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Zusammenfassung

Die vorliegende Arbeit behandelt einen neuartigen Modellierungsrahmen zur Simulation
von austenitisch-martensitischen Phasentransformationen in Formgedächtnislegierungen
(SMA) und TRIP-Stählen. Das Ziel der Arbeit ist die Entwicklung und Ausarbeitung
eines generalisierten Modells, welches das charakteristische makroskopische Verhalten so-
wohl von SMA als auch von TRIP-Stahl abbildet. Als Basis für die Formulierung dient
ein skalarwertiges, thermodynamisch konsistentes, auf statistischer Physik basierendes
Modell für die Simulation von SMA. Im Verlauf dieser Arbeit wird das Modell in affine
und nicht-affine Microsphere-Formulierungen eingebettet um das polykristalline Mate-
rialverhalten abzubilden und um die Simulation dreidimensionaler Randwertprobleme
zu ermöglichen. Darüberhinaus wird eine Kopplung an Plastizität vorgestellt, welche
zusätzlich die Abbildung des Verhaltens von TRIP-Stahl ermöglicht. Abschließend wird
die Implementierung eines dreidimensionalen Phasentransformationsmodells für finite
Deformationen mit dem Fokus auf repräsentative Transformationsrichtungen in einem
thermo-elastoplastischen Framework gezeigt.

Abstract

In this work, a new framework for the simulation of shape memory alloys (SMA) and
TRIP steels undergoing martensite-austenite phase-transformations is introduced. The
goal is the derivation and elaboration of a generalised model which facilitates the re-
flection of the characteristic macroscopic behaviour of SMA as well as of TRIP steels.
The foundation of the overall formulation is a scalar-valued, thermodynamically consis-
tent, statistical physics based model for the simulation of SMA. As this work proceeds,
the model is implemented in affine and non-affine micro-sphere formulations in order
to capture polycrystalline behaviour and to simulate three-dimensional boundary value
problems. Moreover, a coupling to plasticity is introduced, additionally enabling the
capturing of the macroscopic behaviour of TRIP steels. Finally, the implementation of
a three-dimensional finite-deformation phase-transformation model that focuses on rep-
resentative transformation directions is elaborated in a thermo-elastoplastic framework.
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Notation

The notation used in this work becomes obvious from its context. However, the following
essential relations are collectively provided for the sake of the reader’s convenience.

Tensors In a three-dimensional Euclidean space spanned by the Cartesian basis vectors
{ei}, i = 1, 2, 3, tensors of first, second and fourth order are expressed in terms of their
coefficients (•)i following Einstein’s summation convention, namely

u = ui ei , (first-order tensor, i.e. vector)

S = Sij ei ⊗ ej , (second-order tensor)

T = Tijkl ei ⊗ ej ⊗ ek ⊗ el . (fourth-order tensor)

Here and in the following, we use non-bold letters for scalars, bold-face lower-case italic
letters for vectors, bold-face upper-case italic letters for second-order tensors and bold-
face upper-case sans-serif letters for fourth-order tensors.

Inner tensor products Inner tensor products are denoted by dots where the number
of dots characterises the number of contractions, i.e.

u · v = ui vi ,

S · u = Sij uj ei ,

S · T = Sij Tjk ei ⊗ ek ,

S : T = Sij Tij ,

S : T = Sijkl Tkl ei ⊗ ej .

An n-fold contraction of two nth-order tensors always results in a scalar.
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Notation

Outer tensor products Outer tensor products—also referred to as dyadic products—
are represented by the classical symbol ⊗ as well as by the non-standard symbols ⊗ and
⊗ using the definitions

u⊗ v = ui vj ei ⊗ ej ,

S ⊗ T = Sij Tkl ei ⊗ ej ⊗ ek ⊗ el ,

S ⊗ T = Sik Tjl ei ⊗ ej ⊗ ek ⊗ el ,

S ⊗ T = Sil Tjk ei ⊗ ej ⊗ ek ⊗ el ,

The dyadic product of two first-order tensors, i.e. vectors, results in second-order tensors,
whereas the dyadic products of two second-order tensors result in fourth-order tensors.

Identity tensors The second-order identity tensor I and the fourth-order symmetric,
volumetric and deviatoric identity tensors, Isym, Ivol and Idev, respectively, are defined as

I = δij ei ⊗ ej ,

Isym =
1

2
[I ⊗ I + I ⊗ I] ,

Ivol =
1

3
[I ⊗ I] ,

Idev = Isym − Ivol ,

with the Kronecker delta symbol δij = ei · ej .
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1 Introduction

1.1 Motivation and state of the art

Functional materials like TRIP steels and shape memory alloys (SMA) offer a great po-
tential for the industrial manufacturing of sophisticated components benefitting from the
advantages that these materials can provide, such as locally varying hardness and stiff-
ness. The need for reliable manufacturing and application of such components leads to
the demand for accurate constitutive models not only to predict the material’s response
by means of simulations, but also in view of material and structural design purposes.
However, the coupling of phase-transformations and plasticity involves the interaction
of multiple complex physical mechanisms, which have not yet been fully elaborated.

1.1.1 Microstructure and mechanical properties of shape memory

alloys

Shape memory alloys (SMA) do not only show fascinating phenomena, effects and prop-
erties in an academic sense, but also exhibit a large potential for industrial applications.
These include medical devices [96], aerospace applications [57] and oil industry needs
among other industrial fields [90, 106].
Stress-induced and thermally induced martensitic transformations in NiTi-based SMA

have been studied extensively since the 1980s. One focal point of experimental investiga-
tions has been the twinning structure of martensite that is observed at the micro-scale,
see Fig. 1.1. Martensite twins appear as parallel bands that each contain one martensitic
variant, where both variants are related to each other by a simple shear deformation.
Martensite twins of different types are documented in the literature, where the twin
type refers to the crystallographic orientation of the corresponding twinned martensite
variants. The actual twin type is determined with the help of selected area diffraction
(SAD) patterns. Commonly occurring twins are, e.g., the so-called (111̄) type I twins or
the 〈011〉 type II twins [144]. The martensitic transformation state is furthermore char-
acterised by the so-called habit plane, which defines the interface between the crystal

1



1 Introduction

Figure 1.1: Bright-field (BF) micrograph of NiTi-based SMA showing 〈011〉 type II twins, taken from
[144] with kind permission. The martensite twins appear in a parallel band-like structure, where each
band contains one specific martensitic variant. The width of the individual bands is about 10-50nm.

lattices of initial and final phases [22]. Moreover, the interface between two twins—or
rather the plane separating two twinned martensite regions—is referred to as midrib
plane or midrib region, as elaborated in, e.g., [117].
The microstructure evolution of polycrystalline NiTi under mechanical loading can be

observed with electron microscopy. For example, in situ observation of stress-induced
martensitic transformations accompanied by plastic deformations is carried out in [70]
with the help of transmission electron microscopy (TEM). Moreover, macroscopic mate-
rial anisotropy regarding the stress-strain response of SMA as a result of texture effects
in cold-drawn NiTi sheets is investigated in [81]. The TEM observations provided therein
show that the 〈011〉 type II twins evolve predominantly during deformation. Crystallo-
graphic analysis furthermore shows that the shear direction of the different martensite
twin variants relative to the macroscopic loading direction differs, i.e. martensite twins
of different types show different deformation behaviour.
A more macro-scale investigation of the transformation behaviour of SMA is carried

out in [116], where the inhomogeneous deformation of SMA strips under uniaxial tension
is studied. The initially austenitic material shows nucleation of martensite in sharp
bands that can be observed by optical microscopy. As a result of mechanical loads, the
evolution of a martensitic criss-cross pattern—comparable to Lüders bands in steels—is
observed. These results are supported by the use of a thermal camera that captures the
latent heat release during transformation at the same time.
In line with [116], the correlation between the grain microstructure—associated to

martensitic variants—and the mechanical material response on the macro-scale has been
studied in [25] for polycrystalline NiTi specimens. Macroscopic photographs of the trans-
formation surface in combination with optical microscopes for the detection of meso-scale
surface structure changes are used and the results are related to the macroscopic strain

2



1.1 Motivation and state of the art

Figure 1.2: Microscopic images of a uniaxially stretched polycrystalline NiTi-based SMA specimen at
strain levels of 0%, 2%, 4%, and 10%, respectively, taken from [25] with kind permission. In the last
image, the full transformation point is already reached, whereas the microstructure indicates that the
martensitic volume fraction is at most 60% as a result of so-called variant locking induced by sequential
grain transformation. The variant locking that avoids 100% martensite transformation in polycrystals
is a critical effect that has to be captured by the micro-mechanical modeling of phase-tranformations
in polycrystals.

of the tensile test specimen. It is shown that the martensite transformation concentrates
in the macroscopically visible transformation bands on the specimen surface. However,
at the same time it is shown that martensitic transformations occurs throughout the
material at all strain levels. Thus, the observed macroscopic bands are regions of in-
tense martensite transformation, but the areas outside these bands can by no means be
considered as martensite-free.

Several different mechanisms exist for the growth and deformation of martensite even
in the case of simple monotonic tension. In fact, the growth and deformation of marten-
site within the stress plateau of the stress-strain diagram can either result from stress-

3
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induced growth of favourably oriented martensite variants, from stress-induced reorien-
tation of martensite, or from stress-induced twin boundary motion. It is important to
note that NiTi-based SMA transforms from cubic austenite to monoclinic martensite
either directly or via an intermediate rhombohedral phase, the so-called R-phase. The
intermediate R-phase is not discussed in this work—for details, the reader is referred to,
e.g., [119] and the references cited therein.

As for all metals, the alloy composition by means of alloy components and mass per-
centages as well as the annealing process highly influences the resulting microstructure
and thus the behaviour of the material. Note that the alloy component concentration
is connected to the phase equilibrium temperatures in a non-linear manner as shown
in [46]. Moreover—depending on annealing temperature, annealing time and cooling
method—the austenite start and finish and martensite start and finish temperatures
can be modified, enabling the production of SMA that is either stable in an austenitic,
a martensitic or a mixture phase at room temperature.

Regarding the mechanical response during tensile deformation, a sharp rise in the
macroscopic specimen stress indicates that the end of transformation has been reached.
However, it is important to note that a polycrystalline, initially purely austenitic speci-
men does generally not transform to 100% martensite. On the one hand, unfavourably
oriented grains might not transform at all, and on the other hand even favourably ori-
ented grains usually only transform partially—as reported in [25], the sequencial trans-
formation behaviour of individual grains can lead to so-called variant or grain locking.
Precisely speaking, the onset of transformation in one grain changes the stress state
in the local surrounding area, which thus affects the stress state within a neighboured
grain. If the stress state in the neighboured grain was a favourable one and the grain
therefore transformed, the sudden change into an unfavourable stress state can then
start to hinder further transformation, cf. Fig. 1.2.

For multiple mechanical load cycles, experimental results show that lattice defects
develop as for example shown in [83, 144]. Here, the accumulation of dislocations inside
twin plates and at the junction plane area is investigated with the help of bright-field
micrographs in connection with SAD pattern analyses. The effects of cycling on the
stress-strain response of NiTi-based SMA can also be observed on the macro-scale, as
the starting stress for transformation as well as the cycle hysteresis decreases, whereas
the slope of the transformation plateau simultaneously increases [25].

One macroscopic key feature of SMA is the temperature-dependent pseudo-elastic or
pseudo-plastic material response, respectively [50]. For elevated temperatures, SMA
behaves pseudo-elastically as shown in Fig. 1.3. For low temperatures, a pseudo-plastic
stress-strain behaviour—i.e. a non-zero remaining strain at zero stress—is observed.
Moreover, the macroscopic stress-strain behaviour of SMA shows an asymmetry under
tension and compression as elaborated in [82].

Regarding the macroscopic elastic properties, it can be shown that the Young’s mod-
ulus of the austenitic phase in NiTi-based SMA takes a value of around 70GPa, whereas
the martensitic phase has a Young’s modulus of around 25GPa as discussed in detail

4



1.1 Motivation and state of the art

(a) Tension-compression step test resulting in a
distinct stress-strain envelope [59].

(b) Stress-strain minor loops within an envelope
obtained in a single-step experiment [59].

Figure 1.3: Experimental step tests on a NiTi shape memory alloy taken from [59] with kind permission.
The experimental results show that the stress-strain response of the SMA material possesses a distinct
envelope when tension-compression step tests are carried out in the pseudo-elastic range of the material,
see (a) and also [60]. Moreover, experiments show that stress-strain minor loops are also enveloped by
the stress-strain curve obtained from a single-step experiment (b). The micromechanically motivated
material model presented in Chapter 3 captures these effects amongst others.

in [120]. As a result—in contrast to TRIP steels, where martensite is considered as the
hard phase—in NiTi-based SMA the martensitic phase is generally considered as the
softer phase.

1.1.2 Microstructure and mechanical properties of TRIP steels

Transformation Induced Plasticity (TRIP) steel is a steel alloy that shows excellent
mechanical properties in terms of strength and ductility [71, 125, 126]. The ”TRIP”
effect describes the transformation from austenite to martensite accompanied by plastic
deformation [148]. Since austenite is the high-temperature phase in steel that—under
normal conditions—only exists in thermo-mechanical equilibrium at temperatures of
more than 720◦C, a special annealing process is required for the production of TRIP steel
so that retained austenite is contained within the steel even at room temperature [36, 69].
For the production of a TRIP steel, the heated eutectoid steel is isothermally cooled

to a temperature of about 400◦C, where parts of the austenite form a bainitic ferrite
phase, because the so-called intercritical annealing process [113, 114, 150] that takes
place favours the formation of ferrite [26, 44]. In a normal steel, the excess carbon
resulting from this annealing process starts to form a cementite phase with high carbon
content. To prevent this, a TRIP steel has small amounts of added silicon, aluminium
and manganese [147] alloy components that prevent the formation of cementite, leading
to a diffusion of the excess carbon atoms into the remaining austenite phase. After a
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1 Introduction

(a) Micrograph of TRIP steel with an equiaxed ferrite
matrix microstructure. Highlighted is ferrite (F), bai-
nite (B), and martensite/retained austenite (M/RA).
Taken from [33] with kind permission.

(b) Homogeneously distributed retained
austenite occurring as isolated particles in
the ferrite matrix or in connection with
bainite regions. Taken from [121] with kind
permission.

Figure 1.4: TRIP steel micrographs obtained using scanning electron microscopy (SEM) (a) and trans-
mission electron microscopy (TEM) (b), respectively.

sufficiently high carbon content within austenite is reached, the austenitic phase becomes
stable even at room temperature [80]. As a result of this production process, the obtained
TRIP steel is mainly composed of ferrite, bainite and retained austenite with high carbon
content [67].

The high strength and ductility of TRIP steel results from the fact that the retained
austenite is finely dispersed in the ferrite and bainite phases, see Fig. 1.4(b). Therefore,
the high-carbon—and thus brittle—martensite that forms during phase-transformation
is embedded in the matrix material consisting of a ductile ferrite and a harder bainite
phase. This arrangement and combination of phases is the basis for the high ductility
and strength observed for TRIP steels. Another characteristic property of TRIP steels
is their very stable and continuous work hardening that is observed in experiments as
demonstrated in Fig. 1.5.

A detailed characterisation of the microstructures in TRIP steel by means of op-
tical microscopy, scanning electron microscopy and transmission electron microscopy
is given in, e.g., [143], where electrical resistance measurement and tensile tests lead
to the conclusion that the retained austenite exhibits good thermodynamical stability.
Moreover—in view of the technical application of TRIP steels—it is shown that TRIP
steel shows a transition temperature from stress-induced martensitic transformation to
strain-induced martensitic transformation at about −5 ◦C, i.e. at room temperature the
strain-induced martensite transformation is predominant.
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1.1 Motivation and state of the art

The particular effects of added manganese, silicon and niobium alloy components on
the transformation behavior of TRIP steel are investigated and discussed in [9] based
on mechanical tensile and dilatation tests. One important conclusion is the fact that
manganese acts as a stabilising element in the austenitic phase, where a certain optimum
value of manganese content within the steel was identified. If the manganese content
exceeds this value, the ferrite transformation taking place during the cooling process is
delayed, thus leading to a decrease of soluble carbon which induces a destabilisation of
the retained austenite.

Figure 1.5: Cyclic stress response
showing the characteristic work
hardening of a metastable TRIP
steel. Taken from [87] with kind per-
mission.

The influence of different thermo-mechanical pro-
cessing conditions of low-alloy TRIP steel on subse-
quent phase-transformation behaviour is investigated
in [121]. To this end, high temperature deformation
is applied, followed by isothermal holding in the bai-
nite region and a subsequent cooling to room temper-
ature. The resulting microstructure is characterised
with the help of optical and electron microscopy, and
changes in the volume fraction of retained austenite are
documented using X-ray diffractometers. The ferritic-
bainitic fine-grained microstructure is investigated for
different test specimen, facilitating the determination
of the optimal thermo-mechanical processing scheme in
view of the sought microstructural material properties,
cf. Fig. 1.4(b).

Two distinct TRIP steel microstructures are com-
mon, namely equiaxed and lamellar structures. A TRIP
steel microstructure with an equiaxed ferrite matrix
refers to ferrite crystals that show approximately the
same axes length. In contrast, a lamellar microstruc-
ture is composed of alternating crystallographic layers
as introduced for NiTi-based SMA in Section 1.1.1. An
investigation on the influence of equiaxed and lamel-
lar TRIP steel microstructures on the transformation
of austenite during uniaxial tension was carried out
in [33]. To this end, both microstructures were pro-
duced by means of appropriate heat treatment condi-
tions. In particular, the bainite hold time during an-
nealing was varied in order to manipulate the volume
fraction of retained austenite.

Another characteristic property of a TRIP steel is the
stability of the retained austenite phase, referring to its resistance to transformation with
stress, strain, and temperature. In [33] it is noted that carbon is the most important
stabilising element in view of strain resistance. For austenite grains with low levels of
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carbon—less than 0.6wt.%C—the transformation is induced already at low levels of
strain. In contrast, high levels of carbon—more than 1.8wt.%C—prevent the austenite
grains from transforming at all. However, there are further parameters that affect the
austenite stability, such as the austenitic grain size and morphology and the elastic
properties of the surrounding matrix material. For example, smaller grains of retained
austenite are more stable under deformation due to their smaller number of martensitic
nucleation sites.

Depending on the heat treatment, different morphologies of retained austenite can
be obtained within TRIP steel. Usually, a two-stage heat treatment is applied, result-
ing in retained austenite that forms discrete particles between equiaxed ferrite grains,
cf. Fig. 1.4. However, other heat treatment methods can either lead to thin layers of
austenite or to a thicker lamellar-type morphology. The most important morphology of
the retained austenite is given in terms of the isolated particles that are finely dispersed
in the ferritic-bainitic matrix, cf. Fig. 1.4(b). Only this type of austenite morphology
transforms to martensite during plastic deformation and therefore improves the me-
chanical material properties, whereas even for large plastic deformation no martensitic
transformation is observed for austenite with a film-type morphology [121].

1.1.3 Modelling and simulation of phase-transformations

The reliability of phase-transformation simulations highly depends on the underlying
material model. Due to the complex behaviour of materials undergoing phase-
transformations—for example characterised by specific microstructure arrangements
and twin formation—micromechanically motivated material models as developed by,
e.g., [13, 35, 53, 55] can be regarded as most reliable.

Micromechanically motivated material models usually capture the behaviour
of individual single-crystalline material domains—or rather individual grains of a
polycrystal—which are commonly referred to as the micro-level. In consequence, mi-
cromechanically motivated material models are characterised by considering the mi-
crostructure of a material and its stress- or temperature-driven evolution. As shown
in [10] and [24], in particular the kinematics of martensitic, i.e. diffusionless, solid-solid
phase-transformations are characterised by homogeneous deformations of the crystal
lattice. Thus, the transformation kinematics can be captured by so-called Bain-strains
represented for example by the right stretch tensor U tr in a continuum mechanical con-
text, see [20, 68]. Apart from that, the material’s microstructure can be approximately
accounted for by matrix-inclusion homogenisation schemes as suggested in [32, 130, 131].
By means of appropriate homogenisation schemes, the computational results obtained
at the micro-level can be transferred to the meso- and macro-level, where the material
body and the acting loads are modelled in terms of a two or three-dimensional boundary
value problem.
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1.1 Motivation and state of the art

These matrix-inclusion homogenisation schemes approximate effective material prop-
erties for the phase mixture which are bounded by the Voigt and Reuss limits, respec-
tively. In this regard, a promising method for the determination of a suitable effective
material response is referred to as energy relaxation. The concept of energy relaxation is
dedicated to the computation of the so-called quasiconvex energy hull of an underlying
multi-well potential. It also offers the possibility to predict the energetically favorable
arrangement of the underlying microstructure. For a comprehensive treatise on quasi-
convex analysis the reader is referred to the works presented in [11, 37, 38, 97, 141] among
others. Since the exact determination of this desired energy hull is only possible in rare
cases, as shown in [41, 42, 72, 122], the quasiconvexification is mostly approximated
by upper and lower bounds, see for example [30, 52, 53, 100, 107]. Similar approaches
have also been introduced in [54–56, 124]. Recently, an extension of this concept has
been presented in [13], where the deformations within each phase are directly derived
from a superimposed displacement fluctuation field. Moreover, a distinction between
elastic and dissipative internal variables is introduced therein in order to determine a
well-suited energy hull as well as to take into account the hysteretic behaviour of shape
memory alloys. In this context, the evolution of dissipative variables can be established
by ordinary differential equations derived from inelastic potentials according to, e.g.,
[94, 95]. This model has also been extended to include plastic deformations in [15, 16].

The change of the crystalline structure from, e.g., austenite into martensite is always
accompanied by a reduction of the crystallographic symmetry. Thus, several martensite
variants have to be taken into account at the microscopic material scale. The coexistence
of these phases is restricted to certain kinematical compatibility conditions which are
reflected in rank-one connections between the deformations of each phase, cf. Fig. 1.1.
Fundamental studies on this suject are provided in [12]. One major conclusion to be
drawn from these investigations is the occurence of martensite twins in order to form
compatible or, in other words, coherent interfaces between austenite and martensite as
introduced in Section 1.1.1. This is exemplified in the so-called twinning equation from
which exact solutions for the geometry of the microstructure and the respective volume
fractions can be derived. This concept is frequently used for the modelling of martensitic
phase transformations as for example shown in [21, 47, 65, 108].

The aforementioned micromechanically motivated models have in common that the
optimum composition of the material is achieved by the minimisation of total energy and
total power, respectively. In contrast, the models presented in [1–3, 18, 88] are based
upon the derivation of driving forces directly acting on the phase front which propagates
with a finite velocity depending upon the driving traction and the temperature.

A finite-strain multiscale model that considers the crystal lattice transformation from
the austenitic cubic lattice to the martensitic tetragonal lattice is developed in [140],
facilitating the simulation of the thermomechanical response of single-crystal grains of
austenite. The formulation captures the interface between martensite and austenite
by means of a surface energy term. Microstructural effects on subgrain length scales
are incorporated and a pre-homogenisation is established by the computation of an
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anisotropic effective stiffness tensor at the grain level. A fully implicit time-integration
scheme of the aforementioned model is elaborated in [128]. However, as introduced in
Sections 1.1.1 and 1.1.2, for the multi-cyclic simulation of SMA and for the simulation
of TRIP steels in general, coupling between phase-transformation and plasticity effects
has to be considered.

For the simulation of austenitic-martensitic phase-transformations in steel, not only
the plastic deformation of the matrix phase but also the damage growth in the evolv-
ing martensite phase is simulated in [129] in a three-dimensional finite-strain framework.
The model is extended to a crystallography-based formulation in [134], where it is shown
that the consideration of plasticity in the austenite phase is important for a realistic pre-
diction of the overall response of the multi-phase material. Similar results are reported
in [16, 45].

The influence of grain size on the macroscopic stress-strain response of a multi-phase
steel is investigated in [139], where RVE-type finite element simulations of austenitic
grains of different size within a ferritic matrix have been carried out. In line with ex-
perimental observations discussed in 1.1.2, it is observed that a smaller grain size of
austenite leads to a higher transformation resistance. The relation between the relative
orientation of the lattice of the austenitic inclusion with respect to the loading direc-
tion is investigated in [138], where it is shown that this relative orientation can indeed
significantly influence the observed material response.

A crystal-plasticity model in the context of an RVE-type simulation approach is ap-
plied in [135]. Here, an elasto-plastic single-crystalline BCC ferrite matrix is considered,
whereas austenitic inclusions are captured by a crystal-plasticity ansatz for FCC crys-
tals coupled to a phase-transformation model. In line with experimental observations,
cf. Fig. 1.5, the obtained numerical results capture—amongst other effects—a continuous
work hardening of the effective stress-strain response. A crystal-plasticity based model
formulation with particular focus on the release of latent heat during transformation
and on its effect on the mechanical material response is provided in [145]. Here, a full
thermo-mechanical coupling is considered, where the heat generation associated with
martensitic phase-transformations and plasticity is accounted for in the energy balance
relation. Moreover, the governing equations are solved monolithically in a fully implicit
integration scheme.

The behaviour of larger RVEs—in terms of a larger amount of considered grains—is
simulated in [146], where periodic boundary conditions applied to the RVE account for
a consistent macroscopic material response. One important outcome of this work is the
comparison between a ferritic RVE with randomly dispersed austenitic grains and an
RVE that contains a film-type morphology of austenite. In line with the experimental
findings reported in [121]—cf. Section 1.1.2—the micromechanically motivated simula-
tions show that the film-type morphology of austenite diminishes the strengthening effect
usually accompanied by martensitic phase-transformation in TRIP steel as a result of
substantial plastic localisation in the ferrite matrix.
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1.1 Motivation and state of the art

On an even smaller scale, molecular dynamics (MD) studies facilitate the analysis of
nucleation behaviour and transformation kinetics in the context of thermally induced
displacive phase-transformations. On this scale, the transformation behaviour is in-
fluenced by free surfaces, grain boundaries, crystal lattice defects, and of course the
Brownian motion governed by the thermal initial conditions amongst other effects. In
recent MD simulations provided in [127], the named factors are taken into account and
analysed with respect to their influence on the transformation behaviour for different
choices of the interatomic potential.

However, increased accuracy and physical plausiblity of such micromechanical models
is commonly accompanied by an increase in computational effort. Although the use of
micromechanically motivated models may, in particular, apply in view of light-weight
structures and the modelling of the interaction between phase transformations and
different micromechanical processes such as damage effects or plasticity phenomena, a
comprehensive framework including all material scales from micro to macro is rather
cumbersome and may lead to computationally inefficient simulation approaches when
applied to the simulation of macroscopic workpieces.

Phenomenological approaches on the other hand are suitable for the computation
of large macroscopic problems—for example in the context of finite element simula-
tions. These approaches, as for example introduced in [8, 61, 111], are mainly based on
thermodynamics-based frameworks. In addition to the first and second law of thermo-
dynamics, the concept of generalised irreversible forces and fluxes, as established in [137]
amongst others, is used in order to derive evolution equations for the internal variables.
An extension of the model proposed in [111] has been presented in [98] in terms of fi-
nite strains and a self-consistent Eulerian theory accounting for heat generation during
phase-transformations.

As a result, phenomenological models can be used for efficient simulations of macro-
scopic workpieces. In general, such models include specific modelling parameters which
need to be fitted to the experimentally observed response of the bulk material for particu-
lar loading paths; see Fig. 1.3 and, e.g., [58–60]. In the context of phase-transformations,
phenomenological models are usually based on a classic plasticity-type approach. Early
phenomenological models for SMA were formulated in a one-dimensional setting and
restricted to simple tensile load cases [132]. Meanwhile, sophisticated phenomenological
models have been established, as for example in [8, 61, 112]. In particular, approaches
for the constitutive modelling of phase-transformations in single crystals can be found
in, e.g., [52, 123] and [109]. Approaches for the modelling of SMA polycrystals are, e.g.,
elaborated in [78].

Statistical considerations resulting in transformation probabilities characterise an-
other class of thermodynamical models—one of which is presented in this thesis. As
for example elaborated in [2, 4, 5, 66, 99, 115], these models are based on multi-well
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Figure 1.6: Overall multiscale scheme developed in the course of Chapters 2-6. A non-affine micro-sphere
formulation for the simulation of the polycrystalline response is considered in each integration point of
each finite element. Moreover, in each micro-sphere integration direction we derive individual evolution
equations for the microscopic volume fractions and their corresponding, individual plastic strains. The
evolution of volume fractions in each micro-sphere direction is based on the actual Gibbs energy barriers
of the mixture which are obtained by numerical minimisation of implicit intersection curves of the
unique, state-dependent elliptical Gibbs energy paraboloids assigned to each phase considered.

Helmholtz free energy potentials. The nucleation criteria are formulated in terms of en-
ergy barriers, which lead to statistically derived transformation probabilities governing—
together with Boltzmann-based transition attempt frequencies, see e.g. [51]—the evolu-
tion of material phases.

1.2 Objective of this work

One objective of this work is to achieve a compromise between physical integrity and
numerical efficiency. To this end, a scalar-valued phase transformation model is used at
the lowest scale considered, adopting concepts from the works of [5, 51]. The underlying
scalar-valued model is motivated by single-crystal considerations, where scalar trans-
formation strains—related to Bain strains—and a tension-compression transformation-
asymmetry are considered in Chapter 2. As an extension to Chapter 2, the scalar-valued
strain of the micro-model is decomposed into deviatoric and volumetric parts in Chap-
ter 3 in view of the subsequent implementation into a micro-sphere formulation according
to [74] and [49, 91, 92]. This extension particularly affects the algorithmic determination
of energy barriers which govern the evolution of phase fractions.

We use the micro-sphere formalism to approximate the material behaviour of a poly-
crystal consisting of a sufficiently large amount of single-crystals with a statistically
homogeneous spatial distribution. In view of anisotropic elastic micro-sphere formula-
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Figure 1.7: Overall multiscale scheme presented in Chapter 7. We implement the thermodynamically
consistent model elaborated in [14], where phase-transformations between spatially arranged marten-
sitic unit cells in an austenitic matrix are considered in a thermo-elastoplastic finite-strain framework.
The individually evolving spatially oriented martensitic variants are pre-homogenised using the Voigt
assumption, facilitating a subsequent convexification of the energy density of the martensitic-austenitic
conglomerate in the logarithmic strain space.

tions, the reader is referred to [7] and [6]. Moreover, a coupled micro-sphere formulation
is proposed in [133]. One advantage of the micro-sphere framework is its ability to derive
texture-type structural tensors of different order, thus facilitating, e.g., the assessment
of the anisotropy evolution within the material, see, e.g., [142]. Regarding the micro-
sphere integration scheme, Chapter 6 shows that the use of 21 integration directions per
hemisphere allows for an efficient yet sufficiently accurate computation of the material
response at a meso-scale-type level, cf. [17, 74, 92].

To extend the micromechanically motivated material model for the simulation of
phase-transformations in SMA presented in Chapters 2 and 3 to include the capture
of TRIP steels, the interactions between simultaneously evolving plastic strains and
phase transitions must be incorporated into the model. To this end, the underlying
statistics-based model for the simulation of phase-transformations is coupled to plastic-
ity in Chapter 4. The three-dimensional extension of the coupled model by means of a
micro-sphere implementation is provided in Chapter 5. Finally, an extension to include
a non-affine micro-sphere implementation of the coupled phase-transformation and plas-
ticity model is presented in Chapter 6, showing that the coupled non-affine micro-sphere
formulation developed in this work allows for a physically sound, micro-mechanically mo-
tivated simulation of shape memory alloys as well as TRIP steels, cf. Fig. 1.6. Through-
out this work, for the TRIP models the focus is placed on the interactions between
phase-transformations and plasticity in a polycrystalline aggregate consisting of austen-
ite and martensite. For conceptual simplicity, these frameworks are referred to as “TRIP
models”, even though the isotropic elasto-plastic ferrite matrix is neglected in this work.

In view of large deformation simulations of TRIP steels, an alternative modelling ap-
proach, taken from [14], is provided in Chapter 7. The approach follows a similar idea as
do the previously considered micro-sphere formulations—however, we introduce tensor-
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valued quantities that are considered in each spatial crystal direction, and we restrict
the formulation to representative transformation directions with the goal of providing a
physically sound, thermodynamically consistent large-deformation thermo-elastoplastic
framework for the simulation of phase-transformations in TRIP steel, cf. Fig. 1.7.

14



2 An affine micro-sphere model for
phase-transformations

In this chapter, an efficient model for the simulation of polycrystalline materials un-
dergoing solid to solid phase transformations is presented. As a basis, a one-dimensional,
thermodynamically consistent phase-transformation model is used. This model is em-
bedded into a micro-sphere formulation in order to simulate three-dimensional boundary
value problems. To solve the underlying evolution equations, a newly developed explicit
integration scheme which could be proved to be unconditionally A-stable is presented.
Besides the investigation of homogeneous deformation states, representative finite ele-
ment examples are discussed. It is shown that the model reflects the overall behaviour
of shape memory alloys.
The contribution presented in this chapter aims at the formulation of a thermodynam-

ically consistent model based upon transformation probabilities which is embedded into
a numerically efficient global algorithm. Note that the micro-sphere model presented in
this chapter is—for the linear elastic case—restricted to a macroscopic Poisson’s ratio of
νP = 1/4, see Section 2.5.2 for a detailed discussion. An extension of the model to the
common range of reasonable values for Poisson’s ratio is presented in Chapter 3. The
outline of the current chapter is as follows: In Section 2.1, an overview on the adapted
one-dimensional material model presented in [51] is given. This model is based on a
multi-well Helmholtz free energy density which is transformed into Gibbs functionals
in order to determine load dependent energy barriers for the transformation from one
phase to another. The energy barriers affect transformation probabilities according to
[5]. Eventually, the evolution of phases is characterised by a vector-valued ordinary
differential equation (ODE). One focal point of this contribution is the implementation
of a newly derived numerical scheme called ’Modified Newmark Method’ for the solu-
tion of the underlying ODE. In order to maintain the efficiency of the overall model,
this method is chosen to be explicit. However, it can be shown to be unconditionally
A-stable and hence is superior to other explicit schemes like the Forward Euler method.
Another extension of the original model is reflected by the implementation of tension-
compression asymmetry in terms of the stress-strain behaviour, which is captured by
crystallography-based transformation strains. Finally, we elaborate on the response of
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the one-dimensional model subjected to prescribed scalar strains. Section 2.2 deals
with the extension of the one-dimensional model to three dimensions. In order to avoid
complex enhancements of the model described in Section 2.1, the three-dimensional
behaviour of a polycrystalline aggregate is carried out by the so-called micro-sphere ap-
proach. This technique is well-established in the context of computational inelasticity
at small strains [28, 75, 76] as well as for the modeling of polymers, see [92, 93], and
anisotropic biological tissues, see [6, 7, 89]. In Section 2.3, several numerical examples
are elaborated. Firstly, the material behaviour of the micro-sphere under homogeneous
deformations is discussed in detail. Secondly, we focus on the implementation of the
micro-sphere model in the context of the finite element method and the results of a
geometrically inhomogeneous macroscopic body under cyclic loading in terms of stresses
and phase distributions, respectively. The chapter will be concluded by a short summary
in Section 2.4.

2.1 One-dimensional, probabilistic phase-transformation

model

The one-dimensional phase transformation model implemented in this work can handle
an arbitrary amount of material phases. To be specific, we adopt the computational
model for shape memory alloys provided in [51]. Here, the material is assumed to
consist of ν phases, where the volume fraction

ξα := lim
v→0

(
vα

v

)
(2.1)

of each phase α ∈ {1, . . . , ν} ⊂ N must fulfill the restrictions

ξα ∈ [0, 1] ⊂ R ,

ν∑

α=1

ξα = 1 ,

ν∑

α=1

ξ̇α = 0 , (2.2)

wherein •̇ denotes the material time derivative. The validity of (2.2a) is evident, while
(2.2b) and (2.2c) follow from the conservation of mass, as all phases are assumed to
possess identical time-independent referential mass densities, i.e. ρα = ρ0 = const.

Each material phase is presumed to behave thermo-elastically, thus, according to [4],

a Helmholtz free energy function ψα = ψ̂α(ε, θ) of the form

ψα =
1

2
Eα[ε−εαtr]2−ζαEα[ε−εαtr][θ−θ0]+ρ0cαpθ

[
1− log

(
θ

θ0

)]
−ρ0λαT

[
1− θ

θ0

]
(2.3)

can be assigned to each phase α, with E the Young’s modulus, ε = ∇xu the total strains,
εtr the transformation strains, ζ the coefficient of thermal expansion, θ the current
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absolute temperature, θ0 the reference temperature, cp the heat capacity, and λT the

latent heat of the respective material phase. The overall free energy Ψ = Ψ̂(ε, θ, ξ) =∑
α ξ

αψα, with ξ = [ξ1, . . . , ξν ], of the mixture is given by the free energy contributions
of the respective constituents, whereby the distortional energy of the phase boundaries
is neglected. Based on this, a Legendre-transformation can be carried out in order to
obtain a Gibbs potential G = Ĝ(∂Ψ/∂ε, θ), namely,

G = Ψ − ∂Ψ

∂ε

∣∣∣∣
θ

ε =

ν∑

α=1

ξα [ψα − σ ε] =
ν∑

α=1

ξαgα , (2.4)

with σ = ∂Ψ/∂ε|θ = σ̂(ε, ξ) being the stress acting in the one-dimensional continuum
considered and gα = ĝ α(σ, ε, θ) := ψα − σ ε the contribution of phase α to the Gibbs
potential G.

2.1.1 Kinematics of phase transitions

The approach of calculating the evolution of the volume fractions is based on statistical
physics. Therefore a transformation probability matrix Q = Q̂(ξ) ∈ Rν×ν can be intro-
duced as shown in [51], facilitating the expression of the evolution of volume fractions
as

ξ̇ = Q̂(ξ) · ξ . (2.5)

Here, the transformation probability matrix takes the form

Q = ω




−
α6=1∑
α

P1→α P2→1 . . . Pν→1

P1→2 −
α6=2∑
α

P2→α
. . .

...

...
. . .

. . . Pν→ν−1

P1→ν . . . Pν−1→ν −
α6=ν∑
α

Pν→α




6= Qt (2.6)

with ω the transition attempt frequency and Pα→β = P̂α→β(θ, bα→β) the probability of
a transformation of an arbitrary phase α to another phase β, where (α, β) ∈ [1, . . . , ν]2.
Note that

∑
iQij = 0 ∀ j guarantees that (2.2c) is fulfilled.

In particular, according to [5], the transformation probabilities can be obtained from

Pα→β = exp

(−∆v bα→β

k θ

)
, (2.7)
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with k the Boltzmann’s constant, ∆v the (constant) transformation region’s volume, θ
the given temperature and bα→β the energy barrier for the transformation from phase
α to phase β. Note that, in general, bα→β 6= bβ→α and thus Pα→β 6= Pβ→α. The energy
barriers are given by

bα→β = ĝ α(σ, ε⋆α,β, θ)− ĝ α(σ, εmin
α , θ) (2.8)

with

ε⋆α,β = inf
gα,gβ

{
ε | ĝ α(σ, ǫ, θ)|σ,θ = ĝ β(σ, ε, θ)|σ,θ

}
(2.9)

and

εmin
α =

{
ε | ∂ĝ

α(σ, ε, θ)

∂ε

∣∣∣∣
σ,θ

= 0

}
. (2.10)

Here, ĝ α(σ, ε⋆α,β, θ) = ĝ β(σ, ε⋆α,β, θ) represents the value of the energy potential at the
intersection of the parabolic phase potential functions for two arbitrary material phases
(α, β) in strain space, while ĝ α(σ, εmin

α , θ) represents the minimum energy potential of a
particular phase α for fixed stresses and temperature.

