
Optimal control of two variational
inequalities arising in solid mechanics

Thomas Betz

Dissertation submitted to the

Department of Mathematics

at

TU Dortmund University

in accordance with the requirements for the degree Dr. rer. nat.

Advisors: Prof. Dr. Christian Meyer, Prof. Dr. Roland Herzog

Dortmund, April 2015



Die Dissertation wurde von der Prüfungskommission der Fakultät für Mathematik
der Technischen Universität Dortmund angenommen.

Prüfungskommission: Prof. Dr. Christoph Buchheim (Vorsitzender)
Prof. Dr. Christian Meyer (Erstgutachter)
Prof. Dr. Roland Herzog (Zweitgutachter)
Prof. Dr. Ben Schweizer (Prüfer)

Tag der Disputation: 20. Juli 2015



Acknowledgments

I wish to express my gratitude to Prof. Dr. Christian Meyer for the opportunity
to write this thesis and for the great support he offered whenever I struggled with
problems.

Furthermore, I would like to thank Dr. Simeon Steinig and Livia-Mihaela Şuşu for
the fruitful discussions on my research.

My special thanks are due to my parents who financed my studies in mathematics.

i





Contents

1. Introduction 1

2. Optimal control of static elastoplasticity 5
2.1. Higher regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Bouligand differentiability . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1. Directional differentiability . . . . . . . . . . . . . . . . . . . 27
2.3. Second-order sufficient optimality conditions . . . . . . . . . . . . . . 31
2.4. An exact solution with non-vanishing biactive set . . . . . . . . . . . 52

3. Optimal control of Signorini’s problem 61
3.1. Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2. Directional differentiability . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1. Extension of Riesz’ representation theorem . . . . . . . . . . 66
3.2.2. The density property . . . . . . . . . . . . . . . . . . . . . . . 78

3.3. First-order necessary optimality conditions . . . . . . . . . . . . . . . 87

4. Conclusion and outlook 94

A. Auxiliary results 96
A.1. Capacity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2. The trace operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3. Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 103

iii





1. Introduction

We are concerned with the optimal control of elastoplastic contact problems. Our
investigation is restricted to the static model of infinitesimal elastoplasticity with
linear kinematic hardening and Signorini’s problem, which are both represented by
an elliptic variational inequality (VI) of the first kind. Thus, we have to deal with
a system of two coupled VIs:

(AΣ, T −Σ)− (div∗ u, T −Σ) ≥ 0 ∀ T ∈ K
− (div Σ, v − u) ≥ 〈`, v − u〉 ∀ v ∈ C.

The solution operator of a VI is usually not Gâteaux differentiable, cf. [62] in case
of the obstacle problem. The lack of differentiability substantially complicates the
optimal control theory for only one VI - even in the finite-dimensional case, where
control problems of this type are known as mathematical problems with equilibrium
constraints, cf. e.g. [52, 65, 66, 69] and the references therein. Particularly, it is not
possible to establish necessary optimality conditions in the form of Karush-Kuhn-
Tucker conditions using the differentiability of the solution operator, which is the
standard way. Instead several alternative stationarity concepts such as Clarke(C)-,
Bouligand(B)- and strong stationarity have been introduced. There is a multitude
of papers contributing to the field of optimal control of elliptic VIs. A common
technique for the derivation of first-order necessary optimality conditions is to ap-
ply a Yosida-like regularization of the VI combined with a subsequent limit analysis
w.r.t. the regularization parameter tending to zero. This approach was developed
by Barbu [4] and adapted by many authors, see e.g. [15, 16, 30, 38, 45, 46, 50, 57].
In [5, 6, 7] Bergounioux used relaxation methods in order to obtain necessary con-
ditions, which was modified in [47]. Moreover, there are various contributions em-
ploying different regularization and relaxation techniques, see e.g. [8, 9, 59, 67, 70].
Mignot and Puel proved the necessity of an optimality system for the optimal con-
trol of the obstacle problem solely based on the directional differentiability of the
underlying control-to-state mapping, cf. [62, 63], and their findings were extended
in [48]. Other direct approaches have been performed by Bermúdez and Saguez in
[11, 12, 13], cf. also [10], by Jarušek et al. in [51] and by Wachsmuth in [76].
While sufficient conditions for optimal control problems governed by elliptic PDEs
have been extensively investigated, see e.g. [20, 21, 22, 23, 24, 25, 26, 68], the liter-
ature for elliptic VIs is rather rare. In [62] it was proven that the obstacle control
problem is convex if the desired state is behind the obstacle and thus not reach-
able. Kunisch and Wachsmuth presented second-order sufficient conditions for the
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optimal control of a general obstacle problem, cf. [55].
In view of the difficulty mentioned above we will separately address the optimal
control of static elastoplasticity and mechanical contact. The static model of in-
finitesimal elastoplasticity reads as follows: Given an inhomogeneity ` ∈ V ′ find
Σ ∈ S2 and u ∈ V so that Σ ∈ K and

(AΣ, T −Σ) + (div∗ u, T −Σ) ≥ 0 for all T ∈ K
div Σ = ` in V ′

}
(VIE)

is satisfied. Although this problem has only limited physical meaning, it is espe-
cially obtained via time discretization of a quasi-static counterpart modeling the
plastic deformation of a body under the influence of external loads, cf. Figure 1.1.
The VI in (VIE) represents the constitutive law of elastoplasticity and the equation
is just the balance of momentum. Here Σ = (σ,χ) denotes the generalized stress,
where σ is the Cauchy stress tensor resulting from the inhomogeneity ` and χ is
an internal force, which arises during hardening. Moreover the variable u denotes
the displacement induced by Σ.

`ΓD ΓN

Figure 1.1.: Plastic deformation of a workpiece clamped at ΓD,
boundary loads acting on ΓN

Optimal control problems governed by (VIE) have been well investigated. In par-
ticular, existence and regularity results as well as several stationarity conditions
have been proven, cf. [40, 41, 42, 43, 44]. If one aims to establish sufficient opti-
mality conditions one needs a certain differentiability result for the control-to-state
map associated with (VIE). In [44] Herzog et al. showed that this operator is
weakly directionally differentiable, which however is not satisfactory for the deriva-
tion of sufficient conditions. In Chapter 2 we will therefore enhance this result by
proving Bouligand differentiability under additional regularity assumptions. As a
consequence we will be enabled to deduce second-order sufficient conditions, which
guarantee local optimality. The findings of Chapter 2 have already been published
in large part in [14].
Signorini’s problem describes the elastic deformation of a body which is pushed
against a rigid obstacle, cf. Figure 1.2, and can be formulated in the following way:
Given ` ∈ V ′ find σ ∈ S and u ∈ C such that

(σ, ε(v − u)) ≥ 〈`, v − u〉 ∀v ∈ C
σ = Cε(u).

}
(VIS)
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The VI takes the contact conditions into account, while the equation is the law
of linear elasticity. Again the variables σ and u denote the Cauchy stress tensor
and the corresponding displacement, respectively. We will specify all spaces, sets
and operators involved in (VIE) and (VIS) later on. For a detailed introduction
to elasticity, plasticity and Signorini’s problem we refer to the books [35], [37], [53]
and [60].

`

ΓD ΓN

Figure 1.2.: Elastic workpiece clamped at ΓD and pushed against
a rigid foundation, boundary loads acting on ΓN

The optimal control of Signorini contact problems has also been discussed w.r.t. the
existence of solutions and necessary optimality conditions, cf. [12, 19, 29, 62]. The
latter have been proven for either a simplified or a regularized Signorini problem.
Furthermore, the solution operator of a simplified Signorini problem was shown to
be directionally differentiable in [62]. To the best knowledge of the author there are
no results concerning the differentiability of the solution operator associated with
(VIS). By adapting the technique of [62] we will establish directional differentiabil-
ity of this operator and derive first-order necessary conditions of strong stationary
type, see Chapter 3.

Notation

In all what follows Ω ⊂ Rd is a bounded domain with Lipschitz boundary Γ in
dimension d = 2, 3. The boundary consists of three disjoint parts, the Dirichlet
boundary ΓD, the Neumann boundary ΓN and the boundary of possible contact ΓC .
Vectors and tensors are represented by bold-face letters. We denote by S := Rd×dsym
the space of symmetric d × d matrices endowed with the Frobenius norm. For
σ, τ ∈ S the associated scalar product is denoted by σ : τ =

∑
ij σijτij . We

write L(X,Y ) for the space of linear and continuous operators from a normed
space X into a normed space Y . If X = Y , then we abbreviate with L(X). The
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dual space of X and the adjoint operator of T ∈ L(X,Y ) are denoted by X ′

and T ∗, respectively. For a subset M ⊂ X and x ∈ M , Kx(M) denotes the
conical hull of M − {x}, i.e., Kx(M) = {α(w − x) : α ≥ 0, w ∈ M}. Furthermore,
M+ = {T ∈ X ′ : Tx ≥ 0 ∀x ∈ M} is the dual cone of M . We write M0 for
the negative of M+, which is also called polar cone of M , and [M ]0H denotes the
polar cone of M w.r.t. H ∈ L(X,X ′), i.e., [M ]0H = {x ∈ X : (Hx)y ≤ 0 ∀ y ∈ M}.
Throughout, c > 0 represents a generic constant. Moreover, we unambiguously
write |·| for the euclidean norm as well as for the Lebesgue measure. By M(K)
andM+(K) we denote the set of regular (signed) Borel measures on a compact set
K ⊂ Rd and its subset containing all positive measures, respectively. The positive
and negative parts of a real-valued function f are abbreviated by f+ = max(f, 0)
and f− = −min(f, 0) such that f = f+ − f−. For frequently used function spaces
we introduce the following abbreviations

W 1,p
D

(
Ω;Rd

)
:=
{
u ∈W 1,p

(
Ω;Rd

)
: τu = 0 on ΓD

}
V := W 1,2

D

(
Ω;Rd

)
τν [V ] :=

{
z ∈ H1/2(Γ) : ∃v ∈ V with τνv = z

}
W−1,p
D

(
Ω;Rd

)
:=
(
W 1,p′

D

(
Ω;Rd

))′
U := L2

(
Ω;Rd

)
× L2

(
ΓN ;Rd

)
S := L2(Ω; S),

where τ is the trace operator, τν is the normal trace operator, cf. Section A.2, and p′

is the integrability exponent conjugated to p, i.e., 1/p+ 1/p′ = 1. The dual pairing
between W−1,p

D

(
Ω;Rd

)
and W 1,p

D

(
Ω;Rd

)
as well as between (τν [V ])′ and τν [V ] and

between
(
H1(Ω)

)′ and H1(Ω) is always denoted by 〈·, ·〉. The scalar product in
L2-type spaces such as L2(Ω), U , S, and S2 is always denoted by (·, ·).
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2. Optimal control of static
elastoplasticity

Let J : V × U → R be a given objective functional. We consider the following
optimal control problem:

Minimize J(u,f)

s.t. the elastoplasticity problem (VIE) with ` ∈ V ′ defined by

〈`, v〉 =

∫
Ω
f1 · v dx+

∫
ΓN

f2 · v ds ∀v ∈ V.

 (PE)

The functions f1 ∈ L2
(
Ω;Rd

)
and f2 ∈ L2

(
ΓN ;Rd

)
can be interpreted as volume

and boundary forces, respectively, acting on the domain Ω. For Σ = (σ,χ), T =
(τ ,µ) ∈ S2 and v ∈ V the linear operators A : S2 → S2 and div : S2 → V ′

appearing in (VIE) are defined by

(AΣ, T ) =

∫
Ω
τ : C−1σ dx+

∫
Ω
µ : H−1χ dx

〈div Σ, v〉 = −
∫

Ω
σ : ε(v) dx.

Herein, C−1(x) and H−1(x) are linear maps from S to S, which may depend on the
spatial variable x, and

ε(v) =
1

2

(
∇v + (∇v)>

)
(2.1)

is the linearized strain tensor. The closed and convex set K ⊂ S2 of admissible
stresses is determined by the von Mises yield condition, i.e.,

K =
{
Σ ∈ S2 : φ(Σ) ≤ 0 a.e. in Ω

}
(2.2)

with yield function φ. In case of linear kinematic hardening the yield function is
given by

φ(Σ) =

∥∥σD + χD
∥∥2

S − σ
2
0

2
, (2.3)

where σ0 > 0 is the yield stress and

σD = σ − 1

d
(traceσ)I
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with identity tensor I ∈ S denotes the deviatoric part of σ. In all what follows we
abbreviate σD + χD by

DΣ = σD + χD.

Moreover it will be helpful for the subsequent analysis to note that the linear con-
tinuous operator D : S2 → S satisfies

D∗DΣ =

(
DΣ
DΣ

)
.

The following assumption is supposed to hold throughout this chapter:

Assumption 2.1.

(1) The domain Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with Lipschitz boundary
Γ. The boundary consists of two disjoint measurable parts ΓN and ΓD such
that Γ = ΓN ∪ ΓD. While ΓN is a relatively open subset, ΓD is a relatively
closed subset of Γ with positive measure.
In addition, the set Ω∪ΓN is regular in the sense of Gröger, cf. [34, Definition
2]. That is, for every point x ∈ Γ, there exists an open neighborhood Ux ⊂ Rd
of x and a bi-Lipschitz map (a Lipschitz continuous and bijective map with
Lipschitz continuous inverse) Ψx : Ux → Rd such that Ψx(x) = 0 ∈ Rd and
Ψx

(
Ux ∩ (Ω ∪ ΓN )

)
equals one of the following sets:

E1 := {y ∈ Rd : |y| < 1, yn < 0}
E2 := {y ∈ Rd : |y| < 1, yn ≤ 0}
E3 := {y ∈ E2 : yd < 0 or y1 > 0}.

(2) The fourth-order tensors C−1 and H−1 are elements of L∞(Ω;L(S)). More-
over, both C−1(x) and H−1(x) are uniformly coercive on S and symmetric, i.e.,
σ :C−1(x)σ ≥ c ‖σ‖2S with c > 0 independent of x, τ :C−1(x)σ = σ :C−1(x)τ
for all σ, τ ∈ S and analogous relations hold for H−1.

Remark 2.2. There is a broad class of non-smooth domains which satisfy Assump-
tion 2.1(1). A characterization of such domains can be found in [36, Section 5].
Assumption 2.1(2) is for instance fulfilled by isotropic and homogeneous materials,
where C−1 and H−1 are given by

C−1σ =
1

2µL
σ − λL

2µL (2µL + d λL)
(traceσ)I, H−1χ =

1

k1
χ (2.4)

with Lamé constants µL, λL and hardening constant k1 > 0. If µL > 0 and d λL +
2µL > 0, then C−1 is coercive:

σ : C−1σ =
‖σ‖2S
2µL

− d λL
2µL(2µL + d λL)︸ ︷︷ ︸

<1/(2µL)

(traceσ)2

d︸ ︷︷ ︸
= 1
d(

∑d
i=1 σii)

2≤
∑d
i=1 σ

2
ii

≥ c ‖σ‖2S .

6



2.1. Higher regularity

In this section we address the integrability of the solution to problem (VIE). First,
we recall two known results concerning the existence and the uniqueness of a solu-
tion.

Proposition 2.3. [40, Propositions 3.1, 3.2 and Lemma 3.3] For every ` ∈ V ′,
problem (VIE) possesses a unique solution (Σ,u) ∈ S2 × V .

In consequence of Proposition 2.3 we can introduce the control-to-state map asso-
ciated with (VIE):

Definition 2.4. The control-to-state map V ′ 3 ` 7→ (Σ,u) ∈ S2 × V is denoted by
GE. We sometimes consider GE with different domains and ranges. For the sake
of convenience these operators are also denoted by GE.

By means of a unique slack variable, termed plastic multiplier, the variational in-
equality in (VIE) can equivalently be expressed as a complementarity system:

Theorem 2.5. [43, Theorem 2.2] Let ` ∈ V ′ be given. The pair (Σ,u) ∈ S2 × V
is the unique solution of (VIE) if and only if there exists a multiplier λ ∈ L2(Ω)
such that

AΣ + div∗ u+ λD∗DΣ = 0 in S2 (2.5a)
div Σ = ` in V ′ (2.5b)

0 ≤ λ(x) ⊥ φ
(
Σ(x)

)
≤ 0 a.e. in Ω (2.5c)

holds. Moreover, λ is unique.

The integrability of the solution to (VIE) improves, if the inhomogeneity ` is slightly
more regular. The essential tool to prove this is the next theorem which relies on
Assumption 2.1(1).

Theorem 2.6. [41, Theorem 1.1] Let the nonlinear function b : Ω× S→ S satisfy

b(·,0) ∈ L∞(Ω;S) (2.6a)
b(·,σ) is measurable (2.6b)

(b(x,σ)− b(x, τ )) : (σ − τ ) ≥ m ‖σ − τ‖2S (2.6c)
‖b(x,σ)− b(x, τ )‖S ≤ m ‖σ − τ‖S (2.6d)

f.a.a. x ∈ Ω and all σ, τ ∈ S with constants 0 < m ≤ m. Furthermore let
Bp : W 1,p

D

(
Ω;Rd

)
→W−1,p

D

(
Ω;Rd

)
be defined through

〈Bp(u), v〉 =

∫
Ω
b(·, ε(u)) : ε(v) dx ∀u ∈W 1,p

D

(
Ω;Rd

)
, v ∈W 1,p′

D

(
Ω;Rd

)
.
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Then there exists p̂ > 2 such that the operator Bp is continuously invertible for
all p ∈ [2, p̂]. Moreover, the inverse is globally Lipschitz with a Lipschitz constant
independent of p ∈ [2, p̄].

In addition to Theorem 2.6 we need the following auxiliary result.

Lemma 2.7 ([40, Lemma 4.1]). Let H be a Hilbert space and C ⊂ H be a nonempty
closed convex set. Moreover let PC(x) denote the orthogonal projection of x onto
C. Then the operator F : H → H defined by F (x) = x − PC(x) is monotone, i.e.,
it holds

(F (x)− F (y), x− y) ≥ 0 ∀x, y ∈ H.

The elastoplasticity problem (VIE) is equivalent to a single nonlinear PDE in the
displacement field u only whose underlying nonlinear function meets the conditions
(2.6a)–(2.6d). This is why we can establish higher integrability for the solution of
(VIE).

Theorem 2.8. There exists p̂ > 2 such that for all p ∈ [2, p̂] and for any ` ∈
W−1,p
D

(
Ω;Rd

)
, the solution (Σ,u) of (VIE) belongs to Lp

(
Ω;S2

)
×W 1,p

D

(
Ω;Rd

)
.

Moreover there exists a constant L > 0 such that

‖Σ1 −Σ2‖Lp(Ω;S2) + ‖u1 − u2‖W 1,p
D (Ω;Rd)

≤ L ‖`1 − `2‖W−1,p
D (Ω;Rd)

,

i.e., the control-to-state map GE is Lipschitz continuous from W−1,p
D

(
Ω;Rd

)
into

Lp
(
Ω; S2

)
×W 1,p

D

(
Ω;Rd

)
.

Proof. The arguments are similar to [74, Theorem 4.4.4 and Proposition 4.4.5].
We reformulate (VIE) and (2.5), respectively, as a nonlinear PDE in u and apply
Theorem 2.6.
Let (Σ,u) be given by the solution of (2.5). Testing (2.5a) with (τ ,0), τ ∈ S, we
find

C−1σ − ε(u) + λDΣ = 0 a.e. in Ω,

where the property
(
σD +χD

)
: τD =

(
σD +χD

)
: τ was used. If we furthermore

test with (0,µ), µ ∈ S, we arrive at

H−1χ+ λDΣ = 0 a.e. in Ω. (2.7)

Combining both equations yields

C−1σ − ε(u)−H−1χ = 0 a.e. in Ω. (2.8)

Next we derive a pointwise version of (VIE). To this end let x0 ∈ Ω be an arbitrary
Lebesgue point of C−1, σ, H−1, χ, ε(u) and their products arising in the sequel.
Moreover let (τ ,µ) ∈ K be given, where the closed and convex set K is defined by

K = {T ∈ S2 : φ(T ) ≤ 0}.
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For ρ > 0 such that Bρ(x0) ⊂ Ω we then define (τ̃ , µ̃) ∈ K through

(τ̃ , µ̃) =

{
(τ ,µ), x ∈ Bρ(x0)

(σ,χ), x ∈ Ω \Bρ(x0).

Testing (VIE) with (τ̃ , µ̃) results in

0 ≤ 1

|Bρ(x0)|

∫
Ω
C−1σ : (τ̃ − σ) + H−1χ : (µ̃− χ)− ε(u) : (τ̃ − σ) dx

=
1

|Bρ(x0)|

∫
B(x0,ρ)

C−1σ : (τ − σ) + H−1χ : (µ− χ)− ε(u) : (τ − σ) dx.

We take the limit ρ↘ 0 and obtain

C−1(x0)σ(x0) : (τ − σ(x0)) + H−1(x0)χ(x0) : (µ− χ(x0))

−ε(u(x0)) : (τ − σ(x0)) ≥ 0.

Since almost every point in Ω is a common Lebesgue point of C−1, σ, H−1, χ, ε(u),
and their respective products, we conclude

C−1(x)σ(x) : (τ − σ(x)) + H−1(x)χ(x) : (µ− χ(x))

−ε(u(x)) : (τ − σ(x)) ≥ 0 ∀ (τ ,µ) ∈ K.
(2.9)

f.a.a. x ∈ Ω. Plugging (σ(x),µ) in (2.9) leads to

H−1(x)χ(x) : (µ− χ(x)) ≥ 0 for all µ ∈ S such that µ ∈ K̄ − σ(x) (2.10)

with convex and closed set K̄ defined by

K̄ = {τ ∈ S : (τ ,0) ∈ K}.

Note that µ ∈ K̄ −σ(x) is equivalent to (σ(x),µ) ∈ K. The variational inequality
(2.10) is the necessary and sufficient optimality condition for the convex optimiza-
tion problem

min
µ∈K̄−σ(x)

1

2
‖µ‖2H−1(x) .

Herein ‖·‖H−1(x) is the norm induced by the coercive operator H−1(x), i.e.,

‖µ‖H−1(x) = (H−1(x)µ : µ)
1
2 .

Therefore, f.a.a. x ∈ Ω the solution χ(x) of (2.10) is given by

χ(x) = Proj
H−1(x)

K̄−σ(x)
(0) = Proj

H−1(x)

K̄
(σ(x))− σ(x), (2.11)

where, for a given closed and convex set E ⊂ S, Proj
H−1(x)
E denotes the orthogonal

projection on E w.r.t. the norm induced by H−1(x). Inserting (2.11) in (2.8) yields

C−1(x)σ(x) + H−1(x)(σ(x)− Proj
H−1(x)

K̄
(σ(x))) = ε(u)(x) a.e. in Ω. (2.12)
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The left-hand side can be expressed by means of the the nonlinear functionMx : S→
S defined by

τ 7→ C−1(x)τ + H−1(x)(τ − Proj
H−1(x)

K̄
(τ )).

