

2

Final report of project group 580

Fuÿballspielende humanoide Roboter

Mark Breddemann, Sebastian Engels
Timo Etzold, Jan Gehlhaar
Till Hartmann, Stefan Kinzel
Lukas Pfahler, Stefan Rötner
Philipp Seifert, Piotr Szczotka

Friday 17th April, 2015

Advisor:
Prof. Dr.-Ing. Uwe Schwiegelshohn
Dr. Lars Hildebrand
M. Sc. Matthias Hofmann
Dipl.-Inf. Oliver Urbann

Technische Universität Dortmund
Institut für Roboterforschung
http://www.irf.tu-dortmund.de

Contents

I Motion 3

1 Evaluation and Improvement of the Walking Engine 5

1.1 Objectives . 5
1.1.1 Walking Parameters . 5
1.1.2 Sensors . 6

1.2 Recording and analyzing of the sensor data 7
1.3 Walk Evaluation . 7

1.3.1 Approach . 8
1.3.2 Statistic methods . 8

1.4 Framework for walk parameter optimization 9
1.4.1 Integration into the Nao framework 10
1.4.2 Modules of the optimization framework 10
1.4.3 Calculation of the Average Sequence Length 13

1.5 Clipping . 15

2 Criteria of Stability 17

2.1 X-Acceleration . 17
2.2 Center of Pressure . 24

3 Development of the LongKick 29

3.1 The existing Legacy Kick . 29
3.2 Development Process . 29

3.2.1 General considerations before implementation 30
3.2.2 Initial position before implementation 30
3.2.3 Basic concepts of the LongKick . 31
3.2.4 Problems while implementation the LongKick 32

3.3 Triggering of the LongKick . 35
3.4 Result . 36

II Behavior 37

4 Introduction 39

5 Modelling World States with Fuzzy Logic 41

5.1 Motivation . 41
5.2 Introduction to Fuzzy Logic . 42
5.3 Current Approach . 44

5.3.1 Functioning of the Fuzzy Controller 44

i

ii CONTENTS

5.3.2 FuzzyLab - An Editing and Evaluation Program for Fuzzy Logic . . 45
5.4 Modeling game situations with fuzzy logic 46

5.4.1 Evaluation of the current approach 46
5.4.2 Further improvements . 47

5.5 Future Work . 48

6 Simulation League 49

6.1 Robot Soccer Simulation League . 49
6.1.1 Introduction and Motivation . 49
6.1.2 Robot Soccer Simulation Server Protocol 51

6.2 Our SimLeague Agent . 52
6.2.1 libsimleagueagent . 52
6.2.2 Agent . 53
6.2.3 Conclusion . 62

6.3 A Logic Programming Based Approach . 63
6.3.1 Techniques . 63
6.3.2 The BDI Model . 64
6.3.3 Angerona . 65
6.3.4 Realization . 67

6.4 Planning . 70
6.5 Conclusion . 71

7 Extended Behavioral Networks 73

7.1 Behavior networks in our domain . 73
7.2 REASM . 75
7.3 Extended behavior networks . 77
7.4 nEBeN . 78
7.5 Specialized networks in nEBeN . 79
7.6 Optimization . 80
7.7 Code . 81
7.8 Simulator . 82
7.9 Integration . 82
7.10 Issues . 84

8 Path-Planning 87

III Conclusion 91

IV Appendix 95

List of �gures 99

Bibliography 103

Introduction

written by: Sebastian Engels

In the project group "soccer playing humanoid robots" the subjects science, technology,
sports and entertainment are combined. Furthermore, there is the possibility to get a
personal insight into the science of autonomous robotics. Due to the di�erent tasks that
are imposed on the project group, this gets an overview about the development of a larger
project. These include, for example, the infrastructure, the communication within a team,
as well as the analysis of problems as a team.

Various tournaments in the standard platform league are performed with the Nao robots
by the company Aldebaran Robotics. Exclusively identical robots are used to play football
against each other by all participants. The two biggest tournaments are the German Open
and the international RoboCup.

As result of the standardized platform, the focus of the league is on the used Algorithms.
The results of research come into practical use and can be directly exchanged with other
participants. This allows a better insights into the topics and achieve better results.

The objectives of the project group are diverse. Above all, the previous run is to be
improved, as well as new opportunities for modeling the behavior be developed. These
issues are discussed below in more detail.

Walk Optimization
written by: Sebastian Engels

In the last years a robust walking movement was developed, which used the di�erent sen-
sors, e.g. accelerometer, gyrometer or foot pressure sensors to stabilize the Naos. However,
the parameterization for a good walk is strongly dependent on the robot (wear rate, tem-
perature of the engine, engines, accurate dynamic robot model) and from the �ooring
material (thickness of the carpet). Therefore, the robot must be calibrated regularly and
the parameterization of the walk has to be adjusted. This procedure is very time consuming
for 11 robots. Hence, it is the goal of this project group to develop an automatic parame-
terization/calibration, to determine automatically the optimized values for the robots and
the �ooring. During the optimization, the robot should move as during a normal game on
the �eld. Thus, the robot should accelerate or decelerate and run in di�erent directions.
This is to ensure, that the values are not only valid for certain velocities or movement
directions. Therefore, it is necessary to develop an algorithm which reviewed at any time,
whether the walk of the robot has improved and reacts accordingly.

1

2 CONTENTS

Learning Behaviour
written by: Stefan Kinzel

The behaviour of the Nao robots is currently described in the form of deterministic, hier-
archic automatons. These automatons are described in a language called CABSL, which is
a C++-based replacement for the former used language XABSL. One goal of this project
group is to �nd a better way to determine the symbols used in CABSL, using learning meth-
ods. Other approaches, like Extended Behaviour Networks (EBN) or revisable knowledge
bases, based on Conditional Knowledge Representation (OCF), should be implemented as
a more dynamic replacement of the current (static) CABSL-automatons. For evaluation
of these new implementations, a valid test environment is needed. A simulator, able to
simulate test games, could be an adequate test bed, so another goal of this project group
is to adapt the existing simulation framework, being able to simulate test games with dif-
ferent behaviour implementations. If possible, these simulations should be executed on a
computer cluster.

In future there will be the possibility of a coaching-robot, which is placed at the border of
the �eld. It can be used to get an overview over the game situation. This project group
tries to elaborate some ideas for using this robot.

Another consideration is the participation in the simulation league. Here the behaviour
part of the framework becomes the only crucial part. A participation in this league should
be taken into account.

Structure of the report
written by: Sebastian Engels

This report can be divided into two main parts. First, in part I the motion control is
introduced. For this the walking parameters and the logging of sensor values are described
in chapter 1. Subsequently, di�erent evaluation methods and the framework for parameter
optimization are presented. After this, in chapter ?? two criteria of stability are shown.
The �rst one uses the x-acceleration sensor to determine an upper limit for the velocity
of the robot. The second criterion uses the foot pressure sensors to detect unstable runs.
Furthermore, a proper strong kick, the so called LongKick is presented in chapter 3.

In the second main part II the behavior control of the robot is discused. First, a possibil-
ity of modeling the world states and classi�cation of game situations using fuzzy logic is
introduced in chapter 5. Subsequently in chapter 6 a software framework for developing
arti�cial intelligences that participate in the rcss2d soccer simulation league is presented.
Another approach for modeling agent behavior, the extended behavior networks, are dis-
cused in chapter 7. At the end of the behavior-part a new approach for the path-planning
is shown in chapter 8.

Finally the results of the project group are summarized in chapter III.

Part I

Motion

3

Chapter 1

Evaluation and Improvement of the

Walking Engine

1.1 Objectives
written by: Stefan Kinzel

The stable walk of a Nao robot depends on several factors. The already developed walking
engine uses various sensors of the robot and tries to generate a movement for a stable
walk. In the parametrization of this movement, both the properties of the robot, such
as the wear-out of the joints, manufacturing tolerances, and even dynamic factors such
as the temperature of the motor and gear, as well as the nature of the substrate play a
role. The goal of the walk optimization is to �nd a method by which the walk parameters
can be adapted to the current situation. The robot should be able to evaluate his walk
independently and on this basis generate a better set of walk parameters. So in the end
each Nao robot �nds its own set of parameters, adequate to its speci�c condition. In best
case, this leads to a higher walking speed of the whole team, less drops and a more stable,
reliable, walk.

1.1.1 Walking Parameters

To parametrize the walk there are 77 walking engine parameters. Some of these parameters
are no longer used or have (almost) no in�uence on the walk. To test the optimization,
various parameters have been adjusted, which have an obvious in�uence on the movement
of the robot during the walk. One thing that has to be determined later is which of these
parameters should automatically be adapted by the walk optimization procedure.

Step height

With the parameter stepHeight the maximum distance between the sole of the foot and
the ground during a step can be set. The default value is 0.02, which corresponds to a step
height of 2 cm. During our tests we set a step height between 0.05 (5 cm) and 0.005 (0.5

5

6 CHAPTER 1. EVALUATION AND IMPROVEMENT OF THE WALKING ENGINE

cm), which had a clearly visible in�uence on the quality of the walk. Using a step height
of 0.01 and lower causes the robot to walk slower and slightly more unstable. With a step
height bigger than 0.02, the walk became more and more unstable, probably caused by
faster joint movements in the Z-direction. This controllable instability was used to verify
the evaluation criteria.

Step duration

The time used for one footstep can be in�uenced by setting the parameter stepDuration.
In the default settings, a step duration of 0.5 (0.5 s) is set, so the Nao walks with two
steps per second (2 hz). With a step duration of more than the pre-set 0.5 s the stability
of the walk decreases, caused by a longer period, where the robot only stands on one foot.
A shorter duration also caused an increase of instability, so 0.5 s seems to be an (almost)
optimal setting. The step duration has to be considered during the evaluation of the sensor
values, especially during the interpretation of the frequency spectrum.

ArmFactorLeft, ArmFactorRight

The Nao robot uses its arms to balance acceleration forces occurring during the walk.
With the parameters armFactorLeft and armFactorRight the degree of the movement can
be set. The default factor is 0.005 for both sides. Setting this value to a much higher or
lower value (e.g. 0.5 or 0.0001) has a visible in�uence on the movement of the arms, but
no remarkable in�uence on the stability of the walk.

1.1.2 Sensors

The Nao robot has several built in sensors [1], which can be used to evaluate and sta-
bilize the walk. The most important sensors are the accelerometer, which measures the
acceleration in all three directions, the gyrometer, which measures the angular speed, as
well as the force sensitive resistors in the soles of the foots, measuring the gravity forces.
For the walk evaluation, we logged these sensors values, including the calculated Centre
of Pressure and weight, to a �le, using the CSV-Logger of the framework. The result is a
CSV-�le, containing the values with a frequency of 100 hz.

Accelerometer

The accelerometer of the Nao are capable of measuring the acceleration in all three direc-
tions [2]. Aldebaran Robotics states an accuracy of 1 % (probably based on the maximum
value, about 2G), so these sensors (in theory) are good for evaluating short time move-
ments. Long time measurements cause the error in measurement to sum up, so the values
are not exact enough any more. In practice, these sensors show an o�set (error in mea-
surement) and a variable portion of the gravitational force, which has to be removed from
recorded values on evaluation. To remove the gravitation forces from the sensor data, the

1.2. RECORDING AND ANALYZING OF THE SENSOR DATA 7

exact orientation of the sensor has to be calculated. As a basis for this calculation, the
angles of the joints can be used.

Gyrometer

The gyrometers are able to measure the angular speed of the robot in all three axes [2].
For the gyrometer, Aldebaran Robotics state an accuracy of 5 % (probably based on the
maximum value, about 500 degrees per second), which is quite big. This inaccuracy makes
the sensor quite useless for evaluating small and short time movements.

Force Sensitive Resistors

In the sole of each foot there are 4 force sensitive resistors (FSR) [3]. These FSR work
like the keys in some older keyboards: The more pressure is exerted, the lower the resistor
value gets. All 8 resistors are capable of measuring a force of 25 N. The current walking
engine uses these resistors to calculate both the current weight on each foot and the centre
of pressure (CoP).

1.2 Recording and analyzing of the sensor data

written by: Sebastian Engels

To develop an algorithm for an automatic improvement of the walk, it is necessary to
evaluate the running performance of the robot. A pure visual assessment can not be
done here, since the di�erences usually are very low and are not necessarily perceived. In
addition, the robots should independently assess their movement behavior. Therefore, it
was decided to a review based on sensor data. To assess the walk the Nao can use four
pressure sensors per foot, two gyro sensors and two acceleration sensors. The gyro and
acceleration sensors measure the lateral and forward tilt/acceleration. For the development
of evaluation or stability criteria of the run, the sensor values of the robot were logged
while running in advance. During the running the current sensor values will be saved with
a frequency of 100Hz.

In order to have enough data available for the development of an algorithm, several runs
with di�erent robots and �oorings and velocities were logged. Unfortunately, the sensor
values are sometimes very �awed, so, depending on the stability criterion, a subsequent
�ltering / editing is necessary.

1.3 Walk Evaluation

written by: Stefan Kinzel

8 CHAPTER 1. EVALUATION AND IMPROVEMENT OF THE WALKING ENGINE

1.3.1 Approach

The optimization of the walking parameters can be divided into two parts. First the current
walk has to be evaluated. In order to evaluate the current walk, there has to be a quality
criterion, which can be easily calculated by the robot itself. Using this criterion, one can
implement an optimization algorithm, using a gradient descent for example.

1.3.2 Statistic methods

In order to get some initial data for the walk evaluation, we create log �les, containing
the values of all sensors, that might be interesting for walk evaluation: the gyrometer,
accelerometer, FSRs, the calculated CoP coordinates and the calculated weight. These
log �les showed the values, recorded during walks for approx. 25 seconds with di�erent
speed. Walking with average speed causes the robot to walk more stable, so we wanted to
compare slow and very fast walks. We also repeated this recording on several robots (old
and new ones), so we can ensure not just �nding an anomaly of one robots sensors.

The �rst idea for evaluating these data was to use simple statistic methods, such as mean
values and variances of the sensor values. There was no visible di�erence between slow and
fast walks or older and newer robots.

The next idea was to compare di�erent sensor values in order to �nd a correlation between
them. A calculated coe�cient of correlation showed no di�erence between the walks. With
plotting the values we found an anomaly: As visible in �gure 1.1 there appeared three
cluster when plotting the x and y value of the accelerometer, that almost disappeared in a
faster walk (�gure 1.2). We found no algorithm that was able to evaluate this automatically.
The k-means-algorithm, for example, was able to �nd these clusters, but the distribution
showed no remarkable di�erence between slow and fast walks.

Figure 1.1: walking with 0.1 cm per second Figure 1.2: walking with 30 cm per second

Fourier Transformation

Our next idea was to use a (fast) Fourier Transformation (FFT) [4] and so take a look
on the frequency spectrum. The expectation was to �nd an disturbing vibration, which

1.4. FRAMEWORK FOR WALK PARAMETER OPTIMIZATION 9

causes the Nao to fall down. As visible in �gure 1.3, there was a remarkable vibration at
two hertz. But this vibration seems to be caused by the walk itself, as the robot walks
with a rate of two steps per second. We then implemented a two hertz bandstop �lter,
which is able to eliminate this vibration in sensor values (as can be seen in �gure 1.4). The
next vibration with a remarkable amplitude can be found at 4 hertz. A visible observation
showed, that vibrations with higher frequencies do not a�ect the stability of the walk, so
we made no further attempt for eliminating these vibrations. Nonetheless this can be an
option for further experiments.

Figure 1.3: frequency spectrum of the ac-
celeration values (x-direction)

Figure 1.4: same values as in Figure 1.3,
now �ltered with a 2 hertz bandstop �lter

Principal Component Analysis

The Principal Component Analysis (PCA) is a statistic method, which is able to determine
correlations between sensor values. As a last attempt we applied the PCA to the recorded
sensor values, using the tool RapidMiner, but with a disappointing result. We were not able
to �nd other correlations, so this was the last attempt using simple statistical methods.
Obviously none of these simple methods are useful to evaluate the walk, so we did no
further experiments here.

1.4 Framework for walk parameter optimization
written by: Mark Breddemann

A goal was the optimization of walk parameters using a simple criterion. For this, the Nao
should walk for a few seconds after pressing onto the chest button and record all sensor data
values while walking. Afterwards, these recorded data should be analyzed and the past
walk is assessed. Then the walk parameters are optimized using the gradient method based
on the determined criterion. For this, the assessment of the current test-walk is compared
with the one of the previous walk, to determine the direction of the optimization. After
several runs, the walk paramerter value at which the Naos walk is best should be found.

It was considered important to modularize the optimization process, because it is likely
that there exists several assessment criteria and there are many optimizable parameters.

10CHAPTER 1. EVALUATION AND IMPROVEMENT OF THE WALKING ENGINE

It is, that some parameters are optimized using di�erent criteria or methods than other
parameters. Also, some parameter optimization may need some preprocessing of the input
data.

1.4.1 Integration into the Nao framework

For the connection between the existing Nao software framework and the new code for the
walk parameter optimization, a WalkCalibrator module was created. It integrates into the
Nao framework by providing the representationMotionRequest to control the test walk and
the representation WalkingEngineParams to modify walk parameters while the framework
is running. Also, the WalkCalibrator uses the module KeyStates for monitoring the Nao's
chest button and the module SensorData for collecting the sensor data.

Module WalkingEngineParams

The walking parameters are saved to the �le walkingParams.cfg, just like the original
provider of the WalkingEngineParams, so that the new implementation of this provider is
compatible to the old one. Additionally, the optimization framework creates a backup of
the walk parameters �le between every step of the optimization, so interim results are not
lost and the whole optimization process can be traced afterwards.

Module MotionRequest

The original MotionRequest provider was replaced during development, to create a simple
way for testing the implemented optimization: Currently, the test is triggered by the
chest button of the Nao. After pressing, this module causes the Nao to walk straight
forward, until a speci�c amount of sensor values are collected from the SensorData module.
Normally, 2500 sensor values are collected. At a framework frequency of 100Hz, this means
that the Nao walks for 25 seconds.

After developing the optimization framework, the original MotionRequest provider has to
be reintegrated. It is not acceptable to let the Nao simply walk forward for optimization
during a game. Instead, the sensor data needs to be collected by another way during
normal operation. For example, the collecting could be triggered when the Nao walks to a
speci�c point of the �eld, while the collecting stops when the Nao shoots the ball.

1.4.2 Modules of the optimization framework

To improve extensibility and reusability of the written code, the optimization framework
was divided into di�erent modules. Due to the modularization it is possible to write a new
optimization module for a speci�c parameter with few lines of code, provided that only
existing criteria and preprocessing methods are used.

1.4. FRAMEWORK FOR WALK PARAMETER OPTIMIZATION 11

WalkCalibrator-Module

The WalkCalibrator Module integrates the optimization framework into the Nao frame-
work. It provides the update methods for theWalkingEngineParams and theMotionRequest
modules and implements the functionality described in chapter 1.4.1 (collecting sensor data
and walking straight forward). Implemented optimization modules (C++ classes) need to
be registered in this main module. All registered optimization modules are called after a
test run.

SimpleGradientMethod

This module implements a gradient method for optimizing a value [5]. When creating the
module it is de�ned, whether a value should be minimized or maximized. Also, the initial
step length for optimization is de�ned. The C++ implementation has a method called
getNewValue which uses the old value of the walk parameter and the value of the walk
criterion. Based on the history of the method calls and its parameters, a new value of the
walk parameter is returned.

This module can be used by the walk parameter optimization modules to adjust and
optimize the parameter. By modularization the actual optimization method, it can be
reused for several walk parameters. Also, it is easy to implement further methods for
�nding the optimal value for a parameter in the future.

BaseCalibrationModule-Module

This class o�ers methods for the processing of recorded sensor data, that can be further
used by the optimization classes. These methods work with the data of the sensors and
can be divided into categories: Preprocessing and criteria for the walk evaluation.
The implemented methods for the evaluation of the walk are:

• mean value

• quadratic mean value

• calculation of the average length of a sequence1

As for the preprocessing, the following methods were implemented:2:

• addition of all sensor values

• complementary �lters

• variable low pass �lter

1More in chapter 1.4.3
2Further information an the development of this methods can be found in chapter 1.4.2.

