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1 Introduction

The need of obtaining a set of good solutions in contrast to a single globally opti-
mal solution of a multimodal problem is often mentioned in discussions of practical
optimization [14, 1, 95]. The rationale behind this opinion is that a decision maker
may have additional criteria to consider, which are not included in the optimization
problem [14]. Such criteria may be side constraints or additional objective functions,
and there may be various reasons not to incorporate them in the optimization prob-
lem. One argument is that different objectives could be incommensurable (e. g., in
general, time is not money), and thus should not be aggregated into one function.
In this case, a multiobjective problem formulation would be possible and probably
appropriate [14]. However, sometimes this approach is not feasible because the ex-
pert knowledge constituting the additional criteria has not been formalized or the
evaluation is more or less subjective. Then, it is often stated only informally that an
optimization algorithm should be able to produce several different solutions of good
quality for the formalized objective [1].

It is also possible that the objective functions of a multiobjective problem are very
heterogeneous [52]. For example, one objective function could be multimodal and the
other only linear. Such a situation could, e. g., appear if the first function evaluates
the features of a product by running a computationally expensive simulator or doing
physical experiments, and the second simply represents the production costs. This
also implies that the former objective is a black box, while the latter one is available
in analytical form. In summary, one objective may be more difficult than the other
one in practically every regard. In this case it seems advisable to focus on the more
difficult multimodal function with a single-objective approach. The linear function
could perhaps be used for narrowing down the region of interest, but otherwise it
would probably only appear in the post-processing of the solution set obtained from
the optimization of the first objective. So, this set should possess a high diversity in
decision space, to enable different evaluations according to the remaining criteria.

Another more specific example, where the task of identifying several local optima
appears as an internal subproblem, are model-based optimization (MBO) algorithms
that want to employ parallelization. In model-based optimization, a meta-model
f̂(x) is built from a finite number of tuples (x, f(x)), where x is a point in the
domain of f , and f(x) is its associated objective value. The model is then used
to determine one or more locations for the next exact evaluations of the objective
function f . The goodness of a location is assessed with a so-called infill criterion,
which is typically a multimodal function. For a batch-sequential version of the MBO
algorithm, several distinct optima of the multimodal infill criterion have to be ap-
proximated per iteration [138, 19]. Although this work does not directly deal with

5



1 Introduction

meta-modeling, we will encounter several references to this field, because we are
borrowing ideas from it. Likewise, some of the methods developed here should also
be relevant for meta-modeling.

The area containing single-objective problems with the need to identify a set of
solutions is nowadays called multimodal optimization (MMO) in the area of evo-
lutionary computation. The term may have been originally coined by Beasley et
al. [14], probably as a short form of “multimodal function optimization”, as used
by Goldberg and Richardson [50]. In this work we want to formally define MMO,
corresponding performance measures, and explicitly assess optimization algorithms
under the objective of obtaining a set of good local optima.

1.1 Problem Statement

In the following, we will assume to have a deterministic objective function f : X →
R, where X = [ℓ, u] ⊂ R

n is the search space or region of interest (ROI) and
n ∈ N is the fixed number of decision variables. The vectors ℓ = (ℓ1, . . . , ℓn)⊤ and
u = (u1, . . . , un)⊤ are called the lower and upper bounds of X , respectively. The
function f is assumed to be multimodal and analytically unknown. Naturally, also
analytic gradient information is not available in this case. For these reasons we call f
a black-box function.

Although they did not use the name yet, a multimodal optimization problem is
in principle already defined by Törn and Žilinskas [143, pp. 2–3]. The following
definition is based on their formulations.

Definition 1 (Multimodal minimization problem). Let there be ν local minima
f∗

1 , . . . , f∗
ν of f in X . If the ordering of these optima is f∗

(1) < · · · < f∗
(l) < h < · · · <

f∗
(ν), a multimodal minimization problem is given as the task to approximate the set
⋃l

i=1 X∗
(i), where X∗

(i) = {x ∈ X | f(x) = f∗
(i)}.

The variable h in this definition is simply a threshold to potentially exclude some
of the worse optima. For simplicity, we will always assume h = ∞ in this work,
so we will be interested in all local optima of a problem. This case is described
in [114, Sec. 5.1] as the task of recovering “all known” optima of a test problem.
Global optimization can be seen as a special case of multimodal optimization, where
we are only interested in finding the X∗

(1) corresponding to the global optimum
f∗ = f∗

(1). This problem is closely related to the black-box levelset approximation
problem [40]. However, usually it is sufficient to find just one x∗ ∈ X∗

(1) in practical
applications referring to global optimization. Even this problem is mathematically
unsolvable [143, p. 6]. Therefore, we will take a pragmatic approach to the problem
by trying to obtain the best possible performance (as defined in Section 2.1.3) with
restricted resources, i. e., a finite number of objective function evaluations. Further
assumptions concern the properties of the objective function: We will restrict our
considerations to problems for which a positive constant ε can be specified, so that
the distance between any two optimal positions is larger than ε. This implies a finite
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1.1 Problem Statement

number of optimal positions [119], so we could alternatively formulate the problem
as the task to find the k best optimal positions of the objective function. It also
means that each optimal position is surrounded by its own attraction basin.

Definition 2 (Attraction basin, [141]). For the position x∗
i ∈ X of an optimum,

basin(x∗
i ) ⊆ X is the largest set of points such that for any starting point x ∈

basin(x∗
i ) the infinitely small step steepest descent algorithm will converge to x∗

i .

Realistic functions should possess some smoothness, that is, the probability pi =
vol(basin(x∗

i ))/ vol(X ) to find x∗
i with an ideal descent algorithm started from a ran-

dom uniform point should be significantly greater than zero [143, pp. 7–10]. Here,
vol(·) denotes the Lebesgue measure of the sets [18, pp. 171–181] and pi obviously
is the relative size of an attraction basin in comparison to the whole search space.
In this simplified model, the probability of finding x∗

i can naturally be amplified by
carrying out N local searches from random uniform starting points. The correspond-
ing formula for this probability P reads P = 1 − (1 − pi)N [143, p. 86]. By solving
for N , we obtain the estimate

N =
⌈

ln(1− P )
ln(1− pi)

⌉
(1.1)

as the required number of points for finding x∗
i with probability P [140]. The strong

influence of pi on the problem difficulty can be illustrated by inserting some numbers
into (1.1): if we require P = 0.95 and assume pi = 0.01, the equation yields N = 299.
Decreasing pi by a factor increases N by the same factor, e. g., a value of pi = 0.001
already results in N = 2995. The problem of obtaining all optima is of course
generally more difficult and also the math for estimating the corresponding numbers
becomes more complicated. For details, we refer to [114, Sec. 3.3].

The cost of one objective function evaluation is another important property of the
problem, as it decides on the number of possible function evaluations. In this work,
we assume that this cost is constant, i. e., all function evaluations cost the same. The
number of function evaluations in turn influences how much computational effort
should be invested to determine the location of the tested points. If only very few
function evaluations can be afforded, the amount of additional computations may be
very high, because sample locations must be chosen carefully. The assumed budgets
in the literature vary widely and have considerable influence on which optimization
algorithm obtains a good performance or is even applicable.

Table 1.1 shows how some budgets are associated with research areas and appli-
cations. The interesting budgets for this work are highlighted in lime green. This
focus has been set by subjectively considering what may be possible in real-world
optimization, e. g., for design problems in engineering, and what is manageable in
benchmarking. This is also a setting where the common black-box optimization
benchmarking (BBOB) practice [44] of measuring consumed resources simply as the
number of objective function evaluations seems still admissible, as the assumption
of expensive function evaluations in relation to the overhead of an optimization al-
gorithm becomes rather unlikely with larger budgets [38]. If budgets are smaller,
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1 Introduction

Table 1.1: Different magnitudes for the number of function evaluations Nf .

Magnitude Application

n · 101 Initial designs in model-based optimization [70]
n · 102 Expensive optimization
n · 103

n · 104 Budget of the CEC 2005 competition [135]
n · 105

n · 106 Budget of the black-box optimization benchmark (BBOB) [44]

then probably meta-models should be used [70] and more emphasis should be put
on parallelization, if possible.

Törn and Žilinskas [143, p. 93] write

“[. . . ] one can expect that the practitioner would undertake a large num-
ber of experiments in order to be convinced that the problem is thor-
oughly analyzed. The optimization would hardly be stopped until all
research resources have been spent.”

This quotation shall serve as justification to consider a fixed-budget scenario, i. e.,
measuring optimization performance after a certain amount of resources has been
spent. (Although this does not mean that only a single fixed budget size is investi-
gated.)

1.2 Average Case versus Worst Case

A large part of this work deals with (uniform) sampling algorithms and the prop-
erties of the point sets produced by them. Some examples of such point sets are
presented in Figure 1.1. With exception of Figure 1.1d with N = 120, each set con-
tains N = 121 points. (The corresponding algorithms will be discussed in Chapter 4.)
One permissible quality feature is the distribution of one-dimensional projections of
the points, which should be as uniform as possible. The set in Figure 1.1d (taken
from [12]) is perfect in this regard. Another important feature is the uniformity in
the original, high-dimensional space. In Section 4.2 we will see that deterministic
quasirandom sequences (as in Figure 1.1b) with low discrepancy (i. e., low devia-
tion from uniformity) provide a worst-case error bound for the integration error
in numerical integration. Corresponding randomized variants provide a variance re-
duction compared to random uniform sampling (Figure 1.1a) [88]. These results are
relevant for global and multimodal optimization, because estimating the size of an
attraction basin is nothing more but numerical integration. In practice, we are of
course not interested in the actual basin size, but simply in discovering all existing
basins, and thus all existing optima. This requirement is also served, because reduc-
ing the variance of basin size estimates encompasses reducing the risk of missing any
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1.2 Average Case versus Worst Case
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Figure 1.1: Examples of different sampling methods in two dimensions. One-
dimensional projections of the points are indicated at the top and right
axis. The cubes, cross, and circle indicate certain uniformity-related
properties of the point sets, which will be explained in Chapter 3.

basin completely. Consequently, our multimodal optimization performance can be
improved by employing variance reduction techniques, e. g., some kind of stratified
sampling. Also Törn [140] argues that if we are using q strata, the required number
of points Nstrat to find optimum x∗

i with probability P can be bounded by
⌈

q ln(1− P )
ln(1− qpi)

⌉
≤ Nstrat ≤

⌈
ln(1− P )
ln(1− pi)

⌉
.

This result implies an improvement over random uniform sampling, because the
upper bound is identical to (1.1).

However, theory predicts and experiments confirmed that variance reduction is
only possible for sufficiently smooth functions [100]. In case of high-frequency func-
tions, the performance of any uniform sampling method should be identical to that
of random uniform sampling [100]. In summary, this means that in a black-box sce-
nario, no deterioration of performance in comparison to random uniform sampling
is possible by using stratified sampling, as long as uniformity is ensured. Unfortu-
nately, creating and measuring uniformity in high dimensions is not as trivial as it
sounds (see Section 2.1.1 and Chapter 4).

9



1 Introduction

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1.2: Examples of multimodal optimization problems with ν = 100 optima.
The left problem exhibits no global structure, the right one contains one
large funnel. Every optimum is marked with a cross, the global one is
encircled.

As soon as we begin sampling, the black-box assumption is weakened, because
we are gaining more and more information about the problem. Special features of
the global topology as the distribution of optima locations and the correlation of
their objective values could be exploited to improve performance. The importance
of the former aspect for problem difficulty was already recognized by Törn and
Žilinskas [143, p. 11]. If we know, for example, that optima are embedded in a so
called funnel structure [86] (see Figure 1.2), it would be advisable to deviate from
uniformity and to sample with a higher density in better areas. By doing this, we
are sacrificing the worst-case bound in favor of better average-case performance, and
this is what is typically done in optimization [109], either by using local search or an
adaptive sampling. The next section will elaborate on the kind of interplay between
global and local approaches that is considered in this work.

1.3 The Two-stage Optimization Paradigm

Törn and Žilinskas [143, pp. 16–21] summarize several classification schemes of the
early literature for global optimization algorithms. However, the criteria for these
classifications seem often arbitrary and therefore no single ideal classification can be
found. So, the approach here is to define a simple high-level concept that covers
a large class of optimization algorithms. The proposed concept is based on the
observation that many successful meta-heuristics are composed of several modules,
which are quite sophisticated themselves. The complexity of these meta-heuristics
often hinders the analysis of the individual components, i. e., it is difficult to assess
how much influence a component has on the overall performance. Possibly the most
simple representative of these compositions is that of two alternating stages [85].
Naturally, this idea is not restricted to multimodal optimization, but could, e. g.,
be also applied to multiobjective optimization or completely unrelated topics. And
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1.3 The Two-stage Optimization Paradigm

indeed, it has surfaced multiple times in different contexts. For example, Jones [69]
gives a survey of model-based two-stage methods for optimization. He distinguishes
the two stages as follows:

1. Fit a response surface to training data (including estimation of the model’s
parameters).

2. Use the surface to compute new search points under the assumption that the
parameters are correct.

This approach has evolved from response surface methodology, which was originally
applied to physical experiments (with a human in the loop) [34, pp. 7–11]. Another
example is the restart variant of the covariance matrix adaptation evolution strat-
egy (CMA-ES) [9]. The CMA-ES belongs to the class of evolutionary algorithms
(EA), which are nature-inspired optimization methods [16]. They maintain a set of
solutions during the optimization and create new candidate solutions by randomly
combining and modifying the current ones. This process is typically described in the
language of biology, by saying that a population of individuals is maintained and
offspring are created from parent solutions by recombination and mutation. In each
generation, the best individuals are selected to form the parent population of the
next generation. The later development of the CMA-ES was driven by the question
what to do in situations when the local search has converged, but part of the budget
is still available. If the performance measurement does not reward savings in budget,
a natural idea is to just restart the algorithm with a random starting point. In this
case, the sampling of the random point trivially represents the other stage.

A “stage” can be defined abstractly as an algorithm that takes three inputs: the
maximal number of function evaluations that may be consumed by this very call,
a (possibly empty) set of individuals, and the optimization problem. We are using
the terms individual and problem here instead of point and function, respectively,
to indicate that we are dealing with objects that may contain additional meta-
information. The object-oriented view emphasizes that the abstract concept can be
instantiated in multiple ways. The outputs are another set of individuals and the
consumed budget (the number of function evaluations actually used). The stage
must assure that the maximal budget is never exceeded.

Törn and Žilinskas [143, p. 14] mention that most global optimization algorithms
consist of a global stage and a local stage. Although the distinction between these
two is rather fuzzy, it shall be a guiding theme of this work. Algorithm 1 sketches
a whole abstract two-stage method. It basically consists of a loop to ensure the
consumption of the whole budget and the two interacting stages in the loop. While
the code indicates that we enter the global stage before the local stage, this can be
the other way around as well. At the end of each iteration, an archive is updated
with the new individuals. This function is called “combine” to emphasize that it does
not necessarily have to be a set union. Also note that we define the communication
between the stages as being based on the exchanged individuals, in contrast to
Jones’ definition [69]. The algorithms he considered do in principle also match our
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1 Introduction

Algorithm 1 General two-stage optimization framework
Input: budget B, archive A, problem F
Output: solution/approximation set

1: while B > 0 do

2: P, cg ← globalStage(B,A, F )
3: B ← B − cg // reduce budget by costs cg of global stage
4: Q, cℓ ← localStage(B,P, F )
5: B ← B − cℓ // reduce budget by costs cℓ of local stage
6: A ← combine(A,Q)
7: end while

8: return filter(A) // potential subset selection

definition, only the distinction to what he calls “one-stage” methods disappears.
Schoen [127] defines “two-phase” optimization methods in a very similar way as we
do in Algorithm 1, but applies additional requirements to the local stage. First of all,
an explicit local search algorithm has to be present. Secondly, he emphasizes that
the local stage does not employ all the information available in A, but only certain
selected starting points. This is also reflected in Algorithm 1 by giving the local stage
the input P. Thirdly, he demands that no other information than the final result of
the local search may be fed back to the global stage. While this last behavior often
seems to be a convenient choice, because it focuses on the “high-quality information”,
we do not necessarily want this property to be enforced.

As already said, our definition encompasses a very broad class of algorithms,
perhaps even to a point beyond recognition. For example, an evolutionary algorithm
would fit into this paradigm if it uses both recombination and mutation. We could
view the offspring creation by parent selection and recombination as the global stage,
mutation and the evaluation of the offspring population as the local stage, and the
survivor selection step as combination of A and Q. On the other hand, simulated
annealing and an evolutionary algorithm without recombination would not fit into
the two-stage paradigm [127]. However, the concept should be more interesting on
a higher level anyway. Figure 1.3 makes a further categorization of stages into four
groups. As in EAs, the global stage often does not use any evaluations of the objective
function. Another such example would be a uniform sampling algorithm, which is
also in the category of model-free, cost-free stages. The corresponding modules in
model-based optimization are methods using infill criteria to determine candidate
points. Stages with function evaluations are often whole optimization algorithms,
although the consumed budget may vary greatly.

If one wants to emphasize the local-search aspect, the methods described by Jones
can only be classified as a module of a two-stage method, because they lack an
explicit local search and need relatively few function evaluations. However, also the
Restart-CMA-ES is a borderline case, because drawing a random uniform starting
point is just too trivial. As a compromise we can conclude that we are interested in
methods somewhere in between these two extremes.
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Model-free Model-based

Cost-free
(Sequential) sampling,

variation operators
Optimization of

infill criteria

Costly
Model-free

optimization
Model-based
optimization

Figure 1.3: Categorization of possible modules for global and local stages.

1.4 Distances and Neighbors

As already mentioned, sampling algorithms play an important role in this work. We
will be dealing a lot with methods to generate point sets and methods to analyze
their spatial properties (e. g., diversity). Thus, a core notion for us is the distance
between two points. This distance is also a building block of many MMO performance
measures and optimization algorithms.

Definition 3 (Minkowski distance, Lp distance). The distance between two points
x = (x1, . . . , xn)⊤ ∈ R

n and y = (y1, . . . , yn)⊤ ∈ R
n is defined as

d(x, y) = ‖x− y‖p =

(
n∑

i=1

|xi − yi|p
)1/p

.

For 1 ≤ p <∞, d(x, y) is a metric [18, p. 242]. However, it is seldom relevant for
us that the Minkowski inequality (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z)
is violated for 0 < p < 1, so also these values are in principle possible choices for
us. Other notable properties of distance metrics are non-negativity (d(x, y) ≥ 0),
identity of indiscernibles (d(x, y) = 0⇔ x = y), and symmetry (d(x, y) = d(y, x)).
We will usually write d(x, y) to emphasize the independence of p, and ‖x − y‖p if
a certain p is assumed. If nothing else is said, the Euclidean distance with p = 2
is meant. Figure 1.4 shows some examples of distances for different values of p. In
practice, we are often interested in short distances, that is, distances to neighbors
of some point.

Definition 4. The distance to the nearest neighbor of x ∈ X in P ⊂ X , |P| < ∞,
is defined as

dnn(x,P) = min{d(x, y) | y ∈ P \ {x}} . (1.2)

The nearest neighbor itself shall be denoted nn(x,P) and is obtained by using
arg min instead of min in (1.2). Throughout this work, P will always denote a discrete
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Figure 1.4: Distances from (0.5, 0.5)⊤ for different values of p.

set of points. Then, also the average distance to the k nearest neighbors may be a
sensible characteristic.

Definition 5. Let y(1), . . . , y(N) be the ordered elements of P, so that d(x, y(1)) ≤
· · · ≤ d(x, y(N)) for some x /∈ P. Then, the average distance to the k nearest neigh-
bors is denoted

dnn(x,P, k) =
1
k

k∑

i=1

d(x, y(i)) .

Finding the nearest neighbors of points in R
n is a common problem and sophisti-

cated data structures exist to accelerate this task (cf. [151] for an overview). How-
ever, these data structures are affected by the curse of dimensionality, which means
that in high dimensions they yield no improvement over the naïve approach of enu-
merating all neighbor candidates. Weber et al. [151] show experimentally, that the
break-even point may already appear at only n = 10 dimensions. Related results
of Beyer et al. [17] additionally show that under broad conditions, the difference
between the Euclidean distances of a random uniform query point to its farthest
and nearest neighbor in a point set vanishes with increasing dimension. This result
puts a lot of doubt on approximate nearest neighbor data structures. Subsequently,
Aggarwal et al. [5] found out that values of p ≤ 1 can prevent this effect. Their result
serves as incentive to also investigate such distances in this work. However, doing so
further hinders the use of acceleration techniques, as they typically require metric
distances. Thus, we will only use the linear search through all points to find nearest
neighbors.

1.5 Objectives of this Work

Two-stage optimization algorithms are an attractive concept for global and multi-
modal optimization due to their simplicity and demonstrated performance [114, 2, 1].
Especially the Restart-CMA-ES has proved its competitiveness in global optimiza-
tion tasks [53]. The main focus of this work will be on improving the global stages,
as local search is already a thoroughly researched topic.
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1.5 Objectives of this Work

Although our investigations should also largely apply to global optimization,
the primary interest of this work is in multimodal optimization, as it seems more
challenging and interesting from a practical perspective. While meta-modeling and
model-based optimization are not directly a part of the work, we will often discuss
concepts with a view to them, because many requirements are shared between the
areas. Model-based approaches would be especially promising on low-dimensional
problems (e. g., n ≤ 10) with small budgets (e. g., Nf ≤ 103n). For larger budgets,
the approach is rather unattractive, because fitting the model becomes a run time
bottleneck. However, there also is a big discrepancy between theory and practice in
the area of small budgets: On the one hand, a lot of emphasis is put on using infill
criteria that guarantee asymptotic convergence to the global optimum, on the other
hand the considered budgets of function evaluations are extremely small.

As already indicated in Section 1.1, we will deal with larger budgets and conse-
quently with model-free optimization algorithms. In summary, the following three
research questions shall receive the most attention:

• How can performance be measured in multimodal optimization?

• Which is the best sampling algorithm according to the chosen performance
measures, especially in high dimensions?

• How can the two two-stage approaches restarted local search and clustering
method be improved and how do they perform in a comparison?

As most results in this work are experimental, we will establish the fundamentals
for benchmarking in multimodal optimization in Chapter 2. This encompasses the
definition of quality indicators, performance measures, and test problems. As the
name implies, quality indicators are used for measuring the quality of the solutions to
the optimization problem. A performance measure is usually regarded as something
more general, especially incorporating the required time to obtain the solution. Test
problems are required because real-world problems are too difficult to work with in
large, controlled experiments.

In Chapter 3 we talk about useful characteristics of point sets designated for
incorporation in the global stages of MMO algorithms. These characteristics as, e. g.,
diversity, irregularity, or the mean distance to the boundary are also highly related
to space-filling experimental designs [126, pp. 121–161], which are an important
building block for meta-modeling.

In Chapter 4, an overview of different sampling algorithms, collected from various
research disciplines, is given. Every algorithm is evaluated with appropriate sum-
mary characteristics of the previous chapters and two of them, namely improved
latin hypercube sampling and the part-and-select algorithm, are enhanced in terms
of run time. Finally, a new algorithm called maximin reconstruction (MmR) is pro-
posed, which has the advantage that it can be configured very flexibly. To conclude
the chapter, the most interesting algorithms are compared regarding their MMO
performance in a first basic experiment.
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1 Introduction

In Chapter 5, we finally arrive at the part of the work that deals with complete
two-stage optimization algorithms. After a short discussion of relevant approaches
in this area, two algorithm classes are investigated experimentally regarding their
improvability by using MmR as global stage, before the chapter is closed with a
comparison between the best variants of these two classes. Chapter 6 closes the
work with conclusions and an outlook.
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2 Benchmarking

This chapter first surveys general diversity indicators and then specific quality indi-
cators for multimodal optmization. Afterwards, it is discussed how these indicators
can be incorporated into a performance assessment workflow for multimodal opti-
mization. As we will see, there are some hidden pitfalls in the process that can cause
misleading results. Then, an overview of artificial test problems is given, followed
by a description of the test problem generator used for our experiments. The chap-
ter concludes with some general remarks on experimentation, trying to explain the
mindset that governed this work.

2.1 Quality Indicators for Multimodal Optimization

This section deals with measuring the quality of a multiset of points P ⊂ X with
|P| = N < ∞. This set may for example be the result or the initialization of some
optimization algorithm. While the diversity indicators in Section 2.1.1 are versatile
in application, Section 2.1.3 deals especially with the assessment of the outcomes of
multimodal optimization. The survey is an extended version of earlier ones in [117]
and [155].

With the denomination quality indicator, we exclusively mean unary quality indi-
cators in this work, which are simply mappings from populations P to real numbers.
In other words, we could say that we are interested in numerical summary charac-
teristics to describe P. The term indicator is used to show that the mathematical
properties associated to metrics or measures are not necessarily given. The name
is adopted from multiobjective optimization [160], because of its close similarity to
MMO, especially concerning the virtues of a-posteriori methods. It should also be
stressed that in the following, we will require that no gradient information and no
additional function evaluations may be used for the assessment.

2.1.1 Diversity Indicators

Measuring the diversity of a multiset P is a common problem in many research areas.
We will encounter approaches from biology, physics, operations research, computer
experiments, and numerical integration. Although “diversity” is an abstract concept
and can mean different things, there are surprisingly many similarities between ap-
proaches that emerged from different applications. We will try to relate them to
each other by using a few axiomatic properties originating from Weitzman [152]. He
formulates several desirable properties for diversity measures, of which Solow and
Polasky [131] selected three that seemed especially natural to them. This subset has
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2 Benchmarking

also been adopted by Ulrich et al. [144]. As these requirements have been developed
in the context of biological diversity, the term species is used for the elements of P
in the following definitions. In our application, however, a species is simply some
point x ∈ X ⊂ R

n. Weitzman required neither the triangle inequality nor identity
of indiscernibles for his axiomatic treatment. Instead of the latter one, the relaxed
condition d(x, x) = 0 was assumed [152]. However, some of the diversity indicators
in the following survey do assume the triangle inequality.

The consideres axioms are as follows:

Axiom 1 (Monotonicity in species). If a species t /∈ P has a positive distance to all
species in P, then adding it to P may not decrease the diversity:

∀s ∈ P : d(s, t) > 0⇒ D(P) ≤ D(P ∪ {t}) .

Axiom 2 (Twin property TP1). Diversity should neither be increased nor decreased
by the addition of a species t /∈ P that is identical to a species already in the set:

D(P ∪ {t}) = D(P)⇔ ∃s ∈ P : d(s, t) = 0 .

Axiom 3 (Monotonicity in distance). Let |P| = |P ′| ≥ 2. For a one-to-one map-
ping of P onto P ′ so that no distance is decreasing and at least one increasing, the
diversity of P ′ may not be smaller:

∀i, j ∈ {1, . . . , |P|} : d(si, sj) ≤ d(s′
i, s′

j)

∧ ∃i, j ∈ {1, . . . , |P|} : d(si, sj) < d(s′
i, s′

j)⇒ D(P) ≤ D(P ′) .

Monotonicity in species and TP1 are also discussed informally by Bursztyn and
Steinberg [21] in the context of computer experiments. Note that the three prop-
erties together are not sufficient to rule out less sensible indicators. For example,
let supp(P) be the support of P, i. e., the set where the duplicates of P have been
removed. Then, it is easy to see that |supp(P)|, which is an ecological diversity
index called species richness [64], fulfills all three properties, although it does not
take any distances into account. Another observation is that the original definitions
in [152] are not always reproduced faithfully. Axiom 1 is a slightly generalized vari-
ant by Solow and Polasky [131]. Ulrich et al. [144] require strict monotonicity in
species instead of simple monotonicity. Finally, we observe that strict monotonicity
in distance would be the requirement where |supp(P)| fails.

On the other hand, Weitzman argues that diversity indicators, which do not con-
form to all properties, simply “do not work” [152, p. 376]. The following survey,
however, demonstrates that there are many applications where a subset of the prop-
erties is sufficient, and such indicators are indeed frequently used. Finally, also run
time constraints may definitely bias our choice towards less sophisticated ones.

