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Abstract

The spherical functions of the noncompact Grassmann manifolds Gp,¢(F) = G/K over the
(skew-)fields F = R, C,H with rank ¢ > 1 and dimension parameter p > ¢ can be described as
Heckman-Opdam hypergeometric functions of type BC, where the double coset space G//K is
identified with the Weyl chamber C’f C R? of type B. The corresponding product formulas and
Harish-Chandra integral representations were recently written down by M. Résler and the author
in an explicit way such that both formulas can be extended analytically to all real parameters
p € [2¢ — 1,00], and that associated commutative convolution structures *, on Cf exist. In
this paper we introduce moment functions and the dispersion of probability measures on Cf
depending on *, and study these functions with the aid of this generalized integral representation.
Moreover, we derive strong laws of large numbers and central limit theorems for associated time-
homogeneous random walks on (Cf ,*p) where the moment functions and the dispersion appear
in order to determine drift vectors and covariance matrices of these limit laws explicitely. For
integers p, all results have interpretations for G-invariant random walks on the Grassmannians
G/K.

Besides the BC-cases we also study the spaces GL(q,F)/U(q,F), which are related to Weyl
chambers of type A, and for which corresponding results hold. For the rank-one-case ¢ = 1, the
results of this paper are well-known in the context of Jacobi-type hypergroups on [0, ool
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1 Introduction

The Heckman-Opdam theory of hypergeometric functions associated with root systems generalizes
the classical theory of spherical functions on Riemannian symmetric spaces; see [H], [HS] and [O1] for
the general theory, and [NPP], [R2], [RKV], [RV1], [Sch] for some recent developments. In this paper
we study these functions for the root systems of types A and BC in the noncompact case. In the
case A,_1 with ¢ > 2, this theory is connected with the groups G := GL(gq,F) with maximal compact
subgroups K := U(q, F) over one of the (skew-)fields F = R, C, H with dimension

d:=dimgF € {1,2,41 for F=R,C,H

Moreover, in the case BC; with ¢ > 1, these functions are related with the non-compact Grassmann
manifolds G, ,(F) := G/K with p > ¢, where depending on F = R,C,H, the group G is one of
the indefinite orthogonal, unitary or symplectic groups SOg(q,p), SU(q,p) or Sp(q,p), and K is the
maximal compact subgroup K = SO(q) x SO(p), S(U(q) x U(p)) or Sp(q) x Sp(p), respectively.

In all these group cases, we regard the K-spherical functions on G (i.e., the nontrivial, K-
biinvariant, multiplicative continuous functions on ) as multiplicative continuous functions on the



double coset space G//K where G//K is equipped with the corresponding double coset convolution.
By the K AK-decomposition of G in the both cases above, the double coset space G//K may be
identified with the Weyl chambers

Clli={t=(t1, -ty ERT: t; >ty > >t}

of type A and
CPi={t=(tr,~ ,tg) ERI: t; >ty >+ > t, >0}

of type B respectively. In both cases, this identification occurs via a exponential mapping t — a; € G
from the Weyl chamber to a system of representatives a; of the double cosets in G. We now follow
the notation in [RV1] and put

a; = et (1.1)

for t € Cj;‘ in the A-case, and

cosht sinht 0
a; = exp(H;) = | sinht cosht 0 (1.2)
0 0 I,

for t € Cf in the BC-case respectively where we use the diagonal matrices
el := diag(e',...,e'), cosht = diag(coshty,...,cosht,), sinht = diag(coshty,...,cosht,).

We shall use this identification of G//K and the corresponding Weyl chambers C;‘ and Cf respectively
from now on.

To identify the spherical functions, we fix the rank ¢, follow the notation in the first part of [HS],
and denote the Heckman-Opdam hypergeometric functions associated with the root systems

2~Aq_1:{iQ(ei—ej):1§i<j§q}CRq

and
2- ch = {:thi,ﬂ:4€i,:t2€i + 26j 1<i<g < q} Cc R

by Fa(X, k;t) and Fpe(A, k;t) respectively with spectral variable A € C? and multiplicity parameter
k. The factor 2 in the root systems originates from the known connections of the Heckman-Opdam
theory to spherical functions on symmetric spaces in [HS] and references cited there. In the case A,_1,
the spherical functions on G//K ~ C’(f are then given by

o3 (ar) = e TN U Faim(N), d/2; (1) (tE€R, A€ CY)
with multiplicity & = d/2 where
T:RISRE:={teR?: t;1 +...+t, =0}

is the orthogonal projection w.r.t. the standard scalar product; see e.g. Eq. (6.7) of [RKV]. In the
B(C-cases with p > ¢, the spherical functions on G//K ~ C’f are given by

o8 (ar) = Fpe(iX, kp;t) (teR?, NeCY)
with three-dimensional multiplicity

kp = (d(p—q)/2,(d—1)/2,d/2)

corresponding to the roots +2e;, +4e; and 2(+e; £ ¢;).

In the BC-cases, the associated double coset convolutions *, , of measures on C’f are written down
explicitly in [R2] for p > 2¢ such that these convolutions and the associated product formulas for the
associated hypergeometric functions Fgc above can be extended to all real parameters p > 2q — 1 by



analytic continuation where the case p = 2q — 1 appears as degenerated singular limit case. For these
continuous family of parameters p € [2¢ — 1, 00], the convolutions %, , are associative, commutative,
and probability-preserving, and they generate commutative hypergroups (C’éB ,*p ) In the sense of
Dunkl, Jewett, and Spector by [R2]; for the notion of hypergroups we refer to the paper [J] of
Jewett, where hypergroups were called convos,as well as to the monograph [BH]. The results of [R2]
in particular imply that the (nontrivial) multiplicative continuous functions of these hypergroups
(C’f7 %, 4) are precisely the associated hypergeometric functions ¢ — Fpc (i, kp;t) with A € C9.

Let us now turn to a probabilistic point of view. It is well-known from probability theory on
groups that G-invariant random walks on the symmetric spaces G/K as above are in a one-to-one-
correspondence with random walks on the associated double coset hypergroups (G//K,*) via the
canonical projection from G/K onto G//K. In this way, all limit theorems for random walks on
(G//K,«) admit interpretations as limit theorems for G-invariant random walk on G/K.

The major aim of the present paper is to derive several limit theorems for time-homogeneous
random walks (X,,),>0 on the concrete double coset hypergroups (G//K, ) mentioned above as well
as on some generalizations. For this, we shall use an analytic approach which allows to derive all results
in the BC-cases not just for the group cases (G//K = C’f, *p.q) With integers p, but also for the the
intermediate cases (CF, %, ) with real numbers p € [2¢—1, o[ of Résler [R2]. In particular we present
strong laws of large numbers and central limit theorems with g-dimensional normal distributions as
limits with explicit formulas for the parameters, i.e., the drift vectors and the diffusion matrices.
In particular, the g-dimensional dispersion of probability measures on the Weyl-chambers C’;;‘ and
C’f appears as drift depending on the concrete underlying hypergroup convolutions. For the case
BC; of rank ¢ = 1, the hypergroups (Cf, *p.q) are hypergroups on [0, co[ with Jacobi functions as
multiplicative functions; see [K] for the theory of Jacobi functions. These hypergroups on [0, co] fit
into the theory of non-compact one-dimensional Sturm-Liouville hypergroups, for which the approach
of this paper is well-known; see in particular [Z1], [Z22], [V1], [V2], [V3], the monograph [BH], and
papers cited there.

In order to describe the dispersion and the diffusion matrices, we shall introduce analogues of
multivariate moments of probability measures on C’;‘ and C’f, which can be computed explicitly via
so-called moment functions my : C’f — R for multiindices k = (k1,...,k;) € N§ which replace the

. k .
usual moment functions z + ¥ := x’fl ---xq" on the group (R?,+). These moment functions my

are defined as partial derivatives of the multiplicative functions ¢, w.r.t. the spectral parameters
at A = —ip, where p is the half sum of positive roots, and ¢_;, is the identity character 1 of our
hypergroups on C'qA or C’f.

We recapitulate that in the group cases above, our limit theorems on the Weyl chambers C'qA and
C’f may be regarded as limit theorems for time-homogeneous group-invariant random walks on the
associated symmetric spaces G//K for which the limit theorems of this paper are partially known for
a long time; see [BL], [FH], [G1], [G2], [L], [Ri], [Tel], [Te2], [Tu], [Ri], [Vi], and references there. On
the other hand, our analytic approach goes beyond the group cases in the BC-case for non-integers
p € [2¢ — 1,00[. Moreover, we obtain explicit analytic formulas for the drift vectors and diffusion
matrices below in the limit theorems which seem to be new even in the group cases.

We point out that we are interested in this paper mainly in the case BC. As the A-case in the
Heckman-Opdam theory appears as a limit of the BC-case for p — oo in some way (see [RKV], [RV1]
for the details), it is not astonishing that all results in the BC-case are also available in the A-case
without additional effort. In practice, all results below are proved first for the simpler A-case and
then extended to the more interesting BC-case.