12CHAPTER 1. EVALUATION AND IMPROVEMENT OF THE WALKING ENGINE

• more general, variable �rst order �lters

• 2 hertz bandstop �lter

Optimization Classes

With the help of the BaseCalibrationModule-Class' functionality and a pre-built gradient
method, it is now simple to create new classes for optimization. Currently the following
classes are implemented:

• ArmMovementCalibrator

• FootPitchCalibrator

• StepDurationCalibrator

• StepHeightCalibrator

Figure 1.5: Recorded sensor data with parameters armFactorLeft=0.1, armFactorRight=0.1

The ArmMovementCalibrator was the �rst optimization class to be implemented. It turned
out, that this had very little e�ect on the quality of the walk. Visually there was no ob-
servable di�erence for a walk and with the sensor data and the current evaluation criteria3

a distinction between the di�erent walks was not possible. The recorded sensor data with
two di�erent values of armFactorLeft and armFactorRight can be seen in �gures 1.5 and
1.6. Therefore, until a proper criterion is found, an optimization cannot be conducted.

In order to �nd better evaluation criterion, parameters were written for the other optimizer
modules, whose (strong) variations have a strong and obvious impact on the walk of a
Nao. With this, new evaluation methods can be directly tested and di�erent walks can
be categorized. Simple criteria as the variance of the acceleration in the x-direction and

3Variance/Quadratic mean value of the acceleration sensor for the x-axis and the gyro-sensor in y-
direction

1.4. FRAMEWORK FOR WALK PARAMETER OPTIMIZATION 13

Figure 1.6: Recorded sensor data with parameters armFactorLeft=0.9, armFactorRight=0.9

of the gyro sensor in y-direction already allow for a rough classi�cation of a walk into the
categories "good" and "(very) bad".

In this context di�erent approaches were tested and quickly dismissed again, because they
were obviously not suited to determine whether a test walk of the Nao is stable and �owing
or unstable and choppy. These were amongst others:

• Upper Body Angle: The idea behind this was to observe the variance of the upper
body's angle. First a complementary �lter was written, to calculate the angle from
the data of the acceleration and gyro sensors. However, there exists already an im-
plementation of the Kalman �lter, that o�ers the same functionality. Unfortunately
the variance of the resulting values correlate only little with the quality of the walk.

• 2 hertz bandstop: Especially for the acceleration sensor data, oscillations of 2 hertz
can be recognized, resulting from the default settings for the step duration to 500ms.
The idea was, to �lter out this (wanted) oscillations and consider the resulting data.
This �lter was applied to the data from the acceleration for the x-axis and from the
gyro sensor in y-direction. Finally, the variance of the values was calculated again.
However, the evaluation criterion did not improve as to the previously tested criterion
without the two hertz bandstop.

1.4.3 Calculation of the Average Sequence Length

A suitable criterion the average sequence length of the X-acceleration sensor. Brie�y
summarized, this criterion analyzes the duration of a forward and backward oscillation of
the upper body and the velocity during swinging. These two values are combined, while a
longer duration and a higher velocity is rated more bad than a walk with short durations
and low velocities.

14CHAPTER 1. EVALUATION AND IMPROVEMENT OF THE WALKING ENGINE

Procedure of the sequence criterion

The following pseudo-code describes the calculation of the sequence criterion:

current_sequence_sum = 0
current_sequence_sign = POSITIVE
all_sequence_sums = LIST(empty)

// note that s en so rva lu e s conta in s a l l
// s enso r va lues in a ch r ono l o g i c a l order

FOR value IN sen so rva lu e s {
value_sign = (value > 0) ? POSITIVE : NEGATIVE

IF (value_sign != current_sequence_sign) {
// new sequence found ! save cur r ent
// sum in l i s t and r e s e t cur r ent sequence
all_sequence_sums . add (current_sequence_sum)
current_sequence_sum = 0
current_sequence_sign = value_sign

}

// sum up square sum
current_sequence_sum += value^2

}

1. At �rst, the sensor data is split up into sequences. The boundaries of the sequences
are located between two sensor values, whereas one value has a positive value and
the other a negative one.

2. Taking the square value of every data value, so that there are no more negative
values.

3. Summation of the squared values of every sequence. Note that every sequence has
its own sum.

4. Calculation of the mean value of all sequence sums.

The calculated mean value in step four is used as the output for this criterion. When using
the X-acceleration sensor, this value varies from 30 which indicates a very good walk to
over 1000, when the Nao is nearly falling.

Origination of the sequence criterion

The sequence criterion is originated from a lot of testing and varying the process steps. The
�rst idea was to examine the length (only the number of values, not the values itself) of
the longest sequence. This approach proved to be useful, as it di�ers between a very good

1.5. CLIPPING 15

and very bad walk. For further improvement, the velocity while oscillating was included.
For this, the absolute values of a sequence were summed up and the topmost sequence
sum was used as the output value. This expansion of the process appeared useful for the
evaluation of the walk.

However, this criterion was susceptible for single outliers which occurred in some tests,
although the walk was good. Therefore, the criterion was extended by the mean value of
the sums. To uprate 'bad' sequences, the values are squared before they are summed up.
This lead to the sequence criterion described above.

Pre�ltering

While testing, it turned out that it would be useful to apply some pre�ltering methods for
further improvement of the sequence criterion.

Partially, the measured X-acceleration is caused by gravity. This is because the Nao does
not walk with an upright upper body, but it is inclined slightly forward. This gravity-caused
part must be eliminated from the error value. Theoretically the error can be calculated by
the upper body angle set in the walk parameters. Due to the wearout of especially older
Nao robots, the desired angle is di�erent from the real body angle of the robot.

Therefore, the mean value is calculated from the sensor data. Using a longer period, the
mean value of the recorded X-acceleration values approximates to the error value caused
by gravity. So this mean value is subtracted from each sensor value before computing the
sequence criterion.

In addition, it was determined that the criterion decides better if the X-acceleration values
are �ltered with a lowpass.

Problems of the sequence criterion

Unfortunately, this criterion is not su�ciently precise for walk parameter optimization.
Quite unstable walking is reliably detected, but di�erentiation between a subjectively rela-
tively good and a very good walk is not possible. Also, it was observed that if the criterion
made a good review of the walk, the Nao may not tend fall down, but it is not con�dent,
that the Nao actually did a good walk. For example, if the step height was set to a very low
value, the Nao only jiggled a bit, but it did not walk. This jiggling had a good evaluation
by the criterion. Therefore, this sequence calculation is more an assessment of the stability
of the Nao not the walk quality.

1.5 Clipping
written by: Stefan Kinzel

The idea of clipping is to decrease the maximum walking speed if the sensor data indicate
that the Nao tends to be unstable. There is an implementation in the framework, which

16CHAPTER 1. EVALUATION AND IMPROVEMENT OF THE WALKING ENGINE

depends on the absolute values of the gyrometer sensor. Our idea was to improve this
clipping implementation, using the sequence criterion instead of the gyrometer values.
While this criterion can not determine whether a walk was good or very good, it is at
least able to distinguish good from bad runs, which is su�cient for using it in a clipping
implementation.

A problem with the original implementation is that it depends on recorded sensor data of
a 25 s walk, but for the use in the clipping process, it must react more quickly. Therefore,
this method has to be rewritten to an online algorithm. The clipping algorithm sums up
the current (and squared) sensor values, waiting for a change of the sign, which marks the
end of the current sequence. With comparing the value of the sequence to an (adjustable)
threshold, separating good and bad walk periods, an unstable walk period can be detected.
As a reaction, the clipping implementation now decreases the maximum walk speed by a
value also depending on the sequence value.

As seen in experiments, newer Nao robots achieved a higher average speed (caused by
less clipping interventions) than older robots. Based on this observation, there could be
implemented a long-term clipping, reducing the robots walk speed to an optimal speed for
the speci�c robot. This could lead to fewer interventions of the clipping and all in all to a
more stable walk, as the clipping is only able to react to bad walk periods.

Chapter 2

Criteria of Stability

written by: Timo Etzold

Sensor values were logged and examined in order to improve the walking of the Nao. Two
of these are described in the following sections: the x-acceleration (2.1) and the center of
pressure (2.2).

2.1 X-Acceleration
written by: Timo Etzold

While having a look at the x-acceleration sensor data, it stuck out that the x-acceleration
data values decrease if the Nao falls. Figure 2.1 shows the x-acceleration sensor data
plotted over time, which were logged over 5000 frames, which is 50 seconds. The sensor
data jump from positive to negative, because the acceleration is positive in the �rst half
of a step and negative in the second half. While logging the robot fell three times. This

Figure 2.1: Plotted x-acceleration

17

18 CHAPTER 2. CRITERIA OF STABILITY

is noticeable in the collected data. The �rst time the Nao fell was at about the 2500th
frame, the second was at about the 4200th frame and the last fall was at about the 4900th
frame.

The problem is to create a term from those data, which describes the quality of the walk.
Because the data deviate from the regular data when the walk is poor, these deviations
can be used to determine whether the walk is good or not while walking. But the values
are very noisy, because the acceleration can deviate in just one step (2 steps per second)
and can be regular in the next one without making the walk bad. The arithmetic mean
(2.1) and the variance (2.2) is used to compensate the noisiness.

The arithmetic mean of a group of n data is calculated by [6]:

x̄arithm =
1

n
·

n∑
i=1

xi, (2.1)

where xi is the i-th logged sensor value. The variance of a group of n data is calculated by
the term [6]:

s2 =
1

n− 1
·

n∑
i=1

(xi − x̄)2, (2.2)

where x̄ is the arithmetic mean and xi is the i-th logged sensor value.

Arithmetic mean and variance are calculated in each update (100 per second) to detect the
situations in which the walk is working bad. But not all sensor values from the beginning
of the walk are used to determine these situations. This is done, because, if all data were
used, the walk would be classi�ed as bad too late, e.g. when the Nao is already falling.
So the moving arithmetic mean over the last n values at time t is calculated by (modi�ed
according to [6]):

x̄arithm(t, n) =
1

n
·

t∑
i=t−(n−1)

xi, (2.3)

(a) arithmetic mean (b) variance

Figure 2.2: Moving arithmetic mean and variance of the last 100 sensor values

2.1. X-ACCELERATION 19

(a) arithmetic mean; threshold 0 (b) variance; threshold 0 15

Figure 2.3: Moving arithmetic mean and variance of the last 100 sensor values with drawn in
threshold value

where xi is the i-th logged sensor value. The following term is used to calculate the moving
variance over the last n values at time t (modi�ed according to [6]):

s2(t, n) =
1

n− 1
·

t∑
i=t−(n−1)

(xi − x̄)2, (2.4)

where x̄ is the arithmetic mean and xi is the i-th logged sensor value.

Figure 2.2 shows the development of moving arithmetic means (equation 2.3 in sub�gure
2.2a) and variances (equation 2.4 in sub�gure 2.2b). In the case of the arithmetic mean it
can be seen, that the moments of a bad walk can be di�erentiated from normal moments.
These moments can be detected using the variance, too. In addition to this, stumbling can
be seen in the variance, these are the moments in which the variance is also very high. One
example of this are the marked values in the �gures. The stumbling cannot be detected
by only having a look at the arithmetic mean, but by having a look at the variance too
the stumbling can be detected.

By testing some values for the determination of a bad walk it turned out that using one
threshold for each of variance and arithmetic mean is su�cient. In the case of the arithmetic
mean this is thresholdmean = 0 and in the case of the variance it is thresholdvariance = 0 15.
Figure 2.3 shows those thresholds drawn in the plotted data, which are shown in �gure
2.2, as a straight line. If the arithmetic mean falls below thresholdmean or if the variance
exceeds thresholdvariance the walk has to be adjusted immediately, otherwise the Nao
threatens to fall.

To adjust the walk the following approaches were tested:

• decreasing step height

• decreasing speed

20 CHAPTER 2. CRITERIA OF STABILITY

• decreasing step height and speed

Reducing step height

The approach of decreasing the step height is based on the idea that low step heights
increase the stability of the walk. However, it appeared in experiments that the step
height must not be lower than 0 1m, because otherwise the feet will drag across the �oor
which results in an unstable walk. Figure 2.4 shows the sensor data which occur when the
step height is decreased if arithmetic mean or variance falls below the threshold value or
exceeds it respectively. It can be seen that decreasing the step height has no signi�cant
in�uence on adjusting the walk, because an irregularity occurs around the 4000th frame,
which is not corrected immediately. So because of this, decreasing the step height alone is
insu�cient for adjusting the walk.

(a) sensor values (b) arithmetic mean; threshold 0 (c) variance; threshold 0 15

Figure 2.4: Sensor values, moving arithmetic mean and variance of the last 100 sensor values
with drawn in thresholds adjusting the walk by decreasing step height

Reducing speed

(a) sensor values (b) arithmetic mean; threshold 0 (c) variance; threshold 0 15

Figure 2.5: Sensor values, moving arithmetic mean and variance of the last 100 sensor values
with drawn in thresholds adjusting the walk by decreasing speed

Reducing the speed does result in a stable walk, because the steps are smaller. Figure 2.5
shows the sensor data which were logged while decreasing the speed if the threshold values
are exceeded or fallen below. The original sensor values have fewer peaks, which can be
seen in �gure 2.5a. The walk is also adjusted very fast when exceeding or falling below the
threshold values. This can be seen in �gures 2.5b and 2.5c. So decreasing the speed is a
reasonable approach in making the walk more stable using the x-acceleration.

2.1. X-ACCELERATION 21

Reducing step height and speed

Decreasing the step height in combination with lower speed was also tested. Figure 2.6
shows the sensor values, moving arithmetic mean and variance which are logged while
decreasing step height and speed if mean and variance are above or below their thresholds.
In comparison to just decreasing the speed, no big di�erence can be found (see �gure 2.5).
Thus combining the decrease of step height and speed is not a su�cient approach to adjust
the walk.

(a) sensor values (b) arithmetic mean; threshold 0 (c) variance; threshold 0 15

Figure 2.6: Sensor values, moving arithmetic mean and variance of the last 100 sensor values
with drawn in thresholds adjusting the walk by decreasing step height and speed

Conclusion

As shown in the previous paragraphs, using the x-acceleration to increase the stability
does make sense and works. But only decreasing the speed has a signi�cant e�ect on the
stability. So the x-acceleration as a stability criterion can be used in the walk optimization
by implementing it into the clipping.

Progress

The arithmetic mean does not align around the same value on every robot. Since the
instable moments of the walk can also be detected using the variation, the arithmetic
mean will no longer be used. Instead, the body angle of the Nao is used to detect bad
working walk. Because the Nao will most likely fall by having an angle greater than 0 25,
the used threshold value is 0 15. Also, the threshold value of the variance has been tweaked
to 0 12.

The speed change will be executed when there is a speci�c number of continuous frames,
where the threshold is exceeded or respectively not exceeded. This is done because increas-
ing the speed every frame where the walk is classi�ed as stable and decreasing the speed
every frame where the walk is unstable would result in permanent and too great speed
changes and therefore an unstable walk. For the increase of the speed this value is 250
frames and for decreasing it is 100 frames. The di�erence is made, because when the walk
is unstable for 100 frames (1 second) it has to be improved immediately. On the other
side, increasing the speed every second would be too fast as it is not known if the higher
speed results in an unstable walk.

If the angle threshold by contrast is exceeded, the speed has to be reduced immediately
as with even higher values the Nao will fall. This is done once for every exceeding. Also,

22 CHAPTER 2. CRITERIA OF STABILITY

there is a cool down of 150 frames to prevent the Nao from stopping when there are many
peaks which exceed the threshold for short amounts of time.

The value by which the speed will be reduced when exceeding the angle is hand-tuned as
30 as this value has proven to be good in several tests. The value by which the speed is
changed by having continuous stable frames is calculated as follows:

(varborder − accXvar) ∗ fPos, (2.5)

where varborder is the variance border (0 12), accXvar is the average x-acceleration vari-
ance of the last 5 frames and fPos is de�ned as 5. The average of the last 5 frames is
used to compensate the peaks, because if the speed is reduced when the current frame has
the peak of the variance the speed would be reduced too much. If there are by contrast
continuous unstable frames and the speed has to be reduced the value is calculated by:

(varborder − accXvar) ∗ fNeg, (2.6)

where varborder is the variance border (0 12), accXvar is the average x-acceleration vari-
ance of the last 5 frames and fNeg is de�ned as 20. The factors fPos and fNeg are used
to make it harder to speed up for the Nao while slowing down goes faster.

The Nao begins to walk with a speed limitation of 100. This limitation is changed using
the previous described method. But if it falls, everything is reset including the limitation
to 100.

Figure 2.7: Speed, angles and variance of x-acceleration of Nao C

Figure 2.7 shows data collected using Nao C. The sub �gures show the data of the last
12000 frames (2 minutes). The leftmost �gure shows the speed by which the Nao was
moving (black line) and the average over the last 2 minutes (red line). The central �gure
shows the angles in both x- and y-direction as well as the angle border (0 15). Between
the last 6000 and 7000 is a peak, which exceeds the angle boarder. Because of this the
speed was reduced, which can be seen in the leftmost �gure. The rightmost �gure shows
the variation of the x-acceleration and the border (0 12). There are several long sequences
in which the border is exceeded so the speed was reduced in these situations, e.g. near

2.1. X-ACCELERATION 23

the 10000 mark and near the 4000 mark. The latter is the longer sequence so the speed
is reduced greater than near the 10000 mark. A good example for the increase of speed
is directly after the last great decrease (near the 4000th frame). There is no peak in the
�gure showing the angles and no long sequence of exceeding the variance border so the
speed can be increased a lot of times.

Figure 2.8: Speed, angles and variance of x-acceleration of Nao J

Figure 2.8 shows data collected using Nao J. The leftmost �gure shows the speed by which
the Nao was moving (black line) and the average over the last 2 minutes (red line) in
the last 12000 frames (2 minutes). The central �gure shows the angles in both x- and
y-direction as well as the angle border (0 15). Between the 8000 mark and the 9000 mark
there was a stumbling which resulted in a high peak, which resulted in stopping the walk
of Nao J. Between the 6000 mark and the 7000 mark the Nao fell, so the speed limit
was reset to 100 which can be seen in the leftmost �gure. The last peak in the central
�gure resulted like the �rst in stopping the Nao which is also not produced by the previous
described method. The rightmost �gure shows the variation of the x-acceleration and the
variance border (0 12). Like in �gure 2.7 it can be seen that long sequences result in speed
decreasing.

Outlook

In the future this could be used to make the Nao learn its limits. After decelerations the
speed could be greater increased while the limit is far away and increased with smaller
values when being near the limit. In �gure 2.8 it could be seen that some values have to
be tweaked as the method does not work good on newer Naos. Another option would be
being more carefully when walking with a speed faster than 200.

24 CHAPTER 2. CRITERIA OF STABILITY

2.2 Center of Pressure
written by: Sebastian Engels

In addition to the x-acceleration it is possible to evaluate the stability of the walk using
the data of the Center of Pressure (CoP). The Center of Pressure is the appearance point
of the ground reaction force on the foot of the robot. The ground reaction force is the sum
of all forces acting between a physical object and its supporting surface. The Nao uses
the four foot pressure sensors to calculate the Center of Pressure. As the positions of the
sensors are known, the center of pressure can be calculated after measuring the values of
the sensors. So according to this calculation the x and y coordinates of the CoP of each foot
are available. Since the robots mainly drop forward or backward, only the x-coordinates
of the feet were considered. Furthermore, we consider the sum of the two x-coordinates.
This has the advantage that only the development of one value has to consider drawing
conclusions about the stability of the robot. Denote xright,t the x-coordinate of the right
foot at time t and xleft,t the x-coordinate of the left foot at time t the sum at time t is
de�ned as:

xt := xright,t + xleft,t. (2.7)

The foot pressure sensors are prone to errors, so that it can easily lead to measurement
errors. If this has happened, the calculation of the CoP is faulty too. In Figure 2.9 the raw
values for the CoP are shown for a period of 2100ms. It is observed that at times always
comes to outliers. Since these occur only sporadically and are of short duration, may be
assumed that these are erroneous measurements of foot pressure sensors at these values.
In order to make statements about the walk, these measurement errors should be �ltered
out, so they do not a�ect the result. On closer examination of the CoP values reveals that
they (with the exception of the outliers) do not pass or fall below the value of 0,3 or -0,3
in negative sector.

