solved.

The first phase of hypercall progressing is stateless, hence it can be aborted
at any point in time without the risk of leaving data leaks or other inconsistencies
behind. The main task of this phase is to copy all arguments to a temporary reliable
location and to check the hypercall arguments for consistency. Depending on the
hypercall parameters, consistency checking includes checking for valid arguments,
pointers addresses, and the right object type of the object pointed to. For example,
if the hypercall expects a reference to a fault entry but the pointer points to an
address which is not a fault entry, an error will be raised and the hypercall will be
abort.

Another possible reason to abort a hypercall can be the occurrence of a tran-
sient fault while processing the hypercall arguments, since these arguments are not
necessarily allocated on high reliable silicon. In such an abort case, the microvisor
will return the EINTR1 return code. After error handling, the guest OS can try to
re-execute the hypercall. Since memory allocations would change the state of the
RCB, the stateless phase can only use the stack or special global variables as tem-
porary buffer. Theoretically, both are part of the RCB and a write would change
the RCB’s state. However, when errors occur during the first hypercall phase, the
stack can be easily rolled back and those special global variables, dedicated only to
hypercall argument copy, have no influence on the overall state of the microvisor.
Hence, error propagation into the microvisor is prevented.

As soon as all arguments are checked and copied into reliable regions, the second
hypercall phase is allowed to alter the RCB state. Since only memory belonging
to the RCB is used now and all parameters are checked for consistency, no faults
can occur during the RCB state change. Thus, the microvisor state can be safely
modified. While this approach suits well to protect the RCB, it implies double copy
of data. However, the amount of data to copy is very small, typically, only a few
words.

Hypercalls of the FAME microvisor are non-interruptible and only one hypercall
can be in execution at any point in time. Only one exception exists: The first phase

1EINTR is a standard UNIX return code for an interrupted system call (in this case a hypercall)
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of hypercall processing where hypercalls can be interrupted by detected errors.
The presented hypercall approach enforces a further design principle: isolation

between different memory domains. If the microvisor does not access memory which
does not belong to the RCB, accessing erroneous data will be avoided. Hence, it
can be assumed that all data used by the microvisor are error free.

5.3.2.4 ECI: Communication between Microvisor and Guest OS

The FAME microvisor is reactive. If the guest OS requests services via hypercalls,
the microvisor will respond directly with the appropriate result. This is synchronous
behavior. However, there are events requiring interaction of the microvisor, like,
e.g., IRQs. In such a case, no direct request of the guest operating system exists.
These events are asynchronous from the perspective of the guest OS. After internal
handling in the microvisor, the guest OS is notified of the occurrence. The mi-
crovisor implements an event callback interface (ECI) for this purpose. To setup
the interface, the guest operating system has to register an event handler during
initialization. In the case of a new event, the microvisor places the event into a ring
buffer and calls the previously registered handler. To avoid error propagation into
this buffer, it is allocated in reliable memory and mapped read-only for the guest
OS. The ring buffer is used to avoid explicit acknowledge via an extra hypercall. In-
stead, the guest OS implicitly acknowledges an ECI message by advancing the ring
buffer read offset. Therefore, the read offset is mapped writable into the address
space of the guest OS. In the case that the capacity of the ring buffer is exceeded or
the read offset points to an invalid buffer element, the microvisor assumes a serious
problem in the guest OS. Consequently, a checkpoint will be restored or a guest
reset will be performed.

Currently, three different event types are defined:

1. ECI_MESSAGE_IRQ: This event type signals an IRQ.

2. ECI_MESSAGE_TICK: At each clock tick, the guest OS is informed.

3. ECI_MESSAGE_FAULT: If an error occurs, it will be signaled by this
message type.

Typically, the ECI handler of the guest OS is executed within the context of the
currently executed task. To avoid interrupting the ECI handling, the microvisor
automatically disables interrupts. The previous interrupt status is stored within the
ECI message and can be restored after processing the message. As long as interrupts
are disabled no further ECI messages are delivered, except error messages which
are always delivered.

5.3.2.5 Timer

In embedded systems time plays an important role. The correctness of a task is
determined by the correct logical result as well as the correct timing. To maintain
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control of the system time, the microvisor virtualizes the system clock. On each
timer tick the guest OS is informed via an ECI message. Maintaining the system
time within the microvisor has huge advantages. On the one hand, the system time
will be maintained continuously even if a previous system state is restored or if the
guest OS is reset. On the other hand, the microvisor can detect stalls of the guest
OS by implementing timeouts. The latter case can happen, for example, in the case
of a fault where the guest OS hangs in an invalid state.

The FAME microvisor exports the global system time in the read-only symbol
fame_systime. The system time counts the clock ticks since power on. The tick
interval is freely configurable by the guest OS in granularity of milliseconds.

5.3.2.6 Interrupts

To protect short critical code sections on the same processor, an often used concept
is to disable interrupts. This suppresses timers and other interrupts which may
cause the OS to schedule a different task. However, if interrupts are disabled, faults
reported by IRQs would not be reported anymore and also the system time would
not be updated. Another problem when handling interrupts is that interrupts are
typically handled in a privileged processor mode. Thus, directly executing the
interrupt handling in the guest OS would allow the guest OS for altering the RCB
state.

To solve these problems, interrupts are also virtualized. Therefore, interrupts
are divided into two classes. The first class consists of interrupts managed by the
microvisor. These are the timer IRQ and fault reporting IRQs. The second class
consists of all remaining interrupts. If the guest OS requests to disable interrupts,
the FAME microvisor will physically disable interrupts belonging to the second
class. Interrupts of the first class still interrupt execution and are handled by the
microvisor. However, they are not reported via an ECI message anymore. Hence,
first class interrupts are only virtually disabled. As always, the exception exists
that error handling has higher priority than the disabled interrupts of the guest
OS. Thus, ECI fault messages are still delivered to the guest OS.

Not reporting first class interrupts has an important implication for the guest
OS. After re-enabling interrupts, the state has to be synchronized with the state of
the microvisor. For example, without synchronization, the clock of the guest OS
can be several ticks behind the clock of the microvisor if a timer ticks occur during
disabled interrupts.

5.3.2.7 Execution

In contrast to other hypervisors, the FAME microvisor explicitly does not multiplex
the CPU by providing virtual CPUs. While this is theoretically feasible for the
microvisor, it is not necessary, since only one guest operating system is supported
anyway. Execution time abstraction, such as threads (like in L4 [KEH+09; LW09])
or scheduler activations (like in K42 [KAR+06]) are also not part of the microvisor.
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Listing 5.4: RTEMS context switch code for ARM
1 ;r0 pointer to context store location
2 ;r1 pointer to context load location
3 _CPU_Context_switch :
4 mrs r2 , cpsr
5 stmia r0 , {r2 , r4 -r11 , r13 , r14}
6 ; context stored to memory pointed to by r0 -> load now via r1
7 ldmia r1 , {r2 , r4 -r11 , r13 , r14}
8 msr cpsr , r2

Task and thread management is solely the concern of the guest OS. However, some
support of the microvisor is needed, especially for context switching. A typical
context switch for the ARM processor is depicted in Listing 5.4 (taken from RTEMS
[OAR14]).

Due to virtualization, this code is now executed in unprivileged mode which is
uncritical for all instructions, except for msr (line 8). This instruction will silently
fail. Silent fail means that the instruction does not show the intended behavior
but also does not trap or return an error code. In the example, the instruction
is expected to restore the complete program status word. However, due to the
execution in unprivileged mode, the instruction only changes the condition codes
of the program status word. To enable changes of the whole program status word,
the microvisor provides the hypercall fame_hypercall_cpsr_set.

The cpsr instruction is an example where a sensitive instruction is not in the
set of privileged instructions. This violates a formal requirement for virtualiza-
tion (Theorem 1: Popek and Goldberg in [PG74]). Thus, virtualization without
modifying the guest OS is not possible. Hence, either para-virtualization or binary
patching is required.

5.3.2.8 Devices and I/O

Frequently, devices are virtualized by exporting a simplified interface to the guest
OS while the actual device driver is implemented in the hypervisor. Another op-
tion is to directly export the device to the guest. Therefore, the device registers
are mapped into the guest’s address space. The FAME microvisor uses the latter
method. All devices that are not part of the RCB are directly mapped into the
I/O address space accessible by the guest OS. However, directly mapping devices
which have DMA capabilities is problematic. Such hardware can overwrite memory
at arbitrary addresses. A platform comprising an I/O MMU can prevent such a
behavior. If an I/O MMU is not available, the DMA interface of the device will be
virtualized by the microvisor. Some devices use interrupts to signal status changes.
In such a case, the ECI method of the microvisor is used to forward such interrupts.

Another problem is the granularity of the mapping. In some cases device reg-
isters are not page aligned. An example is the Marvell Kirkwood 88F6281 SoC
[Mar14] presented earlier in this dissertation. In this SoC, important system regis-
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ters, general purpose I/O (GPIO), and real-time clock (RTC) registers reside on the
same page. If this page was mapped with write permission to allow the guest OS
to program the GPIO pins, the guest would also have the possibility to reprogram
the flash or to change the CPU clock. This would be a severe violation of Invari-
ant 3.1. In such a situation, the corresponding registers are mapped read-only. For
write operations, a hypercall (fame_hypercall_register_set) is provided which
checks the register access on a fine grained base. In the rare case that registers are
read-sensitive, the registers are not mapped at all for the guest. Instead, fame_-
hypercall_register_get has to be used by the guest OS to read those registers.
This method shields registers from accidental read operations initiated by the guest
OS due to occurring errors.

Two further hypercalls complement device support. The first hypercall, fame_-
hypercall_cache_parameter_set, can be used to change the caching parameters.
Some devices, mostly DMA controllers, can only operate on uncached memory
regions. The second hypercall, fame_hypercall_map_io, supports mapping of large
I/O ranges into the address space of the guest OS. In this dissertation, the mapping
feature is used to map the frame buffer of graphic cards.

5.3.3 Memory Management

In the previous section, the basic virtualization strategies are depicted. In this
section, the memory management subsystem of the FAME microvisor is described.
The microvisor distinguishes between memory belonging to the reliable computing
base and other memories. The former type of memory has to be equipped with
some type of protection against transient faults. Protection of this reliable memory
has to be transparent for the FAME microvisor. Or, in other words, the microvisor
assumes that all data stored within this memory are always correct. If the microvisor
uses other memory, it will take care of protecting the data itself.

All data structures of the microvisor are stored in the reliable memory and,
hence, are part of the reliable computing base. Since the RCB is protected ex-
ternally, the microvisor only has to ensure protection against unintended status
changes. Such changes can be caused by faults propagating from the guest OS into
the microvisor. To prevent this propagation, the majority of the reliable memory is
write-protected. Figure 5.4 depicts the virtual memory layout of the microvisor for
the CoMET-based ARM926 platform. Shaded parts, with exception of the ROM,
are mapped to the reliable memory. In the remainder of this subsection, each map-
ping is detailed.

ROM: In this thesis, the ROM is assumed to be error free. The program code
of the FAME microvisor and the application is directly executed out of the ROM.
It is feasible that the ROM can be affected by faults. In this case, the data stored
in ROM have to be equipped with redundancy. The microvisor would then copy
the currently used code pages into reliable memory correcting all errors. Since it is
expected that the amount of available reliable memory is smaller than the size of
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Figure 5.4: Virtual memory layout (CoMET-based ARM926 platform)
the ROM, demand paging would be used to map additional code pages.

Heap: The reliable heap consists of all the remaining memory not used for static
allocations. It is mainly used to create new errors entries and to allocate object infor-
mation data structures. To minimize the waste of memory, two allocation strategies
are operated in parallel. A simple page allocator is used to map consecutive 1 KiB
pages2 for allocation requests larger than 512 Bytes. If an allocation request is larger
than the size of a page, the simple page allocator will search for a free virtual address
range and will map free physical pages into this range. There is no guarantee that
the physical pages are adjacent. For allocations smaller than or equal to 512 Bytes
a buddy allocator is used. The guest is also allowed to allocate memory on the
heap to protect data structures with a very high susceptibility to faults. Therefore,
the hypercalls fame_hypercall_mem_alloc and fame_hypercall_mem_free have
to be used. Although reliable memory allocations made for the guest OS are stored
in fault-free memory provided by the RCB, they are not part of the RCB itself.
RTEMS, which is used as guest OS, does not rely on reliable memory. However,
by providing access to reliable memory, the guest is able to protect critical data
structures. This can increase the probability that the guest OS can handle faults

21 KiB is the smallest page size (tiny pages) on ARM926-based systems
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in an application-specific way.
Exception Vectors and Stack: According to the architectural specification, the
high-level exception vectors have to start at the virtual address 0xFFFF0000. The
FAME microvisor implements the exception vectors as jump table to the actual
exception handling functions. This jump table is very small. Hence, the majority
of this small page mapping3 is available as stack for the microvisor.

Page Table Directories: The page table directories (PTD) are the largest part
of the static reliable data (24 KiB of 38 KiB). The level one PTD is always required
on ARM when paging (and caching) is used. Only sections with the size of 1 MiB
can be mapped with the level one PTD. To map pages with a finer granularity,
second level PTDs are necessary. For a fine-grained mapping of the last megabyte
in the virtual address space (starting at 0xFFF00000), the microvisor uses a level
two PTD. Another PTD is used to map the heap. If the heap is larger than 1 MiB,
further second level PTDs are used.

I/O Mappings: Two virtual address ranges exist to map device memory. The
address range starting at 0xA0000000 is used to map devices exporting large ad-
dress ranges, like frame buffers. The guest OS can map devices here by calling
fame_hypercall_map_io. Mapping is only possible in section granularity since no
second level PTDs are available for this address range. The second address range
resides within the last megabyte and is covered by a second level PTD. Hence,
fine-grained mappings are possible. The guest cannot map devices here since this
address range is exclusively used by the device drivers integrated into the microvi-
sor. However, depending on the device driver, some devices are accessible by the
guest OS. An example for such a device is the UART.

Kernel Communication Page: The Kernel Communication Page(s) (KCP) is
the only memory region where the guest OS has complete write permission. Some
writable status variables are exported through the KCP mapping. These variables
are used to communicate the state of the guest OS to the microvisor. For example,
one status variable exists which signals that the guest is in a critical code section
where error handling is not possible. In this case, the microvisor will handle errors
directly (by recovering a checkpoint) and will not delegate them to the guest.

The KCP also contains a reliable memory location which is excluded from check-
pointing. This location can be used to store a persistent application state. The
remainder of the KCP can be freely used by the guest OS. For the ARM configu-
ration of the microvisor, this remainder is guaranteed to be at least 3 KiB in size.
In the current implementation, this area is used for statically allocating data and
as temporary heap and stack for the error classification task. Another purpose
of this area is to store data which have to be passed to the microvisor in a reli-
able way. Although most hypercalls accept unreliable data as arguments, it can

3Small pages have a size 4 KiB on ARM926-based systems



88 Chapter 5. FAME: Fault Aware Microvisor Ecosystem

be beneficial to allocate arguments in reliable memory to decrease the probability
of a fault when passing arguments to the microvisor. Only two hypercalls ex-
ists, namely fame_hypercall_fault_objects_map and fame_hypercall_fault_-
objects_classified, which require parameter passing in reliable memory. Both
hypercalls are used during fault handling. The main reason which drives this design
decision is to avoid the occurrence of new faults during fault handling.