In the following, twelve diversity indicators are listed in an order that seemed
to support easy transitions in reading. Each indicator is discussed mostly based on
practical considerations and sometimes a new name is assigned if the old one seems
unintuitive. Afterwards, the axiomatic view of Weitzman is used to obtain a general
overview and identify relations between the indicators.
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2.1 Quality Indicators for Multimodal Optimization

Sum of Distances (SD)

Probably the first indicator that comes to mind of everyone that thinks about di-
versity is the sum of all distances in the point set, which is also known as the
N -dispersion-sum measure [95]. However, this figure is criticized by [131, 144, 95]
as being inappropriate for measuring diversity, because it only rewards the spread,
but not the diversity of a population. Therefore, it should not be used. However, if
it is used, we suggest to take the square root of the sum,

SD(P) :=

√√√√
N∑

i=1

N∑

j=i+1

d(xi, xj) ,

to obtain indicator values of reasonable magnitude.

Average Distance (AD)

Izsák and Papp [64] show that the average distance

AD(P) =
1
(N

2

)
N∑

i=1

N∑

j=i+1

d(xi, xj)

does not provide monotonicity in species, while SD does. This is an interesting result,
as the division by N instead of

(N
2

)
does not seem to change the indicator’s properties

in comparison to SD.

Sum of Distances to Center of Mass (SDCM)

Ulrich et al. [145] propose an indicator offering the same properties as SD (given that
d satisfies the triangle inequality), but with linear run time. First, the population’s
center of mass c̄P = 1/N

∑N
i=1 xi has to be calculated. To obtain the indicator value,

the distances of all points to the center of mass are summed:

SDCM(P) =

{
0 if P = ∅ ,

1 +
∑N

i=1 d(xi, c̄P) else.

Analogously, an average distance to the center of mass (ADCM) could be defined.
The distinction of cases and adding of 1 are used to handle cases where N < 2.
This workaround could be applied to several other indicators, too, but we omit it
elsewhere because we are interested in much larger sets anyway.

Minimal Distance (MD)

The indicator MD(P) = min{d(xi, xj) | xi, xj ∈ P, i 6= j} is another basic indicator
and thus goes by many names. Emmerich et al. [40] call it minimal gap, Damelin
et al. [29] separation distance, Illian et al. [63, p. 58] hard-core distance, Meinl et
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al. [95] the N -dispersion measure. Algorithms attempting to maximize this criterion
are usually called maximin approaches for short. As all other distances except the
minimal one are disregarded, often regularizations are sought, which are easier to
optimize but asymptotically yield the same result [118].

Sum of Distances to Nearest Neighbor (SDNN)

Meinl et al. [95] propose the “N -dispersion-min-sum measure” as a way to combine
the advantages of MD and SD. This indicator calculates the sum of distances to the
nearest neighbor:

SDNN(P) :=
N∑

i=1

dnn(xi,P) .

In contrast to SD, SDNN penalizes the clustering of solutions, because only the near-
est neighbor of every point is considered. Emmerich et al. [40] mention 1

N SDNN(P)
as the “arithmetic mean gap”. We omit the averaging here to avoid potential pe-
nalizing of larger sets. Suppose, for example, we have P = {x, y} with d(x, y) = 1.
Now we add a point z to the set P so that d(y, z) = 0.6 and dnn(x,P) is unchanged.
Then the indicator value of SDNN(P) increases from 2 to 2.2, while 1

N SDNN(P)
decreases from 1 to 2.2

3 . However, it is also possible to construct situations where
adding a new point to the set decreases the indicator value for both variants.

Product of Distances to Nearest Neighbor (PDNN)

Analogous to SDNN, PDNN is defined as

PDNN(P) :=
N∏

i=1

dnn(xi,P) .

Also this indicator is inspired by the geometric mean gap PDNN(P)1/N , which is
defined by Emmerich et al. [40]. It puts a higher focus on the regularity of the point
set than SDNN, but simultaneously has the disadvantage that the indicator value is
always zero if there is a duplicate point in the set.

Weitzman Diversity (WD)

Weitzman [152] developed a diversity indicator recursively defined as

WD(P) = max
x∈P
{WD(P \ {x}) + dnn(x,P \ {x})}

= d(g, h) + max{WD(P \ {g}), WD(P \ {h})} ,

where (g, h) is the closest pair in the respective set. The base case is

∀x ∈ P : WD({x}) = 1 .

While this indicator has interesting theoretical properties, it unfortunately has a
runtime of O(2N ) and is thus of little practical use for our application.
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2.1 Quality Indicators for Multimodal Optimization

Solow-Polasky Diversity (SPD)

Solow and Polasky [131] developed an indicator to measure a population’s biological
diversity and showed that it has superior theoretical properties compared to the sum
of distances and other indicators. Monotonicity in distance is fulfilled as long as the
triangle inequality holds. Ulrich et al. [144] discovered the indicator’s applicability to
multiobjective optimization. They also verified the inferiority of the sum of distances
experimentally by directly optimizing the indicator values. To compute this indicator
for P, it is necessary to build an N × N correlation matrix R with entries rij =
exp(−θd(xi, xj)). The indicator value is then the scalar resulting from

SPD(P) := 1⊤R−11 ,

where 1 = (1, . . . , 1)⊤. This measure also appears in [21] as a part of an entropy
criterion. It is advisable to use the pseudo-inverse in practice, to alleviate numerical
problems. As the (numerically stable) matrix inversion requires time O(N3), the
indicator is only applicable to relatively small sets, although Ulrich et al. [146] show
how update operations can be carried out more efficiently. The indicator also requires
a user-defined parameter θ, which depends on the size of the search space. These
properties make this theoretically appealing indicator rather unattractive in practice.

Average of Inverse Distances (AID)

Santner et al. [126, p. 139] define the so-called average distance criterion function

mq(P) =


 1
(N

2

)
N∑

h=1

N∑

i=h+1

[
dmax

d(xh, xi)

]q



1/q

(2.1)

to measure how diverse the points in an experimental design are. This indicator is
obviously related to the harmonic mean of all distances. Putting d(xh, xi) into the
denominator causes it to be undefined for point sets that contain duplicates. For
optimization, it is convenient to assume mq(P) =∞ in this case. The normalization
factor dmax = d(u, ℓ) denotes the largest possible distance between points in the
search space. If this value is unavailable, it is possible to insert another constant
(e. g., 1), albeit sacrificing comparability of indicator values across different numbers
of variables. For q → ∞, minimizing (2.1) becomes equivalent to maximizing the
minimal distance between all pairs of design points [126, p. 139]. Interestingly, a
simpler but otherwise identical formula is used in potential theory to describe the
energy level of a point set. This is the Riesz energy, defined as

Eq(P) =
N∑

h=1

∑

i6=h

1
d(xh, xi)q

. (2.2)

Hardin and Saff [57] show that for n-dimensional manifolds, asymptotically uni-
formly distributed point sets minimize the Riesz energy if q ≥ n. If q is chosen
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smaller, the optimal point density increases towards the outer regions of the mani-
fold. Thus, we can hope to obtain an indicator that reflects our intuitive concept of
diversity in X ⊂ R

n by setting q = n. We will call the indicator average of inverse
distances and define AID(P) := mn(P).

Discrepancy (DISC)

In the area of quasi-Monte Carlo methods, a lot of theory has been developed re-
garding error bounds of estimated integrals, depending on the point sequences used
for the numerical integration. To achieve low error bounds, point sets must possess a
low discrepancy. Niederreiter [108, p. 13] states that “discrepancy can be viewed as
a quantitative measure for the deviation from uniform distribution”. Several types
of discrepancy can be defined by changing the aggregation of individual deviations
or by considering differently shaped subsets of the region of interest. Without loss
of generality, we will assume that X = [0, 1]n in this section. The first theoretical
results have been obtained using an L∞ norm for aggregation and considering the
family J ∗ of all subsets J = [0, u1)× . . .× [0, un) of the unit hypercube [108, p. 14].
This way, the discrepancy

D∗
N = sup

J∈J ∗

∣∣∣∣
NJ

N
− vol(J)

∣∣∣∣ (2.3)

was defined, where vol(J) =
∏n

i=1(ui− ℓi) is the volume of the respective subset and
NJ = |{x | x ∈ P ∧x ∈ J}| is the number of points of the set that fall into it. Using
D∗

N and an appropriate definition for the variation V (f) of f , the integration error
can be bounded by the Koksma-Hlawka inequality [108, p. 20]

∣∣∣∣∣
1
N

N∑

i=1

f(xi)−
∫

X
f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N (P) . (2.4)

This result suggests that it is generally advisable to minimize the discrepancy to
obtain low integration errors, if f shall be treated as a black box. Unfortunately,
several problems are associated with D∗

N . First of all, calculating L∞ discrepancies
is an NP-hard problem [36], which makes it infeasible in most practical situations.
Secondly, Santner et al. [126, pp. 146–148] give an example where D∗

N favors points
along the diagonal of the region of interest, and thus does not reflect the human
intuition of unifomity. They further argue that discrepancy’s relation to integration
error is not necessarily relevant in the context of computer experiments [126, p. 144].
To avoid the run time problem, the L2 norm of the deviations from uniformity is
usually taken, leading to the discrepancy

T ∗
N =

(∫

X

(
NJ

N
− vol(J)

)2

dxdy

)1/2

.

It should be noted that integration error can in principle also be bounded by L2

discrepancy [103, 60, 150]. However, also T ∗
N is disputed. Morokoff and Caflisch [103]
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2.1 Quality Indicators for Multimodal Optimization

write: “While useful in theoretical discussions due to its relationship with D∗
N , T ∗

N

suffers as a means of comparing sequences and predicting performance because of
the strong emphasis it puts on points near 0.” In the example of Santner et al., this
means that D∗

N regards the diagonal as better than the antidiagonal, which also
seems dubious. Even worse, Matoušek [91] shows that T ∗

N generally gives unreliable
results for N < 2n. As a workaround, the more general family J of subsets J =
[ℓ1, u1)× . . . [ℓn, un) can be considered, yielding

TN =

(∫

(x,y)∈X ×X , xi<yi

(
NJ

N
− vol(J)

)2

dxdy

)1/2

.

This unanchored discrepancy formula at least gets rid of the origin’s special role, but
no information could be found on its effect on the problem addressed by Matoušek.
The analogous formula for DN is obtained by simply replacing J ∗ with J in (2.3).

While a lot of the literature deals with theoretical bounds on the discrepancy of
quasirandom sequences, we are interested in computing the discrepancy of arbitrary
point sets. Conveniently, Morokoff and Caflisch [103] derive the following explicit
formula for TN , which can be computed in O(N2n):

(TN )2 =
1

N2

N∑

i=1

N∑

j=1

n∏

k=1

(
1−max{xi,k, xj,k}

) ·min{xi,k, xj,k}

− 21−n

N

N∑

i=1

n∏

k=1

xi,k(1− xi,k) + 12−n

Their experiments, however, indicate that neither T ∗
N nor TN are monotone in

species. Regarding the monotonicity in distance, neither a proof nor a counterexam-
ple could be found so far. A useful property of discrepancy is that it is possible to
compute its expected value for a random uniform point set. For (TN )2 the formula
is [103]

E((TN )2) =
6−n(1− 2−n)

N
.

Overall, setting DISC(P) = TN seems to be a good choice. Hickernell [60] proposes
several other variants of discrepancy that possess certain additional invariance prop-
erties. We will keep using TN instead, because he does not give the expected values
of these discrepancies.

Covering Radius (CR)

Definition 6 (Covering radius). If (X , d) is a bounded metric space and the point
set P consists of x1, . . . , xN ∈ X , then the covering radius of P in X is defined by

CR(P) := dN (P,X ) = sup
x∈X

{
min

1≤i≤N
{d(x, xi)}

}
= sup

x∈X
{dnn(x,P)} .
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This definition is due to Niederreiter [108, p. 148], who coined the term dispersion
for dN , which “may be viewed as a measure for the deviation from denseness” [108,
p. 149]. However, the name did not become widely accepted, because it does not
reflect the intuitive meaning of dN and is also used differently in other diversity-
related research (see, e. g., [41, 86]). Meinl et al. [95] call this indicator the N -center
measure. We will use the name covering radius, which is used for example by Damelin
et al. [29], because dN is the smallest radius for which closed balls around the points
of P completely cover X .

Definition 6 is actually also identical to that of the minimax distance design cri-
terion as defined by Johnson et al. [66]. Based on this definition, Niederreiter [108,
p. 149] proves an error bound on the estimate f̂∗ = f(x̂∗) of the global minimum
f(x∗). In this estimate, x̂∗ = arg min{f(x) | x ∈ P} denotes the point in the finite
approximation set P for which the best objective value could be observed.

Theorem 1 (Niederreiter [108, p. 149]). If (X , d) is a bounded metric space then,
for any point set P of N points in X with covering radius dN = dN (P,X ), we have

f̂∗ − f(x∗) ≤ ω(f, dN ) ,

where
ω(f, t) = sup

xi,xj∈X

d(xi,xj)≤t

{|f(xi)− f(xj)|}

is, for t ≥ 0, the modulus of continuity of f .

This means that the prediction error for the global optimum is bounded by a
function only depending on f and the covering radius of the set P. The error bound
actually holds not only for f̂∗ as defined above, but also anywhere in X for a nearest
neighbor estimator of f . Formally, it holds that

∀x ∈ X : |f(x)− f(nn(x,P))| ≤ ω(f, dnn(x,P)) ≤ ω(f, dN (P,X )) . (2.5)

This is a trivial observation following directly from the definitions of dnn, ω, and dN .
Santner et al. [126, p. 149] explain this result intuitively in the context of meta-
modeling:

“Suppose we plan to predict the response at an unobserved input site
using our fitted stochastic model. Suppose we believe the absolute dif-
ference (absolute error) between this predicted value and the actual re-
sponse generated by the computer code is proportional to the distance
of the untried input site from the nearest input site at which we have
observed the code. Then a minimax distance design would intuitively
seem to minimize the maximum absolute error because it minimizes the
maximum distance between observed design sites and untried sites. Un-
fortunately, minimax distance designs are difficult to generate and so are
not widely used.”
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The difficulty in calculating and thus optimizing dN (P,X ) is due to the involve-
ment of the uncountable X . Although no explicit formula is known for arbitrary X ,
Pronzato and Müller [118] give an algorithm for calculating dN (P, [0, 1]n) regard-
ing Euclidean distance with run time O((nN)⌊n/2⌋), based on Delaunay tessellation.
The other resort would be using a Monte Carlo approach, because if X is finite
with |X | = M , calculation of the indicator becomes straightforward with run time
O(MNn).

Union of Balls (UB)

Ulrich et al. [145] propose an indicator related to CR. The basic idea is to consider
balls of a predefined radius around the points of P and then to measure the union
of these balls. Ulrich et al. call this indicator coverage diversity. The only tractable
instantiation of this principle seems to be using L∞ distance, in which case it is
equivalent to Klee’s measure problem [74]. For a diameter b, the formula is

UB(P) =
1
bn

∫

Z
cb

P(z) dz ,

where

cb
P(z) =

{
1 if ∃x ∈ P : ∀1 ≤ i ≤ n : |zi − xi| ≤ b/2 ,

0 else

is the indicator function for membership in the union of balls. When integrating,
one has to decide whether Z = R

n or Z = X . In the former case, UB provides
monotonicity in distance, but is more similar to a maximin criterion. The latter case
gives an incentive to avoid the boundaries, because parts of the balls outside X would
be wasted. UB can be calculated for uncountable X with a run time of O(Nn/2) as
shown by Chan [24]. The parameter b, however, seems to be very critical. If it is too
large, only the spread is relevant; if it is too small, the discriminative power is low.

2.1.2 Discussion of Diversity Indicators

Table 2.1 gives an overview of the diversity indicators’ properties. The information
about the properties was either taken from the original papers or obtained by finding
counter examples. Question marks indicate the cases where no answer could be
found. The given run time bounds mostly refer to the naïve implementations, because
in the high dimensional spaces we are interested in, more sophisticated approaches
usually yield little benefit. A similar survey has also been given by Ulrich et al. [144].
One could argue that one important application of the diversity indicators would
be directly optimizing the indicator value for a fixed-size point set. In this scenario,
monotonicity in species is not required. The twin property seems more interesting,
since we can further differentiate the indicators that do not possess the property by
defining two relaxed twin properties. First of all, it seems undesirable that indicator
values can be improved by adding more duplicates. This is the case for SD and
SDCM. Of the remaining indicators without TP1, many assign the worst possible

25



2 Benchmarking

Table 2.1: Properties of diversity indicators.

(Strict)
monotonicity

in species

Twin property
TP1/TP2/TP3

(Strict)
monotonicity
in distance

Run time

SD ✔ / ✔ ✘ / ✘ / ✘ ✔ / ✔ O(N2n)
AD ✘ / ✘ ✘ / ? / ? ✔ / ✔ O(N2n)
SDCM ? / ✔ ✘ / ✘ / ✘ ? / ✔ O(Nn)
MD ✘ / ✘ ✘ / ✘ / ✔ ✘ / ✔ O(N2n)
SDNN ✘ / ✘ ✘ / ✔ / ✔ ✘ / ✔ O(N2n)
PDNN ✘ / ✘ ✘ / ✘ / ✔ ✘ / ✔ O(N2n)
WD ? / ✔ ✔ / ✔ / ✔ ✘ / ✘ O(2N )
SPD ? / ✔ ✔ / ✔ / ✔ ? / ✔ O(N3)
AID ✘ / ✘ ✘ / ✘ / ✔ ✔ / ✔ O(N2n)
DISC ✘ / ✘ ✘ / ✔ / ✔ ? / ? O(N2n)
CR ✘ / ✔ ✔ / ✔ / ✔ ✘ / ✘ O((nN)⌊n/2⌋)
UB ✘ / ✔ ✔ / ✔ / ✔ ✘ / (✔) O(Nn/2)

indicator value to point sets with duplicates. This is disadvantageous, too, because
we want to at least be able to discriminate between different remaining parts of the
sets [21].

Axiom 4 (Relaxed twin properties). Without loss of generality, let D be a diversity
indicator that is to be maximized. For a set of species P with |P| ≥ 2, and species
t /∈ P with d(t, s) = 0 for some s ∈ P, we make the following two requirements:

• TP2: The diversity of P ∪ t should be greater than the worst possible value and
not exceed the diversity of P: Dmin < D(P ∪ t) ≤ D(P)

• TP3: The diversity should at least not improve by adding a redundant species:
D(P ∪ t) ≤ D(P)

Obviously, TP1⇒ TP2⇒ TP3. While TP1 could always be enforced by removing
all the duplicates from P in a preprocessing step, one can easily see that this would
break the monotonicity in distance, at least for some indicators.

AID is one of the indicators without TP2. At least this deficit could be removed
easily, as indicated by Damelin et al. [29]. They show that an energy definition closely
related to (2.2) is equivalent to the L2 star discrepancy. The required modification of
(2.2) is actually an introduction of a “nugget factor”, which prevents the singularities
when distances of zero occur. The resulting energy definition satisfies TP2 and also
the integration error can be bounded by it. Although this modification obviously
also applies to AID, we do not follow this path because further investigations would
be required to set the additional parameter.
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Izsák and Papp [64] observed that an appropriate averaging can eliminate mono-
tonicity in species for SD. The same also holds for SDCM. Simultaneously, this
averaging also seems to influence the twin properties in the following way:

Conjecture 1. The penalty imposed on the indicator value by averaging over all
distances seems to be sufficient to enable TP2 for the two indicators average distance
and average distance to the center of mass.

Note that monotonicity in distance is obviously not affected by averaging, as the
number of species is constant in the definition of this axiom. However, although
better twin properties would be desirable, TP3 and monotonicity in distance seem
to be often sufficient to sensibly optimize the diversity of a fixed-size point set
[57, 40, 95].

To conclude the discussion of diversity, we will try to summarize what the diversity
indicators actually measure. After all, there seem to be only three or four main
diversity concepts, depending on the level of detail. The first one is spread, which is
measured by SD and SDCM. Although this approach seems to be used often, it is not
recommended, because it does not reflect the intuitive understanding of diversity.
As a reader, one often wonders if the respective authors used it consciously, or
if they chose the simplest/first approach they could think of. The other category
is uniformity, which is subdivided into uniformity with and without consideration
of X . The former one could be described as coverage or representativeness, and
can be measured by CR and UB. Also WD seems to have some relations to this
concept, based on its properties. DISC is a bit difficult to categorize, because it
does not employ a distance function and is not easily applicable to arbitrary X .
Additionally, there are several different instantiations of the discrepancy concept,
with slightly different properties [103, 60]. Experiments in Chapter 4 seem to confirm
the theoretical results of Matoušek [91], in the sense that DISC seems to represent
true uniformity for N ≫ 2n and some kind of maximin diversity otherwise. The
latter term characterizes indicators whose optimal point sets exhibit a higher point
density at the boundary of X than random uniform sampling, if no countermeasures
are taken. This property is shared by all indicators that asymptotically reward a
maximization of minimal distance(s) between points in P, hence the name. This
approach clearly disregards X and ultimately leads to very regular point sets, which
is shown by its close connection to sphere packing problems [4].

2.1.3 Other Quality Indicators

Diversity indicators are so important to us, because they work independently of the
actual optimization problem. However, as we are dealing with optimization, also
the objective function has to be considered somehow. In the extreme case of global
optimization, only a single solution is considered, and thus only the best objective
value is relevant. The best objective value in turn can be interpreted as belonging
to a class of quality indicators which encompasses all kinds of statistics of the ob-
jective value distribution. These indicators obviously are problem-independent, too.

27



2 Benchmarking

Quality

Indicators

for MMO

Basin Info

BI

BR

Peak Info

PR

PI

PD

AHD

No
Problem

Info

Objective
Related

Diversity

Spread

Coverage

Discre-
pancy

Maximin

Figure 2.1: One possible classification of quality indicators for multimodal optimiza-
tion.

However, we are still missing problem-independent indicators that are really useful
for multimodal optimization by combining diversity and objective values. To date,
such indicators always employ information regarding the location and optionally the
attraction basins of the problems’ optima. This is reflected in Figure 2.1, which clas-
sifies indicators according to the amount of additional information that is necessary
for the assessment. Some important instances of problem-dependent indicators are
already displayed there. These will be explained in the following.

Some indicators in this section require a given set of locally optimal positions
O = {x∗

1, . . . , x∗
ν}, ν < ∞, to assess P. This means they can only be employed in

a benchmarking scenario on test problems that were specifically designed so that O
is known. Note, however, that O does not necessarily have to contain all existing
optima, but can also represent a subset (e. g., only the global ones). Even more
challenging to implement are indicators that require information about which basin
each point of the search space belongs to. This information can either be provided by
a careful construction of the test problem, or by running a descent algorithm for each
x ∈ P as a starting point during the assessment and then matching the obtained
local optima with the points of the known O. Regardless of how it is achieved, we
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2.1 Quality Indicators for Multimodal Optimization

will assume the existence of a function

b(x, x∗) =

{
1 if x ∈ basin(x∗),

0 else.

The rationale of indicators for covered basins instead of distances to local optima is
that the former also enable measuring in early phases of an optimization, when the
local optima have not been approximated well yet. If the basin shapes are not very
regular, the latter indicator type may be misleading in this phase.

Statistics of the Distribution of Objective Values

Regarding the assessment of the population’s raw performance, few true alternatives
seem to exist. The only things that come to mind are conventional statistics of the
objective value distribution, with the mean or median as the most obvious measures.
Values from the tail of the distribution, as the best or worst objective value, do not
seem robust enough to outliers. Thus, as an example for this group of indicators,
the average objective value (AOV) shall be explicitly named:

AOV(P) :=
1
N

N∑

i=1

f(xi) .

Peak Ratio (PR)

Ursem [147] introduced the average number of found peaks as a performance measure
for MMO. Following this concept, we define the number of found optima

o = |{x∗ ∈ O | dnn(x∗,P) ≤ r}| (2.6)

divided by the total number of optima as peak ratio PR(P) := o/ν. This formula-
tion was probably first expressly mentioned by Thomsen [139]. The indicator requires
some constant r to be defined by the user, to decide if an optimum has been ap-
proximated appropriately. This approach corresponds to the assumption of binary
relevance in the area of information retrieval [90, p. 152] and the peak ratio is equiv-
alent to a measure called sensitivity, recall, or true positive rate there [90, p. 155].
Note that the term peak ratio is also used in the CEC 2013 competition [80], but
only an approximation, which does not employ the actual positions of the optima,
is calculated. Also the maximum peak ratio by Miller and Shaw [99] is not directly
related to our measure.

Peak Distance (PD)

This indicator simply calculates the average distance of a member of the reference
set O to the nearest individual in P:

PD(P) :=
1
ν

ν∑

i=1

dnn(x∗
i ,P) . (2.7)
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A first version of this indicator (without the averaging) was presented by Stoean et
al. [134] as “distance accuracy”. With the 1/ν part, peak distance is analogous to
the indicator inverted generational distance [25], which is computed in the objective
space of multiobjective problems.

Proposition 1. If (X , d) is a bounded metric space, then the peak distance of a set
P ⊂ X , |P| = N , can be bounded as follows:

PD(P) ≤ dN (P,X ) . (2.8)

Proof. Definition 6 tells us that ∀x∗
i ∈ O : dnn(x∗

i ,P) ≤ dN (P,X ). Thus, the result
follows directly from inserting dN into (2.7):

PD(P) =
1
ν

ν∑

i=1

dnn(x∗
i ,P) ≤ 1

ν

ν∑

i=1

dN (P,X ) = dN (P,X ) .

Peak Inaccuracy (PI)

Thomsen [139] proposed the basic variant of the indicator

PI(P) :=
1
ν

ν∑

i=1

|f(x∗
i )− f(nn(x∗

i ,P))| (2.9)

under the name “peak accuracy”. To be consistent with PR and PD, we also add the
1/ν term here. We allow ourselves to relabel it to peak inaccuracy, because speaking
of accuracy is a bit misleading as the indicator must be minimized. PI has the
disadvantage that P does not necessarily have to cover O well, because it is possible
for one solution to satisfy several optima at once. On the other hand, comparing the
indicator value to a baseline performance, e. g., calculated as the peak inaccuracy
for the global optimum alone, might relativize seemingly good performances.

Proposition 2. If (X , d) is a bounded metric space, then the peak inaccuracy of a
set P ⊂ X , |P| = N , can be bounded as follows:

PI(P) ≤ ω(f, dN (P,X )) .

Proof. This time the result follows from inequality (2.5), which allows us to insert
ω(f, dN (P,X )) into (2.9).

Averaged Hausdorff Distance (AHD)

This indicator can be seen as an extension of peak distance due to its relation to
the inverted generational distance. It was defined by Schütze et al. [129] as

AHD(P) := ∆p(P,O)

= max





(
1
ν

ν∑

i=1

dnn(x∗
i ,P)p

)1/p

,

(
1
N

N∑

i=1

dnn(xi,O)p

)1/p


 .
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The definition contains a parameter p that controls the influence of outliers on the
indicator value (the more influence the higher p is). For 1 ≤ p < ∞, AHD has the
property of being a semi-metric and for p = ∞ it coincides with the conventional
Hausdorff distance dH, which is a metric [129]. Note that the conventional Hausdorff
distance relies heavily on the covering radius, i. e., for finite sets P and O it can be
written as dH = max {dN (P,O), dν(O,P)}. We constantly choose p = 1, analogously
to Emmerich et al. [40]. The practical effect of the indicator is that it rewards the
approximation of the optima (as PD does), but as well penalizes any unnecessary
points in remote locations. This makes it an adequate indicator for the comparison
of approximation sets of different sizes.

Proposition 3. If (X , d) is a bounded metric space, then the averaged Hausdorff
distance of a set P ⊂ X , |P| = N , can be bounded as follows:

AHD(P) ≤ max {dN (P,X ), dν(O,X )} .

Proof. Again, the result follows from inserting the covering radii of P and O, re-
spectively, and simplifying the expression:

AHD(P) ≤ max

{(
1
ν

νdN (P,X )p
)1/p

,

(
1
N

Ndν(O,X )p
)1/p

}

= max
{

(dN (P,X )p)1/p , (dν(O,X )p)1/p
}

= max {dN (P,X ), dν(O,X )} .