Figure 2.9: Raw values of the Center of Pressure

2.2. CENTER OF PRESSURE 25

Thus, we ignore outliers and replace it with the previous value. The �ltering of the data
can therefore be described by the following function:

xt :=

{
xt−1 if |xt| > 0,3

xt otherwise
(2.8)

This �ltering ensures that the value is valid, i.e. is in the range of values. The result
after �ltering is shown in Figure 2.10. It is clear that the values always �uctuate between
a positive and a negative amplitude. This results from the individual steps of the robot.
Depending on whether the front or rear foot is raised, the value of the CoP is positive or
negative. As the amplitudes remain approximately the same, it is a good, stable, walk
with a few variations.

Figure 2.10: Values of the Center of Pressure after �ltering

In Figure 2.11 the �ltered CoP values of a walk on arti�cial turf are shown. In contrast to
the stable walking it can be seen that the positive amplitudes vary greatly. In this case,
a decrease of the positive amplitudes in the time periods 500 − 1200 and 2800 − 3800 is
observed. The robot occurs during these periods on the spot and swayed so much that he
�nally fell over at times t = 1300 and t = 3900.

26 CHAPTER 2. CRITERIA OF STABILITY

Figure 2.11: Filtered Center of Pressure values of a walk on arti�cial turf

The behavior of the positive amplitudes, that they are approximately the same for a stable
walk and fall down for a unstable walk, could be detected in experiments with di�erent
robots and di�erent velocities. Therefore, we use the course of positive amplitudes for the
development of an evaluation criterion. For this reason, the current CoP values are �ltered
again, since only the positive amplitudes should be considered. A value xt at time t is one
of the relevant values xrel,t, if the following holds:

xrel,t := xt if xt > 0. (2.9)

To smoothen the smaller �uctuation of the amplitudes the moving average is calculated as
in Section 2.1. Thus, the current value is in�uenced by older values. Good results can be
achieved when 60 values have been considered for the moving average x̄aver,t at time t:

x̄aver,t =
1

60
·

t∑
i=t−60

xrel,i. (2.10)

In �gure 2.12 the sequence of the moving average is shown with respect to the CoP values of
�gure 2.10. The increase in values up to the point 200 can be interpreted as a acceleration
phase. Then the period of 300-500, a brief drop in the average is recognizable. At this time
the robot had problems and got into wavering. From the time 500 the robot was stable
again, which manifests itself in an almost straight course with a few �uctuations.

2.2. CENTER OF PRESSURE 27

Figure 2.12: Moving average of the Center of Pressure values

The aim of the evaluation criterion is to keep the �uctuations as low as possible and to
change the walk parameters at strengthen �uctuations (such as the time 300) to improve
the walk. To detect these time points for changes the variance, as described in chapter
2.1, is used. The variance s2t at time t in this case indicates the changes of the moving
average x̄aver,t. So far, the variance of the last 30 values is used to indicates the changes:

s2t =
1

30
·

t∑
i=t−30

(x̄aver,i − x̄)2. (2.11)

In Figure 2.13 is the pro�le of the variance during a walk shown. When the variance
increases over a certain limit value, the running parameters should be changed.

Figure 2.13: Pro�le of the variance during a walk

In runs with di�erent robots, it was found that the variance values of the individual robots
varied greatly. Thus, it was not possible to determine a general limit for the variance.
Therefore, the limit should have been determined individual for each robot. For this
purpose, self-learning approaches or automatic processes are also conceivable, but were
not further investigated.

28 CHAPTER 2. CRITERIA OF STABILITY

Furthermore, no changes in the course of the variance could be detected in experimental
changes of the step height while running. For these reasons, it was decided to refrain from
using the CoP as a stability criterion.

Chapter 3

Development of the LongKick

3.1 The existing Legacy Kick
written by: Stefan Kinzel

Initially the kick motion consisted of a SpecialAction. This is a static speci�cation of
joint angles and a static timing. The Nao performs a prede�ned movement without any
possibility of parametrization, because SpecialActions cannot be modi�ed at runtime. The
disadvantage is obviously the missing dynamics, such as a static kick direction, no reaction
to changes in the environment or a bad CoP-Management. Also, there is no sensor control
which leads to a missing compensation of instability.

An instant kick motion was developed earlier. This instant kick can be triggered during a
walk phase and has the same duration as a normal step. This kick can be parametrized,
of course within some bounds, e.g. the maximum kick angle. Due to the timing the
instant kick integrates into a walk, so there has to be no change in timing and the forward
projection of the ZMP. It can be seen as a special kind of step. Disadvantageous is the low
power of this kick: there is no time for a strike-out-movement, so the kicking foot has not
enough kinetic energy for a long range kick. Its range is just about two or three meters.
Nonetheless, this instant kick is perfectly suitable for dribbling or in situations, where an
instant reaction is needed.

In addition to this two kick movements (and, in the future, as a replacement for the slow
and static kick motion) the task was to create a new kick, in dependence on the motion of
the old special action kick.

3.2 Development Process
written by: Stefan Kinzel

This section describes the overall development of the new kick motion. First we explain
some general considerations made in the beginning of the development (section 3.2.1).
Secondly we describe the initial state of the framework before we started to implement
the motion (section 3.2.2). We then implemented a raw draft for this kick (section 3.2.3),
which su�ered some problems we describe in section 3.2.4.

29

30 CHAPTER 3. DEVELOPMENT OF THE LONGKICK

3.2.1 General considerations before implementation
written by: Mark Breddemann

There are several ways to specify the movement of the Naos joints. The most intuitive
implementation of the movement is setting the absolute degree values for each joint by time.
The framework implements such a method by SpecialActions, in which joint angles can be
speci�ed at certain timestamps relative to the beginning of the SpecialAction. Between the
given timepoints, the joint angles are linearly interpolated. Using this way, full control of
the Nao's kinematic is provided. This method has the disadvantage that the angles are
completely static. Hence the LongKick -module should be dynamic, as it should be able
to include the position of the ball and the kick target into its motion. Of course it is
implementable to calculate the joint angles and set them dynamically, but the positions
of the ball, the Nao and the kick target are given in world coordinates and therefore a
translation would be needed to calculate the joint angles.

This leads to the next approach of implementing the movement: Setting the world coor-
dinates for the foot position at several timestamps and interpolating the positions in the
meantime by using b-splines. The walk of the Nao is implemented this way, as it is rela-
tively easy to implement deviations of the normal going-straight-forward walk, like turning
while walking. This is done by modifying the targeted foot positions on its way, especially
the end point of the step. The interpolation with B-Splines has the advantage, that it leads
into smoother movement, as it is able to avoid abrupt changes of the joints angles. The
Nao Framework includes a so called inverse kinematic engine, which calculates the given
foots world coordinates into joint angles which will be applied.

As the position of the ball, the Nao and the kick target is given in world coordinates, it
is appropriate to implement also the LongKick by using only world coordinates and let
the inverse kinematic engine calculate the joint angles. On top, there already exists a
method that calculates the ideal traverse of the foot through the ball to kick the ball to
the correct direction. This method was implemented as part of the instant kick and uses
world coordinates.

3.2.2 Initial position before implementation
written by: Stefan Kinzel

We use the existing InstantKickmodule for our implementation. The Code for this kick is
located in the SwingLegController, which is responsible for the movement of the feet.

The InstantKick consists of di�erent b-splines, which are created using C++-macros like
this:

START_POLYGON(2, polygonStart, _kickStart, theFreeLegPhaseParams.footPitch);

POINT_XY(polygonStart.x, polygonStart.y,

theFreeLegPhaseParams.heightPolygon[0], kickStart.z);

POINT_XY(kickStart.x, kickStart.y,

theFreeLegPhaseParams.heightPolygon[1], kickStart.z);

3.2. DEVELOPMENT PROCESS 31

END_POLYGON(output, kickStartLen, 2);

In the beginning the start point (polygonStart in this example), the end point (_kickStart)
as well as the length of the b-spline (2) and the foot pitch (theFreeLegPhaseParams.footPitch)
have to be speci�ed (START_POLYGON-macro). The POINT_XY-macro creates an intermedi-
ate point in the b-spline. With the END_POLYGON-macro, the b-spline is calculated with a
speci�ed length (kickStartLen) and written into an output variable (output). A point
which is added twice will be exactly reached by the resulting spline curve while other points
are just weak waypoints.

There are 4 parameters for the kick motion:

polygonStart Initially, the foot is placed at the polygonStart. Here all movements of
the foot have to start.

kickStart The kickStart is the point, where the actual kick motion starts. This point
is located in the air, so the foot has to be lifted to this point.

kickStop This point is the end of the actual kick motion. If the foot is placed here, it
should have hit the ball, so it has to be in or behind the ball (from the robots view)

polygonEnd The polygonEnd is the point, where the foot has to be placed after the move-
ment. The next step expects the foot at this position, so the current step (or kick
motion) has to ensure, that the foot is placed here at the end

These points are calculated by the initKick-method, which is called before every kick.
The kick motion itself is divided into three parts:

1. from polygonStart to kickStart

2. from kickStart to kickStop

3. from kickStop to polygonEnd

The time used for this InstantKick is exactly the same as for a normal step, so it can be
placed in a normal walk without further problems. We used this InstantKick as a starting
point for the development of our longKick.

3.2.3 Basic concepts of the LongKick
written by: Stefan Kinzel

The LongKick di�ers from the InstantKick in some ways. First of all, a longer period of
time is scheduled for the LongKick. While the InstantKick is executed within one step
duration, the LongKick has a duration of about 2.5 seconds. Because of the long single
support phase, the ZMP has to be moved to the supporting foot. This also causes the
robot to lean towards the supporting foot.

32 CHAPTER 3. DEVELOPMENT OF THE LONGKICK

To achieve this, a di�erent set of parameters is used. The usual parameters, which are
stored in the walkingParams.cfg, are replaced by the parameters from the freeLeg-

Params.cfg, so every parameter can be rede�ned for the LongKick.

The �rst step of developing the LongKick was the creation of three b-splines, similar to
the ones of the InstantKick. To speed up the movement and to increase the power of the
kick, we tested some other partitions, e.g. the division into �ve partitions, but the original
partition turned out to be the best. Figure 3.1 shows the movement of the Naos feet during
a walk to the ball and a following kick. The kickStart and kickStop are well visible. But
before we reached this smooth movement, we ran into some problems which are described
in the next section.

Figure 3.1: Plot of the foot movement of a Nao

3.2.4 Problems while implementation the LongKick
written by: Mark Breddemann

In this section the main problems which occurred while implementing the LongKick are
described.

Trembling

It was clearly visible that the Nao began to tremble especially with the leg it was standing
on, as soon the Nao leaned to one side and moved the other foot up from the ground.

3.2. DEVELOPMENT PROCESS 33

The cause of this trembling is the sensor control engine of the Nao framework, which takes
the values of the Nao's acceleration sensor and its gyroscope to evaluate deviations from
the intended (world) position and tries to compensate them by moving to the opposite
direction.

The settings of the sensor control engine are optimized for walking, but it turns out that
they are quite bad for slow and smooth movement like the stabilization phase at the
beginning of the LongKick. However, turning the sensor control engine completely o�
while the LongKick is running lead to instability, as the engine is able to compensate
symptoms of aging joints and especially older Naos tended to fall down while kicking more
often.

To overcome this, we enabled the sensor control engine, but reduced the in�uence of the
motion to a very low level. Concrete, the absolute value accXAlpha is now lowered from
-0.3 to -0.05. It seems logical that a very low value seems good, due to the slow and smooth
movement during the stabilization phase of the LongKick and therefore no quick response
of the sensor control engine is necessary, unlike the walk.

Applying new parameters during the LongKick

For the LongKick several con�gurable parameters during the calculation of the movement
need to be changed. For example, the normal step length while walking is 250ms per step
or a duration of 500ms for the repeatable movement of both foots. Of course, 250ms is
not far enough time for a complete kick with a stabilization phase, a strike-out movement,
the kick and again a stabilization phase. The time for the kick is increased to 2500ms or
a complete step duration of �ve seconds by increasing the stepDuration parameter to 5.
Another Example is the movement of the arms, which needed to be much greater than the
normal walk to balance the Nao during the kick. Also, the kick requires a much longer
time where both feet are standing on the ground than during the walk, to stabilize the
Nao before the kick.

This distinction was done by using the FreeLegParams during the LongKick instead of the
normal WalkingParams. This lead into several problems, as the whole calculation of the
movement is organized in a pipeline:

1. At �rst the action of the next phase is planned, eg. one duration of walking (moving
both feet) or kicking.

2. Then, the required time for each phase is reserved by creating the movement frames.

3. Afterwards, the handover points between the phases are calculated.

4. Only then the actual movement is inserted into the reversed frames.

5. Then, the sensor control engine applies and modi�es the intended movement.

There are several stages missing in this enumeration, but is clear that this is a quite
complex procedure. Unfortunately, the extend of the step duration during the LongKick

34 CHAPTER 3. DEVELOPMENT OF THE LONGKICK

was not recognized in all stages which lead into very big problems during development of
the new kick. For example, the feet handover point at the end of the kick was located
to far forward, as the corresponding calculation thought the Nao walks for �ve seconds.
Another example was the calculation of the arm movement, which simply did not apply
the parameters of the LongKick and used the normal walk parameters instead.

In summary, many mostly small adjustments of the code were needed so that the new
parameters are correctly applied and properly dealt with. Fixing all these problems took
most of the time during development of the LongKick as the erroneous code was often
hard to locate.

Abortion of the kick

As seen above, the whole movement process is quite complex and especially pipelined. It
is possible, that the stage where the actual kick movement is calculated wants to abort
the kick process, for example because the ball is too far away. Then, the kick phase has
already been planned and the needed frames were reserved. This cannot be undone, so
instead of a kick movement, only a normal step is inserted then. This step takes 2500ms,
but due to the side movement of the upper body, the Nao is quite stable during this much
too long step.

Adjust the behavior engine to the kick engine

To avoid the problem above, the behavior engine must only trigger the LongKick when
it is possible to actually kick. This was done by modifying the behavior parameters, for
example lowering the safeOpeningAngle.

Unreachable positions of the inverse kinematic engine

When developing the LongKick we used a �xed MotionRequest and BallModel, as seen
in chapter 3.3. At the time a acceptable LongKick was implemented, we did some �real
world� tests in the simulator, where especially the BallModel was very di�erent. As the
LongKick reacts on the ball position to kick it to the right direction, dynamic trajectories
of the shooting foot are calculated depending on these parameters. Sometimes this lead
into a feet trajectory which could not be reached by the Nao.

This behavior was �xed by doing many tests and modifying especially the parameters bal-
lXMax, ballYMax, ballXMin and ballYMin. With these adjusted parameters the LongKick
was aborted, rather than invalid trajectories were calculated.

Instability in particular at older Naos

Before kicking, the Naomoves to one side for shifting its center of pressure over the standing
foot, so it is able to move the kicking foot up from the ground without falling down. As

3.3. TRIGGERING OF THE LONGKICK 35

the joints of the older Nao's are worn out, the COP is not always moved exactly over the
standing foot which leads into instability. This was solved by adjusting the target position
of the COP by modifying the parameters polygonRight and polygonLeft towards leaning
more aside. This solution hat got the disadvantage, that the parameter value must be
speci�ed for each Nao, as the joints wearout varies from robot to robot.

Other problems

There were several other problems, like thrown assertions because the standType in the
MotionRequest was not reset after an abortion of the kick or a very strange behavior of the
inverse kinematic engine when the joints movement was too fast. We �xed these problems,
but when looking back, we can say it was very time-consuming to �x all these errors and
it took by far the most time in the development process of the LongKick.

3.3 Triggering of the LongKick
written by: Stefan Kinzel

In the simulator the LongKick can be triggered as follows:

set representation :MotionRequest

motion = walk;

standType = leftSingleSupport;

specialActionRequest = {specialAction = stand; mirror = false;};

walkRequest = {

request = { rotation = 0; translation = {x = 10; y = 0;}; };

requestType = speed;

};

kickRequest = { kickTarget = {x = 0; y = 0; }; };

kickDirection = 0;

kickTime = 10;

set representation :BallModel

lastPerception = { position = {x = -210.641; y = -410.166;};

velocity = {x = 0; y = 0;}; };

estimate = { position = {x = 150; y = 50;};

velocity = {x = 0; y = 0;}; };

ballLost = false;

timeWhenLastSeen = 59736;

timeWhenLastSeenByTeamMate = 0;

The �rst command triggers the LongKick with the left foot. The second command �xes
the ball model, so the Nao "sees" the ball on the correct position to execute the kick.

The kicktime must be a positive number to trigger the LongKick. If the kickTime is
negative, a InstantKick is triggered. For the execution of a LongKick, the ball has to be

36 CHAPTER 3. DEVELOPMENT OF THE LONGKICK

at a kickable position. For this, the perfect ball position is 15 cm in front of the robot (x
= 150) and 5 cm to the left (y = 50)1.

The behaviour can trigger the LongKick using the same constraints, e.g.:

float kickDirection =

std::max(std::min((float)atan2(target.y,target.x),pi_2),-pi_2);

localMotionRequest.kickDirection = kickDirection;

float kickTime = 10.f;

localMotionRequest.kickTime = kickTime;

if (theBallModelAfterPreview.estimate.position.y < 0) {

localMotionRequest.standType = rightSingleSupport;

} else {

localMotionRequest.standType = leftSingleSupport;

}

This is a snippet from the kick.h we used to trigger the kick in our tests. Primarily, this
code was used to trigger the InstantKick. As written before, the main constraint is the
positive kickTime. The value of the kickTime has no in�uence on the kick itself, it is just
used to decide, whether the InstantKick or the LongKick should be executed.

Depending on the position of the ball, the right foot has to be chosen. If this is done
wrong, the kick will be aborted (also mentioned in section 3.2.4). The if-statement in the
example does this the right way.

3.4 Result
written by: Stefan Kinzel

In the end, the resulting kick motion was obviously more powerful than the InstantKick.
The InstantKick barely shoots the ball farther than three meters. Under optimal cir-
cumstances, the developed LongKick shoots the ball about seven meters, with further
enhancements the distance can be improved. Also, the new kick is more parametrizable
than the old SpecialAction motion. The kick direction can be speci�ed and many param-
eters can be tuned in the freeLegParams.cfg �le. This includes the maximum angles of
the kick movement, the arm movement, the ZMP curve during the kick and some other,
mostly more unimportant settings. These parameters not only in�uence the kick motion
itself, but many other modules like the arm movement controller or the ZMP calculation.
So the kick motion can be �ne tuned for each robot.

Due to the occurring problems, not all of which were resolved, we don't think this kick is
ready for use in a real match. Some problems have to be solved, but we had not enough
time to do this within this project group. This could be a task for the next project group.

1For a kick with the left foot. If the kick should be executed with the right foot, this must be y = -50,
of course.

Part II

Behavior

37

Chapter 4

Introduction

written by: Stefan Rötner

In the existing framework [7] the behavior module controlling the agents is realized using a
deterministic state automaton. One of our main goals is to assess alternative approaches,
such as an implementation of the BDI model for intelligent agents as foundation of behavior
control.

In addition more approaches from the �eld of logics should be utilized. We will focus on
logic programs (with regard to the huge amount of uncertainty we are facing, especially
under the answer set semantics), fuzzy logic and Extended Behavioral Networks. We will
present the 2D simulation league as a playground to experiment with new approaches to
the realization of the robots' AI. As part of the fuzzy logic chapter we will also present �rst
mechanisms of game situation detection that might be relevant for a coach robot, which is
going to be introduced in the very near future.

This chapter will provide a description of the theoretical foundations of the selected ap-
proaches and present the practical implementations.

39

40 CHAPTER 4. INTRODUCTION

Chapter 5

Modelling World States with Fuzzy

Logic

written by: Jan Gehlhaar

In this section a new approach for modeling world states using fuzzy logic is introduced,
which was implemented and evaluated by the project group. Starting with the motivation
and a brief introduction to the concepts of fuzzy logic, the details of the new approach
and the evaluation are presented. Finally, this section closes with an outlook for possible
enhancements and future use cases for the developed system.

