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BOOTSTRAP FOR U-STATISTICS: A NEW APPROACH

OLIMJON SH. SHARIPOV, JOHANNES TEWES, MARTIN WENDLER

Abstract. Bootstrap for nonlinear statistics like U -statistics of dependent

data has been studied by several authors. This is typically done by producing

a bootstrap version of the sample and plugging it into the statistic. We suggest
an alternative approach of getting a bootstrap version of U -statistics, which

can be described as a compromise between bootstrap and subsampling. We

will show the consistency of the new method and compare its finite sample
properties in a simulation study.

1. Introduction

In many statistical applications, the asymptotic limit distribution cannot be used
to construct tests or confidence intervals, as the limit might be unknown or depen-
dent on unknown parameters, which are hard to estimate. Bootstrap versions of
the statistical estimator provide a nonparametric alternative, so establishing the
consistency of such bootstrap procedure is important. In the case of independent
and identically distributed (iid) random variables, the main idea of the bootstrap
consists of replacing the original sample X1, ..., Xn of observations with unknown
marginal distribution function F (x) by a new iid sample X∗1 , ..., X

∗
n with the mar-

ginal distribution function Fn(x) which is the empirical distribution function con-
structed from the original sample (see Efron [8]). As a bootstrap version of a
statistic T (X1, ..., Xn) one can take the plug-in version T (X∗1 , ..., X

∗
n). The validity

of bootstrap for the sample mean of iid observations was first established by Bickel
and Freedman [2] and Singh [21]. It is well-known that in some cases the bootstrap
method provides a better approximation to the distribution of the statistic than,
for instance, normal approximation (see Hall [10]). Especially when sample size is
relatively small, bootstrap has some preferences.

In the case of dependent observations this idea of getting a new sample does
not work since a new iid sample does not capture the dependence structure, see
Singh [21]. Therefore several so-called blockwise bootstrap methods of getting a
new sample were introduced (for overview of blockwise bootstrap methods see Lahiri
[12]). In all these methods, we resample from blocks of l consecutive observations, so
that inside the blocks the dependence structure will be kept. We will consider two of
them: The circular block bootstrap method introduced by Politis and Romano [15]
and nonoverlapping block bootstrap method by Carlstein [3]. In the case of circular
block bootstrap method we extend the original sample to X1, ..., Xn, X1, ..., Xl−1
where l = l(n) is a block length. To get a new sample X∗1,1, ..., X

∗
1,ml we choose

randomly and independently l consecutive observations of the sample m = [nl ] times
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with

P ?(X∗1,kl+1 = Xj , ..., X
∗
1,(k+1)l = Xj+l−1) :=

P
(
X∗1,kl+1 = Xj , ..., X

∗
1,(k+1)l = Xj+l−1

∣∣X1, . . . , Xn

)
=

1

n

for j = 1, ..., n, k = 0, ...,m−1. Here and in what follows we denote by P ?, E?,Var?

the conditional probability, conditional expectation and conditional variance re-
spectively. For instance the bootstrap version of sample mean Xn will be

X
1∗
n =

1

ml

ml∑
i=1

X∗1,i.

In the case of nonoverlapping block bootstrap method we construct a new sample
X∗2,1, ..., X

∗
2,ml by choosing randomly and independently blocks of l consecutive

observations of the sample X1, ..., Xn as above m = [nl ] times with

P ?(X∗2,kl+1 = X(j−1)l+1, ..., X
∗
2,(k+1)l = Xjl) =

1

m

for j = 1, ...,m, k = 0, ...,m − 1. In this case the bootstrap version of the sample
mean is

X
2∗
n =

1

ml

ml∑
i=1

X∗2,i.