This paper is organized as follows. For the convenience of the reader, we collect all major results
of this paper on random walks on the symmetric spaces GL(q,F)/SU(q,F) and the associated Weyl
chambers C’g‘ of type A in Section 2 without proofs. We then do the same in Section 3 for random
walks on the Grassmannian manifolds G, 4(F) and the associated Weyl chambers Cf of type B where
in the latter case the parameter p € [2¢—1, oo[ is continuous. The remaining sections are then devoted
to the proofs of the main results from Sections 2 and 3. In particular, in Section 4 we collect some



basic results from matrix analysis which are needed later. Sections 5 and 6 the contain the proofs of
facts on the moment functions in the cases A and BC respectively. We here in particular derive some
results on the uniform oscillatory behavior of the spherical functions and hypergeometric functions at
the spectral parameter —ip which may be interesting for themselves, and which seem to be new even
in the case of spherical functions on symmetric spaces. Sections 7 and 8 are the devoted to the proofs
of the laws of large numbers and central limit theorems.

We finally point out that we expect that at least parts of this paper may be extended from the
Grassmannians G/K = G 4(F) and the Weyl chambers CZ to the reductive cases U(p, q)/(U(p) x
SU(q)) and the space CF x T, which may be identified with the double coset space U(p, q)//(U(p) x
SU(q)), and where again the spherical functions can be described in terms of the functions Fpc; see
Ch. L5 of [HS] and [V4].

2 Dispersion and limit theorems for root systems of type A

Consider the general linear group G := GL(q,F) with maximal compact subgroup K := U(q,F) with
an integer ¢ > 2 and F = R, C,H as in the introduction. Let

Osing(9) €E{z = (21,...,2¢) ERY: 21 > 29 > -+ > 1y >0}

be the singular (or Lyapunov) spectrum of g € G where the singular values of g, i.e., the square
roots of the eigenvalues of the positive definite matrix g*g, are ordered by size. Using the notation
In(zq,...,24) ;== (Inz,...,Inx,), we consider the K-biinvariant mapping

Inoging: G— C;‘

which leads to the canonical identification of the double coset space G//K with the Weyl chamber
C’jf which corresponds to the identification in Eq. (1.1) in the introduction.

Now consider i.i.d. G-valued random variables (Xj)r>1 with the common K-biinvariant distri-
bution vg € M'(G) and the associated G-valued random walk (Sy := X7 - Xo -+ Xj)r>0 with the
convention that Sy is the identity matrix I, € G. We now always identify the double coset space
G//K with C;‘ as above. Then, via taking the image measure of v under the canonical projection
from G to G//K, the K-biinvariant distribution v € M!(G) is in a one-to-one-correspondence with
some probability measure v € M* (CqA). We shall show that, under natural moment conditions, the
C’;‘—valued random variables

In Osing (Sk)
k

converge a.s. to some drift vector mq(v) € C(;‘, and that the distributions of R?-valued random
variables .
ﬁ(ln Osing(Sk) — k- ma1(v)) (2.1)

tend to some normal distribution N(0,%2?(v)) on R?. We shall give explicit formulas for mq () and
the covariance matrix ¥2(v) depending on v and the dimension parameter d = 1,2,4 of F.

Let us briefly compare this central limit theorem (CLT) with the existing literature. By polar
decomposition of g € G, the symmetric space G/K can be identified with the cone P,(F) of positive
definite hermitian ¢ X ¢ matrices via

9K — 1(g) :=gg" € Fy(F) (g€ G),
where G acts on P,(F) via a — gag*. In this way, we again obtain the identification G//K =~ C’qA via
1 *
KgK — Inoging(g9) = 3 Ino(gg™)

where here o means the spectrum, i.e., the ordered eigenvalues, of a positive definite matrix. Therefore,
the CLT above may be regarded as a CLT for the spectrum of K-invariant random walks on P, (F).



CLTs in this context have a long history. In particular, [Tu], [FH], [Tel], [Te2], [Ri], [G1], and [G2]
contain CLTs where, different from our CLT, v is renormalized first into some measure v, € M*(G),
and then the convergence of the convolution powers v is studied. Our CLT is also in principle well-
known up to the explicit formulas for the drift m4 () and the covariance matrix X(v); see Theorem
1 of [Vi], the CLTs of Le Page [L], and the part of Bougerol in the monograph [BL].

We now turn to the constants mq(v) € C;‘ and X%(v). For this we follow the approach in
[Z1],]Z2], [V1], and [BH], and introduce so-called moment functions on the double coset hypergroups
C’;‘ ~ G//K via partial derivatives of the spherical functions gof w.r.t. the spectral parameter A at
the identity. For this we consider the half sum of positive roots

) d
p=1(p1,--,pq) with plzi(q+172l) (l=1,...,9) (2.2)
and recapitulate the Harish-Chandra integral representation of the spherical functions
e (t) = T ON LRy (im(N), d/2; 7 (L)) (teRI \eC9 (2.3)

from [H1], [Te2]. For this we need some notations: For a Hermitian matrix A = (a;j)i j=1,..q4 Over
F we denote by A(A) the determinant of A, and by A,(A4) = det((a;;)1<i j<r) the r-th principal
minor of A forr =1,...,,q. For F = H, all determinants are understood in the sense of Dieudonné,
i.e. det(A) = (detc(A))Y/?, when A is considered as a complex matrix. For any positive Hermitian
q X g-matrix z and A € C? we now define the power function

Ax(z) = Ag(z)M 722 A ()M R A ()M (2.4)

With these notations, the Harish-Chandra integral representation of the functions in (2.3) reads as
Pa(t) = / Air—py2(u™ e u) du; (2.5)
U(q,F)

see also Section 3 of [RV1] for the precise identification. It is clear from (2.5) that ¢_;, = 1, and that
for A\e R"and t € C;‘, lo—ip+a(9)| < 1. We mention that the set of all parameters A € C9, for which
©x is bounded, is completely known; see [R2] and [NPP].

We now follow the known approach to the dispersion for the Gelfand pairs (G, K) (see [FH], [Tel],
[Te2], [Ri], [G1], [G2]) and to moment functions on hypergroups in Section 7.2.2 of [BH] (see also [Z1],
[Z2], [V2], [V3]): For multiindices | = (1,...,l;) € N we define the moment functions

gl ol
mit) = gzpe-n-n(8),_i= (@A) (OAn)la ol

A=0

1 Ag(u~te2tu)\ "> Ap(u=te?tu) .
—— [ A (v teXty)) (I ( =222 =Y o (2 = du (2.6
11| /K( nAy(u et u)) n Ar(u—teq) n A1 (u—Tetu) u (2.6)
of order |l| := 1y +---+1, for g € G. Clearly, the last equality in (2.6) follows immediately from (2.5)

by interchanging integration and derivatives. Using the ¢ moment functions m; of first order with
|I| = 1, we form the vector-valued moment function

ma(t) == (mqo,..0)(t),- - m(,.01)(t)) (2.7)
of first order. We prove the following facts about mj in Section 5:

2.1 Proposition. (1) For allt € C', m(t) € C2.

(2) There exists a constant C = C(q) such that for all t € CZ},

lma(t) — ] < C.



3) There exists a constant C' = C(q) such that for allt € C2* and \ € RY,
q
oo (t) = e Xm O < A%

Similar to collecting the moment functions of first order in the vector my, we group the moment
functions of second order by

mia(t) - mag(t)
ma(t) := : : (2.8)
mg1(t) -+ Mmgq(t)
m2,0,...00)  mai0,..00) - mapo,.0n(t)
ma1,0,..00E)  moz20,..00) 0 me10,..01)(t)
— @, . ) ( ' ) ( . ) for te C;‘.
mao,..01) ) Moa1,0,..00() - mo,....0,2)(t)

We derive the following facts about the ¢ x g-matrices ¥2(t) := ma(t) — mq(t)" - m1(t) in Section 5:

2.2 Proposition. (1) For eacht € C,f, Y2(t) is positive semidefinite.

(2) Fort=c-(1,...,1) € C(;‘ with ¢ € R, ¥2(t) = 0.

(3) Ifte C’(‘;‘ does not have the form of part (2), then X2(t) has rank q — 1.

(4) Forallj,l=1,...,q and t € C3', |m;,(t)] < ((q— 1)(t1 — tq) + max(|t1], [t4]))?.
(5) There exists a constant C = C(q) such that for all t € C;‘,

mia() =] < C(tal+1)  and  |mgq(t) — 5] < C(ltg| + 1)

Parts (4), (5) of Proposition 2.2 yield in particular that all second moment functions m;; are at
most quadratically growing, and that at least m; ; and m, 4 are in fact quadratically growing.

Now consider a probability measure v € M 1(0;‘). We say that v admits first moments if all usual
first moments [, 4 t;dv(t) (j=1,...,q) exist. By Proposition 2.1(2) this is equivalent to require that

the modified expectation vector

my(v) := m(t) dv(t) € C’,f C RY
oy
exists. my(v) is called dispersion of v. In a similar way we say that v admits second moments if all
usual second moments [, t3dv(t) (j =1,...,q) exist. By Proposition 2.2(4) and (5) this means that
q

all second moment functions m;; > 0 are v-integrable. In particular, in this case, also all moments
of first order exist, and we can form the modified symmetric ¢ X g-covariance matrix

Y (v) = /C;mg dv — ma(v)t-ma(v).

The rank of this positive semidefinite matrix can be determined depending on v. This follows in
a natural way from the structure of the double coset hypergroup G//K ~ A,‘;‘ which is the direct
product of the diagonal subgroup Dy := {c-(1,...,1) : ¢ € R} C C’;‘ and the subhypergroup
C’(;"O ={te C,;‘ :t1+ - +t, = 0} which is a reduced Weyl chamber of type A. This direct product
structure explains the form (2.3) of the spherical functions. It also explains Proposition 2.2 and the
following result on %2(v):

2.3 Proposition. Assume that v € Ml(C;‘) admits second moments.

(1) If the projection of v under the orthogonal projection from C’(j‘ C R? onto Dy is not a point

measure, and if the support of v is not contained in D, then Y¥2(v) is positive definite.