Data and BSS segments: The last reliably stored memory location includes
the data and bss segments of the microvisor. Like the KCP, the data segments also
contain a permanent storage area. The FAME microvisor uses this area to store
the system time, status information, statistics, and checkpoint information.

Main Memory: The main memory is dedicated to the guest, except for a part
used for checkpointing. All writable data of the guest OS and the application, like
.data, .bss, heap, and stack, are stored here. Once mapped, the main memory
is not directly controlled by the microvisor anymore. Instead, a cooperative model
is used. The microvisor acts as a helper for managing allocated data objects. The
main purpose of this cooperation is to keep track of data usage within the microvisor
to efficiently provide checkpointing support. When the guest OS needs to allocate
new memory, it decides where the new memory shall be allocated. Thereafter, it
requests an object from the microvisor representing the new memory. The micro-
visor reliably stores the allocation information as well as metadata for the object.
To free memory, the guest OS simply request the deletion of the associated objects.
More details of this cooperative model is provided in Section 5.5.4

Overall, the footprint of the FAME microvisor is very small. In the case of the
CoMET-based ARM926 platform (cf. Section 7.1.1) only 2.48 % of the overall sys-
tem memory has to be reliable. If ROM is not considered, the amount of reliable
memory will only be 128 KiB in total which corresponds to 0.04 % of all memories.
This amount fits into ECC-protected scratch pads found in modern processors.

5.3.4 Subscriber Model Support and Data Object Management

As described in the last subsection, the microvisor keeps track of all dynamic data
allocations of the guest OS and the application. On the one hand, this enables
optimizing checkpoint creation. On the other hand, this allows implementing the
subscriber model within the microvisor. As shown in Figure 4.8, the subscriber
model is very important to decide whether or not errors have to be corrected. If
an error affects the subscriber information, it will not be possible to decide how to
handle the error. Hence, per Definition 3.1, the implementation of the subscriber
model has to reside within the RCB.

The subscriber model is tightly coupled with the object management. The first
step is to create an object via the hypercall fame_hypercall_object_add. This
hypercall expects the object specification as parameters. In the case of memory
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objects, this is the virtual address, the size, the object identifier, and a task identi-
fier. The address and the size can be set arbitrarily as long as no objects overlap.
The task identifier specifies the allocating task in the guest OS. In the subscriber
model implementation of the microvisor, the object is automatically subscribed to
the requesting task. In contrast to the description of the subscriber model in Fig-
ure 4.6, this behavior directly creates subscribed objects. This releases FAMERE
from the burden to execute a second hypercall to explicitly subscribe the calling
task. To destroy an object, fame_hypercall_object_remove is provided. Modifi-
cation of already created objects is possible with fame_hypercall_object_modify.
However, modification is limited. The base address of an object cannot be changed.
Changing the object size will be only possible if the resulting object does not over-
lap with other objects. Other properties which can be changed are the reliability
information, object flags, and the applied checkpointing strategy.

To subscribe another task the hypercalls fame_hypercall_object_subscribe
and fame_hypercall_object_subscribe_multiple can be used. The latter hyper-
call subscribes the corresponding task to multiple objects. As long as the requested
object is not erroneous, subscribing automatically unsubscribes weak-unsubscribed
tasks. If the object is erroneous, weak-unsubscribing will be delayed until the corre-
sponding object is corrected. This is an exception to the subscriber model shown in
Figure 4.6. However, this behavior is necessary to avoid inconsistencies during error
classification. To unsubscribe an object the three hypercalls fame_hypercall_-
object_unsubscribe, fame_hypercall_object_unsubscribe_multiple, and
fame_hypercall_object_unsubscribe_all are provided. The first two hypercalls
are the counterparts to the previously mentioned subscribe hypercalls. The latter
hypercall can be used to unsubscribe a task from all the objects it is currently
subscribed to. This hypercall is used by the guest OS to destroy a task.

All the hypercalls presented in this subsection are intended to be used only by
FAMERE and the guest OS. It is not safe for applications to directly call these hy-
percalls. Especially the subscription-related hypercalls are exclusively provided for
FAMERE. Since the microvisor does not know the tasks of the guest OS, FAMERE
has to perform further actions after object subscription to synchronize the task
states. For example, if tasks subscribe to an erroneous object, they have to be set
to a blocking state. Otherwise, they remain in the ready queue and continue execu-
tion on erroneous data. More details of the subscriber model support of FAMERE
are provided in Section 5.4.3

5.3.5 Checkpoint-and-Recovery

Checkpoint-and-recovery is an important strategy in the flexible error handling ap-
proach. It is used as a last resort and in the case that no application specific error
correction method is available. At some points, the application or guest OS may fail
to handle a fault. This is mainly the case if the fault handling routines themselves
are affected by faults or very important data of the guest OS are affected which
cannot be recovered easily. In such a case, the guest OS can instruct the microvisor
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Figure 5.5: FAME Checkpoints

to restore the last checkpoint. A checkpoint in FAME consists of the whole system
state. This includes the state of the microvisor, guest OS and application. Since
data of the microvisor – and hence RCB data – are stored in checkpoints, checkpoint
creation and recovery can only be realized by the microvisor. Due to the limited
amount of reliable memory, checkpoints are stored in main memory. Theoretically,
this breaks Invariant 3.1, because data of the RCB is stored on hardware which
is not part of the RCB. Since this hardware is susceptible to faults this can lead
to changes of RCB data from external sources. To circumvent this problem, the
microvisor applies forward error correction, like, e.g., TMR, to store checkpoints.

The microvisor manages checkpoints in a ringbuffer. A checkpoint consists of
metadata stored in reliable memory and the checkpointed data stored in unreliable
memory. Figure 5.5 depicts an overview of checkpointing. The metadata contain
pointers to the beginning and the end of the checkpoint data in the unreliable
memory, various counters for statistics, the estimated time required for restoring,
and various flags. The estimated restore time is not a WCETEST. It is rather a
prediction of the restore time without any guarantees.

The actual data of a checkpoint is stored in one or several chunks. A chunk
represents a continuous memory range without any gaps. Each chunk has a header
containing the base address of the stored memory range and the size of the range.
In addition, the applied block encoder is stored in the header too. The header is
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stored with TMR since the checkpoint memory is susceptible to transient faults.
Data is stored in blocks of fixed size. This size depends on the used block encoder.
Available block encoders are TMR, Reed-Solomon (RS) code [RS60], LDPC (Low-
Density Parity-Check) code [Gal62], and plain encoding. However, due to the long
encoding time of RS and LDPC, only TMR and plain are used. If TMR is used,
data will be stored three times. In contrast, plain stores data without any encoding.
Consequently, plain can only be used to store data classified as unreliable. All blocks
in a chunk are encoded with the same strategy. As mentioned previously, the size
of a block is fixed. This allows for high performance block encoding since size
comparisons can be omitted in the encoder implementation. However, if the size of
the memory range to store is not a multiple of the block size, the last block has to be
encoded differently. Therefore, the FAME microvisor copies the corresponding data
to a temporary location with the necessary block size. Afterwards, this temporary
location is stored into the checkpoint. Restoring of such blocks is analogously
realized. As shown in Figure 5.5, chunks are stored in a cyclic buffer. At the end of
the checkpoint memory, storing starts again from the beginning. Wrapping is only
possible at the end of a block. As soon as a chunk overwrites a chunk of an older
checkpoint, that checkpoint is deleted. One exception to the previous rule exists.
If the chunk would overwrite the last available checkpoint, the current checkpoint
creation will be aborted. This exception is very important. Otherwise, the last
complete checkpoint will be deleted. In the case that an error occurs while creating
the new checkpoint, no recovery would be possible anymore. Such errors are likely
to happen if erroneous data are read by the copy routine.

To avoid wasting time and memory space, the microvisor selects the data which
are stored. In general, only memory ranges with allocated data are stored in a
checkpoint. Unused memory is generally excluded. To decide which dynamically
allocated objects have to be stored, the subscriber model and reliability annotations
are used. Storing of reliable and subscribed objects is mandatory. Optionally,
the microvisor can also store all subscribed objects, whether they are reliable or
not. It is also possible to store all reliable objects, whether they are subscribed or
not. The guest OS (or application) can instruct the microvisor to use any of the
optional methods per checkpoint creation request. The block encoder can also be
separately chosen by the application for each data object. However, data annotated
as reliable are only allowed to be stored by TMR, RS, or LDPC. Other important
data which have to be included in the checkpoint are the .data and .bss segment.
During initialization of the guest OS, the hypercall fame_hypercall_checkpoint_-
static_area_modify has to be used to submit the corresponding information to
the microvisor.

Since embedded real-time systems are considered in this dissertation, timing
estimations for checkpoint creation are also provided by the FAME microvisor.
This estimation is based on the size of the static memory regions and the size of all
objects. Therefore, the microvisor maintains counters of the size of every allocated
object class. By calling fame_checkpoint_predict, the prediction for static areas
and the prediction for the objects are summarized and returned to the caller. This
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function expects the desired checkpointing mode as input parameter. The mode
specifies the optional checkpoint parts, like, e.g., additional checkpointing of all
unreliable subscribed data. It is worth to note, that the prediction function is not
a hypercall. Hence, this function can be directly called by the guest OS or the
application. It is not necessary to provide a hypercall here since calling fame_-
checkpoint_predict does not change the status of the RCB.

To summarize, a checkpoint is constructed of several chunks. Each chunk con-
sists of several blocks depending on the size of the checkpointed memory region.
The following chunks are stored in order:

1. Architecture chunk: This chunk stores the hardware state, like, e.g. the
currently enabled IRQs.

2. Reliable data chunks: After the architecture chunk, the reliable data is
stored. This includes the stack, data, bss and heap segments of the microvisor
as well as the PTDs and the KCP.

3. Static data (guest OS): The next chunks store the data and bss segments
of the guest OS.

4. Dynamically allocated memory objects: The remaining chunks store
dynamically allocated objects. The selection which objects to store here is
guided by the subscriber model and reliability annotations.

Recovering a checkpoint works straightforward. The chunks are decoded in the
creation order. After restoring the chunk containing the reliable data, the caches
as well as the TLB are flushed. This step is necessary to activate possibly changed
page table entries.

5.3.6 Summary

In this section, the most important concepts of the FAME microvisor were in-
troduced. The main purpose of the microvisor is to provide the foundation for the
flexible error handling approach. This means to protect the reliable computing base
which is necessary to build software-based error handling solutions. For the pro-
tection, para-virtualization is used. With a very specific hypercall implementation,
the microvisor avoids the modification of the RCB by erroneous data. Hereby, it is
ensured that the hypercall parameters are within the specification and error-free.
Compared to traditional virtualization techniques, the goal of the FAME microvisor
is not to multiplex hardware or to create the illusion of a virtual machine which
behaves like the physical hardware. Instead, the guest OS is still in charge of most
of the operations it would perform without virtualization. When virtualized, the
microvisor just inserts a new layer which ensures that error detection and correction
in software continues even in case of faults.

So far, one question is not resolved: Can the FAME microvisor be called mi-
crovisor? The “-visor“-part can be easily answered. Except for virtual CPU and
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multiple guest support, the FAME microvisor implements all aspects important for
para-virtualization. The “micro“-part is harder to answer. Microkernels, like, e.g.
L4, typically provide support for IPC, virtual memory, and scheduling. The FAME
microvisor only provides basic virtual memory support. Scheduling is solely the
task of the guest OS. Another related operating system concept is the exokernel.
An important feature of exokernels is that the untrusted operating system running
on top of the exokernel has to be a library operating system. This is also the case
in FAME. Furthermore, in exokernels, applications can directly interact with the
hardware. This is partially the case in FAME. All hardware components related to
EDAC are only exclusively accessible by the microvisor. Other components, like,
e.g., the graphics card can be directly used by the guest OS. However, the FAME
microvisor integrates components an exokernel would never include. These are the
object management, subscriber model, checkpointing, and low-level error handling
support. According to the minimal principle formulated by Liedtke (cf. Defini-
tion 2.1), integrating such components into a microkernel will be tolerated if they
cannot be implemented outside. In the case of FAME, these are core features to
enable flexible error handling which cannot be implemented outside the RCB.

In fact, the FAME microvisor is located somewhere between exokernels and
microkernels. However, in the view of the author, there are more common points
with microkernels.

In the next sections, FAMERE is described. FAMERE is an additional impor-
tant component in building the flexible error handling approach.

5.4 FAMERE

The FAME Runtime Environment (FAMERE) is the counterpart of the FAME
microvisor. It is a library embedded in the guest operating system. Unlike the
FAME microvisor, FAMERE is guest-specific. FAMERE is the component where
all information – compile time as well as runtime – are combined to implement the
flexible error handling approach. However, the task of FAMERE is not only to
handle errors. In addition, FAMERE provides support for other aspects related to
virtualization and reliability. In the next subsections, all major aspects are detailed.

5.4.1 Para-Virtualization Support

In contrast to full system virtualization, where a guest OS can be executed without
modifications, para-virtualization requires porting efforts. Typically, the communi-
cation with the virtual machine monitor – in the case of FAME, the microvisor – is
implemented with hypercalls. Instead of providing emulated hardware, like an in-
terrupt controller, the microvisor exports such functionalities directly as hypercalls.
To abstract the implemented hypercall mechanics, FAMERE provides C-bindings
enabling C code to directly execute hypercalls. If, for example, the guest OS re-
quires interrupts to be disabled, the appropriate hypercall (fame_hypercall_irq_-
disable) can be used.
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FAMERE also acts as the communication endpoint for the opposite direction.
When the microvisor signals an event – interrupt, timer tick, or error – FAMERE
receives the event message and triggers the appropriate functions of the guest OS.

5.4.2 Checkpoint-and-Recovery

Basic checkpointing support is provided by the FAME microvisor. However, the
microvisor only stores memory ranges and the state of hardware supported directly
within the microvisor. To create a full system checkpoint, the register file and
other status information have to be stored as well. Storing the registers is task of
FAMERE.

If the application needs to create a checkpoint, the function famere_checkpoint_-
create can be called. To create a checkpoint, FAMERE spawns a dedicated check-
point task responsible for the creation. The checkpoint task is initially created
with background priority. Thereafter, a dependency from the calling task to the
checkpoint task is added. Due to the added dependency, the priority of the calling
task gets inherited. If another task also initiates checkpoint creation, only a further
dependency will be created. Hereby, the priority will be inherited to the checkpoint
task as well if the priority of the calling task is higher.

5.4.3 Scheduling and Subscriber Model Support

Despite virtualization, the guest OS remains in charge of scheduling and task man-
agement. From the perspective of the microvisor, the guest OS with all running
tasks is just one single binary. The microvisor is unaware of application tasks.
However, some aspects of the subscriber model and flexible error handling require
modification of the guest OS scheduler. Therefore, FAMERE hooks into the guest
OS scheduler. The following behaviors have to be enforced:

• Task creation: If the created task uses a static object which is affected by
an error, this task has to be suspended. In the case of RTEMS as guest
OS, FAMERE adds a new task blocking state, STATES_WAITING_FOR_-
ERROR_HANDLING. Hence, affected tasks are set to his new state.