5.1 Motivation

Every behavioral system needs some sort of modeling of the current state of the environ-
ment, on which to the system has to act or react. Currently the Nao framework exists
only of symbols with a low level of abstraction, like whether the ball is seen or not or if a
player is nearest to the ball.

The goal of this project group is to bring the abstraction of environmental symbols to
a new level, by introducing a symbolic representation of a current game situation. The
values for this new symbol range from a defensive to an o�ensive situation and are de�ned
as follows:

• Critical Defence A critical defence situation occurs, when the opponent team is
either about to score a goal or is in an advantageous position, so that scoring a goal
soon is very likely.

• Defence This is an ordinary defensive situation, in which the opponent team has
possession of the ball and is approaching the goal of the own team.

• Open Game An open game depicts a situation, which can result in an attack either
by the own team or by the opponent team. An example of this might be a situation,
in which no player is currently near the ball.

41

42 CHAPTER 5. MODELLING WORLD STATES WITH FUZZY LOGIC

• Attack Analogous to the defence situation, the attack situation describes that the
own team is now in ball possession and is advancing on the opponent's goal.

• Critical Attack Again analogous to the critical defence, in a critical attack situ-
ation the own team is either in striking distance to score a goal, or is in such an
advantage that this will so be possible.

As most of these values are very vague, traditional computational approaches to determine
those situations, like thresholding or some sort of linear interpolation algorithms, are not
really suitable. Therefore, this project group evaluated a new approach for inferring those
values by using fuzzy logic. Fuzzy logic o�ers some advantages over other techniques, like
the possibility to express simple if-then rules for inferring game situations, like "If the
opponent is near the ball, but I am not, then this is a defensive situation." as shown in
the following equation

dball(opponent) = near ∧ dball(me) = ¬near ⇒ situation = defence, (5.1)

where d denotes the distance to the ball. Another bene�cial characteristic of fuzzy logic is
a good interpolation behavior, which counteracts �ickering or rapid jumps of the calculated
values and results in a stable interpretation of the current game situation.

5.2 Introduction to Fuzzy Logic

The theorem of fuzzy logic was �rst introduced by Lofti A. Zadeh[8] back in 1965. The
main di�erence to the conventional set theorem is that elements are not restricted to either
belonging to a set or not, but can have any degree of membership to a fuzzy set. This
allows for sets, that - in contrast to conventional sets - have no distinct boundaries. This
becomes even more obvious, when taking a closer look on the membership functions of the
two set types.

The membership functions of traditional sets are mapping from the super set into the set
of 0,1, while the membership functions map from the superset into the interval [0,1]. For
both function types the properties of "an element belongs to the set" and "an element
does not belong to the set" are encoded by zero and one respectively. In allowing soft
boundaries for fuzzy sets, a whole series of everyday problems can now be modeled more
precisely. For instance, the fact that a human is tall can be more adequately describe by
a bézier curve than with a simple step function as shown in �gure 5.1.

Like with traditional sets, it is possible to describe propositional formula with the typical
logic operators, like conjunction, disjunction, negation, and implication. Here, however,
the rule applies also, that the values for those logical expressions are not solely restricted
to the value of zero and one, but can accept any value between those two. In the last
decades a bunch of di�erent semantics for the logical operators have been proposed, with
which the expressions can be evaluated. Further discussion of the di�erent semantics can
be found in [9, 10].

The following example demonstrates how fuzzy logic can be used to model a real world
problem: Assuming a car manufacturer wants to develop a new adaptive cruise control

5.2. INTRODUCTION TO FUZZY LOGIC 43

Figure 5.1: Membership functions
(Source: http://radio.feld.cvut.cz/matlab/toolbox/fuzzy/fuzzy_ta.gif)

system, which alters the current velocity of a car according to the current tra�c conditions
on the road and the mood of the driver. The system should ensure maximal speed without
causing a state of panic in the driver. For this the current car density for a �nite section of
a highway and the adrenalin level of the driver as an indicator for the driver's mood will
serve as input parameters for the system. The car density super set will be partitioned
into the three fuzzy sets "dense tra�c", "normal tra�c" and "light tra�c". Additionally,
the adrenalin super set will be divided into the fuzzy sets "bored", "relaxed" and "tense".
The output of the system will be the change in speed, which consists of the fuzzy sets
"decelerate", "hold speed" and "accelerate".

With all those sets de�ned, simple if-then-rules can be de�ned, which together will describe
the behavior of the cruise control system:

traffic = light ∧mood = relaxed⇒ speed = accelerate

traffic = dense ∧mood = tense⇒ speed = decelerate

traffic = dense ∧mood = bored⇒ speed = accelerate

...

(5.2)

In order for the system to decide, whether to go faster or slower, all rules must be evaluated
for every decision. This starts by transforming the crisp input values into fuzzy values
for the atomic expressions like traffic = dense. This step is called fuzzi�cation and is
performed by evaluating the membership functions of each fuzzy set according to the input
value. After that, the inference step takes place by evaluating each fuzzy rule. Finally, in
order to get a distinctive value as an output parameter of the cruise control, that ought to
result in an alteration of the current speed, the calculated fuzzy values for all rules must
be aggregated and converted back into a crisp value. This step is called defuzzi�cation and
results in a single value, that can be used for speeding up or slowing down the car.

44 CHAPTER 5. MODELLING WORLD STATES WITH FUZZY LOGIC

In the last decades there have also been several proposals for the semantics of the defuzzi-
�cation, but those will not be described in more detail in this report. Interested reader
can �nd further information on the semantics in [9].

5.3 Current Approach

The �rst step for the new approach is to develop a system that can perform all necessary
tasks, associated with the processing of fuzzy logic. While there already exist some imple-
mentations for this purpose, a completely new system was build. One reason is, that the
existing systems are all focused on very special use case scenarios and therefore have lim-
ited capabilities. Another reason for creating a new library is to make sure to have grasped
all concepts of fuzzy systems. But the main reason is the need for an infrastructure, with
which the necessary fuzzy symbols and rules can be e�ciently developed and evaluated.
This called for a tool set with a rich gui support and although it would have been possible
to archive the needed interoperability between those tools sets and an already existing
fuzzy system, working with a newly developed fuzzy library goes all lot smoother.

For developing a rich gui experience on the Windows platform, the programming language
C-Sharp and the possibilities of Microsoft's Windows Presentation Foundation were cho-
sen. For the processing and execution of fuzzy logic a library, called FuzzyController, was
developed. The FuzzyController is capable of evaluation fuzzy rules according to several
strategies that were presented in [9]. The library was also developed in a test driven manner
and shows currently a test coverage of over 95 percent.

5.3.1 Functioning of the Fuzzy Controller

The FuzzyController can be seen as a black box processing system for fuzzy logic. It
receives a set of numeric values, processes those values according to a speci�ed strategy
against a set of fuzzy rules and �nally computes a numeric result, which represents a
defuzzi�ed value. The controller must be initialized with the desired evaluation strategies
and the de�nition of the fuzzy logic, which includes fuzzy rules and the de�nition of the
fuzzy symbols, which are used by those rules. Additionally, a mapping, de�ning which
numeric variables are to be expected as the controllers input and are assigned to which
fuzzy variable, is needed for the de�nition. The inference logic itself (i.e. the fuzzy rules)
is composed of iterations. Each iteration has a set of fuzzy input variables, a set of fuzzy
rules and a set of fuzzy output variables, that receive their values by evaluation the given
rules.

The �rst iteration always represents the fuzzi�cation of the numeric values into fuzzy values
and therefore no rule gets applied in this step. The result of every iteration is called a
"scope", which is as set of current values for the fuzzy variables, which will then be used
for the next iteration. With each subsequent iteration a new scope is created, holding
the new values for the fuzzy variables, which were calculated using the current subset of
fuzzy rules. Values that are not used be the rules of the current iteration also get included
into the scope. After the last iteration the fuzzy variables, which have been marked for

5.3. CURRENT APPROACH 45

defuzzi�cation in the de�nition of the fuzzy logic, are converted back into numeric values,
according to the speci�ed defuzzi�cation strategy.

Although the FuzzyController can be though of as a black box processor of fuzzy logic, the
scope concept o�ers the possibility to read the internal states of the inference mechanism by
simply including the values of each scope into the controller results. This can be e�ectively
used for debugging purposes and improvements of the fuzzy logic with a tool, which was
also developed by the project group, the FuzzyLab.

5.3.2 FuzzyLab - An Editing and Evaluation Program for Fuzzy Logic

The FuzzyLab application serves two points. First, it enables users to de�ne the fuzzy logic
for the controller in a WYSIWYG1-fashion. Secondly, it can be used to debug and evaluate
this logic, by allowing to see inside the controller and observe the inference mechanism on
close.

Figure 5.2: Graphical user interface of the
FuzzyLab application

Figure 5.3: The situation editor PlugIn

The FuzzyLab application is designed as a plug-in system for de�ning and evaluating fuzzy
logic. All required fuzzy variables, values and rules can be de�ned and then evaluated, by
manually providing numeric input values for the controller and then examining the output
results of the controller via the user interface. Besides manually entering the input values,
it is possible to provide these values with user de�ned plug-ins, that can be mounted into
the application. For instance it is possible to write a plug-in, that provides these values
from real time sensory data, that are received from the robots via their wlan interfaces.

One plug-in, which was also developed by the project group, is the Situation-Editor plug-
in, as shown in �gure 5.3. This plug-in lets the user de�ne new game situations by simply
moving the players and the ball on the �eld. The Situation-Editor can also send numeric
values of a selected situation to the fuzzy controller.

1What you see is what you get

46 CHAPTER 5. MODELLING WORLD STATES WITH FUZZY LOGIC

5.4 Modeling game situations with fuzzy logic

One main challenge when modeling the game situations of a soccer game as described
above, is to get the size of the state space under control, because every new introduced
input variable results in an increasing number of new combination of all input variables.
Therefore, if the fuzzy logic ought to cover all possible scenarios in a soccer game, one ends
up with an exponentially growing number of rules for each additional input variable. In
order to shrink the number of fuzzy rules to a manageable magnitude, the fuzzy rules were
organized in a hierarchical manner. The idea was to extract a set of new fuzzy values from
the initial input values, that have a slightly higher level of abstraction. Then those abstract
variables get used in the next stage to result into a new set of values with an even higher
abstraction level and so forth. Although this can be applied in a very granular fashion, the
�rst version of the fuzzy logic uses only two stages for inferring the game situation. In the
�rst stage the game situation in the immediate vicinity of the ball, the own goal and the
opponent goal are calculated. After that, the three separate game situation are combined
to infer an over all game situation. Figure 5.4 illustrates the di�erent stages and levels
of abstraction. Please note, that XXCenterDistanceT oXX denotes the median distance
rather than the average distance.

Figure 5.4: Hierarchical fuzzy logic.

5.4.1 Evaluation of the current approach

In order to e�ectively evaluate the suitability of the fuzzy logic approach, some samples,
labeled with ground truth data, are needed. For this the Soccer-Simulation plug-in was
used to create one hundred sample game situations, which were either reconstructed from
video footage of actual games, create by deliberately choosing positions for the players or
by randomly assigning player positions. The members of the project group then annotated
those sample situations with a small Java program, which was speci�cally developed for
this purpose. In order to see how stable the annotations will be, all situations were labels
by each member twice, resulting in over 2000 labels. It turns out that the labels of all

5.4. MODELING GAME SITUATIONS WITH FUZZY LOGIC 47

users, beside some minor spikes, which turned out to be labeling errors by the users, were
in fact quite consistent for each sample, and therefore are suitable for the evaluation of the
fuzzy controller's performance.

Although the �rst version of the fuzzy logic is a very simple one, it shows some promising
results, when evaluated against the ground truth data. 50% of the situations that were
assessed by the controller lay within the standard deviation of the annotation by the project
group participants. While randomly picking a value would have only resulted in a roughly
24% chance of lying inside the standard deviations, this shows that the current approach,
although the fuzzy logic is a very basic one, has great potential for correctly detecting game
situations. Furthermore, the calculated situation values showed a standard deviation of
15.5% from the average ground truth situation values and a 16% standard deviation from
the median values.

Figure 5.5: Results of the evaluation.

Fig 5.5 shows the results of the evaluation. The red bars represent the di�erence of the
values that are calculated by the fuzzy controller to the annotated ground truth values,
while the blue stripes depict the standard deviations of the ground truth data.
Technical note: The values in the diagram are scaled to the range between 0 and 200,
because 200 represents the maximum di�erence between two game situation values. This
is due to the fact, that the fuzzy logic uses the value of -100 to represent a most critical
defence, while a most critical attack situation results in a value of 100.

5.4.2 Further improvements

As stated before, the current version of the fuzzy logic despite its simplicity shows a lot
potential and many aspects can be further improved. First of all it should be mentioned
that, with 100 game situations, the data quantity that is available for the evaluation of
the fuzzy logic is rather small. One improvement can be to increase the number of game
situations to obtain a broader spectrum of possible game states. A closer look at the
current fuzzy logic reveals another room for improvement. When counting the number of
rules that lead to a certain game situation, it strikes out that there is a higher number of
rules that describe an "open game" situation. Therefore, the fuzzy logic is always biased
towards this game state. One way to archive a more impartial assessment of the game
situation by the controller, is to distribute all rules equally across all �ve game states. But

48 CHAPTER 5. MODELLING WORLD STATES WITH FUZZY LOGIC

there is also another way to get a more impartial response from the fuzzy logic, which leads
to the next possible improvement.

As of now, each fuzzy rule is treated equally according to its importance for the inference
mechanism. But as in real life there are situations in which some rules are not applicable,
because they can not possibly provide a correct result. For instance there is a rule, that
describes a defensive situation, when a opponent player is much nearer to the ball than a
player of the own team. But this implication is not of equal use in every game scenario. It is
obvious, that this rule becomes increasingly important for the current game situation when
the distance to either one of the goals decreases. While the modeling of this correlation
can also be achieved with the current inference system, it is much more natural to be able
to express the importance of a rule, by another set of fuzzy expressions.

Finally, a new and revised modeling approach can be used, instead of the two stage ap-
proach, which was initially tested by this project group.

5.5 Future Work

As shown in the previous sections the fuzzy logic approach has a good chance of reliably
detecting game situation. The next steps will therefore be to incorporate the fuzzy inference
system in the Nao framework. Additionally, the fuzzy logic will be evaluated according to
robustness to signal noises. Those signal noises can be simulated in a controlled manner by
randomly moving the objects on the �eld inside a given radius for each input game situation.
Then those radii can get continuously increased until the precision of the fuzzy controller
falls below a certain threshold. Those radii can then be used as a quality measurement of
the object localization by the Nao recognition and localization system. Furthermore, it can
also be investigated, whether fuzzy logic can also be used to infer roles for each robot in a
given game situation. Leading to speci�c actions for a role, which the robot can execute.
This would result in a complete fuzzy driven behavior for Nao robots.

Chapter 6

Simulation League

6.1 Robot Soccer Simulation League

6.1.1 Introduction and Motivation
written by: Lukas Pfahler

Several di�erent RoboCup Soccer Simulation leagues exist, but we will focus on the 2D
Simulation League rcss2d. As its name already implies, rcss2d models a soccer match in
two dimensions. Therefore, both players and ball are embedded in the euclidean plane. A
rcss2d match consists of up to 22 players, 11 per team, where only one player per team
may act as a goalkeeper. A player can move and turn, kick the ball and tackle or even foul
other players. Each player has a limited view range and has to react to its surrounding
environment based on incomplete and noisy information. A match is divided into 6000
cycles, i.e. 3000 per half, where one half usually is about 5 minutes long, so the entire
match takes about 10 minutes. In addition to the players, there may also be a so called
online coach per team which may coordinate the players and update the teams strategies.

We thought about enrolling in the 3d-simulation league, where one has to steer the simu-
lated robots not by simply issuing dash-like commands, but by setting angles and positions
for all joints of a simulated robot model. However, since one group of students of our project
group is already focusing on optimizing the movements of robots, we feel that focusing on
motion in another setting is redundant and keeps us from achieving results in the core area
of our interest: improving the behavior.

Thus we chose the 2D Simulation League (rcss2d) described above. It allows contestants to
develop any kind of arti�cial intelligence, for instance a system that controls all 11 players
simultaneously with shared, central knowledge and a centralized planner. However, we
see the simulation league as a possibility to test ideas for future arti�cial intelligence in
robot soccer and we want to lay groundwork for future seasons of the RoboCup. Thus, we
constrain ourselves to a model close to the real soccer-playing robots and try to draw as
many parallels between our simulated soccer players and the robots as possible, both from
a theoretical and from a software developmental point of view. Our goal is to develop an
arti�cial intelligence that can be adapted to the real robots and replace the current state
automata.

49

50 CHAPTER 6. SIMULATION LEAGUE

Figure 6.1: The RCSS Monitor visualizes the current state of a simulation game.

We see players as autonomous, individual agents, that is we have 11 instances of our ar-
ti�cial intelligence running independently of one another. They don't have any kind of
implicitly shared knowledge, the only mean to explicitly share knowledge is by communi-
cation (see below). This implies, that each agent has a di�erent idea about the status of its
environment and the game and agents may or may not agree on that status. Furthermore,
each agent independently decides on a next action based on its idea of the environment.
The obvious challenge is to get these independently acting agents to play as a team, i.e.
plan actions that are not only intelligent from an individual perspective but from a team
perspective. For instance, running towards the ball surely is a good idea for an individual
player, but having 11 players run for the ball will not result in a good outcome.

From a software-developmental point of view, we try to build a framework that is close
to the Naoframework used on our real soccer-playing robots. In our Naoframework there
are Modules that process sensor inputs and combine gathered data into so-called symbols
that model the current state of the game or the environment of our robot. The arti�cial
intelligence or behavior then uses these symbols to act within the environment. Currently,
this is done using an automate system, that changes its status according to the changes
of the environment and simultaneously starting actions, like walking or kicking, to change
the state of the robot within the environment. These actions are called special actions and
these special actions are then executed. A special action essentially describes a sequence
of commands that change the positions and angles of the robot's joints. We will present a
system that has essentially the same components for simulated robot soccer.

6.1. ROBOT SOCCER SIMULATION LEAGUE 51

6.1.2 Robot Soccer Simulation Server Protocol

written by: Till Hartmann

The RCSSServer is the component which handles the state of the match, i.e. has an
internal model of the �eld, the ball, the players and simple physics (movement speed,
acceleration, sight, ...). It is a highly asynchronous system with two independent loops,
where one loop issues perceptions every 150 milliseconds (by default) and another accepts
commands sent by a client once every 100 milliseconds.

Note that the information the server sends to its clients is noisy by default1, that means
the client must not assume the information it receives from the server to be accurate.

Commands

Some atomic commands which may be sent by a client are
Action Parameters Description

dash force moves a player in the direction he is facing with given force.
turn degreeMoment turns a player around itself at a maximum of degreeMoment degree.
kick force, dir kicks the ball in the speci�ed direction dir with the given force force.
say msg Shouts msg across the �eld. Nearby players can hear this message.

For a complete list of available commands, see http://sourceforge.net/projects/sserver/
files/rcssmanual.

Sensors

Each client receives sensor data from the server, which we will call perceptions. These
perceptions can be categorized either into aural, visual or body perceptions, where aural
perceptions are messages from other players on the �eld, from a coach or from the referee,
visual perceptions contain information on which object was seen (by the speci�c player)
where2 and body perceptions o�er information such as how much stamina3 a player has
got (at that moment). For a complete overview of possible perceptions, see http://

sourceforge.net/projects/sserver/files/rcssmanual/.

1as with most server related settings, noise may be disabled by the user
2usually relative distance and direction
3if a player runs out of stamina, he will be unable to perform certain actions until enough stamina is

recovered

http://sourceforge.net/projects/sserver/files/rcssmanual
http://sourceforge.net/projects/sserver/files/rcssmanual
http://sourceforge.net/projects/sserver/files/rcssmanual/
http://sourceforge.net/projects/sserver/files/rcssmanual/

52 CHAPTER 6. SIMULATION LEAGUE

Perception type Possible subtypes Information

visual ball, player, flag at least direction and distance; if close
enough also contains dirChange and
distChange. If the object seen is a
player, might also contain bodyFac-
ingDir and headFacingDir

aural self, player_n, enemy_n, on-

line_coach_[left|right],
referee

messages from the respective sender.
The messages themselves are restricted
to a �xed set of characters and a maxi-
mum length. Messages 'shouted' across
the �eld are only 'heard' by players
in the vicinity of the sender. For on-
line_coach_left or -right these may
but do not necessarily follow a certain
protocol.

body statistical data, such as kickCount,
dashCount, ... aswell as stamina,
viewMode and speed (-amount and -
direction). Messages by the referee usu-
ally initiate special routines, such as
kicko�, foul_[l|r], freekick_[l|r] etc.