(2) If suppv C Dy, then the rank of X*(v) is at most 1.

3) If the projection of v under the orthogonal projection from CA C RY to D, is a point measure
proj gonal proj p p p )
and if suppv ¢ Dy, then ¥2(v) has rank q¢ — 1.

As main results of this paper in the A-case, we have the following strong law of large numbers and
CLT for a biinvariant random walk (S )x>0 on G associated with the probability measure v € M?! (C’(;‘).
Proofs are given in Section 7 below.

2.4 Theorem. (1) If v admits first moments, then for k — oo,

ln Using(sk)
k

— ma(v) almost surely.

(2) If v admits second moments, then for all € > 1/2 and k — oo,

1
T (In 0 ging(Sk) — k- ma(v)) — 0 almost surely.

2.5 Theorem. If v € M*(G) admits finite second moments, then for k — oo in distribution,
1

ﬁ(lnasmg(sk) —k-ma(v)) — N(0,22(v)).

3 Dispersion and limit theorems for root systems of type BC

In this section we consider the non-compact Grassmann manifolds G, ,(F) := G/K with p > g,
where depending on F, the group G is one of the indefinite orthogonal, unitary or symplectic groups
SOo(q,p), SU(q,p) or Sp(q, p), and K is the maximal compact subgroup K = SO(q)xSO(p), S(U(q) %
U(p)) or Sp(q) x Sp(p) respectively. We identify the double coset space G//K with the Weyl chamber
C’f according to Eq. (1.2). To determine the associated canonical projection from G to C’f explicitly,

write g € G in p X g-block notation as
= <A(g) B(g))
Clg) D(g)

with A(g) € My(F), D(g) € M,(F), and so on. By Eq. (1.2), the canonical projection from G to CF
is given by
g+ arcosh (0sing(A(g)))

where 04,4 again denotes the ordered singular spectrum, and arcosh is taken in each component.

Similar to Section 2, we are interested in limit theorems for biinvariant random walks (Si =
X1-Xo-- Xi)r>o0 on G for i.i.d. G-valued random variables (X )x>1 with the common K-biinvariant
distribution v € M'(G). We identify G//K with CP as above. Then, via taking the image measure
of v under the canonical projection from G to G//K, the K-biinvariant distribution vg € M (G)
corresponds with some unique probability measure v € M 1(C'qB ). We shall show that, under natural
moment conditions, the C’f -valued random variables

arcosh (0sing(A(Sk)))
k

converge a.s. to some drift vector my(v) € CZ, and that the distributions of R?-valued random
variables

1
ﬁ(arcosh (0sing(A(Sk))) — k- ma(v)) (3.1)

tend to some normal distribution N(0,¥?(v)) on RY.



We derive these limit theorems in a more general context. For this recapitulate that Cf ~G//K
is a double coset hypergroup whose multiplicative functions are given by the hypergeometric functions

Pt = Fpe(idkyit)  (t€CP, AeCY) (3.2)

with multiplicity &k, = (d(p — q)/2,(d — 1)/2,d/2). In [R2], the product formula for these spherical
functions ¢ € C(G), namely

so(g)w(h)Z/Kw(gkh) dk (g9,h € @),

was written down explicitly in terms of these hypergeometric functions of type BC for all p > 2q as
a product formula for on G//K ~ C’f such that this formula remains correct for ¢ with all real
parameters p €]2q — 1, 00]. This result from [R2] is as follows: For all s,t € Cf and A € C9,

A0 = [ A o5 6)()
where the probability measures 5 %, 0; € M 1(05 ) with compact support are given by
1
(05 %p 00)(f) = —/ / f(arcosh (0sing(sinhtw sinhs + coshtwv coshg))) dv dm,(w) (3.3)
Kp JB, JU(q.F)

for functions f € C (C’f). Here, dv means integration w.r.t. the normalized Haar measure on U(q, F),
B, is the matrix ball
By :={we M) : w'w < I},

and dm,,(w) is the probability measure

dmy(w) := %A(I — wrw) /2201 gy € MY(B,) (3.4)
i
where dw is the Lebesgue measure on the ball By, and the normalization constant x, > 0 is chosen
such that dm,(w) is a probability measure. For p = 2¢ — 1 there is a corresponding degenerated
formula where then the probability measure m,, € M'(B,) becomes singular; see Section 3 of [R1] for
the details. By [R2], the convolution (3.3) can for all p € [2¢g — 1, 0o[ be extended in a unique bilinear,
weakly continuous way to a commutative and associative convolution *, on the Banach space of all
bounded Borel measures on C’f , such that (C’f ,*p) becomes a commutative hypergroup with 0 € R?
as identity.
We now use the convolution %, for p € [2¢ — 1,00[ and d = 1,2,4, and generalize the Markov
processes

(Sy := arcosh (0sing(A(Sk)))) on CF (3.5)

k>0
in the group cases for integers p as follows: Fix a measure v € M 1(C’f ), and consider a time-
homogeneous random walk (Sj)x>0 on CqB (associated with the parameters p,d) with law v, i.e., a

time-homogeneous Markov process on starting at the hypergroup identity 0 € Cf with transition
probability

P(Sp11 € Al Sy, = z) = (6, xv)(A) (x € Cf, AcC C’f a Borel set).

By our construction, each stochastic process on CqB defined via Eq. (3.5), is in fact such a time-
homogeneous random walk for the corresponding p,d. We also point out that induction on k shows
easily that the distributions of Sy, are given as the convolution powers v*) w.r.t. the convolution *p.
We shall derive all limit theorems in this setting for p € [2¢ — 1, o0].

In order to identify the data of the limit theorems, we proceed as in Section 2 and use the Harish-
Chandra integral representation of ¢ in Theorem 2.4 of [RV1]:



3.1 Proposition. Forallp >2q—1,t¢ Cf, and A € C1,

S (1) = / / Airpzey a9t us w)) du dmp(w) (3.6)
B, JU(q,F)

with the power function Ay from (2.4), the half sum of positive roots

q
d )
pBC:pBC(p):Z(§(p+q+2—2z)—l)ei, (3.7)
i=1
g(t,u,w) := u*(cosht + sinht - w)(cosht + sinh t - w)*u, (3.8)

and with the probability measure dmy,(w) from (3.4). Moreover, for p = 2q — 1, a corresponding
degenerated formula holds.

Proof. This formula follows immediately from Theorem 2.4 of [RV1]. Notice that that our function
g(t, u, w) is equal to the function §;(u,w) in Section 2 of [RV1]. Moreover, in [RV1] we take one integral
over the identity component Uy(g,TF) of U(q,F) instead over U(q,F). But this makes a difference for
these groups for F = R only, where the integrals are equal in all cases by the form of g(¢, u, w). O

We now proceed as in Section 2. For I = (Iy,...,l;) € N} we define the moment functions

ol v ol v
milt) = Z5reigme-a®)],_y= @) @A ool

‘)\:0

_i n u,w))) - nw lz... HM . w dme (w
=50 /Bq /Uw)(l A1(g(t,u,w))) <1 A1(g(t,u,w))> (1 Aq_l(g(t,u,w))) du dm,(w)
(3.9)

of order |I| for t € Cf . Clearly, the last equality follows from (3.6) by interchanging integration and
derivatives. Using the ¢ moment functions m; of first order with |I| = 1, we form the vector-valued
moment function

ma(t) == (mq.o,..0)(t),---sm,.01)(t)) (3.10)

of first order. We prove the following properties of my in Section 6:

3.2 Proposition. (1) Forallt € CP, my(t) € CP.
(2) There exists a constant C = C(p,q) such that for all t € C5,

lma(t) — ]| < C.
(3) There exists a constant C = C(p,q) such that for allt € C’f and A € RY,
2o (t) = XN < A%

As in Section 2 we also form the matrix consisting of all second order moment functions with

mya(t) oo mag(t)
ma(t) 1= (3.11)
mg1(t) - mgg(t)
mz0,..0()  mae..0E) 0 ma,..01)(E)
ma,0,...,00)  mo20,..00E) - moi,0,.01)(t)
= ( . ) ( . ) ( . ) for te Cf.
m(1,0,..,01) () M@,1,0,..00E) - M, 02)0(1)

By Section 6, the symmetric g x g-matrices $2(t) := ma(t)—mq (t)!-m1 (t) have the following properties:



3.3 Proposition. (1) For each t € CP, the matriz ¥2(t) is positive semidefinite.
(2) 2%(0) =
(3) Forte C’B with t # 0, the matriz X2(t) has full rank q.
(4) There exists a constant C = C(q) such that for all j,1 =1,...,q and t € CE, |m;,(t)] < C - 1.
(5) There exists a constant C = C(q) such that for all t € CP,

ma 1 (t) — 1] < C(Jta] + 1).

Parts (4), (5) of Proposition 3.3(4)(5) yield in particular that all second moment functions m;;
are at most quadratically growing, and that at least m; ; is in fact quadratically growing.

