
A Modular Genetic Programming System

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Oliver Flasch

Dortmund

2015

Tag der mündlichen Prüfung
6. Mai 2015

Dekan
Prof. Dr.-Ing. Gernot A. Fink

Gutachter
Prof. Dr. Günter Rudolph
Prof. Dr. Thomas Bartz-Beielstein

1

Acknowledgments

During my work on this thesis, I had the pleasure to benefit from
the advice and support from many friends and colleagues.

Prof. Dr. Thomas Bartz-Beielstein, my thesis advisor, granted me
the freedom to pursue my own ideas, while always being available
with his encouragement, support, and detailed knowledge. The
great working atmosphere at his rapidly growing SPOTSeven group
at Cologne University of Applied Sciences has been an important
factor in the successful completion of this thesis. I am looking for-
ward to continuing my work there. Prof. Dr. Günter Rudolph, my
supervisor at TU Dortmund, generously shared his detailed knowl-
edge on evolutionary computation and provided valuable guidance
during many enjoyable meetings.

Olaf Mersmann supported me with his comprehensive knowl-
edge of computational statistics and provided the emoa soft-
ware package for evolutionary multi-objective optimization, a key
component of RGP’s selection operators. Additionally, he con-
tributed excellent and highly efficient code to RGP’s candidate
solution evaluator. Martin Zaefferer supported this work with his
in-depth knowledge on Kriging and with many fruitful discussions.
Dr. Wolfgang Kantschik introduced me to the practical aspects
of Genetic Programming during my time at his company, Dort-
mund Intelligence Project GmbH. Dr. Boris Naujoks helped with
his expertise in multi-objective optimization and with his exten-
sive network of contacts in the scientific community. During her
time at SPOTSeven, Dr. Katya Vladislavleva contributed important
ideas for the design of modern GP systems. Jörg Stork and Tobias
Brandt made valuable contributions to RGP during their time as
students at SPOTSeven. RGP greatly profited from feedback of its
users, many of which contributed new perspectives, test cases, or
application examples.

I am obliged to Thomas Will of Steinmüller Engineering GmbH
and to Christian Jung for providing ideas, data, and extensive sup-
port for the AppDust and AppSteel case studies respectively. I am
grateful to Prof. Dr. Gabriele Kern-Isberner and Prof. Dr. Peter
Buchholz for agreeing to survey this thesis on very short notice.

This work would not have been possible without financial sup-
port from the Bundesministerium für Bildung und Forschung
(BMBF) in form of the grants FIWA (FKZ 17N2309) and MCIOP
(FKZ 17N0311).

Most importantly, I am grateful to my family, Katja and Sarah,
for their support and for reminding me that there is more to life
than genetic programming.

Contents

1 Introduction 11

1.1 Motivation 11

1.2 Contributions 12

1.3 Thesis Outline 14

2 Genetic Programming Fundamentals 15

2.1 A Bird’s-Eye View of GP 15

2.2 Application Areas 18

2.3 A Short History of GP 20

2.4 Abstract Evolutionary Algorithms 20

2.5 Genotypes, Phenotypes and Fitness in GP 26

2.6 GP Search Operators 31

2.7 Genotypic and Phenotypic GP Search Spaces 42

2.8 Defining Valid Regions in GP Search Spaces 46

2.9 GP Search Heuristics 46

2.10 Conclusions 55

3 A Modular GP Implementation Based on R 57

3.1 Other GP Systems 57

3.2 Model Induction with RGP 62

3.3 RGP Tutorial Examples 72

3.4 RGP Architecture 84

3.5 RGP Features 89

3.6 Symbolic Regression User Interface 94

3.7 Conclusions 101

4

4 Sequential Parameter Optimization 103

4.1 SPO Process and Optimization Objectives 104

4.2 Sequential Parameter Optimization Toolbox 106

4.3 Scalable Random Test Problems 107

4.4 Conclusions 111

5 Optimizing Genetic Programming Parameters 113

5.1 Previous Work 114

5.2 Research Questions 115

5.3 GP System Parameter Overview 116

5.4 Pre-Experimental Planning 118

5.5 GP System Parameter Screening 120

5.6 GP Function Set Selection 127

5.7 GP System Parameter Tuning 132

5.8 Conclusions 136

6 Case Studies 139

6.1 Artificial Test Problems 139

6.2 Real-World Case Study Design and Organization 147

6.3 Meta Models for Cyclone Dust Separators (AppDust) 151

6.4 Roll Train Control Models (AppSteel) 158

6.5 Conclusions 166

7 Summary and Outlook 169

7.1 Summary 169

7.2 Original Contributions 171

7.3 Open Questions 172

7.4 Outlook 173

A Additional Figures 175

About the Author 191

Index of Abbreviations 195

Bibliography 196

List of Figures

1.1 Thesis Roadmap 14

2.1 Control Flow in a Typical GP System 16

2.2 General GP Diagram 17

2.3 Data-Driven GP Diagram 17

2.4 Symbolic Regression of the Governing Law of a Damped Oscilla-
tor 18

2.5 Domain and Range of the Genotypic Recombination Operator rec
and Construction of its Phenotypic Analogue recP 22

2.6 Domain and Range of the Genotypic Mutation Operator mut and
Construction of its Phenotypic Analogue mutP 23

2.7 Example of the Effect of the Label Mutation Operator on Genotype
and Phenotype in Symbolic Regression of Unary Functions 35

2.8 Example of the Genotypic and Phenotypic Effect of Subtree Mu-
tation in Symbolic Regression of Unary Functions 36

2.9 Example of Subtree Mutation Analogous to Figure 2.8 36

2.10 Pareto Front Plot of the Result Population of an Example GP Run 41

2.11 The Three Tiers of GP Search Spaces 42

2.12 Instances of the Genotypic Search Space of a Typcial Symbolic Re-
gression Problem 42

2.13 Phenotypic Search Space of a Typical Symbolic Regression Prob-
lem 43

2.14 Genotype-Phenotype Distance Correlation in Standard GP Muta-
tion 44

2.15 Genotype-Phenotype Distance Correlation in Geometric Seman-
tic GP Mutation 45

2.16 Pseudo-Code Implementation of the TinyGP Search Heuristic 49

2.17 Pseudo-Code Implementation of Tournament Selection 50

2.18 Pseudo-Code Implementation of the GSOGP Search Heuristic 52

2.19 Pseudo-Code Implementation of the GMOGP Search Heuristic 53

3.1 Features versus Costs of Modern GP System Offerings 60

3.2 RGP Model Induction Process 63

3.3 Best GP-Generated Polynomial Approximation of the Sine Func-
tion 75

3.4 Best GP-Generated Polynomial Approximation of the Sine Func-
tion, Extended Interval 76

3.5 Illustration of Some of the Arguments to the Model Equation for
a Damped Pendulum 76

6

3.6 Deflection Against Time of Two Example Pendulums 77

3.7 Generated Data Frame pendulum1Data 78

3.8 Example Plot of the Result of a GP Run for Symbolic Regression
of a Damped Pendulum 80

3.9 RGP Source Code Treemap 89

3.10 Structure of the RGP UI Web-Based User Interface 95

3.11 RGP UI Data Panel 96

3.12 RGP UI Objective Panel 97

3.13 RGP UI Run Panel 99

3.14 RGP UI Result Panel 100

4.1 SPO Process, Presented as a Flow Chart 105

4.2 Kriging-Based Test Function Generator 109

4.3 Examples of Kriging-Based Test Functions 110

5.1 RLD Plots for TinyGP and GMOGP-F 121

5.2 Wall Clock Times for GMOGP-FCA on Salustowicz 1D 123

5.3 EAF Difference Plots for GMOGP-FCA on Air Passengers 1D, µ Pa-
rameter 128

5.4 EAF Difference Plots for GMOGP-FCA on Air Passengers 1D, pmsubtree

Parameter 128

5.5 Original and Transformed Result Data 131

5.6 GP Function Set Selection Decision Tree Model 131

5.7 Contour Plots of the Effect of Parameters λµ rel and νµ rel on GMOGP-
FCA Performance 136

6.1 Validation MAE Values for Air Passengers 1D 144

6.2 Validation MAE Values for Kotanchek 2D 145

6.3 Validation MAE Values for Salustowicz 1D 146

6.4 Linear Model Fit of the Strongly Non-Linear Sine Function 148

6.5 MARS Model Fit of the Sine Function 149

6.6 Random Forest Model Fit of the Sine Function 150

6.7 Support Vector Regression Model Fit of the Sine Function 151

6.8 Kriging Model Fit of the Sine Function 151

6.9 Large Cyclone Dust Separator at a Steelworks 152

6.10 Cyclone Geometriy Parameters Subject to Meta-Modeling 154

6.11 Validation MAE Values for AppDust Collection Efficiency 156

6.12 Validation MAE Values for AppDust Pressure Drop 158

6.13 Schematic of the Steel Rolling Process of AppSteel 159

6.14 Validation MAE Values for AppSteel 162

6.15 Pareto Front Plot for AppSteel GP Run 1 164

6.16 Input Variable Presence Plot for AppSteel GP Run 1 166

A.1 GMOGP Calibration Best Individual Plots 176

A.2 EAF Difference Plots for GMOGP-FCA, ifuncset Parameter 177

A.3 EAF Difference Plots for GMOGP-FCA, ßerror Parameter 178

A.4 EAF Difference Plots for GMOGP-FCA, µ Parameter 179

A.5 EAF Difference Plots for GMOGP-FCA, λµ rel Parameter 180

A.6 EAF Difference Plots for GMOGP-FCA, νµ rel Parameter 181

A.7 EAF Difference Plots for GMOGP-FCA, pcrossover Parameter 182

7

A.8 EAF Difference Plots for GMOGP-FCA, pmsubtree Parameter 183

A.9 EAF Difference Plots for GMOGP-FCA, pmfunc Parameter 184

A.10EAF Difference Plots for GMOGP-FCA, pmconst Parameter 185

A.11EAF Difference Plots for GMOGP-FCA, bage Parameter 186

A.12EAF Difference Plots for GMOGP-FCA, ppsel Parameter 187

A.13Cyclone Fractional Efficiency when Varying Inlet Height, Predicted
by SVM and RGP 188

A.14Cyclone Fractional Efficiency when Varying Inlet Height, Predicted
by RF and RGP 189

List of Tables

2.1 GP Search Heuristics 48

2.2 TinyGP Parameters 51

2.3 GSOGP Parameters 52

2.4 GMOGP Parameters 54

3.1 Feature Comparison Matrix for Modern GP Systems 59

5.1 Common RGP Parameters 117

5.2 RGP Error Measure Numbers 117

5.3 RGP Function Set Numbers 117

5.4 TinyGP Parameters 118

5.5 GMOGP Parameters 118

5.6 RLDs for TinyGP and GMOGP-F 121

5.7 GMOGP-FCA Screening Design 124

5.8 GMOGP-FCA Screening Results for Air Passengers 1D 125

5.9 GMOGP-FCA Screening Results for Salustowicz 1D 125

5.10 GMOGP-FCA Screening Kruskal-Wallis Test 126

5.11 GP Function Set Selection Parameters 130

5.12 GMOGP Parameters Tuned by SPO 134

5.13 SPOT Tuning Configuration 134

5.14 Tuned GMOGP-FCA Parameters 135

6.1 ECJ Function Sets 143

6.2 Validation MAE Values for Air Passengers 1D 143

6.3 Validation MAE Values for Kotanchek 2D 144

6.4 Validation MAE Values for Salustowicz 1D 145

6.5 Real-World Case Study Summary 147

6.6 Independent and Dependent Variables for AppDust 154

6.7 Validation MAE Values for AppDust Colleciton Efficiency 157

6.8 Validaiton MAE Values for AppDust Pressure Drop 157

6.9 Independent and Dependent Variables for AppSteel 161

6.10 Validation MAE Values for AppSteel 162

6.11 Pareto Front for AppSteel GP Run 1 165

1
Introduction

Genetic Programming (GP) is an evolutionary algorithm for the
automatic discovery of symbolic expressions that encode solutions
to a user-defined task. An initial population of symbolic expres-
sions is successively refined by mutation and recombination until
a solution of sufficient quality is found. In its general form, the
symbolic expressions in a GP population encode executable com-
puter programs, represented as parse trees of a Turing complete
programming language. Readability and understandability of these
programs is not an explicit concern and also often poor, especially if
high quality solutions to difficult problems are sought.

This work has a slightly different focus by concentrating on data-
driven discovery of clear, readable, and compact solutions. This
is achieved through a multi-objective GP search heuristic imple-
mented by means of a modular GP system integrated into the R
environment for statistical computing. Real-world applications dis-
cussed in this work include the induction of efficient and accurate
models for roll train performance in steel production and the induc-
tion of fast meta-models for geometry optimization of cyclone dust
separators. In these application domains, expressive and specific
formalisms are common to communicate solutions in a clear and
concise way.

1.1 Motivation

Main motivation of this work is the advancement of GP in real-
world application areas. Therefore, this work is of empirical rather
than theoretical nature. The field of GP applications is very broad,
making it impossible to describe every possible application in suf-
ficient detail. Because of its practical focus, this work confines itself
on a subset of application areas that are already known to be prac-
tical for GP at the time of writing, first of all symbolic regression.
Nonetheless, the formal framework introduced in this work is gen-
eral enough to apply to all GP application areas, some of which are
subject to detailed exposition in the form of tutorials.

Most text book introductions to the field of GP are not tied to a
specific implementation, making them universally useful, but im-
posing the burden of translating general concepts to the specifics of

12 a modular genetic programming system

an implementation to the potential GP user. Examples include the
text books by Koza [1992]1 and Poli et al. [2008].2 This work takes 1 Koza’s work provides source code

in a now obsolete dialect of the LISP
programming language.
2 Koza, J. R. (1992). Genetic program-
ming: On the programming of computers
by means of natural selection. MIT Press,
Cambridge, MA; and Poli, R., Lang-
don, W. B., and McPhee, N. F. (2008).
A Field Guide to Genetic Programming.
http://lulu.com (retrieved 20.02.2015).
(With contributions by J. R. Koza)

a different approach. All GP methods and techniques discussed are
accompanied by thoroughly documented implementations that can
be directly employed by the reader. Together, these implementa-
tions constitute the RGP system, an open and modular GP system
that is capable enough for real-world application.

Another important motivation for this work is to provide a first
independent and systematic study of the performance impact of
modern, i.e., multi-objective, GP search heuristics. Goal of this
study is to identify what components of a modern GP system are
relevant to attain good results, and how these components should
be parameterized.

1.1.1 Audience

The intended audience of this work mainly consists of two groups.
The first group are researches in the fields of GP, computational in-
telligence (CI), machine learning, and neighboring fields of statistics
interested in technical details and performance characteristics of
modern GP algorithms. The second group consists of practitioners
from academia and industry looking for an in-depth introduction to
GP and a guide to its application in real-world tasks.

1.2 Contributions

This thesis offers three main contributions to the state-of-the art in
GP systems:

• A Modular GP System The conceptual and technical foundation
of the thesis is provided by RGP3, a modular and self-contained 3 The name “RGP” may be understood

as an abbreviation for “R-based genetic
programming”.

GP system based on and integrated with the R environment
for statistical computing. An important feature of RGP’s de-
sign is the clear separation of search space from search heuris-
tic, enabling detailed studies of the influence of GP algorithm
components on GP algorithm performance. RGP provides imple-
mentations of classical as well as of state-of-the-art GP algorithm
components, including multi-objective selection operators to
prevent bloat and provide concise solution formulae, dynamic
age-layering and population diversity preservation methods to
prevent stagnation in long GP runs and allow the solution of
complex real-world tasks, an expressive type system for the con-
cise definition of domain-specific formalisms, and modern tools
for post-processing and visualizing GP run results. In its default
configuration, RGP is shown to equal or surpass the performance
of existing state-of-the-art GP systems, such as ECJ. Nonethe-
less, its main value stems from its modular design, allowing to
combine algorithm components freely without programming or
complex reconfiguration.

introduction 13

• A Comprehensive Empirical Analysis of Modern GP Heuristics Based
on the modular GP system RGP and the methodology of sequen-
tial parameter optimization (SPO), a framework for reproducible
empirical research in GP has been developed. Statistical tools to
understand GP algorithms and heuristics and their interaction
with problems of varying difficulty are provided. This frame-
work is then employed in a comprehensive and reproducible
empirical analysis of the effects of GP algorithm components
on GP performance. In addition to classical GP algorithms, the
effect of modern methods, such as multi-objective selection oper-
ators and diversity preservation techniques, are also examined.
This study focuses on the important GP application of symbolic
regression. In this context, result generalizability is improved
by using randomized test problems of scalable difficulty. The
results of this analysis reveal the beneficial effect of modern GP
search heuristics on GP performance compared to traditional GP
algorithms. The effects and interactions of several GP algorithm
parameters are also analyzed and recommendations for good
parameter settings are provided.

• New Industrial Applications for GP Finally, the effectiveness of the
RGP system is validated in two case studies based on real-world
industrial applications. Both applications belong to the class of
regression problems from mechanical and process engineering.
The first application involves the induction of predictive control
models for roll trains in steel production. The second application
involves the induction of meta-models for optimizing cyclone
dust separator geometries. In both applications, models must be
run-time efficient and accurate. Easily understandable, simple
models that are easy to deploy offer an additional benefit. In
both applications, the time needed for initial model induction
can be neglected. A comparison with traditional and modern
regression methods shows that RGP-models offer comparable
or superior performance in both applications, while adding the
additional benefit of understandable and easy to deploy models.

On a methodological level, this work makes the following contri-
butions:

• Reproducible Research In the context of this work, the term repro-
ducibility means the practical ability to reproduce the results of
an experiment or of an entire study. To achieve reproducibility,
all raw data, as well as all software tools, should be available to
the general public. The Science Code Manifesto4 defines addi- 4 Barnes, N. et al. (2013).

Science code manifesto.
http://sciencecodemanifesto.org/
(retrieved 20.02.2015)

tional principles to adhere to for making scientific software ac-
cessible and enabling result reproduction through a third party.
The authors of this work adhere to these principles by providing
documented source code for all experiments for download and
keeping it available in the future. Additionally, the raw data for
the real-world case studies described in this thesis are available
for download under an open source licence.

14 a modular genetic programming system

• Open Source Software In addition to experiment source code and
raw data, reproducibility is simplified further by the exclusive
use of open source software. RGP, the statistical platform R, as
well as all tools used in experiment setup, result analysis and
visualization are available for download under an open source
licence. Web links to relevant experiment source code and tools
are provided when appropriate, throughout the rest of the thesis.

The primary motivation of this work was to provide a practi-
cal system applicable to real-world problems. This consideration
informed all design decisions, not only on a superficial level, but
also on the conceptual and implementation levels. A practical GP
system should be easy to understand, easy to configure, and easy
to extend if necessary. Most importantly, it should create solutions
that are easily understandable and verifiable.

A successful first attempt is provided by this work, in form of
the RGP system. RGP is not only a useful system for academic re-
search, but also already proved its effectiveness in several practical
applications. Its implementation is sufficiently efficient for the so-
lution of large real-world problems. It is thoroughly documented
and approachable through a modern graphical user interface. These
traits make RGP useful for experts with diverse scientific and in-
dustrial backgrounds.5 5 Comprehensive reference documenta-

tion and tutorials for RGP are available
online at http://cran.r-project.org/
web/packages/rgp. Section 3.3 contains
additional tutorials, both on basic and
on advanced topics.

1.3 Thesis Outline

The remainder of this work is structured as follows. Chapter 2

provides the formal framework for EAs and GP that the rest of
this thesis is build upon. Chapter 3 introduces RGP, the modu-
lar GP system that provides the basis for most experimental work
described in this thesis. Chapter 4 introduces statistical methods
for conducting principled empirical research in the field of GP.
Based on these foundations, Chapter 5 then proceeds with a de-
tailed study of the performance impact of different components of
modern GP search heuristics and their parameterization. Chapter 6

compares the performance of RGP with other state-of-the-art GP
systems and provides two detailed case studies of real-world appli-
cations. A summary and an outlook to further research are given in
Chapter 7.

Chapter 3
Modular

GP Implementation

Chapter 2
GP Fundamentals

Chapter 4
Sequential
Parameter

Optimization

Chapter 1
Introduction

Chapter 5
Optimizing

GP ParametersChapter 6
Case Studies

Chapter 7
Summary and Outlook

Figure 1.1: Thesis Roadmap. This map
shows paths a reader could choose
through the chapters of this work,
taking dependencies of the presented
material into account.

Figure 1.1 shows different paths a reader could choose through
the material presented in this work, taking dependencies between
chapters into account.

http://cran.r-project.org/web/packages/rgp
http://cran.r-project.org/web/packages/rgp

2
Genetic Programming Fundamentals

This chapter introduces the formal framework of GP that the RGP
system, as well the empirical work discussed in later chapters, is
built upon. After a informal overview of GP, its most important
application areas, and its history, the concept of an abstract EA is
introduced. On this basis, GP genotypes, phenotypes, fitness, and
search operators are defined. The concepts genotypic and pheno-
typic GP search spaces are introduced next, followed by techniques
for defining valid regions in these search spaces. Finally, a selection
of classical and modern GP search heuristics is described.

2.1 A Bird’s-Eye View of GP

GP is a collection of techniques from evolutionary computing (EC)
for the automatic generation of computer programs that perform
a user-defined task. Starting with a high-level problem definition
in the form of a function associating a candidate solution with a
numerical fitness value, GP creates a population of random com-
puter programs that are progressively refined through variation
and selection until a satisfactory solution is found. As such, GP is
the application of an evolutionary search heuristic1 to the problem 1 cf. the concept of “the survival of

the fittest” from Darwin’s theory of
evolution

of program synthesis, qualifying as a method for inductive pro-
gramming.2 This section provides a short introduction to the most 2 Kitzelmann, E. (2010). Inductive

programming: A survey of program
synthesis techniques. In Schmid, U.
et al., editors, Approaches and Applica-
tions of Inductive Programming, volume
5812 of Lecture Notes in Computer
Science, pages 50–73. Springer, Berlin

important aspects of GP. For an in-depth introduction, see Poli
et al. [2008].3

3 Poli, R., Langdon, W. B., and McPhee,
N. F. (2008). A Field Guide to Genetic
Programming. http://lulu.com (re-
trieved 20.02.2015). (With contributions
by J. R. Koza)

Figure 2.1 shows the control flow of a typical GP system. After
creating a population of initial solutions, the algorithm enters the
main loop of an evolutionary search routine. The fitness of each
solution is then evaluated. Based on their numerical fitness values,
solutions are selected for variation and recombination, or removed
from the population. The main loop is repeated until a termination
criterion is met, after which results are analyzed and presented to
the user. In practice, there are many possible implementations for
each step in this general scheme, and variations in the order of the
steps. For example, selection can take place before and/or after
variation and recombination.

The idea that GP is the application of EC search heuristics to pro-

16 a modular genetic programming system

yes
no

Evaluation

Variation / Recombination

Result Analysis

Selection Termination?

Initialization

Evolutionary Search Heuristic
Main Loop

Figure 2.1: Control flow in a typical
GP system. After creating an initial
population, the algorithm enters its
main loop. The fitness of each solution
is evaluated. Based on fitness value,
solutions are selected for variation and
recombination, or removed from the
population. The main loop is repeated
until a termination criterion holds,
after which results can be analyzed.

gram synthesis hints at the distinction of search strategy and search
space, whose importance will become apparent in the course of this
work. Keeping the concepts of problem definition, search space def-
inition, and search heuristics separate, both in theory and in imple-
mentation, opens up exciting possibilities. By changing the search
space definition, solutions represented in different formalisms will
be generated based on the same problem definition via the same
search heuristic. By tuning or changing the search heuristic, satis-
factory solutions from the same formalism may be generated more
efficiently for a certain problem domain. It is now easily possible
to step outside the framework of GP by using search heuristics
from different fields of optimization research, e.g., combinatorial
optimization. Depending on search space size, the search heuristic
could even be a brute-force exhaustive search implemented as a
data-parallel program.

In Figure 2.1, the evaluation step is defined by the problem def-
inition, the initialization and variation/recombination steps are
defined by the search space, and the selection step, as well as the
specific order of the steps, are defined by the search heuristic. The
result analysis step is influenced by the search space as well as by
the problem definition and is often performed interactively by us-
ing techniques from the field of exploratory data analysis (EDA)
and statistics.

The term “computer program” in the definition of GP warrants
further inspection. Conceptually, a computer program is a term in
a formal language, i.e., a symbolic expression.4 A formal language 4 Pierce, B. C. (2002). Types and Pro-

gramming Languages. MIT Press,
Cambridge, MA

is a well-defined set of strings of symbols. In the framework of
GP, as in the framework of formal languages, no assumptions on
the semantics of the symbolic expressions used is made. The only
requirements are that 1) there is an algorithm to create, mutate
and recombine terms of the formal language, and 2) that there is
an algorithm to associate a numerical fitness value with terms of
the formal language. This freedom allows GP to be used in areas
exceeding what is normally thought of program synthesis, includ-
ing, for example, the synthesis of electronic circuits or automatic

genetic programming fundamentals 17

theorem proving. 5 5 Koza, J. R. and Bennett III, F. H.
(1999). Automatic synthesis, place-
ment, and routing of electrical circuits
by means of genetic programming.
In Spector, L. et al., editors, Advances
in Genetic Programming 3, pages 105–
134. MIT Press, Cambridge, MA; and
Nordin, P. and Banzhaf, W. (1997). Ge-
netic reasoning: Evolving proofs with
genetic search. In Koza, J. R. et al.,
editors, Genetic Programming 1997: Pro-
ceedings of the Second Annual Conference,
pages 255–260, San Francisco, CA.
Morgan Kaufmann

On the other hand, this freedom can also pose problems for the
practical applicability of GP. Because the field of possible applica-
tions is so broad, implementing a practical, meaning both effective
and efficient, yet completely general GP system is a major under-
taking. This is mainly because of the theoretical fact and practical
observation that search heuristics have to be tuned to certain prob-
lem classes to be efficient enough for practical application.6 The

6 Wolpert, D. H. and Macready, W. G.
(1997). No free lunch theorems for
optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82

work-around for this problem chosen in this thesis is to first pro-
vide a modular framework for GP including a modular software
implementation. Then, modules for search heuristics and problem
definitions7 are provided for problem classes and application areas

7 implemented as fitness function
generators

deemed to be both well-suited for state-of-the art GP and of high
practical relevance. The framework is made available in an easily
accessible form, enabling users to contribute modules to enhance
the system’s universality. Fitness Function + Formalism +

Search Heuristic GP−→ Formulas

Figure 2.2: General GP diagram. Given
a fitness function (the problem defini-
tion), a formalism (a formal language),
and a search heuristic, GP evolves
formulas (symbolic expressions) with
increasingly better fitness values.

Figure 2.2 illustrates these concepts as a simple diagram. Given
a problem definition in the form of a fitness function, a search
heuristic (which is in practice often fixed and specific to the GP
system implementation) and a formal language (a formalism), GP
will evolve symbolic expressions (formulas) of increasingly better
fitness.

In many practical applications, GP is used to derive symbolic ex-
pressions representing models based on data. These applications
include the data-driven induction of models for regression and clas-
sification. In the framework of machine learning and data mining,
a GP system configured to solve data-driven modeling tasks can be
regarded as a method for supervised learning, enabling the transfer
of techniques for the analysis of machine learning algorithms to the
field of GP.8 8 Hastie, T. (2009). The elements of

statistical learning: data mining, inference,
and prediction. Springer, New York, 2nd
edition

An important advantage of data-driven GP is that no prior
knowledge concerning the model structure is needed. The repre-
sentation of models as terms of a formal language (symbolic ex-
pressions) makes them accessible to human reasoning and symbolic
computation, which is another advantage of GP. In this perspective,
GP can be seen as a method for discovering symbolic representa-
tions of scientific laws9 hidden in numerical sub-symbolic form as 9 This includes natural laws as well as

functional dependencies of systems
studied in economics or sociology.

fixed relations in data sets.

Data Set + Formalism +

Search Heuristic GP−→ Formulas

Figure 2.3: Data-driven GP diagram.
Given a data set, a search heuristic,
and a formalism (a formal language),
GP induces formulas (symbolic expres-
sions) representing fixed relations in
the data set.

This concept is concisely visualized in Figure 2.3: Given a data
set, a search heuristic, and a formal language (a formalism), data-
driven GP induces symbolic expressions representing fixed rela-
tions inherent in the data set (formulas).

The main drawback of GP is its high computational cost, due to the
potentially infinitely large search space of symbolic expressions.
On the other hand, the good scalability of evolutionary search
heuristics through parallelization, combined with the sustained
performance increase of high performance parallel computers,

18 a modular genetic programming system

recently enabled the practical application of GP in many real-world
application domains.

2.2 Application Areas

As already mentioned in Section 2.1, the set of possible application
areas of GP is very large, rendering a complete survey impossible
in the confines of this work. As a compromise, this section focuses
on areas where GP is successfully employed today and that are also
deemed of high practical importance. The majority of these areas
fit into the to category of data-driven GP. Unsurprisingly, problems
from these areas also belong to the main application area of RGP
in its current form and will be discussed in depth by means of case
studies in Chapter 6.

2.2.1 Symbolic Regression

Symbolic regression is probably the best known application for
data-driven GP. Given a set of measurement data divided into de-
pendent and independent variables10, symbolic regression can dis- 10 In the context of regression analysis,

a dependent variable represents the
output to be predicted by a model,
also known as effect, or y variable.
Independent variables represent the
model inputs, also known as causes, or
x variables.

cover the functional relationship between dependent and indepen-
dent variables. This relationship is represented as a symbolic ex-
pression, which can be used to gain insight into the data-generating
process or system (system identification), and as a model to predict
the values of the dependent variable for unseen values of indepen-
dent variables (inter- and extrapolation).

0 2 4 6 8 10

−0
.8

−0
.6

−0
.4

−0
.2

0.0
0.2

0.4

x

y

Figure 2.4: Symbolic regression result
of the governing law of a damped
oscillator. This example shows how
symbolic regression via GP is used
to rediscover the governing physical
law of a damped oscillator. In contrast
to many other regression methods,
the solution is expressed as a mathe-
matical formula accessible to human
interpretation and validation. In this
figure, the true oscillator behavior
are shown in dashed gray, the (nearly
exact) solution found by a GP run is
shown in solid black.

Figure 2.4 provides a simple example, showing how symbolic
regression via GP is used to find the governing physical law of a
damped oscillator (e.g. a pendulum). Input data is generated by
sampling the position of a swinging pendulum at fixed time inter-
vals, until the pendulum comes to rest. 11 The only independent

11 In this example, input data has been
created by simulation based on known
physical laws.

variable in this example is time, the dependent variable being the
pendulum position, represented as an angle. As a fitness function,
the prediction error of a candidate solution is used. In the figure,
the true oscillator law and behavior are shown in dashed gray, a
typical solution found by symbolic regression via GP is shown in
solid black. It is important to note that GP did not only discover the
solution structure, but also the constants defining the behavior of
the concrete oscillator sampled.

Symbolic regression is not limited to numerical data. Another
typical application is the induction of compact boolean expressions
based on truth tables. Here, both independent and dependent vari-
ables are of boolean type.

The application domain for symbolic regression is very large,
as the method can be used as an addition or a replacement for
conventional regression methods. A non-exhaustive list of examples
for concrete application fields include engineering, finance, and
most fields of the natural and social sciences.12 12 Poli, R., Langdon, W. B., and

McPhee, N. F. (2008). A Field Guide to
Genetic Programming. http://lulu.com
(retrieved 20.02.2015). (With contribu-
tions by J. R. Koza)

genetic programming fundamentals 19

2.2.2 Classification

Symbolic regression can be readily adapted for solving classifica-
tion problems by using a single dependent variable of a type that
ranges over the classes required. Features of the objects to be classi-
fied are then encoded as independent variables. Espejo et al. [2010]
provide an extensive survey on classification via GP. 13 In addition 13 Espejo, P. G., Ventura, S., and Her-

rera, F. (2010). A survey on the ap-
plication of genetic programming to
classification. IEEE Transactions on
Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 40(2):121–144

to be applied directly to a classification task, GP can also be used
as a component of more traditional classification approaches from
machine learning and data mining.14 For example, in the prepro-

14 Shearer, C. (2000). The CRISP-DM
model: The new blueprint for data
mining. Journal of Data Warehousing,
5(4):13–22

cessing phase, GP can be used for feature construction and feature
selection. In the model extraction phase, GP can be used for evolv-
ing decision trees, classification rules, or discriminant functions. GP
can be also used to evolve classifier ensembles. This is an example
of the widespread approach of applying GP as a component of an
existing problem specific methodology. Instead of exploring a more
general but much larger search space, GP search is embedded into
a well known solution framework, trading the potential for inno-
vative high quality solutions for lower computational effort and
solutions of predictable structure.

2.2.3 Clustering

GP has also been successfully applied to tasks in unsupervised
learning, such as clustering.15 Here, a data-driven GP system is 15 Boric, N. and Estevez, P. A. (2007).

Genetic programming-based clustering
using an information theoretic fitness
measure. In Srinivasan, D. and Wang,
L., editors, Proceedings of the 2007 IEEE
Congress on Evolutionary Computation
(CEC 2007), pages 31–38, Piscataway,
NJ. IEEE Press

configured with a fitness function that computes a quality measure
for a given clustering. The concrete quality measure used is depen-
dent on the application domain and on user preferences. In typical
clustering applications, GP solutions are interpreted as functions
taking an object feature vector as an input and returning a cluster
label as an output. As the case in classification, GP can also be ap-
plied as a component of existing clustering algorithms, e.g., for data
preprocessing or feature construction.

2.2.4 Automatic Programming

As computer programs are symbolic expression, GP can of course
be used for automatic programming, giving the method its name.
This application requires a set of program building blocks and a
fitness function that assigns a numerical fitness value to each can-
didate program. Depending on the set of building blocks and their
syntactic rules of combination, i.e., the search space definition, the
resulting language may or may not be Turing equivalent.16 In prac- 16 Schöning, U. and Pruim, R. J. (1998).

Gems of Theoretical Computer Science.
Springer, Berlin

tice, this approach is used successfully to evolve programs of small
to medium scale and complexity in domain specific languages.
Typical application areas include automatic programing of robot
control programs, of programs that solve specific tasks in audio or
video processing, or of programs that solve other control or signal
processing tasks.

20 a modular genetic programming system

2.2.5 Other Applications

The applicability of GP goes beyond automatic programming. As
mentioned earlier, the method can be used to discover all structures
that are representable by symbolic expressions of moderate com-
plexity. Examples include analog circuit design, antenna design,
processing networks in manufacturing and logistics, strategies for
algorithmic trading, or music composition and generative art. Willis
et al. [1997] provides examples for additional applications.17 17 Willis, M., Hiden, H., Marenbach,

P., McKay, B., and Montague, G. A.
(1997). Genetic programming: An in-
troduction and survey of applications.
In Zalzala, A., editor, Second Interna-
tional Conference on Genetic Algorithms
in Engineering Systems: Innovations
and Applications (GALESIA 97), pages
314–319, London, U.K. IEE Conference
Publications (No. 446)

2.3 A Short History of GP

At the time of this writing, studying GP in theory and practice has
a tradition of nearly 30 years. Willis et al. [1997] gives a short but
comprehensive overview of the early history of GP:

Cramer [1985] developed one of the first tree structured genetic
algorithms (GA) for basic symbolic regression. Another early de-
velopment was the BEAGLE18 algorithm of Forsyth [1986], which 18 Biological Evolutionary Algorithm

Generating Logical Expressionsgenerated classification rules using a tree structured GA. However, it
was Koza [1992, 1994] who was largely responsible for the populari-
sation of GP within the field of computer science. His GP algorithm
(coded in LISP) was applied to a wide range of problems including
symbolic regression, control, robotics, games and classification.

Following this early period, interest in the field of GP has steadily
grown. The first international conference on the subject was held at
Stanford University in 1996 (GP’96). While most research in the
field was still done by computer scientists, first applications in en-
gineering appeared. Most of these were introduced shortly in the
previous section. A first generation of dedicated GP software sys-
tems were developed both in academics and commercially. The
target audience for these systems were mostly researchers in GP
or application domain specialists with strong backgrounds in com-
puter science.19 19 Examples of first-generation GP

systems are TinyGP and Discipulus,
see Section 3.1 for more details.

Recently, a second generation of commercial GP software was
brought to market, which offers mature algorithms, good docu-
mentation, and user-friendly graphical interfaces.20 For the first 20 Section 3.1 contains detailed descrip-

tions of the most important of these
second generation systems.

time, these systems enable users from many different application
domains to experiment with GP.

2.4 Abstract Evolutionary Algorithms

This section introduces a basic formal framework for describing
EAs in the abstract, i.e., without referring to a concrete implementa-
tion. This is motivated by three observations:
1. Formal description of EAs provides a framework for struc-

turing a flexible and modular GP implementation.
2. Formal description of EAs provides the basis for formal def-

initions of all operators in a GP system, simplifying correct
implementation.

genetic programming fundamentals 21

3. Formal description of EAs provides an inroad to the devel-
oping mathematical theory of evolution.
Linking theory and implementation by basing both on the same

formal grounding enables modules of the implementation to be
adapted to expanding theoretical knowledge. Building an imple-
mentation on the most abstract domain concepts as efficiently pos-
sible with current technology constitutes good software engineering
practice. Modularity and reusability are improved.

While the stance of this work is primarily empirical, given the
fact that, at the time of writing, a mathematical theory of evolution
in general and GP in particular is still in its infancy, theory provides
an important complementary viewpoint. It already developed a
useful formal language for describing the relation of search space
geometry to the dynamics of evolutionary search.21 GP schema 21 Stadler, B. M. R., Stadler, P. F., Wag-

ner, G. P., and Fontana, W. (2000).
The topology of the possible: Formal
spaces underlying patterns of evolu-
tionary change. Working papers, Santa
Fe Institute

theory, a branch of GP theory, developed exact models for predict-
ing the dissemination of symbolic expressions fitting a given form
or schema in the population during a GP run.22 While empirical

22 Poli, R. (2001). Exact schema theory
for genetic programming and variable-
length genetic algorithms with one-
point crossover. Genetic Programming
and Evolvable Machines, 2(2):123–163

studies like the one presented in Chapter 5 can answer questions
of what components of a GP system contribute to what degree to
the system’s performance, theory is beginning to offer answers to
questions of why this is the case.

Today, much research in GP is of empirical nature, while a trend
towards the use of solid statistical methods of experiment design
and result analysis seems to be developing. This work pushes in the
same direction by introducing new means of reproducible empir-
ical research to the field of GP. The application of new theoretical
results in the future, on the other hand, promises to improve GP
system performance even further.

Evolutionary algorithms are heuristic population-based opti-
mization algorithms.23 Given a fitness function fit :: P → V24 23 Bartz-Beielstein, T., Branke, J.,

Mehnen, J., and Mersmann, O. (2014).
Evolutionary algorithms. Wiley
Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 4(3):178–195

24 The :: operator means “is of type”.

mapping a solution x ∈ P to a fitness value fit(x) ∈ V, where
(V,v) is a partially ordered set, EAs are employed to find glob-
ally optimal solutions x∗. A globally optimal solution, or global
optimum, x∗ is a solution that satisfies the inequality

fit(x∗) v fit(x) for all x ∈ P. (2.1)

P is a possibly infinite set of valid candidate solutions, referred to
as phenotypes, elements v ∈ V are referred to as fitness values or
objective function values.25 In single-objective optimization, V is 25 In practice, Equation 2.1 is infor-

mally rephrased to “for most x ∈ P”,
i.e., an EA is run until a solution of
satisfactory quality is found. This solu-
tion might be a local optimum instead
of a global optimum.

typically defined as the set of real numbers R and v is defined as
the “less than or equal” relation on real numbers ≤. In this case,
Equation 2.1 describes well-known single-objective fitness mini-
mization.

In multi-objective optimization, V is typically defined as the
n-dimensional vector space Rn, where n is the number of optimiza-
tion criteria. Here, v is typically defined via the Pareto dominance
relation ≺.26 The case of bi-objective optimization (n = 2) is partic- 26 A vector x (Pareto-) dominates a

vector x′, written as x ≺ x′, if each
component of x is less than or equal
to the corresponding component of x′

and at least one component is strictly
less, i.e., ∀i : xi ≤ x′i and ∃j : xj < x′j.
This formulation leads to minimization
of each vector component (objective).

ularly relevant to GP due to the necessity of controlling (minimiz-

22 a modular genetic programming system

ing) solution complexity in parallel to improving solution quality
(minimizing an error measure).

For convenience and efficiency of implementation, some EAs and
most GP algorithms do not operate on the application-dependent
and possibly complex phenotype set P directly. Instead, a set G
of genotypes is used as a proxy. An application-specific genotype-
phenotype mapping map :: G → P assigns a phenotype map(g) ∈ P
to every genotype g ∈ G. A finite subset of G (P) of size µ is re-
ferred to as a genotypic (phenotypic) population, where popG(t) ∈
Gµ (popP(t) ∈ Pµ) denotes a genotypic (phenotypic) population
at discrete time t. The genotype-phenotype mapping map is triv-
ially extended to genotypic populations by pointwise application:
mappop :: 2G → 2P where mappop(G) := {map(g)}g∈G.27 A sin- 27 2X denotes the powerset of X, i.e.,

the set of all subsets of X.gle element of G (P) is referred to as an genotypic (phenotypic)
individual or candidate solution.

Evolutionary algorithms use variation and selection operators
to search the set of genotypes G while maintaining a genotypic
population popG(t) at each point in time t. As EAs are randomized
algorithms, both variation and selection operators can be probabilis-
tic. A probabilistic influence on the behavior of these operators is
modelled by tracking the state ω ∈ Ω of an entropy source via an
additional parameter and return value. Values of Ω represent the
states of a random number generator in an implementation. Prim-
itive functions are then used to extract usable random values from
Ω.

The random discrete uniform primitive rdu :: Ω × 2X → X ×
Ω selects a (uniformly) random element x from a set X based on
entropy source state ω ∈ Ω. The random normal primitive rn :: Ω×
R×R+

0 → R×Ω, selects a random number x = rn(ω, µ, σ) from
a normal distribution with mean µ and standard deviation σ. The
random uniform primitive ru :: Ω ×R×R → R× Ω selects a
random number n = ru(ω, l, u) from an uniform distribution in
the closed interval [l, u] ⊂ R. In addition to x, these primitives also
return a new entropy source state ω′ ∈ Ω.

The notation op :: D × Ω → R × Ω is used to describe
a probabilistic operator op with domain D and range R, where
additional parameters influencing the behavior of op are taken from
D. This allows the use of “pure” functions to model probabilistic
operators. In the remainder of this text, the “extra” parameter and
return value from Ω is often omitted from formulas for notational
brevity.

Gµ Gλ

Pµ Pλ

rec

map′

recP

(map′−1)

Figure 2.5: Domain and range of the
genotypic recombination operator rec
and construction of its phenotypic ana-
logue recP. A recombination operator
is of type rec :: Gµ → Gλ. In this
diagram, map′ denotes the pointwise
extension of map to tuples. Note that
the inverse genotype-phenotype map-
ping map′−1 is only defined if map′ is
injective.

The most widespread evolutionary variation operators are re-
combination (also known as crossover) and mutation. The recombi-
nation operator rec :: Gµ → Gλ creates λ children from a parent
generation of size µ. Practical recombination operators often only
use a fixed-size subset of the parent generation to generate children.
For example, binary crossover uses a subset of size 2. This subset is

genetic programming fundamentals 23

selected randomly, or by means of a selection operator as described
below. Well-behaved recombination operators that are useful in
practice satisfy two basic axioms:

{x, x′} ∈ C[rec](x, x′), (reproduction)

C[rec](x, x′) = C[rec](x′, x). (commutativity)

Here, C[op] is the closure of an operator op, which is defined as the
family of all possible results of the application of a probabilistic
operator op. The first axiom means that applying a recombination
operator has a non-zero probability to return the parents unmod-
ified, i.e., to reproduce them. The second axiom means that the
order of the parents does not change the family of possible results
of a recombination operator.

After the recombination operator has been applied, a mutation
operator mut :: G → G is applied pointwise to each of the µ

children: mutpop :: 2G → 2G where mutpop(G) := {mut(g)}g∈G.
Domain and range of recombination and mutation operators are
shown in Figure 2.5 and Figure 2.6 respectively.

G G

P P

mut

map

mutP

(map−1)

Figure 2.6: Domain and range of the
genotypic mutation operator mut
and construction of its phenotypic
analogue mutP. The inverse genotype-
phenotype mapping map−1 is only
defined if map is injective.

A selection operator sel :: Gµ × Gλ → Gµ is then applied
to transfer the genotypic parent generation popG(t) to the child
generation popG(t + 1). In practice, a selection operator will of-
ten select the “best” λ individuals of the parent and children sets.
A (µ, λ) selection strategy will only select individuals from the
children created through recombination and mutation, whereas
a (µ + λ) selection strategy will also consider unmodified parent
individuals for selection.28 Practical selection operators will base 28 By consequence, in a (µ, λ) strategy,

the function that describes the popula-
tion’s best fitness over time t may not
be monotonic.

their decision on the single- or multi-objective fitness function fit

and thus depend on map. Other selection criteria used in practice
are purely genotypic properties such as complexity of the solution
representation.

A selection operator can also be applied when choosing parent
individuals for recombination, as described above. This position
of the selection operator, i.e., selection before recombination and
mutation is known as parent selection, whereas selection after recom-
bination and mutation is known as survivor selection or environmen-
tal selection. Practical algorithms mostly use survivor selection or
survivor selection combined with parent selection, although all four
combinations are possible.29 The implementations of the survivor 29 Although the fourth combination,

i.e., using no selection at all, is irrele-
vant in practice.

and parent selection used in an EA can differ, e.g., random parent
selection combined with fitness proportional survivor selection.

Using the definitions above, a population at time t + 1 can now be
defined solely based on a population at time t, giving the general
iteration scheme of an EA:

pop(t + 1) := selsurvivor[pop(t), mutpop(rec(selparent(pop(t))))]
(2.2)

There are multiple approaches of creating the initial population
pop(0), including random sampling from G or biased initialization

24 a modular genetic programming system

using solutions from a previous EA runs or solutions constructed
by domain experts. There are also many possibilities in defining EA
run stopping criteria. Usually the algorithm is run until a solution
of sufficient quality is found or a preset compute time budget is
exceeded.30 30 More advanced stopping criteria

involve online convergence detection
and are often integrated with strategies
for automatic restarts. See De Jong
[2006] (pp. 78–79) for more details.

De Jong, K. A. (2006). Evolutionary
computation - A unified approach. MIT
Press, Cambridge, MA

The definitions above (Formula 2.2 and dependents) provide a gen-
eral scheme for expressing abstract properties of EAs. In order to
analyze performance characteristics of concrete EAs, this scheme
needs to be realized by specific implementations of the genotype
representation, the genotype-phenotype mapping, as well as the
variation and selection operators. To associate abstract mathemat-
ical objects to implementations we use the syntactic convention
[ObjectName]〈[ImplementationName]〉. For example, a genotype set G real-
ized by an n-dimensional vector space is written as G〈Rn〉 and the
standard one-point crossover operator defined on this vector space
as rec〈ES−one−point〉. This convention makes it easy to link concrete
implementations to the larger abstract framework of EAs.

The space of possible implementations of the iteration scheme
given by Equation 2.2 exceeds the space of classical EAs. For exam-
ple, it is possible to express random search, exhaustive search, and
many other population-based search heuristics like particle swarm
optimization, ant colony optimization, or estimation of distribution
algorithms in terms of this scheme. Section 2.9 introduces search
heuristics typically employed in GP and examined in this work.

2.4.1 Abstract Genotypic and Phenotypic Search Spaces

In the definitions above, both the set of possible genotypes G and
the set of possible phenotypes P were just sets, without any addi-
tional structure. A wide array of methods available for analyzing
and optimizing EA performance for specific application domains
depends on the notion of genotypic and phenotypic search space, i.e.,
on the notion of adjacency, nearness, distance or accessibility in G
and P.31 31 Stadler, P. F. and Reidys, C. M.

(2002). Neutrality in fitness landscapes.
Applied Mathematics and Computation,
117(2–3):321–350

In EAs that use boolean or real vectors as genotypes (genetic
algorithms and evolution strategies (ES)), the notion of a search
space is highly intuitive as there are natural distance measures for
boolean and real vector genotypes (Hamming distance and Eu-
clidean distance). This intuition leads to the fact that a genotype set
G is often implicitly identified with a metric space formed by (the
carrier or support set) G and a natural distance measure dG.32 The 32 The natural distance measures being

dG〈Hamming〉 in a GA and dG〈Euclidean〉 in
an ES.

distance measure dG endows the genotype set G with a static struc-
ture independent of the fitness function f . Intuitively, dG encodes
how easy or probable or frequent it is to reach a genotype from
another genotype during evolutionary search. In other words, the
“nearness” of a genotype g ∈ G to another genotype g′ ∈ G should
approximate the probability of a sequence of variation (mutation
and recombination) steps that turns g into g′.

genetic programming fundamentals 25

In EAs that use different genotypes, such as symbolic expres-
sions represented by trees or graphs in GP, the natural choice for
a genotype distance measure is less obvious. In combinatorial or
discrete search spaces, distance measures that approximate how
easily a genotype is reachable from another genotype are often not
symmetric, leading to a notion of search spaces that is not a metric
space. This is particularly true if non-homologous recombination
operators are used, as commonly in GP. Stadler and Reidys [2002]
describes how pretopological spaces, a generalization of the much
more prevalent topological spaces can be employed to provide a
theoretical basis for the analysis of these search spaces. A pretopo-
logical space consists of a set X and a collection N (x) of neighbor-
hoods (a neighborhood system for every element x ∈ X satisfying the
following conditions:

N ∈ N (x) =⇒ x ∈ N, (centeredness)

N ∈ N (x) and N ⊆ N′ =⇒ N′ ∈ N (x), (isotonicity)

N, N′ ∈ N (x) =⇒ N ∪ N′ ∈ N (x). (directedness)

Concepts such as minima, maxima, or continuity of a function,
connectedness, convergence, and limits can be defined on pretopo-
logical spaces. See Stadler and Reidys [2002] for details and a list of
references. Formulating a mathematical theory of evolution in the
language of generalized topology links the geometric properties of
the search space as induced by the genotype set G, the variation op-
erators and the genotype-phenotype mapping map to the dynamics
of evolutionary search, such as convergence to a global optimum.
In contrast to landscape analysis, this approach is able to describe
important properties of these dynamics based on properties of the
function map, without relying on the fitness function.33 Being able 33 Stadler, B. M. R., Stadler, P. F., Wag-

ner, G. P., and Fontana, W. (2000).
The topology of the possible: Formal
spaces underlying patterns of evolu-
tionary change. Working papers, Santa
Fe Institute

to describe search space geometry and search dynamics without
referring to a concrete fitness function also motivates the approach
of tuning GP parameter settings for problem classes instead of for
individual problem instances taken in Chapter 5.

This work explicitly distinguishes between a genotype set G and
a genotypic search space G. The same distinction is made between a
phenotype set P and phenotypic search space P . A genotypic (pheno-
typic) search space is a pair consisting of G (resp. P) and a neigh-
borhood system NG (NP): G := (G,NG) (resp. P := (P,NP)).