Note that Proposition 3 provides further evidence that there is a fundamental
difference between AHD on the one hand, and PD and PI on the other hand. The
bound indicates that minimizing dN (P,X ) is not sufficient to optimize AHD, due
to its dependency on the set of optima O.

Basin Ratio (BR)

The number of covered basins is calculated as

o =
ν∑

i=1

min



1,

N∑

j=1

b(xj , x∗
i )



 .

The basin ratio is then BR(P) := o/ν, analogous to PR. This indicator can only
assume ν + 1 distinct values. If the basin sizes do not vary too much, it should be
quite easy to obtain a perfect score in low dimensions by a moderately sized simple
random uniform sampling (SRS) of the search space. The indicator makes sense
especially when not all of the existing optima are relevant. Then, its use can be
justified by the common assumption in global optimization that the actual optima
can be found relatively easily with a hill climber, once there is a start point in each
respective basin [141].
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Table 2.2: Overview of some MMO indicators.

Indicator Best Worst Regards
f(x)

Use with
variable N

Without
optima

Without
basins

Without
params

AOV f(x∗) fmax ✔ ✔ ✔ ✔ ✔

PR 1 0 ✘ ✘ ✘ ✔ ✘

PD 0 dmax ✘ ✘ ✘ ✔ ✔

PI 0 fmax ✔ ✘ ✘ ✔ ✔

AHD 0 dmax ✘ ✔ ✘ ✔ ✘

BR 1 0 ✘ ✘ ✘ ✘ ✔

BI 0 fmax ✔ ✘ ✘ ✘ ✔

Basin Inaccuracy (BI)

This combination of basin ratio and peak inaccuracy was proposed by Preuss and
Wessing [117]. It is defined as

BI(P) :=
1
ν

ν∑

i=1

{
min {|f(x∗

i )− f(x)| | x ∈ P ∧ b(x, x∗
i )} ∃x ∈ basin(x∗

i ) ,

fmax else,

where fmax denotes a penalty value, e. g., the difference between the global optimum
and the worst possible objective value. For each optimum, the indicator calculates
the minimal difference in objective values between the optimum and all solutions
that are located in it’s basin. If no solution is present in the basin, a penalty value
is assumed for it. Finally, all the values are averaged. The rationale behind this
indicator is to enforce a good basin coverage, while simultaneously measuring the
deviation of objective values.

2.1.4 Discussion of Other Quality Indicators

The ideal indicator for multimodal optimization would probably regard both diver-
sity and objective values, enable fair comparisons of sets with different sizes, and
require no problem information or additional parameters. Table 2.2 shows a classifi-
cation of the indicators in this section regarding these properties. With the notable
exception of AOV and AHD, all of them are monotone in species, meaning that
for two sets P,Q with P ⊂ Q, the superset Q will never be regarded as the worse
one. In some situations, this is inappropriate, as we will see in the next section. On
the other hand, this behavior is not provided by all diversity indicators, although it
would be desirable in their case.

Unfortunately, only diversity indicators and AOV can be applied in real-world
applications, as they are the only ones not needing any problem knowledge. The
others are only available in benchmarking scenarios. AHD is more challenging than
PD, because the former not only rewards the approximation of O, but also penalizes
superfluous points in remote locations. AHD’s parameter should be well-tempered.
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While PR has a straightforward interpretation, it can be easily misconfigured [157],
by making the approximation task to easy or too difficult. Therefore, BR is a good
parameterless alternative, although with a slightly different focus. It may be espe-
cially useful if only a subset of all optima is requested to be found, as in [80]. BR and
BI also put a higher emphasis on diversity than the “peak-oriented” indicators, but
are more difficult to implement, because they rely on more problem knowledge. PI
can be easily deceived when an optimum is not covered by any solution, but another
similarly good solution exists in another basin nearby [117].

There should be some room for further development of indicators. In [117] for
example, it was suggested to incorporate objective values by simply augmenting the
search points before evaluating with PD or AHD. Instead of P, then the points
P ′ = {(x⊤

1 , f(x1))⊤, . . . , (x⊤
N , f(xN ))⊤} would be assessed. Likewise, it would be

straightforward to define an “averaged Hausdorff inaccuracy” by replacing the dis-
tances in AHD by deviations in objective space, as in PI. (Also a “basin distance”
is imaginable, by using search space distances in an indicator analogous to BI.)
Another suggestion that was made in [117] is to incorporate quantity-adjustment
into PR and BR by introducing a penalization factor. A better way seems to be
the approach usually taken in information retrieval, where besides recall = o/ν the
conflicting measure precision = o/|P| is recorded. (Note that recall is conceptually
equivalent to PR and BR.) These two can be aggregated using the measure [90,
p. 156]

F1 =
2 · precision · recall
precision + recall

. (2.10)

However, none of these ideas has received much experimental analysis, yet.

2.2 Performance Measurement

Unfortunately, comparing optimization algorithms is an inherently multiobjective
problem [141]. One objective is the effort spent for optimization, which is to be
minimized, and the other objective is some measure of solution quality. As already
indicated in Section 1.1, the conflict is often avoided by fixing either the target
quality or the budget. Both approaches have advantages and disadvantages. A fixed
target enables easy speed comparisons(e. g., “algorithm A is on average twice as fast
as algorithm B”) [54]. On the downside, it is prone to floor effects, which means
that the posed task may be too difficult to measure any progress. For example,
in comparisons based on the BBOB procedure, expected running times are often
reported as∞, because the algorithms never reach the target [112]. The fixed-budget
scenario has the advantage that we are always comparing algorithms for exactly the
budgets that we deem as realistic for the application (see Table 1.1). It does not need
much calibration to avoid floor effects and it is easy to measure several different
characteristics in one run. However, the measured differences between algorithms
are problem-dependent and thus not intuitively accessible [54]. In any case, only less
powerful statistical tests may be available, because requirements of tests may be not
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Figure 2.2: Data flow from the solution set obtained by an optimization algorithm up
to the final scalar measure value. Problem knowledge can be an optional
input for the measuring and (rather unlikely) to the subset selection part.

fulfilled. For example, distributions of indicator values or run times aggregated over
different problems may be multimodal and heteroscedastic.

The direct multiobjective assessment should be seen as the “holy grail” of al-
gorithm comparison, as it provides both views at once. However, it requires more
sophisticated analysis software, higher skilled experimenters and audience, more
memory to store the data, and is less convenient for advertising algorithms with
simple messages. So, the multiobjective assessment is still not in use to date. In-
stead, we choose the fixed-budget scenario throughout this work, for the reasons
stated above.

Regarding multimodal optimization, performance assessment in real-world sce-
narios is difficult, because necessary information on the number and position of
the problems’ local optima is of course lacking under the black-box model. When
benchmarking on artificially constructed test instances, this information is naturally
available. Nevertheless, meaningful performance measurement in benchmarking is
still challenging. Here, the difficulty lies in assessing algorithms in a way that is
similar to how they will be used in practice. As a general guideline, those outcomes
which leave the least effort to the human decision maker should be evaluated best.
Or, stated by Eiben and Jelasity [38] in the context of evolutionary computation,
“the choice of how we evaluate and compare EAs should be a consequence of what
we want the EAs to do”.

To clarify the situation, regard the sketch of a performance assessment workflow
in Figure 2.2, as it was introduced in [117]. This figure emphasizes that the mea-
surement must be carried out on an approximation set, which is a subset of the
“raw” set of all solutions generated by the optimization algorithm. The correspond-
ing subset selection may be viewed as a part of the assessment or the optimization
algorithm (line 8 in Algorithm 1), but the important characteristic is that it must
be automated. If this step is missing (i. e., the approximation set size is effectively
unlimited), the optimization algorithm is released from any requirement to identify
the actual solutions that approximate the optima well. But as we assumed budgets
of several thousand objective function evaluations, the solution set is much too large
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Figure 2.3: Hypothetical results of optimization algorithms that require different
ways of performance assessment. Lime green dots mean local optima,
magenta dots the solution/approximation set.

for human inspection. In Section 2.1.3 we already mentioned that a similar problem
exists in information retrieval, where conflicting measures as precision and recall
have to be balanced.

Figure 2.3 shows three imaginable results of MMO algorithms. (Such outcomes
are entirely possible in practice, as was demonstrated in [158].) Figure 2.3a is the
most difficult scenario, where a large number of candidates without any noticeable
structure is provided. In this case, it is very difficult to identify the interesting so-
lutions by post-processing. Thus, a custom-built subset selection method for MMO
is our only hope for a sensible assessment (see, e. g., [157, 117, 114]). In case of
Figure 2.3b, the structure of the data corresponds to the local optima. Here, an or-
dinary clustering approach would be probably sufficient to identify the clusters [143,
pp. 95–116]. Then, extracting a representative of each cluster could be easily done
by applying an appropriate criterion (e. g., objective value). Finally, Figure 2.3c rep-
resents the simplest case, where the subset selection has already been carried out
and the approximation set can be directly passed to any quality indicator and/or
decision maker.

From these observations it follows that if a complete MMO algorithm is to be
evaluated, its aim should be to deliver the optima, and only the optima. (Note that
this requirement is more or less equivalent to asking the algorithms to carry out a
subset selection by themselves.) This behavior can be encouraged by different means.
Firstly, indicators that penalize large approximation set sizes could be used [117].
AHD does not do this, but seems to be useful in scenarios where the approxima-
tion set size is unbounded as well, because it penalizes solutions far away from
optima, as in Figure 2.3a. As sets that are good according to AHD must have a
structure as in Figure 2.3b, this approach should be admissible, because they are
easy to post-process. Another option would be F1 (see Equation 2.10), the widely
used performance measure in information retrieval [90, p. 156], or analyzing its two
individual parts in a multiobjective fashion. Otherwise, a hard limit can be imposed
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on the approximation set size. This limit could be, e. g., the actual number of op-
tima ν, but the approach is only reasonable if this number is quite low, e. g., in the
double digits. Then, we have a situation as in Figure 2.3c, and also all other quality
indicators can be applied.

However, these considerations only hold if a complete MMO algorithm is assessed.
For comparing global stages, it is of course admissible to simply measure their ex-
ploratory capability, disregarding the above recommendations.

2.3 Test Problems

Theoretical results on the performance of optimization algorithms often only hold
under certain conditions, which makes them dissatisfying for many practical situa-
tions. For example, Auger and Teytaud [10] show that for continuous optimization
problems, a generally optimal optimization algorithm does exist (there is a “free
lunch”). However, this optimal algorithm is not computationally feasible for reason-
able budgets. So, we may still try to find the best feasible optimization algorithm
for more restricted classes of problems. This is usually done by experimental com-
parisons.

Besides the actual algorithm implementation, appropriate test problems are re-
quired for carrying out this benchmarking. The problems should be quick to evaluate
and pose “realistic” challenges for the optimization algorithms. However, following
this guideline is hindered by the fact that it is usually unknown what “important”
or “typical” real-world problems are, and how close “artificial” problems are related
to them. Obtaining the mathematical definition of a real-world problem is often
impossible because it is a trade secret or contains the invocation of (proprietary)
third-party software. If not for legal reasons, dealing with such software is often a
hassle, because of non-portability or high run time. Therefore real-world problems
themselves do not seem to be a good choice for benchmarking [143, p. 175], maybe
with the exception of the CEC 2011 [31] collection of problems with low run time
requirements.

One workaround would be to try to identify features that characterize real-world
problems properly. If the features generalize sufficiently, it would be possible to pre-
dict the performance of optimization algorithms and thus find artificial test problems
that have similar difficulty for a given algorithm. The main disadvantage of this rel-
atively new approach called exploratory landscape analysis (ELA) [97, 96] is that the
computation of the features requires (potentially expensive) function evaluations and
that the predictor may be inaccurate because of weak interpretability of the features.
Similar criticism holds for test problems that are created by meta-modeling a test
sample of a real-world problem, as we can never be sure that the meta-model cap-
tures the original problem’s features appropriately. Instead, we want to follow an
approach proposed by Eiben and Jelasity [38]. The idea is to use a generator that
can produce test problem instances randomly from a given distribution. This way,
we can directly control important problem features as the number of optima and
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thus the hardness of the instance.
Before turning to the actual problem generator used in our experiments, let us

review the literature for artificial test problems. We make a subdivision of the historic
development of such problems into four phases:

1. The simplest (and probably oldest) test problems are carefully designed formu-
las which offer no options for configuration at all. Advantages of these problems
are the usually known locations of all local optima and often non-separability.
A disadvantage are the fixed and usually low numbers of dimensions (n ≤ 10)
and optima (ν ≤ 10). Törn et al. [141] give an overview of such problems,
which Rönkkönen et al. [122] call the common family.

2. The second stage contains problems that are defined for arbitrary dimensions.
However, due to their simplicity, these problems are often separable and have
their global optimum at 0. The collections CEC 2005 [135] and BBOB [44]
contain many of these problems, although the problem definitions have been
extended by random translations or rotations of the landscapes to eliminate the
two mentioned drawbacks. However, the regular structure of, e. g., Rastrigin’s
or Schwefel’s problem persists. Furthermore, there is a “difficulty gap”, because
these problems are usually either unimodal or contain a number of optima
that is exponential in n. Rönkkönen et al. [122] call such constructions the
cosine family and present an approach to reduce their regularity by nonlinear
transformations of the search space.

3. In the third category we find problems that are randomized or configurable
in some additional properties that are decisive for their difficulty. Apparently
ahead of their time, Fletcher and Powell [45] published already in 1963 a
multimodal and non-separable test problem that was inspired by a real-world
application. By random initialization, different instances with 2n local optima
can be generated. Lunacek et al. [87] define a problem with two funnels, i. e.,
a global structure consisting of two large attraction basins. The depth and
size of the worse funnel can be manipulated to adjust the difficulty of the
problem. Addis and Locatelli [3] present a parameterized, multimodal test
problem that consists of several superposed waveforms. Unfortunately, the
number of decision variables can only be influenced indirectly.

4. The possibly most advanced problems are in the fourth category. Gallagher and
Yuan [47] developed a test problem generator that combines randomly drawn
Gaussians by taking the maximum of them. A great variety of landscapes
can be created by randomizing several parameters as position, height, and
the number of Gaussians. Very similar, but based on polynomials, are the
generators of Preuss and Lasarczyk [115], Rönkkönen et al. [122] (“quadratic
family”), and Gaviano et al. [48]. In contrast to the others, the approach by
Gaviano et al. even guarantees continuous differentiability everywhere, but
also creates one large funnel structure.
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Figure 2.4: One-dimensional MPM2 functions (solid black) with their individual
peaks (dashed). These example functions have ten optima each.

2.3.1 Multiple Peaks Model 2

For our experiments, we need to select some reasonable test problems, preferably
from the fourth category. Those in the CEC 2013 benchmark suite [80] for multi-
modal optimization do not supply enough information to (efficiently) apply all in-
dicators. Only the positions for a few global optima are known and the correspond-
ing attraction basins would have to be estimated by steepest descent algorithms.
Furthermore, many instances are only trivial one-dimensional problems. Eiben and
Jelasity [38] suggest to use parametrized problem generators that can produce test
instances randomly, to exercise fine control over problem difficulty. Such generators
were also explicitly proposed for multimodal optimization by Rönkkönen et al. [122].
Thus, our choice is a hybrid version of the test problem generators by Preuss and
Lasarczyk [115] and Gallagher and Yuan [47], which is very similar to the “quadratic
family” in [122]. It shall be named multiple peaks model 2 (MPM2), in recognition
of the similarity to extensions to the generator in [115] made in [114] under the
name multiple peaks model. The generator produces multimodal problem instances
by combining several randomly distributed peaks. Hence, the problems are irregular
and non-separable, which are also important features of difficult real-world problems.
The problem is defined by the following formulas:

f(x) = 1−max{g(x, p) | p ∈ P} (2.11)

g(x, p) =
hp

1 + md(x,p)sp

rp

(2.12)

md(x, p) =
√

(x− p)⊤Σ−1
p (x− p) (2.13)

The objective function is given in (2.11). It takes the minimum of Npeaks = |P |
unimodal functions (2.12) around peak positions p ∈ P . This has the advantage
that local optima with known positions are created, which is in turn necessary to
calculate some quality indicators (see Section 2.1.3). The principle is illustrated in
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Figure 2.4. Rönkkönen et al. [122] criticize the exponential decay of the Gaussians
used in [47]. Therefore, we are using the polynomial form in (2.12). Each of these
functions is associated with parameters hp, sp, and rp for height, shape, and radius,
respectively. The idea of random shape and radius parameters is taken from [115].
By slightly deviating from locally quadratic behavior (sp = 2), we intend to increase
the difficulty for local search algorithms. Radii rp influence the size of attraction
basins, and thus the probability to place a starting point in the basin. Optima with
small attraction basins will be difficult to find [141, 122]. Additionally, a randomly
drawn covariance matrix Σp belongs to each peak. This matrix is used to create the
optima’s basins as rotated hyperellipsoids, by calculating the Mahalanobis distance
in (2.13). All mentioned parameters are drawn randomly during initialization and
then stored. By convention, we will always set max{hp | p ∈ P} = 1 and X = [0, 1]n.
The former has the advantage that objective function values are always in [0, 1],
which makes it easy to convert from maximization to minimization and to calculate
the basin inaccuracy. The latter provides some protection from numerical problems,
which would appear when calculating small differences of large numbers. The box
constraints shall be strictly obeyed anytime (scenario S1 in [81]). The matrix Σp

is generated in the same way as in [47], by creating a random rotation matrix R

first, according to the method of Rudolph [121]. Then a vector v of random values
vi ∼ U(0.0025, 0.0525) is used to create Σp = R⊤(vI)R.

Note that ν ≤ Npeaks, because peaks can be masked by others. Both original land-
scape generators [115, 47] suffer from this problem. We therefore employ a sophis-
ticated initialization procedure, to obtain problems with a given number of optima.
This heuristic is shown in Algorithm 2 (with a slightly overloaded notation, as p

rather denotes the peak object including parameters than only the position). First,
it generates a problem instance with ν peaks and iteratively reduces the radii until
at least 80% of all peaks are local optima. Then, the still missing optima are created
by adding random peaks by rejection sampling. This means that a randomly drawn
peak is only accepted if it increases the number of optima by one. Unfortunately,
determining the number of optima ν takes O(N2

peaks) time, because we have to test
for each p ∈ P if f(p) = 1− hp. If the condition is fulfilled, an optimum is located
at p. In practice, this makes the use of test problems of this kind infeasible for more
than a few hundred optima, because the complete initialization procedure has cubic
worst-case time complexity.

The algorithm is also capable of generating two different global structures. The
first structure represents a more or less stationary case, where there is no trend
in the depths of local optima and locations of optima are distributed uniformly
over the search space. This structure is called the random topology. The other one
contains one large funnel, that is, optima are clustered around the global one and the
depths are negatively correlated with distance from the global optimum. These two
topologies are chosen, because it is expected that they represent two extremes on
the difficulty scale of multimodal problems – at least for global optimization [143,
p. 11]. This belief is reiterated in [141], where the authors speak of isolated and
embedded global optima, and in [86].
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Algorithm 2 Initialization of MPM2
Input: number of optima ν, number of variables n, topology
Output: test problem instance

1: hmin ← 0.5; hmax ← 0.99
2: smin ← 1.5; smax ← 2.5
3: rmin ← 0.25

√
n; rmax ← 0.5

√
n

4: p1 ← randomUniformPeak(1, U(smin, smax), U(rmin, rmax)) // global optimum
5: P ← {p1}
6: if topology is random then

7: P ← P ∪ {ν − 1 additional random uniform peaks}
8: else if topology is funnel then

9: P ← P ∪ {ν − 1 additional randomly clustered peaks around p1}
10: end if

11: f ← createInstance(P , topology)
12: while |localOptima(f)| < 0.8 · |P | do

13: for all p ∈ P do

14: rp ← 0.95 · rp // reduce radii of all peaks
15: end for

16: end while

17: while |localOptima(f)| < ν do

18: νprev ← |localOptima(f)|
19: while νprev + 1 6= |localOptima(f)| do // do rejection sampling
20: if topology is random then

21: p← randomUniformPeak(U(hmin, hmax), U(smin, smax), U(rmin, rmax))
22: else if topology is funnel then

23: p← clusteredPeak(U(hmin, hmax), U(smin, smax), U(rmin, rmax), p1)
24: end if

25: νprev ← |localOptima(f)|
26: f ← createInstance(P ∪ {p}, topology)
27: end while

28: P ← P ∪ {p}
29: end while

30: return f

Clustered peaks are drawn from a normal distribution N(p1, n
36I). More compli-

cated arrangements with more than one funnel are of course possible in principle.
The function createInstance in Algorithm 2 takes the set of peaks and the desired
topology as inputs. The topology is necessary as argument, because if we want a fun-
nel structure, additionally to the clustering also the height values are redistributed
among the peaks so that they shrink with increasing Euclidean distance from the
global optimum p1. Figure 1.2 shows examples of the resulting problems for n = 2
and ν = 100.

To evaluate the indicators basin ratio and basin inaccuracy, we are using the
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Algorithm 3 getBasinOptimum(x)
Input: solution x

Output: position of local optimum
1: pcurr ← x

2: repeat

3: pprev ← pcurr

4: pcurr ← arg max{g(pcurr, p) | p ∈ P}
5: until pprev = pcurr // if fulfilled, we have arrived at local optimum
6: return pcurr

heuristic displayed in Algorithm 3 to identify the basin a point belongs to. From an
arbitrary position x ∈ X , the algorithm jumps to the peak pcurr which is responsible
for f(x). As pcurr itself may be masked by another peak, the procedure is iterated
until pcurr is an optimum. Thus, the set basin(x∗) for an optimum position x∗ ∈ O,
which is mentioned in Section 2.1.3, is approximated as

basin(x∗) ≈ {x ∈ X | getBasinOptimum(x) = x∗} .

Note that this realization via Algorithm 3 is not completely accurate in the sense
of Definition 2, because we may jump over small basins that a descent algorithm
would have converged to. However, when assessing an approximation set P by BR
or BI, the error introduced by this approach should decrease with increasing amount
of local search that has been spent on P.

The test problem generator MPM2 fulfills the same desirable properties as the
max-set of Gaussians by Gallagher and Yuan [47]. They characterize appropriate test
functions as difficult to solve using simple methods such as hill climbing algorithms
(P1); nonlinear, nonseparable, and nonsymmetric (P2); scalable in terms of problem
dimensionality (P3); scalable in terms of time to evaluate the objective function
(P4); tunable by a small number of user parameters (P5); able to be generated at
random and difficult to reverse engineer (P6); and exhibiting an array of landscape-
like features (P7). Property P4 is of course not really required; it can be imitated
by considering different budgets of function evaluations. A corollary of P6 is that
the global optimum should be distributed uniformly in X , to avoid unintentional
advantages for some solution strategies. This requirement is fulfilled by MPM2, but
according to the BBOB authors, it is not given in the BBOB setup [54].

2.4 Experimentation

Simultaneously to the complexity of used test problems, also the complexity of ex-
perimental analyses has increased over the years, at least in the area of evolutionary
computation. Therefore, we will give a short introduction to design and analysis of
experiments, loosely based on [34, pp. 3–16]. Figure 2.5 shows a categorization of
variables of real-world processes. These variables can be divided into independent
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Figure 2.5: Different categories of process variables.

variables (factors) and dependent variables (responses), which are the inputs and
outputs, respectively, of the system/process under consideration. Responses are in
our case usually performance measures as the ones we defined in Section 2.2. An
experiment simply encompasses the runs of the process at a set of test locations.
A designed experiment is an experiment in which the test locations are planned by
the experimenter, and this set of locations is called the experimental design. Natu-
rally, the planning is only possible for controllable factors. In real-world applications,
some of the factors cannot be controlled or even observed. This applies especially to
most features of optimization problems. However, as we are conducting computer
experiments, all of the factors can be actually controlled by us for benchmarking
purposes. For example, Section 2.3 already discussed the control of problem features
in detail. Generally, also all random aspects of our experiments can be modeled
by using pseudorandom numbers, which are produced by an actually deterministic
generator. By setting a seed for this random number generator (RNG), every exper-
iment is exactly reproducible. Furthermore, by using the same set of seeds for the
stochastic replications of each configuration, we can achieve a variance reduction of
the responses. This technique of common random numbers (CRN) [93] is standard
in all experiments in this work.

It should be noted that although we are conducting computer experiments, our
experiments do not adhere to the assumptions usually made under the term de-
sign and analysis of computer experiments (DACE). The assumptions of the DACE
paradigm encompass a deterministic response [123] or at least a very low measure-
ment error [75]. In this situation replications do not make much sense. Furthermore,
the response is assumed to be multimodal. As a consequence, it is important to
choose an experimental design that samples in the interior of the region of interest
(space-filling) and, if the response is to be modeled by a meta-model, a global model
such as Kriging must be used [123]. Interestingly, the DACE assumptions correspond
quite closely to the situation in global and multimodal optimization. So, methods
from this field will appear repeatedly in our optimization algorithms. The experi-
ments to analyze these algorithms, however, exhibit the properties of conventional
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experiments [101], most importantly a high noise whose distribution is not very de-
pendent on the factors considered in the experiment. Thus, we are using full-factorial
designs (which are not space-filling) and many replications in these experiments.

A general guiding principle, promoted by Taguchi (see, e. g., [34, pp. 223–234] or
[123]), says to incorporate uncontrollable factors into the experimental design, to
obtain results exhibiting robustness later in the real world. This abstract principle
can be instantiated in different ways, depending on the design paradigm governing
the experiment. However, in any case it greatly increases the computational effort
and complicates the experimental analysis. Furthermore, an important distinction
of uncontrollable factors is if they are (easily) observable or not, because this has
implications for their treatment in real-world applications. A problem’s number of
decision variables n, for example, is always known to us and therefore an optimization
algorithm is not required to possess a good performance over all possible values of n.
Instead we can always choose the most appropriate algorithm for the current n before
we begin the optimization (given that we somehow possess this expert knowledge).
This room for choice will also always be reflected in our experimental analyses.
The general approach is to select the best configuration among the control factors,
regarding all possible levels of noise factors, but depending on particular levels of
the observable factors.

It is important to note that we are always benchmarking concrete implementations
and not the mathematical algorithms themselves. Therefore, the origin of the used
software should be ideally communicated along with the experimental setup. The re-
porting on experiments will be done largely according to the scheme of Preuss [113],
which consists of research question, pre-experimental planning, task, setup, results,
observations, and discussion. This clear structure aims to facilitate the distinction
of objective results and subjective comments, and to improve the reproducibility of
results without access to the implementation. Regarding the analysis of the obtained
data, Montgomery emphasizes the importance of visualizations in his practical guide-
lines, especially for presenting the results to others [101, p. 16]. Thus, we will mostly
use trellis graphics to investigate on the interactions of the various factors [15].
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3 Summary Characteristics for the
Assessment of Experimental Designs

The global stages of optimization algorithms usually rely on certain sampling al-
gorithms to produce starting points for the local stage. Interestingly, the design
of computer experiments has quite similar requirements (see Section 2.4). In both
cases, a diverse (initial) sample does not seem to be a bad idea in general, but there
are certainly more things to consider. In this chapter, we will concentrate on the
assessment of the produced point sets. We give a motivation why diversity is needed
and discuss some additional criteria, which are related more closely to sequential
designs and model-based approaches. Based on topics that seem to recur frequently
in the literature and the authors own preferences, the following aspects shall receive
the most attention:

Diversity As already seen in Section 2.1.1, diversity is an umbrella term for several
slightly different concepts. The diversity in the design should be high, because
for deterministic functions, repeated sampling of points or sampling in the im-
mediate vicinity of neighboring points makes not much sense. Additionally, if
no prior information is available on the response, the whole region of interest
should be covered. These two requirements together lead to a desire for a uni-
form distribution of points. In Monte Carlo methods for numerical integration,
where it is generally necessary to give each area equal influence, it is common
to measure the deviation from uniformity, called discrepancy. Low-discrepancy
point sets are also explicitly known as uniform designs in the area of computer
experiments [42]. Space-filling designs are a broader class, because they also
cover the whole region of interest, but not necessarily uniformly [118]. They
are also called exploratory designs [126, p. 125].