Now consider a probability measure v € M*(CP). As in Section 2 we say that v admits first
or second moments if all components of m; or ms are integrable w.r.t. v respectively. In case of
existence, we form the vector ms(v) € CF and the matrix ¥2(v) as in Section 2. We then have the
following result which is slightly different from the corresponding one in the A-case in Section 2:

3.4 Proposition. Assume that v € Ml(CqB) admits second moments and that v # &y. Then 32 (v)
has full rank q.

As main results of this paper in the BC-case, we have the following strong law of large numbers
and CLT for time-homogeneous random walk (Sk) x>0 on G associated with the probability measure
veM 1(C;3 ) which is completely analog to the corresponding results in the A-case in Section 2. The
proofs, which are completely analog to the A-case, are given in Section 8.

3.5 Theorem. (1) If v admits first moments, then for k — oo,

% — mq(v) a.s..

(2) If v admits second moments, then for all e > 1/2 and k — oo,

W (Sk —k-mi(v)) —0 almost surely.

3.6 Theorem. If v € M*(G) admits finite second moments, then for k — oo in distribution,

%(Sk —kema(v)) — N(0,5%(1).

4 Some results from matrix analysis

It this section we collect some results from matrix analysis which are needed later for the proofs of
the results of Sections 2 and 3. Possibly, some of these results are well-known, but we were unable to
find references. We always assume that F = R,C,H and g > 2. Moreover, M,.(F) is the vector space
of all r X r-matrices over F.

We start with the following observation from linear algebra.

U
* u2

M, (F) and ug € My_(F) with 1 <r <gq. Then |detu,| = |detusg|.

4.1 Lemma. Let u € U(q,F) have the block structure u = with quadratic blocks uy €

Proof. W.lo.g. we assume 2r < ¢g. By the KAK-decomposition of U(q,F) with K = U(r,F) x
U(q—r,F) (see e.g. Theorem VII.8.6 of [H2]), we may write u as

() ()
0 b 0 0 I, 0 by

10



with aq,ae € U(r,F), by,by € U(q — r,F) and
¢ = diag(cos g1, ...,C08 ), s = diag(sin g1, . ..,sin ;)

for suitable 1, ..., € R. Therefore,

U] = aqcas and U2:b1(8 IO >b2
q—2r

which immediately implies the claim. U
We next turn to some results on the principal minors A,.:

4.2 Lemma. Let 1 <r < q be integers and u € U(q,F). Consider the polynomial
hr(ay, ... aq) == Ar(u* - diag(ay, ..., aq) - u) for ai,...,aq €R.

Then
he(ay,...,aq) = E Cip,ooip @iy * Qg ** * O,

1< <i2<... <4, <q
with coefficients ¢;, .5 >0 forall1l <i; <iy <...<i, <q and Zl<i1<i2<...<ir<q Ciy,....i, = L.
Proof. Clearly, h, is homogeneous of degree r, i.e.,

hr(al,...,aq) = E cil,mmail ~ai2 -~-~aiT.

1< <i2<...<ir<q

We first check that c¢;,, . ;. # 0 is possible only for coefficients with 1 < i3 < iy < ... < 4, < q.

For this consider indices i1, ..., with |[{i1,...,i.}| = n < r. By changing the numbering of the
variables a1, ...,a, (and of rows and columns of w in an appropriate way), we may assume that
{i1,...,i-} ={1,...,n}. In this case, u* - diag(ay,...,an,0,...,0) - u has rank at most n < r. Thus
Ozhr(ah...,an,o,...,()): Z Cily__,’irail ~ai2~~-'aiT
1< <i2<...<ir<n
for all a1,...,a, € R. This yields ¢;,,.;, =0 for 1 <¢; <ip <... <4, <n. Therefore, for suitable
coefficients,
he(ai,...,aq) = > Cig vy Wiy * Wiy * W

1<i1 <2 <... <4 <q

For the nonnegativity we again may restrict our attention to the coefficient ¢, ,. In this case,
with respect to the usual ordering of positive definite matrices,

I, 0 ] «f I, 0
OS(O 0>§Iq and thus Ogu(o 0)u§1q.

As this inequality holds also for the upper left r x r block,

Finally, as

> Civooin = ho(1,...,1) =1,

1<iy <ig<...<ir<q

the proof is complete. ]

11



Let us keep the notation of Lemma 4.2. We compare h, with the homogeneous polynomial

1
Cr(al,...,aq) ::T Z Qg Qjy *** * Ag, >0 (TZI,...,q). (41)
(r) 1<i1<i2<...<ir<q
4.3 Lemma. For all ay,...,aq >0,
Crlar,...,a 1 _
0< hr((q)) <w > Cin i (W),
r\a1, ..., 0q T) 1<i) <in<...<ir<q

where, depending on u, on both sides the value 0o is possible.

Proof. Positivity is clear by Lemma 4.2. Moreover,

1
Cr(ala"'aaq) :@ Z Ajy Ay =+ v - Ay,

T/ 1< <12<...<1,<q

—1
Maxi<i <is<...<ir<q iy, 4,
Z Ciyyoonyip @iy Qg * 00 G

T

- ()
r 1<y <i2<...<ir<q
which immediately leads to the claim. O

We shall also need an integrability result for principal minors of matrices k € K := U(q,F). For

R ) with &, € M,(C) and ky_, € M,_,(C).

this, we write k£ as block matrix k = (
*  kgr

4.4 Proposition. Keep the block matriz notation above. For 0 <e < 1/2,

/ | det k,.| %€ dk < .
K

Proof. The statement is obvious for » = q. Moreover, by Lemma 4.1 we may assume that 1 <r < ¢/2
which we shall assume now. In this case, we introduce the matrix ball

B, :={we M. (F): ww<I}

as well as the ball B := {y € M1 ,.(F) =F": ||y||3 < 1}. We conclude from the truncation lemma 2.1
of [R2] that

1
;/ | det k.| %€ dk :/ | det w| =2 A(I,. _w*w)(n—2r+1)<d/2—l dw
r JK

r

where dw is the usual Lebesgue measure on the ball B, and

-1
Ky = (/ det (I, — w*w)(@—2r+1)-d/2=1 dw) €10, ool.
B,

Moreover, by Lemma 3.7 and Corollary 3.8 of [R1], the mapping P : B" — B, with

Y1

ya (I, — yiyn)'/?
Py, ..., y) = : (4.2)
yT(Ir - y:—lyrfl)l/z T (Ir - yfyl)l/z

establishes a diffeomorphism such that the image of the measure det (I, —w*w)@=2+1)4/2=1 gy, under
P=lis TT5_ (1 — |ly;l13) @9 +D4/2"2dy, ... dy,. Moreover, we show in Lemma 4.5 below that

Y1
det P(y1,...,y,) = det

Yr

12



We thus conclude that

—2e¢
r

Y
—2e 1 . n—r—j . —
/K|detkr| 2 dk:H—/B.../B det | LT =y 3) 7092y, L dy,.. (4.3)
Yr

j=1

This integral is finite for ¢ < 1/2, as one can use Fubini with an one-dimensional inner inte-
gral w.r.t. the (1,1)-variable. After this inner integration, no further singularities appear from the
determinant-part in the remaining integral. O

4.5 Lemma. Keep the notations of the preceding proof. For all y1,...,y, € B,

Y1
det P(y1,...,yr) =det |
Yr
Proof. Fixy, € B. The mapping y — y(I,—y%y1)'/? on B has the following form: If y is written as y =

ay; +y* in a unique way with a € F and y* Ly, then y(I, —yiy1)Y/? = /1 — [|[y1]]3-ays +y*+ (write
I, — yfy:1 in an orthonormal basis with y1/|ly1||2 as a member!). Using linearity of the determinant
in all lines, we thus conclude that

" g
I —y* 1/2
det y2( " .yl yl) = det y3(Ir - ySyQ)l/Q
I — e Y2 (I — gty )2 . : .
yrllr =47 19r-1) (> = viv) yr(Ir = yiqyr—1) Y2 (I — y5y2) /2
The lemma now follows by an obvious induction. O
In the end of this section we present some technical results which are needed below.
4.6 Lemma. For xi,...,,z4 € R consider the matriz
T T2 I3 T4 s Tq
1+ 2o To + 1 T3 + X9 T4+ o Tq+ X2
A=| Tr1r+22+x3 Z2o+z1+23 23+22+21 Tat+aT2+23 -0 Tg+ T2+ T3
PIFAE PIFARE POFAE POFAREY T D@
where the (i,j)-entry is the sum over x1,...,x; where x1 and x; interchange their roles. Then
det A= (r14+x2+ - +z4) (x1 —22) - (1 —x3) -+ (1 — TYg).
Proof. Clearly, det A is a homogeneous polynomial in the variables z1, ..., 24 of degree g. Moreover,
by the triangular structure of A w.r.t. z1, the monomial 27 appears in this polynomial with coefficient
1. Moreover, by the construction of A, for given z»,..., x4, the determinant is a polynomial in the
variable x7 where —(z2 + -+ + 4), T2, T3,..., ¥4 are the zeros of this polynomial. This leads to the
claim. L)
4.7 Corollary. Let ay,...,aq €]0,00[ such that at least two of these numbers are different. Consider

the diagonal matriz a = diag(a,...,aq). Then the functions
fe:U(q,F) = R, k= InA.(k*ak)

withr =1,...,q— 1 and the constant function 1 on U(q,F) are linearly independent.