The behaviour of the one-dimensional material model by means of the stress-strain-
relation and the evolution of phase fractions for the material parameters provided in
Table 2.1 is shown in Fig. 2.1. Here, a three-phase material with an austenitic parent
phase is chosen. Furthermore, two martensite variants, in particular, one tensile variant
and one compression variant, are assumed; see also Appendix 2.5.3. To illustrate the
previously described relations, two different states of the energy potential parabolas
depending on the acting stresses σ are illustrated in Fig. 2.2 for the investigated three-
phase material.

2.1.2 Integration of the system of evolution equations

The solution of the strongly non-linear system of evolution equations (2.5), required to
obtain an update of the internal variables, is traditionally carried out using classical
implicit integration schemes in combination with Newton-type iterations. In contrast
to that, in the current work a newly developed explicit integration scheme based on a
modification of the Newmark integration method is applied. This method is based on
the assumption, that the transformation rates of volume fractions ξ̇ proceed linearly
within a time step ∆t = tn+1 − tn > 0, i.e. from state n to n+ 1. This results in

ξ̇(τ) =
1

∆t

[
ξ̇n+1 − ξ̇n

]
τ + ξ̇n (2.11)
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and accordingly

ξ(τ) =
1

2∆t

[
ξ̇n+1 − ξ̇n

]
τ 2 + ξ̇n τ + ξn , (2.12)

where the time coordinate τ = t− tn > 0 has been introduced. Inserting these relations
into (2.5) without considering any Newmark parameters and setting τ = ∆t yields

ξ̇n+1 =

[
I − 1

2
∆t Q̂(ξn)

]−1

· Q̂(ξn) ·
[
1

2
∆t ξ̇n + ξn

]
(2.13)

as well as

ξn+1 =
1

2
∆t
[
ξ̇n+1 + ξ̇n

]
+ ξn (2.14)

where Q is assumed to be constant here and thus is evaluated invariably at time tn.
Here, I ∈ Nν×ν denotes the second-order identity tensor. The transformation rates ξ̇n
in the equations above are now consistently substituted by Q̂(ξn) · ξn, which eventually
leads to

ξn+1 = ξn +
1

2
∆t
[
ξ̇n+1 + Q̂(ξn) · ξn

]
(2.15)

with

ξ̇n+1 :=

[
I − 1

2
∆t Q̂(ξn)

]−1

· Q̂(ξn) ·
[
1

2
∆t Q̂(ξn) · ξn + ξn

]
. (2.16)

Using this approach facilitates the solution of the presented system with high efficiency
and at the same time high numerical stability—see Section 2.5.1 for detailed background
information.

2.2 Application of the micro-sphere model

In this section, we show how the one-dimensional model is extended to three dimensions
by embedding it into an affine micro-sphere framework. To this end, Section 2.2.1
provides a brief overview of the affine micro-sphere kinematics, i.e. we show how the
scalar-valued micro-strains that serve as input value for the one-dimensional phase-
transformation model are obtained from projections of the macroscopic strain tensor onto
spatial directions r. Subsequently, Section 2.2.2 summarises the micro-macro relations
for the macroscopic stress tensor, macroscopic volume fractions and the macroscopic
free energy of the material. Section 2.2.3 deals with the numerical evaluation of the
aforementioned continuum relations.
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2 An affine micro-sphere model for phase-transformations

Table 2.1: Material parameters used—compare, e.g., [20, 51]. The different transformation strains of the
martensitic tensile and compression phase, εMt

tr and εMc

tr respectively, lead to an asymmetric behaviour
in tension and compression as provided in Fig. 2.1(a).

SMA phase material parameter symbol value

austenite A

Young’s modulus E
A 67 GPa

transformation strain εAtr 0

latent heat λA
T 0

martensite Mt

(tensile phase)

Young’s modulus E
Mt 26.3 GPa

transformation strain εMt
tr 0.025

latent heat λMt
T 14500 J/kg

martensite Mc

(compression phase)

Young’s modulus E
Mc 26.3 GPa

transformation strain εMc
tr −0.0675

latent heat λMc
T 14500 J/kg

common
parameters

coefficient of thermal expansion ζ 12 · 10−7 K−1

current temperature θ 303 K

reference temperature θ0 273 K

heat capacity cp 400 J/kgK

transformation region’s volume ∆v 2.71 · 10−18 mm3

Boltzmann’s constant k 1.381 · 10−23 J/K
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Figure 2.1: Behaviour of the one-dimensional material model at a temperature of θ = 303K. Here,
three different material phases, namely austenite A, a tension martensite variant Mt, and a compression
martensite variant Mc, are considered, whereby the material was assumed to initially consist of pure
austenite, i.e. ξA|t0 = 1, ξMt

|t0 = ξMc
|t0 = 0. The material parameters used are given in Table 2.1.
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(a) Gibbs phase potentials at σ ≈ −3.5 GPa,
cf. state p1 in Fig. 2.1(a).
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Figure 2.2: Evolution of the history-dependent Gibbs phase potentials g due to applied external strains.
Depending on the stress acting within the one-dimensional continuum considered, the minima of the
Gibbs potentials do not only take different values, but also different positions in strain space. At
negative stresses and strains, the martensitic compression phase becomes energetically favorable, while
at positive stresses and strains first the austenitic phase, and then the martensitic tensile phase evolves.
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2 An affine micro-sphere model for phase-transformations

2.2.1 Kinematics

In order to generalise the one-dimensional phase-transformation model, a kinematically
constrained micro-sphere approach is applied. In the context of kinematically con-
strained micro-sphere models, the one-dimensional micro-scale strains εmic are obtained
using projections of the macro-scale strain tensor εmac with respect to the underlying
integration directions, say r ∈ U2. In particular, the vector εmac · r can be decomposed
into two contributions, εmac · r = εmac

r + εmac
t , where εmac

r = [r · εmac · r]r represents the
strain in radial direction, while εmac

t = [I−r⊗r] ·εmac ·r yields the strain in the tangent
plane of the considered surface point. Thus, the scalar-valued micro-strain εmic, which
serves as an input parameter for the one-dimensional phase transformation model, can
be computed with the help of

εmic = ε̂mic(εmac, r) = ‖εmac
r ‖ = r · εmac · r = ε̂mic(εmac,−r) . (2.17)

The integration of quantities related to the micro-sphere can be surface- or volume-based.
In general, the surface integral over the unit sphere yields

∫

U2

da = 4π , (2.18)

while the volume integral results in

∫

U2

dv =
4

3
π . (2.19)

For symmetry reasons of the integration scheme adopted later on, it is sufficient to
restrict the integration procedure to one unit hemisphere in the following.

2.2.2 Micro-macro-relations

The micro-macro-relations represent the scale bridging equations facilitating to establish
connections between micro and macro quantities. Conceptually speaking, the macro-
scopic state of deformation is transferred to the micro-level by means of projecting εmac

on εmic, while the macroscopic stresses σmac—or rather the flux term of the macroscopic
balance of linear momentum representation—is determined based on εmic and the re-
lated history, respectively microscopic volume fractions, ξ. In view of the finite element
simulations discussed later on, the macroscopic algorithmic tangent operator is addition-
ally computed, namely dσmac/dεmac. The macroscopic stress tensor σmac = σ̂

mac(σmic)
can be assembled from the scalar-valued stress responses σmic = σ̂mic(εmac, r, ξ) of the
underlying one-dimensional phase transformation model by means of

σmac = σ̂
mac(σmic) =

1

4π

∫

U2

σmicr ⊗ r da , (2.20)
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2.2 Application of the micro-sphere model

which reflects the polycrystalline response at the macro level. Similarly, the fourth-order
algorithmic tangent operator can be assembled based on the scalar-valued microscopic
tangent moduli, ∂σmic/∂εmic, according to

dσmac

dεmac
=

1

4π

∫

U2

dσmic

dεmic
r ⊗ r ⊗ r ⊗ r da . (2.21)

Moreover, the macroscopic volume fractions Ξ = Ξ̂(ξ) as well as the macroscopic free

energy density Ψ̂mac(Ψmic) can be normalised with respect to the surface of the unit
sphere and thus follow as

Ξ =
1

4π

∫

U2

ξ da and Ψmac =
1

4π

∫

U2

Ψmic da , (2.22)

respectively.

2.2.3 Numerical evaluation

Based on the known strain state following from the kinematically constrained—or rather
affine—model, the micro-sphere integration procedure is carried out. The projection
of the strain tensor εmac onto the integration directions r is computed using εmic =
[r ⊗ r] : εmac. In particular, the integral relation for the macroscopic stress response
σmac, (2.20), can be approximated numerically via

σmac ≈ 1

4π

nr∑

i=1

σmic
i wsurf

i ri ⊗ ri (2.23)

with 4π the surface of the unit sphere and wsurf
i = ŵ surf

i (nr, ri) the surface elements of
the unit sphere, i.e.

lim
nr→∞

ŵ surf
i (nr, ri) = da , (2.24)

and
∑

i w
surf
i = 4π. Note that the surface elements wsurf

i serve as weighting factors in
(2.23) so that normalised weighting factors w̄i can be introduced, i.e.

σmac ≈
nr∑

i=1

σmic
i w̄i ri ⊗ ri with w̄i :=

1

4π
wsurf
i . (2.25)
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2 An affine micro-sphere model for phase-transformations

The algorithmic tangent operator Ealg = dσmac/dεmac is based on the numerical ap-
proximation of (2.21), i.e.

Ealg =

nr∑

i=1

Ealg
i w̄i ri ⊗ ri ⊗ ri ⊗ ri , (2.26)

with Ealg
i = dσmic

i /dεmic
i .

Apart from the computation of the stress tensor and algorithmic tangent operator,
the macroscopic free energy density Ψmac can be calculated based on the microscopic
free energy densities Ψmic

i = Ψ̂mic
i (εmic

i , θ, ξi) of the underlying one-dimensional phase
transformation model for each integration direction. Thus,

Ψ̂mac(Ψmic) =
1

4π

∫

U2

Ψmic da ≈
nr∑

i=1

Ψmic
i w̄i (2.27)

follows for the macroscopic free energy, and the numerical evaluation of (2.27) is facili-
tated using

Ψmic
i =

ν∑

α=1

ψ̂αi (ε
mic
i , θ) ξαi . (2.28)

Accordingly, Ψmac can finally be computed via

Ψmac =
nr∑

i=1

[
ν∑

α=1

ψ̂αi (ε
mic
i , θ) ξαi

]
w̄i . (2.29)

Analogously, the macroscopic volume fractions Ξα = Ξ̂α(ξα) can be obtained using

Ξα =

nr∑

i=1

ξαi w̄i (2.30)

with ξαi the volume fraction of phase α situated in the ith integration direction ri.

2.3 Numerical examples

In this section, the constitutive response under homogeneous deformations as well as
finite element simulations are presented for the previously described model. In Sections
2.3.1 and 2.3.2, cyclic tension and compression is discussed for the non-deviatoric and
deviatoric case. Finally, in Section 2.3.3 the results of a finite element implementa-
tion in terms of displacements, stresses and the distribution of phase fractions for two
different load states are shown. Here and in the following, the microscopic Young’s
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(b) Obtained micro-stresses.

Figure 2.3: Non-deviatoric tension-compression: micro-strains and according stresses obtained at max-
imum macroscopic strain, i.e. εmac = ε0 e1 ⊗ e1. Note that the arrows are scaled linearly to obtain a
maximum arrow length of 1.

moduli are adapted to obtain a mechanical response macroscopically identical for the
case of isotropic linear elasticity with a Poisson’s ratio of νP = 1/4. In particular, the
micro-moduli are multiplied by the factor 6, which is derived in Appendix 2.5.2. Fur-
thermore, in the following the e1-direction is identified with the x-axis, while e2- and
e3-directions are referred to the y- and z-axis, respectively. In view of the numerical
integration scheme applied to the micro-sphere, a standard algorithm is adopted based
on 42, respectively 21, integration directions; compare [17, 75, 92].

2.3.1 Non-deviatoric tension-compression

To investigate the behaviour of the material under homogeneous deformation, two char-
acteristic tension-compression load cycles are studied in the following using identical
material parameters as shown in Table 2.1. As initial conditions, a stress- and strain-
free configuration of pure austenite, i.e. ξA|t0 = 1, ξMt|t0 = ξMc|t0 = 0, is assumed. In
the first case, the applied strain, prescribed by means of the macroscopic strain tensor
εmac = ε̂

mac(t), is set to

ε̂
mac(t) = κ̂(t) ε0 e1 ⊗ e1 (2.31)

with a linearly varying scaling factor κ = κ̂(t) ∈ [−1, 1] and a maximum strain of
ε0 = 0.05. The resulting projections of the macroscopic strain onto each integration
direction, εmic

i ri, as well as the obtained one-dimensional stresses, σmic
i ri, are shown in

Fig. 2.3. As expected, the maximum strain is obtained in e1-direction, i.e. in x-direction.
The projected strains decrease as the integration direction diverges from the x-direction.
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Figure 2.4: Non-deviatoric tension-compression: evolution of the macroscopic stress components as well
as macroscopic volume fractions. Note that σmac

22 = σmac
33 and σmac

shr = σmac
12 = σmac

13 = σmac
23 = 0 holds

due to ε̂
mac(t) = κ̂(t) ε0 e1 ⊗ e1 and the fact, that one integration direction ri coincides with e1.

For all integration directions orientated perpendicular to the x-axis, i.e. situated in the
y-z-plane, the strain projections are zero for all time steps.

The obtained macroscopic material response in terms of macroscopic stress compo-
nents and macroscopic volume fractions are provided in Figs. 2.4(a) and 2.4(b), respec-
tively. The stress-strain diagram shows that the macroscopic material point is subjected
to an asymmetric tension and compression behaviour resulting from different martensitic
transformation strains. The stress plateau obtained in the first tensile cycle results from
the initiation of phase transformations. As the load reverses, hysteresis effects become
obvious. The evolution of volume fractions taking place are given in Fig. 2.4(b), which
shows that during the tensile cycle the martensitic tensile phase Mt evolves. As the
load reaches the compression state, the martensitic compression phase Mc evolves and
remains for all following tensile and compression cycles.

Finally, the different transformation intensities by means of directionally dependent
phase fractions are displayed in Fig. 2.5. As expected, the maximum phase transforma-
tions are obtained in x-direction, while in the orthogonal y-z-plane no transformations
are observed.

2.3.2 Deviatoric tension-compression

To investigate a different state of tension-compression, a homogeneous macroscopic
strain tensor εmac = ε̂

mac(t) with

ε̂
mac(t) = κ̂(t) ε0

[
e1 ⊗ e1 −

1

2
[e2 ⊗ e2 + e3 ⊗ e3]

]
(2.32)
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Figure 2.5: Non-deviatoric tension-compression: visualisation of the volume fractions of the underlying
one-dimensional phase transformation model for the evaluated integration directions at κ̂(t) ε0 = 0.05
after several load cycles. The material fractions in the orthogonal y-z-plane do not transform at all, i.e.
ξA|t = 1 ∀ t , since the projected one-dimensional strains are always zero in case of ε̂mac = κ̂(t) ε0 e1⊗e1.

is prescribed. Once more, a linearly varying scaling factor κ = κ̂(t) ∈ [−1, 1] and a
maximum strain of ε0 = 0.05 is chosen. The resulting projections of the macroscopic
strain onto each integration direction as well as the obtained one-dimensional stresses
are shown in Fig. 2.6. In contrast to the non-deviatoric case evaluated in Section 2.3.1,
the strain projections in the orthogonal y-z plane are now negative.

The resulting macroscopic material response in terms of macroscopic stress compo-
nents and macroscopic volume fractions is provided in Figs. 2.7(a) and 2.7(b), respec-
tively. The stress drop of the normal stress σmac

11 , as observed at κ̂(t) ε0 ≥ 0.025, results
from the evolution of the martensitic compression phase in the orthogonal y-z-plane; see
Fig. 2.7(b).

As in the non-deviatoric case, the different one-dimensional transformation intensities
at maximum tensile strains, i.e. at κ̂(t) ε0 = 0.05, are shown in Fig. 2.8, whereby the
particular state of deformation considered refers to a deformation path after several load
cycles.

2.3.3 Rod under tension-compression

To investigate the behaviour of the material under inhomogeneous deformations, the
constitutive model is embedded into a finite element formulation. The particular ex-
ample studied consists of an axisymmetric specimen loaded under tension-compression.
The geometry of the axisymmetric rod and the used finite element mesh are shown in
Fig. 2.9. As depicted there, the bottom of the rod is constrained in axial direction, while
on the top an axial displacement is imposed. Note that the displacements applied in the
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Figure 2.6: Deviatoric tension-compression: micro-strains and according stresses obtained for maximum
macroscopic strain, i.e. for εmac = ε0 [e1 ⊗ e1 − 1/2 [ e2 ⊗ e2 + e3 ⊗ e3] ]. As above, the arrows are
scaled linearly to ensure a maximum arrow length of 1.
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Figure 2.7: Deviatoric tension-compression: evolution of the macroscopic stress components as well as
macroscopic volume fractions. Note that σmac

22 = σmac
33 and σmac

shr = σmac
12 = σmac

13 = σmac
23 = 0 holds due

to ε̂
mac(t) = κ̂(t) ε0 [e1 ⊗ e1 − 1/2 [ e2 ⊗ e2 + e3 ⊗ e3] ] and the fact, that one integration direction ri

coincides with e1.
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Figure 2.8: Deviatoric tension-compression: visualisation of the volume fractions of the underlying one-
dimensional phase transformation model for the evaluated integration directions. In specific integration
directions a complete transformation of the initially purely austenitic phase takes place, while in other
directions no transformation occurs at all.

following refer to the center of the rod, as for symmetry resons, it is sufficient to take
into account only one quarter of the cross-section of the double-symmetric rod. The
overall height of the specimen is 100 mm while the center cross section has a diameter
of 10 mm. Furthermore, the rod initially consists of pure austenite. It is then subjected
to cyclic tension and compression as shown in the force-displacement diagram given in
Fig. 2.10. Finally, for two characteristic load states, i.e. maximum tensile displacement
and maximum compression displacement, the current material state by means of stresses
and distribution of phase fractions is provided in Figs. 2.11-2.14.

First, Figs. 2.11 and 2.12 show the state of the specimen after the first tension cy-
cle was applied, cf. point p1 in Fig. 2.10. Fig. 2.11(a) provides a visualisation of the
resulting vertical displacement field. As the figure shows, the maximum displacement
is present at the center of the rod and decreases linearly within the cylindrical inner
region of the specimen. As expected, the stress σzz in tensile direction coincides with
the largest principal stresses, see Figs. 2.11(b) and 2.11(c). Due to the strains resulting
from tensioning the specimen, the initially purely austenitic rod shows a martensitic
tensile phase mainly evolving at the cylindrical inner region as provided in Figs. 2.12(a)
and 2.12(b).

Next, the compression state of the rod—corresponding to the load state depicted by
point p2 in Fig. 2.10—is visualised in Figs. 2.13 and 2.14. Fig. 2.13(a) shows the resulting
axial compression displacement field. Due to the previously applied tension cycle and
the according material inhomogeneities caused by initiated phase transformations, the
field of largest principal stresses displayed in Fig. 2.13(c) is now strongly inhomogeneous
and shows a distinct deviation from the field of axial compression stresses presented in
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2 An affine micro-sphere model for phase-transformations

Fig. 2.13(b). Fig. 2.14 shows that a martensitic compression phase evolved, while parts
of the martensitic tensile phase remain within the material, cf. Figs. 2.14(c) and 2.14(b),
respectively.

Figure 2.9: Rod under tension-compression: geometry of the investigated axisymmetric rod. For sym-
metry reasons, it is sufficient to take into account only one quarter of the cross-section. The bottom
of the rod is constrained in axial direction, while on the top an axial displacement is imposed. For
symmetry reasons, it is sufficient to prescribe axial displacements at the center of the rod.

−1 −0.5

0

0 0.5 1

F
o
rc
e
[k
N
]

Displacement of the center of the rod [mm]

p1

p2

10

−10

−20

−30

−40

Figure 2.10: Rod under tension-compression: force-displacement relation obtained during the simula-
tion of the tensile specimen. The macroscopic material response shows a distinct asymmetry regarding
tension and compression behaviour. Note that the displacements refer to the center of the rod for
symmetry reasons as described in Section 2.3.3.
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(a) Axial, i.e. vertical, tensile
displacement uz [mm].

(b) Stress σzz [MPa] in tensile
direction.

(c) Maximum principal
stresses σI [MPa].

Figure 2.11: Rod under tension-compression: finite element displacements and stresses obtained for the
rod at state p1 in Fig. 2.10. Note that the rod was initially homogeneous and consisted of pure austenite.
The obtained tensile stresses as well as the largest principal stresses, cf. (b) and (c), respectively, are
distributed homogeneously within the rod after the first tensile load cycle.

(a) Distribution of austenitic
phase ΞA [−].

(b) Martensitic tensile phase
ΞMt

[−].
(c) Martensitic compression
phase ΞMc

[−].

Figure 2.12: Rod under tension-compression: volume fractions Ξ present within the rod at state p1 in
Fig. 2.10. Due to the tension loading of the initially purely austenitic rod, the martensitic tensile phase
Mt starts to evolve (b). As expected, the volume fractions ΞMc

of the martensitic compression phase
remain zero (c).
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(a) Axial, i.e. vertical,
compression displacement
uz [mm].

(b) Stress σzz [MPa] in com-
pression direction.

(c) Maximum principal
stresses σI [MPa].

Figure 2.13: Rod under tension-compression: finite element displacements (a) and stresses, (b) and (c),
obtained for the rod at state p2 in Fig. 2.10. As shown in Fig. 2.12, inhomogeneities evolved within the
rod during tension as highlighted for the martensitic tensile phase at state p1. As a result, the com-
pression load at state p2 leads to a strongly inhomogeneous distribution of largest principal stresses (c).

(a) Distribution of austenitic
phase ΞA [−].

(b) Martensitic tensile phase
ΞMt

[−].
(c) Martensitic compression
phase ΞMc

[−].

Figure 2.14: Rod under tension-compression: volume fractions Ξ present within the rod at state p2 in
Fig. 2.10. Based on the phase fractions obtained at state p1, see Fig. 2.12(b), the martensitic tensile
phase fraction decreases (b). Instead, the martensitic compression phase starts to evolve (c).
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2.4 Summary

The main goal of this chapter was to develop an efficient model for the micro-
mechanical simulation of phase transformations in polycrystalline materials. Thus, a
one-dimensional, thermodynamically consistent, micro-mechanically based constitutive
law was chosen to model the basic phase transformation behaviour. In this model,
an asymmetric tension-compression behaviour was incorporated by means of unique
transformation strain values used for tension and compression, respectively. The trans-
formation strains adopted are based on physically well-motivated Bain strains. The
one-dimensional material model was then implemented into a micro-sphere ansatz, fa-
cilitating to prescribe three-dimensional strain states. To be specific, the macroscopic
strain tensor was projected onto the different integration directions as referred to the
micro-sphere. With the strain projections inserted into the underlying one-dimensional
material model, the resulting one-dimensional stresses were assembled to a macroscopic
stress tensor. Furthermore, the implementation into a finite element environment was
carried out in order to study the constitutive model at inhomogeneous deformations. In
this regard, the algorithmic tangent operator of fourth order was reviewed, as based on
the micro-tangent operators obtained from the phase-transformation model.

The high numerical efficiency of the overall model was mainly achieved by introduc-
ing a newly developed explicit integration scheme which could be proved to possess the
same numerical stability as the classical mid-point rule. With this integration scheme
at hand, the strongly non-linear phase transformation problems present within the one-
dimensional material model was solved in a single step for each macroscopic load in-
crement applied. Thus, the exemplary finite element model presented in Section 2.3.3
consisting of 256 axisymmetric elements could be solved even for 1800 incremental dis-
placement steps in 4 hours on a standard laptop computer. The presented integration
scheme also provides good stability properties facilitating to solve the mentioned bound-
ary value problem within, for instance, 100 time steps.

In summary, the results obtained show the capability of the present model for the
efficient simulation of phase transformations. For simplicity, the model was restricted
to a specific Poisson’s ratio in the current chapter. As shown in Appendix 2.5.2, due
to the nature of the strain projections, the mechanical response of the micro-sphere
possesses a geometrically inherent Poisson’s ratio of νP = 1/4. Furthermore, it could
be shown that the micro-moduli have to be multiplied by a factor of 6 in order to
obtain a desired macroscopic Hooke-equivalent material response. It is also important
to note that the constitutive response depends on the chosen integration scheme over the
micro-sphere as well as on the reference frame to which the particular orientations of the
integration directions are referred to. In fact, this might also induce material anisotropy
as a numerical artifact. However, as inherent to integration schemes in general, this effect
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tends towards negligible values upon refinement of the integration algorithm applied or,
in other words, upon the use of higher-order integration schemes.

In particular, the extension of the one-dimensional model, for example in terms of
additional phases, plasticity, damage and the thermomechanical coupling, respectively,
reflect promising objectives. Moreover, the micro-sphere ansatz provides the possibility
to account for texture and its evolution, respectively. This can be achieved by a non
uniform distribution of integration directions which are allowed to change subjected to
evolution equations or an additional weighting by an evolving orientation distribution
function. The discrepancy of the micro-sphere ansatz exemplified by the fact, that
computations are restricted to a fixed value for Poisson’s ratio, needs to be compensated
by a non-affine model as presented in Chapter 3.

2.5 Appendix

2.5.1 Numerical integration of the evolution equation

The evolution of different phases is, in this work, characterised by the vector-valued
ordinary differential equation ξ̇ = f (ξ(t)) with f (ξ(t)) = Q̂ (ξ(t)) · ξ(t). For the
purpose of illustration of the numerical integration scheme proposed, in the following
we—without loss of generality—refer to the case of a scalar-valued ordinary differential
equation.

A typical ansatz for updating such ordinary differential equations from step tn to tn+1

is given by

ξn+1 = ξn +∆t f (ξn + β∆ξ) = ξn +∆t f (ξn + β∆t κ) , (2.33)

wherein β ∈ [0, 1] ⊂ R reflects a general step size und use of the definition κ :=
f (ξn + β∆ξ) = ∆ξ/∆t has been made.

In order to assess stability properties of a numerical time integration scheme, the
linear test function ξ̇ = λ ξ, for λ < 0, is consulted. In this case we observe

κ = λ [ξn + β∆t κ] so that κ =
λ ξn

1− β λ∆t . (2.34)

Together with the definition of κ, one obtains

ξn+1 = ξn

[
1 +

λ∆t

1− β λ∆t

]
= ξnR(λ∆t) , (2.35)
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Figure 2.15: Absolute values of stability functions for the forward Euler method, midpoint rule and
backward Euler method. The forward Euler scheme is only conditionally stable, both midpoint rule
and backward Euler schemes turn out to be A-stable where only the latter is also L-stable.

wherein R(λ∆t) denotes the so-called stability function. With this quantity at hand,
conditions in terms of so-called A- and L-stability, respectively, can be stated as

|R(λ∆t)| ≤ 1 ∀ λ∆t ∈ [−∞, 0[ → A-stability , (2.36)

lim
λ∆t→−∞

R(λ∆t) = 0 → L-stability . (2.37)

For three standard time discretisation methods, namely forward Euler (‘FE’, β = 0),
midpoint rule (‘MP’, β = 0.5) and backward Euler (‘BE’, β = 1), the stability functions
are given by

RFE = 1 + λ∆t , RMP =
2 + λ∆t

2− λ∆t , RBE =
1

1− λ∆t , (2.38)

which are also depicted in Fig. 2.15.

As elaborated in section 2.1.2, the explicit update of volume fractions is given by

ξn+1 = ξn +
1

2
∆t
[
ξ̇n+1 + Q̂(ξn) · ξn

]
, (2.39)

with

ξ̇n+1 :=

[
I − 1

2
Q̂(ξn)∆t

]−1

· Q̂(ξn) ·
[
1

2
Q̂(ξn) · ξn∆t + ξn

]
. (2.40)
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By reducing (2.39) and (2.40) to the scalar case and setting λ := Q(ξn)—as the compo-
nents of Q(ξn) are constant during the iteration process to find ξn+1—the incremental
update can be rewritten as

ξn+1 = ξn+
1

2
∆t

[[
1− 1

2
λ∆t

]−1

λ

[
1

2
λ ξn∆t + ξn

]
+ λ ξn

]
=

2 + λ∆t

2− λ∆t ξn . (2.41)

In fact, the stability function of the ‘modified Newmark method’ turns out to be identical
to the one of the Mid-Point rule. Accordingly, this newly developed explicit intergation
scheme is unconditionally A-stable.

2.5.2 On general properties of the affine micro-sphere approach

In this appendix, we elaborate on the general properties of the micro-sphere approach
in the framework of three-dimensional linear isotropic elasticity. Provided that the
underlying one-dimensional constitutive relation for each direction of the microsphere is
given by σmic = Emic εmic, the effective response of the micro-sphere is transferred to the
macro-level via

σmac =
1

4 π

∫

U2

σmic r ⊗ r da =
Emic

4 π
εmac :

∫

U2

r ⊗ r ⊗ r ⊗ r da , (2.42)

with r ∈ U2. The latter integral can be calculated analytically, which results in

∫

U2

r ⊗ r ⊗ r ⊗ r da =
4 π

15
[I ⊗ I + 2 Isym] , (2.43)

wherein I denotes the second-order identity tensor and Isym characterises the fourth-
order symmetric identity tensor. As a consequence, the substitution of (2.43) into (2.42)
yields

σmac =
Emic

15
[tr (εmac) I + 2 εmac] . (2.44)

One possibility to pre-calibrate the micro-sphere model consists in its correlation to the
case of linear isotropic elasticity—denoted by the superscript ‘lie’—where the stresses
are given as functions of strains by

σlie =
Elie

[1− 2 νP][1 + νP]
[νP tr(ε

mac) I + [1− 2 νP] ε
mac] (2.45)
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with the macroscopic Poisson’s ratio νP. By arguments of comparison—(2.44) and
(2.45)—one obtains the relations

νP =
15Elie − 2Emic

2Emic
and

νP E
lie

[1− 2 νP] [1 + νP]
=

Emic

15
, (2.46)

the solution of which is identified as

Emic = 6Elie and νP =
1

4
. (2.47)

2.5.3 Transformation strains of the martensite compression variant

In this work, two martensite variants, namely one tensile variant and one compression
variant, are assumed. These are often chosen to be symmetric with respect to the initial
state (σ = 0, ε = 0) and referred to as ‘+’ and ‘−’ phase. This ansatz may be motivated
by the invariance of the lattice shear direction with respect to the so-called habit plane.
Here, we enhance the adapted model in terms of transformation strains motivated

by crystallographic considerations. In three dimensions, so-called Bain strains can be
derived due to the locally homogeneous deformations of the underlying crystal lattice
following, e.g., [10]. These deformations allow representation in terms of a right Cauchy-
Green stretch tensor U tr, which we transfer to the geometrically linear case via εtr =
U tr − I.
Next, let the one-dimensional transformation strain in tension be given by εMt

tr . Sup-
pose further, that the underlying crystal is subjected to uniaxial stresses, so that
εMt
tr = C1111 σ

t
11 holds. Here, C1111 denotes the respective component of the compliance

tensor and σt
11 > 0 are the applied stresses. Now, the question arises which compression

state, σc
11 < 0, must be established in order to fulfill ε∗22 = εMt

tr . As ε∗22 = C2211 σ
c
11,

one obtains εMc
tr = C1111 σ

c
11 = [C1111/C2211] ε

Mt
tr . Adopting elastic parameters for materi-

als undergoing cubic–tetragonal martensitic transformations from [138, 140], we obtain
εMc
tr = −2.7 εMt

tr .
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3 A non-affine micro-sphere model for
phase-transformations

In this chapter, we introduce a material model for the simulation of polycrystalline
materials undergoing solid to solid phase-transformations. As a basis, we present a
scalar-valued phase-transformation model where a Helmholtz free energy function de-
pending on volumetric and deviatoric strain measures is assigned to each phase. The
analysis of the related overall Gibbs energy density allows for the calculation of energy
barriers. With these quantities at hand, we use a statistical-physics-based approach to
determine the resulting evolution of volume fractions. Though the model allows to take
into account an arbitrary number of solid phases of the underlying material, we restrict
this chapter to the simulation of phase-transformations between an austenitic parent
phase and a martensitic tension and compression phase. The scalar model is embedded
into a non-affine computational micro-sphere formulation in view of the simulation of
three-dimensional boundary value problems. The final modelling approach necessary
for macroscopic simulations is accomplished by a finite element formulation, where the
local material behaviour at each integration point is governed by the response of the
micro-sphere model.
The chapter is organised as follows: In Section 3.1 we introduce the scalar-valued

phase-transformation model with a volumetric-deviatoric kinematic split. We start with
a Helmholtz free energy potential which is transformed to a Gibbs potential, see Sec-
tion 3.1.1, allowing for the computation of Gibbs energy barriers that facilitate the
computation of transformation probabilities between the phases considered as shown in
Section 3.1.3. We derive mathematical expressions for the energy barriers, where inter-
section curves of elliptic-paraboloidal Gibbs potentials are considered. The algorithmic
minimisation of these intersection curves is elaborated in Section 3.1.4. Numerical re-
sults obtained for three representative load cases are presented in Section 3.1.5, where
we show the capability of the scalar-valued model to capture stress-strain-temperature
responses as well as experimentally observed material behaviour for tensile step tests.
In Section 3.2 we introduce the micro-sphere extension of the previously introduced
scalar-valued model. The 3D-extension shown in Section 3.2.1 briefly discusses micro-
meso-relations between free energy, strains, stresses, the elasticity measures, and volume
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3 A non-affine micro-sphere model for phase-transformations

fractions. The computational micro-sphere examples provided in Section 3.2.2 are com-
puted for two representative load cases, namely a purely deviatoric one and a mixed
volumetric-deviatoric one. In Section 3.3 we provide the results of a finite element anal-
ysis considering combined torsion and tension of a material block. For the chosen load
history in terms of top surface axial displacements and top surface torsional angles we
compute the according tensile reaction force and the torsional reaction moment in order
to investigate necking-type behaviour of the material resulting from deformation-induced
phase-transformations. Moreover, we provide contour plots of the tensile stresses and
macroscopic austenitic volume fractions for selected representative deformation states.
The chapter is closed by a summary and conclusions in Section 3.4.

3.1 Scalar-valued phase-transformation model with

volumetric-deviatoric split

The scalar-valued phase-transformation model is based on a mixture theory, where we
make use of the Voigt assumption, i.e. the total strain is distributed homogeneously
among the phases, cf. Section 2.1. The implemented phase-transformation model is
capable of handling an arbitrary number of material phases, where the non-negative
volume fraction

ξα := lim
v→0

(
vα

v

)
(3.1)

of each phase α ∈ {1, . . . , ν} ⊂ N is subject to the usual physical restrictions. From
conservation of mass—for the referential mass densities remaining constant and identical
for all phases—it follows that

ξα ∈ [0, 1] ⊂ R and

ν∑

α=1

ξα = 1 so that

ν∑

α=1

ξ̇α = 0 . (3.2)

3.1.1 Phase potentials

We start by assigning a Helmholtz free energy potential ψα = ψ̂α(εdev, εvol, θ) of the form

ψα =
1

2
Eαdev

[
εdev − εαtr,dev

]2
+
1

2
Eαvol

[
εvol − εαtr,vol

]2−ζα Eα [ε− εαtr] [θ − θ0]+Ĉα(θ) (3.3)

to each phase α, where we consider a volumetric-deviatoric-type split of total strains
ε = εdev + εvol and transformation strains εαtr = εαtr,dev + εαtr,vol. The considered strain
measures εdev and εvol are derived from projections of the macroscopic three-dimensional
strain tensor ε onto a spatial direction r in the context of a micro-sphere approach,
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specifically εdev = r · ε · r − 1/3 tr(ε) and εvol = 1/3 tr(ε). Further details on the
micro-sphere kinematics are provided in Section 3.2.1.1.

For the Helmholtz potential given in (3.3), we consider Eαdev = Ê
α

dev(E, νP) and

Eαvol = Ê
α

vol(E, νP) as deviatoric and volumetric elasticity coefficients on the micro-level,

where we choose Ê
α

dev(E, νP) = 5E/[2 + 2 νP] and Ê
α

vol(E, νP) = E/[1 − 2 νP] in order to
match a macroscopic Young’s modulus E and Poisson’s ratio νP in the later micro-sphere
application. Further details on the relation between micro-level elasticity coefficients and
macroscopic elastic quantities in the context of the micro-sphere framework are elabo-
rated in [27]. Moreover, we denote ζα as the coefficient of thermal expansion, θ as
the current absolute temperature and θ0 as a reference temperature. The temperature-
dependent chemical energy Ĉα(θ) is given as

Ĉα(θ) = ρ0 c
α
p θ

[
1− log

(
θ

θ0

)]
− ρ0 λαT

[
1− θ

θ0

]
, (3.4)

with cαp being the heat capacity and λαT the latent heat of the respective material phase

α, cf. [51]. The overall phase potential Ψ = Ψ̂(εdev, εvol, ξ, θ) is obtained from the
contributions of the constituents and can be expressed as

Ψ =

ν∑

α=1

ξαψα , (3.5)

where ξ = [ξ1, . . . , ξν]t ∈ Rν×1 is the collection of the volume fractions.

In view of the energy barriers utilised for the evolution of volume fractions, we compute
the Gibbs energy contributions of the individual phases. Carrying out a Legendre-
transformation of the Helmholtz free energy of the mixture (3.5) yields the overall Gibbs
potential

Ĝ(∂εdevΨ, ∂εvolΨ ) = Ψ − ∂Ψ

∂εdev

∣∣∣∣
εdev,θ

εdev −
∂Ψ

∂εvol

∣∣∣∣
εvol,θ

εvol (3.6)

=
ν∑

α=1

ξαψα −
ν∑

α=1

ξα
∂ψα

∂εdev

∣∣∣∣∣
εdev,θ

εdev

−
ν∑

α=1

ξα
∂ψα

∂εvol

∣∣∣∣∣
εvol,θ

εvol (3.7)

=
ν∑

α=1

ξαgα , (3.8)
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where use has been made of (3.5). Here,

ĝ α(∂εdevψ
α, ∂εvolψ

α) = ψα − ∂ψα

∂εdev

∣∣∣∣
εdev,θ

εdev −
∂ψα

∂εvol

∣∣∣∣
εvol,θ

εvol (3.9)

is the contribution of phase α to the overall Gibbs potential G.

Note that the Gibbs potential gα of every individual phase α has the form of an elliptic
paraboloid with εdev and εvol as functional parameters, see Fig. 3.1(a). The overall Gibbs
energy G of the material, which is obtained from the contributions of the constituents
according to (3.8), in consequence has three local minima for a three-phase material, see
Fig. 3.1(b).

3.1.2 Evolution of volume fractions

The evolution of volume fractions ξα is based on the approach introduced in Section 2.1.1,
i.e. we make use of the transformation probability matrix Q ∈ Rν×ν (2.6), which drives
the evolution of volume fractions in terms of ξ̇ = Q ·ξ. However, the computation of the
Gibbs energy barriers bα→β that determine the transformation probabilites Pα→β (2.7)
and thereby govern the components of Q take a significantly more complex form in the
context of non-affine kinematics as elaborated in Section 3.1.3.

3.1.3 Gibbs energy barriers of elliptic-paraboloidal potentials

For the computation of an energy barrier bα→β, the intersection of two elliptic
paraboloids—namely the Gibbs potentials gα and gβ of the two involved phases α and
β—must be evaluated in volumetric and deviatoric strain space. We assume that an in-
tersection of the two paraboloids exists and that the paraboloids are not identical. The
intersection of two elliptic paraboloids can then be expressed by means of a parametric
curve. To be specific, equating the Gibbs potentials of the two phases α and β,

ĝ α(εdev, εvol, θ) = ĝ β(εdev, εvol, θ) , (3.10)

represents one equation with two unknowns εdev and εvol for given temperature θ in the
current material state. Rearranging terms, one obtains an implicit relation between the
two unknowns, facilitating to express e.g. the deviatoric strains εiscdev, at which g

α and gβ

intersect, in terms of the volumetric strains, i.e.