Low-dimensional projections Projections of the design into lower dimensions should
not contain redundant points, to always obtain the best possible performance.
The argument is the same as for diversity, because if some variable has no or
only weak influence on f , points which only differ in this variable essentially
collapse into the same point. Again, as we are dealing with deterministic func-
tions, this yields no or little additional information. Stinstra et al. [133] call
a good design in this regard non-collapsing. Törn and Žilinskas [143, p. 33]
call the collapsing of points the shadow effect. In principle, the argumenta-
tion also holds if there is only a lack of interaction between decision variables,
i. e., if f can be written as a sum of lower-dimensional functions [88, 109].
More generally speaking, not only redundant points should be avoided, but
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also the diversity of the low-dimensional projections should be maximal. This
would also improve the estimation of generalized main and interaction effects
in the analysis of experiments [153], which is another application of numerical
integration.

Irregularity Some authors in the literature already describe point sets as regular if
there is a noticeable repulsion between points [63, p. 2]. Others use it in a
stricter sense, meaning that points of a design form a lattice [128, 78]. We
will adopt the latter interpretation, while the former case rather corresponds
to (high) uniformity. Regarding meta-modeling, some irregularity is desired
to avoid aliasing (e. g., Moiré patterns or similar effects). It is also widely
believed that irregularity aids the estimation of model parameters, when a
meta-model is fitted on the design points. Irregularity can, e. g., be measured
by considering the variation of inter-point distances and thus is somewhat
conflicting to diversity.

Run time As stated in the goals defined in Section 1.5, we plan to invest a relatively
large budget of function evaluations and also to investigate high numbers of
decision variables. In this case, of course a large number of points is necessary
in the global stage to obtain a sufficiently dense sample. Therefore, the run
times of the sampling algorithms and the quality indicators should be low, so
that also relatively large designs can be generated and evaluated quickly.

Sequentiality We want to use sampling in the global stage of an iterative opti-
mization algorithm. Therefore, the sampling algorithm should be able to take
existing data of the previous iterations into account, e. g., by identifying less
explored regions. This topic receives traditionally a lot of attention in the area
of design and analysis of computer experiments [123], but so far not so much
in model-free optimization. As sequential designs do not require any new per-
formance measures, the topic is deferred to Chapter 5, where we deal with the
sampling algorithms themselves.

Except for the last item, the different mentioned aspects guide the definition of
corresponding indicators. In the following, possible candidates are discussed (apart
from diversity indicators, which were already dealt with in Section 2.1.1) and for
each respective topic, one representative is chosen. Additionally, cheap linear-time
indicators are investigated. Especially, a workaround is sought to indirectly charac-
terize designs with low covering radius, because its high run time of O((nN)⌊n/2⌋)
prohibits a reasonable application of the indicator in practice.

3.1 Low-dimensional Projections

In recent years, low-dimensional projections of point sets received increased attention
in the quasi-Monte Carlo literature [60, 150]. This is based on the insight that
numerical integration of high-dimensional functions f can only be successful when
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the effective dimension is low, that is, if f can be approximated well by a sum of
low-dimensional functions [88]. Consequently, it is advisable to adapt discrepancy
measures to only or additionally consider low-dimensional subspaces. Such measures
are proposed by Hickernell [60] and Wang and Sloan [150].

In the area of design and analysis of computer experiments, the topic is present,
too. Maybe the issue is even more pressing here due to the smaller budgets [105].
Santner et al. [126, p. 141] propose the average projection design criterion

avq(P) =




1∑
j∈J

(n
j

)
∑

j∈J

(n

j)∑

k=1

[D(Pkj)]q




1/q

to assess the diversity of low-dimensional projections of the design, where Pkj is the
k-th j-dimensional projection of P and D is some diversity indicator. Of course, we
again encounter the question which diversity to measure. Santner et al. propose AID.
Although SPD may be even more favorable, it is out of the question due to its high
run time. avq is expensive to compute anyway, as there are in general exponentially
many low-dimensional projections. Therefore, usually only the two-dimensional pro-
jections are considered. It seems admissible to favor a maximin-type diversity over
discrepancy here, because the edge effects are less severe in low-dimensional spaces.
Thus, we choose av1 with AID as diversity indicator (in accordance to the original
definition), as it does not rule out true uniformity in the original X .

3.2 Irregularity

There seems to be considerable debate about whether an experimental design should
be uniform or not. Dette and Pepelyshev [35] show in several experiments, that
designs with a higher point density in boundary regions achieve a lower integrated
mean squared error (IMSE, estimated by a large Monte Carlo sample) when using
Kriging as meta-model and three to eight input dimensions, although this seems to be
in contradiction with Santner et al. [126, p. 170], who say that IMSE-optimal designs
tend to locate points away from the boundary. Pronzato and Müller [118] define
“estimation designs”, optimizing different criteria depending on whether activity
parameters for the model have to be estimated or not. Generally, it seems advisable
to use more irregular designs when parameters have to be estimated. Santner et
al. [126, p. 160] (who assume here that Sobol’ sequences are more irregular than
optimized LHDs) also venture this guess:

“If a greater variety of inter-point distances provides more information
about the correlation parameters (presumably improving prediction ac-
curacy), then designs based on a Sobol’ sequence (or other types of se-
quences that have been used in numerical integration) may be preferable
to the LHD.”
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Pronzato and Müller [118] note that these irregular designs may also be those of
Dette and Pepelyshev [35]. However, all these considerations are usually aimed at
the mean squared error over the whole region of interest for meta-modeling, which
is not necessarily decisive for global or multimodal optimization.

One possible measure of irregularity could be the sample variance of nearest-
neighbor distances

s2
nn,P =

1
N − 1

N∑

i=1

(
dnn(xi,P)− d̄nn,P

)2
, (3.1)

where d̄nn,P = 1/N
∑N

i=1 dnn(xi,P) is the mean nearest-neighbor distance. A high
variance indicates high irregularity. Also PDNN might be a useful measure, because
for a given d̄nn,P the product is maximal when all nearest-neighbor distances are
equal. However, the relationship between irregularity and variance seems more ob-
vious, so s2

nn,P is chosen.

3.3 Distance to the Boundary

Johnson et al. [66] point out that the main difference between minimax and maximin
designs is that the former tend to avoid the boundaries, while the latter do not.
Therefore, it seems promising to carry out some experimental analysis regarding the
boundary behavior of different sampling methods. It would be even more desirable to
have sampling methods with controllable behavior. As a first step in this direction,
let us define a measure to quantify the proximity of a point set to the boundary.

Proposition 4. The distance between a point x ∈ X and the nearest neighbor on
the boundary B = {x ∈ X | ∃i ∈ {1, . . . , n} : xi = ui ∨ xi = ℓi} is under every Lp

norm
dnn(x,B) = min

1≤i≤n

{
min{xi − ℓi, ui − xi}

}

Proof. Because the boundaries of X are paraxial, there exists a y ∈ B with d(x, y) =
dnn(x,B), which only differs from x in one variable i. As in one-dimensional space
all Lp distances are identical to the absolute difference, the distance must be the
smaller one of xi − ℓi and ui − xi.

Proposition 5. The expected distance between a random uniform point X in [0, 1]n

and the boundary B is

δn := E(dnn(X,B)) =
1

2(1 + n)
.

Proof. The expected distance to the lower boundaries is identical to the first order
statistic X(1) (the minimum) of a random sample X1, . . . , Xn from U(0, 1). X(1)

belongs to a Beta(1, n) distribution [7, pp. 13–14], whose mean is 1/(1 + n). To
account for the upper boundaries, too, it is sufficient to consider Yi ∼ U(0, 0.5)

48



3.3 Distance to the Boundary

10 20 30 40 50
N1/2

0.00

0.05

0.10

0.15

0.20

0.25
d̄
B

Conventional
Sukharev

5 10 15 20
N1/5

0.00

0.05

0.10

0.15

0.20

0.25

d̄
B

Conventional
Sukharev

Figure 3.1: Distance to the boundary for conventional and Sukharev grids in two
(left) and five dimensions (right). The horizontal black line indicates
δn. The gray area represents a 95% confidence interval for δn under the
conditions of Proposition 6.

instead, because 0 ≤ Yi = min{Xi− ℓi, ui−Xi} = min{Xi, 1−Xi} ≤ 0.5. Therefore,
the sought quantity is E(Y(1)) = E(0.5 ·X(1)) = 0.5 · E(X(1)) = 0.5 · 1/(1 + n), due
to linearity of expectation [18, p. 77].

As we can see, the expected distance to the boundary decreases with increasing
dimension. This is just another manifestation of the curse of dimensionality and
shows us that in high dimensions, almost all of the space is in the boundary regions
[63, p. 183]. We can now use the sample mean

d̄B =
1
N

N∑

i=1

dnn(xi,B) (3.2)

to estimate how much emphasis a point set puts on the boundary in comparison
with the uniform distribution. The interesting thing about this criterion is that we
are using a Monte Carlo estimate to assess the quality of our point set. Although it
alone is not sufficient for getting the whole picture, it is attractive because it is a
necessary condition for uniformity and can be computed in linear time. Finally, we
formalize the observation of Johnson et al. [66], regarding the boundary behavior,
in the following conjecture.

Conjecture 2. Point sets with maximal separation distance (maximin designs) pos-
sess d̄B < δn and point sets with minimal covering radius (minimax designs) exhibit
d̄B > δn.

This conjecture may be only a rule of thumb, but it is certainly true for the con-
ventional grid and the Sukharev grid (cf. Figure 1.1), which are the optimal solutions
under the L∞ norm regarding separation distance and covering radius, respectively
[136][79, pp. 202–203]. The distance to the boundary is shown in Figure 3.1, where
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we can also see that d̄B, the Monte Carlo estimate for δn, becomes more precise with
increasing N , but this estimate is often less accurate than what we would expect in
95% of the cases with random uniform points. For other norms, the optimal point
sets can in the general case only be approximated, but Sections 4.4 and 4.5 also
indirectly support the conjecture.

Niederreiter [108, p. 152] shows that every low-discrepancy point set also is a low-
dispersion point set (but not vice versa). This raises hope that combining a diversity
indicator as DISC (or one of the maximin family) with a side constraint d̄B− δn ≥ ε
yields a good criterion to obtain point sets with a small covering radius. If, on the
other hand, an exactly uniform point set is sought, we can compare the deviation
|d̄B − δn| to the expected value for random uniform point sets.

Proposition 6. For a set of random uniform points P in X = [0, 1]n, |P| = N ,
with d̄B computed as in (3.2), the mean absolute deviation around the mean δn is
for large N

E(|d̄B − δn|) ≈
√

2
π
· 0.5 ·

√
n

(n + 1)2(n + 2)N
.

Proof. As shown in the proof of Proposition 5, dnn(X,B) ∼ 0.5 · Beta(1, n) for
X ∼ U(0, 1) and therefore its standard deviation is [67, p. 217]

σ(dnn(X,B)) = 0.5 · √n/
√

(n + 1)2(n + 2) .

As N is typically large, we can now apply the central limit theorem, which says that
the mean of N independent identically distributed random variables with standard
deviation σ is asymptotically normally distributed with standard deviation σ/

√
N

[18, p. 357]. Therefore, d̄B converges in distribution to N(δn, σ2/N). The mean ab-
solute deviation around the mean then approximately follows the half-normal dis-
tribution, whose expected value in this case is

√
2/π · σ/

√
N . (The half-normal

distribution is the special case of the χ distribution with n = 1 [68, p. 417], see the
proof of Proposition 8 for the general formula of the expected value.)

3.4 Distance between Center of Mass and Centroid of the
Hypercube

Also the distance of the sample’s center of mass c̄P = 1/N
∑N

i=1 xi from the centroid
of the hypercube cX = (ℓ + u)/2 may be used as a quality measure. It is another
Monte Carlo estimate that can be computed in linear time and we are able to
analytically derive the expected value for random uniform sets as a reference.

Proposition 7. The expected L1 distance between c̄P and cX = (0.5, . . . , 0.5)⊤ for
a set of random uniform points P in X = [0, 1]n, |P| = N , is for large N

E(‖c̄P − cX ‖1) ≈ n ·
√

2
π
· 1√

12N
.
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3.5 Testing the Linear-time Indicators

Proof. First of all, we note that it suffices to regard the one-dimensional distances,
because

E(‖c̄P − cX ‖1) = E

(
n∑

i=1

|c̄P,i − 0.5|
)

=
n∑

i=1

E(|c̄P,i − 0.5|) .

The standard deviation of a random uniform variable on [0, 1] is 1/
√

12 [67, p. 279].
Again using the central limit theorem, we obtain that ∀i ∈ {1, . . . , n}, c̄P,i converges
in distribution to N(0.5, σ2

c̄P,i
), where σc̄P,i

= 1/
√

12N is both the standard error
of the mean and the standard deviation of the estimate c̄P,i. Finally, |c̄P,i − 0.5|
again approximately follows a half-normal distribution with expected value

√
2/π ·

σc̄P,i
, which we only have to multiply by n to obtain the expected L1 distance in n

dimensions.

In the light of the results of Aggarwal et al. [5], this reference value may be
useful in high dimensions. On the other hand, it seems inappropriate to assess a
c̄P with radially symmetric distribution using the L1 distance, which is not radially
symmetric. Luckily, we can also derive a similar result for the L2 distance:

Proposition 8. The expected value for the L2 distance dc̄c := ‖c̄P − cX ‖2 between
c̄P and cX = (0.5, . . . , 0.5)⊤ for a set of random uniform points P in X = [0, 1]n,
|P| = N , is for large N

E(dc̄c) ≈ ǫN,n :=
√

2 · Γ((n + 1)/2)
Γ(n/2)

· 1√
12N

,

where Γ(·) is the Gamma function.

Proof. As we already know from the proof of Proposition 7, c̄P approximately follows
a multinormal distribution with covariance matrix 1/12N · I, where I is the iden-
tity matrix. The Euclidean norm of a vector of n independent standard normally
distributed variables follows a χ distribution with n degrees of freedom [68, pp. 415–
417]. Thus, its expected value is

√
2Γ((n + 1)/2)/Γ(n/2) [68, p. 421], which only has

to be scaled with the appropriate standard deviation to obtain the result.

For n = 1, Propositions 7 and 8 yield the same formula, as required. Again,
note that there is no point in directly optimizing dc̄c or |d̄B − δn|, because they
are not sufficient conditions for uniformity. However, it should be useful to apply
these measures to given point sets to detect potentially undesired deviations from
uniformity.

3.5 Testing the Linear-time Indicators

To verify the correctness of the proposed measures (and the pseudorandom num-
bers), we carry out an experimental analysis. Random uniform point sets are gener-
ated with two commonly available pseudorandom number generators in the Python
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programming language. One is the built-in RNG of Python 2.7 (“random.random”),
the other is the function “random.rand” of the NumPy library 1.6. Both use inde-
pendent implementations of the Mersenne twister algorithm, with a period length
of 219937 − 1. Their empirical properties are compared to the theoretical values for
the distance to the boundary and the deviation from the centroid of the hypercube
in five and twenty dimensions. Figure 3.2 shows the results of this experiment. In
this figure, the black horizontal lines indicate the respective expected values that
were derived in the previous propositions for random uniform points. The measured
values largely exhibit a good agreement with the predictions, only |d̄B − δn| in Fig-
ure 3.2b slightly deviates downwards. This may be due to the highly skewed Beta
distribution involved, which slows down the convergence to the normal distribution.

3.6 Other Criteria for Experimental Designs

There exist many optimality criteria for designs of experiments, which are mostly
relevant for “classical” response surface methodology. Some of them, i. e., G-, D-
and A-optimality, have been adapted to space-filling designs [66]. To do this, the
original definitions have been changed slightly, which makes the situation a bit con-
fusing because of the overloaded notation. Santner et al. [126, pp. 69–76] advise
against using D-optimal designs, based on a parameter study regarding different
meta-models and configurations. On the other hand, they show that maximum en-
tropy designs actually minimize the D-criterion [126, pp. 164–167]. Note that in
this case entropy regarding the responses is meant. Johnson et al. [66] in turn show
that for vanishingly small correlation between sample locations, maximin designs
tend to be asymptotically D-optimal and minimax designs tend to be G-optimal.
Pronzato and Müller [118] discuss entropy in the search space as a measure for uni-
formity. However, their entropy has to be estimated by taking detours via kernel
density estimation or minimum spanning trees, which makes it rather uninteresting
for our purposes. This is also the reason for not including entropy as an indicator in
Section 2.1.1. Saka et al. [124] use four uniformity measures based on Voronoi tessel-
lations, among them the covering radius. In their experiments, also these measures
are approximated by Monte Carlo methods, which is a huge disadvantage. Bursztyn
and Steinberg [21] propose an “alias sum of squares criterion”, which is reportedly
related to the IMSE of a polynomial regression model. This, and other model-based
criteria, e. g., by Pronzato and Müller [118], seem too specific for a general summary
characteristic.

Lagae and Dutré [78] use the Fourier transform to obtain two functional sum-
mary characteristics, namely the radially averaged power spectrum and anisotropy.
However, these functions are averages over a number of point samples, and thus
merely useful for comparing the distributional properties of different sampling al-
gorithms. Another numerical summary characteristic proposed by these authors is
briefly mentioned in Section 4.4.
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Figure 3.2: Pseudorandom numbers for n = 5 (left) and n = 20 (right). The number
of replications for each subfigure was chosen as ⌊104/n⌋. Solid lines mark
the median and dotted lines 95% confidence intervals.
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4 Sampling

In this chapter, possible algorithms to generate designs are discussed. Unfortunately,
optimizing design criteria is in general expensive and we want to avoid having an-
other expensive optimization problem inside our optimization algorithm. So, we
will focus on rather simple algorithms for generating experimental designs. Sacks et
al. [123] would probably call them “less sophisticated”, but they explicitly acknowl-
edge that there is a need for such algorithms.

4.1 Latin Hypercube Designs

A classical approach of generating space-filling designs for computer experiments
are latin hypercube designs (LHD). An LHD is defined as a set of points D =
{z1, . . . , zN}, where each set {z1,j , . . . , zN,j}, j = 1, . . . , n, is a random permutation
of the numbers 1, . . . , N . Depending on the user’s preferences, one can use different
approaches to normalize P to the region of interest [0, 1]n:

1. McKay et al. [94] combine the approach with random sampling, so that xi,j =
(zi,j−U(0, 1))/N . The perturbation protects us against misleading samples in
case of a periodic signal [46, p. 29]. The approach is also called latin hypercube
sampling (LHS) or N -rooks sampling [130].

2. Alternatively, one can generate a centered LHD by choosing xi,j = (zi,j −
0.5)/N .

3. Finally, we could arrange points in a way that the edges are covered, i. e.,
xi,j = (zi,j − 1)/(N − 1) (see [46, p. 17]).

This construction guarantees that the one-dimensional projections of the design are
perfectly uniform (apart from perturbations), because each dimension is partitioned
into N bins. As already mentioned in Section 3.1, this is a desirable property for
several applications. Saka et al. [124] observe that enforcing the LHD property on
arbitrary point sets by post-processing improves the L∞ star discrepancy of the
point sets. Another argument in favor of LHDs is that generating them from scratch
is cheap, requiring only O(Nn) time. Stein [132] even shows theoretically that in
certain cases, LHDs have superior properties to random uniform samples. Santner
et al. [126, pp. 148–149] summarize the situation:

“LHDs are superior, in many situations, to designs based on simple ran-
dom sampling for estimating mean responses. [. . . ], for large sample sizes
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Figure 4.1: Three examples of centered LHDs. Each row and column contains exactly
one point. The solid cube indicates d̄B and the dashed cube indicates δn.
Cross and circle mark c̄P and cX , respectively. One-dimensional projec-
tions of the points are indicated at the top and right axis.

[. . . ] this is true unless no main effects are present. For small sample sizes,
these results hold if the response is a monotonic function of the inputs,
and the function of the response that is of interest is also monotonic in
the response. [. . . ] In sum, it has not been demonstrated that LHDs are
superior to any designs other than simple random sampling (and they
are only superior to simple random sampling in some cases). It is our
belief that LHDs are popular because (i) LHDs are relatively easy to
generate and (ii) their projections onto one-dimensional subspaces are
evenly spread (or can be tailored to a desired target spread over a given
dimension).”

However, Figure 4.1 shows that the LHD property does neither guarantee a space-
filling design nor prevent large deviations from δn, the expected distance to the
boundary for random uniform points.

The idea of latin hypercube sampling was apparently first mentioned by Audze
and Eglãjs [8] and McKay et al. [94]. The former authors are also widely credited
for introducing the potential energy E2, see (2.2), as additional uniformity criterion
to avoid situations like in Figure 4.1, where the points are aligned along a diagonal
of the hypercube. Another self-evident approach would be to choose an LHD that
maximizes the separation distance. If we consider non-perturbed LHDs, this criterion
yields many optimal designs. To further discriminate among them, one could also
regard the second-smallest, third-smallest, etc. distance, as proposed by Morris and
Mitchell [105]. However, for the optimization they revert to the general potential
energy definition Eq, with different values for q. While [105] predates the result of
Hardin and Saff [57], that q ≥ n must hold for obtaining an asymptotically uniform
distribution, by nine years, it seems that this fact has not even been recognized
at any later point by the LHD community [118]. Figure 4.2 shows the distance to
the boundary for some LHDs taken from the literature, namely maximin LHDs
published by Morris and Mitchell [104] and Audze-Eglãjs LHDs published by Bates
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Figure 4.2: Distance to the boundary for some LHDs in the literature. Left and
right panels show the same data. The left one shows the distance to
the boundary versus the dimension, the right one versus the number of
points. The respective other number is indicated by marker size. The
black lines indicate the expected values for random uniform points.

et al. [12]. The distances have been computed for centered and edge LHDs, although
the original papers seem to describe only edge LHDs. This was done to show that
the decision influences especially the smaller designs. Remarkably, all Audze-Eglãjs
LHDs satisfy d̄B ≤ δn, indicating a strong drift towards the boundary. Also all “edge
variants” of the maximin LHDs satisfy d̄B ≤ δn, in accordance with Conjecture 2.

To optimize all the mentioned criteria, one has to search for adequate instances
within the class of LHDs. For this task, e. g., local searches, simulated annealing,
and several flavors of evolutionary algorithms have been applied [62, 82, 105, 32].
As already one objective function evaluation takes O(N2n) time, this search can be-
come quite costly. However, the argumentation in the literature is that this effort is
negligible because LHDs are mostly used for expensive optimization and N ≥ 1000

57



4 Sampling

is already considered as large. Moreover, once the optimal designs are found, they
could be stored and then be reused any number of times [62, 82]. This perspective
is less valid when we consider model-based optimization. First, designs that explic-
itly consider a certain meta-model can achieve a better performance (and are likely
non-uniform) and second, randomized designs may make our optimization method
generally more robust (see [118] for both arguments). We therefore strive for “throw-
away” designs that are randomized and relatively cheap to generate.

Beachkofski and Grandhi [13] propose an algorithm to generate LHDs with im-
proved n-dimensional distribution. The proposal is a greedy heuristic that begins
with a single random point and sequentially adds the best point of a random sam-
ple until the LHD is complete. We will call it improved latin hypercube sampling
(ILHS) here. In each iteration i, fdup(N − i) candidates are considered. fdup ∈ N

is a duplication factor that is usually chosen smaller than ten. The candidates are
randomly chosen points not violating the LHD property if added to the design. The
selection criterion in this case minimizes |dnn(x,P)−dopt|, the deviation from a sup-
posedly ideal distance dopt = N/ n

√
N to the already chosen points P. Beachkofski

and Grandhi make no mention of asymptotic run times, but the approach clearly
leads to a cubic number of distance computations, as the outer loop runs N − 2
times and in each iteration a distance matrix of size i ·fdup(N − i) is computed. The
approach has another drawback: For the last points added to the design, only very
few alternatives are considered. While it is true that there is only one possibility to
choose the last point, for the second to last point there are 2n alternatives, yet the
point is chosen from only 2fdup candidates. Still, Saka et al. [124] observed much
better results for ILHS compared to conventional LHS.

An implementation of ILHS is, e. g., available for the R programming language
in the package lhs1. The package is employed by various other packages and also
contains a function to generate approximate maximin LHDs based on the same
heuristic approach, which shows the relative popularity the algorithm has gained.

4.1.1 Fast Improved Latin Hypercube Sampling

We will now consider a modification of ILHS that runs in O(N2n), while simultane-
ously improving its distribution properties. The pseudocode for this variant called
fast ILHS is shown in Algorithm 4. This code is identical to ILHS except for lines 9–
13. Instead of specifying a fixed duplication factor, we require a fixed number of
candidates c as input parameter, which is crucial for obtaining quadratic run time.
It also ensures that the same number of candidates is tested in each iteration. The
duplication factor in iteration i is then calculated as fdup = ⌈c/(N − i)⌉.

Figure 4.3 compares ILHS and FILHS regarding run times and the diversity mea-
sures separation distance, average inverse distance, and discrepancy. The task in this
case is to generate sets of 1000 points in five and ten dimensions. ILHS is tested with
fdup = 1, . . . , 5 while FILHS uses c = 2i, i = 0, . . . , 9. (Note that c = 1 corresponds

1http://cran.r-project.org/web/packages/lhs/
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4.1 Latin Hypercube Designs

Algorithm 4 Fast improved latin hypercube sampling
Input: number of points N , number of variables n, number of candidates c
Output: latin hypercube design with improved n-dimensional distribution

1: P ← ∅
2: for all j ∈ {1, . . . , n} do

3: Aj ← {1, . . . , N} // initialize sets of available bins
4: uj ← random element of Aj

5: Aj ← Aj \ {uj} // remove used bin
6: end for

7: P ← P ∪ {(u1, . . . , un)⊤} // add first point to LHD
8: for all i ∈ {1, . . . , N − 2} do

9: fdup ← ⌈c/(N − |P|)⌉ // calculate variable duplication factor
10: for all j ∈ {1, . . . , n} do

11: create multiset A′
j which contains each element of Aj fdup times

12: end for

13: for all k ∈ {1, . . . , c} do

14: for all j ∈ {1, . . . , n} do

15: uj ← random element of A′
j // drawing without replacement

16: A′
j ← A′

j \ {uj} // remove used bin from intermediate set
17: end for

18: uk ← (u1, . . . , un)⊤ // uk is the next candidate
19: calculate dnn(uk,P) // min of all distances between uk and points in P
20: end for

21: u∗ ← best of {u1, . . . , uk} according to selection criterion
22: for all j ∈ {1, . . . , n} do

23: Aj ← Aj \ {u∗
j} // remove used bin

24: end for

25: P ← P ∪ {u∗} // add best point to the LHD
26: end for

27: P ← P ∪ {(v1, . . . , vn)⊤}, where vj is the only possible choice left in Aj

28: return P

to the conventional LHD.) Centered LHDs are created here, to avoid introducing
additional noise into the designs. Both algorithms are implemented in Python 2.7,
using the mathematical library NumPy 1.6. The run times are measured on an Intel
Core i5-4670 with 3.4 GHz. As we can see, FILHS achieves the same or a slightly
better performance in less time, while allowing much finer control through its param-
eter c. Please note that although the difference seems small for the tested N = 1000,
many software packages can benefit from this simple improvement. And of course
the gap between the algorithms grows steadily with increasing sample size.

Unfortunately, in high dimensions the optimization of the FILHS criterion seems
to be counterproductive for discrepancy. After gaining more experience with dis-
crepancy in the following sections, we will finally get back to this observation in
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Figure 4.3: Performance of ILHS and FILHS. Each point denotes the median of
100 repeats, with errorbars depicting 95% confidence intervals for the
median. The top row shows n = 5, the bottom row n = 10. In the right
panels, the horizontal line indicates the expected discrepancy for random
uniform designs.

Section 4.5.1, where it becomes clear that not only FILHS, but also the behavior of
the indicator changes in high dimensions.

4.2 Quasirandom Sequences

The term quasirandom sequence describes an actually deterministic rule for the
generation of uniformly distributed points. These sequences are popular tools for
multidimensional numerical integration. Classical representatives are Halton, Faure,
and Sobol’ sequences. As this research area ist vast and only remotely connected
to optimization, it is only touched briefly in the following. For the foundations of
quasi-Monte Carlo methods, including the definitions of the mentioned quasirandom
sequences, we refer to Niederreiter [108].