13



Proof. Without loss of generality, assume that a; is different from as,...,a,. Now consider the ¢
permutation matrices k; which permute the rows 1 and [ and leave the other rows invariant for
l=1,--- q. Then, using the notation x; := In a;, the number In Ar(k;-‘akj) is precisely the r, [-entry
of the matrix A in Lemma 4.6. Therefore, by Lemma 4.6, det((In A,.(k}ak;)), j=1,..4) # 0 whenever
we have 1+ ...+ x4 # 0, i.e,, deta # 1. AsInA,(k*ak) is constant, this proves the statement of the
corollary for the case deta # 1. The case deta = 1 can be easily derived by considering 2a instead of
a in the preceding argument. O

5 Oscillatory behavior of hypergeometric functions of type A
at the identity

In this section we prove Propositions 2.1, 2.2, and 2.3 about the moment functions of first and second
order in Section 2. The most remarkable result in our eyes is the oscillatory behavior of hypergeometric
functions of type A at the identity character in Proposition 2.1(3) which is uniform for ¢ € C'qA.

The proof of this fact relies on the results in Section 4 and on the following elementary observation:

5.1 Lemma. Let e €]0,1], M > 1 and m € N. Then there exists a constant C = C(e, M,m) > 0
such that for all z €]0, M],
In(z)|™" < C (1427

Proof. Elementary calculus yields |z€ - Inz| < 1/(e€) for x €]0,1] and the Euler number e = 2, 71....
This leads to the estimate for z €]0,1]. The estimate is trivial for z €]1, M]. O

Proof of Proposition 2.1(3): Let A€ R%, t € C;‘. Consider

a:=(ai,...,aq) = (eztl,. .. ,thq), and atz =% = diag(a1,...,aq) € GL(q,F).

Then, by the Harish-Chandra integral representation (2.5) and the integral representation of the
moment functions in (2.6), we have to estimate

R:=R(\t) = [¢?,,_5(t) —e*m 1) (5.1)

. q
Z *
z’/Kemp (2 ;()\, —Ag1) - InAL(K afk)> dk
i q
— exp (2 /K > (A = Arg1) - In A (K a}k) dk:) ’
r=1

with the convention Agy1 := 0. For r =1,...,¢, we now use the polynomial C, from Eq. (4.1) and
write the logarithms of the principal minors in (5.1) as

A, (k*a?k)

lnAT(k'*a?k’) = lnCT(al,...,ar) +11’1<H7«(k’7a)> Wlth Hr(k,a) = m

(5.2)

With this notation and with |e®®]| = 1 for € R, we rewrite (5.1) as

R ‘/K exp (; S O = Argr) - In(H, (k, a))> dk

— exp (; /K > (A = Arg1) - In(H, (k, a)) dk) ’ (5.3)

We now use the power series for both exponential functions and observe that the terms of order 0 and
1 are equal in the difference above. Hence,

R<Ri+ Ry

14



for

-,

and

exp (; Z - r+1 (Hr(ka a))) - (1 + %Z()‘T - )‘T’Jrl) : ln(HT(k’ a))> ’ dk

r=1 r=1

crp (2 /K >0 = Arsa) W 10) dk) ~1-3 /K ;w—m)~1n<Hr<k,a>>dk\.

Using the well-known elementary estimates |cosz — 1| < 22/2 and |sinz — z| < 22/2 for x € R, we
obtain [e®® — (1 +ix)| < 22 for € R. Therefore, defining

A, = 2_m/
K

q

> (O = A1) - In(H, (K, a))

r=1

m

dk (m=1,2),
we conclude that

R< R+ Ry < Ay + A
In the following, let C1,Cs, ... suitable constants. As A? < Ay by Jensen’s inequality, and as

A2§||)\||2.C’1./ Z|ln (k,a))|? dk =: | \||? - Ba,

we obtain R < Bs - 2||A||?. In order to complete the proof, we must check that Bs, i.e., that the
integrals

L, = / |In(H,(k,a))|* dk (5.4)
K
remain bounded independent of a1,...,a, >0 forr=1,...,q.
For this fix 7. Lemma 4.2 in particular implies that for all a1,...,a, > 0,

A, (k*alk) < Z L R (q)Cr(al,...,aq)

r
1<41 <i2<... <, <q

and A, (k*a?k) > 0. In other words,

A, (k*aik) q

We conclude from (5.4), (5.5) and Lemma 5.1 that for any € €]0, 1] and suitable Co = Cs(€),
LT. S 02/ (1 + HT(al, ceey aq)_e) dk.
K
Therefore, by Lemma 4.3,

L, <C, +Cs/ > Ciray (R)H | dk

K \1<ii<is<...<ir<q

<Cy+Cy- (’:) 3 / Ciy.ooi (k) dE. (5.6)

1<41<i2<... <1 <q

The right hand side of (5.6) is independent of a1, ..., a,, and, by the definition of the ¢;, . ;. (k) in
Lemma 4.2, fK Ciy....i, (k)¢ dk is independent of 1 < i; < iy < ... < i, < g. Therefore, it suffices to

check that .
I, ::/ er (k) dk = / ( ( 0 )k) dk < . (5.7)
s 0 0
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k.. *

x  kp_p,

(L0 3 Ktk o\ >
s (e (5 0 )R) = (5 ) <

Therefore, (5.7) follows from Proposition 4.4, which completes the proof of Proposition 2.1(3). O

For this, we write k as block matrix k = ( > with k. € M,.(C) and ky,—, € M,,_-(C) and

observe that

We now turn to the proof of the remaining parts of Proposition 2.1. Part (1) is a direct consequence
of the law of large numbers 2.4(1). Notice that in fact the proof of this law of large numbers in Section
7 does not depend on Proposition 2.1(1). Proposition 2.1(2) is just part (3) of the following result:

5.2 Lemma. Forr=1,...,q let
5p(t) :=mq,..0() + - +mq,. 01,0,..0)/() for te C;‘
be the sum of the first 1 moment functions of first order. Then:
(1) Forallt e C’;‘, sq(t) =t1 +ta+ -+ 1.
(2) There is a constant C' = C(q) such that for allr =1,...,q and t € C'qA,

0<ti+ta+---+t — s:.(t) <C.

(3) There is a constant C = C(q) such that for all t € C2

[t —ma(8)]] < C.

Proof. By the integral representation (2.6) of the moment functions, we have

52 () :%/KlnAr(k*e%k) dk (r=1,....q) (5.8)

For r = ¢, this proves (1). Moreover, for t € C;‘ we have t; >t > ... > t,. This and Lemma 4.2
imply that for all k € K,

1
oI Ay (K e®k) <ty +tg+ -+t (5.9)
This and (5.8) now lead to the first inequality of (2). For the second inequality of (2), we use the

notations of Lemmas 4.2 and 4.3. For k € K and a; := e?' > ag :=€?2 > ... > q, := e*!s we obtain
from Lemma 4.3 that

ap-as- - ap < (q) Crlay,...,a,) < Ar(k*ezﬁk) - M (k)
r

with
M(k) := max cil,m’ir(k)_l

1<i1<...<ip<n

which may be equal to oo for some k. Therefore,

1 1
t1+t2+~~+tr:iln(a1~a2~~~ar):5/ In(ay - ag---a,) dk (5.10)
K
1
< 7/ In A, (k*e?tk) dk+/ In M (k) dk
2 K K

with
/ In M(k)dk < M := / (e, i, (k)71 dk.
K K

1<in<...<ip<n
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We claim that M is finite. For this we observe that by the definition of the coefficients ¢;, .. ;. (k) in
Lemma 4.2, all integrals in the sum in the definition of M are equal. It is thus sufficient to consider
the summand with coefficient ¢1 2. (k). On the other hand, we write k € K as

k _ ( k‘l * )
*k k
with » x r-block k; and observe that

/ In(cra,. (k)" dk = —/ InA, (k ( Ié" 8 )k) dk = —/ In det(k}ky) dk,
K K K

which is finite as an immediate consequence of Lemma 4.4. Therefore, M is finite which proves (2).
Finally, (3) is a consequence of (2). O

Lemma 5.2(3) implies that there exists a constant C'= C(q) > 0 such that for all t € C,
) — im0y < ¢ (5.11)
Therefore, we conclude from Proposition 2.1(3):
5.3 Corollary. There exists a constant C' = C(q) > 0 such that for all t € C’;‘,
lpip-r(t) = AP < C - (A + AP
We next turn to the proof of Proposition 2.2.

Proof of Proposition 2.2. Let t € C'qA. Consider a non-trivial row vector a = (a1,...,aq,) € R?\ {0}
as well as the continuous functions

fi(k) :=InA(k*e®k) and fi(k) ;== InAy(k*e®tk) —In Ay (K*e®tk) (1=2,---,q).
Then, by (2.6), (2.7), (2.8), and the Cauchy-Schwarz inequality,

2

q 2 q
a (ma(t) — ma (£)'ma (1)) atz/K (;alﬁ(k)> dk — (/K;alfl(k) dk) > 0. (5.12)

This shows part (1) of the proposition. Moreover, for t =c¢-(1,...,1) € C’jf with ¢ € R, the functions
fi are constant on K for all [ = 1,..., ¢ which implies ¥2(¢) = 0 and thus part (2).
For the proof of part (3) we notice that we have equality in (5.12) if and only if the function

q
k— Z arfi(k) = (a1 — ag) In Ay (k*e®k) + - + (ag—1 — ag) In A1 (K e®k) 4+ a, In A, (k*e*tk)
=1

is constant on K. As k — InA,(k*e®k) is constant on K, and as under the condition of (3), the
functions k + In A,.(k*e?tk) (r = 1,...,q—1) and the constant function 1 are linearly independent on
K by Corollary 4.7, the function k — Y1, a;fi(k) is constant on K precisely for a1 = az = ... = aq.
This proves that ¥2(t) has rank ¢ — 1 as claimed.