εiscdev = ε̂ isc
dev(εvol) , (3.11)
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(a) Gibbs potential gα of one
phase α plotted above the
εdev-εvol-plane.

(b) Gibbs potential contributions g of a 3-phase material plotted above
the εdev-εvol-plane and graphical representation of one exemplary Gibbs
energy barrier bα→β as introduced in Section 3.1.3.

Figure 3.1: Illustration of Gibbs free energy potentials. The Gibbs potential gα of every single phase α,
(a), is an elliptic paraboloid. The Gibbs potential contributions g of a 3-phase material, (b), have one
local minimum assigned to each individual phase—yielding three local minima for the considered phase
mixture. The intersection curves of two neighbouring elliptic paraboloids are minimised iteratively,
facilitating the computation of the actual energy barriers that have to be overcome for transformations
from one phase to another. Note that this idea is an extension of the basic energy-barrier-based
model introduced in [51], where no volumetric-deviatoric split of kinematic quantities is considered. In
the latter case, the problem of determining energy barriers reduces to the trivial task of computing
intersection points of simple parabolas [101].

where the superscript isc refers to the intersection curve. The actual value of the poten-
tials along the intersection curve in terms of the variable εvol is then given by

ĝ isc,α,β(εvol)
∣∣
θ

:= ĝ α(ε̂ isc
dev(εvol), εvol, θ) (3.12)

≡ ĝ β(ε̂ isc
dev(εvol), εvol, θ) . (3.13)

To obtain the energy barrier required for the evolution of volume fractions, the mini-
mum of the Gibbs energy along this parametric curve is calculated, i.e.

g isc,α,β
min := min

εvol

(
ĝ isc,α,β(εvol)

∣∣
θ

)
(3.14)

must be computed. In Fig. 3.1(b), the minimum of the exemplary intersection curves
is denoted accordingly. In general, due to the implicit nature of the equations, it is
not possible to obtain an analytical solution for this problem. Hence, the minimisation
of (3.13) must be carried out numerically using e.g. a Newton scheme as shown in
Section 3.1.4. With the minimum g isc,α,β

min of the intersection curve of the Gibbs potentials
of two phases α and β at hand, the energy barriers are computed according to

bα→β = g isc,α,β
min − gαmin (3.15)
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and

bβ→α = g isc,α,β
min − gβmin , (3.16)

where gαmin and gβmin denote the absolute minima of the Gibbs potentials gα and gβ,
respectively, as exemplified in Fig. 3.1(b). The absolute minimum of the Gibbs potential
gα of a single phase, say α, can be computed analytically by solving for the unique point
(εg

αmin
dev , εg

αmin
vol ) in deviatoric-volumetric strain space, where the gradient of gα vanishes,

i.e.

∇ĝ α(εgαmin
dev , εg

αmin
vol )

∣∣∣
θ
= 0 , (3.17)

inducing

gαmin = ĝ α(εg
αmin

dev , εg
αmin

vol )
∣∣∣
θ

, (3.18)

see Section 3.5.2 for details on the analytical derivation of the minimum of an elliptic
Gibbs energy paraboloid.

3.1.4 Algorithmic computation of Gibbs energy barriers

In this section the computation of the Gibbs energy barriers that drive the evolution of
volume fractions is discussed. We will first derive a compact representation of the Gibbs
energy where we introduce simplified Gibbs energy coefficients, denoted as {a, b, c, d, e},
cf. (3.19) and (3.20). Next, these coefficients are specified in terms of the material pa-
rameters introduced in (3.3), see (3.30)-(3.34). With the well-defined simplified Gibbs
coefficients {a, b, c, d, e} at hand, we can then carry out the computation of Gibbs energy
barriers in a compact notation. To this end, we equate two Gibbs potentials in (3.35),
enabling us to express the intersection curve of both potentials in terms of just one
parameter, see (3.38). Finally, we compute the minimum value of the parametric in-
tersection curve as defined in (3.40) via a Newton-Raphson scheme, which requires the
calculation of the first and second derivative of the intersection curve. The latter deriva-
tives are specified in (3.41) and (3.42), respectively.

For the computation of the Gibbs energy barriers bα→β and bβ→α between two phases
α and β—here, α, β ∈ {A,Mt,Mc}—we make use of the compact representations

ĝ α(εdev, εvol) = aαεdev
2 + bαεdev + cαεvol

2 + dαεvol + eα (3.19)

and

ĝ β(εdev, εvol) = aβεdev
2 + bβεdev + cβεvol

2 + dβεvol + eβ (3.20)
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of the Gibbs potentials for both phases α and β which reflect that (3.9) is quadratic in
εdev and εvol. The Gibbs-energy-related coefficients aα, ..., eα and aβ , ..., eβ depend on
the current loading state as well as on the material parameters of the phases considered
and hence are dissimilar and not constant in general.

To derive the simplified Gibbs energy coefficients, we take the following steps:

1. Rearrange the given terms of the Helmholtz free energy (3.3) in order to obtain
simplified Helmholtz free energy coefficients aαψ, ..., e

α
ψ for each phase α at fixed

temperature. As a result, (3.3) can be written as

ψ̂ •(εdev, εvol)
∣∣
ε•pl,θ

= a•ψ εdev
2 + b•ψ εdev + c•ψ εvol

2 + d•ψ εvol + e•ψ , (3.21)

with

a•ψ = 0.5E•
dev (3.22)

b•ψ = −E•
dev ε

•
tr,dev − ζ• E• [θ − θ0] (3.23)

c•ψ = 0.5E•
vol (3.24)

d•ψ = −E•
vol ε

•
tr,vol − ζ• E• [θ − θ0] (3.25)

e•ψ = 0.5E•
dev

[
ε•tr,dev

]2
+ 0.5E•

vol ε
2
tr,vol (3.26)

+ ζ• E• [θ − θ0]
[
ε•tr,dev + ε•tr,vol

]
+ Ĉ•(θ) (3.27)

and Ĉ•(θ) the chemical energy of the respective material phase as defined in (3.4).

2. Carry out the Legendre transformation of (3.21) in order to obtain the Gibbs free
energy in a compact notation. This yields

ĝ •(εdev, εvol) = ψ• − ∂ψ•

∂εdev

∣∣∣∣
εdev|t,θ

εdev −
∂ψ•

∂εvol

∣∣∣∣
εvol|t,θ

εvol (3.28)

= a•ψ εdev
2

+
[
b•ψ − ξ•

[
E•
dev εdev|t − E•

dev

[
ε•tr,dev

]
− ζ• E• [θ − θ0]

]]
εdev

+ c•ψ εvol
2

+
[
d•ψ − ξ•

[
E•
vol εvol|t − E•

vol ε
•
tr,vol − ζ• E• [θ − θ0]

]]
εvol

+ e•ψ , (3.29)

where εdev|t and εvol|t denote the currently applied deviatoric and volumetric
strains, i.e. the given strain values characterising the current load state at time t.
Note that we here express g • in terms of εdev and εvol, in contrast to the usual
Legendre notation introduced in, e.g., (3.9). To be specific, we make use of a re-
parametrisation of the Gibbs energy, i.e. we express the Gibbs energy arguments
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∂εdevψ
α and ∂εvolψ

α in terms of εdev and εvol, respectively, in order to compute the
Gibbs energy barriers in volumetric-deviatoric strain space.

3. Finally, the simplified Gibbs potential coefficients can be expressed as

a• = a•ψ (3.30)

b• = b•ψ − ξ•
[
E•
dev εdev|t − E•

dev ε
•
tr,dev − ζ• E• [θ − θ0]

]

= − [1− ξ•] E•
dev ε

•
tr,dev − ξ•E•

dev εdev|t − ζ• E• [θ − θ0] (3.31)

c• = c•ψ (3.32)

d• = d•ψ − ξ•
[
E•
vol εvol|t − E•

vol ε
•
tr,vol − ζ• E• [θ − θ0]

]

= − [1− ξ•] E•
vol ε

•
tr,vol − ξ•E•

vol εvol|t − ζ• E• [θ − θ0] (3.33)

e• = e•ψ (3.34)

by evaluation and simplification of terms in (3.29).

With the well-defined Gibbs potential coefficients at hand, (3.30)-(3.34), we can equate
(3.19) and (3.20) and solve for εiscdev = ε̂ isc

dev(εvol) in order to obtain the subdomain of g
which is mapped to the intersection curve of gα and gβ. The parametric subdomain of
g mapped to the intersection curve of gα and gβ is obtained by equating

ĝ α(εdev, εvol) = ĝ β(εdev, εvol)

⇒ ε̂ isc
dev(εvol) =

−∆b ± Tsqrt
2∆a

(3.35)

with Tsqrt abbreviating the square-root term

Tsqrt :=

√
[∆b]2 − 4∆a [∆e + εvol [∆d+∆c εvol]] . (3.36)

Here, ∆• := •α − •β represents the difference of two corresponding Gibbs phase coeffi-
cients of phase α and β, e.g. ∆a := aα − aβ. The intersection curve ĝ isc,α,β(εvol) of both
elliptic paraboloids gα and gβ in volumetric-deviatoric strain space can now be expressed
in terms of the variable εvol by evaluation of

ĝ isc,α,β(εvol) := ĝ α(ε̂ isc
dev(εvol), εvol) ≡ ĝ β(ε̂ isc

dev(εvol), εvol) (3.37)

= cα εvol
2 + dα εvol + eα

− fs
bα [∆b+ Tsqrt]

2∆a

+
aα [fs∆b+ Tsqrt]

4[∆a]2
. (3.38)

Note that two solutions are obtained as induced by the two solutions already given in
(3.35). To simplify notation, the switching factor fs ∈ {−1, 1} is introduced in order to
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3.1 Scalar-valued phase-transformation model with volumetric-deviatoric split

switch the algebraic signs that differ in both solutions. In other words, the intersection
curve ĝ isc,α,β(εvol) in terms of the variable εvol is given as the conjunction of two line
sections ĝ isc,α,β(εvol) = ĝ isc,α,β(εvol)|fs=−1

⋃
ĝ isc,α,β(εvol)|fs=1.

In the next step, the minimum value

g isc,α,β
min = min

εvol, εdev

(
ĝ α(εdev, εvol) | ĝ α(εdev, εvol) = ĝ β(εdev, εvol)

)
(3.39)

= min
εvol

(
ĝ isc,α,β(εvol)

)
(3.40)

of the intersection curve is to be computed. Recall that the minimum of this intersection
curve is the specific Gibbs energy value that is needed for the computation of the Gibbs
energy barriers that must be overcome for the transformation from one phase α to
another phase β and vice versa, cf. (3.15) and (3.16). To evaluate (3.40), we calculate
the derivative of (3.38) with respect to εvol and find the zero-value of the obtained
expression. This yields the condition

Dg isc,α,β =
∂ ĝ isc,α,β(εvol)

∂εvol
= dα + 2cαεvol + fs

bα [∆d+ 2∆c εvol]

Tsqrt

− [aα [∆d+ 2∆c εvol] [fs∆b+ Tsqrt]]

∆a Tsqrt
.
= 0 . (3.41)

It is not possible to rearrange terms in (3.41) in order to obtain an explicit analytical
solution for εvol. We apply a Newton-Raphson iteration scheme to solve (3.41). The
specific value of εvol that satisfies (3.41) and therefore minimises the intersection curve,
say εisc,min

vol , can then be used to compute the Gibbs energy value associated with the
minimum of the intersection curve of the elliptic Gibbs energy paraboloids of two phases
α and β. For the application of the Newton-Raphson scheme, we need the derivative of
the residual function to be solved, i.e. the derivative of (3.41) with respect to εvol. We
end up with

D2g isc,α,β =
∂2 ĝ isc,α,β(εvol)

∂εvol2
= 2cα + fs

2∆a bα [∆d+ 2∆cα εvol]
2

[Tsqrt]
3

+
2aα [∆d+ 2∆c εvol]

2

[Tsqrt]
2 + fs

2bα∆c

Tsqrt

−
[
2aα [∆d+ 2∆c εvol]

2 [fs∆b+ Tsqrt]
]

[Tsqrt]
3

− 2aα∆c [fs∆b+ Tsqrt]

∆a Tsqrt
, (3.42)
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3 A non-affine micro-sphere model for phase-transformations

with Tsqrt defined in (3.36) and fs ∈ {−1, 1} the sign switching factor as introduced
in (3.38). The algorithm of the overall minimisation problem is summarised in Section
3.5.3.

3.1.5 Scalar-valued model – computational examples at the

micro-level

To investigate the behaviour of the proposed model at the micro-level, several repre-
sentative load cases and different boundary conditions are studied. For the numerical
examples, we consider SMA-type materials which have negligible volumetric transfor-
mation strains, i.e. εtr,vol = 0. In the following computations, the strains are applied in
terms of

ε̂(t) = ε0 κ̂(t) , (3.43)

with ε0 the maximum strain and a piecewise linear time-scaling function κ ∈ [0, 1] ⊂ R.
The absolute value of the strain rate is set to |ε̇| = 10−4 s−1. For the computation of
examples solely on the micro-level, the volumetric-deviatoric split ratio is not obtained
from macroscopic strain tensor projections, cf. Section 3.2.1.1, but rather must be defined
and prescribed manually in terms of

ε̂dev(t) = χ̂dev(t) ε̂(t) and ε̂vol(t) = χ̂vol(t) ε̂(t) (3.44)

with χ̂dev(t) and χ̂vol(t) defining the volumetric-deviatoric split ratio of the scalar-valued
overall strain ε̂(t), where χ̂dev(t) + χ̂vol(t) = 1 ∀ t.
Note that the scalar-valued stress response is derived from

σ :=
∂Ψ

∂ε
=

∂Ψ

∂εdev

∂εdev
∂ε

+
∂Ψ

∂εvol

∂εvol
∂ε

(3.45)

= χ̂dev(t)
∂Ψ

∂εdev
+ χ̂vol(t)

∂Ψ

∂εvol
. (3.46)

Moreover, the elastic tangent modulus Eel of the scalar-valued micro-scale model takes
the form

Eel =
dσ

dε
=

d

dε

[
χ̂dev(t)

∂Ψ

∂εdev
+ χ̂vol(t)

∂Ψ

∂εvol

]
(3.47)

= χ̂dev(t)
∂2Ψ

∂εdev ∂εdev

∂εdev
∂ε

+ χ̂vol(t)
∂2Ψ

∂ [εvol]
2

∂εvol
∂ε

(3.48)

= [χ̂dev(t)]
2 ∂2Ψ

∂εdev ∂εdev
+ [χ̂vol(t)]

2 ∂2Ψ

∂εvol ∂εvol
(3.49)

= [χ̂dev(t)]
2

ν∑

α=1

ξα Eαdev + [χ̂vol(t)]
2

ν∑

α=1

ξα Eαvol , (3.50)
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(b) Initial configuration: Gibbs energy con-
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(c) Stretched configuration: Gibbs energy landscape.
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(e) Compressed configuration: Gibbs energy land-
scape.
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Figure 3.2: Visualisation of the contributions to the overall Gibbs free energy potential G of the con-
sidered three-phase material mixture at θ = 30 ◦C. In the initial state, the material is in equilibrium,
see (a) and (b). After applying a mixed deviatoric-volumetric tensile load, the martensitic tensile phase
Mt becomes energetically favourable and therefore evolves, cf. (c) and (d). As the load reverses and
the compression regime is reached, the martensitic compression phase Mc is energetically favourable as
shown in (e) and (f).
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3 A non-affine micro-sphere model for phase-transformations

as an explicit integration scheme for the volume fractions ξ is applied. For simplicity,
for the micro-scale computations provided, we assume a constant volumetric-deviatoric
split ratio with χ̂dev(t) = χ̂vol(t) = const = 0.5, which yields ε̂vol(t) = ε̂dev(t) = 0.5 ε̂(t).

Since the evolution of volume fractions is mainly determined from the values of the
Gibbs energy barriers between the considered phases, we investigate the Gibbs energy
landscape for different load states in order to assess the physical plausibility of the model.
Fig. 3.2 shows the computed actual Gibbs energy landscape of the three-phase material
that we consider in this chapter, see Section 3.5.1 for the material parameters used.
The load-dependent transformations of the energy potentials of the individual phases
show that the model behaves as intended, i.e. for homogeneous initial conditions, the
energy landscape of the material is symmetric and no phase evolution takes place. As
tensile deformation is applied, the martensitic tensile phase Mt becomes energetically
favourable. The analogous behaviour is observed for the compression regime, where the
martensitic compression phase Mc is energetically favourable and thus evolving.

Fig. 3.3 shows the capability of the proposed model to capture the stress-strain-
temperature response usually observed for SMA-type materials. Here, we consider the
material to be initially martensitic with two equally distributed martensitic variants,
i.e. ξMt(t = 0) = ξMc(t = 0) = 0.5, see Fig. 3.3(b). Due to the low initial temperature of
θ = −30◦C, cf. Fig. 3.3(a), the martensitic phases are stable and the evolution of austen-
ite during loading is prevented. As the applied strains increase, the martensitic tensile
variant ξMt evolves at the cost of the compression variant ξMc. At a maximum strain of
ε = 0.03, the load is reversed until the material reaches a stress-free configuration with
remaining strains of ε ≈ 0.01, see Fig. 3.3(a). Note that, due to the low temperature
of θ = −30◦C, a pseudo-plastic response is obtained for the considered material. When
increasing the temperature of the material while retaining its stress-free configuration,
we observe that the remaining strains decrease, showing that the model proposed is ca-
pable of reflecting the experimentally observed characteristic stress-strain-temperature
response of SMA as elaborated in, e.g., [77].

Apart from stress-strain-temperature load cycles, we simulate tensile step tests at
different temperatures θ, where we here restrict the investigations to θ = 30 ◦C and θ =
100 ◦C. In the first example, see Figs. 3.4(a), 3.4(c), 3.4(e), we choose a temperature of
θ = 30◦C. Here, we incrementally increase the maximum applied strain and then release
the strains to zero, which results in the load path provided in Fig. 3.4(a). The obtained
stress-strain response, Fig. 3.4(c), shows that each load cycle with higher maximum
strains represents an envelope to the stress-strain responses obtained for lower maximum
strains, which coincides with experimental observations presented in, e.g., [59].

In the second example, see Figs. 3.4(b), 3.4(d), 3.4(f), a higher temperature of θ =
100◦C is chosen. In this computation, we incrementally increase the applied strain and
release it only to a certain amount, as illustrated in the load path provided in Fig. 3.4(b).
The obtained stress-strain response, Fig. 3.4(d), shows a clearly pseudo-elastic reponse
resulting from the elevated temperature level. Moreover, the minor loops obtained in
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Figure 3.3: Results obtained for a stress-strain-temperature load cycle at the micro-level. Due to the
low initial temperature considered, the material shows a pseudo-plastic stress-strain response. After
reaching the stress-free configuration at ε ≈ 0.01, the temperature is increased until the remaining total
strains ε = εdev + εvol reach zero, see (a). The evolution of the two martensitic variants is provided
in (b). Note that the low temperature prevents the evolution of austenite in this simulation. During
heating, the material transforms back to its initial state with equally distributed martensitic variants,
i.e. ξMt = ξMc ≈ 0.5.

the stress-strain response coincide with observations made in [59] for the same loading
path.

The results presented show that the proposed model captures the stress-strain-
temperature response of SMA, see Fig. 3.3. It also captures the pseudo-plastic response
of SMA observed for low temperatures, as well as the pseudo-elastic response observed
for high temperatures, cf. Figs. 3.3(a) and 3.4(d). Moreover, the model also captures
experimentally observed behaviour of SMA in the context of tensile step tests. In par-
ticular, it reproduces stress-strain envelopes and appropriate stress-strain minor loops
as investigated in [59].

3.2 Micro-sphere formulation

The presented scalar-valued model for the simulation of phase-transformations is em-
bedded into a micro-sphere formulation in order to simulate three-dimensional boundary
value problems. The local deformation state at small strains, ε := ∇sym

x u, is split into
volumetric and deviatoric contributions, ε = εvol + εdev with εvol = 1/3 tr(ε)I and
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Figure 3.4: Scalar-valued model: responses obtained for step tests at θ = 30 ◦C, see (a), (c), (e),
and θ = 100 ◦C, see (b), (d), (f). For both step tests a distinct envelope of the stress-strain response
is predicted, which matches experimental observations as presented in, e.g., [59]—cf. Fig. 1.3 for a
qualitative comparison to experimentally obtained curves of a similar NiTi shape memory alloy.
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εdev = ε − 1/3 tr(ε)I, which are further projected onto each integration direction of
the micro-sphere, see Section 3.2.1.1. Due to the considered volumetric-deviatoric split,
the kinematic framework of the micro-sphere formulation used here becomes non-affine
in the sense that the strain measure considered for a specific direction of interest does
not only depend on the total strains projected onto this particular direction. In other
words, the material responses obtained later on for the individual integration directions
of the micro-sphere are not treated as independent one-dimensional responses—instead,
for each integration direction ri ∈ U2 the macro-stress contribution σi will be given in
terms of a second order tensorial quantity consisting of volumetric and deviatoric terms,
see Section 3.2.1.2.

3.2.1 Three-dimensional extension of the model

The micro-sphere relations represent the scale-bridging equations between the micro-
scale, where the scalar-valued phase-transformation model is applied, and the meso-scale,
where the micro-sphere formulation is used. Due to the projections of the macroscropic
strain tensor onto each integration direction, see Section 3.2.1.1, the volumetric and devi-
atoric strain contributions are transferred to the micro-level. Based on these strains and
the history variables, the material response is evaluated. In the next step, the obtained
micro-stresses have to be transferred back to the macro-level as shown in Section 3.2.1.2.
Other micro-quantities, such as free energy expressions and spatial distributions of vol-
ume fractions can be transferred to the macro-level for post-processing purpose as shown
in Sections 3.2.1.3 and 3.2.1.4.

3.2.1.1 Strains

In general, different kinematic constraints can be assumed within the so-called micro-
sphere framework. In this chapter, we use a kinematically constrained non-affine micro-
sphere model in small strain form, where the vector norm of the normal part εri =
[ri · ε · ri] ri of the projection of the strain tensor ε onto each integration direction ri is
split into the volumetric and deviatoric contributions εdev and εvol, namely

εri = [εdev,i+εvol] ri with εdev,i = ri·ε·ri−1/3 tr(ε) and εvol = 1/3 tr(ε) . (3.51)

Using this approach in combination with volumetric and deviatoric elasticity coefficients
on the micro-level, Evol = E/[1− 2 νP] and Edev = 5E/[2+ 2 νP], facilitates the capturing
of different Young’s moduli E and Poisson’s ratios νP ∈ [−1, 0.5] on the macro-level, cf.
[27]. Further kinematic approaches are discussed in, e.g., [29, 74, 92].
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3 A non-affine micro-sphere model for phase-transformations

3.2.1.2 Stresses

Using the micro-sphere approach, the macroscopic stress tensor σ is obtained by inte-
gration over the unit sphere, i.e.

σ =
1

4π

∫

U2

∂Ψ

∂ε
da , (3.52)

cf. [74, 92, 101] among others. To approximate this equation numerically, a finite number
of integration directions is considered. The constitutive relation is evaluated in every
such direction, where the respective strain- and history-dependent material response
related to each integration direction ri contributes to the macroscopic stress tensor σ

in terms of

σ ≈
nr∑

i=1

∂Ψi
∂ε

w̄i (3.53)

with ∂Ψi/∂ε the contribution of the ith integration direction weighted by the normalised

weighting factor w̄i. Here and in the following, Ψi = Ψ̂i(εdev,i, εvol, ξi) is the overall
potential of the phase mixture, where ξi = [ξ1i , . . . , ξ

ν
i ]

t ∈ Rν×1 is the collection of the
volume fractions present in the integration direction ri. Applying the chain rule to the
partial derivative of the overall phase potential Ψi with respect to the strain tensor ε

yields

∂Ψi
∂ε

=
∂Ψi
∂εvol

∂εvol
∂ε

+
∂Ψi
∂εdev,i

∂εdev,i
∂ε

(3.54)

=
∂Ψi
∂εvol

1

3
I +

∂Ψi
∂εdev,i

[
ri ⊗ ri −

1

3
I

]
(3.55)

for every integration direction ri of the micro-sphere. Considering (3.5) together with
(3.3), the remaining terms ∂Ψi/∂εvol and ∂Ψi/∂εdev in (3.55) can be evaluated as

∂Ψi
∂εvol

=
∂

∂εvol

ν∑

α=1

ξαi ψ̂
α
i (εdev,i, εvol, θ) (3.56)

=

ν∑

α=1

ξαi
[
Eαvol

[
εvol − εαtr,vol

]
− ζαEα [θ − θ0]

]
(3.57)

and

∂Ψi
∂εdev,i

=
∂

∂εdev,i

ν∑

α=1

ξαi ψ̂
α
i (εdev,i, εvol, θ) (3.58)

=
ν∑

α=1

ξαi
[
Eαdev

[
εdev,i − εαtr,dev

]
− ζαEα [θ − θ0]

]
, (3.59)
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with the volumetric strain projection εvol being identical for all integration directions.
In contrast to that, for every integration direction ri of the micro-sphere the deviatoric
strain projections εdev,i and the volume fractions of all phases ξαi need to be considered
and evaluated individually. The stress response at the, say, macro-level, i.e. the stress
response of the micro-sphere (3.53), is finally obtained from

σ ≈
nr∑

i=1

ν∑

α=1

ξαi

[
1

3

[
Eαvol

[
εvol − εαtr,vol

]
− ζα Eα [θ − θ0]

]
I

+
[
Eαdev

[
εdev,i − εαtr,dev

]
− ζα Eα [θ − θ0]

] [
ri ⊗ ri −

1

3
I

] ]
w̄i (3.60)

3.2.1.3 Meso-scale free energy

The meso-scale free energy density Ψms is obtained by averaging the microscopic free
energy densities Ψ = Ψ̂(εdev, εvol, ξ, θ) via

Ψ̂ms(Ψ1, ..., Ψnr
) =

1

4π

∫

U2

Ψ da ≈
nr∑

i=1

Ψi w̄i , (3.61)

With w̄i denoting the respective integration factors. The numerical evaluation of (3.61)
is facilitated by consideration of the free energy contributions ψαi in the given integration
direction ri, i.e.

Ψi =
ν∑

α=1

ξαi ψ̂
α
i (εdev,i, εvol, θ) , (3.62)

inducing

Ψms =

nr∑

i=1

[
ν∑

α=1

ξαi ψ̂
α
i (εdev,i, εvol, θ)

]
w̄i (3.63)

for the computation of Ψms.

3.2.1.4 Meso-scale volume fractions

One advantage of the micro-sphere approach is the possibility to derive texture-type
structural tensors of different order. For example, the micro-sphere volume fractions
Ξα = Ξ̂α(ξα), which represent a moment of zeroth order, can be obtained by integration
over the unit sphere, i.e.

Ξα =
nr∑

i=1

ξαi w̄i (3.64)
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with ξαi the volume fraction of phase α situated in the i th integration direction ri. From
a macroscopic point of view, a more detailed insight in the anisotropy of the material
is obtained by computing, e.g., a second-order structural tensor that gives additional
information about the spatial distribution of volume fractions. By analogy with the
elasticity tensor Eel higher-order moments can be introduced but are not applied as this
chapter proceeds.

3.2.1.5 Elasticity tensor

The anisotropic approximated elasticity tensor can be evaluated as

Eel =
∂

∂ε

nr∑

i=1

∂Ψi
∂ε

w̄i (3.65)

with the help of (3.53). Considering (3.55) in addition yields

Eel =
∂

∂ε

nr∑

i=1

[
∂Ψi
∂εvol

1

3
I +

∂Ψi
∂εdev ,i

[
ri ⊗ ri −

1

3
I

]]
w̄i (3.66)

=
nr∑

i=1

[
∂2Ψi

∂εvol ∂εvol

1

3
I ⊗ ∂εvol

∂ε
(3.67)

+
∂2Ψi

∂εdev,i ∂εdev,i

[
ri ⊗ ri −

1

3
I

]
⊗ ∂εdev ,i

∂ε

]
w̄i (3.68)

=

nr∑

i=1

[
∂2Ψi

∂εvol ∂εvol
Ivol +

∂2Ψi
∂εdev,i ∂εdev,i

Di

]
w̄i (3.69)

with the fourth-order tensors Ivol = 1/3 I⊗I and Di = [ri⊗ri−1/3 I]⊗ [ri⊗ri−1/3 I].
Evaluating the derivatives of (3.57) and (3.59) with respect to εvol and εdev,i, respectively,
allows to express the elasticity tensor as

Eel =

nr∑

i=1

ν∑

α=1

ξαi
[
Eαvol I

vol + Eαdev Di

]
w̄i . (3.70)

For the investigation of the anisotropic properties of the elasticity tensor, we generate
Young’s modulus surface plots as e.g. elaborated in [23, 31, 142]. In this context, we
compute the fourth-order compliance tensor Cel := E−1

el and project this quantitiy onto
directions d, where the latter are unit vectors obtained from a parametrisation of the
unit sphere U2 in terms of, e.g.,

d(ϑ, ϕ) = sin(ϑ) cos(ϕ) e1 + sin(ϑ) sin(ϕ) e2 + cos(ϑ) e3 (3.71)
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with ϑ ∈ [0, π], ϕ ∈ [0, 2 π] and ei·ej = δij . The projection δ
Cel(Cel,d) of the fourth-order

compliance tensor on each of the unit vectors d(ϑ, ϕ) according to

δCel(Cel,d) = [d⊗ d] : Cel : [d⊗ d] (3.72)

yields the inverse of the Young’s modulus in direction d, see [31]. To this end, for the
computation of the macroscopic scalar-valued Young’s modulus E(d) as a function of
the spatial direction d we evaluate

E(d) = δ
−1Cel(Cel,d) = [ [d⊗ d] : Cel : [d⊗ d] ]−1 (3.73)

for each direction of interest. See Figs. 3.6 and 3.7 for a computational example including
a graphical representations of E(d) for selected representative deformation states.

3.2.2 Micro-sphere application – computational examples at the

meso-level

In this section, the constitutive response of the previously described model is presented
for two characteristic homogeneous deformation states. We investigate a purely devi-
atoric tension-compression load cycle, see Fig. 3.6, and a mixed volumetric-deviatoric
tension-compression load cycle, see Fig. 3.7. We assume quasi-static loading conditions
with quasi-static strain-rates of |ε̇| = 10−4 and apply the material parameters pro-
vided in Section 3.5.1. For both load cases, the stress-strain response in terms of the
σ11 = e1 · σ · e1 stress component is computed. Moreover, the spatial distributions of
volume fractions and Young’s modulus surface plots—allowing for the assessment of the
anisotropy evolution—are provided at the states of maximum tension and maximum
compression.
For the investigation of the behaviour of the material model under purely deviatoric

tension-compression, the applied macroscopic strain ε = ε̂(t), is set to

ε̂(t) = κ̂(t) ε0 [3/2 e1 ⊗ e1 − 1/2 I] (3.74)

with a linearly varying scaling factor κ = κ̂(t) ∈ [−1, 1] and a maximum strain magnitude
of ε0 = 0.07. Fig. 3.6(a) depicts the loading path obtained in e1-direction. Since the
macroscopic strain tensor is purely deviatoric, the volumetric strains being transferred
to the micro-level are zero for all integration directions of the micro-sphere. As initial
conditions, we choose a stress- and strain-free configuration of pure austenite, i.e. ξA|t0 =
1, ξMt|t0 = ξMc|t0 = 0. The material response is investigated for a fixed temperature of
θ = 30 ◦C. The transformation intensities by means of directionally dependent phase
fractions are displayed in Figs. 3.6(c) and 3.6(d) for the states of maximum tension and
compression, respectively. Furthermore, the spherical projections of Young’s moduli
E(d) are depicted in Figs. 3.5(a) and 3.5(b).
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(a) Distribution of directional Young’s moduli
at maximum tension, i.e. at κ̂(t) ε0 = 0.07,
cf. Fig. 3.6(b).
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Figure 3.5: Distribution of directional Young’s moduli corresponding to the anisotropic material states
provided in Figs. 3.6(c) and 3.6(d), respectively.

The results obtained for mixed volumetric-deviatoric tension-compression are provided
in Fig. 3.7. For this computation, the macroscopic strain tensor is set to

ε̂(t) = κ̂(t) ε0 [e1 ⊗ e1] (3.75)

with a non-zero volumetric part, resulting in a loading path in e1-direction as depicted
in Fig. 3.7(a). The volumetric strains εvol being transferred to the micro-level are iden-
tical for all integration directions. Due to the volumetric parts of the load, a higher
maximum stress level is reached when compared to the purely deviatoric load case,
cf. Fig. 3.7(b). As in the deviatoric case, the transformation intensities displayed in
Figs. 3.7(c) and 3.7(d) and the spherical projections of Young’s moduli E(d), Figs. 3.8(a)
and 3.8(b), refer to the states of maximum tension and compression, respectively.
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Figure 3.6: Meso-scale response obtained at θ = 30 ◦C for a purely deviatoric load of ε̂(t) =
κ̂(t) ε0 [3/2 e1⊗e1−1/2 I]. Quasi-static loading conditions with a maximum strain rate of |ε̇| = 10−4 s−1

are applied.
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Figure 3.7: Meso-scale response obtained at θ = 30 ◦C for a mixed volumetric-deviatoric load of ε̂(t) =
κ̂(t) ε0 [e1 ⊗ e1]. Quasi-static loading conditions with a maximum strain rate of |ε̇| = 10−4 s−1 are
applied.
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Figure 3.8: Distribution of directional Young’s moduli corresponding to the anisotropic material states
provided in Figs. 3.7(c) and 3.7(d), respectively.

3.3 Finite element implementation

In this section, we show the results of a finite element implementation of the model. As an
example for a three-dimensional boundary value problem, we investigate a block-shaped
body of the size 5mm× 5mm× 10mm under combined torsion and tension load states.
The results of the finite element computations are provided in terms of displacements,
stresses, tensile forces, torsional reaction moment and distribution of volume fractions.
To this end, the second-order stress tensor and the fourth-order elasticity tensor are
computed according to (3.60) and (3.70), respectively. For the macroscopic volume frac-
tions, we restrict this chapter to the computation of scalar-valued macroscopic quantities
as derived in (3.64).

The loading path provided in Fig. 3.9(a) shows the four load steps applied. In the first
step, at 0 < t < 1000 s, the considered body is subjected to a linearly increasing torsional
displacement up to an angle of ϕ(t = 1000 s) = 15◦ on the top surface, while the vertical
displacements of the top surface are constrained to zero. Next, at 1000 s < t < 2000 s, the
block is stretched by a linear increase of the displacement of its top surface at a constant
torsional angle of ϕ = 15◦. As the maximum tensile displacement of umax = 1mm is
reached, the torsion angle is first reduced to zero and then the block is compressed back
to its initial height of h(t = 0) = h(t = 4000 s) = 10mm.

61



3 A non-affine micro-sphere model for phase-transformations

The linearly increasing torsional load applied during 0 < t < 1000 s leads to a reaction
force and torsional reaction moment provided in Fig. 3.10. First, the reaction moment
increases proportionally to time – while also being proportional to the applied torsional
load. Due to the activation of phase-transformations, the graph of the reaction moment
flattens since the martensitic phases with lower Young’s modulus evolve in parts – finally
reaching a maximum torsional reaction moment of M = 25Nm. Fig. 3.11(a) shows
the distribution of the remaining austenitic volume fraction at time t = 1000 s. The
spatially inhomogeneous distribution of tensile stresses, i.e. σ33 = e3 ·σ ·e3, is presented
in Fig. 3.11(b). Note the existence of regimes of positive and negative tensile stress
on the top surface, corresponding to a comparatively small total tensile force observed
during the purely torsional load, cf. Fig. 3.10(a). The occurrence of a non-zero tensile
force resulting from torsion is related to a swift-type effect.
During the time interval 1000 s < t < 2000 s, the tensile load increases proportionally

to time, cf. Fig. 3.9(a), and causes distinct transformations from the austenitic par-
ent phase to the martensitic phases. Due to the ongoing transformation to the softer
martensitic phases caused by the tensile load, the torsional reaction momentM shown in
Fig. 3.10(b) decreases until transformations reach a saturation state and a slight increase
of the reaction moment is observed as the tensile load increases further. At the end of
the tensile load cycle, t = 2000 s, the remaining austenitic volume fraction reaches from
ΞA ≈ 0.16 . . . 0.32, see Fig. 3.12(a). The maximum tensile force F ≈ 11 kN obtained at
t = 2000 s, see Fig. 3.10(a), corresponds to an average tensile stress of σavg

33 ≈ 450MPa
on the 5mm× 5mm top surface area, cf. Fig. 3.12(b).
When reverting the torsional load, 2000 s < t < 3000 s, the magnitude of both the

tensile force and the torsional reaction moment decreases, see Figs. 3.10(a) and 3.10(b).
For the given temperature level, a pseudo-plasticity-like effect is observed, where the
torsional reaction moment changes sign during reversal of the load, ending up with a
negative reaction moment of M ≈ −5Nm at t = 3000 s. Corresponding to the decrease
in the tensile force, the tensile stresses shown in Fig. 3.13(b) decreased as well when
compared to Fig. 3.12(b). Note that the reversal of the torsional load leads to further
transformations from austenite to martensite, cf. Fig. 3.13(a).
Finally, when the material block is deformed back to its initial shape at t = 4000 s,

we end up with a slight pseudo-plasticity-like compression force of F ≈ −1 kN, see
Fig. 3.10(a). The corresponding inhomogeneous distribution of compressive stresses
within the body is shown in Fig. 3.14(b). While tension is released, large parts of the
material transform back to the initial austenitic phase as depicted in Fig. 3.14(a). At
the same time, the torsional reaction moment provided in Fig. 3.10(b) tends towards its
inital zero value.
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Figure 3.9: Finite element simulation: the loading path applied to the top surface is given in (a). The
considered finite element discretisation using eight node hexahedron elements is provided in (b). Note
that the arrows in (b) indicate the displacement increments obtained during the first torsional load
step, i.e. during 0 < t < 1000 s. For the simulation we assume quasi-static loading conditions with an
overall simulated time of tmax = 4000 s, cf. (a).

time t [s]

te
n
si
le

fo
rc
e
F

[k
N
]

1000 2000 3000 4000

−1

2

8

11

0

5

(a) Computed tensile reaction force.

time t [s]

to
rs
io
n
a
l
re
a
ct
io
n

m
o
m
en

t
M

[N
m
]

1000 2000 3000 4000

−5

0

0

5

10

15

20

25

(b) Computed torsional reaction moment.

Figure 3.10: Tensile force F and torsional reaction moment M obtained due to the applied loading
history, see Fig. 3.9(a) for the loading path chosen. The overall load history is subdivided in four
sections: 0 < t < 1000 s, time-proportional torsional load; 1000 s < t < 2000 s, subsequent time-
proportional tension; 2000 s < t < 3000 s, time-proportional undoing of torsion; 3000 s < t < 4000 s,
time-proportional release of tension. At t = 4000 s the top and bottom surface of the material body
have returned to their initial shapes.
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3 A non-affine micro-sphere model for phase-transformations

(a) Macroscopic austenite ΞA. (b) Tensile stress resulting from anisotropy.

Figure 3.11: Test specimen after torsion – maximum torsion angle ϕ = 15◦ at time t = 1000 s,
cf. Fig. 3.9(a).

(a) Macroscopic austenite ΞA. (b) Tensile stress.

Figure 3.12: Test specimen after torsion and tension – maximum torsion angle ϕ = 15◦ and maximum
tensile displacement u = 1mm at time t = 2000 s, cf. Fig. 3.9(a).
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3.3 Finite element implementation

(a) Macroscopic austenite ΞA. (b) Tensile stress.

Figure 3.13: Tensioned test specimen with u = umax = 1mm and reversed torsion loading to ϕ = 0 at
time t = 3000 s, cf. Fig. 3.9(a).

(a) Macroscopic austenite ΞA. (b) Tensile stress.