In the case of EAs with natural genotypic distance metrics,
such as ES and GA, it is often simpler to define the search space
by means of these metrics. Among other things, this allows to
study causality in evolutionary search.34 A metric is a function 34 Droste, S., Jansen, T., and Wegener, I.

(2000). Optimization with randomized
search heuristics: The (A)NFL theo-
rem, realistic scenarios, and difficult
functions. Interner Bericht des Sonder-
forschungsbereichs 531 Computational
Intelligence CI–91/00, Universität
Dortmund, Germany

d :: X × X → R that satisfies the following conditions for each

26 a modular genetic programming system

a, b, c ∈ X:

d(a, b) ≥ 0, (non-negativity)

d(a, b) = 0 ⇐⇒ a = b, (identity of indiscernibles)

d(a, b) = d(b, a), and (symmetry)

d(a, c) ≤ d(a, b) + d(b, c). (triangle inequality)

Relying on this definition, the neighborhood structure of X can
be defined via the concept of an open ball: Given a metric d defined
on X and an element x ∈ X, the open ball Bε(x) around x of radius
ε is defined as the set

Bε(x) := {x′ ∈ X|d(x, x′) < ε}. (2.3)

The open ball around x or radius ε is known as an ε-neighbour-
hood. It contains all elements x′ ∈ X whose distance d from x
is strictly less than ε. All open balls around x then constitute the
neighborhood system N (x).

As mentioned above, the abstract definition of genotypic and phe-
notypic search spaces enables a wide array of methods for analyz-
ing and optimizing EA performance. Examples include landscape
analysis35, search space visualization36, fitness distance correlation 35 Mersmann, O., Bischl, B., Traut-

mann, H., Preuss, M., Weihs, C., and
Rudolph, G. (2011). Exploratory land-
scape analysis. In Proceedings of the 13th
annual conference companion on Genetic
and evolutionary computation (GECCO
2011), pages 829–836, New York. ACM
Press
36 Pohlheim, H. (2006). Multidi-
mensional scaling for evolutionary
algorithms - Visualization of the path
through search space and solution
space using sammon mapping. Artifi-
cial Life, 12(2):203–209

analysis37, or locality analysis of the genotype-phenotype map-

37 Jones, T. and Forrest, S. (1995).
Fitness distance correlation as a
measure of problem difficulty for
genetic algorithms. In Proceedings of
the Sixth International Conference on
Genetic Algorithms, pages 184–192, San
Francisco, CA. Morgan Kaufmann

ping38. Genotypic and phenotypic search spaces formalize the intu-

38 Raidl, G. R. and Gottlieb, J. (2005).
Empirical analysis of locality, heritabil-
ity and heuristic bias in evolutionary
algorithms: A case study for the mul-
tidimensional knapsack problem.
Evolutionary Computation, 13(4):441–475

ition of individual and solution similarity. In the following sections,
concrete examples of genotype and phenotypes representations for
GP, as well as genotypic and phenotypic search spaces for GP, will
be given. This work focuses on GP, nevertheless it would be equally
possible to define other EAs in this framework by supplying suit-
able representations and distance measures.

2.5 Genotypes, Phenotypes and Fitness in GP

Based on the abstract definitions of genotype and phenotype given
in Section 2.4, this section provides definitions of genotypes and
phenotypes used in GP. It should become clear in this section that
it is possible to define GP genotypes without resorting to concrete
genotypic representations like trees, graphs, or register machine
programs. That does not mean that concrete representations are of
no importance. As mentioned in the introduction and explained
in more detail in the next subsection, concrete representations and
variation operators play a crucial role in GP algorithm performance.
By defining GP genotypes as expressions of a formal language, it is
possible to give precise formal specifications of many important op-
erations on these genotypes, including initialization and variation
operators and genotypic (distance) metrics.

2.5.1 GP Genotypes

The set of S-expressions39 typically used for individual represen- 39 Koza, J. R. (1992). Genetic program-
ming: On the programming of computers
by means of natural selection. MIT Press,
Cambridge, MA

genetic programming fundamentals 27

tation in (tree) GP is isomorphic to the set of terms in first-order
logic. This syntactic equivalence motivates the following definition
of the set of abstract GP genotypes: Given a set of input variable
symbols V and a family of function symbols F, where Fi is the set
of function symbols of arity i, the set of abstract GP genotypes GGP

can be defined inductively:

V ⊆ GGP, (Input Variables)

f (t1, . . . , tn) ∈ GGP if f ∈ Fn and {t1, . . . , tn} ∈ GGP.
(Function Applications)

F0 is also known as the set of constant symbols, or simply con-
stant set. The disjoint union over all sets in the Fn, with n > 0, is
commonly known as the function set. In the reminder of this text,
elements of the set of abstract GP genotypes will simply be referred
to as GP expressions. Again, it is important to note that the set of
abstract GP genotypes defined above is isomorphic to the set of S-
expression commonly used in tree GP, meaning that there is a one
to one mapping from S-expressions to abstract GP genotypes. It is
therefore possible to describe complex operations less formally in
pseudo-code or via pictures of expression trees. This text employs
formal and informal descriptions interchangeably or in parallel, de-
pending on what is more appropriate and clear in a given situation.

To arrive at concrete GP genotypes, concrete instances of V and F,
as well as a concrete representation (trees, graphs, register machine
programs, etc.) must be provided. Concrete representations primar-
ily influence the time, memory, and implementation complexity of
operations on genotypes, all of which are important topics but lie
outside the scope of this chapter. The well-known test problems ar-
tificial ant and simple symbolic regression40 provide concrete examples 40 Koza, J. R. (1992). Genetic program-

ming: On the programming of computers
by means of natural selection. MIT Press,
Cambridge, MA

for V and F.
For the artificial ant problem, the combined set F consists of the

sets F0 := {left, right, move}, F2 := {if_food_ahead, progn2} and
F3 := {progn3}. In this problem, the input variable set V is empty,
as solution programs receive input implicitly. An example for a GP
genotype in this problem would be if_food_ahead(progn2(move,
left), right).

For the simple (univariate) symbolic regression problem, the in-
put variable set is defined as V := {x}. By extending the input vari-
able set to V := {x1, . . . , xd}, this definition can readily be extended
to multivariate symbolic regression for d-dimensional input data.
The family of function sets F consists of F1 := {sin, cos, exp, log}
and F2 := {+,−, ∗, /}. In Koza [1992]’s formulation41, no constant 41 Koza, J. R. (1992). Genetic program-

ming: On the programming of computers
by means of natural selection. MIT Press,
Cambridge, MA

set is defined, but could be easily added by including a set F0 := R

into F, where R is a finite subset of R. An example genotype for
this multivariate symbolic regression with constants problem could
be +(sin(x1), ∗(2.14, x2)), which in a more familiar infix syntax
would be written as sin(x1) + 2.14 ∗ x2.

28 a modular genetic programming system

2.5.2 GP Phenotypes

In GP, the genotype-phenotype mapping mapGP :: GGP → PGP is
defined by giving a formal denotational semantics for the abstract
GP genotypes defined in Subsection2.5.1. The specifics of these se-
mantics depend on the semantics of the function symbols contained
in F. As an example, the semantics for the univariate symbolic re-
gression problem without constants SR1, mapGP−SR1 :: GGP−SR1 → (R→
R) are presented below:

mapGP−SR1[t] := f (x)→ E(t), where

E [x] := x, (Input Variable)

E [sin(t)] := sin(E [t]), (Sine)

E [cos(t)] := cos(E [t]), (Cosine)

E [exp(t)] := exp(E [t]), (Exponential)

E [log(t)] := log(E [t]), (Natural Logarithm)

E [t1+t2] := E [t1] + E [t2], (Addition)

E [t1−t2] := E [t1]− E [t2], (Subtraction)

E [t1∗t2] := E [t1]× E [t2], (Multiplication)

E [t1/t2] := E [t1]÷ E [t2]. (Division)

Here, E is the denotational semantics of input variables and
function applications. These semantics map an abstract GP geno-
type t, i.e., a symbolic expression, to a function with domain R and
range R. For example, in this semantics, the abstract GP genotype
sin(x ∗ x) denotes the function f (x)→ sin(x2).

The definition of a GP phenotype is dependent on the appli-
cation, e.g., symbolic regression, but independent of the concrete
problem instance, e.g., symbolic regression of a damped oscillator.
It offers a middle-ground for analysing the performance of GP algo-
rithm components on specific applications, independent of concrete
problem instances. A concrete fitness function F, on the other hand,
is both application dependent and problem dependent.

2.5.3 GP Fitness Functions

The fitness function defines the interface between a solution space
P and selection operator sel and as thus guides the GP search
process to desirable solutions. In the case of GP, desirable solutions
are 1) accurate, 2) compact, 3) understandable and 4) generalizable.

In this enumeration, accuracy is highly problem dependent.
For example, an accurate solution for a classification problem is a
classifier that provides high precision and recall, often combined
into measures like the F-score42 or Cohen’s Kappa coefficient43. 42 Rijsbergen, C. J. V. (1979). Information

Retrieval. Butterworth-Heinemann,
Newton, MA, 2nd edition
43 Cohen, J. (1960). A coefficient of
agreement for nominal scales. Educa-
tional and Psychological Measurement,
20(1):37

Solution compactness on the other hand, can be measured in-
dependently of the concrete problem, for example by statistical
information criteria or, more prevalently, by syntactical solution

genetic programming fundamentals 29

size and complexity measures. The importance of regarding solu-
tion compactness as a contributing factor to overall solution quality
or fitness is amplified by the phenomenon of bloat in GP, i.e., the
tendency of the average solution size to grow during evolution.44 44 Silva, S. (2008). Controlling bloat: In-

dividual and population based approaches
in genetic programming. PhD thesis,
Departamento de Engenharia Infor-
matica, Universidade de Coimbra,
Portugal

Understandability cannot easily defined mathematically as it
depends on prior knowledge on the side of the GP system user.
Nonetheless, the understandability of a solution is certainly corre-
lated with its complexity. Other variables influencing understand-
ability are the solution dimensionality, in applications where the
concept applies, the number and the kind of functions used from
the function set, as well as the similarity to solutions known in the
application field.

Solution generalizability can be estimated by validation on an
independent test cases or, in the case of machine learning problems,
by more advanced methods such as cross-validation. In practice,
solutions of lower complexity often achieve higher generalizability,
but this is not always the case in all applications (cf. Vladislavleva
et al. [2009]). In the important application of symbolic regression,
more explicit generalizability measures have been recently devel-
oped.45 As the phenomenon of bloat amplifies the importance of 45 Vladislavleva, E., Smits, G. F., and

Den Hertog, D. (2009). Order of non-
linearity as a complexity measure
for models generated by symbolic
regression via Pareto genetic program-
ming. IEEE Transactions on Evolutionary
Computation, 13(2):333–349

solution compactness, the importance of solution generalizability is
amplified by the phenomenon of overfitting.

Multiple solutions were proposed to handle the inherently multi-
objective nature of GP fitness. The simplest solution is to combine
objectives like accuracy and compactness into a scalar fitness value,
e.g., via a weighted sum. There are many issues to this solution,
though. It is often not clear how to weight individual objectives and
objectives are often defined on largely different scales. Furthermore,
Pareto-optimal solutions might become unreachable.

In modern GP systems, fitness is defined as a vector of real num-
bers, i.e., fitGP :: P → Rn, where n is the number of objectives.
In common practice at least two objectives are used, the first objec-
tive being solution accuracy, the second being solution compact-
ness. These fitness vectors are then consumed by a multi-objective
selection operator as detailed in Section 2.6.4.

Concrete measures for solution compactness are intuitively de-
fined on abstract GP genotypes. A non-exhaustive enumeration of
these measures include 1) the number of function symbols, con-
stants and input variables in a symbolic expression, 2) the number
of levels in the tree representation of a symbolic expression and
3) the internal or external path length of the tree representation of
a symbolic expressions. All of these measures are used in practice.
A problem with these measures is their coarse granularity, i.e., in
each of these measures, many symbolic expressions are mapped to
the same complexity value. To alleviate this and other problems,
Keijzer and Foster [2007] introduce the measure of expression vis-
itation length vl :: GGP → N, which is defined in Equation 2.4,

30 a modular genetic programming system

where c(t) denotes the number of children of the root of the tree
representation of t and ti denotes the ith subtree of t.46 46 Keijzer, M. and Foster, J. (2007).

Crossover bias in genetic program-
ming. In Ebner, M. et al., editors,
Genetic Programming, volume 4445 of
Lecture Notes in Computer Science, pages
33–44. Springer, Berlin

vl(t) := s(t) +
c(t)

∑
i=1

vl(ti) (2.4)

For symbolic expressions t of fixed size s(t), vl(t) will give
smaller values values for balanced trees, and larger values for un-
balanced trees. It can be used to steer GP search towards small,
balanced solution expressions.

The focus of this work lies on data-driven GP and on symbolic
regression in particular. Here, solution accuracy can be defined
via well-known error measures, i.e., measures of the difference be-
tween observed values ŷ and values y predicted by a model. Error
measures commonly used in GP are mean-absolute error (MAE,
Equation 2.5), sum-square error (SSE, Equation 2.6), mean-square
error (MSE, Equation 2.7), and root-mean-square error (RMSE,
Equation 2.8).

mae(ŷ, y) :=
1
n

n

∑
i=1
|ŷi − yi| (2.5)

sse(ŷ, y) :=
n

∑
i=1

(ŷi − yi)
2 (2.6)

mse(ŷ, y) :=
1
n

n

∑
i=1

(ŷi − yi)
2 (2.7)

rmse(ŷ, y) :=

√
1
n

n

∑
i=1

(ŷi − yi)2 (2.8)

The MAE measures the average magnitude of the errors of a
model in relation to observed values. It uses the same units as
the original data and is easy to understand and efficiently imple-
mentable. It is linear in the sense that all individual differences are
weighted equally during the calculation of the mean. Willmott and
Matsuura [2005] shows advantages of the MAE compared to the
more prevalent RMSE when used for model comparison.47 47 Willmott, C. J. and Matsuura, K.

(2005). Advantages of the mean
absolute error (MAE) over the root
mean square error (RMSE) in assessing
average model performance. Climate
Research, 30(1):79–82

The SSE measures the sum of squares of the errors of a model in
relation to observed values. It is non-linear in the sense that it gives
higher weight to large individual differences. It is measured in
squared units, making it harder to interpret than linear measures,
but more efficient than non-linear measures that use the same units
as the original data.

The RMSE measures the average magnitude of the errors of a
model in relation to observed values. It is non-linear, giving higher
weight to large individual differences, but uses the same units as
the original data. The RMSE is influenced not only by the average
error magnitude (MAE), but also by the error variance, which can
introduce unwanted confounding in model comparisons. As the
SSE, the RMSE is most useful when models with occasional high

genetic programming fundamentals 31

individual errors are particularly undesirable. Its prevalence makes
it useful for comparing results of different models, although the
MAE should be preferred for this purpose, due to the confounding
issues mentioned above.

RMSE and MAE can be used to estimate the variation of the
errors of a model. The RMSE is always larger than the MAE value,
where a large difference denotes high variance of the individual
differences. The image of MAE, SSE and RMSE is the set of positive
real numbers including zero R+

0 , where lower values are better.

smse(ŷ, y) :=
1
n

n

∑
i=1

(ŷi − (a + byi))
2 (2.9)

Some modern symbolic regression systems implement a lin-
ear regression step on the output of symbolic expressions, freeing
GP search from discovering scaling constants and thus improv-
ing search efficiency. This leads to the scaled-mean-square error
measure (SMSE, Equation 2.9), where scaling constants a and b are
calculated via a least-squares fit. Keijzer [2004] proves that SMSE is
expected to perform better than unscaled error measures on all pos-
sible symbolic regression problems.48 SMSE puts the upper bound 48 Keijzer, M. (2004). Scaled symbolic

regression. Genetic Programming and
Evolvable Machines, 5(3):59–269

Var(ŷ) on the error, simplifying selection operators as well as result
comparison and visualization.

It is important to note that all of the measures described above
cannot be compared across different data sets as they are scale de-
pendent. Hyndman [2006] describes scale free alternatives that are
not common in the field of GP though, as they are slightly less effi-
cient to calculate.49 The same applies to the (scale free) coefficient 49 Hyndman, R. J. (2006). Another

look at forecast accuracy metrics
for intermittent demand. Foresight:
The International Journal of Applied
Forecasting, 2006(4):43–46

of determination R2, which is sometimes used in other literature
when comparing the accuracy of GP models to other modeling ap-
proaches across data sets. The R2 measure is related to the SSE by
the equation R2 = 1− sse/tsse, where TSSE denotes the total sum
of squares, which is proportional to the sample variance. Therefore,
R2 is related to the unexplained variance of a model prediction.
Note that R2 is only defined for linear models, and becomes mean-
ingless if the data to be modeled is strongly non-linear.

2.6 GP Search Operators

GP search operators, i.e., operators for population initialization,
variation and selection, are the means by which a GP system nav-
igates the set of possible genotypic solutions. Via the genotype-
phenotype mapping mapGP, these operators also define how the set
of phenotypic solutions P is navigated. As concrete implementa-
tions of most of these operators strongly depend on the GP repre-
sentation used,50 each GP representation tends to use its own set of 50 The exception here being selection,

which is representation-agnostic.initialization and variation operators.51

51 Poli, R., Langdon, W. B., and
McPhee, N. F. (2008). A Field Guide to
Genetic Programming. http://lulu.com
(retrieved 20.02.2015). (With contribu-
tions by J. R. Koza)

The notion of abstract GP genotypes as introduced in Sec-
tion 2.5.1 enables the formal definition of GP search operators
without resorting to a concrete representation. In turn, this en-

32 a modular genetic programming system

ables the independent study of the influence of GP search operators
and GP representations on GP performance. For many practical
application problems, the most widespread GP representations are
semantically equivalent, but gravitate towards different sets of GP
search operators, depending on which set of operators has the most
efficient implementation on a certain representation.

Traditional GP search operators manipulate symbolic expressions
regardless of their semantics as given by a genotype-phenotype
mapping mapGP. Recently, semantically aware search operators
have been introduced and shown to outperform purely syntactic
operators in certain problem domains.52 These operators have to 52 Moraglio, A., Krawiec, K., and

Johnson, C. G. (2012). Geometric
semantic genetic programming. In
Parallel Problem Solving from Nature-
PPSN XII, pages 21–31. Springer,
Berlin

incorporate background knowledge on the structure of a concrete
genotype-phenotype mapping mapGP and are therefore dependent
on the problem class. At the time of writing, existing examples of
semantically aware GP search operators for symbolic regression
also suffer from the need to grow genotypes in size with each vari-
ation step, leading to very complex solutions that, while providing
high accuracy, suffer from low generalizability and low understand-
ability.

This work focuses on the well-known traditional GP search op-
erators originating in tree-based GP as popularized by Koza [1992].
In the following Subsections 2.6.1 – 2.6.4, formal definitions of the
operators for initialization, variation and selection are presented.
These operators are then employed in the GP systems studied em-
pirically in later chapters.

2.6.1 Initialization Operators

Initialization operators are used to create the initial population of
symbolic expressions. They are also used to create new subexpres-
sions in certain variation operators, as well as, in certain search
heuristics, to generate new solutions to insert into a population
during GP search as a means of diversity preservation.

With conventional GP search heuristics at least, the composition
of the initial population has a significant impact on the perfor-
mance of a GP run. As the number of possible symbolic expres-
sions is infinite, there is no bias-free initialization strategy.

Random Initialization Below, Equation 2.10 defines the random
initialization operator init :: N× P2 → GGP. Here, P := [0, 1]
denotes the set of probabilities, i.e., real numbers in the closed
interval between zero and one. The set of functions with arity equal

genetic programming fundamentals 33

to or greater than one is denoted by F>0 :=
⋃

i>0 Fi.

init(n, ps, pv) := I(0, n, ps, pv)

I(i, n, ps, pv) :=


f (I(i + 1, n, ps, pv), . . . , I(i + 1, n, ps, pv)︸ ︷︷ ︸

arity(f)

) if ru(0, 1) < ps and i < n

rdu(V) if ru(0, 1) < pv

rdu(F0) otherwise
f := rdu(F>0)

(2.10)
Random initialization creates symbolic expressions of maximum

depth n. In each recursion step, a subexpression is created with
probability ps. If no subtree is created, an input variable is created
with probability pv. Otherwise, a constant is created. By setting
ps := 1 to one and pv := |V|/(|V|+|F0|) according to the ratio between
the number of input variables and the number of input variables
and constants (the number of terminals), only symbolic expressions
represented by full trees of depth n are created, realizing Koza
[1992]’s full initialization strategy. Koza [1992]’s grow initialization
strategy can be realized by setting pv as in the full strategy and
ps := |F>0|/|V|+|F| according to the ratio of the number of functions
of arity equal to or greater than one and the number of all functions
and input variables.

As neither the grow or full strategies create a very wide array
of sizes or shapes, Koza [1992] introduced the ramped half-and-half
strategy combining both methods. One half of the initial population
is created using the full strategy, while the other half is created
with the grow strategy. Both strategies are applied using a range of
depth limits to ensure high variability in expression size and shape.

Other Initialization Operators With the initialization operators intro-
duced above, the distribution of sizes and shapes of the symbolic
expressions generated is dependent on the sets F and V in non-
trivial ways that can be studied with methods from analytic com-
binatorics53. This leads to initialization strategies that offer tighter 53 Flajolet, P. and Sedgewick, R. (2009).

Analytic Combinatorics. Cambridge
University Press, New York, 1st edition

control over the statistical properties of the symbolic expressions
created.54

54 Bohm, W. and Geyer-Schulz, A.
(1996). Exact uniform initialization for
genetic programming. In Belew, R. K.
and Vose, M., editors, Foundations of
Genetic Algorithms IV, pages 379–407,
San Francisco, CA. Morgan Kaufmann;
and Iba, H. (1996). Random tree
generation for genetic programming.
In Voigt, H. et al., editors, Parallel
Problem Solving from Nature IV, volume
1141 of Lecture Notes in Computer
Science, pages 144–153, Berlin. Springer

Of course, it is also possible to start a GP run from a set of
known solutions represented as symbolic expressions. This ap-
proach is known as seeding. Poli et al. [2008] describe different
variants and best practices regarding this approach.

2.6.2 Mutation Operators

Mutation operators modify a single symbolic expression. While
early approaches of program synthesis through EAs employed
mutation operators55, the first GP systems as popularized by Koza 55 Cramer, N. L. (1985). A represen-

tation for the adaptive generation
of simple sequential programs. In
Grefenstette, J. J., editor, Proceedings of
an International Conference on Genetic
Algorithms and the Applications, pages
183–187, New York. Psychology Press

[1992] did not and relied on recombination exclusively.
Wether mutation is beneficial or detrimental to GP system per-

formance depends on the combination of the concrete mutation

34 a modular genetic programming system

operator used and the problem class.56 In symbolic regression, a 56 Luke, S. and Spector, L. (1997). A
comparison of crossover and mutation
in genetic programming. In Koza,
J. R. et al., editors, Genetic Program-
ming 1997: Proceedings of the Second
Annual Conference, pages 240–248, San
Francisco, CA. Morgan Kaufmann

mutation operator is often used to enable the adaption of constants
during evolutionary search.

This section defines the mutation operators used in the GP sys-
tem studied in this work. The focus lies on operators common both
in the literature and in practical GP systems. In addition to giving
abstract definitions, practical examples of the effects of mutation on
genotype and phenotype in the problem class of symbolic regres-
sion are provided.

Label Mutation Below, Equation 2.11 defines the label mutation
operator mutl :: GGP ×P → GGP. In this definition v ∈ V denotes
an input variable.

mutl(f (t1, . . . , tn), p) :=

 f ′(mutl(t1, p), . . . , mutl(tn, p)) if ru(0, 1) < p

f (mutl(t1, p), . . . , mutl(tn, p)) otherwise

mutl(v, p) :=

rdu(V) if ru(0, 1) < p

v otherwise

f ′ := rdu(Farity(f))
(2.11)

Label mutation modifies a symbolic expression by randomly re-
placing function symbols with function symbols of the same arity,
and by replacing input variables by input variables. The strength
of the operator is controlled by the parameter p, denoting the prob-
ability to replace the current root node label while the operator is
recursively applied to each subexpression of a symbolic expres-
sion. Note that the shape of the tree representation of the symbolic
expression is left unchanged by label mutation.

Figure 2.7 shows an example for the effect of label mutation on
genotype and phenotype in symbolic regression of unary func-
tions. The upper panels show genotype and phenotype before the
operator has been applied, the lower panels show genotype and
phenotype after operator application. Affected tree nodes are high-
lighted by a wide gray border. Operator strength was set to a low
value of p := 0.05, and only one node label was affected accord-
ingly. Nonetheless, phenotypic behavior is changed considerably.

Subtree Mutation Below, Equation 2.12 defines the subtree mutation
operator muts :: GGP ×N×P4 → GGP.

muts(f (t1, . . . , tn), n, p, pi, ps, pv) :=


init(n, ps, pv) if ru(0, 1) < p and ru(0, 1) < pi

init(0, ps, pv) if ru(0, 1) < p and ru(0, 1) ≥ pi
f (muts(t1, n, p, pi, ps, pv), . . . ,
muts(tn, n, p, pi, ps, pv))

otherwise

muts(v, n, p, pi, ps, pv) :=


init(n, ps, pv) if ru(0, 1) < p and ru(0, 1) < pi

init(0, ps, pv) if ru(0, 1) < p and ru(0, 1) ≥ pi

v otherwise
(2.12)

genetic programming fundamentals 35

*

sin

sin

*

x x

−

cos

exp

x

−

cos

x

exp

0.1761

*

sin

sin

+

x x

−

cos

exp

x

−

cos

x

exp

 0 .1 761

Genotype Phenotype

Ch
an

ge
 N

od
e

x

x

f(x)

f(x)

Figure 2.7: Example of the effect of the
label mutation operator on genotype
and phenotype in symbolic regression
of unary functions. The upper panels
show genotype and phenotype before
the operator has been applied, the
lower panels show genotype and
phenotype after operator application.
Affected tree nodes are highlighted
by a wide gray border. Operator
strength was set to a low value of
p := 0.05, therefore only one node
label was affected. Nonetheless, the
behavior of the phenotype is changed
considerably.

Subtree mutation modifies a symbolic expression by randomly
replacing subexpressions by newly initialized expressions or by
input variables or constants. The maximum size, as well as the
shape of the newly initialized subexpressions can be controlled
by the parameters n, ps, and pv, with the same semantics as in
Equation 2.10.

Operator strength can be controlled by the parameter p, denoting
the probability to replace a subexpression with a newly initialized
expression while the operator is recursively applied to each subex-
pression. The parameter pi denotes the probability of a newly cre-
ated expression to be a constant or input variable, providing control
over the tendency of the operator to grow or shrink expressions.

Figure 2.8 provides an example of the genotypic and phenotypic
effect of subtree mutation in the context of symbolic regression of
unary functions. The same format and example expression as in
Figure 2.7 is used. In this example, an input variable is replaced
by a newly initialized subexpression of three nodes, increasing the
overall number of nodes by two and the total depth of the expres-
sion by one.

Figure 2.9 provides an example of subtree mutation analogous
to the one shown in Figure 2.8. This time, a subexpression of three
nodes is replaced by an input variable, reducing the overall num-
ber of nodes by two. These examples illustrate that in symbolic
regression, there is no easily discernible relation between genotypic
expression size and (apparent) phenotypic behavior complexity.

36 a modular genetic programming system

*

sin

sin

+

x *

 -0.2613 x

−

cos

exp

x

−

cos

x

exp

0.1761

*

sin

sin

+

x x

−

cos

exp

x

−

cos

x

exp

0.1761

Genotype Phenotype

In
se

rt
Su

bt
re

e

x

f(x)
x

f(x) Figure 2.8: Example of the genotypic
and phenotypic effect of subtree
mutation in the context of symbolic
regression of unary functions. The
same format and example expression
as in Figure 2.7 is used. In this ex-
ample, an input variable is replaced
by a newly initialized subexpression
of three nodes, increasing the overall
number of nodes by two and the total
depth of the expression by one.

*

sin

sin

x

−

cos

exp

x

−

cos

x

exp

0.1761

*

sin

sin

+

x x

−

cos

exp

x

−

cos

x

exp

0.1761

Genotype Phenotype

D
el

et
e

Su
bt

re
e

x

f(x)
x

f(x) Figure 2.9: Example of subtree muta-
tion analogous to the one shown in
Figure 2.8. Here, a subexpression of
three nodes is replaced by an input
variable, reducing the overall number
of nodes by two.

genetic programming fundamentals 37

Numeric Constant Mutation In GP application classes such as sym-
bolic regression, the selection of values for constants in symbolic
expressions is required. A common approach is to use the same
evolutionary search process to discover these constants that is used
for discovering the solution expression structure. Equation 2.13

defines the numeric constant mutation operator mutc :: GGP ×R×
R+

0 × P → GGP. This operator assumes the presence of numeric
constants R ⊆ F0.

mutc(f (t1, . . . , tn), p, µ, σ) :=

 f + rn(µ, σ) if ru(0, 1) < p and f ∈ R

f (mutc(t1, p, µ, σ), . . . , mutc(tn, p, µ, σ)) otherwise

mutc(v, p, µ, σ) := v
(2.13)

Here, f ∈ R denotes a real-valued function of arity 0, i.e., a
constant. As in the mutation operators presented earlier, opera-
tor strength can be controlled by the parameter p, denoting the
probability to mutate each numeric constant present in a symbolic
expression. Numeric constants are mutated by adding a random
number drawn from a normal distribution with mean µ and stan-
dard deviation σ. Mean and standard deviation are parameters to
the operator.

Other Mutation Operators As the case with GP initialization oper-
ators, there are many different GP mutation operators described in
the literature. Piszcz and Soule [2006b] provide a comprehensive
and systematic survey of this topic.57 57 Piszcz, A. and Soule, T. (2006b).

A survey of mutation techniques in
genetic programming. In Keijzer,
M. et al., editors, Proceedings of the
8th annual conference on Genetic and
evolutionary computation (GECCO 2006),
volume 1, pages 951–952, Seattle, WA.
ACM Press

There are at least three reasons for the diversity in GP mutation
operators. First, different GP representations lend themselves to
different sets of easily and efficiently implementable mutation oper-
ators. Second, fine tuning mutation operators to certain application
classes is common in GP. The numeric constant mutation operator
introduced above is a basic example for this practice. Third, lack of
pervasive knowledge of GP theory and the observation that search
operators are seldom defined formally in GP literature leads to the
repeated reinvention of mutation operators in different GP systems.

While the GP community today judges the performance of dif-
ferent GP mutation operators mostly by referring to experimental
results, there are some guiding principles to lead GP users and GP
system implementers in the selection of a “good” operator set.

Droste and Wiesmann [2000] introduce the framework of metric-
based EAs, which contains testable properties of mutation and
recombination operators with provably favorable performance char-
acteristics.58 Unfortunately, the complex nature of the genotype- 58 Droste, S. and Wiesmann, D. (2000).

Metric-based evolutionary algorithms.
In Proceedings of the European Conference
on Genetic Programming (EuroGP
2000), volume 1802 of Lecture Notes in
Computer Science, pages 29–43, Berlin.
Springer

phenotype mapping in many GP application classes, and that
includes the important class of symbolic regression, makes it ex-
tremely difficult to design and implement operators that fulfill
these properties without losing the important benefit of compact
and understandable solutions. On the other hand, the metric-based
approach to GP operator design proved very valuable on applica-

38 a modular genetic programming system

tion classes with less complex genotype-phenotype mappings. An
important example is the data-driven synthesis of boolean functions
represented as ordered binary decision diagrams.

2.6.3 Recombination Operators

GP recombination operators, also called crossover operators, re-
combine multiple symbolic expressions. In practice, common GP
recombination operators combine two parent expressions to form
one or two child expressions. GP recombination operators are used
with the intuition that subexpressions of high fitness solutions can
evolve independently. In many practical GP application areas, this
requirement is at least fulfilled to some degree.

Standard Crossover Equation 2.14 defines the standard crossover
operator recGP :: G2

GP → G2
GP.

recGP(t, u) := (tJi 7→ u[j]K, uJj 7→ t[i]K)
i := rdu({0, |t|})
j := rdu({0, |t|})

(2.14)

In this definition, t[i] denotes the ith subexpression of a sym-
bolic expression t, where t[0] := t. The notation tJi 7→ uK denotes
the expression t whose ith subexpression has been replaced by the
symbolic expression u. The number of subexpressions of an expres-
sion is written as |t|. The standard crossover operator randomly
selects a crossover point in each parent expression and swaps the
corresponding subexpressions, returning two child expressions.

Other Recombination Operators In standard GP crossover, crossover
points are drawn from a uniform random distribution. As the ma-
jority of subexpressions are input variables or constants, most stan-
dard crossover events affect “deep” subexpressions. This imbalance
has lead to the development of several alternative GP recombina-
tion operators, including uniform crossover, context-preserving
crossover, and size-fair crossover. Poli and Langdon [1998] and Poli
et al. [2008] provide a survey of these alternatives.59 59 Poli, R. and Langdon, W. B. (1998).

On the ability to search the space of
programs of standard, one-point and
uniform crossover in genetic program-
ming. Technical Report CSRP-98-7,
School of Computer Science, Univer-
sity of Birmingham, U.K; and Poli, R.,
Langdon, W. B., and McPhee, N. F.
(2008). A Field Guide to Genetic Pro-
gramming. http://lulu.com (retrieved
20.02.2015). (With contributions by J.
R. Koza)

2.6.4 Selection Operators

Selection operators are used to select m GP solutions, or individu-
als, from a pool of n individuals for recombination and mutation
(parent selection) or for survival and transfer into the next gener-
ation (survivor selection) based on their fitness values. The task of
selection is therefore to steer the evolutionary search process to-
wards solutions of high fitness without quickly loosing solution
diversity. Thus, the decision of which individuals to select for vari-
ation or survival incurs a trade-off between exploiting existing good
solutions or exploring new regions of the search space by also select-
ing solutions of mediocre fitness.

genetic programming fundamentals 39

Selection operators can be deterministic or probabilistic, and
single- or multi-objective. Furthermore, selection operators can be
put on a gradient between non-elitist and elitist operators, depend-
ing on how much they emphasize exploitation over exploration. In
traditional GP systems, single-objective (probabilistic) tournament
selection seems to be the most commonly employed selection op-
erator.60. In modern GP systems that are mainly used for symbolic 60 Poli, R., Langdon, W. B., and

McPhee, N. F. (2008). A Field Guide to
Genetic Programming. http://lulu.com
(retrieved 20.02.2015). (With contribu-
tions by J. R. Koza)

regression, multi-objective selection seems to be rapidly gaining
popularity. In GP, selection operators with at least some degree of
elitism are common.

Single-Objective Selection In principle, all known single-objective
selection operators known in the field of EC can be directly applied
to GP. De Jong [2006] gives a thorough overview on single-objective
selection operators and their respective strengths and weaknesses.61 61 De Jong, K. A. (2006). Evolutionary

computation - A unified approach. MIT
Press, Cambridge, MA

Historically, single-objective tournament selection has been the
most commonly used selection operator in GP. Figure 2.17 of Sub-
section 2.9.1 gives a pseudo-code implementation of this operator.
The popularity of tournament selection in the field of GP is rooted
in three advantageous properties of this operator: 1) In tournament
selection, an individual is selected over another individual if it
has higher fitness, regardless of the absolute fitness difference, i.e.,
tournament selection is a rank-based operator. This leads to auto-
matic rescaling of fitness values and therefore to constant selection
pressure. Constant selection pressure is beneficial because it keeps
high-fitness individuals from taking over the population in the ini-
tial stages of a GP run while also enabling progress in late stages
of a run, when absolute fitness value differences are small. 2) By
adjusting the tournament size parameter, the degree of elitism of
the operator can be controlled. 3) Tournament selection is efficiently
implementable.

Multi-Objective Selection As mentioned in Section 2.5.3, there are
multiple factors contributing to the overall quality of a GP solution.
In addition to solution accuracy, solution compactness has to be
taken into account to counter bloat. In data-driven GP, overfitting
can also be a problem that can be countered by measuring solution
generalizability and taking generalizability into account in the
selection step. Thus, a GP fitness value can be regarded as a vector
with multiple components. Single-objective selection operators
cannot be applied to fitness vectors, which need to be reduced to
scalar values, which is most often accomplished by calculating a
weighted sum of the components. Unfortunately, it is not trivial to
choose weights that give good results. Even more importantly, not
all efficient solutions can be found that way.

An attractive alternative is to employ a multi-objective selection
operator that can handle fitness vectors directly. In GP, the most
common approaches to multi-objective selection are lexicographic
selection and Pareto selection. Lexicographic selection uses a lexi-

40 a modular genetic programming system

cographic ordering of the fitness vectors. This implies that fitness
components can be ordered according to their importance to overall
solution quality. Luke and Panait [2002] introduce a lexicographic
GP selection operator that prefers solutions of lower complexity
only if they have accuracy values of equal rank.

Pareto selection operators depend on the notion of Pareto-
dominance as defined in Equation 2.15. A fitness vector x Pareto-
dominates a fitness vector x′, written as x ≺ x′, if each component
of x is less than or equal to the corresponding component of x′ and
at least one component is strictly less, assuming that fitness is to be
minimized.

x ≺ x′ :⇔ ∀i : xi ≤ x′i and ∃j : xj < x′j (2.15)

A fitness vector x is called Pareto optimal if it is a minimal ele-
ment of the Pareto dominance strict partial order (cf. Equation 2.15).
These fitness vectors x|∀x′ : x ≺ x′ form the first Pareto front. Re-
moving all elements of the first Pareto front from the underly-
ing set and recalculating the Pareto front yields the second Pareto
front. Repeating this operation leads to a ranking which associates
each fitness vector with a Pareto front number. This process is also
known as non-dominated sorting (NDS).62 Figure 2.10 shows a Pareto 62 Goldberg, D. (1989). Genetic Al-

gorithms in Search, Optimization, and
Machine Learning. Addison Wesley,
Reading, MA

front plot of the result population of an example GP run. Points in
the plot denote GP solutions of the first Pareto front. Solution ac-
curacy is shown on the x-axis, solution complexity is shown on the
y-axis of the plot.

A Pareto selection operator selects elements from consecutive
Pareto fronts until a target number of m elements is selected. Dur-
ing this process, it may be the case that there are more elements
left in a Pareto front than elements left to be selected. There are
different strategies how to determine which Pareto front elements
to select in this case, the most common being selection based on
crowding distance, as implemented in the NSGA-II algorithm63, 63 Deb, K., Pratap, A., Agarwal, S.,

and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic
algorithm: NSGA–II. IEEE Transactions
on Evolutionary Computation, 6(2):182–
197

and selection by hypervolume contribution, as implemented by the
SMS-EMOA algorithm.64

64 Beume, N., Naujoks, B., and Em-
merich, M. (2007). SMS-EMOA: Multi-
objective selection based on dominated
hypervolume. European Journal of
Operational Research, 181(3):1653–1669

Pareto selection operators have a number of advantages over
single-objective selection as well as over other multi-objective se-
lection operators. Users are presented with a selection of solutions
to choose from, cf. Figure 2.10. Here, users can choose their own
trade-off between solution accuracy and solution complexity. They
may even choose to use multiple solutions in an ensemble. Basing
selection decisions on multiple objectives also helps to preserve
solution diversity during a GP run. For these reasons, Pareto se-
lection operators are gaining popularity in modern GP systems.65 65 Smits, G. and Kotanchek, M. (2004).

Pareto-front exploitation in symbolic
regression. In O’Reilly, U. et al.,
editors, Genetic Programming Theory
and Practice II, Genetic and Evolu-
tionary Computation Series, pages
283–299. Springer, New York; and
Schmidt, M. D. and Lipson, H. (2010).
Age-fitness Pareto optimization. In
Proceedings of the 12th annual conference
on Genetic and evolutionary computation
(GECCO 2010), pages 543–544, New
York. ACM Press

All real-world case-studies discussed in this work employ Pareto
selection.

Population Diversity Preservation Loss of solution diversity in a
population, on a genotypic or phenotypic level, leads to premature
convergence of a GP run to local optima. GP algorithms can be im-

genetic programming fundamentals 41

20 40 60 80 100 120 140

0
50

0
10

00
15

00
Pareto Front (AppSteel, Seed = 1)

Fitness (SMSE)

C
om

pl
ex

ity
 (V

is
ita

tio
n

Le
ng

th
)

●

●

●

●

●

●●

●

●

●
●

●
●

●●

● ●
●
● ● ● ● ●●

1

2

3

4

5

67

8

9

10
11

1213
1415

16 17
18
19 2021 22 23

Figure 2.10: Pareto front plot of the
result population of an example GP
run. Points in the plot denote GP
solutions of the first Pareto front.
Solution accuracy is shown on the
x-axis, solution complexity is shown
on the y-axis.

proved by implementing measures of population diversity preser-
vation. Multiple techniques have been proposed in the EA commu-
nity, including run restarts and multiple parallel runs. A particular
successful technique is the Age Layered Population Structure algo-
rithm.66. This algorithm tracks how long the genetic material of a 66 Hornby, G. S. (2006). ALPS: the

age-layered population structure for
reducing the problem of premature
convergence. In Keijzer, M. et al.,
editors, Proceedings of the 8th Annual
Conference on Genetic and Evolutionary
Computation (GECCO 2006), volume 1,
pages 815–822, Seattle, WA. ACM
Press

solution has been present in the population and uses this informa-
tion to segregate solutions into age-layers that do not compete with
each other. Newly initialized solutions are then added in each gen-
eration, leading to an algorithm that never completely converges.

When using a multi-objective selection operator, a dynamic vari-
ant of the age-layering technique can be realized by using solution
age as an additional optimization criterion. Schmidt and Lipson
[2010] describe this approach in detail and demonstrate a signif-
icant performance advantage when this approach is applied to
symbolic regression.Schmidt and Lipson [2010]

Niching is another method for population diversity preservation,
which divides the population into independent sub-populations
with limited exchange of genetic information. Shir [2012] provides
an overview on this method.67 67 Shir, O. M. (2012). Niching in

evolutionary algorithms. In Rozenberg,
G. et al., editors, Handbook of Natural
Computing, pages 1035–1069. Springer,
Berlin

42 a modular genetic programming system

2.7 Genotypic and Phenotypic GP Search Spaces

Based on the definitions of abstract genotypic and phenotypic
search spaces introduced in Section 2.4.1, this section looks at con-
crete GP search spaces. Figure 2.11 illustrates the tiered nature of
GP search spaces. Based on the search space definition given as
an input variable set, a function set, and a set of mutation and re-
combination operators, the genotypic search space is determined.
This genotypic search space can then be mapped to the phenotypic
search space through the genotype-phenotype mapping. This space
is then mapped to the fitness space via the fitness function. Practi-
cal GP selection operators as defined in Section 2.6.4 are operating
on the fitness space alone. Mutation and recombination operators,
on the other hand, operate on the genotypic space exclusively.

Genotype Space
GGP

Phenotype Space
PGP

Geno.-Pheno. Mapping
map: GGP → PGP

Fitness Space

ℝn

Phenotype Fitness

fitGP: PGP → ℝn

Search Space Definition

Figure 2.11: The three tiers of GP
search spaces. See main text for
details.

As an illustration, Figure 2.12 exemplifies instances from the
genotypic search space of a typical symbolic regression problem.
Solutions are represented as symbolic expression trees. The phe-
notypic search space with corresponding phenotypic instances is
shown in Figure 2.13.

Genotype Space GGP

exp

cos

tan

−

x x

−

sqrt

−

exp

x

sin

cos

x

sin

tan

−

x −

x x

*

cos

x

sqrt

tan

cos

sin

x

*

sin

sin

+

x x

−

cos

exp

x

−

cos

x

exp

0.17

tan

tan

sin

tan

x

sqrt

tan

x

exp

exp

+

cos

x

*

−

0.82 x

x

+

exp

cos

*

x x

sqrt

−

x exp

0.49

cos

+

−

exp

x

x

tan

*

x log

x x

tan

−

+

+

x x

cos

x

+

x −

x 0.94

Figure 2.12: Instances of the genotypic
search space of a typical symbolic
regression problem. Solutions are
represented as symbolic expression
trees.

The efficiency of evolutionary search is strongly influenced by
the ability to find better solutions in the neighborhood of good
solutions through mutation, or to find better solutions through re-
combination of good solutions. Therefore, the genotype-phenotype
mapping and the fitness functions should be continuous, meaning
that solutions near to each other in genotype space should be near
to each other in phenotype space and also be near to each other in
fitness space. Ideally, both the genotype-phenotype mapping and

genetic programming fundamentals 43

Phenotype Space PGP

x

f(x)

x

f(x)

x

f(x)

x

f(x)

x

f(x)

x

f(x)

x

f(x)

x

f(x)

x

f(x)

x

f(x)

Figure 2.13: Phenotypic search space of
a typical symbolic regression problem.
The instances shown as members of
the space correspond to the instances
shown in Figure 2.12.

the fitness function should be a continuous functions. This property
is also known as strong causality or search space locality. Search
space locality can be a useful indicator of GP problem difficulty.

As already mentioned in Section 2.6.2, Droste and Wiesmann [2000]
and Moraglio et al. [2012] both introduce design methodologies for
GP representations and search operators that induce high locality
of the genotype-phenotype mapping and fitness function. Unfor-
tunately, for reasons mentioned above, these methodologies cannot
be easily applied to the important problem class of symbolic re-
gression without loosing result compactness and understandability
to a large degree. The solution presented by Droste et al. [2000] is
elegant and effective, but only applies to symbolic regression of
boolean functions. The solution of Moraglio et al. [2012] is effective
in theory, but relies on genotypes that grow with each variation
step, which renders practical application difficult and leads to large
result expressions of low understandability.

Another well-established approach for estimating search space
locality is to calculate the fitness distance correlation, i.e., the correla-
tion between genotypic distance and absolute fitness value differ-
ence.68 Fitness distance correlation depends on a metric genotype 68 Jones, T. and Forrest, S. (1995).

Fitness distance correlation as a
measure of problem difficulty for
genetic algorithms. In Proceedings of
the Sixth International Conference on
Genetic Algorithms, pages 184–192, San
Francisco, CA. Morgan Kaufmann

space, a precondition that is seldom fulfilled by representations and
operators used in typical modern GP systems. It also depends on a
concrete fitness function.

An alternative for locality estimation independent of a con-
crete fitness function is to estimate the degree of continuity of the
genotype-phenotype mapping by correlating genotypic distance,

44 a modular genetic programming system

measured as atomic variation steps, with phenotypic distance, mea-
sured by a problem class specific metric, e.g., mean-absolute error
for symbolic regression.

In this work, an initial series of experiments has been conducted
to demonstrate this method. To estimate the genotype-phenotype
distance correlation empirically for the important GP problem class
of symbolic regression, the following experiment setup has been
used. Based on the GP input variable set x, the function set {+,−,
∗, /, sin, cos, exp, log,

√
x}, and the constant set R, s := 100 sym-

bolic expressions of maximum tree depth d := 5 have been sam-
pled via the random initialization operator given in Equation 2.10

(Section 2.6.1). Then, the subtree mutation operator given in Equa-
tion 2.12 (Section 2.6.2) with parameters p := 0.1, n := 3, ps := 0.5,
pv := 0.5, pi := 0.5 has been consecutively applied n ∈ {1, . . . , 5}
times to each sampled expression, yielding, for each n, a set of s
mutated expressions. Finally, for each set, the phenotypic distance
between the original expression and its respective mutant has been
measured by calculating the MAE between the phenotypes in the
interval [1, 10]. In the remainder of this work, this type of experi-
ment will be referred to as search space locality estimation.

Figure 2.14 visualizes the results of this experiment. Genotypic
distance, measured by number of consecutive mutation operator
applications, is shown on the x-axis. Phenotypic distance, measured
as MAE between phenotypes, i.e., univariate real-valued functions,
in the interval [1, 10], is shown on the logarithmic y-axis. Addition-
ally, the Pearson correlation between genotypic and phenotypic
distance is shown in the plot’s legend.

1 2 3 4 5

−
2

0
2

4
6

8

Search Space Locality (Standard Mutation)

Genotypic Distance (# Mutation Steps)

Ph
en

ot
yp

ic
 D

is
ta

nc
e

(l
og

. M
A

E
)

Pearson Correlation: 0.0317

Figure 2.14: Genotype-phenotype
distance correlation in standard GP
subtree mutation. Genotypic distance,
measured by number of consecutive
mutation operator applications, is
shown on the x-axis. Phenotypic
distance, measured as logarithmic
MAE, is shown on the y-axis.

genetic programming fundamentals 45

Genotypic and phenotypic distances are only very weakly posi-
tively correlated with a Pearson correlation value of 0.0317, indicat-
ing low locality of the genotype-phenotype mapping. This renders
evolutionary search difficult, but not impossible, as results of later
experiments will demonstrate (see Chapter 6).

To demonstrate the potential of high-locality search operators,
the same experiment for search space locality estimation has been
repeated with the geometric semantic GP mutation operator intro-
duced by Moraglio et al. [2012]. This operator, mutg :: GGP ×R×
N×P2 → GGP, is defined as follows:

mutg(t, s, n, ps, pv) := t + s[init(n, ps, pv)− init(n, ps, pv)]

The operator requires {+,−, ∗} to be a subset of the function
set, as well as the availability of real-valued constants in the con-
stant set. The operator proceeds by constructing a symbolic ex-
pression that subtracts a randomly initialized symbolic expressions
of maximum depth n from another randomly initialized symbolic
expression of maximum depth n. The result of the subtraction are
multiplied by a constant s. This constant s serves as a step size pa-
rameter to control mutation strength. In this experiment, it has been
set to a value of s := 0.1. See Section 2.6.1 for an explanation of the
parameters ps and pv. Experiment results are shown in Figure 2.15.

1 2 3 4 5

−
5

0
5

10

Search Space Locality (Geometric Semantic Mutation)

Genotypic Distance (# Mutation Steps)

Ph
en

ot
yp

ic
 D

is
ta

nc
e

(l
og

. M
A

E
)

Pearson Correlation: 0.1157

Figure 2.15: Genotype-phenotype
distance correlation in geometric
semantic GP mutation. The remarks to
Figure 2.14 also apply here.

Genotypic and phenotypic distances are positively correlated
with a Pearson correlation value of 0.1157, indicating higher local-
ity of the genotype-phenotype mapping compared to the locality
induced by a standard GP mutation operator. Unfortunately, using
geometric semantic GP mutation and crossover operators comes

46 a modular genetic programming system

with a price. Applying geometric semantic GP variation operators
incurs a size increase of the affected symbolic expression. With
geometric semantic mutation, size increases is linearly, while geo-
metric semantic crossover incurs exponential growth in symbolic
expression size. A GP system using naive implementations of these
operators would quickly run out of memory resources before at-
taining good results for non-trivial problems. At the time of this
writing, efficient implementations are in development using tech-
niques such as higher-order functions and memoization of interme-
diate results, that could make the applications of these operators
feasible in practice. However, efficient implementations do not solve
the problem of low human understandability of the very complex
GP expressions generated by these operators. For this reason, ge-
ometric semantic GP operators are not considered further in the
remainder of this work.