We next turn to part (4). We recapitulate that Lemma 4.2 implies

2jt, < InAj(k*e?k) < 2jt,

for ke K, t e C;‘, and j = 1,...,q. Therefore, by the integral representation (2.6) of the moment
functions,

1
mia(t)] <5 / ‘m A, (k*e?k) — In Aj_l(k*e%k)] : ’m Ay(k*e2k) — In Al_l(k*e%k)] dk
K

< ((5 = D(ta — tg) + max(|ta], [tq])) (1 = 1)(t1 — tg) + max([ta], [£4]))
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for j,l=1,...,qand t € C{f. This implies part (4).
For the proof of part (5) we recapitulate from the proof of Lemma 5.2(2) that for all ¢ € C;(“ and
ke K,
0 < 2t; —InAq(k*e*k) <In M (k)

with M (k) < oo as defined there for » = 1. This leads to
|(In Ay (k*e?k))? — 4t3] = (2t — In Ay (k*e®k)) - | In Ay (k*e*k) + 2t |
< (2t — In Ay (E*e®E)) - (4]t1] + In M (k))
<At |(2t — In Ay (k*e®k)) + (In M (k))?.

Therefore,

‘/ (In Ay (k*e2tk))? dk—4t§‘ §4|t1|<2t1—/ In A (k*€%tk) dk) +/ (In M (k))? dk.
K K

K

2%, — / In Ay (k" ¢2k) dk
K

remains bounded for ¢ € C’qA by Lemma 5.2, and as [, (In M (k))* dk is finite as a consequence of
Lemma 4.4 by the same arguments as in the end of the proof of Lemma 5.2, we conclude that for
teCcs

q b

‘/K(lnAl(k*eQ%))z dk 463 < C(|ta| + 1)

which proves the first inequality of Proposition 2.2 (5). For the proof of the second inequality, we
again use the proof of Lemma 5.2(2) now for » = ¢ — 1. This and Lemma 5.2(1) lead to

A, (k*e2tk)
<In|{—+———_ | —t, < M(k) <
R o o) RUELICEL

forke K, te C’(;‘. This implies the second inequality of Proposition 2.2 (5) in the same way as in
the preceding case. O

We finally turn to the proof of Proposition 2.3 which is closely related to Proposition 2.2.

Proof of Proposition 2.3. Let v € Ml(C’f) with finite second moments. Consider a row vector a =
(a1,...,aq) € R7\ {0} as well as the continuous functions

fi(k,t) :=InAj(k*e®k) and fi(k,t) :=InAy(k*e®k) —In A1 (E*e®Ek) (1=2,---,q)
on K x C'qA. Then, by the definition of ¥2(v), (2.6), (2.7), (2.8), and the Cauchy-Schwarz inequality,

a¥?(v)a' = a (ma(v) — ma(v)'mq(v)) o’
2
/ / (Zwum) dk dv(t (/ /Zalflktdk:dy()> >0 (5.13)
ca K15
where equality holds if and only if the continuous function
q
h:(k,t)— Z arfi(k,t) = (a1 —az) In Ay (K*e®k)+- -+ (ag—1—ay) In Ay (k*e*k)+a, In A, (k*e*k)
=1

is constant on K X C(f v Q@wg-almost surely with the uniform distribution wyx on K. This just means
that h is constant on supp (v @ wi) = (suppv) x K.
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Assume now that v satisfies the conditions of part (1) of the proposition, i.e., that suppv ¢ D, :=
{c-(1,...,1): c € R} C C2, and that the orthogonal projection 7(v) € M*(D,) of v from C2 onto D,
is no point measure. Now choose t € suppr\Ds. As h(t,.) is constant on K, we conclude from the proof
of Proposition 2.2(3) that a1 = as = ... = a,. Therefore, h(k,t) = a1 -In Ay (k*e?k) = a1 (t1+...+t,)
is independent of ¢ for ¢ € supp 7(v) which leads to a; = 0. This shows that under the conditions of
part (3), X2(v) has full rank as claimed.

Parts (2) and (3) also follow by the same arguments and those of Proposition 2.2. O

6 Oscillatory behavior of hypergeometric functions of type
BC' at the identity

In this section we prove Propositions 3.2, 3.3, and 3.4 about the moment functions on the Weyl
chamber C’f. The proofs are related to those for the A-case in Section 5.

We again start with the deepest result, the oscillatory behavior of hypergeometric functions ¢% of
type at the identity for p > 2¢ — 1. For this we recapitulate two results about principal minors and
determinants from [RV1].

In our notation, Lemma 4.8 of [RV1] is as follows:

6.1 Lemma. Lett € Cf, w € By, u e U(q,F) and r =1,...,q. Denote the ordered singular values

of the ¢ x g-matriz w by 1 > o1(w) > ... > g4(w) > 0. Then
e[(1- to(w)*,(1+toy (w))*"],  with { := min(ty,1).

With the same notion of singular values we have:

6.2 Lemma. Forallp>2q—1,

/Bq A([(Tl_(lz))*w)?dmp(w) < 0.

Proof. For p > 2q, this is a direct consequence of the much stronger Lemma 4.10 in [RV1] for n = 1
there. An inspection of the proof there shows that that the statement of our lemma remains correct
for p > 2q — 1. O

Proof of Proposition 3.2(3). Let p>2¢—1, A€ R% and t € C’f. We use the integral representations
(3.6) and (3.9) for the spherical functions and the associated moment functions m; and study

Ri=R(Mt) = |, 5 (t) — el Om)] (6.1)
. g
i
= exp| = Ar— A1) In AL (g(t, w, w)) ) du dmy(w
L (52500 = )08t 0 ) iy ()

_ exp(% /B /U(q N Zq:()\,, — A1) In AL (g(t, u,w)) du dmp(w)) ’

with the convention A\;41 = 0. We now use the homogeneous polynomials C, defined in (4.1) for
r=1,...,q and write the logarithms of the principal minors in (6.1) as

In A, (g(t,u,w)) = InCy(cosh® t1, ..., cosh?t,) + In H,(t,u, w) (6.2)

with
Ay (g(t, u, w))

H.(t,u,w) := .
( ) C,,(cosh2 t1,...,cosh? t,)

(6.3)
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With this notation and with [e’*| = 1 for z € R, we rewrite (6.1) as

R =

. q
i

exp| = Ar — App1) In Hy (8w, w) ) du dmy, (w

L (5200 = A ) oy

r=1
- exp(z/ / Zq:()\,. — A1) In Ho (8, u, w) du dmp(w)> ‘
2 /B, Jur 1=

We now use the power series for both exponential functions and observe that the terms of order 0 and
1 are equal in the difference above. Hence,

R<Ri+Ry
for
Ry = / / exp (Z i()‘r = Arg1) lnHT(t,u,w))>
B, JU(q.F) 24
_ (1 + ;Tz::l()\r = XArg1) - In Hy (8, u, w)> ‘ du dmp(w)
and

R2 =

. q
exp %/ / D (v = Arpr) - In(H, (¢, u, w) dke
By JU(q,F) =1
) q
i
_1_,/ / (Ar — Apx1) - In Ho (8, u, w)) du dm w’
2/, U(qm; + ( ) p(w)

Using the well-known estimates |cosz — 1| < 2%/2 and |sinz — x| < 22/2 for z € R, we obtain
le?® — (1 +ix)| < 22 for x € R. Therefore, defining

e, f
By U(Q»]F)

we conclude that

q m
Z()‘T — A1) - In Hy (¢, u, w)‘ du dmy(w) (m=1,2),
r=1

R < Ry + Ry < Ay + A3
In the following, let Cy, Cs,. .. suitable constants. As A3 < Ay by Jensen’s inequality, and as

q
A< NP Coe [ [ S ) dk = A B
Bq U(‘Za

]F) r=1

we obtain R < Bs - 2||A||%. In order to complete the proof, we must check that B, i.e., the integrals

L, ::/ / |In H,.(t, u,w)|? du dm,(w) (6.4)
Bq U(‘LF)

remain bounded independent of ¢ for r =1,...,q.
For this fix r and recapitulate that by (6.3),

In H,.(t,u,w) = In A (g(t,u, w)) — In Cy(cosh®ty,...,cosh?¢,)
Moreover, we conclude from Lemma 6.1 that

In A, (g(t, u,w)) —InA,.(g(t,u,0)) € 2r[ln(l — o1 (w)), In(1 + o1 (w))].
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Therefore,

2

A (g(t,u,0
|In H,.(t,u,w)|* <2 ’ln ( 2(9( ©0)) 5 ) (6.5)
Cyr(cosh®ty,...,cosh” t,.)
+8r2(|In(1 + o1 (w))* + [ In(1 — o1 (w))[*).
Moreover, by the definition of B,
/ / | In(1 + o1 (w)) | du dm(w) < In4. (6.6)
Bq U(‘IJF)
We also have the elementary inequality
In(142)] < 5 |Z|| o for zeClel <1 (6.7)
— |z
Furthermore, as 1 > o1(w) > ... > o4(w) > 0 for w € By, we have
L 2 f[ LI (6.8)
l—oi(w) ~ 1—o1(w)? = "2 1—on(w)? A —wrw) '
We now conclude from (6.5), (6.6), (6.7), (6.8) and Lemma 6.2 that
/ / (1 — oy (w))[? du dmy (w) < / o1 ()2 AT — w'w) 2 dmy(w) < 0. (6.9)
B, JU(q,F) By
It is therefore sufficient to prove that
A (gt 2
/ / ln( 2(9( 4, 0)) 5 ) du dmy(w) (6.10)
B, JU(¢F) Cy(cosh®ty,...,cosh” t,.)
remains bounded independent of ¢. But this integral is equal to
A, (u* cosh? ¢ ?
/ In < (u” cosh”tu) )‘ du, (6.11)
U(q,F) Cy(cosh®ty,...,cosh”t,)

and this expression remains bounded independent of ¢ by the proof of Proposition 2.1(3) in Section
5 (see in particular Egs. (5.2) and (5.4) and the arguments after (5.4) there). This completes the
proof. O

For the case ¢ = 1, Proposition 3.2(3) was proved in [V2] by the same approach in the context of
Jacobi functions; see also [Z1], [Z2] for the context of Sturm-Liouville hypergroups.