Communication

On a technical side note, the UDP datagrams sent by the server are so called S-Expressions,
which basically represent nested lists (i.e. trees). These need to be parsed and interpreted
by the client.

6.2 Our SimLeague Agent

The framework is split into two main sections: server communication and arti�cial intelli-
gence. We will give a short overview of its structure and some basic API usage.

6.2.1 libsimleagueagent

Communication from and to an RCSSServer-instance is handled by libsimleagueagent.
It is responsible for sending commands, reading and parsing messages and converting them
to so called perceptions. The core class in libsimleagueagent is TwoDAgent, which allows
connecting to a server and o�ers methods to send commands to the server and to listen
for perceptions received from the server.

TwoDAgent agent = new TwoDAgent("YourTeamName");

agent.setAI(new YourAi());

6.2. OUR SIMLEAGUE AGENT 53

agent.init(); // sets up connection to server

agent.run(); // starts perception-receiving-thread, etc

In this case YourAi is a class implementing the Ai interface4. We provide Abstract-

PerceptionProcessor which serves as a kind of multiplexer for perceptions - if a new
perception arrives, it is handed o� to one of its many specialized methods - and can be
used as a starting point for a custom Ai. For example, if a visual perception with informa-
tion about the ball arrives, it will be forwarded to the onBallSeen method, which sensible
Ai implementations override.

6.2.2 Agent
written by: Lukas Pfahler

Concept

As mentioned above, we want to develop a system that has as many parallels to the Nao-
robots and the Nao-framework as possible.

Like the Naorobots, our simulated players have to deal with noisy visual perceptions. Of
course, noisy perceptions immediately implies the problem of uncertain knowledge. Start-
ing from noisy input data we try to extract knowledge about the state of the environment,
for instance we try to compute a players position based on its visual perceptions. These
extracted pieces of information are obviously not perfect due to the noise. We discussed
only playing on servers, where the noise is deactivated, however we decided that a key as-
pect or key challenge of robot soccer is dealing with uncertainty and thus it is a challenge
we also want to tackle. However, in contrast to the real robots, we have information about
the noise model used by the server to add noise to the incoming perceptions, which we can
use to rate the quality of perceptions, thus allowing us to extract better information by
preferably using 'good' input data. We believe that a similar approach could also be used
on real robots.

The same problems basically also apply to the the output side of our behavior: The action
commands we issue are not executed exactly but are randomly modi�ed. For instance,
kick commands have a random noise added to the angle of the shot, in�uenced by how well
positioned the player is for the kick. However, we admit that the problems of uncertain
motion are much smaller in the 2d-simulation league than in real robots.

Like the Naoframework, our agent framework is twofold � there is one part for motion and
one part for behavior. The motion part essentially consists of a thread executing special
actions from a queue. Special actions, an expression we borrowed from Naoframework,
combine atomic commands into higher level actions, like looking for the ball or moving to
a position, that respond reactively to perceptions.

The Planner Thread models the environment of the soccer �eld and computes plans �
sequences of special actions � in an in�nite loop. The world is modeled using simple logical

4which extends PerceptionProcessor

54 CHAPTER 6. SIMULATION LEAGUE

symbols and actions describe changes to these symbols, thus allowing us to reason about
theoretical future world states.

The class AIProcessor implements this two-fold structure and is thus the key component
of our Arti�cial Intelligence.

Special Action Thread

The special action thread manages and executes a queue of higher level actions implemented
by extending the abstract AbstractSpecialAction class. Once the arti�cial intelligence
is running, there is always one special action that is currently being executed, stored in
currentAction. The AIProcessor collects all received perceptions and forwards them
to the currently active special action and also stores them in a HashMap called memory,
for easy look-up for a limited amount of time currently set to 600ms. The special action
thread is running in�nitely, always taking the �rst action out of the queue, initializing it
and executing it. Whenever the queue is empty it automatically inserts an IdleAction

that will be executed until the planner thread submits a new plan.

AbstractSpecialAction Every high level action or special action must extend the ab-
stract class AbstractSpecialAction. Its most important method is the performAction()
method which de�nes the behavior. Within this method, you have to control the agent by
adding atomic commands like dash or turn. The method should be abortable; the class
has a �eld aborted that can be set to true by calling abort(), which will typically happen
when a new plan is issued that countermands the old plan. Typically, implementations of
special actions should look somewhat like the following example:

public void performAction()

{

while (!aborted)

{

// dash forward

agent.addAction(Control.dash(100));

// you must not submit more commands than 1 per 100ms

sleep(SERVER_TICK_MS);

}

}

Special actions have two means to react to perceptions, �rst via the memory HashMap stor-
ing the newest VisualPerception younger than 600ms for every ObjectName. Second,
since AbstractSpecialAction extends AbstractPerceptionProcessor, you can over-
ride event handler methods such as onBallSeen() or onPlayerSeen(). Actions should
also override the method updateTo(AbstractSpecialAction newAction) that is called
whenever a new plan starts with an action of the same class as the currently executed
action. When it is possible to update the action already running in a manner that �ts the
new plan, this method should do so and return true. For example this could be the case

6.2. OUR SIMLEAGUE AGENT 55

when the current action is 'Move to a Position' and the new plan just di�ers in the actual
position. If it is not possible, the method should return false. In that case the special
action will be aborted by the planning thread.

When implementing special actions that react to perceptions, one has to keep in mind that
new perceptions will be received with a lag. There are some pitfalls to avoid:

• Do not expect to have a new perception ready immediately after sending an action.
You might want to lock until you receive a new perception via the event handling
methods. See the LookForBall special action for ideas on how to do that.

• Do not react to the same perception twice. For example, when you try to run towards
the ball but �nd that it is not right in front of you, you turn according to the angle
you got with the last perception. After issuing the turn command there will not be a
new perception available immediately � if you check the memory again you will still
�nd the old one; however you must not issue another turn command based on the
same perception. To get around this problm, you could for example store the server
cycle of the last perception you used and only react if there is a perception newer
than that.

Planner Thread
written by: Till Hartmann

The planner thread is responsible to generate new higher level plans. Unlike special ac-
tions, which are purely reactional, planning involves 'thinking' ahead and reasoning about
possible futures.

We choose to view the problem of �nding a good plan as a search problem: Beginning
with the current state of the world or situation, there is a set of possible actions an agent
can take, each of those leading to subsequent hypothetical situations. In this search tree,
we choose the path of action that leads to the most desirable situation, e.g. one that
results in a goal. The depth of those search trees is limited to a given maximum depth,
currently 5. The evaluation of situations in the leaves of a tree is done heuristically.
We continually update our current belief about the status of the world by processing
perceptions. These perceptions are used to describe a situation for the planner using logics;
symbols representing the perceptions are stored in a simple belief base we call Situation.
A new plan is always computed based on the most recent situation.

Situations, Symbols and Uncertainty In our case, situations are of a predominately
hypothetical nature. They describe the expected world model after executing a planned
action but are also used to describe the current world model using a common set of logical
symbols. This allows a STRIPS-like approach to situation modeling: If the preconditions
of an action are ful�lled in a given situation, we can take an action which has an e�ect on
the status of the world and thus leads to a di�erent, future situation.

A Situation is a set of Symbols, our interface for simple logical symbols. Symbols can be
of di�erent types: boolean, scalar or positions. Name and Value.

56 CHAPTER 6. SIMULATION LEAGUE

As we operate in a hypothetical, highly dynamic world, we can never be sure if a value
is actually still 'valid' after a certain amount of time. Therefore, all classes extending
UncertainValue need to be able to handle uncertainty. For example, an agent might see

an enemy agent e at some position p at time t denoted by p
(t)
e and knows that this enemy

can move at most v units per time step. If this agent is not seen in the next t+n time steps,

he could roughly be anywhere in a circle around p
(t)
e with radius n · v. This combination

of position and uncertainty is handled in UncertainVector. If the uncertainty grows too
large, i.e. the circle in which the enemy's position might be is too large, it probably neither
makes sense to use this speci�c information while planning nor to plan at all � you would
rather need to start planning from scratch with fresh perceptions. For your own sub-classes
of UncertainValue you must supply a suitable method to increase the uncertainty after a
given number of server cycles.

Also note that we make the closed world assumption, that is, if a certain boolean symbol
is not present in a given situation, we assume this symbol's value to be false5.

Action The actions to get from one situation to a preceding situation are described
by extending the Action class. When an action can be taken in a given Situation its
isApplicable() method returns true. Applying the execute(s) method then yields the
next hypothetical situation we expect to arrive after completing the action. Each action
in plan space has a corresponding special action. The other way round, an Action models
the expected e�ects of special actions on the symbols of our situations. Thus, an Action
has to implement the translateToSpecialAction() method and return a corresponding
special action.

Heuristic The main task for any heuristic is to evaluate a situation: that means, it is
a function h : Situation→ R which assigns a value to a situation such that a situation s1
which is deemed better than another Situation s2 also gets a larger value h(s1) =: v1. A
heuristic should be easy and fast to compute. Oftentimes one chooses the heuristic to be
a linear combination of indicator functions that describe whether certain properties of a
situation are ful�lled. This has two advantages: It is easy to compute and interpretable
and you can automatically optimize it by adjusting the weights of the linear combination.
A naive heuristic which favors scoring goals and ball possession would hence look similar
to the following function:

h(s) = 2 · s.goalScored + 1 · s.ballInTeamPossession

Tree Search Now we have presented all the components necessary to describe the actual
planning algorithm. As noted earlier, in a tree with nodes corresponding to situations and
arcs corresponding to actions, we search for the leaf with highest heuristic value. We limit
the depth of the search tree to 5, a depth for which trees can be analyzed in a reasonably
fast manner. See �gure 6.2 for a toy example search tee.

5see checkBoolean() code

6.2. OUR SIMLEAGUE AGENT 57

Situation 0

goalSeen

Situation 1.0

goalSeen

i
d
l
e
(
)

Situation 1.1

goalSeen

ballSeen

Situation 2.0

goalSeen

ballSeen

ballInKickRange

5

h

da
sh
To
Ba
ll
()

Situation 2.1

goalSeen

ballSeen

ownPosition: (x, y)

3

h

backToPosition()

l
o
c
a
t
e
B
a
l
l
(
)

Figure 6.2: Based on the current Situation � Situation 0 � we derive possible future situations
depending on the actions taken. In this example, the best plan according to the heuristic h is to
look for the ball, then dash to the ball as it eventually allows us to kick the ball � possibly even score
a goal. Please note that this �gure only shows a subset of a search tree. Also note that situation
0 contains symbols derived from perceptions of the environment, i.e. contains 'non-hypothetical'
symbols.

58 CHAPTER 6. SIMULATION LEAGUE

Arti�cial Intelligence

written by: Philipp Seifert

The following section gives an overview over our developed arti�cial intelligence, meaning
what our heuristic looks like, what our special and plan actions do and what roles our
agents are divided in.

Symbols The symbols we use to describe a purely hypothetical situation can be di-
vided in roughly three categories: Boolean symbols, number symbols and position sym-
bols. While the �rst category usually describes very basic symbols, such as BallSeen or
GoalScored which can be either True or False, the latter two describe more comprehen-
sive symbols, such as EnemyXPosition (where X ∈ [1, 11]) or BallDistance. Note that
for example EnemyXPosition does not model the 'true' position of enemy X but rather its
hypothetical (future) position. Together with the uncertainty parameter described in 6.2.2,
this allows us to 'predict' an area where enemy X might very likely be located in the fu-
ture. However, it might still be possible that EnemyXPosition does indeed model the 'true'
position, if and only if the agent has recently perceived (i.e. seen) enemy X.

Special Actions Following are our atomic special actions.

6.2. OUR SIMLEAGUE AGENT 59

Special Action Description

DashToBall This action reads the current ball position and distance from
its memory and simply lets the agent move towards it at max-
imum power. If we get closer to the ball, we lower the dash
speed to prevent stepping over the ball. We made several cases
where we distinguish between di�erent distances to the ball.
That is so we don't already lower our speed at a greater dis-
tance.

DashToPosition We get di�erent coordinates of the game �eld and objects from
the SimpleLocalizationPerception that we can use to dash to
a speci�c given vector. By computing the distance and direc-
tion from our current position to this vector we convert this
information into dash and turn commands.

Dribble Simply kicks the ball a short distance towards a given direction
if we are in kick range, otherwise we dash towards the ball.
This behaviour imitates dribbling. Due to some noise when we
are dashing we always check if we are in the correct direction
to the ball �rst.

Goalie An action speci�cally designed for the goal keeper. It simply
performs a catch command if the ball is in range.

Idle Does nothing.

KickBall Takes a direction to kick and a distance to cover with the shot
as parameters. E.g. if we want to cover a distance of 20 we
would need to kick with a power of 40. But this is only true
for a perfect kick. There are a few restrictions for a kick that
lower the actual traveled distance, but which are calculated
back in this action.

KickBallToEnemyGoal Automatically reads the direction of the enemy goal from the
memory and shoots with maximum power.

LookForBall Tries to �nd the ball by doing two operations: �rst we turn
only our neck and wait for following perceptions if we could
locate the ball by doing this. If we weren't successful we turn
our body and check if we could �nd the ball now, turning
towards it.

Plan Actions As described in paragraph 6.2.2 every plan checks for a given situation if it
is applicable, computes a hypothetical following situation and translates to a SpecialAction.
Following is an overview of our plan actions.

60 CHAPTER 6. SIMULATION LEAGUE

Plan Action Applicable when Situation changes Translation

DashToBall This plan is applica-
ble when the agent
has seen the ball and
the ball is in the
agent's role's dash
range (see Roles for
further details).

The agent is in kick
range of the ball.

Translates to a
DashToBall special
action.

DashToPosition Always. Sets the agent's po-
sition to the speci-
�ed position.

Translate to a
DasToPosition
special action.

Dribble This plan is appli-
cable when 1. we
are in kick range,
2. we know our
own position, 3. we
know the position
of the enemy goal
(because currently
we will always try
to dribble towards
it) and 4. if we
can �nd dribbling
direction where we
wouldn't directly
dribble through an
enemy.

None. Translates to a
Dribble special
action.

KickToEnemyGoal This plan is applica-
ble when the agent
is in kick range and
knows the position
of the enemy goal.

A goal is (probably)
scored and the agent
is no longer in kick
range.

Translates to a
KickBallToEne-
myGoal special
action.

KickToPosition This plan is applica-
ble when the agent
is in kick range and
knows its our own
position.

The agent is no
longer in kick range
and the ball's new
position is the spec-
i�ed position.

Translates to a
KickBall special
action.

LookForBall This plan is applica-
ble if the agent does
not have knowledge
of the balls position.

The agent has seen
the ball.

Translates to a
LookForBall special
action.

PassToPlayer This plan is appli-
cable if the agent is
in kick range, knows
its own position and
passing the ball to a
given player is pos-
sible (there is no en-
emy standing in kick
direction).

The agent is no
longer in kick range
but a teammate now
has got the ball.

Translates to a
KickBall special
action.

6.2. OUR SIMLEAGUE AGENT 61

Roles In soccer there are di�erent roles in the team, what we used as an example to
model our team. Each role can have its unique actions, heuristic and parameters, e.g. a
defender may have other priorities than a goal scorer. Therefore every agent's AiProcessor
must return an implementation of the Role interface, which has three methods getDash-
MaxDistance(), getActionGenerator() and getHeuristic(). An abstract implementation is
given by NaoRole, which implements the two latter methods and we focus on �rst.

An ActionGenerator produces a list of actions suitable for the current situation, a stan-
dard implementation is given by NaoActionGenerator, which simply adds every currently
modeled action to the list. Each role can have its own ActionGenerator, for example the
goal keepers generator only generates an action that is meant to be executed by this role.

Also available for each role is a unique implementation of a heuristic, so situation eval-
uation may di�er between the agents. A standard implementation is given by NaoHeuristic.

As said before the NaoRole is only abstract. The last method getDashMaxDistance() of
the Role interface is implemented by di�erent classes that represent typical soccer roles:
GoalKeeperRole, FullbackRole, Mid�elderRole and StrikerRole. This method is meant for
controlling how far an agent may move to prevent e.g. a defender to move too far away
from its initial position. Currently for a defender the method returns a value of 20, meaning
the defender will only move towards the ball if it is away 20 distance units at maximum.
At this time all of our roles actually only di�er in di�erent return values for this method
(except the goal keeper).

Heuristic written by: Lukas Pfahler and Till Hartmann

As mentioned above, a simple way to obtain a sensible heuristic is using a linear com-
bination of indicator functions. An indicator function returns 1 when its corresponding
condition is ful�lled and 0 otherwise. A generalization could be to use functions that return
values in the interval [0,1]. We propose the use of the following indicator functions:

• Whether we are in possession or kick-range of the ball or not

• Whether we are in goal kick range or not

• Whether we are closer to the ball than the enemy or not

• Whether we just scored a goal or not

• Whether we are in a good defensive position when the enemy has ball possession, or
not

Obviously, the goal scored indicator function should have a very high weights whereas the
defensive position functions should have smaller value.

62 CHAPTER 6. SIMULATION LEAGUE

6.2.3 Conclusion

We have put a lot of work into building a strong framework as a foundation for simulated
multi agent robot soccer. While there has been some success this last year for the aspect
of arti�cial intelligence, there is still a lot to be done based on our works.

Most importantly, improvements have to happen on the following frontiers:

• We have implemented a few basic special actions. However they do not work very
reliable and su�er from synchronization issues. Most of the actions implemented so
far are mostly for o�ensive play, future work should also strengthen the defensive
play.

• Up to now, communication within the team has been mostly neglected. However, this
can easily be achieved by using say commands. Note that spreading information in
this way requires knowledge of the exact say semantics, which involves distance from
the speaker etc. Communication should also be restricted to the necessary minimum,
especially since the amount of say commands is heavily restricted to prohibit abuse.
Needless to say, one should also consider which information to communicate at all.

• We have introduced a rudimentary set of symbols and modeled our special actions
using this set. A more detailed model of the environment, particularly with respect
to uncertainty, would certainly improve the performance of the planning component.

• Right now our heuristic mostly rewards scoring goals. A set of more sophisticated,
role-dependent heuristics is essential to enhancing our Ai. When choosing a linear
combination based heuristic, the weights should be adapted and optimized continu-
ously during the game based on, for example, the success of past decisions.

• Even more rudimentary aspects of robot soccer simulation need more work: Most
interactions with the referee still need to be implemented. Referee decisions lead to
special game situations like kicko�s, free kicks, corner kicks, etc. which need special
handling routines.

Criticism

While working on this project, initial enthusiasm quickly turned to frustration, as we
struggled to get a grip on how rcss2d -architecture and -protocol are meant to work. The
documentation of rcss2d server and protocol available on the internet seem to be outdated
or not actively maintained and lack detail and depth, particularly regarding timing and
synchronization between server and clients. It is our belief that the design choices with
regard to abstractions from real world soccer are somewhat cumbersome. Also, unnecessary
hurdles are placed in a new team's path to participating in rcss2d -matches. For example,
halftime changeover does not make the simulation more interesting or demanding ai-wise
but merely adds another avoidable layer of complexity to the implementation. Other details
which only make implementation more di�cult but do not further scienti�c insights into
arti�cial intelligence and planning in a real-time, dynamic, continuous, competitive and

6.3. A LOGIC PROGRAMMING BASED APPROACH 63

multi-agent environment are: Di�erent wind-directions and -intensities, di�erent player
types, fouls, tackles.

We would advise simplifying and reducing the simulation complexity, thus allowing teams
to focus on their research topic instead of wasting time working around major quirks of
the rcss2d simulation. A step in this direction � at least in a non-multi-agent-system � is
the so called online coach mode which allows controlling each player with an omniscient
arti�cial intelligence. Similar simpli�cations should be applied to the multi agent setting,
e.g. by adding a sensible synchronization mechanism6 and perhaps even allow absolute
positioning.