To summarize, GP representations and operators providing
higher locality of the genotype-phenotype mapping can provide
significant performance benefits to evolutionary search. Unfortu-
nately, representations inducing high locality sometimes conflict
other GP system design goals, such as result understandability.
Currently, this seems to be the case with the important GP applica-
tion class of symbolic regression of real-valued functions.

2.8 Defining Valid Regions in GP Search Spaces

There are two main paradigms to defining valid regions in GP
search space. The first paradigm completely excludes invalid re-
gions from the search space by construction of the genetic opera-
tors. Examples that fit into this category are Strongly Typed GP,
Grammatical Evolution, and Repair Functions for GP individuals.
In this paradigm, valid regions have sharp margins. In the second
paradigm, invalid regions are suppressed by fitness reduction, lead-
ing to soft margins. Parsimony pressure is a common technique
that follows this paradigm.

Both approaches have distinct benefits and drawbacks and are
often combined in practice. Excluding invalid regions leads to
smaller search spaces. If there is prior knowledge of the general
structure of a valid solution, this reduction of search space size
might be significant. Yet, the assumption that smaller search spaces
are always more tractable does not always hold. This is because a
smaller search space might exclude important middle ground for
evolution, i.e., its fitness landscape might be more rough that of a
larger superset of this space. There is some experimental evidence
that this is often the case.69 69 Keijzer, M. and Babovic, V. (2002).

Declarative and preferential bias in
GP-based scientific discovery. Genetic
Programming and Evolvable Machines,
3(1):41–79

2.9 GP Search Heuristics

In this work, the term GP search heuristic describes the concrete
search strategy used in a GP system, which is in principle indepen-

genetic programming fundamentals 47

dent of the concrete GP search space. Typically, GP uses a steady
state GA with tournament selection to search genotype space. In
the GP literature, many different concrete variants have been de-
scribed. As mentioned, it is possible to de-couple the search heuris-
tic from the search space, giving rise to a wide variety of possible
hybrid algorithms. An example is the evolution of support vector
machine kernels, which includes a memetic approach of kernel con-
stant optimization. Of course it is entirely possible to use search
heuristics from outside the field of EAs in GP search.

Historically, every GP system implemented slightly different
search heuristics, while exhaustive comparisons of GP search
heuristics, isolated from the concrete GP search space, are scarce.
Modern GP systems often employ multi-objective EAs (EMOAs) as
search heuristic. For historical reasons and to simplify paralleliza-
tion on shared memory multiprocessors, steady state algorithms
with Pareto tournament selection are the predominant EMOA vari-
ants used in today’s best-performing GP systems. In simple GP
systems mainly designed for research and teaching, single-objective
steady state EAs with tournament selection seem to be still very
widespread.70 70 Poli, R., Langdon, W. B., and

McPhee, N. F. (2008). A Field Guide to
Genetic Programming. http://lulu.com
(retrieved 20.02.2015). (With contribu-
tions by J. R. Koza)

This section describes the set of GP search heuristics examined
in this work. For each heuristic, the general algorithmic frame-
work implementing selection, i.e., the concrete implementation of
the selection operator sel of Equation 2.2, is described. GP search
heuristics may be classified as generational, steady state, or gener-
ation gap algorithms. The variation pipeline, i.e., the concrete setup
and order of application of variation operators (recombination and
mutation) is given, as some GP search heuristics exclusively use
recombination or mutation.71 Furthermore, the main features of 71 For example, Koza’s original GP

system lacked mutation operators and
relied exclusively on recombination.

the selection strategy are described, including number and de-
tails of selection criteria, as well as the trade-off made between
exploration of new search space areas and exploitation of existing
solutions. Most modern GP search heuristics make provisions for
preserving genetic diversity and related to that, avoiding premature
convergence of a population to local optima. These provisions may
include fitness sharing, crowding, niching, age layering, or restarts.
Diversity preservation approaches implemented are also part of the
description of each GP search heuristic. Finally, for each GP search
heuristic, parameters including types, ranges, default values, and
constraints are presented.

The GP search heuristics selected for study in this work can be
split into two sets, based on their origin. The first set contains GP
search heuristics implemented in existing GP systems, including
TinyGP and Eureqa. It is striking that all of these search heuristics
are single- or multi-objective steady state EAs with tournament se-
lection. The second set contains new GP search heuristics that use
more traditional generational EAs. This set was included to answer
the question whether these more traditional and arguably theo-

48 a modular genetic programming system

retically better understood and easier implemented EAs can reach
comparable performance when applied to GP. As mentioned above,
steady state EAs based on tournament selection are traditionally
used in GP systems to simplify parallelization on shared memory
multiprocessors. Nonetheless, it is also possible to parallelize gen-
erational EAs, while the parallelization on large scale distributed
memory multiprocessors is of comparable difficulty with both algo-
rithmic schemes. An overview of the most important features and
attributes of the GP search heuristics studied in this work is given
in Table 2.1.

TinyGP GSOGP GMOGP

Optimization Criteria Fitness Fitness Fitness, Complexity, Age
Selection Framework Steady State Generational (µ + λ) Generational (µ + λ)
Parent Selection Uniform Random Uniform Random or

Rank-based
Uniform Random or NDS

Variation Pipeline rec→ mut rec→ mut rec→ mut

Survivor Selection Rank-based Rank-based NDS
Diversity Preservation - - Age-Fitness Pareto Opti-

mization (AFPO)

Table 2.1: Overview of the most
important features and attributes of
the GP search heuristics described in
this work.

2.9.1 TinyGP

TinyGP is a popular small GP implementation mainly used in
teaching. It implements a simple steady-state single-objective
search heuristic with tournament selection that is loosely based
on Koza’s original work on GP.72 Steady-state search heuristics 72 Koza, J. R. (1992). Genetic program-

ming: On the programming of computers
by means of natural selection. MIT Press,
Cambridge, MA

with tournament selection are very popular in GP, both for sim-
ple teaching systems as well as for complex real-world systems, as
they are relatively simple to implement and allow straight-forward
parallelization. The TinyGP search heuristic can be seen as a delib-
erately minimal single-objective example for the popular class of
steady-state GP search heuristics with tournament selection. For
this reason, it was implemented in RGP and included in this study
as a baseline.

Algorithm Structure TinyGP employs a simple single-objective
steady state EA as its search search heuristic. In the first step of the
algorithm, a population pop(0) of µ random individuals is created.
Next, the steady-state evolution process starts by randomly select-
ing either a recombination or a mutation operator. The probability
for selecting the recombination operator is given by the parameter
prec. In case of recombination, the algorithm selects two parents
via two independent tournaments of size stournament as detailed in
the next paragraph. Note the non-zero probability of choosing the
same individual for both recombination parents, as tournaments
are performed independently. In case of mutation, a single parent
is chosen in a single tournament. In both cases, a single child is
creating by applying the chosen variation operator to the parent(s).
Next, the algorithm chooses a individual to replace by this child in

genetic programming fundamentals 49

a single negative tournament of size stournament. This process is re-
peated until a predefined termination criterion is met. Pseudo-code
for this search heuristic is shown in Figure 2.16.

pop ← c r e a t e I n d i v i d u a l s (number = µ)

while (termination criterion not met) {
c h i l d ← i f (randomUniformNumber () ≤ prec) {

mother ← tournament (pop , stournament)
f a t h e r ← tournament (pop , stournament)
rec (mother , f a t h e r)

}
e l s e {

parent ← tournament (pop , stournament)
mut (parent)

}

rep laced ← negat iveTournament (pop , stournament)

pop[replaced] ← c h i l d
}

re turn (pop)

Figure 2.16: Pseudo-code implemen-
tation of the TinyGP search heuristic.
ωRNG is the probability space used to
model the random number generator
function randomUniformNumber, which
generates uniform distributed random
numbers in the closed interval [0, 1].
The recombination operator rec must
be defined on pairs of individuals.

Selection Strategy Tournament selection in TinyGP proceeds as
follows: First, an individual is selected from the population by
uniform random sampling as the current best individual. This
individual’s fitness is then compared to competitors stournament

times. Each time a competitor has a better (smaller) fitness value,
it takes the place as the current best individual. Competitors are
chosen by uniform random sampling from the entire population.
Therefore, there is a non-zero probability that the same individual
enters the same tournament multiple times.

The negative tournament selection operator employs the same
strategy, its only difference being that the order relation < is being
replaced by its converse >, so that the worst individual taking part
in the tournament is returned as result.

Real-world implementations of the tournament selection op-
erator often include extensions and optimizations. For example,
individuals participating in a tournament are often sampled before-
hand, without replacement, avoiding the inefficiency of duplicated
individuals in tournaments.

Figure 2.17 gives a pseudo-code implementations of the tourna-
ment and negative tournament selection operators described above
and referred to in Figure 2.16.

Diversity Preservation The TinyGP system does not implement any
internal means of diversity preservation, but can be extended with
well-known external measures, such as fitness sharing, crowding,
niching, and automatic restarts without much effort. For simplicity,

50 a modular genetic programming system

tournament ← func t ion (pop , stournament) {
b e s t I n d i v i d u a l ← sampleWithoutReplacement (pop ,

number = 1)
b e s t F i t n e s s ← ∞

fo r (i in 1: stournament) {
compe t i to r ← sampleWithoutReplacement (pop ,

number = 1)
i f (fit(competitor) < bestFitness) {

b e s t F i t n e s s ← fit(competitor)
b e s t I n d i v i d u a l ← compe t i to r

}
}

re turn (b e s t I n d i v i d u a l)
}

negat iveTournament ← func t ion (pop , stournament) {
w o r s t I n d i v i d u a l ← sampleWithoutReplacement (pop ,

number = 1)
w o r s t F i t n e s s ← ∞

fo r (i in 1: stournament) {
compe t i to r ← sampleWithoutReplacement (pop ,

number = 1)
i f (fit(competitor) > worstFitness) {

w o r s t F i t n e s s ← fit(competitor)
w o r s t I n d i v i d u a l ← compe t i to r

}
}

re turn (w o r s t I n d i v i d u a l)
}

Figure 2.17: Pseudo-code implementa-
tion of tournament selection.

genetic programming fundamentals 51

these extensions were not implemented and not included in this
study.

Parameters Table 2.2 lists all parameters of the TinyGP search
heuristic. Note the comparatively large default population size,
which is typical for classical steady state GP search heuristics.

Variable (Symbol) Domain Default

Population Size mu (µ) N 300
Tournament Size tournamentSize (stournament) N 2
Recombination Probability recombinationProbability (prec) [0, 1] 0.9

Table 2.2: Parameters of the TinyGP
search heuristic.

There are no additional hard parameter constraints in the RGP
implementation of the TinyGP search heuristic, although the tour-
nament size stournament should be smaller than or equal to the popu-
lation size µ.

2.9.2 Generational Single-Objective GP

Generational Single-Objective GP (GSOGP) is a very simple gener-
ational single-objective GP search heuristic modeled after a clas-
sical single-objective ES with rank-based selection, as described
by De Jong [2006].73 Because single-objective generational search 73 De Jong, K. A. (2006). Evolutionary

computation - A unified approach. MIT
Press, Cambridge, MA

heuristics were never commonly used in GP for scalability reasons,
and single-objective search heuristics are at least partially super-
seded by multi-objective variants in state-of-the-art GP systems, this
heuristic is included mainly as a baseline. Every search heuristic
described in this study, with exception to the TinyGP search heuris-
tic which allows straight-forward parallelization, should be at least
as effective.

Algorithm Structure As indicated above, GSOGP constitutes a
classical single-objective generational (µ + λ) evolution strategy.
During initialization, a population pop(0) of µ random individuals
is created. The iterative evolution process starts by selecting λ pairs
of parents via uniform random sampling without replacement. A
recombination operator is then applied to each parent pair, yield-
ing λ children. A mutation operator is then applied to each child.
Next, µ individuals are chosen from the (µ + λ)-sized set union
of parents and mutated children by rank-based selection. These
individuals replace the parent population. The iterative process is
stopped when a predefined termination criterion is met. Figure 2.18

gives pseudo-code of the GSOGP search heuristic. Note that a real
implementation would retain final fitness values together with the
final population, eliminating the need to re-evaluate the fitness of
each individual result presentation.

Selection Strategy The selection operator sel〈GSOGP〉 implements
the well-known rank-based selection scheme. Individuals are

52 a modular genetic programming system

pop ← c r e a t e I n d i v i d u a l s (number = µ)

while (termination criterion not met) {
p a r e n t s ← sampleWithoutReplacement (pop ,

number = 2× λ)
mothers ← p a r e n t s [1 : λ]
f a t h e r s ← p a r e n t s [(λ + 1) : 2× λ]
c h i l d r e n ← mutpop (recpop (mothers , f a t h e r s))

s e l e c t i o n P o o l ← p a r e n t s ∪ c h i l d r e n
s u r v i v o r s ← sel〈GSOGP〉 (s e l e c t i onPoo l , number = µ)
pop ← s u r v i v o r s

}

re turn (pop)

Figure 2.18: Pseudo-code implemen-
tation of the GSOGP search heuristic.
The recombination operator rec must
be defined on pairs of individuals.

ranked by their fitness function values, then then n best individ-
uals are selected according to this ranking. Some extended variants
of rank-based selection assign selection probabilities according to
the fitness-based ranking and use weighted sampling to give indi-
viduals below rank n the chance of being selected for survival. For
reasons of simplicity and interpretability of results, these extensions
were not implemented in RGP and not considered in this work.

Diversity Preservation As the TinyGP search heuristic, the GSOGP
search heuristic does not implement any internal means of diversity
preservation, but can just as easily be extended with well-known
external measures, such as fitness sharing, crowding, niching, and
automatic restarts. For simplicity, these extensions were not in-
cluded in this work, although a cluster-based niching approach in
implemented in the RGP system.

Parameters All parameters of the GSOGP search heuristic are listed
in Table 2.3.

Variable (Symbol) Domain Default

Population Size mu (µ) N 100
Children per Generation lambda (λ) N 50
Parent Selection Probability parentSelectionP (ppsel) [0, 1] 1

Table 2.3: Parameters of the GSOGP
search heuristic.

In the RGP implementation of this search heuristic, these param-
eters are subject to the following constraint:

λ ≤
⌊µ

2

⌋
(Children Set Size)

As parents are sampled without replacement from an uniform
distribution and two parents are needed for recombination, the
number of children per generation must be smaller than or equal to
half the population size.

genetic programming fundamentals 53

2.9.3 Generational Multi-Objective GP

Generational Multi-Objective GP (GMOGP) is a generational multi-
objective GP search heuristic that combines ideas of state-of-the-
art multi-objective GP search heuristics with design concepts of
modern generational multi-objective EAs. The main reason for its
inception and inclusion in the set of search heuristics studied is
to answer the research question of whether it is possible to reach
performance comparable to Ordinal Pareto GP (OPGP) with an
conceptually simpler generational multi-objective GP search heuris-
tic.74 74 Smits, G. and Vladislavleva, E.

(2006). Ordinal Pareto genetic pro-
gramming. In Yen, G. G. et al., editors,
Proceedings of the 2006 IEEE Congress on
Evolutionary Computation (CEC 2006),
pages 3114–3120, Piscataway, NJ. IEEE
Press

Algorithm Structure In contrast to OPGP and as its name implies,
GMOGP is based on a classical generational (µ + λ) strategy. After
creating an initial population pop(0) of µ random individuals, the
iterative evolution process starts by choosing λ pairs of parents ei-
ther with probability ppsel by the Pareto selection operator detailed
in the next paragraph, or with probability 1 − ppsel by uniform
random sampling without replacement. Pairwise recombination is
applied before mutation, yielding λ children. Next, µ individuals
are chosen from the (µ + λ + ν)-sized set union of parents, children
and ν newly initialized individuals by the Pareto selection operator
detailed in the next paragraph, replacing the parent population.
This iterative process is stopped when a predefined termination
criterion is met. Figure 2.19 outlines the GMOGP search heuristic in
pseudo-code.

pop ← c r e a t e I n d i v i d u a l s (number = µ)

while (termination criterion not met) {
p a r e n t s ← i f (randomUniformNumber () ≤ ppsel) {

sel〈GMOGP〉 (pop , number = 2× λ)
}
e l s e {

sampleWithoutReplacement (pop , number = 2× λ)
}
mothers ← p a r e n t s [1 : λ]
f a t h e r s ← p a r e n t s [(λ + 1) : 2× λ]
c h i l d r e n ← mutpop (recpop (mothers , f a t h e r s))
newInd iv idua l s ← c r e a t e I n d i v i d u a l s (number = ν)

s e l e c t i o n P o o l ← p a r e n t s ∪ c h i l d r e n ∪ newInd iv idua l s
s u r v i v o r s ← sel〈GMOGP〉 (s e l e c t i onPoo l , number = µ)
pop ← s u r v i v o r s

}

re turn (pop)

Figure 2.19: Pseudo-code implemen-
tation of the GMOGP search heuristic.
The recombination operator rec must
be defined on pairs of individuals.

Selection Strategy The selection operator sel〈GMOGP〉 is based on
NDS of the selection pool based on the three criteria fitness, geno-

54 a modular genetic programming system

typic complexity, and genotypic age (see next paragraph). Ties in
the NDS are broken by crowding distance (CD). Thus, the selec-
tion strategy matches the selection strategy of the well-established
NSGA-II EMOA.

Diversity Preservation GMOGP implements elements of Schmidt
and Lipson [2010]’s Age-Fitness Pareto Optimization (AFPO) algo-
rithm for preserving genotypic diversity and avoiding premature
convergence. 75 In each generation, a fixed number of newly ini- 75 Schmidt, M. D. and Lipson, H.

(2010). Age-fitness Pareto optimiza-
tion. In Proceedings of the 12th annual
conference on Genetic and evolutionary
computation (GECCO 2010), pages
543–544, New York. ACM Press

tialized individuals are inserted into the population to maintain
genetic diversity. Of course, these new individuals will be of low
fitness on average and would be quickly selected for replacement
without having the chance to obtain local optima through a series
of variation steps. This problem is countered by the introduction of
genotypic age : G →N, as defined as follows:

age(gnew) := 0,

age[mut(g)] := age(g) + 1, (2.16)

age[rec(gA, gB)] := max[age(gA), age(gB)],

where gnew is a new genotype just inserted into the selection pool,
and g, gA, and gB are individuals already existing in a population.
The genotypic age of a new individual is defined as 0, mutation of
an existing individual increases its age by one, and the age of the
recombination of two parents is the maximum of their ages. There-
fore, the age of an individual is the age of its oldest ancestor, even
if no genetic material of that ancestor is left. Genotypic age is then
considered as another optimization criterion to minimize, in addi-
tion to the minimization criteria fitness and genotypic complexity.
This leads to an emergent dynamic age-layering of the population,
as young individuals are not dominated by older more fit or less
complex genotypes. Therefore, younger individuals are allowed
to evolve independently of older individuals, until they reach the
same age, i.e., have been subject to the same number of variation
steps. Ideally, this approach should preserve genetic diversity and
enable the discovery of new local and global optima throughout the
entire duration of a GP run. The diversity preservation mechanism
can be disabled by setting the boolean search heuristic parameter
Age Layering to false.

Parameters Table 2.4 presents all parameters of the GMOGP search
heuristic.

Variable (Symbol) Domain Default

Population Size mu (µ) N 100
Children per Generation lambda (λ) N 50
New Individuals per Generation nu (ν) N0 50
Age Layering ageLayering B true

Parent Selection Probability parentSelectionP (ppsel) [0, 1] 1

Table 2.4: Parameters of the GMOGP
search heuristic.

genetic programming fundamentals 55

As in the GSOGP search heuristic and for the same reason, these
parameters are subject to the following constraint:

λ ≤
⌊µ

2

⌋
(Children Set Size)

2.10 Conclusions

The main theme of this chapter was the introduction of a formal
framework for GP that is able to succinctly describe a wide array
of different GP algorithms. This framework was then put to use
for defining important components of classical and modern GP
systems in an implementation-independent manner, leading to
some observations about the impact of the frameworks design to its
ease of use.

Separation of Concerns A recurring theme in the framework is the
separation of concerns, as exemplified by the separation of problem
and search space definition from search heuristics. This enables all
search heuristics defined in the framework to work on all problems
and search spaces defined in the framework without manual adap-
tion, simplifying component definition, component implementation,
and experimentation.

Reusability and Modularity The principle of separation of concerns
described in the last section also aids reusability and modularity.
For example, new individual representations can be quickly proto-
typed by reusing all other GP components, including variation and
selection operators, because all components are defined in terms
of abstract concepts that easily map to clearly defined software
interfaces.

Modern GP Search Heuristics Modern GP search heuristics, such
as the GMOGP heuristic defined in Section 2.9.3 are promising to
solve longstanding problems of GP, including the problem of bloat
and premature convergence due to population diversity loss. The
empirical study presented in Chapter 5 will put this promise to a
series of tests.

3
A Modular GP Implementation Based on R

This chapter describes RGP, a modular GP system that provides
the basis for most experimental work described in this thesis. RGP
is based on the R environment for statistical computing. The sys-
tem implements classical untyped tree-based GP as well as more
advanced variants and search heuristics including, for example,
strongly typed GP and Pareto GP. It strives for high modularity
through a consistent architecture that allows the customization and
replacement of every algorithm component, while maintaining ac-
ceptable performance and accessibility for new users by adhering to
the convention over configuration principle.

Typical GP applications are supported by standard R software
interfaces. For example, symbolic regression via GP is supported
by the same formula interface as linear regression in R. RGP is freely
available as an open source R package from CRAN.1 1 see http://cran.r-project.org/

web/packages/rgp/

After a comparison with other GP systems, this chapter provides
an overview of RGP’s feature set and describes common use cases
by means of examples. Although this chapter is not meant as a
reference manual, RGP’s feature set is described comprehensively.
A reference manual detailing every feature is available at http:
//cran.r-project.org/web/packages/rgp/rgp.pdf or through R’s
online help system. This chapter also serves as a guide and tutorial
for configuring and adapting RGP to concrete use cases. Peripheral
tasks not directly tied to GP but important to the modeling process,
such as data import, data preprocessing, and result analysis, are
also described in appropriate detail. Furthermore, RGP’s design is
motivated both from a user’s perspective as well as from a software
engineering perspective.

3.1 Other GP Systems

Fueled by the rapid increase of data volume collected in nearly ev-
ery field of science and engineering and the need to exploit these
data for forecasting and optimization, coupled with the commodifi-
cation of cheap processing power through cloud service providers,
interest in data-driven GP, and in symbolic regression in particu-
lar, has grown rapidly. A new generation of symbolic regression

http://cran.r-project.org/web/packages/rgp/
http://cran.r-project.org/web/packages/rgp/
http://cran.r-project.org/web/packages/rgp/rgp.pdf
http://cran.r-project.org/web/packages/rgp/rgp.pdf

58 a modular genetic programming system

software has been introduced, focusing on user-friendliness and
applicability to real-world tasks. Commercial vendors of these
systems are growing quickly, as demonstrated by the examples of
Nutonian2 and Evolved Analytics3. 2 see http://www.nutonian.com/

products/eureqa/
3 see http://www.evolved-analytics.

com/?q=datamodeler

Table 3.1 shows a feature-comparison matrix of the three most
prevalent GP systems and RGP. In this table, the General section
should be self-explanatory except for the Cost per Seat row: Some
vendors offer feature-reduced versions of their systems for a lower
price, these have been omitted for brevity.

The Application Area Support section lists application classes that
are directly supported through specialized tools and user interfaces.
Unsupervised Learning means the possibility to induce relations from
input data without defining dependent variables, as introduced
by Schmidt and Lipson [2009].4. Custom denotes the possibility to 4 Schmidt, M. D. and Lipson, H.

(2009). Distilling free-form natural
laws from experimental data. Science,
324(5923):81–85

provide a custom fitness function in source code form.
In the User Interface section, Scripting means the possibility to

fully automate symbolic regression runs through an interactive
scripting language. Embedding means the ability for a system to be
embedded in other software as a library.

In the Data Preprocessing section, ETL means the availability of
non-trivial tools for data extraction, transformation, and loading.
EDA denotes the availability of non-trivial tools for exploratory
data analysis, such as multiple data-visualizations and descriptive
statistics.5 5 Tukey, J. W. (1977). Exploratory

Data Analysis. Behavioral Science:
Quantitative Methods. Addison-
Wesley, Reading, MA

The Algorithm section contains features pertaining to the GP
algorithm itself. Optimization shows whether the GP algorithm sup-
ports multi-objective selection or is single-objective only. Support
for complexity, diversity, and linearity optimization criteria is listed
next. Search Strategy shows whether the algorithm’s search strat-
egy is modular, i.e., replaceable without affecting the remainder
of the system, or fixed. Type System denotes support for strongly
typed GP. Ensemble Support means the possibility to use ensembles
of symbolic expressions as models, in contrast to single symbolic
expressions only. Parameter Tuning means the ability for automatic
tuning of algorithm parameters. HPC Support denotes the support
for GP runs on high-performance parallel computing resources.

The Result Analysis section lists features for presenting, analyz-
ing, and deploying GP run results. A Model Table presents all mod-
els resulting from a GP run, together with relevant meta-data such
as validation fitness and complexity values, in tabular form. Pareto
Plots present the Pareto front of the set of result models of a GP
run, cf. Figure 2.10. Variable Presence Plots show the distribution of
input variables used in the set of result models of a GP run. Model
Simplification describes the ability to simplify model expressions
without changing their semantics through computer algebra meth-
ods. Report Generation means the ability to automatically generate
documents summarizing the results of a GP run.

http://www.nutonian.com/products/eureqa/
http://www.nutonian.com/products/eureqa/
http://www.evolved-analytics.com/?q=datamodeler
http://www.evolved-analytics.com/?q=datamodeler

a modular gp implementation based on r 59

RGP ECJ DataModeler Eureqa

General
Release 0.4-0 21 8.16 0.99.9
Author Oliver Flasch et al. Sean Luke et al. Evolved Analytics LLC Nutonian, Inc.
Platform R proprietary (Java) Mathematica proprietary (C++)
License open source open source commercial commercial
Cost per Seat – – $5, 000/year $2, 499/year
Commercial Support 3 – 3 3

Application Area Support
Regression 3 3 3 3

Classification 3 3 3 3

Unsupervised Learning – – – 3

Feature Selection 3 – 3 –
Active DoE – – 3 –
Business Intelligence – – – 3

Custom 3 3 3 –
User Interface

Graphical 3 (via RGP UI) – (deprecated) – 3

Command Line 3 (R) 3 3 (Mathematica) –
Scripting 3 (R) – 3 (Mathematica) –
Embedding 3 (R) 3 3 (Mathematica) 3 (C++ API)

Data Preprocessing
ETL 3 – 3 –
EDA 3 – 3 3

Outlier Handling 3 – 3 3

Algorithm
Optimization multi-objective single-objective multi-objective multi-objective

Complexity Crit. 3 – 3 3

Diversity Crit. 3 – 3 3

Linearity Crit. – – 3 –
Search Strategy modular fixed modular fixed
Type System 3 3 3 (patterns) –
Ensemble Support – – 3 –
Parameter Tuning 3 (via SPOT) – – –
HPC Support 3 (via Rmpi) – 3 (Mathematica) 3 (proprietary)

Result Analysis
Model Tables 3 – 3 3

Pareto Plots 3 – 3 3

Variable Presence Plots 3 – 3 –
Model Simplification 3 (via Rrules) – 3 3

Report Generation 3 (via knitr) – 3 3

Table 3.1: Feature comparison matrix
for modern GP systems. The informa-
tion presented is based on publicly
available documentation as of January
2014. See the main text for explana-
tions regarding the features listed in
this table.

60 a modular genetic programming system

●●

●

●

●

●

5 10 15 20 25

Features

L
ic

en
ce

 C
os

t p
er

 S
ea

t p
er

 Y
ea

r

$0
$1

,0
00

$2
,0

00
$3

,0
00

$4
,0

00
$5

,0
00

RGP
ECJ

DataModeler

Eureqa

TinyGP

Discipulus

Figure 3.1: Features versus costs of
modern GP system offerings. Number
of features as of Table 3.1 are shown
on the x-axis, license cost per seat
and year are shown on the y-axis. In
addition to the systems included in
Table 3.1 and plotted as solid dots,
the lesser known Discipulus system
and the well known but but very
basic TinyGP system are also shown,
plotted as hollow dots. Note that this
plot is naturally biased towards the
features listed in Table 3.1. Also, the
dimension of algorithm efficiency is
not included in this comparison due
to lack of a thorough experimental
study. Nonetheless, both Eureqa and
Discipulus are known to have highly
optimized implementations.

ECJ ECJ is an open source EC framework written in the Java pro-
gramming language.6 According to its authors, the system was de- 6 Luke, S. (2013). The ECJ owner’s

manual – A user manual for
the ECJ evolutionary compu-
tation library. 21th edition,
http://cs.gmu.edu/ eclab/project-
s/ecj/docs/manual/manual.pdf
(retrieved 20.02.2015)

signed for large, heavy-weight experimental needs. Included in the
framework are implementations of many popular EC algorithms,
with an emphasis towards GP. ECJ was developed as a successor
to the early GP system lil-gp.7 Additional features include evo-

7 Zongker, D. and Punch, B. (1996).
lil-gp 1.01 User’s Manual. East Lansing,
MI. Michigan State University

lutionary multi-objective optimization algorithms, co-evolution,
island models for diversity preservation and parallel computation,
parsimony pressure techniques for solution complexity control,
multiple individual representations including trees and rule-sets,
and multiple search heuristics, including steady-state EA, GA, and
ES. While multi-objective selection operators are included in the
framework, the GP code uses single-objective selection only. Source
code for a basic graphical user interface is included, but its use in
the current version is discouraged by the authors. The framework is
based on a complex object-oriented design that includes proprietary
base classes for all important concepts in EA, such as Population,
Individual, Evaluator, Fitness, or Problem. The system is de-
signed to be modular, extensible, and highly configurable, with all
system settings exposed in a large parameter file. As the authors
of ECJ assert, the system has a steep learning curve and the initial
development overhead for starting a new project is relatively large.
This might well be attributed to shortcomings of the object-oriented
paradigm as implemented by the Java language in general, instead

a modular gp implementation based on r 61

of to shortcomings of ECJ’s design in particular. Notwithstanding,
thanks to its broad feature set, stable and reasonably efficient im-
plementation, and long development history, the system is widely
used in the GP community and also popular in the larger EA com-
munity. Based on number of citations, it might be the most popular
GP system today.

DataModeler The commercial GP system DataModeler8, developed 8 see http://www.evolved-analytics.

comby Evolved Analytics LLC, is based on the commercial computer
algebra system Mathematica. Early versions were based on research
conducted at an international chemical corporation, explaining the
systems focus on real-world applicability. In contrast to ECJ, Data-
Modeler is a purely a GP system, with a strong emphasis on sym-
bolic regression. Being based on Mathematica brings advantages
and disadvantages: DataModeler has by far the most advantaged
symbolic expression manipulation and simplification tools of all GP
systems described in this section. The Mathematica Notebook user
interface provides very powerful tools for data preprocessing, result
analysis, visualization, and the generation of interactive reports. On
the other hand, Mathematica incurs considerable licence costs for
commercial users, in addition to the licence costs of DataModeler
itself. Also, Mathematica has a steep learning curve itself, especially
for users from fields like engineering, where it is less commonly
deployed. Of course, the same argument can be made for other
platforms, such as R or MATLAB. Although the system is very well
documented, its lack of a simple graphical user interface can be a
hurdle for novice or occasional users. A unique characteristic of
DataModeler is its support for ensemble models. By using an en-
semble of structurally different high-quality models, the system
gains the ability to associate confidence values to predictions based
on prediction agreement of the models in the ensemble. The system
has a richer feature set than all other GP systems described in this
section and might be the most feature-complete implementation of
symbolic regression today. Unique characteristics of DataModeler
include the support for function patterns as an easy-to-use alterna-
tive to conventional strongly typed GP, very detailed interactive
result reports, and support for Active DoE, a design of experiments
variant based on symbolic regression.

Eureqa Eureqa9 is a commercial GP system developed by Nuto- 9 see http://www.nutonian.com

nian, Inc. and, like DataModeler, focused primarily on symbolic
regression.10 Unlike the Mathematica-based DataModeler system, 10 Schmidt, M. D. and Lipson, H.

(2009). Distilling free-form natural
laws from experimental data. Science,
324(5923):81–85

Eureqa is based on a proprietary platform written in C++. The
system is available in desktop and server editions, where desktop
editions have a graphical user interface that covers all functionality
while still seeming intuitive to occasional users. Special user inter-
faces for business users are also available as additional purchases,
including an integration layer for the popular spreadsheet software
Microsoft Excel, as well as a web-based user interface for large scale

http://www.evolved-analytics.com
http://www.evolved-analytics.com
http://www.nutonian.com

62 a modular genetic programming system

business intelligence use cases. These features contribute to the im-
pression that Eureqa is the most user-friendly symbolic regression
and GP system available today. Additionally, Eureqa’s graph-based
symbolic expression representation, combined with a highly opti-
mized parallel C++ implementation, offers very high performance
during evolutionary search, leading to high quality solutions af-
ter very short search times. The proprietary nature of Eureqa’s
technical platform also has disadvantages: While the Mathematica-
based DataModeler and the R-based RGP automatically inherit
a rich set of statistical and graphical tools for data preprocessing
and result analysis from their respective platforms, Eureqa has to
provide proprietary implementations, requiring users to learn a
completely new and often less refined tool set. System components,
such as search heuristics or search operators, cannot be modified
or replaced, rendering non-trivial customizations impossible. A
distinguishing feature of Eureqa is support for unsupervised learn-
ing, i.e., the automatic induction of relations in input data without
explicit division into independent and dependent variables.

Others There are many other lesser known commercial and open
source GP systems available today, most of which fall behind the
“Pareto front” of Figure 3.1. Discipulus11, a commercial GP system 11 see http://rmltech.com

developed by RML Technologies, uses a linear representation in the
form of machine code to encode symbolic expressions. This leads
to very high performance of the evolutionary search. Unfortunately,
modern algorithmic features such as multi-objective selection are
largely unsupported. TinyGP is a simple open source GP system
written in Java and especially geared to teaching and to be used as
a baseline algorithm for GP research. The system’s popularity is
furthered by its use in the very popular introductory text “A Field
Guide to Genetic Programming” by Poli et al. [2008].12 12 Poli, R., Langdon, W. B., and

McPhee, N. F. (2008). A Field Guide to
Genetic Programming. http://lulu.com
(retrieved 20.02.2015). (With contribu-
tions by J. R. Koza)

3.2 Model Induction with RGP

This section describes the process of data-driven model induction
with RGP in detail. It should serve as a general recipe for applying
RGP to common data modeling tasks. Figure 3.2 gives a course-
grained overview of the RGP process in form of a flow chart. Each
activity is also annotated with the participants roles. Business experts
are the financial stakeholders of a modeling project, domain experts
contribute application domain expertise, and data scientists take
care of the technical modeling tasks. The RGP process is loosely
based on the well-known industry standard data mining process
CRISP-DM, while adding extensions specific to GP.13 13 Shearer, C. (2000). The CRISP-DM

model: The new blueprint for data
mining. Journal of Data Warehousing,
5(4):13–22

The following subsections describe each activity shown in Fig-
ure 3.2 in more detail. Note that, while there are some minor RGP
specifics, this general process could also applied to other GP sys-
tems that support typical data modeling tasks, e.g., Eureqa or Data-
Modeler.

http://rmltech.com

a modular gp implementation based on r 63

Modeling Project Setup
• Formalize Project Goals
• Classify Problem
• Who: Domain Experts, Business Experts, Data Scientists

Problem Class?

Classification Problem Definition
• Def. Classes
• Select / Construct Features
• Def. Quality Measure
• Who: Domain Experts, Data Scientists

Regression Problem Definition
• Def. Dependent / Independent Variables
• Def. Quality Measure
• Who: Domain Experts, Data Scientists

Custom Problem Definition
• Def. Custom Fitness Function
• Def. Quality Measure
• Who: Domain Experts, Data Scientists

Classification Other
Regression

Data Acquisition
• Extract, Transform and Load (ETL) Existing Data or
• Design (DoE) and Conduct Experiments
• Who: Domain Experts, Data Scientists

Data Preprocessing
• Exploratory Data Analysis (EDA)
• "Big" Data? (Stratified) Sampling
• Outlier and Missing Data Handling
• Data Partitioning
• Who: Domain Experts, Data Scientists

Problem Class?

Linear Modeling
• Fit Linear Model
• Analyze Results
• Who: Data Scientists

Decision Tree Modeling
• Fit Decision Tree Model
• Analyze Results
• Who: Data Scientists

Genetic Programming
• Def. Building Block Set
• Perform GP Runs
• Analyze Results
• Who: Data Scientists

Regression

Classification Other

Satisfactory Results? Satisfactory Results? Satisfactory Results?

Symbolic Regression
• Def. Building Block Set
• Perform GP Runs
• Analyze Results
• Who: Data Scientists

Symbolic Classification
• Def. Building Block Set
• Perform GP Runs
• Analyze Results
• Who: Data Scientists

Satisfactory Results? Satisfactory Results?

nono

yes

Model Validation
• Test Model Interpolation Quality
• Test Model Extrapolation Quality
• Who: Domain Experts, Data Scientists

Model Deployment
• Integrate Model
• Setup Model Maintenance
• Who: Domain Experts, Data Scientists

yes

yes yesyes

no no

no

Iterate / Pivot
• Optimize Parameters (SPO)
• Adapt Building Block Set
• Adapt Quality Measure
• Reconsider Model Choice
• Who: Domain Experts, Data Scientists

Figure 3.2: RGP model induction pro-
cess. See the main text for a detailed
explanation.

64 a modular genetic programming system

3.2.1 Modeling Project Setup

The success of any data modeling project is strongly dependent on
a clear understanding of the project’s goals, resources, and con-
straints among all stakeholders. In the modeling project setup
phase, the project’s goals and constraints, as well as required fi-
nancial and personnel resources, including responsibilities, should
be unambiguously defined. All project stakeholders are involved in
the project setup phase, including business experts, domain experts,
and data scientists.

Typical data modeling projects share many properties with soft-
ware development projects, including high technical and organi-
zational complexity. Furthermore, data modeling projects often
a greater diversity of new technologies, as well as deeper busi-
ness and domain knowledge than average software development
projects. In this regard, data modeling projects often resemble re-
search projects. Nonetheless, agile project management frameworks
from the domain of software development, such as SCRUM can and
should be employed to minimize project risks.14 14 Schwaber, K. and Beedle, M. (2001).

Agile Software Development with Scrum.
Prentice Hall, Upper Saddle River, NJ,
1st edition

Project management software can be very useful to enable effi-
cient communication between project members and to track project
progress. There are many commercial and open-source systems that
fit this purpose. At least, they should enable a central version con-
trolled repository for documents and data, an issue-tracking system
for managing tasks and progress, and a calendering component for
project planning. Redmine15 is a web-based open-source project 15 see http://www.redmine.org

management software package that offers this functionality and is
stable and very user-friendly.

As mentioned, modeling project setup is primarily a phase of infor-
mation gathering. The following checklist provides a starting point
on what tasks need to be completed in this phase:
• Define project goals, including measurable progress indicators

and criteria for project completion.
• Define project constraints and assure the availability of required

personnel, technology, and funding.
• Factor-in time and resources to account for multiple iterations,

pivoting regarding methods and technologies, and project goal
adjustments.

• Establish a project timetable, including milestones and deliver-
ables.

• If possible, establish a central repository for project-related doc-
uments an data. Web-based project management software can be
very helpful in this regard.

• Designate the persons responsible for project management, and
for the correct and timely completion of each deliverable.

• Classify the application problem. Classes supported by RGP
are classification, regression, and others (through custom fitness
functions).

http://www.redmine.org

a modular gp implementation based on r 65

3.2.2 Problem Definition

After the application problem has been classified as either classi-
fication, regression, or other, data scientists can proceed to record
problem-specific information in collaboration with domain experts.
This information should be documented in detail, preferably in a
central document repository accessible to all project members.

Classification In a classification problem, the target classes have
to be defined. As classification as supported by RGP is a form of
supervised learning, these classes have to be present in the data to
be collected in the next step. If new data is to be collected, clas-
sification features have to be selected or constructed. A model
quality measure has to be decided upon. R provides a rich set of
state-of-the-art classification model quality measures via the ROCR
package. Sing et al. [2005] describe this package in detail.16 16 Sing, T., Sander, O., Beerenwinkel,

N., and Lengauer, T. (2005). ROCR:
Visualizing classifier performance in R.
Bioinformatics, 21(20):3940–3941Regression In a regression problem, independent (predictor) and

dependent (response) variables have to be defined. These variables
have to be present in the data to be collected in the next step. Also,
a model quality measure has to be decided upon. RGP has a selec-
tion of regression model quality measures built in, including the
ones described in Section 2.5.3.

Custom If the application problem at hand can neither be de-
scribed as classification nor regression, a custom fitness function
has to be defined. Examples for this case include the evolution of
rules and strategies, e.g. for financial trading, or the evolution of
support vector machine kernels.17 See Section 2.2 for additional 17 Koch, P., Bischl, B., Flasch, O.,

Bartz-Beielstein, T., and Konen, W.
(2011). On the tuning and evolution of
support vector kernels. Cologne Open
Science, CIOP Technical Report 04/11,
Bibliothek der Fachhochschule Köln,
Betzdorfer Str. 2, 50679 Köln, Germany

examples. In RGP, a custom fitness function is simply an R function
mapping a GP-generated symbolic expression, also represented as
an R function, to a numerical fitness value. Smaller fitness values
are considered to be better.

3.2.3 Data Acquisition

When the application problem is defined, suitable data can be ac-
quired. Depending on whether new data is to be recorded through
controlled experiments, a formal design of experiments (DoE)
phase is strongly recommended to yield high quality data. This
task can be supported by most modern statistics packages. R pro-
vides comprehensive support for DoE via packages. See the CRAN
task view on DoE at http://cran.r-project.org/web/views/
ExperimentalDesign.html for details and documentation.

Existing data has to be imported into R to be used with RGP. R
supports the ETL process through a comprehensive tool set. Typi-
cally, data is stored in a text file format such as comma-separated
values (CSV) or XML , in a proprietary binary format such as Mi-
crosoft Excel, or in a relational database. All these formats can
be read into R, either directly or with help of an add-on package.

http://cran.r-project.org/web/views/ExperimentalDesign.html
http://cran.r-project.org/web/views/ExperimentalDesign.html

66 a modular genetic programming system

When extracting data from a relational database, all model-relevant
fields have to be present in a single table that can then be exported.
This often involves flatting or de-normalizing the database before
extraction. Special care must be taken when handling confidential
data or individual-related data, e.g., encryption and anonymization.

After the data has been read into R and converted into a suit-
able R data frame, it should be stored in an standardized, non-
proprietary format. R’s own RDS data format is a convenient and
often suitable choice, but has the drawback of being platform-
specific to R. The saveRDS and readRDS functions can be used to
store and load R objects to files in RDS format. A simple platform-
independent alternative for medium amounts of data, i.e., R data
frames of less then 2 GiB size, is to use the text-based CSV format,
which can be read and written via the read.csv and write.csv

functions. The Hierarchical Data Format 5 (HDF5) is a platform-
independent data format suitable for large and complex data sets
that is supported by R through the RHDF5 add-on.18 18 see http://www.bioconductor.org/

packages/release/bioc/html/rhdf5.

html
Meta-data explaining the context and meaning of the data ac-

quired is just as important as the data itself. The following list
provides a starting point on what meta-data to record:
• when, where, and by whom the data was recorded
• for what modeling purpose the data was recorded
• what format the data is represented in, including specifics like

text encoding and data format version
• what software or equipment was used to record the data
• copyright and legal information pertaining to the data
• for each field in a data record:

– title
– short description
– mathematical symbol, if applicable
– data type (R supports the types integer, numeric, logical,

character, factor, and complex)
– unit of measurement
– range, i.e., minimum and maximum value permissible
– list of special values and their semantics (e.g. 0 or -1 encoding

“no value”)
• notes on any special events pertaining to the data or subsets

of the data, such as unusual external influences or measuring
equipment malfunctions
These information is often only easily available to domain ex-

perts, who should be closely involved in the whole data acquisition
phase. All acquired data and meta-data should be stored in a cen-
tral repository, together with documentation on the data acquisition
process.

http://www.bioconductor.org/packages/release/bioc/html/rhdf5.html
http://www.bioconductor.org/packages/release/bioc/html/rhdf5.html
http://www.bioconductor.org/packages/release/bioc/html/rhdf5.html

a modular gp implementation based on r 67

3.2.4 Data Preprocessing

In the data preprocessing phase, the acquired data is transformed
into a format suitable for the modeling method and task at hand.
This section focuses on data processing for data-driven GP in sym-
bolic regression and classification tasks. As there is no universal
preprocessing “recipe” suitable for all cases, the first step of prepro-
cessing should consist of an EDA. Next, outliers and missing values
should be taken care of. The data should be partitioned into train-
ing, validation, and test sets, to be able to realistically assess model
quality later in the process. If necessary, the data set size should be
reduced to be a good fit for GP via sampling and dimension reduc-
tion. In the case of time series data, time series embedding may be
performed. As detailed domain knowledge is required through-
out the preprocessing phase, domain experts should be closely
involved. In the following paragraphs, the individual tasks of data
preprocessing are described in more detail.

Exploratory Data Analysis In EDA, data is analyzed through visual-
ization and descriptive statistics with the goal of forming hypothe-
ses about potential patterns, relationships, and anomalies present
in the data. Ideas developed in EDA may trigger refinements or
changes to the goals of the data modeling project, or uncover the
need for acquiring additional data. Tools typically used in EDA
are visualization techniques such as scatter plots, histograms, QQ-
plots or box plots, and the calculation of summary statistics. These
visualizations can provide hypotheses about data quality, relative
importance of features or independent variables on the class or de-
pendent variable, and about suitable model building blocks, i.e.,
GP function sets. There are commercial EDA software packages
available that focus on ease of use while providing a wide array of
visualizations.19 R also provides a large set of EDA tools includ- 19 For example, Orange (see http:

//orange.biolab.si), SAS Visual An-
alytics (see http://www.sas.com/en_

us/software/business-intelligence/

visual-analytics.html), and JMP (see
http://www.jmp.com) provide mature
EDA packages.

ing all visualizations mentioned above, through it’s plot, hist,
qqnorm, and boxplot functions. Summary statistics are calculated
by the summary function. While the tools provided by R are often
more flexible than commercial alternatives, they are arguably less
user-friendly due to lack of a graphical user interface. For symbolic
regression, RGP alleviates this problem somewhat by providing
basic EDA tools as part of its web-based user interface.20 20 see Section 3.6

Handling of Outliers and Missing Data Although symbolic regres-
sion and symbolic classification through GP are very robust model-
ing techniques, the quality of the resulting models can be improved
by providing high-quality data. Zimek et al. [2012] provide an ex-
cellent introduction to the area of outlier detection techniques.21 21 Zimek, A., Schubert, E., and Kriegel,

H. (2012). A survey on unsupervised
outlier detection in high-dimensional
numerical data. Statistical Analysis and
Data Mining, 5(5):363–387

Most of these techniques are available to the R user in the form of
CRAN packages. Outliers should only be removed from the data
when there is clear indication, backed by domain experts, that these
outliers are artifacts of data acquisition instead of being generated

http://orange.biolab.si
http://orange.biolab.si
http://www.sas.com/en_us/software/business-intelligence/visual-analytics.html
http://www.sas.com/en_us/software/business-intelligence/visual-analytics.html
http://www.sas.com/en_us/software/business-intelligence/visual-analytics.html
http://www.jmp.com

68 a modular genetic programming system

by the process to be modeled itself. As RGP in its default config-
uration does not support data records with missing values, these
should either be repaired by infilling or omitted via the na.omit

function, depending on the number of affected records. What infill-
ing method to use is naturally highly dependent on the application
problem and should be decided in collaboration with domain ex-
perts. Simple examples include infilling with means or medians, or
with last values in the case of time series data.22 22 Friese, M., Stork, J., Guerra, R. R.,

Bartz-Beielstein, T., Thaker, S., Flasch,
O., and Zaefferer, M. (2013). UniFIeD:
Univariate frequency-based impu-
tation for time series data. Cologne
Open Science, Schriftenreihe CI-plus
TR 05/2013, Bibliothek der Fach-
hochschule Köln, Betzdorfer Str. 2,
50679 Köln, Germany

Data Partitioning In order to reliably access the quality of the gen-
erated models later in the process, data should be partitioned into
training, validation, and test sets. The training set is the data sub-
set used during model construction. In GP, this is the data set
candidate models are evaluated against. To guard against model
overfitting, an independent validation set is used to evaluate the per-
formance of generated models. An additional independent test set
is needed if multiple modeling methods are to be compared or if
modeling algorithm parameters are to be tuned. In this case, mod-
els are created with each method or parameter setting based on the
training set, the validation set is then used to compare their perfor-
mances and select the most suitable method or parameter setting.
Finally, the test set is used to assess the performance of the model
created by that method or parameter setting. There are techniques
that give more dependable indications of model performance, such
as cross validation. These are seldom used for compute time inten-
sive modeling methods such as GP, though. R’s sample function
can be used to randomly partition data sets. In the case of time
series data, the data should be divided into consecutive coherent
subsets. RGP’s web-based user interface also provides graphical
tools for data partitioning.

Size Adjustment Data-driven GP is a compute time intensive mod-
eling method, where much compute time is spend evaluating can-
didate models, i.e., applying candidate models to each data record
in the training set. For this reason, the training set should be as
small as possible, while still containing enough information to char-
acterize the process to be modeled with sufficient fidelity. There
is no universal method of determining how much data is enough
to induce high-quality models from, as many factors determining
the answer to this questions depend on the process to be modeled.
As a coarse rule of thumb, the number of records r in the train-
ing data set should be roughly related to the number of relevant
fields or true dimensionality d of the data by r :≈ sd, where s is
the number of records per dimension. This number has then to be
adjusted with regard to data quality, as the presence of noise and
measurement errors can be countered by higher data volume, at
least to a certain degree. The value of r puts a theoretical limit on
what model structures can be fit to the data exactly. Also note that
effects commonly described by the term “curse of dimensionality”

a modular gp implementation based on r 69

make it extremely difficult to build non-overfitted models for high
dimensional data. When looking at polynomials, a class of model
structures often included in the search space of symbolic regression,
s − 1 is the degree of the polynomial that fits the data exactly. In
practice, the value for r (or s) can be chosen as large as the available
compute time budget allows, with adjustments based on intuition
gained during EDA. GP with multi-objective selection based on
model error and model complexity, as implemented in RGP, is ro-
bust to the presence of spurious dimensions, i.e., fields that have
no functional relationship to the class or dependent variable. In
fact, GP has been successfully applied to selecting relevant dimen-
sions in high-dimensional data. When working with time series
data, RGP’s embedDataFrame function can be applied at this stage
of preprocessing to transform a time series regression problem to a
time-independent symbolic regression problem.

3.2.5 Classical Modeling

When working on a classification or regression problem, it is highly
advisable to apply classical modeling techniques before turning
to the more advanced and also more complex method of symbolic
classification or symbolic regression. When working with RGP, ap-
plying classical modeling approaches is particularly easy as at this
stage, the data set is already available in R, and R provides mature
and flexible implementations for most classical statistical model-
ing techniques. Adler [2010] concisely introduces relevant classical
statistical models for classification and regression.23 Evaluating the 23 Adler, J. (2010). R in a nutshell.