• Task destroy: As soon as a task is destroyed, all of its subscribed objects
have to be unsubscribed. Therefore, FAMERE calls the hypercall fame_-
hypercall_object_unsubscribe_all for the task.

• Task state updates: The new blocking state remains active until all errors
affecting the task are corrected. FAMERE hooks into task state updating to
unblock a task after successful error correction.

To complete the subscriber model, FAMERE provides the functions famere_-
object_subscribe[_multiple] and famere_object_unsubscribe[_multiple].
These functions abstract the corresponding hypercalls which must not be called
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directly by the application. A further abstraction of the subscribe hypercall is nec-
essary to properly update the state of the subscribing task. If, for example, tasks
subscribe to an erroneous object, the task states have to be set to STATES_WAIT-
ING_FOR_ERROR_HANDLING.

FAMERE also provide its own scheduler which optionally can replace the sched-
uler of the guest OS. Flexible error handling is orthogonal to the used schedul-
ing strategy. However, the scheduler has to support precedence relations. The
FAMERE scheduler is based on EDF* [Hen78; CSB90] which fulfills this require-
ment. However, the EDF* realization implemented in this dissertation is slightly
modified. Deadlines and release times are still transformed using the original equa-
tions 2.1 and 2.2 shown in Section 2.5. In contrast to the original EDF*, the
dependencies are not dropped and still reported to the operating system. This
behavior is beneficial in cases where errors affect the system. In FAME, error cor-
rection methods are executed as separate tasks. By considering the dependencies of
all affected tasks, the operating system can appropriately assign new task priorities
based on the used scheduling strategy. For example, in the case of EDF*, the error
correction method inherits the earliest deadline of all affected tasks.

5.4.4 Memory Allocation

To support the subscriber model, the heap allocator of the guest OS has to be
modified. After an allocation, the corresponding memory has to be registered to
the microvisor. If memory is freed, this registration has to be revoked.

To ease porting the guest OS, FAMERE provides allocators for stack and heap.
Therefore, FAMERE uses the object information exported by the FAME microvi-
sor. The metadata of objects can be directly accessed. To allocate new memory,
FAMERE searches for the first suitable gap between two objects or for free space
after the last allocated object. If a free memory range is found, FAMERE will
instruct the microvisor to create the corresponding new object. As a positive side
effect, all allocation information are stored in the RCB. Hence, the attack surface
for errors affecting the guest OS is getting smaller.

5.4.5 Error Handling

By far, the most important task of FAMERE is error handling. The flexible error
handling approach is realized by interfacing with the compiler-generated library
librecon. This library is primarily used to query information on statically allocated
data objects and to query possible correction methods for a given set of occurred
errors. FAMERE contributes all necessary runtime information. The complete
error handling procedure is described in Section 5.6.

5.4.6 Summary

FAMERE is a very important component of the Fault Aware Microvisor Ecosystem.
Information collected during compile time and information on the current system



96 Chapter 5. FAME: Fault Aware Microvisor Ecosystem

Figure 5.6: Overview of RTEMS and FAME

state are incorporated to form the flexible error handling approach described in
Chapter 4. Moreover, porting the guest OS to FAME is eased by FAMERE due
to the provided support for interfacing the microvisor, scheduling, and memory
allocation.

In the next section, some aspects of porting RTEMS to FAME are detailed.

5.5 Para-Virtualizing RTEMS for FAME

The Real-Time Executive for Multiprocessor Systems or RTEMS is a full featured
real-time operating system. It supports a variety of open API and interface stan-
dards including POSIX-1003.1b. In this section, RTEMS is introduced first. There-
after, the virtualization efforts are depicted.

5.5.1 RTEMS Overview

In Figure 5.6, the RTEMS architecture with FAME is depicted. Without FAME,
RTEMS would run directly on the hardware. In the para-virtualized case, it has
to interface with FAME. RTEMS itself consists of three layers. In the upper layer,
support for various system services is provided. This includes, for example, file
systems and additional libraries, like, e.g., libz. The middle layer consists of the
implementation of various APIs. In this dissertation, the classic API and POSIX
are used. The classic API represents the native RTEMS interface. Architecture and
platform specific parts as well as the RTEMS kernel, called super core (score), are
located at the bottom layer. In this layer, porting is required to support FAME.



5.5. Para-Virtualizing RTEMS for FAME 97

The components which have to be ported are colored orange in Figure 5.6. In the
next subsections, the porting is detailed.

5.5.2 Board Support Package and Infrastructure

Platform specific adaptations and drivers are provided by the board support pack-
ages (BSPs). In this dissertation, BSPs are implemented for MPARM-based and
CoMET/METeor ARM926-based platforms, and for the TK71 development board.
MPARM implements the ARMv3m architecture without MMU support. Hence,
the FAME microvisor is not compatible with this platform. Virtualization is only
provided for the used CoMET-based platform and for the TK71 board.

The virtualization of the BSP is straightforward. The clock driver is reduced to
its minimum which is to configure the FAME microvisor to the right tick interval.
Handling of IRQs is ported to the appropriate hypercalls. The UART driver is
nearly unchanged except for the replaced base address of the memory mapping.

To support virtualization, the RTEMS build system is modified. To enable
FAME support, RTEMS has to be configured with --enable-fame. Without this
configuration option, RTEMS is built bare-metal. This allows for comparisons
between virtualized RTEMS and native RTEMS based on nearly the same code
base.

5.5.3 Context Switching

Switching between two tasks requires execution of privileged instructions. These
are required to update status registers. Typically, these are the program status
words and the page table entry. Since RTEMS consists only of one address space,
page table switches are not necessary. However, updating the program status words
is still required.

In Listing 5.4, the context switch code for ARM926 of native RTEMS was al-
ready depicted. The msr instruction on line 8 is problematic due to the silent fail.
This instruction is used to overwrite the current processor status. Executed in user-
mode, it is only allowed to change the condition bits. All other bits are read-only.
However, writing to these bits does not lead to an exception. Moreover, writes
are ignored. Consequently, the context switch code has to be ported. The ported
version is depicted in Listing 5.5. Instead of writing directly to the program status
word, the hypercall fame_hypercall_cpsr_set is used (line 13). To avoid using
a second hypercall for restoring the IRQ disable level, the previously mentioned
hypercall expects the program status word and the IRQ disable level as input pa-
rameters. The IRQ disable level, or short IRQ-level, represents an internal counter
of RTEMS for nested IRQ disable requests. The counter avoids activation of IRQs
too early if more than one subsystem requires disabled IRQs. Only if all subsystems
enable IRQs again (the counter is zero) IRQs will be activated. The IRQ-level is ad-
ditionally stored in the task’s context store location within the thread control block
of RTEMS. In lines 5 and 6, the IRQ-level is fetched. The hypercall responsible
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Listing 5.5: RTEMS context switch code for ARM ported to FAME
1 ;r0 pointer to context store location
2 ;r1 pointer to context load location
3 _CPU_Context_switch :
4 mrs r2 , cpsr
5 ldr r3 , fame_irq_disabled_ptr
6 ldr r3 , [r3]
7 stmia r0 , {r2 , r3 , r4 -r11 , r13 , r14}
8 ; context now stored to r0 -> load context from r1
9 ldmia r1 , {r2 , r3 , r4 -r11 , r13 , r14}

10 push {r2 , r3 , lr}
11 restore_cpsr :
12 ldmia sp , {r0 , r1}
13 bl fame_hypercall_cpsr_set
14 cmp r0 , #EINTR
15 beq restore_cpsr
16 ldr lr , [sp , #(2 * 4)]
17 add sp , sp , #(3 * 4)

for setting the IRQ-level and the program status word is executed in a loop (lines
11-15). This is necessary since hypercalls can be interrupted by transient faults.
Hence, the hypercall return value has to be checked.

5.5.4 Memory Management

RTEMS implements several heaps. One heap is the RTEMS work space. The work
space contains all major operating system data, like, e.g. task information and
semaphore status. The size of this heap is rather small. During compilation of
the application, the size is determined by evaluating the configuration statements
in the source code. In all the examples used in this dissertation, the size never
grows beyond 64 KiB. Among the work space two other heaps exist. One heap
for the stacks of the tasks and another heap for the dynamic memory allocations
(mainly for mallocs). Depending on the configuration, these heaps also can be
united. In the next subsection, the drawbacks of the RTEMS heap implementation
are depicted. In consequence, the heaps for the stacks and mallocs are replaced by
a customized heap implementation.

5.5.4.1 RTEMS Heap Implementation

In Figure 5.7 the RTEMS specific heap implementation is depicted. Each heap is
represented by a data structure named Heap_Control. The memory range handled
by the heap is stored in area_begin and area_end. Allocations as well as free
memory are managed in Heap_Blocks (yellow blocks in Figure 5.7). To quickly find
free memory, the free blocks are chained in a double linked list. In the depicted
example, two free blocks (green) and three used blocks (red) are available. As can
be seen, the validity of the entries in Heap_Block strongly depends on whether
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Figure 5.7: RTEMS native heap implementation

the block is used or free. Only the size and flag fields are always available. The
information on the size of the previous block (prev_size) will only be valid, if the
flag is set to ’0’. The pointers to the next and previous free block (next and prev)
will only be valid if the directly adjacent block has the flag set to ’0’. To determine
this directly adjacent block, the size data field can be used. The size of the block
data structure itself plus the corresponding size of the memory area after that block
is stored in the size field. Hence, it is sufficient to add the size to the beginning of
a block to reach the next block on the heap. This highly optimized data structure
significantly reduces the imposed overhead for heap management. For example,
between the second and the third allocation in Figure 5.7 only one word is wasted.

However, the drawback of this heap implementation is the mixture of manage-
ment information and user data. On the one hand this is a security issue: the
application can (accidentally) overwrite heap management data due to memory
over- or underflows. On the other hand, there are reliability issues. The heap stores
a mixture of data classified as reliable or unreliable. Hence, a Heap_Block can be
partially reliable and unreliable at the same time. This is not supported by the
REPAIR compiler. Solutions showing how to cope with the reliability issues are
described in the next subsection.

5.5.4.2 Hardening the RTEMS Heap

One obvious method to protect the metadata of the heap is checkpoint-and-recovery.
In the case of an error, the complete system state – and hence also the heap – is
restored by recovering the last checkpoint. This solution is applicable to all kinds
of heaps. However, with respect to flexible error handling, this solution is only
feasible for heaps storing solely reliable data without annotated correction methods.
In such a constellation, recovering a checkpoint is the only applicable correction
method anyway. The RTEMS work space perfectly matches these specifications.
Consequently, the native RTEMS heap implementation is used and the complete
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heap is stored in a checkpoint.
The next possible method would be checkpointing only the metadata. Due to

the complex semantics of a heap block, this method is not feasible. Depending on
the current block type, a rollback would partially overwrite the application data
which leads to an inconsistent state. Another method to protect the metadata
would be to apply forward error correction, like, e.g. TMR. In the case of an error,
the first step is to vote about the block type and size. Thereafter, the valid fields
can be corrected. One drawback of this solution is the overhead. Currently, the
overhead is only one word per block. With TMR, the overhead grows to nine words.
The other drawback would be that data classified as reliable has to be stored as
well. Therefore, checkpointing has to be used. However, this creates a situation
where the metadata is stored with TMR and partially within checkpoints due to
the mixture of metadata and application data on RTEMS-managed heaps. This
would increase the overhead even further.

To eliminate the disadvantages of the previously mentioned methods the heap
allocator of FAMERE is used. Therefore, the heap blocks are replaced by micro-
visor managed objects. These objects are required anyway to store information
for librecon. From the perspective of RTEMS, the overhead with respect to main
memory is zero since all metadata are stored in reliable memory. The separation of
the management data leaves the application the choice which algorithm to imple-
ment to protect valuable data. For example, it is possible to store data classified
as unreliable completely unprotected. This is a significant advantage of the vir-
tualized heap implementation. Another advantage is that the application cannot
corrupt the heap anymore by over- or underflows. However, it is still possible that
other application data gets overwritten. Protection can be enabled by insertion of
guards and periodically checks or by using page table based protection. However,
both solutions have drawbacks. Since page table entries are too coarse grained, a
huge amount of memory is wasted. Furthermore, due to the additionally required
page table entries, the amount of reliable memory needed to store the page table
entries would dramatically increase. However, protection against over- or under-
flows will not be necessary if FAME is used. In this dissertation, it is assumed that
applications will work correctly and will be free of software bugs if not affected by
transient faults. This means that over- or underflows will normally not occur. Due
to the REPAIR compiler, wrong offsets or pointers can be also excluded under the
influence of transient faults. To recapitulate, REPAIR enforces the prohibit rule
(Definition 5.1) and propagation rule (Definition 5.2). Consequently, the correct
values in offset and pointers can be guaranteed as long as erroneous data classified
as reliable are corrected prior to usage.

5.5.5 Summary

Due to the fact that FAMERE implements the whole interfacing with the FAME
microvisor, the virtualization and porting of RTEMS to FAME is straightforward.
The BSPs are modified to use hypercalls to access hardware components protected
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Figure 5.8: FAME Error Handling Procedure

by the microvisor. Clock management as well as dynamic allocation of data is
replaced by services provided by FAMERE.

At this point, all components are described which are necessary to realize the
flexible error handling approach. In the next section, the realization is detailed.

5.6 Flexible Error Handling - Realization

An overview of the error handling process is depicted in Figure 5.8. Error handling
starts in the microvisor (bottom of Figure 5.8) and ends with the acknowledgment
of the successful execution of the selected error handling method (not depicted in
the figure). All stages of the complete error handling procedure are detailed in the
next subsections.
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5.6.1 Stage 1: Low-Level Error Handling

Error handling starts with the detection of the error and a context switch to the
microvisor. As already mentioned, error detection is outside the scope of this the-
sis. Hence, it is assumed that some kind of error detection is present. If an error is
detected, the microvisor will be notified and the error handling will begin (bottom
of Figure 5.8). After storing the current context, the microvisor checks whether
or not the fault can be handled outside the RCB. Errors, for example, which af-
fect FAMERE, are very unlikely to be handled by FAMERE itself – again, this is
the previously described chicken-and-egg problem. In such a case, the microvisor
automatically restores the last system checkpoint or, if no checkpoints are avail-
able, resets the complete user space as a last resort. If FAMERE is not affected,
error handling is delegated by sending a message to FAMERE. Before jumping to
the FAMERE message handler, the microvisor creates an error description contain-
ing information about the occurred error as well as the user space context. With
switching to FAMERE, the second stage begins.

5.6.2 Stage 2: Mapping Errors to Tasks

After switching to FAMERE, the tasks affected by errors have to be determined.
To find these tasks, the subscriber model is used. In the subscriber model, objects
carry the information which task is subscribed. Hence, the objects affected by
errors have to be located. Dynamic objects are maintained by the microvisor in
a red-black tree sorted by the base address. Hence, the lookup is very fast. In
the case of static objects, librecon is queried. To unify further error handling, the
returned static objects are added to the red-black tree of the microvisor. After error
handling, these objects are automatically removed.