In what follows we show that Mx is invertible f.a.a. x ∈ Ω. On account of the
monotonicity of H−1(x)(τ − Proj

H−1(x)

K̄
(τ )), cf. Lemma 2.7, it follows for arbitrary

τ ,µ ∈ S

(Mx(τ )−Mx(µ), τ − µ)S =
(
C−1(x)(τ − µ), τ − µ

)
S

+
(
H−1(x)(τ − Proj

H−1(x)

K̄
(τ )), τ − µ

)
S

−
(
H−1(x)(µ− Proj

H−1(x)

K̄
(µ)), τ − µ

)
S

≥
(
C−1(x)(τ − µ), τ − µ

)
S

≥ m ‖τ − µ‖2S ,

wherem > 0 is the coercivity constant of C−1. Hence the mappingMx(·) is strongly
monotone and coercive because of Mx(0) = 0. Due to the boundedness of C−1 and
H−1 and the non-expansiveness of the projection w.r.t. the norm induced by H−1(x)
we observe

‖Mx(τ )−Mx(µ)‖S ≤
(∥∥C−1

∥∥
L∞(Ω;L(S))

+
∥∥H−1

∥∥
L∞(Ω;L(S))

)
‖τ − µ‖S

+

∥∥H−1
∥∥
L∞(Ω;L(S))

h
1
2

∥∥∥Proj
H−1(x)

K̄
(τ )− Proj

H−1(x)

K̄
(µ)
∥∥∥
H−1(x)

≤
(∥∥C−1

∥∥
L∞(Ω;L(S))

+
∥∥H−1

∥∥
L∞(Ω;L(S))

)
‖τ − µ‖S

+

∥∥H−1
∥∥
L∞(Ω;L(S))

h
1
2

‖τ − µ‖H−1(x)

≤
(∥∥C−1

∥∥
L∞(Ω;L(S))

+
∥∥H−1

∥∥
L∞(Ω;L(S))

)
‖τ − µ‖S

+

∥∥H−1
∥∥ 3

2

L∞(Ω;L(S))

h
1
2

‖τ − µ‖S

≤ m ‖τ − µ‖S .

Here h > 0 denotes the coercivity constant of H−1(x) and m > 0 is given by

m =
∥∥C−1

∥∥
L∞(Ω;L(S))

+
∥∥H−1

∥∥
L∞(Ω;L(S))

+

∥∥H−1
∥∥ 3

2

L∞(Ω;L(S))

h
1
2

.

According to the Browder-Minty theorem the inverse M−1
x (·) w.r.t. τ exists f.a.a.

x ∈ Ω. If we define f.a.a. x ∈ Ω

M−1(x, τ ) := M−1
x (τ ),
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then (2.12) is equivalent to σ = M−1(·, ε(u)). In view of (2.5b) the function u is
a solution of ∫

Ω
M−1(·, ε(u)) : ε(v) dx = −〈`, v〉 ∀v ∈ V, (2.13)

which is the desired nonlinear PDE in u. As we aim to make use of Theorem 2.6,
we have to check that M−1 satisfies the conditions (2.6a)–(2.6d), i.e., M−1(·,0) ∈
L∞(Ω; S), M−1(·, τ ) is measurable, and M−1 is Lipschitz continuous and strongly
monotone w.r.t. τ f.a.a. x ∈ Ω. The strong monotonicity of Mx(·) implies for every
τ ,µ ∈ S∥∥M−1

x (Mx(τ ))−M−1
x (Mx(µ))

∥∥2

S = ‖τ − µ‖2S ≤
1

m
(Mx(τ )−Mx(µ), τ − µ)S

≤ 1

m
‖Mx(τ )−Mx(µ)‖S ‖τ − µ‖S .

Consequently, the inverse M−1
x (·) is Lipschitz continuous with Lipschitz constant

1/m. The strong monotonicity and Lipschitz continuity of Mx(·) furthermore lead
to the estimate(

M−1
x (τ )−M−1

x (µ), τ − µ
)
S ≥ m

∥∥M−1
x (τ )−M−1

x (µ)
∥∥2

S

≥ m

m2

∥∥Mx(M−1
x (τ ))−Mx(M−1

x (µ))
∥∥2

S

=
m

m2 ‖τ − µ‖
2
S ,

which shows strong monotonicity ofM−1
x . Since moreoverM−1(·,0) = 0 belongs to

L∞(Ω; S), it remains to be proven thatM−1(x, τ ) is measurable w.r.t. x. Due to the
measurability of C−1 andH−1 there exist simple functions C−1

n ,H−1
n ∈ L∞(Ω;L(S)),

n ∈ N, with∥∥C−1(x)− C−1
n (x)

∥∥
L(S)
→ 0 and

∥∥H−1(x)−H−1
n (x)

∥∥
L(S)
→ 0 a.e. in Ω.

Thus, there is NC
x ∈ N, depending on x, such that

τ : C−1
n (x)τ = τ : C−1(x)τ + τ : (C−1

n (x)− C−1(x))τ

≥ m ‖τ‖2S −
∥∥C−1

n (x)− C−1(x)
∥∥
L(S)
‖τ‖2S

≥ m/2 ‖τ‖2S

for all n ≥ NC
x and an analogous estimate holds true for H−1

n . We define

C̃−1
n (x) =

{
C−1
n (x), n ≥ NC

x

IS, else
and H̃−1

n (x) =

{
H−1
n (x), n ≥ NH

x

IS, else,

where IS : S→ S denotes the identity mapping. Thereby we obtain simple functions
C̃−1
n : Ω→ S and H̃−1

n : Ω→ S with∥∥C−1(x)− C̃−1
n (x)

∥∥
L(S)
→ 0 and

∥∥H−1(x)− H̃−1
n (x)

∥∥
L(S)
→ 0 a.e. in Ω.

11



Both C̃−1
n (x) and H̃−1

n (x) are furthermore uniformly coercive with coercivity con-
stant min(1,m/2) > 0 for all n ∈ N . The same arguments as for Mx yield that
Mn
x : S→ S defined by

τ 7→ C̃−1
n (x)τ + H̃−1

n (x)(τ − Proj
H̃−1
n (x)

K̄
(τ ))

is invertible f.a.a. x ∈ Ω and the inverse (Mn
x )−1(·) is Lipschitz continuous with

Lipschitz constant Lx := 1/min(1,m/2) = max(1, 2/m), independent of n. By
construction

Mn(x, τ ) := Mn
x (τ ) and (Mn)−1(x, τ ) := (Mn

x )−1(τ )

are simple functions w.r.t. x. For µ := Proj
H−1(x)

K̄
(τ ) and µn := Proj

H̃−1
n (x)

K̄
(τ ) we

find

0 ≤ H−1(x)(µ− τ ) : (µn − µ) + H̃−1
n (x)(µn − τ ) : (µ− µn)

= H−1(x)(µ− τ ) : (µn − µ)− H̃−1
n (x)(µ− τ ) : (µn − µ)

+ H̃−1
n (x)(µ− τ ) : (µn − µ) + H̃−1

n (x)(µn − τ ) : (µ− µn)

= (H−1(x)− H̃−1
n (x))(µ− τ ) : (µn − µ)− H̃−1

n (x)(µn − µ) : (µn − µ).

In view of the uniform coercivity of H̃−1
n (x) we infer∥∥H−1(x)− H̃−1

n (x)
∥∥
L(S)
‖µ− τ‖S ‖µn − µ‖S ≥ c ‖µn − µ‖

2
S

and therefore ‖µn − µ‖S → 0. Hence the sequence {µn(x)}n∈N ⊂ S is bounded,
which implies∥∥Mn

x (τ )−Mx(τ )
∥∥
S =

=
∥∥(C̃−1

n (x)− C−1(x))τ + (H̃−1
n (x)−H−1(x))τ + H−1(x)µ− H̃−1

n (x)µn
∥∥
S

≤
(∥∥C̃−1

n (x)− C−1(x)
∥∥
L(S)

+
∥∥H̃−1

n (x)−H−1(x)
∥∥
L(S)

)
‖τ‖S

+
∥∥H−1(x)

∥∥
L(S)
‖µ− µn‖S +

∥∥H−1(x)− H̃−1
n (x)

∥∥
L(S)
‖µn‖S

n→∞−−−→ 0.

Thanks to the Lipschitz continuity of (Mn
x )−1(·) we derive f.a.a. x ∈ Ω∥∥(Mn)−1(x, τ )−M−1(x, τ )
∥∥
S =

=
∥∥(Mn

x )−1
(
Mn
x ((Mn

x )−1(τ ))
)
− (Mn

x )−1
(
Mn
x (M−1

x (τ ))
)∥∥

S

≤Lx
∥∥Mn

x ((Mn
x )−1(τ ))−Mn

x (M−1
x (τ ))

∥∥
S

= max(1, 2/m)
∥∥Mx(M−1

x (τ ))−Mn
x (M−1

x (τ ))
∥∥
S
n→∞−−−→ 0

so that M−1(·, τ ) is indeed measurable. Altogether we have shown

• M−1(·,0) ∈ L∞(Ω;S)

12



• M−1(·, τ ) is measurable

•
(
M−1(x, τ )−M−1(x,µ), τ − µ

)
S ≥

m
m2 ‖τ − µ‖2S

•
∥∥M−1(x, τ )−M−1(x,µ)

∥∥
S ≤

1
m ‖τ − µ‖S

f.a.a. x ∈ Ω and all τ ,µ ∈ S with m ≤ m. On account of Theorem 2.6 there exists
p̂ > 2 such that (2.13) admits a unique solution u ∈ W 1,p

D

(
Ω;Rd

)
for all p ∈ [2, p̂]

and every ` ∈ W−1,p
D

(
Ω;Rd

)
. In addition, the associated solution map ` 7→ u is

Lipschitz continuous for all p ∈ [2, p̂]. Because the inverse operatorM−1
x is Lipschitz

continuous with Lipschitz constant 1/m, we conclude that σ = M−1(·, ε(u)) is an
element of Lp(Ω; S). It furthermore depends Lipschitz continuously on u and thus
on `. From equation (2.8) we then infer H−1χ ∈ Lp(Ω; S). Since H−1 is uniformly
coercive by Assumption 2.1(2), the Lax-Milgram theorem yields a H ∈ L∞

(
Ω;L(S)

)
with

H(x)H−1(x) = IS a.e. in Ω,

which leads to χ ∈ Lp(Ω; S). Invoking equation (2.8) again, we deduce the Lipschitz
continuous dependency of χ on `.

We end this section with a short comment on the existence of globally optimal
controls for (PE).

Both the embedding V ↪→ L2
(
Ω;Rd

)
and the trace τN : V → L2

(
ΓN ;Rd

)
on ΓN are

compact operators, cf. [64, Section 2.6]. The linear continuous operator R : U → V ′

defined through

〈Rf , v〉 =

∫
Ω
f1 · v dx+

∫
ΓN

f2 · τNv ds ∀v ∈ V (2.14)

is the adjoint of their product and according to Schauder’s theorem also compact.
Therefore we obtain the next proposition covering the existence of a global solution
to (PE).

Proposition 2.9. Suppose the mapping V × U 3 (u,f) 7→ J(u,f) ∈ R is contin-
uous w.r.t. u and weakly lower semicontinuous w.r.t. f . If there exist r > 0 and
f̂ ∈ U such that

J
(
GE(Rf),f

)
≥ J

(
GE(Rf̂), f̂

)
∀f ∈ U with

∥∥f − f̂∥∥
U
> r,

then Problem (PE) admits a globally optimal solution.

Proof. Let {fn}n∈N ⊂ U be a minimizing sequence so that

J
(
GE(Rfn),fn

)
→ inf

f∈U
J
(
GE(Rf),f

)
.
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By assumption this sequence is contained in the weakly compact set

B(f̂ , r) :=
{
f ∈ U :

∥∥f − f̂∥∥
U
≤ r
}
.

Consequently, there is a subsequence, w.l.o.g. denoted by the same symbols, with
fn ⇀ f̄ in B(f̂ , r). Thanks to the Lipschitz continuity of GE : V ′ → V , cf. Theorem
2.8, and the compactness of the operator R, mentioned above, we moreover know

GE(Rfn)→ GE(Rf̄) in V.

Hence the continuity of J in the first variable and the weak lower semicontinuity in
the second variable imply

J
(
GE(Rf̄), f̄

)
≤ lim inf

n→∞
J
(
GE(Rfn),fn

)
= inf
f∈U

J
(
GE(Rf),f

)
,

which shows global optimality of f̄ ∈ B(f̂ , r) for (PE).

The solution cannot be expected to be unique due to the nonlinearity of GE .

2.2. Bouligand differentiability

Based on the higher integrability of the solution to (VIE), cf. Theorem 2.8, we will
show Bouligand differentiability of the control-to-state map GE : ` → (Σ,u) from
W−1,p
D

(
Ω;Rd

)
to S2 × V with p > 2.

Throughout this section let ¯̀∈ W−1,p
D

(
Ω;Rd

)
be fixed but arbitrary and (Σ̄, ū, λ̄)

denote the solution of (2.5) with right hand side ¯̀, i.e., (Σ̄, ū, λ̄) ∈ S × V × L2(Ω)
solves

AΣ̄ + div∗ ū+ λ̄D∗DΣ̄ = 0 in S2 (2.15a)
div Σ̄ = ¯̀ in V ′ (2.15b)

0 ≤ λ̄(x) ⊥ φ
(
Σ̄(x)

)
≤ 0 a.e. in Ω. (2.15c)

In view of the complementarity (2.15c) we define the following subsets of Ω up to
sets of zero measure

Ās =
{
x ∈ Ω : λ̄(x) > 0

}
(strongly active set) (2.16a)

B̄ =
{
x ∈ Ω : φ

(
Σ̄(x)

)
= λ̄(x) = 0

}
(biactive set) (2.16b)

Ī =
{
x ∈ Ω : φ

(
Σ̄(x)

)
< 0
}
. (inactive set) (2.16c)

Note that Ω = Ās ∪ B̄ ∪ Ī.

The operator GE : V ′ → S2×V was already proven to be directionally differentiable
in a weak sense:
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Theorem 2.10. [44, Theorem 3.2] For every ¯̀∈ V ′ and every δ` ∈ V ′, the control-
to-state map GE : V ′ → S2×V is weakly directionally differentiable at ¯̀ in direction
δ`, i.e., there exists δwGE(¯̀; δ`) ∈ S2 × V such that

GE(¯̀+ tδ`)−GE(¯̀)

t
⇀ δwGE(¯̀; δ`) as t↘ 0.

The weak directional derivative δwGE(¯̀; δ`) is given by the unique solution (Σ′,u′) ∈
S` × V of the following variational inequality(

AΣ′, T −Σ′
)

+
(
div∗ u′, T −Σ′

)
+
(
λ̄, DΣ′ :D(T −Σ′)

)
≥ 0 for all T ∈ S` (2.17a)

div Σ′ = δ`, (2.17b)

where the convex cone S` is defined by

S` :=
{
T ∈ S2 :

√
λ̄DT ∈ S, DΣ̄(x) :DT (x) ≤ 0 a.e. in B̄,

DΣ̄(x) :DT (x) = 0 a.e. in Ās
}
.

Again, by introducing a slack variable the variational inequality (2.17a) can be
written as a complementarity system:

Theorem 2.11. [44, Proposition 3.13] A pair (Σ′,u′) ∈ S2 × V is the unique
solution of (2.17) if and only if there exists a multiplier λ′ ∈ L2(Ω) such that

AΣ′ + div∗ u′ + λ̄D∗DΣ′ + λ′D∗DΣ̄ = 0 in S2 (2.18a)
div Σ′ = δ` in V ′ (2.18b)

R 3 λ′(x) ⊥ DΣ̄ :DΣ′(x) = 0 a.e. in Ās (2.18c)
0 ≤ λ′(x) ⊥ DΣ̄ :DΣ′(x) ≤ 0 a.e. in B̄ (2.18d)
0 = λ′(x) ⊥ DΣ̄ :DΣ′(x) ∈ R a.e. in Ī (2.18e)

holds. Moreover, λ′ is unique.

Remark 2.12. On account of (2.18d) the (weak) directional derivative is generally
not linear w.r.t. to the direction and the control-to-state map GE thus not (weakly)
Gâteaux differentiable, if the biactive set B̄ has positive measure.

If we want to improve the assertion of Theorem 2.10, we have to make additional
assumptions.

Assumption 2.13.

(i) Let ¯̀, δ` ∈W−1,p
D

(
Ω;Rd

)
with p ∈ (2, p̂] and p̂ given by Theorem 2.8.
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(ii) The solution of (2.15) satisfies χ̄ ∈ Ls(Ω; S) with

s >
2p

p− 2
. (2.19)

Moreover we set
q =

sp

s+ p
. (2.20)

Assumption 2.13 is supposed to hold for the rest of this section.

Remark 2.14. (i) If the right hand sides ` and δ` in (2.15) and (2.18), respec-
tively, are defined as in (PE), Assumption 2.13(i) is automatically fulfilled due
to Sobolev’s embedding theorems. To be more precise, the operator R defined
by (2.14) continuously maps U into W−1,4

D

(
Ω;Rd

)
in case d = 2. If the spa-

tial dimension is d = 3, then R continuously maps from U to W−1,3
D

(
Ω;Rd

)
.

Furthermore, R is compact as a mapping from U to W−1,β
D

(
Ω;Rd

)
with β < 3

in dimension d = 3 and with β < 4 in dimension d = 2, cf. [64, Section 2.3
and Section 2.6]

(ii) We conclude from (2.19) and (2.20) that q > 2 and p′ < q < p:

q =
sp

s+ p
=

p

1 + p
s

>
p

1 + p
2p
p−2

=
p

1 + p−2
2

=
p
p
2

= 2

>
p

1 + p
p
p−2

=
p

1 + p− 2
= p′,

where p′ is the integrability exponent conjugated to p.

(iii) The solution operator GE is not expected to mapW−1,p
D (Ω;Rd) into Lp(Ω; S)×

Ls(Ω; S)×W 1,p
D

(
Ω;Rd

)
. Assumption 2.13(ii) is only required for the particular

solution χ̄ of (2.15), where GE is differentiated.

In order to be able to show Bouligand differentiability of the control-to-state map,
we collect some auxiliary results for the weak directional derivative (Σ′,u′, λ′). First
we consider the difference of the solution to (2.15) and the solution of the following
perturbed problem

AΣ + div∗ u+ λD∗DΣ = 0 in S2 (2.21a)
div Σ = ¯̀+ δ` in V ′ (2.21b)

0 ≤ λ(x) ⊥ φ
(
Σ(x)

)
≤ 0 a.e. in Ω. (2.21c)

By Theorem 2.5 we know that (2.21) has a unique solution.
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Lemma 2.15. Let (Σ̄, ū, λ̄) and (Σ,u, λ) be solution of (2.15) and (2.21), respec-
tively. Then it holds

(i)
∥∥Σ− Σ̄

∥∥
Lp(Ω;S2)

+ ‖u− ū‖
W 1,p
D (Ω;Rd)

≤ L ‖δ`‖W−1,p(Ω;Rd)

(ii) DΣ−DΣ̄→ 0 in Lm(Ω; S) ∀ 1 ≤ m <∞, if δ`→ 0 in W−1,p
D

(
Ω;Rd

)
(iii)

∥∥λ− λ̄∥∥
Lq(Ω)

≤ c ‖δ`‖
W−1,p
D (Ω;Rd)

,

where L > 0 is the Lipschitz constant given in Theorem 2.8.

Proof. Let (δ`n)n∈N ⊂ W−1,p
D (Ω;Rd) be an arbitrary sequence with δ`n → 0 for

n → 0 and let (Σn, λn) be given by the solution of (2.21) with right hand side
¯̀+ δ`n.
(i): Assertion (i) is a consequence of Theorem 2.8.
(ii): Due to (2.15c) and (2.21c) we observe∥∥DΣn(x)−DΣ̄(x)

∥∥
S ≤ 2σ0 a.e. in Ω,

so that DΣn −DΣ̄ is bounded in Lm(Ω; S) for every m ≥ 1. In addition, we infer
from (i) the existence of a subsequence, w.l.o.g. denoted by the same symbols, with

DΣn(x)−DΣ̄(x)→ 0 a.e. in Ω. (2.22)

Lebesgue’s theorem of dominated convergence implies (ii) for every subsequence
satisfying (2.22) and hence for the whole sequence.
(iii): In view of (2.7) and (2.15c) we deduce

σ2
0λ̄ = λ̄DΣ̄ :DΣ̄ = −H−1χ̄ :DΣ̄ a.e. in Ω (2.23)

and completely analogously we find

σ2
0λn = λnDΣn :DΣn = −H−1χn :DΣn a.e. in Ω.

Subtraction of both equations consequently yields

λn − λ̄ =
1

σ2
0

(
−H−1

n χ̄n :DΣn + H−1χ̄ :DΣ
)

=
1

σ2
0

(
−H−1χ̄ : (DΣn −DΣ̄)−H−1(χn − χ̄) :DΣn

)
.

(2.24)

On account of (2.20), (2.21c), Remark 2.14(ii) and (i) this leads to∥∥λn − λ̄∥∥Lq(Ω)
≤ c

(
‖χ̄‖Ls(Ω;S)

∥∥DΣn −DΣ̄
∥∥
Lp(Ω;S)

+ σ0 ‖χn − χ̄‖Lq(Ω;S)

)
≤ c ‖δ`n‖W−1,p

D (Ω;Rd)
,

which is the third assertion.

17



Next, we establish higher regularity for the solution of (2.18). For that purpose we
introduce another perturbed problem:

AΣt + div∗ ut + λtD∗DΣt = 0 in S2 (2.25a)
div Σt = ¯̀+ tδ` in V ′ (2.25b)

0 ≤ λt(x) ⊥ φ
(
Σt(x)

)
≤ 0 a.e. in Ω (2.25c)

with t > 0 given.

Lemma 2.16. Let (Σ̄, ū, λ̄) be the solution of (2.15), (Σt,ut, λt) the solution of
(2.25) and (Σ′,u′, λ′) the solution of (2.18). Then it holds

(i)
(
Σt−Σ̄
t , ut−ūt

)
⇀
(
Σ′,u′

)
in Lp

(
Ω;S2

)
×W 1,p

D

(
Ω;Rd

)
as t↘ 0

(ii) λt−λ̄
t ⇀ λ′ in Lq(Ω) as t↘ 0

(iii) ‖Σ′‖Lp(Ω;S2) + ‖u′‖
W 1,p
D (Ω;Rd)

≤ L ‖δ`‖
W−1,p
D (Ω;Rd)

(iv) ‖λ′‖Lq(Ω) ≤ c ‖δ`‖W−1,p
D (Ω;Rd)

,

where L > 0 is the Lipschitz constant given in Theorem 2.8.

Proof. Let (tn)n∈N ⊂ R+ be an arbitrary sequence of positive real numbers con-
verging to zero and let (Σtn ,utn , λtn) be given by the solution of (2.25) with right
hand side ¯̀+ tnδ`.
(i): According to Theorem 2.10 we know(

Σtn − Σ̄

tn
,
utn − ū
tn

)
⇀
(
Σ′,u′

)
in S2 × V.

Moreover it follows from Theorem 2.8 that∥∥∥∥Σtn − Σ̄

tn

∥∥∥∥
Lp(Ω;S2)

+

∥∥∥∥utn − ūtn

∥∥∥∥
W 1,p
D (Ω;Rd)

≤ L ‖δ`‖
W−1,p
D (Ω;Rd)

. (2.26)

Thus, there exist a subsequence converging weakly in Lp
(
Ω,S2

)
×W 1,p

D

(
Ω;Rd

)
. Due

to the uniqueness of the weak limit we conclude (i).
(ii): Similarly to (2.24) it can be shown that

λtn − λ̄
tn

=
1

σ2
0

(
−H−1χ̄ :

DΣtn −DΣ̄

tn
−H−1χtn − χ̄

tn
:DΣtn

)
. (2.27)

From (i) and (2.20) we deduce

H−1χ̄ :
DΣtn −DΣ̄

tn
⇀ H−1χ̄ :DΣ′ in Lq(Ω)
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and Lemma 2.15(ii) with m = s implies

H−1χtn − χ̄
tn

:DΣtn ⇀ H−1χ′ :DΣ̄ in Lq(Ω).