O’Reilly, Sebastopol, CAclassical modeling techniques enumerated in the next two para-
graphs has clear advantages over the alternative of directly turning
to more advanced GP-based approaches: 1) The techniques are
very mature and well understood in theory and practice. 2) Mature
analysis methods exist for these models and model understandabil-
ity is good. 3) Compute time requirements are very low compared
to GP. 4) The resulting models offer good understandability, given
that maximum model complexity is limited through suitable pa-
rameter settings. 5) Even when result accuracy is not sufficient, a
baseline result useful for comparisons is created.

Classification When working on a classification problem, at least
basic recursive partitioning techniques available through R’s rpart

package should be evaluated.24 This techniques create decision tree 24 see http://cran.r-project.org/

web/packages/rpartmodels that can be easily deployed. Visualized as trees, these mod-
els offer good understandability and insight into the application
problem structure.

Regression In the case of regression problems, at least basic linear
regression models available through R’s lm function should be eval-
uated, unless it is certain that the process to be modeled is clearly
non-linear. Linear models for data of medium dimensionality usu-

http://cran.r-project.org/web/packages/rpart
http://cran.r-project.org/web/packages/rpart

70 a modular genetic programming system

ally offer good understandability and are easy to deploy. In the case
of time series data, autoregressive moving average model should
be evaluated. These models are linear in the sense that the pre-
dicted values are a linear function of current and past values of the
same time series and current and past values of a series of random
variables.

3.2.6 Genetic Programming

In the case that traditional classification or regression models prove
to be insufficient or in the case of a custom application problem,
GP runs should be setup and performed. In the case of a regres-
sion or classification problem, RGP’s symbolicRegression function
can be used for this purpose. This function provides an interface
similar to R’s lm function. If a custom fitness function is needed,
RGP’s geneticProgramming function should be used instead. These
functions have a large number of parameters, including parame-
ters for defining the GP function and constant sets, and parameters
to define the search heuristics to be used. All parameters have
sensible default values that adapt to the problem class at hand.
After GP run completion, a set of models of suitable quality and
complexity is selected from the model Pareto front for further
analysis in the model validation phase. Section 3.3 illustrates this
step by means of examples, while Section 3.5 provides a detailed
overview of all modeling features. See RGP’s online documentation
on symbolicRegression and geneticProgramming for additional
reference documentation.

3.2.7 Model Validation

In model validation, one or more models are analyzed to assess
their performance under realistic conditions and to gain further
understanding of the process to be modeled. Models are evaluated
on test data and performance measures such as MAE and R2 (if
applicable) are calculated. Depending on the intended use, not only
model interpolation capability, but also model extrapolation capa-
bility is tested. When testing extrapolation capability, a model is
applied to a region of the input data space not present in the train-
ing data set. This work uses a bounding box definition of extrapola-
tion, i.e., data points outside of the rectangular hull of the training
data points are in the extrapolative region.25 As both GP-generated 25 There are other definitions of extrap-

olation, see Ebert et al. [2014] for an
overview.

Ebert, T., Belz, J., and Nelles, O.
(2014). Detektion von Extrapolation.
Proceedings of the 24. Workshop on
Computational Intelligence, Dortmund,
Germany, 50:17–32

models and models created by the classical approaches outlined
previously are white-box models, model validation should also in-
clude discussing the models with domain experts. To simplify the
presentation of models to non-technical users, RGP contains tools
for visualizing models as trees or as formulas in mathematical no-
tation. Also included are tools to analyze the input variables, i.e.,
features or independent variables, used by a set of models. Domain
experts should ensure that the variable importance reported by
these tools matches their intuition of the modeled process.

a modular gp implementation based on r 71

3.2.8 Model Deployment

If the model validation phase found a model or set of models fit
for practical use, the model or models can be deployed. This step
is highly dependent on the intended use for the model. In the sim-
plest case, models are only used for gaining understanding of a
data set and it’s underlying process or for one-shot predictions, in
which case the model deployment step can be omitted. If a model
is to be used more regularly, it has to be documented. This doc-
umentation should be made available in a central repository ac-
cessible by all project members, including the model itself. Model
documentation should include the following:
• for what modeling purpose the model was created
• when, where, and by whom the model was created
• what method, including all parameter settings, was used to

create the model
• what software, including version, was used to create the model
• model quality measures as determined in model validation
• insights on the modeled process derived from the model
• notes on any non-trivial assumptions or constraints of the model
In the case the model is to be deployed as part of a software system,
it has to be integrated. Standard software engineering practice, in-
cluding integration tests, should be followed in this step. White-box
models, e.g. symbolic expressions generated by GP, are generally
easier and more cost-effective to deploy then black-box models
that require specialized software components for model execu-
tion. The last step in model deployment should be the setup of a
model maintenance process. Goal of this process is to monitor and
control prediction quality during the active use of a model and to
warn users if the underlying process changed in such a way that an
existing model does no longer fit. Methods from the field of statis-
tical process control, such as control charts, can be used to monitor
model prediction error.26 26 Oakland, J. (2003). Statistical Process

Control. Quality management Series.
Butterworth-Heinemann, Newton, MA

3.2.9 Iteration and Pivoting

Data modeling as a whole, as well as each of its phases, are iter-
ative processes. In all phases, data scientists and domain experts
are bound to learn new facts about the data, the underlying pro-
cess to be modeled, and the suitability of the modeling techniques
and parameter settings used. In order to make this process as effi-
cient as possible, each step in each iteration should be documented.
Model parameter settings should only be changed based on clearly
documented indications, such as knowledge gained from EDA or
earlier modeling runs. If model parameter settings are to be ex-
plored, this exploration should be based on a DoE to obtain optimal
results for the time invested. See Chapter 5 for a detailed study of
how to apply DoE to GP. When using GP, the building block set,
i.e., the set of functions and constants, should be adapted based on
knowledge gained in previous iterations. Also, the choice of model

72 a modular genetic programming system

quality measure used during evolution can have a strong effect on
the results of a GP run and should be reconsidered in the case of
model quality issues. Another option to increase model quality is
to increase the allowed compute time budget. In the case that still
no model of satisfactory quality is found by GP, black-box mod-
els should be reconsidered, as they might be able to attain higher
model accuracy at the expense of model understandability.

The process of model induction with RGP is illustrated through
basic example applications in the next sections. Chapter 6 provides
additional real-world application examples.

3.3 RGP Tutorial Examples

To help getting started with RGP, this section provides a set of
tutorials, starting with simple tasks including getting RGP up and
running in an existing R installation, up to more advanced topics
like strongly typed GP. All tutorials are meant to be followed step-
by-step, in a running R session.

In the reminder of this chapter, the following typographical
conventions are used when displaying R interpreter input and
output:

Input entered by the user is marked by a thick line to the left.

Output returned by RGP is marked by a thick line to the right.

All tutorial examples are based on RGP release 0.4-0, the current
version of RGP at the time of this writing.

3.3.1 Tutorial I: RGP Installation

RGP is available as an R package on the comprehensive R archive
network (CRAN), making installation very simple. R is available for
all common operating system platforms at http://www.r-project.
org. Follow the instructions on this website to install R.

Then, to install RGP and all it’s dependencies, issue the follow-
ing command in a running R session:

install.packages("rgp")

A prompt asking to select a CRAN mirror will appear if this is
the first time an R package is installed in the running R session.
Select a mirror location near you. The installation of RGP may take
some time, as dependencies are downloaded and compilation steps
are performed.

To install the optional web-based user interface for RGP, issue
the following command:

install.packages("rgpui")

http://www.r-project.org
http://www.r-project.org

a modular gp implementation based on r 73

Compiler warnings will be reported on some operating system
platforms with some configurations and can usually be safely ig-
nored. In case of installation errors, support is available through the
RGP website at http://rsymbolic.org/projects/rgp.

3.3.2 Tutorial II: Basic Genetic Programming

This tutorial provides an interactive walkthrough of solving a basic
artificial symbolic regression problem with GP. Only low-level
RGP functionality is used, high-level convenience functions are
intentionally avoided to make each step in the modeling process
clear and explicit.

Modeling Project Setup In this first example, RGP will be config-
ured to create polynomial approximations of the sine function.
To make RGP’s functionality available in a running R session, the
package has to be loaded via R’s library command:

library("rgp")

Problem Definition In RGP, candidate solutions are represented
as regular R functions. The bodies of these functions are build
from a set input variables, a set of constants, and a set of function
symbols. The members of these sets are often referred to as GP
building blocks. In other words, these three sets define the symbolic
expression search space.

As the task of this example is the approximation of the sine
function through polynomials, a function symbol set containing
only addition, multiplication, and subtraction is defined:

functionSet1← functionSet("+", "*", "-")

Then, a set of input variables containing just the symbol x is de-
fined. Thereby the search space is restricted to univariate functions,
i.e., function of one variable:

inputVariableSet1← inputVariableSet("x")

Finally, the set of constants is defined. Constants are not created
directly, but via constant factory functions. Each time a constant
has to be created during GP search, RGP will call a constant factory
function. Here, a single constant factory that returns constants from
a normal distribution is defined:

constantFactorySet1← constantFactorySet(function() rnorm(1))

The fitness function, or objective function, associates a numeri-
cal fitness value to a candidate solution. RGP relies on the fitness
function to guide evolutionary search. The fitness function defines
the problem to be solved by GP. In this example, RGP is employed
to find functions approximating the sine function in the interval
interval1 [−π, π]. This interval is sampled in steps of size 0.1:

http://rsymbolic.org/projects/rgp

74 a modular genetic programming system

interval1← seq(from = -pi, to = pi, by = 0.1)

fitnessFunction1← function(f) rmse(f(interval1), sin(interval1))

By default, RGP minimizes fitness values, so lower values should
be associated with better solutions. Here, the RMSE of a given sine
approximation against the true sine function is used as a fitness
function.27 27 The problem defined here is a typical

symbolic regression problem. RGP also
features a simple interface for symbolic
regression, which is introduced in the
next tutorial.

Data Acquisition and Data Preprocessing As this example uses a cus-
tom fitness function, no explicit data acquisition or preprocessing
steps are necessary.

Genetic Programming RGP is now configured and ready to start an
evolutionary search for symbolic expressions of good fitness values:

set.seed(1)

gpResult1← geneticProgramming(

functionSet = functionSet1,

inputVariables = inputVariableSet1,

constantSet = constantFactorySet1,

fitnessFunction = fitnessFunction1,

stopCondition = makeTimeStopCondition(5 * 60))

The first command will set R’s random number generator seed
to a defined value (here: 1) in order to create reproducible results.
Then, a GP run that stops after five minutes is performed. The re-
sults of this run are stored in the R variable gpResult1. The GP
runtime budget can be adjusted by changing the parameter to
makeTimeStopCondition to another number of seconds.

Finally, the best sine approximation found during the GP run is
selected:

bestSolution1← gpResult1$population[[which.min(

gpResult1$fitnessValues)]]

As RGP represents GP individuals as R functions, the solution
can be directly printed:

bestSolution1

This command should create the following output:28 28 Depending on the RGP version used,
this output might differ.

function (x)

(x - (-0.636016463701753 * (1.38918749561857 + (x + x +

x + (x + (x + 0.135504518362805))) * (x - x *
1.02940921798835)) + x)) * (x + ((0.366442227806443 -

x) * x + (0.315373883934325 + (x * 1.19762981213713 *
(-3.3644961867303 * x) + -0.0888751683194937))) *
(x * 0.00529237751006351))

For deployment, this expression can be readily translated to
mathematical notation or to source code in most programming
languages.

Model Validation and Model Deployment A plot of the polynomial
approximation bestSolution1 versus the true sine function is cre-

a modular gp implementation based on r 75

ated:

plot(y = bestSolution1(interval1), x = interval1,

type = "l", lty = 1, xlab = "x", ylab = "y")

lines(y = sin(interval1), x = interval1, lty = 2)

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Figure 3.3: Best GP-generated polyno-
mial approximation (solid line) versus
true sine function (dashed line).

Figure 3.3 shows the plot created by these commands. This sim-
ple example is well suited to demonstrate the importance of model
validation. Here, the model’s extrapolation quality is checked visu-
ally by plotting an extended interval:

interval2← seq(from = -1.5*pi, to = 1.5*pi, by = 0.1)

plot(y = bestSolution1(interval2), x = interval2,

type = "l", lty = 1, xlab = "x", ylab = "y")

lines(y = sin(interval2), x = interval2, lty = 2)

The resulting plot, shown in Figure 3.4, clearly shows how model
accuracy deteriorates in an extrapolative setting. Here, this dete-
rioration has been caused intentionally by restricting the space of
possible models to polynomials. This effect can occur even when
using less restricted function sets, therefore models should be care-
fully validated in both interpolative and extrapolative settings.

Next Steps This concludes this basic tutorial. Of course there is
much room for experimentation. For example, the members of
functionSet1 could be extended by adding the cosine function cos.
Note that many RGP convenience functions have been omitted that

76 a modular genetic programming system

−4 −2 0 2 4

−
2

−
1

0
1

2

x

y
Figure 3.4: Best GP-generated poly-
nomial approximation (solid line)
versus true sine function (dashed line),
plotted in an extended interval.

would have made this particular example much shorter.

3.3.3 Tutorial III: Symbolic Regression of a Damped Pendulum

RGP offers convenience functions to simplify the solution of com-
mon tasks in GP. This tutorial shows how to use the symbolicRegression

function to solve symbolic modeling and regression tasks with only
minimal configuration work.

Modeling Project Setup Theme of this tutorial is the discovery of a
mathematical formula describing the behavior of a physical system
based on measurement data, i.e., symbolic regression. For sake
of simplicity and clarity, this data will be generated by applying
a text-book formula describing a damped pendulum. The task of
RGP then becomes the rediscovery of an equivalent formula and of
the numerical values of the formula’s parameters.

Problem Definition The formula below, given as a factory function in
R, represents a damped pendulum. The arguments are the starting
amplitude A0, gravity g, pendulum length l, phase φ (phi), damp-
ing factor γ (gamma), and radial frequency ω (omega). Figure 3.5
illustrates some of these arguments.

l

φ

Figure 3.5: Illustration of some of the
arguments to the model equation for a
damped pendulum.

a modular gp implementation based on r 77

makeDampedPendulum← function(A0 = 1, g = 9.81, l = 0.1,

phi = pi, gamma = 0.5) {

omega← sqrt(g/l)

function(t) A0 * exp(-gamma * t) * cos(omega * t + phi)

}

A factory function is a function that returns another function
configured according to the factory functions argument. The factory
function makeDampedPendulum can be applied to generate functions
describing the deflection of concrete pendulums of different specifi-
cations at a certain point in time t:

pendulum1← makeDampedPendulum(l = 0.5)

pendulum2← makeDampedPendulum(l = 1.2, A0 = 0.5)

To illustrate, the deflection of these pendulums can easily be
plotted against time (see Figure 3.6). In this plot, pendulum1 is
shown as a solid line, and pendulum2 is shown as a dashed line.

interval1← seq(from = 0, to = 10, by = 0.05)

plot(y = pendulum1(interval1), x = interval1,

type = "l", lty = 1, xlab = "t", ylab = "deflection")

lines(y = pendulum2(interval1), x = interval1, lty = 2)

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

t

d
ef

le
ct

io
n

Figure 3.6: Deflection against time of
two example pendulums. pendulum1
is shown as a solid line, pendulum2 is
shown as a dashed line.

Data Acquisition and Data Preprocessing A data frame of 512 sam-
ples of pendulum1 in the time interval [1, 10] is created. To simulate
the imperfections of real measurement data, normally distributed

78 a modular genetic programming system

noise with mean 0 and standard deviation 0.01 is added to the sim-
ulated values:

xs1← seq(from = 1, to = 10, length.out = 512)

pendulum1Data← data.frame(

time = xs1,

deflection = pendulum1(xs1) + rnorm(length(xs1), sd = 0.01))

A plot of this data is generated for visual inspection (see Fig-
ure 3.7). Each of the 512 data points is represented by a solid dot in
this figure. The influence of the normally distributed noise intro-
duced to simulate the imperfections of real-world measurements
can be clearly seen.

plot(pendulum1Data, xlab = "t", ylab = "deflection",

pch = 20, cex = 0.5)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●
●
●

●
●
●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●●
●

●
●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●
●
●

●
●●

●
●

●

●

●
●

●●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●●
●

●
●

●

●
●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●
●●

●●
●
●
●

●

●●

●

●
●
●

●

●

●●
●●

●
●●●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●●

●

●
●

●

●
●
●

●

●

●

●
●

●
●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●●
●

●

●

●●
●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●●
●
●

●

●

●

●
●
●

●
●
●

●●
●
●●●

●●●

●

●

●

●
●

●

●

●

●

●
●

●
●
●●

●
●
●●

●

●

●

●●
●
●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●
●

●

●
●●
●

●
●

●

●●

●

●

●●
●

●

●

●
●
●

●

●

●

●
●

●
●

●
●●
●
●
●●
●

●

●●

●

●
●
●
●

●

●
●

●

●●
●

●

●●

●

●
●
●
●
●●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●
●●

●
●●●

●

●

●

●●●

●●

●

●
●

●
●●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●
●
●●●

●

2 4 6 8 10

−
0.

4
−

0.
2

0.
0

0.
2

t

d
ef

le
ct

io
n

Figure 3.7: The generated data frame
pendulum1Data. Each of the 512 data
points is represented by a solid dot.
Note the noise introduced to simu-
late the imperfections of real-world
measurements.

Classical Modeling In a real-world setting, where the properties of
the underlying process generating the data are not known, mod-
eling techniques that are simpler than symbolic regression should
be applied first. Here, as an example, a linear model is fitted to the
data and saved in the variable linearModel1. Then, a summary of
the model is requested:

linearModel1← lm(deflection ~ time, data = pendulum1Data)

summary(linearModel1)

a modular gp implementation based on r 79

This summary should be similar to the example reproduced
here:

Call:

lm(formula = deflection ~ time, data = pendulum1Data)

Residuals:

Min 1Q Median 3Q Max

-0.44877 -0.03546 -0.00913 0.04235 0.39366

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.062603 0.014030 -4.462 1e-05 ***
time 0.008848 0.002306 3.837 0.00014 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error:0.1358 on 510 degrees of freedom

Multiple R-squared: 0.02806, Adjusted R-squared: 0.02616

F-statistic: 14.73 on 1 and 510 DF, p-value: 0.0001399

The low adjusted R2 value of 0.02616 already indicates that a
linear model is not a good fit for the data. Of course, this had to be
expected considering the non-linear nature of the damped pendu-
lum used in this example.

Genetic Programming As linear modeling does not produce satis-
factory results, a symbolic regression is started. At this point, the
RGP package should have been loaded into the running R session
via the command library("rgp").

A time limit of 15 CPU-core minutes is chosen for the symbolic
regression run. All other parameters are kept at their default val-
ues. RGP’s symbolicRegression function mimics R’s lm function to
make it easily approachable to users accustomed to linear modeling
with R:

srResult1← symbolicRegression(deflection ~ time,

data = pendulum1Data,

stopCondition = makeTimeStopCondition(15 * 60))

Model Validation and Model Deployment Selection and plotting of
the model with best fitness can be performed as follows:

bestModel1← srResult1$population[[which.min(

srResult1$fitnessValues)]]

plot(y = bestModel1(xs1), x = xs1, type = "l",

lty = 1, xlab = "x", ylab = "y")

lines(y = pendulum1(xs1), x = xs1, lty = 2)

A slightly improved version of the output produced by these
commands is shown in Figure 3.8. In this plot, the true pendulum
without noise is shown as a solid line, the solution found by RGP
based on noisy data is shown as a dashed line. Also, the true for-
mula and the symbolic regression result are shown in the plot’s

80 a modular genetic programming system

0 2 4 6 8 10

−
0.
8

−
0.
6

−
0.
4

−
0.
2

0.
0

0.
2

0.
4

x

y

f(x)=
sin(2⋅x

0.636205
)

x2+2.81232
⋅−2.419366

f(t)=x0 ⋅exp(−δ⋅ t) ⋅ sin(ω⋅ t+phi0)

Figure 3.8: Example plot of the result
of a GP run for symbolic regression
of a damped pendulum. The true
pendulum without noise is shown
as a solid line, the solution found by
RGP based on noisy data is shown as
a dashed line. Also, the true formula
and the symbolic regression result
are shown in the legend to the lower
right. Note that the result may differ
depending on random seed, compute
time budget, and RGP release.

legend to the lower right. Note that the exact result may differ de-
pending on random seed, compute time budget, and RGP release.
In this example, RGP did not find an exact solution, although the
difference is minor. The exponential damping term in the true
formula has been approximated by a polynomial damping term.
While the true formula includes symbolic constants, the solution
found by RGP include approximated constants found during evolu-
tionary search.

As in the previous tutorial example, the solution should be val-
idated in an extrapolative setting. As the procedure is exactly the
same, this step is omitted here for brevity. Model deployment can
also proceed as indicated in the last tutorial example.

Next Steps RGP’s symbolicRegression command offers many
configuration options to explore. See the online help available by
typing ?symbolicRegression on an R command line for details.
Perhaps most importantly, symbolicRegression supports multi-
variate regression simply via R’s formula interface. For example,
to perform symbolic regression in two variables x1 and x2 with
output variable y, the formula y ~ x1 + x2 would be used as the
first argument to symbolicRegression.

a modular gp implementation based on r 81

3.3.4 Tutorial IV: Strongly Typed GP

The theme of this tutorial example is the evolution of boolean func-
tions by means of strongly typed genetic programming. Strongly
typed GP is more complex than untyped GP as used in the previ-
ous tutorials, but allows RGP to be applied to a much broader set of
tasks.

Modeling Project Setup In this tutorial example, strongly typed GP
will be applied to discover symbolic representations of the 3-parity
function. The 3-parity function is the parity function for 3 bits, i.e.,
a function with three input parameters. For this demonstration, first
a R-implementation of the general parity function is defined:

parity← function(x) {

numberOfOnes← sum(sapply(x, function(bit) if (bit) 1 else 0))

numberOfOnes %% 2 != 0

}

For a boolean input vector x, the parity function returns true
if the number of ones in x is odd. This general function is then
specialized to the case of three parameters (3-parity) by means of
the following wrapper function:

parity3← function(x1, x2, x3) parity(c(x1, x2, x3))

Problem Definition At this point at the latest, the RGP package
should be loaded by issuing the command library("rgp"). Next,
RGP’s tool function makeBooleanFitnessFunction is applied
in order to convert parity3 to a fitness function. The resulting
parityFitnessFunction has one parameter of type “boolean func-
tion”. It returns the number of different places in the value table of
a boolean function presented as a parameter and the value table of
the parity3 function:

parityFitnessFunction← makeBooleanFitnessFunction(parity3)

This fitness function represents a distance metric (a norm): The
Hamming distance of a 3-parameter boolean function, given as
the fitness function’s parameter, to the parity3 function. In other
words, the parityFitnessFunction returns the number of input
vectors for which a given boolean functions differs in output from
the parity3 function. As there are 23 = 8 different possible boolean
input vectors of length 3, the worst fitness is 8, and the best fitness
is 0. Note that, due to the structure of the search space, solutions
with absolute worst fitness (8) can be transformed to solutions with
perfect fitness (0) by simply negating their output. In presence of
a suitable mutation operator, this transformation can occur in a
single step. GP search spaces of rich and interesting structure are
very common, and it is often beneficial to customize GP search
heuristics, variation operators, or solution representations to exploit

82 a modular genetic programming system

existing knowledge on search space structure to speed up search
considerably.

Data Acquisition and Data Preprocessing In practice, the true boolean
function would of course be unknown. Instead, a data set repre-
senting (a subset of) the value table of the boolean function sought
would be available. This task, i.e., the task of evolving boolean
functions based on fitness functions that qualify as hamming
norms, is a common GP task with many practical applications.
Much research dealing with GP solution representations and varia-
tion operators optimized for this task has been done. For example,
Wiesmann [2001] introduces the use of ordered binary decision
diagrams as GP solution representations of binary functions.29 29 Wiesmann, D. (2001). Anwendung-

sorientierter Entwurf evolutionärer
Algorithmen. Dissertation, Universität
Dortmund, Germany

In this artificial example, the true boolean function is known.
Therefore, no data acquisition or data preprocessing steps are nec-
essary.

Genetic Programming With the custom fitness function defined, the
next step is to define the set of symbolic expressions to be searched
by RGP. This is done by providing GP building blocks for boolean
functions. The constant factory set contains a single constant fac-
tory that creates boolean constants by fair coin-tosses:

booleanConstantFactory← function() runif(1) > .5

booleanConstantSet← constantFactorySet(

"booleanConstantFactory" %::% (list() %->% st("logical")))

The function set contains the boolean functions and (&), or (|) and
not (!):

booleanFunctionSet← functionSet(

"&" %::% (list(st("logical"), st("logical")) %->% st("logical")),

"|" %::% (list(st("logical"), st("logical")) %->% st("logical")),

"!" %::% (list(st("logical")) %->% st("logical")))

The input variable set contains the three function parameters x1,
x2, and x3:

booleanInputVariableSet← inputVariableSet(

"x1" %::% st("logical"),

"x2" %::% st("logical"),

"x3" %::% st("logical"))

The building block definitions above use a special RGP syntax
for type annotations. The expression %::% type operator asso-
ciates an R expression with an RGP type. An RGP type is either a
base type of the form st(type name) or a function type of the form
list(parameter type 1, parameter type 2, ...) %->% result

type. 30 This is a recursive definition, meaning that RGP types can 30 The base type constructor is called
st as an abbreviation for “S-Type”.
The S language was the predecessor of
the R language.

express types for higher order functions, which makes them quite
flexible. The theoretical basis of RGP’s type system is the simply
typed lambda calculus.31 A noteworthy limitation of this system is the 31 Barendregt, H., Abramsky, S., Gab-

bay, D. M., Maibaum, T. S. E., and
Barendregt, H. P. (1992). Lambda cal-
culi with types. In Handbook of Logic in
Computer Science, pages 117–309, New
York. Oxford University Press

lack of the generic types available in many modern strongly typed

a modular gp implementation based on r 83

programming languages such as C++ or Java.
With these definitions, we are able to explain the semantics of the

types associated with the GP building blocks above:
• list() %->% st("logical") is the type of a function with no

arguments that returns a boolean value.32 This is the type of the 32 a logical in R’s terminology

single constant factory in the booleanConstantSet defined above.
• list(st("logical"), st("logical")) %->% st("logical") is

the type of a function taking two boolean values as arguments
and returning a boolean value. This is the type of each function
in the booleanFunctionSet defined above.

• Trivially, st("logical") is the type of boolean values. This is
the type of each input variable in the booleanInputVariableSet

defined above.
With the fitness function and search space defined, all is ready to

start a strongly typed GP run:

typedGpResult1← typedGeneticProgramming(parityFitnessFunction,

type = st("logical"),

functionSet = booleanFunctionSet,

inputVariables = booleanInputVariableSet,

constantSet = booleanConstantSet,

stopCondition = makeTimeStopCondition(30))

Note that typedGeneticProgramming expects the range type
of the solution functions that are to be generated as a second pa-
rameter, as this type information is not contained in the building
block definition. Because boolean functions are to be generated,
st("logical") is used as the argument’s value here.

After running for 30 CPU-core seconds, the result of the GP
run is assigned to the variable typedGpResult1. As in the previous
tutorials, the runtime (in seconds) can be adjusted by changing the
parameter to makeTimeStopCondition.

Model Validation and Model Deployment Selection of the boolean
function with best fitness is performed much like in the previous
tutorials:

bestFunction1← typedGpResult1$population[[which.min(

typedGpResult1$fitnessValues)]]

bestFunction1

The second line will print the solution with best training fitness.
As in the previous example, the exact results may differ depending
on random seed, compute time budget, and RGP version used:

function (x1, x2, x3)

x2 & x1 & x3 | !(x3 | (!x2 | x1)) | x3 & (!x1 & !x2)

See RGP’s online documentation for details on visualizing and
analyzing typed GP results. For example, the Rrules package, avail-
able on CRAN as an extension to RGP, can be employed for rule-
based simplification of boolean functions.

84 a modular genetic programming system

3.4 RGP Architecture

This section discusses the architecture and design of RGP, both
from a user perspective and from a software engineering perspec-
tive. As RGP is based on R and adheres to R’s design principles as
much as possible, this section will also include a discussion of the
design principles underlying the R language and ecosystem as a
whole.

3.4.1 Design Considerations

Modern GP systems, as introduced in Section 3.1, are complex
aggregates of algorithms for solving not only GP specific tasks,
such as solution creation, variation, and evaluation, but also more
general EC tasks, like single- and multi-objective selection, and even
general data analysis and statistics tasks like design of experiments,
data preprocessing, result analysis and visualization. Packages like
Matlab, Mathematica, and R already provide solutions for most
of these general tasks, greatly simplifying the development of a GP
system based on one of these environments, while also lowering
the barrier of entry for users already familiar with the software
environment used.

RGP is based on the R environment for several reasons. First,
there seems to be a trend towards employing statistical methods
in the design and analysis of evolutionary algorithms, including
modern GP variants.33 Second, R ’s open development model has 33 Sun, Y., Wierstra, D., Schaul, T.,

and Schmidhuber, J. (2009). Efficient
natural evolution strategies. In Pro-
ceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation
(GECC0 2009), pages 539–546, New
York. ACM Press; and Birattari, M.,
Yuan, Z., Balaprakash, P., and Stützle,
T. (2009). F-race and iterated F-race:
An overview. In Bartz-Beielstein, T.
et al., editors, Empirical Methods for
the Analysis of Optimization Algorithms.
Springer, Berlin

led to the free availability of R packages for most methods from
statistics and many methods from EC. Also, the free availability of
R itself makes RGP accessible to a wide audience. Third, the R lan-
guage supports computing on the language, which greatly simplifies
symbolic computation inherent in most GP operations. In addition,
parallel execution of long-running GP experiments is adequately
supported by R’s parallel computation functionality.

The following list summarizes the high-level design goals that
motivated RGP’s architecture. The design goals are loosely ordered
by priority:
• Effectiveness: RGP should be effective in real-world applications.

For regression problems, RGP should be able to generate models
that are of comparable accuracy with models generated by other
regression techniques from CI, machine learning, and statistics.

• Approachability: RGP should be easy to understand for users
without a background in programming or computer science.
The target audience includes statisticians, data scientists, data
analysts, and engineers.

• Extensibility: RGP should be easily extensible to new GP applica-
tion classes. Support for GP application classes of high practical
relevance should be built-in.

• Modularity: Within limits of reasonable efficiency, each RGP
function should be usable on its own. There should be no de-

a modular gp implementation based on r 85

pendencies on RGP specific infrastructure, no proprietary data
structures, no side-effects, and no conventions in addition to
those valid for all R functions.

• Efficiency: RGP should be efficient enough for real-world appli-
cation. When efficiency conflicts another design goal, a compro-
mise should be sought, where efficiency should not be of highest
priority. Each RGP function should be user-replaceable by a less-
generic but more efficient variant (specialization).

In the following, some examples of how individual architectural
features help to realize RGP’s high-level design goals are given.
More details on RGP’s feature set will be provided in Section 3.5. A
more technical account on the software engineering side of RGP’s
design will be given in Section 3.4.2.

Effectiveness In Chapters 5 and 6 it will become clear that the level
of GP system effectiveness for real-world applications is largely a
function of the search heuristic, GP function set, and GP param-
eter settings used. The design features to facilitate extensibility
and modularity to be introduced in the following paragraphs help
in this regard, as they enable quick adaption to new real-world
problem classes. In order to find high quality solutions within rea-
sonable time limits, a GP system also needs a reasonably efficient
implementation. Architectural features of RGP helping efficiency
are also a topic of the next paragraphs.

Approachability The high-degree of integration into the R environ-
ment should make RGP very approachable to existing R users. As
demonstrated in Section 3.3.3, the common GP task of symbolic
regression is supported through a simplified workflow resembling
the linear modeling workflow well known to most R users. This
includes the specification of symbolic regression models through
R’s formula syntax and the support for generating predictions from
RGP models through R’s generic function predict. With the help
of RGP’s type system, this workflow can also be applied to clas-
sification problems. The design of the R language itself is geared
towards interactive use by non-expert users. Its relatively high ap-
proachability is in part manifested through its high popularity with
end users. Additionally, the web-based graphical user interface,
described in Section 3.6, should make RGP approachable even to
users not familiar with R or to users not at ease with command-line
user interfaces in general. Finally, comprehensive documentation
for each RGP function is available via R’s online help system.

Extensibility Much like R, RGP’s design broadly follows the func-
tional programming paradigm, with some exceptions to aid effi-
ciency. The system consists of a relatively fine-grained set of task-
specific, generally side-effect-free, R functions. Each function im-
plements a clearly defined small piece of functionality, such as a

86 a modular genetic programming system

specific error measure or a specific mutation operator. With few
exceptions, each function is simple enough to fit on a single screen
page. There is no global configuration infrastructure, i.e., no global
configuration file or in-memory configuration data structure. All
configuration is provided through function arguments, which may
be functions. For example, the crossover operator is provided as
a function-valued argument to a function implementing the GP
search heuristic to be used in a GP run. RGP keeps the use of pro-
prietary data structures at a reasonable minimum. Whenever pos-
sible, standard R data structures are used. When additional context
information is needed, it is attached to standard data structures via
R’s attribute mechanism. For example, a population of GP individ-
uals is represented by a vector of R functions optionally annotated
by type information. Combined, these design features greatly facil-
itate extensibility. To provide additional functionality, adding a R
function suffices in most cases. This function then can be passed as
a parameter to existing RGP functions. No registration of the new
functionality or adaption of configuration infrastructure is neces-
sary. As there are nearly no side-effects, all dependencies of each
RGP function are explicitly stated in the function’s arguments.34 34 Exceptions to this rule, e.g. functions

used for logging and plotting, are
stated in the online documentation of
the functions affected.Modularity The design features enumerated in the previous para-

graph on extensibility also contribute to RGP’s modularity. The
use of data structures proprietary to RGP is kept at an absolute
minimum, while standard R data structures are used whenever rea-
sonably possible. One the one hand, this allows RGP functions to
be used in new contexts. On the other hand, and perhaps of even
higher importance for most RGP users, it allows other functions
from the large ecosystem of R packages to be used with RGP. For
example, R’s deriv function that computes symbolic derivatives
can be used on RGP solution expressions directly, without any
conversion. As a consequence of this design decision, R’s objective-
oriented features are nearly unused in RGP, the only exception
being the definition of methods for some built-in generic functions,
such as for plotting or model prediction.

Efficiency At the time of writing, efficiency of interpreted R code
is unfortunately relatively poor.35 This situation can be alleviated 35 Morandat, F., Hill, B., Osvald, L.,

and Vitek, J. (2012). Evaluating the
design of the R language - Objects and
functions for data analysis. In Noble,
J., editor, ECOOP, volume 7313 of
Lecture Notes in Computer Science, pages
104–131, Berlin. Springer

to some degree by using R’s vector operations instead of loops
as much as possible, which RGP does. RGP adopts the strategy
of function specialization to reach an efficiency level suitable for
real-world application. For most performance-critical functions,
including GP operators for initialization, mutation, recombination,
and evaluation, less flexible but higher performing variants exist.
These variants are implemented in the lower level C programming
language and are tuned for performance. When using one of RGP’s
application specific interfaces for symbolic regression or classifica-
tion, these faster variants are used by default. Except from having
fewer configuration options and higher performance, these variants

a modular gp implementation based on r 87

behave exactly the same as their counterparts implemented in R.

3.4.2 Software Engineering Considerations

To understand RGP’s architecture from a software engineering per-
spective, it is important to understand some of the design goals
underlying the R system that RGP is based on. Morandat et al.
[2012] provide an in-depth treatment of R’s architecture and seman-
tics, including an evaluation of some of R’s architectural features
that is based on data gathered from a large body of real-world R
source code.36 R consists of four separate entities: 1) A dynamically 36 Morandat, F., Hill, B., Osvald, L.,

and Vitek, J. (2012). Evaluating the
design of the R language - Objects and
functions for data analysis. In Noble,
J., editor, ECOOP, volume 7313 of
Lecture Notes in Computer Science, pages
104–131, Berlin. Springer

typed, lazy-evaluated, data-parallel, functional programming language
with extensions for object-oriented programming, 2) an interpreter
implementing this language, 3) an environment for statistical com-
puting and graphics, providing a wide variety of statistical and
graphical techniques including linear and nonlinear modeling,
statistical tests, time series analysis, classification, clustering, and
4) a collection of more than 5800

37 actively maintained extension 37 as of January 2014

packages implementing a vast number of techniques for data anal-
ysis, modeling, and visualization. At the time of writing, the only
R interpreter widely adopted seems to be the official R interpreter
available at http://www.r-project.org, although alternative imple-
mentations exist and are actively developed. This is why the terms
“R language”, “R interpreter”, and “R ecosystem” are often used
interchangeably.

In the following, some specific architectural features of RGP, that
are sometimes inherited from R, are highlighted. It is shown how
these features contribute to the high-level design goals introduced
in the previous section, as well as how these features simplify the
use and development of RGP in general.

Interactive Environment As shown in Section 3.2, data analysis
and modeling is typically an exploratory and iterative process.
A process of this kind greatly benefits from tools that support a
highly-interactive workflow. The R system supports such a work-
flow through various architectural features. First, the R interpreter
provides a read-eval-print loop (REPL) for the interactive evaluation
of R expressions. This REPL has already been demonstrated exten-
sively through the tutorial examples of Section 3.3. Second, the R
language design is optimized for interactive use, sometimes even
at the cost of robustness. Being a dynamically typed language, no
type annotations are necessary. Also, variables are created at first
assignment and need not be declared. Identifiers are resolved dy-
namically at runtime, meaning that programs can be changed while
running. Third, the R environment provides additional features
for the inspection of running programs, e.g., the built-in debug and
browser functions. Combined, these features enable an efficient and
highly-interactive workflow both for RGP users and RGP develop-
ers. In summary, RGP’s interactive environment contributes to the

http://www.r-project.org

88 a modular genetic programming system

high-level design goal of approachability and improves overall user
efficiency.

Functional Programming The functional programming paradigm
appears to be better suited to the implementation of GP systems,
or of CI software in general, than the more prevalent paradigm
of object-oriented programming. GP systems, as well as most CI
systems, are naturally specified as compositions of functions, as
evident in the specifications of Chapter 2. Using a functional data
flow architecture instead of an object-oriented pipes and filters architec-
ture to implement these specifications seems both simpler and more
productive. Furthermore, algorithm components of CI systems are
naturally parametrized with functions. Examples include GP fit-
ness functions, the GP operators of mutation, recombination and
selection, and also activation functions of artificial neural networks,
as well as membership functions of fuzzy sets, and kernels of sup-
port vector machines. Because first-class functions are an essential
abstraction for the implementation of CI systems, functional pro-
gramming can lead to a significant productivity gain. The reduction
in mutable state and hidden side-effects inherent in the functional
programming paradigm helps with RGP’s high-level design ob-
jectives of extensibility and modularity. Additionally, a reduction
or total lack of function side-effects greatly simplifies paralleliza-
tion, contributing to the high-level design objective of efficiency.
Hughes [1989] classical essay on why functional programming
matters is still valid today and contains additional arguments for
the usefulness of the functional paradigm. The implementation of
RGP’s web-based user interface also gains simplicity and clarity
from the use of functional reactive programming, a specialization of
functional programming geared to the development of interactive
systems.

Domain-Specific Languages RGP extends R’s characteristic use of
internal domain-specific languages (DSLs) to enhance user experience
and efficiency through short and familiar notation. An internal
DSL is a DSL embedded into a host programming language by be-
ing built from host language constructs. This has the benefit that a
multiple DSLs can be used to code different parts of the same pro-
gram, each optimized to their respective domain. By contrast, an
external DSL is built much like any other stand-alone programming
language, using tools like parser generators or compiler compil-
ers. R is a language in the tradition of Lisp (and Scheme) and thus
very well suited to host internal DSLs. For instance, R enables pro-
gram access to the parser via the parse function, to the interpreter
via the eval function, and to the execution environment via the
environment function. Furthermore, R source code expressions
can be easily processed by R code itself, a property often referred
to as “computing on the language”. RGP embraces internal DSLs

at various locations. The use of the familiar formula notation for

a modular gp implementation based on r 89

specifying symbolic regression models has already been mentioned
previously. RGP provides an additional internal DSL for specify-
ing types of R expression, which was shortly mentioned in Sec-
tion 3.3.4. As the concept of an internal DSL is common and natural
in the R ecosystem, RGP uses small DSLs to simplify many tasks.
For example, evolution stop conditions can be combined through
logical expressions using a basic internal DSL. RGP’s web-based
user interface is implemented in Shiny, an internal DSL for func-
tional reactive programming.38 The practice of combining multiple 38 RStudio Inc. (2014). shiny: Web

Application Framework for R. R pack-
age version 0.10.1, http://CRAN.R-
project.org/package=shiny (retrieved
20.02.2015)

internal DSLs in a single program is also known as language-oriented
programming.39 In RGP, language-oriented programming is em-

39 Ward, M. P. (1995). Language
oriented programming. Software –
Concepts and Tools, 15(4):147–161

ployed to further the high-level design objectives of approachability
and extensibility.

3.5 RGP Features

With 193 public, i.e., end user accessible, functions40, RGP is large 40 as of RGP release 0.4-0

enough to be a bit daunting to first time users. Detailed documen-
tation for each RGP function is available through R’s online docu-
mentation system by issuing the command help(package="rgp")

in a running R session. Additionally, a set of introductory tutorials
is available via the command vignette("rgp_introduction"). This
section serves as a link between introductory tutorial examples and
reference documentation by providing structure and background
information to RGP’s functionality and by connecting the abstract
specifications of Chapter 2 to concrete RGP implementations.

Figure 3.9 shows the top-level organization of the RGP package.
Each source code module is represented by a box. Box sizes corre-
spond to the number of public functions defined in a source code
module.

Breed−

ing

1

Building−
Blocks

5

Complexity
20

Creation
8

Data−
Driven

1

Data−
Utils

2

DesignOf−
Experiments

3

Evolution
27

ExpressionUtils
10

Fitness
21

Function−
Utils

2

Indi−
vidual

1

List−
Utils

1

Mutation
14

Niching
3

Pareto−
Utils

1

PlotUtils
8

Population
7

Recombination
8

Search−
Heuristics

4

SearchSpace
9

Selection
5

Similarity
14

STypes
10

Symbolic−
Regression

5

Test−
Utils

2

Time−
Utils

1

Figure 3.9: RGP Source Code Treemap.
This figure shows the top-level orga-
nization of the RGP package. Each
source code module is represented
by a box. Box sizes correspond to the
number of public functions defined in
a source code module.

90 a modular genetic programming system

3.5.1 GP Individual Representation

As already mentioned, RGP employs R expressions to represent
GP individuals. Because R expressions are represented internally
as trees, RGP basically is a tree-based GP system. R supports the
direct manipulation of expression trees through the same syntax
used for manipulating nested lists, making the implementation of
GP operators in R simple, concise, and easy-to-understand for users
familiar with R. Another benefit of this representation is its com-
patibility with the R ecosystem. RGP can directly use all available R
functions, either built-in or available on CRAN, as members of GP
function or constant sets. Furthermore, solutions generated by RGP
are standard R functions and can therefore be processed by many R
functions. For example, symbolic regression models created by RGP
may be directly plotted not only by R’s built-in generic plot func-
tion, but also by many of the specialized plotting and visualization
functions available on CRAN.

A drawback of using R expressions as RGP’s standard individ-
ual representation is the comparatively low performance of the R
interpreter, at least at the time of this writing. RGP uses multiple
techniques to lessen the performance impact this incurs. First, R’s
vector processing capabilities are used as much as possible. For
example, in symbolic regression and classification, all fitness cases,
i.e., all data rows, are evaluated in a single invocation of the R inter-
preter. Second, performance-optimized versions of commonly used
GP operators exist. These are implemented in C and bypass the R
interpreter. Third, RGP supports the addition of alternative repre-
sentations to enable the implementation of performance-optimized
GP kernels.41 41 A GP kernel is a matching set of

representation, operators, and search
strategy.

Alternative representations can be used in RGP by providing
initialization, variation, and evaluation operators for these represen-
tations. One of the examples included in the RGP package shows
how to implement a linear GP representation. The recommended
strategy for implementing alternative representations for RGP,
and the strategy used in this example, is to first implement a pair
of functions to convert RGP individuals to and from the alterna-
tive representation. After wrapping existing operators with these
conversion functions, RGP is already operational. Operators spe-
cialized to the alternative representation may now be added piece
by piece, simplifying implementation and testing considerably.

3.5.2 RGP Type System

The RGP type system has been developed with the following de-
sign goals in mind:
• Approachability: Type terms (the language of types) should be

easily formulated by non-experts.
• Expressiveness: The search space defined by the typed building

blocks should be as large as necessary, but not larger, while still
allowing the efficient implementation of search operators.

a modular gp implementation based on r 91

• Efficiency: Creating and maintaining well-typed solutions should
be efficient from a computational standpoint, i.e., no algorithms
with exponential runtime should be used.

• Simplicity: The type system should be easy to understand and
implement.
As already mentioned, the simply typed lambda calculus forms the

theoretical basis for RGP’s type system.42 The type system supports 42 Barendregt, H., Abramsky, S., Gab-
bay, D. M., Maibaum, T. S. E., and
Barendregt, H. P. (1992). Lambda cal-
culi with types. In Handbook of Logic in
Computer Science, pages 117–309, New
York. Oxford University Press

base or atomic types such as st("logical") or st("numeric"), and
function types such as list(st("numeric"), st("numeric")) %->%

st("numeric"), but no generic types. Syntactically, the set of RGP
type terms TR are defined recursively as follows:

st(type name) ∈ TR (base types)

∀t1, . . . , tn ∈ TR : list(t1, . . . , tn−1) %->% tn ∈ TR (function types)

Semantically, this type system can express the type of all pure
non-generic R functions. It is not limited to RGP individuals, but
can be applied to define and calculate types of a large subset of R
expressions. Also, it is conceptually simple and relatively easy to
implement efficiently.

As a consequence of R’s support for anonymous functions and
the RGP type system’s support for function types, function defin-
ing subtrees, i.e., anonymous functions or lambda abstractions, can
be evolved through RGP. This offers a flexible alternative to the
concept of automatically defined functions.43 It also allows the integra- 43 Koza, J. R. (1994). Genetic program-

ming II: Automatic discovery of reusable
programs. MIT Press, Cambridge, MA

tion of common higher order functions like folds, mappings, and
convolutions into the set of GP building blocks.

Internally, RGP infers the types of compound expressions such
as function applications and function definitions from the types of
atomic expressions. This inference is done when type information is
needed by a GP operator. The types of building blocks are defined
by the user via the %::% operator and are stored in the package-
internal global variable rgpSTypeEnvironment. RGP’s sType func-
tion can be used to calculate the type of a given R expression. Type
information is cached for efficiency. If no type information is sup-
plied for the building block set, the type system in deactivated and
untyped variants of all GP operators are used, which are more effi-
cient. This is useful for typical untyped GP tasks such as symbolic
regression based on numerical data. See Section 3.3.4 for a tutorial
example on strongly typed GP with RGP.

3.5.3 Initialization, Variation and Selection Operators

RGP provides implementations of the initialization operator de-
fined in Section 2.6.1. Additionally, an optimized variant written in
C is available, as well as a type safe variant. This variant only cre-
ates R expressions that are well typed, given that the type of each
member of the constant, variable, and function set has been defined
by the user via the %::% operator, as described in the previous sub-

92 a modular genetic programming system

section. The RGP online documentation on the functions randfunc

and randfuncTyped provides additional usage details.
RGP also includes implementations of the mutation and crossover

operators defined in Sections 2.6.2 and 2.6.3. As with initializa-
tion, performance optimized variants and type safe variants are
available. See the documentation on the functions mutateFunc and
crossover for details.

The single- and multi-objective selection operators described
in Section 2.6.4 are available. Multi-objective selection is provided
by the emoa package.44. Additionally, single- and multi-objective 44 see http://cran.r-project.org/

web/packages/emoa/ for detailstournament selection operators are available. For details, see the
online documentation on the functions nds_cd_selection and
makeTournamentSelection.

Each GP operator provided by RGP provides support for breed-
ing, i.e., the repeated application to optimize a quality criterion of
the result. See RGP’s online documentation on the respective GP
operator for details.

3.5.4 Quality Measures and Fitness Functions

All fitness functions and quality measures defined in Section 2.5.3
are efficiently implemented by RGP and described in the online
documentation. This includes the error measures mae, sse, rmse,
smse, and rsquared. The visitation length measure is implemented
alongside other measures of solution compactness, see the online
documentation on the function funcSize for details. Additionally,
measures to approximate the GP search space size are provided.
These measures calculate the number of structurally different ex-
pressions or expression shapes of a given depth or size that can be
build from a fixed function- and input-variable set. Here, the term
“expression shape” means the shape of an expression tree, not tak-
ing any node labels into account. See the online documentation on
exprShapesOfDepth for details.

For convenience, RGP also includes factory functions for com-
mon fitness functions. For example, makeNaryFunctionFitness-
Function creates a fitness function that calculates an error measure
with respect to an arbitrary n-ary reference function based on sam-
ple points generated by a given design function, which defaults to a
function generating a regular grid design matrix. Another example
is the fitness function factory makeBooleanFitnessFunction that,
given a boolean target function, produces a fitness function that re-
turns the number of different binary digits in the output of a given
boolean function and a given target function.

3.5.5 Search Heuristics

RGP implements the search heuristics described in Section 2.9.
Additional search heuristics can be added by the user without
changing any RGP code. RGP’s top-level functions for perform-
ing GP runs, i.e., geneticProgramming, typedGeneticProgramming,

http://cran.r-project.org/web/packages/emoa/
http://cran.r-project.org/web/packages/emoa/

a modular gp implementation based on r 93

and symbolicRegression, have a searchHeuristic argument. The
search heuristics included in RGP are configured through factory
functions. See the online documentation on the functions make-

TinyGpSearchHeuristic, makeCommaEvolutionStrategySearch-
Heuristic, and makeAgeFitnessComplexityParetoGpSearch-

Heuristic for details. This level of flexibility regarding the search
heuristic is unique among current GP systems.

3.5.6 RGP Runtime Environment

In this context, the term runtime environment designates function-
ality for supporting efficient GP run execution. This includes an
optimized evaluator for a subset of R, mainly used to improve the
execution time of symbolic regression runs. Details on the benefits
and limitations of this optimized evaluator can be found in the RGP
documentation.

Also part of RGP’s runtime environment are tools for moni-
toring GP runs in progress and setting termination criteria. The
latter is accomplished via a small internal DSL for defining stop
conditions. In RGP, a stop condition is a predicate, i.e., a func-
tion returning a single boolean value. Included are stop con-
ditions based on generations, fitness function evaluations, best
fitness, and wall-clock time. See the online documentation on
the RGP function makeEvaluationsStopCondition for details.
Trough the internal DSL, stop conditions may be combined trough
boolean operators. For example, the termination criterion defined
as makeTimeStopCondition(60) ‖ makeFitnessStopCondition(0)

finishes a GP run after 60 seconds or when a solution of fitness 0 is
found, whatever event occurs first.