When all affected objects are determined, the corresponding tasks are suspended
and the objects are attached to the error description created during stage one.
Therefore, FAMERE uses the hypercall fame_hypercall_fault_objects_map. Af-
ter all errors have been mapped to the corresponding tasks, the classification stage
is scheduled. The classification stage is executed as a separate task with a priority
equal to the highest priority of all affected tasks. Hence, if higher prioritized tasks
are not affected by faults, error handling will be delayed until all higher prioritized
tasks finish their execution.

Stage one and two are immediately executed after error detection. Interrupts are
deactivated. To lower the probability that additional errors occur during execution,
stage two operates on a temporary heap and stack allocated in the KCP section
of the reliable memory. Nevertheless, errors can still occur. In such a case, error
handling will be reset. Thus, it is very important to limit the possible state changes
of this stage. Only two state changes are allowed during this stage. The first one is
to submit the error to task mapping to the microvisor which is able to reliably add
the mapping to the corresponding error description data structures. The second
allowed status change is the scheduling of stage three. To avoid creation of several
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classification tasks, the task is constrained to only one copy. To realize this, one
classification task is created during the initialization of FAMERE. After finishing
a classification, the task is suspended. If a new classification has to be performed,
stage two just resets the classification task and sets the appropriate priority. Hence,
stage three also is designed to be (nearly) stateless.

5.6.3 Stage 3: Classification and Handling Method Selection

The task of the third stage is to classify all errors which are not classified so far
and to provide at least one error correction solution which handles every error.
The classification is realized by librecon. Therefore, FAMERE calls the exported
function recon_fcg_generate. This function returns a Pareto-optimal front of
possible solutions. As described in Section 5.1.3, a solution is represented by a
Fault Correction Graph (FCG). By construction, each solution element of the
returned FCG is able to correct all errors which are detected at the point in time
the FCG is generated.

In the next step, one solution is selected. The selection is based on the available
slack time and other parameters annotated on the FCG. Thereafter, FAMERE
creates a task for each correction method referenced in the FCG and stores the
task ID to the corresponding FCG node. However, some exceptions exist. If the
correction method is ignore, FAMERE will directly execute stage four. If checkpoint
recovery is part of the FCG, FAMERE will immediately trigger the recovery.

As soon as all tasks are created, FAMERE notifies the microvisor using the
hypercall fame_hypercall_objects_classified. This hypercall expects the se-
lected FCG as parameter. Since FAMERE stores the task IDs of each correction
method in the FCG, the microvisor can determine how many correction methods
per object respectively error have to be executed. The former is stored as correction
count within the object metadata. The correction count is important in the next
stage for acknowledgment of the finished error correction.

Unfortunately, the time period between creation of the first error handling task
and the notification of the microvisor is a critical section since the system state is
changed. If a fault occurs in this period of time, tasks will remain which possibly
perform invalid corrections with respect to the new classification triggered by the
additional faults. Consequently, FAMERE sets the actual system state to critical
which forces the microvisor to restore the last checkpoint when a new fault occurs.
To avoid checkpoint restore-loops, the creation of new checkpoints is blocked, as
long as classification of errors is pending.

5.6.4 Stage 4: Error Correction and Acknowledgment

In the last stage, the actual error correction is performed by calling the application
specific handler routines. Hereby, each error correction routine is scheduled accord-
ing to their priority. The priority of the correction method is the maximum priority
of all tasks affected by the corresponding error. If dependencies to other correction
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methods exist, the appropriate dependencies will be added.
After the correction method finishes, the corrected error has to be acknowledged

to the microvisor by calling fame_hypercall_ack_single_correction_done. This
hypercall decreases the correction count of the affected object. If the count reaches
zero, the object will be considered as completely corrected. If the object was a
static object temporarily added by librecon, the object will be deleted. A blocked
task can continue execution as soon as all used objects are corrected.

As soon as all objects mapped to an error are corrected, the error entry is deleted
by the microvisor. At this point in time, error handling is completed.

5.7 Summary

In this chapter the Fault Aware Microvisor Ecosystem (FAME) was presented.
FAME realizes the flexible error handling approach. The ecosystem consists of
an offline part, executed during compile time, and an online part, comprising the
runtime components. During compile time, the semantics of applications are ex-
tracted by the REPAIR compiler. The semantic is important to answer the question
if and how errors have to be handled. Since transient faults leading to errors oc-
cur during runtime, the semantic has to be available to the online components of
FAME. Therefore, REPAIR encodes the semantic in a classification of possible er-
ror outcomes. Together with the compiler-generated library librecon, the runtime
system can query the classification data base for possible error handling solutions.

To get a more fine-grained resource usage model and to be able to map errors
to tasks, the subscriber model is used. The mapping is important to answer the
question when errors have to be handled. Due to the mapping, it is possible to
add dependencies between the error correction tasks and the tasks waiting for error
correction. Hence, the problem can be reduced to an ordinary task scheduling prob-
lem with precedence. Implementing the subscriber model involves many software
layers. It starts in the compiler which provides support for rewriting allocations
and ends in the FAME Runtime Environment which applies the semantics to the
scheduler. Thereby, the subscriber model connects the offline and online worlds.

However, not only the subscriber model affects several software layers. The
error handling itself involves the FAME microvisor, FAMERE and librecon. Only
the microvisor is protected against faults due to execution in the RCB. All other
components are susceptible to faults. Hence, the microvisor has to ensure that
FAMERE and librecon are fault-free prior delegating error handling. If this is
not the case, a checkpoint will be immediately recovered. To protect the state of
the microvisor, virtualization is used. To minimize the code base required to be
executed within the RCB, the applied virtualization concepts are tailored to the
needs of fault-tolerance and embedded systems.

In the next chapter the main benchmark application is detailed. Afterwards,
FAME is evaluated.
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In Chapter 4, the feasibility of flexible error handling is described for different kinds
of application fields. However, writing executable benchmark applications with a
sufficiently large workload and precisely specified real-time constraints is difficult.
Furthermore, the applications have to be ported to RTEMS. Consequently, only
the H.264 decoding benchmark is fully evaluated in this dissertation.

In the next subsections, two different versions of the decoder are investigated.
The first variant is a simplified version which is used to evaluate the error classifi-
cation. In this version, the video is decoded as fast as possible without respecting
real-time constraints. The second variant is an application running under RTEMS
with real-time constraints. The latter version is used to evaluate the real-time
behavior of the flexible error handling approach. Both decoder applications are
based on libh264 which is described in the next section. Afterwards, the decoder
applications are detailed.

6.1 H.264 Decoder Library – libh264
ISO/IEC 14496-10 or H.264 [Dra03] is a video compression standard used widely in
the area of multimedia applications. H.264 supports different profiles defining the
video and compression quality. The profile with the highest quality is the High 4:4:4
Predictive Profile (Hi444PP). It supports 4:4:4 chroma sampling, up to 14 bits per
sample, and lossless region coding. The Constrained Baseline Profile (CBP) yields
the lowest quality.
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In this dissertation, the H.264 codec is provided by a library called libh264. It is
based on the source code provided by Martin Fiedler [FB04]. The library consists of
about 3000 lines of C code and 1000 lines of header files. It supports the following
subset of CBP:

• I and P slices

• 4:2:0 chroma format

• 8 bit sample depth

• CAVLC entropy coding

Arbitrary slice ordering, redundant slices, and multiple reference frames are not
implemented.

6.2 Simple Decoder Application

The simple decoder application can be seen as a wrapper around libh264. It controls
libh264 and feeds it with input data. The decoded video is sent via a network
socket to a (remotely) running application, like, e.g., QtNetview (cf. Section 3.6)
which can analyze and display the frames. The simple H.264 decoder application
is implemented for different platforms running under different operating systems.
For example, ports are available for Linux (x86) and RTEMS (ARM).

The simple decoder is running completely without timing constraints. It de-
codes a given H.264 encoded video as fast as possible. The main purpose of the
simple decoder is to study possible impacts of transient faults. Thus, it is used in
Section 4.2.1 to create a classification of possible error impacts. The simple decoder
application is also used in Section 7.2.2 to evaluate the probabilistic error model.

6.3 Real-Time Decoder Application

The real-time decoder application is based on libh264 as well. In contrast to the
simple decoder variant, this decoder is designed for embedded real-time systems.
This means the real-time decoder application maps the decoding process to several
tasks with corresponding real-time characteristics, such as release time, execution
time, deadline, and dependencies.

Determining the execution time for decoding H.264 video material is not triv-
ial. In the next section, execution time estimation is detailed. When knowing the
execution time, scheduling is possible. In Section 6.3.2, the splitting of the appli-
cation into tasks and the scheduling is sketched. The target operating system is
RTEMS. For a better support of FAME and the application, RTEMS is modified.
The modification mainly affects the task management of RTEMS and the scheduling
subsystem. In Section 6.3.3, more details on the RTEMS modifications are given.
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Video Resolution # Frames
A TV series 320 × 352 15499
B Computer animated movie 320 × 352 14314
C Music video 640 × 360 9083
D TV movie 620 × 476 62952
E Computer animation 848 × 480 21244

Table 6.1: Analyzed videos

Figure 6.1: Frame decoding time for successive frames

6.3.1 Timing

The decoding time of a frame is required for scheduling. Only if the execution
times of tasks are available, calculating the slack time is possible. Using the
code of libh264, an analysis of the decoding function was performed using the aiT
[WEE+08] WCET analysis tool for an ARM7-based platform. Compared to the
measured results on this platform, the estimation yields a WCETEST that is ten
times higher than the highest observed frame decoding time. Obviously, such an
overestimation is useless to calculate the available slack time. This leads to the
conclusion that better estimations are only possible during runtime.

In a first approach, the relations between subsequent frames are analyzed by
considering typical H.264 encoded videos. The used videos are summarized in
Table 6.1. In Figure 6.1, the decoding time is depicted for a sequence of thousand
frames. The experiment was executed on the CoMET-based ARM926 platform with
video C (cf. Table 6.1) The decoding times vary between 35 ms and 120 ms. The
figure shows that it cannot be expected to find a dependency of execution times
between subsequent frames. However, it also shows that it is useful to distinguish



108 Chapter 6. Demonstrator: H.264 Video Decoder Application

Figure 6.2: Decoding time for I-Frames in relation to average size of macro blocks

between P- and I-frames. While I-frames are self-contained, P-frames can reference
previously decoded frames. In the case of libh264, only the last decoded frame can
be referenced. In contrast to P-frames, I-frames are decoded faster and the number
of I-frames is smaller by an order of magnitude or more.

To determine the frame type, reading the header of the frame is necessary. By
reading the header, it is also possible to get the resolution and hence the number
of macro blocks. In H.264, a frame is constructed of macro blocks. Since neither
static WCET analysis nor knowledge about frame sequences are a suitable basis to
estimate the decoding time of a frame, the next approach tries to use the input size
and frame header information for estimation. In the case of I-frames it is feasible to
define a probabilistic upper bound. The average decoding time seems to be related
to the average macro block size. In Figure 6.2, the measured values are plotted. The
outcome for the same measurement made with P-frames is depicted in Figure 6.3.
Unfortunately, the decoding time of such frames are not primarily depending on the
size of the input alone. An upper bound for P-frames cannot be defined. However,
since P-frames are the frame type most frequently used, estimations purely based
on the input size are not meaningful.

To cope with this problem more information has to be gathered. Therefore,
Bönninghoff1 proposes to divide libh264 into several stages. At the beginning of the
first stage, the prediction of the decoding time is highly over-estimated. However,
during decoding of a frame, the prediction becomes more and more accurate. The
stages are as follows:

1. Slice header parsing: This stage only parses the slice header. After com-
1Not published yet
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Figure 6.3: Decoding time for P-Frames in relation to average size of macro blocks

pletion, the number of macro blocks to decode as well as the slice type is
known. The term slice denotes the encoded input of a frame. H.264 allows
for multiple slices per frame. However, libh264 is constrained to only on slice
per frame.

2. Slice parsing: During slice parsing the whole slice input is read. The infor-
mation is stored in the corresponding arrays which are required in later stages.
After completion of this step, all macro block types, intra subdivisions and
modes, and motion vector deltas are available. These are important data to
significantly reduce the over-estimation of the decoding time prediction.

3. Slice deriving: Since motion vectors have a resolution of a quarter pixel, it
is not possible for the previous step to decide how many filtering steps will
be necessary. In this stage, the actual motion vectors are derived. After the
slice deriving stage, a good estimation for the execution time of the final slice
rendering stage is available.

4. Slice rendering: This stage is responsible for writing the decoded frame.
Therefore, all transformation are executed and the kernels are applied.

The prediction of the execution time becomes more and more precise with every
stage. Figure 6.4 shows the relative error of the prediction versus the measured
runtime of a randomly selected frame. The x-axis shows the normalized runtime
of the decoding from the beginning (0.00) to the end of the decoding (1.00). The
dotted blue vertical line denotes the end of the slice parsing step and the dashed
blue line denotes the end of slice deriving. After each decoded macro block, a new
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Figure 6.4: Relative error of decoding time estimation (with kind permission of Björn
Bönninghoff)

estimation is made. The relative error of this estimation is plotted in red. The
estimation of the frame decoding time is fairly accurate after the slice deriving
step is finished. The runtime of stages one to three is very short and is mainly
determined by the amount of input data. Hence, (over-)estimation of the execution
time for those stages is easily possible at the very beginning of decoding. After
execution of the first three stages, a sufficiently precise execution time estimation
is available which can be used for scheduling the last stage. Hence, it is useful to
divide libh264 into two parts. Part one comprises the first three stages and the
second part consists only of the last stage. In the next section, the execution time
estimation and the partitioning is considered for scheduling.

6.3.2 Scheduling

Before scheduling and task partitioning can be described, another important aspect
has to be considered. In Figure 6.1, high fluctuations of the decoding times within a
video were already shown. This has severe consequences for decoding. For example,
if a frame rate of ten frames per second (fps) is assumed, the available time for
decoding a frame will be 100 ms. As can be seen in Figure 6.1, frames exist where
the decoding time is above 100 ms. Hence, it will not be feasible to decode the video
in real-time if frames are decoded in periods of 100 ms. However, it should be noted
that the majority of frames can be decoded within the 100 ms boundary. If the
remaining time not used for decoding the current frame is used to decode the next
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Figure 6.5: Task dependencies of the H.264 decoding application

frame in advance, it will be possible to cope with frames requiring more decoding
effort. In typical video decoders, several frames are decoded in advance and stored
into a ring buffer. Only if the buffer is full, the system will idle. Otherwise,
computation time is used to decode frames in advance. In the real-time aware
version of the H.264 application, a ring buffer is used as well. The maximum
number of frames stored in this buffer is limited to eight. This allows for executing
the decoder on all supported platforms without modifications.