Due to the relation between discrepancy and the integration error (2.4), quasiran-
dom sequences are of course designed to have low discrepancy. Formally, we speak
of low discrepancy sequences when their discrepancy has a convergence order of
O(N−1 log(N)n) [108, p. 32]. However, Morokoff and Caflisch [103] estimate that
this asymptotic property only holds after a transition phase, which might not ap-
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pear until N ≈ 6n. These results are in principle confirmed by their experiments,
testing the practical usability of conventional Faure and Sobol’ sequences in up to 16
dimensions with TN as a measure. Jäckel [72, pp. 91–96] carries out more extensive
experiments for T ∗

N with up to 216 points in 100 dimensions. In these tests, Sobol’
sequences with “pattern-breaking” initializations could always provide at least the
same, and in low dimensions a significantly lower L2 star discrepancy than pseudo-
random numbers. As a consequence of such findings, it generally became state-of-
the-art to employ specially optimized quasirandom sequences. The most advanced
initialization numbers for Sobol’ sequences seem to be due to Joe and Kuo [65], who
explicitly optimize the diversity of the two-dimensional projections.

Other quasirandom sequences that experienced a renaissance in recent years are
the generalized (or scrambled) Halton sequences [43]. These arise from inserting cer-
tain permutations into the definition of the original Halton sequence. De Rainville
et al. [32] optimize the two-dimensional projections of their sequence with an evolu-
tionary algorithm. Figure 4.4 compares this optimized generalized Halton sequence2

with the original Halton sequence and Joe and Kuo’s Sobol’ sequence3 regarding dis-
crepancy and the two new summary characteristics d̄B and dc̄c in five and twenty di-
mensions. (The comparison has also been carried out for n = 2, 3, 10, 40.) The good
news is that a reasonable estimation of cX seems to be possible with all sequences
with as few as 212 to 214 points – even in forty dimensions. However, the Sobol’
sequence seems to have a burn-in period where other indicator values considerably
deviate from uniformity. In forty dimensions, an estimated number of 223 points is
necessary to even reach the discrepancy of random uniform points (not shown here).
Results in [23] indicate that this contradiction to Jäckel’s results stems from the
different discrepancy formulation and not from the different Sobol’ sequence.

Morokoff and Caflisch are right with their predicted transition phase around N =
6n, insofar that the discrepancy of the Sobol’ sequence exhibits local optima at
powers of two, starting approximately at this value. In high dimensions, these optima
are also visible for dc̄c. The Halton sequence initially obtains a suspiciously low
discrepancy in high dimensions. This may indicate that TN has the same problems
with reliability as T ∗

N for N < 2n, because simultaneously the dc̄c values of the
Halton sequence are bad. (Recall the discussion of discrepancy in Section 2.1.1,
where we learned that T ∗

N can give highly unintuitive results if N < 2n [91].) Finally,
the results regarding d̄B are surprising. While the absolute values of d̄B exhibit a
nice progression towards δn (not shown), the impression changes when we put the
deviation from δn into relation with the expected deviation for random uniform point
sets. In five dimensions, the results seem noisy, but acceptable. For n = 20, however,
we see a wavy pattern with deep spikes (which is even more pronounced in forty
dimensions), and also the convergence rate seems no better than the random uniform
expectation. Especially the d̄B of the Sobol’ sequence is too large for low N , which

2Available in the ghalton Python library at https://github.com/fmder/ghalton, Version 0.6.
3Generated with the direction numbers “new-joe-kuo-6.21201” and software from http://web.

maths.unsw.edu.au/~fkuo/sobol/, Version from 16 September 2010.
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(b) Relative Euclidean distance between P’s center of mass and the centroid of the hypercube.
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(c) Relative deviation from the expected distance to the boundary.

Figure 4.4: Quasirandom points evaluated with three summary characteristics for
n = 5 (left) and n = 20 (right). The horizontal line indicates the reference
value for each indicator. Dashed and dotted vertical lines mark 2n and
6n, respectively.
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causes the bad performance in Figure 4.4c. In the following, only the generalized
Halton sequence will be considered, because its performance seems to be the most
stable considering all three indicators.

4.3 Subset Selection Methods

Discrete versions of our sampling problem may be obtained by sampling a larger
number of points M in a random uniform fashion and then trying to find an optimal
subset of N points. We will call this the subset selection approach to sampling. Sev-
eral selection problems corresponding to diversity indicators in Section 2.1.1 have
been defined and investigated in the literature. The selection problem corresponding
to SD is known as the maximum diversity problem [77] or the maxisum diversity
problem [49]. MD is represented by the maximin diversity problem [49], also called
N -dispersion problem [41]. The minimax diversity problem or N -center problem [61]
optimizes CR. The corresponding decision problems to all mentioned subset selec-
tion problems have been proved to be NP-hard [77, 41, 49, 51, 61]. Thus, various
heuristics have been developed to obtain approximate solutions. Greedy construc-
tion heuristics exist for each problem with a run time of O(MNn). They generally
do forward selection, beginning with an initial point chosen at random from the set
of candidates. For SD and MD, in each iteration the distances from the remaining
candidates to the last chosen point are calculated. These new distances are used
to calculate updated objective values for the candidates and the one with the best
value is transferred to the selected points. Afterwards, the next iteration begins.

For CR, the algorithm begins in the same way but follows a slightly different
approach. It is assumed that all points initially belong to one cluster, with an ar-
bitrarily chosen representative point. In each iteration, a new cluster is opened for
the point that has maximal distance to its representative. Then, all points which
are not representatives yet become members of the new cluster, if their distance to
the new representative is not larger than to their current one. Gonzalez [51] shows
that this algorithm guarantees to find a solution for the minimax diversity problem
that is not worse than twice the optimal value if the triangle inequality holds and
that no better approximation bound can be found unless P = NP. Hochbaum and
Shmoys [61] independently prove the same result for a more sophisticated heuris-
tic with run time O(M2n log2 M). If this higher effort is spent wisely, the better
practical performance should be expected for this algorithm.

Erkut [41] considers the maximin diversity problem including fixed points, which is
important for generating sequential designs. Regarding the distance calculations, the
fixed points count as selected except that distances among fixed points are irrelevant.
Erkut shows that the problem including fixed points is not more difficult than the
original problem and a heuristic with run time O(M2n log2 M) is proposed with a
construction stage based on backward elimination and an improvement stage based
on exchanges of single points between the selected and remaining points (pseudocode
can be found in [95]). It is straightforward to extend at least the greedy heuristics
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Algorithm 5 Partitioning a set P into N subsets
Input: points P = {x1, . . . , xM}
Output: clustering of P

1: C1 ← P
2: calculate s1 = ∆p1

and store (s1, p1, C1) in an archive
3: i← 2
4: while i < N do

5: find Cj such that sj = ∆pj
= max{sh | h = 1, . . . , i− 1}

6: part Cj into subsets Cj1
, Cj2

:
Cj1
← {x ∈ Cj | xpj

≤ (upj
+ ℓpj

)/2}
Cj2
← {x ∈ Cj | xpj

> (upj
+ ℓpj

)/2}
7: calculate sj1

= ∆pj1
and sj2

= ∆pj2

8: remove (sj , pj , Cj) from, and store (sj1
, pj1

, Cj1
) and (sj2

, pj2
, Cj2

) in archive
9: i← i + 1

10: end while

11: return {C1, . . . , CN}

for the other problems to regard fixed points as well. However, all subset selection
algorithms share the disadvantage of a relatively high memory consumption for
storing the M points, as M should be probably chosen a multiple of N to obtain
reasonable results. This also holds for the algorithm in the next section, although it
has a much better average-case run time than all subset selection heuristics presented
so far.

4.3.1 Part and Select Algorithm

Salomon et al. [125] proposed the part and select algorithm (PSA). This algorithm
creates a partitioning of M > N points in n dimensions into N clusters, beginning
with a single cluster containing all points. PSA then repeatedly divides the cluster
containing the greatest dissimilarity, which is defined as follows: for a cluster Cj =
{x1, . . . , xk} ⊂ R

n, the minimal and maximal values for each dimension i, ℓi =
min{x1,i, . . . , xk,i} and ui = max{x1,i, . . . , xk,i}, have to be calculated. The difference
between these two is ∆i := ui − ℓi, which is used to obtain sj := max{∆i | i =
1, . . . , n}, the largest spread in any dimension.

Intended or not, PSA is closely related to several algorithms for vector quanti-
zation, as the median-cut algorithm by Heckbert [59], the mean-split algorithm by
Wu and Witten [159], and the method of Wan et al. [149]. These approaches are all
divisive clustering algorithms using hyperboxes to describe the clusters. The main
difference between them is the criterion determining where a cluster is split in two.
In contrast to the other algorithms, PSA does not aim to minimize the quantization
error, but simply to obtain a uniform subset of the original data. It was developed
originally for subset selection in multiobjective optimization, but there are no spe-
cial assumptions that prevent a universal application. The outline of the partitioning
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4.3 Subset Selection Methods

part is given in Algorithm 5. It has a worst-case run time of O(MnN) [125], using
an array as a data structure to store the clusters. If we want to employ PSA to
generate an initial design, we can choose |P| = M := cN for some constant c. The
initial point set P would then be obtained by random uniform sampling, taking
O(Mn) time. Thus, the initialization does not increase the worst-case performance.
Moreover, now that we have control over the input distribution, we can also make a
run time analysis for the average case.

Theorem 2. The average-case performance of Algorithm 5 on uniformly distributed
point sets is O(Mn log2 N).

Proof. When a cluster Cj is divided into two parts, both new ones have exactly half
the volume of the old one. Therefore, the expected number of points in each new
cluster is |Cj |/2, thanks to the uniform distribution we chose for the initial point
set. We also have to assume that the cluster chosen as Cj in each iteration is the
one containing the most points, because the number of points is proportional to the
cluster’s volume, again due to the uniform distribution [63, p. 60]. This leads to an
estimated cost of

Mn
N∑

h=1

1
2⌊log2 h⌋

≤Mn

⌊log2 N⌋∑

i=0

2i 1
2i

(4.1)

= Mn

⌊log2 N⌋∑

i=0

1

≤Mn(log2 N + 1) = O(Mn log2 N)

for N times partitioning the largest cluster and calculating the information for the
new ones (steps 6 and 7). The series on the left hand side of inequality (4.1) is
super-harmonic, which can be seen by unrolling the infinite variant

∞∑
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1
2⌊log2 h⌋

= 1 +
1
2

+
1
2︸ ︷︷ ︸

=2 1

2

+
1
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1
4
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1
4
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1
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4
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8︸ ︷︷ ︸

=8 1

8

+ · · · .

Now it is easy to see that (4.1) holds, because the number of terms 1/2i is greater
or equal on the right hand side.

Using an array to store the clusters would cause total costs of O(N2) for N
executions of steps 5 and 8. To obtain the bound O(Mn log2 N) for the whole algo-
rithm, a binary heap has to be used instead. It changes the cost of searching for Cj

(step 5) from O(N) to O(1) and for the replacement operation in step 8 from O(1)
to O(log2 N). Thus, the total cost for archiving is now only O(N log2 N).

Although it does not change the worst case run time, we assume it is generally
advisable in practice to use the binary heap instead of the array data structure,
because the run time of PSA is probably often low enough for it to make a relevant
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(a) N = 24 = 42 = 16
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(c) N = 26 = 82 = 64

Figure 4.5: Points generated by PSA with M = 2N, 20N, 200N (columns left to
right) and center point selection.

difference. Also note that O(Mn log2 N) is identical to the run time of the mean-split
algorithm [149].

After the partitioning, a representative has to be chosen for each cluster. The
authors in [125] propose center point selection, i. e., to choose for each cluster Cj the
point of the discrete set that has the smallest Euclidean distance to the centroid of
the hypercube defined by uj and ℓj . The complexity of this approach is O(Mn).
Figure 4.5 illustrates in two dimensions, that for M → ∞ the point set obtained
by center point selection seems to tend to the Sukharev grid (cf. Figure 1.1f) for
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some choices of N . Similar effects might also be observed in higher dimensions and
therefore, it may be worthwhile to investigate some other approaches for choosing a
representative.

First, we will discuss approaches following the subset selection paradigm, with
identical run time to center point selection. One simple idea would be determining
the target point according to a uniform distribution in the cluster. This has the effect
that a point’s probability of being chosen is proportional to the size of its Voronoi cell.
As points in sparsely populated regions of the cluster have larger Voronoi cells, they
also have a higher probability of being selected. The opposite effect can be achieved
by calculating the center of mass of the points in the cluster and using this as the
target point. Both approaches presumably would create more variation in the target
points, and therefore avoid or slow down convergence to the Sukharev grid. Instead
of changing the target point, we could also change the selection method to not
consider all points in the cluster. One possible approach would be k-ary tournament
selection, which means that a random sample of size k is drawn from the points,
and the best point according to some criterion is selected. For k = |Cj | the selection
remains deterministic and for k = 1 the approach is identical to random selection,
where each point has equal probability of being chosen. Thus, a changeover between
the two extremes can be specified through k. In high dimensions, however, it must
be expected that there are no points in the interior of the cluster, and therefore the
chosen point will probably lie on the boundary of the cluster.

Luckily we do not have to stick to the subset selection scheme if our aim is just
to generate an initial design. Then, we are free to use any of the target points
mentioned above directly as the representative. This reduces the cost for the whole
selection step to O(Nn) if we use the centroid or a random point of the hypercube.
These latter two selection approaches are visualized in Figure 4.6. Apparently, PSA
is not very good at generating low-discrepancy point sets. While the figures in two
and three dimensions look not as bad, the discrepancy performance deteriorates in
higher dimensions (see Figure 4.6a). Additionally, the behavior seems to be quite
dependent on the chosen number of points. At values of N = 2ni, i ∈ N, local extrema
appear in the indicator values. The extrema are more pronounced for larger M and
for the variant with the centroid of each cluster’s hypercube as representative. In
combination with Figure 4.5, this observation suggests that the convergence to the
Sukharev grid also happens in higher dimensions, but not at every n-th power of the
natural numbers. As a (perturbed) Sukharev grid is much easier generated directly,
this setting of N should probably be avoided for PSA.

In summary, PSA may be an option to generate point sets with low covering radius
due to the large distances to the boundary, but otherwise its properties seem to be
rather bad in comparison to other methods. Perhaps it can serve as a construction
heuristic for an initial point set, which is then refined by a more expensive method.
Of the tested variants, the one with M = 10N and random representative seems to
be the most attractive, because of its relatively well-balanced behavior. This variant,
which should be similar to stratified sampling [94], also yields the lowest discrepancy
in low dimensions and the least irregularity in forty dimensions (not shown here).
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Figure 4.6: Behavior of PSA variants. The left column shows n = 5, the right one
n = 20. The number of replications for each subfigure was chosen as
⌊1600/n⌋. Solid lines mark the median and dotted lines 95% confidence
intervals.
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4.4 Point Processes

Illian et al. [63, p. 23] state that “[p]oint processes are stochastic models of irreg-
ular point patterns”. For example, a random uniform design with a fixed number
of points is called a binomial point process in the language of spatial statistics [63,
p. 59]. Point process statistics (a subcategory of spatial statistics) is used in a wide
range of research areas, such as astronomy, forestry, biology, physics, or materials sci-
ence, to analyze observed point patterns [63, pp. 5–17]. Of course, we are especially
interested in simulating samples from certain point processes with favorable prop-
erties for experimental designs. In principle, also any of the previously considered
algorithms could be interpreted as a model for some corresponding point process.
Point processes have also been considered by Matérn [92], who is the inventor of
the Matérn correlation function frequently used in Kriging. This serves as a further
inspiration for us to consider point processes for generating space-filling designs.

Another area that focuses on the simulation of point patterns is computer graph-
ics. There, the research is mainly concerned with fast algorithms and aesthetics.
Uniformly distributed point sets are for example required for procedural texture
generation or for antialiasing by supersampling [111, pp. 280–367]. Thus, usually
only the case n = 2 is considered. Generating the point sets is also known as Pois-
son disk sampling there, because it is imagined that each point denotes the center
of a disk with radius r. Interestingly, the requirements of applications in computer
graphics seem quite similar to our own ones. The disks shall be densely packed but
non-overlapping, which means that r cannot be larger than half the minimal pair-
wise distance in the set. Thus, many considered algorithms there simulate hard-core
processes, which just means that r is fixed in advance and the points are located so
that disks are non-intersecting. Perhaps the simplest algorithm of this kind is ran-
dom sequential adsorption (RSA), which begins with P = ∅ and sequentially adds
random candidates xi if dnn(xi,P) ≥ 2r. The algorithm may be terminated after a
fixed number of iterations or when no further points can be added. Consequentially,
the number of points N is a random variable. We, however, are interested in spec-
ifying N in advance. RSA is also known as dart throwing [78] or simple sequential
inhibition [63, p. 393]. Lagae and Dutré [78] use spectral analysis and the relative
radius to evaluate the point sets. The relative radius ρ = r/rmax relates the absolute
radius r to the maximum possible disk radius of N disks in the plane,

rmax =

√
1

2
√

3N
,

which is achieved by the hexagonal lattice. Lagae and Dutré [78] comment that
“[p]oisson disk distributions should have a relative radius that is large (ρ ≥ 0.65),
but not too large (ρ ≤ 0.85), because regular configurations must be avoided.” So,
also in this area, a compromise between uniformity and irregularity is sought.

One of the methods mentioned in [78] for the generation of poisson disk distribu-
tions is Lloyd’s algorithm [83], which is the most commonly used variant of k-means
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Algorithm 6 MacQueen’s algorithm
Input: initial points P = {x1, . . . , xN}
Output: generators of an approximately centroidal Voronoi tesselation

1: set weights wi = 1, i = 1, . . . , N
2: repeat

3: r ← random uniform point in X
4: xi∗ ← nn(r,P) // determine nearest neighbor of r in P
5: xi∗ ← (wi∗xi∗ + r)/(wi∗ + 1) // update xi∗ ∈ P
6: wi∗ ← wi∗ + 1 // update corresponding weight
7: until termination
8: return P

clustering. As is well-known, it requires a predefined number of clusters, which is
an advantage in our case. Lagae and Dutré mention that the algorithm creates the
highest relative radius among the ones they tested. This is not surprising, as the
algorithm converges to a centroidal Voronoi tesselation (CVT) of the space [37].
The same approach is used by Suzuki and Drezner [137] as a heuristic for the min-
imax distance design problem (or, in their terms, the N -center location problem
in an area). This illustrates that the CVT property is quite interesting, because it
is associated with low covering radii, and therefore also minimax distance designs.
Unfortunately, if Lloyd’s method is applied to continuous spaces, it requires the
explicit construction of Voronoi cells, which is expensive [37]. However, there is a
much simpler algorithm called random k-means by MacQueen [89], which will be
discussed in the next section.

4.4.1 MacQueen’s Algorithm

MacQueen’s algorithm [89] is a very simple, probabilistic algorithm to generate
CVTs. Its pseudocode is shown in Algorithm 6. The points of an initial design P are
regarded as generators of a Voronoi tesselation. P is then improved sequentially, by
updating one point per iteration as the weighted mean of itself and a random mem-
ber of its Voronoi cell. Although this procedure can be proven to converge almost
surely to a centroidal Voronoi tesselation [89], its convergence seems to be quite slow
in practice [71]. As an alternative, Ju et al. [71] propose a parallel algorithm that can
be seen as a generalization of MacQueen’s and Lloyd’s algorithm. It, too, avoids the
explicit construction of Voronoi tesselations by Monte Carlo sampling and is there-
fore also probabilistic. However, none of the algorithms discussed in [89, 83, 71] is
able to incorporate existing points into the calculations in a straightforward manner.
Such an algorithm is presented in the next section.

4.4.2 Maximin Reconstruction

The basic idea in this section is to imitate CVTs by maximizing the separation dis-
tance under additional constraints for the boundary regions. The proposed algorithm
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Algorithm 7 Maximin reconstruction algorithm
Input: initial points P = {x1, . . . , xN}, distance criterion d(·)
Output: uniformly distributed points

1: A← {1, . . . , N} // indices of candidates for replacement
2: i← random element of A // choose arbitrary candidate
3: A← A \ {i} // remove used index
4: repeat

5: y ← random point in X // sample potential substitute
6: if d(y) ≥ d(xi) then // if improvement found
7: xi ← y // replace the point in P
8: A← {1, . . . , N} \ {i} // distances have changed, reset the available indices
9: else if A 6= ∅ then // try to find point that is easier to replace

10: i′ ← random element of A
11: A← A \ {i′}
12: if d(xi′) ≤ d(xi) then // if xi′ is easier to replace
13: i← i′ // use it as new candidate for replacement
14: end if

15: end if

16: until termination
17: return P

is basically a variation of the “reconstruction algorithm” [63, pp. 407-417]. The gen-
eral idea of the reconstruction approach is to imitate a measured point process by
minimizing the deviation of summary characteristics between the measured and the
simulated point process. The measured points may also be a part of the final point
set. In this case, we seek a set of (“simulated”) points that augments the existing
(“measured”) sample in the most plausible way. Note that this task is generally an
optimization problem, which could be tackled with various algorithms. A common
approach, however, is to use a local search that exchanges one point per iteration
and accepts the modification if the objective is improved. The references [123, 118]
contain some more pointers to such exchange algorithms for experimental designs.

The idea is adopted and slightly modified in the following. The whole pseudocode
is outlined in Algorithm 7. As in Section 4.4.1, the number of points is fixed in
advance. The algorithm then iteratively tries to replace one of the current points
with a randomly chosen one. Instead of imitating an existing point set, we want to
simply maximize uniformity. Thus, potentially existing fixed points are not taken as
a reference set, but assumed to belong to the whole set, whose uniformity is to be
maximized. Every improvement of the separation distance is accepted. In case no
improvement is found, there is another extension of the basic algorithm. Instead of
choosing the candidate for replacement randomly, we compare the current candidate
with another one of the remaining, untested points in P. The one with the smaller
nearest-neighbor distance is chosen as the candidate for replacement in the next
iteration. If the sequence of failed attempts is long enough, we will eventually find
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the point in P with the (currently) minimal nearest-neighbor distance, and replace it
in one of the next iterations. Thus, we have a true maximin approach, and therefore
the algorithm shall be called maximin reconstruction (MmR). The attractiveness of
the algorithm lies in its relatively economical use of distance computations without
the need for a sophisticated data structure. Note, however, that we do not intend to
produce the exact optimum, because we want to retain some irregularity of the point
set. The irregularity hopefully helps to improve the diversity of the low-dimensional
projections. If we disregarded these aspects, we would approach the topic of optimal
sphere packing, for which certainly better local optimization algorithms could be
devised [4].

We still have to discuss the concrete definition of the distance criterion d(·) used
in Algorithm 7. In its most basic form, d(x) = dnn(x,Q), where Q = P, or, if
additionally a set of fixed points A has to be considered, Q = P ∪A. Unfortunately,
maximin approaches are known for a drift towards the boundary [66], which means
that the point density at the boundary is higher than in the interior [63, p. 145].
One possible remedy is to use periodic edge-correction (PEC) [63, p. 184]. For this
purpose, an Lp torus distance

dtorus(x, y) =

(
n∑

i=1

min{|xi − yi|, ui − ℓi − |xi − yi|}p
)1/p

is assumed as the internal distance in dnn. In this case, the resulting sample is
expected to be uniform everywhere, because edge effects are eliminated. To imi-
tate CVTs, which have a lower density in boundary regions, we choose d(x) =
min{dnn(x,Q), 2dnn(x,B)· p

√
n}. The term 2dnn(x,B) is motivated by a hypothesized

mirror point on the other side of the closest boundary, corresponding to reflection
edge-correction (REC) [63, p. 184]. However, we slightly modify the conventional
REC because of the following argumentation: In case of a Sukharev grid P (cf. Fig-
ure 1.1f), which has optimal covering radius for p = ∞ [79, pp. 202–203], it holds
that

CR(P) = min{dnn(x,B) | x ∈ P} =
1
2

MD(P) .

The orthogonal mirroring of conventional REC perfectly fits into this case. If we now
keep the grid P fixed and reduce p in a thought experiment, it is obvious that CR
increases while MD stays the same. The increase of CR is caused (among others) by
points in the corners of X , which are the first to be uncovered because their distance
to some point x ∈ P is larger than dnn(x,B) for p < ∞. Thus, our assumption is
that reflection edge correction should rather be based on diagonally mirrored points
than orthogonally mirrored ones, to obtain a less extreme behavior. So, we multiply
2dnn(x,B) by p

√
n = ‖1‖p ≥ 1, to obtain the distance to a diagonally mirrored point,

which is also illustrated in Figure 4.7. In reality also the arrangement of the points
plays a role, so this rule is only a very rough guideline. However, two observations
can be made in this situation:
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Figure 4.7: An assumed diagonal mirroring of points is used to influence the dis-
tances of points close to the boundary. From left to right, the cases
p = 1, 2, ∞ are considered. The distance to the closest boundary is as-
sumed to be d. The gray lines indicate a (hypothetical) corner of the
search space.

• The smaller p is, the larger is the distance between x and the closest corner
in relation to dnn(x,B). (Also recall that in connection with this, the triangle
inequality is violated for p < 1.)

• The larger the distance to the mirrored point, the weaker is the selection
pressure at the boundary.

As a consequence, the influence of this correction factor is the strongest for p = ∞
and decreases together with p. The lower p is, the easier it is for the point set to
approach the boundary.

MmR’s asymptotic run time is identical to that of MacQueen’s algorithm: Suppose
we want to generate N new points, while there are already |A| existing points.
Then the algorithm needs N + |A| distance computations in successful iterations
and at most 2(N + |A|) in unsuccessful iterations. Thus, the overall run time is
O(t(N + |A|)n) if t is the number of iterations. If no existing points are present
(|A| = 0), this is just the run time of MacQueen’s algorithm.

Experimental Analysis of MmR

PEC can not only be applied to MmR, but also MacQueen’s algorithm can be
adapted to a torus straightforwardly. To do this, the nearest neighbor cluster center
to the current random point has to be identified according to torus distance. Then,
the random point is replaced by its “virtual” counterpart that obtained the minimal
torus distance. As this virtual point may be located outside of X , also the new xi∗

may be “pulled out” by the update operation. Mapping xi∗ back into X by a modulo
operation then is all that is necessary to complete the edge-corrected iteration of
MacQueen’s algorithm. Periodic edge correction is also mentioned in other sources,
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e. g. for Lloyd’s algorithm in [78], for CVTs in [124], or for image sampling in [111,
pp. 334–338]. Finally, also FILHS can employ torus distances in its optimization
criterion, without any further changes to the algorithm.

To check if our edge corrections work as intended, we make some experiments
comparing MmR (with p = 2) and MacQueen’s method. Figure 4.8a shows the
development of d̄B in dependency of the number of iterations used for optimizing
the point sets. As expected, pure MmR obtains a very low d̄B while its combination
with PEC leads to an exactly uniform distribution. The coupling of MmR and our
variant of REC yields a higher d̄B than for uniform point sets (as intended), but
the value it converges to is generally not the same as that of MacQueen’s method.
Normally, the d̄B for PEC and REC together should be higher than for each of
them alone. This behavior, however, can only be observed in lower dimensions. The
biggest surprise is that MacQueen’s algorithm with PEC does not create uniform
point sets, but ones with a similar d̄B as MmR with REC.

The irregularity of MacQueen’s method seems to be quite dependent on the di-
mension (see Figure 4.8b). Apart from that, MmR with PEC produces the most
irregular point sets. The differences between the other variants are negligible in low
dimensions. For twenty dimensions and higher, MmR without any edge correction
has the most regular sets.

Discrepancy favors MmR without edge correction in high dimensions (see Fig-
ure 4.8c), which is surprising because it is a pure maximin design and not perfectly
uniform. This is another indication that discrepancy does not work with small N . In
five dimensions and lower, however, MmR with PEC obtains the lowest discrepancy,
as desired.