For weakly dependent observations strong consistency (almost surely convergence)

of the X
1∗
n and X

2∗
n were proved in Shao and Yu [19] and Peligrad [18]. Gonçalves

and White [9] and Dehling, Sharipov and Wendler [5] extended these results to
functionals of mixing processes. In this paper we will concentrate on bootstrap for
U -statistics of weakly dependent observations. Bootstrap for U -statistics of inde-
pendent observations were studied by Bickel and Freedman [2], Arcones and Gine
[1], Dehling and Mikosch [4], Leucht and Neumann [13]. Recently, Dehling and
Wendler [6], Sharipov and Wendler [20] and Leucht and Neumann [14] established
the consistency of bootstrap estimators for U -statistics of weakly dependent obser-
vations. In the aforementioned papers the same idea of getting bootstrap versions
of U -statistics have been used, which is based on the plug-in principle. We will
now introduce U -statistics. Let (Xn)n∈N be a stationary sequence of random vari-
ables with a common distribution function F (x). For simplicity reasons we consider
U -statistics of degree two i.e.:

Un(h) =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj)

where h : R × R → R is the symmetric and measurable kernel. The kernel h(x, y)
is called degenerate, if

Eh(X1, x) = 0 for all x ∈ R.

If this does not hold we call the kernel h(x, y) and the corresponding U -statistics
nondegenerate. In what follows we will only consider U -statistics with a nonde-
generate kernel. In the case of iid observations X1, ..., Xn Bickel and Freedman [2]
used the bootstrap sample X∗1 , ..., X

∗
n of conditional independent observations with

common distribution function Fn(x), which is the empirical distribution function
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constructed by original sample. In order to get bootstrap versions of U -statistics
they plugged the bootstrapped observations in U -statistics i.e.

U∗n(h) =
2

n(n− 1)

∑
1≤i<j≤n

h(X∗i , X
∗
j )

In the case of dependent observations, the same idea was explored by Dehling,
Wendler [6] using the circular block bootstrap method, the corresponding bootstrap
version is

U∗n,1(h) =
2

ml(ml − 1)

∑
1≤i<j≤ml

h(X∗1,i, X
∗
1,j),

while in the case of nonoverlapping block bootstrap method the corresponding
bootstrap version of U -statistics is

U∗n,2(h) =
2

ml(ml − 1)

∑
1≤i<j≤ml

h(X∗2,i, X
∗
2,j).

Consistency of U∗n(h) (and U∗n,k(h), k = 1, 2 ) can be proved using the Hoeffding

decomposition (see [11]):

U∗n(h) = θ +
2

n

n∑
i=1

h1(X∗i ) +
2

n(n− 1)

∑
1≤i<j≤n

h2(X∗i , X
∗
j )

where

θ := Eh (X1, X2) ,

h1(x) := Eh(x,X2)− θ,
h2(x, y) := h(x, y)− h1(x)− h1(y)− θ.

In order to prove consistency of U∗n(h) it is enough to show the convergence of
bootstrapped distribution of the sample mean for the second summand of this
decomposition and convergence to zero (in probability or almost surely) of the
third summand. The goal of this paper is to suggest a new resampling method for
U -statistics. The main idea is the following: We suggest to draw with replacement
from the U -statistics calculated on subsamples instead of drawing with replacement
from blocks of observations and then plug them in U -statistics. We introduce
subsets {1, . . . , n}2 by

B
′

1(i) = {(a, b) : i ≤ a, b ≤ i+ l − 1, a < b} i = 1, ..., n,

B
′

2(i) = {(a, b) : l(i− 1) + 1 ≤ a, b ≤ il, a < b} i = 1, ...,m = [
n

l
]

where l = l(n) → ∞ us called block length. Furthermore, let {T1(j), j ≥ 1} and
{T2(j), j ≥ 1} be two sequences of iid random variables with distributions:

P (T1(1) = i) =
1

n
, i = 1, ..., n,

P (T2(1) = i) =
1

m
, i = 1, ...,m.
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A fixed realisations of the sample X1, ..., Xn we denote by x1, ..., xn. We set

x1(i) =
2

l(l − 1)

∑
(a,b)∈B′

1(i)

h(xa, xb), i = 1, ..., n,

x2(i) =
2

l(l − 1)

∑
(a,b)∈B′

2(i)

h(xa, xb), i = 1, ...,m,

u1∗j =

n∑
i=1

I(T1(j) = i)x1(i) = x1(T1(j)),

u2∗j =

m∑
i=1

I(T2(j) = i)x2(i) = x2(T2(j)),

where I(·) is the indicator function. So x1(i) respectively x2(i) are the U -statistics
calculated from the i-th block and u1∗j and u2∗j are the results of the drawing with
replacement from these U -statistics. In the case of x1(i) we assume that xk = xk−n
if k > n. As the bootstrap versions of U -statistics Un(h) we take the following:

U1∗
n (h) =

1

m

m∑
i=1

u1∗j ,

U2∗
n (h) =

1

m

m∑
i=1

u2∗j .