Figure 3.14: Test specimen with reversed tension and torsion loading, i.e. with u = 0mm and ϕ = 0 at
time t = 4000 s, cf. Fig. 3.9(a).
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3.4 Summary

In this chapter, an enhanced approach for the modelling and simulation of solid-to-
solid phase-transformations is introduced. The underlying phase-transformation scheme
utilising micro-mechanically motivated material quantities and transformation proba-
bilities based on statistical physics was introduced in [51] for a simple one-dimensional
model. In Chapter 2, this model was extended to three dimensions using the simplified
affine micro-sphere approach, see [101]. In order to capture varying Young’s moduli
and Poisson’s ratios of the macro-scale, a non-affine micro-sphere framework including
volumetric-deviatoric splits of the macroscopic strain tensor has been adopted as elab-
orated in, e.g., [27]. However, the introduction of a volumetric-deviatoric split in the
micro-sphere kinematics has a significant impact on the underlying micro-scale model.
To be specific, the introduction of independent volumetric and deviatoric micro-strains
in the Helmholtz free energies of each considered phase leads to Gibbs phase potentials
that are no longer simple parabolas, but now take the form of elliptical paraboloids in
volumetric-deviatoric strain space. As a result, the computation of the actual Gibbs
energy barriers which serve as threshold-type values for the transformation from one
phase to another, turn into a computationally advanced problem. In this context, we
make use of a numerical minimisation scheme for the highly non-linear problem to solve
for the minimum of the parametric Gibbs energy intersection curves, see Section 3.1.4.
To underline the capabilities of the model established in this chapter, we discuss rep-

resentative numerical examples not only on the micro-level, see Section 3.1.5, but also on
the micro-sphere-level, Section 3.2.2, as well as on the finite element level, see Section 3.3.
On the micro-scale, we show that the proposed model captures the experimentally ob-
served stress-strain-temperature response—known as one of the main feature of SMA,
see Fig. 3.3. We also highlight that the model captures the pseudo-plastic response of
SMA observed at low temperatures, as well as the pseudo-elastic response observed for
elevated temperatures, cf. Figs. 3.3(a) and 3.4(d). In addition, we investigate tensile
step tests on the micro-level, showing that the model is able to capture another exper-
imentally observed feature of SMA, which is the appearance of stress-strain envelopes
and appropriate stress-strain minor loops in tensile step tests. Numerous experiments
in this context were carried out in, e.g., [59], and the model features presented in this
chapter nicely match these experimental investigations.
The results obtained at the micro-sphere level, see Section 3.2.2, show some of the

advantages of the micro-sphere approach utilised in this work. To be specific, one advan-
tage is that we may extract spatial distributions of volume fractions in the poly-crystal-
like arrangement as shown in, e.g., Figs. 3.6(c) and 3.6(d). Moreover, the micro-sphere
approach allows for a detailed assessment of the anisotropy evolution of the material.
To this end, we include plots of the anisotropic directional Young’s moduli at selected
representative material states, see, Figs. 3.5 and 3.8.
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3.4 Summary

Finally, we show that the model can be implemented into a finite element scheme,
facilitating the computation of three-dimensional boundary value problems. In this
regard, we show the subsequent torsion and tension of a block-shaped body, where we
provide not only the tensile reaction forces and the torsional reaction moments for the
chosen loading path, but also distributions of macroscropic volume fractions and the
representative tensile stress component for several load states. The model introduced in
this chapter provides physically sound results while maintaining a high computational
efficiency. In the next chapters, we extend the model in order to capture the interactions
of phase-transformations and plasticity. Note that the physically sound consideration of
continuum plasticity requires a framework that provides a distinction between volumetric
and deviatoric deformation states as established in this chapter.
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3.5 Appendix

3.5.1 Material parameters

The material parameters used in this chapter are based on the ones already used in
Chapter 2. However, additional variables were introduced in the current chapter as a
result of the extension of the basic model that was carried out. To this end, an overview
of the material parameters used in this chapter is provided in Table 3.1.

3.5.2 Analytical solution for the minimum of the Gibbs potential of
a single phase

In order to simplify notation, we rearrange the terms in (3.3) and (3.9), respectively,
such that the Gibbs potential gα of one phase α can be expressed as

gα = aαεdev
2 + bαεdev + cαεvol

2 + dαεvol + eα (3.76)

with coefficients aα, bα, cα, dα and eα, see (3.30)–(3.34). The solution of (3.17) is then
obtained from

∂gα

∂εdev

∣∣∣∣
εg

αmin
dev

= 2 aαεg
αmin

dev + bα = 0 (3.77)

∧ ∂gα

∂εvol

∣∣∣∣
εg

αmin
vol

= 2 cαεg
αmin

vol + dα = 0 , (3.78)

inducing

εg
αmin

dev = − bα

2 aα
(3.79)

∧ εg
αmin

vol = − dα

2 cα
. (3.80)

Note that, due to the Legendre transformation carried out, the value of the global min-
imum gαmin of the Gibbs potential of the phase considered, as well as its position in
volumetric-deviatoric strain space (εg

αmin
dev , εg

αmin
vol ) depends on the load or rather defor-

mation applied, i.e. εdev and εvol, as well as on the volume fraction ξα of the respective
material phase, cf. Fig. 3.2.
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3.5 Appendix

Table 3.1: SMA material parameters considered in the current chapter, compare, e.g., [20, 51].

material parameter symbol value

austenite A (parent phase): Young’s modulus E
A 67 GPa

deviatoric transformation strains εAtr,dev 0

volumetric transformation strains εAtr,vol 0

latent heat λA
T 0

tensile martensite Mt: Young’s modulus E
Mt 26.3 GPa

deviatoric transformation strains εMt
tr,dev 0.025

volumetric transformation strains εMt
tr,vol 0

latent heat λMt
T 14500 J/kg

compression martensite Mc: Young’s modulus E
Mc 26.3 GPa

deviatoric transformation strains εMc
tr,dev −0.04

volumetric transformation strains εMc
tr,vol 0

latent heat λMc
T 14500 J/kg

common parameters: coefficient of thermal expansion ζ 12× 10−7 K−1

reference temperature θ0 273 K

heat capacity cp 400 J/kgK

transition attempt frequency ω 1.6 s−1

transformation region’s volume ∆v 2.71 × 10−18 mm3

Poisson’s ratio νP 0.33

Boltzmann’s constant k 1.381 × 10−23 J/K
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3 A non-affine micro-sphere model for phase-transformations

3.5.3 Numerical scheme - computation of Gibbs energy barriers

1 get Gibbs coefficients [aα, bα, cα, dα, eα] and [aβ , bβ, cβ , dβ , eβ ] ⊲ see (3.30)–(3.34)

2 get minima positions
(
εg

αmin
dev , εg

αmin
vol

)
and

(
εg

βmin
dev , εg

βmin
vol

)
⊲ see (3.79) and (3.80)

3 set j = 0 and get starting value εisc,min
vol

∣∣∣
j=0

=
[
εg

αmin
vol − εg

βmin
vol

]
/2

4 while abs
(
Dg isc,α,β

∣∣
j

)
> tol do

5 get intersection curve gradient Dg isc,α,β
∣∣
j
= ∂ ĝ isc,α,β(εvol)

∂εvol

∣∣∣
εisc,min
vol |

j

⊲ see (3.41)

6 get Newton gradient D2g isc,α,β
∣∣
j
= ∂2 ĝ isc,α,β(εvol)

∂εvol2

∣∣∣
εisc,min
vol |

j

⊲ see (3.42)

7 update εisc,min
vol

∣∣∣
j+1

= εisc,min
vol

∣∣∣
j
− Dg isc,α,β

∣∣
j
/ D2g isc,α,β

∣∣
j

8 increment j ← j + 1

9 end while

10 after convergence, set εisc,min
vol = εisc,min

vol

∣∣∣
j

11 get position
(
ε̂ isc
dev(ε

isc,min
vol ), εisc,min

vol

)
of the intersection curve minimum ⊲ see (3.35)

12 get Gibbs energy value g isc,α,β
min ⊲ see (3.39) and (3.40)

13 compute Gibbs energy potential minima gαmin and gβmin ⊲ see (3.18)

14 get bα→β = g isc,α,β
min − gαmin and bβ→α = g isc,α,β

min − gβmin ⊲ see (3.15) and (3.16)

15 return bα→β and bβ→α

Algorithm 1: Minimisation of the intersection curve of two elliptic Gibbs energy paraboloids in
deviatoric-volumetric strain space.
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3.5 Appendix

3.5.4 Overall constitutive algorithm

1 while t < tmax do

2 set t = n+1t = nt+∆t ∈ [ 0, tmax ]

3 given: n+1ε

4 while i < nr do ⊲ for every micro-sphere direction...

5 given: nξi =
[
nξAi ,

nξMt
i , nξMc

i ,
]t

6 obtain εdev,i and εvol from (3.51)

7 for all combinations (α, β) ∈ [A,Mt,Mc], α 6= β do

8 get energy barrier bα→β,i ⊲ see Section 3.1.4 and Algorithm 1

9 obtain transformation probabilities Pα→β,i ⊲ see (2.7)

10 end for

11 assemble Qi and update n+1ξi with time-integration scheme ⊲ see (2.6)

12 update volume fractions nξi ← n+1ξi

13 add ith contribution to n+1σ and n+1Eel ⊲ see (3.60) and (3.70)

14 end while

15 return n+1σ, n+1Eel,
n+1ξi ∀ i and set n← n+ 1

16 end while

Algorithm 2: Solution of the overall constitutive model based on a non-affine micro-sphere scheme.
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4 Phase-transformations interacting
with plasticity

In this chapter, we model the basic mechanisms of the interaction between phase-
transformations and plasticity within a one-dimensional constitutive framework. Effi-
cient algorithms are presented, facilitating to solve the underlying evolution equations
with high numerical stability at low numerical costs. Furthermore, a family of functions
covering physically reasonable classes for the inheritance of plasticity in the context of
evolving phases is proposed and discussed by means of several representative numerical
examples.

The goal of the work presented in this chapter is to enhance the statistics-based phase-
transformation model described in Section 2.1 in order to take into account plasticity
as well as the interaction between phase-transformation and plasticity effects by intro-
ducing a so-called plasticity inheritance law. The model is presented in Section 4.1,
where extended Helmholtz free energy functions for each material phase are introduced,
taking into account plastic strains as new variables for each individual phase. Based
on the extended multi-well energy potentials, the probabilistic phase-transformation
model is derived in Section 4.1.1. Moreover, the differential equations describing the
evolution of plasticity as well as the potential-based derivation of the individual plas-
tic driving forces are shown in Sections 4.1.2 and 4.1.2.1, respectively. The coupling
of phase-transformation and plasticity effects is incorporated by means of a staggered
algorithm. To this end, an inheritance algorithm for the inheritance of plastic strains
resulting from a propagating phase front is introduced in Section 4.1.3. Moreover, two
physically reasonable exponential-type inheritance probability functions are presented
in Sections 4.1.3.1 and 4.1.3.2. Details on the numerical implementation of the model
are provided in Section 4.2, followed by numerical examples shown in Section 4.3, where
the model is applied not only to shape memory alloys, see Section 4.3.2, but also to
TRIP steel as presented in Section 4.3.3. It is shown that the model reflects the physical
behaviour of both types of materials.
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4 Phase-transformations interacting with plasticity

4.1 A model for the interaction of

phase-transformations and plasticity

As introduced in Section 2.1, the one-dimensional phase-transformation model is based
on mixture theory, where we make use of the Voigt assumption, i.e. all material phases
are subject to the same strain ε. As mentioned before, the utilised phase-transformation
model is capable of handling an arbitrary amount of material phases, where the volume
fraction

ξα := lim
v→0

(
vα

v

)
(4.1)

of each phase α ∈ {1, . . . , ν} ⊂ N is subject to the restrictions

ξα ∈ [0, 1] ⊂ R ,
ν∑

α=1

ξα = 1 ,
ν∑

α=1

ξ̇α = 0 . (4.2)

Each phase is presumed to behave thermo-elasto-plastically, thus a Helmholtz free
energy function ψα = ψ̂α(ε, εαpl, θ) of the form

ψα =
1

2
Eα[ε− εαtr − εαpl]2 − ζαEα[ε− εαtr − εαpl][θ − θ0]

+ ρ0c
α
pθ

[
1− log

(
θ

θ0

)]
− ρ0λαT

[
1− θ

θ0

]
(4.3)

is assigned to each phase α, with E the Young’s modulus, ε = ∇xu the total strains, εtr
the transformation strains, εpl the plastic strains, ζ the coefficient of thermal expansion,
θ the current absolute temperature, θ0 the reference temperature, cp the heat capacity,
and λT the latent heat of the respective material phase. The overall free energy of the
mixture Ψ = Ψ̂ (ε, ε1dpl , θ, ξ) =

∑
α ξ

αψα, with ξ = [ξ1, . . . , ξν ] and ε1dpl = [ε1pl, . . . , ε
ν
pl], can

directly be obtained from the free energy contributions of the respective constituents,
since the distortional energy of the phase boundaries is neglected here.

Based on this, the Gibbs potential G = Ĝ(∂Ψ/∂ε, ξ, θ) can be obtained by carrying
out a Legendre-transformation, i.e.

G = Ψ −
∂Ψ̂ (ε, ε1dpl , θ, ξ)

∂ε

∣∣∣∣∣
θ,ε1dpl

ε (4.4)

=
ν∑

α=1

ξα [ψα − σ ε] (4.5)

=
ν∑

α=1

ξαgα , (4.6)
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4.1 A model for the interaction of phase-transformations and plasticity

where σ = ∂Ψ/∂ε|θ,ε1dpl = σ̂(ε, ε1dpl , ξ, θ) is the stress acting in the one-dimensional con-

tinuum considered and gα = ĝ α(σ, ε, εαpl, θ) := ψα − σ ε represents the contribution of
phase α to the overall Gibbs potential G.

4.1.1 Evolution of volume fractions

For the evolution of the volume fractions ξα we use an approach based on statistical
physics as introduced in Section 2.1. To this end, the transformation probability matrix
Q ∈ Rν×ν (2.6) facilitates the derivation of the evolution equation for the volume frac-
tions as ξ̇ = Q ·ξ. For the sake of simplicity and conceptual clarity, we restrict ourselves
to just two material phases in this chapter, namely austenite A and martensite M. The
according transformation probability matrix Q ∈ R2×2 reduces to

Q = ω

[
−PA→M PM→A

PA→M −PM→A

]
6= Qt (4.7)

with ω the transition attempt frequency and Pα→β = P̂α→β(θ, bα→β) the probability
of a transformation of one phase α to the other phase β. Note that (4.7) refers to
ξ = [ξA, ξM]t ∈ R2.
In line with the previous chapters and [5], the transformation probabilities necessary

to assemble Q are obtained from

Pα→β = exp

(−∆v bα→β

k θ

)
, (4.8)

with ∆v the constant transformation region’s volume, bα→β the energy barrier for the
transformation from phase α to phase β, k the Boltzmann’s constant, and θ the given
temperature. Note that, in general, bα→β 6= bβ→α and thus Pα→β 6= Pβ→α holds. The
energy barriers can be determined from

bα→β = ĝ α(σ, ε⋆α,β, ε
α
pl, θ)− ĝ α(σ, εmin

α , εαpl, θ) (4.9)

with

ε⋆α,β = inf
gα,gβ

{
ε | ĝ α(σ, ε, εαpl, θ)|σ,εαpl,θ = ĝ β(σ, ε, εβpl, θ)|σ,εβpl,θ

}
(4.10)

and

εmin
α =

{
ε |

∂ĝ α(σ, ε, εαpl, θ)

∂ε

∣∣∣∣
σ,εαpl,θ

= 0

}
, (4.11)

where ĝ α(σ, ε⋆α,β, ε
α
pl, θ) = ĝ β(σ, ε⋆α,β, ε

β
pl, θ) gives the value of the energy potentials at

the intersection of the parabolic phase potential functions for two material phases α
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4 Phase-transformations interacting with plasticity

and β in strain space, while ĝ α(σ, εmin
α , εαpl, θ) denotes the minimum energy potential of a

particular phase α for fixed stresses and temperature. Accordingly, the difference of both
energy values (4.9) gives the energy barrier that has to be overcome for a transformation
from phase α to phase β.

4.1.2 Evolution of plastic strains

To incorporate plasticity, we—for conceptual simplicity—assume von Mises-type plas-
ticity with linear proportional hardening. Based on the overall free energy potential,
the plastic driving force qαpl,Ψ can be derived for each phase α, see Section 4.1.2.1 for de-
tails. With the driving force and the current yield stress Y α at hand, the yield function
Φα = Φ̂α(Y α, qαpl,Ψ ) determining the admissible elastic domain in phase α, is given as

Φ̂α(qαpl,Ψ , Y
α) = |qαpl,Ψ − ξαbα| − ξα Y α ≤ 0 . (4.12)

The current yield stress Y α = Ŷ α(γα) = Y α
0 +Hα γα is given by the initial yield stress Y α

0

being modified by Hα γα due to accumulated plastic strains γα of the respective material
phase, where Hα denotes the constant hardening modulus of phase α. The individual
back stress ξαbα is additionally considered in order to prevent plastic flow occurring in
the initial equilibrium state. To be specific, the underlying Voigt assumption leads to
an initial stress of

bα := σ̂ α(ε = 0, εαpl = 0, θ)

=
∂ψ̂α(ε, εαpl, θ)

∂ε

∣∣∣∣∣
θ,εαpl=0,ε=0

= −Eαεαtr + ζαEαεαtr[θ − θ0] (4.13)

that acts in each phase α and, in consequence, is considered as a back stress in the yield
function. Based on the yield function presented, we make use of an associated flow rule,
facilitating to derive the evolution law for the plastic strain in phase α by means of

ε̇αpl = λ̇α
∂Φ̂α(qαpl,Ψ , Y

α)

∂qαpl,Ψ
= λ̇α sgn

(
qαpl,Ψ − ξαbα

)
(4.14)

with an appropriate Lagrangian multiplier λ̇α.
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4.1 A model for the interaction of phase-transformations and plasticity

4.1.2.1 Remarks on the derivation of the plastic driving force

The stress-type force qαpl,Ψ = q̂ αpl,Ψ (ξ
α, ε, εαpl, θ) driving the evolution of plasticity in phase

α can be derived from the overall free energy Ψ according to

qαpl,Ψ = −
∂Ψ̂ (ε, ε1dpl , θ, ξ)

∂εαpl

∣∣∣∣∣
θ,ε,ξ

(4.15)

= − ∂

∂εαpl

∣∣∣∣∣
θ,ε

ν∑

α=1

ξαψ̂α(ε, εαpl, θ) (4.16)

= − ξα
∂ψ̂α(ε, εαpl, θ)

∂εαpl

∣∣∣∣∣
θ,ε

, (4.17)

finally resulting in

qαpl,Ψ = ξα
[
Eα[ε− εαtr − εαpl] + ζαEα[θ − θ0]

]
. (4.18)

Furthermore, the stress acting in the one-dimensional continuum is obtained from

σ =
∂Ψ̂ (ε, ε1dpl , θ, ξ)

∂ε

∣∣∣∣∣
θ,ε1dpl

(4.19)

=
∂

∂ε

∣∣∣∣
θ,ε1dpl

[
ν∑

α=1

ξαψ̂α(ε, εαpl, θ)

]
(4.20)

=

ν∑

α=1

ξα
∂ψ̂α(ε, εαpl, θ)

∂ε

∣∣∣∣∣
θ,εαpl

(4.21)

=
ν∑

α=1

ξασα (4.22)

with σα = σ̂α(ε, εαpl, θ) = Eα[ε − εαtr − εαpl] + ζαEα[θ − θ0] the stress acting in phase α.
Comparing this result to (4.18) shows that qαpl,Ψ = ξασα.

Alternatively, the plastic driving forces can be derived by considering each phase
individually. Using this approach, the driving force qαpl,ψ = q̂ αpl,ψ(ε, ε

α
pl, θ) yields

qαpl,ψ = −
∂ψ̂α(ε, εαpl, θ)

∂εαpl

∣∣∣∣∣
θ,ε

(4.23)

= Eα[ε− εαtr − εαpl] + ζαEα[θ − θ0] (4.24)

= σα . (4.25)
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4 Phase-transformations interacting with plasticity

In particular, this result leads to qαpl,Ψ = ξαqαpl,ψ. Note that the consideration of the
volume fraction ξα within the plastic driving force of each phase α guarantees that
q̂ αpl,Ψ(ξ

α = 0, ε, εαpl, θ) = 0, and thus ε̇αpl = 0 as long as ξα = 0, i.e. no evolution of
plasticity can occur within a phase of zero volume fraction.

4.1.3 Plasticity inheritance law for two phases

When the phase front of a phase α evolves throughout a crystal from time step nt to
n+1t, the question arises, whether plastic strains present in the decreasing phase β are
inherited by the phase front of the increasing phase or not, cf. Fig. 4.1. Conceptually
speaking, one has to specify to which amount a positive volume fraction increment
∆ξα = n+1ξα − nξα > 0 of phase α transfers plastic strains from phase β to phase α. In
general, the updated plastic strains ε̃αpl = ̂̃ε

α

pl(
nξα,∆ξα, εαpl, ε

β
pl, Π

β→α) in phase α can be
determined via

ε̃αpl =
1

n+1ξα

[
nξα εαpl +Πβ→α∆ξα εβpl

]
, (4.26)

where Πβ→α reflects the probability of phase α inheriting the dislocations present in
phase β, see Fig. 4.1. If one further assumes, that the diffusionless lattice shearing taking
place during the phase-transformations considered neither generates nor annihilates any
dislocations, i.e. the overall amount of plastic deformations remains constant in terms
of

n+1ξα ε̃αpl +
n+1ξβ ε̃βpl =

nξα εαpl +
nξβ εβpl , (4.27)

then the updated plastic deformations ε̃βpl =
̂̃εβpl(nξβ,∆ξα, εβpl, Πβ→α) remaining in the

decreased phase β are obtained from

ε̃βpl =
1

n+1ξβ
[
nξβ −Πβ→α∆ξα

]
εβpl . (4.28)

As we restrict ourselves, for the sake of simplicity, to two phases in the current chapter,
it is obvious that the increase ∆ξα of phase α is related to the decrease ∆ξβ of phase β
via

∆ξβ = n+1ξβ − nξβ = −∆ξα , ∆ξβ < 0 (4.29)

due to mass conservation, thus leading to

n+1ξβ = nξβ −∆ξα . (4.30)

Comparing (4.28) and (4.30) then shows that, in case of Πβ→α = 1, the plastic defor-
mations in the decreasing phase are not affected by the change of volume fractions, i.e.
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4.1 A model for the interaction of phase-transformations and plasticity

α β

∆ξα > 0

(a) Initial state: the phase front of α is about to move.

α β

∆ξα > 0

(b) Πβ→α = 0, i.e. all dislocations are pushed by the phase-
front and remain within phase β.

α β

∆ξα > 0

(c) Πβ→α = 1, i.e. all dislocations within the volume that un-
dergoes a phase-change are inherited to the growing phase α.

Figure 4.1: Dislocations can either be inherited or pushed by the propagating phase front of an evolving
phase α. Here, the two special cases, i.e. no inheritance (b) and full inheritance (c) of dislocations during
phase front propagation are shown. However, the actual physical behaviour of a material regarding
inheritance of dislocations—or rather plastic strains—can be expected to lie in between both extreme
cases. Therefore an inheritance probability function Πβ→α = Π̂β→α(ξβ , εβpl; ...) ∈ [0, 1] ⊂ R, depending

on the volume fraction ξβ and plastic strain εβpl of phase β as well as on material parameters, is
introduced in this work (see Sections 4.1.3.1 and 4.1.3.2).
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4 Phase-transformations interacting with plasticity

̂̃εβpl(nξβ,∆ξα, εβpl, Πβ→α = 1) = εβpl. On the other hand, in case of Πβ→α = 0, i.e. if all
dislocations are pushed rather than inherited by the propagating phase front of phase α,
the plastic strains in phase β increase inversely proportional to the decrease of volume
fraction.

However, it is physically reasonable to assume that the inheritance probability is not
constant, but rather a function depending on the remaining volume fraction ξβ and
plastic strain εβpl of the decreasing phase β, as well as on further material parameters
characterising the actual functional dependency. To this end, two reasonable approaches
for introducing exponential-type inheritance probability functions, namely a convex and
a concave one, Πβ→α

cvx = Π̂β→α
cvx (ξβ, εβpl; κ) and Πβ→α

ccv = Π̂β→α
ccv (ξβ, εβpl; κ, ε

β
pl,sat), respec-

tively, are presented in the following.

4.1.3.1 Convex inheritance probability function

The inheritance probability function considered is subjected to two physically reasonable
restrictions. First, in case that the volume fraction of the decreasing phase β is very
large, i.e. ξβ ≈ 1, a propagating phase front of phase α will most likely push dislocations
present in phase β, since the dislocation density1—being inversely proportional to the
volume fraction—in β is rather low in this case. In consequence and as the first condition,
we require the inheritance probability function to match Π̂β→α

cvx (ξβ = 1, εβpl; κ) = 0. On

the other hand, if the remaining volume fraction ξβ of the decreasing phase β tends to
zero, the dislocation density takes high values so that the dislocations (or rather plastic
strains) remaining in phase β are forced to be inherited by the evolving phase α, i.e.

Π̂β→α
cvx (ξβ = 0, εβpl; κ) = 1. One exponential-type ansatz for an inheritance probability

function fulfilling these restrictions is

Π̂β→α
cvx (ξβ, εβpl; κ) = [1− ξβ] exp

(
−κ ξβ
|εβpl|

)
. (4.31)

For an exemplary material parameter κ = 0.1, the development of this inheritance
function is visualised in Fig. 4.2. Besides that, the influence of the parameter κ for
an exemplary fixed plastic strain of εβpl = 0.025 is displayed. As the figure shows, the
proposed family of parametric inheritance functions is convex in ξ for all parameters
κ ∈ R+.

1The phrase dislocation density does not refer to curl(εpl), respectively ∂xεpl here. In the current
context, we rather use this denomination as a synonym for the density of plastic strains.
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Π̂β→α
cvx (ξβ, εβpl; κ = 0.1)
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Figure 4.2: Convex inheritance probability function depending on volume fraction ξβ and plastic strain
εβpl for given parameter κ = 0.1 (left), and the function depending on ξβ and κ for given plastic strain

εβpl = 0.025 (right).

4.1.3.2 Concave inheritance probability function

As an addition to the convex2 inheritance probability function shown in Section 4.1.3.1,
a concave2 exponential-type inheritance function is presented in the following. As before,
the physical restrictions, i.e. Π̂β→α

ccv (ξβ = 1, εβpl; κ) = 0 and Π̂β→α
ccv (ξβ = 0, εβpl; κ) = 1, are

required to be fulfilled. To be specific, the function

Π̂β→α
ccv (ξβ, εβpl; κ, ε

β
pl,sat) =

1− exp

(
−κ [1− ξβ]
εβpl,sat − |ε

β
pl|

)

1− exp

(
−κ

εβpl,sat − |ε
β
pl|

) , (4.32)

which again depends on a material parameter κ ∈ R+, is of exponential type, but
provides a concave behaviour in ξ. As above, we require the inheritance probabil-
ity to increase with increasing plastic strain. Accordingly, a plastic saturation strain
εβpl,sat ∈ R+, which can also be regarded as a material-dependent quantity, is introduced

here. If the magnitude |εβpl| of the plastic strain present in phase β reaches the satu-

ration strain εβpl,sat, the inheritance probability tends towards 1, i.e. Π̂β→α
ccv (ξβ, εβpl →

εβpl,sat; κ, ε
β
pl,sat) → 1 ∀ ξβ < 1. Figure 4.3 shows the development of the concave inher-

itance function for a given parameter of κ = 0.1 and an exemplary saturation strain

2Here and in the following, by convex or concave inheritance functions, we mean convex or concave
with respect to the volume fraction ξ.
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Π̂β→α
ccv (ξβ, εβpl; κ = 0.1, εβpl,sat = 0.05)
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Figure 4.3: Concave inheritance probability function depending on volume fraction ξβ and plastic strain
εβpl for given parameters κ = 0.1 and εβpl,sat = 0.05 (left), and the function depending on ξβ and κ for

given plastic strain εβpl = 0.025 (right).

of εβpl,sat = 0.05. Furthermore, the actual influence of κ on the inheritance probability

function is presented for an exemplary plastic strain of εβpl = 0.025.

4.2 Numerical integration of evolution equations

The solution of the strongly non-linear system of evolution equations required to obtain
an update of the internal variables, i.e. volume fractions, is traditionally carried out
using classical implicit integration schemes in combination with Newton-type iterations.
In contrast to that, in the current chapter an explicit integration scheme, also discussed
in [101] and Chapter 2, respectively, is applied. The integration scheme is based on the
assumption that the transformation rates of volume fractions ξ̇ proceed linearly within
a time step ∆t = n+1t− nt > 0, i.e. from state n to n+ 1. As shown in Chapter 2, it is
possible to obtain an explicit A-stable update using

n+1ξ = nξ +
1

2
∆t
[
n+1ξ̇ + nQ · nξ

]
, (4.33)

wherein

n+1ξ̇ :=

[
I − 1

2
∆t nQ

]−1

· nQ ·
[
1

2
∆t nQ · nξ + nξ

]
. (4.34)

Using this approach facilitates the solution of the presented system with high efficiency,
while the numerical stability is significantly improved compared to other explicit inte-
gration schemes such as forward-Euler. After the updated volume fractions are com-
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puted, the intermediate plastic strains nε̃αpl and
nε̃βpl solely resulting from the phase-

transformation can be obtained from (4.26) and (4.28) as described in Section 4.1.3.

Besides that, the time-integration of the differential equations governing the evolution
of plastic strain in each phase is carried out using a backward-Euler time integration
scheme, compare, e.g., [118]. The discrete update of the plastic strains from timestep nt
to n+1t according to (4.14) yields

n+1εαpl =
nε̃αpl +

n+1λα sgn
(
n+1qαpl,Ψ − n+1ξαbα

)
, (4.35)

with n+1εαpl = ε̂αpl(t =
n+1t) the updated plastic strains, nε̃αpl the current intermediate

plastic strain resulting from phase-transformation, n+1λα = ∆t λ̇α ∈ R
+ the current

Langrangian multiplier, and sgn(n+1qαpl,Ψ−n+1ξαbα) the sign of the plastic driving force—
being reduced by the back stress n+1ξαbα—assigned to phase α at time t = n+1t.

In the current context, the Lagrangian multiplier can be expressed in terms of the
trial value of the yield function Φαtri = Φ̂α(qαpl,Ψ,tri,

nY α), with the trial plastic driving

force qαpl,Ψ,tri and nY α = Ŷ α(nγα) the yield stress of phase α at time t = nt. For
the derivation of the trial plastic driving force, we make use of the intermediate state
potential Ψ̃ := Ψ̂ (n+1ε, nε̃1dpl , θ,

n+1ξ), where the updated volume fractions n+1ξ obtained
from the phase-transformation algorithm, (4.33) and (4.34), are considered. Thus, the
trial plastic driving force for phase α results in

qαpl,Ψ,tri = −
∂Ψ̂ (n+1ε, nε1dpl , θ,

n+1ξ)

∂ nεαpl

∣∣∣∣∣
θ

= − ∂

∂ nεαpl

∣∣∣∣∣
θ

ν∑

α=1

n+1ξαψ̂α(n+1ε, nεαpl, θ)

= − n+1ξα
∂ψ̂α(n+1ε, nεαpl, θ)

∂ nεαpl

∣∣∣∣∣
θ

. (4.36)

Based on this, the trial value Φαtri of the yield function can be evaluated, facilitating to
express the Lagrangian multiplier as

n+1λα =
Φαtri

n+1ξα [Eα +Hα]
. (4.37)

The plastic strains εαpl in each phase α can then be updated from time nt to n+1t in
an explicit manner according to (4.35), while the accumulated plastic strains n+1γα are
obtained from

n+1γα = nγ̃α + n+1λα . (4.38)
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Here, the consistency of history variables is accounted for by considering the intermediate
accumulated plastic strains

nγ̃α = ̂̃γα(nγα, nε̃αpl, nεαpl) := nγα + |nε̃αpl − nεαpl| . (4.39)

Moreover, note that the change of plastic strains due to inheritance can be expressed in
terms of

∆εαpl,inh := ε̃αpl − εαpl . (4.40)

A flowchart visualising the actual algorithmical implementation is provided in Sec-
tion 4.5.2.

4.3 Numerical Examples

This section provides several numerical examples for the model presented in Section 4.1,
where we consider homogeneous deformation states at constant temperature using a
quasi-static strain rate of ε̇ = 10−4 s−1. In Section 4.3.1 we show the behaviour of
the phase-transformation model without consideration of plasticity, illustrating that the
implemented phase transformation model works correctly.

Then, in Section 4.3.2 the interactions between phase-transformations and plasticity
are evaluated. In particular, two numerical examples are adressed, highlighting the
influence of concave and convex plasticity inheritance functions. For these examples we
restrict ourselves to the tensile regime in stress space, since we in this work only consider
a martensitic tension phase for simplicity.

In Section 4.3.3 we investigate the behaviour of the phase-transformation-plasticity
model when applied to material parameters corresponding to TRIP steel, see Table 4.2.
Note that the TRIP steel material parameters chosen particularly involve higher marten-
sitic transformation strains—however, the distinction between volumetric and deviatoric
transformation strains is not possible at this point, as it is introduced in a further model
extension provided in Chapter 3. For the presented TRIP steel results we once more
focus on the tensile regime, where the results are restricted to non-negative stresses as
in the case of SMA.

4.3.1 SMA – phase-transformations without plasticity

Figure 4.4 displays the stress-strain response of SMA at different temperatures. In order
to show that the model properly describes the temperature-dependent pseudo-elastic
response of SMA, we compute the stress-strain response at θ = 263K, Fig. 4.4(a), and
θ = 323K, Fig. 4.4(a), using parameters as suggested in [51] and a maximum strain of
εmax = 0.08.
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(a) Stress-strain diagram, θ = 263K.
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(b) Stress-strain diagram, θ = 323K.

Figure 4.4: Phase-transformations without plasticity in SMA: pseudo-plastic response as observed at
low temperatures, θ = 263K (a) and pseudo-elastic response as observed at high temperatures, θ =
323K (b), cf. [51].

4.3.2 SMA – phase-transformations with plasticity

In contrast to the non-plastic response provided in Section 4.3.1, we now make use of
the material parameters provided in Table 4.1. In particular, we now investigate the
behaviour of the model at a constant temperature of θ = 283K. As initial conditions,
we assume the material to consist of pure austenite, i.e. 0ξ = [ ξA|0, ξM|0 ]t = [ 1, 0 ]t.
The material is then loaded by applying a strain of ε̂(t) = τ̂ (t) εmax, where τ̂(t) ⊂ R is
a time-scaling function and εmax = 0.05 is the maximum applied strain.

Figure 4.5 shows the results obtained for a concave inheritance probability function,
where we restrict ourselves to the tensile regime, i.e. σ > 0. As a tensile load is applied,
martensite starts to evolve, see Fig. 4.5(b), while both material phases initially behave
elastically in terms of εApl = εMpl = 0 as ε < 0.0175, compare Fig. 4.5(c). At ε ≈ 0.0175,
plastic flow in the austenitic phase is initiated, and at ε ≈ 0.0225 also martensite starts
to deform plastically, such that εApl > εMpl . The simultaneous plastic flow of both material
phases can also be seen in the stress-strain diagram provided in Fig. 4.5(a) where a linear
proportional hardening behaviour for ε ∈ [ 0.0225, 0.05 ] is observed.

As austenite possesses a higher plastic strain than martensite during the first tensile
load cycle since εApl > εMpl for ε ∈ [ 0.0225, 0.05 ], compare Fig. 4.5(c), the evolving
martensitic phase, Fig. 4.5(b), inherits additional plastic strains present in the austenitic
phase. However, the change of plastic strains due to inheritance is rather small as long
as the change of plastic strains is mainly governed by the plastic evolution law (4.14),
see Fig. 4.5(d).

As the maximum strain of ε = 0.05 is reached, the load reverses. At this point also the
phase-transformations start to revert. As shown in Fig. 4.5(b), the volume fraction of
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(d) Change of plastic strains due to inheritance.

Figure 4.5: Phase-transformations in SMA: stress-strain diagram (a), evolution of volume fractions
(b), evolution of plastic strains (c) and change of plastic strains due to inheritance (d) resulting
from the evolution of phases obtained by applying a maximum tension of εmax = 0.05. Note
that concave inheritance probability functions ΠA→M = Π̂A→M

ccv (ξA, εApl;κ = 0.05, εApl,sat = 0.1) and

ΠM→A = Π̂M→A
ccv (ξM, εMpl ;κ = 0.05, εMpl,sat = 0.1) are chosen here, see Figure 4.3. The calculations are

carried out at constant temperature of θ = 283K.
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(b) Evolution of volume fractions.
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(c) Evolution of plastic strains.
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(d) Change of plastic strains due to inheritance.

Figure 4.6: Phase-transformations in SMA: stress-strain diagram (a), evolution of volume fractions
(b), evolution of plastic strains (c) and change of plastic strains due to inheritance (d) resulting from
the evolution of phases obtained by applying a maximum tension of εmax = 0.05. Note that convex
inheritance probability functions ΠA→M = Π̂A→M

cvx (ξA, εApl;κ = 0.1) and ΠM→A = Π̂M→A
cvx (ξM, εMpl ;κ =

0.1) are chosen here, see Fig. 4.2. The calculations are carried out at constant temperature of θ = 283K.
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martensite starts to decrease, while the austenitic phase is now evolving. Furthermore,
the evolution of plasticity stops—the change of plastic strains is now solely driven by
inheritance resulting from the evolution of the austenitic phase, see Fig. 4.5(b). Due to
the concave inheritance function applied, a part of the plastic strains is pushed to the
martensitic phase, while the other part is inherited by austenite. Physically speaking,
the dislocations pushed by the phase front lead to an increased plastic distortion of
the martensitic phase such that the martensitic plastic strains increase, cf. Fig. 4.5(c).
On the other hand, at ε = 0.05 the martensitic plastic strains are smaller than those in
austenite. Thus the inheritance initially leads to a decrease of plastic strains in austenite.
As the martensitic plastic strains increase futher, at ε ≈ 0.03 also the austenitic plastic
strains start to increase again. In line with Fig. 4.5(a), at ε ≈ 0.0225 the stress reaches
σ = 0 and the load cycle is completed.
Assuming a convex inheritance probability function means that dislocations are rather

pushed than inherited by trend, compare Figs. 4.2 and 4.3. Fig. 4.6 provides the re-
sults obtained for SMA using a convex inheritance probability function. Comparison
of Figs. 4.6(c) and 4.5(c) shows that the convex inheritance function leads to a slightly
stronger increase of plastic strains in martensite, with at the same time stronger decrease
of plastic strains in austenite. This corresponds to the assumption, that—by trend—the
convex inheritance function rather pushes dislocations to the decreasing phase, while less
dislocations remain for inheritance by the increasing phase. Comparison of Figs. 4.6(a)
and 4.5(a) and Figs. 4.6(b) and 4.5(b), respectively, shows that the plasticity inheritance
function has an influence also on the macroscopic response of the material. Not only the
zero stress state is reached at different strains, but also the evolution of phases differs.
To be specific, after reverting the load austenite is much more likely to evolve assuming
concave inheritance, while for convex inheritance the austenitic volume fraction evolves
with less intensity, cf. Figs. 4.5(b) and 4.6(b).

4.3.3 TRIP steel – phase-transformations with plasticity

Apart from SMA, we also investigate the behaviour of the material model when material
constants as provided in Table 4.2 are applied. These are adapted to what is known for
TRIP steels. As initial conditions, we once more assume the material to consist of pure
austenite, i.e. 0ξ = [ ξA|0, ξM|0 ]t = [ 1, 0 ]t. Furthermore, we restrict ourselves to the
tensile regime and non-negative stresses in the following. The calculation is done at a
constant temperature of θ = 283K.