Since DΣ′ :DΣ̄ = 0 a.e. in Ās and λ̄ = 0 a.e. in B̄∪Ī, cf. (2.18c), (2.16) and (2.15c),
equation (2.7) yields

H−1χ̄ :DΣ′ = −λ̄DΣ′ :DΣ̄ = 0 a.e. in Ω. (2.28)

Therefore, we derive

λtn − λ̄
tn

⇀ − 1

σ2
0

H−1χ′ :DΣ̄ in Lq(Ω). (2.29)

By testing (2.18a) with (0,µ), µ ∈ S, we obtain

H−1χ′ + λ̄DΣ′ + λ′DΣ̄ = 0 a.e. in Ω. (2.30)

Furthermore, (2.16), (2.15c) and (2.18e) result in σ2
0λ
′ = λ′DΣ̄ : DΣ̄ a.e. in Ω so

that
σ2

0λ
′ = −H−1χ′ :DΣ̄− λ̄DΣ′ :DΣ̄ a.e. in Ω. (2.31)

Taking (2.28) into account we arrive at

λ′ = − 1

σ2
0

H−1χ′ :DΣ̄ a.e. in Ω,

which together with (2.29) leads to (ii).
(iii): Since closed and convex sets are weakly closed, Assertion (iii) is a consequence
of (i) and (2.26).
(iv): From (2.20), (2.26), Remark 2.14(ii) and (2.27) we conclude∥∥∥∥λtn − λ̄tn

∥∥∥∥
Lq(Ω)

≤ c

(
‖χ̄‖Ls(Ω;S)

∥∥∥∥DΣtn −DΣ̄

tn

∥∥∥∥
Lp(Ω;S)

+ σ0

∥∥∥∥χtn − χ̄tn

∥∥∥∥
Lq(Ω;S)

)
≤ c ‖δ`‖

W−1,p
D (Ω;Rd)

.

By the same argument as in (iii) this shows ‖λ′‖Lq(Ω) ≤ c ‖δ`‖W−1,p
D (Ω;Rd)

.

Before we are ready to prove Bouligand differentiability of GE we need another two
auxiliary lemmas.

Lemma 2.17. Let X be a Hilbert space and x1, x2 ∈ X. If ‖x1‖X = ‖x2‖X , then
it holds

(x1, x1 − x2)X =
1

2
‖x1 − x2‖2X .
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Proof. Because of the parallelogram law in Hilbert spaces it follows

(x1, x1 − x2)X = (x1, x1)X − (x1, x2)X

= ‖x1‖2X −
1

4

(
‖x1 + x2‖2X − ‖x1 − x2‖2X

)
= ‖x1‖2X −

1

4

(
2 ‖x1‖2X + 2 ‖x2‖2X − 2 ‖x1 − x2‖2X

)
=

1

2
‖x1 − x2‖2X ,

where ‖x1‖X = ‖x2‖X was used for the last equation.

The next lemma covers the convergence of bounded and a.e. convergent sequences
in Lebesgue spaces.

Lemma 2.18. Let E ⊂ Rd be measurable and bounded, ν ∈ (1,∞) and f, fn ∈
Lν(E), n ∈ N. If supn∈N ‖fn‖Lν(E) ≤ c and fn → f a.e. in E, then fn → f in
Lκ(E) for 1 ≤ κ < ν.

Proof. Let κ ∈ [1, ν) and gn := |fn − f |κ. We know gn(x) → 0 a.e. in E and gn is
bounded in the reflexive space Lν/κ(E) with ν/κ > 1. Hence there is a subsequence,
w.l.o.g. denoted in the same way, converging weakly to g ∈ L

ν
κ (E). We assume that

there exists E0 ⊂ E with |E0| > 0 and g > 0 a.e. in E0. Due to weak convergence
we deduce ∫

Ẽ
gn dx→

∫
Ẽ
g dx > 0 ∀ Ẽ ⊂ E0 with |Ẽ| > 0. (2.32)

However, by Egorov’s theorem there is Ê ⊂ E0 with |Ê| < |E0| /2 and

‖gn‖L∞(E0\Ê) → 0,

contradictory to (2.32). Therefore, the weak limit equals the pointwise limit, i.e.,
g = 0. Since the above arguments are independent of the chosen subsequence, the
whole sequence {gn}n∈N converges weakly to zero so that∫

E
gn dx→ 0,

which implies the assertion.

The main result of this section reads as follows:

Theorem 2.19. Let (Σ̄, ū) be given by the solution of (2.15), (Σ,u) by the solution
of (2.21) and (Σ′,u′) by the solution of (2.18). Then it holds∥∥Σ− Σ̄−Σ′

∥∥
S2 +

∥∥u− ū− u′∥∥
V

= o
(
‖δ`‖

W−1,p
D (Ω;Rd)

)
, (2.33)
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i.e., the control-to-state map GE is Bouligand differentiable from W−1,p
D

(
Ω;Rd

)
to

S2 × V .

Remark 2.20. We point out that a norm gap is needed in order to establish Bouli-
gand differentiability of GE. However, this is not surprising, since norm gaps are
usually necessary for the differentiability of nonlinear operators, see e.g. [33], and
the differentiability of solution operators associated with quasilinear PDEs, cf. [75,
Theorem 3.3].

Proof of Theorem 2.19. Let (δ`n)n∈N ⊂ W−1,p
D

(
Ω;Rd

)
be an arbitrary sequence

with δ`n → 0 for n→ 0. Furthermore let (Σn,un, λn) denote the solution of (2.21)
with right hand side ¯̀+ δ`n and (Σ′n,u

′
n, λ
′
n) the solution of (2.18) with right hand

side δ`n.
Subtracting (2.15a) and (2.18a) from (2.21a) and testing with Σn − Σ̄−Σ′n leads
to(

A(Σn − Σ̄−Σ′n), Σn − Σ̄−Σ′n
)

+
(
div∗(un − ū− u′n), Σn − Σ̄−Σ′n

)︸ ︷︷ ︸
=:I1

+
(
λnDΣn − λ̄DΣ̄− λ̄DΣ′n − λ′nDΣ̄, DΣn −DΣ̄−DΣ′n

)
= 0.

(2.34)

Thanks to (2.15b), (2.21b) and (2.18b) we observe

div(Σn − Σ̄−Σ′n) = ¯̀+ δ`n − ¯̀− δ`n = 0

and therefore I1 = 0. As both C−1 and H−1 are uniformly coercive by Assumption
2.1(ii), the linear operator A induces an equivalent norm on S2. In view of equation
(2.34) we derive

c
∥∥Σn − Σ̄−Σ′n

∥∥2

S2 ≤
(
A(Σn − Σ̄−Σ′n), Σn − Σ̄−Σ′n

)
= −

(
λ̄
(
DΣn −DΣ̄−DΣ′n

)
, DΣn −DΣ̄−DΣ′n

)
−
((
λn − λ̄− λ′n

)
DΣn, DΣn −DΣ̄−DΣ′n

)
−
(
λ′n
(
DΣn −DΣ̄

)
, DΣn −DΣ̄−DΣ′n

)
= −

∫
Ω

λ̄︸︷︷︸
≥0

∥∥DΣn −DΣ̄−DΣ′n
∥∥2

S︸ ︷︷ ︸
≥0

dx

−
∫

Ω

(
λn − λ̄− λ′n

)
DΣn :

(
DΣn −DΣ̄−DΣ′n

)
dx

−
∫

Ω
λ′n
(
DΣn −DΣ̄

)
:
(
DΣn −DΣ̄−DΣ′n

)
dx︸ ︷︷ ︸

=:IΩ

≤ Is + Ib + Ii + IΩ.

(2.35)

Herein Is is given by

Is := −
∫
Ās

(
λn − λ̄− λ′n

)
DΣn :

(
DΣn −DΣ̄−DΣ′n

)
dx.
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Moreover, Ib and Ii are defined by the analogous integrals on the sets B̄ and Ī, re-
spectively, cf. (2.16). By Lemma 2.15(i) and (iii) there exist subsequences {λnk}k∈N
and {Σnk}k∈N with

λnk(x)→ λ̄(x) a.e. on Ω (2.36a)
Σnk(x)→ Σ̄(x) a.e. on Ω. (2.36b)

For the sake of convenience we denote these subsequences again by λn and Σn.
Next we will estimate IΩ, Is, Ib and Ii separately.
Estimation of IΩ:
According to Remark 2.14(ii) and Lemma 2.16(iv) there exists m > 1 with 1/q +
1/m+ 1/2 = 1 so that

IΩ ≤
∥∥λ′n∥∥Lq(Ω)

∥∥DΣn −DΣ̄
∥∥
Lm(Ω;S)

∥∥DΣn −DΣ̄−DΣ′n
∥∥
S

≤ c ‖δ`n‖W−1,p
D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥
Lm(Ω;S)

∥∥Σn − Σ̄−Σ′n
∥∥
S2 .

(2.37)

Estimation of Is:
If x ∈ Ās, then it holds λ̄(x) > 0 and (2.15c) yields φ

(
Σ̄(x)

)
= 0. Due to the

pointwise convergence (2.36a) and the complementarity (2.21c) there exists Nx ∈
N, depending on x, such that λn(x) > 0 and φ

(
Σn(x)

)
= 0, i.e., ‖DΣn(x)‖S =∥∥DΣ̄(x)

∥∥
S = σ0, for all n ≥ Nx and f.a.a. x ∈ Ās. In view of Lemma 2.17 we

conclude

zn(x) :=
DΣ̄(x) : (DΣ̄(x)−DΣn(x))∥∥DΣ̄(x)

∥∥
S

∥∥DΣ̄(x)−DΣn(x)
∥∥
S
→ 0 a.e. on Ās. (2.38)

Because |zn(x)| ≤ 1, it follows from Lebesgue’s dominated convergence theorem
that

zn → 0 in Lξ(Ās) ∀ 1 ≤ ξ <∞. (2.39)

Since DΣ̄ :DΣ′n = 0 a.e. in Ās, cf. (2.18c), we furthermore deduce

Is = −
∫
Ās

(
λn − λ̄− λ′n

)
DΣn :

(
DΣn −DΣ̄−DΣ′n

)
dx

= −
∫
Ās

(
λn − λ̄− λ′n

)(
DΣn −DΣ̄

)
:
(
DΣn −DΣ̄−DΣ′n

)
dx

−
∫
Ās

(
λn − λ̄− λ′n

)
DΣ̄ :

(
DΣn −DΣ̄−DΣ′n

)
dx

= −
∫
Ās

(
λn − λ̄− λ′n

)(
DΣn −DΣ̄

)
:
(
DΣn −DΣ̄−DΣ′n

)
dx

−
∫
Ās

(
λn − λ̄− λ′n

)
DΣ̄ :

(
DΣn −DΣ̄

)
dx

= −
∫
Ās

(
λn − λ̄− λ′n

)(
DΣn −DΣ̄

)
:
(
DΣn −DΣ̄−DΣ′n

)
dx

+

∫
Ās

(
λn − λ̄− λ′n

)
zn
∥∥DΣ̄

∥∥
S

∥∥DΣn −DΣ̄
∥∥
S dx.
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Again, on account of Remark 2.14(ii) there existm > 1 and ξ > 1 with 1
q+ 1

m+ 1
2 = 1

and 1
q + 1

ξ + 1
p = 1. In consequence of Lemma 2.15 and Lemma 2.16(iii)–(iv) we

arrive at

Is ≤
∥∥λn − λ̄− λ′n∥∥Lq(Ω)

∥∥DΣn −DΣ̄
∥∥
Lm(Ω;S)

∥∥DΣn −DΣ̄−DΣ′n
∥∥
S2

+ σ0

∥∥λn − λ̄− λ′n∥∥Lq(Ω)
‖zn‖Lξ(Ās)

∥∥Σn − Σ̄
∥∥
Lp(Ω;S2)

≤ c ‖δ`n‖W−1,p
D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥
Lm(Ω;S)

∥∥Σn − Σ̄−Σ′n
∥∥
S2

+ c ‖δ`n‖2W−1,p
D (Ω;Rd)

‖zn‖Lξ(Ās) .

(2.40)

Estimation of Ib:
If x ∈ B̄, then we know φ

(
Σ̄(x)

)
= λ̄(x) = 0. Hence it either holds λn(x) = 0

and thus λn(x) − λ̄(x) = 0 or λn(x) > 0 and φ
(
Σn(x)

)
= 0, i.e., ‖DΣn(x)‖S =∥∥DΣ̄(x)

∥∥
S = σ0. Lemma 2.17 implies

(λn − λ̄)(x)
(
DΣ̄ : (DΣ̄−DΣn)

)
(x) = (λn − λ̄)(x)

1

2

∥∥(DΣ̄−DΣn)(x)
∥∥2

S (2.41)

in both cases. Moreover, due to (2.16) and the complementarity (2.18c)–(2.18e) we
note that

λ̄DΣ̄ :DΣ′n = λ′nDΣ̄ :DΣ′n = 0 a.e. in Ω

DΣ̄ :DΣ′n ≤ 0 and 0 ≤ λ′n a.e. in B̄.
Therefore the following estimate is obtained

Ib = −
∫
B̄

(
λn − λ̄− λ′n

)
DΣn :

(
DΣn −DΣ̄−DΣ′n

)
dx

= −
∫
B̄

(
λn − λ̄− λ′n

)(
DΣn −DΣ̄

)
:
(
DΣn −DΣ̄−DΣ′n

)
dx

−
∫
B̄

(
λn − λ̄

)
DΣ̄ :

(
DΣn −DΣ̄−DΣ′n

)
dx

+

∫
B̄
λ′nDΣ̄ :

(
DΣn −DΣ̄−DΣ′n

)
dx

= −
∫
B̄

(
λn − λ̄− λ′n

)(
DΣn −DΣ̄

)
:
(
DΣn −DΣ̄−DΣ′n

)
dx

+

∫
B̄

[(
λn − λ̄

)
DΣ̄ :

(
DΣ̄−DΣn

)
+ λn︸︷︷︸
≥0

DΣ̄ :DΣ′n︸ ︷︷ ︸
≤0

− λ̄DΣ̄ :DΣ′n︸ ︷︷ ︸
=0

]
dx

+

∫
B̄

[
λ′n

(
DΣ̄ :DΣn −

∥∥DΣ̄
∥∥2

S︸ ︷︷ ︸
=σ2

0

)
− λ′nDΣ̄ :DΣ′n︸ ︷︷ ︸

=0

]
dx

≤ −
∫
B̄

(
λn − λ̄− λ′n

)(
DΣn −DΣ̄

)
:
(
DΣn −DΣ̄−DΣ′n

)
dx

+

∫
B̄

(
λn − λ̄

)
DΣ̄ :

(
DΣ̄−DΣn

)
dx+

∫
B̄
λ′n︸︷︷︸
≥0

(
σ0 ‖DΣn‖S︸ ︷︷ ︸

≤σ0

−σ2
0

)
dx.

23



Taking (2.41) into account we derive

Ib ≤ −
∫
B̄

(
λn − λ̄− λ′n

)(
DΣn −DΣ̄

)
:
(
DΣn −DΣ̄−DΣ′n

)
dx

+

∫
B̄

(
λn − λ̄

)1

2

∥∥DΣ̄−DΣn

∥∥2

S dx.

As in (2.40) there exist m > 1 and ξ > 1 with 1
q + 1

m + 1
2 = 1 and 1

q + 1
ξ + 1

p = 1 so
that

Ib ≤
∥∥λn − λ̄− λ′n∥∥Lq(Ω)

∥∥DΣn −DΣ̄
∥∥
Lm(Ω;S)

∥∥DΣn −DΣ̄−DΣ′n
∥∥
S2

+
1

2

∥∥λn − λ̄∥∥Lq(Ω)

∥∥DΣn −DΣ̄
∥∥
Lξ(Ω;S)

∥∥Σn − Σ̄
∥∥
Lp(Ω;S2)

≤ c ‖δ`n‖W−1,p
D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥
Lm(Ω;S)

∥∥Σn − Σ̄−Σ′n
∥∥
S2

+ c ‖δ`n‖2W−1,p
D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥
Lξ(Ω;S)

.

(2.42)

Estimation of Ii:
For x ∈ Ī it holds φ

(
Σ̄(x)

)
< 0 and λ̄(x) = 0, cf. (2.15c). Thanks to the continuity

of φ, the pointwise convergence (2.36b) and the complementarity (2.21c) there exists
Ñx ∈ N with φ

(
Σn(x)

)
< 0 and λn(x) = 0 for all n ≥ Ñx and f.a.a. x ∈ Ī. Hence

we infer that
λn − λ̄

‖δ`n‖W−1,p
D (Ω;Rd)

→ 0 a.e. in Ī.

Moreover, we know ∥∥λn − λ̄∥∥Lq(Ī)

‖δ`n‖W−1,p
D (Ω;Rd)

≤ c ∀n ∈ N

with q > 2 according to Lemma 2.15(iii) and Remark 2.14(ii). Therefore, from
Lemma 2.18 it follows

ωn :=
λn − λ̄

‖δ`n‖W−1,p
D (Ω;Rd)

→ 0 in L2(Ī). (2.43)

Because of (2.18e) we moreover deduce

Ii = −
∫
Ī

(
λn − λ̄− λ′n

)
DΣn :

(
DΣn −DΣ̄−DΣ′n

)
dx

= −
∫
Ī

(
λn − λ̄

)
DΣn :

(
DΣn −DΣ̄−DΣ′n

)
dx

=

∫
Ī
ωn ‖δ`n‖W−1,p

D (Ω;Rd)
DΣn : (DΣn −DΣ̄−DΣ′n) dx.

Due to the complementarity (2.21c) this leads to

Ii ≤ σ0 ‖ωn‖L2(Ī) ‖δ`n‖W−1,p
D (Ω;Rd)

∥∥Σn − Σ̄−Σ′n
∥∥
S2 . (2.44)

24



In summary, (2.37), (2.40), (2.42), and (2.44) together with (2.35) yield∥∥Σn − Σ̄−Σ′n
∥∥2

S2 ≤ c ‖δ`n‖W−1,p
D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥
Lm(Ω;S)

∥∥Σn − Σ̄−Σ′n
∥∥
S2

+ c ‖δ`n‖2W−1,p
D (Ω;Rd)

(
‖zn‖Lξ(Ās) +

∥∥DΣn −DΣ̄
∥∥
Lξ(Ω;S)

)
+ c ‖δ`n‖W−1,p

D (Ω;Rd)
‖ωn‖L2(Ī)

∥∥Σn − Σ̄−Σ′n
∥∥
S2 .

By applying Young’s inequality we find∥∥Σn − Σ̄−Σ′n
∥∥2

S2

‖δ`n‖2W−1,p
D (Ω;Rd)

≤ c
(∥∥DΣn −DΣ̄

∥∥
Lm(Ω;S)

+ ‖ωn‖L2(Ī)

)2

+ c
(
‖zn‖Lξ(Ās) +

∥∥DΣn −DΣ̄
∥∥
Lξ(Ω;S)

)
.

Lemma 2.15 (ii), (2.39) and (2.43) then imply∥∥Σn − Σ̄−Σ′n
∥∥2

S2

‖δ`n‖2W−1,p
D (Ω;Rd)

n→∞−−−→ 0. (2.45)

In order to prove the remainder term property for the displacement u, we subtract
(2.15a) and (2.18a) from (2.21a) and test the arising equation with

T̃ :=
(
ε(un)− ε(ū)− ε(u′n),−ε(un) + ε(ū) + ε(u′n)

)
∈ S2.

Consequently, we obtain(
A(Σn − Σ̄−Σ′n), T̃

)
+
(
div∗(un − ū− u′n), T̃

)
+
(
λnDΣn − λ̄DΣ̄− λ̄DΣ′n − λ′nDΣ̄, DT̃

)︸ ︷︷ ︸
=:I2

= 0. (2.46)

As DT̃ = 0, we infer I2 = 0 and therefore∥∥un − ū− u′n∥∥2

V
≤ c

∫
Ω

∥∥ε(un − ū− u′n)
∥∥2

S dx

= c
(
div∗(un − ū− u′n), T̃

)
≤ c

∣∣(A(Σn − Σ̄−Σ′n), T̃
)∣∣

≤ c
∥∥un − ū− u′n∥∥V ∥∥Σn − Σ̄−Σ′n

∥∥
S2

(2.47)

by Korn’s inequality (Proposition A.25). Hence, (2.45) induces

‖un − ū− u′n‖V
‖δ`n‖W−1,p

D (Ω;Rd)

n→∞−−−→ 0.

Since the above arguments hold for every subsequence of (Σn,un, λn), we conclude
(2.33) for the whole sequence.
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In view of Lemma 2.18 we can enhance the result of Theorem 2.19:

Corollary 2.21. Let (Σ̄, ū) be given by the solution of (2.15), (Σ,u) by the solution
of (2.21) and (Σ′,u′) by the solution of (2.18). Then it holds∥∥Σ− Σ̄−Σ′

∥∥
Lβ(Ω;S2)

+
∥∥u− ū− u′∥∥

W 1,β
D (Ω;Rd)

= o
(
‖δ`‖

W−1,p
D (Ω;Rd)

)
(2.48)

for all 1 ≤ β < p.

Proof. As in the proof of Theorem 2.19 let (δ`n)n∈N ⊂ W−1,p
D (Ω;Rd) be an arbi-

trary sequence with δ`n → 0 for n → 0. Furthermore, by (Σn,un, λn) we denote
the solution of (2.21) with right hand side ¯̀+ δ`n and by (Σ′n,u

′
n, λ
′
n) the solu-

tion of (2.18) with right hand side δ`n. According to Theorem 2.19 there exist
subsequences, w.l.o.g. denoted in the same way, such that

Σn − Σ̄−Σ′n
‖δ`‖

W−1,p
D (Ω;Rd)

→ 0 and
un − ū− u′n
‖δ`‖

W−1,p
D (Ω;Rd)

→ 0 a.e. in Ω.

Besides, these subsequences are bounded in Lp
(
Ω; S2

)
and W 1,p

D

(
Ω;Rd

)
, respec-

tively, cf. Theorem 2.8 and Lemma 2.16. From Lemma 2.18 we infer (2.48) for
arbitrary subsequences and thus for the whole sequence.

In addition, Theorem 2.19 entails two consequences stated in the following corol-
laries:

Corollary 2.22. Let the multipliers λ̄, λ and λ′ be given by the solutions of (2.15),
(2.21) and (2.18), respectively. Then it holds∥∥λ− λ̄− λ′∥∥

Lγ(Ω)
= o

(
‖δ`‖

W−1,p
D (Ω;Rd)

)
(2.49)

for all 1 ≤ γ < q.

Proof. Due to (2.23), (2.31) and (2.28) we know

σ2
0(λ− λ̄− λ′) =−H−1χ :DΣ + H−1χ̄ :DΣ̄ + H−1χ′ :DΣ̄

=−H−1(χ− χ̄) : (DΣ−DΣ̄)−H−1(χ− χ̄− χ′) :DΣ̄

−H−1χ̄ : (DΣ−DΣ̄−DΣ′).