Note that

E?U1∗
n (h) =

1

nl(l − 1)

n∑
i=1

∑
(a,b)∈B′

1(i)

h(xa, xb)

E?U2∗
n (h) =

1

ml(l − 1)

m∑
i=1

∑
(a,b)∈B′

2(i)

h(xa, xb).

In the next sections we will state our main result: the strong consistency of the
bootstrap based on Uk∗n (h), k = 1, 2. The new approach reduces the computational
burden of the Monte Carlo method usually used for the bootstrap. After calculating
the values uk∗j , for every run of the Monte Carlo evaluation one need only O(nl )
calculation steps, while for the plug-in method, in every run the U -statistic has to
be calculated again in O(n2) steps. As the linear parts of the plug-in bootstrap
version and the new bootstrap version of a U -statistic are the same, we expect a
similar behaviour.

We will give an upper bound for the mean square error (MSE) of the variances
of Uk∗n (h), k = 1, 2, which suggest a choice of the block length of order O(

√
n). In

section 3, we will present our simulation results. We consider the sample variance
as a U -statistic and we will compare the new bootstrap approach with plug-in
bootstrap and subsampling. The proofs of the main results will be given in section
4.

2. Main results

Let (Xn)n∈N be a stationary sequence of random variables with values in a sep-
arable linear space. We will assume that this sequence satisfies some form of short
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range dependence. Namely we will consider strong mixing and absolute regularity
conditions. Recall that strong mixing coefficients (α(k))k∈N and absolute regularity
coefficients (β(k))k∈N are defined as

α(n) = sup{|P (AB)− P (A)P (B)| : A ∈ Fk1 , B ∈ F∞k+n, k ∈ N},

β(n) = sup{E(sup |P (B/Fk1 )− P (B)| : B ∈ F∞k+n, k ∈ N}

where Fba is the σ - field generated by Xa, ..., Xb. Now we can formulate our results.

Theorem 2.1. Let (Xn)n∈N be a stationary sequence of absolutely regular random
variables. Assume that the following conditions hold (for some δ > 0)

•
∫∫
|h (x1, x2)|2+δ dF (x1) dF (x2) ≤M for some M <∞,

• E |h (X1, X1+k)|2+δ ≤M for all k ∈ N,
• β (n) = O (n−ρ) for some ρ > 2+δ

δ ,
• l(n) ≤ Cnε for some ε ∈ (0, 1).

Then as n→∞ for i = 1, 2

sup
x∈R

∣∣∣P ? [√ml (U i?n (h)− E?
[
U i?n
])
≤ x

]
− P

[√
n (Un (h)− θ) ≤ x

]∣∣∣→ 0.∣∣∣Var?
[√

mlU i?n (h)
]
−Var

[√
nUn (h)

]∣∣∣→ 0,

in probability.

In the next theorem we consider strongly mixing random variables. This is a
weaker assumption on the dependence, but in this case we assume that the kernel
satisfies the following condition: We say that a kernel is P-Lipschitz-continuous, if
there exists a constant C > 0 such that

E [|h (X,Y )− h (X ′, Y )| I (|X −X ′| ≤ ε)] ≤ Cε

for every ε > 0, every pair X and Y with the common distribution PX1,Xk for some
k ∈ N or PX1 × PX1 and X ′ and Y also with one of these common distributions.
For the examples of kernels which satisfy above condition see [6], [20].

Theorem 2.2. Let (Xn)n∈N be a stationary sequence of strongly mixing random
variables. Assume that the following conditions hold

•
∫∫
|h (x1, x2)|2+δ dF (x1) dF (x2) ≤M ,

• E |h (X1, X1+k)|2+δ ≤M for all k ∈ N,
• l(n) ≤ Cnε for some ε ∈ (0, 1),
• h is P-Lipschitz-continuous,
• E |X1|γ > 0 for some γ > 0,

• α(n) = O(n−ρ) for some ρ > 3γδ+δ+5γ+2
2γδ .