Figure 4.7 shows the results obtained for a concave inheritance probability function.
Initially, the material behaves purely elastic, as neither phase-transformations occur nor
plastic strains evolve, see Figs. 4.7(b) and 4.7(c), respectively. Then, at a strain of
ε ≈ 0.005, austenite starts to deform plastically, Fig. 4.7(c), as soon as the evolution of
the martensitic tensile phase is triggered, Fig. 4.7(b). For further increased strain, both
phases and thus the overall macroscopic material is undergoing plastic flow. As the load
reverses, the volume fractions as well as the plastic strains remain constant, resulting in
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a purely elastic deformation back to the unloaded state at which external forces vanish
identically, i.e. σ = 0. This result coincides with the experimentally observed fact that
TRIP steels do not show the pseudo-elastic hysteresis behaviour as in the case of SMA.
Comparison of Figs. 4.5(b) and 4.5(c) and 4.7(b) and 4.7(c), respectively, shows that
for SMA the material initiates phase-transformations as soon as the load is applied
and subsequently starts yielding when a given critical macroscopic load is reached. In
contrast to that, when applied to TRIP steel the model predicts that the material starts
yielding and transformation simultaneously.
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Figure 4.7: Model based on TRIP steel material parameters: stress-strain diagram (a), evolution of
volume fractions (b), evolution of plastic strains (c) and change of plastic strains due to inheritance
(d) resulting from the evolution of phases obtained by applying a maximum tension of εmax = 0.05.

Note that concave inheritance probability functions ΠA→M = Π̂A→M
ccv (ξM, εMpl ;κ = 0.05, εMpl,sat = 0.1)

and ΠM→A = Π̂M→A
ccv (ξA, εApl;κ = 0.05, εApl,sat = 0.1) are chosen here, see Figure 4.3. The calculations

are carried out at constant temperature of θ = 283K.
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4.4 Summary

The main goal of this chapter is to develop a coupled model for the interaction of
phase-transformations and plasticity. As a basis, we make use of the one-dimensional
micromechanically motivated potential-based phase-transformation model introduced in
Chapter 2. Based on this model, we extend the Helmholtz free energy function of the
material in order to account for the influence of evolving plastic strains. Furthermore,
we use a von-Mises type plasticity model in terms of the driving forces for each phase as
related to the overall potential. For the plasticity model, we consider linear proportional
hardening, facilitating to transpose the backward-Euler based evolution law in such way,
that explicit updates of the plastic strains as well as plastic history variables are enabled
in each load step. Together with the A-stable explicit update of the volume fractions,
the overall model turns out to be numerically efficient.
The influence of the inheritance probability function is discussed in detail for SMA,

where it is shown, that the type of inheritance law has an influence not only on the
macroscopic stress response, but also on the evolution of volume fractions. Besides the
application to SMA, we also apply the model to TRIP steel material parameters. In
case of TRIP steel, the correlation between simulated stress-strain response and experi-
mentally observed stress-strain behaviour shows a good agreement, where in particular
the ongoing hardening up to large strains is represented by the model, see e.g. [34]. It
turns out that for SMA the material first transforms and then yields, while for TRIP
the material initiates yielding and transformation basically simultaneously. Although
the underlying phase-transformation model was originally established for SMA, see [51],
the application of the coupled phase-transformation plasticity model to TRIP steel gives
promising results in view of future enhancements of the model.
In view of the chapters to follow, the correlation between simulation and experiment

is expected to become more exact by additionally taking into account a martensitic
compression phase, which—as discussed in [101]—is expected to increase the accurracy
of the simulation results and allows to take into account the compression regime in
addition. Also an extension of the model to the three-dimensional case, e.g. by means of
a micro-sphere approach, will contribute to a generalisation of the macroscopic material
response.
As elaborated in Section 4.3, the chosen inheritance law has a severe influence on the

macroscopic material response. To this end, it is necessary to carry out detailed micro-
mechanical experiments that reveal the complex interactions between evolving phase
fronts and moving dislocations, eventually giving insight to the physical inheritance
probability law depending on the volume fractions and dislocation densities as well as—
in general—also on the temperatures of the involved phases.
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4.5 Appendix

4.5.1 Material parameters

The material parameters used in this chapter are provided in Table 4.1 for SMA and
in Table 4.2 for the TRIP steel simulations. Note that TRIP steel is considered to
provide a higher Young’s modulus and initial yield stress when compared to SMA.
The experimentally observed high strength of the martensitic phase in TRIP steel is
accounted for by means of the higher initial yield stress.

Table 4.1: SMA material parameters considered in Section 4.3.2, compare, e.g., [20, 51].

SMA phase material parameter symbol value

austenite A (parent phase) Young’s modulus E
A 67 GPa

hardening modulus HA
E
A/6

initial yield stress Y A
0 1200 MPa

transformation strain εAtr 0

latent heat λA
T 0

martensite M Young’s modulus E
M 26.3 GPa

hardening modulus HM
E
M/3

initial yield stress Y M
0 600 MPa

transformation strain εMtr 0.025

latent heat λM
T 14500 J/kg

common parameters coefficient of thermal expansion ζ 12× 10−7 K−1

reference temperature θ0 273 K

heat capacity cp 400 J/kgK

transition attempt frequency ω 1.6 s−1

transformation region’s volume ∆v 2.71 × 10−18 mm3

Boltzmann’s constant k 1.381 × 10−23 J/K
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4 Phase-transformations interacting with plasticity

Table 4.2: Specific TRIP steel material parameters considered, compare [79].

TRIP steel phase material parameter symbol value

austenite A (parent phase) Young’s modulus E
A 160 GPa

hardening modulus HA
E
A/4

initial yield stress Y A
0 800 MPa

transformation strain εAtr 0

martensite M Young’s modulus E
M 160 GPa

hardening modulus HM
E
M/12

initial yield stress Y M
0 1200 MPa

transformation strain εMtr 0.04

common parameters: transition attempt frequency ω 16 s−1
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4.5.2 Algorithmic flowchart

1 while t < tmax do

2 set t = n+1t = nt+∆t ∈ [ 0, tmax ]

3 given nξ =
[
nξA, nξM

]t
, nε1dpl =

[
nεApl,

nεMpl

]t
, nγ =

[
nγA, nγM

]t
, n+1ε

4 get n+1ξ ⊲ see (4.33)

5 if ∆ξM = n+1ξM − nξM > 0 then

6 set increasing phase α := M, decreasing phase β := A

7 else

8 set increasing phase α := A, decreasing phase β := M

9 end if

10 get Πβ→α = Π̂β→α(n+1ξβ, nεβpl; ...) ⊲ plastic inheritance probability

11 get nε̃αpl and
nε̃βpl ⊲ see (4.26) and (4.28)

12 set ∆εαpl,inh and ∆εβpl,inh ⊲ see (4.40)

13 set nγ̃α = ̂̃γα(nγα, nε̃αpl, nεαpl) and nγ̃β = ̂̃γβ(nγβ, nε̃βpl, nε
β
pl) ⊲ see (4.39)

14 get Ψ̃ := Ψ̂(n+1ε, nε̃1dpl , θ,
n+1ξ) ⊲ intermediate state potential

15 get qαpl,Ψ,tri and qβpl,Ψ,tri ⊲ see (4.36)

16 get n+1λα and n+1λβ ⊲ see (4.38)

17 get n+1εαpl and
n+1γα ⊲ see (4.35) and (4.38)

18 set n+1σ =
∂Ψ̂(n+1ε, n+1ε1dpl , θ,

n+1ξ)

∂ n+1ε

∣∣∣∣∣
θ,n+1ε1dpl

⊲ see (4.22)

19 return n+1ξ, n+1ε1dpl ,
n+1γ, n+1σ

20 set n← n+ 1

21 end while

Algorithm 3: Update scheme for the one-dimensional coupled phase-transformation plasticity model.
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5 An affine micro-sphere model for
phase-transformations interacting
with plasticity

In this chapter, we use the one-dimensional, thermodynamically consistent phase-
transformation model based on statistical physics that was originally introduced in [51]
and that we used as a basis for the micro-sphere model presented in Chapter 2. Moreover,
we consider the extension to plasticity by enhancing the Helmholtz free energy functions
of the material phases considered as introduced in Chapter 4. We apply the coupled
model to the simulation of phase-transformations between an austenitic parent phase A
and a martensitic tension and compression phase, Mt and Mc in TRIP steel.

For conceptual simplicity, we assume von Mises-type plasticity with linear proportional
hardening, where the plastic driving forces acting in each phase are derived from the
overall free energy potential of the mixture. The coupled systems of evolution equations
are evaluated using a staggered solution approach, where the change in plastic strains
directly resulting from changing phase fractions is considered by means of a physically
motivated plasticity inheritance law, cf. Chapter 4.

The one-dimensional model capturing phase-transformations and plasticity is em-
bedded into an affine micro-sphere formulation in order to simulate three-dimensional
boundary value problems—a technique well-established in the context of computational
inelasticity at small strains, see e.g. [17] and [75]. The particular formulation pro-
posed as this chapter proceeds does not exhibit a volumetric-deviatoric split in the
kinematics—note that the general framework is extended to capture different strain
modes in Chapter 3. For the solution of the underlying system of evolution equations,
we use a Newmark-based explicit integration scheme which was proved unconditionally
A-stable [101]. In addition to homogeneous deformation states investigated in Sec-
tions 5.1 and 5.2, representative finite element examples are discussed in Section 5.3. It
is shown that the model is capable of reflecting the experimentally observed behaviour
of TRIP steel.
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5.1 One-dimensional model for phase-transformations

interacting with plasticity

The phases considered are presumed to show thermo-elasto-plastic behaviour. In this
context, a Helmholtz free energy function ψα = ψ̂α(ε, εαpl, θ) of the form

ψα =
1

2
Eα[ε− εαtr − εαpl]2 − ζα Eα [ε− εαtr − εαpl][θ − θ0] + Cα (5.1)

is assigned to each phase α. Here, we consider

Cα = ρ0 c
α
p θ

[
1− log

(
θ

θ0

)]
− ρ0 λαT

[
1− θ

θ0

]
(5.2)

the chemical energy, Eα the Young’s modulus, ε = ∇xu the total strains, εtr the trans-
formation strains, εpl the plastic strains, ζ the coefficient of thermal expansion, θ the
current absolute temperature, θ0 the reference temperature, cp the heat capacity, and
λT the latent heat of the respective material phase. Since the distortional energy of the
phase boundaries is neglected here, the overall free energy of the mixture Ψ =

∑
α ξ

αψα

follows directly from the free energy contributions of the constituents.

The Gibbs potential G is obtained by carrying out the Legendre-transformation

G =

ν∑

α=1

ξα [ψα − σ ε] , (5.3)

where σ = ∂Ψ/∂ε|θ,εpl is the stress acting in the one-dimensional continuum considered.
As introduced in Chapter 2, transformation probabilities are computed and assembled
to a transformation probability matrix Q ∈ R3×3, facilitating to derive the evolution
of volume fractions as ξ̇ = Q · ξ, wherein ξ = [ξA, ξMt, ξMc]t in line with Chapters 2
and 3. Here, A denotes austenite, whereas Mt and Mc refer to the martensitic tension
and compression phase. See Section 2.1.2 for details on the algorithmical treatment of
this system of evolution equations.

To incorporate plasticity, the individual plastic driving force qαpl,Ψ of each phase α is

derived from the overall energy potential Ψ according to qαpl,Ψ = − ∂Ψ/∂εαpl
∣∣
θ,ε,ξ

. With the

driving force and the current yield stress Y α at hand, the yield function Φα determining
the admissible elastic domain in phase α is given as

Φ̂α(qαpl,Ψ , Y
α) = |qαpl,Ψ − ξα bα| − ξα Y α ≤ 0 (5.4)

with an equilibrium back stress

bα := σ̂ α(ε = 0, εαpl = 0, θ) = −Eαεαtr + ζαEαεαtr[θ − θ0] . (5.5)
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(a) Applied tension-compression load path ε̂(t)
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Figure 5.1: One-dimensional tension-compression load cycle applied to the underlying one-dimensional
coupled model for the simulation of phase-transformations and plasticity. The load path provided
in (a) shows the scalar-valued strain that is applied at a constant strain rate with maximum strain
εmax = 0.03. The obtained stress-strain response is provided in (b) and corresponds to experimentally
observed macroscopic TRIP steel responses. Moreover, we provide the evolution of volume fractions
and plastic strains in (c) and (d), respectively.
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We assume linear proportional hardening for conceptual simplicity, facilitating to derive
the current yield stress as Y α = Y 0+εαpl,accH

α, with Y 0 the initial yield stress, εαpl,acc the
accumulated plastic strains and Hα the hardening modulus. For the evolution of plastic
strains, we obtain

ε̇αpl = λ̇α
∂Φα

∂qαpl,Ψ
= λ̇α sgn

(
qαpl,Ψ − ξα bα

)
(5.6)

with an appropriate Lagrangian multiplier λ̇α ≥ 0. Further details on the numerical
evaluation as well as all material parameters considered are provided in Table 4.2. Be-
sides that, in the current chapter we assume εMc

tr = −0.04 for the transformation strains
of the newly introduced martensitic compression phase.

In addition to the evolution of plastic strains, we also consider incremental changes in
plastic strains resulting from incremental changes in volume fractions—a mechanism we
call plastic inheritance. The basic concept of plastic inheritance is the idea that plastic
strains—or rather dislocations—can be either inherited or pushed by a propagating
phase front. The inheritance probability Π , i.e. the probability of plastic strains being
inherited to a propagating phase, is assumed to depend on current volume fractions
ξ, the amount of the volume fraction increment ∆ξ, the density of plastic strains εpl
and specific material parametres. Based on these quantities, an inheritance probability
function can be evaluated, resulting in a specific inheritance probability value Π ∈
[0, 1] ⊂ R. Since we here consider three solid material phases, the plastic inheritance
law valid for two phases—as derived in Section 4.1.3—is now generalised to capture
inheritance interactions between three independent material phases. For more details
on the derivation of the three-phase plasticity inheritance law, see Section 6.2.

Consider the discrete update from time nt to n+1t, with ∆t := n+1t− nt > 0. Suppose
that the volume fraction of one phase α ∈ {A,Mt,Mc} increases from step n to n + 1,
i.e. ∆ξα = n+1ξα − nξα > 0 and that the two remaining phases β and γ decrease,
i.e. ∆ξβ < 0 and ∆ξγ < 0, with β, γ ∈ {A,Mt,Mc}. The updated plastic strains ε̃pl
resulting from an incremental change in volume fractions can then be computed from

ε̃αpl =
1

n+1ξα

[
nεαpl

nξα −Πβ→α∆ξβ nεβpl −Πγ→α∆ξγ nεγpl

]
, (5.7)

ε̃βpl =
1

n+1ξβ
[
nξβ +Πβ→α∆ξβ

]
nεβpl , (5.8)

ε̃γpl =
1

n+1ξγ
[nξγ +Πγ→α∆ξγ] nεγpl . (5.9)
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In case that we have one decreasing phase α and two increasing phases, β and γ, it
follows

ε̃αpl =
nεαpl
n+1ξα

[
nξα −Πα→β∆ξβ −Πα→γ∆ξγ

]
, (5.10)

ε̃βpl =
1

n+1ξβ

[
nεβpl

nξβ +Πα→β ∆ξβ nεαpl

]
, (5.11)

ε̃γpl =
1

n+1ξγ
[
nεγpl

nξγ +Πα→γ ∆ξγ nεαpl
]

, (5.12)

for the consistently updated plastic strains.

A numerical example depicting the behaviour of the one-dimensional material model
is provided in Fig. 5.1. Here, we use a quasi-static strain rate of ε̇ = 6 × 10−5 s−1 with
a load path provided in Fig. 5.1(a). The obtained stress-strain response is depicted in
Fig. 5.1(b), whereas the evolution of volume fractions ξ is shown in Fig. 5.1(c). It is
shown that the martensitic tensile phase Mt evolves during the tensile load cycle, while
the martensitic compression phase Mc evolves during the compression load cycle. More-
over, the evolution of individual plastic strains for each phase is provided in Fig. 5.1(d).

5.2 Micro-sphere application

To extend the one-dimensional coupled model to three dimensions, it is embedded into
a kinematically constrained affine micro-sphere formulation using, e.g., 21 integration
directions, cf. [75, 92]. In this context, the one-dimensional micro-sphere strains ε are
obtained using projections of the macro-scale strain tensor ε with respect to the under-
lying integration directions r ∈ U

2. To be specific, ε = [r ⊗ r] : ε represents the affine
strain in the direction of r being transferred to the micro-sphere level, cf. Section 2.2.

Apart from the transfer of macroscopic strains to the micro level, the relevant quanti-
ties computed at the micro level, i.e. stresses, volume fractions and plastic strains, have
to be transferred back to the macro level. The macroscopic stresses σ = σ̂(σ), volume

fractions Ξα = Ξ̂α(ξα) and plastic strains εmac,α
pl = ε̂mac,α

pl (εαpl) are derived as

σ =
1

4π

∫

U2

σ r ⊗ r da , (5.13)

Ξα =
1

4π

∫

U2

ξα da , (5.14)

εmac,α
pl =

1

4π

∫

U2

εαpl da , (5.15)
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(a) Applied load path ε11(t) where the macro-
scopic strain tensor is prescribed as ε̂(t) =
ε11(t) e1 ⊗ e1.

 

 

σ
1
1

[G
P
a
]

ε11 [−]
−0.03 −0.015 0.015 0.03

−2

2

−1

0

0

1

(b) Macroscopic stress-strain response in terms
of the σ11 micro-sphere stress component. Note
that this macroscopic response nicely reflects ex-
perimentally observed behaviour of TRIP steel.
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(c) Spatial distribution of volume fractions at
maximum tension, i.e. state p1 in (a). During the
first tensile cycle, only a small austenitic volume
fraction transforms to martensite.
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(d) Spatial distribution of plastic strains ob-
tained at maximum tension, i.e. state p1 in (a).

Figure 5.2: Application of the one-dimensional coupled model for the simulation of phase-
transformations and plasticity in an affine micro-sphere framework using 21 integration directions. A
mixed volumetric-deviatoric load is applied where the macroscopic strain tensor is prescribed in terms
of ε̂(t) = ε11(t) e1⊗e1 with a maximum strain of ε11,max = 0.03 (a). The corresponding σ11 stress com-
ponent is provided in (b). The spatial distribution of volume fractions and plastic strains, (c) and (d),
respectively, are obtained for the state of maximum tension, i.e. state p1 in (a).
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(a) Spatial distribution of volume fractions
at maximum compression, i.e. state p2 in
Fig. 5.2(a). The visualisation shows that both
the martensitic tensile and compression phase
have evolved within the TRIP steel polycrystal.
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Figure 5.3: Application of the one-dimensional coupled model for the simulation of phase-
transformations and plasticity in an affine micro-sphere framework using 21 integration directions:
spatial distribution of volume fractions and plastic strains obtained within the polycrystal after one
tension-compression load cycle, see state p2 in Fig. 5.2(a).

facilitating a numerical approximation via

σ =
nr∑

i=1

σi w̄i ri ⊗ ri , (5.16)

Ξα =

nr∑

i=1

ξαi w̄i , (5.17)

εmac,α
pl =

nr∑

i=1

εαpl,i w̄i , (5.18)

with σi the micro stress acting in ith integration direction, ξαi and εαpl,i the volume
fraction and plastic strains of phase α situated in the ith integration direction ri, and
w̄i the weighting factors depending on the micro-sphere integration scheme used.

A computational example showing the material behaviour at the macro-scale level
is depicted in Figs. 5.2 and 5.3. In the example provided, a homogeneous, mixed
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5 An affine micro-sphere model for phase-transformations interacting with plasticity

volumetric-deviatoric load is applied, where the prescribed macroscopic strain tensor
ε is set to

ε̂(t) = ε11(t) e1 ⊗ e1 . (5.19)

Here, ε11(t) is linearly varied with a strain rate of ε̇11 = 6 × 10−5 s−1 according to the
load path provided in Fig. 5.2(a). The stress-strain response in terms of the σ11 stress
component is given in Fig. 5.2(b). The obtained spatial distributions of volume fractions
and plastic strains at maximum tension, i.e. at state p1 in Fig. 5.2(a), are provided in
Figs. 5.2(c) and 5.2(d). It is shown that the martensitic tensile phase starts to evolve
during the tensile load cycle as corresponding to the observations made in Fig. 5.1(c).
Moreover, the results show that plastic strains evolve mainly in the direction of maximum
applied load, i.e. the e1-direction. The distributions of volume fractions and plastic
strains at the end of the load cycle, i.e. at state p2 in Fig. 5.2(a), are given in Fig. 5.3.

5.3 Finite element implementation

For the finite element implementation, the fourth-order algorithmic tangent operator
needs to be computed. In the affine micro-sphere context, the algorithmic tangent
operator is assembled based on the scalar-valued microscopic tangent moduli Ealg :=
dσ/dε according to

Ealg :=
dσ

dε
=

1

4π

∫

U2

Ealg r ⊗ r ⊗ r ⊗ r da , (5.20)

enabling a numerical approximation via

Ealg =

nr∑

i=1

Ealg
i w̄i ri ⊗ ri ⊗ ri ⊗ ri . (5.21)

The microscopic tangent moduli Ealg
i for each integration direction ri are obtained from

the elastic stiffness contributions of the individual phases as we make use of the Voigt
assumption here, cf. (5.1). To this end, we express Ealg

i in terms of

Ealg
i =

ν∑

α=1

ξαi E
alg,α , (5.22)

where the elasto-plastic tangent modulus Ealg,α of each phase α takes the form

Ealg,α =




Eα , if λ̇αi = 0
EαHα

Eα +Hα
, if λ̇αi > 0

(5.23)
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5.3 Finite element implementation

Figure 5.4: Considered tensile specimen and its numerical approximation with axisymmetric finite
elements. As boundary conditions, we apply Dirichlet constraints to the top and bottom edge of the
discretised model, where the bottom edge is spatially fixed in loading direction and the top edge of the
model—corresponding to the horizontal center line of the overall specimen—is loaded with a prescribed
tension/compression displacement uc. The height of the discretised model is 4mm, i.e. the maximum
applied tensile deformation uc = 0.12mm corresponds to a macroscopic strain of 3%. Note that the
deformations provided in Figs. 5.6–5.11 are scaled with a factor of 5.

due to the linear proportional hardening assumed. Here, Eα is the Young’s modulus and
Hα the hardening modulus of phase α.

As a representative finite element example, a full tension-compression cycle of an ax-
isymmetric rod is elaborated. Fig. 5.4 shows the considered geometry and its finite
element approximation, where we make use of axisymmetric finite elements in order to
capture the axisymmetric geometry of the tensile specimen considered. Moreover, due
to symmetry reasons, it is sufficient to restrict the simulation to just one quarter of
the rod, enabling an efficient solution of the macroscopic boundary value problem. The
macroscopic mechanical response of the material is provided in Fig. 5.5 in terms of a
force-displacement diagram. The macroscopic mechanical response reflects the experi-
mentally observed mechanical behaviour of TRIP steel.

For a detailed investigation of the evolution of internal variables within the specimen,
we provide contour plots of representative internal quantities for the states of maximum
tension and maximum compression, as well as for the final material state obtained after
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Figure 5.5: Force-displacement relation obtained during one tension-compression load cycle of the
considered axisymmetric tensile specimen, cf. Fig. 5.4. The center displacement uc corresponds to the
center of the overall specimen, i.e. the top edge of the axi-symmetric finite element approximation of
the body.

one complete tension-compression load cycle. To this end, the evolution of the largest
principal stress component σI is provided in Fig. 5.6, whereas the obtained tensile stress
component σzz is displayed in Fig. 5.7. Both figures show that the highest stresses are
obtained in the constricted central cross-section of the specimen.
To assess the reduction of the parent phase resulting from the mechanical loading

applied to the specimen, we provide contour plots of the macroscopic austenitic volume
fraction ΞA in Fig. 5.8. During tension, the austenitic volume fraction if reduced by
only few percents, with a further decrease as the load cycle proceeds. The plastic strains
evolving within the austenitic parent phase are given in Fig. 5.9. During tension, plastic
tensile strains evolve within austenite, while in the compression regime compressive
plastic strains are observed.
Finally, we visualise the evolution of the macroscopic martensitic tensile and compres-

sion phase, ΞMt and ΞMc, in Figs. 5.10 and 5.11, respectively. As expected, the figures
show that the martensitic tensile phase evolves in the tensile load states whereas the
compression phase evolves in the compressive load states.
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5.3 Finite element implementation

Figure 5.6: Distribution of the largest principal stress component σI [MPa] within the specimen. The
left figure corresponds to the state of maximum tension with uc = 0.12mm, the plot in the center is
obtained for maximum compression at uc = −0.12mm, and the visualisation on the right corresponds
to the final state obtained after one complete tension-compression load cycle, uc = 0, see Fig. 5.5.

Figure 5.7: Distribution of the axial stress component σzz [MPa] within the specimen. The left figure
corresponds to the state of maximum tension with uc = 0.12mm, the plot in the center is obtained for
maximum compression at uc = −0.12mm, and the visualisation on the right corresponds to the final
state obtained after one complete tension-compression load cycle, uc = 0, see Fig. 5.5.
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5 An affine micro-sphere model for phase-transformations interacting with plasticity

Figure 5.8: Distribution of the macroscopic austenitic volume fraction ΞA [–] within the specimen. The
left figure corresponds to the state of maximum tension with uc = 0.12mm, the plot in the center is
obtained for maximum compression at uc = −0.12mm, and the visualisation on the right corresponds
to the final state obtained after one complete tension-compression load cycle, uc = 0, see Fig. 5.5.

Figure 5.9: Distribution of the macroscopic austenitic plastic strains εApl [–] within the specimen. The
left figure corresponds to the state of maximum tension with uc = 0.12mm, the plot in the center is
obtained for maximum compression at uc = −0.12mm, and the visualisation on the right corresponds
to the final state obtained after one complete tension-compression load cycle, uc = 0, see Fig. 5.5.
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5.3 Finite element implementation

Figure 5.10: Distribution of the macroscopic martensitic tensile phase ΞMt [–] within the specimen.
The left figure corresponds to the state of maximum tension with uc = 0.12mm, the plot in the center
is obtained for maximum compression at uc = −0.12mm, and the visualisation on the right corresponds
to the final state obtained after one complete tension-compression load cycle, uc = 0, see Fig. 5.5.

Figure 5.11: Distribution of the macroscopic martensitic compression phase ΞMc [–] within the spec-
imen. The left figure corresponds to the state of maximum tension with uc = 0.12mm, the plot in
the center is obtained for maximum compression at uc = −0.12mm, and the visualisation on the right
corresponds to the final state obtained after one complete tension-compression load cycle, uc = 0,
see Fig. 5.5.
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5 An affine micro-sphere model for phase-transformations interacting with plasticity

5.4 Summary

The main goal of this chapter is to establish the coupled phase-transformation and plas-
ticity model presented in Chapter 4 for three solid phases using TRIP steel material
parameters. To this end, a more generalised plasticity inheritance law—consistently
capturing the inheritance interactions of three individual phases—is considered. The
overall one-dimensional model is embedded into an affine micro-sphere formulation and
representative examples under homogeneous deformation are provided for both the
micro-scale and the macro-level. Moreover, finite element simulations are performed,
and selected representative results are shown. In summary, the results presented show
the capability of the established model to capture the macroscopic behaviour of TRIP
steel [39].
However, the use of the affine micro-sphere framework as presented in this chapter

involves two restrictions that are adressed in Chapter 6. On the one hand, the macro-
scopic Poisson’s ratio of the material is still restricted to νP = 0.25 as elaborated in
Chapter 2. On the other hand, volumetric load states result in an evolution of plastic-
ity since the current framework does not allow for the distinction between volumetric
and deviatoric load states. An extension of the current, affine micro-sphere model to a
non-affine version considering a volumetric-deviatoric split in kinematics is not trivial
due to the underlying, physically motivated scheme that is used for the evolution of
volume fractions. To be precise, an extension to a non-affine micro-sphere framework
requires noteworthy changes with respect to the computation of the underlying Gibbs
energy barriers that determine the transformation probabilities between the considered
phases and thereby drive the evolution of volume fractions. To overcome the afore-
mentioned model restrictions, an extension of the model to non-affine kinematics was
presented in Chapter 3. This model extension allows to capture the actual macroscopic
Poisson’s ratio of the material and, at the same time, serves as the foundation for the
implementation of a solely deviatoric plasticity coupling in Chapter 6.
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6 A non-affine micro-sphere model for
phase-transformations interacting
with plasticity

In order to extend the model presented in Chapter 3 that allows for the simulation
of the austenitic-martensitic tranformations in NiTi-based alloys to the simulation of
the austenitic-martensitic transformation in TRIP steels, several key aspects have to
be considered. First, the interactions between plasticity and phase-transformations
play a key role in the simulation of TRIP steels undergoing phase-transitions, see
e.g. [34, 39, 84, 86, 103, 138] amongst others. Therefore, the model introduced in Chap-
ter 3 has to be extended to take into account multi-phase plasticity as incorporated in
Section 6.1.3. Moreover, the coupled interactions of plasticity and phase-transformations
must be considered as elaborated in Section 6.2. Secondly, the non-zero volume change
of TRIP steel observed during phase-transformation is accounted for by introducing a
non-zero volumetric transformation strain in the modelling framework at hand, cf. Sec-
tion 6.1.1. Note that SMA—in contrast to TRIP steel—does not exhibit volumetric
changes during austenitic-martensitic transformation. Finally, the characteristic work
hardening observed for TRIP steels is captured by an appropriately chosen plastic hard-
ening law.
The chapter at hand is organised as follows, cf. [105]. In Section 6.1, we extend the for-

mulations proposed in Chapters 2 and 3 to a coupled scalar-valued phase-transformation-
plasticity model, where Section 6.1.1 focuses on the enhanced Helmholtz and Gibbs en-
ergy potentials that are assigned to each phase. Section 6.1.2 gives a brief outline of the
physically-motivated evolution law that we consider for the evolution of volume fractions.
Subsequently, the incorporation of plasticity is discussed in detail in Section 6.1.3. The
aforementioned interactions between plasticity and phase-transformations are motivated
and elaborated in Section 6.2 by means of a consistent three-phase plasticity inheritance
framework that we propose in this work. To capture the material response at polycrystal
level, we use the micro-sphere framework elaborated in [49, 74, 91, 92] in Section 6.3.
To this end, we briefly outline the kinematic approach and the micro-macro relations in
Sections 6.3.1 and 6.3.2, respectively. The required algorithmic tangent modulus and its

109



6 A non-affine micro-sphere model for phase-transformations interacting with plasticity

elastic contribution that allows for the assessment of the elastic anisotropy evolution of
the material, see e.g. [142], are introduced in Section 6.3.3, facilitating the simulation
of uniaxial stress states resembling a macroscopic tensile test on a homogeneous level.
The micro-sphere simulations are carried out for both SMA and TRIP steel; the results
are presented in Section 6.3.4, where Section 6.3.4.1 focuses on the SMA simulation
and Section 6.3.4.2 discusses the TRIP steel results. The sensitivity of the results with
respect to the order of the underlying micro-sphere integration scheme is discussed in
Section 6.3.5. Finally, we demonstrate a finite element implementation of the overall
constitutive model where the results of representative inhomogeneous boundary value
problems in terms of shear and tension of a plate with hole are presented for both
SMA and TRIP steel in Section 6.4. The chapter is concluded by a summary given in
Section 6.5.

6.1 Scalar-valued phase-transformation model with

volumetric-deviatoric split and plasticity

The one-dimensional phase-transformation model is based on mixture theory and follows
the basic ideas introduced in [51]. For the phases considered, we make use of the Voigt
assumption, i.e. all material phases α are subjected to the same strain measures. The
model is capable of handling an arbitrary amount of material phases, where the non-
negative volume fraction

ξα := lim
v→0

(
vα

v

)
(6.1)

of each phase α ∈ {1, . . . , ν} ⊂ N is subject to the usual physical restrictions, including
conservation of mass, namely

ξα ∈ [0, 1] ⊂ R ,
ν∑

α=1

ξα = 1 , so that
ν∑

α=1

ξ̇α = 0 . (6.2)

6.1.1 Helmholtz and Gibbs energy potentials of the individual
phases

We start by assigning a Helmholtz free energy potential ψα = ψ̂α(εdev, εvol, ε
α
pl, θ) of the

form

ψα = ψαdev + ψαvol + ψαtherm + ψαchem (6.3)

to each phase α, where we consider a split of elastic energies into deviatoric and volumet-
ric contributions, ψαdev = ψ̂αdev(εdev, ε

α
pl) and ψ

α
vol = ψ̂αvol(εvol), respectively. Furthermore,
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6.1 Scalar-valued phase-transformation model with volumetric-deviatoric split and plasticity

we account for energy related to thermal expansion, ψαtherm = ψ̂αtherm(εdev, εvol, ε
α
pl, θ), and

temperature-dependent chemical energies ψαchem = ψ̂αchem(θ). Note that the plastic strains
εαpl are—besides their influence in thermal expansion—accounted for in each phase solely
within the deviatoric energy term but not in the volumetric energy contribution. To be
specific, the energy contributions take the form

ψαdev =
1

2
Eαdev

[
εdev − εαtr,dev − εαpl

]2
(6.4)

ψαvol =
1

2
Eαvol

[
εvol − εαtr,vol

]2
(6.5)

ψαtherm = −ζα Eα
[
ε− εαtr − εαpl

]
[θ − θ0] (6.6)

ψαchem = ρ0 c
α
p θ

[
1− log

(
θ

θ0

)]
− ρ0 λαT

[
1− θ

θ0

]
(6.7)

for each phase α, cf. Sections 3.1.1 and 4.1. We consider a volumetric-deviatoric-type
split of total strains ε = εdev + εvol as well as transformation strains εαtr = εαtr,dev + εαtr,vol.
The volumetric contribution εαtr,vol of the total transformation strain εαtr is chosen to be
zero for SMA, as no change in volume is observed for SMA during phase-transformation.
In contrast, for the consistent capture of the transformation behaviour of TRIP steel,
a non-zero volumetric transformation strain is considered, see the material parameters
provided in Tables 6.1 and 6.2, respectively.

The considered strain measures εdev and εvol are obtained from projections of the
macroscopic strain tensor in the context of the micro-sphere approach presented in Sec-
tion 6.3. Here, we denote Eαdev and Eαvol as deviatoric and volumetric elasticity coefficients
on the micro-level, see [27, 104]. Moreover, we consider ζα the coefficient of thermal ex-
pansion, θ the current absolute temperature and θ0 the reference temperature. The
temperature-dependent chemical energy ψαchem further accounts for the heat capacity cαp
and the latent heat λαT of the respective material phase α, cf. [51].

The overall phase potential Ψ = Ψ̂ (εdev, εvol, ξ, ε
1d
pl , θ) is obtained from the contribu-

tions of the constituents and can be expressed as

Ψ =
ν∑

α=1

ξαψα , (6.8)

where ξ = [ξ1, . . . , ξν ]t ∈ Rν×1 is the collection of the volume fractions and ε1dpl =
[ε1pl, . . . , ε

ν
pl]

t ∈ R
ν×1 is the collection of the individual one-dimensional plastic strains

assigned to each phase in the given material mixture.
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(b) Tensile state.

Figure 6.1: Visualisation of the contributions to the overall Gibbs free energy potential G of the three-
phase material mixture considered in this work. The initial state (a) shows the energy minimum of the
austenitic parent phase A to be located between both martensite minima. After a tensile deformation
is applied to the material, the martensitic tensile phase Mt becomes energetically favourable as shown
in (b). Analogously, for an applied compression load state the martensitic compression phase Mc takes
the distinct energy minimum.

Carrying out a Legendre-transformation of the Helmholtz free energy of the mixture
yields the overall Gibbs potential

Ĝ(∂εdevΨ, ∂εvolΨ ) = Ψ − ∂Ψ

∂εdev

∣∣∣∣
εdev,θ

εdev −
∂Ψ

∂εvol

∣∣∣∣
εvol,θ

εvol

=
ν∑

α=1

ξαψα −
ν∑

α=1

ξα
∂ψα

∂εdev

∣∣∣∣∣
εdev,θ

εdev −
ν∑

α=1

ξα
∂ψα

∂εvol

∣∣∣∣∣
εvol,θ

εvol

=
ν∑

α=1

ξαgα , (6.9)

where use has been made of the additive decomposition given in (6.8). Here,

ĝ α(∂εdevψ
α, ∂εvolψ

α) = ψα − ∂ψα

∂εdev

∣∣∣∣
εdev,θ

εdev −
∂ψα

∂εvol

∣∣∣∣
εvol,θ

εvol (6.10)

is the contribution of phase α to the overall Gibbs potential G. Due to the quadratic
nature of the Helmholtz potential, the obtained Gibbs potential is also of quadratic
nature, precisely, the Gibbs potential gα of every individual phase α has the form of an
elliptic paraboloid with εdev and εvol as functional parameters. The contributions to the
overall Gibbs energy G of the material accordingly have three local minima for a 3-phase
material as visualised in Fig. 6.1.
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6.1.2 Evolution of volume fractions

The evolution equations for the volume fractions ξα are derived in a similar way to the
derivations introduced in Section 2.1, cf. [51], and to the extensions thereof presented
in Chapter 3, cf. [104]. For the sake of completeness of this chapter, we will however
briefly summarise the main relations in the following.

The modelling approach introduces a transformation probability matrix Q ∈ Rν×ν ,
which drives the evolution of volume fractions in terms of ξ̇ = Q · ξ. In line with the
previous chapters, we restrict the formulation to three material phases for the sake of
simplicity—the model and its numerical implementation is not restricted to a specific
number of phases. We consider an austenitic parent phase A and a martensitic tension
and compression phase Mt and Mc, respectively, so that the transformation probability
matrix Q ∈ R3×3, cf. (2.6), refers to ξ = [ξA, ξMt, ξMc]t ∈ R3×1 as the arrangement of
components in the vector of volume fractions ξ.

As introduced in Chapter 2, the transformation probabilities used for the components
of Q are derived from

Pα→β = exp

(−∆v bα→β

k θ

)
, (6.11)

with ∆v the constant transformation region’s volume, bα→β the energy barrier for the
transformation from phase α to phase β, k the Boltzmann constant, and θ the given
temperature. Note that, in general, bα→β 6= bβ→α and thus Pα→β 6= Pβ→α holds.

Following the derivations introduced in [104], the computation of an energy barrier
bα→β—characterising the energy barrier that needs to be overcome for the transformation
from one phase α to another phase β—is described briefly in the following. The Gibbs
energy barrier makes use of the minimum value of the intersection curve of two elliptic
paraboloids. To be precise, the Gibbs potentials gα and gβ of the two involved phases α
and β are evaluated in volumetric and deviatoric strain space. To this end, we assume
that the paraboloids intersect and are not identical. The intersection of both elliptic
paraboloids can then be expressed by means of a parametric curve.