Figure 4.9 shows the influence of p on the point sets created by MmR (without
edge correction) in two dimensions. If we use a low value of p, the pattern of points
is rotated against the axes of the hypercube (strings of points are perceived to
run along diagonals, Figure 4.9a). Euclidean distance (p = 2), on the other hand,
does not encourage this behavior (Figure 4.9b). In this case, the edges have more
influence and cause a stronger impression of axis-alignment. As a consequence, the
lower-dimensional projections are less diverse, which can also be measured by av1.
This is done in Figure 4.10, where a lower p gives a clear advantage in terms of
the AID value averaged over all two-dimensional projections. Simultaneously, the
irregularity (3.1) – measured with Euclidean distance – behaves anti-proportional
to av1. This may or may not be desired, depending on the application.

Figure 4.9c illustrates the sequential aspect of MmR. The lime green dots represent
150 existing points (with random uniform distribution). MmR is able to uniformly
fill the gaps in the existing pattern. Here, also both edge corrections have been
enabled to show how the distance to the boundary is increased in comparison to
Figure 4.9b. Again, if we chose a lower p value, the pattern of the filled in points
would look less axis-aligned (not shown here).
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Figure 4.8: Selected indicators during optimization of point sets with N = 100. The
left column shows n = 5, the right one n = 20. Number of replications
is ⌊800/n⌋. Solid lines mark the median, dotted lines 95% confidence
intervals.
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Figure 4.9: Examples of MmR with N = 150. The algorithm was run for 104N iter-
ations to create the point sets. Fixed points are marked in lime green.
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Figure 4.10: The influence of p on the average projection criterion and irregularity of
N = 100 points in [0, 1]5 created by MmR with periodic edge correction.

4.5 Comparison of Sampling Methods

Table 4.1 summarizes some properties of the mentioned sampling algorithms. Most
of the considered algorithms are stochastic. In spite of their name, quasirandom
methods were originally designed and used as deterministic methods. Nowadays,
randomizations do exist [88], but they may influence the performance of the se-
quences. The attribute “sequential” means that the algorithm is designed to take
arbitrary existing points into account for obtaining a better result than random uni-
form sampling. Quasirandom sequences do this automatically by continuing “their
own pattern” with low discrepancy, but not arbitrary ones. While in theory the
same could be said about grids, they are terribly inflexible for practical use in high
dimensions (see Figure 3.1). In the strict sense, of the methods we considered, only
most subset selection approaches [41] and MmR have this capability. The property
“online” means that the algorithm does not need to keep all N points in memory
while generating the point set. Instead, online algorithms only need some state in-
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Table 4.1: Properties of sampling algorithms.

Algorithm Run time Stochastic Sequential Online

Random uniform O(Nn) ✔ ✘ ✔

Grid O(Nn) ✘ (✘) ✔

Quasirandom O(Nn) (✘) (✘) ✔

Latin Hypercube
LHS O(Nn) ✔ ✘ ✘

ILHS O(N3n) ✔ ✘ ✘

FILHS O(N2n) ✔ ✘ ✘

Subset selection
Erkut O(M2n log2 M) ✔ ✔ ✘

Gonzalez O(MNn) ✔ ✔ ✘

Hochbaum & Shmoys O(M2n log2 M) ✔ ✔ ✘

PSA O(Mn log2 N) ✔ ✘ ✘

Point Process
MacQueen O(tNn) ✔ ✘ ✘

MmR O(t(N + |A|)n) ✔ ✔ ✘

formation and their generating rule to create the next point. However, the budgets
considered in this work are not large enough for this property to become important.

The classification in Table 4.1 should not be seen as the only alternative. For ex-
ample, a category for clustering was omitted, although several algorithms have roots
in this domain. In the following experiment, some of the more promising sampling
algorithms are compared regarding their performance in multimodal optimization.

4.5.1 Experiment on Sampling Algorithms

Research Question Which sampling algorithm yields the best performance in mul-
timodal optimization?

Pre-experimental Planning The discussions of the sampling algorithms in Chap-
ter 4 contain most of the preliminary investigations. Of these algorithms (and vari-
ants), a subset is selected for inclusion in this experiment. Based on Figure 4.3, the
number of candidates for FILHS is set to c = 100. The number of iterations for MmR
is set to t = 100N . PSA is only granted an initial set size of M = 10N , because these
points all have to be stored in memory simultaneously. A preliminary experiment
was conducted to estimate the influence of PEC on FILHS and maximin LHS. (The
latter were also created by Algorithm 4, but with a maximin criterion in line 21.)
In both cases, the randomized approach of McKay et al. [94] was used to scale the
designs to [0, 1]n, to avoid any bias towards or away from the boundary. Surprisingly,
these (approximate) maximin LHS do not seem to behave as the ones examined in
Figure 4.2: The distance to the boundary is constantly higher than expected, as can
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be seen in Figure 4.11b. The behavior of FILHS seems to be dimension-dependent,
as d̄B is lower than δn in five dimensions and higher in twenty. To avoid unforseen
effects in this regard, using PEC is again an option, because it ensures a good unifor-
mity and eliminates the differences between the two heuristics. However, as we will
also test several other truly uniform designs, only FILHS without edge correction
is included in the main experiment, to keep the effort endurable and to have more
diversity in the setup.

Task We are especially interested in the worst-case performance of sampling al-
gorithms and their ability to yield starting points for potentially following local
searches. Therefore, point sets are evaluated by quality indicators that reward ex-
ploration as in Figure 2.3a. No local search is actually performed and no subset
selection step is included in the evaluation.

Several quality indicators are possible candidates for the assessment. The basin
ratio is directly connected to our argumentation regarding numerical integration in
Section 1.2 and the observation that it should be easy to find an optimum once
we have a starting point in its region of attraction [143, p. 8]. For peak distance
and peak inaccuracy we know theoretical worst-case bounds that depend on the
covering radius (Propositions 1 and 2). Therefore it would be interesting to know
if they give different evaluations than BR. As a fourth indicator, basin inaccuracy
is evaluated. Using AHD would not make sense in this setting, as it does not solely
reward exploration.

Pairwise (two-sided) sign tests are used to identify those algorithms which are
non-dominated in the sense that no other algorithm is significantly better according
to this statistical test. This approach, inspired by Bischl et al. [19], is very conser-
vative as the sign test makes very few assumptions about the distribution of the
data. It does, however, require paired samples, which we support by using common
random numbers [93]. To account for the multiple comparisons, we are also being
very conservative and use Bonferroni correction. Thus, the used significance level is

α
c(c−1)/2 , with α = 0.05 and c = 12 being the number of contestants. A consensus is
achieved by counting how many algorithms are better than another one regarding
this test. As a second performance measure, a ranking of the sampling algorithms
is established for each block of the experiment and an algorithm’s mean rank over
all blocks is calculated (separately for each n). This approach belongs to the class
RT-2 in Conover and Iman’s survey of rank transformations [26].

Neither of these two consensus methods is independent of irrelevant alternatives.
This means that removing some bad algorithms from the competition could alter
the ranking of better ones [98, 97]. However, independence of irrelevant alternatives
is generally impossible to attain without sacrificing other properties [98], so we will
simply accept this deficiency.

Setup The high-level experimental factors are listed in Table 4.2. For MmR, actu-
ally eight variants are tested, resulting from the combination of all four boundary
treatments with p = 1, 2. For the other sampling algorithms, only one representative
is chosen, based on the preliminary investigations. These are the generalized Halton
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Figure 4.11: Indicator values for several LHDs. The left column shows n = 5, the
right one n = 20. The number of replications was ⌊1600/n⌋. Solid lines
mark the median of these replications and dotted lines 95% confidence
intervals.
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Table 4.2: High-level factors for the experiment in Section 4.5.

Factor Type Symbol Levels

Problem topology non-observable {random, funnel}
Number of local optima non-observable ν {5, 20, 100, 500}
Number of variables observable n {2, 3, 5, 10, 20, 40}
Budget observable Nf {101n, 102n}
Algorithm control {SRS, GHalton,

PSA, FILHS,
MmR}

sequence (now with random initialization), PSA with a random representative for
each cluster, FILHS with randomized transformation to X , and finally the simple
random uniform sampling (SRS) as a baseline method. Together with the environ-
mental factors, a full factorial experiment is generated. We assume that the maximal
budget is determined by the application, just like the number of variables, and thus
counts as an “observable” factor. Each configuration is replicated 100 times with
different random numbers.

Results Figure 4.12 shows some example Box plots for peak distance. In these and
also in all following Box plots, the notched areas denote the median value of the
configurations with its 95% confidence interval. For PD it is undoubted that the
indicator should be minimized, which is indicated by an arrow pointing downwards.
If the case is not so clear, the arrow may be omitted in other Box plots. Mean values
are indicated by a magenta asterisk with eight spokes and the blue points denote
outliers.

Figure 4.13 summarizes the algorithms’ behavior regarding the problem-indepen-
dent measures irregularity and distance to the boundary. Finally, Table 4.3 gives
an overview of the performance results obtained for the four multimodal quality
indicators in this experiment.

Observations All indicator values become worse by trend with increasing dimen-
sion. For example, it can be observed that even if Nf ≫ ν, the basin ratio can be
very low in high dimensions (not shown here). The results for peak distance are
the clearest and can be illustrated easily by Box plots (see Figure 4.12). In high
dimensions, PD is strongly correlated with the approximation set’s distance to the
boundary, which can be seen by comparing Figures 4.12 and 4.13. This effect is
independent of the number of optima ν and the number of points Nf . It can also be
observed for PI, but not for BR and BI.

SRS consistently produces the most irregular point sets. Also GHalton and PSA
are always quite irregular, while FILHS cannot be classified definitely. In low di-
mensions, irregularity of the MmR variants is largely determined by p. In high
dimensions, MmR variants without edge correction obtain the lowest irregularity,
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4 Sampling

Figure 4.12: Peak distance values for ν = 100 and Nf = 102n. The mean values are
indicated by ✳.

which indicates that edge effects gain a higher influence there.
On a side note, the complicated Algorithm 2 for creating the problem instances

is only necessary in two and three dimensions. In higher dimensions, ν = Npeaks

always holds from the start, and thus it is guaranteed that the optima are uniformly
distributed.

Discussion The number of points Nf did not seem to exercise significant influence
onto any sampling algorithm. Also the number of optima ν and problem topology
seem to be irrelevant in the setting of this experiment, which is why they are omitted
from the presentation. The d̄B values obtained for the sampling algorithms are as
expected and confirm our measurements in previous sections.

The results according to sign tests are largely in good agreement with the mean
ranks (see Table 4.3). On the whole, MmR variants with edge correction seem to
obtain the best performance averaged over all indicators. Especially reflection edge
correction is advantageous. Among the indicators, PD and PI form a similar pair,
and BR and BI form another. For the latter ones (especially BR) the completely
uniform samplings seem to do relatively better. However, the evaluations by basin
ratio produced many ties and thus are the least reliable. For PD and PI, the optimal
d̄B apparently is larger than δn. This would be in agreement with our theoretical
results that “peak” indicators are related to covering radius (Propositions 1 and 2),
as well as with our working hypothesis that “basin” indicators pose a task similar

82



4.5 Comparison of Sampling Methods

1 2 3 4 5
log2 (n)

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 Ir
re

gu
la

rit
y

SRS
GHalton
PSA
FILHS
MmR, p=1

MmR, p=2

MmR + PEC, p=1

MmR + PEC, p=2

MmR + REC, p=1

MmR + REC, p=2

MmR + PEC + REC, p=1

MmR + PEC + REC, p=2

1 2 3 4 5
log2 (n)

1

0

1

2

3

4

5

lo
g 2

(d̄
B/
δ n

)

SRS
GHalton
PSA
FILHS
MmR, p=1

MmR, p=2

MmR + PEC, p=1

MmR + PEC, p=2

MmR + REC, p=1

MmR + REC, p=2

MmR + PEC + REC, p=1

MmR + PEC + REC, p=2

Figure 4.13: Normalized irregularity (left) and the relative distance to the boundary
(right) for all analyzed sampling algorithms. The curves depict mean
values of all configurations with Nf = 102n.

to numerical integration (Section 1.2).
It is not surprising that L1 distances yield no improvement over Euclidean dis-

tances, because we included no problems with weakly dependent variables in our
experimental setup. To put it positively, one also does not loose much by using L1

distances. Furthermore, we may have biased the experiment in favor of larger dis-
tances to the boundary, because all optima are located in the interior of the region of
interest, and none on the boundary. This assumption of an essentially unconstrained
problem is common in global optimization [143, p. 10] [141], but seems unrealistic if
we suppose that the region of interest was chosen by the experimenter from a larger
region. A test problem with optima also on the boundaries could be produced by
doing just that: create the instance as usual and define the region of interest as a
subset of the original one. Similar approaches in spatial statistics are called plus-
and minus-sampling [63, pp. 183–186]. However, determining the locations of the
emerging optima at the boundaries would be difficult in this approach if we use
rotated basins.

The experiment generally verifies that an improvement of worst-case performance
in multimodal optimization is possible by applying several different stratified sam-
plings as variance reduction methods. As diversity indicators were not recorded in
this experiment due to their individual deficiencies, the complete relationship be-
tween performance on the one hand, and diversity and distance to the boundary on
the other hand, could not be revealed yet. Irregularity was measured as a surrogate
for diversity to some extent, but can of course not capture all of its aspects. However,
in our setting it does seem to correlate with performance in low dimensions, while
in high dimensions the distance to the boundary gains importance.
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In this chapter, we will deal with two-stage methods whose conceptual origin are
simple combinations of global and local search, called singlestart and multistart by
Törn and Žilinskas [143, p. 66]. These approaches start with a space-filling sample
of the region of interest and then conduct local searches either from only the best
solution in the sample, or from all solutions. If we execute these algorithms in a loop,
we have representatives for two-stage methods as defined in Section 1.3. Our focus is
on the determination of the starting point for each local search. The goal is to place
each starting point in a different attraction basin, so that the corresponding local
search explores a new region, instead of revisiting an already known attraction basin.
In a sense, this topic could be regarded as basin discovery, and it is a prerequisite
for basin identification and basin recognition as described by Preuss [114, Sec. 3.2].

Explicit basin identification is for example appropriate when the optimization
begins with a global stage yielding k points, and 1 < s < k local searches are planned
to follow. It usually involves some kind of clustering [143, pp. 95–116], enabling an
economical use of local searches. Each cluster should correspond to one attraction
basin. Törn and Žilinskas [143, p. 66] argue that the two extreme cases singlestart
(s = 1) and multistart (s = k) are inferior for global optimization, because they
disregard the problem structure and thus may spend too few or too many resources
on local searches. However, as clustering is affected by the curse of dimensionality,
this does not have to hold generally [76].

One of the currently successful clustering approaches is due to Preuss [114], who
developed a two-stage method combining a CMA-ES with a sophisticated restart
management. The algorithm, called niching evolutionary algorithm 2 (NEA2), won
the CEC 2013 multimodal optimization competition [80]. In each iteration, it draws
a random uniform sample of the search space, determines a variable number of
clusters by a procedure described in Section 5.2.1, and starts one local search from
each cluster. Due to the batch-sequential fashion of the approach, one might not
only try to identify basins once, but also recognize the previously identified basins
again. Such behavior was investigated by Preuss, but later discarded, because it did
not fulfill the expectations regarding improvement of performance.

The downside of the method is the requirement for additional function evaluations
to assess a space-filling sample prior to every (re-)start of the local stage. This cost of
around 50n per iteration [114, Sec. 6.2] outweighs its benefits in higher dimensions as
the basin identification becomes more difficult. Therefore, NEA2 looses its advantage
over CMA-ES with independent restarts at about n ≥ 20 [114, Sec. 6.4], making it
seem advisable to begin with the local stage and completely avoid the cost for basin
identification in high dimensions.
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In principle, all of the mentioned two-stage approaches can benefit from an im-
proved basin discovery. Using our (sequential) sampling algorithms from Chapter 4,
this improvement comes at no additional cost in terms of function evaluations. How-
ever, it is of course inevitable that several points are sampled in the same basin while
others remain undetected (see the results for the basin ratio in Section 4.5). We can-
not even guarantee to start only one local search per basin, because even an explicit
basin identification can never work perfectly.

Previous improvements for basin discovery have mainly been developed for prob-
lems with funnel structures, where it is beneficial to adapt the sampling to focus on
the vicinity of previously found optima. One attempt was made in connection with
EAs by Cuccu et al. [28], who use the novelty criterion dnn(x,P, k) to determine
promising start locations. The candidates x are only the already visited points, be-
cause the authors deal with unconstrained search spaces. Another approach relies on
using small perturbations of found local optima as starting points. In real-valued op-
timization, this idea appears in basin hopping [148] and its variants [4]. The concept
is also known as iterated local search, especially in combinatorial optimization [85].
Note that although this name sounds quite general, it is normally associated exclu-
sively with the strategy of perturbing local optima. Furthermore, we remark that all
of the algorithms in [28, 148, 4, 85] fit into the two-stage paradigm.

As we will not presuppose funnel structures, our global stage will rely on uniform
sampling, which is also necessary to ensure a theoretical convergence to the global
optimum. It is, however, possible to combine uniform sampling, adaptive sampling,
and local search in one algorithm [1]. The rationale behind this approach is that
of obtaining a “globalized” local search [127], which is something that CMA-ES
provides implicitly, given an appropriate parametrization [86].

Topics as (low-level) parameter control are ignored in this chapter, although espe-
cially for the CMA-ES, sophisticated heuristics exist to adapt algorithm parameters
between restarts [53, 156]. Also Preuss does not use these parameter control capa-
bilities, except for a custom-built heuristic to set the initial mutation strength of his
NEA2 [114, Sec. 6.1.3]. Omitting this topic now is not a severe problem, as the later
incorporation of such heuristics is straightforward and should not interact much with
our global stage, thanks to the modular structure of two-stage methods [85].

5.1 Restarted Local Search

Beginning with local search is especially advisable when it is unknown if the prob-
lem is really multimodal. If it is not, there is only one optimum, which can be found
straightforwardly with one local search. So it would be wasteful to invest func-
tion evaluations into a global exploration first. Likewise, executing local searches
in a strictly sequential order facilitates the optimal utilization of the available in-
formation: While the (potentially) parallel multistart assumes independent local
searches, the sequential execution enables parameter adaptation. For the CMA-ES,
this was originally proposed for the population size by Hansen and Kern [55] and
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later also much more sophisticated approaches appeared [53, 156]. Sequential exe-
cution also enables the seamless incorporation of information obtained by previous
local searches, e. g., already found local optima.

Pošík and Huyer [112] compare independent restart variants of several other deriv-
ative-free optimization algorithms on the BBOB testbed, concluding that restarted
local search (RLS) is highly competitive, but there is no single best local search
algorithm. So, we will not try to identify one in our experiments, either. But it seems
that no attention has ever been paid to an improved determination of starting points
for restarted local search in box-constrained search spaces, which is why this is our
next topic.

5.1.1 Experiment on Restarted Local Search

Research Question Is there an advantage from using a sequential sampling with
optimized diversity as a global strategy in a two-stage algorithm consisting of restar-
ted local searches?

Pre-experimental Planning In Section 4.5 we saw that the samples’ mean distance
to the boundary can have a strong influence on performance. It is quite possible
that this effect can also be observed for the starting points of local searches. At least
Hansen et al. [54] recommend for the BBOB testbed to choose starting points from
the interior of the search space, namely from Y = [−4, 4]n when the search space is
X = [−5, 5]n. This choice is extreme, as vol(Y)/ vol(X ) tends to zero for n → ∞.
Also multilevel single linkage (MLSL), a historic two-stage algorithm employing
clustering, only starts local searches from points x for which dnn(x,B) is larger than
some fixed threshold [119, 120]. According to Schoen [127, p. 165], this also leads to
problems in high dimensions because the feasible space for starting points may tend
to zero. Our edge corrections instead provide an adaptive behavior, depending on
both n and N .

Task The main objective of this experiment is not to compare different local search
algorithms, but to investigate the influence of different sequential sampling algo-
rithms in the restart mechanism. Nonetheless, several local methods are tested,
because they can have a strong influence on performance. The assessment is done
by only considering the final outcomes of the local searches. This way, we avoid the
overhead of selecting a subset from all points. The sets are evaluated with PR, F1P,
and AHD. The name F1P shall indicate that we are using (2.6) in the formulas for
precision and recall, which are then aggregated as in (2.10) for the F1 measure. The
parameter of PR and F1P, determining if an optimum has been approximated, is
set to the moderate value of r = 10−3.

The selection of indicators is guided by two contradictory considerations: On the
one hand, we should employ indicators penalizing larger approximation sets, follow-
ing the argumentation in Section 2.2. On the other hand, larger approximation sets
are achievements of the global sampling algorithms, and thus should be rewarded.
Moreover, the approximation sets are all quite small anyway, because their size is
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Table 5.1: High-level factors for the experiment in Section 5.1.

Factor Type Symbol Levels

Problem topology non-observable {random, funnel}
Number of local optima non-observable ν {5, 20, 100, 500}
Number of variables observable n {2, 3, 5, 10, 20, 40}
Budget observable Nf {103n, 104n}
Global algorithm control {SRS, MmR}
Archive control A {S, Ô,S ∪ Ô}
Local search control {Nelder-Mead,

L-BFGS-B, CMA-ES}

limited by the number of local searches that can be afforded with the given budget.
So, penalization is not really necessary. Both arguments are represented in this set
of indicators.

The obtained indicator values are aggregated to a consensus ranking with the
same two approaches as in Section 4.5. The Bonferroni correction now uses c = 9,
because we have only this number of competing sampling algorithms left.

Setup Table 5.1 contains the high-level factors for this experiment. The setup is
largely identical to Section 4.5, with the exceptions of larger budgets of function eval-
uations Nf and more factors concerning optimization algorithms. Funnel topologies
are included in the setup mainly to rule out performance deteriorations for the new
algorithms, and not to identify especially well-suited configurations for this special
case. The number of stochastic replications is set to fifty. Again, the eight MmR
variants plus SRS as baseline method are tested. The other sampling algorithms
cannot be used reasonably because they do not provide a sequential sampling.

As it would be too computationally expensive to consider all previously visited
points in the sequential sampling, we test three more economic strategies to fill the
archive A: using the preceding starting points S, the approximation set Ô consisting
of the results of the previous local searches, and the union of both, S ∪ Ô. (We have
to admit that if only S is considered, also quasirandom sequences would be viable
alternatives, especially if many starting points are needed. Compared to MmR they
have the advantage of low run time, but the disadvantages of not having control over
the distance to the boundary and not yielding good results for small sample sizes.
We leave them out of the experiment to reduce the computation time.)

As local searches we employ L-BFGS-B by Byrd et al. [22], the downhill simplex
method by Nelder and Mead [107], and CMA-ES by Hansen and Ostermeier [56].
These three are important representatives of quasi-Newton methods, direct search
methods, and evolutionary algorithms, respectively. For L-BFGS-B and Nelder-
Mead, implementations from the Python library SciPy (version 0.9.0) are employed.
For CMA-ES, version 1.1.02 of the implementation available at https://pypi.

python.org/pypi/cma is used. Note that function evaluations are counted directly
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in the objective function, because at least the number L-BFGS-B reports is smaller
than what is actually used. (Apparently the evaluations needed for approximating
the gradient are not accounted for.) L-BFGS-B and CMA-ES come with their own
constraint handling. For Nelder-Mead we use Baldwinian reflection to repair vio-
lations of the box constraints [154]. “Baldwinian” means that after the constraint
violation is repaired, the objective function value of the repaired individual is as-
signed to the original, infeasible individual. This way, the optimization algorithm
does not have to know about any constraints, which allows this approach to be
added very conveniently to existing implementations. “Reflection” means that each
decision variable x ∈ (−∞,∞) is mapped into its feasible range [ℓ, u] by using the
recursive function

T (x) =





x ℓ ≤ x ≤ u ,

T (u + (u− x)) x > u ,

T (ℓ + (ℓ− x)) x < ℓ .

This repair method has a plus factor of not adding discontinuities to the objective
function.

With very few exceptions we are using the default parameters of the algorithms.
The modified parameters all correspond to stopping criteria. For L-BFGS-B, “pgtol”
is decreased to 10−8 to suppress this criterion. This decision was taken after some
manual experimentation on unimodal MPM2 instances, where higher values more
often led to premature convergence in flat areas of the search space. For CMA-ES,
“tolfun” is increased to 10−6 to induce an earlier stopping as in [114, Sec. 6.3].
The initial mutation strength for CMA-ES has no consistent default value. With
σ0 = 10−2 ·0.5(u−ℓ) it is chosen very small, in accordance with [9]. So, the globalized
search capabilities of CMA-ES are rather underused, to avoid finding optima in large
attraction basins disproportionately often.

Results Several Box plots are used for a first explorative data analysis: Figure 5.1
shows the number of starts depending on the local search algorithm, the dimension,
and the sampling algorithm to determine the starting points. Figure 5.2 divides the
peak ratio performance according to the problem topology and the used archive
points, while Figure 5.3 focuses on the effects of the sampling algorithms on the
peak ratio. Table 5.2 contains the aggregated data of the experiment in the same
fashion as in Section 4.5.

On a side note, the three optimization algorithms CMA-ES, L-BFGS-B, and
Nelder-Mead attain median peak ratios of 0.15, 0.26, and 0.16 on the whole ex-
periment, respectively. The corresponding median precision values are 0.4, 0.14,
and 0.16.

Observations Regarding local search, the experiment confirms previous results
that Nelder-Mead is quite successful in low dimensions, but its performance deteri-
orates quickly with an increasing number of decision variables n [97, 112]. CMA-ES
and L-BFGS-B are more stable in the sense that their required number of function
evaluations until convergence grows slower with n. While L-BFGS-B achieves much
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Figure 5.1: Number of local searches for Nf = 104n, depending on sampling algo-
rithms.
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Figure 5.2: Influence of the used archive points on the peak ratio.

faster convergence, its precision is also constantly worse than that of CMA-ES. Con-
sequently, CMA-ES catches up with increasing dimension and is the best algorithm
for n = 40.

For the smaller budget, Nf = 103n, only very few restarts can be afforded, so
Figure 5.1 only focuses on the larger one. The global sampling algorithm has a slight
influence on the length of local searches, and thus also on the number of searches
with a fixed budget (see Figure 5.1). Interestingly, the influence is not the same for
every local search algorithm and not always positive (especially in low dimensions).
For example, starting close to the boundary seems to be harmful for Nelder-Mead,
which produces many outliers with very few restarts if MmR is used without edge
correction. Also the largest positive effect can be found for Nelder-Mead in ten
dimensions, where an improvement of up to 20% can be achieved, compared to SRS.
Two lone outliers are produced by MmR+PEC with CMA-ES on a two-dimensional
instance with five optima and A = Ô. Here, the number of restarts is very high,
but the results are of inferior quality. The ultimate reason for this behavior could
not be identified, but Figure 5.2 clearly shows that if we use MmR as sampling
algorithm, the archive should definitely contain the starting points S. Especially for
the random topology, it may be advisable to also include the found optima Ô, but
using Ô alone should be disregarded in any case. Thus, the remaining analysis is
restricted to configurations including the starting points.

Figure 5.3 shows that there is a statistically significant benefit in terms of peak
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Figure 5.3: Peak ratio values for different sampling algorithms, using S ∪ Ô or only
S as archive points.

ratio from using MmR as global sampling algorithm. Naturally, the effect diminishes
with increasing dimension. Table 5.2 confirms these observations also for the two
other indicators.

Discussion In total the improvements by using MmR seem to be moderate but
consistent. This may be due to the relatively low number of local searches conducted
even with the larger budget. It is to be expected that the advantage of MmR increases
with the budget and that the same effect can be achieved also in higher dimensions,
given a sufficiently large budget is used. Unfortunately, the curse of dimensionality
suggests that the necessary budget increases exponentially with dimension.

The distance to the boundary does not seem to have much influence in the view
taken in Figure 5.3. However, Table 5.2 does suggest such an influence: While F1P
favors the pure maximin approach, PR and AHD reward the variant with reflection
edge correction. So, apparently both the quality of the distribution and the mean
distance to the boundary play a role. In accordance with this theory, periodic edge
correction always ranges somewhere in the middle of all MmR configurations, but
is steadily better than SRS. Overall, MmR with reflection edge correction and L1

distances seems to be the recommended variant in this experiment. A remaining
question is why the assessment of F1P is so different from the other indicators.