6.3 A Logic Programming Based Approach
written by: Stefan Rötner

We already noted that Robot Soccer is a typical example for a dynamic multi agent system.
Oftentimes autonomous agents, especially if communication and collaboration with others
are required, are modeled according to the Belief-Desire-Intention (BDI) Model. To address
the goal of evaluating alternatives to the �nite state automaton based AI approach utilized
in the current Nao Devils framework, a �rst approach towards logic programming was
made. In detail we considered a BDI agent with knowledge representation under the
answer set semantics [11].

During the implementation we have come to the conclusion that answer set programming
is not well suited for the implementation of low level actions like going to the ball, when the
environment is changing as dynamically as in the setting of robot soccer. As a consequence
we focus more e�orts on the implementation of Special Actions and the planning component
(resulting in the system described above) that can serve as foundation to a high level
planning based on BDI agents in combination with logic programming instead of trying to
model the behavior with explicit logic programs.

However the logic programming based approach is very promising with regard to very high
level strategic decisions, which might be made by a coach robot or by an advanced soccer
robot and with much lower frequency than induced by the �xed server cycle, which is
required for successful low level actions like intercepting a ball. Because of this we will
describe our approach including the underlying concepts and the used framework, with a
special focus on the problems we encountered and the bene�ts logic programming and the
BDI Model bring to the domain of robot soccer. Keep in mind that this section is not
the description of a well performing AI-system but the documentation of our work as a
reference for future high level planning.

6.3.1 Techniques

Before we start with the documentation of our approach we will give a short overview of
the advantages that we hope to gain from using the selected techniques and explain some
problems we encountered.

6there is a synch_mode, however, it is absolutely undocumented

64 CHAPTER 6. SIMULATION LEAGUE

BDI The BDI Model (see Figure 6.3 on the next page) is often used to model multi
agent systems when collaborative action is needed, because di�erent subgoals that need to
be reached as part of an collaborative plan can easily be distributed as precise intentions
to the di�erent agents. BDI allows meta reasoning not only about the own plans but also
about the beliefs and goals of other agents which might be an interesting option when it
comes to predicting the behavior of enemy players. We choose the BDI model because it
can be used to enable a goal directed behavior over a longer period of time in comparison
to the reactive behavior of state automata.

Logic Programming Logic programming based behavior relies on rules that derive
the next action from a world view that is modeled as a set of literals we consider to be
true. In comparison to choosing the action based on a �nite state automaton, intelligent
behavior can be derived from an arbitrary combination of literals instead of relying on a
prede�ned explicit behavior for each state. This allows the addition and deletion of rules
during the game which gives rise to for example feedback based behavior optimization and
meta reasoning about the own beliefs. Through the communication of rules and literals
representing the current beliefs that can be integrated into the beliefbases of other agents
logic programming can help to create collaborative behavior.

Non-monotonic Reasoning We decided to use answer set programming (ASP) [11]
because default negation allows us to formulate behavior generating rules in the presence
of uncertainty. Our Agent has do deal with uncertainty with regard to noisy sensor data
and incomplete knowledge of the world as it is impossible to keep all the players and the
ball in view at all times.

Problems Calculating the answer sets of an ASP-program is a computationally complex
and thus time-consuming task. We used an e�cient standard solver but still the generation
of answer sets and the overhead for passing a logic program to an external solver are not
compatible to the short tick size of the simulation server. Because of this we believe that
a purely reactive behavior is needed at least for the realization of some atomic Special
Actions. Before such a lightweight system to provide the building blocks for complex plans
is available logic programming is not applicable. We have created the system described in
the previous section to ful�ll exactly this need.
Another problem of the used framework is that it lacks an appropriate planning component.
However we provide a short list of existing planning components that could be used at the
end of this section.

6.3.2 The BDI Model
written by: Philipp Seifert

The BDI model is a software architecture that relies on works of the philosophy professor
Michael Bratman, Stanford University [12, 13, 14]. He was engaged in human decision
making and studied the in�uence of intentions on it. Anand Rao and Michael George�
adapted his model for the programming of intelligent agents.

6.3. A LOGIC PROGRAMMING BASED APPROACH 65

Figure 6.3: The components of the abstract BDI model.

In contrast to reactive agents, that make decisions instantly based on their perceptions,
this deliberative approach allows agents to be autonomic as far as possible. In particular,
the BDI model is composed of two steps. The �rst is deliberation (i.e. which goals shall be
achieved) and the second is means-end reasoning (how can the selected goals be achieved).
Therefore each agent has three mental attitudes:

• Beliefs: They represent the environment and contain not only the modeled view of
the agent on the world, but also its internal condition and background knowledge
that may be important for implications.

• Desires: Based on the beliefs of the agent they contain the goals an agent would like
to achieve in the environment.

• Intentions: They represent the deliberative state of the agent � what the agent has
chosen to do. In implemented systems, this means the agent has begun executing a
plan 7.

Figure 6.3 shows the seven main components of a BDI agent. Just like any other agent
the process starts with a perceptual sensor input. The Belief Revision Function takes
this and the current beliefs as input and determines a new set of beliefs. Afterwards the
Option Generation Function computes the options (also called desires) available to the
agent, based on his beliefs and intentions. The Filter represents the agent's deliberation
process and determines the agent's intentions on the basis of its current beliefs, desires,
and intentions. Last the Action Selection Function selects an atomic action based on the
current intentions and outputs it to the environment.

6.3.3 Angerona
written by: Stefan Rötner

In order to provide a better understanding of the implemented multi agent system it is
important to describe on a conceptual level the existing frameworks we used and explain

7A plan is a sequence of actions that the agent can perform to achieve one or more intentions

66 CHAPTER 6. SIMULATION LEAGUE

why they were chosen.

In search of an existing framework for multi agent systems (supporting the BDI Model as
well as logic based representation of the agent's knowledge) JADEX [15] and Jason [16]
were considered. With regard to our claim of using non monotonic reasoning preferably
under the answer set semantics our �nal choice was Angerona [17], which is currently
developed at TU Dortmund. The Graphical User Interface of Angerona (see Figure 6.4)
provides a simulation log and allows to track the changes in the agents' beliefbases. For a
detailed description of the framework and its implementation we recommend the technical
report and the manual. Thus we only give a short summary of the most relevant aspects
and our adaptations:

Figure 6.4: The Graphical User Interface (GUI) of Angerona logs all actions and perceptions
in combination with additional information about each step in each reasoning cycle. Using the
tree view on the left the epistemic components and their changes during the simulation can be
displayed. The run-button in the bottom left corner allows a step-by-step simulation in which the
simulation is paused after each reasoning cycle. In this way the GUI can be used for debugging
purposes.

Agent In Angerona the epistemic 8 state of an agent and its functional component are
separated. For our implementation the epistemic state consists of a belief base, the agent's
desires and its intentions. The functional component is realized through a number of
stateless operators which can access and manipulate the information stored in the data
components of its epistemic state. The operators we used, correspond to the BDI related
functions update beliefs, generate options, intention update and subgoal generation.

8relating to knowledge or cognition

6.3. A LOGIC PROGRAMMING BASED APPROACH 67

Environment The environment from which the agents receive their perceptions can
be customized by implementing a new environment behavior. Usually the environment
is responsible for collecting the actions each agent executes and to distribute the changes
those actions result in via perceptions to every agent. We altered the agent implementation
to let each agent receive perceptions directly from the simulation server. The environment
is only used for agent instantiation and communication between agents.

Communication Angerona supports communication accordingly to the FIPA standard
for agent communication [18]. Human communication is imitated by distinguishing dif-
ferent speech acts like inform, query and answer. The semantics for each speech act are
de�ned in a format similar to STRIPS [19] rules (i.e. rules are de�ned by pre- und post-
condition of their execution). Information is exchanged by encapsulating the literals used
for modeling the knowledge into one of the speech acts. Angerona is treating speech acts
as perceptions and actions at the same time, so each query is one atomic action that can
be executed at the end of one reasoning cycle. As a consequence the answer is not available
during the same tick (i.e. a singular execution of the reasoning cycle). This is the reason
why it might be useful not to rely entirely on speech act communication but rather use a
form of communication that is more e�cient for our purposes.

Belief Base The main reason for choosing Angerona as underlying agent framework was
a fully implemented ASP belief base which is based on the Tweety library [20] for knowledge
representation. Tweety provides parser, reasoning mechanisms and inference operators
for a number of di�erent logic languages which are all based on the same interfaces for
syntactical elements like atoms, literals, negation, et cetera. Thus switching to another
logic language should be possible without many adaptations.
For answer set programming the update of the belief base can be executed using di�erent
forms of revision in order to keep the belief base consistent. The reasoning is realized by
passing the logic program representing the agent's beliefs to an answer set solver (at the
moment we are using DLV [21]) which calculates the answer sets.

Angerona can easily be customized or extended sinceMaven 9 is used as a build system and
new operators or components can be integrated using the Java Simple Plugin Framework 10.
Our soccer speci�c operators, perceptions and an environment for communication with the
simulation server are grouped in a plugin we named NaoAgent.

6.3.4 Realization
written by: Philipp Seifert

Due to the abstractness of the general BDI Model we needed to detail the individual BDI
components for the application domain. As mentioned in the beginning of the chapter
the biggest problem was soccer itself, as there are countless possibilities of situations that
we could encounter and therefore may need to react to. To begin with we focused on
elementary actions like kick, pass and tackle and wanted to implement more complex

9https://maven.apache.org/
10https://code.google.com/p/jspf/

68 CHAPTER 6. SIMULATION LEAGUE

game plays at a later point, but before we came to that we decided to focus on a new
di�erent approach, which reasons are discussed in 6.3.1.

Soccer BDI Components

To better understand each component in following there is described a single BDI cycle,
which begins with a perception and ends with an atomic action.

Input As we were working with virtual agents and not with physical robots we had no
sensors in the classical way, meaning no cameras. The SimLeagueAgent supplies each agent
with di�erent kinds of perceptions (see 6.2 for a detailed view).
As we focused on basic behaviour intelligence most of the perceptions were ignored, because
we had no necessity to react on them. For example perceptions telling us the current
stamina level of the virtual agent were simply thrown away. We were mostly focused on
implementing reactions on a VisualPerception and NaoPerception.

Belief Revision Function & Beliefs The Belief Revision Function is the �rst func-
tional component of our BDI model and therefore the interface to communicate with the
environment. When a new perception arrives its task is to determine the new epistemic
state of the agent, meaning updating his beliefs. It is also the interface for communication
with other agents, but due to problems with the delay of messages in Angerona we couldn't
make use of this.
In general the new information contained in either the perception or communication are
translated into a chosen knowledge representation, in our case into ASP (answer set pro-
gramming), what is directly supported by Angerona. All the logical rules we wrote are
therefore simple ASP rules.

As mentioned earlier we didn't respect every perception. Our �rst approach was to create
our epistemic state based on the VisualPerceptions we got. For example if it told us that
we have seen the ball in a distance of 40 and a direction of 30 radiance we stored these
values in a separate map with unique keys.

After storing these values we invoked the revision of some rules we de�ned and added to
the ASP program at initialization, which �nally update our epistemic state. An example
rule is shown in algorithm 1. It takes the stored value BALL_DISTANCE as a input
and tries to revise the head. It is equivalent to the ASP rule

inKickRange := BALL_DISTANCE <= 0 7. (6.1)

The threshold 0.7 is the kick range of an agent in the 2D simulation league. The rule is
read as 'if the distance to the ball is less than or equals the distance required to kick the
ball, then add the string inKickRange to our epistemic state'. This string indicates that
we believe that we are able to kick the ball. Algorithm ?? shows the implementation of
the rule.

6.3. A LOGIC PROGRAMMING BASED APPROACH 69

Algorithm 1 Rule to determine if we are in kick range

Require: double BALL_DISTANCE

1: Predicate head = new Predicate(�inKickRange�);
2: Predicate body = new Comparative(<=, BALL_DISTANCE, 0.7);
3: Rule rule = new Rule(head, body);
4: aspProgramm.addRule(rule);

At the end we decided to refactor these rules to the SimLeagueAgent, as it is not really the
BDI models duty to evaluate them in the Belief Revision Function. Now, a NaoPerception
tells us that we have to add �inKickRange� to our beliefs. We simply translate this to ASP
as a fact and add it to our logical program. We adopted this procedure in our current
Special Actions approach.

Option Generation Function & Desires In time �ve di�erent desires were elaborated
that an agent may want to achieve. These are:

• LOOK_FOR_BALL - The agent doesn't know the position of the ball and desires
to look for it.

• GO_TO_BALL_CLOSE - The agent is near the ball and desires to walk to the
ball.

• GO_TO_BALL_FAR_AWAY - The agent is far away from the ball and desires
to rush to the ball.

• DRIBBLE - The agent desires to dribble forward.

• GOAL_KICK - The agent desire to score a goal.

The desires are reasoned based on the recently updated beliefs that the Option Generation
Function got as an input. The �rst desire LOOK_FOR_BALL has highest priority.
Without having information about the ball it is hard to plan anything in soccer obviously.

The two desires GO_TO_BALL_CLOSE and GO_TO_BALL_FAR_AWAY are de-
sirable if the a predicate called ballPosKnown can be reasoned. The di�erence between
them is the �rst one implies a lower walk speed towards the ball while the latter implies
running to the ball at maximum speed. We distinguished them because we had cases where
we were already close to the ball, but not in kick range, then told our agent to rush to the
ball with maximum speed and the agent stepped over the ball, standing behind it. So for
complexity reason we introduced a second desire where the agent would walk slowly to the
ball.
Also this knowledge helped us implementing the special action GoToBall in our new ap-
proach.

70 CHAPTER 6. SIMULATION LEAGUE

The desire DRIBBLE is desirable when the predicate inKickRange is reasonable. The
last desire GOAL_KICK is desirable when the predicates inKickRange and goalScorable
are reasonable. The latter one is revised when the agent's distance to the goal is below a
speci�c threshold.

Deliberation The deliberation function has the purpose to select a desire and mark it as
a goal. It is part of the earlier mentioned �lter process. In the classical BDI model all desires
are considered equivalent and it is the programmers job to �nd a the best solution how it
should be determined what desire is marked as a goal. For various reasons we chose a very
simple way to deal with this problem: the desires are marked as goals through a �xed order
LOOK_FOR_BALL > GOAL_KICK > DRIBBLE > GO_TO_BALL_CLOSE
> GO_TO_BALL_FAR_AWAY .

Planner Also part of the earlier mentioned �lter process is the planner component. Its
purpose is to select a plan for the current goal from a database. The selected plan is
then called an intention. We only managed to create a single plan for every desire, so our
planner component didn't have many choices what plan to select. It was also unclear how
a plan should be selected.

Our intentions consist of atomic actions. E.g. the plan for the goalGO_TO_BALL_CLOSE
is

1. Turn to the ball, if the angle to it is not 0.

2. Go to the ball.

These atomic actions are directly interpretable by the SimLeagueAgent and therefore can
directly be forwarded to the server.

Action Selection Function The Action Selection Function picks the next atomic step
from the current intention or if there is no current intention it picks the next intention
from a stack, doing nothing if there is no next intention.

6.4 Planning
written by: Stefan Rötner

One key question in creating intelligent agents is how the agent's plans are created. In the
current version one of the special actions is selected as a simple plan accordingly to explicit
Java code in the sub goal generation operator while ASP is only used to store the current
beliefs and to reason about the world. In order to bene�t from the possibility of creating
complex plans from logic programs an appropriate planning component is needed. We did
some research on how such a planning component could be realized and came up with the
following list:

6.5. CONCLUSION 71

Know-How For plan generation Angerona provides the Know-How component. Know-
How aims at enabling the Agent to reason about his own planning process by providing the
information of how to ful�ll his desires in Know-How statements. Each of these statements
is a tuple of a target (referring to the intention that is ful�lled by the speci�ed course of
action), a number of sub-targets that need to be achieved in order to reach the target,
and some conditions de�ning whether the statement should be considered at all. From all
applicable statements for the current desires an intention tree is formed where the children
of a statement refer to the applicable sub-targets. A more detailed description and the
theoretical foundations can be found in [22].

With regard to the problems we are currently facing with Angerona some alternative
approaches are discussed:

Jason Jason[16] is another framework for multi agent systems supporting the BDI model.
Agent behavior is modeled using AgentSpeak [23] (an implementation of the Practical
Reasoning System). Jason could be a good alternative if the time required per tick can
not be decreased, but does not support non monotonic reasoning and default negation.

A-Prolog using Event Calculus As a reference for plan generation using ASP seman-
tics there exist some implementations of A-Prolog. DLV (i.e. the solver we already use for
reasoning about our beliefs) features the plan front end DLV-k. In [24] Baral and Gelfond
describe an action language as extension to ASP that can be translated into standard ASP
rules. Mora et al. de�ne in [25] a similar language extension based on event calculus,
with special regard to realizing the di�erent aspects of the BDI model. This approach has
been succesfully used, e.g. for implementing the Reaction Control System of the Space
Shuttle [26].

6.5 Conclusion
written by: Philipp Seifert One of the main reasons why we draw o� of this approach was
the very slow decision making of Angerona. On a system with four CPUs, each clocked at
2,2 Ghz, the framework needed roughly 500ms for a single decision based on a perception.
This was absolutely inacceptable for a real time soccer game, as the simulation server ticks
are every 100ms. A simulation could be made with the previously described techniques,
but it was not competitive at all.

Furthermore we saw two more critical modelling problems. As ASP is used to solve complex
logical programs we needed to create some basic actions based on pure reactive behaviour
�rst. Also the framework's planning component seemed poorly conceived. As a single BDI
cycle can be part of a bigger plan to achieve a speci�c goal, implementing this was not very
intuitive in Angerona. So at the end we decided that a better multi agent system would
be modelled with a di�erent approach.

72 CHAPTER 6. SIMULATION LEAGUE

Chapter 7

Extended Behavioral Networks

written by: Piotr Szczotka

7.1 Behavior networks in our domain

Estimating a good behavior in a given situation within a dynamic, continuous, non-
deterministic and competitive scenario such as RoboCup is a challenging task. Such de-
cisions have to be made throughout the game. Doing so is demanding for which many
aspects have to be considered simultaneously. As the world changes by itself, both friendly
and adversary forces are involved and most actions do not guarantee a positive outcome a
sophisticated mechanism is required.

First of all, some actions can have some e�ects that are not deterministic. Shooting the
ball towards the enemy's goal does not always guarantee scoring a point. Running towards
a ball does not always guarantee obtaining the ball control. It can even result a Nao falling
down. Therefore, one should follow strategy to make a decision on the basis of the best
expected outcome but never perform an action which is more likely to be followed by an
undesired outcome than a desired outcome. Doing nothing is sometimes the right thing to
do. Nonetheless, an action which has some negative impacts is not always a bad choice.

A convenient and detailed model of a current situation is of great signi�cance. A Nao
perceives the world through sensors. Making a decision considering raw sensor values would
not be an elegant solution, thus it would require a strong coupling between hardware and
the deciding mechanism. The logical step is to extract a mathematical model of a current
situation from the raw values. Given the mathematical model one may advance further
with the abstraction. Deciding whether to shoot is easier given Boolean variables like
"nearToBall" and "nearToEnemysGoal" rather than numerical values. However, describing
the game situation by the means of Boolean logic may not be precise enough and cause
a great information loss. The use of fuzzy logic makes sense at this point as it handles
partial truths, continuous states, and uncertainties. Moreover, it provides a loose coupling
from the rest of the software and hardware. A mechanism which provides a fuzzy logical
model of a situation should not merely transform a single numerical value into a single
fuzzy logic value, but also should be able to transform many numerical values into a single
fuzzy logical value. That way it is possible to express more complex ideas i.e. how critical a

73

74 CHAPTER 7. EXTENDED BEHAVIORAL NETWORKS

given situation is. A detailed overview on this topic can be found in this report in Chapter
5.

Furthermore, the goals that are pursued during a game have di�erent priorities. The most
important goals in a RoboCup scenario are to score a point, not to loose any points and
to harm neither yourself nor others during the process. There are also some other minor
goals that can be taken into consideration. Moreover, the priorities may change over time
according to the current situation.