In the implementation of the H.264 decoding application created in this thesis,
every frame is handled by two separate tasks. Per frame, one task is responsible for
decoding and one task for displaying. The execution order of all tasks is modeled via
dependencies. In Figure 6.5, a dependency graph is depicted. The nodes represent
the tasks. The outer (blue) nodes are decoding tasks and the inner (black) nodes
are the output tasks. For simplicity reasons in Figure 6.5, a ring buffer size of three
and the continuous example sequence IPPIPIPPP of I- and P-frames are assumed.
The red numbers denote the buffer index. For example, task A decodes an I-
frame in buffer element 0 and task A’ displays the decoded frame stored in buffer
element 0. It is obvious that A has to be finished before A’ can display the frame.
Hence, a dependency edge is inserted. Each P-frame is dependent on the previously
decoded frame. There is also a dependency between the draw tasks. The next draw
task has to wait until the previous draw task finishes execution. Otherwise, two
frames will be drawn on the screen. The last kind of dependency is shown with
red dashed arrows. This dependency is required for each I-frame to avoid possible
overwriting of the reference frame used by another P-frame. For example, without
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the dependency edge from task B to task D, D can be scheduled before B. However,
since D operates on buffer element 0, D would override the frame which B requires
as reference. Consequently, each task decoding an I-frame is dependent on the task
decoding the n − 1’st last buffer element relative to the current position, where n

is the buffer size. There is only one exception. If the n − 1’st last buffer element
represents an I-frame, the dependency can be omitted. This is the case for the
dependency edge from D to F.

In Figure 6.5, the dependencies seem to be circular. This is not the case. The
tasks are only depicted as a circle to show all dependencies for the assumed frame
sequence. In the real implementation, only seven tasks exist in parallel. These are
three decoding tasks and four draw tasks. In the considered example, the tasks A,
A’, B, B’, C, and C’ are created at startup and execution begins with task A. After
A finishes, task A’ can display the frame stored in buffer position 0. If A’ finishes
drawing, new tasks have to be created to refill the buffer at position 0. Therefore,
A’ creates the tasks D and D’. To get all necessary parameters, A’ already executes
part one of the frame decoding process. Thereafter, the execution time for task D
can be estimated. The execution time for task D’ is composed of the time required
for drawing the frame and the time which will be required to execute part one of
the decoding. Both execution times can be estimated by considering the frame
resolution only. The new release time rD′ and deadline dD′ of task D are calculated
as rD′ = rA′ +n · fps−1 and rD′ = dD′ +fps−1, respectively. The release time of the
new decoding task D is set to “now”. Specifying a deadline for D can be omitted
since it is automatically inherited by setting the dependencies.

The previously described procedure is repeated until the end of the video stream
every time a draw task finishes the frame output. This means two new tasks are cre-
ated. One task as replacement for the current draw task and one task responsible to
execute part two of the frame decoding. All tasks are assigned with the appropriate
real-time parameters, either directly or indirectly via dependencies. The complete
system is scheduled with EDF*Henn [Hen78; CSB90].

6.3.3 RTEMS Modifications

To implement the real-time aware H.264 decoding application on top of RTEMS,
it is necessary to add some mandatory features. In RTEMS, task release times,
dependencies, and execution times (WCETEST) are not supported. Deadlines are
only implemented for some schedulers and are only usable via specialized services.

To improve the RTEMS support for release times, execution times, and dead-
lines, the function rtems_task_create_realtime is introduced. In Listing 6.1, its
declaration is shown. The first six parameters are equal to the standard rtems_-
task_create function. The parameter t_activation specifies the absolute release
time of the task measured in ticks since boot. The estimated execution time is spec-
ified in t_wcet. To specify the deadline of the task, the parameter t_deadline has
to be used. The deadline is specified relative to the release time. In RTEMS, task
start and creation is realized by two separate functions. It is always the first step to
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Listing 6.1: New RTEMS real-time task create API
1 rtems_status_code rtems_task_create_realtime (
2 rtems_name name ,
3 rtems_task_priority initial_priority ,
4 size_t stack_size ,
5 rtems_mode initial_modes ,
6 rtems_attribute attribute_set ,
7 rtems_id *id ,
8 uint32_t t_activation ,
9 uint32_t t_wcet ,

10 uint32_t t_deadline
11 );

Listing 6.2: New RTEMS task dependency API
1 rtems_status_code rtems_task_depend (
2 rtems_id id ,
3 rtems_id id_depending_on
4 );

create a task with the previously mentioned function. Thereafter, the task can be
started by calling rtems_task_start. If rtems_task_start is called prior to the
release time, the new implementation will automatically delay the start. The dead-
line and the WCETEST are attached to the RTEMS thread control block managing
the task. This means the selected scheduler has to take care of the deadline.

To support task dependencies the function rtems_task_depend is added (cf.
Listing 6.2). If the task denoted by id is in the ready queue or currently executing,
it will be blocked immediately. Tasks are blocked until all tasks they depend on
are finished. Dependencies are directly enforced by RTEMS regardless of the used
scheduler.

6.4 Summary

Decoding H.264 videos is a very good application to evaluate the flexible error
handling approach. It provides enough complexity to achieve a high and varying
CPU load over a long period of time. Due to the varying CPU load, the slack
time varies at well. In this highly dynamic scenario, FAME has to handle errors
with respect to the current system condition. This is especially important when
the real-time version of the H.264 video decoder application is used.
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In this chapter, the flexible error handling approach as well as FAME are evaluated.
All evaluation scenarios are based on the H.264 benchmark application described
in Chapter 6. The evaluation starts with a description of the used platforms in
Section 7.1. Afterwards, in Section 7.2, the impact of ignoring errors is shown for
different error models. This section also proves that the classification approach
– which is one of the basic principles of flexible error handling – can be applied
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(a) CoMET-based ARM926 platform (b) MPARM-based ARM7m platform

Figure 7.1: Used evaluation platforms

to different error models. Embedded systems are in the focus of this dissertation.
Since the available resources in such systems are scarce, the runtime overhead of
the flexible error handling approach should be as small as possible. The overhead
imposed by FAME is measured in Section 7.3.

Checkpoint-and-recovery is the default method in FAME to handle errors af-
fecting data classified as reliable. In Section 7.4, the creation and the recovery of
checkpoints are evaluated. Finally, in Section 7.5, the real-time behavior under the
influence of transient faults is evaluated.

7.1 Evaluation Platforms

The flexible error handling approach is evaluated on two platforms. The first plat-
form is based on CoMET [Syn14] and is used to evaluate FAME with the transient
memory fault model. MPARM [BBB+05] is the second evaluation platform. It is
used for evaluating the flexible error handling approach with the probabilistic error
model.

7.1.1 CoMET-based ARM926 Platform

The main evaluation platform used in this dissertation is based on the Synopsys
CoMET/METeor Simulator [Syn14]. CoMET/METeor provides fast and accurate
models enabling hardware and software co-design. The setup used in this disserta-
tion is depicted in Figure 7.1a. The processor core configured in this platform is
an ARM926 to match the demonstrator platform shown in Figure 3.3 on page 38.
The simulated platform is equipped with 64 MiB main memory, 16 MiB ROM and
128 KiB reliable RAM. The memory bus is clocked at 400 MHz. The main memory
is based on a customized module implementing the transient error model described
in Section 3.3.1. This model does not inject faults continuously. Instead, faults will
be injected when the memory is accessed since this is the relevant point in time
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where a fault can be noticed. To determine the amount of faults which have to
be injected between two consecutive memory accesses, a Poisson distribution with
configurable parameter λ is used. Faults are randomly injected and are equally
distributed over the memory. Hence, the location of the access has no influence on
the fault distribution. The fault detection functionality of the memory module is
enabled. Thus, it is checked on access whether or not the requested memory cell is
affected by an error. If an error is detected, a Fast Interrupt Request (FIQ) will be
triggered to notify the processor.

7.1.2 MPARM-based ARM7 Platform

The MPARM-based platform is used to show the feasibility of the flexible error
handling approach also for error models apart from memory. MPARM [BBB+05]
was developed at the University of Bologna. It is a multi-processor cycle accurate
architectural simulator. Several SWARM [Dal03] (SoftWare ARM) processor cores
implemented in C++ are connected by an AMBA bus implemented in System C.
The SWARM cores simulate ARM7m processors. SRAM based memory and caches
are connected with the ARM core by an internal bus. The SRAM is not considered
in this thesis. Except for the size of the main memory, the default configuration
of MPARM is used. The amount of main memory had to be increased from 1 MiB
to 16 MiB to allow for execution of the H.264 benchmark application. MPARM is
configured to use one CPU with the default frequency of 200 MHz. An overview of
the used configuration is depicted in Figure 7.1b.

In this dissertation, MPARM is used to implement a probabilistic error model.
Therefore, a probabilistic version of a ripple carry adder and a Wallace tree mul-
tiplier are added to SWARM. These probabilistic components are used by four
new instructions. All other instructions continue to use deterministic components
only. The new instructions are addition (padd), subtraction (psub), and reverse
subtraction (prsb) using the PRCA (cf. Section 3.4.2.1), as well as multiplication
(pmul) which uses the PWTM (cf. Section 3.4.2.2).

7.2 QoS Impact of Classification

The classification of data objects regarding their susceptibility to faults is one of
the basic principles of the flexible error handling approach. Classification consists
of two parts: reliability annotations and possible error correction methods. This
section is dedicated to the former part. The usage of different error correction
methods is evaluated in Section 7.5.

The REPAIR compiler supports two error impact classes. If an error affecting
an object can lead to severe consequences, like, e.g., application crashes, the object
will belong to the high impact class. Hence, such an object has to be annotated as
reliable. All other objects are mapped to the low impact class and are annotated
as unreliable. In this section, a static mapping of error correction methods to error
classes is defined. Errors affecting data objects annotated as reliable are corrected
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Video resolution Memory size of reliable data Memory size of unreliable data
176 x 144 92,908 bytes (55 %) 76,184 bytes (45 %)
352 x 288 228,784 bytes (43 %) 304,280 bytes (57 %)

1280 x 720 1,623,104 bytes (37 %) 2,764,952 bytes (63 %)

Table 7.1: Ratio of reliable to unreliable memory (taken from [SHM+13])

by restoring the last checkpoint. If an object annotated as unreliable is affected,
the error will be ignored.

The purpose of the evaluation in this section is to show the applicability of the
error classification by performing a qualitative analysis and to show the impact on
the quality of service by a quantitative analysis. Both analyses are performed for
the transient memory and probabilistic error model.

7.2.1 Transient Errors in Memory

To evaluate the flexible error handling approach for the transient memory error
model, the CoMET-based platform described in Section 7.1.1 is used. The executed
software load is the real-time version of the H.264 video decoder (cf. Section 6.3)
executed on top of FAME. The qualitative and quantitative analyses follow in the
next two subsections.

7.2.1.1 Qualitative Analysis: Applicability of Unreliable Memory

In the qualitative analysis it is investigated whether a significant share of the data
objects of the H.264 decoder can be annotated as unreliable. The flexible error
handling approach will only be applicable if this is the case. By applying the static
code analysis of the REPAIR compiler and manual source code annotations, it is
possible to identify unreliable data objects. Hence, errors affecting such objects can
be safely ignored without severe consequences. The size of the memory that is nec-
essary to store reliable respectively unreliable data objects is depicted in Table 7.1.
The numbers in this table are estimations from a high-level source code analysis of
libh264 only. To determine the sizes of the memory, the sizes of individual data
objects in the C source code were summed up. Of course, the values are not accu-
rate. However, they provide a rough idea of the relation between video resolution
and amount of reliable versus unreliable memory.

To determine the real sizes, the complete H.264 benchmark is measured during
runtime. The tested video had a resolution of 352x288 pixels. The resulting amounts
of allocated reliable and unreliable memory are 2,277,024 bytes (38%) and 3,649,536
bytes (62%), respectively. This measurement includes all writable data. These are
the heap, .data segment, and .bss segment. The complete stack is considered as
reliable since FAME does not support the unreliable attribute for data objects
residing on the stack. The measured memory sizes are an order of magnitude
larger than the sizes estimated by the high-level source code analysis. This result
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(a) Error free, PSNR = 35.75 dB (b) PSNR = 22.52 dB

(c) PSNR = 17.09 dB (d) PSNR = 15.93 dB

Figure 7.2: Different impacts of transient memory faults

is expected since it includes the whole operating system and the application which
uses a ring buffer to decode up to eight frames in advance.

This evaluation clearly shows the applicability of the flexible error handling
approach since enough data objects exist which can be classified as unreliable.

7.2.1.2 Quantitative Evaluation: Signal-to-Noise Ratio

The purpose of the quantitative evaluation will be to reveal the impact on the
quality of service if all errors affecting unreliable data are ignored. In Figure 7.2,
the same frame is shown with different error outcomes. For comparison, the error
free decoded frame is depicted in (a). As metric for the quality of service metric
PSNR is used. To calculate the PSNR value of a frame, the original image of
the frame is used as reference. Due to the fact that the used constrained baseline
profile only supports lossy compression, the error free decoded frame in (a) does
not exactly match the source image. Depending on the error rate and the affected
objects, different disturbances in the video output can be observed. For example,
in (b) some artifacts on the squirrel (1) are visible. In (c) the chinchilla (2) is not
recognizable anymore. The last picture (d) has visible disturbances on the chinchilla
(2) and the squirrel (1). Furthermore, the shadows of the leaves on the tree trunk
are blurred (3). Theses disturbances clearly result in a low PSNR value.

A measurement of the PSNR values dependent on the error rate is shown in
Table 7.2. For each error rate, the table depicts the average PSNR values of all
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Effective Error Rate [s-1] Avg. PSNR [dB] Min PSNR [dB]
– 36.20 30.07

0.16 36.19 25.59
1.77 36.18 24.78

48.04 28.82 8.17

Table 7.2: QoS dependent on the effective error rate (flexible error handling + minimal
checkpointing)

Video Resolution # Frames
A TV series 176 × 144 320
B Computer animated movie 192 × 144 100
C Music video 176 × 144 320
D TV movie 320 × 144 320
E Computer animation 176 × 144 320

Table 7.3: Analyzed videos

frames and the minimal observed PSNR value. In the case of the lower error rates
of 0.16 and 1.77 errors per second, the QoS of the error-free run is nearly reached. If
the highest error rate is used, the average PSNR is 20% lower. However, the minimal
observed PSNR value is getting worse. The applied error correction methods also
have an influence on the QoS. A detailed evaluation considering the correction
methods is presented in Section 7.5.4

The conclusion for the flexible error handling approach is that the average dis-
turbance of the video is tolerable. However, periods of time exists where the video
is not recognizable anymore.

7.2.2 Probabilistic Error Model

In the transient memory fault model evaluated in the previous section, all errors
affecting unreliable objects are ignored. This implied that the complete runtime
subsystem of FAME is required to decide during execution whether or not an object
is unreliable. The probabilistic error model has the advantage that this decision can
already be taken during compile-time. As soon as one operand of an operation is
annotated as unreliable, the whole operation allows for unreliable execution. Hence,
in the probabilistic error model, the annotations indicate if deterministic behavior
is required or not. Only in the latter case the unreliable annotation is allowed. To
avoid fatal consequences and unintentional propagation of errors to reliable data
objects, the use of unreliable annotations is restricted by the REPAIR compiler (cf.
Section 5.1).