To further improve the performance, the local search methods should be screened
for tunable algorithm parameters, which could then be optimized with established
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Table 5.2: Aggregated results of the restarted local search experiment for Nf =
104n and disregarding configurations with Ô as archive points. Column
“D” denotes the number of pairwise tests where another algorithm was
significantly better, “R” is the algorithm’s mean rank. The best results
are printed in bold.

n Indi- SRS MmR MmR MmR MmR MmR MmR MmR MmR
cator p = 1 p = 2 +PEC +PEC +REC +REC +PEC +PEC

p = 1 p = 2 p = 1 p = 2 +REC +REC
p = 1 p = 2

D R D R D R D R D R D R D R D R D R

2 PR 8 7.2 2 4.9 3 4.9 0 4.7 0 4.7 0 4.6 0 4.7 0 4.6 0 4.6
2 F1P 8 7.3 0 4.1 0 4.1 2 4.7 2 4.7 4 5.0 4 5.2 4 5.1 4 5.1
2 AHD 8 7.1 4 4.9 3 4.9 0 4.7 0 4.8 0 4.6 0 4.7 0 4.6 0 4.6

3 PR 8 7.1 6 5.1 6 5.1 3 4.8 3 4.8 0 4.5 0 4.4 0 4.6 0 4.5
3 F1P 8 7.2 1 4.0 0 3.8 2 4.6 2 4.6 4 5.0 4 5.1 6 5.3 6 5.4
3 AHD 8 7.2 6 5.3 6 5.3 4 4.8 4 4.8 0 4.3 0 4.2 1 4.5 0 4.5

5 PR 8 7.2 6 5.2 6 5.3 4 5.0 4 4.9 0 4.2 0 4.2 2 4.6 2 4.5
5 F1P 8 7.1 1 3.9 0 3.8 2 4.8 2 4.7 2 4.8 5 5.0 6 5.4 6 5.5
5 AHD 8 7.3 6 5.4 6 5.5 4 5.1 4 5.0 0 4.0 0 3.9 2 4.4 2 4.3

10 PR 8 6.7 6 5.4 7 5.6 4 5.1 4 5.0 0 4.1 0 4.2 2 4.4 2 4.5
10 F1P 8 6.6 0 4.7 0 4.8 2 4.9 1 4.8 0 4.5 1 4.7 1 4.9 5 5.1
10 AHD 8 6.8 4 5.0 3 5.1 4 5.1 4 5.1 0 4.3 0 4.3 1 4.6 2 4.7

20 PR 8 6.3 6 5.2 6 5.2 4 4.9 4 5.0 0 4.5 1 4.7 0 4.5 0 4.6
20 F1P 8 6.2 0 4.8 0 4.8 0 4.8 0 4.9 0 4.8 2 5.0 0 4.7 1 4.9
20 AHD 8 6.3 0 4.8 0 4.9 0 4.8 0 4.8 0 4.7 1 5.0 0 4.8 1 5.0

40 PR 8 5.7 0 4.8 0 4.7 0 4.8 0 4.9 1 5.0 1 5.0 1 5.0 1 5.0
40 F1P 8 5.7 0 4.3 0 4.2 2 4.7 2 4.8 4 5.4 4 5.4 4 5.4 4 5.4
40 AHD 8 6.1 4 5.0 0 5.0 0 5.0 0 5.0 0 4.7 0 4.7 0 4.7 0 4.7

tuning software [11]. An even more promising but also more challenging approach
would be to incorporate and further develop parameter control strategies, which
adapt parameters between local searches, as the ones already existing for the CMA-
ES [53]. Besides, a more detailed analysis of the behavior of Nelder-Mead would be
in order, as there seems to be an issue with its initialization: The algorithm uses
a simplex consisting of n + 1 points. In the SciPy implementation, the points xi,
i = 2, . . . , n + 1 are constructed from the starting point x1 by multiplying coordinate
i−1 by 1.05, respectively. So, if the algorithm is started close to the upper boundaries,
the constraint handling will come into operation right at the beginning. Even worse,
if it is started close to the lower boundaries, the initial simplex will be extremely small
and/or degenerated. Altogether, it seems that the difficulty of properly normalizing
the search space and choosing an initial simplex size has been hidden from the user
by employing a questionable heuristic.
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5.2 Clustering Methods

As already explained in the introduction of Chapter 5, there are situations where
clustering methods (CM) outperform restarted local searches by putting more em-
phasis on the global sampling part. An interesting question for us is if clustering
methods can also be improved more than restarted local searches by using a more
sophisticated global sampling strategy. Of course, we will test our usual suspects,
the variants of MmR.

There are mixed results in the literature regarding the combination of optimiza-
tion algorithms and “improved” sampling. (Apparently, only low-discrepancy point
sets and latin hypercube sampling have been considered so far.) Preuss does not
find any significant differences between LHS and SRS for his NEA2 [114, Sec. 4.6.4].
Also Omran et al. [110] do not find any significant difference to SRS by using low-
discrepancy point sets when initializing population-based optimization algorithms
(differential evolution and particle swarm optimization). This, however, is not sur-
prising, as in their case the used population size of fifty is negligible in comparison
to the employed budgets of 105 objective function evaluations. Our budget for the
global stage will be several magnitudes smaller. On the positive side, it was shown
even twice that multilevel single linkage can be improved by using quasirandom
point sets (Halton or Sobol’) in the global stage [6, 76].

There are also arguments for deviating from uniformity. One justification to aban-
don random uniform samples are investigations by Morgan and Gallagher [102], who
show that the curse of dimensionality may be alleviated by using a different sampling,
e. g., random walks. Additionally, it seems promising to incorporate Törn’s [143,
p. 95] old idea of investing a few optimization steps into concentrating the global
point sample around the optima. At the time, this was mandatory to obtain a clus-
tering corresponding to the attraction basins at all, because only “conventional”
clustering methods were available [143, pp. 95–116]. But it also had the advantage
that the local stage was disburdened from some of the work. Nowadays, we are able
to cluster arbitrary point sets, e. g., via MLSL [120], topographical clustering [142],
or nearest-better clustering (NBC) [116], but the benefits of good starting points
may have been partly forgotten. Exceptions are the works of Lourenço et al. [85] in
combinatorial optimization and Addis et al. [4] in real-valued optimization, which
show that run lengths of local searches can be reduced significantly by using starting
points that are already close to local optima. In their cases, the points are obtained
by simply perturbing local optima. As already indicated earlier, the usefulness of
this approach is limited to problems with a single funnel.

A more disruptive generation of starting points, which is useful for problems with
multiple funnels [1], could be achieved by applying variation operators (especially
recombination) of EAs to a population of local optima. Locatelli and Schoen describe
such ideas in a survey paper [84]. This approach of course constitutes a hybridization
of EAs with local search, which is well known in evolutionary computation under the
term memetic algorithm [39, pp. 173–188]. The most common variant of memetic
algorithms applies an improvement step to the outcome of the variation operators of
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Figure 5.4: Differing concepts of employing EAs in two-stage and memetic algo-
rithms.

the EA in each generation [39, pp. 181-182]. This tight integration of the two modules
is illustrated in Figure 5.4b. Although this concept could also be interpreted as a two-
stage optimization algorithm, we want to stay closer to Törn’s idea of concentrating
a global sample, by letting an EA run independently for several generations. This
stronger separation of EA and local search, as shown in Figure 5.4a, gives us a good
opportunity to cluster the EA’s outcome and only run the local search for selected
points. It is assumed that this finer control also enables a better performance.

Note that although being an evolutionary algorithm, the CMA-ES is rather not
suited as a global stage, because its strategy is aimed at quickly converging to a local
optimum. Instead we examine two evolutionary algorithms that are better able to
maintain diversity. Both feature a special selection component, which relies on a
notion of the distance from one solution to the nearest other solution offering a
better objective value.

5.2.1 Utilizing Nearest-better Distances

As sophisticated two-stage methods necessarily spend objective function evaluations
in the global stage, the question arises how to use the gained information effectively.
One possible answer of course is to use a meta-model of all the available data [46],
to get a comprehensive model of the problem’s landscape and thus to find out which
attraction basin a solution belongs to. The model would even allow to predict po-
sitions of unvisited local optima without spending additional function evaluations.
However, as meta-modeling is computationally quite expensive, this approach may
be rather suited for smaller budgets of function evaluations than we consider here.
One remedy may be to build the meta-model only on the local optima obtained so
far [84]. This has the advantages that the lower number of training points implies a
lower run time for the model fit and that the resulting model would presumably be
smoother.

An even less demanding approach is probably obtained by more directly trying
to transfer the goals of multimodal optimization, as expressed through the quality
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indicators in Section 2.1.3, to the level of single solutions. For this purpose, it seems
beneficial to seek some biological inspiration, because natural evolution is obviously
able to maintain diversity while creating better adapted species. An important mech-
anism in this regard is niche differentiation. Roughly speaking, this term refers to
the fact that, if two species occupy the same ecological niche, the competition be-
tween them (interspecific competition) forces them to become more different from
each other over time. If this differentiation does not occur (fast enough), then one
species will become extinct. This observation from nature is formulated in the com-
petitive exclusion principle, which in short states that “complete competitors cannot
coexist” [58]. The mechanism has (vaguely) inspired a whole area of research in evo-
lutionary computation [114, Sec. 5.3]. The competition between individuals of the
same species (intraspecific competition) has similar effects. Here, the goal of a social
animal may be to become the alpha animal of the pack, while a solitary animal may
be rather looking for its own territory.

The actual details of all these biological examples are irrelevant to us, because
our optimization problem possesses neither temporal nor spatial (apart from X ,
which we interpret as genotypic space) aspects. The crucial aspect for us is the
competition and the important question is: How can we model the avoidance of
competition by other individuals in our optimization algorithm? Transferring the
concepts from the biological examples above, a possible answer could be to take a
solution’s distance to better solutions as fitness criterion. This criterion would still
promote the approximation of the global optimum, because its distance to the (non-
existent) better solutions can be seen as infinite. However, the second best solution
would not be in the ε-environment of the global optimum, but rather at a separate
locally optimal position.

Definition 7. The distance to the nearest better neighbor of x ∈ X in P ⊂ X is
defined as

dnb(x,P) = min{d(x, y) | y ∈ P ∧ f(y) < f(x)} . (5.1)

A first reference to these distances can be found in [116]. It necessarily holds that
dnb(x,P) ≥ dnn(x,P), because the considered distances to better solutions are a
subset of the distances to all solutions. We define dnb(x∗,P) := ∞, because the
best solutions x∗ regarding the objective value have no nearest better neighbor. The
nearest better neighbor itself shall be denoted nbn(x,P) and is obtained by using
arg min instead of min in (5.1).

The distance dnb can be used to sort a population and thus to select the fittest
individuals. Algorithm 8 describes a multiobjective and a single-objective instance
of such a selection mechanism. Both consider m = 2 objective values per individual,
but process them differently. The former one uses f(x) as first and −dnb(x,P) as
a second objective (both to be minimized). The ranking is established by calculat-
ing non-dominated fronts [33] and then sorting each front by objective value f(x).
The latter selection variant establishes a ranking by lexicographic ordering accord-
ing to the tuples (−dnb(x,P), f(x)). Thus, the multiobjective selection treats the
objectives (although not completely) more on equal terms than the single-objective

96



5.2 Clustering Methods

Algorithm 8 Nearest-better selection
Input: population P = {x1, . . . , xµ+λ}, archive A
Output: µ surviving individuals

1: Q ← P ∪A
2: for all x ∈ P do

3: calculate dnb(x,Q)
4: end for

5: if multiobjective is true then

6: compute non-dominated fronts F1, . . . ,Fk

7: for all Fi ∈ {F1, . . . ,Fk} do

8: sort Fi ascending by objective values f(x)
9: end for

10: P ← concatenate F1, . . . ,Fk

11: else if multiobjective is false then

12: sort P by (−dnb(x,Q), f(x)) in ascending lexicographic order
13: end if

14: remove last λ elements of P // truncation
15: return P

one. Both variants finally apply a truncation selection to the ranked population to
obtain a subset. The worst-case run time of both approaches is O(N2n) for naïve
implementations due to the distance computations.

These selections are very similar to those proposed in [157] under the names
SV4 and SV7, respectively. In the original definition, only one point at a time was
removed, leading to a run time of O(N3n). However, experiments in [155], where
also a detailed overview of other closely related variants can be found, showed that
this precaution is not necessary. As we are only considering these two cases, we
will simply call them multiobjective nearest-better selection (MNBS) and single-
objective nearest-better selection (SNBS). MNBS always guarantees to retain the
best solution in the population and generally puts a high focus on exploitation.
In [158] an EA using this selection always converged to a single local optimum.
SNBS only guarantees to retain the best solution if no better one is present in
the archive [155]. Here, experiments suggest that the population becomes highly
dispersed while simultaneously approximating several optima [158]. If we would set
λ = 1 and used no archive points, then SNBS would even have almost the same
effect as maximizing the minimal distance [155].

The selection components will be employed in a very simple EA shown in Algo-
rithm 9. It generates λ offspring per generation by adding a multivariate normally
distributed random vector to a randomly chosen parent individual. Recombination
is not used, because it has been shown to have adverse influence at maintaining
diversity [116] (unless specialized variants are employed). There is no maximum age
for individuals, so the approach corresponds to what is called (µ + λ) in the liter-
ature [16]. Self-adaptation of the mutation strength σ, as it was used in [158], is

97



5 Optimization

Algorithm 9 Non-recombinant (µ + λ) evolutionary algorithm

Input: initial population P = {x1, . . . , xµ}, archive A
Output: database D of all generated points

1: for all x ∈ P do

2: evaluate f(x)
3: end for

4: D ← P
5: t← 1
6: repeat

7: Ft ← ∅ // filial generation t
8: for all i ∈ {1, . . . , λ} do

9: x← randomChoice(P) // choose parent
10: xi ← x + σN(0, I) // generate mutated offspring
11: evaluate f(xi)
12: Ft ← Ft ∪ {xi}
13: end for

14: D ← D ∪ Ft

15: P ← selection(P ∪ Ft, A) // determine survivors, Alg. 8
16: t← t + 1
17: until termination
18: return D

not considered so far, because a budget of around 50n is probably too small for
this to have an effect anyway. Except for the actual µ and λ values, the resulting
EA is identical to the one employed in [155]. As we do not use the EA purely for
optimization, but as a vehicle to obtain a non-uniform sample of the search space,
all generated points are recorded and finally returned. For the whole two-stage al-
gorithm, the property of theoretical convergence to the global optimum is retained
with this approach, because the initial population of the EA, which was sampled
uniformly, is included in this set. A comprehensive introduction to EAs in general
is given by Beyer and Schwefel [16].

To describe the complete global stage, we finally have to explain nearest-better
clustering, NEA2’s method to identify promising starting points for the local searches.
This clustering algorithm is applied to a space-filling sample of the search space and
relies on the nearest-better distances we already saw in Definition 7. The actual
operation of NBC is described in Algorithm 10. In a first step, it creates a spanning
tree consisting of edges from points to their nearest better neighbors. Afterwards,
the tree is divided into several connected components by removing “long” edges.
The run time is again governed by the quadratic number of distance computations
necessary for building the graph.

For characterizing edges as long, two heuristics exist, which are called rule 1 and
rule 2 in the pseudocode. Rule 1 simply removes all edges whose length exceeds the
mean length of all edges by more than a factor φ. Rule 2 was added later. It is only
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Algorithm 10 Nearest-better clustering
Input: points P = {x1, . . . , xN}
Output: clusters in form of connected components of a graph

1: create a weighted, directed graph G = (V, E) with V = {v1, . . . , vN} and E = ∅
2: for all i ∈ {1, . . . , N} do

3: if nbn(xi,P) exists then

4: xj ← nbn(xi,P)
5: ei ← (vi, vj) // create edge
6: wei

← d(xi, xj) // set weight equal to distance
7: E ← E ∪ {ei} // add edge to graph
8: end if

9: end for // G is now a spanning tree

10: wmax ← φ · 1/|E|∑|E|
i=1 wei

// calculate weight threshold for rule 1
11: E′ ← E
12: for all ei ∈ E′ do // apply rule 2
13: let ei = (vi, vj)
14: if deg−(vi) ≥ 3 then

15: let e−
1 , . . . , e−

k be the incoming edges of vi

16: if wei
/ median{we−

1

, . . . , we−

k
} > b then

17: E ← E \ {ei}
18: end if

19: end if

20: end for

21: for all ei ∈ E′ do // apply rule 1
22: if wei

> wmax then

23: E ← E \ {ei}
24: end if

25: end for

26: return G

applied to edges e whose tail v has an indegree deg−(v) ≥ 3. The rule states to cut
such an edge e if its length we is more than b times longer than the median of the
incoming edges of v. The parameter b has been derived by extensive experimentation
and is actually dependent on the number of points and the dimension [114, Sec. 4.5]:

b(N, n) = (− 4.69 · 10−4n2 + 0.0263n + 3.66n−1 − 0.457) · log10(N)

+ 7.51 · 10−4n2 − 0.0421n− 2.26n−1 + 1.83 .

The aim of this involved rule 2 is to produce a correction yielding more clusters for
large random uniform samples on highly multimodal functions, while not detecting
more than 1.1 clusters on average in the case of unimodal functions [114, Sec. 4.5].
While this rule may have been overfitted to random uniform samples, it seems that
it cannot do too much harm, because its condition is only seldom satisfied. Also note
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that under the assumption of unique objective values for all solutions in P, rule 2
can never come into effect on one-dimensional problems. We will show this using
the kissing number τn, the maximal number of non-overlapping unit hyperspheres
in Euclidean space that can be arranged such that they all touch another central
unit hypersphere [27, p. 21]. In other words, τn is the highest number of points that
can have a common nearest neighbor.

Proposition 9. Let P = {x1, . . . , xN}, N < ∞, and V = {v1, . . . , vN} the cor-
responding nodes in the minimum spanning tree constructed by Algorithm 10. If
∀i, j ∈ {1, . . . , N}, i 6= j : f(xi) 6= f(xj), it holds for every node vi that

deg−(vi) ≤ τn .

Proof. The proof is by contradiction. Assume a point xi has a set of neighbors
Q ⊂ P, with |Q| > τn and ∀z ∈ Q : nbn(z,P) = xi, meaning that deg−(vi) = |Q|.
From the definition of τn it follows that at least two of these points must be closer
to each other than dnn(xi,Q). Let these points be z′ and z′′. But according to
our premise we also have f(z′) 6= f(z′′). Thus one of the two must be the nearest
better neighbor of the other, in contradiction to our assumption that nbn(z′,P) =
nbn(z′′,P) = xi.

In one dimension the kissing number is two, so rule 2 in its current definition
cannot be used for n = 1. Other exactly known values for the kissing number are
τ2 = 6 and τ3 = 12. The number appears to grow exponentially, but the exact value
is known only for a few other dimensions [27, p. 23].

In our use case we are actually not interested in the connected components of
the obtained graph, but only in the sinks, i. e., nodes with an outdegree of zero.
These points are used as starting points of local searches. The whole global stage
is illustrated in Algorithm 11. It produces a sample P by either using an EA or a
conventional sampling algorithm. In both cases, all evaluated points are passed to
NBC, which selects a variable, typically small number of them. For each point, a
local search is started and its final result recorded, before the next iteration starts
again with the global stage.

We will now conduct an experiment with the described two-stage algorithm to
determine its promising configurations.

5.2.2 Experiment on Clustering Methods

Research Question How does the global stage affect a clustering method for mul-
timodal optimization?

Pre-experimental Planning In this experiment the global stage is more sophisti-
cated than previously. It consists at least of a sampling algorithm and a clustering
method and for some configurations, also a population-based optimization algorithm
is part of it. All three components offer the possibility to regard archive points in the
distance calculations. For example, NBC could be applied to a set P ∪ A, where A
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Algorithm 11 Global stage for clustering methods
Input: budget B, archive A, objective function f
Output: variable number of starting points

1: if samplingAlgorithm is an EA then

2: choose µ≪ B // population size µ should be a fraction of B
3: P ← MmR(µ, A, n) // generate initial population
4: P ← EA(P, A, B, f) // execute evolutionary algorithm, Alg. 9
5: else

6: P ← samplingAlgorithm(B,A, n) // spend whole budget on global sampling
7: for all x ∈ P do

8: evaluate f(x) // add objective values for NBC
9: end for

10: end if

11: G← NBC(P) // obtain clustering, Alg. 10
12: return points corresponding to sinks in G, sorted ascending by objective value

are the archive points, and from the resulting graph only the nodes belonging to
newly sampled points P would come into consideration as starting points. This ap-
proach was taken with a different clustering by Ali and Storey [6], as a part of
their “topographical” MLSL algorithm. In their case the archive contained previ-
ously encountered local optima. The results of this variant do look good, but the
influence of the archive alone was not measured. Other investigations did not al-
ways observe benefits from using archives. In [155] the effect was negative, but the
archive was used differently: it was initially empty and simply recorded all solutions
encountered during optimization with Algorithm 9. For NEA2, which is more simi-
lar to our clustering method, no clear conclusions could be drawn [114, Sec. 6.1.3].
Testing all possible combinations of employing archive points or not in the three
algorithm components of the global stage would multiply the computational effort
of our full-factorial experiment by 23, so we make a preliminary choice to either
disregard archive points completely (A = ∅) or to regard them in the sampling and
the optimization algorithm (if used), but not in NBC. The latter decision is taken
under the assumption that it should not be made too difficult to determine starting
points – which might happen by incorporating knowledge about local optima into
NBC. A follow-up experiment may investigate further details if using an archive has
proven to be promising in principle.

It is well known that NBC produces too many clusters if the point set deviates
from uniformity. An example for this effect can be found in Figure 5.5a, where
the uniformity decreases from left to right. The reason for this behavior is that
outliers tend to be selected simply because of their large nearest-neighbor distances.
A possible resolution to this problem is applying a correction factor to the distance
threshold, as done by Preuss [114, Sec. 4.4]. Also MmR was designed with this
problem in mind, taking care of it indirectly by reducing the variance of nearest-
neighbor distances. Thus, problematic outliers in the sample are avoided from the
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(a) Rules 1 and 2
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(b) Rule 3

Figure 5.5: Subset selection with different NBC rules. N = 100 points are generated
with MmR+PEC, SRS, and MNBS-EA (from left to right). Selected
points are marked with green squares.

outset. However, we also have to deal with the very non-uniform samples produced
by SNBS-EA and MNBS-EA. Therefore, we introduce a third rule that may replace
rules 1 and 2. To describe this rule, we first need to define yet another measure
related to nearest-better distances. Let B(x, r) = {y ∈ X | d(x, y) < r} be the
open ball of radius r around x ∈ X . Bnb(x) := B(x, dnb(x,P)) shall be called the
nearest-better ball of x.

Definition 8. The cardinality of the subset of P lying in the nearest-better ball of
x ∈ X is defined as

Nnb(x,P) = |P ∩Bnb(x)|
= |{y ∈ P | d(x, y) < dnb(x,P)}| .

It should be noted that besides the problem with non-uniformity, dnb also suffers
from a drift to the boundary, because boundary points have fewer neighbors and thus
a potentially higher nearest-better distance. Nnb inherently employs edge correction,
because the effects of the higher distance and lower number of neighbors cancel each
other out. We will assume that the point x is also counted in its nearest-better ball,
so 1 ≤ Nnb(x,P) ≤ |P|. In our biological examples in the beginning of Section 5.2.1,
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maximizing Nnb could be viewed as the strategy of the social animal, and maximizing
dnb as the strategy of the solitary one. Nnb is also an alternative for incorporation
into Algorithm 8, but this investigation has to be deferred to some other time.

The distributions of Nnb and dnb values are generally right-skewed, but the effect
seems to be much stronger for the former. A quick visual inspection of experimental
data suggests that the skewness of both distributions increases with the number of
points and decreases with the number of optima. Figure 5.6 shows the effect for
Nnb values of points generated by SRS on problems with random topology. This has
adverse consequences for simple rules based on the mean of the sample (e. g., rule 1).
The distribution of Nnb values is always restricted to the domain {1, . . . , N}. If the
number of optima increases, also the sample mean increases, making us select fewer
points although we would rather want to select more points. Thus, finding a general
rule is complicated considerably. We therefore apply a Box-Cox transformation [20]

x̃ =

{
xλ−1

λ λ 6= 0,

ln x λ = 0

to the data, which optimizes the fit with the normal distribution by maximum
likelihood estimation of the parameter λ. Now we have a less skewed distribution,
shown in Figures 5.6e and 5.6f. However, also the common criterion to identify
outliers based on the interquartile range as a robust measure of scale is unsuitable
for our purposes. This criterion, usually used in Box-Whisker plots, identifies every
point above Q3 + 1.5(Q3 −Q1) as (upper) outlier. Here, Q1 and Q3 denote the first
and third quartile of the data. The resulting threshold is all too often close to the
minimum in our case. To have a lower dependence on the actual distribution, we
choose a threshold

θ = Ñmin + 0.95(Ñmax − Ñmin) ,

where Ñmin = min{Ñnb(x,P) | x ∈ P}, Ñmax = max{Ñnb(x,P) | x ∈ P}, and
Ñnb means the Box-Cox-transformed values. Using this threshold θ, we can now
formulate rule 3, which simply says to select a point x if Ñnb(x,P) > θ. To apply
this selection rule, we even do not have to construct the spanning tree. It suffices to
calculate the mentioned distances and count for each solution how many others are
closer than the nearest better neighbor (for the best solution, this are all points).
However, the rule can be incorporated into NBC. In this case, the conclusion of
rule 3 says to remove the outgoing edge of the node corresponding to a point for
which the antecedent holds. (There can be at most one such edge, due to the way G
is constructed.)

Task The task in this experiment is largely identical to the task in Section 5.1.1.
Again, the three indicators PR, F1P, and AHD are used for performance assessment
and again the focus is on the global stage.

Setup Table 5.3 contains the high-level factors for this experiment. Some changes
are made to the setup in comparison to Section 5.1.1, to reduce the computational
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(a) N = 150, ν = 5
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(b) N = 150, ν = 500
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(c) N = 300, ν = 5
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(d) N = 300, ν = 500
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(e) Box-Cox transformation of Fig. 5.6a.
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(f) Box-Cox transformation of Fig. 5.6b.

Figure 5.6: Histograms of Nnb on MPM2 instances in three dimensions. The dashed
line marks the sample mean, the solid line the selection threshold. The
median (dotted line) is always identical to the minimum of the data in
these examples.
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Table 5.3: High-level factors for the experiment in Section 5.2.

Factor Type Symbol Levels

Problem topology non-observable {random, funnel}
Number of local optima non-observable ν {5, 20, 100, 500}
Number of variables observable n {2, 3, 5, 10, 20, 40}
Budget observable Nf {103n, 104n}
Sampling algorithm control {SRS, MmR,

SNBS-EA, MNBS-EA}
Archive control A {∅,S,S ∪ Ô}
NBC rules control {{1, 2}, {3}}

effort. First of all, only MmR variants with p = 2 are considered, and the op-
tion MmR+PEC+REC is completely disregarded because of its great similarity to
MmR+REC. On the other hand, two new candidates based on EAs are added to the
sampling algorithms, meaning that we have six in total. The local optima approxi-
mations Ô alone are not considered as archive points any more, because of the bad
performance they obtained previously. But now also the empty archive is a sensible
factor level, because we are not only choosing a single starting point but draw a
larger sample. In other words, there is a difference between SRS and MmR now,
even when the archive is empty.

Two choices will be considered for the NBC rules, namely the original setup in-
cluding rules 1 and 2, and the novel rule 3, which has to compete on its own. While
the parameter φ of rule 1 could be subject to further tuning, it is set to φ = 2, a
relatively conservative value [114, Sec. 4.6.4] and the original default value [116]. A
budget of Ng = 50n is reserved for each call to the global stage. This is the same
value as in [114, Sec. 6.2]. If an evolutionary algorithm is used in the global stage,
an initial population of size 10n is drawn with MmR+REC. The EA is then run
with parameters µ = 10n, λ = 2n, and σ = 10−1 ·0.5(u− ℓ), enabling 20 generations
with said budget.