We now turn to the proof of the remaining parts of Proposition 3.2. Part (1) of this proposition
follows immediately from the law of large numbers 3.5(1). Notice that in fact the proof of this law
of large numbers in Section 8 does not depend on Proposition 3.2(1). For the proof of part (2) we
state the following result, which is closely related to estimates in the proof of Proposition 3.2(1), and
which reduces some estimates from the BC-case to the A-case in Section 5.

6.3 Lemma. Forr=1,...,q,t € Cf, u € U(q,F), and w € By,
IIn A, (g(t, u, w)) — In Ar(u*62§u)| <In4+ 2r - max(|In(1 — o1 (w))], In(1 + o1 (w)))

with
/B max (| In(1 — o1 (w))],In(1 + o1 (w))) dm,(w) < co.

q
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Proof. We conclude from Lemma 6.1 that for u € U(q,F) and w € By,
Ar(g(t,u,0)(1 = o1 (w))* < Ar(g(t, u,w)) < Ap(g(t,u,0)(1+ o1 (w))*
and thus
[In A, (g(t, u,w)) — In Ay (g(t,u,0))| < 2r-max(|In(1 — oy (w))], In(1 + o1 (w))). (6.12)
Moreover, as

1
Zu*e%u < u*(cosht)?u < u*e?u,

we have
|ln A (g(t,u,0)) — lnAT(u*e%u)’ <In4

for t € CP, uw € U(q,F). In combination with (6.12), this leads to the first estimation of the lemma.

For the second statement, we first observe that [ B, In(1401(w))dm,(w) is obviously finite. Moreover,
qu |In(1 — o1 (w))| dmy(w) is also finite as a consequence of (6.9). O

Proposition 3.2(2) is now part (2) of the following result:

6.4 Lemma. (1) Forr=1,...,q let
sPO(t) = m1,0,..,0)(t) + - +m,..010,..0/() Jor te€ Cf

be the sum of the first r moment functions of first order. Then there is a constant C = C(q)
such that for allr=1,...,q and t € Cf,

lti+ta+---+t, — sB°(t) < C.

(2) There is a constant C' = C(q) such that for all t € C;‘
[t =ma(t)]] < C.

Proof. Let t € Cf. By the integral representation (3.9) of the moment functions, we have

BC _1 n u, w U amqp(w r = . .
PeO=g [ [ b we)dudmt) =10 (613)

We thus obtain from Lemma 6.3 that for all ¢t € C’f andr=1,...,q,

2

sBOt) — 1/ In A, (u*e?u) du| < C
U(q,F)
for some constant C' > 0. Therefore, in the notation of Lemma 5.2,
|sfc(t)fsr(t)|§c (tGCf, r=1,...,q).
Lemma 5.2(2) now implies that for all ¢ € Cf andr=1,...,q,

|sp(t) = (t1 +...1,)| < C

for some constant C. This proves part (1). Part (2) is an immediate consequence of part (1). O
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6.5 Remark. We conjecture that in part (1) of the preceding lemma the stronger result
0<ti+...t, —sP(t)<C  (r=1,....q,t€CP) (6.14)

holds which would correspond to Lemma 5.2(2) in the A-case.
In fact, this can be easily derived from the matrix inequality

(cosht + sinht - w)(cosht + sinht - w)* < et

for t € Cf, w € B,;. However, this matrix inequality, which looks quite natural, is not correct. Take
0 1
10
more involved than in the A-case in the preceding section.

for instance ¢ = 2, t = (£1,0) with ¢; large, and w = < > Therefore, a proof of (6.14) would be

We next turn to the proof of Proposition 3.3.

Proof of Proposition 3.3. Fix t € CP. Consider a non-trivial row vector a = (a1,...,aq) € R?\ {0}
and the continuous functions

fl(uvw) = lnAl(g(tauaw)) and fl(uvw) = lnAl(g(t7u7w)) 71nAl—1(g(t7uaw)) (1:27 aq)
on U(q,F) x By. Then, by (3.9), (3.10), (3.11), and the Cauchy-Schwarz inequality,

a (ma(t) — mq(t)'my(t)) a* (6.15)

=1

This shows part (1) of the proposition.

For the proof of part (2), observe that for ¢t = 0 € CZ, m1(0) = 0 and m2(0) = 0 which yields
¥2(t) = 0.

For the proof of part (3) we take t € CF with ¢ # 0 and notice that we have equality in (6.15) if
and only if the function

(w,w) = > arfi(u, w)

=1
= (a1 —a2) In A (g(t,u,w)) + -+ (ag—1 — ag) In A g1 (g(t, u, w)) + agIn Ay (g(t, v, w))

is constant on U(q,F) x B,. Assume now that this is the case.
We now first consider the case where t € C’f does not have the form ¢ = ¢(1,...,1) with some
¢ > 0. In this case we put w = I, € B, with g(t,u, I,) = u*e*u. Therefore,

u > In Ay (u*eu)

is constant on U(q,F), and by our assumption and Corollary 4.7, the functions u — In A, (u*e?tu)

(r=1,...,9g— 1) and the constant function 1 are linearly independent on U(q,F). Consequently, as
the function

(’LL, w) = Zalfl(uvw)

=1

is constant on U(gq,F) x By, we have a1 = az = ... = a4. On the other hand,
In A, (g(t,u,w)) = In|A(cosht + sinht - w)|?

is not constant in w € B, for t # 0, which proves a, = 0. This shows that X2(¢) is positive definite
for t € B, not having the form ¢(1,...,1). Finally, if ¢ has the form ¢ = ¢(1,...,1) with some ¢ > 0,
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we may choose w = € By (with 1 € R). Then g(¢,u,w) = u*D(t)u with some diagonal

0 0
matrix D(t) where not all diagonal entries are equal. As above, Corollary 4.7 yields in this case that
a1 = az = ... = a4 and the proof can be completed in the same way as in the preceding case.

We next turn to part (4) of the proposition. We recapitulate that Lemma 4.2 implies
2jt, < InAj(u*e*tu) < 245t

for u € U(q,F), t € C’B, and j = 1,...,q. Therefore, by the integral representation (3.9) of the
moment functions and by Lemma 6.3

1
ma® <3 [ [ Aot w) - Ay (gt uw)|
By JU(q,F)
. ‘ln A(g(t,u,w)) —In Al,l(g(tu,w))‘ du dmy(w)
1
<C+ f/ ‘lnA (u*e?u) —In A1 (u*e*tu) ‘ . llnA (u*e®tu) —In A (u*e®tu)| du
U(q,F
<C(1+t)
for j,l =1,...,q, t € Cf, and some constant C' > 0. On the other hand, by the definition of
g(t,u, w), the functions In A;(g(¢,u,w)) are analytic in ¢ = 0 with In A;(¢g(0,u,w)) = 0. Therefore,
mj(t) = O(t3) for small t € CP. We thus obtain that |mj;;(t)| <7 for all t € CP and j,1 with some
constant C' > 0 as claimed in part (4).
For the proof of part (5), we recapitulate from the proof of Lemma 6.4(2) above that for all ¢ € Cf,

u € U(q,F), and w € By,
[2t; — In Aq(g(t, u, w))| < In M (u, w)

with some expression M (u,w) < co satisfying fU(q ) [ In M (u,w) du dmy(w) < co. This leads to

|(In Ay (g(t,u, w)))? — 4t2| = (2t; — In A1 (g(t, u,w))) - | In Ay (g(t, u, w)) + 21|
< (2t1 —In A1 (g(t, u,w))) - (4]t1] + In M (u, w))
< At |(2t — In Ay (g(t, u,w))) + (In M (u, w))?.

Therefore,

‘/Uw)/ (In Ay (g(t, u, w)))? dudmp(w)—zlt%‘ <

< 4t4] 2t1—/ / In Ay (g(t, u, w)) du dmy(w / / In M (u, w))? du dm,,(w).
U(g:F) U(g:F)

Therefore, as

(2t1 /U(q [F)/B In Ay (g(t, u,w)) du dmp(w))

remains bounded for t € CqB by Lemma 6.4, and as also

/ / In M (u, w))? du dm,(w) < oo
U(q,F) J B,

by the arguments of the proof of Lemma 5.2, we conclude that for ¢ € Cf ,

[ sttt w)? dudm,(w) - 48| < O]+ 1)
Ul
as claimed in Proposition 3.3 (5). O
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We finally turn to the proof of Proposition 3.4 which is closely related to Proposition 3.3(3).