Equating the Gibbs potentials of the two phases α and β,

ĝ α(εdev, εvol, ε
α
pl, θ) = ĝ β(εdev, εvol, ε

β
pl, θ) , (6.12)

results in an equation for the two unknowns εdev and εvol for given plastic strains, εαpl
and εβpl, and temperature θ in the current material state. By rearranging terms, the

deviatoric strains εiscdev at which gα and gβ intersect can be expressed in terms of the
volumetric strains

εiscdev = ε̂ isc
dev(εvol) , (6.13)

113



6 A non-affine micro-sphere model for phase-transformations interacting with plasticity

where the superscript “isc” refers to intersection curve. Considering this relation to-
gether with (6.10) allows the expression of the actual value of both Gibbs potentials
along the intersection curve in terms of

ĝ isc,α,β(εvol)
∣∣
εαpl,ε

β
pl,θ

:= ĝ α(ε̂ isc
dev(εvol), εvol, ε

α
pl, θ) (6.14)

≡ ĝ β(ε̂ isc
dev(εvol), εvol, ε

β
pl, θ) . (6.15)

To obtain the energy barrier bα→β required for the evolution of volume fractions, we seek
for the minimum of the Gibbs energy along this parametric curve, i.e.

g isc,α,β
min := min

εvol

(
ĝ isc,α,β(εvol)

∣∣
εαpl,ε

β
pl,θ

)
. (6.16)

Due to the implicit nature of the equations, it is not possible to obtain an analytical
solution for this problem. Hence, the minimisation of (6.15) is carried out numerically
using, e.g., a Newton scheme as discussed in detail in [104]. The ansatz for the extension
of this scheme to the plasticity-extended model proposed in this work is given in 6.6.2.
With the minimum g isc,α,β

min of the intersection curve of the Gibbs potentials of both
phases α and β at hand, the energy barriers are computed according to

bα→β = g isc,α,β
min − gαmin (6.17)

and

bβ→α = g isc,α,β
min − gβmin , (6.18)

where gαmin and gβmin denote the absolute minima of the Gibbs potentials gα and gβ,
respectively. For details on the analytical derivation of the minima of the considered
elliptic Gibbs energy paraboloids, the reader may refer to [104].

6.1.3 Incorporation of plasticity

For the incorporation of plasticity, we use a von Mises-type plasticity approach, where
we—for conceptual simplicity—assume linear proportional hardening. The plastic driv-
ing force qαpl,Ψ is derived from the overall Helmholtz potential for each individual phase
as

qαpl,Ψ = −
∂Ψ̂ (εdev, εvol, ξ, ε

1d
pl , θ)

∂εαpl

∣∣∣∣∣
εdev,εvol,ξ,θ

= − ξα
∂ψ̂α(εdev, εvol, ε

α
pl, θ)

∂εαpl

∣∣∣∣∣
εdev,εvol,θ

= ξα
[
Eαdev

[
εdev − εαtr,dev − εαpl

]
− ζαEα [θ − θ0]

]
. (6.19)
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Note that the ξα coefficient in the driving force ensures that the driving force is zero
for a volume fraction of zero value, i.e. no plasticity can evolve within a phase of zero
volume fraction.

With the driving force and the current yield stress Y α at hand, the yield function
Φα = Φ̂α(Y α, qαpl,Ψ ) determining the admissible elastic domain in phase α, takes the form

Φ̂α(qαpl,Ψ , Y
α) = |qαpl,Ψ −Bα| − ξα Y α ≤ 0 . (6.20)

The current yield stress Y α = Ŷ α(εαpl,acc) = Y α
0 +Hα εαpl,acc is given by the initial yield

stress Y α
0 which is then modified by Hα εαpl,acc due to accumulated plastic strains εαpl,acc

of the respective material phase, where Hα denotes the constant hardening modulus of
phase α. The individual back stress Bα is additionally considered in order to prevent
plastic flow occurring in the initial equilibrium state. To be specific, the underlying
Voigt assumption leads to an initial driving force of

Bα := qαpl,Ψ
∣∣
εdev=εvol=ε

α
pl=0,θ

= − ξα
[
Eαdev ε

α
tr,dev + ζαEα[θ − θ0]

]
(6.21)

that acts in each phase α and, in consequence, is considered as a back stress in the
yield function. Based on the yield function presented, we use an associated flow rule,
facilitating the derivation of the evolution law for the plastic strain in phase α by means
of

ε̇αpl = λ̇α
∂Φ̂α(qαpl,Ψ , Y

α)

∂qαpl,Ψ
= λ̇α sgn

(
qαpl,Ψ − Bα

)
(6.22)

with an appropriate Lagrange multiplier λ̇α ≥ 0 and λ̇α Φα = 0. Note that we neglect the
contribution of the mechanical dissipation to the evolution of temperature. Moreover,
for the temperature range considered in this work, the yield stress of the material does
not depend on the temperature.

Consider now the discrete update from time nt to n+1t, with ∆t := n+1t− nt > 0. In
case of plastic loading, the Lagrange multiplier can be expressed in terms of the trial
value of the yield function Φαtri = Φ̂α(qαpl,Ψ,tri,

nY α), with the trial plastic driving force

qαpl,Ψ,tri and
nY α = Ŷ α(nεαpl,acc) the yield stress of phase α at time nt. For the derivation

of the trial plastic driving force, we use the intermediate state potential

Ψ̃ := Ψ̂ (n+1εdev,
n+1εvol,

n+1ξ, nε̃1dpl , θ) , (6.23)

where the updated volume fractions n+1ξ are considered. Here, nε̃1dpl = [nε̃1pl, . . . ,
nε̃νpl] is

the collection of current plastic strains as obtained from plastic evolution and subsequent
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6 A non-affine micro-sphere model for phase-transformations interacting with plasticity

transformation-induced plastic inheritance, cf. Section 6.2. Thus, the trial plastic driving
force for phase α results in

n+1qαpl,Ψ,tri = −
∂Ψ̂ (n+1εdev,

n+1εvol,
n+1ξ, nε̃1dpl , θ)

∂ nεαpl

∣∣∣∣∣
θ

= − n+1ξα
∂ψ̂α(n+1εdev,

n+1εvol,
nεαpl, θ)

∂ nεαpl

∣∣∣∣∣
nε̃αpl,θ

= n+1ξα
[
Eαdev

[
n+1εdev − εαtr,dev − nε̃αpl

]
− ζαEα [θ − θ0]

]
. (6.24)

Based on this, the trial value Φαtri of the yield function can be evaluated, facilitating—in
the case of plastic loading—the expression of the Lagrange multiplier as

n+1λα =
Φ̂α(n+1qαpl,Ψ,tri,

nY α)
n+1ξα [Eα +Hα]

. (6.25)

The plastic strains εαpl in each phase α can, in consequence, be directly updated from
time nt to n+1t according to

n+1εαpl =
nε̃αpl +

n+1λα sgn
(
n+1qαpl,Ψ − Bα

)
, (6.26)

whereas the accumulated plastic strains n+1εαpl,acc are obtained from

n+1εαpl,acc =
nε̃αpl,acc +

n+1λα . (6.27)

Here, the consistency of history variables is accounted for by considering the intermediate
accumulated plastic strains

nε̃αpl,acc = ̂̃ε
α

pl,acc(
nεαpl,acc,

nε̃αpl,
nεαpl) :=

nεαpl,acc + |nε̃αpl − nεαpl| , (6.28)

see Section 6.2 for details on the derivation of intermediate plastic strains ε̃αpl resulting
from plastic inheritance caused by incremental changes of volume fractions.

6.2 Consistent plasticity inheritance law for three phases

In this section, we extend the inheritance law introduced in [102] to ν = 3 phases. Due
to mass conservation—as implied by (6.2)b—the sum of all volume fractions yields

ξα + ξβ + ξγ = 1 with α, β, γ ∈ {A, Mc, Mt } and α 6= β 6= γ . (6.29)
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For the derivation of the extended inheritance law, we consider again the discrete update
from time nt to n+1t, with ∆t := n+1t− nt > 0. It follows

n+1ξα + n+1ξβ + n+1ξγ = nξα + nξβ + nξγ (6.30)

as well as n+1ξ•, nξ• ≥ 0. Using the definition ∆ξ• := n+1ξ•−nξ• for the volume fraction
increments, (6.30) can be expressed as

∆ξα +∆ξβ +∆ξγ = 0 , (6.31)

which reflects (6.2)c.

First, we assume the volume fraction of one phase, say α, to increase from step n to
n+ 1, i.e. ∆ξα = n+1ξα − nξα > 0. Inserting this relation in (6.31) then yields

∆ξβ +∆ξγ < 0 (6.32)

One possibility to fulfil this inequality is to have the volume fractions of both phases β
and γ decreasing, i.e. ∆ξβ < 0 and ∆ξγ < 0. Besides, if we assume that the volume
fraction of one phase, say β, increases, i.e. ∆ξβ > 0, then the volume fraction of the
remaining phase γ must decrease such that (6.31) is fulfilled, i.e. ∆ξγ < 0. In summary,
we either have one increasing and two decreasing phases, or two increasing and one
decreasing phase if we initially assume that one phase α increases from step n to n+ 1.

Next, we assume the volume fraction of phase α to decrease from step n to n + 1,
i.e. ∆ξα = n+1ξα − nξα < 0. From (6.31) one obtains

∆ξβ +∆ξγ > 0 (6.33)

as a constraint. On the one hand, this inequality can be fulfilled if the volume fractions
of both phases β and γ increase, i.e. ∆ξβ > 0 and ∆ξγ > 0 such that (6.31) is fulfilled.
On the other hand, if we assume that the volume fraction of one phase,say β, decreases,
i.e. ∆ξβ < 0, then the volume fraction of the remaining phase γ must increase, i.e. ∆ξγ >
0. In summary, these results show that an incremental change of volume fractions can
be expressed either in terms of one decreasing and two increasing phases, or in terms
of one increasing and two decreasing phases. The special case of one phase remaining
constant—while only two phases evolve—is captured by the inheritance rules presented
in sections 6.2.1 and 6.2.2 and is briefly discussed in Section 6.2.3.

6.2.1 Derivation of inheritance rules in the case of one increasing
and two decreasing phases

We assume that the volume fraction of phase α increases, while phases β and γ decrease,
i.e. ∆ξα > 0 and ∆ξβ ≤ 0 as well as ∆ξγ ≤ 0, cf. Fig. 6.2, such that (6.31) is fulfilled.
The amount of plastic strains nεβpl of phase β assigned to the (non-negative) part |∆ξβ|
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6 A non-affine micro-sphere model for phase-transformations interacting with plasticity

of the volume fraction nξβ at time nt is given as |∆ξβ| nεβpl and inherited to the growing

phase α with a certain inheritance probability Πβ→α. The same holds for the plastic
strains of phase γ, facilitating the expression of the updated intermediate plastic strains
ε̃αpl present in phase α in terms of

ε̃αpl
n+1ξα = nεαpl

nξα +Πβ→α|∆ξβ| nεβpl +Πγ→α|∆ξγ| nεγpl , (6.34)

where we consider a physically reasonable concave (“ccv”) inheritance probability func-
tion

Πβ→α = Π̂β→α
ccv (n+1ξβ, nεβpl; κ, ε

β
pl,sat) =

1− exp

(
−κ [1− n+1ξβ]

εβpl,sat − |nε
β
pl|

)

1− exp

(
−κ

εβpl,sat − |nε
β
pl|

) . (6.35)

For a detailed discussion, including an alternative convex inheritance probability func-
tion, we refer to [102].

αβ γ

∆ξβ ≤ 0 ∆ξγ ≤ 0

Figure 6.2: Phase α increases, while phases β and γ decrease.

In consequence, the intermediate plastic strains ε̃•pl within both decreasing phases β
and γ are reduced due to the aforementioned part of plastic strains inherited to the
increasing phase α. For phases β and γ we obtain

ε̃•pl
n+1ξ• = nε•pl

nξ• −Π•→α|∆ξ•| nε•pl . (6.36)
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6.2 Consistent plasticity inheritance law for three phases

Considering the signs of the volume fraction increments, ∆ξβ ≤ 0 and ∆ξγ ≤ 0, the
intermediate plastic strains resulting from an incremental change of volume fractions as
given in (6.34) and (6.36) finally result in

ε̃αpl =
1

n+1ξα

[
nεαpl

nξα −Πβ→α∆ξβ nεβpl −Πγ→α∆ξγ nεγpl

]
, (6.37)

ε̃βpl =
1

n+1ξβ
[
nξβ +Πβ→α∆ξβ

]
nεβpl , (6.38)

ε̃γpl =
1

n+1ξγ
[nξγ +Πγ→α∆ξγ] nεγpl (6.39)

in case of one increasing phase α, and two decreasing phases, β and γ. Note that the
overall plastic strains of the one-dimensional continuum considered remain constant in
terms of

∑

α,β,γ

ε̃•pl
n+1ξ• =

∑

α,β,γ

nε•pl
nξ• . (6.40)

In physical terms, this corresponds to the assumption that dislocations are neither gen-
erated nor annihilated by an evolving phase front that propagates due to diffusion-less
lattice shearing that drives the evolution of phases.

6.2.2 Derivation of inheritance rules in the case of one decreasing

and two increasing phases

In contrast to Section 6.2.1, we now assume that the volume fraction of one phase—here
denoted as α without loss of generality—decreases, while the remaining phases—β and
γ—increase, i.e. ∆ξα < 0 with appropriate ∆ξβ ≥ 0 and ∆ξγ ≥ 0, cf. Fig. 6.3, such that
the mass conservation constraint (6.31) is fulfilled. Consider first the phases β and γ,
which increase their volume fractions at the expense of phase α. The volume fraction
increments ∆ξ• of both phases β and γ inherit the plastic strains nεαpl present in phase
α at time nt, thus for the intermediate plastic strains of phases β and γ

ε̃•pl
n+1ξ• = nε•pl

nξ• +Πα→•∆ξ• nεαpl (6.41)

holds, with Πα→• the probability for the inheritance from phase α to phases β and
γ, respectively. In consequence—in order to fulfil the requirement that the amount of
plastic strains remains constant in the context of (6.40)—the plastic strains present in
the decreasing phase α change according to

ε̃αpl
n+1ξα = nεαpl

nξα −Πα→β∆ξβ nεαpl −Πα→γ∆ξγ nεαpl . (6.42)
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αβ γ

∆ξβ ≥ 0 ∆ξγ ≥ 0

Figure 6.3: Phase α decreases, while phases β and γ increase.

In summary, the intermediate plastic strains in the case of one decreasing phase α,
and two increasing phases, β and γ, result in

ε̃αpl =
1

n+1ξα
[
nξα −Πα→β∆ξβ −Πα→γ∆ξγ

]
nεαpl , (6.43)

ε̃βpl =
1

n+1ξβ

[
nεβpl

nξβ +Πα→β∆ξβ nεαpl

]
, (6.44)

ε̃γpl =
1

n+1ξγ
[
nεγpl

nξγ +Πα→γ ∆ξγ nεαpl
]

, (6.45)

as obtained from (6.41) and (6.42).

6.2.3 Remarks on the inheritance rules

It can be shown that the inheritance rules consistently take into account the special
case of two evolving phases, while the third phase remains constant. Consider on the
one hand—without loss of generality—that phase α evolves, i.e. ∆ξα > 0, while phase
γ remains constant, ∆ξγ = 0, inducing ∆ξβ = −∆ξα < 0 from (6.31). The related
inheritance laws, (6.37), (6.38), (6.39), then reduce to

ε̃αpl =
1

n+1ξα

[
nεαpl

nξα +Πβ→α∆ξα nεβpl

]
, (6.46)

ε̃βpl =
1

n+1ξβ
[
nξβ +Πβ→α∆ξβ

]
nεβpl , (6.47)

ε̃γpl = nεγpl , (6.48)

where ∆ξγ = 0 is considered in (6.46), (6.47), (6.48), while in addition ∆ξβ = −∆ξα
and n+1ξγ = nξγ are considered in (6.46) and (6.48), respectively.

On the other hand, if we assume the volume fraction of phase α to decrease, ∆ξα < 0,
while—again without loss of generality—γ remains constant, i.e. ∆ξγ = 0, we obtain
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∆ξβ = −∆ξα > 0 for phase β from (6.31). The inheritance rules derived for this case,
(6.43), (6.44), (6.45), result in

ε̃αpl =
1

n+1ξα
[
nξα +Πα→β∆ξα

]
nεαpl , (6.49)

ε̃βpl =
1

n+1ξβ

[
nεβpl

nξβ +Πα→β∆ξβ nεαpl

]
, (6.50)

ε̃γpl = nεγpl , (6.51)

with ∆ξγ = 0 being considered in (6.49), (6.50), (6.51). In addition, ∆ξβ = −∆ξα and
n+1ξγ = nξγ is accounted for in (6.49) and (6.51), respectively. Comparison of (6.48)
and (6.51) shows that no plastic strains are inherited within a phase of constant volume
fraction in either case. Furthermore, in the case of one phase remaining constant, the
inheritance rules (6.37), (6.38), (6.39) and (6.43), (6.44), (6.45) consistently reduce to
the inheritance law applicable for just two evolving phases as derived in [102]. Moreover,
it is clear that equations (6.46) and (6.47) (with α as the increasing phase and β as the
decreasing phase) are equivalent to (6.50) and (6.49) (with α as the decreasing phase
and β as the increasing phase), respectively. In consequence, the presented physically
motivated inheritance rules are self-consistent and capture all special cases that may
occur with respect to the possible transformation states of the three phases considered.

6.3 Micro-sphere application

The scalar-valued model for the interaction of phase-transformations and plasticity es-
tablished in Section 6.1 is embedded into a non-affine micro-sphere framework to allow
the simulation of three-dimensional homogeneous load cases and for the solution of
three-dimensional boundary value problems. The definition of affine, respectively non-
affine models is not uniquely introduced in the literature. From the perspective of a
given spatial micro-sphere integration direction, in the current model not only the strain
corresponding to the macroscopic stretch projected onto the same direction is consid-
ered, but two strain measures are transferred to the micro-level even though both are
determined from the macro-strains. In this sense, the strain measures used for each
integration direction do not only depend on the macro-strains projected in this direction
alone. This motivates the use of the term non-affine.

In the context of a small strain non-affine micro-sphere framework, the local de-
formation state ε := ∇sym

x u is split into volumetric and deviatoric parts in terms of
ε = εvol + εdev with εvol = 1/3 tr(ε)I and εdev = ε − 1/3 tr(ε)I, where I denotes the
second-order identity tensor. Both tensorial quantities are then projected onto each spa-
tial integration direction ri ∈ U

2 considered for the numerical micro-sphere integration
scheme as briefly presented in Section 6.3.1.
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6.3.1 Kinematics

For the material model proposed, we use a kinematically constrained non-affine micro-
sphere model, where the vector norm of the projection εri = [ri · ε · ri] ri of the strain
tensor ε onto each integration direction ri is split into the volumetric and deviatoric
contributions εdev,i and εvol. To be precise, ri ·ε ·ri = εdev,i+εvol with εdev,i = ri ·ε ·ri−
1/3 tr(ε) and εvol = 1/3 tr(ε). Applying this kinematic constraint in combination with
volumetric and deviatoric elasticity coefficients on the micro-level, Evol = E/[1−2 νP] and
Edev = E/[1 + νP], facilitates the capturing of different Young’s moduli E and Poisson’s
ratios νP on the macro-level as shown in [27].
Note that this split of the projection of the macroscopic strain induces εdev(ri) =

εdev(−ri), whereas εvol does not depend on ε and a single direction ri alone but on
the trace of ε. In consequence, the strain history obtained for any spatial integration
direction ri is identical to the strain history obtained in the opposite direction −ri of
the micro-sphere. As a result, for symmetric initial conditions in terms of the material’s
initial state, the constitutive response obtained in one spatial direction is identical to
the response of the opposite spatial direction for every load state. Thus, the symmetry
of the kinematic projections in combination with symmetric initial conditions for the
material state allows for the application of efficient micro-sphere integration schemes
that require the numerical integration to be carried out solely on one hemisphere as
presented in Section 6.3.5.

6.3.2 Micro-macro-relations

In this section we review how stresses, state-dependent variables, and derived quantities
obtained at the micro-level are transferred to the macro-scale. Section 6.3.2.1 shows the
derivation of the macroscopic stress tensor based on the overall Helmholtz free energy
potentials of the phase mixtures assigned to the individual micro-sphere integration
directions. Sections 6.3.2.2 and 6.3.2.3 show how volume fractions and plastic strains
obtained at the micro-level are transferred to the macro-level, where we introduce higher-
order moments and a deviatoric macroscopic plastic strain tensor.

6.3.2.1 Stresses

In the context of the micro-sphere approach, the macroscopic stress tensor σ is obtained
by integration over the unit sphere, resulting in the numerical approximation

σ =
1

4π

∫

U2

∂Ψ

∂ε
da ≈

nr∑

i=1

∂Ψi
∂ε

w̄i =
nr∑

i=1

σi (6.52)

with the help of a finite number i of spatial integration directions, cf., e.g., [75, 92, 101,
104]. The constitutive relation is evaluated in every such direction, where the individual
strain- and history-dependent material response related to each integration direction ri
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contributes to the overall macroscopic stress tensor σ. Here, ∂Ψi/∂ε is the contribution
of the i’th integration direction weighted by the numerical integration weight w̄i with∑

i w̄i = 1. Note that Ψi = Ψ̂i(εdev,i, εvol, ξi, ε
1d
pl,i) is the overall Helmholtz potential of the

specific phase mixture situated in integration direction ri, where ξi = [ξ
(1)
i , . . . , ξ

(ν)
i ]t ∈

R
ν×1 and ε1dpl,i = [ε

(1)
pl,i, . . . , ε

(ν)
pl ] are the corresponding collections of volume fractions and

individual plastic strains per phase, respectively. Applying the chain rule to the partial
derivative of the overall phase potential Ψi with respect to the macroscopic strain tensor
ε yields

∂Ψi
∂ε

=
∂Ψi
∂εvol

∂εvol
∂ε

+
∂Ψi
∂εdev,i

∂εdev,i
∂ε

=
∂Ψi
∂εvol

1

3
I +

∂Ψi
∂εdev,i

[
ri ⊗ ri −

1

3
I

]
. (6.53)

Considering (6.8) together with (6.3), the terms ∂Ψi/∂εvol and ∂Ψi/∂εdev in (6.53) take
the form

∂Ψi
∂εvol

=
ν∑

α=1

ξαi
[
Eαvol

[
εvol − εαtr,vol

]
− ζαEα [θ − θ0]

]
and (6.54)

∂Ψi
∂εdev,i

=

ν∑

α=1

ξαi
[
Eαdev

[
εdev,i − εαtr,dev − εαpl,i

]
− ζαEα [θ − θ0]

]
, (6.55)

where the volumetric strain projection εvol is identical for all integration directions.
Note that for every integration direction ri of the micro-sphere, the deviatoric strain
projections εdev,i, the volume fractions of all phases ξαi and the plastic strains εαpl,i need
to be considered and evaluated individually. The numerical micro-sphere approximation
of the macroscopic stress tensor finally results in

σ ≈
nr∑

i=1

σi =

nr∑

i=1

ν∑

α=1

ξαi σ
α
i , (6.56)

with

σα
i =

[
1

3

[
Eαvol

[
εvol − εαtr,vol

]
− ζα Eα [θ − θ0]

]
I

+
[
Eαdev

[
εdev,i − εαtr,dev − εαpl,i

]
− ζα Eα [θ − θ0]

] [
ri ⊗ ri −

1

3
I

] ]
w̄i (6.57)

the tensor-valued stress contribution of phase α situated in the ith micro-sphere inte-
gration direction.
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6.3.2.2 Macroscopic volume fractions

A scalar measure for the macroscopic volume fractions Ξα = Ξ̂α(ξα) is obtained by
integration over the unit sphere in terms of

Ξα =

nr∑

i=1

ξαi w̄i , (6.58)

resulting in a structural tensor of zeroth order that corresponds to a simple arithmetic
averaging of the micro-quantities, where ξαi is the volume fraction of phase α situated in
the i th integration direction ri. From a macroscopic point of view, a more detailed in-
sight into the anisotropy of the material is obtained by computing higher-order structural
tensors that give additional information on the spatial distribution of volume fractions.

6.3.2.3 Macroscopic plastic strains

As in the case of the macroscopic volume fractions, cf. Section 6.3.2.2, the macroscopic
plastic strains can be derived in terms of structural tensors of different order. For
example, a scalar macroscopic plastic strain measure εα,mac

pl is obtained from

εα,mac
pl =

nr∑

i=1

εαpl,i w̄i , (6.59)

while the macroscopic plastic strain tensor of second-order can be derived as

ε
α,mac
pl =

nr∑

i=1

εαpl,i [ri ⊗ ri] w̄i . (6.60)

Note that the second-order plastic strain tensor obtained in this manner is not necessarily
purely deviatoric. To ensure a purely deviatoric second-order macroscopic plastic strain
tensor, (6.60) can be modified with the help of the fourth-order deviatoric projection
operator Idev, resulting in

ε
α,mac
pl,dev =

nr∑

i=1

εαpl,i [ri ⊗ ri] : I
dev w̄i (6.61)

=

nr∑

i=1

εαpl,i [ri ⊗ ri] :

[
Isym − 1

3
I ⊗ I

]
w̄i (6.62)

=
nr∑

i=1

εαpl,i

[
ri ⊗ ri −

1

3
I

]
w̄i , (6.63)

with Isym denoting the fourth-order symmetric identity tensor and I the second-order
identity tensor. However, as this work proceeds—especially in view of the finite element
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results presented in Section 6.4—we restrict the illustrations to the scalar averaging of
the microscopic plastic strains according to (6.59) in order to assess the amount of plastic
strains generated at a given material point.

6.3.3 Anisotropic elasticity tensor and tangent operator

The algorithmic tangent operator Ealg is required for the iterative determination of uni-
axial stress states within a constitutive driver framework, facilitating the simulation of
tensile tests with uniaxial stress states in homogeneous simulations as shown in Sec-
tion 6.3.4. Moreover, it is required for the finite element implementation presented in
Section 6.4. For the model framework proposed in this work, the tangent operator can
be split into elastic and inelastic contributions, Ealg = Eel + Ealg

pl . To be precise,

Ealg :=
dσ

dε
(6.64)

= Eel + Ealg
pl (6.65)

=

nr∑

i=1

∂σi

∂ε
+

nr∑

i=1

ν∑

α=1

∂σ

∂sαi
· ∂s

α
i

∂ε
, (6.66)

with sαi = [ξαi , ε
α
pl,i, ε

α
pl,acc,i] representing the state-dependent variables of phase α located

in integration direction ri. The elastic part Eel = ∂σ/∂ε of the algorithmic tangent
modulus corresponds to the anisotropic elasticity tensor of the material. The reader
is referred to [104], respectively Chapter 3, for a detailed elaboration on its derivation.
The inelastic contribution Ealg

pl to the tangent modulus can be derived in a component-
by-component manner based on (6.66) as shown in, e.g., [118].

To assess the evolution of anisotropy within the material, we visualise the fourth-
order anisotropic elasticity tensor by means of Young’s modulus surface plots as shown
in, e.g., [23, 31, 142]. To this end, the fourth-order compliance tensor Cel := E−1

el is
projected onto spatial directions d, where the latter are unit vectors obtained from a
parametrisation of the unit sphere U2. The projection δCel(Cel,d) of the fourth-order
compliance tensor onto each unit vector,

δCel(Cel,d) = [d⊗ d] : Cel : [d⊗ d] , (6.67)

results in the scalar compliance of the material in the specific spatial direction d, the
inverse of which yields the sought Young’s modulus E(d) in direction d,

E(d) = δ
−1Cel(Cel,d) = [ [d⊗ d] : Cel : [d⊗ d] ]−1 . (6.68)

Graphical representations of E(d) for selected representative deformation states for both
SMA and TRIP steel are provided in Figs. 6.7(a), 6.7(b), 6.10(a), and 6.10(b).
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6.3.4 Micro-sphere application – numerical examples

In this section, the constitutive response of the previously described model is presented
for a characteristic homogeneous load case. Cyclic tension and compression of the ma-
terial is applied to the polycrystal, i.e. at the micro-sphere level, while maintaining
uniaxial stress states with the help of a constitutive driver. To this end, we prescribe
the deformation in terms of the ε11 strain component while iteratively adapting ε22 and
ε33 so that the uniaxiality σ = σ11 e1 ⊗ e1 of the stress tensor is ensured in every load
step.

The cyclic tension-compression simulations of the polycrystal are performed for both
SMA and TRIP steel material parameters at a room temperature of 20◦C with a high-
order micro-sphere integration scheme providing nr = 350 spatial integration directions.
The results obtained for SMA are discussed in Section 6.3.4.1, the results for TRIP steel
are elaborated in Section 6.3.4.2.

6.3.4.1 Application to NiTi-based shape memory alloy

For the investigation of the SMA response at polycrystal level we apply the loading
path shown in Fig. 6.4(a) with a quasi-static cycle duration of T = 1600 s to the ε11
component of the macroscopic strain tensor. As initial condition we consider a purely
austenitic initial state, i.e. ξA|t0 = 1, inducing ξMt|t0 = ξMc|t0 = 0 at a room temperature
of θ = 20 ◦C. The material parameters used for the simulation of SMA are provided in
Table 6.1.

The resulting uniaxial stress response σ11 of the material as depicted in Fig. 6.4(b)
corresponds to the macroscopic mechanical response typically observed for SMA material
at room temperature. At a maximum strain of ε11 = 0.04 a stress of σ11 = 200MPa is
observed for the polycrystalline SMA.

Apart from the stress response, we show the evolution of internal variables in the
direction of maximum load, i.e. the e1-direction, as well as the homogenised macroscopic
counterparts of these quantities. To be precise, Fig. 6.5(a) shows the evolution of volume
fractions ξαe1 in the e1-direction while Fig. 6.5(c) presents the evolution of plastic strains
εαpl,e1 in the same direction. The macroscopic volume fractions Ξα shown in Fig. 6.5(b)
are computed according to (6.58), i.e. we show the obtained scalar averaged quantities
here. The macroscopic plastic strains εα,mac

pl given in Fig. 6.5(d) are obtained in an
analogous manner according to (6.59) for the sake of simplicity.

The evolution of volume fractions in the underlying e1 integration direction, see
Fig. 6.5(a), shows how the onset of plasticity, cf. Fig. 6.5(c), represses the evolution
of the martensitic tensile phase during the tensile load cycle. Moreover, Figs. 6.5(c)
and 6.5(d) show the effects of the plasticity inheritance framework introduced in Sec-
tion 6.2. For example, as the initial tensile load is applied, the martensitic compression
phase Mc remains zero in the e1 integration direction, as does the corresponding plastic
strain εMc

pl,e1
. As the load reverses and the martensitic compression phase starts to grow

126



6.3 Micro-sphere application

−0.04

−0.02

0

0

0.02

0.04

T/2 T 3T/2 2T 5T/2 3T
time t

ε 1
1

[−
]

(a) Loading path prescribed in e1-direction.
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Figure 6.4: Three-dimensional SMA micro-sphere simulation with constitutive driver maintaining an
uniaxial macroscopic stress state in e1-direction during all load steps. The results are obtained at
θ = 20 ◦C for 350 equally distributed micro-sphere integration directions. Shown is the prescribed load
path (a) and the obtained uniaxial macroscopic stress response (a). See Fig. 6.5 for the corresponding
evolution of volume fractions and plastic strains within the material.

at the cost of both the austenitic and the martensitic tensile phase, it inherits the plas-
tic strains of the latter phases as suggested by the corresponding close-to-vertical line
depicted in Fig. 6.5(c).

Figures 6.6 and 6.7 provide visualisations of the internal state of the simulated SMA
polycrystal at two representative loading states, namely at the state of maximum tension,
ε11 = 0.04 reached at t = T/4, and at the state of maximum compression, ε11 = −0.04
reached at t = 3/4 T , cf. Fig. 6.4(a). For both states, we provide the spatial distribution
of volume fractions, the spatial distribution of plastic strains and a Young’s modulus
surface plot, thereby facilitating the assessment of the elastic anisotropy evolution.

The spatial distribution of volume fractions at maximum tension, Fig. 6.6(a), shows
how the initially purely austenitic crystal transforms to the tensile martensite variant in
the tensile direction, i.e. in direction of the e1-axis. Orthogonal to this axis, i.e. in the
e2-e3-plane, the evolution of the martensitic compression variant is observed due to the
constitutive driver controlling the lateral compression deformation. The corresponding
spatial distribution of plastic strains in the same material state depicted in Fig. 6.6(c)
shows the evolution of plasticity in the austenitic parent phase and in the martensitic
tensile phase in a cone around the e1-axis. The corresponding elastic anisotropy of the
material in the given state is presented in Fig. 6.7(a).

At the state of maximum compression in e1-direction, the spatial distribution of vol-
ume fractions within the polycrystal, see Fig. 6.6(b), is dominated by compression
martensite in the compression direction, whereas in the orthogonal e2-e3-plane, the
martensitic tensile variant evolves as a result of the positive lateral deformation induced

127



6 A non-affine micro-sphere model for phase-transformations interacting with plasticity

 

 

ε11 [−]

ξA ξMt ξMc

−0.04 −0.02

0

0 0.02 0.04

0.2

0.6

1

ξ
α e
1

[−
]

0.4

0.8

(a) Volume fractions in e1-direction.

 

 

ε11 [−]

ΞA ΞMt ΞMc

−0.04 −0.02

0

0 0.02 0.04

0.2

0.6

1

Ξ
α

[−
]

0.4

0.8

(b) Macroscopic volume fractions.

 

 

ε11 [−]

εApl ε
Mt
pl

εMc
pl

−0.04 −0.02

0

0 0.02 0.04

εα p
l,
e
1

[×
1
0
−
2
]

−1.2

−0.8

−0.4

0.4

0.8

1.2

1.6

(c) Plastic strains in e1-direction.
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(d) Macroscopic plastic strains.

Figure 6.5: Three-dimensional SMA micro-sphere simulation with constitutive driver maintaining an
uniaxial macroscopic stress state in e1-direction during all load steps. The results are obtained at
θ = 20 ◦C for 350 equally distributed micro-sphere integration directions for the load path provided
in 6.4(a). Shown are the the internal variables in the direction of maximum load, (a) and (c), as well
as the homogenised macroscopic variables in terms of volume fractions and plastic strains, (b) and (d),
respectively.
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(a) Spatial distribution of volume fractions at
maximum tension ε11 = 0.04, i.e. t = T/4,
cf. Fig. 6.4(a).
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(b) Spatial distribution of volume fractions at
maximum compression ε11 = −0.04, i.e. t =
3/4T , cf. Fig. 6.4(a).
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Figure 6.6: Three-dimensional SMA simulation with constitutive driver enforcing a uniaxial stress state:
results in terms of the spatial distributions of volume fractions and plastic strains obtained at θ = 20 ◦C
for 350 equally distributed micro-sphere integration directions.

129



6 A non-affine micro-sphere model for phase-transformations interacting with plasticity

 

 

ts

e1e2

e
3 0

0
0 84

86

88

90

92

94

96

98

100

102

(a) Young’s modulus surface plot E(d) [GPa] at
maximum tension ε11 = 0.04, i.e. t = T/4,
cf. Fig. 6.4(a).
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(b) Young’s modulus surface plot E(d) [GPa] at
maximum compression ε11 = −0.04, i.e. t =
3/4T , cf. Fig. 6.4(a).

Figure 6.7: Three-dimensional SMA simulation with constitutive driver enforcing a uniaxial stress state:
results in terms of the Young’s modulus surface plot obtained at θ = 20 ◦C for 350 equally distributed
micro-sphere integration directions.

by the constitutive driver. The spatial distribution of plastic strains in this material
state is given in Fig. 6.6(d). It shows that the martensite compression phase has not
only evolved, but also is subject to plastic strains. Moreover, the plastic strains in
austenite and tensile martensite as obtained during the previously applied tensile load
are still present to some extent. The Young’s modulus surface plot depicted in Fig. 6.7(b)
shows the significant elastic anisotropy obtained in the material’s compression state.

6.3.4.2 Application to TRIP steel

For the simulation of TRIP steel at polycrystal level, we draw on the TRIP steel ma-
terial parameters provided in Table 6.2. As boundary conditions, we choose a tension-
compression loading path with a maximum strain magnitude of ε11 = 0.04 where we
start with a purely austenitic initial state, i.e. ξA|t0 = 1, thus ξMt|t0 = ξMc|t0 = 0. As in
the SMA simulation provided in Section 6.3.4.1, we investigate the material behaviour at
a room temperature of θ = 20 ◦C. The constitutive routine is embedded in a constitutive
driver for the simulation of uniaxial stress states corresponding to experimental tensile
tests.
In addition to the loading path applied, see Fig. 6.8(a), we show the obtained uniaxial

stress response in Fig. 6.8(b), a visualisation of the plastic strains evolving in the direc-
tion of maximum load, i.e. the e1-direction, during the load cycles—cf. Fig. 6.8(c)—and
the evolution of macroscopic volume fractions as provided in Fig. 6.8(d). The uniaxial
stress response shows that the macroscopic mechanical hardening effect typically ob-
served for TRIP steels is captured by the modelling framework. For an increased number
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Figure 6.8: Three-dimensional TRIP steel micro-sphere simulation with constitutive driver maintaining
an uniaxial macroscopic stress state in e1-direction during all load steps. The results are obtained at
θ = 20 ◦C for 350 equally distributed micro-sphere integration directions. Shown are the obtained
uniaxial macroscopic stress response (b), the evolution of plastic strains in the direction of maximum
load (c) and the evolution of the homogenised macroscopic volume fractions (d).

of tensile-compression load cycles, the obtained maximum and minimum stress values
increase by magnitude, coinciding with the experimental results depicted in Fig. 1.5.
Physically speaking, this effect results from the accumulation of plastic strains—or rather
dislocations—within the material. Note that we consider isotropic strain hardening to
model the hardening behaviour, thus the non-linearities in the evolution of plastic strains
that are observed in Fig. 6.8(c) result from the application of the plasticity inheritance
framework that we introduced in Section 6.2.

131



6 A non-affine micro-sphere model for phase-transformations interacting with plasticity

The obtained evolution of macroscopic volume fractions depicted in Fig. 6.8(d)
is significantly different from the evolution of volume fractions observed for SMA,
cf. Fig. 6.5(b). In the case of TRIP steel, the simulation results show that the transfor-
mation is less intense but accumulates with the number of tension-compression loading
cycles. For a larger amount of cycles, we observe saturation effects, i.e. the accumulation
of the martensite variants continues up to a certain level. Both effects predicted by the
model, i.e. the accumulation of the martensitic volume fractions with a growing number
of cycles as well as the saturation effect, are in line with experimental results reported
in the literature for multi-cyclic TRIP steel responses as presented in, e.g., [48, 136].
Figures 6.9 and 6.10 visualise the internal state of the simulated TRIP steel polycrystal

at two representative loading states: the state of maximum tension ε11 = 0.04 obtained at
t = T/4, and the state of maximum compression ε11 = −0.04 at t = 3/4 T , cf. Fig. 6.8(a).
For both states, we show the spatial distribution of volume fractions and the spatial
distribution of plastic strains within the polycrystal, as well as a Young’s modulus surface
plot which gives insight into the elastic anisotropy evolution.
The spatial distribution of volume fractions obtained for TRIP steel at the ε11 = 0.04

tensile state is depicted in Fig. 6.9(a). The figure shows that only a small amount
of austenite transforms to the martensitic tensile variant in the first tensile cycle as
suggested by the small amount of macroscopic martensitic volume fraction observed
in Fig. 6.8(d). The transformations take place in a relatively wide cone around the
tensile axis. As the load reverses and the state of maximum compression is reached at
ε11 = −0.04, the martensitic compression variant evolves, cf. Fig. 6.9(b). A comparison
with Figs. 6.6(a) and 6.6(b) shows that the phase-transformations observed for TRIP
steel are significantly less intense than those observed for SMA.
However, for TRIP steel the plasticity effects are more pronounced as highlighted in

Figs. 6.9(c) and 6.9(d). The spatial distribution of plastic strains in the tensile state
provided in Fig. 6.9(c) shows the evolution of plasticity to take place in a cone around
the tensile axis. Note that the plastic strains shown for the martensitic tensile phase
correspond to the small martensitic volume fractions given in Fig. 6.9(a), i.e. the overall
constitutive response of the TRIP steel polycrystal is mainly governed by the austenitic
volume fraction and the plastic strains therein. As the load reverses and the compression
load state is reached, cf. Fig. 6.9(d), the constitutive driver leads to positive lateral
deformation of the crystal. In contrast to the distribution of plastic strains in SMA, see
Fig. 6.6(d), in the case of TRIP steel we observe plasticity in the lateral direction as
well.
The Young’s modulus surface plots displayed in Figs. 6.10(a) and 6.10(b) visualise

how the elastic anisotropy of the polycrystal evolves. The initially isotropic austenitic
crystal shows only small amounts of anisotropy in the loading directions in the first
tensile state as depicted in Fig. 6.10(a). As the load reverses and the compression state
of the material is reached, the elastic anisotropy becomes more pronounced as provided
in Fig. 6.10(b).
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(a) Spatial distribution of volume fractions at
maximum tension ε11 = 0.04, i.e. t = T/4,
cf. Fig. 6.8(a).