Runs can be monitored by providing a monitor callback function
to any of RGP’s top-level functions for performing GP runs. See the
online documentation on the parameter progressMonitor for de-
tails on this mechanism. The default monitor callback prints basic
progress information to the system console in regular intervals.

3.5.7 Result Analysis

Analysis of GP runs in RGP is accomplished in large part through
tools provided by R. This includes model validation tasks, such as
assessing the interpolation and extrapolation quality of a model or
set of models. Result analysis tasks not readily supported by R’s
base functionality are supported through RGP functions.

Model tables, listing all models resulting from a GP run, together
with relevant meta-data such as validation fitness and complexity
values, are part of the GP result data frame returned by RGP’s top-
level functions geneticProgramming, typedGeneticProgramming,
and symbolicRegression. Pareto plots, showing the Pareto front of
the set of result models of a GP run, are created via the RGP func-
tion plotParetoFront. Variable presence maps, showing the dis-
tribution of input variables used in the set of result models of a GP

94 a modular genetic programming system

run, are created via the RGP function populationVariablePresenceMap.
Basic algebraic simplification of models created by RGP is provided
by the Rrules package. Finally, RGP adds a method to R’s generic
function summary for summarizing the results of a GP run. Based
on these functions, comprehensive result report documents can be
compiled with help of R’s knitr package for dynamic report genera-
tion.45 45 Xie, Y. (2013). Dynamic Documents

with R and knitr. Chapman and Hall,
Boca Raton, FL

3.6 Symbolic Regression User Interface

This section contains a detailed description of RGP UI, RGP’s web-
based user interface for symbolic regression. The description is
based on RGP UI release 0.1-1, which is current at the time of writ-
ing. RGP UI is meant to enable users not familiar with command-
line user interfaces to successfully prepare, perform, and analyse
symbolic regression runs with RGP. In its current state, only a
careful selection of basic RGP features is accessible through the
web-based user interface. Particularly, RGP’s type system is not
supported at this point in time, limiting RGP UI to numerical data.
Within these limits though, RGP UI has already been successfully
applied to real-world applications.

3.6.1 Installation and Start

Just as RGP itself, RGP UI can be automatically installed via CRAN.
To do so, issue the following command in a running R session:

install.packages("rgpui")

If installation was successful, RGP UI can be started by issuing
the following commands. Note that the second command will not
return, which is due to the single-threaded nature of R’s front-end
user interface:

library("rgpui")

symbolicRegressionUi()

A web browser should open on the URL http://localhost:1447

and display the web-based user interface. In case this does happen
due to lack of system support, open a web browser and point it to
the mentioned URL by hand.

3.6.2 User Interface Structure

The RGP UI user interface supports symbolic regression through
a subset of the workflow described in Section 3.2 and shown in
Figure 3.2. It is structured into a two-level hierarchy of panels and
views. Each panel corresponds to a step of the RGP process for
symbolic regression. Controls for data entry are shown on the left
side, while view for data visualization are shown on the right side.
Each panel contains short documentation marked with an info
symbol. Figure 3.10 shows the hierarchical structure of RGP UI in

http://localhost:1447

a modular gp implementation based on r 95

form of a tree. The following paragraphs describe each panel in
detail.

RGP UI
Data Panel

Table View
Plot View

Objective Panel
Objective View

Run Panel
Progress View

Pareto Front View
Best Solution View
Statistics View

Results Panel
Result Pareto Front View
Variable Importance View

Figure 3.10: Structure of the RGP
UI web-based user interface. Each
panel corresponds to a step in the
RGP process for symbolic regression.
Typically, the panels shown in this
tree are visited from top to bottom
when performing symbolic regression.
Some panels offer multiple data
visualizations, represented in this tree
as multiple views.

Data Panel As RGP UI is currently limited to symbolic regression
on existing data, it is assumed that the steps of regression prob-
lem definition and data acquisition and data preprocessing have
already been completed with exception of data partitioning, which
should be done in RGP UI. The data should be available in CSV
format. Figure 3.11 shows the data panel. The first step of symbolic
regression in RGP UI is to upload data via the “select file” button.
Once the upload completes, a data table and plot become available
through the table and plot views. Specifics of the CSV format can
be configured on the right, the views will update instantly to give
direct feedback on the correctness of the data import settings. The
next step is to partition the data into training and validation sets
through the data partitioning controls to the right. Training data
can be drawn at random (with configurable random seed for re-
producible results), or be the first, middle, or last data rows. The
latter options are valuable when testing the extrapolation quality of
a model.

Objective Panel The objective panel, as shown in Figure 3.12, allows
the definition of dependent and independent variables, the error
measure, and the building block set. Additionally, an option for
enabling or disabling the complexity criterion of the multi-objective
selection operator is provided. The default settings are chosen
based on the data imported in the previous step. The view to the
right of the panel shows a plot of the dependent variable against
the row number. As in the plot view of the data panel, points in the
training set are shown as solid dots, while points in the validation
set are shown as hollow dots.

96 a modular genetic programming system

Figure 3.11: RGP UI Data Panel. In
this panel, data can be uploaded and
imported. Also, data partitioning
into training and validation sets is
performed here. Table and plot views
provide live visual feedback to assure
the correctness of the data import
settings.

a modular gp implementation based on r 97

Figure 3.12: RGP UI Objective Panel.
This panel allows the definition of
dependent and independent variables,
the error measure, and the building
block set. Additionally, an option for
enabling or disabling the complexity
criterion of the multi-objective selec-
tion operator is provided. As in the
plot view of the data panel, points
in the training set are shown as solid
dots, while points in the validation set
are shown as hollow dots.

98 a modular genetic programming system

Run Panel The run panel, shown in Figure 3.13, provides controls
for starting, pausing, and resetting RGP symbolic regression runs.
A run has to be paused to enable the result panel described in the
next paragraph. Resetting a run re-initializes the solution popula-
tion. The left side of the run panel also controls the most important
parameters of the GMOGP search heuristic used in RGP UI. These
include population size (µ), number of children per generation (λ),
number of new individuals per generation (ν), probabilities for the
crossover and specific mutation operators, an option to enable or
disable age layering, the probability of performing parent selec-
tion at each generation, and the random seed to use for the run.
The right side of the run panel contains four views: The progress
view contains plots of multiple GP run performance metrics against
time measured as number of generations, including fittest individ-
ual fitness, fittest individual complexity, fittest individual age, and
dominated hypervolume. The Pareto front view shows a plot of
the current population, where the x-axis denotes fitness (predic-
tion error) and the y-axis denotes complexity (visitation length).
Individual age is shown through color, where solutions turn from
green to blue to black with increasing age. The best solution view
shows the best solution (blue) and the data (red) overlayed in the
same plot, as well as the best solution’s symbolic expression, and
the generation number, fitness evaluation number, and time elapsed
when it was found. Finally, the statistics view shows information
about the current run, including current generation, fitness eval-
uation number, time elapsed, and the current number of fitness
evaluations per second.

Results Panel The results panel, shown in Figure 3.14, shows a
report of the results of the current symbolic regression run. The
run has to be paused via the run panel for this report to become
available or to be updated. The results panel does not contain any
input controls. Two result report views are available: The result
Pareto front view contains a sortable table of the result expressions
part of the current Pareto front. This table contains the columns
Formula (result symbolic expression), Error (Training) (prediction
error on training data), Error (Test) (prediction error on validation
data), R2 (R2 on validation data), Complexity (visitation length), and
a small overlayed plot of the solution versus the data, as known
from the run panel’s best solution view. The variable importance
view shows a bar plot of the number of occurrences of each in-
dependent variable in the result population. The part of each bar
denoting occurrences in Pareto front individuals is colored red,
the part denoting occurrences in other individuals is colored blue.
With higher-dimensional data, this plot is a useful tool for quanti-
fying the influence of each independent variable on the dependent
variable.

a modular gp implementation based on r 99

Figure 3.13: RGP UI Run Panel. This
panel provides controls for starting,
pausing, and resetting RGP symbolic
regression runs. The left side controls
search heuristic parameters such
as population size and number of
children per generation. The right side
contains the progress view, the Pareto
front view, the best solution view, and
the statistics view.

100 a modular genetic programming system

Figure 3.14: RGP UI Results Panel.
This panel shows a report of the re-
sults of the current symbolic regression
run. The run has to be paused via
the run panel for the result panel to
become active. The result report is di-
vided into the result Pareto front view
and the variable importance view.

a modular gp implementation based on r 101

3.7 Conclusions

This chapter introduced the design and implementation of RGP and
the web-based user interface RGP UI. The high level of integration
into the R environment allows RGP to focus on the core functional-
ity of a modern GP system, while profiting from the extensive tools
for preprocessing and result analysis available in the R ecosystem.

4
Sequential Parameter Optimization

Sequential parameter optimization (SPO) is a framework for under-
standing and improving the behavior of search and optimization
algorithms by experimental methods. Classical as well as modern
statistical methods are employed to optimize algorithm parame-
ters and to improve performance and robustness. SPO sequentially
performs a preset number of experiments, i.e., algorithm runs, and
uses the algorithm’s response to its parameter settings to build and
refine one or more meta-models of the parameter search space.

Goal of this chapter is to introduce necessary tools for the sys-
tematic empirical analysis of GP system components and their
effect on GP system performance. Here, a GP system component is
a part of GP system that can be changed or swapped meaningfully.
Examples include GP search operators, individual representations,
and GP search heuristic as defined in Chapter 2.

Performing a thorough and statistically well-founded experi-
mental analysis provides valuable insight into the behavior of GP
system components. In current GP research, much repeated work in
experimental planning, setup, and result analysis is required when
proposing improvements for GP system components such as selec-
tion and variation operators, individual representations, or search
heuristics. To measure the performance benefit of an improved GP
system component, a set of test functions has to be implemented,
GP system parameters, both of the system under study as well as
of comparison systems, have to be chosen, experiments have to be
designed and code for the statistical result analysis has to be writ-
ten. As obtaining results of statistical significance often requires
many independent runs, infrastructure for automated distributed
execution is often necessary to render the implementation of an
experiment plan practical.1 1 In the field of continuous global

optimization, the COCO framework
for comparing continuous optimizers
provides a well-established solution
to this problem. While this framework
could be adapted for GP by recasting
the provided test problems as symbolic
regression problems, the resulting test
problems would not be representative
for typical real-world GP tasks.

Hansen, N., Finck, S., and Ros, R.
(2011). Coco - Comparing continuous
optimizers: The documentation.
Technical Report RT-0409, INRIA,
France

Time spent re-implementing necessary GP research infrastruc-
ture is lost for working on core issues. As each group working in
GP research has to provide not only their own GP system com-
ponents, but also complex supporting infrastructure often tightly
coupled to local conditions, reproducing results by other groups
is often more difficult than necessary. The open-source tools intro-
duced in this chapter may serve as a first step towards a framework
of reusable building block for reproducible research in GP.

104 a modular genetic programming system

The framework for reproducible research in GP consists of two
parts:
• software for adapting SPOT to RGP, enabling parameter analysis

and tuning for arbitrary RGP configurations
• a set of scalable randomized test functions for accessing the

performance of GP system components and their parameter
settings in a controlled and reproducible manner

Ideas and concepts regarding SPO are borrowed from the empir-
ical approach to research in evolutionary computation introduced
by Bartz-Beielstein et al. [2005].2 A preliminary version of the ap- 2 Bartz-Beielstein, T., Lasarczyk, C.,

and Preuss, M. (2005). Sequential
parameter optimization. In Proceedings
of the 2005 IEEE Congress on Evolution-
ary Computation (CEC 2005), pages
773–780, Piscataway, NJ. IEEE Press

proach to scalable test problems introduced in this chapter has been
previously published by Flasch and Bartz-Beielstein [2012].3

3 Flasch, O. and Bartz-Beielstein, T.
(2012). A framework for the empirical
analysis of genetic programming
system performance. In Riolo, R. et al.,
editors, Genetic Programming Theory and
Practice X, Genetic and Evolutionary
Computation Series. Springer, New
York

4.1 SPO Process and Optimization Objectives

After the last section introduced SPO and the problems it solves in
the context of this work, this section describes the SPO process and
SPO optimization objectives in more detail.

4.1.1 SPO Process

The general process of SPO consists of the following four steps:

1. Formulate a scientific question to be analyzed by statistical
means.

2. Divide the complex question into simple statistical hypotheses
that can be conquered by statistical testing.4 4 See also Mayo [1996] for a detailed

discussion of the theoretical back-
ground.3. For each of these hypotheses:

(a) Select a model/predictor (e.g. a linear model or a regres-
sion tree) to describe a functional relationship between
parameters and response.

(b) Select an experimental design.
(c) Generate experimental data by running experiments.
(d) Refine the model/predictor until the hypothesis can be

accepted/rejected by statistical testing.

4. Analyze the experiment results in order to draw conclusions
from the hypotheses to assess their scientific meaning. At this
step, the concept of severe statistical tests, first introduced by
Mayo [1996], is of high relevance. Whether an hypothesis H
passes an appropriate statistical test is a severe test of H only to
the extend that it is very improbable (e.g. five in hundred or one
in hundred) that the test were passed if H were false.

Figure 4.1 shows a flow diagram of the SPO process.

4.1.2 SPO Objectives

The objective of SPO in the context of this work is to find near-
optimal parameter settings for a given stochastic search algorithm

sequential parameter optimization 105

Pre-Experimental Setup
• Use Maximum Allowable ROIs
• Use Default Predictors/Models,
 Quality Measures, etc.

Interactive Mode?

Pre-Experimental Planning
• Determine ROIs
• Select Predictors/Models,
 Quality Measures, etc.

Design
• Generate Experimental Design

yes

no

Observations
• Perform Experiment Runs

Interactive Mode?

Visualization/EDA
• Analyze and Understand Effects
• Set Model Parameters
• Validate Models
• Adapt ROIs

yes

Termination?

no

yes

Construct/Improve Models
• Generate New Design Points

no

Figure 4.1: The SPO process, presented
as a flow chart. This figure originally
appeared in Bartz-Beielstein [2009].

A. Here, optimality in can be measured by several means, including
algorithm performance on test data, or algorithm robustness, i.e.,
variance in algorithm performance on different input data.

SPO treats the algorithm A as a black box. For each run of A, a
vector of input variables x ∈ X is passed to the algorithm, which
produces some output y ∈ Y. SPO then tries to determine a func-
tional relationship F between X and Y, i.e., fits a model F to the
parameter-response pairs (x, y). During this process, the effect of
pseudo-randomness has to be taken into account if
i) the objective function f of the search algorithm A is stochas-

tically disturbed,
ii) the search algorithm A itself includes stochastic elements,

e.g. random mutation in evolutionary search strategies.
The elements of the set X can be further classified in the following
manner:
1. Parameters needed by the algorithm A belong to the algo-

rithm design, whereas
2. variables needed to specify the objective function f 5 belong 5 or, in other words, the optimization

problem fto the problem design.
The set X is then divided into the algorithm design Xa and the
problem design Xp.

106 a modular genetic programming system

4.2 Sequential Parameter Optimization Toolbox

The sequential parameter optimization toolbox (SPOT) provides imple-
mentations of the SPO process both in R and in Matlab. In this
work, the R implementation has been used exclusively.

SPOT is not a meta-algorithm exclusively, but also a system for
performing EDA on the algorithm designs tried in an SPO run. In
this regard, SPOT does not only provide a solution for the algo-
rithm tuning problem, but also insight into the algorithm response
to different parameter settings, which will be demonstrated in the
next chapter. The system provides tools for performing the follow-
ing tasks corresponding to individual steps in SPO process:

1. Initialize creates an initial experiment design, stores it in memory
and optionally writes it to a design file. Usually, this is the first
step of a SPO run. This step uses information on the type and
region of interest for each algorithm parameter. It is related to
the data acquisition step of Figure 3.2 on page 63.

2. Run performs algorithm runs with parameter settings from the
initial experiment design created in the initialize step. Results
are stored in memory and optionally written to a result file. This
is usually the second step of a SPO run. It uses information on
both the algorithm and problem design. A model/predictor F is
fitted based on the results. SPOT includes several generic model-
s/predictors to use and is easily extensible with new models. It
corresponds to the modeling step of Figure 3.2 on page 63.

3. Sequential Step creates a new experiment design based on infor-
mation gained from the previous run step, stores it in memory
and optionally writes it to a design file. Information from the
model/predictor F is used to generate the new design.

4. Report generates a statistical analysis based on the results ob-
tained in the previous run and sequential steps. The report con-
tains basic regression analysis and visualizations such as scatter
plots, histograms, residual plots and more. Report generation
is based on a LATEX template and is easily extensible. This step
corresponds to the analyze results step of Figure 3.2 on page 63.

In Automatic Mode, the initialize step, followed by a predefined
number of run/sequential steps and finalized by the report step,
are performed in an automatic manner, suitable for unattended
runs. This mode is especially useful in cases where individual
algorithm runs are computationally expensive, as it is the case in
GP algorithm tuning, and sufficient parallel computing resources or
compute time resources are available.

The SPO process implemented by SPOT is best illustrated by
means of examples. Bartz-Beielstein and Zaefferer [2012] provide
two step-by-step tutorials for SPOT, the first focusing on parameter

sequential parameter optimization 107

tuning for the simulated annealing algorithm built into R’s optim

function, the second on tuning a simple ES.6 Both examples are 6 Bartz-Beielstein, T. and Zaefferer,
M. (2012). A gentle introduction to
sequential parameter optimization.
Cologne Open Science, Schriftenreihe
CI-plus TR 01/2012, Bibliothek der
Fachhochschule Köln, Betzdorfer Str. 2,
50679 Köln, Germany

recommended as they illustrate SPOT in much more detail than
possible in the space constraints of this chapter. They can serve as a
bridge to understanding the more complex SPO use cases described
in the next chapter on analysing and tuning GP parameters.

4.3 Scalable Random Test Problems

Test problems of controllable difficulty, i.e., scalable test functions,
are a flexible tool for assessing the relative performance benefits of
different GP system components under varying conditions. Unfor-
tunately, defining finely scalable test functions for GP holds many
challenges. Conventional measures of problem difficulty, such as
information criteria7, that are good predictors for the performance 7 Kieseppä, I. A. (1997). Akaike

information criterion, curve-fitting
and the philosophical problem of
simplicity. British Journal for the
Philosophy of Science, 48(1):21–48

of fixed-structure modeling approaches, such as statistical regres-
sion techniques, often fail to predict the performance of GP runs.8

8 See Section 2.5.3 for definitions of
performance measures for GP.

At least in the important application of symbolic regression, test
functions of comparatively simple structure can prove extremely
difficult for state-of-the-art GP systems.9

9 Korns, M. (2011). Accuracy in
symbolic regression. In Riolo, R. et al.,
editors, Genetic Programming Theory and
Practice IX, Genetic and Evolutionary
Computation Series, pages 129–151.
Springer, New York

The following subsections describe the two kinds of scalable test
problems used in the remainder of this work:
1. Scalable test functions with spurious variables and
2. scalable random test functions based on Kriging models.

Note that both kinds are useful on their own, but could also be
combined, as they differ in their approach to problem difficulty
scaling.

4.3.1 Spurious Variable Test Functions

This class of scalable test problems is based on the simple yet very
effective idea first described by Kotanchek et al. [2006] of adding
spurious variables to the set of fitness cases to conceal the true
functional dependency between driving variables and output for
arbitrary test functions.10 To increase the difficulty of a given func- 10 Kotanchek, M., Smits, G., and

Vladislavleva, E. (2006). Pursuing
the Pareto paradigm: Tournaments,
algorithm variations & ordinal opti-
mization. In Riolo, R. L. et al., editors,
Genetic Programming Theory and Practice
IV, Genetic and Evolutionary Compu-
tation Series, pages 167–186. Springer,
New York

tion, additional function arguments (spurious variables) are added
that do not influence the function value at all. As this fact is not
known to the GP system, and spurious variables might be corre-
lated with the function value by chance, problem difficulty can be
increased stepwise by increasing the number of spurious variables.
Of course, spurious variables can also be added to input data di-
rectly, without resorting to a known test function, enabling scalable
test problems based on real-world data.

In the experiments conducted for this study, the spurious vari-
able test functions described below were used. For each test func-
tion, one to ten spurious variables were added to gradually increase
problem difficulty. Fitness cases were created by uniform random
sampling in the indicated training and validation intervals. Training
and validation set sizes are indicated below.

108 a modular genetic programming system

P1 (Simple Sine) Discovering the input-output relation of the sine
function should be trivial even for a very simple GP system config-
ured for symbolic regression, if the sin function is included in the
GP function set and no spurious variables are introduced.

fP1(x1) := sin(πx1)

The factor π has been introduced to test the GP system’s capability
of fitting constants. The training interval of the Simple Sine test
function is fixed to xtrain := [−π, π], the validation interval is fixed
to xvalidation := [− 3

2 π, 3
2 π], and the number of fitness cases, i.e., the

test function sample size, is fixed to NP1 := 32, based on results of
a pre-experimental study conducted to avoid floor or ceiling effects.
The GP function set used with this test function is {+,−, ∗, /, sin}.

P2 (Newton Problem) Compared to the Simple Sine test function,
the Newton Problem poses a slightly harder test case, as the true
expression has slightly larger genotypic size. It was included as a
more practical example based on a well-known natural law.

fP2(x1, x2, x3) :=
x1x2

x2
3

The training interval of this test function is xtrain := (0, 1], the val-
idation interval xvalidation := (0, 2], and the number of fitness cases
is fixed to NP2 := 64, based on results of a pre-experimental study.
The GP function set used with this test function is {+,−, ∗, /}.

P3 (Sine Cosine) This test function is a simplified variant of test
problem (P12) given in Korns [2011]’s work on accuracy in sym-
bolic regression.11 It is considered difficult for GP because it con- 11 Korns, M. (2011). Accuracy in

symbolic regression. In Riolo, R. et al.,
editors, Genetic Programming Theory and
Practice IX, Genetic and Evolutionary
Computation Series, pages 129–151.
Springer, New York

tains constants as arguments to non-linear functions.

fP3(x1, x2) := 6 sin(x1 − 3) cos(x2 − 3)

The training interval of the Sine Cosine test function is xtrain :=
[−π, π], the validation interval xvalidation := [− 3

2 π, 3
2 π], and

the number of fitness cases is fixed to NP3 := 128, based on re-
sults of a pre-experimental study. The GP function set used is
{+,−, ∗, /, sin, cos}.

4.3.2 Kriging-Based Test Functions

The scalable test functions based on spurious variables described
in the previous subsection are simple to understand and imple-
ment, but offer only a single variant per difficulty level. When used
for GP system parameter tuning and analysis, this can become
an issue, as analysis and tuning results might be overfitted to the
concrete test function. Possible solutions include using a different
test function for validation, or creating variants by adding random
noise. Unfortunately, these solutions have issues. Typically, optimal
GP parameter settings are not entirely problem independent. This

sequential parameter optimization 109

fact is easily demonstrated by adding the target function to the GP
function set, which is a GP system parameter. Swapping the target
function for parameter validation to a completely unrelated one is
therefore bound to give results of limited meaningfulness. Adding
random noise to create test function variants poses another set of
problems, including how to choose the noise amplitude. It can be
assumed that symbolic regressions problems from the same appli-
cation domain have similar properties, which are diluted by simply
adding random noise.

Kriging-based scalable random test functions proposed here offer
an alternative solution that does not suffer from these problems.
They also offer additional benefits, including a new approach to
problem difficulty scaling complimenting the spurious variable
approach. A drawback of their current implementation is that they
can only be applied to symbolic regression problems based on
numerical input data.

Kriging is an interpolation method that, under certain condi-
tions, gives the best linear unbiased prediction of the intermediate
values. It is widely used in surrogate modeling and has properties
that make it equally useful as the basis of a scalable random test
function generator. Forrester et al. [2008] (pp. 51–63) define the
Kriging model building and prediction process.12 See Section 6.2.6 12 Forrester, A., Sobester, A., and

Keane, A. (2008). Engineering Design via
Surrogate Modelling. Wiley, Chichester,
U.K., 1st edition

for additional details.
The Kriging-based scalable random test function generator in-

troduced here creates arbitrary many variations of a given base
function or regression input data set. The range of complexity, or
difficulty, of these variations is controlled by the parameter pair
(δmin, δmax), where δmin ∈ mathbbR>0 ≤ δmax ∈ R>0. Problem
variation can be disabled by setting δmin = δmax.

Kriging-based scalable random test functions are constructed
through the following algorithm:
1. A number of samples of the base function or regression

input data set is designated as Kriging model training data.
2. A Kriging model is fitted on this training data.
3. The Kriging model’s correlation parameter vector θ is per-

turbed by scaling with a uniform random vector of factors
from the interval [δmin, δmax].

4. The perturbed Kriging model fit is returned as a test func-
tion. If needed, it is sampled to gain a new regression input
data set that is a variation of the base input data set.

Kriging Test Function
Generator Factory

Kriging Test Function
Generator

Test Function

fPn: ℝn → ℝ

Training
Data

Difficulty
Range

Kriging Model Fit

Figure 4.2: The Kriging-based test
function generator. A factory function
creates a Kriging test function gener-
ator based on Kriging model training
data and a difficulty range [δmin, δmax].
The resulting generator encapsulates
the initial Kriging model fit and can be
used to create an arbitrary number of
test functions by randomly perturbing
the model fit.

Figure 4.2 shows how this process is implemented in practice. A
Factory function creates a Kriging test function generator based on
Kriging model training data and a difficulty range [δmin, δmax].

The resulting generator encapsulates the initial Kriging model
fit and can be used to create an arbitrary number of test function
variants by randomly perturbing the θ model parameter. These
test function variants will share the same structure. From a soft-
ware technology standpoint, the encapsulation can be achieved by
representing Kriging-based test function generators as closures.

110 a modular genetic programming system

The θ parameter occurs in the Kriging basis functions, which are
of the form

ψ(i) := exp

(
−

k

∑
j=1

θj |x
(i)
j − xj|pj

)
.

Here, k denotes the input data dimension, i.e., the number of
independent variables. Note that the Kriging basis function is a
generalization of the simpler Gaussian basis function, which can be
retrieved by setting p = 2 and all components θj to a constant value.
Forrester et al. [2008] (p. 53) describes the θ parameter as follows:

[θ] is essentially a width parameter that affects how far a sample
point’s influence extends. A low θj means that all points will have a
high correlation, with [the dependent variable] Y(xj) being similar
across our sample, while a high θj means that there is a significant
difference between the Y(xj)’s θj. We can therefore consider θj as a
measure of how “active” the function we are approximating is.

Examples of the test functions generated by the Kriging-based
test function generator are shown in Figure 4.3. All test functions
are derived from the base function Salustowicz 1D, described in de-
tail as test function P5 below, and shown as a thick black line in
both plots. The left plot shows five random test functions gener-
ated from a Kriging-based test function generator set to a difficulty
range of [0.5, 0.95], the right plot shows five functions from a dif-
ficulty range of [1.01, 1.1]. Each test function is plotted with a thin
line in a different shade of gray.

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

δ ∈ [0.5, 0.95]

x

y

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

δ ∈ [1.01, 1.1]

x

y

Figure 4.3: Examples of Kriging-based
test functions. All test functions are
derived from the base function Salus-
towicz 1D (see problem P5), shown as a
thick black line in both plots. The left
plot shows five random test functions
generated from a Kriging-based test
function generator set to a difficulty
range of [0.5, 0.95], the right plot shows
five functions from a difficulty range of
[1.01, 1.1]. Each test function is plotted
with a thin line in a different shade of
gray.

The following test functions were used to train the Kriging-based
test function generators used in this work. As in the previous sub-
section, fitness cases were created by uniform random sampling in
the indicated training and validation intervals.

sequential parameter optimization 111

P4 (Air Passengers) This test function is based on the well-known
“air passengers” data set. The data consists of monthly totals of
international airline passengers, from 1949 to 1960. The indepen-
dent variable x is the number of months since January 1949, the
dependent variable y being the number of airline passengers in
thousands. The data set was first introduced by Box et al. [2008].13 13 Box, G., Jenkins, G., and Reinsel, G.

(2008). Time-Series Analysis: Forecasting
and Control. Wiley Series in Probability
and Statistics. Wiley, Hoboken, NJ

This test function has been included as a simple time series fore-
casting problem.

The training interval is xtrain := [1, 108], the validation interval is
xvalidation := [109, 144], and the number of fitness cases is fixed to
NP4 := 144, based on a pre-experimental study. The GP function set
used is {+,−, ∗, /, sin, cos, tan, exp, log,

√
x}.

P5 (Salustowicz 1D) This test function, first introduced by Salus-
towicz and Schmidhuber [1997], has been designed to be simple to
read yet challenging for typical GP systems.14 14 Salustowicz, R. and Schmidhuber,

J. (1997). Probabilistic incremental
program evolution. Evolutionary
Computation, 5(2):123–141

fP5(x1) := e−xx3 cos(x) sin(x)[sin2(x) cos(x)− 1]

The training and validation intervals of the Salustowicz 1D test
function is xtrain = xvalidation := [0, 10], where a random sample of
50% of the data is used for training, while the remainder is used for
testing. The number of fitness cases is fixed to NP5 := 100, based
on results of a pre-experimental study. The GP function set used is
{+,−, ∗, /, sin, cos, tan, exp, log,

√
x}.

In the remainder of this work, the term problem class is used to refer
to concrete test function instances created by a test function gener-
ator. It is assumed that these instances are similar in structure and
that these similarities approximate similarities found in real-world
data from the same domain and same underlying generating pro-
cess. Among other things, the next chapter examines whether this
intra-class similarities lead to similar tuned GP system parameter
settings.

4.4 Conclusions

This chapter introduced SPO and its implementation SPOT, as well
as two different classes of scalable randomized test functions. The
statistical methods underlying SPO, i.e., design of experiments,
model-based parameter optimization, and sensitivity analysis,
combined with scalable randomized test functions, will be highly
valuable during the empirical analysis of modern GP algorithms
carried out in the next chapter.

5
Optimizing Genetic Programming Parameters

The goal of this chapter is to provide a thorough and statistically
well-founded experimental analysis of the parameter space of a
modern GP system.1 There are at least three important applications 1 Data and R source code for

all experiments presented in
this chapter are available at
https://rsymbolic.org/projects/

ofdiss/repository/revisions/

master/show/experiments/rgpSpo.

for the results of this analysis:
1. The relative effect of each GP system parameter and com-

ponent on GP system performance, i.e., expected solution
quality, will be exposed. Further research and development
can then focus on the most important components.

2. Near-optimal parameter settings for each GP system pa-
rameter will be reported. Owing to the parameter tuning
methodology used, these settings ought to be robust within
a problem class, and can be seen as good default settings for
that class.

3. The methodology introduced here can be easily applied to
the analysis of newly proposed GP algorithm components,
furthering reproducibility in GP research.

The methodology applied in the analysis has been introduced in
Chapter 4. Additional techniques and terms will be defined where
needed. To our knowledge, this is the first application of state-
of-the art sequential parameter optimization to a state-of-the art
multi-objective symbolic regression system. Analysis of the results
will help to validate the benefits of recent advances in the GP field,
such as multi-objective selection operators, dynamic age layering,
and scaled error measures2. 2 e.g. SMSE as introduced in Sec-

tion 2.5.3The remainder of this chapter is structured as follows: After a
short overview on previous work in GP system parameter analysis
and tuning, research questions for the analysis will be introduced
as scientific claims. These claims will be broken down to testable
statistical hypotheses. Next, an overview of the GP system param-
eters included in this study will be given. The parameter space
will be screened in a first round of experiments and the relative
importance of each parameter will be reported. Next, a method for
selecting near-optimal GP function sets is presented. After that, it
will be shown how the most influential parameters can be tuned
by SPO, resulting in near-optimal parameter settings for a given
problem class. This chapter concludes with a summary description

https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/rgpSpo
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/rgpSpo
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/rgpSpo

114 a modular genetic programming system

of the procedure proposed and best practices for selecting near-
optimal GP parameter settings and GP function sets for a given
problem class.

5.1 Previous Work

As EAs in general, GP is relatively robust to its parameter settings,
meaning that usable results can be reached even with basic algo-
rithms and default parameter settings based on coarse rules of
thumb. Traditionally in the field of GP, the crossover rate is often
set to 0.9, and the population size is chosen to be as large as pos-
sible while allowing for about 10 to 50 generations in the available
compute time budget.3 Due to its relative robustness regarding pa- 3 Poli, R., Langdon, W. B., and McPhee,

N. F. (2008). A Field Guide to Genetic
Programming. http://lulu.com (re-
trieved 20.02.2015). (With contributions
by J. R. Koza)

rameter settings and relative high computational effort per run, GP
parameter tuning is still not common practice and the literature is
quite sparse.

There are two general approaches to setting EA and GP parame-
ters: Parameter tuning and parameter control. Parameter control is
done online, i.e., during a single evolution run. Parameter control
tries to gauge the effect of each controlled parameter by measuring
algorithm performance in response to changes and adapts param-
eters based on this information. In contrast, parameter tuning is
done a priori, and parameter values are kept constant during a sin-
gle GP run. This work focuses on parameter tuning. Eiben et al.
[1999] provides a comprehensive introduction to parameter control
in EAs.4 4 Eiben, A., Hinterding, R., and

Michalewicz, Z. (1999). Parameter
control in evolutionary algorithms.
IEEE Transactions on Evolutionary
Computation, 3(2):124–141

Although parameter control and parameter tuning are distinct
paradigms with different terminology, different techniques, and
largely separate research communities, conceptually, every param-
eter tuning technique can be transformed to a parameter control
technique. To do so, one or multiple parameter tuning runs are in-
terleaved with the main GP run, sharing the same compute time
budget. After each parameter tuning step, the main GP run is re-
sumed using the best parameter settings found.

The first to use statistical methods for the design and analysis
of experiments (DoE) for GP were Feldt and Nordin [2000]. They
employed fractional factorial designs to analyze the effect of dif-
ferent parameter settings to the commercial GP system Discipulus,
which has been introduced shortly in Section 3.1. Discipulus does
neither support multi-objective selection nor dynamic age-layering.
Their study included 17 factors with two levels each. Validation
set hit-rate results from three binary classification problems hinted
at population size followed by number of generations as the most
significant parameters. Nine of the 17 parameters had a very small
or statistically insignificant effect on result quality, i.e., classifier hit
rate. These results support the notion that GP systems are robust to
different parameter settings only partly, as at least two parameters
had a large effect on result quality.5 5 Feldt, R. and Nordin, P. (2000). Using

factorial experiments to evaluate
the effect of genetic programming
parameters. In Poli, R. et al., editors,
Proceedings of the European Conference
on Genetic Programming (EuroGP
2000), volume 1802 of Lecture Notes
in Computer Science, pages 271–282,
Berlin. Springer

Piszcz and Soule [2006a] introduced an artificial test problem

optimizing genetic programming parameters 115

of variable difficulty to test for a correlation between the optimal
mutation rate and problem difficulty. They used simple sweeps of
the mutation rate parameter for their experiments. Results show
that the range of the optimal mutation rates is inversely propor-
tional to problem difficulty, defined as solution tree depth. As an
additional result, they showed that that the range of good mutation
rates narrows with increasing problem difficulty.6 6 Piszcz, A. and Soule, T. (2006a).

Genetic programming: Analysis of
optimal mutation rates in a problem
with varying difficulty. In Sutcliffe,
G. C. J. and Goebel, R. G., editors,
Proceedings of the 19th International
Florida AI Research Society Conference
(FLAIRS 2006), pages 451–456, Menlo
Park, CA. AIII Press

Lasarczyk [2007] successfully employed SPO to analyze and
tune parameters of an algorithmic chemistry. He also tuned the
parameters of a single-objective GP system using register machine
programs as genotype representation (linear GP) to provide a base-
line for his results. Both GP variants were tuned based on three
artificial test problems. Results show that SPO is effective in iden-
tifying good parameter settings for both GP variants studied. For
both GP variants, the tuned parameter settings were similar for all
test problems. Some of the tuned settings lied at the boundary of
their region of interest, though.7 7 Lasarczyk, C. W. G. (2007). Genetis-

che Programmierung einer algorith-
mischen Chemie. Dissertation, TU
Dortmund, Germany

White and Poulding [2009] used a DoE methodology to access
the relative importance of crossover and mutation operators in the
GP system ECJ that has been introduced in Section 3.1. They used
a set of six test problems, including symbolic regression, classifi-
cation, and control problems. Results show that crossover signifi-
cantly outperformed mutation in only two out of six test problems.
Their work also demonstrated the effectiveness of using DoE based
on full factorial designs in tuning GP system parameters by signif-
icantly improving ECJ’s default parameter settings for three out of
six test problems.8 8 White, D. R. and Poulding, S. (2009).

A rigorous evaluation of crossover and
mutation in genetic programming. In
Vanneschi, L. et al., editors, Proceed-
ings of the 12th European Conference on
Genetic Programming (EuroGP 2009),
volume 5481 of Lecture Notes in Com-
puter Science, pages 220–231, Berlin.
Springer

The work of De Lima et al. [2010] improved on Feldt and Nordin
[2000]’s method by using full factorial designs to determine influ-
ential parameters as well as relevant parameter interactions of the
lil-gp system, a simpler precursor of ECJ. One-factor experiments
and linear regression were used to fine-tune the most influential
GP parameters on two fixed test problems, binary classification and
symbolic regression. The study included the six parameters popula-
tion size, generations, maximum tree depth, crossover-, mutation-,
and reproduction-rate. Results show that the maximum tree depth
is the most important parameter, followed by number of genera-
tions and population size.9 9 De Lima, E. B., Pappa, G. L., de

Almeida, J. M., Goncalves, M. A., and
Meira, W. (2010). Tuning genetic pro-
gramming parameters with factorial
designs. In Proceedings of the 2010 IEEE
Congress on Evolutionary Computation
(CEC 2010), Piscataway, NJ. IEEE Press

5.2 Research Questions

There are three high-level scientific claims examined in this work.
For the first, TinyGP is considered as a baseline algorithm imple-
menting only the most basic features of GP. A common belief in the
GP community can be stated as follows:

Scientific Claim 1 (C-1) Complex problems require complex algorithms.

Or, stated differently: TinyGP can solve tiny problems whereas hard
problems require more complex algorithms.

116 a modular genetic programming system

From a naive point of view, Claim 1 goes without saying—one
may simply consider that the opposite assumption is true. There-
fore, it can be taken as a guideline for performing experiments
and present results that are based on solid scientific and statistical
assumptions.

In order to perform a sound statistical analysis, a hierarchy of
complex (hard) problems will be defined. Scalable test functions
based on spurious variables, as introduced in Section 4.3.1, are well
suited for this goal: Increasing the number of spurious variables
should decrease the success rate of the GP system.

A reference GP implementation should consolidate all essential
features of GP systems in a simple and understandable manner.
The TinyGP system is considered as an ideal candidate for a base-
line algorithm, because it is well-known, easy to obtain, and easy
to implement. RGP’s GMOGP search heuristic is employed as a
reference GP implementation of a modern GP algorithm. It includes
at least multi-objective selection as a defining feature of state-of-
the-art GP systems. Also, it is easy to obtain, relatively easy to
understand, and relatively easy to implement.

The second claim examined in this work is about parameter tuning:

Scientific Claim 2 (C-2) The parameter settings of modern GP systems
can be effectively tuned.

As already mentioned, modern GP systems are GP systems in-
corporating multi-objective selection. As all GP systems studied
in the previous work described in Section 5.1 did not implement
multi-objective selection, it has to be shown that parameter tuning
is effective for modern GP systems. By breaking down this claim to
testable hypotheses, detailed information about the relative impor-
tance of parameters and their near-optimal settings for a given GP
task should be obtainable.

Assuming that the parameters of modern GP systems can be
effectively tuned at all, the question about parameter setting robust-
ness quickly arises. If tuned parameter settings are highly specific
to a single GP problem, parameter tuning would be of limited util-
ity. It is therefore claimed that:

Scientific Claim 3 (C-3) Tuned GP system parameter settings are ro-
bust within a problem class.

If this claim can be backed by empirical evidence, tuned param-
eter settings can be assumed useful at least within a larger class of
GP tasks, e.g. different symbolic regression tasks from the same
problem domain.

5.3 GP System Parameter Overview

This section introduces the GP system parameter space analysed in
this study. First, parameters common to all GP search heuristics are

optimizing genetic programming parameters 117

explained. Next, parameters specific to the TinyGP and GMOGP
search heuristics are reproduced for convenience. These parameters
have been already explained in detail in Section 2.9.

5.3.1 Common Parameters

Table 5.1 shows GP system parameters common to all search
heuristics with their respective domains, types, and defaults. In all
experiments, default values where used unless a parameter is sub-
ject to screening or tuning. For notational brevity, error measures
and function sets are referred to by index number in the experiment
designs described later.

Variable (Symbol) Domain Default

Crossover Probability crossoverP (pcrossover) [0, 1] 0.5
Constant Mutation Weight constantMutationPw (pmconst) [0, 1] 0
Constant Mut. Mean constantMutationMu R 0
Constant Mut. SD constantMutationSigma R 1
Function Mutation Weight functionMutationPw (pmfunc) [0, 1] 0
Subtree Mutation Weight subtreeMutationPw (pmsubtree) [0, 1] 1

Individual Size Limit individualSizeLimit N 64
Error Measure Number errorMeasureNum (ierror) {1, . . . , 4} 1
Function Set Number functionSetNum (ifuncset) {1, . . . , 4} 4

Table 5.1: Parameters of the RGP
system independent of the search
heuristic.

Table 5.2 presents index numbers for error measures available in
RGP by default and used in this study, where index numbers for
function sets used in this study are presented in Table 5.3.

ierror Error Measure Description

1 SMSE Scaled mean squared error
2 RMSE Root mean squared error
3 SSE Sum squared error
4 MAE Mean absolute error

Table 5.2: Default error measures
available in RGP and used in this
study.

ifuncset Function Set

1 {+,−,×,÷}
2 {+,−,×, sin, exp}
3 {+,−,×,÷, sin, exp, log,

√
x}

4 {+,−,×,÷, sin, cos, tan, exp, log,
√

x}

Table 5.3: Default function sets avail-
able in RGP and used in this study.

5.3.2 TinyGP Parameters

Table 5.4 shows GP system parameters specific to the TinyGP search
heuristic.

5.3.3 GMOGP Parameters

GP system parameters specific to the GMOGP search heuristic are
shown in Table 5.5. The selection criteria genotypic complexity and

118 a modular genetic programming system

Variable (Symbol) Domain Default

Population Size mu (µ) N 300
Tournament Size tournamentSize (stournament) N 2
Crossover Probability crossoverP (pcrossover) [0, 1] 0.9

Table 5.4: Parameters of the TinyGP
search heuristic.

genotypic age can be enabled and disabled individually, yielding
three valid configurations of the GMOGP search heuristic:
• single-objective selection based on goodness of fit (GMOGP-F)
• multi-objective selection based on goodness of fit and individual

age (GMOGP-FA)
• multi-objective selection based on goodness of fit and individual

complexity (GMOGP-FC)
• multi-objective selection based on goodness of fit, individual age,

and genotypic individual complexity (GMOGP-FCA)
Depending on the configuration selected, other algorithm com-

ponents may be disabled. Explicit diversity preservation through
Age-Fitness Pareto Optimization is available only when the individ-
ual age criterion is enabled.

To handle constraints of the parameters λ and ν relative to µ,
these are transformed to box-constrained relative parameters λµ rel

and νµ rel according to the following equations:

λ = max(2, dλµ rel ·
µ
2 e)

ν = dνµ rel · µe
(5.1)

Note that with this transformation, the minimum value for λ

is 2, i.e., at least two children will always be created, avoiding a
configuration resulting in purely random search.

Variable (Symbol) Domain Default

Population Size mu (µ) {8, . . . , 256} 100
Children per Generation (relative) lambdaRel (λµ rel) [0, 1] 1
New Individuals per Generation (relative) nuRel (νµ rel) [0, 1] 0.5
Age Layering ageLayering (bage) B true

Parent Selection Probability parentSelectionP (ppsel) [0, 1] 1

Table 5.5: Parameters of the GMOGP
search heuristic, transformed to
remove linear constraints between
parameters.

5.4 Pre-Experimental Planning

Following the experimental framework presented by Bartz-Beielstein
[2006], a sound experiment setup requires the specification of the
1) optimization problem, 2) performance measure, 3) initialization
method, and 4) termination method. 10 10 Bartz-Beielstein, T. (2006). Ex-

perimental Research in Evolutionary
Computation—The New Experimentalism.
Natural Computing Series. Springer,
Berlin

5.4.1 Optimization Problem

The symbolic regression test functions used in this study have two
components: 1) a test function, say f , and 2) a measure, which
determines the distance between the true function f and its GP
approximation, say f̂ .

optimizing genetic programming parameters 119

Test functions where presented in Section 4.3. RMSE is the per-
formance measure used in the comparisons. See Section 2.5.3 for a
definition and details. GP runs where performed based on training
error calculated on the training sets described in Section 4.3.

During the pre-experimental planning phase, a large number
of function evaluations n0, the so-called budget, has been used the
determine an adequate percentage of GP runs that reach a pre-
defined (small) distance to the optimum. Run-length distributions
(RLDs), as introduced by Parkes and Walser [1996], are generated to
estimate a suitable budget n ≤ n0 for the actual experiments.11 11 Parkes, A. J. and Walser, J. P. (1996).

Tuning local search for satisfiability
testing. In Proceedings of the 13th Na-
tional Conference on Artificial Intelligence
(AAAI 1996), pages 356–362, Menlo
Park, CA. AIII Press

To avoid floor and ceiling effects, an adequate problem design,
e.g., number of function evaluations as well as reasonably chosen
training, validation, and test sets, has been determined.

5.4.2 Performance Measure

To avoid overfitting on the training set, the test error, i.e., the ex-
pected prediction error over an independent test sample xt, is pre-
ferred. The comparison of the algorithm designs is based on these
test-set data. To enable fair comparisons and to avoid floor and
ceiling effects, RLDs of the TinyGP implementation are generated.

5.4.3 Initialization and Termination Method

Classical ramped half-and-half initialization, as introduced in Sec-
tion 2.6.1 was used in all experiments. To determine suitable ter-
mination methods, RLDs were generated. The number of solution
evaluations, i.e., the number of fitness cases times the number of
test function evaluations, was chosen as the termination criterion.

5.4.4 Compute Time Budget Calibration

During the first stage of experimentation, no parameter tuning
will be performed. The goal is to discover positive correlations
between algorithm complexity and problem difficulty using default
algorithm parameter settings.

First experiments were set up to calibrate the reference algorithm
TinyGP to the problem.

Statistical Hypothesis 1 (H-1) TinyGP requires more function evalua-
tions to reach the same success rate as problem difficulty increases.

RLDs are suitable means to measure performance and to de-
termine an adequate budget. This is necessary because floor and
ceiling effects should be avoided. A large number of function evalu-
ations, i.e., a budget of n0 = 1e6, was chosen to generate the RLDs.
The set of test functions consists of { fP1, fP2, fP3}.

The investigation of H-1 has two significant results: First, it is en-
sured that the reference algorithm is able to solve this problem (at
least it should be able to improve an existing candidate solution).

120 a modular genetic programming system

Additionally, the correct number of test function evaluations for
comparisons is determined.

Second, test functions which are far too easy (or too hard) for
the reference algorithm are detected. Further considerations are
needed in the case that the reference algorithm is unable to solve a
test function.

Next, we introduce GMOGP-F as a base variant of the new algo-
rithm to be analyzed.

Statistical Hypothesis 2 (H-2) GMOGP-F is competitive with the
reference algorithm.

To analyze H-2, the same setup as for H-1 was used.

These two series of experiments belong to the pre-experimental
planning phase, because they are needed to set up fair compar-
isons. If either H-1 or H-2 has to be rejected, the experiment setup
should be reconsidered, e.g., the set of test function should be mod-
ified or the computational budget should be increased.

Calibration Results To generate the experimental data needed to
test the statistical hypotheses H-1 and H-2, experiments for each
hypothesis where prepared in the RGP framework. These experi-
ments where then executed on a 48 core compute cluster. Gener-
ation of result reports and visualizations where automated by the
RGP framework.

Statistical Hypothesis 1 (H-1) Table 5.6 and Figure 5.1 show that
TinyGP’s success rates decrease as problem complexities increase.
As the algorithm can get stuck in local optima and basing RLD
calculation on test data instead of training data adds additional
noise, this decrease is not strictly monotonic. Nonetheless, the
data does not indicate that H-1 has to be rejected. During pre-
experimental planning, the Sine Cosine test problem (P3) proved
too difficult for the reference algorithm (TinyGP), and was therefore
excluded from further experiments.

Statistical Hypothesis 2 (H-2) On both test functions studied,
GMOGP-F shows significantly better performance than the refer-
ence, as visible in Table 5.6 and Figure 5.1. Hypothesis H-2 does
not have to be rejected. This concludes the analysis of the pre-
experimental planning phase.

5.5 GP System Parameter Screening

The goal of the next series of experiments is twofold. First, the
most important GP system parameters, i.e., the parameters with the
largest effect on GP performance, should be identified. Second, the
size of the parameter space should be reduced either by removing
parameters of negligible effect or by fixing influential parameters to

optimizing genetic programming parameters 121

Difficulty (# Spurious Variables)
Search Heuristic Test Function 1 2 3 4 5 6 7 8 9 10

TinyGP
Simple Sine (P1) 95 75 70 65 55 55 50 50 55 30

Newton Problem (P2) 80 80 60 70 60 35 40 45 35 10

Sine Cosine (P3) 10 20 20 15 10 0 5 15 5 5

GMOGP-F
Simple Sine (P1) 100 100 100 100 100 100 100 95 100 95

Newton Problem (P2) 90 90 90 80 50 75 65 55 40 30

Table 5.6: Run length distributions (%)
for TinyGP and GMOGP-F at 250, 000
fitness function evaluations.

0

25

50

75

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

Su
cc

es
s

R
at

e
(%

)

Spur. Var.

1

2

3

4

5

6

7

8

9

10

simple_sine_tinygp (Test Fitness < 0.1)

(a) Simple Sine (P1), TinyGP search heuristic

0

25

50

75

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

Su
cc

es
s

R
at

e
(%

)

Spur. Var.

1

2

3

4

5

6

7

8

9

10

simple_sine_gmogp_f (Test Fitness < 0.1)

(b) Simple Sine (P1), GMOGP-F search heuristic

0

25

50

75

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

Su
cc

es
s

R
at

e
(%

)

Spur. Var.

1

2

3

4

5

6

7

8

9

10

newton_tinygp (Test Fitness < 0.1)

(c) Newton Problem (P2), TinyGP search heuristic

0

25

50

75

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

Su
cc

es
s

R
at

e
(%

)

Spur. Var.

1

2

3

4

5

6

7

8

9

10

newton_gmogp_f (Test Fitness < 0.1)

(d) Newton Problem (P2), GMOGP-F search heuristic
Figure 5.1: RLD plots for TinyGP and
GMOGP-F. Algorithm success rates
are based on a fitness threshold of 0.1.
Each plot shows ten difficulty levels
(number of spurious variables) of a
single test function for a single search
heuristic, based on 20 independent
runs for each combination of search
heuristic, test function, and difficulty.

122 a modular genetic programming system

universally good settings. This size reduction leads to a GP system
that is easier to use, as less parameters have to be set, as well as
faster and more efficient to tune.