In addition, some behaviors can be performed only under given circumstances. For instance
running towards the ball is only available when a robot has not fallen down. Nevertheless,
it also makes sense to estimate the bene�t of behaviors even when they are unavailable.
Naturally an unavailable behavior will not be executed even if it is theoretically bene�cial.
However, a substantial potential bene�t of an unavailable behavior should be a motivation
to enable the behavior.

An ideal behavior would be a behavior that is likely to ful�ll many goals. Although such
behaviors are always considered as bene�cial, they are seldom available. In order to shoot
a ball towards enemy's goal one needs to control the ball and stand close enough to enemy's
goal. If it is not the case one can get the ball and dribble towards enemy goal in order to
ful�ll those two condition. But in order to get the ball one needs to know where the ball
is. So in some cases one needs to �nd the ball �rst. But if a robot has fallen down, it will
not be able to search the ball until it has got up. Some actions that are required during
the process do not ful�ll the objective of scoring a goal directly. They merely enable other
behaviors. Even though one should try to achieve a goal directly it is often required to
take some additional steps which indirectly contribute towards winning the game. The
process can be accelerated by luck with no e�ort, so one can skip some steps. However, it
is more likely that the adversary will interfere the process, so one has to make a step back
in order to progress further.

The sensors of a Nao are not absolutely reliable. Because of this, both the mathematical
model and the fuzzy logical model are inevitably inaccurate and outdated to some extent.
Moreover, the limitations of the sensors may cause rapid changes in a robot's internal
model which do not occur accordingly to the environmental changes. Bad decisions and a
robot changing its mind without any good reason and are the result. Sticking to a good
plan, even if it is not the best plan, is in many cases better than formulating a new plan
driven by some sensor noise. A robot steadily changing his mind will lack productivity in
a long run.

On the one hand the modeler has a clear expectation, what a Nao should be doing in
some given case. On the other hand, in the vast majority of cases, the best reaction is not
always known to the modeler of the arti�cial intelligence. A robot should be proactive and
produce clever ideas on its own, maybe even surprising its modeler by its smartness.

Furthermore, the arti�cial intelligence should be extendable and adjustable. First of all a
possibility of optimization over parameters should be given. Secondly implementing new
routines or improving some routines should have impact on the decision mechanism but
should not require a complete remodeling of the behavior. Keeping the arti�cial intelligence

7.2. REASM 75

in accordance with the rest of the software and the hardware, which both may change over
time, should be simple.

In addition, some actions can be performed concurrently thus they engage di�erent re-
sources. For instance a robot can run, look for the ball and communicate with other
robots simultaneously, as the routines require legs (sometimes the whole body), cameras
and means of communication respectively. Moreover, di�erent type of resources are valued
di�erently. Engaging some resources may require a high expected outcome. Furthermore,
some resources can be lost or won throughout a single game (i.e. battery level).

Finally, one should keep in mind that the RoboCup is a game. Optimal decisions may
acquire game theoretical computations like estimating the dominant strategy or computing
a Nash equilibrium in mixed strategies.

Behavior networks convey the impression to be an adequate model to cope with aspects
listed above. They typically consist of goals, competence modules, sensors, resources and
parameters. However, there many concrete models that handle things di�erently. The vast
majority of time has been devoted to models that have been successfully applied in the
RoboCub domain - REASM Networks and Extended Behavior Networks, which can be
seen as an extension of REASM Networks. Those networks have been introduced by Dorer
in [27, 28]. Note that REASM is also an extended version of MASM network introduced
in 1989 by Maes in [29, 30, 31]. In our project the EBN model has been extended to the
so called nEBeN model.

7.2 REASM

A REASM behavior network is the most basic network which has been used in our domain.
A precise and detailed de�nition can be found in [27]. A synopsis can be found below. The
entire chapter is based on [27].

A REASM behavior network consists of goals and competence modules and parameters.
In order function it needs merely a fuzzy logical model of the current state. By the means
of a declared triangle norm and t-conorm fuzzy logical formulas can be computed and used
by the model. Those fuzzy logical formulas are used to express conditions, relevances or
executability.

Every single goal has its both static and dynamic relevance and a goal condition. The static
importance is just a number between 0 and 1. The dynamic relevance varies according to
the current situation and is expressed as a fuzzy logical formula. This formula can contain
variables, negations, disjunctions and conjunctions. The function f unites the dynamic and
the static value.

Competence modules hold the information about what can be done, under what circum-
stances it can be done and what the consequences are for engaging in a given behavior.
The availability of an action is represented as a conjunction of signed fuzzy logical vari-
ables. The consequences are expressed as a conjunction of signed fuzzy logical variables.
Additionally, one declares a probability for every single e�ect (every single signed fuzzy
logical variable in the conjunction). Every competence module has both its availability

76 CHAPTER 7. EXTENDED BEHAVIORAL NETWORKS

and utility. These two value are merged into one by a function called h. A module which
is both bene�cial and executable is likely to being proposed by a network.

In order to estimate whether a competence module is available one needs to compute
merely one fuzzy logical formula. However, it is more di�cult to estimate if the execution
of a competence module is bene�cial. It is the case when a module is likely to:

• ful�ll a currently important goal

• enable a useful and unavailable module

• not to inhibit an important goal

• not to inhibit an available and useful competence module

In order to compute this preconditions and postcondition of competences modules and goal
conditions are considered.

The utility of a given behavior, represented by an activation of the corresponding com-
petence module, is computed in a process called activation spreading. The process is not
explicitly recursive.

Nevertheless, after repeating the process several times one can see the recursive nature of
it. It means among other things that if a behavior x that is likely to enable an unavailable
behavior y which can enable another unavailable behavior z which is likely to ful�ll an
important goal, the behavior x will be considered bene�cial over time. In comparison to
other values the activation changes slowly during the computations as it is in�uenced by
the past.

The action selection process proposes the best behavior if it exceeds the threshold. The
threshold decreases if a robot remains idle but resets to its original value after every
execution of a behavior. The threshold's original value has to set up with caution as both
activity (and thus the function h) are limited. Setting the threshold too high would cause
idle waiting after every execution.

One can imagine goals and competence modules as nodes in a graph. The preconditions and
postconditions of competence modules and goal conditions de�ne implicitly the directed
edges of the graph. The activation �ows though those edges from goals to competence
modules and from competence modules to other competence modules. For instance if a
competence module has an e�ect that is likely to partly or entirely ful�ll a goal condition
the competence module will receive activation from the goal. The extent of the impact
depends on the probability and the goal's static and dynamic relevance.

Apart from the structure there are also many parameters that can be adjusted in order
to achieve a desired behavior. These parameters are activation of modules, inhibition
of modules, interia of activation, activation threshold and threshold decay. Technically
speaking there are also functions that in�uence the behavior but are not a part of a
network's de�nition. They are t-norm, t-conorm, sigma, h and f.

A REASM behavior network can be seen below.

7.3. EXTENDED BEHAVIOR NETWORKS 77

Figure 7.1: An example of a graphical representation of a REASM behavior network

7.3 Extended behavior networks

Extended behavior networks are an extension of REASM. They additionally provide the
possibility to execute many behaviors if they engage di�erent resources. The network is
extended by resource nodes and competence modules are extended by de�nition of the
resources a given behavior requires. The model has been proposed in [28]. A synopsis
which is based on [28] can be found in this chapter.

Similarly to the REASM model, the EBN uses a fuzzy logical model of the current state.
Additionally, it requires a state of resources. These resources are temporary engaged by
the competence modules. Furthermore, they can be lost or gained during the simulation.
However, in our models it was seldom the case. Every resources nodes has its amount,
so that a resource can be used by many competence modules concurrently if the amount
is su�cient. Competence modules that are seen as more bene�cial are favored when the
amount of a resource is insu�cient to execute all the behaviors. [28]

The action selection mechanism has been also modi�ed. The is no global threshold. Every
resource possesses its own threshold which is decreased and reset to its original value after
it has been used. Di�erent resources can have di�erent threshold. Some resources are
engaged only if a high expected outcome is likely to occur. [28]

The action selection mechanism proposes a single behavior, many behaviors or nothing.
The bene�ts and availability of behaviors and their overall suitability for execution are
computed as in REASM model. [28]

78 CHAPTER 7. EXTENDED BEHAVIORAL NETWORKS

Obviously the Naos are able to do things simultaneously so that this model was of our big
interest. However, there some problems that are likely to occur while using the model.

First of all, handling doing two things when the multitasking ability is limited is rather
hard. A Nao may be able to do two things simultaneously but the outcome is not always
as good as if it did the things separately. Moving head while running may result decreasing
the overall speed. This can be obviously overcome by de�ning two competence modules �
like running engaging head and running without engaging head. However, doing the trick
too often makes the abstraction of resources unnecessary which is only good when there is
a true multitasking ability can be assumed. If this is seldom the case one can try to use the
REASM model. One can always make a power set from the set of basic behaviors ignoring
the empty set. Then one could delete the together non-executable behaviors and merge the
valid sets into new competence modules. The postconditions of new competence modules
can be de�ned accordingly to the expected outcome. If there are few resources and not
many things that can be done concurrently, the amount of the competence modules is not
likely to increase exponentially.

Second of all, the declaration of required resources of every single behavior makes the
structure of the network strongly dependable on how the given behaviors are executed. It
makes the modeling process di�cult.

Third of all, it is more di�cult to comprehend the computations while there are many
thresholds involved.

7.4 nEBeN

During our project a wish to extend the REASM or EBN has arisen. Even before testing
out the model in the real game play, some problems have been already identi�ed. Those
problems have been listed in the section issues. Some of those problems, but not every
single of those, can be dealt with proper modeling practices. It was not indented to create
a tailor-made model for our domain. However, as the experience has shown, introducing a
single concept to given behavior network may open many doors.

In order to separate strategic decisions and tactic decisions or to di�erentiate between
restrictions that originate from game's rules and restrictions that originate from technical
limitations a model named nEBeN is proposed. It is strongly grounded on the EBN model.
A network can delegate an action to another network. That way networks of behavior
networks or even networks of networks of behavior networks (and so on) can be formed.

De�nition 1 A nEBeN is an EBN as de�ned in [28] except for: A competence module's
behavior b is either a primitive behavior or a behavior proposed by a nEBeN during the
action selection process. Pre, Post, res and a of a delegating competence module regard
the delegation process and not the behavior proposed by the other network. Running into a
cycle while deciding leads to an unde�ned behavior.

The behaviors which are suggested by a nEBeN are only primitive behaviors and are com-
puted in a recursive manner. These can be behaviors originating from di�erent nEBeNs.

7.5. SPECIALIZED NETWORKS IN NEBEN 79

In most cases every network of a nEBeN should operate on the same (or at least consistent)
world model and resource model.

One has to keep in mind that there are additional bridges to be crossed while delegating
a decision, because every network possesses its thresholds (i.e one needs encouragement
to play football, but even he is already playing football there has to be an additional
encouragement to perform speci�c actions like moving towards ball).

The individual networks of a nEBeN can be run synchronously or asynchronously. Running
the networks asynchronously may cause a potential risk of executing an outdated behavior.

By de�nition every individual network posses its own parameters P. It also possesses its
own t-norm, t-co-norm, sigma, h and f function.

7.5 Specialized networks in nEBeN

A behavior network �nds and executes a good behavior during the process of activation
spreading. It is encouraged to execute a behavior that is under current circumstances likely
to achieve an important goal or/and enable an unavailable action that is able to achieve a
goal (or enable an action that can enable an action and so on). Moreover, behaviors that
do the opposite are avoided. It is a sophisticated mechanism, thus it reduces (more or
less successfully) the modeling process to declaring what goals under what circumstances
are important and what behaviors under what conditions are available and what is their
expected impact.

However it is di�cult to model every aspect of behavior by the means of encouragement
and discouragement, especially when the modeler wants the network to act under given
circumstances in a given way. What if one wants to use an if-statement, randomness or a
sequence of ordered behaviors (elementary or proposed by other networks)? The extension
of the EBN, the nEBeN, introduced the concept of delegation. A single nEBeN/EBN
provides enough means to realize so called specialized networks. The idea is to combine
them with regular behavior networks via the delegation. That way sophisticated and simple
ideas can be combined together. The specialized networks are listed below.

• decision The network delegates according to a fuzzy boolean expressions (and, or,
not available � technical realization per relevance conditions)

• ritual A number of actions are executed via delegation in a given order.

• dice A behavior is chosen randomly according to a given probability distribution.

• concrete behavior A given action is proposed in any case. (more subtle modeling
can be done later)

• empty network None action is proposed in any case.

• specification The decision to act has been made. The network does not possess
its own threshold � it only speci�es the details how it should be done.

• delay The network delays the process of delegation.

80 CHAPTER 7. EXTENDED BEHAVIORAL NETWORKS

7.6 Optimization

In [27] the author reveals some hints how to optimize the parameters P. The process is
di�cult since the parameters are not independent from each other. In order to optimize
the parameters one can let the team play against a team where the parameters are set to
be static. The strength of a team can be determined by the goal di�erence. It has been
found out that setting the parameter gamma to low will cause the robots to remain passive
since the threshold is never or seldom exceeded. On the other hand making a robot too
reactive will decrease the overall quality of play slightly.

A supervisor of the group has conceptualized a new optimization approach.

The problem in our case is that the expectation values for every signed fuzzy logical variable
in a competence module's postcondition are undiscovered. In more common words, one
does not know, how good the routines, in terms of expected bene�t, are. Determining the
postconditions is much harder than determining the preconditions.

In order to deal with that once could start with values that appear convenient and to
continuously adjust the expectations based on the actual results whenever a behavior is
executed. More recent experiences should have more impact on the mechanism. However,
a naive implementation of the idea may cause some problems.

First of all, it is possible that an objectively good behavior fails during the process. Ad-
justing ex according to those experiences causes that the behavior is no more executed. If
it is the case the competence module would not be able to redeem its good reputation.

Second of all, the expectations are vague by their nature. It is not clear how to extract
their adjustment after every execution of a given competence module since it is not known
and not declared when the expected e�ect is supposed to occur.

Third of all, the postconditions of the competence modules de�ne in a way the dynamic
nature of the world. It seems convenient that a model should act better if it has a realistic
world model. But due to the limitations of the model (listed in chapter "Issues") the things
are not so simple. A less realistic model could under some circumstances act better than
a more realistic one. Moreover, insertion of new activation and inhibition edges during
the process, because of some marginal dependencies are found, may produce a very dense
network.

Nevertheless, the approach is very interesting and could severely simplify the modeling
process. Moreover, it could improve the play of the robots to a large extent. Some issues
could be overcome by other mechanism or simply ignored.

As a nEBeN has a hierarchical nature, one could optimize a nEBeN network by network,
instead of trying to optimize the whole model at once. While optimizing a nEBeN network
one could follow a buttom-up approach, since the networks of lower levels are not in�uenced
by the higher networks. The networks of higher levels are in�uenced by the lower networks
though.

7.7. CODE 81

7.7 Code

The REASM, EBN and nEBeN model have been implemented in C++. There is a guide
for every implementation, so that the integration process can be simpli�ed. The simpli�ed
UML class diagram of the REASM implementation can be seen below. The implementa-
tions EBN and nEBeN are based on the implementation of REASM. A concrete network
is de�ned in a XML data. The program builds a given network accordingly to the def-
inition. A nEBeN network consists of many �les, as every �le contains a network. One
loads only the �rst network manually and other referenced network are loaded and build
automatically. The de�nition of goals, competence modules and resources only de�nes
the structure of the network implicitly, so there are some calculations required before the
network is ready for simulation. The functions t-norm, t-conorm, sigma, h and f are not
contained in the XML data since they are technically not a part of a network. They are
implemented in code, but can be easily modi�ed. In the nEBeN model one can de�ne
those functions di�erently for every network. By default, the suggested values from [27]
are used. The parameter upper bound for module's activation is contained in a XML data.
However, it has no in�uence on any computations. This value should remind the modeler
not to set the activation threshold too high. If the activation threshold is set too high an
inevitable waiting after every execution are the result. Since it is not known what states
of the world are feasible, this value cannot be estimated by computer at this point. The
network is build by a builder class (not shown in the diagram below). Although the code
is relatively complex, the interface is rather simple. One provides the current state in a
string like "ballNear=0.9 overheating=0.3" and gets a string which contains the proposed
behavior. Working with EBN or nEBeNs requires additionally the de�nition of resources
and declaring when they are lost or gained. The result string in that case is a string which
may include many behaviors.

Figure 7.2: The simpli�ed UML class diagram of the implementation of the REASM behavior
network

82 CHAPTER 7. EXTENDED BEHAVIORAL NETWORKS

7.8 Simulator

A simulator which is strongly based on the code has been programmed for every model. By
the means of the simulator one can examine the performance of a given behavior network
before running it on a robot. That way some potential problems can be identi�ed by
debugging the network step-by-step. Moreover, by the means of the simulator one can
comprehend all the complex computations, so a modeler can gain a deeper understanding
of the model. Additionally, the simulator estimates all the activity �ow relations so that
the structure which is implicitly de�ned by the logical terms is shown. An example of how
to use it can be seen below.

Consider a following scenario. A robot wants to impress the audience with his juggling
skills (especially when there are many people in the audience). He also does not want to
get bitten by a bee (especially when the bee is near to him). Juggling with three balls
requires two hands. Other actions can be performed one handed. The robot can also juggle
with two balls. It impresses the audience less as if the robot was juggling with three balls
though. He can chase the bee away but in that case he is likely to drop one ball but he
can pick up the ball. The corresponding EBN behavior network can be seen below.

One can examine the behavior of the network with the simulator using commands such as:

• load theJugglerAndTheBee.xml loads, builds and initializes the network

• activation spreading performs activation spreading without proposing a behavior

• R hands=2 declares the resources (the command can be called repeatedly if the re-
sources are gained or lost)

• peopleThere=0.7 beeThere=0.9 threeBallsInPossession=1 provides the network
a fuzzy logic description of the current situation (the command is called repeatedly
during the simulation)

• action selection proposes action(s) according to the current situation (returns
something like "pickUpTheThirdBall chaseAwayTheBee")

• view shows the network

Please note that the state "threeBallsInPossession" should be always represented by a
binary value and the resource "hands" should be represented by an integer value.

7.9 Integration

A mechanism that controls information �ow between the rest of the code and the behavior
network is required.

First of all, a network should be provided with a current world model and current resource
model. The resource model is in our case straightforward since the resources are only

7.9. INTEGRATION 83

Figure 7.3: The juggler and the bee EBN

engaged and disengaged instead of being lost or won. One needs to declare the resources
merely at the beginning.

Extracting a fuzzy logical model out of a mathematical model is rather hard. The process
also depends strongly on the implementation of the routines. Improving the shooting
routine so that a Nao can shoot further would in�uence a fuzzy logical variable that
expresses whether a Nao is in range of a shot on goal. In the mathematical model nothing
changes because of the new routine. But the way the distance is being transformed to the
fuzzy logical variable has to modi�ed. Moreover, the fuzzy logical model may contain some
more complex ideas. It could take many parameters into account and express how critical
a given situation is.

Furthermore, the code should call the routines which are proposed by a behavior network.
Since the models are easily exchangeable by the rede�nition of the XML data, the modeler
can sometimes forget about safety concerns. In order to protect a Nao from overheating
or damaging itself it makes sense to stop the model under some critical circumstances.
Nevertheless, the safety aspects should be taken into account by a behavior network itself.

In order to identify some issues a logging mechanism should be also a part of the controller.

Finally, the controller must deal with situations when a robot executes a routine and cannot
be interrupted (i.e. standing up after a fall). In such cases one can provide the Nao with
the current world model and call activation spreading instead of action selection. That
way the mechanism reacts according to the changes but does not propose new behaviors.

84 CHAPTER 7. EXTENDED BEHAVIORAL NETWORKS

Figure 7.4: An abstract view on integration

7.10 Issues

A game of football has some states like ordinary play, penalty kick or free kick. Certain
actions even if they are technically possible should be executed only in certain states.
Handling it by the means of encouragement and discouragement does not seem to be a
convenient idea as the instructions of the referee should be unconditionally followed. If one
wishes to model the entire behavior by behavior networks one could use the nEBeN model
to do so. Alternatively one can use an existent arti�cial intelligence and use a behavior
network like REASM or EBN to merely for the ordinary play.