Then the statements of Theorem 2.1 hold.

In the next theorem we give bounds for the mean squared error to give a deeper
insight into the properties of bootstrap versions of U -statistics.

Theorem 2.3. Let (Xn)n∈N be a stationary sequence of absolutely regular random
variables. Assume that the following conditions hold:

•
∫∫
|h (x1, x2)|12+δ dF (x1) dF (x2) ≤M for some δ > 0,

• E |h (X1, X1+m)|4+
2
3 δ ≤M for all m ∈ N,
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• β (n) = O

(
n
− 3(6+δ

′
)

δ
′

)
for some 0 < δ

′
< δ.

Then for k = 1, 2

E
(

Var?(
√
mlUk∗n (h))−Var(

√
nUn(h))

)2
= O(

1

l
+
l

n
).

Choosing a block length of order 1/
√
n, we can achieve that the mean squared

error of Var?(
√
mlUk∗n (h)) is of order O(1/

√
n).

3. Simulation

We consider the estimator σ2
n for the variance σ2 = V ar(X1) which is a U -

statistic with the kernel h(x, y) =
1

2
(x− y)2:

σ2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2 =
2

n(n− 1)

∑
1≤i<j≤n

1

2
(Xi −Xj)

2.

(Xn)n∈N is a stationary, Gaussian, autoregressive process with Xn = αXn−1 + εn,
where (εn)n∈N is a sequence of iid standard normal random variables and α ∈
{0.2, 0.4, 0.6}. We will compare three methods for constructing confidence intervals:

• The circular plug-in bootstrap (already used in Dehling, Wendler [6]).
• The new bootstrap version U1?

n , the drawing with replacement from U -
statistics caculated on subsamples.

• Subsampling: The estimator of the unkown distribution is given by the
empirical distribution function of the U -statistics caculated on subsamples,
see Politis and Romano [16].

For each combination of construction method, AR-coefficient, sample size (n =
50, 100, 200, 400) and block length, we have simulated 10.000 samples and evaluated
the empirical probability of the 95% confidence interval to cover the true parameter.
The two bootstrap version are evaluated by the Monte Carlo method with 1000
times drawing with replacement. The results are summarized in the table below.

In general, we draw the following conclusions from the simulation study: All
three methods lead to confidence intervals with a coverage probabilty lower than
the nominal confidence level of 95%. The performance of the subsampling is worse
than the performance of two bootstrap methods in all situations. If the dependence
in the AR-process is weak (α = 0.2), both bootstrap methods lead to comparable
results, while for stronger dependence (α = 0.4, 0.6), the plug-in bootstrap has a
better performance.

For the plug-in bootstrap, the block length can be choosen smaller than for
the new bootstrap method or for subsampling, especially in the case of stronger
dependence (α = 0.4, 0.6). In Figur 1 below, we give a more detailed picture of the
coverage probabilities for different block lengths in the case n = 200, α = 0.4.

4. Proofs of the theorems

4.1. Preliminary results. In this section we formulate some necessary results
that will be used in the proofs of our theorems.
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α 0.2 0.4 0.6
n l

50 3 0.876/0.895/0.827 0.863/0.791/0.693 0.794/0.600/0.569
5 0.865/0.884/0.823 0.838/0.819/0.737 0.765/0.677/0.583
7 0.862/0.871/0.814 0.823/0.818/0.753 0.762/0.718/0.614
10 0.835/0.849/0.787 0.808/0.814/0.743 0.757/0.730/0.607

100 3 0.908/0.922/0.823 0.894/0.817/0.730 0.852/0.600/0.507
5 0.911/0.910/0.852 0.896/0.838/0.770 0.851/0.682/0.617
7 0.909/0.909/0.849 0.874/0.857/0.793 0.853/0.737/0.676
10 0.890/0.902/0.851 0.880/0.859/0.815 0.849/0.767/0.716

200 5 0.926/0.930/0.873 0.908/0.859/0.813 0.883/0.684/0.620
7 0.925/0.926/0.881 0.905/0.870/0.831 0.891/0.738/0.704
10 0.924/0.920/0.889 0.911/0.885/0.857 0.887/0.805/0.761
15 0.910/0.910/0.884 0.902/0.893/0.849 0.885/0.835/0.800