Because of q = 1/(1/s + 1/p), cf. (2.20), every γ < q can be written as γ =
1/(1/s + 1/β) for some β < p. The boundedness of DΣ̄(x) a.e. in Ω, cf. (2.15c),
then implies∥∥λ− λ̄− λ′∥∥

Lγ(Ω)
≤ c ‖χ− χ̄‖Lβ(Ω;S)

∥∥DΣ−DΣ̄
∥∥
Ls(Ω;S)

+ c
∥∥χ− χ̄− χ′∥∥

Lβ(Ω;S2)

+ c ‖χ̄‖Ls(Ω;S)

∥∥Σ− Σ̄−Σ′
∥∥
Lβ(Ω;S2)

.
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Lemma 2.15 together with Corollary 2.21 yields the claim.

As a result of Corollary 2.21 and Corollary 2.22 the operator GE is directionally
differentiable:

Corollary 2.23. For all 1 ≤ β < p the control-to-state map GE : W−1,p
D

(
Ω;Rd

)
→

Lβ
(
Ω;S2

)
×W 1,β

D

(
Ω;Rd

)
is directionally differentiable at every ¯̀ ∈ W−1,p

D

(
Ω;Rd

)
in all directions δ` ∈ W−1,p

D

(
Ω;Rd

)
. Furthermore, the mapping W−1,p

D (Ω;Rd) 3
¯̀ 7→ λ̄ ∈ Lγ(Ω) is directionally differentiable for all 1 ≤ γ < q.

Proof. Since the set S` is a cone, the mapping δ` 7→ δwGE(¯̀, δ`) is positively ho-
mogeneous so that (tΣ′, tu′, tλ′) is the solution of (2.18) with right hand side tδ`.
Consequently, (2.48) leads to∥∥Σt − Σ̄− tΣ′

∥∥
Lβ(Ω;S2)

t
+
‖ut − ū− tu′‖W 1,β

D (Ω;Rd)

t

t↘0−−→ 0.

The second assertion follows analogously from (2.49).

2.2.1. Directional differentiability

In order to derive the assertion of Corollary 2.23 we do not need Theorem 2.19.
To be more precise, the integrability requirement (2.19) for the hardening variable
can be relaxed such that GE : W−1,p

D

(
Ω;Rd

)
→ Lβ

(
Ω;S2

)
×W 1,β

D

(
Ω;Rd

)
is only

directionally differentiable for all 1 ≤ β < p without the remainder term property
(2.48).

Assumption 2.24. The solution of (2.15) satisfies the weaker condition χ̄ ∈
Ls(Ω; S) with

s >
p

p− 2
. (2.50)

For the rest of this section Assumption 2.24 is supposed to hold instead of Assump-
tion 2.13(ii).

Remark 2.25. As in Remark 2.14(ii) we infer from (2.50) that q defined in (2.20)
fulfills p′ < q < p. Therefore, the statements of Lemma 2.15 and Lemma 2.16
remain unaffected by Assumption 2.24.

By similar arguments as in the proof of Theorem 2.19 we can establish the following
Theorem.
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Theorem 2.26. Let (Σ̄, ū, λ̄) be the solution of (2.15), (Σt,ut, λt) the solution of
(2.25) and (Σ′,u′, λ′) the solution of (2.18). Then it holds(

Σt − Σ̄

t
,
ut − ū
t

)
t↘0−−→

(
Σ′,u′

)
in S2 × V, (2.51)

i.e., the control-to-state map GE is directionally differentiable from W−1,p
D

(
Ω;Rd

)
to S2 × V .

Proof. Let {tn}n∈N ⊂ R+ be an arbitrary sequence of positive real numbers con-
verging to zero and let (Σtn ,utn , λtn) be given by the solution of (2.25) with right
hand side ¯̀+ tnδ`. Subtracting (2.15a) and (2.18a) from (2.25a) and testing with
(Σtn − Σ̄)/tn −Σ′ results in(
A

(
Σtn − Σ̄

tn
−Σ′

)
,

Σtn − Σ̄

tn
−Σ′

)
+

(
div∗

(utn − ū
tn

− u′
)
,

Σtn − Σ̄

tn
−Σ′

)
︸ ︷︷ ︸

=:In1

+

(
λtnDΣtn − λ̄DΣ̄

tn
− λ̄DΣ′ − λ′DΣ̄,

DΣtn −DΣ̄

tn
−DΣ′

)
= 0.

Due to (2.15b), (2.25b) and (2.18b) we infer div
(
(Σtn − Σ̄)/tn −Σ′

)
= 0 and thus

In1 = 0 for all n ∈ N. Analogously to (2.35) we obtain

c

∥∥∥∥Σtn − Σ̄

tn
−Σ′

∥∥∥∥2

S2

≤

≤−
(
λtnDΣtn − λ̄DΣ̄

tn
− λ̄DΣ′ − λ′DΣ̄,

DΣtn −DΣ̄

tn
−DΣ′

)
=

(
λtnDΣtn − λ̄DΣ̄

tn
− λ̄DΣ′ − λ′DΣ̄, DΣ′

)
︸ ︷︷ ︸

=:In2

+

(
λ̄DΣ′,

DΣtn −DΣ̄

tn

)
︸ ︷︷ ︸

=:In3

+

(
λ′DΣ̄,

DΣtn −DΣ̄

tn

)
︸ ︷︷ ︸

=:In4

−
(
λtn − λ̄
tn

DΣtn ,
DΣtn −DΣ̄

tn

)
︸ ︷︷ ︸

=:In5

−
(
λ̄
DΣtn −DΣ̄

tn
,
DΣtn −DΣ̄

tn

)
︸ ︷︷ ︸

=:In6

.

(2.52)

Next the convergence of In2 , In3 , In4 , In5 and In6 as n → ∞ is investigated. Thanks
to the boundedness of DΣ̄ and (2.23) the multiplier λ̄ belongs to Ls(Ω). Moreover,
in view of Remark 2.25 there exists m > 0 with 1/q + 1/m = 1/p′ so that (2.20),
Lemma 2.15(ii), Lemma 2.16(i) and (ii) yield

λtn − λ̄
tn

DΣtn ⇀ λ′DΣ̄, λ̄
DΣtn −DΣ̄

tn
⇀ λ̄DΣ′ in Lp

′
(Ω; S)
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and accordingly

In2 =

(
λtn − λ̄
tn

DΣtn + λ̄
DΣtn −DΣ̄

tn
− λ′DΣ̄− λ̄DΣ′, DΣ′

)
→ 0. (2.53)

From λ̄DΣ′, λ′DΣ̄ ∈ Lp′(Ω; S), Lemma 2.16(i) and (2.18c)–(2.18e) we further con-
clude

In3 →
(
λ̄DΣ′, DΣ′

)
, In4 →

(
λ′DΣ̄, DΣ′

)
= 0. (2.54)

The convergence of In5 is separately discussed on the sets Ās, B̄ and Ī. By Lemma
2.15 there exist subsequences, w.l.o.g. denoted by the same symbols, with λtn(x)→
λ̄(x) a.e. in Ω and Σtn(x) → Σ̄(x) a.e. in Ω. Similarly to (2.40) it can then be
shown that∫

Ās

λtn − λ̄
tn

DΣtn :
DΣtn −DΣ̄

tn
dx =

=

∫
Ās

λtn − λ̄
tn

ztn ‖DΣtn‖S

∥∥DΣtn −DΣ̄
∥∥
S

tn
dx

≤σ0

∥∥∥∥λtn − λ̄tn

∥∥∥∥
Lq(Ω)

‖ztn‖Lm(Ās)

∥∥∥∥Σtn − Σ̄

tn

∥∥∥∥
Lp(Ω;S)

≤ c ‖ztn‖Lm(Ās) ,

(2.55)

where the function ztn is as defined in (2.38) with Σtn instead of Σn. Note here
the boundedness of weakly convergent sequences, cf. Lemma 2.16. On account of
(2.41) and Remark 2.25 it follows∫

B̄

λtn − λ̄
tn

DΣtn :
DΣtn −DΣ̄

tn
dx =

∫
B̄

λtn − λ̄
tn

1

2

∥∥DΣtn −DΣ̄
∥∥2

S
tn

dx

≤ 1

2

∥∥∥∥λtn − λ̄tn

∥∥∥∥
Lq(Ω)

∥∥∥∥Σtn − Σ̄

tn

∥∥∥∥
Lp(Ω;S)

∥∥DΣtn −DΣ̄
∥∥
Lm(Ω;S)

≤ c
∥∥DΣtn −DΣ̄

∥∥
Lm(Ω;S)

(2.56)

with 1/p+ 1/q + 1/m = 1. Finally, we observe∫
Ī

λtn − λ̄
tn

DΣtn :
DΣtn −DΣ̄

tn
dx ≤ σ0

∥∥∥∥λtn − λ̄tn

∥∥∥∥
Lp′ (Ī)

∥∥∥∥Σtn − Σ̄

tn

∥∥∥∥
Lp(Ω;S)

≤ c
∥∥∥∥λtn − λ̄tn

∥∥∥∥
Lp′ (Ī)

(2.57)

with p′ < q and analogously to (2.43) we deduce

λtn − λ̄
tn

→ 0 in Lp
′
(Ī). (2.58)

Lemma 2.15(ii), (2.39) and (2.55)–(2.58) lead to

In5 → 0. (2.59)
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Let f : Lp(Ω, S)→ R be defined by

τ 7→
(
λ̄, ‖τ‖2S

)
.

In consequence of (2.15c) the function −f is concave. Moreover, from (2.20) and
Remark 2.25 we infer 1/p+ 1/s+ 1/p < 1 so that

f(τ 1)− f(τ 2) =

∫
Ω
λ̄
(
‖τ 1‖2S − ‖τ 2‖2S

)
dx

=

∫
Ω
λ̄
(
‖τ 1‖S − ‖τ 2‖S

)(
‖τ 1‖S − ‖τ 2‖S + 2 ‖τ 2‖S

)
dx

≤
∥∥λ̄∥∥

Ls(Ω)
‖τ 1 − τ 2‖2Lp(Ω;S)

+
∥∥λ̄∥∥

Ls(Ω)
‖τ 1 − τ 2‖Lp(Ω;S) 2 ‖τ 2‖Lp(Ω;S)

(2.60)

for all τ 1, τ 2 ∈ Lp(Ω, S). This shows continuity of f and hence weak upper semi-
continuity of −f , which implies

lim sup
n→∞

In6 = lim sup
n→∞

(
−f
(
DΣtn −DΣ̄

tn

))
≤ −f

(
DΣ′

)
= −

(
λ̄DΣ′, DΣ′

)
.

(2.61)

Together (2.52)–(2.54), (2.59) and (2.61) induce∥∥∥∥Σtn − Σ̄

tn
−Σ′

∥∥∥∥2

S2

n→∞−−−→ 0. (2.62)

The convergence result for the displacement is obtained similarly to (2.47). By
subtracting (2.15a) and (2.18a) from (2.25a) and testing with

T̂ :=

(
ε(utn)− ε(ū)

tn
− ε(u′),−ε(utn)− ε(ū)

tn
+ ε(u′)

)
∈ S2

we arrive at∫
Ω

∥∥∥∥ε(utn)− ε(ū)

tn
− ε(u′)

∥∥∥∥2

S
dx ≤ c

∥∥∥∥utn − ūtn
− u′

∥∥∥∥
V

∥∥∥∥Σtn − Σ̄

tn
−Σ′

∥∥∥∥
S2

.

Korn’s inequality (Proposition A.25) and (2.62) yield the claim for every subse-
quence (Σtn ,utn , λtn) and thus for the whole sequence.

The next two corollaries can be derived analogously to Corollary 2.21 and Corollary
2.22.

Corollary 2.27. Let (Σ̄, ū) be given by the solution of (2.15), (Σt,ut) by the
solution of (2.25) and (Σ′,u′) by the solution of (2.18). Then it holds(

Σt − Σ̄

t
,
ut − ū
t

)
t↘0−−→

(
Σ′,u′

)
in Lβ

(
Ω;S2

)
×W 1,β

(
Ω;Rd

)
for all 1 ≤ β < p.
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Corollary 2.28. Let the multipliers λ̄, λt and λ′ be given by the solutions of (2.15).
(2.25) and (2.18), respectively. Then for all 1 ≤ γ < q it holds

λt − λ̄
t

t↘0−−→ λ′ in Lγ(Ω).

2.3. Second-order sufficient optimality conditions

Given the findings on the differentiability of the control-to state map GE we can
establish second-order sufficient optimality conditions for (PE). We start by provid-
ing some preparatory auxiliary results. Then rather restrictive sufficient optimality
conditions are presented, which however are applicable to a general smooth ob-
jective functional. Subsequently, we assume a specific structure of the objective
functional such that these conditions can be relaxed.

Throughout this section we make the following assumption.

Assumption 2.29. The objective functional J : V × U → R is twice continuously
Fréchet-differentiable.

According to Theorem 2.5 Problem (PE) is equivalent to

Minimize J(u,f)

s.t.


AΣ + div∗ u+ λD∗DΣ = 0 in S2

div Σ = Rf in V ′

0 ≤ λ(x) ⊥ φ(Σ(x)) ≤ 0 a.e. in Ω

 (2.63)

with R : U → V ′ given in (2.14). For the rest of this chapter we set

p = min(p̂, 3), (2.64)

where p̂ is as defined in Theorem 2.8. Hence, R continuously maps from U to
W−1,p
D

(
Ω;Rd

)
, cf. Remark 2.14(i). To simplify matters we denote R with range in

W−1,p
D

(
Ω;Rd

)
by the same symbol.

Remark 2.30. Let Assumption 2.1 hold. Furthermore let (Σ,u, λ) be the state and
multiplier associated with f ∈ U and (Σ̄, ū, λ̄) be the state and multiplier associated
with f̄ ∈ U . Due to the continuity of R the results of Section 2.2 imply

(i)
∥∥Σ− Σ̄

∥∥
Lp(Ω;S2)

+ ‖u− ū‖
W 1,p
D (Ω;Rd)

≤ L ‖R‖
∥∥f − f̄∥∥

U

(ii)
∥∥λ− λ̄∥∥

Lq(Ω)
≤ c ‖R‖

∥∥f − f̄∥∥
U
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(iii) ‖Σ′‖Lp(Ω;S2) + ‖u′‖
W 1,p
D (Ω;Rd)

≤ L ‖R‖
∥∥f − f̄∥∥

U

(iv) ‖λ′‖Lq(Ω) ≤ c ‖R‖
∥∥f − f̄∥∥

U

(v)
∥∥Σ− Σ̄−Σ′

∥∥
Lβ(Ω;S2)

+ ‖u− ū− u′‖
W 1,β
D (Ω;Rd)

= o
(∥∥f − f̄∥∥

U

)
∀β ∈ [1, p)

(vi)
∥∥λ− λ̄− λ′∥∥

Lγ(Ω)
= o

(∥∥f − f̄∥∥
U

)
∀ γ ∈ [1, q).

Here we used the abbreviation ‖R‖ := ‖R‖L(U,W−1,p
D (Ω;Rd))

.

The yield function φ involved in the complementarity constraints in (2.63) is Lip-
schitz continuous on the admissible set K:

Lemma 2.31. Let Σ1,Σ2 ∈ K. Then it holds

‖φ(Σ1)− φ(Σ2)‖Lν(Ω) ≤ σ0 ‖Σ1 −Σ2‖Lν(Ω;S2)

for every ν ≥ 1.

Proof. By definition of φ, cf. (2.3), we find

‖φ(Σ1)− φ(Σ2)‖νLν(Ω) =

∫
Ω

∣∣∣∣‖DΣ1‖2S − σ2
0

2
−
‖DΣ2‖2S − σ2

0

2

∣∣∣∣ν dx

=

∫
Ω

∣∣∣∣‖DΣ1‖2S
2

−
‖DΣ2‖2S

2

∣∣∣∣ν dx

=

∫
Ω

∣∣∣∣12(DΣ2 +DΣ1) : (DΣ1 −DΣ2)

∣∣∣∣ν dx

≤
∫

Ω

1

2ν
(
‖DΣ2‖S + ‖DΣ1‖S

)ν ‖DΣ1 −DΣ2‖νS dx

≤
∫

Ω
σν0 ‖Σ1 −Σ2‖νS dx = σν0 ‖Σ1 −Σ2‖νLν(Ω;S2) ,

where the last estimate follows from (2.2).

For the derivation of the second-order sufficient conditions a particularly chosen
Lagrange function is employed. To this end we introduce the space

S2
∞ :=

{
T ∈ S2 : DT ∈ L∞(Ω;S)

}
.

Note that every solution of (2.15) and (2.21), respectively, belongs to S2
∞ in conse-

quence of (2.15c) and (2.21c). Equipped with an appropriate norm, S2
∞ becomes a

Banach space:
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Proposition 2.32. The space S2
∞ endowed with the norm

‖T ‖S2
∞

:= ‖T ‖S2 + ‖DT ‖L∞(Ω;S)

is a Banach Space.

Proof. If {T n}n∈N is a Cauchy sequence in S2
∞, then {T n}n∈N and {DT n}n∈N are

Cauchy sequences in the Banach spaces S2 and L∞(Ω; S), respectively. Thus, there
exist T ∈ S2 and µ ∈ S with

T n → T in S2, DT n → µ in L∞(Ω; S).

Moreover there are subsequences converging pointwisely so that µ = DT a.e. in Ω.
Therefore, the space S2

∞ is complete.

With S2
∞ at hand we define the Lagrangian L : S2

∞ × V × L2(Ω) × U × S2 × V ×
L2(Ω)× L∞(Ω)′ → R through

L(Σ,u, λ,f ,Υ,w, µ, θ) =

= J(u,f) + (AΣ + div∗ u+ λD∗DΣ, Υ) + 〈div Σ−Rf , w〉
− (λ, µ) + 〈φ(Σ), θ〉L∞(Ω),L∞(Ω)′ .

(2.65)

On account of Assumption 2.29 and the definition of S2
∞ we obtain the following

result concerning the differentiability of L.

Proposition 2.33. The Lagrange function L defined in (2.65) is twice continuously
Fréchet-differentiable.

Proof. We show exemplarily that the nonlinear mapping F1 : L2(Ω) × S2
∞ → S,

(λ,Σ) 7→ λDΣ, is twice continuously Fréchet differentiable. The definition of the
norm on S2

∞ implies

rF1

(
(δλ, δΣ)

)
:=

∥∥F1(λ̄+ δλ, Σ̄ + δΣ)− F1(λ̄, Σ̄)− (δλDΣ̄ + λ̄DδΣ)
∥∥
S

‖(δλ, δΣ)‖L2(Ω)×S2
∞

=

∥∥(λ̄+ δλ)(DΣ̄ +DδΣ)− λ̄DΣ̄− δλDΣ̄− λ̄DδΣ
∥∥
S

‖(δλ, δΣ)‖L2(Ω)×S2
∞

=
‖δλDδΣ‖S

‖δλ‖L2(Ω) + ‖δΣ‖S2 + ‖DδΣ‖L∞(Ω;S)

≤ ‖DδΣ‖L∞(Ω;S)

(δλ,δΣ)→0−−−−−−−→ 0,

which shows differentiability of F1 with F ′1(λ̄, Σ̄)(δλ, δΣ) = δλDΣ̄ + λ̄DδΣ. Since
the first-order derivative is linear w.r.t. (λ̄, Σ̄), we conclude that F1 is twice con-
tinuously Fréchet differentiable. By the same arguments the nonlinear mapping
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F2 : S2
∞ → L∞(Ω;S), Σ 7→ φ(Σ), is Fréchet differentiable with first-order deriva-

tive F ′2(Σ̄)δΣ = DΣ̄ :DδΣ.

It will be crucial to estimate the last two expressions in (2.65) properly. More
precisely, we need the next auxiliary lemma.

Lemma 2.34. Let (Σ,u, λ) be the state and multiplier associated with f ∈ U
and (Σ̄, ū, λ̄) be the state and multiplier associated with f̄ ∈ U . Furthermore let
µ̄ ∈ Lζ(Ω) and θ̄ ∈ Lr(Ω) with

ζ, r >
sp

sp− p− 2s
and s >

2p

p− 2
, (2.66)

where p is as defined in (2.64). If µ̄ ≥ 0 in A1 := {x ∈ Ω : −κ1 ≤ φ(Σ̄) ≤ 0} for
some κ1 > 0 and θ̄ ≥ 0 in A2 := {x ∈ Ω : 0 ≤ λ̄ ≤ κ2} for some κ2 > 0, then there
are ν1, ν2 > 2 such that

−
∫

Ω
λµ̄ dx ≤ c

∥∥f − f̄∥∥ν1

U
,

∫
Ω
φ(Σ)θ̄ dx ≤ c

∥∥f − f̄∥∥ν2

U
.

Remark 2.35. The integrability condition (2.66) ensures that 1/ζ < 1−1/q−1/p,
or equivalently, ζ > qp/(qp− p− q) with q as defined in (2.20):

ζ >
sp

sp− p− 2s
=

sp2

sp2 − p(s+ p)− sp
=

sp
s+pp

sp
s+pp− p−

sp
s+p

=
qp

qp− p− q
.

Thanks to Remark 2.14(ii) we further know 1− 1/q − 1/p > 1− 1/p′ − 1/p = 0.

Proof of Lemma 2.34. By defining Ω1 := {x ∈ Ω : λ(x) > 0} and E1 := Ω1 ∩ A1,
we observe

−
∫

Ω
λµ̄ dx = −

∫
E1

λ︸︷︷︸
>0

µ̄︸︷︷︸
≥0

dx−
∫

Ω1\E1

λµ̄ dx

≤ −
∫

Ω1\E1

(λ− λ̄)µ̄ dx.

Note here that λ̄ = 0 a.e. in Ω1 \ E1 due to (2.15c). In view of Remark 2.35 there
exists β < p with 1/q + 1/ζ + 1/β = 1 so that we infer

−
∫

Ω
λµ̄ dx ≤

∥∥λ− λ̄∥∥
Lq(Ω)

‖µ̄‖Lζ(Ω) |Ω1 \ E1|
1
β .

From the definition of A1 and (2.21c) it follows

|Ω1 \ E1| =
1

κp1

∫
Ω1\E1

κp1 dx

<
1

κp1

∫
Ω1\E1

∣∣φ(Σ̄)
∣∣p dx =

1

κp1

∫
Ω1\E1

∣∣φ(Σ)− φ(Σ̄)
∣∣p dx.
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Because of Lemma 2.31, Remark 2.30(i) and (ii), we consequently arrive at

−
∫

Ω
λµ̄ dx < c

∥∥λ− λ̄∥∥
Lq(Ω)

‖µ̄‖Lζ(Ω)

∥∥φ(Σ)− φ(Σ̄)
∥∥ pβ
Lp(Ω)

≤ c
∥∥λ− λ̄∥∥

Lq(Ω)
‖µ̄‖Lζ(Ω)

∥∥Σ− Σ̄
∥∥ pβ
Lp(Ω;S2)

≤ c
∥∥f − f̄∥∥1+ p

β

U

(2.67)

with ν1 := 1+p/β > 2. If we define Ω2 := {x ∈ Ω : φ(Σ(x)) < 0} and E2 := Ω2∩A2,
then we obtain∫

Ω
φ(Σ)θ̄ dx =

∫
E2

φ(Σ)︸ ︷︷ ︸
<0

θ̄︸︷︷︸
≥0

dx+

∫
Ω2\E2

φ(Σ)θ̄ dx

≤
∫

Ω2\E2

(
φ(Σ)− φ(Σ̄)︸ ︷︷ ︸

=0

)
θ̄ dx

≤
∥∥φ(Σ)− φ(Σ̄)

∥∥
Lp(Ω)

∥∥θ̄∥∥
Lr(Ω)

|Ω2 \ E2|
1
γ ,

where the existence of γ < q with 1/p+ 1/r + 1/γ = 1 was used. The definition of
A2 and (2.21c) lead to

|Ω2 \ E2| =
1

κq2

∫
Ω2\E2

κq2 dx

<
1

κq2

∫
Ω2\E2

∣∣λ̄∣∣q dx =
1

κq2

∫
Ω2\E2

∣∣λ− λ̄∣∣q dx.