5.5.1 Experiment Setup

From now on, the GMOGP-FCA search heuristic will be used,
i.e., GMOGP with multi-objective selection based on goodness
of fit, individual age, and genotypic individual complexity. The
previous experiments where needed to estimate realistic run time
budgets. Also, the set of test functions is changed to { fP4, fP5},
which are more challenging for symbolic regression and therefore
more relevant to more advanced search heuristics. In the following
parameter screening experiments, fixed test functions are used, i.e.,
the difficulty of the Kriging test function generator has been set to
the fixed value of 1.0. See Section 4.3 for details. Randomized test
functions will be introduced in the next series of experiments on GP
function set selection.

Optimization Problem As GMOGP-FCA is multi-objective search
heuristic, the definition of the optimization problem has to be
extended by adding additional objectives. In addition to good-
ness of fit measured as described in the last section, these objective
are genotypic individual complexity and individual age. See Sec-
tion 2.9.3 for detailed definitions.

Initialization and Termination Method Initial experiments showed
that different parameter settings can lead to significant differences
in the runtime required to perform a fixed number of fitness eval-
uations in the GMOGP-FCA search heuristic. This effect can be
clearly seen in Figure 5.2 and explained by the fact that, depending
on parameter settings, GP operators have to be applied more or
less often to reach the same number of fitness function evaluations.
For example, with small population sizes (µ), the selection operator
will be applied more often than with large µ for a fixed number of
fitness function evaluations.

In most real-world GP applications, only a fixed compute time
budget is available. Therefore, from now on, the expiration of a
fixed compute time budget was chosen as the termination criterion.
The compute time budget has been calibrated to 12 hours on a
single thread on an Intel Xeon E5530 CPU running at 2.4 GHz.
With this budget, acceptable results are reached with GMOGP-
FCA default parameter settings on both P4 and P5. For illustration,
Figure A.1 in Appendix A visualizes the results for test function P5

obtained by 12 calibration runs with a budget of 12 hours each. The
results for test function P4 are of comparable quality.

optimizing genetic programming parameters 123

●●

●

●●

●

●

●

●
●

●

●

●●

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Experiment Design Point

W
al

l C
lo

ck
 T

im
e

(H
ou

rs
)

Figure 5.2: Wall clock time taken for
ten million fitness evaluations using
GMOGP-FCA on Salustowicz 1D (P5),
for different algorithm parameter
settings (experiment design points)
with ten runs each. Measurements
were taken on a single thread on an
Intel Xeon E5530 CPU running at 2.4
GHz.

5.5.2 Statistical Hypotheses

The experiments performed in this section are designed to test the
following three statistical hypotheses.

Statistical Hypothesis 3 (H-3) There exist parameters that have a
significant effect on GMOGP-FCA system performance as measured by
validation MAE of the best solution found.

This hypothesis states that there are GMOGP-FCA system parame-
ters that have a statistically significant effect on the system’s perfor-
mance. If this hypothesis has to be rejected, the experiment setup
should be reconsidered. Otherwise, the following hypotheses can
be tested. This approach is related to standard procedures in analy-
sis of variance (ANOVA) .

Statistical Hypothesis 4 (H-4) GMOGP-FCA system parameters show
significant differences in their effect on GMOGP-FCA system perfor-
mance as measured by validation MAE of the best solution found.

Some parameters are expected to have a larger effect on the GP
system’s performance than others. If this hypothesis has to be re-
jected, a reduction of the parameter space dimensionality cannot be
justified.

Statistical Hypothesis 5 (H-5) The choice of the GP function set has a
significant effect on GMOGP-FCA system performance as measured by
validation MAE of the best solution found.

It is expected that the choice of the GP function set parameter
ifuncset should exert a significant effect on the GP system’s perfor-
mance. Depending on the standpoint of the user, this parameter

124 a modular genetic programming system

can be considered as an algorithm parameter or as a problem pa-
rameter. The function set defines in large parts the set of possible
solutions as well as the size of the genotype set, therefore being an
important factor in overall problem difficulty. This intuitive argu-
ment is formalized by hypothesis H-5.

5.5.3 Screening Design

To test the statistical hypotheses H-3 to H-5 introduced in the pre-
vious subsection, experiments based a Plackett-Burman Screening
Design are conducted. See Grönmping [2014] for details on this
type of experiment design and the R package FrF2 that implements
it.12 Table 5.7 shows the design used. For each of the 18 different 12 Grönmping, U. (2014). R package

FrF2 for creating and analyzing frac-
tional factorial 2-level designs. Journal
of Statistical Software, 56(1):1–56

parameter settings (design points), ten independent GP runs where
executed on test functions P4 and P5, leading to a total of 360 GP
runs with a compute time budget of 12 hours each.

ifuncset pmconst pcrossover bage ierror pmfunc λµ rel µ νµ rel ppsel pmsubtree

1 2 0.5 0.5 true 2 0.5 0.5 132 0.5 0.5 0.5
2 2 0.5 0.5 true 2 0.5 0.5 132 0.5 0.5 0.5
3 1 1.0 0.0 true 4 0.0 1.0 256 1.0 0.0 0.0
4 1 0.0 1.0 false 4 1.0 0.0 256 1.0 1.0 0.0
5 1 0.0 0.0 true 1 1.0 1.0 8 1.0 1.0 1.0
6 4 1.0 1.0 false 1 0.0 1.0 8 1.0 1.0 0.0
7 1 1.0 1.0 false 4 1.0 1.0 8 0.0 0.0 1.0
8 4 0.0 0.0 false 4 0.0 1.0 256 0.0 1.0 1.0
9 2 0.5 0.5 true 2 0.5 0.5 132 0.5 0.5 0.5
10 2 0.5 0.5 true 2 0.5 0.5 132 0.5 0.5 0.5
11 1 1.0 1.0 true 1 0.0 0.0 256 0.0 1.0 1.0
12 1 0.0 0.0 false 1 0.0 0.0 8 0.0 0.0 0.0
13 4 0.0 1.0 true 1 1.0 1.0 256 0.0 0.0 0.0
14 4 1.0 0.0 true 4 1.0 0.0 8 0.0 1.0 0.0
15 4 0.0 1.0 true 4 0.0 0.0 8 1.0 0.0 1.0
16 4 1.0 0.0 false 1 1.0 0.0 256 1.0 0.0 1.0
17 2 0.5 0.5 true 2 0.5 0.5 132 0.5 0.5 0.5
18 2 0.5 0.5 true 2 0.5 0.5 132 0.5 0.5 0.5

Table 5.7: Plackett-Burman Screening
Design for the GMOGP-FCA search
heuristic. For each design point, ten
independent GP runs where executed
on test functions P4 and P5, resulting
in a total of 360 runs with a compute
time budget of 12 hours each.

5.5.4 Screening Results

Descriptive statistics of the raw result data for the parameter
screening experiments are reproduced in Table 5.8 (test function P4)
and Table 5.9 (test function P5). Each of the 18 design points cor-
responds to a set of ten result Pareto fronts. For each result Pareto
front, the solution with absolute lowest validation MAE (best) and
the solution at the Pareto front knee is reported in the tables. For
both best and knee solutions, medians and standard deviations
(SD) for validation MAE, and genotypic complexity are reported.
For best solutions, RLD values are also reported to simplify result
interpretation. For P4 (P5), a best solution validation MAE of 60
(0.05) has been used as RLD threshold.

Here, the knee of the Pareto front is defined as the Pareto front
member with minimum normalized euclidean distance to the

optimizing genetic programming parameters 125

MAE (best) Complexity (best) MAE (knee) Complexity (knee)
RLD (%) Median SD Median SD Median SD Median SD

1 0.70 35.66 9.31 347.00 546.69 51.47 9.87 47.00 500.06
2 0.90 39.61 7.27 348.50 652.74 51.36 4.43 37.00 22.93
3 1.00 50.91 0.08 11.00 75.82 50.92 0.02 11.00 0.00
4 0.80 53.29 4.88 112.00 287.37 62.15 8.74 11.00 10.72
5 0.00 212.70 119.52 421.00 318.12 410.62 6.20 1.00 0.00
6 0.00 221.22 144.44 44.00 451.04 411.74 82.81 1.00 185.23
7 0.10 292.98 121.29 1.00 9.11 292.98 85.45 1.00 8.64
8 0.40 65.67 37.83 100.00 117.20 140.34 32.52 8.00 1.45
9 1.00 35.55 8.83 728.50 575.41 51.08 5.68 32.00 37.38
10 0.70 37.83 8.11 506.00 576.59 55.06 110.54 16.50 12.02
11 0.10 292.96 94.45 3.00 226.99 292.98 70.92 1.00 1.93
12 0.00 292.98 4475.94 1.00 12.58 292.98 4475.94 1.00 12.58
13 0.20 93.05 82.18 64.50 172.24 292.98 0.00 1.00 0.00
14 0.00 292.98 48.70 1.00 16.60 292.98 43.44 1.00 2.54
15 0.30 62.58 5.58 666.50 958.94 65.21 32.67 15.00 603.40
16 0.00 247.85 67.13 57.00 24.92 408.20 53.72 1.00 8.37
17 0.80 36.49 9.51 869.50 776.84 50.99 6.55 59.50 202.35
18 0.90 39.15 8.45 826.00 519.26 51.62 4.46 20.50 200.07

Table 5.8: Parameter screening results
for the GMOGP-FCA search heuris-
tic, Air Passengers 1D test function
(P4). The RLD threshold was set to a
validation MAE of 60.

utopia point. Given a matrix M denoting a Pareto front, where
each row denotes a Pareto front member and each column the vec-
tor of normalized objective values of a single optimization objective,
the utopia point is the point consisting of the row minima of M.

MAE (best) Complexity (best) MAE (knee) Complexity (knee)
RLD (%) Median SD Median SD Median SD Median SD

1 0.90 0.03 0.03 1326.50 640.84 0.06 0.02 166.00 67.33
2 1.00 0.02 0.01 1107.50 546.95 0.05 0.02 152.00 84.32
3 0.00 0.14 0.01 506.00 145.01 0.38 0.03 1.00 0.00
4 0.00 0.15 0.01 573.00 239.98 0.30 0.04 1.00 41.71
5 0.00 0.24 0.45 546.00 301.00 1.41 1.08 1.00 95.59
6 0.00 0.32 0.24 165.00 2427.91 0.71 0.96 1.00 63.26
7 0.00 0.29 1.02 5.00 43.87 0.84 0.95 5.00 36.03
8 0.00 0.14 0.02 117.00 89.08 0.16 0.02 54.00 10.41
9 1.00 0.02 0.01 1388.50 512.75 0.06 0.02 128.00 62.38
10 1.00 0.02 0.01 1392.00 603.52 0.04 0.01 184.50 72.64
11 0.00 0.20 1.32 384.00 301.15 1.25 2.22 1.00 12.65
12 0.00 5.85 13.67 1.00 294.15 6.40 12.93 1.00 12.58
13 0.00 0.13 0.06 289.50 1837.87 0.19 2.01 31.50 383.51
14 0.00 0.24 0.13 6.00 27.28 0.48 2.27 3.00 16.37
15 0.60 0.04 0.05 1889.00 2483.50 0.11 0.04 49.00 356.08
16 0.00 0.12 0.05 27.00 59.89 0.42 0.15 9.00 4.65
17 0.90 0.02 0.03 1169.00 601.91 0.05 0.03 156.00 71.93
18 0.90 0.03 0.02 1153.00 852.38 0.05 0.04 146.50 97.62

Table 5.9: Parameter screening results
for the GMOGP-FCA search heuristic,
Salustowicz 1D test function (P5). The
RLD threshold was set to a validation
MAE of 0.05.

Statistical Hypothesis 3 (H-3) To test the hypothesis that at least
some GMOGP-FCA system parameters have a significant effect
on GMOGP-FCA system performance as measured by validation
MAE of the best solution found, a Kruskal-Wallis rank sum test13 13 Kruskal, W. and Wallis, W. (1952).

Use of ranks in one-criterion variance
analysis. Journal of the American
Statistical Association, 47(260):583–621

is performed for each parameter on test functions P4 and P5. The
null hypothesis of this test is that the location parameters of the

126 a modular genetic programming system

distribution of the validation MAE values are the same for each
parameter setting. The test’s p-value denotes the probability for the
input data being observed, assuming the null hypothesis being true.

The Kruskal-Wallis test tests whether the mean ranks of the de-
pendent variable (here: the validation MAE values) are the same for
all parameter settings. As the test is non-parametric, the dependent
variable does not need to be normally distributed.

Table 5.10 summarizes the results of the Kruskal-Wallis test.
For both test functions and all parameters, the p-values reported
are very small. Hence, the null hypothesis can be rejected. All pa-
rameters exert a statistically significant effect on the best solution
validation MAE values. The only exception being the repeat num-
ber, a pseudo-parameter in the range {1, 2, . . . , 10} identifying a
specific GP run among the ten repeats for each design point. This
parameter has been included to validate the test results, as it should
be irrelevant for the resulting validation MAE value. Now, we can
proceed with testing statistical hypothesis 4 (H-4).

Air Passengers 1D (P4) Salustowicz 1D (P5)
Parameter χ2 p-Value χ2 p-Value

ifuncset 76.68 2.23× 10−17 86.96 1.31× 10−19

pmconst 71.86 2.49× 10−16 89.49 3.68× 10−20

pcrossover 70.85 4.13× 10−16 85.08 3.36× 10−19

bage 70.72 4.41× 10−16 87.01 1.27× 10−19

ierror 71.35 3.21× 10−16 86.07 2.04× 10−19

pmfunc 75.43 4.18× 10−17 91.79 1.17× 10−20

λµ rel 71.29 3.30× 10−16 84.94 3.60× 10−19

µ 79.17 6.45× 10−18 87.08 1.23× 10−19

νµ rel 77.32 1.62× 10−17 92.81 7.04× 10−21

ppsel 71.82 2.53× 10−16 84.94 3.59× 10−19

pmsubtree 72.93 1.45× 10−16 85.79 2.35× 10−19

repeat number∗ 3.78 0.93 2.15 0.99

Table 5.10: Kruskal-Wallis rank sum
test performed on the best indi-
vidual validation MAE values of
the parameter screening results for
the GMOGP-FCA search heuristic.
Pseudo-parameters are marked with
an asterisk.

Statistical Hypothesis 4 (H-4) To test the hypothesis that GMOGP-
FCA system parameters have significant differences in their effect
on GMOGP-FCA system performance as measured by validation
MAE of the best solution found, empirical attainment function
(EAF) difference plots will be used. EAF difference plots are visu-
alizations of the objective space of a multi-objective optimization
problem.

For each point p in objective-space, the first-order attainment
function gives the probability of a multi-objective optimization al-
gorithm finding at least a single solution whose objective vector p′

Pareto-dominates or is equal to p. This probability can be estimated
from the results of multiple independent algorithm runs. It’s esti-
mator is called the (first-order) EAF. The results of GMOGP-FCA
are bi-objective, hence EAFs can be efficiently calculated and easily
visualized. In an EAF visualization, goodness of fit is plotted on the

optimizing genetic programming parameters 127

x-axis, genotypic complexity is plotted on the y-axis, and EAF val-
ues are represented with different shades of gray. To compare two
algorithms or, as in this case, two parameter settings for the same
algorithm, the differences of two EAFs can be visualized using the
same principles. EAF difference plots come in side-by-side pairs,
where differences in favor of algorithm (parameter setting) A are
shown in the left plot, and differences in favor of algorithm (param-
eter setting) B are shown in the right plot. Difference magnitudes
are encoded by gray level. For more details on EAF plots and their
application areas, see López-Ibáñez et al. [2010].14 14 López-Ibáñez, M., Paquete, L.,

and Stützle, T. (2010). Exploratory
analysis of stochastic local search
algorithms in biobjective optimization.
In Bartz-Beielstein, T. et al., editors,
Experimental Methods for the Analysis of
Optimization Algorithms, pages 209–222.
Springer, Berlin

Figures A.2 to A.12 in Appendix A show EAF difference plots for
each parameter included in this screening. These plots are based
on the experiment result data summarized in Tables 5.8 and 5.9. In
addition to the EAF difference magnitudes encoded as gray levels
as described above, the overall best and worst attainment surfaces
for both parameter settings are plotted as solid black lines, and the
median attainment surface corresponding to each of the two param-
eter settings as a dashed black line. EAF difference plots obtained
via test function P4 are shown in the top row, plots obtained via test
function P5 are shown in the bottom row.

Regarding hypothesis H-4, these plots clearly indicate signifi-
cant differences between parameter effects on GMOGP-FCA system
performance, measured both by validation MAE and genotypic
complexity of the solutions obtained. According to the EAF differ-
ence magnitudes shown, the parameters ifuncset, ierror, and µ have a
particularly strong effect (see Figure 5.3, and Figures A.2, A.3, and
A.4 in Appendix A), while the parameters pmsubtree and bage are of
secondary importance, at least with the test functions studied (see
Figure 5.4 and Figures A.8 and A.11 in Appendix A). Therefore,
H-4 does not have to be rejected.

Statistical Hypothesis 5 (H-5) Based on the EAF difference magni-
tudes visible in Figure A.2, the hypothesis that the choice of the GP
function set has a significant effect on GMOGP-FCA system perfor-
mance as measured by validation MAE of the best solution found
cannot be rejected. Note that the choice of a near-optimal function
set is problem dependent. With test function P4, the best compro-
mises between goodness of fit and genotypic complexity are found
with function set number 1, whereas with test function P5, the best
compromises between goodness of fit and genotypic complexity are
found with function set number 4.

5.6 GP Function Set Selection

An important result of the last series of experiments was that the
choice of the GP function set has a significant effect on GMOGP-
FCA system performance as measured by validation MAE as well
as by solution complexity. As an additional result, it was found

128 a modular genetic programming system

0 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

mu 8

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

mu 256

0 0.2 0.4 0.6 0.8 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

mu 8

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.2 0.4 0.6 0.8 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

mu 256

Figure 5.3: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), µ parameter. The grand-
best and grand-worst attainment
surfaces are shown as solid lines. The
50% attainment surface is shown as a
dotted line.

0 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

subtreeMutationProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

subtreeMutationProbability 1

0 0.2 0.4 0.6 0.8 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

subtreeMutationProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.2 0.4 0.6 0.8 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

subtreeMutationProbability 1

Figure 5.4: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D
(P5, bottom row), pmsubtree parameter.
The grand-best and grand-worst
attainment surfaces are shown as solid
lines. The 50% attainment surface is
shown as a dotted line.

optimizing genetic programming parameters 129

that the choice of a near-optimal function set is dependent on the
problem to be solved by GP. It seems therefore worthwhile to study
GP function set selection in more depth and to develop a method-
ological approach to this task. This section introduces an empirical
approach to GP function set selection by means of an extensive
example.

5.6.1 Experiment Setup

In the next series of experiments, the same basic setup as in the
previous series of experiments will be used. A larger DoE will
be necessary, which forces a reduction in the compute-time bud-
get available to each individual GP run from twelve hours to four
hours. The leads to a certain loss of solution quality, but as all solu-
tions suffer this loss, result ranks should not be affected in a major
way. Result quality increases sub-linearly with increasing compute
time. Visual inspection showed that on test functions P4 and P5, a
compute time budget of two hours is sufficient to reach results of
acceptable quality.

In the following GP function set selection experiments, random-
ized test functions are used for the first time. The difficulty range
of the Kriging test function generator was set to [0.8, 1.2]. The test
function generator has been explained in detail in Section 4.3. The
base function used to train the Kriging test function generator was
Salustowicz 1D (P5). Results obtained from the following exper-
iments are therefore valid for the problem class generated by the
Kriging test function generator around the base function Salustow-
icz 1D.

To make the GP function set selection problem accessible to
experimentation, it is defined as a subset-selection problem: From
the set of available functions {+,−,×,÷, sin, cos, tan, exp, log,

√
x},

select the subset that optimizes GMOGP-FCA system performance
as measured by best solution validation MAE for a given problem
class.

5.6.2 Statistical Hypothesis

The experiments performed in this section are designed to test the
following statistical hypothesis.

Statistical Hypothesis 6 (H-6) Given the GP function set F :=
{+,−,×,÷, sin, cos, tan, exp, log,

√
x}, there exists a proper subset

F̂ ⊂ F that significantly improves GMOGP-FCA system performance on
the Salustowicz 1D problem class as measured by best solution validation
MAE.

This hypothesis states that using a smaller and less generic GP
function set appropriate to the problem class at hand significantly
improves solution quality.

130 a modular genetic programming system

5.6.3 Experiment Design

As the choice of the GP function set may interact with the choice
of other GMOGP-FCA system parameters, these are also included
in the parameter set studied. Table 5.11 summarizes this parameter
set. The presence of a GP building block function is encoded by a
binary factor. The functions addition (+) and multiplication (×) are
always present in the GP function set. GMOGP-FCA parameters
missing in this table were set to the default values described in
Section 5.3.

Variable (Symbol) Domain

Crossover Probability crossoverP (pcrossover) [0, 1]
Constant Mutation Weight constantMutationPw (pmconst) [0, 1]

Error Measure Number errorMeasureNum (ierror) {1, . . . , 4}
Population Size mu (µ) {8, . . . , 256}
Children per Generation (relative) lambdaRel (λµ rel) [0, 1]
New Individuals per Generation (relative) nuRel (νµ rel) [0, 1]
Parent Selection Probability parentSelectionP (ppsel) [0, 1]

Subtraction FSUB (−) B

Division FDIV (÷) B

Sine FSIN (sin) B

Cosine FCOS (cos) B

Tangent FTAN (tan) B

Exponential FEXP (exp) B

Natural Logarithm FLOG (log) B

Square Root FSQRT (
√

x) B

Table 5.11: GMOGP-FCA system
parameters, extended with binary
factors for GP function set selection.

The parameter space under examination has five continuous pa-
rameters, two integer parameters, and eight boolean parameters,
i.e., 15 parameters in total. A Latin Hypercube Design with 256

design points is generated. For each design point, four indepen-
dent GP runs are executed on two test functions generated by the
Kriging-based test function generator described in Section 4.3.2,
leading to a total of 2048 GP runs with a compute time budget of
four hours each. See Bartz-Beielstein and Zaefferer [2012] for details
on this type of DoE.15 15 Bartz-Beielstein, T. and Zaefferer,

M. (2012). A gentle introduction to
sequential parameter optimization.
Cologne Open Science, Schriftenreihe
CI-plus TR 01/2012, Bibliothek der
Fachhochschule Köln, Betzdorfer Str. 2,
50679 Köln, Germany

5.6.4 Experiment Results

There are 28 = 256 possible subsets of F, too many to study in-
dividually. To reduce complexity and generate knowledge about
the properties of GP function sets well suited to the Salustowicz
1D problem class, an analysis based on regression trees will be
employed.

In the first step of this analysis, a Box-Cox transformation is ap-
plied on the dependent variable for the analysis, i.e., validation
MAE of the best solution found. After considering the transfor-

optimizing genetic programming parameters 131

mations x−1, x−0.5, log x, and
√

x, the square root transform was
determined as most suitable to generate symmetry in the data. See
Figure 5.5 for a visual comparison of the original and transformed
result data.

Validation MAE (best)

Fr
eq

ue
nc

y

0.00 0.10 0.20

0
15

0
30

0

Validation MAE (best)

Fr
eq

ue
nc

y

0.0 0.2 0.4
0

10
0

25
0

Figure 5.5: Original and transformed
result data. The left plot shows a
histogram of untransformed validation
MAE values, the right plot a histogram
of square root transformed validation
MAE values.

In the second step of this analysis, a regression tree model is
fitted to the experiment result data. As independent variables,
the parameters FSUB, FSUB, FDIV, FSIN, FCOS, FTAN, FEXP, FLOG, and
FSQRT are used, while the square root of the validation MAE of the
best solution found is used a dependent variable. The model fit is
performed using Therneau and Atkinson [1997]’s R package rpart
with a maximum tree depth of 2.16 16 Therneau, T. M. and Atkinson, E. J.

(1997). An introduction to recursive
partitioning using the RPART routines.
Technical Report 61, Department of
Health Science Research, Mayo Clinic,
Rochester NY

FSIN = 1

FTAN = 0 FCOS = 1

0.27
n=1753 100%

0.22
n=883 50%

0.21
n=442 25%

0.24
n=441 25%

0.31
n=870 50%

0.26
n=436 25%

0.37
n=434 25%

yes no

1

2

4 5

3

6 7

Figure 5.6: GP function set selection
decision tree model for the Salustowicz
1D problem class.

Figure 5.6 visualizes the resulting decision tree. This model can
be used to predict the expected validation MAE of the best solution
found depending on the composition of the GP function set. The
root note represents all available 1753 validation MAE values. As
2048 experiments were conducted, 295 (14%) experiments failed
to produce GP solutions defined on validation data, e.g. due to
numeric instability or invalid operations such as division by zero.

132 a modular genetic programming system

The decision tree model can be interpreted as follows. If sin is
included in the GP function set, the expected validation MAE of
the best solution found for the Salustowicz 1D problem class is
expected to be 0.22. There are 883 observations supporting this
prediction. Additionally, if tan is not included in the function set,
the expected MAE drops to 0.21 (442 observations). If, on the other
hand, tan is included in the function set, the expected MAE raises
to 0.24 (441 observations). In the case that sin is not included in
the function set but cos is, the expected MAE raises to 0.26 (436

observations). If both sin and cos are excluded, the expected MAE
raises still further to 0.37 (434 observations). In summary, to solve
problems in the Salustowicz 1D class effectively with GP, the sine
or cosine function should be included in the function set, and the
tangent should be excluded. While this result matches intuition, it
shows that it is important to gain intuition on the input data used
for symbolic regression with GP and to choose the GP function set
accordingly.

Statistical Hypothesis 6 (H-6) Based on the interpretation of the re-
gression tree model given in the last paragraph, the hypothesis that
there exists a proper subset of F̂ ⊂ F that significantly improves
GMOGP-FCA system performance on the Salustowicz 1D prob-
lem class must not be rejected. All subsets containing the function
sin and not containing the function tan are expected to yield sig-
nificantly better performance than F (which contains both sin and
tan).

5.7 GP System Parameter Tuning

The final series of experiments is concerned with tuning the most
influential parameters of the RGP system for best performance
on a given problem class. This approach to GP parameter tuning
is introduced by means of two example problem classes and can
easily be applied to any problem class, leading to near-optimal
GP system parameter settings for this class. Therefore, the main
application area of this approach is tuning a GP system for use
in a certain application domain. It is expected that the need for
application specific GP systems will rise as GP technology becomes
more prevalent in the future.

5.7.1 Experiment Setup

In the following series of experiments, the same basic setup is used
as in the previous series, i.e., a compute time budget of four hours
per GP run, except for the following modifications. In addition to
the Salustowicz 1D test function (P5), Air Passengers 1D (P4) is
used as a second test function. The Kriging test function generator
was set to a difficulty range of [0.8, 1.2] for both test functions. The
GP function set was fixed to {+,−,×,÷, sin, cos, tan, exp, log,

√
x}

optimizing genetic programming parameters 133

for test function P4 and to {+,−,×,÷, sin, cos, exp, log,
√

x} for test
function P5, based on results of the previous section on GP function
set selection. For both test functions, the error measure was fixed to
SMSE.

5.7.2 Statistical Hypotheses

Experiments performed in this section are mainly concerned with
testing the scientific claims that the parameter settings of modern
GP systems can be effectively tuned (claim C-2) and that tuned GP
system parameter settings are robust within a problem class (claim
C-3). As two distinct problem classes are examined in this section,
first insights into possible differences between tuned parameter
settings for different classes are also possible.

Statistical Hypothesis 7 (H-7) There exist problem classes where
GMOGP-FCA system performance as measured by validation MAE of
the best solution found can be measurably improved by SPO.

This hypothesis states that there are problem classes where GP sys-
tem parameters can be effectively tuned and that the performance
improvement gained by SPO is robust to changes of the concrete
problem instance within a problem class.

Statistical Hypothesis 8 (H-8) There exist pairs of problem classes
with measurable differences in their SPO-tuned GMOGP-FCA system
parameter settings.

According to this hypothesis, no single set of default GP system
parameter settings will be appropriate for every problem class, i.e.,
for best results, SPO has to be performed separately for each GP
application domain. This is in accordance with findings from other
authors, e.g., De Jong [2007] beliefs that EAs pre-tuned with default
parameter values for particular problem classes will continue to
provide better performance than EAs that attempt to dynamically
adapt too many control parameters.17 17 De Jong, K. A. (2007). Parameter

setting in EAs: a 30 year perspective.
In Lobo, F. G. et al., editors, Parameter
Setting in Evolutionary Algorithms,
volume 54 of Studies in Computational
Intelligence, pages 1–18. Springer, Berlin

5.7.3 Experiment Design

The GP system parameter set tuned by SPO is summarized in
Table 5.14. As mentioned above, the GP function set was set to
{+,−,×,÷, sin, cos, tan, exp, log,

√
x} for P4 and to the same set

without tan for P5. The error measure was set to SMSE in all GP
runs. Other GMOGP-FCA parameters not mentioned in this table
were set to default values.

The parameter space selected for SPO consists of five continuous
parameters and one integer parameter. For the tuning experiments
for both test functions P4 and P5, SPOT was configured as shown
in Table 5.13. The previous Chapter (4) described SPOT in more
detail. To recapitulate and put the settings shown in Table 5.13

into context, SPOT starts with an initial Latin Hypercube design

134 a modular genetic programming system

Variable (Symbol) Domain

Population Size mu (µ) {8, . . . , 256}
Children per Generation (relative) lambdaRel (λµ rel) [0, 1]
New Individuals per Generation (relative) nuRel (νµ rel) [0, 1]
Crossover Probability crossoverP (pcrossover) [0, 1]
Constant Mutation Weight constantMutationPw (pmconst) [0, 1]
Parent Selection Probability parentSelectionP (ppsel) [0, 1]

Table 5.12: Parameters of the RGP
system with GMOGP search heuristic
tuned by SPO.

of size three (Initial Design), i.e., with 32 configurations of the GP
system. Each configuration is repeated two times (Initial Repeats)
for two test function instances each, resulting in 128 GP runs being
executed in the initial SPO step. The results of the initial step are
then employed to train a Random Forest model (Meta Model). A
sequential design of 10000 GP system configurations (Sequential
Design Size) is evaluated on this Random Forest model. The 32 GP
system configurations (Sequential New Design Size) found based
on the predictions of this meta-model are then optimized using the
Limited-Memory Broyden–Fletcher–Goldfarb–Shannon Algorithm
with Box-Constraints (Meta Model Optimizer, L-BFGS-B). These 32

configurations are then evaluated on the GP system, where each
distinct configuration is evaluated up to four times (Sequential
Maximum Repeats). In the sequential phase of SPO, the model
fitting, prediction, and evaluation steps are repeated until a preset
budget of 1024 GP system evaluations (Sequential Evaluations) is
reached. Finally, the best GP configuration found is reported.

Parameter Setting

Initial Design Latin Hypercube (Size 32)
Initial Repeats 2

Meta Model Random Forest
Meta Model Optimizer L-BFGS-B

Sequential Evaluations 1024
Sequential Maximum Repeats 4
Sequential Design Size 10000
Sequential New Design Size 32

Table 5.13: SPOT configuration for GP
parameter tuning.

Using the SPOT configuration described in Table 5.13, for each
of the two test function classes, 128 + 1024 = 1152 GP runs with a
compute time budget of four hours each are executed on a compute
cluster. With this configuration, SPOT divided its budget into four
sequential steps with 256 GP runs each.

5.7.4 Experiment Results

In the two test function classes studied, tuning GMOGP-FCA pa-
rameter settings with SPO resulted in clear performance improve-
ments. On the Air Passengers 1D test function class (P4), the me-
dian validation MAE of 16.7881 (SD 9.8069) based on default pa-

optimizing genetic programming parameters 135

rameters was improved to 13.2803 (SD 2.6875), an improvement
of 26.41 %. On the Salustowicz 1D test function class (P5), the su-
periority of the tuned GP system parameters was even more pro-
nounced with a tuned median validation MAE of 0.0169 (SD 0.0085)
compared to a default median validation MAE of 0.0304 (SD 0.085),
an improvement of 79.88 %. Note that the standard deviation of the
tuned results was also about an order of magnitude smaller.

Parameter Default Tuned for P4 Tuned for P5

µ 100 198 75
λµ rel 1 0.51 0.73
νµ rel 0.5 0.57 0.55
pcrossover 0.5 0.84 0.65
pmconst 0 0.72 0.6
ppsel 1 0.06 0.54

Table 5.14: SPO-tuned parameter
settings for the RGP system with
GMOGP-FCA search heuristic, Air
Passengers 1D (P4) and Salustowicz
1D (P5) test function classes.

Table 5.14 compares default GMOGP-FCA system parameter set-
tings to settings tuned for test function classes P4 and P5, respec-
tively. There are some notable differences in the tuned parameter
settings. The Air Passengers 1D test function class (P4) requires
larger GP population sizes (µ) compared to the Salustowicz 1D
test function class (P5). P4 requires a both relatively and absolutely
smaller number of children per generation (λµ rel) compared to P5.
The relative number of newly initialized individuals per genera-
tion (νµ rel) is about the same for both P4 and P5. The differences
in crossover and constant mutation probabilities are measurable
but minor. Interestingly, a higher probability of performing parent
selection (ppsel) seems to harm P4 but benefit P5. In general, test
function class P4 seems to benefit from a more exploratory GP sys-
tem configuration, while P5 seems to benefit from a configuration
that exploits existing solutions to a higher degree. Also, results on
both test function classes seem to benefit from an enabled constant
mutation operator.

To investigate the effect of the relative number of children (λµ rel)
and the relative number of newly initialized individuals (νµ rel) on
GMOGP-FCA system performance, contour plots were generated
for both test function classes P4 and P5 based on meta-model fits
on the SPO experiment result data. These plots are reproduced in
Figure 5.7. Here, support vector machine meta-models were used
that are slower to fit than random forest models, but offer slightly
better fidelity and smoother response values that are easier to plot.

Regarding test function P4, the global optimum of λµ rel = 0.51
and νµ rel = 0.57 is clearly visible as the dark area at the center
of the left contour plot. A pronounced local optimum seems to be
located at the maximum value for λµ rel and a lower value for νµ rel,
as visible in the region with λµ rel > 0.75 and νµ rel < 0.5 of the left
contour plot of Figure 5.7.

Regarding test function P5, the global optimum of λµ rel = 0.73

136 a modular genetic programming system

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
λµ rel

ν µ
 r

el

16

18

20

Validation
 MAE (best)

Level

15

16

17

18

19

20

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
λµ rel

ν µ
 r

el 0.02

0.03

0.04

Validation
 MAE (best)

Level

0.02

0.03

0.04

Figure 5.7: Contour plots of the ef-
fect of parameters λµ rel (x-axis) and
νµ rel (y-axis) on GMOGP-FCA system
performance (gray level). Other pa-
rameters are fixed at their respective
optima found by SPO. Results for test
function class P4 are shown on the left,
while results for test function class P5

are shown on the right.

and νµ rel = 0.55 is visible as the dark area at the region with
λµ rel > 0.75 of the right contour plot. A less pronounced local
optimum at a medium value for λµ rel and a low value for νµ rel is
visible in the region with νµ rel < 0.25 of the right contour plot.
These local optima illustrate the multi-modal nature of GP system
parameter optimization.

Statistical Hypothesis 7 (H-7) The hypothesis that there exist prob-
lem classes where GMOGP-FCA system performance as measured
by validation MAE of the best solution found can be measurably
improved by SPO cannot be rejected. At least on test function
classes P4 and P5, performance benefits of tuned GP system pa-
rameters are clearly apparent.

Statistical Hypothesis 8 (H-8) Also, the hypothesis that there ex-
ist pairs of problem classes with measurable differences in their
SPO-tuned GMOGP-FCA system parameter settings cannot be
rejected based on the experimental results described above. The
tuned GMOGP-FCA parameter settings for test function classes
P4 and P5 are clearly different, as shown in Table 5.14. Further re-
search would be necessary to show if there are at least local optima
in GMOGP-FCA system parameter space shared by many practical
problem classes. These local optima would be good candidates for
reasonable GMOGP-FCA default system parameter settings.

5.8 Conclusions

Based on the framework of principled empirical research provided
by SPO, this chapter provided an extensive study of the effect of pa-
rameter settings of a modern, i.e., multi-objective, GP system used
for symbolic regression. By applying the methods introduced in the
previous chapter (4) on SPO, it was possible to identify the most
important GP parameters, select near-optimal GP function sets for

optimizing genetic programming parameters 137

given problem classes, and set near-optimal GP algorithm param-
eters. The methods and procedures used are general enough to be
applied to other GP system components, furthering principled and
reproducible research. The combined use of statistical modeling
and visualization enabled detailed insights into the effects of differ-
ent parameter settings on the expected multi-objective performance
of the GP result population.

Results of this chapter are useful to guide GP research as well
as practical application. It is now possible to test the plausibility of
the scientific claims formulated in Section 5.2 and to formulate best
practices for GP system optimization in real-world applications.

5.8.1 Scientific Claims

By formulating and testing several statistical hypothesis based on
the scientific claims introduced at the beginning of this chapter, it is
now possible to examine the validity of these claims in more detail.
Due to their general formulation and in contrast to the statistical
hypotheses presented in this work, no definitive answer regard-
ing the validity of these claims can be expected, only more or less
strong hints based on empirical results.

Scientific Claim 1 (C-1) The claim that complex problems require
complex algorithms seems to withstand empirical scrutiny. The
results of testing hypotheses H-1 and H-2 clearly indicate that GP
system performance is reversely correlated to problem difficulty,
and that more modern and complex GP algorithms significantly
and consistently beat simpler GP algorithms in performance. Based
on these results, it is likely that tailoring GP search heuristics fur-
ther to the expected search space structure, for example by adding
algebraic domain knowledge for symbolic regression, will increase
GP algorithm performance even further.

Scientific Claim 2 (C-2) The claim that parameter settings of mod-
ern GP systems can be effectively tuned appears to be valid. By
testing hypotheses H-3 and H-4, it was shown that for at least the
GP system used in this work, there exist parameters that have a
significant effect on system performance as measured by valida-
tion MAE of the best solution found, and that there are significant
differences in the relative effects of the parameters studied. Further-
more, the result of testing hypothesis H-5 indicates that the choice
of the GP function set, a GP parameter stetting, also has an signif-
icant effect on GP performance. Experimental results as presented
in Section 5.7.4 demonstrate that GP system parameter tuning is
effective in practice.

Scientific Claim 3 (C-3) The claim that tuned GP system parameter
settings are robust within a problem class appears to hold up to
first empirical study. The results of testing hypotheses H-7 and H-8

138 a modular genetic programming system

clearly show that there are problem classes where GP performance
as measured by validation MAE of the best solution found can be
measurably improved by SPO and that there are pairs of problem
classes with measurable differences in their SPO-tuned parameter
settings. These results at least hint at the robustness of tuned pa-
rameters within a problem class, yet further experimentation with
other problem classes would be necessary to secure this claim.

5.8.2 Best Practices for GP System Optimization

Based on the process described in this chapter, a first attempt at a
set of best practices for GP system parameter tuning can be pro-
posed. GP system parameter tuning, including automatic GP func-
tion set selection, as described in this chapter, can significantly
improve GP performance for a given problem class. As tens to hun-
dreds of individual GP runs are necessary for the tuning process,
the compute time cost can be substantial, though.

Whether the expected performance improvement relative to
default parameters is worth the cost has to be decided on a case-
by-case basis. Generally speaking, if GP is to be repeatedly applied
within the same problem class, for example to update existing
models to changing conditions, the compute time spent tuning GP
system parameters via SPO will be more than redeemed trough
savings due to better GP algorithm performance.

In the case only a limited compute time budget is available for
GP system parameter tuning, only the parameters with highest
expected impact should be tuned. As seen in the analysis of hy-
pothesis H-4, these are the function set (ifuncset), the error measure
(ierror), and the population size (µ). Concentrating the tuning effort
on these parameters while keeping all other parameters at default
values allows the reduction of the total experiment budget available
to SPOT, reducing compute time considerably.

6
Case Studies

Artificial test functions are an important tool for benchmarking GP
systems and for testing hypotheses about the benefits or drawbacks
of GP system components and their parameter settings. In the
previous chapters of this work, these questions were studied in
detail within the framework of the modular GP system RGP.

To put these results into context, comparisons to other state-
of-the-art GP systems are necessary. Also, practitioners will be
interested in comparisons with alternatives to GP, such as methods
from machine learning or classical statistics. Ideally, these com-
parisons should be performed using well-known test problems as
well as real-world examples, the latter providing a guide for using
GP in a real-world setting. The current chapter addresses these re-
quirements by providing comparisons with other state-of-the-art GP
systems, both commercial and open-source, and by providing two
extensive case studies of applying RGP successfully to real-world
applications.

The remainder of this chapter is structured as follows: Artificial
test problems used to compare RGP to other state-of-the art GP
systems will be introduced and applied in the following section.
Next, the design and organization of the case studies based on real-
world applications will be described. This section will also shortly
introduce alternative regression techniques used in later compar-
isons. After that, the two real-world case studies will be described
in detail. The first is a meta model generation task for cyclone dust
separator optimization. The second is a control model generation
task for steel roll trains. This chapter closes with a summary and
conclusions.

6.1 Artificial Test Problems

This section uses three artificial test problems to assess the perfor-
mance of RGP configured with the GMOGP-FCA search heuristic
as described in Section 2.9.3. All of these seem to be common in
the GP literature or, in the case of the Air Passengers 1D test prob-
lem, in the literature about time series forecasting. All artificial test
functions introduced in this section can be classified as symbolic
regression problems.1 1 Data and R source code for all ex-

periments of this section are avail-
able at https://rsymbolic.org/
projects/ofdiss/repository/

revisions/master/show/experiments/

rgpValidation.

https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/rgpValidation
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/rgpValidation
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/rgpValidation
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/rgpValidation

140 a modular genetic programming system

Artificial test problems may not reflect the typical complexity
of real-world applications, but are nonetheless useful for multi-
ple reasons. First, they are simple enough to be easily understood
without extensive domain knowledge. Second, the ground truth,
i.e., the true function or data is known, enabling optimization al-
gorithm analysis techniques that require knowledge of the true
global optimum, such as fitness distance correlation analysis. Third,
due to their prevalence, results based on these test functions can be
compared to exiting results from the literature.

6.1.1 Air Passengers 1D

The Air Passengers 1D test function has been introduced as a base
function for the Kriging-based test function generator P4 (see Sec-
tion 4.3.2). To enable comparisons with existing literature, here it
is used directly as a fixed test function, though. As mentioned, this
test function is based on the “air passengers” data set first intro-
duced by Box et al. [2008].2 The data consists of monthly totals of

2 Box, G., Jenkins, G., and Reinsel, G.
(2008). Time-Series Analysis: Forecasting
and Control. Wiley Series in Probability
and Statistics. Wiley, Hoboken, NJ

international airline passengers, from 1949 to 1960. The indepen-
dent variable ranges over the number of months since January 1949,
the dependent variable being the number of airline passengers in
thousands. Strictly speaking, Air Passengers 1D is a real-world data
set, though a exceptionally small one, which makes it well suitable
as a test problem.

The training interval is defined as [1, 108], the validation interval
[109, 144], and the number of fitness cases is fixed to NAir Passengers 1D :=
144. Unless stated otherwise, the GP function set used is with this
test function is {+,−, ∗, /, sin, cos, tan, exp, log,

√
x}.

6.1.2 Kotanchek 2D

The Kotanchek 2D test function has been first introduced by Smits
and Kotanchek [2004] and found broad adoption in the GP com-
munity.3 It is an analytical function modelled after real-world prob- 3 Smits, G. and Kotanchek, M. (2004).

Pareto-front exploitation in symbolic
regression. In O’Reilly, U. et al.,
editors, Genetic Programming Theory and
Practice II, Genetic and Evolutionary
Computation Series, pages 283–299.
Springer, New York

lems in the domain of engineering optimization. Variants of this
test function can be generated by changing constants.

fKotanchek 2D(x1, x2) :=
e−(x1−1)2

1.2 + (x2 − 2.5)2

The training and validation intervals of the Kotanchek 2D test
function are defined as [(0, 0), (4, 4)], where a random sample
of 50% of the data is used for training, while the remainder is
used for validation. The total number of fitness cases is fixed to
NKotanchek 2D := 500. Unless stated otherwise, the GP function set
used is {+,−, ∗, /, sin, cos, tan, exp, log,

√
x}.

6.1.3 Salustowicz 1D

As with the Air Passengers 1D test function, this test function has
been introduced as a base function for the Kriging-based test func-
tion generator P5 (see Section 4.3.2). Here, this test function is used

case studies 141

directly, to enable comparisons with existing literature. As said,
the Salustowicz function was first introduced by Salustowicz and
Schmidhuber [1997]. It has been designed to be simple to read yet
challenging for GP.4 4 Salustowicz, R. and Schmidhuber,

J. (1997). Probabilistic incremental
program evolution. Evolutionary
Computation, 5(2):123–141

fSalustowicz 1D(x1) := e−xx3 cos(x) sin(x)[sin2(x) cos(x)− 1]

The training and validation interval of the Salustowicz 1D test
function is [0, 10], where a random sample of 50% of the data is
used for training, while the remainder is used for validation. The
total number of fitness cases is fixed to NSalustowicz 1D := 100. Unless
stated otherwise, the GP function set used is {+,−, ∗, /, sin, cos,
tan, exp, log,

√
x}.

6.1.4 Experiment Setup

Goal of this experimental study is to put the performance of the
RGP system, configured with the GMOGP-FCA search heuristic,
into context by comparing it with the performance of other com-
mercial and open source GP systems on three well-known artificial
test problems in symbolic regression. Besides RGP, the open source
GP system ECJ and the commercial GP system Eureqa are included
in this comparison.

As mentioned, ECJ appears to be the most popular open source
GP system today, based on number of citations. For that reason
alone, it should be included in the set of systems to be compared.
Due to its simple to use graphical user interface, generally good
performance, and publicity generated by an article in Science 5, 5 Schmidt, M. D. and Lipson, H.

(2009). Distilling free-form natural
laws from experimental data. Science,
324(5923):81–85

Eureqa seems to be the most widespread commercial GP system
for symbolic regression today. It is therefore included in the com-
parison. Section 3.1 contains a more detailed description of these
systems, as well as a list of features for each system.

General Settings For each GP system configuration, ten indepen-
dent runs with different random seeds have been performed. As
stopping criterion, a fixed number of 10,241,024

6 candidate solution 6 This number is motivated by informal
calibration runs with the ECJ system,
which uses a population size of 1024

by default. These runs resulted in
a recommended runtime of 10001

generations.

evaluations has been chosen. This choice is warranted by the fact
that the systems under comparison use widely differing implemen-
tation technologies and levels of optimization, and that this study
is motivated by comparing the underlying GP algorithms, instead
of implementation technologies. On the other hand, an indication
of the required wall clock runtime for each system would of course
be valuable for practitioners. Unfortunately, no exact time measure-
ments were possible for technical reasons. As an indication, both
RGP and ECJ required a runtime of about two hours for perform-
ing 10,241,024 candidate solution evaluations. Eureqa required a
runtime of about 30 minutes for the same number of evaluations.
Of the systems compared, Eureqa appears to offer the most highly
optimized implementation of a multi-objective GP search strategy.
Note that solution quality does not scale linearly with number of
evaluations, though.

142 a modular genetic programming system

RGP Version 0.4-0 of RGP, the current version as of January
2014, has been used. As parameter optimization was not part
of this comparison, RGP was configured with the GMOGP-FCA
search heuristic and set to default parameter values, i.e., a pop-
ulation size of 100 individuals, 50 children and 50 newly initial-
ized individuals per generation, random initialization, selection
based on fitness, age, and complexity, and the GP function set
{+,−,×,÷, sin, cos, tan, exp, log,

√
x}. See Section 2.9.2 for de-

tails. To obtain reproducible results, the random number generator
seed has been set to 1 to 10 for run number 1 to 10, respectively.

ECJ Version 21 of ECJ, the current version as of January 2014,
has been used in this study. Much like RGP, ECJ is a framework
for constructing evolutionary algorithms, not a system with a
fixed set of features. It comes with an extensive example imple-
menting GP for symbolic regression, though. The default set-
tings of this example have been used in this comparison, i.e., a
population size of 1024 individuals, Koza-style fitness (see Koza
[1992])7, ramped half-and-half initialization with a maximum 7 Koza, J. R. (1992). Genetic program-

ming: On the programming of computers
by means of natural selection. MIT Press,
Cambridge, MA

tree depth of 9, tournament selection with tournament size of 7,
crossover probability of 0.9, and mutation via subtree replace-
ment with newly initialized trees of maximum depth 5. Note
that, as of this writing, ECJ does not support multi-objective se-
lection in its example implementation of GP, therefore single-
objective selection has been used. Depending on the problem di-
mensionality, ECJ supports different fixed GP function sets. As
no clear indication is given which function set to use for a given
problem class, all applicable function sets have been evaluated in
this study. For one dimensional data (test functions Air Passen-
gers 1D and Salustowicz 1D), these function sets are Koza1 :=
{+,−, ∗, /, sin, cos, exp, log}, Keijzer1 := {+, ∗,−x, 1/x,

√
x}, and

VladislavlevaC1 := {+,−, ∗, /, x2, exp,− exp, sin, cos}. For two
dimensional data (test function Kotanchek 2D), the applicable func-
tion sets are Koza2, Keijzer2, VladislavlevaC2, VladislavlevaA2 :=
{+,−, ∗, /, x2}, and VladislavlevaB2 := {+,−, ∗, /, x2, exp,− exp}.
Table 6.1 summarizes this information. In ECJ, input variables
and ephemeral constants are considered part of the function set.
Besides the additional input variables, the function sets Koza2,
Keijzer2, and VladislavlevaC2, are the same as Koza1, Keijzer1, and
VladislavlevaC1, respectively. In ECJ, Koza-style function sets do
not include any constants, while Keijzer-style and Vladislavleva-
style function sets use slightly different types of ephemeral con-
stants. See the documentation of ECJ version 21 for details.8 As 8 Luke, S. (2013). The ECJ owner’s

manual – A user manual for
the ECJ evolutionary compu-
tation library. 21th edition,
http://cs.gmu.edu/ eclab/project-
s/ecj/docs/manual/manual.pdf
(retrieved 20.02.2015)

with RGP, to generate reproducible results, the random number
generator seed has been set to 1 to 10 for run number 1 to 10, re-
spectively.

Eureqa Version 8.16 of Eureqa, the most current version as of Jan-
uary 2014, has been used. Eureqa counts the evaluation of individ-

case studies 143

+ − −x ∗ / 1/x
√

x x2 exp − exp log sin cos

Koza1 3 3 – 3 3 – – – 3 – 3 3 3

Keijzer1 3 – 3 3 – 3 3 – – – – – –
VladislavlevaC1 3 3 – 3 3 – – 3 3 3 – 3 3

Koza2 3 3 – 3 3 – – – 3 – 3 3 3

Keijzer2 3 – 3 3 – 3 3 – – – – – –
VladislavlevaA2 3 3 – 3 3 – – 3 – – – – –
VladislavlevaB2 3 3 – 3 3 – – 3 3 3 – – –
VladislavlevaC2 3 3 – 3 3 – – 3 3 3 – 3 3

Table 6.1: Overview of the ECJ func-
tion sets used in this work.ual fitness cases, which has been taken into account when defining

the stopping criteria for each test function. The default Eureqa
function set {+,−, ∗, /, sin, cos} has been used for all test functions.
Ephemeral constants were enabled per default. All other param-
eters were also set to their default values, i.e., MAE and solution
complexity as selection criteria. All other parameters of the GP al-
gorithm were set automatically by the system, with no means of
manual intervention. Eureqa uses a time-based random seed and
has no option to set a user-defined seed, unfortunately. As a con-
sequence, results are not reproducible. However, result variance
indicates that results of repeated runs should be comparable.