400 7 0.927/0.932/0.896 0.927/0.887/0.855 0.920/0.748/0.711
10 0.931/0.927/0.906 0.924/0.901/0.873 0.920/0.814/0.777
15 0.923/0.929/0.901 0.923/0.904/0.882 0.902/0.847/0.828
20 0.924/0.918/0.906 0.902/0.909/0.887 0.904/0.866/0.849

Table 1. Simulated coverage propabilites for plug-in bootstrap/
new bootstrap/ subsampling, sample size n = 50, 100, 200, 400,
AR-coefficient α = 0.2, 0.4, 0.6, block length l = 3, 5, 7, 10, 15, 20

5 10 15 20

0.84

0.86

0.88

0.90

0.92

Figure 1. Simulated coverage probabilities for plug-in bootstrap
(grey), new bootstrap (black), subsampling (dashed) as a function
of the block length l, sample size n = 200, AR-coefficient α = 0.4

Lemma 4.1. (Dehling,Wendler [7]) Let (Xn)n∈N be a stationary sequence and

h(x, y) a degenerate kernel satisfying
∫∫
|h (x1, x2)|12+δ dF (x1) dF (x2) ≤ M for

some δ > 0 and E |h (X1, X1+m)|4+
2
3 δ ≤ M for all m ∈ N. Let be τ ≥ 0 such that

one of the following two conditions holds:

(1) (Xn)n∈N is absolutely regular and
∑n
k=0 kβ

δ
2+δ (k) = O (nτ ).
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(2) (Xn)n∈N is strongly mixing, E |X1|γ < ∞ for a γ > 0, h is P-Lipschitz-

continuous with constant C > 0 and
∑n
k=0 kα

2γδ
γδ+δ+5γ+2 (k) = O (nτ ).

Then:
n∑

i1,i2,i3,i4=1

|E [h2 (Xi1 , Xi2)h2 (Xi3 , Xi4)]| = O
(
n2+τ

)
,

Lemma 4.2. (Yoshihara [23]) Let (Xn)n∈N be a stationary sequence of absolutely
regular random variables. Assume that the the following conditions hold (for some
δ > 0) and ∫∫

|h (x1, x2)|4+δ dF (x1) dF (x2) ≤M,

E |h (X1, X1+k)|4+δ ≤M for all k ∈ N

β (n) = O
(
n−

3(4+δ′)
δ′

)
for some 0 < δ′ < δ.

Then

E
(
n2U4

n(h2)
)

= O(n−1−η), η = min

{
12

δ − δ′

δ′(4 + δ)
, 1

}
Lemma 4.3. (Yokoyama [22]) Let (Xn)n∈N be a stationary strongly mixing se-
quence of random variables with EX1 = µ and ‖X1‖2+δ <∞ for some 0 < δ ≤ ∞.
Suppose that 2 ≤ s < 2 + δ and

∞∑
n=1

n
s
2−1 (α(n))

(2+δ−s)/(2+δ)
<∞.

Then there exists a constant C depending only on s, δ and the mixing coefficients
(α(n))n∈N such that

E

∣∣∣∣∣
n∑
i=1

(Xi − µ)

∣∣∣∣∣
s

≤ Cns/2.

4.2. Proof of Theorem 2.1. Let us introduce blocks of indices

B1(i) = {i, . . . , i+ l − 1} , i = 1, . . . , n,

B2(i) = {(i− 1)l + 1, . . . , il} , i = 1, . . . ,m.

Note that the blocks {B1(i), i = 1, ..., n} and {B2(i), i = 1, ...,m} correspond to
the circular and nonoverlapping blocking methods, respectively. In the circular
blocking method instead of the sample X1, ..., Xn we consider the completed sample
X1, ..., Xn, X1, ..., Xl−1. A fixed realization of the sample X1, ..., Xn we denote by
x1, ..., xn and set

x1,1(i) =
1

l

∑
k∈B1(i)

xk, i = 1, ..., n,

x2,1(i) =
1

l

∑
k∈B2(i)

xk, i = 1, ...,m,

X1∗
j =

n∑
i=1

I(T1(j) = i)x1,1(i),

X2∗
j =

m∑
i=1

I(T2(j) = i)x2,1(i),
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X
1∗
n,m =

1

m

m∑
i=1

X1∗
i ,

X
2∗
n,m =

1

m

m∑
i=1

X2∗
i .