To perform quantitative and qualitative analyses of the flexible error handling
approach using the probabilistic error model, the MPARM-based platform described
in Section 7.1.2 is used. The simple version of the H.264 decoder (cf. Section 6.2)
is used as benchmark application. The input videos are depicted in Table 7.3.
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add sub rsb mul overall
Executed using PRCA/PWTM 18.59 % 18.60 % 43.01 % 76.27 % 13.36 %

Table 7.4: Instructions executed using probabilistic components

(a) VDD = 1.1 V (b) VDD = 1.0 V (c) VDD = 0.9 V (d) VDD = 0.8 V

Figure 7.3: Quality of service degradation due to lowered supply voltages using UVOS

7.2.2.1 Qualitative Analysis: Applicability of Probabilistic Arithmetics

As a first step, it is evaluated whether a significant percentage of the program in-
structions can be safely executed using the probabilistic adder or multiplier. Using
MPARM, the number of instructions executed are counted to determine which of
these could tolerate an imprecise result. Table 7.4 shows the average relative fre-
quencies for all videos. Here, 76.27% of the mul instructions means that about
three quarters of all multiplications were computed using probabilistic components,
whereas all other multiplications were computed using the deterministic ALU. In
total, 13.36% of all operations were executed on probabilistic arithmetic compo-
nents. This is a significant result, since this percentage considers all operations
executed by the ALU including logic and compare instructions.

In all experiments, no application crash could be observed. This result is ex-
pected since the static code analysis techniques of REPAIR ensure that operations
requiring reliable computations are executed deterministically.

7.2.2.2 Quantitative Evaluation: Signal-to-Noise Ratio

In the last subsection, the applicability of the flexible error handling approach under
the probabilistic error model was shown. A significant fraction of the H.264 decoder
was executed on a probabilistic processor unit. In this subsection, the impact on
the output quality is evaluated. The quality is evaluated using peak signal-to-noise
ratio (PSNR) values for each decoded frame. The calculated PSNR values are based
on the correctly decoded frames. A higher PSNR value indicates better quality. A
perfectly decoded video has a PSNR value of infinity. In contrast to the previous
section, the baseline for the calculation of PSNR values are changed. The reason
for this is that the tools used to evaluate MPARM runs only support comparisons
of H.264 encoded videos.

Figure 7.3 shows results for test video E of Table 7.3 using different voltages.
The nominal supply voltage is 1.2 V and the noise level is up to ±0.12 V relative
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Figure 7.4: PSNR values for different videos

to the supply voltage. In this evaluation, a PSNR value of at least 35 dB is de-
fined as good quality. In contrast, a value of less than 25 dB indicates very poor
quality. However, the interpretation of video quality and PSNR values depend on
the perception of the viewer and the output quality requirements. The values used
here are commonly accepted for consumer video applications (e.g. [LC07]). If the
probabilistic components are operated close to the nominal voltages, only minor
disturbances can be noticed (Figure 7.3a). However, when uniformly lowering the
supply voltage, noise effects are increasingly visible, leading to garbled pictures at
0.9 V (c) and 0.8 V (d). Using UVOS, PSNR values for 1.0 V are already below the
acceptable limit of 25 dB. Detailed PSNR values are shown in Figure 7.4. It can
be easily seen that a higher supply voltage yields better quality. However, only the
1.1 V UVOS version yields good quality.

Due to the low QoS results achieved using UVOS, it will be interesting to analyze
if employing BIVOS schemes provide better quality. Since the 1.0 V version is very
close to the 25 dB margin, the goal is to improve the QoS by using a BIVOS scheme
with the energy budget equivalent to the 1.0 V UVOS scheme. The UVOS and
BIVOS energy consumptions are calculated with the energy model used by MPARM
based on [PLS01]. Three BIVOS models are considered in this dissertation. These
models are shown in Figure 7.5 and the measured PSNR values are depicted in
Figure 7.4. Naive BIVOS (N) supplies less significant bits with a low voltage and
the most significant bits with the nominal supply voltage. This BIVOS scheme also
achieved only a low PSNR value.

Since 1.1 V UVOS yields good PSNR values, another BIVOS scheme, referred to
as A, was constructed. BIVOS A reduces the supply voltage of the most significant
bits to 1.1 V. The gained energy savings are spent to increase the supply voltage of
less significant bits. As shown in Figure 7.4, this version achieves improved PSNR
values compared to BIVOS N using the same amount of energy as the 1.0 V UVOS
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Figure 7.5: Used BIVOS setups

scheme. However, the PSNR value is still quite poor. Analyzing the H.264 code
revealed that most of the code only uses less significant bits of the 32 bit probabilistic
adders and multipliers. Consequently, BIVOS scheme B was constructed, which
supplies the least significant bits with a higher voltage than the most significant
bits. Again, the same energy budget is used. In fact, the PSNR values of this
version are better compared to the other BIVOS schemes. However, they are still
worse than the 1.0 V UVOS scheme.

Using BIVOS, it is not possible to increase the output quality under identical
energy budgets. One reason for this phenomenon can be revealed by considering
the H.264 specification. If 32-bit integers are transformed into an 8-bit value to be
stored in the frame buffer, clipping code will be used which implements saturation
to a maximum value of 255. For BIVOS scheme B this implies that if, e.g., bit eleven
flips from ’0’ to ’1’, the precision of the less significant eight bits are irrelevant due to
wrong clipping. In the opposite case, e.g., using BIVOS scheme A, correct clipping
is performed, but the least significant eight bits are too imprecise. For operations
like the selection of luminance and chrominance values for macro blocks or larger
frame parts, this effect is even worse.

7.2.3 Summary

In general, the flexible error handing approach is applicable to both the transient
memory and the probabilistic error model. However, as soon as the error rate in-
creases respectively the supply voltage is lowered, huge disturbances are noticeable.
Increasing the QoS in the case of the transient memory error model is possible by
applying error correction also to unreliable annotated data objects.
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Interrupt Average Execution Time [ns]
RTEMS Native 182.6
ECI/IRQ 1365.3
ECI/Timer 1974.8
ECI/Fault 3408.5

Table 7.5: Interrupt measurement

To also increase the QoS if the probabilistic error model is used, the static code
analysis provided by REPAIR has to be extended. The analysis has to consider
the number of unused bits of probabilistic variables. Using this information under
a BIVOS distribution, additions and subtractions can be performed by shifting the
parameters by the unused number of bits minus one to the left. For multiplications,
the result may in general require twice as many bits as the largest operand. Hence,
multiplications are expected to have a lowered potential to improve the QoS. How-
ever, due to the shifting, errors in the lower bits only have minor influence on the
QoS.

7.3 Overhead

This section is dedicated to the overhead imposed by the virtualization of RTEMS.
The overhead is evaluated in terms of IRQ latency, hypercall processing time, and
runtime impact. For all measurements, the CoMET-based ARM926 platform is
used. The real-time version of the H.264 decoder is executed. In each experiment,
600 frames with a resolution of 480x320 pixels are decoded with 10 fps. If not stated
otherwise, error injection will be turned off. To measure execution times, intrinsics
of CoMET are used.

7.3.1 Interrupt Latency

Interrupt latency is the time that elapses between interrupt generation and servicing
the interrupt. In Table 7.5, the measured interrupt latencies of native RTEMS and
virtualized RTEMS are shown. To determine the latency, the time measurement
is started directly after the CPU switches to the IRQ mode. The measurement is
stopped right before invoking the corresponding service routine.

If virtualization is used, interrupts are reported by the FAME microvisor using
the event callback interface (ECI) (cf. Section 5.3.2.4). Depending on the type
of the ECI message different latencies can be observed. In RTEMS, the latencies
for different types of interrupts are the same since all interrupts are handled by
the same basic code which later calls the appropriate handlers. Compared to the
IRQ handling of RTEMS, the microvisor is 7.5 times slower in routing second class
interrupts1. The overhead is the accumulation of additional mode switches and
context save operations the microvisor has to perform.

1Second class interrupts are interrupts not handled directly by the microvisor.
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Hypercall Avg. Exec. Time [ns] Std. Deviation Share
fame_hypercall_object_unsubscribe_all 757,193 51,759 75.08 %
fame_hypercall_object_subscribe_multiple 32,260 14,685 9.80 %
fame_hypercall_irq_disable 1,360 49 7.04 %
fame_hypercall_irq_enable 728 19 4.21 %
fame_hypercall_object_subscribe 4,908 606 1.27 %
fame_hypercall_object_add 5,323 2,160 0.68 %
fame_hypercall_cpsr_set 824 56 0.68 %
fame_hypercall_object_remove 4,623 283 0.55 %
fame_hypercall_object_unsubscribe 4,337 412 0.50 %

Table 7.6: Hypercall measurement

In the case of timer IRQs, the FAME microvisor has to update the system clock
and has to process watchdog operations which impose additional overhead. If an
error occurs, the microvisor will start low-level error handling (cf. Section 5.6.1).
At the end of low-level processing, an ECI fault message is generated. However,
before such a message can be sent, an entry specifying the error has to be created
and the microvisor has to check whether handling the error in the guest OS is
possible. These operations delay the delivery of the ECI message. Error injection
was enabled to measure the execution time of ECI fault messages.

7.3.2 Hypercalls

Hypercalls are very important for the para-virtualization concept realized in FAME.
They are used whenever the guest operating system requires a service of the mi-
crovisor. Each hypercall represents a specific service. The checkpoint-and-recovery
service is separately evaluated in Section 7.4. Compared to all other services, this is
the most compute intensive service. The idle hypercall represents a special service.
It can be issued by RTEMS if the ready task queue is empty. For ARM926-based
systems, this hypercall stops the CPU until the occurrence of an external event,
like an interrupt.

Table 7.6 shows the measured processing time of hypercalls with a fraction of
at least 0.50% of the accumulated total hypercall execution time. The idle and
checkpoint hypercalls are omitted. For the measurement, a timer is started before
performing the hypercall operation (svc instruction on ARM). After the return
from the svc instruction the timer is stopped. The hypercalls are sorted by their
accumulated share of the overall time spent in hypercall processing. The share is
depicted in the last column. By ignoring the idle and checkpoint hypercalls, the
depicted hypercalls account for over 99% of the total runtime spent in hypercalls.

The second column of Table 7.6 shows the average execution time of a hypercall
and the third column shows the corresponding standard deviation. The hypercall
fame_hypercall_object_unsubscribe_all has a huge share of the execution time
of the microvisor. This hypercall is used whenever a task is destroyed to clean up its
subscriptions. Therefore, the microvisor has to traverse the complete object tree,
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Execution Time [ms] Idle Time [ms] Avg. CPU Load [%]
Native 60,611 14,750 75.7
Virtualized 60,614 19,196 68.3

Table 7.7: Execution time comparison

since the subscribers of an object are stored in the object data structure. A reverse
mapping is not provided to reduce the amount of required reliable memory. Due
to the fact that the object tree is being changed with every new allocation or free
operation, the hypercall execution time has a high variation. This is also true for
all other hypercalls which perform operations on the object tree.

The hypercalls for enabling and disabling IRQs are frequently used by RTEMS
to secure critical sections in the RTEMS super core. The variation of the execu-
tion time of these hypercalls is very low in contrast to hypercalls used for object
management and the subscriber model. Virtually disabling IRQs takes more time
than enabling the IRQs. The time difference is mainly caused by an additional
parameter check required in the IRQ disable hypercall. This parameter is a pointer
used to return the IRQ state to the caller. Since this pointer is an address gener-
ated outside the microvisor, its validity has to be checked. Validation includes tests
for alignment as well as for write permission. The latter check requires page table
lookups which is the main performance impact.

Overall, performance penalties are observable whenever input parameters have
to be validated or dynamic data structures are accessed. However, the former case
cannot be avoided, otherwise the RCB invariant would be violated.

7.3.3 Timing

Virtualization can have an impact on the timing behavior of the application. In
this subsection, the influence of the FAME microvisor on the H.264 video decoder
benchmark is investigated. A comparison of the execution time of the native and
virtualized versions is shown in Table 7.7. The difference of 3 ms in the execution
time is the initialization overhead of the microvisor and FAMERE. The measured
idle time of the virtualization version is higher than the idle time of the native
version. Consequently, the CPU load of the virtualized version is lower. At the
time of the development of FAME, this was completely unexpected. However,
other research groups also achieved higher performance of virtualized benchmarks
compared to their native versions. For example, in [HSH+08], the authors measured
higher throughput in certain configurations. An evaluation of the Xen hypervisor
is shown in [YWG+06]. The authors also showed increased performance for the
Linpack [Don87] LU decomposition benchmark. Hence, it is not completely unusual
that a virtualized system is faster than the corresponding native version. However,
this clearly shows the high performance of the hypercall and ECI implementation
of the FAME microvisor.

In this dissertation, the focus is based on embedded real-time systems. Hence,
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Figure 7.6: Jitter comparison

an important evaluation aspect is the influence of the virtualization on the jitter.
To measure the jitter, the H.264 decoder application was slightly modified. Unmod-
ified, the decoder clears the complete frame buffer periodically to wipe erroneous
pixels outside the video display area of the screen. This clearing leads to remarkable
jitter and hence is disabled in this evaluation to better visualize the basic jitter.
Figure 7.6 shows the jitter for the native and the virtualized version. The decoder
is configured to 10 fps. Hence, every 100 ms a new frame has to be displayed.

In this evaluation, jitter is defined as the absolute difference of the expected
point in time where the display refresh occurs and the measured point in time of
the display refresh. Since the decoder is configured to 10 fps, every 100 ms a new
frame has to be displayed. The absolute difference to these 100 ms is depicted in
Figure 7.6. The figure shows that the jitter of the virtualized and the native version
is similar. If the average jitter is considered, the jitter of the virtualized version will
be lower. This clearly proves a good design of FAME with respect to real-time.

The jitter reaching the 5 ms offset is in conjunction with the system timer which
is configured to 5 ms. In the case of such high jitter, the draw task was scheduled one
tick earlier or later relative to the last displayed frame. In the virtualized version,
this phenomenon is only observable one time. The native version is affected more
often.

7.3.4 Summary

In this dissertation, one of the goals is to design a virtualization solution which
is applicable to embedded real-time systems. The current section clearly proved
that this goal is reached. The overhead imposed by FAME is low and the real-time
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behavior of the used test application is not disturbed. Moreover, it can be measured
that the performance increases and the jitter decreases if the virtualized version is
used. In the next section, checkpoint-and-recovery is evaluated.

7.4 Checkpointing

Checkpoint-and-recovery is an important error correction strategy in the flexible
error handling approach. It is used whenever an error has to be corrected and no
specialized error correction method is available. This is the case for all objects which
are not explicitly annotated with applicable correction methods. Since checkpoints
play an important role, they have to be highly optimized to minimize the impact
on the real-time behavior of the application. The runtime of checkpoint creation is
determined by the size of the data which have to be stored in the checkpoint and
the selected block encoder. The runtime for recovering a checkpoint depends on the
block encoder and the checkpoint size as well.

As described in Section 5.3.5, a checkpoint created by FAME consists of several
chunks. The chunks consist of blocks of equal size. To copy data to a block, a block
decoder can be selected. Implemented block encoders are TMR, Reed-Solomon
(RS) code, LDPC (Low-Density Parity-Check) code, and PLAIN2 encoding. RS
and LDPC take orders of magnitude longer than TMR and PLAIN. Hence, only
the latter two block encoders are considered in this dissertation.