Thanks to Lemma 2.31, Remark 2.30(i) and (ii) it can be shown analogously to
(2.67) that ∫

Ω
φ(Σ)θ̄ dx ≤ c

∥∥f − f̄∥∥1+ q
γ

U

with ν2 := 1 + q/γ > 2.

Now we are ready to prove the first version of second-order sufficient optimality
conditions for (PE).

Theorem 2.36. Let f̄ ∈ U and (Σ̄, ū, λ̄) ∈ S2× V ×L2(Ω) be the associated state
and multiplier. Suppose further that there exist an adjoint state (Ῡ, w̄) ∈ S2 × V
and multipliers (µ̄, θ̄) ∈ L2(Ω)× L2(Ω) satisfying the following conditions:

(1) χ̄ ∈ Ls(Ω; S), Ῡ ∈ Lη
(
Ω; S2

)
, µ̄ ∈ Lζ(Ω) and θ̄ ∈ Lr(Ω) with

s >
2p

p− 2
, η, ζ, r >

sp

sp− p− 2s
(2.68)

and p as defined in (2.64).
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(2) (Ῡ, w̄) and (µ̄, θ̄) solve

AῩ + div∗ w̄ + λ̄D∗DῩ + θ̄D∗DΣ̄ = 0 (2.69a)
div Ῡ + ∂uJ(ū, f̄) = 0 (2.69b)
R∗w̄ − ∂fJ(ū, f̄) = 0 (2.69c)

DΣ̄ : DῩ = µ̄ (2.69d)
µ̄λ̄ = 0 a.e. in Ω (2.69e)

θ̄φ(Σ̄) = 0 a.e. in Ω (2.69f)
µ̄ ≥ 0 a.e. in A1 (2.69g)
θ̄ ≥ 0 a.e. in A2, (2.69h)

where the sets A1 and A1 are defined through

A1 = {x ∈ Ω : −κ1 ≤ φ(Σ̄) ≤ 0}
A2 = {x ∈ Ω : 0 ≤ λ̄ ≤ κ2}

for some κ1, κ2 > 0.

(3) There is an α > 0 such that

∂2
(Σ,u,λ,f)L

(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′,u′, λ′,h

)2 ≥ α ‖h‖2U (SSC)

for all h ∈ U and (Σ′,u′, λ′) solving (2.18) with δ` = Rh.

Then there exists an ε > 0 such that the quadratic growth condition

J(u,f) ≥ J(ū, f̄) +
α

4

∥∥f − f̄∥∥2

U
(2.70)

is fulfilled for all f ∈ U with
∥∥f − f̄∥∥

U
≤ ε. Thus, f̄ is a strict local optimum of

(PE).

Remark 2.37. The Lagrangian L is twice continuously differentiable in its space of
definition by Proposition 2.33. However, if the dual variables (Ῡ, θ̄) fulfill the inte-
grability conditions in (2.68), the second derivative of L w.r.t. the primal variables
(Σ,u, λ, g) is given by

∂2
(Σ,u,λ,f)L

(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)
(δΣ, δu, δλ, δf)2 =

=∇2
(u,f)J(ū, f̄)(δu, δf)2 + 2

∫
Ω
δλDδΣ :DῩ dx+

∫
Ω
‖DδΣ‖2S θ̄ dx

(2.71)

and defines a continuous bilinear form on the space Lp
(
Ω;S2

)
× V × Lq(Ω) × U ,

cf. Remark 2.35. Hence, the left-hand side in (SSC) is well-defined according to
Remark 2.30(iii) and (iv). Hereafter we denote the integrals in (2.71) as L2-scalar
products by (·, ·).
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Remark 2.38. Let us compare the sufficient optimality conditions in Theorem 2.36
with their finite-dimensional counterpart. In [69, Theorem 7] Scheel and Scholtes
proved that

• strong stationarity (=̂ necessary conditions for local optimality)

• coercivity of the Hessian (w.r.t. the primal variables) of the Lagrangian on the
cone of critical directions

guarantee local optimality for a mathematical program with complementarity con-
straints (MPCC) in finite dimensions. In case of the infinite-dimensional MPCC
(PE) Herzog et al. proved that C-stationarity conditions are necessary for local op-
timality, see [43, Theorem 3.16]. These conditions coincide with (2.69), except
that they claim a sign condition only for the product of the multipliers µ̄ and θ̄ in
contrast to (2.69g) and (2.69h). To the best knowledge of the author, necessary
conditions of strongly stationary type can be established solely if an additional and
physically meaningless control variable is introduced as inhomogeneity in (2.5a), cf.
[44, Theorem 4.5]. A strongly-stationary-like system for (PE) would coincide with
(2.69), except that the individual sign conditions for the multipliers would hold on
the biactive set B̄. The sets A1 and A2 involved in (2.69g) and (2.69h), respec-
tively, are even larger than B̄. Moreover, Theorem 2.36 requires higher integrability
of the hardening variable χ̄, the adjoint variable Ῡ and the multipliers µ̄ and θ̄,
cf. (2.68). Thus, we observe a significant gap between the necessary and the suffi-
cient optimality conditions for (PE). In addition, the set of directions, for which
the coercivity (SSC) has to be fulfilled, is larger than the cone of critical directions.
In the context of Problem (PE), this cone consists of all directions

(
Σ′,u′, λ′,h

)
,

which solve (2.18) and satisfy J ′(ū, f̄)(u′,h) = 0.
To sum up, the sufficient conditions in Theorem 2.36 are quite restrictive in compar-
ison with the sufficient conditions for finite dimensional MPCCs listed above. Later
on we will improve the assertion of Theorem 2.36 and obtain conditions, which are
more competitive with [69, Theorem 7], provided that the objective functional has a
certain structure, cf. Theorem 2.41.

Proof of Theorem 2.36. At first we note that Assumption 2.13 is satisfied because
of s > 2p/(p− 2) and (2.64). Therefore, the results of Section 2.2, enumerated
in Remark 2.30, can be employed. Let f ∈ U be arbitrary with f 6= f̄ and
(Σ,u, λ) ∈ S2

∞ × V × L2(Ω) be the state and multiplier associated with f .
We aim to deduce the quadratic growth condition (2.70) from a Taylor expansion
of the Lagrangian. For this purpose we introduce the abbreviations

z := (Σ,u, λ,f), z̄ :=
(
Σ̄, ū, λ̄, f̄

)
, ω̄ :=

(
Ῡ, w̄, µ̄, θ̄

)
.

As L is twice continuously differentiable in its space of definition, cf. Proposition
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2.33, there is a t ∈ [0, 1] such that

L(z, ω̄) = L(z̄, ω̄) +∇zL(z̄, ω̄)(z − z̄) +
1

2
∇2
zL(zt, ω̄)(z − z̄)2 (2.72)

with zt := z̄ + t(z − z̄). In the following we discuss each expression in (2.72)
separately.
The zero-order terms:
On account of (2.15a), (2.15b), (2.69e) and (2.69f) we observe

L(z̄, ω̄) = J(ū, f̄) +
(
AΣ̄ + div∗ ū+ λ̄D?DΣ̄, Ῡ

)︸ ︷︷ ︸
=0

+
〈
div Σ̄−Rf̄ , w̄

〉︸ ︷︷ ︸
=0

−
(
λ̄, µ̄

)
L2(Ω)︸ ︷︷ ︸

=0

+
(
φ(Σ̄), θ̄

)
L2(Ω)︸ ︷︷ ︸

=0

= J(ū, f̄).

(2.73)

In addition, (2.21a) and (2.21b) show

L(z, ω̄) = J(u,f) +
(
AΣ + div∗ u+ λD?DΣ, Ῡ

)︸ ︷︷ ︸
=0

+ 〈div Σ−Rf , w̄〉︸ ︷︷ ︸
=0

− (λ, µ̄)L2(Ω) +
(
φ(Σ), θ̄

)
L2(Ω)

= J(u,f)− (λ, µ̄)L2(Ω) +
(
φ(Σ), θ̄

)
L2(Ω)

(2.74)

so that Lemma 2.34 leads to

L(z, ω̄) ≤ J(u,f) + o
(∥∥f − f̄∥∥2

U

)
. (2.75)

The first-order term:
The first derivative of L at z̄ in direction (z − z̄) is given by

∇zL(z̄, z̄′)(z − z̄) =

=
〈
∂uJ(ū, f̄), u− ū

〉
+
(
∂fJ(ū, f̄), f − f̄

)
+
(
A(Σ− Σ̄), Ῡ

)
+
(
div∗(u− ū), Ῡ

)
+
(
(λ− λ̄)D∗DΣ̄, Ῡ

)
+
(
λ̄D∗D(Σ− Σ̄), Ῡ

)
+
〈
div(Σ− Σ̄), w̄

〉
−
〈
R(f − f̄), w̄

〉
−
(
λ− λ̄, µ̄

)
+
(
DΣ̄ :D(Σ− Σ̄), θ̄

)
=
(
AῩ + div∗ w̄ + λ̄D∗DῩ + θ̄D∗DΣ̄, Σ− Σ̄

)
+
〈
div Ῡ + ∂uJ(ū, f̄), u− ū

〉
+
(
∂fJ(ū, f̄)−R∗w̄, f − f̄

)
−
(
λ− λ̄, µ̄

)
+
(
λ− λ̄, DΣ̄ :DῩ

)
.

From (2.69a)–(2.69d) we thus conclude

∇zL(z̄, z̄′)(z − z̄) = 0. (2.76)

The second-order term:
In view of Remark 2.37 it is already known that

∇2
zL(zt, ω̄)(z − z̄)2 =

=∇2
(u,f)J(ut,f t)(u− ū,f − f̄)2 + 2

(
(λ− λ̄)D∗D(Σ− Σ̄), Ῡ

)
+
(∥∥DΣ−DΣ̄

∥∥2

S , θ̄
)
.

(2.77)
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Since ∇2
(u,f)J(ū, f̄)[·, ·] defines a bilinear function on V × U , we find

∇2
(u,f)J(ū, f̄)(u′,f − f̄)2 −∇2

(u,f)J(ū, f̄)(u− ū,f − f̄)2 =

= ∂2
uJ(ū, f̄)[u′,u′]− ∂2

uJ(ū, f̄)[u− ū,u− ū]− 2∂f∂uJ(ū, f̄)[u− ū− u′,f − f̄ ]

= − ∂2
uJ(ū, f̄)[u− ū− u′,u′]− ∂2

uJ(ū, f̄)[u− ū,u− ū− u′]
− 2∂f∂uJ(ū, f̄)[u− ū− u′,f − f̄ ]

= − ∂2
uJ(ū, f̄)[u− ū− u′,u− ū− u′]− 2∂2

uJ(ū, f̄)[u− ū− u′,u′]
− 2∂f∂uJ(ū, f̄)[u− ū− u′,f − f̄ ].

Consequently, equation (2.77) can be rewritten as

∇2
zL(zt, ω̄)(z − z̄)2 =

= ∇2
(u,f)J(ū, f̄)(u′,f − f̄)2︸ ︷︷ ︸

=:D1

+
(
∇2

(u,f)J(ut,f t)−∇2
(u,f)J(ū, f̄)

)
(u− ū,f − f̄)2

+ 2∂f∂uJ(ū, f̄)[u− ū− u′,f − f̄ ] + ∂2
uJ(ū, f̄)(u− ū− u′)2

+ 2∂2
uJ(ū, f̄)[u− ū− u′,u′] + 2

(
(λ− λ̄)D∗D(Σ− Σ̄), Ῡ

)
+
(∥∥DΣ−DΣ̄

∥∥2

S , θ̄
)
.

Next we derive estimates for the last two expressions. Thanks to the regularity
condition (2.68) there exist q < β < p and γ < q such that 1/q + 1/β + 1/η < 1
and 1/γ + 1/p+ 1/η < 1, cf. Remark 2.35. In view of Remark 2.30(ii) and (iii) we
deduce(

(λ− λ̄)(DΣ−DΣ̄), DῩ
)

=

=
(
λ′DΣ′, DῩ

)︸ ︷︷ ︸
=:D2

+
(
(λ− λ̄)(DΣ−DΣ̄−DΣ′), DῩ

)
+
(
(λ− λ̄− λ′)DΣ′, DῩ

)
≥
(
λ′DΣ′, DῩ

)
− c

∥∥λ− λ̄∥∥
Lq(Ω)

∥∥Σ− Σ̄−Σ′
∥∥
Lβ(Ω;S2)

∥∥Ῡ∥∥
Lη(Ω;S2)

− c
∥∥λ− λ̄− λ′∥∥

Lγ(Ω)

∥∥Σ′∥∥
Lp(Ω;S2)

∥∥Ῡ∥∥
Lη(Ω;S2)

≥
(
λ′DΣ′, DῩ

)
− c

∥∥f − f̄∥∥
U

(∥∥Σ− Σ̄−Σ′
∥∥
Lβ(Ω;S2)

+
∥∥λ− λ̄− λ′∥∥

Lγ(Ω)

)
.

Besides, (2.68) yields 1/p+ 1/β + 1/r < 1, which implies(∥∥DΣ−DΣ̄
∥∥2

S , θ̄
)

=

=
(∥∥DΣ′

∥∥2

S , θ̄
)

︸ ︷︷ ︸
=:D3

+
(∥∥DΣ−DΣ̄−DΣ′

∥∥2

S , θ̄
)

+ 2
(
(DΣ−DΣ̄−DΣ′) :DΣ′, θ̄

)
≥
(∥∥DΣ′

∥∥2

S , θ̄
)
− c

∥∥Σ− Σ̄−Σ′
∥∥
Lp(Ω;S)

∥∥Σ− Σ̄−Σ′
∥∥
Lβ(Ω;S2)

∥∥θ̄∥∥
Lr(Ω)

− c
∥∥Σ′∥∥

Lp(Ω;S)

∥∥Σ− Σ̄−Σ′
∥∥
Lβ(Ω;S2)

∥∥θ̄∥∥
Lr(Ω)

≥
(∥∥DΣ′

∥∥2

S , θ̄
)
− c

∥∥f − f̄∥∥
U

∥∥Σ− Σ̄−Σ′
∥∥
Lβ(Ω;S2)
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according to Remark 2.30(i) and (iii). Recalling again Remark 2.37, we furthermore
note

D1 + 2D2 +D3 = ∇2
zL(z̄, ω̄)

(
Σ′,u′, λ′,f − f̄

)2
.

Thus, because of Remark 2.30(iii)–(vi) and (SSC) we obtain

∇2
zL(zt, ω̄)(z − z̄)2 =

≥∇2
zL(z̄, ω̄)

(
Σ′,u′, λ′,f − f̄

)2
− c

∥∥∥∇2
(u,f)J(ut,f t)−∇2

(u,f)J(ū, f̄)
∥∥∥
L(V×U,(V×U)′)

∥∥f − f̄∥∥2

U

− c
∥∥∂f∂uJ(ū, f̄)

∥∥
L(U,V ′)

∥∥u− ū− u′∥∥
V

∥∥f − f̄∥∥
U

− c
∥∥∂2
uJ(ū, f̄)

∥∥
L(V,V ′)

∥∥u− ū− u′∥∥2

V

− c
∥∥∂2
uJ(ū, f̄)

∥∥
L(V,V ′)

∥∥u− ū− u′∥∥
V

∥∥u′∥∥
V

− c
∥∥f − f̄∥∥

U

(∥∥Σ− Σ̄−Σ′
∥∥
Lβ(Ω;S2)

+
∥∥λ− λ̄− λ′∥∥

Lγ(Ω)

)
≥α

∥∥f − f̄∥∥2

U
− o

(∥∥f − f̄∥∥2

U

)
,

(2.78)

where we used that J is twice continuously differentiable by Assumption 2.29. From
(2.72), (2.73) and (2.75)–(2.78) it follows

J(u,f) ≥ J(ū, f̄) +
α

2

∥∥f − f̄∥∥2

U
− o

(∥∥f − f̄∥∥2

U

)
= J(ū, f̄) +

(
α

2
−
o
(∥∥f − f̄∥∥2

U

)
∥∥f − f̄∥∥2

U

)∥∥f − f̄∥∥2

U
.

Hence there exists ε > 0 such that

J(u,f) ≥ J(ū, f̄) +
α

4

∥∥f − f̄∥∥2

U
∀f ∈ U with

∥∥f − f̄∥∥
U
≤ ε,

which is the desired quadratic growth condition.

Remark 2.39. For every p > 2, there are numbers s, η, ζ, r ∈ [2,∞[ satisfying the
regularity conditions (2.68). However, if p tends to 2, then the bounds for s, η, ζ,
and r tend to ∞, cf. also Remark 2.14(ii) and Remark 2.35. As p > 2p/(p− 2) for
all p > 4, the assumption for the integrability exponent s in (2.68) is automatically
fulfilled in case p > 4. In view of Sobolev’s embedding theorem such high integrability
cannot be expected for controls in U = L2

(
Ω;Rd

)
× L2

(
ΓN ;Rd

)
but for controls in

Lν1
(
Ω;Rd

)
×Lν2

(
ΓN ;Rd

)
with ν1, ν2 sufficiently large, cf. Remark 2.14(i), provided

that the problem data are smooth enough.

If the objective functional provides a particular structure, we are able to relax the
second-order condition (SSC). To be more precise, we can restrict the coercivity of
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the Hessian of L to the cone of critical directions so that (SSC) becomes a classical
condition, cf. [69, Theorem 7]. Moreover we are allowed to weaken the integrability
requirement for the hardening variable χ̄ in (2.68).

As in Theorem 2.36 let f̄ ∈ U and (Σ̄, ū, λ̄) be the associated state and multiplier.
For the rest of this section we assume that J fulfills the next assumption.

Assumption 2.40. The objective functional J : V × U → R is given by J(u,f) =
i(u) + j(f). Moreover it holds

i) i : V → R is twice continuously Fréchet-differentiable

ii) j : U → R is twice continuously Fréchet-differentiable and there exists a ν > 0
with

j′′(f̄)h2 ≥ ν ‖h‖2U ∀h ∈ U.

The second version of sufficient optimality conditions reads as follows.

Theorem 2.41. Let f̄ ∈ U and (Σ̄, ū, λ̄) ∈ S2× V ×L2(Ω) be the associated state
and multiplier. Suppose further that there are an adjoint state (Ῡ, w̄) ∈ S2 × V
and multipliers (µ̄, θ̄) ∈ L2(Ω)× L2(Ω) satisfying the following conditions:

(1) χ̄ ∈ Ls(Ω;S), Ῡ ∈ Lη
(
Ω; S2

)
, µ̄ ∈ Lζ(Ω) and θ̄ ∈ Lr(Ω) with

s >
p

p− 2
, η, ζ, r >

sp

sp− p− 2s
, (2.79)

and p as defined in (2.64).

(2) (Ῡ, w̄) and (µ̄, θ̄) solve

AῩ + div∗ w̄ + λ̄D∗DῩ + θ̄D∗DΣ̄ = 0 (2.80a)
div Ῡ + i′(ū) = 0 (2.80b)
R∗w̄ − j′(f̄) = 0 (2.80c)
DΣ̄ : DῩ = µ̄ (2.80d)

µ̄λ̄ = 0 a.e. in Ω (2.80e)
θ̄φ(Σ̄) = 0 a.e. in Ω (2.80f)

µ̄ ≥ 0 a.e. in A1 (2.80g)
θ̄ ≥ 0 a.e. in A2 (2.80h)

where the sets A1 and A1 are defined through

A1 = {x ∈ Ω : −κ1 ≤ φ(Σ̄) ≤ 0}
A2 = {x ∈ Ω : 0 ≤ λ̄ ≤ κ2}

for some κ1, κ2 > 0.

41



(3) There is an α > 0 such that

∂2
(Σ,u,λ,f)L

(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′,u′, λ′,h

)2 ≥ α ‖h‖2U (S̃SC)

for all h ∈ U and (Σ′,u′, λ′) solving (2.18) with δ` = Rh such that

i′(ū)u′ + j′(f̄)h = 0.

Then there exist ε > 0 and δ > 0 such that the quadratic growth condition

J(u,f) ≥ J(ū, f̄) + δ
∥∥f − f̄∥∥2

U
(2.81)

is fulfilled for all f ∈ U with
∥∥f − f̄∥∥

U
≤ ε. Thus, f̄ is a strict local optimum of

(PE).

Proof. The proof is similar to [55, Theorem 2.12]. We argue by contradiction and
assume the opposite of the quadratic growth condition (2.81). Then there exist
a sequence {fn}n∈N ⊂ U with f̄ 6= fn → f̄ and by Lemma 2.15 a sequence of
associated states {(Σn,un, λn)}n∈N with (Σn,un, λn) → (Σ̄, ū, λ̄) in Lp

(
Ω;S2

)
×

W 1,p
D

(
Ω;Rd

)
× Lq(Ω) satisfying

J(ū, f̄) +
1

n

∥∥fn − f̄∥∥2

U
> J(un,fn). (2.82)

For the sake of convenience we introduce the abbreviations

ρn :=
∥∥fn − f̄∥∥U , hn :=

fn − f̄
ρn

, Zn :=
Σn − Σ̄

ρn
, vn :=

un − ū
ρn

, ιn :=
λn − λ̄
ρn

.

Because of the boundedness of hn and the compactness of the operator R, cf.
Remark 2.14(i), there is a subsequence, w.l.o.g. denoted in the same way, with

hn ⇀ h in U, Rhn → Rh in W−1,β
D

(
Ω;Rd

)
∀ 1 ≤ β < p. (2.83)

Let (Σρn ,uρn , λρn) denote the state and multiplier associated with f̄ + ρnh and
(Σ′h,u

′
h, λ

′
h) denote the solution of (2.18) with right-hand side Rh. Then Theorem

2.8 implies ∥∥Zn −Σ′h
∥∥
Lβ(Ω;S2)

=

≤
∥∥∥∥Σρn − Σ̄

ρn
−Σ′h

∥∥∥∥
Lβ(Ω;S2)

+

∥∥∥∥Σn −Σρn

ρn

∥∥∥∥
Lβ(Ω;S2)

≤
∥∥∥∥Σρn − Σ̄

ρn
−Σ′h

∥∥∥∥
Lβ(Ω;S2)

+ L

∥∥∥∥R(fn − f̄ − ρnh)

ρn

∥∥∥∥
W−1,β
D (Ω;Rd)

≤
∥∥∥∥Σρn − Σ̄

ρn
−Σ′h

∥∥∥∥
Lβ(Ω;S2)

+ L ‖Rhn −Rh‖W−1,β
D (Ω;Rd)

.
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From Corollary 2.27 and (2.83) we thus infer∥∥Zn −Σ′h
∥∥
Lβ(Ω;S2)

n→∞−−−→ 0.