6.1.5 Results

This subsection presents experimental results for each test func-
tion and GP system in the form of box plots and tables. A general
discussion of the results will follow in the next subsection.

Air Passengers 1D Figure 6.1 and Table 6.2 summarize the valida-
tion MAE values of the best models found after 10,241,024 fitness,
i.e., candidate solution, evaluations based on the Air Passengers
1D test function. Best values are marked with bold font in the ta-
ble. Note that the coefficient of determination (R2) which is often
provided as a measure of model accuracy is only defined for linear
regression analysis, and is therefore omitted in the presentation of
these results.

RGP Eureqa ECJ.Koza1 ECJ.Keijzer1 ECJ.Vlad.C1

Median 43.5089 27.7093 52.4425 52.7964 59.2843
SD 10.1922 5.2818 0.4625 0.7369 7.3665

Rank 2 1 3 4 5

Table 6.2: Validation MAE of the best
models found after 10,241,024 fitness
evaluations for the Air Passengers 1D
test function. Best values are marked
with bold font.

Ranked by validation MAE based on the Air Passengers 1D test
problem, Eureqa leads with RGP and ECJ (Koza1 function set)
taking the second and third place, respectively. Performance differ-
ences across different GP systems appear to be significant, while the
performance difference between the Koza1 and Keijzer1 function
sets for ECJ seems to be negligible. This is interesting because mod-

144 a modular genetic programming system

●

RGP Eureqa ECJ.Koza1 ECJ.Keijzer1 ECJ.Vlad.C1

20
30

40
50

60
70

Validation MAE (AirPassengers1d)

M
A

E

Figure 6.1: Validation MAE of the best
models found after 10,241,024 fitness
evaluations for the Air Passengers 1D
test function.

els based on the Koza1 function set do not contain any constants.
The low variance in the results based on these two function sets
can be explained by inspecting the generated models. In nearly all
runs, only approximations of simple linear models without peri-
odic components were found. The genotypic representation of these
models was nonetheless quite large and approaching the maximum
tree depth, indicating bloat, which is a typical problem of GP with
single-objective selection.

Neither result produces a perfect or even very good fit on val-
idation data. Because Air Passengers 1D tests the extrapolation
ability of models fitted on very few data, it is questionable whether
enough information is present in the training data to derive near-
perfect models. The results presented in Section 5.7.4 hint at space
for improvement, though. Tuning GMOGP-FCA parameter set-
tings with SPO resulted in a median validation MAE of 13.2803 (SD
2.6875) for this test problem, which is a very good fit, based on a
fixed runtime budget of four hours.

Kotanchek 2D Figure 6.2 and Table 6.3 summarize the validation
MAE values of the best models found after 10,241,024 fitness, i.e.,
candidate solution, evaluations based on the Kotanchek 2D test
function. As before, best values are marked with bold font in the
table.

RGP Eureqa ECJ.Koza2 ECJ.Keijzer2 ECJ.Vlad.A2 ECJ.Vlad.B2 ECJ.Vlad.C2

Median 0.0158 0.0084 0.0153 0.0196 0.0238 0.0246 0.0149
SD 0.0080 0.0027 0.0057 0.0039 0.0100 0.0090 0.0088

Rank 4 1 3 5 6 7 2

Table 6.3: Validation MAE of the best
individuals found after 10,241,024

fitness evaluations for the Kotanchek
2D test function. Best values are
marked with bold font.

Ranking the different GP systems by validation MAE based on

case studies 145

●

●

●

RGP Eureqa ECJ.Koza2 ECJ.Keijzer2 ECJ.Vlad.A2 ECJ.Vlad.B2 ECJ.Vlad.C2

0.
01

0.
02

0.
03

0.
04

0.
05

Validation MAE (Kotanchek2d)

M
A

E

Figure 6.2: Validation MAE of the best
individuals found after 10,241,024

fitness evaluations for the Kotanchek
2D test function.

the Kotanchek 2D test problem results in the following picture.
Eureqa is able to generate results with the lowest median validation
MAE of 0.0084, with ECJ being second (VladislavlevaC2 function
set, 0.0149) and third (Koza2 function set, 0.0153), and RGP being
close fourth with 0.0158. Overall, performance differences are less
pronounced than with the Air Passengers 1D test function. None of
the models found produces a perfect fit on validation data. The best
model found in all ten runs has a validation MAE of 0.0026 and
was discovered by RGP.

Salustowicz 1D Figure 6.3 and Table 6.4 summarize the validation
MAE values of the best individuals found after 10,241,024 fitness,
i.e., candidate solution, evaluations based on the Salustowicz 1D
test function. As before, best values are marked with bold font in
the table.

RGP Eureqa ECJ.Koza1 ECJ.Keijzer1 ECJ.Vlad.C1

Median 0.0246 0.0317 0.0491 0.1237 0.0851
SD 0.0117 0.0074 0.0517 0.0074 0.0434

Rank 1 2 3 5 4

Table 6.4: Validation MAE of the best
individuals found after 10,241,024

fitness evaluations for the Salustowicz
1D test function. Best values are
marked with bold font.

Ranked by median validation MAE based on the Salustowicz 1D
test function, the RGP system takes the first place, followed by Eu-
reqa, and by ECJ (Koza1 function set) as a distant third. Nonethe-
less, ECJ was the only system that found a perfect solution, i.e., a
solution with validation MAE of zero, during one of its ten runs.
Performance differences are significant in the results created for
this test function. Even more striking is the high variance of the
results created by ECJ when configured with either the Koza1 or
VladislavlevaC1 function set. With both function sets, ECJ is able to

146 a modular genetic programming system

●

RGP Eureqa ECJ.Koza1 ECJ.Keijzer1 ECJ.Vlad.C1

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Validation MAE (Salustowicz1d)

M
A

E

Figure 6.3: Validation MAE of the best
individuals found after 10,241,024

fitness evaluations for the Salustowicz
1D test function.

discover good models in some runs, while getting stuck in local op-
tima in other. Further analysis shows a loss of population diversity
in the latter case, hinting at measures for diversity preservation as a
possible solution.

The models found by RGP and Eureqa for this test function are
generally of very high quality. Even better results are possible by
GP system parameter tuning or by increasing the compute time
budget, as demonstrated in Section 5.7.4.

6.1.6 Discussion

There are several insights to be gained from the results described
in the previous section. First of all, while designing a comparison
study of different GP systems is a challenging endeavour, designing
a comparison study that results in a system ranking valid for all
users and applications seems to be entirely impossible. This is
due to multiple factors. First, relative performance of GP systems
depends on the compute time budget available. Second, relative GP
system performance is dependent on the application problem, as
evident in the results presented. Third, and perhaps trivially so, GP
system performance is dependent on the optimization criterion or
criteria chosen. Practitioners are strongly advised to compare GP
systems in their specific application domain, tuning the GP system
parameter settings via a principled approach like SPO, to achieve
meaningful results.

This comparison is based on three well-known artificial symbolic
regression test problems, and therefore lacks a specific application
domain. Parameters were not tuned, but set to system default val-
ues to keep the compute time budget requirements of this study
manageable. This included highly significant parameters, such as

case studies 147

the GP function set, meaning that different GP systems operated
on different GP search spaces. While these can be seen as weak-
nesses of this study, some general trends are nonetheless evident
from the results. Overall, multi-objective search heuristics like the
ones implemented in Eureqa and RGP offer a performance benefit
over single-objective strategies (see Section 6.1.5). As a positive side
effect, the solutions found by Eureqa and RGP do not suffer from
bloat to the same degree as solutions generated by ECJ. As a second
result, based on the test functions studied, the performance of the
RGP system configured with the GMOGP-FCA search heuristic, as
measured by median validation MAE of the best solution found in
each run, is at least competitive with both ECJ and Eureqa.

6.2 Real-World Case Study Design and Organization

Table 6.5 summarizes the real-world case studies discussed in this
section. Each case study follows the process for model induction
with RGP described in Section 3.2. To recapitulate, this process
comprises the steps of modeling project setup, problem definition,
data acquisition, data preprocessing, data partitioning, classical
modeling, genetic programming, model validation, and model
deployment.

Case Study Problem Class Application Domain

AppDust Regression Meta-Model Generation
AppSteel Regression Control Model Generation

Table 6.5: Summary information for
the real-world case studies described
in this thesis.

In this work, the RGP process step of classical modeling for re-
gression problems has been broadly extended to cover not only
linear models, but also Kriging, multivariate adaptive regression
splines, principal component regression, random forests, and sup-
port vector machines. In a typical industrial setting, only a subset
of these alternative regression modeling techniques would be evalu-
ated, due to time and cost constraints. Here, all of these techniques
have been evaluated in both case studies, to put results generated
by RGP into context. In the following subsections, these techniques
are introduced briefly. Please follow the references given in the
individual subsections for more details.

Generally, a regression technique models the relationship be-
tween a dependent (or response) variable y and n independent (or
explanatory) variables xi, where i ∈ {1, . . . , n}. If multiple de-
pendent variables are to be modeled, techniques for multivariate
regression can be used, which are not in the focus of this work,
though.

148 a modular genetic programming system

6.2.1 Linear Models

A linear model (LM) assumes that the relationship between depen-
dent variable and independent variables is linear:

y = β1x1 + · · ·+ βnxn + ε (6.1)

Here, y and xi are real-valued data vectors. Fitting a linear model
means estimating the parameters βi. The most widely used method
in this regard is ordinary least-squares estimation. If the distri-
bution of the error terms ε is normal, least-squares estimation is
equivalent to maximum-likelihood estimation.

Linear models are very well understood and have an extensive
theoretical foundation, which makes it possible to generate valuable
knowledge from these models easily. For example, the widely used
technique of ANOVA can be interpreted in the linear regression
framework. Results are comparatively easy to analyze and com-
prehend. Generalized linear models, an extension of the technique,
allow the transfer of many methods of linear modeling and analy-
sis to data which is bounded or discrete, i.e., non-linear in a form
that is known a priori. There are efficient algorithms for fitting lin-
ear models with highly optimized implementations, making them
applicable to large datasets. −6 −2 0 2 4 6

−
1.

0
0.

0
1.

0

x

f(
x)

Figure 6.4: Linear model fit of the
(strongly non-linear) sine function.
Model predictions are shown as a
solid black line, the true function is
shown as a gray dashed line. The
training interval is marked with a gray
background.

Naturally, linear models are not able to capture non-linear re-
lationships in a meaningful way. In practice, special care must be
taken that all model assumptions are met during data preprocess-
ing and model validation, cf. Figure 6.4. A certain degree of statisti-
cal expertise is required to avoid errors and to use the large tool set
of linear modeling to its full potential.

The tools built into R were used for all linear modeling con-
ducted in this work. See R’s online documentation for the lm func-
tion for details. Adler [2010] provides a comprehensive introduction
to these tools, as well as further literature references.9 9 Adler, J. (2010). R in a nutshell.

O’Reilly, Sebastopol, CA

6.2.2 Principal Component Regression

In Principal Component Regression (PCR), a principal component
analysis (PCA) is performed on the independent variables, then a
linear model is fitted on the result.10 The method is comprised of 10 Jolliffe, I. (1982). A note on the use

of principal components in regression.
Applied Statistics, 31(3):300–303

three steps. First, a PCA is conducted on the data matrix formed
by the independent variables, yielding their principal components.
Next, a linear regression model is fitted on a suitable subset of these
component vectors, yielding a vector of estimated model parame-
ters βi, whose dimension is equal to the number of components in
the selected subset. Finally, this vector is transformed back to the
scale of the independent variables, changing its dimension to be
equal to the number of independent variables.

Selecting only a subset of all possible components in the second
step of the modeling process can be seen as a form of regulariza-
tion, benefiting model robustness and efficiency. There are several
techniques of deciding how many components to select. In the PCR

case studies 149

runs performed here, a ten fold cross validation is performed on
training data to select the best performing set of components.

In its classical form, PCR is a form of linear modeling and there-
fore carries the same assumptions. When all components are se-
lected, PCR is equivalent to ordinary least squares regression. Ex-
tensions of the method exist that replace the linear model with a
kernel machine, e.g. an SVM, to support non-linear regression. A
practical advantage of PCR is a greater robustness to the detrimen-
tal effects of spurious independent variables when compared to
classical linear regression.

PCR modeling has been conducted using the R package pls.11 11 Mevik, B., Wehrens, R., and
Liland, K. H. (2013). pls: Partial
Least Squares and Principal Com-
ponent regression. R package
version 2.4-3, http://CRAN.R-
project.org/package=pls (retrieved
20.02.2015)

See R’s online documentation on the function pcr for details.

6.2.3 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) are a non-parametric
regression technique that fits a piecewise linear function to support
non-linearity. It can be seen as an extension to linear models, there-
fore some of the theory and means of analysis of LM also apply to
MARS.12 12 Friedman, J. (1991). Multivariate

adaptive regression splines. The Annals
of Statistics, 19(1):1–67

A MARS model is a weighted sum of the output of certain basis
functions. A basis function is either a constant, a hinge function,
or a product of multiple hinge functions for modeling variable
interaction. Hinge functions are defined as hl(x) := max(0, c− x)
or hr(x) := max(0, x − c) for a constant c, i.e., they have a linear
part discontinuously followed by a constant part (or vice versa, for
hr). A sum of hinge functions and constants comprises a piecewise
linear function. MARS models are build by recursive partitioning,
much like tree models. See Friedman [1991] for details.

−6 −2 0 2 4 6

−
1.

0
0.

0
1.

0

x

f(
x)

Figure 6.5: MARS model fit of the
sine function. The same graphical
conventions as in Figure 6.4 have been
used.

MARS models are efficient to fit and among the conceptually
simpler forms of non-parametric regression techniques. As a blend
of ideas from linear regression and decision trees, they are both
theoretically and practically well understood. On the other hand,
larger MARS models are increasingly hard to understand. If model
understandability is not a concern, kernel methods or other non-
parametric modeling techniques may give better results. As a trivial
example, Figure 6.5 shows a MARS model fit of the sine function.
The training data region is marked with a gray background. Note
the satisfactory interpolative and unsatisfactory extrapolative per-
formance of the model.

For MARS modeling, the R package earth has been used.13 See 13 Milborrow, S. (2014). earth:
Multivariate Adaptive Regres-
sion Spline Models. R package
version 3.2-7, http://CRAN.R-
project.org/package=earth (retrieved
20.02.2015)

the R online documentation on the function earth for details.

6.2.4 Random Forests

Random forests (RF) use an ensemble of decision trees for regres-
sion or classification. Bootstrap aggregating (also known as bagging)
is used both on the training set rows (samples) as well as on the
training set columns (features), to counter model overfitting typi-
cal to deep regression trees. The algorithm trains an ensemble of

150 a modular genetic programming system

regression trees by repeatedly sampling, with replacement, a ran-
dom subset of training set rows for training a single tree. Training
is performed using recursive partitioning, where each candidate
split only sees a random subset of the independent variables. This
way, independent variables that are particularly strong predictors
of the dependent variables are kept from occurring in every tree,
preventing the trees from becoming correlated. For predicting the
dependent variable for new data, the mean of the predictions of all
trees is used. The optimum number of trees to form the ensemble,
typically hundreds to a few thousand, can be selected by monitor-
ing the out-of-bag error.

−6 −2 0 2 4 6

−
1.

0
0.

0
1.

0

x

f(
x)

Figure 6.6: Random forest model fit of
the sine function. The same graphical
conventions as in Figure 6.4 have been
used.

Random forest models trade the understandability of single
decision tree models for better model performance. In many bench-
marks and practical applications, they are among the best perform-
ing models for both regression and classification tasks. They are
comparatively simple and can be efficiently implemented. Fig-
ure 6.6 shows a random forest model fit of the sine function. By
construction, model extrapolation performance is weak, because the
last value at the training interval bounds is returned by the under-
lying trees. Interpolation performance is very good, though. See
Breiman [2001] for more details.14 R’s randomForest package has 14 Breiman, L. (2001). Random forests.

Machine Learning, 45(1):5–32been used for regression modeling with random forests.15 See the R
15 Liaw, A. and Wiener, M. (2002).
Classification and regression by ran-
domForest. R News, 2(3):18–22. R pack-
age version 4.6.10, http://CRAN.R-
project.org/doc/Rnews/ (retrieved
20.02.2015)

online documentation on the function randomForest for details.

6.2.5 Support Vector Machines

Support vector machines (SVM), or support vector networks, are
generalized linear classifiers that simultaneously minimize empiric
classification error and maximize the geometric margin between
classes. They can be seen as an extension of the classical Perceptron
artificial neural network that support non-linear classification by
means of a suitable transformation function, or kernel. Soft mar-
gin SVMs support mislabeled training examples and are the most
prevalent SVM variant today, were introduced by Cortes and Vap-
nik [1995].16 Originally, the method is only applicable to binary 16 Cortes, C. and Vapnik, V. (1995).

Support-vector networks. Machine
Learning, 20(3):273–297

classification, but extensions exists for multi-class classification
and regression. The latter, known as support vector regression and
introduced by Drucker et al. [1997], is used here.17 17 Drucker, H., Kaufman, B. L., Smola,

A., and Vapnik, V. (1997). Support vec-
tor regression machines. In Advances
in Neural Information Processing Systems,
volume 9, pages 155–161

Benefits of the method include high flexibility and typically high
accuracy. Efficient algorithms and optimized implementations exist
for both model fitting and prediction. The flexibility of the method
can also be seen as a liability, as a certain level of expertise in ma-
chine learning is required for selecting a suitable kernel for a given
problem and setting kernel and method parameters. Interpreting
SVM model fits is difficult and an active area of research. For prac-
tical purposes, at least at the time of writing, SVM models should
be considered as black-box models. Figure 6.7 shows a support vec-
tor regression model fit of the sine function. A radial basis function
kernel and epsilon regression has been used for all SVM models

case studies 151

presented in this work. In the trivial sine example, interpolation
performance is good, with gradual decay while moving into the
extrapolative region.

−6 −2 0 2 4 6

−
1.

0
0.

0
1.

0

x

f(
x)

Figure 6.7: Support vector regression
model fit of the sine function. The
same graphical conventions as in
Figure 6.4 have been used.

In this work, all support vector regression modeling was con-
ducted trough the R package e1071 based on the libsvm library,
which is one of the most widely used and feature-rich SVM imple-
mentations available.18 See R’s online documentation for the svm

18 Meyer, D., Dimitriadou, E.,
Hornik, K., Weingessel, A., and
Leisch, F. (2014). e1071: Misc Func-
tions of the Department of Statis-
tics (e1071), TU Wien. R package
version 1.6-4, http://CRAN.R-
project.org/package=e1071 (retrieved
20.02.2015)

function for details.

6.2.6 Kriging

Kriging is a spatial interpolation method originally developed in
the field of geostatistics that was quickly adopted as a de-facto
standard for meta- or surrogate modeling of computer experiments.
In this application, a accurate but computationally demanding
simulation model is approximated by a faster surrogate model to
enable optimization in feasible time frames.

Kriging is a form of Gaussian process regression and as such, a
Kriging Model (KM) can be used to predict means and variances,
i.e., predictions are accompanied by error bars. For statistically
sound predictions, the process generating the data should be de-
terministic. In other words, uncertainty should be epistemic, i.e.,
stem from incomplete data. See Sacks et al. [1989] for details and
algorithms.19 19 Sacks, J., Welch, W., Mitchell, T., and

Wynn, H. (1989). Design and analysis
of computer experiments. Statistical
Science, 4(4):409–423

Kriging is highly effective in generating accurate interpolation
models for medium-dimensional data. As mentioned above, KM
predictions include error bars, making the method robust against
deployment errors and enabling optimization methods that balance
exploration and exploitation in a near-optimal manner. Compared
to the other regression techniques discussed above, fitting a KM is
computationally expensive, as the requirement runtime scales as the
cube of the number of data points, limiting the model to medium
sized data sets, which also limits the maximum dimensionality of
the data set.

−6 −2 0 2 4 6

−
1.

0
0.

0
1.

0

x

f(
x)

Figure 6.8: Kriging model fit of the
sine function. The same graphical
conventions as in Figure 6.4 have been
used.

Figure 6.8 shows a Kriging model fit of the sine function. The
interpolative performance is excellent, with near zero prediction
error. While model performance in the extrapolative region is bad,
the fact that the model operates outside its trained region would
be readily apparent by monitoring the associated error bars (not
shown). All Kriging models used in this work were fitted via the
R package DiceKriging.20 See R’s online documentation on the 20 Roustant, O., Ginsbourger, D.,

and Deville, Y. (2012). DiceKriging,
DiceOptim: Two R packages for the
analysis of computer experiments by
kriging-based metamodeling and opti-
mization. Journal of Statistical Software,
51(1):1–55. R package version 1.5.3,
http://www.jstatsoft.org/v51/i01/
(retrieved 20.02.2015)

function km for details.

6.3 Meta Models for Cyclone Dust Separators (AppDust)

Cyclone separators are devices that utilize centrifugal forces of
a vortex to separate particles from a gas or liquid stream, e.g.,
dust from flue gas. Their mode of operation is simple. A stream
of particle-laden gas or liquid is channeled through an tangential

152 a modular genetic programming system

inlet pipe into a hollow cylinder, inducing a vortex where larger
particles are pushed to the outer walls. Downwards, the cylinder
tapers off to a conic part, where particles are siphoned. Clean gas
or liquid leaves the cyclone through an immersion or outlet tube
inserted into the cylinders lid. Figure 6.10 on page 154 shows a
schematic. An example of a real-world cyclone dust separator is
shown in Figure 6.9.

Figure 6.9: Large cyclone dust separa-
tor installed at blast furnace number
five of the former Thyssen steelworks
in Duisburg, Germany. Furnace five
was build in 1973 and decommis-
sioned after only 12 years of operation.
Detail of an image retrieved from the
Wikimedia Commons Media Archive
at http://de.wikipedia.org/wiki/
Datei:Hochofen_5.jpg.

Cyclone separators have a broad spectrum of applications in
multiple industries, ranging from power plants to vacuum cleaners.
They can be build in multiple forms and sizes, ranging from cen-
timeters to tens of meters in height. While other methods, such as
mechanical or electrostatic filters, offer higher collection efficiencies,
cyclone separators are energy-efficient, nearly maintenance-free
and cost effective in both construction and operation. In contrast to
many other filtering methods, they can be easily applied in high-
pressure and high-temperature environments. In practice, different
filtering methods are often applied in series, while cyclone separa-
tors offer an attractive solution for the first stage filtering device.
Due to their principle of operation, cyclone separators have to be
customized to a particular separation task in geometry and materi-
als to provide satisfactory performance.

As in the previous case study, the RGP model induction process
described in Section 3.2 provides the structural framework for the
following subsections. The idea, data, and support for this case
study is courtesy of Steinmüller Engineering GmbH, an engineering
company specialized in power plant and environmental technol-
ogy.21

21 Data and R source code for this
case study is available at https:
//rsymbolic.org/projects/ofdiss/

repository/revisions/master/show/

experiments/appDust.
6.3.1 Modeling Project Setup

Goal of this case study the development of surrogate models for
geometry optimization of cyclone dust separators. As mentioned,
the geometry parameters of a cyclone have to be customized to
a particular separation task to provide satisfactory performance.
Traditionally, this customization is performed on the basis of ana-
lytical models that have been specifically developed to predict key
performance characteristics of cyclones. These characteristics con-
tain the collection efficiency, which measures the share of particles
removed from the input gas or liquid stream as a function of par-
ticle size, and the pressure drop, which measures the pressure loss
caused by the cyclone. See Zaefferer et al. [2014] for a more detailed
introduction to this topic.22 While these simulation models are 22 Zaefferer, M., Breiderhoff, B., Nau-

joks, B., Friese, M., Stork, J., Fischbach,
A., Flasch, O., and Bartz-Beielstein, T.
(2014). Tuning multi-objective opti-
mization algorithms for cyclone dust
separators. In Proceedings of the 2014
conference on Genetic and evolutionary
computation (GECCO 2014), New York.
ACM Press

relatively simple, fast to execute on modern computers, and have
been validated experimentally within the constraints of traditional
geometries and operating conditions, there is a rising demand for
simulation models that offer higher flexibility and accuracy. This
demand is fueled by regulatory pressure for more environmentally
friendly technology, which includes better cyclones. Today, mul-
tiphase computational fluid dynamics (CFD) methods are able to

http://de.wikipedia.org/wiki/Datei:Hochofen_5.jpg
http://de.wikipedia.org/wiki/Datei:Hochofen_5.jpg
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/appDust
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/appDust
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/appDust
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/appDust

case studies 153

predict the collection efficiency and pressure drop of a cyclone with
high accuracy for a wide range of operating conditions. The latter
point is important, because modern cyclone applications require
pressures and temperatures in regions where experimental data is
scarce and the fidelity of traditional analytical models is question-
able.

Cyclone models based on multiphase CFD models are compu-
tationally expensive, with compute time budget requirements of
hours to days for a single cyclone configuration. CFD responds
well to parallelization, allowing cyclone models to be simulated on
compute clusters. The possible speedup is limited though. At the
time of writing, these simulations still require dozens of minutes of
compute time on a cluster of about 100 CPU cores.

With these compute time budget requirements, direct optimiza-
tion based on CFD models would be infeasible. This is a fairly
common problem, as many optimization tasks depend on computa-
tionally expensive computer experiments, e.g., CFD, finite element
method (FEM) simulations, or Monte-Carlo experiments. The state-
of-the art solution is to fit a regression model on a limited set of
simulation results that are generated based on design of experi-
ments methods. This model, known in this context as a surrogate
model or meta model, is then used for optimization.

6.3.2 Regression Problem Definition

The key performance indicators for cyclones are collection effi-
ciency (CE) and pressure drop (or pressure loss, PL). There are
other possible criteria for optimization, such as material costs, man-
ufacturing costs, or installation space requirements. For reasons of
simplicity, these are omitted in this case study.

The AppDust problem can now be formulated as two indepen-
dent regression tasks, given in R formula notation as

CE ∼ Da + H + Dt + Ht + He + Be + PS

PL ∼ Da + H + Dt + Ht + He + Be.

Note that the particle size (PS) parameter is only relevant for the
CE meta-model. Long names, domains, default values, and units
for each of the parameters are given in Table 6.6. Only geometry
parameters are targeted for optimization, therefore all process pa-
rameters except PS are held fixed at their default values. Figure 6.10

illustrates the cyclone geometry parameters. Parameter bounds and
default values are taken from Zaefferer et al. [2014].

6.3.3 Data Acquisition

For fitting CE (PL) meta-models, a Latin Hypercube Design with
7× 1024 (6× 1024) points has been used. This comparatively large
design for this 7 (6) dimensional problem was necessary to study
the quality of the meta-model fits in detail. In an industrial set-
ting, a much smaller design, probably with hundreds to about one

154 a modular genetic programming system

Da

Dt

B e

He
Ht

H

B e

Da

Dt

Front View Top View

Dt

Figure 6.10: Cyclone geometry param-
eters subject to meta-modeling for later
optimization. This figure has been
adapted from Zaefferer et al. [2014].

Name Symbol Domain Default Unit

Geometry Parameters
Cyclone diameter Da [1134, 1386] 1260 mm
Cyclone height H [2250, 2750] 2500 mm
Outlet pipe diameter Dt [378, 462] 420 mm
Outlet pipe immersion Ht [576, 704] 640 mm
Inlet height He [540, 660] 600 mm
Inlet width Be [180, 220] 200 mm

Process Parameters
Viscosity µ - 18.5 · 10−6 Pa · s
Flow rate Vp - 5000 m3/h

Gas density ρ f - 1.204 kg/m3

Particle size PS [0, 35] − µm
Particle density ρp - 2000 kg/m3

Particle concentration ce - 50 g/m3

Dependent Variables
Pressure drop PL - - Pa
Collection efficiency CE - - %

Table 6.6: Independent and depen-
dent variables for AppDust. Only
geometry parameters are subject to
meta-modeling in this case study.
Other parameters are therefore held
fixed at their default values. An ear-
lier version of this table appeared in
Zaefferer et al. [2014].

case studies 155

thousand points, would have been used used to keep the compute
budget requirements of simulations within reasonable limits. The
upper and lower parameter bounds are given in the domain col-
umn of Table 6.6.

As accurate CFD models for CE and PL were still in develop-
ment at the time of this writing, the analytical models of Barth
[1956] for CE and PL have been used as a provisional replace-
ment.23 Zaefferer et al. [2014] also contains a modern take on the 23 Barth, W. (1956). Berechnung und

Auslegung von Zyklonabscheidern
auf Grund neuerer Untersuchungen.
Brennstoff-Wärme-Kraft, 8(1):1–9

details of these models.
Calculating the analytical models for CE and PL on their respec-

tive Latin Hypercube Designs yields the two data sets used in this
case study. Each of this data sets is then divided equally into train-
ing and validation sets by random sampling without replacement.
As the validation set uses the same parameter bounds as the train-
ing set, model extrapolation quality is not measured in this case
study.

6.3.4 Data Preprocessing

All meta-models examined in this case study were fitted to training
data and evaluated on validation data without special preprocess-
ing. As the data has been artificially generated by means of ana-
lytical models applied within sensible input bounds, no numerical
problems or missing values had to be handled. Fractional efficiency
lattice plots were generated to ensure that the response of the an-
alytical models is within expectations during the EDA phase. A
selection of these plots will be shown in Section 6.3.7.

6.3.5 Linear Modeling

In addition to LM, Kriging, MARS models, PCR models, RF mod-
els, and SVM models were additionally applied to the AppDust
data. In a typical industrial setting, only a subset of these exper-
iments would be feasible. Also in contrast to real-world practice,
for each meta-modeling technique that involves randomized algo-
rithms, ten independent fits were generated and tested.

6.3.6 Symbolic Regression

Symbolic regression was performed using RGP with the GMOGP-
FCA search heuristic using default parameter settings from Ta-
ble 2.4. See Section 2.9.2 for details. The default function set {+,−,
∗, /, sin, cos, tan, exp, log,

√
x} has been used. The compute time

budget for evolving each of the meta-models has been set to 50

million candidate solution evaluations. Ten repeated runs were
performed to produce statistically reliable results.

156 a modular genetic programming system

6.3.7 Model Validation

To access the accuracy of the meta-models generated, MAE values
on validation data have been calculated. Additionally, CE meta-
models can be inspected visually by means of fractional efficiency
lattice plots to examine meta-model response in detail.

Collection Efficiency A statistical summary of the validation MAE
values of all meta-models evaluated in this study are shown in
Table 6.7 and visualized as Box plots in Figure 6.11. For RGP, the
solution with best training MAE has been selected from the Pareto
front of solutions in each of the ten runs. Meta-models are also
ranked by validation MAE, where lower MAE values are better. The
KM meta-model achieves near perfect results with validation MAE
values close to zero and very low, but non-zero variance between
the ten independent fits. This result asserts the role of Kriging as
the de-facto standard for simulation meta-modeling.

Regarding the remaining regression techniques, the RGP im-
plementation of the GMOGP-FCA and RF models yield the best
results. RGP achieves a slightly better median with higher vari-
ance than RF, while the RF results exhibit much lower variance.
MARS, ranked fourth based on validation MAE median, offer an
interesting option for their comparatively low compute time re-
quirements and deterministic behavior, i.e., zero variance between
the ten independent fits. SVM model fits are also still acceptable,
but could probably be improved by parameter tuning. The linear
meta-modeling techniques LM and PCR fail on this task because of
the inherent non-linearity of the AppDust problem.

●●●

●

●

LM MARS PCR RF SVM KM RGP

0.
00

0.
05

0.
10

0.
15

Validation MAE (AppDust Collection Efficiency)

M
A

E

Figure 6.11: Validation MAE for
AppDust collection efficiency of several
regression models, compared to
validation MAE of the best model
found by RGP.

Figures A.13 and A.14 in Appendix A show lattice plots of the
fractional efficiency for cyclones of default geometry but varying in-

case studies 157

LM MARS PCR RF SVM KM RGP

MAE
Median 0.1748 0.0325 0.1748 0.0227 0.0512 0.0002 0.0181
SD 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0045

Rank 6 4 6 3 5 1 2

Table 6.7: Validation MAE for AppDust
collection efficiency of several regres-
sion models. Best values are marked
with bold font. Results for randomized
algorithms are based on ten samples.
Values are rounded to four decimal
places.

let height (He), as well as meta-model predictions based on the RGP
and SVM, as well as on the RGP and RF meta-models, respectively.
Each of the nine subplots shows the fraction of particles collected
for particle diameters between 0 and 35 µm as predicted by the an-
alytical model (solid gray line), the SVM or RF model (dotted black
line), and the RGP model (dashed black line). The subplots differ in
(He), which is varied from 540 to 660 mm (bottom left to top right
subplot). All plots are based on validation data. Based on visual
inspection, the RGP meta-model provides a very good fit of the
validation data. The RF meta-model fit worsens at the upper and
lower bounds of the He parameter, while the SVM meta-model fails
to capture the collection efficiency roll-of for small particle sizes
and erroneously predicts negative collection efficiency values in this
region.

Pressure Drop As with the CE meta-models, a statistical summary
of the validation MAE is compiled to assess the relative accuracy
of all meta-models evaluated in this study. This summary is shown
in Table 6.8 and visualized as Box plots in Figure 6.12. As in the
previous result analysis, the RGP solution with best training MAE
has been selected from the Pareto front of solutions in each of the
ten runs. Again, the KM meta-model achieves validation MAE
values close to zero with very low variance.

The RGP implementation of the GMOGP-FCA achieves the sec-
ond best median validation MAE of 5.0890, although with relatively
high variance. From here on, the result ranks begin to differ from
the previous ranking. The SVM meta-models, ranked third, exhibit
a significantly worse median validation MAE of 17.6757. MARS
fares even worse, followed by LM and PCR that share the fifth
rank.24 The RF meta-model ranks last with an even worse median 24 During PCR model fitting, all princi-

ple components were selected, render-
ing the PCR meta-model equivalent to
the LM meta-model.

validation MAE then that of the linear models. This result is sur-
prising, as the same meta-modeling technique ranked fourth based
on median training MAE.

LM MARS PCR RF SVM KM RGP

MAE
Median 28.8141 22.3014 28.8141 40.5395 17.6757 0.0108 5.0890
SD 0.0000 0.0000 0.0000 0.3166 0.0000 0.0000 10.5661

Rank 5 4 5 6 3 1 2

Table 6.8: Validation MAE for AppDust
pressure drop of several regression
models. The remarks of Table 6.7 also
apply here.

158 a modular genetic programming system

●

●●

LM MARS PCR RF SVM KM RGP

0
10

20
30

40
Validation MAE (AppDust Pressure Drop)

M
A

E

Figure 6.12: Validation MAE for
AppDust pressure drop of several
regression models, compared to
validation MAE of the best model
found by RGP.

6.3.8 Model Deployment

Based on the model validation results, either the KM or RGP meta-
models would probably be deployed in practice, depending on
whether accuracy or understandability are considered more impor-
tant. As all meta-models of this case study are based on synthetic
data, real-world model deployment was postponed until meta-
models based on CFD simulation results become available.

6.4 Roll Train Control Models (AppSteel)

Rolling is a metal forming process for thickness or width reduction.
Metal stock is passed through one or more pairs of rolls. More
formally, according to Wagoner and Chenot [2005],

the rolling process can be defined as a continuous process of plastic
deformation for long parts of constant cross section, in which a
reduction of the cross sectional area is achieved by compression
between two rotating rolls (or more).25 25 Wagoner, R. and Chenot, J. (2005).

Metal Forming Analysis. Cambridge
University Press, New YorkThe assembly of rolls and supporting infrastructure is known

as roll train. Rolling at temperatures below recrystallization of the
processed metal is known as cold rolling, while rolling above re-
crystallization temperatures is known as hot rolling. At the time of
this writing, hot rolling is the most important metal forming pro-
cess in terms of tons of material processed. Similarly, cold rolling is
the most important cold metal forming process in terms of material
throughput.

Various geometric shapes can be produced by rolling. In flat
rolling, metal slabs or sheets of thicknesses between several cen-
timeters down to tenths of millimeters are produced by rolling with
flat cylinders. Shape rolling allows the production of more complex

case studies 159

geometry, such as beams or rods. As the required transformations
in geometry are often too large for a single pass, most rolling pro-
cesses consist of multiple passes that are either applied successively
with the same rolling station or continuously with multiple rolling
stations.

In this case study, the focus is on a flat hot rolling process used
in steel mills. This section is organized much like the last case
study on cyclone geometry optimization and follows the frame-
work introduced in Section 3.2. The idea and supporting data for
this case study was kindly provided by a large manufacturer of roll
trains and metalwork technology.26 26 Data and R source code for this

case study is available at https:
//rsymbolic.org/projects/ofdiss/

repository/revisions/master/show/

experiments/appSteel.
6.4.1 Modeling Project Setup

Goal of this case study is the development of models for predicting
steel slab width reduction caused by a two pass flat rolling process
based on measurement data. Figure 6.13 shows a simplified draw-
ing of the process under study. The rolling station shown consists
of an edger, meaning a pair of vertical rolls for width reduction,
followed by rougher, meaning a pair of horizontal rolls for thick-
ness reduction, followed by a width gauge. The metal product,
composed of a specific steel alloy, is threaded through the station
in multiple passes, back and forth, until the desired thickness and
width reduction is attained. Width can only be measured accurately
after odd passes, where the product moves from left to right, while
the process can only finish after an even amount of passes. The
edger can only be used in odd passes.

Width Gauge
Metal Product

Odd Pass
→

Even Pass
←

Edger

Rougher

Figure 6.13: Schematic of the steel
rolling process studied in the AppSteel
case study. The rolling station consists
of a pair of vertical rolls for width
reduction (edger), followed by a pair
of horizontal rolls for thickness reduc-
tion (rougher). The metal product is
processed in multiple back and forth
passes. Width can only measured after
an odd pass, while the process can
only finish after an even pass. The
edger can only be used in odd passes.
The upper half of the drawing shows
an odd (left to right) pass, the lower
half shows an even (right to left) pass
of the process.

Accurate models of the width reduction obtained after a pair of

https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/appSteel
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/appSteel
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/appSteel
https://rsymbolic.org/projects/ofdiss/repository/revisions/master/show/experiments/appSteel

160 a modular genetic programming system

passes are of high interest, because metal products are produced to
exact specifications of minimum width and thickness. Batches that
fall short of minimum width or thickness have to be discarded as
scrap. On the other hand, excess width or thickness is not paid for,
causing unnecessary costs. Steel mill operators, operating under
high economic pressure, therefore have a high interest in meeting
product specifications as exactly as possible, without undershoot-
ing.

The models are to be deployed as predictive control models,
meaning that a model is part of an optimization loop, where the
model or process parameter input space is continuously searched
for settings that robustly achieve the desired width reduction,
which can change throughout a production batch. As the time
required for two rolling passes is measured in seconds, model eval-
uation must be fast.

The physics of hot metal forming is complex and contains highly
non-linear effects. The width reduction of a steel slab caused by the
two pass process described here is expected to depend on a large
number of parameters, including width and thickness set points,
as well as steel alloy composition. Recently, non-linear FEM based
models have been developed for simulating the rolling process with
high accuracy. These models are computationally expensive and are
complex to setup and parameterize, though. At the time of writing,
this disqualifies these models for most uses in predictive control for
steel rolling.

Custom analytical models devised by domain experts, as well as
data-driven models, offer two alternatives that are used in practice.
In this case study, multiple data-driven modeling approaches are
evaluated.

6.4.2 Regression Problem Definition

Creating data-driven models for width reduction in steel rolling can
be formulated as a regression problem. Using R formula notation,
the AppSteel problem is given as

Y ∼ PMEAS + AWC + THICK + THICKRED + PTHICKRED

+ ZR + W + C + SI + MN + P + S + CR + MO + NI

+ V + AL + CU + CO + TI + NB + N + SN + AS + B.

The parameter symbols used in this formula are explained in
Table 6.9. The steel alloy composition is given in the form of 20

parameters named after their respective chemical element symbol.
Other independent variables to be used as model inputs include
the measured width at the previous odd pass, the width set at the
edger, the thickness of the material before rolling the current pass
(input thickness), the thickness reduction set at the rougher, and the
measured thickness reduction caused by the previous even pass. In
total, the AppSteel regression problem has 25 independent variables.
The only dependent variable, width reduction after the next even

case studies 161

pass, can attain negative values. This happens because thickness
reduction via flat rolling naturally entails lateral expansion of the
material.

Name Symbol Domain Unit

Independent Variables
Width at previous odd pass PMEAS [750, 2000] mm
Width set at edger AWC [750, 2000] mm
Input thickness THICK [40, 300] mm
Alloy composition (20 Chemical symbols) [0.0, 1.0] %
Thickness reduction set at rougher THICKRED [0, 50] mm
Thickness reduction of previous even pass PTHICKRED [0, 50] mm

Dependent Variable
Width reduction after next even pass Y [−50, 25] mm

Table 6.9: Independent and depen-
dent variables for AppSteel. The alloy
composition is represented as 20 pa-
rameters named after their respective
chemical symbols and condensed into
one line in this table. AppSteel is a re-
gression problem with 25 dimensions.

6.4.3 Data Acquisition

All models evaluated in this case study have been fitted on data
provided externally. The dataset is based on a Latin Hypercube
Design with 6190 points. Width reduction values for each of these
points were generated by a proprietary simulator not available to
the author. The data was then divided into training and validation
data sets by random sampling without replacement. One tenth of
the data has been used for training (619 points), nine tenths (5571
points) has been used for validation, as proposed by the indus-
try partner. Training and validation data use the same parameter
bounds, therefore model extrapolation quality is not evaluated.

The use of simulated data for model evaluation is common prac-
tice at the industry partner, as controlled experiments with steel roll
trains are too costly and time consuming to perform in the initial
stage of comparing multiple modeling techniques.

6.4.4 Data Preprocessing

As in the previous case study, all models under evaluation were
fitted to training data and evaluated on validation data without
any data preprocessing. The data has been generated by a simu-
lation model applied within specified parameter bounds, and no
numerical problems or missing values had to be accounted for. Be-
fore modeling, the data has been visually inspected through scatter
plots and correlation diagrams.

6.4.5 Linear Modeling

In addition to LM, the same set of regression modeling techniques
as in the previous case study described in Section 6.3 was eval-
uated. For each meta-modeling technique that uses randomized
algorithms, ten independent fits were generated and evaluated.

162 a modular genetic programming system

6.4.6 Symbolic Regression

As in the previous case study, symbolic regression was performed
using RGP configured with the GMOGP-FCA search heuristic us-
ing default parameter settings from Table 2.4. See Section 2.9.2
for details on the parameterization. Also, the default function set
{+,−, ∗, /, sin, cos, tan, exp, log,

√
x} has been used. Each RGP run

had a compute time budget of 50 million candidate solution evalu-
ations. Also as in the previous case study, ten repeated runs were
performed to produce statistically reliable results.

6.4.7 Model Validation

MAE values on validation data have been calculated to access the
accuracy of the different modeling techniques evaluated in this
case study. Table 6.10 shows a statistical summary of the validation
MAE values of all models evaluated. These values are visualized in
the form of Box plots in Figure 6.14. The solution with best training
MAE has been selected from the Pareto front of solutions in each
of the ten RGP runs. The resulting models are ranked by median
validation MAE, where lower MAE values are better.

●

●

LM MARS PCR RF SVM KM RGP

3
4

5
6

7
8

9

Validation MAE (AppSteel)

M
A

E

Figure 6.14: Validation MAE for
AppSteel of several regression models,
compared to validation MAE of the
best fitting models found by each of
ten independent runs.

LM MARS PCR RF SVM KM RGP

MAE
Median 6.7639 5.1853 6.6760 8.8225 9.7177 5.7800 4.8597
SD 0.0000 0.0000 0.0000 0.0134 0.0000 0.9136 0.6404

Rank 5 2 4 6 7 3 1

Table 6.10: Validation MAE for App-
Steel of several regression models. The
remarks of Table 6.7 also apply here.

According to this ranking, the models created by RGP perform
best with a median validation MAE of 4.8597. MARS models
are slightly worse, with a median validation MAE of 5.1853, but

case studies 163

nonetheless offer an attractive alternative here because of their de-
terministic nature (zero variance in the results achieved). KM mod-
els rank third, with an median validation MAE of 5.7800. Both the
RGP and KM run results contain a single outlier each with very low
validation MAE values of 2.9480 (KM) and 3.1943 (RGP). The box
plots reveal that, with these outliers removed, KM validation MAE
result variance is lower than RGP validation MAE result variance,
consistent with the results of the previous case study.

PCR models, ranked fourth with a median validation MAE of
6.6760, achieve slightly better results than LM models, that reach a
median validation MAE of 6.7639. Inspection of the PCR models re-
veals that only five out of a maximum of 25 possible principal com-
ponents were selected to be included in the model. RF and SVM
fail to produce good results for this particular application with
median validation MAE values of 8.8225 (RF) and 9.7177 (SVM),
ranking sixth and seventh. These results cannot be explained by
these models failing to achieve good fits on the training data us-
ing their respective parameterizations. Ranked by median training
MAE, RF models take the second place, with only KM reaching bet-
ter median training MAE values. SVM models take the fifth place,
with better median training MAE values than both PCR and LM.

RGP Model Analysis The following paragraphs focus on tools
and techniques for analyzing GP models available in RGP. As ten
repeated runs have been conducted in this case study, the first
run, based on random number generator seed 1, has been chosen
arbitrarily for deeper analysis. In practice, probably only a single
RGP run would have been conducted due to compute time budget
constraints.

As GMOGP-FCA is a multi-objective GP search heuristic, a typ-
ical starting point for analyzing the set of generated solutions is a
Pareto front plot. Figure 6.15 shows this plot. The x-axis indicates
training fitness, measured as SMSE, the y-axis indicates solution
complexity, measured as visitation length. Individual solutions are
shown as black points and numbered by rank based on training
fitness. The Pareto front approximation represented by this set of
solutions is shown as a thick gray line.

Table 6.11 presents the same data in a textual format. There are
some interesting observations to be made that, based on experience,
apply to most result Pareto fronts generated by GMOGP-FCA. First,
solution complexity and solution accuracy are to be conflicting
goals. Second, there is an exponential relationship between solution
complexity and solution accuracy. A linear model based on the R
model formula log(Training Fitness) ∼ log(Complexity) achieves
an adjusted R2 of 0.9641, i.e., a very good fit, when fitted on the
data reproduced in Table 6.11.

This clearly indicates a point of diminishing returns regarding
the relationship between model complexity and model accuracy,
suggesting that the best trade-off between these conflicting ob-

164 a modular genetic programming system

20 40 60 80 100 120 140

0
50

0
10

00
15

00
Pareto Front (AppSteel, Seed = 1)

Fitness (SMSE)

C
om

pl
ex

ity
 (V

is
ita

tio
n

Le
ng

th
)

●

●

●

●

●

●●

●

●

●
●

●
●

●●

● ●
●
● ● ● ● ●●

1

2

3

4

5

67

8

9

10
11

1213
1415

16 17
18
19 2021 22 23

Figure 6.15: Pareto front plot of the
AppSteel RGP run with random seed
1. Solution training fitness is shown on
the x-axis, while solution complexity
is shown on the y-axis. Individual
solutions are shown as black points
and numbered by rank based on
training fitness (SMSE). Training
fitness is used instead of validation
MAE, because this plot has been
generated by RGP during a GP run.
The Pareto front approximation
is shown as a thick gray line. See
Table 6.11 for a tabular representation
and additional details.

jectives should be found near the knee of the Pareto front. See
Section 5.5.4 for a formal definition of this concept. In the case dis-
cussed here, the knee of the Pareto front lies at solution 16, which
attains a validation MAE of 4.18 with a modest visitation length
(complexity) of 119. This model, given as

Y = (PMEAS−AWC) · cos(4
√

THICK) · AWC ·
√

PMEAS
THICK

is simple enough for human analysis. Note that, due to use of
SMSE fitness, the scale of the output may be off by a constant factor,
which can be easily corrected. Solution 21 provides an even simpler
model, that attains a validation MAE of 5.2 with a low visitation
length of 11:

Y =
PMEAS−AWC

THICK

Also note that solutions 16 and 21 shown in the previous para-
graph, which are near the Pareto front knee, only contain the input

case studies 165

Training Fitness Complexity Training MAE Validation MAE
(SMSE) (Visitation Length)

1 14.18 1457 2.98 3.19
2 15.37 1356 3.06 3.29
3 15.67 1290 3.08 3.30
4 16.05 1201 3.12 3.33
5 16.67 1134 3.17 3.37
6 16.96 865 3.24 3.40
7 17.77 851 3.32 3.48
8 17.79 659 3.33 3.52
9 18.38 553 3.40 3.59

10 19.00 462 3.42 3.60
11 20.33 433 3.48 3.66
12 21.10 378 3.67 3.83
13 21.80 360 3.64 3.78
14 22.62 312 3.64 3.85
15 22.68 304 3.64 3.86
16 24.52 119 4.02 4.18
17 32.35 105 4.43 4.66
18 34.57 67 4.50 4.67
19 34.88 37 4.52 4.68
20 39.76 25 4.65 4.94
21 42.25 11 4.93 5.20
22 88.02 5 7.24 7.38
23 148.85 1 9.95 9.97

Table 6.11: Pareto front after 50 million
fitness evaluations on AppSteel, RGP
with GMOGP-FCA search heuris-
tic, random seed 1. Table rows are
sorted by training fitness (SMSE). The
Pareto front knee is marked with bold
font. See Figure 6.15 for a graphical
representation of this data.

variables PMAES, AWC, and THICK, i.e., only three out of 25 possi-
ble independent variables. This observation hints at the possibility
of spurious independent variables. To investigate, the occurrences
of each input variable in each model of the result population is
counted. Variable occurrences in Pareto front models are counted
separately. The result of this census is visualized in Figure 6.16 in
form of a bar plot. In this plot, input variable occurrences in models
that are members of the Pareto front are plotted as black bars, all
other occurrences are plotted as gray bars.

Plots similar to Figure 6.16 where introduced by Kotanchek et al.
[2010].27 They also illustrate the potential of multi-objective GP as a 27 Kotanchek, M. E., Vladislavleva,

E., and Smits, G. F. (2010). Symbolic
regression via genetic programming as
a discovery engine: Insights on outliers
and prototypes. In Riolo, R. et al.,
editors, Genetic Programming Theory and
Practice VII, Genetic and Evolutionary
Computation Series, pages 55–72.
Springer, New York

feature selection method.
Only four independent variables are prevalent in the models

of the result population, that is, in order of decreasing frequency,
PMAES, AWC, THICKRED, and THICK. Input variables pertaining
to the material properties are nearly completely absent, together
with the input variable PTHICKRED that describes the thickness
reduction caused by the previous even pass. This data supports
the hypothesis of spurious variables in the model training data sets
and also indicates what these variables are. The observation that
only five principal components were selected during PCR model
generation further supports this hypothesis.