Some decisions in the game of football have to be random by nature in order to be optimal
[32]. If there some game theoretical decisions that have to made throughout the game,
like deciding in which corner to shoot the ball, behavior networks do not seem to be a
right choice to deal with it. At a low level these decisions can be made by routines itself.
However, even randomness on a higher level can be achieved by the means of specialized
networks in the nEBeN model.

The REASM behavior network and the Extended Behavior Networks successfully deal
with some negative characteristics that other similar models have [27]. However, there are
some problems with the model that a modeler has to take into account while modeling a
network. A white box approach to the modeling based on simple declaration what state is
desired and what, under what circumstances can be done may fail. These issues are listed
below and also apply to REASM, Extended Behavior Networks and nEBeN.

First of all, long paths of activation �ow in a given behavior network indeed in�uence the
network while estimating the best behaviors. However, they are strongly disadvantaged

7.10. ISSUES 85

alone due to their length even when the probabilities along the path are high. One should
choose the sigma transfer function and activation threshold wisely and dimension the
network right, so that such long paths have a proper impact on a behavior network.

Second of all, once there are two possible ways to achieve a goal, there are some situations
where choosing one of the path is objectively better than choosing the other. Sometimes
the network can favor the wrong path. Since the activation �ow is distributed on every node
and the computations are di�cult to comprehend, it can be hard to encourage a network
to prefer the right path over the wrong path at given circumstances without in�uencing
the rest of the network's activation �ow. Any change to a good functioning network, like
adding new competence modules, may interfere the rest of the mechanism.

Finally, it is possible that a network will try to ful�ll a goal or enable a behavior by
executing a wrong behavior. That is the case, because it is not accurately analyzed why
a condition (a precondition of a competence modules or goal conditions) is not ful�lled.
Every condition is a conjunction of signed fuzzy logic variables. Once a goal is important or
a behavior is likely to be bene�cial and is currently unavailable the mechanism will try to
ful�ll all of those condition variables in a conjunction in an equal measure � independently
of how true or false a single signed fuzzy variable already is.

86 CHAPTER 7. EXTENDED BEHAVIORAL NETWORKS

Chapter 8

Path-Planning

written by: Sebastian Engels

Another theme in the behavior-part is the path-planning (also called motion planning). It
is important that the robot not only can run safely and quickly, or pursue a good tactic as
a team, but also that the positions speci�ed by the behavior are underway sense. Should
the robot get from its current position to a certain point on the �eld, so it is not enough
if the Nao just walks linearly to that point. During the run, the Nao must recognize other
robots as obstacles and handle them, never entered the penalty area and should be guided
in a meaningful direction. It's task of the path planning to consider all these points and
to calculate the best possible path.

This is especially important if the robot moves to the ball to start a dribbling, to pass or
to make a shot on goal, since the robot must have a matching distance and the correct
orientation to the ball. Till now, the robot moved curved to the ball and adjusted its
orientation during the walk, so that he has the correct angle to the ball afterwards. This
behavior is shown in �gure 8.2.

A problem with this approach is, that sometimes the robot has not the correct orientation
to the ball and therefore stands slightly displaced. This then means that the robot does
not hit the ball correctly and the shot fails. The reason for this is that the robot does not
rotate far enough during the run. To avoid this, we realize method, in which the robot
moves in a straight line to the ball and then moves with side steps around the ball until
it is in the direction of the opponent's goal. This approach could be already observed at
other teams. This approach is illustrated in �gure ??.

The target angle αtarget for the orientation of the robot can be calculated using the current
ball position posball and the goal position posopp−goal of the opposing team:

αtarget = arctan(posopp−goal − posball). (8.1)

87

88 CHAPTER 8. PATH-PLANNING

Figure 8.1: The robot adjusts its orientation during the walk to the ball

Figure 8.2: Adjustment of the orientation on the ball

From the resulting target angle αtarget the angular deviation αdev can be calculated with
the current orientation αnao of the Nao :

αdev = αtarget − αnao. (8.2)

89

Based on the sign of the angular deviation the direction in which the robot must make the
side steps can be distinguished (positive deviation: steps to the right, negative deviation:
steps to the left).

To investigate the method more accurately, games against a team with the previous imple-
mentation were simulated. Above all the linear motion to the ball is a problem with this
approach. The robot turns on the spot until he looks up to the ball and starts running.
As a result, considerable time is wasted and the robot reaches the ball later. Furthermore,
the direction must often be corrected, causing the robots slow down. However, it was
gratifying that the robot was always aligned correct (in the direction of the opposing goal)
when the robot was on the ball.

To avoid the mentioned problem with the linear movement a combination with the previous
implementation is conceivable. The robot moves to the ball as shown in �gure 8.2 and then
uses the lateral steps to �x any orientation errors.

90 CHAPTER 8. PATH-PLANNING

Part III

Conclusion

91

93

written by: Till Hartmann

Regarding motion, we mainly struggle with noisy and inaccurate data (not to mention
hardware-wear of the robots) which makes �nding accurate and stable criteria (e.g. for
stability of walking) rather di�cult; however, we were both able to rule out some ap-
proaches which do not work in this context (see PCA) and �nd promising approaches.

One of these approaches is the stability criterion using the x-acceleration sensor. We were
able to implement a speed clipping using this criterion. However, the parameters have to
be tweaked in the future to improve the functionality.

We also provide a module for walk calibration resp. optimization for integration in the
NAO-framework so that di�erent (online) optimization routines can be easily supplied and
tested.

As the framework which is used in Dortmund lacks of a proper strong kick, the so called
LongKick was implemented. We ran out of time due to many problems and side-e�ects
that were time-consuming to �x. The progress is well advanced, but mainly optimizations
and �ne-tuning are missing.

Regarding behaviour, we provide

• FuzzyLab

• Multi-Agent Behavior in a Simulated Soccer Environment

• Extended Behavior Network / REASM

FuzzyLab is a system for classi�cation of game situations via fuzzy logics1. This helps
making decisions based on crisp and noisy input data more stable and less error-prone and
will probably be used in the behaviour for rcss2d.

We have written a software framework for developing arti�cial intelligences that participate
in the rcss2d soccer simulation league. Using this framework, we �rst tried to develop an
Ai based on Angerona using the design principles of BDI, unfortunately it turned out that
using a system like that is not suitable for realtime decision-making, however it might be
a good choice for making high-level strategic decisions. We then focussed on developing a
faster system that models the planning process as a search problem in a world of states
described by simple logical formulas. We developed basic special actions that describe
elementary actions an agent can perform on the soccer �eld like looking for the ball or
shooting. We then modeled the e�ects of performing those actions in logical formulas and
were thus able to reason about their e�ects, ultimately allowing us to plan and 'think'
ahead. We believe that this is a powerful approach that can also be applied on the real
Nao-robots.

Yet another approach to modeling agent behavior are behavior networks which try to enable
agents to select multiple (possibly concurrent) actions to achieve some kind of goal or at
least to enable unavailable actions that are likely to achieve a currently important goal. The

1actually a complete fuzzy logic implementation with controllers etc

94

behavior networks work with a fuzzy logical world model and make decisions on the basis
of expected utility. The REASM behavior network and its extension Extended Behavior
Network have been implemented. Extended Behavior Networks have been extended to a
model called nEBeN which has been also implemented.

Both motion optimization and behaviour modeling struggle with uncertain and/or noisy
data. While the motion team tries to tries to cope with that by applying �lters to reduce
noise or �nding stable criteria, the behaviour team considers using fuzzy logics in order to
derive less jumpy input data.

Part IV

Appendix

95

List of Figures

1.1 walking with 0.1 cm per second . 8

1.2 walking with 30 cm per second . 8

1.3 frequency spectrum of the acceleration values (x-direction) 9

1.4 same values as in Figure 1.3, now �ltered with a 2 hertz bandstop �lter . . . 9

1.5 Recorded sensor data with parameters armFactorLeft=0.1, armFactorRight=0.1 12

1.6 Recorded sensor data with parameters armFactorLeft=0.9, armFactorRight=0.9 13

2.1 Plotted x-acceleration . 17

2.2 Moving arithmetic mean and variance of the last 100 sensor values 18

(a) arithmetic mean . 18

(b) variance . 18

2.3 Moving arithmetic mean and variance of the last 100 sensor values with
drawn in threshold value . 19

(a) arithmetic mean; threshold 0 . 19

(b) variance; threshold 0 15 . 19

2.4 Sensor values, moving arithmetic mean and variance of the last 100 sensor
values with drawn in thresholds adjusting the walk by decreasing step height 20

(a) sensor values . 20

(b) arithmetic mean; threshold 0 . 20

(c) variance; threshold 0 15 . 20

2.5 Sensor values, moving arithmetic mean and variance of the last 100 sensor
values with drawn in thresholds adjusting the walk by decreasing speed . . . 20

97

98 LIST OF FIGURES

(a) sensor values . 20

(b) arithmetic mean; threshold 0 . 20

(c) variance; threshold 0 15 . 20

2.6 Sensor values, moving arithmetic mean and variance of the last 100 sensor
values with drawn in thresholds adjusting the walk by decreasing step height
and speed . 21

(a) sensor values . 21

(b) arithmetic mean; threshold 0 . 21

(c) variance; threshold 0 15 . 21

2.7 Speed, angles and variance of x-acceleration of Nao C 22

2.8 Speed, angles and variance of x-acceleration of Nao J 23

2.9 Raw values of the Center of Pressure . 24

2.10 Values of the Center of Pressure after �ltering 25

2.11 Filtered Center of Pressure values of a walk on arti�cial turf 26

2.12 Moving average of the Center of Pressure values 27

2.13 Pro�le of the variance during a walk . 27

3.1 Plot of the foot movement of a Nao . 32

5.1 Membership functions (Source: http://radio.feld.cvut.cz/matlab/toolbox/fuzzy/fuzzy_ta.gif) 43

5.2 Graphical user interface of the FuzzyLab application 45

5.3 The situation editor PlugIn . 45

5.4 Hierarchical fuzzy logic. 46

5.5 Results of the evaluation. 47

6.1 The RCSS Monitor visualizes the current state of a simulation game. 50

LIST OF FIGURES 99

6.2 Based on the current Situation � Situation 0 � we derive possible future
situations depending on the actions taken. In this example, the best plan
according to the heuristic h is to look for the ball, then dash to the ball as
it eventually allows us to kick the ball � possibly even score a goal. Please
note that this �gure only shows a subset of a search tree. Also note that
situation 0 contains symbols derived from perceptions of the environment,
i.e. contains 'non-hypothetical' symbols. 57

6.3 BDI Model . 65

6.4 The Graphical User Interface (GUI) of Angerona logs all actions and per-
ceptions in combination with additional information about each step in each
reasoning cycle. Using the tree view on the left the epistemic components
and their changes during the simulation can be displayed. The run-button
in the bottom left corner allows a step-by-step simulation in which the sim-
ulation is paused after each reasoning cycle. In this way the GUI can be
used for debugging purposes. 66

7.1 An example of a graphical representation of a REASM behavior network . . 77

7.2 The simpli�ed UML class diagram of the implementation of the REASM
behavior network . 81

7.3 The juggler and the bee EBN . 83

7.4 An abstract view on integration . 84

8.1 The robot adjusts its orientation during the walk to the ball 88

8.2 Adjustment of the orientation on the ball 88

100 LIST OF FIGURES

Bibliography

[1] Aldebaran-Robotics: NAO H25, 2014. http://doc.aldebaran.com/1-
14/family/nao_h25/index_h25.html.

[2] Aldebaran-Robotics: Inertial unit, 2014. http://doc.aldebaran.com/1-
14/family/robots/inertial_robot.html.

[3] Aldebaran-Robotics: FSRs, 2014. http://doc.aldebaran.com/1-
14/family/robots/fsr_robot.html.

[4] Smith, Steven W.: The Scientist and Engineer's Guide to Digital Signal Processing.
Elsevier Ltd, Oxford, 3rd Revised edition edition, 2002.

[5] Meister, Andreas and C. Vömel: Numerik linearer Gleichungssysteme. Vieweg
Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 2011.

[6] Kuckartz, U., S. Rädiker, T. Ebert and J. Schehl: Statistik: Eine verständliche
Einführung. VS Verlag für Sozialwissenschaften, 2013.

[7] Czarnetzki, Stefan, Sören Kerner, Oliver Urbann, Matthias Hofmann,
Sven Stumm and Ingmar Schwarz: Nao Devils Dortmund Team Report 2010.
Technical Report, Robotics Research Institute, TU Dortmund University, 2010.

[8] Zadeh, L.A.: Fuzzy sets. Information and Control, 8(3):338 � 353, 1965.

[9] Kahlert, J.: Fuzzy Control für Ingenieure. Fuzzy Control für Ingenieure: Anal-
yse, Synthese und Optimierung von Fuzzy-Regelungssystemen. Vieweg, Braun-
schweig/Wiesbaden, 1995.

[10] Bosko, B.: Fuzzy Thinking: the new science of fuzzy logic. Hyperion, New York,
1993.

[11] Lifschitz, Vladimir: Action Languages, Answer Sets, and Planning. In Apt,

KrzysztofR., VictorW. Marek, Mirek Truszczynski and DavidS. Warren
(editors): The Logic Programming Paradigm, Arti�cial Intelligence, pages 357�373.
Springer Berlin Heidelberg, 1999.

[12] Bratman, Michael E.: Intention, Plans and Practical Reason. CSLI Publications,
Stanford, 1999.

[13] Weiss, Gerhard: Multiagent Systems: A Modern Approach to Distributed Arti�cial
Intelligence. MIT Press, Cambridge, 1999.

101

102 BIBLIOGRAPHY

[14] M. Georgeff, B. Pollack, M. Tambe & M. Wolldridge: The belief-desire in-
tention model of agency. Proceedings of the 5th International Workshop on Intelligent
Agents V: Agent Theories, Architectures and Languages, 1555:1�10, 1998.

[15] Braubach, Lars, Alexander Pokahr and Winfried Lamersdorf: Jadex: A
BDI Agent System Combining Middleware and Reasoning, Chapter of Software Agent-
Based Applications, Platforms and Development Kits. Birkhäuser Book, 2005.

[16] Bordini, Rafael H., Jomi F. Hübner and Renata Vieira: Jason and the Golden
Fleece of Agent-Oriented Programming. In Bordini, Rafael H., Mehdi Dastani,
Jürgen Dix and Amal El Fallah Seghrouchni (editors): Multi-Agent Program-
ming Languages, Platforms and Applications, volume 15 of Multiagent Systems, Arti-
�cial Societies, and Simulated Organizations, chapter 1, pages 3�37. Kluwer Academic
Publishers, 2005.

[17] Krümpelmann, Patrick, Tim Janus and Gabriele Kern-Isberner: Angerona
- A Multiagent Framework for Logic Based Agents. Technical Report, Technische
Universität Dortmund, Department of Computer Science, 2014.

[18] Intelligent Physical Agents, Foundation for: FIPA ACL Message Structure
Speci�cation, 12 2002.

[19] Fikes, Richard E. and Nils J. Nilsson: STRIPS: A New Approach to the Applica-
tion of Theorem Proving to Problem Solving. In Proceedings of the 2Nd International
Joint Conference on Arti�cial Intelligence, IJCAI'71, pages 608�620, San Francisco,
CA, USA, 1971. Morgan Kaufmann Publishers Inc.

[20] Thimm, Matthias: Tweety - A Comprehensive Collection of Java Libraries for Log-
ical Aspects of Arti�cial Intelligence and Knowledge Representation. In Proceedings
of the 14th International Conference on Principles of Knowledge Representation and
Reasoning (KR'14), July 2014.

[21] Leone, Nicola, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri and Francesco Scarcello: The DLV system for
knowledge representation and reasoning. ACM Transactions on Computational Logic
(TOCL), 7(3):499�562, 2006.

[22] Thimm, Matthias and Patrick Krümpelmann: Know-how for Motivated BDI
Agents. In Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS '09, pages 1143�1144, Richland, SC,
2009. International Foundation for Autonomous Agents and Multiagent Systems.

[23] Rao, Anand S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In Proceedings of the 7th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW'06), 1996.

[24] Baral, Chitta and Michael Gelfond: Reasoning agents in dynamic domains,
pages 257�279. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[25] Móra, Michael da Costa, José Gabriel Pereira Lopes, Rosa Maria Vicari
and Helder Coelho: BDI Models and Systems: Bridging the Gap. In Proceedings of
the 5th International Workshop on Intelligent Agents V, Agent Theories, Architectures,

BIBLIOGRAPHY 103

and Languages (ATAL'98), ATAL '98, pages 11�27, London, UK, UK, 1999. Springer-
Verlag.

[26] Watson, Richard: An Application of Action Theory to the Space Shuttle. In Pro-
ceedings of the First International Workshop on Practical Aspects of Declarative Lan-
guages, PADL '99, pages 290�304, London, UK, UK, 1998. Springer-Verlag.

[27] Dorer, Klaus: Behavior Networks for Continuous Domains using Situation-
Dependent Motivations. In In Proc. 16th Int. Joint Conf. on Arti�cial Intelligence
(IJCAI, pages 1233�1238. Morgan Kaufmann, 1999.

[28] Dorer, Klaus: Extended Behavior Networks for Behavior Selection in Dynamic and
Continuous Domains, 2004.

[29] Maes, Pattie: The Dynamics of Action Selection. In Proceedings of the 11th In-
ternational Joint Conference on Arti�cial Intelligence - Volume 2, IJCAI'89, pages
991�997, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[30] Maes, Pattie: Situated Agents Can Have Goals. Robot. Auton. Syst., 6(1-2):49�70,
June 1990.

[31] Varela, F.J. and P. Bourgine: Toward a Practice of Autonomous Systems: Pro-
ceedings of the First European Conference on Arti�cial Life. Bradford Bks. MIT Press,
1992.

[32] Palacios-Huerta, I.: Beautiful Game Theory: How Soccer Can Help Economics.
Princeton University Press, 2014.

	I Motion
	1 Evaluation and Improvement of the Walking Engine
	1.1 Objectives
	1.1.1 Walking Parameters
	1.1.2 Sensors

	1.2 Recording and analyzing of the sensor data
	1.3 Walk Evaluation
	1.3.1 Approach
	1.3.2 Statistic methods

	1.4 Framework for walk parameter optimization
	1.4.1 Integration into the Nao framework
	1.4.2 Modules of the optimization framework
	1.4.3 Calculation of the Average Sequence Length

	1.5 Clipping

	2 Criteria of Stability
	2.1 X-Acceleration
	2.2 Center of Pressure

	3 Development of the LongKick
	3.1 The existing Legacy Kick
	3.2 Development Process
	3.2.1 General considerations before implementation
	3.2.2 Initial position before implementation
	3.2.3 Basic concepts of the LongKick
	3.2.4 Problems while implementation the LongKick

	3.3 Triggering of the LongKick
	3.4 Result

	II Behavior
	4 Introduction
	5 Modelling World States with Fuzzy Logic
	5.1 Motivation
	5.2 Introduction to Fuzzy Logic
	5.3 Current Approach
	5.3.1 Functioning of the Fuzzy Controller
	5.3.2 FuzzyLab - An Editing and Evaluation Program for Fuzzy Logic

	5.4 Modeling game situations with fuzzy logic
	5.4.1 Evaluation of the current approach
	5.4.2 Further improvements

	5.5 Future Work

	6 Simulation League
	6.1 Robot Soccer Simulation League
	6.1.1 Introduction and Motivation
	6.1.2 Robot Soccer Simulation Server Protocol

	6.2 Our SimLeague Agent
	6.2.1 libsimleagueagent
	6.2.2 Agent
	6.2.3 Conclusion

	6.3 A Logic Programming Based Approach
	6.3.1 Techniques
	6.3.2 The BDI Model
	6.3.3 Angerona
	6.3.4 Realization

	6.4 Planning
	6.5 Conclusion

	7 Extended Behavioral Networks
	7.1 Behavior networks in our domain
	7.2 REASM
	7.3 Extended behavior networks
	7.4 nEBeN
	7.5 Specialized networks in nEBeN
	7.6 Optimization
	7.7 Code
	7.8 Simulator
	7.9 Integration
	7.10 Issues

	8 Path-Planning

	III Conclusion
	IV Appendix
	List of figures
	Bibliography