 

 

e1e2

e
3

ξA ξMt ξMc

0

0
0

−1

−1 −1

−0.5

−0.5 −0.5

0.5

0.5
0.5

1

1

1

(b) Spatial distribution of volume fractions at
maximum compression ε11 = −0.04, i.e. t =
3/4T , cf. Fig. 6.8(a).
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cf. Fig. 6.8(a).
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Figure 6.9: Three-dimensional TRIP steel simulation with constitutive driver enforcing a uniaxial stress
state: results in terms of spatial distributions of volume fractions and plastic strains obtained at θ =
20 ◦C for 350 equally distributed micro-sphere integration directions.
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(a) Young’s modulus surface plot E(d) [GPa] at
maximum tension ε11 = 0.04, i.e. t = T/4,
cf. Fig. 6.8(a).
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Figure 6.10: Three-dimensional TRIP steel simulation with constitutive driver enforcing a uniaxial
stress state: results in terms of Young’s modulus surface plots obtained at θ = 20 ◦C for 350 equally
distributed micro-sphere integration directions.

6.3.5 Sensitivity of the macroscopic constitutive response with
respect to the underlying micro-sphere integration scheme

In this section, we show to what extent the constitutive response of the model depends
on the micro-sphere integration scheme used. This is important in view of choosing
an efficient, yet sufficiently accurate micro-sphere integration scheme for the later finite
element application presented in Section 6.4.
In order to emphasise the dependencies of the constitutive response of the polycrystal

on the numerical integration scheme used, we carry out computations with four different
micro-sphere integration schemes as depicted in Fig. 6.11. The most efficient scheme we
consider makes use of nr = 21 integration directions specifically distributed on only one
hemisphere, see Fig. 6.11(d). This scheme is applicable due to symmetry considerations
and has been frequently used in the literature [17, 75, 92].
The highest-order scheme we consider accounts for nr = 1000 spatial integration di-

rections equally distributed on the unit sphere, see Fig. 6.11(a). Apart from this scheme,
we consider schemes with nr = 350 and nr = 100 equally distributed integration direc-
tions, cf. Figs. 6.11(b) and 6.11(c), respectively. For these schemes, the weighting factors
introduced in Section 3.2.1.2 are given by w̄i = 1/nr. Note that these schemes are com-
putationally not efficient as they do not take advantage of the hemisphere symmetry.
However, in this section we focus on the numerical accuracy instead of computational
efficiency. As schemes with equally distributed integration directions for the unit sphere
are straightforward to generate and the integration weights take a simple form, we will
consider these schemes for simplicity. Note that the computational effort for the evalua-
tion of the constitutive response at the local level scales approximately linearly with the
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number of micro-sphere integration directions considered. The required storage space
for the state-dependent variables—i.e. volume fractions, plastic strains, and hardening
variables for each phase in each integration direction—accumulates to 3 × ν × nr vari-
ables. For example, for the three-phase material evaluated with nr = 1000 integration
directions, we have to store 3× 3× 1000 independent scalar state variables.
Representative results of the sensitivity analysis are presented in Fig. 6.12. In

Figs. 6.12(a), 6.12(c), and 6.12(e) we show the evolution of the axial stress compo-

nent σ
(nr)
11 , the macroscopic austenitic volume fraction ΞA(nr) and the macroscopic plas-

tic strains in austenite ε
α,mac(nr)
pl , respectively, for the different micro-sphere integration

schemes considered. Moreover, we evaluate relative deviations of the named quantities
by relating them to the results obtained for the nr = 1000 scheme in Figs. 6.12(b),
6.12(d), and 6.12(f).
The main result of the sensitivity study is that the deviations between the nr =

100, nr = 350 and nr = 1000 integration schemes are on average below 1% for the
uniaxial stress response and the macroscopic austenitic volume fraction as presented in
Figs. 6.12(b) and 6.12(d). Here and in the following, the relative deviation ∆•(t) of a
time-dependent quantity •(t) obtained for one integration scheme, say i1, with respect
to another scheme, say i2, is computed from

∆•(i1)(t) :=
[
•(i1)(t)− •(i2)(t)

]
/ max
τ∈[0, tmax]

(
| •(i2) (τ)|

)
. (6.69)

For the macroscopic plastic strains in austenite an error that accumulates over several
load cycles is observed for the nr = 350 scheme, see Fig. 6.12(f). However, in view of
the finite element implementation to be carried out at a later stage, we are especially
interested in the numerical reliability of the efficient nr = 21 scheme. Note that this
scheme is—in view of the computational effort—about 50 times as efficient as the nr =
1000 scheme and still about 5 times as efficient as the nr = 100 scheme.
The sensitivity analysis also shows that the nr = 21 scheme over-estimates the

stress magnitude both during the tensile cycle and during the compression cycle, see
Fig. 6.12(b). Interestingly, the deviation of the stress response σ

(21)
11 obtained at the end

of a load cycle, e.g. at t = T , is smaller than 1%. Moreover, with a growing number of
cycles, the effect of the stress over-estimation becomes less significant. As Fig. 6.12(d)
shows, the macroscopic austenitic volume fraction is under-estimated by the nr = 21
scheme by about 2.5% in average. However, the most significant numerical deviation is
observed for the plastic strains. Fig. 6.12(f) suggests an under-estimation of plasticity
in the tensile regime and an over-estimation in the compression regime. The maximum
deviation of the nr = 21 scheme with respect to the results obtained for the nr = 1000
reference scheme reaches up to 30% in this case. The reason is that the plasticity evolv-
ing in a cone-like surrounding of the loading axis is not captured accurately for the given
load case since plasticity is triggered only in one integration direction when using the
nr = 21 scheme in combination with a tensile load in e1-direction as briefly summarised
in Fig. 6.13.
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(a) 1000 homogeneously distributed integration
directions.

(b) 350 homogeneously distributed integration
directions.

(c) 100 homogeneously distributed integration
directions.

(d) 21 integration directions distributed only on
one hemisphere.

Figure 6.11: Micro-sphere integration schemes utilised for assessing the numerical sensitivity of the
macroscopic constitutive response with respect to the underlying micro-sphere scheme, where the
computational effort required for the evaluation of the constitutive response scales linearly with the
number of micro-sphere integration directions used. The scheme shown in (d) is applicable since
εdev(ri) = εdev(−ri) and εvol 6= f(ri), see Section 6.3.1. Use of this symmetry relation between
both hemispheres facilitates the efficient numerical evaluation of the constitutive response.
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responses w.r.t. the nr = 1000 scheme.
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(c) Evolution of the macroscopic austenitic
volume fraction.
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(e) Evolution of macroscopic plastic strains
in austenite.
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(f) Relative deviation of the macroscopic
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1000 scheme.

Figure 6.12: Macroscopic material response in terms of uniaxial stress σ11 (a), evolution of austenite
ΞA (c), and evolution of macroscopic plasticity in austenite εα,mac

pl (e) for the four different micro-sphere
integration schemes provided in Fig. 6.11. The simulation setup is the same as in Fig. 6.4 with the
loadpath given in Fig. 6.4(a). The relative differences, (b), (d), and (f), are computed with respect to
the results obtained for the highest-order scheme, i.e. nr = 1000.
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mum tension, i.e. t = T/4, cf. Fig. 6.4(a), obtained
for nr = 1000 micro-sphere integration directions.
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(b) Spatial distribution of plastic strains at maxi-
mum tension, i.e. t = T/4, cf. Fig. 6.4(a), obtained
for nr = 21 micro-sphere integration directions.

Figure 6.13: The sensitivity of the macroscopic plastic strains with respect to the micro-sphere integra-
tion scheme, cf. Fig. 6.12(f), results from the fact that plasticity is activated in a cone-like surrounding of
the loading axis, i.e. the e1-axis (a) where, in the case of the reduced integration scheme with nr = 21
spatial integration directions, plasticity is captured in only one integration direction for the specific
tensile load case chosen (b).

6.4 Finite element implementation

As a test specimen for the investigation of inhomogeneous load cases we choose a plate of
the size 4×4×1mm with a central hole with a diameter of 2mm. For the finite element
discretisation we use a mesh of 768 hexahedral elements. We apply Dirichlet boundary
conditions to the y = −2 and y = 2 face of the body, where the y = −2 face is chosen
to be spatially fixed such that ux|y=−2 = uy|y=−2 = uz|y=−2 = 0 and the y = 2 face
is loaded in terms of prescribed nodal displacements, uy|y=2 = u. We investigate both
tension and shear of the plate with hole as load cases for both material types considered
in this work, i.e. for both SMA and TRIP steel. The obtained nodal displacement fields
of the test specimen at maximum load for tension and shear are shown in Figs. 6.15(a)
and 6.17(a), respectively.
For the tension test, we apply a macroscopic tensile displacement of umax = 0.2mm

to the specimen of 4mm of length, corresponding to a macroscopic strain of 5%. The
obtained macroscopic reaction forces are presented in Figs. 6.14(a) and 6.14(b) for both
materials considered. Note that the maximum tensile force for SMA reaches up to
Fy,max = 250N, Fig. 6.14(a), whereas the maximum tensile force for TRIP steel reaches
Fy,max = 1500N, Fig. 6.14(b). After the maximum tensile load is applied, the load is re-
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6.4 Finite element implementation

versed until the tensile force Fy reaches zero value. The figures show that the macroscopic
tensile deformation that remains after reversal of the tensile load is higher for the TRIP
steel. The detailed results in terms of contour plots of strain, stress, volume fractions and
plastic strains obtained at the state of maximum tension are presented in Section 6.4.1
for SMA and in Section 6.4.2 for TRIP steel. Comparison of Figs. 6.15(c) and 6.16(c)
shows that the maximum tensile stress for SMA is σyy,max = 273MPa, whereas for TRIP
steel material parameters a maximum tensile stress value of σyy,max = 1591.7MPa is
obtained for a macroscopic specimen strain of 5%. For SMA, the austenitic parent
phase is reduced to up to 30%, see Fig. 6.15(d), whereas for TRIP steel the volume
fraction of the parent phase does not come below 91.6%, cf. Fig. 6.16(d). Due to the
more pronounced transformation behaviour of SMA already highlighted in Section 6.3.4,
both the macroscopic martensitic tensile and compression phases evolve as depicted in
Figs. 6.15(e) and 6.15(f). In contrast, for TRIP steel mainly the martensitic tensile phase
evolves, cf. Figs. 6.16(e) and 6.16(f). Moreover, comparison of Figs. 6.15(h) and 6.15(i)
with Figs. 6.16(h) and 6.16(i) shows that the TRIP steel simulation predicts a more
pronounced evolution of plastic strains especially in the martensitic phases.
The shear test is conducted with a maximum shear displacement of umax = 0.2mm

applied to the loaded face, corresponding to a macroscopic shear angle of τmax = 0.05.
Figs. 6.14(c) and 6.14(d) show the macroscopic reaction forces obtained during one
complete shear cycle, i.e. increase of the shear angle up to the maximum value of
τmax = 0.05, then reversal of the shear displacement until τmin = −0.05 is reached, and
finally deformation of the specimen back into its original shape. The obtained maximum
macroscopic shear force Fx takes a value of Fx,max = 100N for SMA, see Fig. 6.14(c),
and Fx,max = 500N for TRIP steel, see Fig. 6.14(d). The detailed shear test results in
terms of contour plots of strain, stress, volume fractions and plastic strains are given in
Section 6.4.3 for SMA and in Section 6.4.4 for TRIP steel each at the state of maximum
shear. The maximum shear stress obtained for SMA is σxy,max = 129.17MPa, whereas
for TRIP steel the maximum shear stress reaches σxy,max = 520MPa, see Figs. 6.17(c)
and 6.18(c), respectively. Moreover, in line with the results previously obtained in
this work, the phase-transformations are more intense for SMA, compare Figs. 6.17(d)
and 6.18(d). In contrast, for the TRIP steel simulations a more pronounced evolution
of plastic strains is observed especially in martensite, compare Figs. 6.17(h) and 6.17(i)
with Figs. 6.18(h) and 6.18(i), respectively.
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(a) SMA – tensile reaction force.
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(b) TRIP steel – tensile reaction force.
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(c) SMA – shear reaction force.
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(d) TRIP steel – shear reaction force.

Figure 6.14: Macroscopic mechanical response of the test specimen obtained for SMA and TRIP steel
for both tensile and shear tests. Shown are the macroscopic reaction force components Fx, Fy, and
Fz for SMA under tension (a), TRIP under tension (b), SMA under shear (c), and TRIP under shear
(d). The maximum tensile displacement corresponds to a macroscopic tensile strain of 5%, whereas the
maximum shear displacement corresponds to a macroscopic shear angle of τmax = 0.05 of the specimen.
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6.4 Finite element implementation

6.4.1 Plate with hole under tension – SMA

(a) Displacement field u [mm]. (b) Tensile strain εyy [–]. (c) Tensile stress σyy [MPa].

(d) Austenite ΞA [–]. (e) Tensile martensite ΞMt [–]. (f) Compression martensite ΞMc

[–].

(g) Austenite plasticity εA,mac
pl [–]. (h) Plasticity in martensite ten-

sile phase εMt,mac
pl [–].

(i) Plasticity in martensite com-

pression phase εMc,mac
pl [–].

Figure 6.15: SMA – finite element simulation of a plate with hole under tension. The results depicted
are obtained for the state of maximum tension, cf. Fig. 6.14(a). The displacement field (a) shows the
loading direction, (b) and (c) show the resulting strains and stresses in tensile direction, respectively. In
the region of maximum tension, the austenitic volume fraction is reduced to 30% (d), corresponding to
the evolution of the martensitic tensile and compression phase, (e) and (f), respectively. The obtained
distributions of macroscopic plastic strains are displayed in (g), (h), and (i).
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6.4.2 Plate with hole under tension – TRIP steel

(a) Displacement field u [mm]. (b) Tensile strain εyy [–]. (c) Tensile stress σyy [MPa].

(d) Austenite ΞA [–]. (e) Tensile martensite ΞMt [–]. (f) Compression martensite ΞMc

[–].

(g) Austenite plasticity εA,mac
pl [–]. (h) Plasticity in martensite ten-

sile phase εMt,mac
pl [–].

(i) Plasticity in martensite com-

pression phase εMc,mac
pl [–].

Figure 6.16: TRIP steel – finite element simulation of a plate with hole under tension. The results
depicted are obtained for the state of maximum tension, cf. Fig. 6.14(b). The displacement field (a)
shows the loading direction, (b) and (c) show the resulting strains and stresses in tensile direction,
respectively. In the region of maximum tension, the austenitic volume fraction is reduced to 91.6% (d),
corresponding to the evolution of the martensitic tensile and compression phase, (e) and (f), respectively.
The obtained distributions of macroscopic plastic strains are given in (g), (h), and (i).
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6.4.3 Plate with hole under shear deformation – SMA

(a) Displacement field u [mm]. (b) In-plane shear strain εxy [–]. (c) In-plane shear stress σxy

[MPa].

(d) Austenite ΞA [–]. (e) Tensile martensite ΞMt [–]. (f) Compression martensite ΞMc

[–].

(g) Austenite plasticity εA,mac
pl [–]. (h) Plasticity in martensite ten-

sile phase εMt,mac
pl [–].

(i) Plasticity in martensite com-

pression phase εMc,mac
pl [–].

Figure 6.17: SMA – finite element simulation of a plate with hole under shear deformation. The results
shown are obtained for the state of maximum shear, cf. Fig. 6.14(c). The displacement field (a) shows
the shear direction, (b) and (c) show the resulting shear strains and stresses in the shear plane. In the
region of maximum shear strain, the austenitic volume fraction is reduced to 62% (d), corresponding to
the evolution of the martensitic tensile and compression phase, (e) and (f), respectively. The obtained
distributions of macroscopic plastic strains are presented in (g), (h), and (i).
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6.4.4 Plate with hole under shear deformation – TRIP steel

(a) Displacement field u [mm]. (b) In-plane shear strain εxy [–]. (c) In-plane shear stress σyy

[MPa].

(d) Austenite ΞA [–]. (e) Tensile martensite ΞMt [–]. (f) Compression martensite ΞMc

[–].

(g) Austenite plasticity εA,mac
pl [–]. (h) Plasticity in martensite ten-

sile phase εMt,mac
pl [–].

(i) Plasticity in martensite com-

pression phase εMc,mac
pl [–].

Figure 6.18: TRIP steel – finite element simulation of a plate with hole under shear deformation. The
results shown are obtained for the state of maximum shear, cf. Fig. 6.14(d). The displacement field
(a) shows the shear direction, (b) and (c) show the resulting shear strains and stresses in the shear
plane. In the region of maximum shear strain, the austenitic volume fraction is reduced to 96.4% (d),
corresponding to the evolution of the martensitic tensile and compression phase, (e) and (f), respectively.
The obtained distributions of macroscopic plastic strains are shown in (g), (h), and (i).
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6.5 Summary and conclusions

In this chapter, we introduce an enhanced multi-scale and multi-phase approach for
the modelling and simulation of the interactions of martensitic phase-transformations
and plasticity. The phase-transformation scheme applied in this chapter is based on
statistical physics and was first applied to a one-dimensional phase-transformation model
for shape memory alloys in [51]. In the previous chapters, we extended this model to
three dimensions—starting with an affine micro-sphere approach, see Chapter 2, which
we then extended to a non-affine micro-sphere framework by means of a volumetric-
deviatoric split of macroscopic strain projections in Chapter 3. In the latter chapter,
we showed that the established modelling framework facilitates the reproduction of the
characteristic SMA stress-strain-temperature response, temperature-dependent pseudo-
elastic and pseudo-plastic effects, and stress-strain minor loops for tensile step tests that
are experimentally observed for shape memory alloys [62, 77]. This chapter therefore
serves as the foundation for the current chapter, where we extend the framework by
the incorporation of plasticity interactions in order to additionally capture multi-cyclic
stress-strain responses as well as the characteristic behaviour of TRIP steel.
The capturing of plasticity phenomena is established by introducing individual evo-

lution equations for each of the phases considered. The volumetric-deviatoric split of
strain measures considered in the non-affine micro-sphere modelling framework applied
in this work allows for the incorporation of plasticity solely in the deviatoric Helmholtz
free energy contributions of the individual phases. Moreover, deviatoric and volumetric
contributions of the transformation strains can be accounted for separately. A further
coupling between phase-transformations and plasticity is established by means of the
consistent plasticity inheritance framework introduced in Section 6.2. These framework
extensions enable us to additionally capture the macroscopic behaviour of TRIP steels
as it highly depends on the interactions between phase-transformations and plasticity
as introduced in Section 1.1.2.
The capabilities of the extended model established in this work are discussed in Sec-

tion 6.3.4 by analysis and discussion of cyclic tension-compression simulations applied
to both SMA and TRIP steel material parameters. The simulations are carried out on
the micro-sphere level in order to capture the response of polycrystalline material con-
glomerates. Moreover, we study states under homogeneous deformation, enabling us to
approximate the conditions applied in experimental tensile tests. A finite element im-
plementation of the overall model including representative inhomogeneous simulations
for both SMA and TRIP steel is provided in Section 6.4, see Fig. 1.6 for an illustration
of the overall multi-scale scheme.
The results show that this work successfully extends previous works towards the sim-

ulation of TRIP steel. Unlike SMA, TRIP steels are known to show a pronounced
work hardening behaviour under multicyclic loading as introduced in Section 1.1.2. The
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TRIP steel simulation results obtained for homogeneous deformation states presented
in Section 6.3.4.2 underline that the physically sound model established in this work
reproduces the typical stress-strain behaviour as well as macroscopic work hardening
observed for polycrystalline TRIP steels as provided in Fig. 6.8(b). Moreover, the ex-
tended model captures the fact that TRIP steels show a slowly accumulating martensite
volume fraction with an increasing number of tension-compression load cycles. To this
end, we show the accumulating evolution of macroscopic martensite in Fig. 6.8(d), which
is in line with observations made in, e.g., [48, 136].

6.6 Appendix

6.6.1 Material parameters

In general, the material parameters of SMA do not only depend on alloy components, but
also on the heat treatment applied [73]. In this chapter, we use the parameters given in
Table 6.1 which are consistent with the parameters provided and used in previous works,
e.g., [20, 51, 104]. To be specific, we consider the elastic properties in terms of Young’s
moduli for austenite and martensite in line with the basic underlying modelling approach
introduced in [51]. Additionally, the latent heat, coefficient of thermal expansion, mass
density, and heat capacity considered within the physically sound material model are all
chosen according to values provided in the aforementioned literature. The volumetric
transformation strains are—unlike the TRIP steel values—set to zero for all SMA phases,
since experiments show that no change of volume occurs during the phase-transformation
of SMA. The initial yield stresses are adapted to the Young’s moduli of the individual
phases, i.e. for SMA we assume a higher yield stress for austenite than for martensite.

To model TRIP steel, we take the parameters shown in Table 6.1 as a basis, but
we introduce the modifications presented in Table 6.2. The main differences between
the material parameters used for NiTi-based SMA and TRIP steel are considered by
means of the Young’s moduli, initial yield stresses, and the volumetric transformation
strains of the respective material phases. Note that for steels the martensitic phase
is known to be the harder phase when compared to austenite. This is reflected by
the higher Young’s moduli and initial yield stresses chosen for the simulation of TRIP
steel for both the martensitic tension and compression phase. Moreover, experiments
have proved that TRIP steels—unlike NiTi-based SMAs—show changes in volume when
transforming from austenite to martensite. We consider this by means of the non-zero
volumetric transformation strains ε•tr,vol 6= 0 used for the martensitic phases in TRIP
steel, see Table 6.2.
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Table 6.1: SMA material parameters considered in this chapter—compare, e.g., [20, 51, 104].

SMA phase material parameter symbol value

austenite A (parent phase) Young’s modulus E
A 67 GPa

hardening modulus HA
E
A/3

initial yield stress Y A
0 1 GPa

deviatoric transformation strain εAtr,dev 0

volumetric transformation strain εAtr,vol 0

latent heat λA
T 0

tensile martensite Mt Young’s modulus E
Mt 26.3 GPa

hardening modulus HMt E
Mt/3

initial yield stress Y Mt
0 400 MPa

deviatoric transformation strain εMt
tr,dev 0.025

volumetric transformation strain εMt
tr,vol 0

latent heat λMt
T 14500 J/kg

compression martensite Mc Young’s modulus E
Mc 26.3 GPa

hardening modulus HMc E
Mc/3

initial yield stress Y Mc
0 400 MPa

deviatoric transformation strain εMc
tr,dev −0.04

volumetric transformation strain εMc
tr,vol 0

latent heat λMc
T 14500 J/kg

common parameters coefficient of thermal expansion ζ 12× 10−6 K−1

mass density ρ0 6448 kg/m3

macroscopic Poisson’s ratio νP 0.33

reference temperature θ0 273 K

heat capacity cp 400 J/kgK

transition attempt frequency ω 1.6 s−1

transformation region’s volume ∆v 2.71 × 10−18 mm3

Boltzmann’s constant k 1.381 × 10−23 J/K
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Table 6.2: TRIP steel material parameters considered in this chapter—cf. [43, 79, 85, 110, 149].

TRIP steel phase material parameter symbol value

austenite A (parent phase) Young’s modulus E
A 160 GPa

hardening modulus HA
E
A/4

initial yield stress Y A
0 1000 MPa

deviatoric transformation strain εAtr,dev 0

volumetric transformation strain εAtr,vol 0

tensile martensite Mt Young’s modulus E
Mt 200 GPa

hardening modulus HMt E
Mt/12

initial yield stress Y Mt
0 1400 MPa

deviatoric transformation strain εMt
tr,dev 0.02

volumetric transformation strain εMt
tr,vol 0.02

compression martensite Mc Young’s modulus E
Mc 200 GPa

hardening modulus HMc E
Mc/12

initial yield stress Y Mc
0 1400 MPa

deviatoric transformation strain εMc
tr,dev −0.02

volumetric transformation strain εMc
tr,vol −0.02

common parameters: mass density ρ0 7850 kg/m3
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6.6.2 Computation of Gibbs energy barriers

To compute the Gibbs energy barriers bα→β and bβ→α between two phases α and β (here,
α, β ∈ {A,Mt,Mc} ), we start by deriving a compact representation of the Helmholtz
free energy potential by means of

ψ̂ •(εdev, εvol)|ε•pl,θ = a•ψ εdev
2 + b•ψ εdev + c•ψ εvol

2 + d•ψ εvol + e•ψ , (6.70)

with appropriate Helmholtz coefficients aαψ, ..., e
α
ψ that are obtained from rearranging

terms in (6.7). The application of the Legendre transformation to the Helmholtz poten-
tial conserves the quadratic nature of the potential, though a new set of Gibbs energy
coefficients is obtained. The simplified Gibbs energy coefficients aα, ..., eα implicitly
defined by

ĝ •(εdev, εvol)|ε•pl,θ = a• εdev
2 + b• εdev + c• εvol

2 + d• εvol + e• (6.71)

here take a very similar format to the coefficients that are presented in detail in Chap-
ter 3. To be more precise, the additional consideration of plastic strains in the deviatoric
elastic energy contribution ψαdev, see (6.7), finally leads to the simplified Gibbs energy
coefficients

a• = a•ψ (6.72)

b• = b•ψ − ξ•
[
E•
dev εdev|t − E•

dev

[
ε•tr,dev + ε•pl

]
− ζ• E• [θ − θ0]

]

= − [1− ξ•]
[
ε•tr,dev + ε•pl

]
E•
dev − ξ•E•

dev εdev|t − ζ• E• [θ − θ0] (6.73)

c• = c•ψ (6.74)

d• = d•ψ − ξ•
[
E•
vol εvol|t − E•

vol ε
•
tr,vol − ζ• E• [θ − θ0]

]

= − [1− ξ•] E•
vol ε

•
tr,vol − ξ•E•

vol εvol|t − ζ• E• [θ − θ0] (6.75)

e• = e•ψ (6.76)

which then allow for the numerical computation of the minimum of the intersection
curve of two elliptic-paraboloidal Gibbs energy potentials. This specific minimum value
which is required for the computation of the energy barriers driving the evolution law,
see (6.17), can be obtained with the help of a proper numerical scheme that allows
for the minimisation of non-linear implicit functions. For a detailed elaboration on the
application of the Newton scheme to the problem class at hand the reader is referred to
Chapter 3.
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6.6.3 Algorithmic scheme for the numerical constitutive update

Algorithm 4 provides pseudo-code for the constitutive update of the coupled phase-
transformation plasticity model proposed in this chapter. Based on a given set of his-
tory variables and a given three-dimensional deformation state, the algorithm facilitates
the computation of the updated history variables as well as the corresponding Cauchy
stress tensor and the algorithmic tangent modulus. For the uniaxial micro-sphere com-
putations provided in Section 6.3.4, the provided strain-driven algorithm is embedded
into a constitutive driver routine that iteratively adapts the deformation state n+1ε with
the help of the algorithmic tangent operator n+1Ealg so that the resulting macroscopic
stress tensor n+1σ—as the constitutive driver routine has converged—corresponds to a
uniaxial stress state.
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1 given: deformation n+1ε and material state, i.e.
[
nξi,

nε1dpl,i,
nε1dpl,acc,i

]
∀ i ∈ {1, . . . , nr}

2 set n+1t = nt+∆t ∈ [ 0, tmax ], initialise
n+1σ = 0 and n+1Ealg = 0

3 for every micro-sphere direction i = 1 . . . nr do

4 given: nξi,
nε1dpl,i,

nε1dpl,acc,i at time nt

5 compute n+1εdev ,i and
n+1εvol from given n+1ε, see Section 6.3.1

6 for all combinations (α, β) ∈ [A,Mt,Mc], α 6= β do

7 get energy barriers n+1bα→β,i, see (6.17) and 6.6.2

8 get transformation probabilities n+1Pα→β,i, see (6.11)

9 end for

10 assemble n+1Qi and obtain n+1ξi, see (2.6), (2.15), and, e.g., [101]

11 get inheritance probabilities Πβ→α
i ∀ (α, β) ∈ [A,Mt,Mc], α 6= β (6.35)

12 if number of increasing phases ninc < 2 then

13 define α as increasing and β and γ as non-increasing phases

14 get intermediate plastic strains nε̃1dpl,i from (6.37), (6.38), (6.39)

15 else

16 define α as decreasing and β and γ as non-decreasing phases

17 get intermediate plastic strains nε̃1dpl,i from (6.43), (6.44), (6.45)

18 end if

19 get intermediate accumulated plastic strains nε̃1dpl,acc,i

20 compute intermediate potential Ψ̃i = Ψ̂i(
n+1εdev ,i,

n+1εvol,
n+1ξ, nε̃1dpl,i, θ) (6.23)

21 for each phase α do

22 obtain trial plastic driving force n+1qαpl,Ψ,tri from (6.24)

23 if for yield function (6.20) holds Φ̂α(qαpl,Ψ , Y
α) > 0 then

24 compute Lagrange multiplier n+1λα, see (6.25)

25 update n+1ε1dpl,i and
n+1ε1dpl,acc,i according to (6.26) and (6.27)

26 end if

27 end for

28 add n+1σ ← n+1σ + n+1σi and
n+1Ealg ← n+1Ealg + n+1Ealg

i , see (6.56) and (6.66)

29 end for

30 return history arrays, i.e.
[
n+1ξi,

n+1ε1dpl,i,
n+1ε1dpl,acc,i

]
∀ i as well as n+1σ and n+1Ealg

Algorithm 4: Update scheme for the coupled phase-transformation plasticity model embedded into
a strain-driven non-affine micro-sphere framework. For the uniaxial stress computations provided in
Section 6.3.4, a superordinate constitutive driver algorithm is used.
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7 A finite strain model for
phase-transformations interacting
with plasticity based on
representative transformation
directions

In this chapter we implement a constitutive model for polycrystalline materials under-
going martensitic phase transformations that is based on representative crystal orienta-
tions. The model is derived in a thermodynamically consistent framework as elaborated
in detail in [14]. The crystallographic considerations that this model is based on are pre-
sented in Section 7.1. In Section 7.2, we present the basics of the thermo-elastoplastic
constitutive model, including the strongly coupled, highly non-linear system of evolution
equations that governs the inelastic constitutive response. The numerical solution of the
system of differential equations is introduced in Section 7.3, where we show represen-
tative simulation results in Section 7.3.2 followed by a convergence study regarding the
fulfillment of algebraic inequality constraints elaborated in Section 7.4. A finite element
implementation of the overall model is provided in Section 7.5.

7.1 Crystallographic considerations

The goal of the model implemented in this chapter is to consider actual crystallographic
properties of the polycrystalline material. To this end, we introduce a reference trans-
formation strain U tr

ref that is observed when a cubic austenitic unit cell transforms to a
tetragonal unit cell of martensite. The transformation strain related to this transforma-
tion is known as Bain strain and can be expressed as

U tr
ref = U tr

lone1 ⊗ e1 + U tr
lat [e2 ⊗ e2 + e3 ⊗ e3] (7.1)
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7 A finite strain phase-transformation model with representative transformation directions

within a given Cartesian coordinate system {e1, e2, e3}, where the first vector e1 is
aligned with the crystallographic [100] direction by using Miller indices. Here, the lon-
gitudinal transformation stretch is U tr

lon < 1, while U tr
lat > 1 holds for the lateral transfor-

mation stretch. As a result of F t · F = U t ·U , the related logarithmic transformation
strain measure takes the form

Htr
ref = ln(U tr

ref) . (7.2)

The elastic properties of one martensitic unit cell with above named orientation are
similarly considered by means of an associated referential fourth order elasticity tensor
Eref .

To derive the properties of a polycrystal based on these referential unit cell properties,
we introduce a spatial arrangement of unit cells, where we rotate the reference properties
of the unit cell in terms of the reference transformation strain Htr

ref as well as the related
reference elasticity tensor Eref into different spatial directions by using orthogonal rota-
tion tensors Rij. The index i refers to a spatial direction whereas index j accounts for
a specific rotation of the crystal around the ith spatial direction. A visualisation of the
arrangement of martensitic unit cells considered in this chapter is provided in Fig. 7.1.

With the help of proper rotation tensors Rij, which rotate referential quantities into
spatial direction i and simultaneously provide a variant rotation j around the spatial
direction i, the logarithmic transformation strain of the jth martensitic variant oriented
towards the ith spatial direction takes the form

Htr
ij = Rij ·Htr

ref ·Rt
ij , (7.3)

while the corresponding elasticity tensor reads

Eij = [Rij ⊗Rij ] : Eref :
[
Rt
ij ⊗Rt

ij

]
, (7.4)

By assigning an individual volume fraction ξij ∈ [0, 1] to each martensitic variant j
in every direction i, the pre-homogenised elasticity tensor ĒM of the overall martensitic
crystal conglomerate as depicted in Figs. 7.1, 7.2, and 7.3, takes the form

ĒM :=
1

ξM

nd∑

i=1

nv∑

j=1

ξij wij Eij . (7.5)

with the overall martensitic volume fraction ξM ∈ [0, 1] being defined as

ξM :=

nd∑

i=1

nv∑

j=1

ξij (7.6)

and the weighting factors wij > 0, which are constrained by
∑
wij = 1.
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7.2 Basics of the constitutive model

Figure 7.1: Martensitic polycrystal considered in this chapter, consisting of the depicted spatial ar-
rangement of martensitic unit cells. The model implemented in this chapter is capable of handling an
arbitrary amount of martensitic orientations and variants. However, we restrict the formulation to the
depicted six spatial directions with three martensitic variants each, resulting in 18 individual, coupled
evolution equations for the martensitic volume fractions ξij .

7.2 Basics of the constitutive model

This section gives a brief review of the constitutive model. The model is based on
a mixture theory with respect to the Helmholtz free energy densities ΨA of the parent
austenite phase and ΨM of a representative martensite phase which yields the macroscopic
energy density of the phase mixture

Ψ = ξA ΨA + ξM ΨM , (7.7)

where ξM with 0 ≤ ξM ≤ 1 and ξA = 1− ξM with 0 ≤ ξA ≤ 1 denote the overall volume
fractions of martensite and austenite, respectively. To be more specific, the phase energy
densities

ΨA = Ψ̂ elas
A

(
HA,H

pl
A

)
+ Ψ̂ chem

A (θ) + Ψ̂hard
A

(
αpl
A

)
(7.8)
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7 A finite strain phase-transformation model with representative transformation directions

Figure 7.2: Visualisation of a martensitic polycrystal that is macroscopically isotropic in terms of its
averaged Young’s modulus ĒM for equally distributed martensitic volume fractions, i.e. ξij = const =
1/[nr nv] ∀ (i, j). Considering the symmetry of this arrangement and adapting appropriate weighting
factors wij for the individual variants, the numerical simulation can be reduced to the solution of the
simplified crystal provided in Fig. 7.1.

and

ΨM = Ψ̂ elas
M

(
HM,H

pl
M,H

tr
M

)
+ Ψ̂ chem

M (θ) + Ψ̂hard
M

(
αpl
M

)
(7.9)

are additively decomposed into elastic parts Ψ elas
• , into temperature-dependent chemical

parts Ψ chem
• and into contributions Ψhard

• related to plastic hardening. In this context,
θ denotes the absolute temperature and αpl

• are monotonically increasing variables that
account for isotropic hardening.
As strain measures we introduce Hencky-type logarithmic strains in terms of H =

1/2 ln(U 2) = ln(U) where U denotes the right stretch tensor which is linked to the
deformation gradient via F = R ·U , and where R ∈ O

3
+ is a proper orthogonal rotation

tensor. The total strains H• of the respective phases are additively decomposed into
elastic strains Hel

• , plastic strains Hpl
• , and into transformation strains Htr

• , i.e. H• =
Hel

• +Hpl
• +Htr

• .
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7.2 Basics of the constitutive model

Figure 7.3: Pre-homogenisation of the martensitic polycrystal depicted in Fig. 7.1. In the model
implemented in this chapter, the martensitic conglomerate is pre-homogenised according to the Voigt
assumption, resulting in an averaged macroscopic Young’s modulus ĒM. The depicted anisotropic
martensitic conglomerate with the overall volume fraction ξM is embedded into an isotropic austenitic
parent phase of volume fraction ξA = 1− ξM, where the mixture of both phases is subject to the Reuss
assumption.

The energy contributions for austenite are chosen as

Ψ elas
A :=

1

2

[
HA −H

pl
A

]
: EA :

[
HA −H

pl
A

]
, (7.10)

Ψ chem
A := − cA θ ln(θ)− λA0

[
1− θ

θtr0

]
, (7.11)

Ψhard
A :=

[
Ysat
A − Yinit

A

] [
αpl
A +

1

κA

[
exp

(
−κA αpl

A

)
− 1
]]

, (7.12)

and the martensitic counterparts are set to

Ψ elas
M :=

1

2

[
HM −H

pl
M − H̄

tr
M

]
: ĒM :

[
HM −H

pl
M − H̄

tr
M

]
, (7.13)

Ψ chem
M := − cM θ ln(θ)− λM0

[
1− θ

θtr0

]
, (7.14)

Ψhard
M :=

[
Ysat
M − Yinit

M

] [
αpl
M +

1

κM

[
exp

(
−κM αpl

M

)
− 1
]]

. (7.15)

157



7 A finite strain phase-transformation model with representative transformation directions

In the above equations, we denote c• as the specific heat capacity, λ
•
0 as the latent heat,

θtr0 as a reference temperature, Ysat
• and Yinit

• as the saturated and initial plastic yield
limit as well as κ• as a decay parameter introduced for the saturation-type hardening
behaviour.
Convexifying the underlying double-well potential in the logarithmic strain space

yields

ΨC = ‖H − ξAHpl
A − ξM

[
H

pl
M + H̄

tr
M

]
‖2Ē

+ ξA
[
Ψ chem
A + Ψhard

A

]

+ ξM
[
Ψ chem
M + Ψhard

M

]
, (7.16)

where we introduce the notation

‖X‖2Ē :=
1

2
X : Ē : X , (7.17)

with

Ē := EA : Ê
−1

: ĒM , wherein Ê := ξA ĒM + ξM EA . (7.18)

The definition of the convexified Helmholtz energy ΨC facilitates the derivation of the
elastic stresses T energy-conjugated to H in terms of

T = ∂HΨ
C = Ē :

[
H − ξAHpl

A − ξM
[
H

pl
M + H̄

tr
M

]]
. (7.19)

The total strains H• within each phase are determined according to the Reuss as-
sumption, so that the stresses are homogeneously distributed among the phases. The
precise expressions for the total strains are omitted here but can be obtained according
to [14]. With all the above-mentioned relations at hand, the constitutive model is de-
fined except for the evolution of internal variables which will be defined in the following
section.