First we will prove the statement of the theorem for i = 1 (circular bootstrap).
Using Hoeffding decomposition we have

(
U1?
n (h)− E?

[
U1?
n

])
=

1

m

m∑
j=1

(
u1∗j − E?U1∗

n (h)
)

=
1

m

m∑
j=1

[
θ +

2

l

∑
k∈B1(T1(j))

h1(xk) +
2

l(l − 1)

∑
(a,b)∈B′

1(T1(j))

h2(xa, xb)

−
(
θ +

1

n

n∑
i=1

2

l

∑
k∈B1(i)

h1(xk) +
1

n

n∑
i=1

2

l(l − 1)

∑
(a,b)∈B′

1(i)

h2(xa, xb)
)]

=
1

m

m∑
j=1

[
2

l

( ∑
k∈B1(T1(j))

h1(xk)− 1

n

n∑
r=1

h1(xr)
)

+
2

l(l − 1)

( ∑
(a,b)∈B′

1(T1(j))

h2(xa, xb)−
1

n

n∑
r=1

2

l(l − 1)

∑
(a,b)∈B′

1(r)

h2(xa, xb)
)]

=
2

ml

m∑
j=1

∑
k∈B1(T1(j))

(
h1(xk)− 1

n

n∑
r=1

h1(xr)
)

+
2

ml(l − 1)

m∑
j=1

∑
(a,b)∈B′

1(T1(j))

(
h2(xa, xb)−

1

n

n∑
r=1

∑
(a,b)∈B′

1(r)

h2(xa, xb)
)

Using the latter

√
ml
(
U1?
n (h)− E?

[
U1?
n

])
=

2√
ml

m∑
j=1

[ ∑
k∈B1(T1(j))

h1(xk)− 1

n

n∑
i=1

h1(xi)
]

+
2√

ml(l − 1)

m∑
j=1

[ ∑
(a,b)∈B′

1(T1(j))

(h2(xa, xb)−
1

n

n∑
r=1

∑
(a,b)∈B′

1(r)

h2(xa, xb))
]

=In + IIn.

In order to prove the first statement of Theorem 2.1, we first show that IIn → 0 as
n→∞. Note that

Var?IIn =
4

nl(l−1)2

n∑
i=1

( ∑
(a,b)∈B′

1(i)

(
h2(xa, xb)−

1

n

n∑
i=1

∑
(a,b)∈B′

1(i)

h2(xa, xb)
))2

=
1

n

n∑
i=1

( 2√
l(l−1)

∑
(a,b)∈B′

1(i)

h2(xa, xb)
)2
−
( 1

n

n∑
i=1

2√
l(l−1)

∑
(a,b)∈B′

1(i)

h2(xa, xb)
)2
.
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By Lemma 4.1 we have as n→∞

E
( 2√

l(l − 1)

∑
(a,b)∈B′

1(i)

h2(Xa, Xb)
)2
→ 0

and consequently Var?IIn → 0 in probability as n → ∞. With the Chebyshev
inequality, it follows that IIn → 0 in conditional probability.

It remains to show the convergence of In. By Theorem 3.2 of Lahiri [12] we have
as n→∞

sup
x∈R

∣∣∣∣P ?(In ≤ x)− P( 2√
n

n∑
i=1

h(Xi) ≤ x
)∣∣∣∣→ 0.

in probability. Furthermore, we have Var (
√
nUn(h2))→ 0 by Lemma 4.1 and can

conclude that

sup
x∈R

∣∣∣∣P( 2√
n

n∑
i=1

h(Xi) ≤ x
)
− P

(√
n(Un(h)− θ) ≤ x

)∣∣∣∣→ 0.

Using Slutzky’s lemma and IIn → 0 in probability, we arrive at at the first statement
of the Theorem:

sup
x∈R

∣∣∣P ? [√ml (U i?n (h)− E?
[
U i?n
])
≤ x

]
− P

[√
n (Un (h)− θ) ≤ x

]∣∣∣→ 0.