As a local search, only CMA-ES is used. This algorithm is chosen because it
provided the highest reliability (best precision) in the previous experiment. Thus,
it should provide the least confounding of the results. Other experimental settings
remain unchanged (also on the low-level).

Results Figures 5.7 and 5.8 focus on the archive A. The former illustrates the
general effect of the archive points on AHD, depending on the number of variables
and problem topology. The latter figure concentrates on a smaller subset of the data
where the number of decision variables is n = 10 and Nf = 104n. Here the influence
of the individual sampling algorithms and NBC rules is examined. The other figures
and the table are restricted to the data with Nf = 104n and A 6= ∅. Figure 5.9 inves-
tigates the number of iterations conducted by the two-stage algorithm. Figure 5.10
presents the peak ratio data depending on dimension, sampling algorithm, and NBC
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Figure 5.7: Influence of the used archive points on AHD.

rules. Table 5.4 contains the already familiar evaluation based on mean ranks and
pairwise sign tests.

The median peak ratio of all variants of this CMA-ES-based clustering method
is 0.18, while the median precision is 0.43.

Observations Figure 5.7 is used for a small factor screening. It shows that A = ∅
clearly yields a worse performance and no interaction with dimension or topology
can be detected. The impression is similar in Figure 5.8, where A = S∪Ô obtains the
best results. One can also see that the improved sampling alone does not yield much
benefit, but the consideration of archive points is crucial. Thus, the further analysis
is restricted to configurations for which A 6= ∅. Hardly any significant differences can
be found for the low budget Nf = 103n (not shown), so these runs are also excluded
completely from the analysis to avoid a weakening of the effects. Also the differences
between S and S ∪ Ô are relatively small, so we will again not differentiate between
them in the comparison of global stages, to obtain larger sample sizes. Thus, we are
left with 6 · 2 competitors in Table 5.4, leading to a Bonferroni correction of c = 12
in this experiment.

Figure 5.10 and Table 5.4 show that MmR-based sampling algorithms have an
advantage over the other candidates in most cases. However, no clear preference
can be determined for any of the edge corrections. MmR without edge correction
is even the most successful sampling algorithm in high dimensions (see Figure 5.8
and Table 5.4). EA-based sampling algorithms perform better than SRS for n ≤ 5,
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5.2 Clustering Methods

Figure 5.8: Influence of the used archive points on PR, for a subset of the data where
the number of decision variables is n = 10 and Nf = 104n.

but are the worst in higher dimensions. They are almost always better in combina-
tion with rule 3 than with rules 1 and 2. In this case, the improved performance
corresponds to a slightly higher number of iterations (not shown). Otherwise, Fig-
ure 5.10 demonstrates that there is a high interaction between the NBC rules, the
dimension, and the sampling algorithm. For example, SRS performs especially bad
with rule 3 in low dimensions. Here, the bad results are associated with very high
numbers of iterations (visible as outliers in Figure 5.9). AHD and PR are again in
good agreement with each other, while F1P chooses a slightly different behavior.

Figure 5.9 shows that the number of iterations carried out for rule 3 is generally
more dependent on the number of decision variables n than for rules 1 and 2: It
is higher in low dimensions, but undergoes a steeper decline with increasing n.
Contrariwise, rule 3 starts more local searches for n ≥ 5 than rules 1 and 2 (not
shown). Correspondingly, it can be observed on the whole data set that the number
of iterations and the number of local searches are negatively correlated for n ≥ 10
and Nf = 104n with a Pearson coefficient of −0.48.

Another interesting detail is that in terms of peak ratio, the performance of the
clustering methods is slightly better on the random topologies (not shown), although
funnel problems are usually regarded as easier to solve [4, 86]. However, keep in mind
that we did not try to exploit the funnel structures.
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5.2 Clustering Methods

Figure 5.9: Number of completed iterations depending on the NBC rules. The data
is restricted to configurations with Nf = 104n and A 6= ∅.

Discussion The experiment shows that it is beneficial for a clustering method to
record previous starting points and obtained local optima in an archive, and to ex-
ploit this information in subsequent iterations by sequential sampling. However, it is
disappointing that the experiment leaves us with relatively many factor interactions
we cannot explain (see, e. g., Figure 5.10 and Table 5.4), because this indicates there
is an unconsidered factor in the background confounding the results. For example,
it is surprising that edge correction did not turn out to be an important factor for
success.

Based on Figure 5.5a, it was expected that EA-based sampling would not work
well with rules 1 and 2, because many outliers are selected as starting points although
they are not close to local optima. The experiment suggests that the latter statement
is true also in dimensions higher than two, because the number of two-stage iterations
in this case is very low (this detail of EA-based configurations is not shown here).
Note that a low number of iterations means a high number of starting points must be
proposed per iteration, because the total budget is fixed in our setup and the length
of local searches should not vary that much. However, although the assumption holds,
the actual performance of this configuration is not that bad. One might deduce that
the quality of the starting points is not too important for performance, but there is
also another effect in action: A lower number of iterations also means less function
evaluations spent in the global stage, leaving more budget for the local searches.

109



5 Optimization

Figure 5.10: Peak ratio depending on dimension, sampling algorithm, and NBC
rules. The data is restricted to values of Nf = 104n and A 6= ∅.
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5.2 Clustering Methods

The higher number of local searches of course has a positive influence on the size
and thus the quality of the approximation set Ô. It seems very difficult to balance
these opposing demands of less costs of the global stage and better quality starting
points. To simplify comparing the performances obtained with dnb and Nnb values,
it would be advisable to eliminate this interaction by fixing the number of selected
points. However, in reality we want an adaptive rule for nearest-better clustering,
selecting always an appropriate amount of starting points.

Rule 3 yields a slight improvement for the EA-based sampling, but not in general.
Its performance so far is rather mixed. However, the problem seems to be the too
simple method of determining the selection threshold, while Nnb itself still seems to
be a promising measure. One could try to fix the problem by combining rules 1, 2,
and 3, which would result in a consistently low but variable number of selected
points, or one could add further correction factors to rule 3 as was done for the
dnb values [114, Sec. 4.4]. However, these attempts appear rather “kludgy”. Instead,
it seems advisable to design a new heuristic, operating on Nnb data, from scratch.
This development probably should encompass trying to predict the number of optima
of the problem, which is apparently an important factor for determining the right
selection threshold θ (cf. Figure 5.6). If we take this route, we could go even further
and conduct an extensive data-mining on the drawn sample to estimate as many
problem features as possible. (As the calculations of different features can all be
done on the same sample, this does not increase the costs in terms of function
evaluations.) The obtained knowledge could then be employed to choose specially
tailored local search algorithms. A first step into this direction is taken in the context
of exploratory landscape analysis [73], where it is attempted to predict whether a
problem has a funnel topology or not.

Not only the clustering, but the whole global stage could be subject to extensions.
For example, we could include more points in the archive to give the sequential
sampling more information. A relatively conservative approach would be to addi-
tionally include points that have been previously sampled by the global stage. This
would ensure that subsequent samples are as dissimilar as possible from the previous
ones. Furthermore, even all currently available data (also from the local searches)
could be included in the archive, although this seems only feasible for short runs,
as it increases the computational cost considerably. Apart from that, we could give
up the batch-sequential character of the method and update the set of potential
starting points directly after each local search. Immediately exploiting the informa-
tion gained by a local search might help avoiding searches that will lead to already
known optima. Similarly, a running local search could be stopped early if it is likely
to converge to a known optimum.

It is surprising that there is hardly any difference between the sampling algorithms
MNBS-EA and SNBS-EA, as they behave quite differently if used as optimization
algorithms [158]. Perhaps the available budget of Ng = 50n was too small for these
differences to appear. There are many other parameters in our implementation that
were chosen relatively ad hoc. Examples are φ, µ and λ of the EA-based samplings,
or the parameter p of the distance function used in the global stage. The latter could
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be especially influential in high dimensions, where the clustering method naturally
has the most problems. Tuning these parameters should further improve the perfor-
mance and may give additional insights into the mechanisms behind the observed
interactions. Another open question is if MNBS-EA and SNBS-EA would obtain a
relatively better performance in a global optimization task. This assumption sug-
gests itself because the principle they are implementing here has been originally
devised for global optimization [143, p. 95].

Note that the CMA-ES-based clustering method with SRS and NBC rules 1 and 2
investigated in this experiment is almost completely equivalent to NEA2. The only
features of NEA2 omitted here are the correction factor for rule 1 [114, Sec. 4.4],
dimension-dependent φ values [114, Sec. 4.6.4], and the initialization of the mutation
strength of CMA-ES based on the estimated basin size [114, Sec. 6.1.3]. Due to this
great similarity, it should be expectable that also NEA2 can be improved by replacing
SRS by MmR, and using its capability of considering archive points.

Finally, we might draw a conciliatory conclusion, because the overall performance
of the clustering method seems slightly better than that of the Restart-CMA-ES:
the median peak ratio seems to be improved from 0.15 to 0.18 and the median
precision from 0.4 to 0.43. However, in this setup the median values are not directly
comparable, so the next section will investigate the performance differences between
the two approaches in more detail.

5.3 Comparison of the Optimization Algorithms

The use of identical environmental factors in Sections 5.1.1 and 5.2.2 allows us to
compare the two general approaches with each other. But to be as fair as possible, the
control factors appearing in both experiments have to be restricted to the intersection
of their tested levels. This concerns of course the local search algorithm, because
Nelder-Mead and L-BFGS-B were not used in the latter experiment. As sampling
algorithms, only MmR, MmR+PEC, MmR+REC (each with p = 2), and SRS come
into question. Finally, the possibilities for archive points are reduced to S and S ∪ Ô.

Figure 5.11 compares the AHD values obtained by the remaining configurations
of the clustering method (CM) and the restarted local search (RLS) for budgets of
Nf = 103n. Figure 5.12 illustrates the same aspect for Nf = 104n. We can now
finally take a closer look at the environmental factors, although the results are again
not divided into random and funnel topologies, because no significant interaction
could be detected. One can see that the clustering method has an advantage in most
cases. However, the higher the dimension n, the higher the number of optima ν,
and the lower the budget, the better performs restarted local search in comparison:
in forty dimensions it is always superior and in twenty dimensions if the budget is
only 103n. Also when the number of optima is ν = 500, the application of the more
complicated clustering method is only worthwhile if the budget is large. The results
for PR and F1P, which are not shown here visually, are in accordance with the AHD
values and favor CM under the same conditions. A very similar pattern appears if
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we regard the number of local searches (not shown): with the exception of n = 20,
the better performance of CM is always associated with a higher number of local
searches. Finally, we use an analysis of variance (ANOVA) on the original and on
rank-transformed data to compare the influence of the factors “two-stage approach”
and “sampling algorithm”. These ANOVAs indicate that the effect of the two-stage
approach is stronger for Nf = 103n, while the sampling algorithm has more influence
on performance for Nf = 104n. This result could be obtained independently of the
used performance measure (AHD, PR, or F1P) and the used rank transformation
(none, RT-1, or RT-2 [26]).

This whole investigation shows that clustering methods do provide a significant
improvement over restarted local search for many relevant problem configurations.
However, they exhibit the same limitations as NEA2 in terms of problem dimension-
ality [114, Sec. 6.4]. For the lower budget, the area where clustering methods make
sense ends somewhere between ten and twenty dimensions. For the higher budget
the break-even point is probably just over twenty dimensions. Repeating conclusions
from Section 5.2.2, it may be possible to push this point up by using different dis-
tance functions (e. g., Manhattan distance or even lower p values), by using more
points in the archive, and by selecting starting points for local searches more intel-
ligently. However, even when clustering becomes futile, using a sequential sampling
with improved distribution is always advisable, because it is not associated with any
cost in terms of objective function evaluations. Thus we will in the worst case simply
fall back to the performance of random uniform sampling.
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Figure 5.11: Comparison of the two-stage approaches with a budget of Nf = 103n.
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Figure 5.12: Comparison of the two-stage approaches with a budget of Nf = 104n.
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6 Conclusions and Outlook

In this work, two-stage optimization algorithms were investigated on box-constrained,
multimodal problems. A comprehensive survey of performance measures was given
and reasonably large experiments were conducted. In the course thereof we made
the following contributions:

Compilation of quality indicators and some upper bounds The collection of qual-
ity indicators for multimodal optimization as published in [155] was extended
by a larger section for diversity indicators. An axiomatic treatment of these
indicators was refined and possible similarities between them were pointed out.
For three problem-dependent quality indicators, upper bounds based on the
diversity indicator covering radius were found. To the authors best knowledge,
this is the first time that any upper bounds are formulated for indicators in
this application area at all.

More sophisticated test problem generator With the multiple peaks model 2
(MPM2), an advancement of existing test problem generators [47, 115] was
built. The improvements pertain to the initialization of the problem instance,
which now guarantees to exactly produce a certain number of local optima, and
the shape of the peaks, which are now modeled by a function that avoids the
disadvantages of Gallagher’s Gaussians [47] and the function used by Preuss
and Lasarczyk [115]. Concern regarding the latter is that the worst objective
value of the problem cannot be bounded easily, while the former are criticized
for their steep slope [122].

New summary characteristics to assess point sets The mean distance to the
boundary was identified as an important characteristic of point sets. Addi-
tionally, the distance between the center of mass of a point set and the cen-
troid of the region of interest was established as a measure for the point set’s
balance. Both measures are nothing more but conventional Monte Carlo esti-
mates. They can be computed in O(nN), which is a big advantage, because
practically all summary characteristics used to date have run times of at least
O(nN log N). As the expected values of these measures for random uniform
points are useful reference values, they were derived analytically. Although nei-
ther characteristic is sufficient for measuring uniformity, they both can quickly
detect certain deviations from it. This way, they can contribute to a richer de-
scription of experimental designs and point sets in general, for example as part
of statistical tests for complete spatial randomness [63, pp. 83–98]. Especially
the distance to the boundary may be a good characteristic to describe the main
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difference between minimax and maximin designs. A working hypothesis was
that the distance to the boundary and the covering radius of a low-discrepancy
point set are related. This connection would be especially useful, because the
distance to the boundary is an inexpensive feature, while the covering radius
can only be calculated via a costly Delaunay tesselation [118]. Although no for-
mal proof could be given, our experimental results do support this conjecture.
This can be seen, e. g., by regarding Figure 4.12 together with Proposition 1.

Run time improvements for sampling algorithms While surveying existing sam-
pling algorithms, two run time improvements could be found. The first case
refers to improved latin hypercube sampling (ILHS), whose worst-case run time
could be decreased from O(nN3) to O(nN2), while even attaining a slightly
better output quality. The second case is the part and select algorithm (PSA),
which could be shown to possess an average-case run time of O(Mn log2 N)
in our application area, while the worst-case run time is O(MnN). To achieve
the result, a small modification was necessary, namely replacing the array used
as the internal data structure by a binary heap.

Definition of a new sampling algorithm and comparison to existing ones The
maximin reconstruction algorithm (MmR) was designed to maximize the min-
imal distance in a point set under consideration of existing points and edge
effects. These two items represent the novel aspects of the algorithm. In an
experimental comparison with established sampling algorithms, not the uni-
formity but the edge correction proved to be the crucial factor for obtain-
ing the best performance in high dimensions (see Figure 4.12). Based on this
experiment, there seem to be no circumstances where replacing random uni-
form sampling by another truly uniform sampling with improved distribution
(as, e. g., quasirandom point sets, randomized FILHS+PEC, or MmR+PEC)
would yield any performance deterioration. This conjecture is in accordance
with results in different contexts [100].

A more robust pruning rule for NBC We developed a new selection heuristic (“rule
3”) for nearest-better clustering (NBC). This rule is based on the number Nnb

of solutions that are closer than the nearest better neighbor of a solution (see
Definition 8). In contrast to the existing approaches, the new key figure is
insensitive to outliers in the sample, because it only rewards a solution for
being the best in a crowded neighborhood.

Improved two-stage optimization algorithms The new sampling algorithm MmR
was used to improve two-stage optimization algorithms for the task of multi-
modal optimization. Two general classes of two-stage algorithms were tested,
namely restarted local search and clustering methods. In the two correspond-
ing experiments, several problem and algorithm parameters were varied and
several quality indicators were used for assessment, making the results very
general and reliable. In these experiments, the focus was on the global stages of
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the algorithms, which either employed random uniform sampling, MmR, or an
evolutionary algorithm to obtain the point sample. Edge corrected variants of
MmR always yielded significantly better results than simple random uniform
sampling, independent of the local search algorithm, the problem topology,
and the two-stage approach. Apparently, the main improvement stems from
the consideration of an archive of previously used starting points and found
optima when determining the next starting point. The goal is to restart far
away from these points. To the authors best knowledge, it is the first time
in the context of optimization that this adaptive behavior has been tested in
a general form for arbitrary points. Other works investigated existing points
at most in the clustering [120, 6]. On a side note, previous results that the
clustering method is the better algorithm for low-dimensional problems [114,
Sec. 6.4] could be verified, but the experiments also show that the used sam-
pling algorithm often has more influence than the two-stage method.

Despite the progress made in this work, several important research questions do
remain open. First of all, developing better diversity indicators is still an important
topic. For example, various discrepancies fail to give a realistic assessment of uni-
formity in certain cases [126, pp. 146–148][91]. Our own experiments indicate that
the unanchored L2 discrepancy degenerates to a maximin criterion when N < 2n

(see Figure 4.8c). The core deficiency of discrepancy seems to be that it compares
real numbers (the volumes of subsets) with rational numbers (the fraction of points
in a subset). As in high dimensions volumes of subsets can be very small (i. e.,
much smaller than 1/N), the error we make by approximating these volumes by
multiples of 1/N must be inevitably large. The wrap-around discrepancy by Hick-
ernell [60] may be a viable alternative, although it would be important to know the
expected value of this measure for random uniform point sets. Another, radical, so-
lution would be to abandon discrepancy completely and to use a different diversity
indicator instead. That this is possible has already been shown [29]. However, to
reward exact uniformity, some edge correction has to be incorporated also into any
other candidate indicator. We have already done this implicitly by considering the
edge-corrected separation distance in MmR.

In several fields, researchers have to recognize that what they are optimizing is
actually not uniformity. In the worst case this is due to the usage of spread indicators
[30, 86], which do not reflect our intuitive understanding of diversity because they do
not enforce any repulsion between points [131, 144, 95]. In design of computer exper-
iments, approaches maximizing the minimal distance among points are popular [66].
These model repulsion, but produce non-uniform designs because of boundary ef-
fects and the curse of dimensionality. Also the more sophisticated maximum-entropy
designs share the same property [21]. It must be noted that while latin hypercube
designs (LHD) alleviate the effect, they are not the universal remedy either. In par-
ticular maximin LHDs, Audze-Eglãjs LHDs for n > 2, and Morris-Mitchell LHDs
for q < n can produce unforeseen deviations from uniformity. In Figure 4.2, the
former two exhibit a drift towards the boundary. The latter two actually employ an
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Table 6.1: Approximate relations between concepts in design of experiments, spatial
statistics, and quasi-Monte Carlo methods.

d̄B < δn d̄B ≈ δn d̄B > δn

Experimental
designs

maximin [66] uniform [42] minimax [66]

Quasi-Monte
Carlo terms

low discrepancy
[108, p. 14]

low dispersion
[108, p. 148]

Edge correction none periodic
[63, p. 184]

reflection
[63, p. 184]

Optimality type D [66] U [42] G [66]
Measures/bounds integration error

[108, pp. 18–22]
max mean

squared
prediction error

[126, pp. 170–171]
Examples of
sampling methods

conventional grid,
MmR (Sec. 4.4.2)

LHS [94], SRS,
quasirandom
sequences,

MmR+PEC

CVT [37],
PSA [125],

Sukharev grid [136],
MmR+REC

identical optimization criterion [118], with Audze-Eglãjs being a special case of the
other with q = 2. If q < n, the drift to the boundary is even more severe than for a
pure maximin LHD. However, this does not necessarily mean that these designs are
completely unsuitable, as their properties may offer lower mean squared prediction
errors in meta-modeling [35]. Apart from that, periodic edge correction [63, p. 184]
is a straightforward technique to adjust all maximin approaches to true uniformity.
Also LHDs generated by the algorithm of Beachkofski and Grandhi [13] do not seem
to suffer from the drift to the boundary (see Figure 4.11), although more experiments
are necessary to verify this observation.

Ideally, connections between point process statistics, experimental designs, quasir-
andom sequences, and centroidal Voronoi tessellations would be regarded more, be-
cause strong relations seem to exist between the concepts. Table 6.1 summarizes
these considerations regarding the different terms and research areas. For example,
minimax designs actually are point sets with low dispersion/low covering radius.
Also centroidal Voronoi tessellations seem to play a special role for this measure.

A lot of uncertainty exists regarding the test problems. In this work we considered
the problem of essentially unconstrained optimization, where all optima are located
in the interior of the search space [143, p. 10][119]. If we assume that the search space
is (arbitrarily) determined by a decision maker as a subset of a larger preimage of
a multimodal function, this scenario seems very unlikely, at least in high dimen-
sions. Consider, for example, two hypercubes X1 ⊂ X2 in 40 dimensions with edge
lengths 1 and 1.1. While the former has a volume of 1, the latter has a volume of ap-
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proximately 45. If we search only the smaller hypercube, this means that 97% of the
larger hypercube are excluded in this example. Under the assumption of a uniform
distribution of optima, it seems unrealistic that no optima are located directly on the
boundary of X1, because if X2 is 45 times larger, then also a correspondingly large
number of optima must be located outside of X1. By clipping the region of interest
to X1, factitious optima appear on its bounds through the clipped outer attraction
basins. Another case where optima may be (theoretically) located on bounds are
periodic search spaces [45, 1], which usually arise when decision variables represent
angles. However, these problems can be equally treated as unconstrained problems
by making the search space a torus. Sampling with periodic edge correction (see
Section 4.4.2) and local search using the repair method Baldwinian wrapping [154]
should obtain very favorable results in this case.

Also the assumption that the number of optima does not increase with dimen-
sion [143, p. 11] should be challenged. However, modeling highly multimodal prob-
lems with the multiple peaks model chosen in this work is infeasible due to a function
evaluation’s linear run time in the number of optima. The only viable approach of
constructing an MPM2 instance with an exponential number of optima seems to be
as a sum of independent lower dimensional functions. This would of course result in
a separable problem, which is not very difficult for optimization [109]. Non-separable
problems with an exponential number of optima in n are frequently created by ro-
tating a separable problem [122], because this is easily done. However, the author
is not aware of any real-world appearances of such problems. An example for non-
separable real-world problems with a (possibly) exponential number of optima are
molecular conformation problems [148]. These usually possess one or even multiple
funnel structures, which seem to stem from isospectral symmetries in the problem
formulation [106]. Thanks to these properties, the effort to solve them remains ac-
ceptable despite the strong multimodality [4, 106]. The computational cost of the
objective function is quadratic in the number of modeled atoms and there is only
one problem instance per dimension unless the problem definition is modified in a
certain way [106].

All these considerations regarding the realism of test problems have never been
treated together in a systematic way, to the authors best knowledge. As the design of
appropriate test problems and carrying out the corresponding experiments would be
quite laborious and time-consuming, we refrained from doing this analysis ourselves.
However, when such experiments are finally carried out, it should be expected that
quite different results will be obtained on some of the mentioned other problem
classes. Especially the chosen edge correction may interact with the positions of the
optima. For separable problems it should be important to use samples with good
low-dimensional projections [109].

To bridge the gap between model-based and model-free optimization algorithms
regarding computational complexity, one might consider two-stage algorithms with
a model-based global stage. Such an approach should be somewhere in between
the pure model-free and the pure model-based algorithm regarding the number of
objective function evaluations and the computational overhead of the optimization
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algorithm. Another reason to use a meta-model might be greatly varying activities
of the individual decision variables. In this case, the model could be used to learn
an appropriate (weighted) distance function [69].

Finally, a topic where a lot of room for improvement is suspected is the clustering
procedure, which was not the main focus of our work. Only nearest-better clustering
was tested as a part of the optimization algorithm in Section 5.2. For a complete
picture, it should be compared to MLSL [120] and topographical clustering [6].
Regarding NBC, the figure Nnb seems to be better suited than dnb, although the
current heuristics used to determine the number of returned clusters are still chosen
rather ad hoc. So it should be easy to enhance this part of the algorithm. Other
research directions as the further improvement of the local search procedures, fine-
tuning the interplay of the local and global stage, and optimization of the algorithm
parameters in general are rather self-evident.
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Glossary

0 (0, . . . , 0)⊤.
1 (1, . . . , 1)⊤.
A archive.
B boundary of X .
C cluster.
c̄P measured center of mass.
cX centroid of the search space.
DN L∞ discrepancy.
D∗

N L∞ star discrepancy.
dN covering radius.
dc̄c measured distance between center of mass of a

point set and the centroid of the search space.
d̄B mean distance to the boundary.
δn expected distance to the boundary for uniformly

distributed points.
∆p averaged Hausdorff distance.
dmax maximal possible distance.
dnb nearest-better distance.
dnn nearest-neighbor distance.
ǫN,n expected distance between center of mass of a ran-

dom uniform point set and the centroid of the
search space.

f̂∗ estimate of global optimum.
f∗ global optimum.
f objective function.
fdup duplication factor.
F non-dominated front.
Ft filial generation at time t.
Γ gamma function.
I identity matrix.
ℓ lower bounds.
λ number of offspring in an evolutionary algorithm.
m number of objectives.
µ number of parents in an evolutionary algorithm.
N number of points.
N natural numbers.
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Glossary

n number of variables.
Nf total number of function evaluations.
Ng number of function evaluations for the global stage.
Nnb number of solutions in the nearest-better ball.
ν number of optima.
Ô set of approximated local optima positions.
O set of local optima positions.
ω modulus of continuity.
φ threshold for NBC rule 1.
R correlation or rotation matrix.
R real numbers.
ρ relative radius.
S set of starting points.
Σ covariance matrix.
σ standard deviation, mutation strength in EAs.
TN L2 discrepancy.
T ∗

N L2 star discrepancy.
τn kissing number.
u upper bounds.
x̂∗ estimate of global optimum position.
x∗ global optimum position.
X search space, region of interest.

AD Average Distance.
AHD Averaged Hausdorff Distance.
AID Average of Inverse Distances.
ANOVA Analysis of Variance.
AOV Average Objective Value.

BBOB Black-box Optimization Benchmarking.
BI Basin Inaccuracy.
BR Basin Ratio.

CEC Congress on Evolutionary Computation.
CM Clustering Method.
CMA-ES Covariance Matrix Adaptation Evolution Strategy.
CR Covering Radius.
CRN Common Random Numbers.
CVT Centroidal Voronoi Tesselation.

DACE Design and Analysis of Computer Experiments.
DISC Discrepancy.
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Glossary

EA Evolutionary Algorithm.
ELA Exploratory Landscape Analysis.

FILHS Fast ILHS.

GH Generalized Halton Sequence.

ILHS Improved LHS.
IMSE Integrated Mean Squared Error.

LHD Latin Hypercube Design.
LHS Latin Hypercube Sampling.

MBO Model-based Optimization.
MD Minimal Distance.
MLSL Multilevel Single Linkage.
MMO Multimodal Optimization.
MmR Maximin Reconstruction.
MNBS Multiobjective Nearest-better Selection.
MOI Multiobjective Infill.
MPM2 Multiple Peaks Model 2.

NBC Nearest-better Clustering.
NEA2 Niching Evolutionary Algorithm 2.

PD Peak Distance.
PDNN Product of Distances to Nearest Neighbors.
PEC Periodic Edge Correction.
PI Peak Inaccuracy.
PR Peak Ratio.
PSA Part and Select Algorithm.

REC Reflection Edge Correction.
RLS Restarted Local Search.
RNG Random Number Generator.
ROI Region of Interest.
RSA Random Sequential Adsorption.
RT Rank Transformation.

SD Sum of Distances.
SDCM Sum of Distances to Center of Mass.
SDNN Sum of Distances to Nearest Neighbor.
SNBS Single-objective Nearest-better Selection.
SPD Solow-Polasky Diversity.
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Glossary

SRS Simple Random Uniform Sampling.

TP Twin Property.

UB Union of Balls.

WD Weitzman Diversity.
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