Analogous arguments hold true for vn and ιn, cf. Lemma 2.15(iii) and Corollary
2.28. Consequently, we observe

Zn → Σ′h in Lβ(Ω;S2) ∀ 1 ≤ β < p (2.84a)

vn → u′h in W 1,β
D (Ω;Rd) ∀ 1 ≤ β < p (2.84b)

ιn → λ′h in Lγ(Ω) ∀ 1 ≤ γ < q (2.84c)

with q as defined in (2.20). Because J is twice continuously differentiable, there is
an element (ũn, f̃n) between (ū, f̄) and (un,fn) such that

J(un,fn)− J(ū, f̄) =

= i′(ū)(un − ū) + j′(f̄)(fn − f̄) +
1

2
i′′(ũn)(un − ū)2 +

1

2
j′′(f̃n)(fn − f̄)2

+
(
A(Σn − Σ̄) + div∗(un − ū) + λnD∗DΣn − λ̄D∗DΣ̄, Ῡ

)︸ ︷︷ ︸
=0

+
〈
div(Σn − Σ̄)−Rfn +Rf̄ , w̄

〉︸ ︷︷ ︸
=0

+
(
λ̄D∗DΣn, Ῡ

)
−
(
λ̄D∗DΣn, Ῡ

)
= i′(ū)(un − ū) + j′(f̄)(fn − f̄) +

1

2
i′′(ũn)(un − ū)2 +

1

2
j′′(f̃n)(fn − f̄)2

+
(
AῩ + div∗ w̄ + λ̄D∗DῩ, Σn − Σ̄

)
+
〈
div Ῡ, un − ū

〉
−
(
R∗w̄, fn − f̄

)
+
(
(λn − λ̄)D∗DῩ, Σn

)
,

where (2.15a), (2.15b), (2.21a) and (2.21b) was used. On account of (2.80a)–(2.80c)
we obtain

J(un,fn)− J(ū, f̄) =
1

2
i′′(ũn)(un − ū)2 +

1

2
j′′(f̃n)(fn − f̄)2

−
(
θ̄D∗DΣ̄, Σn − Σ̄

)
+
(
(λn − λ̄)D∗DῩ, Σn

)
.

Hence, from (2.82) it follows(
(λn − λ̄)D∗DῩ, Σn

)
−
(
θ̄D∗DΣ̄, Σn − Σ̄

)
<
ρ2
n

n
− 1

2

(
i′′(ũn)(un − ū)2 + j′′(f̃n)(fn − f̄)2

)
,

which is equivalent to(
ιnD∗DῩ, Σn

)
−
(
θ̄D∗DΣ̄, Zn

)
<
ρn
n
− 1

2

(
i′′(ũn)[un − ū,vn] + j′′(f̃n)[fn − f̄ ,hn]

)
.

(2.85)
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Thanks to the integrability conditions (2.79) there are γ < q and β < p with
1/γ + 1/η + 1/p ≤ 1 and 1/p + 1/β + 1/r ≤ 1, cf. Remark 2.35, so that Lemma
2.15, (2.84a) and (2.84c) imply(

ιnD∗DῩ, Σn

)
→
(
λ′hD∗DῩ, Σ̄

)
,
(
θ̄D∗DΣ̄, Zn

)
→
(
θ̄D∗DΣ̄, Σ′h

)
. (2.86)

As the second derivatives of i and j are continuous bilinear forms by Assumption
2.40, we infer∣∣i′′(ũn)[un − ū,vn]

∣∣ ≤ ∣∣i′′(ũn)[un − ū,vn]− i′′(ū)[un − ū,vn]
∣∣

+
∣∣i′′(ū)[un − ū,vn]

∣∣
≤
∥∥i′′(ũn)− i′′(ū)

∥∥
L(V,V ′)

‖un − ū‖V ‖vn‖V
+
∥∥i′′(ū)

∥∥
L(V,V ′)

‖un − ū‖V ‖vn‖V

and a similar estimate for j′′(f̃n)[fn − f̄ ,hn]. Thus, (2.83) and (2.84b) induce

i′′(ũn)[un − ū,vn]→ 0, j′′(f̃n)[fn − f̄ ,hn]→ 0. (2.87)

Note that vn as well as hn is bounded in consequence of the (weak) convergence.
From (2.85)–(2.87) we conclude(

λ′h, DῩ :DΣ̄
)
−
(
θ̄, DΣ̄ :DΣ′h

)
≤ 0. (2.88)

Moreover, (2.18c)–(2.18e) and (2.80d)–(2.80h) yield

λ′h = θ̄ = 0 in Ī, DῩ :DΣ̄ = DΣ̄ :DΣ′h = 0 in Ās
λ′h ≥ 0 in B̄, DῩ :DΣ̄ ≥ 0 in B̄
θ̄ ≥ 0 in B̄, DΣ̄ :DΣ′h ≤ 0 in B̄

and therefore
(
λ′h, DῩ :DΣ̄

)
−
(
θ̄, DΣ̄ :DΣ′h

)
≥ 0, which together with (2.88)

leads to (
λ′h, DῩ :DΣ̄

)
−
(
θ̄, DΣ̄ :DΣ′h

)
= 0. (2.89)

Because of (2.80a)–(2.80c), (2.18a) and (2.18b) we further find(
λ′h, DῩ :DΣ̄

)
−
(
θ̄, DΣ̄ :DΣ′h

)
=
(
λ′hD∗DΣ̄, Ῡ

)
−
(
θ̄D∗DΣ̄, Σ′h

)
=

=−
(
AΣ′h + div∗ u′h + λ̄D∗DΣ′h, Ῡ

)
+
(
AῩ + div∗ w̄ + λ̄D∗DῩ, Σ′h

)
=−

〈
div Ῡ, u′h

〉
+
〈
div Σ′h, w̄

〉
= −

〈
div Ῡ, u′h

〉
+ (R∗w̄, h)

= i′(ū)u′h + j′(f̄)h

and in view of (2.89) we arrive at

i′(ū)u′h + j′(f̄)h = 0. (2.90)

As in the proof of Theorem 2.36 we introduce the abbreviations

zn := (un,Σn, λn,fn), z̄ :=
(
ū, Σ̄, λ̄, f̄

)
, ω̄ :=

(
Ῡ, w̄, µ̄, θ̄

)
.
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Analogously to (2.73), (2.74) and (2.76) it can be shown that L(z̄, ω̄) = J(ū, f̄),
L(zn, ω̄) = J(un,fn)− (λn, µ̄) +

(
φ(Σn), θ̄

)
and ∇zL(z̄, ω̄)(zn − z̄) = 0. Conse-

quently, we derive

J(un,fn)− J(ū, f̄) = L(zn, ω̄) + (λn, µ̄)−
(
φ(Σn), θ̄

)
− L(z̄, ω̄)

=
1

2
∇2
zL(z̃n, ω̄)(zn − z̄)2 + (λn, µ̄)−

(
φ(Σn), θ̄

)
,

(2.91)

where z̃n denotes an element between z̄ and zn. From (2.82) and (2.91) it then
follows

1

2
∇2
zL(z̃n, ω̄)(zn − z̄)2 <

ρ2
n

n
− (λn, µ̄) +

(
φ(Σn), θ̄

)
(2.92)

so that Lemma 2.34 yields

1

2
∇2
zL(z̃n, ω̄)

(
zn − z̄
ρn

)2

<
1

n
+
o(ρ2

n)

ρ2
n

, (2.93)

which is equivalent to

1

2
∇2
zL(z̄, ω̄)

(
zn − z̄
ρn

)2

=

<
1

n
+
o(ρ2

n)

ρ2
n

− 1

2

(
∇2
zL(z̃n, ω̄)

(
zn − z̄
ρn

)2

−∇2
zL(z̄, ω̄)

(
zn − z̄
ρn

)2
)
.

(2.94)

Recalling (2.71), we know

∇2
zL(z̃n, ω̄)

(
zn − z̄
ρn

)2

−∇2
zL(z̄, ω̄)

(
zn − z̄
ρn

)2

=

=
[
∇2

(u,f)J(ũn, f̃n)−∇2
(u,f)J(ū, f̄)

](un − ū
ρn

,
fn − f̄
ρn

)2

.

(2.95)

Since ∇2
(u,g)J is continuous by assumption and the sequence (zn−z̄)/ρn is bounded

due to (weak) convergence, cf. (2.83) and (2.84), the right-hand side of (2.94) con-
verges to zero. For the discussion of the left-hand side we use again (2.71) and
observe

∇2
zL(z̄, ω̄)

(
zn − z̄
ρn

)2

= i′′(ū)(vn)2 + j′′(f̄)(hn)2

+ 2
(
ιnD∗DZn, Ῡ

)
+
(
‖Zn‖2S , θ̄

)
.

(2.96)

Thanks to the coercivity condition in Assumption 2.40(ii) the continuous mapping
U 3 f 7→ j′′(f̄)f2 ∈ R is convex and hence weakly lower semi-continuous. On
account of (2.83) we deduce

j′′(f̄)(h)2 ≤ lim inf
n→∞

j′′(f̄)(hn)2. (2.97)
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Furthermore, according to (2.79) we can chose 1 ≤ β < p and 1 ≤ γ < q with
1/β + 1/γ + 1/η ≤ 1 and 2/β + 1/r ≤ 1 so that (2.84) implies(

ιnD∗DZn, Ῡ
)
→
(
λ′hD∗DΣ′h, Ῡ

)
,
(
‖Zn‖2S , θ̄

)
→
(∥∥Σ′h∥∥2

S , θ̄
)
. (2.98)

Together, (2.94)–(2.98) and (2.84b) lead to

∇2
zL(z̄, ω̄)

(
Σ′h,u

′
h, λ

′
h,h

)2 ≤ lim inf
n→∞

∇2
zL(z̄, ω̄)

(
zn − z̄
ρn

)2

≤ 0.

Invoking (S̃SC) and (2.90), we infer h = 0 and therefore

Σ′h = 0, u′h = 0, λ′h = 0. (2.99)

Note that (2.18) is uniquely solvable. Since ‖hn‖U = 1 by definition, Assumption
2.40(ii) and (2.94)–(2.96) yield

0 <
ν

2
≤ 1

2
j′′(f̄)(hn)2

<
1

n
+
o(ρ2

n)

ρ2
n

− 1

2

[
∇2

(u,f)J(ũn, f̃n)−∇2
(u,f)J(ū, f̄)

](un − ū
ρn

,
fn − f̄
ρn

)2

− 1

2
i′′(ū)(vn)2 −

(
ιnD∗DZn, Ῡ

)
− 1

2

(
‖Zn‖2S , θ̄

)
.

On account of (2.84b), (2.98), (2.99) and the continuity of ∇2
(u,g)J the right-hand

side converges to zero, which is the desired contradiction.

Remark 2.42. Again, we want to compare the sufficient optimality conditions given
in Theorem 2.41 with [69, Theorem 7]. There is no analogue of the integrability
requirement (2.79) in finite dimensions. In contrast to Theorem 2.36 the coercivity
of the Hessian (w.r.t. the primal variable) of the Lagrangian is restricted to the cone
of critical directions, cf. (S̃SC), and can hence be seen as the infinite-dimensional
counterpart of the coercivity condition in [69, Theorem 7], cf. also Remark 2.38.
We still had to tighten the sign conditions of strong stationarity, though. In [69,
Theorem 7] it is sufficient, if the multipliers are nonnegative on the biactive set B̄,
which generally is a genuine subset of both A1 and A2. The larger sets are needed
in order to employ Lemma 2.34, cf. the estimates (2.75) and (2.93). However, in
finite dimensions this lemma is not necessary, as the crucial expressions already
provide a sign:
Let us assume that λ̄, φ(Σ̄), µ̄ and θ̄ are elements of Rm satisfying the following
complementarity system

µ̄iλ̄i = 0 ∀ i ∈ {1, . . . ,m} (2.100a)
θ̄iφ(Σ̄)i = 0 ∀ i ∈ {1, . . . ,m} (2.100b)
µ̄i, θ̄i ≥ 0 ∀ i ∈ B̄ =

{
i ∈ {1, . . . ,m} : λ̄i = φ(Σ̄)i = 0

}
. (2.100c)
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Due to (2.100a) we know µ̄i = 0 for all i ∈ Ās =
{
i ∈ {1, . . . ,m} : λ̄i > 0

}
. From

the continuity of φ and the convergence Σn → Σ̄ we moreover deduce φ(Σn)i < 0
and hence (λn)i = 0 for all i ∈ Ī =

{
i ∈ {1, . . . ,m} : φ(Σ̄)i < 0

}
, if n is large

enough. The sign condition (2.100c) together with λn ≥ 0 then shows

µ̄>λn =
m∑
i=1

µ̄i(λn)i =
∑
i∈B

µ̄i(λn)i ≥ 0. (2.101)

In view of λn → λ̄ we find (λn)i < 0 and consequently φ(Σn)i = 0 for all i ∈ Ās, if
n is large enough. In addition, thanks to (2.100b) we derive θ̄i = 0 for all i ∈ I so
that (2.100c) and φ(Σn) ≤ 0 imply

θ̄>φ(Σn) =
m∑
i=1

θ̄iφ(Σn)i =
∑
i∈B

θ̄iφ(Σn)i ≤ 0. (2.102)

Thus, the right-hand sides in (2.74) and (2.92) can be estimated without involving
Lemma 2.34. Since the above arguments, which lead to (2.101) and (2.102), cannot
be applied in function spaces, the assertion of Theorem 2.41 seems to be a natural
generalization of [69, Theorem 7].

In the remainder of this section we establish an equivalent formulation of (S̃SC).
Therefor the next auxiliary lemma is required.

Lemma 2.43. Let h ∈ U and {hn}n∈N ⊂ U be given. Moreover let (Σ′n,u
′
n, λ
′
n) be

the solution of (2.18) with right-hand side Rhn. If (Σ′n,u
′
n, λ
′
n,hn) ⇀ (Σ′,u′, λ′,h)

in S2 × V × L2(Ω)× U , then (Σ′,u′, λ′) solves (2.18) with right-hand side Rh.

Proof. According to Theorem 2.11 the system (2.18) with right-hand side Rhn is
equivalent to(
AΣ′n, T

)
−
(
AΣ′n, Σ′n

)
+
(
div∗ u′n, T

)
−
(
div∗ u′n, Σ′n

)
+
(
λ̄, DΣ′n :DT

)
−
(
λ̄,
∥∥DΣ′n

∥∥2

S

)
≥ 0 ∀T ∈ S` (2.103a)

div Σ′n = Rhn. (2.103b)

We will achieve the assertion by passing to the limit n→∞ in (2.103). To this end
let T ∈ S` be fixed but arbitrary. On account of the weak continuity of div and R
we conclude (2.17b) with ride-hand side Rh. Furthermore, the weak continuity of
A yields (

AΣ′n, T
)
→
(
AΣ′, T

)
,
(
div∗ u′n, T

)
→
(
div∗ u′, T

)
. (2.104)

Because of (2.103b), the compactness of R and (2.17b) we obtain(
div∗ u′n, Σ′n

)
=
〈
u′n, Rhn

〉
→
〈
u′, Rh

〉
=
(
div∗ u′, Σ′

)
. (2.105)
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By the same arguments as in the proof of Lemma 2.16 we infer

λ̄DΣ′n = −H−1χ′n − λ′nDΣ̄,

cf. (2.30). The left-hand side converges weakly in L1(Ω; S). However, resulting from
the boundedness of DΣ̄ the right-hand side converges weakly in S so that

λ̄DΣ′n ⇀ λ̄DΣ′ = −H−1χ′ − λ′DΣ̄ in S (2.106)

and therefore (
λ̄, DΣ′n :DT

)
→
(
λ̄, DΣ′ :DT

)
. (2.107)

Due to Assumption 2.1(2) the operator A is continuous and coercive. This is why
the mapping S2 3 T 7→ − (AT , T ) ∈ R is continuous and concave, which implies

lim sup
n→∞

(
−
(
AΣ′n, Σ′n

) )
≤ −

(
AΣ′, Σ′

)
. (2.108)

For the discussion of the remaining term in (2.103a) we introduce the space

S2
λ :=

{
T ∈ S2 :

√
λ̄DT ∈ S

}
endowed with the scalar product

(Σ, T )S2
λ

= (Σ, T ) +
(
λ̄, DΣ :DT

)
.

Similarly to the proof of Proposition 2.32 it can be derived that S2
λ is complete and

thus a Hilbert space. Next, we define the continuous function

f : S2
λ → R, T 7→

(
λ̄, DT :DT

)
.

In view of (2.15c) the function −f is concave and hence weakly upper semicontin-
uous. For S2

λ is a Hilbert space, every linear functional on S2
λ can be represented

by a scalar product. Since (2.106) induces(
λ̄DΣ′n, DT

)
→
(
λ̄DΣ′, DT

)
∀T ∈ S2

λ,

we find Σ′n ⇀ Σ′ in S2
λ and consequently

lim sup
n→∞

(
− f(Σ′n)

)
≤ −

(
λ̄,
∥∥DΣ′

∥∥2

S

)
. (2.109)

Altogether, from (2.103a), (2.104), (2.105) and (2.107)–(2.109) we deduce (2.17a).
Testing with DΣ′ in (2.106) and using the boundedness of DΣ̄ yields

√
λ̄DΣ′ ∈ S.

Since equality and inequality conditions remain valid for the weak limit, we observe
Σ′ ∈ S` so that (Σ′,u′, Rh) solves (2.17). By the same token it follows λ′ = 0 a.e.
in Ī. The argument which led from (2.30) to (2.31) and (2.106) then show that
λ′ coincides with the unique multiplier in (2.18). On account of Theorem 2.11 the
weak limit (Σ′,u′, λ′) is indeed the solution to (2.18) with ride-hand side Rh.
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Remark 2.44. If the hardening variable χ̄ satisfies the integrability condition in
(2.79), it is not necessary to introduce the Hilbert space S2

λ in the proof of Lemma
2.43. According to Remark 2.30(iii) and the weak convergence hn ⇀ h in U the
sequence {Σ′n}n∈N is bounded in Lp

(
Ω;S2

)
. Hence there is a subsequence, w.l.o.g.

denoted in the same way, converging weakly in Lp
(
Ω;S2

)
. Moreover, analogously to

(2.60) we obtain the continuity of f on Lp
(
Ω; S2

)
so that (2.109) is a consequence

of Σ′n ⇀ Σ′ in Lp
(
Ω;S2

)
.

The weak convergence of the sequences {Σ′n}n∈N and {u′n}n∈N in Lemma 2.43 is in
fact strong:

Corollary 2.45. Let h ∈ U , {hn}n∈N ⊂ U be given and let (Σ′n,u
′
n, λ
′
n) be the

solution of (2.18) with right-hand side Rhn. If (Σ′n,u
′
n, λ
′
n,hn) ⇀ (Σ′,u′, λ′,h) in

S2 × V × L2(Ω)× U , then (Σ′n,u
′
n)→ (Σ′,u′) in S2 × V .

Proof. Due to Lemma 2.43 we know that (Σ′,u′, λ′, Rh) solves (2.18). By sub-
tracting (2.18a) from the corresponding equation for (Σ′n,u

′
n, λ
′
n) and testing with

Σ′ −Σ′n we arrive at(
A(Σ′ −Σ′n), Σ′ −Σ′n

)
+
(
div∗(u′ − u′n), Σ′ −Σ′n

)
+
(
λ̄D(Σ′ −Σ′n), D(Σ′ −Σ′n)

)
+
(
(λ′ − λ′n)DΣ̄, D(Σ′ −Σ′n)

)
= 0.

The coercivity of A implies

c
∥∥Σ′ −Σ′n

∥∥2

S2 ≤−
(
div∗(u′ − u′n), Σ′ −Σ′n

)︸ ︷︷ ︸
=:In

−
(
λ̄,
∥∥D(Σ′ −Σ′n)

∥∥2

S

)
︸ ︷︷ ︸

=:IIn

−
(
(λ′ − λ′n)DΣ̄, D(Σ′ −Σ′n)

)︸ ︷︷ ︸
=:IIIn

.
(2.110)

By the same arguments as in the proof of Lemma 2.43, cf. (2.105) and (2.109), we
infer

In → 0 and lim sup
n→∞

(−IIn) ≤ 0. (2.111)

Thanks to (2.18c)–(2.18e) and the boundedness of DΣ̄ the weak convergence leads
to

IIIn =
(
λ′DΣ̄, DΣ′

)︸ ︷︷ ︸
=0

−
(
λ′nDΣ̄, DΣ′

)
−
(
λ′DΣ̄, DΣ′n

)
+
(
λ′nDΣ̄, DΣ′n

)︸ ︷︷ ︸
=0

= −
(
λ′nDΣ̄, DΣ′

)
−
(
λ′DΣ̄, DΣ′n

) n→∞−−−→ −2
(
λ′DΣ̄, DΣ′

)
= 0,

(2.112)

which together with (2.110) and (2.111) shows Σ′n → Σ′ in S2. In order to prove
strong convergence of u′n we subtract again (2.18a) from the corresponding equation
for (Σ′n,u

′
n, λ
′
n) and test with

Ť :=
(
ε(u′)− ε(u′n),−ε(u′) + ε(u′n)

)
∈ S2.
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Since DŤ = 0, Korn’s inequality (Proposition A.25) yields similarly to (2.46)–(2.47)∥∥u′ − u′n∥∥2

V
≤ c

∫
Ω

∥∥ε(u′ − u′n)
∥∥2

S dx = c
(
div∗(u′ − u′n), Ť

)
≤ c

∣∣(A(Σ′ −Σ′n), Ť
)∣∣ ≤ c∥∥u′ − u′n∥∥V ∥∥Σ′ −Σ′n

∥∥
S2

so that u′n → u′ in V .

By means of Lemma 2.18 we can extend the previous result:

Corollary 2.46. Let h ∈ U , {hn}n∈N ⊂ U be given and let (Σ′n,u
′
n, λ
′
n) be the

solution of (2.18) with right-hand side Rhn. If (Σ′n,u
′
n, λ
′
n,hn) ⇀ (Σ′,u′, λ′,h) in

Lp(Ω; S2)×V ×L2(Ω)×U with p ≥ 2, then Σ′n → Σ′ in Lβ(Ω; S2) for all 1 ≤ β < p.

Proof. As a result of Lemma 2.45 there exists a subsequence, w.l.o.g. denoted in
the same way, with Σ′n → Σ′ a.e. in Ω. Moreover the subsequence is bounded in
Lp(Ω; S2) because of the weak convergence. Thus, Lemma 2.18 implies the claim
for an arbitrary subsequence and hence for the whole sequence.

Based on Corollary 2.45 and Corollary 2.46 we can now prove an equivalent refor-
mulation of (S̃SC).

Theorem 2.47. Let (Σ̄, ū, λ̄) ∈ S2 × V × L2(Ω) be the state associated to f̄ ∈ U .
If χ̄ ∈ Ls(Ω; S), (Ῡ, w̄) ∈ Lη(Ω;S2) × V and (µ̄, θ̄) ∈ Lζ(Ω) × Lr(Ω) with s, η, ζ
and r satisfying (2.79), then the following two statements are equivalent:

a) There exists α > 0 such that

∂2
(Σ,u,λ,f)L

(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′,u′, λ′,h

)2 ≥ α ‖h‖2U
for all h ∈ U and (Σ′,u′, λ′) solving (2.18) with δ` = Rh such that i′(ū)u′+
j′(f̄)h = 0.

b) For all h ∈ U \ {0} and (Σ′,u′, λ′) solving (2.18) with δ` = Rh such that
i′(ū)u′ + j′(f̄)h = 0 it holds

∂2
(Σ,u,λ,f)L

(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′,u′, λ′,h

)2
> 0.