As the training and validation data sets were generated through
a proprietary simulator, it seems plausible that the simulation either
omits the influence of material properties or that material prop-

166 a modular genetic programming system

PM
E

A
S

A
W

C

T
H

IC
K

Z
R W C SI

M
N P S

C
R

M
O N
I V

A
L

C
U

C
O T
I

N
B N SN A
S B

T
H

IC
K

R
E

D

PT
H

IC
K

R
E

D

All Models
Pareto Front Models

Variable Presence (AppSteel, Seed = 1)

Variable

C
ou

nt

0
20

0
40

0
60

0
80

0

Figure 6.16: Number of input variable
occurrences among the models in the
result population of the AppSteel RGP
run with random seed 1. Variable oc-
currences in models that are members
of the Pareto front are plotted as black
bars, all other occurrences are plotted
as gray bars.

erties are not influential to the width reduction to be modeled, at
least in the parameter bounds studied. The same applies to the
independent variable PTHICKRED.

6.4.8 Model Deployment

On the basis of the results presented in the last subsection, either
the models generated by RGP or MARS would be deployed. Both
models can be evaluated efficiently enough for use in predictive
control. As all models were fitted on simulated data only, a second
evaluation based on real-world data generated by means of con-
trolled experiments would be advisable to ensure correct model
behavior in production usage.

6.5 Conclusions

This chapter put the performance of the GP algorithms imple-
mented in RGP into context by comparisons with other state-of-
the-art GP systems based on well-known artificial test problems.
Furthermore, two extensive real-world applications were described
in detail, in the form of case studies, demonstrating how RGP can
be used effectively in practice. Comparisons with alternatives to
GP, including methods from machine learning and classical statis-
tics, were also part of these case studies.

Judged by median validation MAE, RGP was able to consistently
generate good models for both artificial and real-world tasks. Over-

case studies 167

all, no other general regression technique provided consistently
better results. Analysis of the real-world case studies establishes
Kriging (KM) as a viable alternative to RGP that offers a different
set of trade-offs. KM offer the important benefit of providing error
estimates together with predictions, while RGP models are white-
box models open to human interpretation, at least to a certain de-
gree of model complexity. Depending on the dimensionality of the
input data, KM are about equally computationally expensive to fit
as RGP models. KM have an advantage at lower dimensions, while
RGP models tend to perform better at higher dimensions, due to
their inherent variable selection capability. As a downside, the vari-
ation in accuracy of models generated in independent RGP runs
was distinctly larger than with other regression techniques incor-
porating randomized algorithms. There are at least two approaches
to alleviate this problem, none of which implemented in RGP at
the time of writing. First, ensemble techniques such as bootstrap
aggregating can be applied, with the cost of loosing the simplicity
and understandability of a single solution formula associated with
GP. Second, the results of multiple parallel runs can be combined,
lowering result variance at the cost of a higher required compute
time budget.

Model accuracy of the other models evaluated during the real-
world case studies was notably less consistent and much more de-
pendent on the problem at hand. For example, RF models reached
rank three based on median validation MAE when predicting App-
Dust cyclone collection efficiency, but only rank six when predicting
cyclone pressure drop. SVM models showed similar problems.
Naturally, both RF and SVM results could be improved by expert
tuning, but this is not the point to be made in this study. In the
hands of a user with detailed domain knowledge, some statistical
background, but no specialized training in any of the regression
techniques discussed, RGP seems to provide high accuracy models
consistently. Cortez [2014] provides two additional examples for
the successful application of RGP to regression and time series fore-
casting. He concludes his example on time series forecasting, which
revolves around the accurate prediction of sunspot numbers, with
the following remarks:

Both ARIMA and genetic programming predictions are close to the
true sunspot values. Overall, the genetic programming solution
produces slightly better forecasts with an improvement of 0.7 when
compared with the ARIMA method in terms of MAE measured
over the out-of-samples. This is an interesting result, since ARIMA
methodology was specifically designed for [time series forecasting]
while genetic programming is a much more generic optimization
method.28 28 Cortez, P. (2014). Modern optimization

with R. Use R! Series. Springer Interna-
tional Publishing, Cham, Switzerland

7
Summary and Outlook

The previous chapters described a formal framework for evolution-
ary algorithms in general and GP in particular, detailed the design
and implementation of RGP, a modular GP system built on this
framework, and showed how this framework is combined with the
framework of SPO to research GP operators and search heuristics
while producing reliable and reproducible results. Finally, artificial
test problems and two case studies from different industries were
employed to demonstrate how RGP can be used successfully in
practice.

In this chapter, the results of this work are summarized and put
into context (Section 7.1). The original contributions presented in
Section 1.2 are revisited in light of these results (Section 7.2). Open
questions are listed in Section 7.3 as opportunities for further re-
search and possible extensions to RGP, designed to advance adop-
tion of GP for practical applications, are presented in Section 7.4.

7.1 Summary

GP is the application of evolutionary computing to the problem of
discovering symbolic expressions that are near-optimal according to
one criterion, or in the case of multi-objective GP, near-optimal
compromises according to multiple criteria. Chapter 2 started
with a short and informal introduction to GP to build intuition
by reflecting on the biological metaphors inspiring evolutionary
computing and by giving application examples. The chapter pro-
ceeded with the introduction of a formal framework for describing
evolutionary algorithms, particularly GP, in the abstract, without
referring to concrete implementations. This approach has multi-
ple benefits. It provides a framework for structuring modular GP
implementations. It also provides the vocabulary to describe GP
operators, e.g., for variation and selection, improving understand-
ing and facilitating concise and correct implementation. Finally,
linking theory and implementation by basing both on the same
formal grounding, simplifies co-evolution of theory and practice,
i.e., adapting an implementation to quickly exploit new theoretical
knowledge. This last point will be illustrated in Section 7.4, where
extensions to the RGP systems will be proposed based on current

170 a modular genetic programming system

research. Chapter 2 concluded with the introduction of GMOGP, a
modern multi-objective GP search heuristic.

Building on the formal framework of Chapter 2, Chapter 3 intro-
duced RGP, a modular GP system integrated in the R environment
for statistical computing. This system also provided the basis for
the experimental studies on GP system parameterization described
in this work. The system implements classical untyped tree-based
GP, as well as strongly typed GP, and Pareto GP, in a modular
fashion. It allows direct customization and replacement of every
algorithm component, facilitating rapid experimentation. RGP’s
feature set compares favorably to the feature sets of other GP sys-
tems, both commercial and open source.

Chapter 3 also provided a process for model induction with
RGP that covers the important tasks of data import, preprocessing,
result analysis, model validation, and model deployment, as a
roadmap for practitioners. In addition to documenting individual
features, RGP was introduced by means of tutorial examples. RGP’s
principal design goals of effectiveness, approachability, extensibility,
modularity, and efficiency were defined and put into context of
the system’s implementation. Finally, the design rationale and
implementation of a modern web-based user interface for symbolic
regression with RGP has been explained in detail.

Chapter 4 marked the beginning of the empirical part of this
thesis. After introducing the framework of SPO and its implemen-
tation SPOT, two approaches to scalable test functions were intro-
duced. Spurious variable test functions can be scaled in difficulty
by introducing additional uncorrelated independent variables to
conceal the functional dependency between driving (independent)
variables and the dependent variable. While conceptually simple,
these test functions only provide a single variant per difficulty level,
which can introduce overfitting problems into the SPO process.

Kriging-based scalable random test functions were then intro-
duced to alleviate this problem. Here, a Kriging model is fitted on
samples of a base test function, whose parameters are than per-
turbed to provide arbitrary many test function instances. While
this approach can be combined with spurious variables, it also of-
fers some control over the condition number of the generated test
function instance, providing another means of scaling test function
difficulty.

The main empirical work conducted in this thesis revolved around
three scientific claims, that were broken down into testable statisti-
cal hypotheses and examined in Chapter 5. The first claim, stating
that complex problems require complex algorithms, seems to be
valid. GP system performance is reversely correlated to problem
difficulty, and modern GP algorithms consistently outperform sim-
pler GP algorithms.

summary and outlook 171

The second claim, stating that parameter settings of modern GP
systems can be effectively tuned, also holds. It was shown, for the
GP system used in this work, that there exist parameters with sig-
nificant effect on system performance and that there are significant
differences in the relative effect of the parameters studied. Fur-
thermore, it has been shown that GP system parameter tuning is
effective in improving result quality.

The third and final claim, stating that tuned GP system param-
eter settings are robust within a problem class, appears to hold up
to first empirical tests. The existence of problem classes where GP
performance can be measurably improved by SPO has been shown.
Pairs of problem classes with measurable differences in their SPO-
tuned parameter settings were demonstrated. These results hint at
the robustness of tuned parameters within a problem class, while
additional experimentation with different problem classes would be
required to secure this result.

Based on the parameter tuning process described in Chapter 5,
best practices for GP system parameter tuning have been proposed.
GP function set, error measure, and population size were identi-
fied as the parameters with highest expected effect on GP system
performance.

Chapter 6 demonstrated the relative performance of RGP on
well-known test problems by means of comparisons with other
state-of-the-art GP systems. Additionally, two extensive real-world
case studies were described in detail. These case studies also con-
tained comparisons with alternatives to GP for regression, such
as methods from machine learning and classical statistics. RGP
was able to consistently achieve good results for both artificial and
real-world tasks. Overall, no other general regression technique
provided consistently better results. The variation in accuracy of
models generated in independent RGP runs was distinctly larger
than with other regression techniques that incorporate randomized
algorithms. Approaches to alleviate this problem were proposed. In
conclusion, RGP using the multi-objective GMOGP search heuris-
tic consistently provided high accuracy models without requiring
specialized expert knowledge for model setup. It is highly probable
that these results could be improved even further by SPO.

7.2 Original Contributions

As mentioned in Section 1.2, this work makes three contributions to
the state-of-the art in GP systems:

• A Modular GP System The design and implementation of RGP, a
modular GP system based on the R environment for statistical
computing has been presented in detail (cf. Chapter 3).

• A Comprehensive Empirical Analysis of Modern GP Heuristics Based
on RGP and SPO, a framework for reproducible empirical re-

172 a modular genetic programming system

search in GP has been developed (cf. Chapter 5).

• New Industrial Applications for GP Finally, RGP configured with
the multi-objective GMOGP search heuristic has been applied
to two real-world industrial applications from mechanical and
process engineering (cf. Chapter 6).

See Section 1.2 for additional details on each of these contribu-
tions. Methodological contributions of this work include the free
availability of all source code and experiment data1 to facilitate 1 see http://rsymbolic.org

reproducible research, as postulated in the Science Code Mani-
festo2, as well as the consequent use of, and integration with, free 2 Barnes, N. et al. (2013).

Science code manifesto.
http://sciencecodemanifesto.org/
(retrieved 20.02.2015)

and open source software to make all algorithms and techniques
developed available to a wide audience.

As already stated in the introduction, the primary motivation
of this work was to provide a practical system applicable to real-
world applications. RGP constitutes a successful first attempt at
such a system. It proved to be already useful not only for academic
research, but also for multiple practical applications.

7.3 Open Questions

While GP seems to gain relevance in academic and industry ap-
plication, there are both perceived and real roadblocks preventing
wider adoption. This section lists some of the most common objec-
tions to GP, suggests possible solutions already available today or
directions for future research.

A typical objection against the practical use of GP is perceived
inefficiency of evolutionary search in general. This objection is
only valid when the general structure of the solution is known,
which seems to be often the case, hence the success of (generalized)
linear models. There might be a selection bias here, as stories of
the unsuccessful application of regression methods often remain
untold. If the solution structure is not known and only insufficient
resources are available for manual analysis, GP is often able to
produce good solutions that rival domain-specific methods and
are open to human analysis and understanding. This assertion is
supported by the results presented in Chapter 6.

A objection to using RGP in practice is a perceived lack of well-
known techniques of securing solution quality. Standard techniques
from machine learning, such as cross-validation, can be used to
alleviate this problem. In the case of regression analysis, techniques
developed for generalized linear models (GLM) are sometimes
applicable to models discovered by evolutionary search, which is
an area of active research. Another option is the use of ensemble
methods. An ensemble of models evolved by GP can provide a
certainty value along with its predictions, but this comes at the cost
of the understandability and simplicity of a single model.

Another problem with current GP systems is lack of accuracy of
the generated solutions on a class of structurally simple test func-

http://rsymbolic.org

summary and outlook 173

tions. Functions that exhibit phenotypic behavior highly sensitive to
constants in their respective genotype are part of this class. In these
cases, an exact solution is only found when a genotypic constant
is fitted perfectly, which is nearly impossible to achieve by evolu-
tionary search alone. Korns [2011] provides details and possible
solutions.3 3 Korns, M. (2011). Accuracy in

symbolic regression. In Riolo, R. et al.,
editors, Genetic Programming Theory and
Practice IX, Genetic and Evolutionary
Computation Series, pages 129–151.
Springer, New York

The previous two problems can also be formulated in a positive
manner. In the case of regression, the availability of a symbolic
regression algorithm that provably finds exact solutions for all
deterministic (noise-free) test functions up to a certain genotypic
complexity within a feasible time budget would be a significant
achievement.

Among the practical impediments to a wider adoption of GP in
general and symbolic regression in particular are a perceived lack
of accessible implementations and high compute time requirements
of GP. RGP and RGP UI are designed to remove the former imped-
iment to some degree by integrating with the highly popular statis-
tics environment R, by offering a simple graphical user interface,
and by their free availability as open source software. The compute
time budget needed to arrive at results of suitable quality dropped
during the sustained regime of Moore’s law, benefiting from the in-
trinsically parallel nature of population-based evolutionary search.
Only recently, GP became a practical method for solving real-world
symbolic regression and classification problems in an industrial
setting, as demonstrated by the availability of second generation
commercial GP systems such as Eureqa and DataModeler.

7.4 Outlook

Some of the open questions and problems regarding GP listed in
Section 7.3 motivate possible extensions to RGP as well as interest-
ing directions for further research. This final section outlines some
of these extensions and research ideas.

Statistical Tools for Symbolic Regression Analysis As Korns [2013]
correctly notices, symbolic regression aspires to solve the problem
of nonlinear regression, which is canonically formalized by the
class of GLMs.4 A GLM is the linear combination of a set of pos- 4 Korns, M. (2013). Extreme accuracy

in symbolic regression. In Riolo, R.
et al., editors, Genetic Programming
Theory and Practice XI, Genetic and
Evolutionary Computation Series,
pages 1–30. Springer, New York

sibly non-linear basis functions. In principle, a GLM can faithfully
represent any non-linear formula, while there are practical limits
imposed by model complexity. The symbolic regression problem
can therefore be reduced to the problem of finding an optimal set of
basis functions for a given data set. By recasting the design and im-
plementation of symbolic regression in RGP in terms of GLM, e.g.,
by making the concept of basis function explicit, RGP would inte-
grate much better with existing and future tools for GLM analysis
available inside the R ecosystem.

174 a modular genetic programming system

Highly-Accurate GP Korns [2013] describes a complex symbolic re-
gression algorithm that is able to provide highly accurate solutions
to a large and well-defined class of symbolic regression problems.
The basic idea of this algorithm stems from the observation that
there are regions of genotypic search space that respond well to
evolutionary search, while other regions are much less tractable.
These regions are separated by partitioning the search space into is-
lands that are searched in parallel by specialized heuristics. Regions
that are intractable by evolutionary search are searched exhaus-
tively. The approach has an additional benefit. During manual
search space partitioning, algebraic transformations are used to
discover partitions that are phenotypic equivalents. By searching
only one partition in each equivalence class, search effort can be
reduced significantly. This approach shows promising results for
symbolic regression problems with a standard function set, as used
in the regression case studies presented in this work, and could
be transferred to other GP function sets and applications. Further-
more, the discovery of equivalence classes could be automated to
some degree by expert systems representing domain knowledge,
e.g., computer algebra systems in the case of symbolic regression.

Domain-Specific GP Systems The practical usability of GP systems
would be greatly improved by further integration into domain-
specific tools, leading to a new generation of domain-specific GP
systems. These systems would be specifically tuned towards a
fixed class of application problems in search heuristic parameters
and default function set by means introduced in Chapter 5. They
would be integrated with other software components implementing
data acquisition, preprocessing, and result validation, saving users
much of the manual setup and configuration work required in
general purpose systems. There are already application domains
that use specialized in-house GP systems, such as financial time
series analysis or chemical plant modeling and control, and it is
to be expected that these systems will become more specialized to
their respective application domains in the future.

A
Additional Figures

176 a modular genetic programming system

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 1

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 2

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 3

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 4

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 5

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 6

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 7

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 8

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 9

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 10

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 11

−0.5

0.0

0.5

2.5 5.0 7.5 10.0
x1

y

Run 12

Figure A.1: Plots of the best individual
for 12 GMOGP calibration runs (solid
line), overlayed by true function
(dotted line), as generated by GMOGP-
FCA with default settings and a
budget of 12 hours.

additional figures 177

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

buildingBlockSetNumber 1

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

buildingBlockSetNumber 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

buildingBlockSetNumber 1

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

buildingBlockSetNumber 4

Figure A.2: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), ifuncset parameter.

178 a modular genetic programming system

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

errorMeasureNumber 1

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

errorMeasureNumber 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

errorMeasureNumber 1

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

errorMeasureNumber 4

Figure A.3: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), ierror parameter.

additional figures 179

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

mu 8

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

mu 256

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

mu 8

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

mu 256

Figure A.4: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), µ parameter.

180 a modular genetic programming system

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

lambdaRel 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

lambdaRel 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

lambdaRel 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

lambdaRel 1

Figure A.5: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), λµ rel parameter.

additional figures 181

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

nuRel 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

nuRel 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

nuRel 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

nuRel 1

Figure A.6: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), νµ rel parameter.

182 a modular genetic programming system

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

crossoverProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

crossoverProbability 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

crossoverProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

crossoverProbability 1

Figure A.7: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), pcrossover parameter.

additional figures 183

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

subtreeMutationProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

subtreeMutationProbability 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

subtreeMutationProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

subtreeMutationProbability 1

Figure A.8: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), pmsubtree parameter.

184 a modular genetic programming system

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

functionMutationProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

functionMutationProbability 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

functionMutationProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

functionMutationProbability 1

Figure A.9: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), pmfunc parameter.

additional figures 185

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

constantMutationProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

constantMutationProbability 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

constantMutationProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

constantMutationProbability 1

Figure A.10: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), pmconst parameter.

186 a modular genetic programming system

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

enableAgeCriterion 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

enableAgeCriterion 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

enableAgeCriterion 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

enableAgeCriterion 1

Figure A.11: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), bage parameter.

additional figures 187

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

parentSelectionProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 50 100 200 300 400 500
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

parentSelectionProbability 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

parentSelectionProbability 0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Validation Error (MAE)

0
10

0
20

0
30

0
40

0
50

0
C

om
pl

ex
it

y

parentSelectionProbability 1

Figure A.12: EAF difference plots for
GMOGP-FCA on Air Passengers 1D
(P4, top row) and Salustowicz 1D (P5,
bottom row), ppsel parameter.

188 a modular genetic programming system

Particle Size [µm]

Fr
ac

ti
on

al
 E

ff
ic

ie
nc

y

0.0

0.5

1.0

0 10 20 30

He He

0 10 20 30

He

He He

0.0

0.5

1.0

He

0.0

0.5

1.0

He

0 10 20 30

He He

Y YSVM YRGP

Figure A.13: Cyclone fractional effi-
ciency when varying inlet height (He)
as predicted by RGP (dashed black
line) and SVM (dotted black line)
models, compared with true fractional
efficiency (solid gray line).

additional figures 189

Particle Size [µm]

Fr
ac

ti
on

al
 E

ff
ic

ie
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

He He

0 10 20 30

He

He He

0.0

0.2

0.4

0.6

0.8

1.0
He

0.0

0.2

0.4

0.6

0.8

1.0
He

0 10 20 30

He He

Y YRF YRGP

Figure A.14: Cyclone fractional ef-
ficiency when varying inlet height
(He) as predicted by RGP (dashed
black line) and RF (dotted black line)
models, compared with true fractional
efficiency (solid gray line).

About the Author

Studies of computer science and biology at TU Dortmund Univer-
sity and Ruhr-Universität Bochum, Degree: Diplom-Informatiker
(10/2000 – 09/2007). Software developer at Dortmund Intelligence
Project GmbH, design and implementation of GP systems for fi-
nancial applications (01/2007 – 05/2009). Research associate at
Cologne University of Applied Sciences, research in GP algorithms
and systems for financial and technical applications (since 06/2009).
Co-founder of sourcewerk UG (haftungsbeschränkt), consultant
for simulation software and high-performance computing (since
01/2011).

Publications

O. Flasch, A. Kaspari, K. Morik, and M. Wurst. Aspect-based tag-
ging for collaborative media organization. In B. Berendt et al., ed-
itors, Workshop on Web Mining, WebMine 2006. Revised Selected and
Invited Papers, volume 4737 of Lecture Notes in Computer Science,
pages 122–141, Berlin, 2007. Springer. ISBN 978-3-540-74950-9.

J. Ziegenhirt, T. Bartz-Beielstein, O. Flasch, W. Konen, and M. Za-
efferer. Optimization of biogas production with computational
intelligence a comparative study. In Proceedings of the 2010 IEEE
Congress on Evolutionary Computation (CEC 2010), pages 1–8, Pis-
cataway, NJ, 2010. IEEE Press.

O. Flasch, T. Bartz-Beielstein, A. Davtyan, P. Koch, W. Konen, T. D.
Oyetoyan, and M. Tamutan. Comparing SPO-tuned GP and
NARX prediction models for stormwater tank fill level predic-
tion. In Proceedings of the 2010 IEEE Congress on Evolutionary
Computation (CEC 2010), pages 1–8, Piscataway, NJ, 2010a. IEEE
Press.

O. Flasch, O. Mersmann, and T. Bartz-Beielstein. RGP: An open
source genetic programming system for the R environment. In
M. Pelikan and J. Branke, editors, Proceedings of the 12th annual
conference on Genetic and evolutionary computation (GECCO 2010),
pages 2071–2072, New York, 2010b. ACM Press. ISBN 978-1-4503-
0073-5.

T. Bartz-Beielstein, M. Friese, M. Zaefferer, B. Naujoks, O. Flasch,
W. Konen, and P. Koch. Noisy optimization with sequential

192 a modular genetic programming system

parameter optimization and optimal computational budget al-
location. In N. Krasnogor and P. L. Lanzi, editors, Proceedings
of the 13th annual conference companion on Genetic and evolutionary
computation (GECCO 2011), pages 119–120, New York, 2011. ACM
Press. ISBN 978-1-4503-0557-0.

W. Konen, P. Koch, O. Flasch, T. Bartz-Beielstein, M. Friese, and
B. Naujoks. Tuned data mining: A benchmark study on different
tuners. In N. Krasnogor and P. L. Lanzi, editors, Proceedings of
the 13th annual conference companion on Genetic and evolutionary
computation (GECCO 2011), pages 1995–2002, New York, 2011.
ACM Press. ISBN 978-1-4503-0557-0.

T. Bartz-Beielstein, O. Flasch, and M. Zaefferer. Sequential param-
eter optimization for symbolic regression. In T. Soule and J. H.
Moore, editors, Proceedings of the 14th annual conference compan-
ion on Genetic and evolutionary computation (GECCO 2012), pages
495–496, New York, 2012. ACM Press. ISBN 978-1-4503-1178-6.

O. Flasch and T. Bartz-Beielstein. A framework for the empirical
analysis of genetic programming system performance. In R. Riolo
et al., editors, Genetic Programming Theory and Practice X, Genetic
and Evolutionary Computation Series, chapter 11, pages 155–169.
Springer, New York, 2012.

M. Zaefferer, T. Bartz-Beielstein, M. Friese, B. Naujoks, and
O. Flasch. Multi-criteria optimization for hard problems under
limited budgets. In T. Soule and J. H. Moore, editors, Proceedings
of the 14th annual conference companion on Genetic and evolutionary
computation (GECCO 2012), pages 1451–1452, New York, 2012.
ACM Press. ISBN 978-1-4503-1178-6.

P. Koch, B. Bischl, O. Flasch, T. Bartz-Beielstein, C. Weihs, and
W. Konen. Tuning and evolution of support vector kernels.
Evolutionary Intelligence, 5(3):153–170, 2012. doi: 10.1007/s12065-
012-0073-8.

O. Flasch, M. Friese, K. Vladislavleva, T. Bartz-Beielstein, O. Mers-
mann, B. Naujoks, J. Stork, and M. Zaefferer. Comparing
ensemble-based forecasting methods for smart-metering data.
In A. I. Esparcia-Alcázar, editor, Applications of Evolutionary Com-
putation - 16th European Conference (EvoApplications 2013), volume
7835 of Lecture Notes in Computer Science, pages 172–181, Berlin,
2013. Springer. ISBN 978-3-642-37191-2. doi: 10.1007/978-3-642-
37192-9.

M. Zaefferer, B. Breiderhoff, B. Naujoks, M. Friese, J. Stork, A. Fis-
chbach, O. Flasch, and T. Bartz-Beielstein. Tuning multi-objective
optimization algorithms for cyclone dust separators. In D. V.
Arnold, editor, Proceedings of the 2014 conference on Genetic and evo-
lutionary computation (GECCO 2014), pages 1223–1230, New York,
2014. ACM Press. ISBN 978-1-4503-2662-9.

PUBLICATIONS 193

O. Flasch, M. Friese, M. Zaefferer, T. Bartz-Beielstein, and J. Branke.
Learning model-ensemble policies with genetic programming.
Cologne Open Science, Schriftenreihe CI-plus TR 03/2015, Bib-
liothek der Fachhochschule Köln, Betzdorfer Str. 2, 50679 Köln,
Germany, 2015.

Index of Abbreviations

AFPO age-fitness Pareto optimization

ANOVA analysis of variance

CD crowding distance

CE collection efficiency

CFD computational fluid dynamics

CI computational intelligence

CRAN comprehensive R archive network

CSV comma-separated values

DSL domain-specific language

EA evolutionary algorithm

EAF empirical attainment function

EC evolutionary computing

EDA exploratory data analysis

EMOA evolutionary multi-objective optimization algo-
rithm

ES evolution strategy

FEM finite element method

GA genetic algorithm

GLM generalized linear model

GMOGP generational multi-objective genetic programming

GMOGP-F GMOGP with fitness criterion

GMOGP-FA GMOGP with fitness and age criteria

GMOGP-FC GMOGP with fitness and complexity criteria

GMOGP-FCA GMOGP with fitness, age, and complexity criteria

GP genetic programming

GSOGP generational single-objective genetic programming

196 a modular genetic programming system

KM Kriging model

LM linear model

MAE mean-absolute error

MARS multivariate adaptive regression splines

MSE mean-square error

NDS non-dominated sorting

OPGP ordinal Pareto genetic programming

PCA principal component analysis

PCR principal component regression

PL pressure loss

REPL read-eval-print loop

RF random forest

RLD run-length distribution

RMSE root-mean-square error

SD standard deviation

SMSE scaled-mean-square error

SPO sequential parameter optimization

SPOT sequential parameter optimization toolbox

SSE sum-square error

SVM support vector machine

XML extensible markup language

Bibliography

Adler, J. (2010). R in a nutshell. O’Reilly, Sebastopol, CA.

Barendregt, H., Abramsky, S., Gabbay, D. M., Maibaum, T. S. E., and
Barendregt, H. P. (1992). Lambda calculi with types. In Handbook
of Logic in Computer Science, pages 117–309, New York. Oxford
University Press.

Barnes, N. et al. (2013). Science code manifesto.
http://sciencecodemanifesto.org/ (retrieved 20.02.2015).

Barth, W. (1956). Berechnung und Auslegung von Zyklonabschei-
dern auf Grund neuerer Untersuchungen. Brennstoff-Wärme-Kraft,
8(1):1–9.

Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary
Computation—The New Experimentalism. Natural Computing
Series. Springer, Berlin.

Bartz-Beielstein, T. (2009). Sequential parameter optimization. In
Branke, J. et al., editors, Sampling-based Optimization in the Presence
of Uncertainty, number 09181 in Dagstuhl Seminar Proceedings.
Leibniz-Zentrum für Informatik, Germany.

Bartz-Beielstein, T., Branke, J., Mehnen, J., and Mersmann, O.
(2014). Evolutionary algorithms. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 4(3):178–195.

Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2005). Sequential
parameter optimization. In Proceedings of the 2005 IEEE Congress
on Evolutionary Computation (CEC 2005), pages 773–780, Piscat-
away, NJ. IEEE Press.

Bartz-Beielstein, T. and Zaefferer, M. (2012). A gentle introduc-
tion to sequential parameter optimization. Cologne Open Sci-
ence, Schriftenreihe CI-plus TR 01/2012, Bibliothek der Fach-
hochschule Köln, Betzdorfer Str. 2, 50679 Köln, Germany.

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA:
Multiobjective selection based on dominated hypervolume. Euro-
pean Journal of Operational Research, 181(3):1653–1669.

Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2009). F-
race and iterated F-race: An overview. In Bartz-Beielstein, T.

198 a modular genetic programming system

et al., editors, Empirical Methods for the Analysis of Optimization
Algorithms. Springer, Berlin.

Bohm, W. and Geyer-Schulz, A. (1996). Exact uniform initialization
for genetic programming. In Belew, R. K. and Vose, M., editors,
Foundations of Genetic Algorithms IV, pages 379–407, San Francisco,
CA. Morgan Kaufmann.

Boric, N. and Estevez, P. A. (2007). Genetic programming-based
clustering using an information theoretic fitness measure. In
Srinivasan, D. and Wang, L., editors, Proceedings of the 2007 IEEE
Congress on Evolutionary Computation (CEC 2007), pages 31–38,
Piscataway, NJ. IEEE Press.

Box, G., Jenkins, G., and Reinsel, G. (2008). Time-Series Analysis:
Forecasting and Control. Wiley Series in Probability and Statistics.
Wiley, Hoboken, NJ.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Cohen, J. (1960). A coefficient of agreement for nominal scales.
Educational and Psychological Measurement, 20(1):37.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20(3):273–297.

Cortez, P. (2014). Modern optimization with R. Use R! Series. Springer
International Publishing, Cham, Switzerland.

Cramer, N. L. (1985). A representation for the adaptive generation
of simple sequential programs. In Grefenstette, J. J., editor, Pro-
ceedings of an International Conference on Genetic Algorithms and the
Applications, pages 183–187, New York. Psychology Press.

De Jong, K. A. (2006). Evolutionary computation - A unified approach.
MIT Press, Cambridge, MA.

De Jong, K. A. (2007). Parameter setting in EAs: a 30 year perspec-
tive. In Lobo, F. G. et al., editors, Parameter Setting in Evolutionary
Algorithms, volume 54 of Studies in Computational Intelligence,
pages 1–18. Springer, Berlin.

De Lima, E. B., Pappa, G. L., de Almeida, J. M., Goncalves, M. A.,
and Meira, W. (2010). Tuning genetic programming parameters
with factorial designs. In Proceedings of the 2010 IEEE Congress on
Evolutionary Computation (CEC 2010), Piscataway, NJ. IEEE Press.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA–II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197.

Droste, S., Jansen, T., and Wegener, I. (2000). Optimization with
randomized search heuristics: The (A)NFL theorem, realistic
scenarios, and difficult functions. Interner Bericht des Son-
derforschungsbereichs 531 Computational Intelligence CI–91/00,
Universität Dortmund, Germany.

BIBLIOGRAPHY 199

Droste, S. and Wiesmann, D. (2000). Metric-based evolutionary
algorithms. In Proceedings of the European Conference on Genetic
Programming (EuroGP 2000), volume 1802 of Lecture Notes in Com-
puter Science, pages 29–43, Berlin. Springer.

Drucker, H., Kaufman, B. L., Smola, A., and Vapnik, V. (1997). Sup-
port vector regression machines. In Advances in Neural Information
Processing Systems, volume 9, pages 155–161.

Ebert, T., Belz, J., and Nelles, O. (2014). Detektion von Extrapola-
tion. Proceedings of the 24. Workshop on Computational Intelligence,
Dortmund, Germany, 50:17–32.

Eiben, A., Hinterding, R., and Michalewicz, Z. (1999). Parameter
control in evolutionary algorithms. IEEE Transactions on Evolution-
ary Computation, 3(2):124–141.

Espejo, P. G., Ventura, S., and Herrera, F. (2010). A survey on the
application of genetic programming to classification. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 40(2):121–144.

Feldt, R. and Nordin, P. (2000). Using factorial experiments to eval-
uate the effect of genetic programming parameters. In Poli, R.
et al., editors, Proceedings of the European Conference on Genetic Pro-
gramming (EuroGP 2000), volume 1802 of Lecture Notes in Computer
Science, pages 271–282, Berlin. Springer.

Flajolet, P. and Sedgewick, R. (2009). Analytic Combinatorics. Cam-
bridge University Press, New York, 1st edition.

Flasch, O. and Bartz-Beielstein, T. (2012). A framework for the
empirical analysis of genetic programming system performance.
In Riolo, R. et al., editors, Genetic Programming Theory and Practice
X, Genetic and Evolutionary Computation Series. Springer, New
York.

Forrester, A., Sobester, A., and Keane, A. (2008). Engineering Design
via Surrogate Modelling. Wiley, Chichester, U.K., 1st edition.

Forsyth, R. S. (1986). Evolutionary learning strategies. In Forsyth,
R. S. and Rada, R., editors, Machine Learning Applications in Expert
Systems and Information Retrieval, pages 78–95, Chichester, U.K.
Ellis Horwood.

Friedman, J. (1991). Multivariate adaptive regression splines. The
Annals of Statistics, 19(1):1–67.

Friese, M., Stork, J., Guerra, R. R., Bartz-Beielstein, T., Thaker,
S., Flasch, O., and Zaefferer, M. (2013). UniFIeD: Univariate
frequency-based imputation for time series data. Cologne Open
Science, Schriftenreihe CI-plus TR 05/2013, Bibliothek der Fach-
hochschule Köln, Betzdorfer Str. 2, 50679 Köln, Germany.

200 a modular genetic programming system

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison Wesley, Reading, MA.

Grönmping, U. (2014). R package FrF2 for creating and analyzing
fractional factorial 2-level designs. Journal of Statistical Software,
56(1):1–56.

Hansen, N., Finck, S., and Ros, R. (2011). Coco - Comparing contin-
uous optimizers: The documentation. Technical Report RT-0409,
INRIA, France.

Hastie, T. (2009). The elements of statistical learning: data mining,
inference, and prediction. Springer, New York, 2nd edition.

Hornby, G. S. (2006). ALPS: the age-layered population structure for
reducing the problem of premature convergence. In Keijzer, M.
et al., editors, Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation (GECCO 2006), volume 1, pages
815–822, Seattle, WA. ACM Press.

Hughes, J. (1989). Why functional programming matters. The
Computer Journal, 32(2):98–107.

Hyndman, R. J. (2006). Another look at forecast accuracy metrics
for intermittent demand. Foresight: The International Journal of
Applied Forecasting, 2006(4):43–46.

Iba, H. (1996). Random tree generation for genetic programming.
In Voigt, H. et al., editors, Parallel Problem Solving from Nature IV,
volume 1141 of Lecture Notes in Computer Science, pages 144–153,
Berlin. Springer.

Jolliffe, I. (1982). A note on the use of principal components in
regression. Applied Statistics, 31(3):300–303.

Jones, T. and Forrest, S. (1995). Fitness distance correlation as a
measure of problem difficulty for genetic algorithms. In Pro-
ceedings of the Sixth International Conference on Genetic Algorithms,
pages 184–192, San Francisco, CA. Morgan Kaufmann.

Keijzer, M. (2004). Scaled symbolic regression. Genetic Programming
and Evolvable Machines, 5(3):59–269.

Keijzer, M. and Babovic, V. (2002). Declarative and preferential
bias in GP-based scientific discovery. Genetic Programming and
Evolvable Machines, 3(1):41–79.

Keijzer, M. and Foster, J. (2007). Crossover bias in genetic program-
ming. In Ebner, M. et al., editors, Genetic Programming, volume
4445 of Lecture Notes in Computer Science, pages 33–44. Springer,
Berlin.

Kieseppä, I. A. (1997). Akaike information criterion, curve-fitting
and the philosophical problem of simplicity. British Journal for the
Philosophy of Science, 48(1):21–48.

BIBLIOGRAPHY 201

Kitzelmann, E. (2010). Inductive programming: A survey of pro-
gram synthesis techniques. In Schmid, U. et al., editors, Ap-
proaches and Applications of Inductive Programming, volume 5812 of
Lecture Notes in Computer Science, pages 50–73. Springer, Berlin.

Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., and Konen, W.
(2011). On the tuning and evolution of support vector kernels.
Cologne Open Science, CIOP Technical Report 04/11, Bibliothek
der Fachhochschule Köln, Betzdorfer Str. 2, 50679 Köln, Germany.

Korns, M. (2011). Accuracy in symbolic regression. In Riolo, R.
et al., editors, Genetic Programming Theory and Practice IX, Genetic
and Evolutionary Computation Series, pages 129–151. Springer,
New York.

Korns, M. (2013). Extreme accuracy in symbolic regression. In
Riolo, R. et al., editors, Genetic Programming Theory and Practice
XI, Genetic and Evolutionary Computation Series, pages 1–30.
Springer, New York.

Kotanchek, M., Smits, G., and Vladislavleva, E. (2006). Pursuing the
Pareto paradigm: Tournaments, algorithm variations & ordinal
optimization. In Riolo, R. L. et al., editors, Genetic Programming
Theory and Practice IV, Genetic and Evolutionary Computation
Series, pages 167–186. Springer, New York.

Kotanchek, M. E., Vladislavleva, E., and Smits, G. F. (2010). Sym-
bolic regression via genetic programming as a discovery engine:
Insights on outliers and prototypes. In Riolo, R. et al., editors,
Genetic Programming Theory and Practice VII, Genetic and Evolu-
tionary Computation Series, pages 55–72. Springer, New York.

Koza, J. R. (1992). Genetic programming: On the programming of
computers by means of natural selection. MIT Press, Cambridge,
MA.

Koza, J. R. (1994). Genetic programming II: Automatic discovery of
reusable programs. MIT Press, Cambridge, MA.

Koza, J. R. and Bennett III, F. H. (1999). Automatic synthesis, place-
ment, and routing of electrical circuits by means of genetic pro-
gramming. In Spector, L. et al., editors, Advances in Genetic Pro-
gramming 3, pages 105–134. MIT Press, Cambridge, MA.

Kruskal, W. and Wallis, W. (1952). Use of ranks in one-criterion
variance analysis. Journal of the American Statistical Association,
47(260):583–621.

Lasarczyk, C. W. G. (2007). Genetische Programmierung einer
algorithmischen Chemie. Dissertation, TU Dortmund, Germany.

Liaw, A. and Wiener, M. (2002). Classification and regression by
randomForest. R News, 2(3):18–22. R package version 4.6.10,
http://CRAN.R-project.org/doc/Rnews/ (retrieved 20.02.2015).

202 a modular genetic programming system

López-Ibáñez, M., Paquete, L., and Stützle, T. (2010). Exploratory
analysis of stochastic local search algorithms in biobjective op-
timization. In Bartz-Beielstein, T. et al., editors, Experimental
Methods for the Analysis of Optimization Algorithms, pages 209–222.
Springer, Berlin.

Luke, S. (2013). The ECJ owner’s manual – A user manual
for the ECJ evolutionary computation library. 21th edition,
http://cs.gmu.edu/ eclab/projects/ecj/docs/manual/man-
ual.pdf (retrieved 20.02.2015).

Luke, S. and Panait, L. (2002). Lexicographic parsimony pressure.
In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2002), pages 829–836, San Francisco, CA. Morgan
Kaufmann.

Luke, S. and Spector, L. (1997). A comparison of crossover and
mutation in genetic programming. In Koza, J. R. et al., editors,
Genetic Programming 1997: Proceedings of the Second Annual Confer-
ence, pages 240–248, San Francisco, CA. Morgan Kaufmann.

Mayo, D. G. (1996). Error and the Growth of Experimental Knowledge.
The University of Chicago Press, Chicago, IL.

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C.,
and Rudolph, G. (2011). Exploratory landscape analysis. In
Proceedings of the 13th annual conference companion on Genetic and
evolutionary computation (GECCO 2011), pages 829–836, New York.
ACM Press.

Mevik, B., Wehrens, R., and Liland, K. H. (2013). pls: Partial Least
Squares and Principal Component regression. R package ver-
sion 2.4-3, http://CRAN.R-project.org/package=pls (retrieved
20.02.2015).

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch,
F. (2014). e1071: Misc Functions of the Department of Statistics
(e1071), TU Wien. R package version 1.6-4, http://CRAN.R-
project.org/package=e1071 (retrieved 20.02.2015).

Milborrow, S. (2014). earth: Multivariate Adaptive Regression
Spline Models. R package version 3.2-7, http://CRAN.R-
project.org/package=earth (retrieved 20.02.2015).

Moraglio, A., Krawiec, K., and Johnson, C. G. (2012). Geometric
semantic genetic programming. In Parallel Problem Solving from
Nature-PPSN XII, pages 21–31. Springer, Berlin.

Morandat, F., Hill, B., Osvald, L., and Vitek, J. (2012). Evaluating
the design of the R language - Objects and functions for data
analysis. In Noble, J., editor, ECOOP, volume 7313 of Lecture
Notes in Computer Science, pages 104–131, Berlin. Springer.

BIBLIOGRAPHY 203

Nordin, P. and Banzhaf, W. (1997). Genetic reasoning: Evolving
proofs with genetic search. In Koza, J. R. et al., editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference,
pages 255–260, San Francisco, CA. Morgan Kaufmann.

Oakland, J. (2003). Statistical Process Control. Quality management
Series. Butterworth-Heinemann, Newton, MA.

Parkes, A. J. and Walser, J. P. (1996). Tuning local search for satis-
fiability testing. In Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI 1996), pages 356–362, Menlo Park, CA.
AIII Press.

Pierce, B. C. (2002). Types and Programming Languages. MIT Press,
Cambridge, MA.

Piszcz, A. and Soule, T. (2006a). Genetic programming: Analysis of
optimal mutation rates in a problem with varying difficulty. In
Sutcliffe, G. C. J. and Goebel, R. G., editors, Proceedings of the 19th
International Florida AI Research Society Conference (FLAIRS 2006),
pages 451–456, Menlo Park, CA. AIII Press.

Piszcz, A. and Soule, T. (2006b). A survey of mutation techniques
in genetic programming. In Keijzer, M. et al., editors, Proceedings
of the 8th annual conference on Genetic and evolutionary computa-
tion (GECCO 2006), volume 1, pages 951–952, Seattle, WA. ACM
Press.

Pohlheim, H. (2006). Multidimensional scaling for evolutionary
algorithms - Visualization of the path through search space and
solution space using sammon mapping. Artificial Life, 12(2):203–
209.

Poli, R. (2001). Exact schema theory for genetic programming
and variable-length genetic algorithms with one-point crossover.
Genetic Programming and Evolvable Machines, 2(2):123–163.

Poli, R. and Langdon, W. B. (1998). On the ability to search the
space of programs of standard, one-point and uniform crossover
in genetic programming. Technical Report CSRP-98-7, School of
Computer Science, University of Birmingham, U.K.

Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A Field Guide
to Genetic Programming. http://lulu.com (retrieved 20.02.2015).
(With contributions by J. R. Koza).

Raidl, G. R. and Gottlieb, J. (2005). Empirical analysis of locality,
heritability and heuristic bias in evolutionary algorithms: A case
study for the multidimensional knapsack problem. Evolutionary
Computation, 13(4):441–475.

Rijsbergen, C. J. V. (1979). Information Retrieval. Butterworth-
Heinemann, Newton, MA, 2nd edition.

204 a modular genetic programming system

Roustant, O., Ginsbourger, D., and Deville, Y. (2012). DiceKrig-
ing, DiceOptim: Two R packages for the analysis of computer
experiments by kriging-based metamodeling and optimization.
Journal of Statistical Software, 51(1):1–55. R package version 1.5.3,
http://www.jstatsoft.org/v51/i01/ (retrieved 20.02.2015).

RStudio Inc. (2014). shiny: Web Application Framework for R. R pack-
age version 0.10.1, http://CRAN.R-project.org/package=shiny
(retrieved 20.02.2015).

Sacks, J., Welch, W., Mitchell, T., and Wynn, H. (1989). Design and
analysis of computer experiments. Statistical Science, 4(4):409–423.

Salustowicz, R. and Schmidhuber, J. (1997). Probabilistic incremen-
tal program evolution. Evolutionary Computation, 5(2):123–141.

Schmidt, M. D. and Lipson, H. (2009). Distilling free-form natural
laws from experimental data. Science, 324(5923):81–85.

Schmidt, M. D. and Lipson, H. (2010). Age-fitness Pareto optimiza-
tion. In Proceedings of the 12th annual conference on Genetic and
evolutionary computation (GECCO 2010), pages 543–544, New York.
ACM Press.

Schöning, U. and Pruim, R. J. (1998). Gems of Theoretical Computer
Science. Springer, Berlin.

Schwaber, K. and Beedle, M. (2001). Agile Software Development with
Scrum. Prentice Hall, Upper Saddle River, NJ, 1st edition.

Shearer, C. (2000). The CRISP-DM model: The new blueprint for
data mining. Journal of Data Warehousing, 5(4):13–22.

Shir, O. M. (2012). Niching in evolutionary algorithms. In Rozen-
berg, G. et al., editors, Handbook of Natural Computing, pages
1035–1069. Springer, Berlin.

Silva, S. (2008). Controlling bloat: Individual and population based
approaches in genetic programming. PhD thesis, Departamento de
Engenharia Informatica, Universidade de Coimbra, Portugal.

Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005).
ROCR: Visualizing classifier performance in R. Bioinformatics,
21(20):3940–3941.

Smits, G. and Kotanchek, M. (2004). Pareto-front exploitation in
symbolic regression. In O’Reilly, U. et al., editors, Genetic Pro-
gramming Theory and Practice II, Genetic and Evolutionary Com-
putation Series, pages 283–299. Springer, New York.

Smits, G. and Vladislavleva, E. (2006). Ordinal Pareto genetic pro-
gramming. In Yen, G. G. et al., editors, Proceedings of the 2006
IEEE Congress on Evolutionary Computation (CEC 2006), pages
3114–3120, Piscataway, NJ. IEEE Press.

BIBLIOGRAPHY 205

Stadler, B. M. R., Stadler, P. F., Wagner, G. P., and Fontana, W.
(2000). The topology of the possible: Formal spaces underly-
ing patterns of evolutionary change. Working papers, Santa Fe
Institute.

Stadler, P. F. and Reidys, C. M. (2002). Neutrality in fitness land-
scapes. Applied Mathematics and Computation, 117(2–3):321–350.

Sun, Y., Wierstra, D., Schaul, T., and Schmidhuber, J. (2009). Effi-
cient natural evolution strategies. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation (GECC0 2009),
pages 539–546, New York. ACM Press.

Therneau, T. M. and Atkinson, E. J. (1997). An introduction to
recursive partitioning using the RPART routines. Technical Re-
port 61, Department of Health Science Research, Mayo Clinic,
Rochester NY.

Tukey, J. W. (1977). Exploratory Data Analysis. Behavioral Science:
Quantitative Methods. Addison-Wesley, Reading, MA.

Vladislavleva, E., Smits, G. F., and Den Hertog, D. (2009). Order
of nonlinearity as a complexity measure for models generated
by symbolic regression via Pareto genetic programming. IEEE
Transactions on Evolutionary Computation, 13(2):333–349.

Wagoner, R. and Chenot, J. (2005). Metal Forming Analysis. Cam-
bridge University Press, New York.

Ward, M. P. (1995). Language oriented programming. Software –
Concepts and Tools, 15(4):147–161.

White, D. R. and Poulding, S. (2009). A rigorous evaluation of
crossover and mutation in genetic programming. In Vanneschi,
L. et al., editors, Proceedings of the 12th European Conference on
Genetic Programming (EuroGP 2009), volume 5481 of Lecture Notes
in Computer Science, pages 220–231, Berlin. Springer.

Wiesmann, D. (2001). Anwendungsorientierter Entwurf evolu-
tionärer Algorithmen. Dissertation, Universität Dortmund, Ger-
many.

Willis, M., Hiden, H., Marenbach, P., McKay, B., and Montague,
G. A. (1997). Genetic programming: An introduction and survey
of applications. In Zalzala, A., editor, Second International Con-
ference on Genetic Algorithms in Engineering Systems: Innovations
and Applications (GALESIA 97), pages 314–319, London, U.K. IEE
Conference Publications (No. 446).

Willmott, C. J. and Matsuura, K. (2005). Advantages of the mean
absolute error (MAE) over the root mean square error (RMSE) in
assessing average model performance. Climate Research, 30(1):79–
82.

206 a modular genetic programming system

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems
for optimization. IEEE Transactions on Evolutionary Computation,
1(1):67–82.

Xie, Y. (2013). Dynamic Documents with R and knitr. Chapman and
Hall, Boca Raton, FL.

Zaefferer, M., Breiderhoff, B., Naujoks, B., Friese, M., Stork, J., Fis-
chbach, A., Flasch, O., and Bartz-Beielstein, T. (2014). Tuning
multi-objective optimization algorithms for cyclone dust separa-
tors. In Proceedings of the 2014 conference on Genetic and evolutionary
computation (GECCO 2014), New York. ACM Press.

Zimek, A., Schubert, E., and Kriegel, H. (2012). A survey on unsu-
pervised outlier detection in high-dimensional numerical data.
Statistical Analysis and Data Mining, 5(5):363–387.

Zongker, D. and Punch, B. (1996). lil-gp 1.01 User’s Manual. East
Lansing, MI. Michigan State University.

	Introduction
	Motivation
	Contributions
	Thesis Outline

	Genetic Programming Fundamentals
	A Bird's-Eye View of GP
	Application Areas
	A Short History of GP
	Abstract Evolutionary Algorithms
	Genotypes, Phenotypes and Fitness in GP
	GP Search Operators
	Genotypic and Phenotypic GP Search Spaces
	Defining Valid Regions in GP Search Spaces
	GP Search Heuristics
	Conclusions

	A Modular GP Implementation Based on R
	Other GP Systems
	Model Induction with RGP
	RGP Tutorial Examples
	RGP Architecture
	RGP Features
	Symbolic Regression User Interface
	Conclusions

	Sequential Parameter Optimization
	SPO Process and Optimization Objectives
	Sequential Parameter Optimization Toolbox
	Scalable Random Test Problems
	Conclusions

	Optimizing Genetic Programming Parameters
	Previous Work
	Research Questions
	GP System Parameter Overview
	Pre-Experimental Planning
	GP System Parameter Screening
	GP Function Set Selection
	GP System Parameter Tuning
	Conclusions

	Case Studies
	Artificial Test Problems
	Real-World Case Study Design and Organization
	Meta Models for Cyclone Dust Separators (AppDust)
	Roll Train Control Models (AppSteel)
	Conclusions

	Summary and Outlook
	Summary
	Original Contributions
	Open Questions
	Outlook

	Additional Figures
	About the Author
	Index of Abbreviations
	Bibliography