For the second statement, we make use of Theorem 3.2 of Lahiri [12] again, which
also states that ∣∣∣∣∣Var?In −Var

( 2√
n

n∑
i=1

h(Xi)
)∣∣∣∣∣→ 0

This together with Var?IIn → 0 in probability and Var (
√
nUn(h2)) → 0 (see

Lemma 4.1) leads to∣∣∣Var?
[√

mlU i?n (h)
]
−Var

[√
nUn (h)

]∣∣∣→ 0

in probability as n→∞.
In the case of i = 2 (nonoverlapping bootstrap) analogously to previous one we

have
√
ml
(
U2?
n (h)− E?

[
U2?
n

])
=

2√
ml

m∑
j=1

m∑
i=1

I(T2(j) = i)
∑

k∈B1(i)

(
h1(xk)− 1

ml

ml∑
i=1

h1(xi)
)

+
2√

ml(l − 1)

m∑
j=1

∑
(a,b)∈B′

1(T2(j))

(
h2(xa, xb)−

1

m

m∑
i=1

∑
(a,b)∈B′

1(i)

h2(xa, xb)
)

=

= I
′

n + II
′

n.

Theorem 3.2 of Lahiri [12] implies as n→∞

sup
x∈R

∣∣∣∣∣P ? (I ′

n ≤ x
)
− P

(
2√
n

n∑
i=1

h(Xi) ≤ x

)∣∣∣∣∣→ 0

∣∣∣∣∣Var?I
′

n −Var

(
2√
n

n∑
i=1

h(Xi)

)∣∣∣∣∣→ 0
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in probability as n → ∞. It remains to show that Var?II
′

n → 0 in probability, the
rest of the proof can be done along the lines of the case i = 1 (circular bootstrap).
We have

Var?II
′

n =
4

ml(l−1)2

m∑
i=1

 ∑
(a,b)∈B′

2(i)

(
h2(xa, xb)−

1

m

m∑
i=1

∑
(a,b)∈B′

2(i)

h2(xa, xb)
)2

=
1

m

m∑
i=1

( 2√
l(l−1)

∑
(a,b)∈B′

2(i)

h2(xa, xb)
)2 − ( 1

m

m∑
i=1

2√
l(l−1)

∑
(a,b)∈B′

2(i)

h2(xa, xb)
)2
.

By Lemma 4.1 we have as n→∞

E

 2√
l(l − 1)

∑
(a,b)∈B′

2(i)

h2(Xa, Xb)

2

→ 0

so E
(

Var?II
′

n

)
→ 0.

4.3. Proof of Theorem 2.2. Theorem 2.2 can be proved in the same way as
Theorem 2.1 and therefore the proof is omitted.

4.4. Proof of Theorem 2.3. To shorten the proof, we concentrate on the case
k = 1 (circular bootstrap). We split the mean squared error into three parts

E
(

Var?
(√
mlUk∗n (h)

)
−Var

(√
nUn(h)

))2
≤ 3E

(
Var?

( 1√
ml

ml∑
i=1

h1(X?
1,i)
)
−Var

( 1√
n

n∑
i=1

h1(Xi)
))2

+ 3E
(

Var?
( 1√

ml

ml∑
i=1

h1(X?
1,i)
)
−Var?

(√
mlUk∗n (h)

))2
+ 3E

(
Var(
√
nUn(h)))−Var(

1√
n

n∑
i=1

h1(Xi))
)2

= 3In + 3IIn + 3IIIn

For the first summand, we know by Theorem 3.1 of Politis and White [17] that

In = E
(

Var?
( 1√

ml

ml∑
i=1

h1(X?
1,i)
)
−Var

( 1√
n

n∑
i=1

h1(Xi)
))2

= O(
1

l2
+
l

n
).

For the second summand, we make use of the equation a2 − b2 = (a + b)(a − b)
and the Hölder-inequality (first for the bootstrap expectation and then for the
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unconditional expectation) to obtain

IIn = E
(

Var?(
1√
ml

ml∑
i=1

h1(X?
1,i))−Var?(

√
mlUk∗n (h))

)2
= E

(
E?
(( 1√

ml

ml∑
i=1

h1(X?
1,i)−E?

1√
ml

ml∑
i=1

h1(X?
1,i)−

√
mlUk∗n (h)+E?