7.2.1 Inelastic material behaviour

For the load-driven evolution of the underlying internal variables, i.e. plastic strains Hpl
•

and the martensitic volume fractions ξij, we adopt a Perzyna-type viscoplastic format
which results in

Ḣ
pl

• =
1

ηpl•
〈Φpl

• 〉
A• : T√
T : A• : T

, (7.20)

ξ̇ij =
1

ηξij
〈Φξij〉 sign(τ ξij) , (7.21)
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7.2 Basics of the constitutive model

α̇pl
• =

1

ξ• η
pl
•

〈Φpl
• 〉 , (7.22)

θ̇ =
1

c
Dmech . (7.23)

In these equations, η◦• denotes viscosity-type quantities, Φ◦
• reflects yield functions,

and A• are Hill-type fourth order tensors which enables us to take into account the
incompressibility of plastic deformations and, if desired, anisotropic behaviour. Finally,
T is the stress measure conjugated to the logarithmic strain H as defined in (7.19).
The driving forces τ ξij for the evolution of the individual martensitic volume fractions ξij
follow from

τ ξij := −
∂ΨC

∂ξij
, (7.24)

whereas the mechanical dissipation rate density Dmech that governs the evolution of
temperature θ (7.23) takes the form

Dmech =

nd∑

i=1

nv∑

j=1

1

ηξij
〈Φξij〉

[
Φξij + Yξij

]
+

∑

•∈{A,M}

ξ•

ηpl•
〈Φpl

• 〉
[
Φpl
• + Yinit

•

]
. (7.25)

The yield functions associated to phase-transformations, Φξij , and to plasticity in marten-

site and austenite, Φpl
M and Φpl

A , respectively, are specified as

Φξij := |τ ξij | − Yξij , (7.26)

Φpl
M :=

√
T : AM : T − Yinit

M −
[
Ysat
M − Yinit

M

] [
1− exp(−κM αpl

M)
]

, (7.27)

Φpl
A :=

√
T : AA : T − Yinit

A −
[
Ysat
A − Yinit

A

] [
1− exp(−κA αpl

A)
]

(7.28)

+ΦGWJ
A , (7.29)

where the Greenwood-Johnson effect of the material is considered by means of the ad-
ditional contribution ΦGWJ

A incorporated into the yield function of austenite, precisely

ΦGWJ
A = ξM

√[
EA : H̄

tr
M

]
: AA :

[
EA : H̄

tr
M

]
. (7.30)

In the above equations, Y◦
• denotes initial and saturation yield stresses for phase-

transformations and plasticity, κ• is a decay parameter connected to the chosen ex-
ponential saturation-type plasticity hardening rule, and αpl

• refers to the accumulated
plastic strains (7.22).
In the current chapter, we consider nd = 6 spatial orientations with nv = 3 martensitic

variants each as visualised in Fig. 7.1, resulting in 18 individually evolving martensitic
volume fractions ξij. Moreover, the independently evolving tensor-valued logarithmic
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7 A finite strain phase-transformation model with representative transformation directions

plastic strains Hpl
• for both austenite A and pre-homogenised martensite M—cf. (7.6)—

have six independent tensorial quantities for both phases, resulting in 12 additional
internal variables. Finally, considering the evolution of the scalar hardening variables
αpl
• for both phases and the local temperature θ, the overall number of independently

evolving variables considered locally is 33. Note that further martensitic variants can be
taken into account. However, the results provided in this chapter are restricted to the
case of 18 independent martensitic volume fractions for the sake of simplicity.

In view of a numerical implementation of the model formulation, the system of the
named 33 independent, strongly coupled differential equations, (7.20)–(7.23), must be
solved with a stable and thus preferably implicit numerical time-integration scheme.
Moreover, the system of differential equations to be solved is partially subject to algebraic
inequality constraints in terms of

ξij ≥ 0 ∀ (i, j) (7.31)

and

ξM =

nd∑

i=1

nv∑

j=1

ξij ≤ 1 , (7.32)

which can equivalently be denoted in the standard form

hij := − ξij ≤ 0 ∀ (i, j) (7.33)

and

h̄ := ξM − 1 =

nd∑

i=1

nv∑

j=1

ξij − 1 ≤ 0 , (7.34)

facilitating the expression of the constraints in terms of the Macaulay brackets 〈•〉 :=
max{0, •} viz.

〈hij〉 = 0 ∀ (i, j) (7.35)

and

〈h̄〉 = 0 , (7.36)

respectively. Expressing the inequality constraints for the volume fractions ξij in terms
of Macaulay brackets enables a compact representation of the residual function Rp that
is required in view of the later numerical solution scheme, namely

Rp(ξ) := 〈h̄〉+
nd∑

i=1

nv∑

j=1

〈hij〉 = 0 , (7.37)
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7.3 Numerical solution of the constitutive equations

where ξ = [ξ11, . . . , ξnrnv
] is the collection of the considered individual martensitic volume

fractions. The numerical application of this residual function within a penalty iteration
scheme is provided in Algorithm 7.

No separate constraints on the austenitic volume fractions are necessary, since from
ξA := 1−ξM it follows that (7.31) induces ξA,max → 1 in case of ξij → 0 ∀ (i, j)⇒ ξM → 0.
Moreover, from (7.32) it follows that ξA,min→ 0 in case of ξM → 1, i.e. the enforcement of
(7.31) and (7.32) already guarantees ξA ∈ [0, 1]. The solution of the system of differential
equations (7.20)–(7.23) subject to the inequality contraints (7.31) and (7.32) is presented
and discussed in Section 7.3.

7.3 Numerical solution of the constitutive equations

In this Section, an algorithmic solution scheme is provided for the solution of the cou-
pled system of ordinary differential equations (ODE system), (7.20)–(7.23), subject to
the inequality constraints (7.31) and (7.32). We use an iterative implicit backward Eu-
ler update scheme for the solution of the ODE system. The backward Euler scheme
is embedded into a superordinate penalty iteration scheme, consistently enforcing the
physical constraints (7.31) and (7.32) on the phase fractions.

7.3.1 Algorithmic solution scheme

In view of the time-discretisation of (7.20)–(7.23), we rewrite the ODE system as

v̇ = f(v) (7.38)

with v representing the vector-valued collection of the internal variables, including the
temperature θ. For the system at hand, v ∈ R33×1 stores 33 individual variables as
introduced in Section 7.2.1. Note that the ODE system derived within the provided
modelling framework is autonomous, i.e. the right-hand side of (7.38) is not an explicit
function of time t. For the implicit time-update from time tn to tn+1 with ∆t := tn+1−tn
we apply the backward-Euler ansatz

vn+1 = vn +∆tf (vn+1) , (7.39)

yielding a non-linear vector-valued equation system to be solved for vn+1. For the
solution of (7.39) we iteratively solve for the residual function

R(vn+1) := vn+1 − vn −∆tf (vn+1) = 0 (7.40)

using a Newton scheme.
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7 A finite strain phase-transformation model with representative transformation directions

1 given: kth Newton approximation v
(k)
n+1 to the sought solution vn+1

2 initialise J (k) = zeros(dim(v),dim(v))

3 compute current non-perturbed residual vector R(v
(k)
n+1) from (7.40)

4 for i = 1 . . . dim(v) do

5 perturb component i of v
(k)
n+1, i.e. set vpert,i := v

(k)
n+1 + ǫpert ei with ǫpert = 10−8

6 compute ith perturbed residual vector R(vpert,i) from (7.40)

7 compute differential quotient dRi :=
[
R(vpert,i)−R(v

(k)
n+1)

]
/ǫpert

8 insert dRi into the ith column of J (k), i.e. J (k)(1 : dim(v), i)← dRi

9 end for

10 return approximate Jacobian J (k) for the Newton scheme, see Algorithm 6

Algorithm 5: Numerical approximation of the Jacobian J(k) used for the backward-Euler update (7.41)
of the ODE system (7.20)–(7.23), cf. Algorithm 6.

Following the Newton scheme, the update rule for the solution of (7.40) takes the
form

v
(k+1)
n+1 = v

(k)
n+1 − [J (k)]−1 ·R(v

(k)
n+1) (7.41)

with

J (k) :=
dR(v)

dv

∣∣∣∣
v=v

(k)
n+1

∈ R
33×33 (7.42)

the Jacobian ofR evaluated at the current point v
(k)
n+1. As a starting value for the Newton

scheme we initialise v
(0)
n+1 := vn, see Algorithm 6. Due to the algebraic complexity of

the 33 × 33 = 1089 entries of the Jacobian, the latter is not derived analytically but
rather approximated numerically by using a numerical perturbation scheme as provided
in Algorithm 5, cf. [40].

To consistently account for the algebraic inequality constraints introduced in (7.31)
and (7.32), the convexified Helmholtz energy potential ΨC (7.16) is extended properly,
yielding the Lagrangian

L := ΨC +

nd∑

i=1

nv∑

j=1

1

2 γij

[
〈µij + γij hij〉2 − µ2

ij

]
− 1

2 γ̄

[
〈µ̄+ γ̄ h̄〉2 − µ̄2

]
, (7.43)
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7.3 Numerical solution of the constitutive equations

1 given: equilibrium state vn at time tn, time increment ∆t, deformation F (n+1)

2 set k = 0, initialise v
(k=0)
n+1 = vn

3 compute initial residual vector R(v
(k=0)
n+1 ) using (7.40)

4 while

∣∣∣R(v
(k)
n+1)

∣∣∣ > ǫ with ǫ = 10−8
do

5 approximate Jacobian J (k), see (7.42), numerically following Algorithm 5

6 compute dv(k) := −[J (k)]−1 ·R(v
(k)
n+1) by solving J (k) · dv(k) = −R(v

(k)
n+1)

7 update v
(k+1)
n+1 = v

(k)
n+1 + dv(k) in line with (7.41)

8 compute new residual R(v
(k+1)
n+1 ) for convergence check/in view of

next Newton iteration using (7.40)

9 set k ← k + 1

10 end while

11 after Newton convergence, return vn+1 = v
(k)
n+1 as solution at time tn+1 = tn +∆t

Algorithm 6: Newton scheme facilitating the iterative solution of the non-linear algebraic equation
system (7.40), yielding an updated set of state variables vn+1 that fulfill the backward-Euler update
rule (7.39) for the numerically stable, implicit solution of the ODE system (7.20)–(7.23) governing the
inelastic constitutive response of the material model. Note that parts of this solution might violate
the algebraic inequality constraints (7.33) and (7.34), thus an iterative solution refinement using the
superordinate penalty strategy provided in Algorithm 7 is generally required.

which leads to the desired modification of the driving force (7.24) that drives the evolu-
tion of the martensitic volume fractions in terms of

τ̄ ξij := −
∂L
∂ξij

= τij + 〈µij + γij hij〉 − 〈µ̄+ γ̄ h̄〉 . (7.44)

Accordingly, the penalised driving force τ̄ ξij for a martensitic volume fraction ξij as pro-
vided in (7.44) increases if the corresponding inequality constraint hij (7.33) is violated.
In that case, ξij < 0 violated the lower constraint boundary, which is consistently cor-
rected by gradually increasing the driving force and thus the resulting volume fraction
until ξij ≥ 0 ∀ (i, j), cf. [19]. On the other hand, if the upper constraint boundary (7.34)
is violated, i.e.

∑
ξij > 1, then the penalty scheme consistently decreases the driving

forces of all volume fractions ξij until the penalty residuum is zero, i.e. the constraint∑
ξij ≤ 1 is fulfilled again.

The algorithmic implementation of the Bertsekas penalty scheme applied in this work
is provided in Algorithm 7. A detailed study on the convergence behaviour of the penalty
scheme for both lower and upper constraint boundaries is presented in Section 7.4.
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7 A finite strain phase-transformation model with representative transformation directions

1 given: equilibrium state vn at time tn, time increment ∆t, deformation F (n+1)

2 initialise penalty interation counter p = 0

3 initialise penalty parameters γ
(p=0)
ij = Cγ and γ̄(p=0) = Cγ̄

with proper penalty coefficients Cγ and Cγ̄ , cf. Section 7.4

4 while penalty residual Rp(ξ) > ǫpen with ǫpen = 10−6, cf. (7.37), do

5 obtain vn+1 using Algorithm 6 with τ̄ ξij (7.44) as the penalised driving force
considered in the constitutive ODEs (7.21)

6 increase penalty parameter γ
(p+1)
ij = γ

(p)
ij + Cγ ∀ (i, j) with hij > 0 (7.33)

7 increase penalty parameter γ̄(p+1) = γ̄(p) + Cγ̄ if h̄ > 0 (7.34)

8 update penalty parameter µ
(p+1)
ij = 〈µ(p)

ij + γ
(p)
ij hij〉

9 update penalty parameter µ̄(p+1) = 〈µ̄(p) + γ̄(p) h̄〉

10 end while

11 after penalty convergence, return the final solution vn+1 that now fulfills the
constraints (7.33) and (7.34)

Algorithm 7: Bertsekas penalty scheme used to enforce the algebraic inequality constraints (7.33) and
(7.34) on the implicit solution of the differential equation system (7.20)–(7.23).

7.3.2 Numerical results for states under homogeneous deformation

This section shows the numerical results obtained by solving the coupled system of
evolution equations (7.20)–(7.23) for the considered 33 internal variables subject to
the algebraic inequality constraints (7.33) and (7.34) for selected deformation paths.
To assess the material behaviour subject to homogeneous deformations, we present
two representative load cases, namely isochoric tension in Section 7.3.2.1 and simple
shear in Section 7.3.2.2. For both load cases, we investigate two different initial condi-
tions in terms of volume fractions. On the one hand, we start with an initially purely
austenitic state, ξM|t=0 = 0 ⇒ ξA|t=0 = 1, as provided in Figures 7.4 and 7.6. On
the other hand, we start with an overall martensitic volume fraction of ξM|t=0 = 0.5,
inducing an austenitic volume fraction of ξA|t=0 = 0.5 as well. To this end, we con-
sider equally distributed individual martensitic volume fractions ξij, where we choose
ξij|t=0 = 0.5/[nr nv] ∀ (i, j) ⇒ ∑

ξij|t=0 = ξM|t=0 = 0.5, see Figures 7.5 and 7.7. Note
that we here and in the following focus on the elaboration of the general constitutive
properties of the proposed highly non-linear and strongly coupled model, i.e. at this point
we do not calibrate material parameters to quantitatively match experimental results.
The results obtained for isochoric tension of an initially purely austenitic polycrystal

are provided in Fig. 7.4. The applied load path in terms of components of the deforma-
tion gradient F = F11 e1⊗ e1 +

[
1/
√
F11

]
[e2 ⊗ e2 + e3 ⊗ e3] is given in Fig. 7.4(a) and
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7.3 Numerical solution of the constitutive equations

the obtained stress-strain response is provided in Fig. 7.4(b). The coefficients plotted
refer to a Cartesian base system {e1, e2, e3} such that Fkl = ek · F · el and the Cauchy
stresses are defined as σ = det(F−1) ∂FΨ

C · F t = det(F−1)T : ∂FH · F t, cf. (7.19).
The maximum deformation applied is F11 = 1.5, corresponding to a macroscopic strain
of 50%, where the overall simulation time is set to tend = 1s. The evolution of individ-
ual volume fractions ξij depicted in Fig. 7.4(c) shows that certain martensitic variants
evolve within the polycrystal, while other variants remain zero. As a result of the spatial
symmetry of the considered polycrystalline arrangement and the eigenstrain directions
remaining constant during the isochoric load cycle, a symmetric—or rather identical—
evolution of certain martensitic variants ξij is obtained as indicated by solely four unique
evolution paths obtained for all 18 variants, see Fig. 7.4(c).

The overall martensitic volume fraction ξM is given in Fig. 7.4(d). The figure shows
that the superordinate penalty algorithm successfully enforces the constraint ξM ≤ 0 by
suppressing the evolution of the individual volume fractions, Fig. 7.4(c), as a result of
the penalised—and thus successively decreased—driving force for the individual volume
fractions (7.44), see Algorithm 7. For the sake of simplicity, we focus here on the
evolution of plasticity solely in the austenitic parent phase as presented in Fig. 7.4(e). For
the calculations provided here, the initial temperature is set to θ|t=0 = 20◦C, cf. 7.4(f).
The evolution of temperature is induced by both the evolution of martensite and the
evolution of plasticity within the material and, at this stage, renders temperature levels
above physically reasonable values since, among other aspects, no heat flux is accounted
for.

Applying the isochoric load to a mixed austenitic-martensitic polycrystal with ξij|t=0 =
0.5/[nr nv] ∀ (i, j) ⇒ ξM|t=0 = ξA|t=0 = 0.5 as shown in Fig. 7.5 results in an overall
martensitic volume fraction that further evolves towards the upper constraint boundary
ξM → 1, see Fig. 7.4(d). As a result of the non-zero starting values for the individual
martensitic volume fractions ξij, all phases increase until the constraint ξM → 1 is ap-
proached. As the constraint is enforced by the penalty scheme, a subset of the individual
martensitic volume fractions continues to grow at the cost of other martensitic variants,
see Fig. 7.4(c). As the overall amount of dissipation induced by phase-transformations
is lower as a result of the already partially martensitic initial state, the obtained final
temperature provided in Fig. 7.5(f) is lower when compared to the temperature obtained
for the initially purely austenitic crystal that was highlighted before in Fig. 7.4(f).

Figure 7.6 shows the results obtained for a simple shear deformation applied to an
initially austenitic crystal. The deformation is set to F = I + γ e1 ⊗ e2 with a maxi-
mum shear number of γmax = 0.5 as shown in Fig. 7.6(a). The resulting shear stresses
are displayed in Fig. 7.6(b). Moreover, we show the individual martensite variants in
Fig. 7.6(c). In contrast to the evolution of volume fractions obtained for the isochoric
tensile deformation, see Figs. 7.4(c) and 7.5(c), in the case of simple shear a larger vari-
ety of independently—or rather non-identically—evolving volume fractions is observed.
This results from the fact that the direction of the maximum principal strain is not
constant for large-strain shear deformations. Accordingly, the individual martensitic
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7 A finite strain phase-transformation model with representative transformation directions

variants considered within the crystal are activated in a non-uniform manner. The max-
imum overall martensitic volume fraction obtained during the simple shear load cycle
is ξMmax ≈ 0.65, see Fig. 7.6(d). As in the case of the isochoric deformation, we also
provide the evolution of plastic strains in austenite, see Fig. 7.6(e), and the evolution of
the temperature, cf. Fig. 7.6(f).
The results obtained for a simple shear deformation with an initially mixed

martensitic-austenitic polycrystal with ξij |t=0 = 0.5/[nr nv] ∀ (i, j)⇒ ξM|t=0 = ξA|t=0 =
0.5 are given in Fig. 7.7. In line with the results discussed for the isochoric loading path,
the increase of the initial martensitic volume fraction within the polycrystal leads to an
approach of the upper constraint ξM → 1, see Fig. 7.7(d). Due to the non-constant direc-
tion of maximum principal strain, a variety of individually evolving martensite variants
is observed, cf. Fig. 7.7(c). It is also interesting to note that the evolution of plasticity in
the austenitic phase of the initially mixed austenitic-martensitic crystal, cf. Fig. 7.7(e),
is slightly less intense when compared to the plasticity evolution in the initially purely
austenitic crystal, cf. Fig. 7.6(e). This is in line with the Greenwood-Johnson effect,
which predicts growing plastic strains within the austenitic matrix material due to an
ongoing evolution of martensite.

166



7.3 Numerical solution of the constitutive equations

7.3.2.1 Isochoric tension
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Figure 7.4: Isochoric tension applied to an initially purely austenitic crystal, i.e. ξij |t=0 = 0 ∀ (i, j)⇒
ξM|t=0 = 0. Due to symmetry reasons, several of the considered 18 martensitic variants evolve in the
same manner, see (c). The penalty scheme successfully enforces the constraints ξij ≥ 0 (c) and ξM ≤ 1
(d).
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Figure 7.5: Isochoric tension applied to a mixed austenitic-martensitic crystal with ξij |t=0 =
0.5/[nr nv] ∀ (i, j) ⇒ ξM|t=0 = 0.5. As the upper constraint boundary ξM → 1 is reached (d), certain
martensitic variants continue to grow at the cost of other variants (c). Due to the partially martensitic
initial state of the crystal, the evolution of temperature (f) is less intense when compared to Fig. 7.4(f).
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7.3 Numerical solution of the constitutive equations

7.3.2.2 Simple shear
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Figure 7.6: Simple shear applied to an initially purely austenitic crystal, i.e. ξij |t=0 = 0 ∀ (i, j) ⇒
ξM|t=0 = 0. As the direction of maximum principal strain is non-constant for large shear deformations,
a broad variety of individually evolving martensitic variants is observed (c).
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Figure 7.7: Simple shear applied to a mixed austenitic-martensitic crystal with ξij |t=0 =
0.5/[nr nv] ∀ (i, j) ⇒ ξM|t=0 = 0.5. As a result of the partially martensitic initial state (d), the
evolution of temperature is less intense when compared to Fig. 7.6(f).
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7.4 Enforcement of inequality constraints – convergence study

7.4 Enforcement of inequality constraints – convergence

study

In this section we investigate the numerical behaviour of the penalty scheme provided
in Algorithm 7, as the actual convergence behaviour strongly depends on the penalty
parameters chosen. In fact, in order to guarantee a robust numerical behaviour of
the overall solution algorithm, the inequality constraints (7.31) and (7.32) introduced
in Section 7.2.1 are slightly modified. Note that several terms evaluated in the ODE
system (7.20)–(7.23) contain expressions of the form 1/ξM, as e.g. the definition of ĒM in
(7.5). As a result, in view of the numerical implementation of the model, the inequality
constraint (7.31) is reformulated as

ξij ≥ ǫh ∀ (i, j) (7.45)

⇒ hij = − ξij + ǫh ≤ 0 ∀ (i, j) . (7.46)

Similarly, the expression 1/ξA is evaluated within the ODE system, as e.g. in the
expression of the mechanical dissipation rate density (7.25). To this end, the upper
inequality constraint (7.32) is implemented numerically by

ξM =

nd∑

i=1

nv∑

j=1

ξij ≤ 1− ǫh (7.47)

⇒ h̄ = ξM − 1 + ǫh =

nd∑

i=1

nv∑

j=1

ξij − 1 + ǫh ≤ 0 (7.48)

with ǫh being referred to as the constraint distance in the following. To make sure that
neither the state ξM = 0 nor ξA = 0 occurs within any situation, the constraint distance
must be larger than the non-zero numerical penalty residuum ǫpen that is introduced in
Algorithm 7, i.e. ǫh > ǫpen. Moreover, the perturbation scheme applied to compute the
numerical tangent operator required for the Newton-Raphson iteration of the implicit
ODE system update, see Algorithm 5, has to be considered as well. It needs to be
ensured that the perturbation increment ǫpert used therein—as it is added to ξij among
the other state variables—does in no situation lead to ξM = 0 or ξA = 0. To this end,
we set the constraint distance to

ǫh = ǫpen + ǫpert + 10−8 (7.49)

which ensures a numerically stable solution of the overall model formulation.

Note that the penalty values γij and γ̄ that are considered in the driving force of
each martensitic variant—as introduced in (7.44)—are updated incrementally by adding
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7 A finite strain phase-transformation model with representative transformation directions

the penalty parameters Cγ and Cγ̄ , respectively, see Algorithm 7. In the following, we
investigate how the choice of the penalty parameters Cγ and Cγ̄ influences the convergence
behaviour of the overall penalty scheme for different loading conditions. As the actual
evolution of martensitic variants within the polycrystal strongly depends on the acting
load, cf. Section 7.3.2, we will show that different homogeneous load paths have to be
considered for a determination of proper values for the penalty parameters Cγ and Cγ̄ . To
this end, in Sections 7.4.1 and 7.4.2, we show the penalty convergence behaviour at both
the upper and the lower constraint boundary for an isochoric tensile load. Moreover, in
Sections 7.4.3 and 7.4.4, the penalty convergence is elaborated for a homogeneous shear
deformation. Note that parameter Cγ̄ is connected to the penalty-based enforcement of
the upper boundary constraint for the sum of all martensitic volume fractions, (7.48),
whereas Cγ facilitates the iterative fulfillment of the lower constraint boundary for each
individual martensitic variant, (7.46).
For the investigation of the penalty behaviour close to the upper constraint bound-

ary, we start with a high initial martensitic volume fraction of ξM = 0.9 with equally
distributed martensitic variants, i.e. ξij |t=0 = ξM/[nr nv] ∀ (i, j). Figure 7.8 provides the
results obtained for an isochoric tensile loading state. The evolution of individual vol-
ume fractions given in Fig. 7.8(b) highlights that no variant violates the lower boundary
constraint (7.46). The required penalty iterations provided in Figs. 7.8(c) and 7.8(e) are
thus required for the sole fulfillment of the upper boundary constraint, (7.48). The re-
sults obtained for the isochoric load path suggests that the penalty parameter Cγ̄ should
be chosen in a range of Cγ̄ = 20 . . . 300. For lower values, the number of necessary penalty
iterations increases to higher double-digit values, whereas for higher values Cγ̄ ≫ 300
the negative contribution −〈µ̄(Cγ̄)+ γ̄ h̄〉 to the driving force of the martensitic variants
(7.44) is so significant that the evolution is reversed and the solution starts to be inexact
as indicated in Fig. 7.8(f).
To assess the convergence behaviour close to the lower boundary constraint we set the

volume fractions of the individual martensitic variants close to zero, where the smallest
reasonable starting value coincides with the constraint distance (7.49), i.e. ξij|t=0 =
ǫh ∀ (i, j). The results obtained for an isochoric load are provided in Fig. 7.9. Note that
the penalty scheme is activated as ξM → 1, see Figs. 7.9(d) and 7.9(c), respectively. The
high number of 60–70 penalty iterations for a penalty parameter Cγ = 20 results from the
fact that the martensite variants with zero volume fraction are now constrained at ξij ≥
ǫh. In an unconstrained setting, these variants would decrease further as highlighted
earlier in Fig. 7.8(b). A resonable choice for the penalty parameter governing the lower
constraint is Cγ = 2000 as shown in Fig. 7.9(e).
The penalty convergence results obtained for large shear strains as depicted in

Figs. 7.10 and 7.11 underline that Cγ̄ = 300 and Cγ = 2000 are reasonable values for the
penalty parameters used in the applied penalty scheme. Taking a closer look at the def-
inition of the penalised driving force for the individual martensite variants (7.44) shows
why Cγ̄ ≪ Cγ has to generally hold for this model. If the upper boundary constraint is
violated, then all martensite variants are penalised at the same time—in consequence,
the more martensite variants are considered within the crystal, the lower the ratio Cγ̄/Cγ
has to be to maintain efficient convergency of the overall implementation.
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7.4 Enforcement of inequality constraints – convergence study

7.4.1 Tensile load – upper constraint boundary
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Figure 7.8: Convergence behaviour of the implemented penalty scheme enforcing ξM ≤ 1−ǫh depending
on the penalty parameter Cγ̄ for an isochoric tensile load with F11,max = 1.5 and tmax = 1s, where the
martensite variants are initially set to ξij |t=0 = 0.9/[nr nv] ∀ (i, j)⇒ ξM|t=0 = 0.9.
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7.4.2 Tensile load – lower constraint boundary
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Figure 7.9: Convergence behaviour of the implemented penalty scheme enforcing ξij ≥ ǫh depending
on the penalty parameter Cγ for an isochoric tensile load with F11,max = 1.5 and tmax = 1s, where the
martensite variants are initially set to ξij |t=0 = ǫh ∀ (i, j)⇒ ξM|t=0 = nr nv ǫh.
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7.4 Enforcement of inequality constraints – convergence study

7.4.3 Shear load – upper constraint boundary
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Figure 7.10: Convergence behaviour of the implemented penalty scheme enforcing ξM ≤ 1−ǫh depending
on the penalty parameter Cγ̄ for a simple shear load with F12,max = 1.5 and tmax = 1s, where the
martensite variants are initially set to ξij |t=0 = 0.9/[nr nv] ∀ (i, j)⇒ ξM|t=0 = 0.9.
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7.4.4 Shear load – lower constraint boundary
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Figure 7.11: Convergence behaviour of the implemented penalty scheme enforcing ξij ≥ ǫh depending
on the penalty parameter Cγ for a simple shear load with F12,max = 1.5 and tmax = 1s, where the
martensite variants are initially set to ξij |t=0 = ǫ ∀ (i, j)⇒ ξM|t=0 = nr nv ǫ.

176



7.5 Finite element implementation

7.5 Finite element implementation

In this section, a finite element implementation of the finite-strain thermo-elasto-
plastic phase-transformation model is shown. The previously presented results, see
Sections 7.3.2 and 7.4, were obtained with the help of a Fortran-implementation of
the overall model formulation. For the implementation into three-dimensional finite
elements, the Fortran-based code is linked to the commercial finite element program
ABAQUS via the ABAQUS VUMAT interface. The ABAQUS VUMAT interface rep-
resents a vectorised user material (‘UMAT’) routine interface for the efficient explicit
solution of dynamic boundary value problems. As industrial process simulations—such
as machining or drilling simulations—are often carried out using dynamic simulations
with explicit finite element integration schemes, cf. [63, 64], we provide a representative
finite element based dynamic solution to an inhomogeneous adiabatic problem by means
of a stretched block with hole.
Figure 7.12(a) provides the finite element discretisation of the considered three-

dimensional block with hole, where we use three-dimensional 8-node hexahedral
ABAQUS C3D8R elements. The Dirichlet boundary conditions given in Fig. 7.12(b)
show the fixed bottom plane while tensile displacements are applied to the top plane of
the body. The tensile displacement is applied in a short time of 10−4 s, facilitating an
explicit solution with consideration of dynamic effects. As initial conditions, we chose
θ|t=0 = 20◦C for the initial temperature and ξij |t=0 = 0.01⇒ ξM|t=0 = 0.18 for the initial
martensite variant distribution. The obtained von Mises stress distribution σvM as well
as the evolution of temperature θ at 5% macroscopic tensile deformation are provided
in Figs. 7.12(c) and 7.12(d), respectively.
The evolution of plastic strains in austenite is depicted in Fig. 7.13 for two deformation

states, namely at 5% and at 15% tensile strain, respectively. For both deformation states
we show the distribution of the tensile component Hpl

A,22 of the plastic strain tensor Hpl
A ,

see Figs. 7.13(a) and 7.13(b). Moreover, the corresponding accumulated plastic strains
are provided in Figs. 7.13(c) and 7.13(d), respectively.
For the evolution of volume fractions provided in Fig. 7.14, we restrict the visualisa-

tions to the volume fractions of austenite ξA and overall martensite ξM, i.e. we do not
provide seperate visualisations for all 18 martensite variants considered in the presented
model implementation. For details on the evolution of individual martensitic variants
for different homogeneous load cases, the reader is instead referred to Section 7.3.2.
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(a) Finite element discretisation of the model.
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(c) Von Mises equivalent stress σvM [MPa] ob-
tained at 5% macroscopic strain.
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(d) Temperature θ [◦C] obtained at 5% macro-
scopic strain.

Figure 7.12: Representative finite element simulation of the thermo-elasto-plastic finite strain model
for coupled phase-transformations and plasticity introduced in this chapter. The Fortran-based model
implementation is used as an ABAQUS user subroutine via the ABAQUS VUMAT interface. For the
evolution of plasticity and volume fractions, see Figs. 7.13 and 7.14, respectively.
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(b) Plastic strain in austenite Hpl
A,22 in tensile di-

rection at 15% macroscopic strain.
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(c) Accumulated plastic strain in austenite at 5%
macroscopic strain.
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(d) Accumulated plastic strain in austenite at 15%
macroscopic strain.

Figure 7.13: Evolution of plasticity in austenite at different states of deformation. Plasticity in austenite
is induced not only by the deformation of the body, but also as a result of the evolution of martensite.
This effect—known as Greenwood-Johnson effect—is considered in the yield function of austenite in a
thermodynamically consistent manner.
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scopic strain.
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(b) Volume fraction of austenite ξA at 15% macro-
scopic strain.
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(c) Overall volume fraction of martensite ξM at 5%
macroscopic strain.
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(d) Overall volume fraction of martensite ξM at
15% macroscopic strain.

Figure 7.14: Evolution of volume fractions within the considered body at different states of deformation.
Besides the evolution of austenite shown in (a) and (b), we restrict the visualisation to the evolution
of the overall martensite volume fraction ξM =

∑
ξij , cf. (c) and (d), i.e. we do not provide seperate

visualisations of the individual distributions of all 18 martensite variants that are considered within this
simulation.
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7.6 Appendix – material parameters

The Bain strains related to the austenite-martensite transformation, see (7.1), are identi-
fied as U tr

lon = 0.8376 and U tr
lat = 1.1138. Moreover, the elastic properties of the referential

martensitic unit cell—cf. (7.4) and (7.5)—are chosen as

[Eref ]1111 = 617GPa , (7.50)

[Eref ]2222 = [Eref ]3333 = 497GPa , (7.51)

[Eref ]1122 = [Eref ]1133 = 265GPa , (7.52)

[Eref ]2233 = 405GPa , (7.53)

[Eref ]1212 = [Eref ]1313 = 263GPa , (7.54)

[Eref ]2323 = 278GPa , (7.55)

whereas the elastic properties of the isotropic austenite matrix are set to

[EA]1111 = [EA]2222 = [EA]3333 = 309GPa , (7.56)

[EA]1122 = [EA]2233 = [EA]1133 = 136GPa , (7.57)

[EA]1212 = [EA]2323 = [EA]1313 = 87GPa . (7.58)

Moreover, the used scalar-valued parameters are given in Table 7.1.

Table 7.1: TRIP steel material parameters considered in the current chapter.

TRIP steel phase material parameter symbol value

austenite A (parent phase) latent heat λM
0 0

initial yield stress Y
init
A 1.65GPa

saturation yield stress Y
sat
A 2Yinit

A

martensite M transformation strain U tr
ref 200GPa

latent heat λM
0 0.15GPa

initial yield stress Y
init
M 1.9GPa

saturation yield stress Y
sat
M 1.5Yinit

M

common parameters: heat capacity c• 5× 10−3 GPa/K

hardening decay parameter κ• 10 s−2

transformation viscosities η◦• 25GPa/s

reference temperature θtr0 263.15 K
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8 Concluding remarks

In this work, two approaches for the modelling and simulation of phase-
transformations in elasto-plastic polycrystals are presented. The model elaborated in the
course of Chapters 2-6 is based on statistical physics, where transformation probabilites
driving the evolution of volume fractions are computed from Gibbs energy barriers. The
model is implemented in a micro-sphere framework for the efficient simulation of poly-
crystalline materials undergoing austenitic-martensitic phase-transformations, such as
shape memory alloys and TRIP steels. In Chapter 7, a finite-strain phase-transformation
model based on selected representative transformation directions is implemented and
discussed.
The model for the simulation of phase-transformations in polycrystalline SMA pre-

sented inChapter 2 is based on a one-dimensional, thermodynamically consistent model
introduced in [51]. The model is implemented into an affine micro-sphere framework, fa-
cilitating the simulation of polycrystalline aggregates within three-dimensional boundary
value problems. The tension-compression asymmetry observed in experiments is incor-
porated by means of individual transformation strains considered for the martensitic
tension and compression phase, respectively. Due to an explicit but A-stable integration
scheme applied to the system of evolution equations, an efficient yet stable numerical
solution of the overall model formulation is obtained. However, it is shown that the
affine micro-sphere kinematics induce a macroscopic Poisson’s ratio of νP = 1/4. To
adress this limitation—and in view of the incorporation of purely deviatoric plasticity
effects—an extension to a non-affine micro-sphere framework is presented in Chapter 3.
The extension of the aforementioned model to non-affine micro-sphere kinematics is

elaborated in Chapter 3, where the volumetric-deviatoric split in kinematics facilitates
capturing the actual macro-level Poisson’s ratio of SMA. However, the introduced split
in kinematics has a significant influence on the underlying phase-transformation model—
instead of simple parabolas, the Gibbs phase potentials now take the form of elliptical
paraboloids in volumetric-deviatoric strain space. As a result, the computation of the
Gibbs energy barriers driving the evolution of volume fractions turns into a computa-
tionally advanced problem. To this end, we introduce a numerical minimisation scheme
to solve for the minimum of the parametric Gibbs energy intersection curves. We show
that the model is capable of reproducing the stress-strain-temperature response which is

183



8 Concluding remarks

considered as one of the main features of SMA. Moreover, the model captures the pseudo-
plastic response of SMA observed at low temperatures and the pseudo-elastic response
observed at elevated temperatures. Finally, we simulate tensile step tests, showing that
the proposed model captures experimentally observed stress-strain envelopes and appro-
priate stress-strain minor loops of SMA as well.

In view of the simulation of austenitic-martensitic phase-transformations in TRIP
steels, the model has to be extended to the capturing of interactions between phase-
transformations and plasticity. The formulation presented inChapter 4 shows an exten-
sion of the underlying one-dimensional model, where individually evolving plastic strains
are considered for each of the material phases by an extension of the Helmholtz free
energy functions. Moreover, a so-called plasticity inheritance framework is introduced—
motivated by the changes in dislocation densities resulting from an evolving phase
front that separates two phases. Numerical results for TRIP steel material parameters
are provided and it is shown that the proposed coupling mechanism between phase-
transformations and plasticity gives promising results in view of further enhancements
of the model.

The coupled phase-transformation plasticity model is embedded into an affine micro-
sphere framework in Chapter 5, where we show that the three-dimensional extension of
the coupled model introduced in Chapter 4 allows to capture the macroscopic response of
TRIP steel. Besides homogeneous micro- and meso-level computations, we show a finite
element implementation for the solution of inhomogeneous boundary value problems.
However, the use of the affine micro-sphere framework induces a macroscopic Poisson’s
ratio of νP = 1/4 as discussed in Chapter 2. Moreover, the onset of plasticity is not
restricted to deviatoric load cases. Both limitations are adressed in Chapter 6.

Chapter 6 provides a model formulation for the interactions between phase-
transformations and plasticity in a non-affine micro-sphere framework with volumetric-
deviatoric split in kinematics. The incorporation of plasticity is considered solely in
the deviatoric Helmholtz free energy contributions of the individual phases and a fur-
ther coupling between phase-transformations and plasticity is established by means of a
consistent plasticity inheritance framework for three phases. We simulate the polycrys-
talline responses of SMA and TRIP steel for multiple tension-compression load cycles
and show that the obtained results are in agreement with the experimentally observed
features of both materials, cf. Sections 1.1.1 and 1.1.2, respectively. Precisely speaking,
the results obtained for polycrystalline SMA, see Figs. 6.4, 6.5, and 6.6, coincide with ex-
perimental findings in terms of the stress-strain response and the maximum macroscopic
martensitic volume fraction. The latter reaches around 50% at 4% macroscopic strain,
corresponding to experimentally observed values for polycrystalline specimen that are
subject to the grain-locking effect, cf. Fig. 1.2. The application of the model formulation
to TRIP steel material parameters shows that the proposed model captures experimen-
tally observed TRIP steel characteristics as well. The cyclic stress-strain response with
work hardening and the cyclic accumulation of martensitic volume fractions shown in
Fig. 6.8 coincides with experimental findings, cf. Section 1.1.2. Moreover, the visualisa-
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tion of the three-dimensional polycrystalline response provided in Fig. 6.9 highlights the
intense evolution of plasticity within TRIP steel, whereas the phase-transformation are
less intense compared to SMA. Besides these polycrystal-level results, we show a finite
element implementation of the overall formulation, where representative inhomogeneous
boundary value problems by means of tensile and shear tests of a plate with hole are
presented for both classes of material.
A finite-strain model for the simulation of austenitic-martensitic phase-

transformations and plasticity in a thermo-elastoplastic framework, taken from [14], is
presented in Chapter 7. The model aims at the simulation of TRIP steel, where the in-
dividual transformation strains—i.e. Bain strains—of spatially arranged martensite unit
cells are considered. Representative spatial transformation directions are introduced,
where for each spatial direction an arbitrary number of martensite variants can be
considered. The minimum amount of transformation directions and martensite variants
required to capture macroscopically isotropic polycrystal responses are identified
in [14] with the help of an optimisation scheme. The focal point of this chapter is the
efficient and robust numerical solution of the strongly coupled system of differential
equations—governing the evolution of individual martensite variants, logarithmic plastic
strain tensor components for austenite and martensite, respectively, accumulated plastic
strains, and temperature. Moreover, algebraic inequality constraints for the evolution of
volume fractions are established by means of a penalty scheme. A penalty convergence
study is carried out, facilitating the identification of penalty parameter values that
enable an efficient enforcement of the physically motivated constraints. Finally, the
results of a finite element implementation of the overall model formulation are provided,
where the ABAQUS VUMAT subroutine interface for the explicit solution of dynamic
boundary value problems is used in view of a later application to macroscopic machining
simulations.
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