Proof. It suffices to show that a) is a consequence of b). Similar to [23, Theorem
4.4] we argue by contradiction and suppose the opposite of a). Then for every
α > 0 there exist hα ∈ U and (Σ′α,u

′
α, λ

′
α) solving (2.18) with δ` = Rhα such that

i′(ū)u′α + j′(f̄)hα = 0 and

∂2
(Σ,u,λ,f)L

(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′α,u

′
α, λ

′
α,hα

)2
< α ‖hα‖2U . (2.113)
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For S` is a cone, the solution map of (2.18) is positively homogeneous and we can
assume that ‖hα‖U = 1 for all α > 0. From Remark 2.30(iii) and (iv) we derive
boundedness of (Σ′α,u

′
α, λ

′
α) in Lp(Ω;S2)×W 1,p

D (Ω;R)×Lq(Ω). Consequently, there
exists a subsequence, w.l.o.g. denoted by the same symbols, with

(Σ′α,u
′
α, λ

′
α,hα)

α↘0−−−⇀ (Σ′,u′, λ′,h) in Lp(Ω; S2)×W 1,p
D (Ω;Rd)× Lq(Ω)× U.

Thanks to Corollary 2.45 and Corollary 2.46 it thus follows

u′α → u′ in V, Σ′α → Σ′ in Lβ(Ω; S2). (2.114)

Moreover, the weak limit satisfies

i′(ū)u′ + j′(f̄)h = lim
α→0

(
i′(ū)u′α + j′(ḡ)hα︸ ︷︷ ︸

=0

)
= 0. (2.115)

In view of (2.113) and (2.71) we observe

0 ≥ lim sup
α→0

∂2
(Σ,u,λ,f)L

(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′α,u

′
α, λ

′
α,hα

)2
≥ lim inf

α→0
∂2

(Σ,u,λ,f)L
(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′α,u

′
α, λ

′
α,hα

)2
= lim inf

α→0

{
∂2i(ū)(u′α)2 + ∂2j(f̄)h2

α + 2
(
λ′αDΣ′α, DῩ

)
+
(∥∥DΣ′α

∥∥2

S , θ̄
)}

.

(2.116)

The integrability conditions for Ῡ and θ̄ yield the existence of 1 ≤ β < p with
1/q + 1/β + 1/η ≤ 1 and 2/β + 1/r ≤ 1, cf. Remark 2.35, so that the strong
convergence (2.114) leads to(

λ′αDΣ′α, DῩ
)
→
(
λ′DΣ′, DῩ

)
,
(∥∥DΣ′α

∥∥2

S , θ̄
)
→
(∥∥DΣ′

∥∥2

S , θ̄
)
. (2.117)

On account of Assumption 2.40(ii) the continuous mapping U 3 f 7→ ∂2j(f̄)f2 ∈ R
is convex and hence weakly lower semi-continuous. Due to (2.114), (2.116) and
(2.117) we conclude

0 ≥ ∂2i(ū)(u′)2 + ∂2j(f̄)h2 + 2
(
λ′DΣ′, DῩ

)
+
(∥∥DΣ′

∥∥2

S , θ̄
)

= ∂2
(u,Σ,λ,f)L(ū, Σ̄, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄)(Σ′,u′, λ′,h)2.

(2.118)

As (Σ′,u′, λ′) solves (2.18) with ride-hand sideRh by Lemma 2.43, we deduce h = 0
from (2.115) and b). Furthermore, (2.18) is uniquely solvable, cf. Theorem 2.11,
which implies (Σ′,u′, λ′) = (0,0, 0). Invoking ‖hα‖U = 1, Assumption 2.40(ii) and
(2.71), we infer

ν = ν lim sup
α→0

‖hα‖2U ≤ lim sup
α→0

∂2j(f̄)h2
α

≤ lim sup
α→0

{
∂2

(Σ,u,λ,f)L
(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′α,u

′
α, λ

′
α,hα

)2 − ∂2i(ū)(u′α)2

− 2
(
λ′αDΣ′α, DῩ

)
−
(∥∥DΣ′α

∥∥2

S , θ̄
)}

.
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Therefore, (2.114), (2.116) and (2.117) together with (Σ′,u′, λ′) = (0,0, 0) show

ν ≤ lim sup
α→0

∂2
(Σ,u,λ,f)L

(
Σ̄, ū, λ̄, f̄ , Ῡ, w̄, µ̄, θ̄

)(
Σ′α,u

′
α, λ

′
α,hα

)2
− lim
α→0

{
∂2i(ū)(u′α)2 + 2

(
λ′αDΣ′α, DῩ

)
+
(∥∥DΣ′α

∥∥2

S , θ̄
)}

≤ 0,

contradictory to ν > 0.

Remark 2.48. The proof of Theorem 2.47 can analogously be applied to (SSC)
provided that the objective functional J satisfies Assumption 2.40.

2.4. An exact solution with non-vanishing biactive set

In Section 2.2 we have seen that the control-to-state map GE associated with (VIE)
is Bouligand differentiable (Theorem 2.19) or at least directionally differentiable
(Theorem 2.26), if additional integrability conditions are fulfilled by the solution
to (2.15), where GE is differentiated. However, if the biactive set of this solution
has positive Lebesgue measure, then GE is in general not Gâteaux differentiable,
cf. Remark 2.12. Consequently, it is delicate to derive necessary optimality condi-
tions from a reduced formulation, which would be the usual approach of optimal
control theory, see e.g. [73, Section 4.6]. Furthermore, gradient-based optimization
algorithms cannot carelessly be applied to (PE), cf. [2, Section 1.3].
In the following we will show that the case of biactivity can indeed arise. More
precisely, by means of the sufficient conditions stated in Theorem 2.36 we will find
a locally optimal control for Problem (PE) with non-vanishing biactive set.

The next assumption is supposed to hold throughout this section.

Assumption 2.49.

(i) The spatial dimension is d = 2.

(ii) Both C−1 and H−1 are the identity mapping S→ S f.a.a. x ∈ Ω.

(iii) The domain Ω is the unit sphere in R2, i.e., Ω =
{
x ∈ R2 : |x| < 1

}
.

(iv) The Dirichlet boundary ΓD is the entire boundary of Ω, i.e., ΓD =
{
x ∈

R2 : |x| = 1
}
.

First, we aim to construct a biactive solution to (VIE) with ` = Rf for some
control f ∈ U = L2

(
Ω;R2

)
. In view of Theorem 2.5 and Assumption 2.49 we look

52



for
(
(σ,χ),u, λ,f

)
∈ S2 ×H1

0

(
Ω;R2

)
× L2(Ω)× L2

(
Ω;R2

)
satisfying

C−1σ − ε(u) + λ
(
σD + χD

)
= 0 in S (2.119a)

H−1χ+ λ
(
σD + χD

)
= 0 in S (2.119b)

−
∫

Ω
σ : ε(v) dx−

∫
Ω
f · v dx = 0 ∀v ∈ H1

0

(
Ω;R2

)
(2.119c)

0 ≤ λ ⊥ φ(σ,χ) ≤ 0 a.e. in Ω (2.119d)

and |B| =
∣∣{x ∈ Ω : λ(x) = φ

(
σ(x),χ(x)

)
= 0}

∣∣ > 0. To this end let ū : Ω → R2

be defined through

ū(x) =

(
U
(
|x|2
)

U
(
|x|2
)) , (2.120)

where U : R→ R is given by

U(t) =

{
−σ0t

2 + 3
2σ0t− 13

16σ0, t < 1
4

σ0

√
t− σ0, t ≥ 1

4 .
(2.121)

The function U is twice continuously differentiable with first and second derivative

U ′(t) =

{
−2σ0t+ 3

2σ0, t < 1
4

σ0

2
√
t
, t ≥ 1

4 ,
U ′′(t) =

{
−2σ0, t < 1

4

− σ0

4t3/2
, t ≥ 1

4 .
(2.122)

Note that U ′ as well as U ′′ are continuous in t = 1/4. By the chain rule we know
ū ∈ C2

(
Ω;R2

)
so that ε(ū) ∈ C1

(
Ω, S

)
⊂ S and div ε(ū) ∈ C

(
Ω;R2

)
⊂ L2

(
Ω;R2

)
.

Since U vanishes in t = 1, it moreover follows ū ∈ H1
0

(
Ω;R2

)
. Thereby we obtain

a solution to (2.119), if we set

σ̄ = ε(ū), χ̄ = 0, λ̄ = 0, f̄ = div ε(ū), (2.123)

which is the system of linear elasticity, cf. [35, Section X.32]. In order to prove this
the following auxiliary lemma is needed.

Lemma 2.50. Let U : R→ R be defined by (2.121). Then it holds

U ′(t) <
σ0

2
√
t
∀ t ∈ (0, 1/4).

Proof. In consequence of (2.122) we have to check that −2σ0t+ 3/2σ0 < σ0/(2
√
t)

for all t ∈ (0, 1/4), or equivalently,

−4t3/2 + 3
√
t < 1 ∀ t ∈ (0, 1/4). (2.124)

We define g : (0, 1/4]→ R, t 7→ −4t3/2 + 3
√
t, and observe

g′(t) = −6
√
t+

3

2
√
t

= 0⇔ t =
1

4
. (2.125)
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Besides, the function g is concave, as its second derivative satisfies

g′′(t) = − 3√
t
− 3

4t3/2
≤ 0 ∀ t ∈ (0, 1/4].

Hence the maximum value of g in (0, 1/4] is g(1/4) = 1. From (2.125) we further
deduce g′(t) < 0 for all t ∈ (0, 1/4) so that g is strictly increasing in (0, 1/4), which
implies (2.124).

Proposition 2.51. Let σ̄, χ̄, ū, λ̄ and f̄ be as defined in (2.120) and (2.123).
Then

(
(σ̄, χ̄), ū, λ̄, f̄

)
∈ S2 ×H1

0

(
Ω;R2

)
× L2(Ω) × L2

(
Ω;R2

)
solves (2.119) with

associated biactive set B̄ and inactive set Ī given by

B̄ =
{
x ∈ R2 : 1/4 ≤ |x|2 < 1

}
, Ī =

{
x ∈ R2 : 0 ≤ |x|2 < 1/4

}
. (2.126)

Proof. Assumption 2.49(ii) together with σ̄ = ε(ū), χ̄ = 0 and λ̄ = 0 yields
(2.119a) and (2.119b). Furthermore, (2.119c) is the weak formulation of div σ̄ = f̄ ,
cf. Assumption 2.49(iv). For the verification of (2.119d) it suffices to show

φ
(
ε(ū),0

)
≤ 0⇔

∥∥ε(ū)D
∥∥
S ≤ σ0 a.e. in Ω.

We recall that the linearized strain ε(ū) is defined through

ε(ū) =

 ∂ū1
∂x1

1
2

(
∂ū1
∂x2

+ ∂ū2
∂x1

)
1
2

(
∂ū1
∂x2

+ ∂ū2
∂x1

)
∂ū2
∂x2

 (2.127)

and its deviatoric part is

ε(ū)D =

1
2

(
∂ū1
∂x1
− ∂ū2

∂x2

)
1
2

(
∂ū1
∂x2

+ ∂ū2
∂x1

)
1
2

(
∂ū1
∂x2

+ ∂ū2
∂x1

)
1
2

(
∂ū2
∂x2
− ∂ū1

∂x1

)
 . (2.128)

Consequently, we find

∥∥ε(ū)D
∥∥2

S = 2

(
1

2

(
∂ū1

∂x1
− ∂ū2

∂x2

))2

+ 2

(
1

2

(
∂ū1

∂x2
+
∂ū2

∂x1

))2

=
1

2

((
∂ū1

∂x1

)2

− 2
∂ū1

∂x1

∂ū2

∂x2
+

(
∂ū2

∂x2

)2
)

+
1

2

((
∂ū1

∂x2

)2

+ 2
∂ū1

∂x2

∂ū2

∂x1
+

(
∂ū2

∂x1

)2
)
.

In addition, the partial derivatives of ū satisfy

∂ū1

∂x1
=
∂ū2

∂x1
= 2x1U

′(|x|2), ∂ū1

∂x2
=
∂ū2

∂x2
= 2x2U

′(|x|2) (2.129)
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which leads to∥∥ε(ū)D
∥∥2

S =
1

2

(
8x2

1U
′(|x|2)2 + 8x2

2U
′(|x|2)2) = 4|x|2U ′

(
|x|2
)2
.

If x = 0, then we know
∥∥ε(u)D

∥∥ = 0 ≤ σ0. From (2.122) and Lemma 2.50 we
moreover conclude ∥∥ε(ū)D

∥∥
S = 2|x|U ′

(
|x|2
)
≤ 2|x| σ0

2|x|
= σ0 (2.130)

for all x 6= 0 and thus (2.119d). The estimate in (2.130) becomes an equation, if
x ∈

{
x ∈ R2 : 1/4 ≤ |x|2 < 1

}
, and a strict inequality otherwise. In view of (2.16)

and λ̄ = 0 we obtain (2.126).

Next, a particularly chosen objective functional J is considered such that f̄ ∈
L2
(
Ω;R2

)
with associated state and multiplier

(
(σ̄, χ̄), ū, λ̄

)
∈ S2 × H1

0 (Ω;R2) ×
L2(Ω) as defined in Proposition 2.51 is a locally optimal solution of Problem (PE).
We introduce the abbreviation

B1/2 =
{
x ∈ R2 : 0 ≤ |x| < 1/2

}
and define J : V × L2

(
Ω;R2

)
→ R through

J(u,f) =
1

2
‖u− ud1‖2L2(Ω;R2) +

1

2
‖u− ud2‖2L2(∂B1/2;R2)

+
ν

2
‖f − fd‖

2
L2(Ω;R2) .

(2.131)

The functions ud1 ∈ L2
(
Ω;R2

)
, ud2 ∈ L2

(
∂B1/2;R2

)
and fd ∈ L2

(
Ω;R2

)
are given

by

ud1(x) =

{
ū(x) + 2 div ε(ū(x)), x ∈ B1/2

ū(x) + div
(
ε(ū(x)) + ε(ū(x))S

)
, x ∈ Ω \B1/2

(2.132a)

ud2(x) = ū(x)− ε(ū(x))D
x

|x|
(2.132b)

fd = f̄ − 2

ν
ū, (2.132c)

where ν is a positive real number and

ε(ū)S =
1

2

(
trace ε(ū)

)
I (2.133)

with identity tensor I ∈ S is the spherical part of ε(ū).

Proposition 2.52. Let J : V × L2
(
Ω;R2

)
→ R be as defined in (2.131). Then

f̄ ∈ L2
(
Ω;R2

)
with associated state and multiplier

(
(σ̄, χ̄), ū, λ̄

)
defined in (2.120)

and (2.123) is a locally optimal control for (PE). In particular, the biactive set B̄
has positive Lebesgue measure.
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Proof. Because the objective functional J is twice continuously Fréchet differen-
tiable, we can apply Theorem 2.36. In view of Assumption 2.49, (2.123) and
Proposition 2.51 the function f̄ is a locally optimal control for (PE), if there ex-
ist an adjoint state

(
(ζ̄, ψ̄), w̄

)
∈ Lη(Ω;S)2 × H1

0

(
Ω;R2

)
and multipliers (µ̄, θ̄) ∈

Lζ(Ω)× Lr(Ω) with

η, ζ, r >
sp

sp− p− 2s
, s >

2p

p− 2
(2.134)

and p ∈ (2, 3] as defined in (2.64), which fulfill the following optimality conditions:

(a)
(
(ζ̄, ψ̄), w̄

)
and (µ̄, θ̄) solve

ζ̄ − ε(w̄) + θ̄ε(ū)D = 0 (2.135a)

ψ̄ + θ̄ε(ū)D = 0 (2.135b)

−
∫

Ω
ζ̄ : ε(v) dx+

(
∂uJ(ū, f̄), v

)
= 0 ∀v ∈ H1

0

(
Ω;R2

)
(2.135c)

w̄ − ∂fJ(ū, f̄) = 0 (2.135d)

ε(ū)D :
(
ζ̄
D

+ ψ̄
D)− µ̄ = 0 a.e. in Ω (2.135e)

θ̄φ
(
(ε(ū),0)

)
= 0 a.e. in Ω (2.135f)

µ̄ ≥ 0 a.e. in A1 (2.135g)
θ̄ ≥ 0 a.e. in A2 (2.135h)

with A1 := {x ∈ Ω : −κ1 ≤ φ(Σ̄) ≤ 0} and A2 := {x ∈ Ω : 0 ≤ λ̄ ≤ κ2} for
some κ1, κ2 > 0.

(b) There is α > 0 such that

∂2
((σ,χ),u,λ,f)L

(
(σ̄, χ̄), ū, λ̄, f̄ , (ζ̄, ψ̄), w̄, µ̄, θ̄

)(
(σ′,χ′),u′, λ′,h

)2 ≥ α ‖h‖2U
for all h ∈ L2

(
Ω;R2

)
and

(
(σ′,χ′),u′, λ′

)
solving

σ′ − ε(u′) + λ′ε(ū)D = 0 (2.136a)

χ′ + λ′ε(ū)D = 0 (2.136b)

−
∫

Ω
σ′ : ε(v) dx−

∫
Ω
h · v dx = 0 ∀v ∈ H1

0

(
Ω;R2

)
(2.136c)

0 ≤ λ′ ⊥ ε(ū)D :
(
(σ′)D + (χ′)D

)
≤ 0 a.e. in Ω \B1/2 (2.136d)

0 = λ′ ⊥ ε(ū)D :
(
(σ′)D + (χ′)D

)
∈ R a.e. in B1/2. (2.136e)

Herein, the Lagrangian L : S2
∞ × H1

0

(
Ω;R2

)
× L2(Ω) × L2

(
Ω;R2

)
× S2 ×

H1
0

(
Ω;R2

)
× L2(Ω)× L∞(Ω)′ is given by

L
(
(σ,χ),u, λ,f , (ζ,ψ),w, µ, θ

)
=

= J(u,f) +
(
σ − ε(u) + λ

(
σD + χD

)
, ζ
)

+
(
χ+ λ

(
σD + χD

)
, ψ
)

− (σ, ε(w))− (f , w)− (λ, µ) +
〈
φ
(
(σ,χ)

)
, θ
〉
L∞(Ω),L∞(Ω)′

.
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We start with the construction of
(
(ζ̄, ψ̄), w̄

)
and (µ̄, θ̄) such that (a) is satisfied.

Subsequently we check the integrability condition (2.134) and (b). For that to
happen, let θ̄ : Ω→ R be defined through

θ̄ =

{
0, x ∈ B1/2

1, x ∈ Ω \B1/2.
(2.137)

On account of B̄ ∪ Ī = Ω and Ī = B1/2, cf. (2.126), we obtain (2.135f) and (2.135h)
with A2 = Ω due to λ̄ = 0. The choice

ψ̄ =

{
0, x ∈ B1/2

−ε(ū)D, x ∈ Ω \B1/2

(2.138)

leads to (2.135b). Next, we set w̄ = 2ū and observe

−ε(w̄) + θ̄ε(ū)D = −2ε(ū) + θ̄ε(ū)D =

{
−2ε(ū), x ∈ B1/2

−
(
ε(ū) + ε(ū)S

)
, x ∈ Ω \B1/2.

If ζ̄ : Ω→ S is defined by

ζ̄ =

{
2ε(ū), x ∈ B1/2

ε(ū) + ε(ū)S , x ∈ Ω \B1/2,
(2.139)

then it follows (2.135a). As ū is twice continuously differentiable, the function ζ̄
is continuously differentiable in B1/2 and Ω \B1/2, respectively. Hence, integration
by parts yields

−
∫

Ω
ζ̄ : ε(v) dx = −

∫
B1/2

ζ̄ : ε(v) dx−
∫

Ω\B1/2

ζ̄ : ε(v) dx

=

∫
B1/2

div ζ̄ · v dx−
∫
∂B1/2

ζ̄|B1/2

x

|x|
· v ds

+

∫
Ω\B1/2

div ζ̄ · v dx−
∫
∂B1/2

ζ̄|Ω\B1/2

(
− x

|x|

)
· v ds

for all v ∈ H1
0

(
Ω;R2

)
, where we used that x/ |x| is the unit outward normal on the

sphere B1/2. Note here the density of C∞0
(
Ω;R2

)
in H1

0

(
Ω;R2

)
. Since ε(ū) can be

decomposed into its deviatoric and spherical parts, we arrive at

−
∫

Ω
ζ̄ : ε(v) dx =

∫
Ω

div ζ̄ · v dx+

∫
∂B1/2

(
ζ̄|Ω\B1/2

− ζ̄|B1/2

) x
|x|
· v ds

=

∫
Ω

div ζ̄ · v dx+

∫
∂B1/2

(
− ε(ū) + ε(ū)S

) x
|x|
· v ds

=

∫
Ω

div ζ̄ · v dx+

∫
∂B1/2

(
− ε(ū)D − ε(ū)S + ε(ū)S

) x
|x|
· v ds

=

∫
Ω

div ζ̄ · v dx+

∫
∂B1/2

−ε(ū)D
x

|x|
· v ds.
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Because of (2.132a) and (2.132b) the partial derivative ∂uJ(ū, f̄) satisfies

∂uJ(ū, f̄)v =

∫
Ω

(ū− ud1) · v dx+

∫
∂B1/2

(ū− ud2) · v ds

=

∫
B1/2

−2 div ε(ū) · v dx+

∫
Ω\B1/2

−div
(
ε(ū) + ε(ū)S

)
· v dx

+

∫
∂B1/2

ε(ū)D
x

|x|
· v ds

for all v ∈ H1
0 (Ω;R2

)
so that (2.135c) is a result of (2.139). In addition, we infer

∂fJ(ū, f̄) = ν(f̄ − fd) = ω̄ from (2.132c), which shows (2.135d). Finally we set
µ̄ = ε(ū)D :

(
ζ̄
D

+ ψ̄
D). Together, (2.138), (2.139) and (ε(ū)S

)D
= 0 imply

ζ̄
D

+ ψ̄
D

=

{
2ε(ū)D, x ∈ B1/2

0, x ∈ Ω \B1/2

(2.140)

and hence µ̄ ≥ 0 in Ω, i.e., (2.135g) holds for arbitrary κ1 > 0. For (ζ̄, ψ̄, w̄) ∈
L∞(Ω; S)× L∞(Ω; S)×H1

0

(
Ω;R2

)
and (µ̄, θ̄) ∈ L∞(Ω)× L∞(Ω) by the regularity

of ū, the integrability condition (2.134) is met. In order to verify (b) we recall that
the second derivative of the Lagrangian w.r.t. the primal variables is given by

∂2
((σ,χ),u,λ,f)L

(
(σ̄, χ̄), ū, λ̄, f̄ , (ζ̄, ψ̄), w̄, µ̄, θ̄

)(
(σ′,χ′),u′, λ′,h

)2
=

=
∥∥u′∥∥2

L2(Ω;R2)
+
∥∥u′∥∥2

L2(∂B1/2;R2)
+ ν ‖h‖2L2(Ω;R2)

+ 2
(
λ′
(
(σ′)D + (χ′)D

)
,
(
ζ̄
D

+ ψ̄
D))

+
(∥∥(σ′)D + (χ′)D

∥∥2

S , θ̄
)
,

cf. (2.71). In view of (2.136e), (2.140) and (2.137) we deduce

∂2
((σ,χ),u,λ,f)L

(
(σ̄, χ̄), ū, λ̄, f̄ , (ζ̄, ψ̄), w̄, µ̄, θ̄

)(
(σ′,χ′),u′, λ′,h

)2
=

=
∥∥u′∥∥2

L2(Ω;R2)
+
∥∥u′∥∥2

L2(∂B1/2;R2)
+ ν ‖h‖2L2(Ω;R2) +

(∥∥(σ′)D + (χ′)D
∥∥2

S , θ̄
)

≥ ν ‖h‖2L2(Ω;R2)

for all h ∈ L2
(
Ω;R2

)
and

(
(σ′,χ′),u′, λ′

)
solving (2.136). Thanks to Theorem

2.36 the control f̄ with associated state and multiplier
(
(σ̄, χ̄), ū, λ̄

)
is thus locally

optimal for (PE). Moreover, according to Proposition 2.51 the biactive set B̄ fulfills
|B̄| > 0.