Proof of Proposition 3.4. Let v € Ml(CqB) with finite second moments and v # §y. Consider a row
vector a = (a1,...,aq) € R?7\ {0} as well as the continuous functions

fi(u,w,t) :=InAq(g(t,u,w)) and fi(k,t) :=InA(g(t,u,w)) —InA_1(g(t,u,w)) (1=2,---,q)

on U(q,F) x By x CP. Then, by the definition of ¥?(v), (3.9), (3.10), (3.11), and the Cauchy-Schwarz
inequality,

a¥?(v)a' = a (ma(v) — ma(v)'mq(v)) o’

_ /C ) /U . /B q (g almk,t))Q dm, (w) du dv(t)
_ (/CB /U@,F)/B Xq:alfl(k,t) dm,,(w) dudv(t)>2 > 0 (6.16)

q =1

where equality holds if and only if the continuous function
q
h:(u,w,t) — Zalfl(u,w,t)
=1

is constant on K X C(;‘ almost surely w.r.t. wy (g r) X mp X v-almost surely. This however, is not the
case by the proof of Proposition 3.3(3). O

7 Proof of the stochastic limit theorems in the case A

In this section we prove the strong law of large numbers 2.4 and the CLT 2.5 for K := U(q,F)-
biinvariant random walks (Sk)r>0 on G := GL(¢,F) associated with the probability measure v €
MY(C ;4):

We first turn to the CLT 2.5. Besides the results of Section 5 we need the following estimate which
follows immediately from the integral representation (2.5) for the functions @f.

7.1 Lemma. For allt € C7' and | € N,

ol A
e a0)] < m.

Let me Ny and v € M 1(6’34) a probability measure. We say that v admits finite m-th modified
moments if in the notation of Section 2,

1/ A
M (m,0,...,0)> T(0,m,0,...,0)5 - - - » TH0,....0,m) € L (Cq V).

It follows immediately from the integral representation (2.6) of the moment function and Holder’s
inequality that in this case all moment functions of order at most m are v-integrable. Moreover, this
moment condition implies a corresponding differentiability of the spherical Fourier transform of v:

7.2 Lemma. Let m € Ny and v € Ml(C’;‘) a probability measure with finite m-th moments. Then
the spherical Fourier transform

7:RY— C, /\i—>/ pih \(t) du(t)
ag
is m-times continuously partially differentiable, and for all l € N§ with |I] < m,

[l 1]
SN = [ Saehat v, (r.1)
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In particular,

@5(0) = (=)l my(t) dv(t). (7.2)
ON ca

Proof. We proceed by induction: The case m = 0 is trivial, and for m — m + 1 we observe that by
our assumption all moments of lower order exist, i.e., (7.1) is available for all |I| < m. It now follows
from Lemma 7.1 and the well-known result about parameter integrals that a further partial derivative
and the integration can be interchanged. Finally, (7.2) follows from (7.1) and (2.6). Continuity of the
derivatives is also clear by Lemma 7.1. O

We now turn to the proof of the CLT:

Proof of Theorem 2.5. Let v € Ml(C’j;‘) be a probability measure with finite second modified mo-
ments. Let (Xj)g>1 be ii.d. G-valued random variables with the associated K-biinvariant distribution
vg € MY(G) and Sy, := X1 - Xo--- X} as in Section 2. We consider the canonical projection

(Sk = 1In Osing (Sk))krzo

of this random walk from G to G//K ~ C, as in Section 2.
Let A € R?. As the functions gafzi)\ are bounded on C(j‘ (by the integral representation (2.5)) and

multiplicative w.r.t. double coset convolutions of measures on C;‘, we have

Ewngﬂ&D=A?%;MﬂﬁM¢Wﬂ=(L@%;Mﬂwmﬁ0k=ﬂMV@@
We now use Taylor’s formula, Lemma 7.2, and
ma(v) = [ mala) dv(g) = S¥(w) + ma(v)'ma (v)
and obtain
cap(i(hmi () VE) - B(eh w8 = (eaplihmi)/VE) - 50VB) (7.9
(P+iumn@» <xmuwv+0¢ﬂ‘biumn@»Amxmx+ogﬂ>k

NG 2%k NG 2%k z
([1+ imal)_ hmat)® ).
y {1 - i()\,%(y» CAZ(Ww) +m21kgy)tm1(z/)))\t +0(;)Dk
_ <1 - AZZ(]:)M 0(;))’“
Therefore,

kli)nolo exp(i(\, m1(v))VEk) - E(gpi_l\/ﬁ(gk)) = exp(—AZ*(V)\1/2).
Moreover, by Proposition 2.1(3)
kli_)n;CE (Wi—A/\/E(gk) - exp(—i</\,m1(5k)>/\/%)) =0.
We conclude that
lim exp(—i(A, (ma(Sk) — k- ma(v)))/VE) = exp(=AZ* (1) A /2)

k—o0
for all A € RY. Levy’s continuity theorem for the classical g-dimensional Fourier transform now implies
that (mq(Sk) —k-m1(v))/VE tends in distribution to N(0,%2(v)). By the estimate of Lemma 5.2(3),
this immediately implies that (Sg — k - m1(v))/Vk tends in distribution to N (0, £2(v)) as claimed in
Theorem 2.5. O
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The oscillatory behavior of the Lpf in Proposition 2.1(3) can be used to derive a Berry-Esseen-type
estimate with the order O(k~1/3) of convergence. As the details are technical and quite similar to the
proof of the corresponding rank-one-case in Theorem 4.2 of [V3], we omit details. We also mention
that Proposition 2.1(3) can be also used to derive further CLTs e.g. with stable distributions with
domains of attraction or a Lindeberg-Feller CLT. The details of proof then would be also very similar
to the classical cases for sums of iid random variables.

We next turn to the strong law of large numbers 2.4.

Proof of Theorem 2.4. We first prove part (2) and consider some v € Ml(C';‘) having second mo-
ments. Let € > 1/2. We employ the strong law of large numbers 7.3.21 in [BH] for the random walk
(Sk)k>0 on the double coset hypergroup G//K =~ C;‘ with the constants ry := k~2¢ there which
satisfy Y po,7mx < oco. For all [ = 1,...,¢, we now apply this result to one-dimensional moment
functions myq,... 0,1,0,...,0) and m(o,...0,2,0,...,0) of first and second order with the nontrivial entry in the
position [. The integral representation (2.6) and Jensen’s inequality ensure that

2 A
m,....0,1,0,....0) < M(0,...,0,2,0,..,00 ~on Cg,

i.e., condition (MF2) for Theorem 7.3.21 in [BH] holds. We conclude from this theorem that for all
l=1,...,q and vectors of the form (0,...,0,1,0,...,0) with 1 at position I,

ke (m(o,.“,o,l,o,...,o)(Sk) —k o m,..0.1,0,..0) () dv(t))

tends to 0 a.s. for k& — oco. In other words, k™ - (ml(gk) — k- mq(v)) tends to 0 a.s.. Proposition

2.1(2) finally implies that k~¢ - (S'k —k-m1(v)) tends to 0 a.s. as claimed.
Part (1) follows in the same way from Theorem 7.3.24 in [BH] (with the constant A = 1 in the
notation there). O

8 Proof of the stochastic limit theorems in the case BC

In this section we prove the strong law of large numbers 3.5 and the CLT 3.6 in the BC-case. Based on
the technical results of Section 6, the proofs will be very similar to those in Section 7 for the A-case.
We therefore skip many details.

We first turn to the CLT 3.6. Besides the results of Section 6 we need the following immediate
consequence of the integral representation (3.6) for ¢%.

8.1 Lemma. For allt € CP andl e N,

ol
‘MW?p,\(t

)\ < mi(t).

Let m € Ny and v € Ml(C’;‘). We say that v admits finite m-th modified moments if in the
notation of Section 3,

B
M(1m,0,...,0)> M(0,m,0,...,0)> - - - T(0,...,0,m) € Ll(cq V).

By the integral representation (3.9) of the moment functions and by Holder’s inequality, in this case
all moment functions of order at most m are r-integrable. Moreover, this moment condition leads to
a corresponding differentiability of the spherical Fourier transform of v as in Lemma 7.2. We omit
the proof:

8.2 Lemma. Let m € Ny and v € Ml(C’f) with finite m-th moments. Then the spherical Fourier
transform

v:RY—C, )"_>/()B‘»0€pf>\(t)d”(t>
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is m-times continuously partially differentiable, and for 1 € Ny with |I| < m,

ol ol

7N = [ St dv(t). (8.1)

In particular,

ol ,
a0 = (—i)l /CB my(t) dv(t). (8.2)

q

We now turn to the proof of the CLT:

Proof of Theorem 3.6. Let v € M 1(CqB ) be a probability measure with finite second modified mo-
ments, p € [2¢ — 1,00, and d =1,2,4. As described in Section 3 we consider the associated time-
homogeneous random walk (Sk)x>0 on Cf . Then, as described there, the distributions of Sj are

given as the convolution powers %) w.r.t. *,. With this observation in mind, we can just use the
results of Section 6 and Lemmas 8.1 and 8.2 instead of the results of Section 5 and Lemmas 7.1 and
7.2, respectively in order to complete the proof in the same way as for the CLT 2.5. O

Finally, the strong law of large numbers 3.5 can be proved by the same methods as the strong law
2.4 in Section 7 by using the integral representation (3.9) of the moment functions instead of (2.6).
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