To measure the performance of the two encoders dependent on the block size,
the CoMET-based ARM926 platform is used. Fault injection is turned off. In the
measurement setup, 2.8 MiB of data have been arbitrarily selected for storing in a
checkpoint. The execution times of the checkpoint create and checkpoint recover
procedure is measured using CoMET intrinsics, called TSPI. These intrinsics allow
for precise measurements with an overhead of less than ten processor cycles. Hence,
the measurement overhead is negligible. In Figure 7.7 and Figure 7.8, the results of
the measurements of the creation and recovery procedures are shown, respectively.
All results include the whole procedure starting at the point where the application
calls the appropriate services.

7.4.1 Encoder Type and Implementation

In Figure 7.7 and Figure 7.8, execution times for different versions of the encoders
are shown. The dotted curves denote an implementation in C code where a simple
for-loop is responsible for encoding the data. For the dashed curves, this loop was
manually unrolled to eliminate compare and branch instructions necessary for the
loop implementation. A manually written assembler-based version is shown with
solid lines. This version is also unrolled and additionally uses load multiple and
store multiple instructions available on ARM processors to enforce burst transfers
on the data bus. Using such instructions also minimizes the number of instruc-

2PLAIN implements a simple memcpy operation
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Figure 7.7: Checkpoint creation time dependent on the used block size and encoder

Figure 7.8: Checkpoint recover time dependent on the used block size and encoder
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tions to execute, since one load multiple or store multiple instruction can load or
store several words in one instruction, respectively. Due to these optimizations, the
assembler-based encoder versions yield huge performance improvements for check-
point creation, especially in the case of the TMR encoder. For checkpoint recovery,
the performance improvement is lower.

Not surprisingly, the PLAIN encoder is faster than TMR. PLAIN is just the
implementation of a simple memcpy. TMR has to store the data three times to
create a checkpoint. During the recovery procedure, TMR has to load the data at
least two times and a comparison of the loaded data has to be performed. If the
comparison for equality fails, the third copy has to be loaded and compared too.
With a majority vote, the final result is determined. However, while TMR imposes
a huge overhead compared to PLAIN, TMR is able to correct errors affecting the
checkpoint.

7.4.2 Block Size

Regarding the block size, it can be seen that larger blocks lead to a reduction of
the execution time. However, if the blocks are too large, the execution time will
increase. This is the case for a block size of 2 KiB. With higher block sizes it is
more likely that the block size is not a multiple of the chunk size anymore. In
such a case, the last block is stored from a temporary location matching the block
size. To create this location, the FAME microvisor has to copy the data first (cf.
Section 5.3.5). At a certain point, this copy overhead cannot be amortized anymore
by the block encoding speedup gain.

7.4.3 Reducing the Number of Data Objects

The most obvious parameter which influences the runtime of checkpoint creation
and recovery is the size of the data which have to be stored in a checkpoint. To
reduce the amount of data, the subscriber model and the reliability annotations can
be used.

To evaluate the checkpoint performance the real-time version of the H.264 de-
coder application is used. The decoder is configured to create a checkpoint every
frame. If not stated otherwise, the TMR encoder will be used to create checkpoints.
In all experiments, 600 frames are decoded in total at a rate of 10 frames per sec-
ond. The frame resolution is 480x320 pixels. The subscriber model is applied to all
major dynamic data structures, such as frame buffers, slice buffers, and residuals.
All other parts of the application as well as libraries and RTEMS are using the
legacy system object support.

The results are depicted in Table 7.8. The first row shows the results without
checkpointing enabled. In this configuration, the overall CPU load is 63.85%. This
means in average 36.15% slack time remains for checkpointing and error recovery. In
the second experiment, no optimizations are applied to reduce the amount of data.
In this scenario, all allocated data of the operating system, the H.264 decoder, and
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Avg. Size of CPU Chkpt. Chkpt.
Checkpoint Load t [ms] Speedup

Chkpt. disabled - 63.85 % - -
No optimization 25.12 MiB 111.16 % 47.78 1.00
Only subscribed obj. 8.67 MiB 81.04 % 17.36 2.75
Only reliable obj. 8.90 MiB 81.44 % 17.76 2.69
Minimal 1.79 MiB 68.34 % 4.53 10.55
Hybrid 4.03 MiB 74.48 % 10.73 4.45

Table 7.8: Checkpoint measurement

the microvisor are stored in the checkpoint. The resulting average checkpoint size is
26 MiB and the CPU load including checkpointing is increased to 111.16%. Hence,
without optimizations the system is overloaded.

In the third row, results are shown for checkpointing with enabled subscriber
model. Checkpoints contain the complete state of the microvisor, the guest OS and
only live data of the application. Unused application memory is excluded using the
subscriber model. For this experiment, the reliability qualifiers of the objects are
ignored. As can be seen, the speedup compared to the unoptimized checkpointing
is more than a factor of two. The fourth experiment considers only reliable data for
checkpointing. Here, the subscriber state is ignored. That means, data is stored in
the checkpoint regardless of whether it is used by any task or not. Similar to the
previous experiment the speedup is still more than a factor of two. Both results look
very similar. Hence, it could be supposed that the set of reliable objects and the set
of subscribed objects are overlapping in huge parts. However, the next experiment
will show the opposite.

The fifth row depicts the result if both, the reliability and the subscriber state,
are considered in checkpointing. Hereby, only objects are checkpointed which store
reliable data and are subscribed by at least one task or are system objects. With
this strategy, significant savings are achieved. The checkpoint size is reduced to
less than 1/14-th and the creation time is speed up by a factor of more than ten.
This clearly shows that there is only a subset of objects which are in the reliable
subscribed or reliable weak unsubscribed state leading to the following implications;
(1) not all used data are reliable, and (2) not all reliable data are used in the time
interval between two checkpoints. Concerning the CPU load, using the minimal
checkpointing approach the CPU load is increased by less than 5% compared to a
version without checkpointing at all. Hence, on average more than 30% slack time
is still available for error handling.

Considering the system state which has to be saved, it can be observed that the
necessary data can be stored into a checkpoint with the average size of 1.79 MiB
protected by TMR. This system state only contains information which has to be
error free to guarantee the correct control flow of the application without system
crashes. This leads to the drawback of the approach. Since unreliable data are
not stored, a checkpoint recovery can result in a huge disturbance in the output.
Subscribed unreliable data which were part of the working set at the time of the
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checkpoint creation are not rolled back. Hence, the system state after checkpoint
recovery does not match the state at the creation. In the case of H.264, this results
in frame outputs with very high noise. To mitigate this problem a hybrid strategy is
used (last row of Table 7.8). The hybrid strategy is similar to the experiment where
only subscribed objects are stored. However, this time the reliability annotations are
considered. All objects which are subscribed and annotated as unreliable are stored
using the PLAIN encoder and the remaining subscribed objects are stored using
the TMR encoder. Compared to the minimal version, the hybrid approach is only
2.4 times slower. The average remaining slack time is 25%. The QoS improvement
is shown in Section 7.12.

7.4.4 Summary

In FAME, checkpoint-and-recovery is highly dependent on the used block encoder
and the block size. The highest performance is achieved by using the assembler-
based versions of TMR and PLAIN with a block size of 1 KiB. Since all objects not
annotated as unreliable have to be stored with protection, the support of TMR is
mandatory. The PLAIN encoder is usable to quickly store unreliable objects.

To allow for applying checkpoint-and-recovery on the H.264 benchmark appli-
cation, reduction of the amount of data which have to be stored in a checkpoint
is necessary. Otherwise, the CPU will be overloaded. By applying the subscriber
model as well as the reliability type annotations, significant improvements can be
achieved.

7.5 Flexible Error Handling Approach under Influence
of Transient Faults

In the previous sections of this evaluation chapter, single aspects of FAME are eval-
uated. To evaluate the flexible error handling approach, the complete system has to
be considered. The CoMET-based ARM926 platform is used for this evaluation. To
evaluate the real-time behavior under influence of transient faults, the customized
CoMET memory module is configured to insert faults. For each memory access, er-
ror detection in hardware is simulated. If the processor accesses an erroneous word,
an interrupt will be raised. The occurrence of faults to be injected is modeled by a
Poisson distribution with configurable parameter λ. Five different parameters λ are
used. Not all injected faults are visible by the application, since faults – and hence
the resulting errors – are only detected when the affected memory cell is accessed.
In the second column of Table 7.9, the observed average error rates (of detected
faults) are depicted. The injection rates range from several errors per minute to an
artificially high error rate of 48 faults per second.

As software load the real-time H.264 decoder application is used. The decoder
creates a checkpoint after every displayed frame. The microvisor is configured to
allow a maximum of eight restores per checkpoint. Hence, if FAMERE requests
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λ Effective [s−1]
1e-16 0.18
1e-15 2.44

2.5e-15 9.37
5e-15 20.92
1e-14 48.04

Table 7.9: Effective average error rates

to restore the same checkpoint the ninth time, the checkpoint will be dropped
and the previously created checkpoint will be restored. To show the impact of
the applied checkpointing strategy, two different strategies are used, namely hybrid
and minimal. Using hybrid, all data objects which are in a subscribed state are
stored in a checkpoint. However, if such an object is annotated as unreliable, the
PLAIN encoder will be used. Otherwise, TMR is used to encode the object in
the checkpoint. If the minimal strategy is used, only subscribed reliable objects
are stored in the checkpoint encoded by the TMR block encoder. Both checkpoint
strategies store the OS state and the microvisor state with TMR.

In all experiments, 600 frames of the Big Buck Bunny video [Bbb] are decoded
at a rate of 10 frames per second. The frame resolution is fixed to 480x320 pixels.
Although resolution and frame rate seem quite low, this setup leads to a CPU
utilization of more than 65%, since decoding H.264 in software is slow. However,
higher resolutions and frame rates will be possible if more computing power is
available.

By using CoMET with disabled fault injection, the execution of one decoder
run takes 20 minutes on an Intel R©Xeon R©E5630 CPU clocked at 2.53 GHz. Every
run which takes longer than 2 hours is automatically terminated, since such a run is
very likely to violate any real-time constraint due to numerous checkpoint restores.
If a system reset is necessary since no checkpoint is available that can be recovered,
the run is also terminated. Each of the following experiments is executed 100 times
for each error rate.

7.5.1 Naive Error Handling

In this scenario, the flexible error handling approach is turned off. Thus, no clas-
sification information of errors is available. Consequently, each occurring error will
be handled alike by immediately recovering a checkpoint. Theoretically, this setup
would be not feasible for naive error handling if the minimal checkpointing strategy
is used. If an error affects unreliable data, a checkpoint will be restored although
the affected data is not part of the checkpoint. This behavior is equal to ignoring
the error and performing checkpoint recovery. However, this setup is chosen to set
a baseline for the comparison with the flexible approach.

Table 7.10 depicts the average number of missed deadlines and Table 7.11 shows
the average time by which a deadline is missed. In the second column, the results
for naive error handling using the hybrid checkpointing strategy are shown. For
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Naive Error Flexible Error Flexible Handling
Handling Handling App. Specific

λ (Hybrid) (Minimal) (Hybrid) (Minimal) (Hybrid) (Minimal)
1e-16 0.01 0.00 0.01 0.00 0.00 0.00
1e-15 1,202.91 3.80 21.59 0.53 23.63 0.59

2.5e-15 2,051.94 660.70 817.80 42.54 829.53 22.89
5e-15 - 1,727.29 1,590.73 728.56 1,537.78 646.41
1e-14 - - - 1,955.78 2,452.54 1,917.27

Table 7.10: Average deadline miss count

Naive Error Flexible Error Flexible Handling
Handling Handling App. Specific

λ (Hybrid) (Minimal) (Hybrid) (Minimal) (Hybrid) (Minimal)
1e-16 0.35 0.00 0.20 0.00 0.00 0.00
1e-15 6,904.38 14.91 334.46 7.83 559.35 7.58

2.5e-15 18,281.37 4,678.06 4,469.62 235.42 4,898.65 121.10
5e-15 - 11,356.24 11,144.60 3,604.88 11,681.34 4,663.03
1e-14 - - - 10,785.46 33,863.69 9,308.65

Table 7.11: Average time period by which deadlines are missed in milliseconds

the lowest error rate, only a few deadline misses are observable. If the error rate
increases by an order of magnitude, a significant high number of deadline misses
occurs. The time by which deadlines are missed is increased alike. Considering the
two highest error rates, it can be noticed that no experiment run terminates within
the two hour time limit.

By reducing the amount of data which have to be stored in a checkpoint (min-
imal strategy), significant reductions are achieved (cf. Table 7.10 and Table 7.11
columns three). For example, reductions of 99.7% can be observed for the 2.44
errors per second rate.

7.5.2 Flexible Error Handling

In columns four and five of Table 7.10 and Table 7.11, the measured results for the
flexible error handling approach are depicted. All errors affecting data classified as
unreliable or data which are not subscribed are ignored. For the remaining errors
checkpoint-and-recovery is used.

The flexible error handling approach reduces the number of deadline misses by
up to 98% and 94% using the hybrid and minimal strategy, respectively. The average
reduction is 74% respectively 68%. The time by which a deadline is missed is also
reduced (up to 95% for both checkpointing strategies). On average, reductions
of 74% respectively 76% are achieved. However, most importantly, flexible error
handling allows for coping with much higher error rates. By using the flexible
error handling approach, the hybrid checkpointing strategy becomes feasible. Still,
the number of missed deadlines is, unfortunately, very high and the system cannot
cope with the highest error rate and hybrid checkpointing.
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7.5.3 Flexible Error Handling with Application Specific Error Cor-
rection Methods

In the last setup depicted in columns six and seven, the annotations shown in List-
ing 4.2 and 4.3 are used to enable the application specific error correction method
MoCompDefaultValue. This method is able to transfer a corrupted motion vector
into a valid state. In H.264, motion vectors are used to shift a macro block to a new
location within a frame. Motion vectors are hence well suited to encode movements
in the video. However, if a motion vector is corrupted, it can happen that the corre-
sponding macro block gets shifted out of the frame. Hereby, other memory will be
overwritten. Consequently, motion vectors have to be reliable. Anyway, if a motion
vector only moves the corresponding macro block to a location inside the frame, no
fatal consequences will happen. Therefore, MoCompDefaultValue provides a valid
correction method by just setting the motion vector to zero. This corresponds to no
movement of the macro block. By applying this application specific error method
to erroneous motion vectors, the deadline misses are further reduced. Relative to
naive error handling the average reduction of the number of deadline misses is 72%
and the highest reduction is 97% in the case of the minimal strategy. The times
by which deadlines are missed are reduced by up to 9%. By applying the hybrid
strategy the number of deadline misses is reduced by 73% and the time by which
deadlines are missed is reduced by 81%.

The comparison of the flexible error handling without and with the application
specific error correction methods reveals the potential of the approach. Even though
only one application specific error correction method is used, the average reduction
of the number of deadline misses and the time by which deadlines are missed is 5%
and 4%, respectively (minimal strategy). The highest observed reductions are 46%
and 49%, respectively.

To get a better understanding of these numbers, Figure 7.9 shows the evaluation
of the ratio between errors which can be ignored, errors which require checkpoint
restore, and errors which can be handled by MoCompDefaultValue. The bars are
normalized for better comparison. On average, 59% of all detected errors can be
ignored. The application specific error correction method MoCompDefaultValue is
applied on average to 4% of all errors. Considering the highest error rate, 6% of
all errors are corrected by MoCompDefaultValue. Or in other words, the amount
of required checkpoint restores is reduced by 6% which results in the decreased
number of deadline misses. This leads to the conclusion that it is worthwhile to
write application specific error corrections methods.