√
mlUk∗n (h)

)
( 1√

ml

ml∑
i=1

h1(X?
1,i)− E?

1√
ml

ml∑
i=1

h1(X?
1,i) +

√
mlUk∗n (h)− E?

√
mlUk∗n (h)

)))2

≤ E
(
E?
( 1√

ml

ml∑
i=1

h1(X?
1,i)−E?

1√
ml

ml∑
i=1

h1(X?
1,i)−

√
mlUk∗n (h)+E?

√
mlUk∗n (h)

)2
E?
( 1√

ml

ml∑
i=1

h1(X?
1,i)−E?

1√
ml

ml∑
i=1

h1(X?
1,i) +

√
mlUk∗n (h)−E?

√
mlUk∗n (h)

)2)

= E

(
Var?

( 1√
ml(l − 1)

m∑
j=1

n∑
i=1

I(T1(j) = i)
∑

(a,b)∈B′
1(i)

h2(Xa, Xb)
)

Var?
(

2
1√
ml

ml∑
i=1

h1(X?
1,i)+

1√
ml(l − 1)

m∑
j=1

n∑
i=1

I(T1(j) = i)
∑

(a,b)∈B′
1(i)

h2(Xa, Xb)
))

≤
(
E
(

Var?
( 1√

ml(l − 1)

m∑
j=1

n∑
i=1

I(T1(j) = i)
∑

(a,b)∈B′
1(i)

h2(Xa, Xb)
))2) 1

2

(
E
(

Var?
(
2

1√
ml

ml∑
i=1

h1(X?
1,i) +

1√
ml(l − 1)

m∑
j=1

∑
(a,b)∈B′

1(T1(j))

h2(Xa, Xb)
))2) 1

2

= An ×Bn.
We will treat these two factors separately, starting with An. By the definition of
the bootstrap procedure and the stationarity of the sequence, we get the following:

An =

(
E
(

Var?
( 1√

ml(l − 1)

m∑
j=1

n∑
i=1

I(T1(j) = i)
∑

(a,b)∈B′
1(i)

h2(Xa, Xb)
))2) 1

2

≤
(
EE?

( 1√
ml(l − 1)

m∑
j=1

n∑
i=1

I(T1(j) = i)
∑

(a,b)∈B′
1(i)

h2(Xa, Xb)
)4) 1

2

=

(
E

1

l2(l − 1)4
1

n

n∑
i=1

( ∑
(a,b)∈B′

1(i)

h2(Xa, Xb)
)4) 1

2

=

(
1

l2(l − 1)4
E
( ∑

(a,b)∈B′
1(i)

h2(Xa, Xb)
)4) 1

2

= O(
1

l
),

as we know from Lemma 3 of Yoshihara [23] that

E
( ∑

1≤i<j≤k

h2(Xi, Xj)
)4

= O(l4).
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With the help of the inequality (a+ b)2 ≤ 2a2 + 2b2, we split the second summand
into two parts:

Bn

=

(
E
(

Var?
(
2

1√
ml

ml∑
i=1

h1(X?
1,i) +

1√
ml(l − 1)

m∑
j=1

∑
(a,b)∈B′

1(T1(j))

h2(Xa, Xb)
))2) 1

2

≤ 16

(
E
(

Var?
( 1√

ml

ml∑
i=1

h1(X?
1,i)
))2) 1

2

+ 4An = 16B′n + 4An,

so it suffices to study B′n. We use again stationarity and the definition of the
bootstrap:

B′n =

(
E
(

Var?
( 1√

ml

ml∑
i=1

h1(X?
1,i)
))2) 1

2

=

(
E
(

Var?
( 1√

l

l∑
i=1

h1(X?
1,i)
))2) 1

2

≤
(
EE?

( 1√
l

l∑
i=1

h1(X?
1,i)
)4) 1

2

=

(
E

1

n

n∑
j=1

( 1√
l

j+l−1∑
i=j

h1(Xi)
)4) 1

2

=

(
E
( 1√

l

j+l−1∑
i=j

h1(Xi)
)4) 1

2

≤ C.

The last inequality follows from Lemma 4.3. This shows that IIn = O( 1
l ). In the

same way one can show that IIIn is of the same order, which completes the proof.
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