7.5.4 Quality of Service Impact of Flexible Error Handling

Setting the motion vector to zero and ignoring faults only affecting unreliable data
has no impact on the control flow of the application. However, it will definitively
have an impact on the quality of service. Table 7.12 shows the measured PSNR
values of the different scenarios. Only successfully executed runs are considered. To
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Figure 7.9: Applied error correction methods (minimal checkpointing strategy)

λ 1e-16 1e-15 2.5e-15 5e-15 1e-14
Naive Handling (Minimal) 36.19 36.15 35.36 34.19 -
Flexible Error Handling (Minimal) 36.19 36.18 36.08 34.21 28.82
Flexible + Application Specific (Minimal) 36.20 36.15 36.08 34.45 29.06
Naive Handling (Hybrid) 36.20 36.10 35.56 - -
Flexible Error Handling (Hybrid) 36.19 36.14 35.55 34.37 -
Flexible + Application Specific (Hybrid) 36.19 36.17 35.54 34.19 31.32

Table 7.12: Average peak signal to noise ratio (in dB) with flexible error handling

obtain the PSNR values, the decoded frames are compared with the original source
images of the video. The average PSNR ratio achieved by a golden run is 36.20 dB.
As expected, higher fault rates lead to lower PSNR and hence to a decreased QoS.

Using the naive error handling approach, no errors are ignored since the FAME
microvisor automatically triggers checkpoint recovery for each detected error. Even
though, the PSNR values are decreasing with higher error rates. In the case of the
minimal strategy, this is attributable to the fact that data will be excluded from a
checkpoint if they are neither reliable nor subscribed. By using the hybrid strategy,
errors affecting the PLAIN encoded parts of a checkpoint are not corrected which
leads to the QoS degradation.

In the second scenario, the flexible error handling approach is applied. Hereby,
errors affecting unreliable data or unsubscribed data are ignored. If an error affects
a reliable and subscribed object, checkpoint recovery is used for correction. Intu-
itively, it is expected that the QoS is decreased due to ignoring a huge amount of
errors. However, this is not the case. Ignoring errors causes a decreased number of
checkpoint recoveries which amortizes the imposed QoS degradation. To recapitu-
late, if a checkpoint – created with the minimal strategy – is recovered, the state of
the used unreliable data after recovery does not necessarily match the state at the
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point in time where the checkpoint was created. Hence, the key is to reduce the
number of checkpoint recoveries or to include subscribed unreliable data into the
checkpoint.

The third experiment shown in Table 7.12 is based on the former approach. In
addition, the application specific error correction method MoCompDefaultValue is
used. Due to the fact that this method corrects errors not exactly, it is expected
that the deviation from the best achievable QoS is higher compared to the previous
experiment. This is not the case, since the number of the necessary checkpoint
recoveries is reduced. Again, fewer restored checkpoints lead to fewer disturbances
in unreliable data. Hence, the number of deadline misses is reduced and simulta-
neously the QoS is increased. This leads to the conclusion that it is worthwhile to
provide application specific error correction methods.

In the last three experiments, the hybrid checkpointing strategy is used. This
means that subscribed unreliable data is included in the checkpoint but only en-
coded using the PLAIN encoder. An improvement of the QoS can be noticed in the
high fault rates. However, as shown in Table 7.10, the number of deadline misses
is significantly increased.

7.5.5 Summary

In the evaluation of the flexible error handling approach, it is shown that the real-
time behavior of the H.264 application is improved compared to a naive version
where every error is handled alike. Flexible error handling allows to efficiently
handle high error rates. However, it cannot be guaranteed that all deadlines are
kept.

The price of the proposed approach is a decreased quality of service, especially
if the minimal checkpointing strategy is used. It can be shown that, by using hybrid
checkpoints, the QoS is improved for higher error rates. However, the drawback is
an increased number of missed deadlines. Hence, there is a trade-off between QoS
and real-time. Embedded system designers have to decide which solution suites
best for a given environment.

7.6 Summary of Evaluation

The goal of this thesis is to provide an error mitigation technology which is able to
cope with high error rates and which is applicable to embedded real-time systems.
To be applicable to embedded real-time systems, the overhead of a technique should
be as small as possible and the influence on the real-time behavior should be as
low as possible. However, increasing the resiliency against transient faults always
requires some kind of redundancy. Redundancy increases the required resources
which leads to overhead. To lower the overhead, the approach presented in this
dissertation proposes to handle errors in a flexible way by deciding if, how, and
when to correct errors. Using flexible error handling, the evaluation clearly showed
significant overhead reductions. The size of a checkpoint is reduced by up to 84%
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and the creation time is reduced by a factor of more than ten. The overhead of
the FAME microvisor is negligible. Moreover, for the fault-free case, a negative
overhead can be observed. Concerning the real-time influence of the virtualization
for the fault-free case, it can be seen that the virtualization does not lead to deadline
misses. Furthermore, the average jitter is reduced when RTEMS is virtualized.
These results clearly show that the flexible error handling approach is applicable to
embedded real-time systems.

Furthermore, the evaluation shows that the developed approach is able to cope
with very high error rates of up to 48 errors per second. Compared to a naive
approach where every error is handled alike, the flexible error handling approach is
able to reduce the number of missed deadlines by up to 97%. However, the price of
this reduction are deviations in the output of the application.
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Conclusions and Future Work

This dissertation tackled the problem of growing transient error rates in future semi-
conductor devices [Int13]. By observing the outcome of errors injected into different
applications, it was identified that errors can have different impacts on the quality
of service dependent on the application and the affected data. This observation
can be exploited by handling not every error alike. Hence, this thesis proposed a
software-based flexible error handling approach. The goal of flexible error handling
is to decide if, how, and when errors have to be corrected. In the thesis, the
applicability of the flexible error handling approach was shown for a probabilistic
error model and a transient memory error model. To realize flexible error handling,
the Fault Aware Microvisor Ecosystem (FAME) was developed. FAME incorpo-
rates application knowledge gathered during compile time with information only
available at runtime to realize the following main concepts:

1. Software-based error handling: Hardware-based error correction meth-
ods, like, e.g., ECC protection applied to a memory module, have the inherent
problem that application semantics can not be considered. All data stored on
a module would be protected. Thus, a software-based approach was realized
to exploit application knowledge to handle not every error alike.

2. Virtualization tailored to the needs of embedded systems and error-
tolerance: Software-based fault-tolerance mechanisms have a weak spot. If
software parts critical for error handling are susceptible to errors as well,
situations will occur where the error handling routine has to cope with errors
affecting the error handling itself. This can result in a livelock. To deal with
this problem, some guaranteed fault free hardware components are required to
execute software-based fault-tolerance mechanisms. Those fault free hardware
together with the necessary software components form a minimal set, the so
called Reliable Computing Base (RCB) [ED12]. To protect the RCB this
theses proposed to use virtualization. The virtualization was designed with
respect to embedded systems and fault-tolerance. Hereby, features seen in
other vitalization solution, like, e.g., CPU multiplexing in Xen [BDF+03], are
omitted to minimize virtualization overhead. Correct timing is mandatory for
embedded real-time systems. Consequently, the virtualization of the timing
subsystem was carefully designed.
The evaluation results show clearly that virtualization overhead is negligible.
Moreover, FAME runs faster than the native system and the jitter is reduced
as well.



140 Chapter 8. Conclusions and Future Work

3. Classification of the worst case error impact: To decide whether or not
errors have to be handled, data objects are classified regarding their suscep-
tibility to errors. If an error affecting an object can lead to severe impact
on the quality of service, like, e.g., an applicaiton crash, the object has to be
classified as reliable. Otherwise, the object can be classified as unreliable.
Error correction of reliable objects is mandatory and error correction of un-
reliable objects is optional. Optional in this context means that errors can be
ignored, for example.
In the case of the H.264 video decoding benchmark, it was shown that up
to 63% of all data objects can be classified as unreliable. This enabled the
flexible error handling approach to ignore on average 59% of all occurred
errors. Hence, the efforts which have to be spent on error correction are
significantly reduced.

4. Reduction to a task precedence problem: The point in time where an
error correction method is executed is crucial to an embedded real-time sys-
tem. If correction is immediately executed, the error correction method could
interrupt a task with higher priority which is not affected by errors. Thus,
a kind of priority inversion problem occurs. To eliminate this problem, it
was proposed to schedule error correction as an ordinary task. The erroneous
tasks inherit a dependency to the correction task. The correction task inherits
the highest priority of all affected tasks. This concept reduces error handling
to a task precedence problem. Hence, an ordinary scheduling strategy which
is able to cope with task precedences can be utilized.

5. Subscriber-based programming model: To be able to determine the
necessary task dependency, a mapping of errors to tasks is required. Therefore,
this dissertation introduces a subscriber-based programming model where the
usage of resources has to be explicitly announced by subscribing to the
appropriate objects. In this way, FAME can keep track of which task is using
which object. The subscriber model was also used to determine whether an
object is used since error correction for unused objects is not necessary. This
liveness information is also advantageous for checkpoint creation. All unused
objects can be excluded from a checkpoint.
In H.264, this yielded an average reduction of the checkpoint size of 65%.
In combination with the reliability classification, checkpoint were reduced in
average by up to 93% which results in a checkpoint creation speedup of more
than 10.

By applying these concepts, the flexible error handling approach becomes feasible.
Compared to a naive error handling approach where every error is handled alike,
the approach presented in this thesis reduced the efforts needed to correct errors
significantly. This resulted in the reduction of missed deadlines by up to 98%.
Furthermore, it was shown that the approach was able to cope with very high error
rates of nearly 50 errors per second.
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Future Work

The current realization of the flexible error handling approach is provided by FAME.
All concepts and techniques described in this thesis are fully integrated. FAME can
be used to automatically protect applications running under the RTEMS operating
system. However, there is always space for improvements. This section finalizes the
thesis by giving directions for further research.

Application Specific Error Correction Methods

The evaluation of the flexible error handling approach clearly showed the improve-
ments achievable if application specific error correction methods are used. Each
applied application specific method avoids the recovery of a checkpoint. This leads
to fewer deadline misses and to an improved quality of service. Hence, future work
is to provide more application specific error correction methods.

One possible additional error correction method for H.264 is to replace an er-
roneous macro block type with a “skip” block type. This should lead to minor
disturbance in the output but prevents checkpoint recovery.

Benchmarks

Writing benchmark application with sufficient workload and precisely specified real-
time constraints is difficult. Hence, only the H.264 decoding benchmark is fully
evaluated in this dissertation. However, the applicability of flexible error handling
to other domains was already shown in this thesis. Consequently, a further task is
to port such applications to RTEMS and optionally to provide annotations in the
source code to guide the classification process of the REPAIR compiler.

Classification Improvement

Currently, the classification of data objects is black and white. A data object is
classified as either reliable or as unreliable for its entire existence. By using data-flow
analyses, a more fine-grained classification over the program execution should be
possible. Only when an object is used in a context that requires high dependability,
the reliable classification will be necessary. In the remaining time, the object can
be classified as unreliable. This would allow for the reduction of cases where error
correction is mandatory.

Another improvement could be the definition of further dependability classes to
introduce some gray scale. This will be beneficial if multiple objects are affected
by errors and not enough time for correcting every object is available. In this case,
objects mapped to higher dependability classes can be corrected first.

Error Detection

In this thesis, it is assumed that error detection is present. A future goal can be to
integrate error detection into FAME. A possible error detection mechanism could be
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software-based ECC. Due to the fact that the guest OS is virtualized, software-based
ECC can be introduced without modifying the guest OS or the application. In this
scenario, the main memory is not directly accessible by the application. Instead,
demand paging is used. On access, the requested data is copied into a temporary
reliable location by checking the software ECC. If the application accesses another
block, the previously fetched block is written back and the new block is fetched.

Another possible error detection method could be redundant multi-threading
(RMT). In such an approach, multiple instances of the program code are executed
and the results are compared. If the results differ, a majority vote will be used.

Multi-Core Support

Currently, FAME only supports single-core systems. By using multi-core systems
more sophisticated EDAC methods can be realized. For example, multi-core sys-
tems allow handling errors which affect an entire CPU.

However, to enable multi-core support in FAME, the microvisor and RTEMS
have to be extended. For the latter, R2G was already developed [Hei10]. The
extension of the microvisor is not trivial. Hypercalls which do not allow for concur-
rent execution have to be identified and an appropriate synchronization has to be
provided.
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Hypercall Table

The following table shows the hypercalls provided by the FAME microvisor. To
shorten the table, the hypercall prefix fame_hypecall_ is omitted. This means
that, for example, the hypercall fame_hypercall_config_modify is abbreviated
with config_modify.

No. Name Description

1 config_modify
Modification of different run-time parameters of the
microvisor: system tick interval, ECI handler callback,
and verbosity debug levels.

2 irq_disable Enable the ECI interface (IRQ and timer tick mes-
sages).

3 irq_enable Disable the ECI interface (IRQ and timer tick mes-
sages)

4 irq_vector_disable Enable an interrupt vector in the virtualized IRQ con-
troller.

5 irq_vector_enable Disable an interrupt vector in the virtualized IRQ con-
troller.

6 irq_vector_isenabled Check whether an interrupt vector is enabled or not
in the virtualized IRQ controller.

7 cpsr_set Write to the program status word. (This hypercall is
platform specific).

8 register_get Write to a memory mapped I/O register.
9 register_set Read from a memory mapped I/O register.

10 cache_parameter_set
Set caching parameters for a specific memory range.
Different caching methods are support by this hyper-
call: caching on/off and writeback on/off.

11 map_io Map an I/O register range into the guest OS address
space.

Table A.1: Hypercall table (Part 1/2)
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No. Name Description
12 object_add Add a new object.
13 object_remove Remove an object.
14 object_subscribe Subscribe or weak-unsubscribe an object.
15 object_subscribe_multiple Subscribe or weak-unsubscribe multiple objects.
16 object_unsubscribe Unsubscribe an object.
17 object_unsubscribe_multiple Unsubscribe multiple objects.

18 object_unsubscribe_all Unsubscribe from all subscribed objects for a specific
task. This hypercall is used on task deletion.

19 object_modify
Modify an object. This hypercall is used by the
FAMERE heap implementation to implement realloc
functionality.

20 reliable_malloc Allocate reliable memoy for the guest OS.
21 reliable_free Free reliable memoy for the guest OS.

22 reliable_avail Returns the remaining heap space available for dy-
namic allocations of reliable memory.

23 reset_guestos This hypercall is provided to enable the guest OS to
reset itself.

24 checkpoint Creates a full system checkpoint.
25 checkpoint_recover Restores the latest created system checkpoint.
26 checkpoint_drop Deletes the latest created system checkpoint.

27 checkpoint_static_area_modify
This hypercall is used to register the static memory
areas of the guest OS which have to be checkpointed
additionally to the dynamic objects.

28 idle Signals the microvisor that the guest OS is idle.
29 debug1 Internal debug hypercall.
30 debug2 Internal debug hypercall.

31 fault_test Simulates the occurrence of an fault (for debug pur-
pose).

Table A.2: Hypercall table (Part 2/2)
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