We end this section by providing a more detailed description of the local solution f̄
as well as the problem data ud1, ud2 and fd. From (2.123) and (2.127) we derive

f̄ = div ε(ū) =

∂2ū1

∂x2
1

+ 1
2

(
∂2ū1

∂x2
2

+ ∂2ū2
∂x2∂x1

)
1
2

(
∂2ū1
∂x1∂x2

+ ∂2ū2

∂x2
1

)
+ ∂2ū2

∂x2
2

 .
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The second-order partial derivatives of ū are given by

∂2ū1

∂x2
1

=
∂2ū2

∂x2
1

= 4x2
1U
′′(|x|2)+ 2U ′

(
|x|2
)

(2.141a)

∂2ū1

∂x2
2

=
∂2ū2

∂x2
2

= 4x2
2U
′′(|x|2)+ 2U ′

(
|x|2
)

(2.141b)

∂2ū1

∂x1∂x2
=

∂2ū2

∂x1∂x2
=

∂2ū1

∂x2∂x1
=

∂2ū2

∂x2∂x2
= 4x1x2U

′′(|x|2), (2.141c)

cf. also (2.129), so that

f̄ =

((
4x2

1 + 2x2
2 + 2x1x2

)
U ′′
(
|x|2
)

+ 3U ′
(
|x|2
)(

2x2
1 + 4x2

2 + 2x1x2

)
U ′′
(
|x|2
)

+ 3U ′
(
|x|2
)) . (2.142)

Consequently, (2.132c) leads to

fd =

((
4x2

1 + 2x2
2 + 2x1x2

)
U ′′
(
|x|2
)

+ 3U ′
(
|x|2
)
− 2

νU
(
|x|2
)(

2x2
1 + 4x2

2 + 2x1x2

)
U ′′
(
|x|2
)

+ 3U ′
(
|x|2
)
− 2

νU
(
|x|2
)) .

Moreover, (2.133) and (2.141) imply

div
(
ε(ū)S

)
= div

1
2

(
∂ū1
∂x1

+ ∂ū2
∂x2

)
0

0 1
2

(
∂ū1
∂x1

+ ∂ū2
∂x2

)
 =

1
2

(
∂2ū1

∂x2
1

+ ∂2ū2
∂x1∂x2

)
1
2

(
∂2ū1
∂x2∂x1

+ ∂2ū2

∂x2
1

)


=

(
2(x2

1 + x1x2)U ′′
(
|x|2
)

+ U ′
(
|x|2
)

2(x2
2 + x1x2)U ′′

(
|x|2
)

+ U ′
(
|x|2
)) .

Due to (2.123), (2.132a) and (2.142) we therefore obtain

ud1(x) =



U(|x|2)+
(
8x2

1 + 4x2
2 + 4x1x2

)
U ′′
(
|x|2
)

+ 6U ′
(
|x|2
)

U
(
|x|2
)

+
(
4x2

1 + 8x2
2 + 4x1x2

)
U ′′
(
|x|2
)

+ 6U ′
(
|x|2
)
 , x ∈ B1/2U(|x|2)+

(
6x2

1 + 2x2
2 + 4x1x2

)
U ′′
(
|x|2
)

+ 4U ′
(
|x|2
)

U
(
|x|2
)

+
(
2x2

1 + 6x2
2 + 4x1x2

)
U ′′
(
|x|2
)

+ 4U ′
(
|x|2
)
 , otherwise.

Furthermore, (2.128), (2.129) and (2.132b) yield

ud2(x) =

(
U
(
|x|2
)

U
(
|x|2
))− 1

|x|

1
2

(
∂ū1
∂x1
− ∂ū2

∂x2

)
x1 + 1

2

(
∂ū1
∂x2

+ ∂ū2
∂x1

)
x2

1
2

(
∂ū1
∂x2

+ ∂ū2
∂x1

)
x1 + 1

2

(
∂ū2
∂x2
− ∂ū1

∂x1

)
x2


=

(
U
(
|x|2
)

U
(
|x|2
))− 1

|x|

(
x2

1U
′(|x|2)+ x2

2U
′(|x|2)

x2
1U
′(|x|2)+ x2

2U
′(|x|2)

)

=

(
U
(
|x|2
)
− U ′

(
|x|2
)
|x|

U
(
|x|2
)
− U ′

(
|x|2
)
|x|

)
.
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Because only the values on the boundary of B1/2 matter, we conclude from (2.121)
and (2.122) that

ud2 =

(
−σ0

−σ0

)
on ∂B1/2 =

{
x ∈ R2 : |x| = 1/2

}
.
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3. Optimal control of Signorini’s
problem

This chapter is dedicated to optimal control problems governed by (VIS). To be
more precise, for a given objective functional J : V × U → R we now consider the
optimization problem

Minimize J(u,f)

s.t. the Signorini problem (VIS) with ` ∈ V ′ defined by

〈`, v〉 =

∫
Ω
f1 · v dx+

∫
ΓN

f2 · v ∀v ∈ V.

 (PS)

As in (PE), the functions f1 ∈ L2
(
Ω;Rd

)
and f2 ∈ L2

(
ΓN ;Rd

)
represent volume

and boundary loads, respectively, which are imposed on the domain Ω. By inserting
the law of linear elasticity σ = Cε(u) in the variational inequality in (VIS), we see
that the Signorini problem can be rewritten as follows: Given an inhomogeneity
` ∈ V ′ find a displacement u ∈ C such that

〈Bu, v − u〉 ≥ 〈`, v − u〉 ∀v ∈ C. (3.1)

The linear operator B : V → V ′ is defined through

〈Bu, v〉 =

∫
Ω
ε(u) : Cε(v) dx ∀u,v ∈ V,

where C(x) is a linear mapping from S to S, which may depend on the spatial
variable x, and ε(u) denotes the linearized strain tensor, cf. (2.1). The closed and
convex set of admissible displacements is determined by

C =
{
v ∈ V : τνv ≤ ψ a.e. on ΓC

}
. (3.2)

Herein, ψ ∈ H1/2(Γ) is given and τν is the normal trace operator, cf. Section A.2.
The function ψ represents the initial gap between ΓC and the surface of the rigid
obstacle, against which the domain Ω is pushed. From now on, when referring to
(VIS), we will think of (3.1).

Throughout this chapter the next assumption is supposed to hold.
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Assumption 3.1.

(1) The domain Ω ⊂ Rd, d ∈ {2, 3}, is bounded and of class C1,1. Its boundary Γ
consists of three disjoint measurable parts ΓD, ΓN and ΓC , each of which has
positive measure, such that ΓD ∪ ΓN ∪ ΓC = Γ. While ΓN is a relatively open
subset, ΓD and ΓC are a relatively closed subsets of Γ with dist(ΓC ,ΓD) > 0.

(2) The forth-order tensor C is an element of L∞
(
Ω;L(S)

)
. Moreover, C(x) is

uniformly coercive on S and symmetric, i.e., σ : C(x)σ ≥ c ‖σ‖2S with c > 0
independent of x and τ : C(x)σ = σ : C(x)τ hold for all σ, τ ∈ S.

(3) There exists v ∈ V such that ψ = τνv.

Remark 3.2. Assumption 3.1(2) is for instance fulfilled, if C is the inverse of the
tensor C−1 defined in (2.4), i.e., if C is given by

Cσ = 2µLσ + λL(traceσ)I

with Lamé constants satisfying µL > 0 and d λL + 2µL > 0:

σ : Cσ = 2µL ‖σ‖2S + d λL
(traceσ)2

d︸ ︷︷ ︸
>−2µL‖σ‖2S

≥ c ‖σ‖2S ,

cf. also Remark 2.2. This tensor is commonly known as elasticity tensor.

3.1. Existence of solutions

In the following we shortly comment on the existence of solutions to the Signorini
problem (VIS) and the corresponding control problem (PS), respectively.

First, we recall a known result for variational inequalities.

Theorem 3.3 ([58, Theorem 2.1]). Let X be a Hilbert space and C ⊂ X a closed
convex subset. Moreover let H ∈ L(X,X ′) be coercive and f ∈ X ′. Then there
exists a unique x ∈ C such that

〈Hx, y − x〉X′,X ≥ 〈f, y − x〉X′,X ∀ y ∈ C. (3.3)

Furthermore, the mapping f 7→ x is Lipschitz continuous from X ′ into X.

The operator B and the set C involved in (3.1) meet the conditions of Theorem 3.3
so that we infer the existence and uniqueness of a solution to (VIS). Note that
V is a Hilbert space in consequence of the continuity of the trace operator τ , cf.
Theorem A.14.
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Proposition 3.4. For every ` ∈ V ′ problem (3.1) admits a unique solution u ∈ C.
Furthermore, the mapping ` 7→ u is Lipschitz continuous from V ′ into V .

Proof. Since C is uniformly coercive and ΓD has positive measure by Assumption
2.1, Korn’s inequality (Proposition A.25) implies that B : V ′ → V is coercive. In
addition, it is continuous because of the boundedness of C. For τν is linear and
continuous, cf. Theorem A.22, the set C ⊂ V is closed and convex. Hence, the
assertion follows from Theorem 3.3.

In view of Proposition 3.4 we are allowed to introduce the control-to-state map
associated with (VIS).

Definition 3.5. The control-to-state map V ′ 3 ` 7→ u ∈ V is denoted by GS.

Completely analogously to Proposition 2.9 the existence of a generally not unique
solution to (PS) can be derived from the Lipschitz continuity of GS and the com-
pactness of the operator R : U → V ′ defined in (2.14).

Proposition 3.6. Suppose the objective functional J : V × U → R is weakly lower
semicontinuous. If there exist r > 0 and f̂ ∈ U such that

J
(
GS(Rf),f

)
≥ J

(
GS(Rf̂), f̂

)
∀f ∈ U with

∥∥f − f̂∥∥
U
> r,

then Problem (PS) admits a globally optimal solution.

In the remainder of this section three equivalent reformulations of (VIS) are pre-
sented, which will be useful for the subsequent analysis.

Thanks to its continuity and coercivity the operator B induces an equivalent norm
on V . Moreover the Lax-Milgram theorem yields that B is invertible. Therefore,
the function u ∈ C solves (3.1) if and only if

〈B(u−w), v − u〉 ≥ 0 ∀v ∈ C (3.4)

with w = B−1` ∈ V . The solution of (3.4) is the projection of w on the set C w.r.t.
to the norm induced by B.

Definition 3.7. The solution operator associated with (3.4) which maps V 3 w 7→
u ∈ C is denoted by PBC .

Furthermore, due to the coercivity of B the mapping u 7→ 〈B(u−w), u−w〉
defines a strictly convex functional on V . As the operator B is symmetric result-
ing from the symmetry of C, (3.4) is thus the necessary and sufficient optimality
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condition of the convex optimization problem

Minimize
1

2
〈B(u−w), u−w〉

s.t. u ∈ V, F (u) ∈ K,

 (3.5)

where the convex cone K is given by

K =
{
z ∈ τν [V ] : z ≤ 0 a.e. on ΓC

}
and the affine mapping F : V → τν [V ] is defined through

F (u) = τνu− ψ.

Note here that ψ is an element of τν [V ], cf. Assumption 3.1(3). The image τν [V ] ⊂
H1/2(Γ) of τν is a Hilbert space according to Corollary A.23. Since Ku(V ) = V
and F ′ = τν is surjective from V into τν [V ], every admissible function for (3.5) is
regular in the sense of Zowe-Kurcyusz [77]:

Lemma 3.8. Every u ∈ C is regular in the sense of Zowe-Kurcyusz [77], i.e., for
u ∈ C it holds F ′(u)Ku(V )−KF (u)(K) = τν [V ].

On account of Lemma 3.8 the Signorini problem (VIS) can be reformulated by
means of a complementarity system:

Theorem 3.9. A function u ∈ V is the solution of (VIS) if and only if there exists
a unique Lagrange multiplier λ ∈

(
τν [V ]

)′ such that

〈Bu, v〉+ 〈λ, τνv〉 = 〈`, v〉 ∀v ∈ V (3.6a)

λ ∈ K0, 〈λ, F (u)〉 = 0, F (u) ∈ K. (3.6b)

Proof. Let u ∈ V be the solution of (VIS), or equivalently, the solution of (3.5)
with w = B−1`. Because u is regular in the sense of Zowe-Kurcyusz, the existence
of a Lagrange multiplier is a corollary of [77, Theorem 3.1]. We suppose that there
exist two multipliers λ1, λ2 ∈

(
τν [V ]

)′ with λ1 6= λ2 satisfying (3.6). Subtracting
equation (3.6a) for λ2 from the one for λ1 leads to 〈λ1 − λ2, τνv〉 = 0 for all v ∈ V .
By definition this is equivalent to λ1 = λ2 in (τν [V ])′. Consequently, the Lagrange
multiplier is unique.
If (u, λ) ∈ V ×

(
τν [V ]

)′ is a solution to (3.6), then for v1,v2 ∈ V and α ∈ [0, 1]
we find F (αv1 + (1 − α)v2) − αF (v1) − (1 − α)F (v2) = 0 ∈ K, which together
with λ ∈ K0 implies that V 3 v 7→ 〈B(v −w), v −w〉 + 〈λ, F (v)〉 ∈ R is a
convex function. Hence, condition (3.6a) is necessary and sufficient for u to solve
the problem

Minimize
1

2
〈B(v −w), v −w〉+ 〈λ, F (v)〉

s.t. v ∈ V.
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Recall here the strict convexity of 〈B(· −w), · −w〉 and the symmetry of B. From
(3.6b) we then infer

1

2
〈B(u−w), u−w〉 =

1

2
〈B(u−w), u−w〉+ 〈λ, F (u)〉︸ ︷︷ ︸

=0

≤ 1

2
〈B(v −w), v −w〉+ 〈λ, F (v)〉︸ ︷︷ ︸

≤0

≤ 1

2
〈B(v −w), v −w〉

for all v ∈ V with F (v) ∈ K so that u is the solution to (3.5).

3.2. Directional differentiability

In this section we are concerned with the differentiability of the control-to-state
map GS : V ′ → V . By adapting the technique of Mignot [62, Section 3] we will
show that this operator is directionally differentiable.

The next Theorem states a criterion, which guarantees directional differentiability
of a projection.

Theorem 3.10 ([62, Théorème 2.1]). Let X be a Hilbert space, C ⊂ X a closed
convex subset and H ∈ L(X,X ′) be symmetric and coercive. Moreover let PHC
denote the projection on the set C w.r.t. norm induced by H. Suppose further that

Ky(C) ∩ [span(x− y)]0H = Ky(C) ∩ [span(x− y)]0H := Sy (3.7)

with x ∈ X and y = PHC (x). Then PHC is directionally differentiable at x and its
directional derivative is given by the projection on the set Sy w.r.t. the norm induced
by H. In particular it holds

PHC (x+ th) = PHC (x) + tPHSy(h) + o(t, h) ∀h ∈ X,

where o(t, h)/t→ 0 as t→ 0.

In what follows we aim to verify (3.7) for the operator PBC . To be more precise, we
want to establish

Ku(C) ∩ [span(w − u)]0B = Ku(C) ∩ [span(w − u)]0B (3.8)

for all w ∈ V and u = PBC (w). Because the control-to-state map GS satisfies

GS(`) =
(
PBC ◦B−1

)
(`), (3.9)

cf. (3.1) and (3.4), Theorem 3.10 together with the linearity of B would imply the
directional differentiability of GS , if the density property (3.8) was fulfilled.
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3.2.1. Extension of Riesz’ representation theorem

In order to prove (3.8) we have to extend the Riesz representation theorem to
positive functionals f ∈

(
H1(Ω)

)′. This will allow us to derive characterizations of
the sets involved in the right-hand side of (3.8).

The following lemma is a first step towards this extension.

Lemma 3.11. Let f ∈
(
H1(Ω)

)′ be positive, i.e., it holds 〈f, v〉 ≥ 0 for all v ∈
H1(Ω) with v ≥ 0 a.e. in Ω. Then there exists a unique measure µ ∈ M+(Ω) such
that

〈f, v〉 =

∫
Ω
v dµ (3.10)

for all v ∈ H1(Ω) ∩ C(Ω).

Proof. Let v ∈ H1(Ω)∩C(Ω) be arbitrary. For ‖v‖C(Ω)− v ≥ 0 in Ω, we infer from
the positivity of f that

〈f, v〉 ≤ ‖v‖C(Ω) 〈f, 1〉 . (3.11)

Since the right-hand side in (3.11) defines a sublinear function p : C(Ω) → R, the
Hahn-Banach theorem yields the existence of an extension ` ∈

(
C(Ω)

)′ with
`(v) = 〈f, v〉 ∀ v ∈ H1(Ω) ∩ C(Ω). (3.12)

We assume there is another extension ˜̀ ∈
(
C(Ω)

)′, ˜̀ 6= `, satisfying (3.12) and
hence ˜̀(v) = `(v) for all v ∈ C∞(Ω) ⊂ H1(Ω) ∩ C(Ω). However, by the Stone-
Weierstrass theorem we conclude ˜̀(v) = `(v) for all v ∈ C(Ω) so that ` is unique.
Moreover, due to the Riesz representation theorem there exists a unique µ ∈M(Ω)
with

`(v) =

∫
Ω
v dµ ∀ v ∈ C(Ω). (3.13)

Together, (3.12) and (3.13) lead to

〈f, v〉 =

∫
Ω
v dµ

for all v ∈ H1(Ω) ∩ C(Ω). It remains to be proven that µ ∈ M+(Ω). For this
purpose we consider K ⊂ B(Ω) compact and the finite open covering

Gε :=

n⋃
i=1

Bε(xi), xi ∈ K, n ∈ N, ε > 0.

Thanks to Lemma A.24 (partition of unity) there is ϕεK ∈ C∞0 (Gε) with 0 ≤ ϕεK ≤ 1
and ϕεK ≡ 1 in K. As ϕεK is bounded by 1 ∈ H1(Ω) ∩ C(Ω) ⊂ L1(Ω;µ) and

H1(Ω) ∩ C(Ω) 3 ϕεK
ε→0−−→ χK pointwisely in Rd,
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we deduce from Lebesgue’s dominated convergence theorem

〈f, ϕεK〉 =

∫
Ω
ϕεK dµ ε→0−−→

∫
Ω
χK dµ = µ(K).

Note that Lebesgue’s theorem can be applied for a general signed measure thanks
to the Hahn-Jordan decomposition µ = µ+ − µ− with positive measures µ+ and
µ−. Because of ϕεK ≥ 0 it follows 〈f, ϕεK〉 ≥ 0 for all ε > 0 by assumption and thus
µ(K) ≥ 0. The regularity of µ implies for arbitrary E ∈ B(Ω)

µ(E) = sup{µ(K) : K ⊂ E,K compact} ≥ 0

so that µ is indeed positive.

Now we aim to get rid of the set C(Ω). More precisely, we want to show that
every v ∈ H1(Ω) has a particular representative satisfying (3.10). The proof will
be performed in two steps:

1. We establish (3.10) for truncated H1(Ω)-functions by means of Lebesgue’s
dominated convergence theorem.

2. We conclude (3.10) for arbitrary functions v ∈ H1(Ω) with the help of the
monotone convergence theorem.

Therefor the convergence of truncated H1(Ω)-functions must be investigated. We
start by providing two known auxiliary results.

Lemma 3.12 ([1, Lemma A1.17]). Let f ∈ L1(Ω) and {En}n∈N ⊂ Ω be a sequence
of measurable sets with |En| → 0. Then it holds∫

En

f dµ→ 0.

While Lemma 3.12 states the convergence of the integral, if the measure of the
domain converges, the next one claims the converse.

Lemma 3.13. Let M ⊂ Ω be measurable, f ∈ L1(Ω) and {fn}n∈N ⊂ L1(Ω) with
fn → f in L1(Ω). If f > 0 a.e. in M , then it holds |{x ∈M : fn(x) ≤ 0}| → 0.

Proof. In [44, Lemma A.2] Herzog et al. already proved under the same assumptions
that |{x ∈M : fn(x) = 0}| → 0. Their proof can readily be adapted to the sets
{x ∈M : fn(x) ≤ 0}.

The space H1(Ω) is closed under truncation by Stampaccia [54, Theorem II.A.1]:
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Theorem 3.14. Let v ∈ H1(Ω). Then it holds v+ ∈ H1(Ω) with (weak) derivative
given by

∂xi(v
+) =

{
∂xiv in {x ∈ Ω: v(x) > 0}
0 in {x ∈ Ω: v(x) ≤ 0}

∀ i ∈ {1, . . . , d}. (3.14)

From Theorem 3.14 we deduce the following convergence result.

Lemma 3.15. Let v ∈ H1(Ω) and {vn}n∈N ⊂ H1(Ω) be a sequence with vn → v.
Then it holds

(i) v+
n → v+ in H1(Ω) as n→∞

(ii) min(v,m)→ v in H1(Ω) as m→∞.

Proof. (i): The domain Ω can be decomposed as Ω = An ∪ Bn ∪ Cn ∪ Dn with
An = {x ∈ Ω: vn(x) > 0, v(x) ≥ 0}, Bn = {x ∈ Ω: vn(x) ≤ 0, v(x) > 0},
Cn = {x ∈ Ω: vn(x) > 0, v(x) < 0} and Dn = {x ∈ Ω: vn(x) ≤ 0, v(x) ≤ 0}. In
view of (3.14) we thus obtain∥∥v+

n − v+
∥∥2

H1(Ω)
=

∫
An

(
|vn − v|2 + |∇(vn − v)|2

)
dx+

∫
Bn

(
|v|2 + |∇v|2

)
dx

+

∫
Cn

(
|vn|2 + |∇vn|2

)
dx.

Applying Minkowski’s inequality leads to∥∥v+
n − v+

∥∥2

H1(Ω)
≤

≤‖vn − v‖2H1(Ω) +

∫
Bn

(
|v|2 + |∇v|2

)
dx

+

((∫
Cn

|vn − v|2 dx
) 1

2
+
(∫

Cn

|v|2 dx
) 1

2

)2

+

((∫
Cn

|∇(vn − v)|2 dx
) 1

2
+
(∫

Cn

|∇v|2 dx
) 1

2

)2

≤ 2 ‖vn − v‖2H1(Ω) +

∫
Bn

(
|v|2 + |∇v|2

)
dx+

∫
Cn

(
|v|2 + |∇v|2

)
dx

+ 2
(∫

Cn

|vn − v|2 dx
) 1

2
(∫

Cn

|v|2 dx
) 1

2

+ 2
(∫

Cn

|∇(vn − v)|2 dx
) 1

2
(∫

Cn

|∇v|2 dx
) 1

2

≤ 2 ‖vn − v‖2H1(Ω) +

∫
Bn

(
|v|2 + |∇v|2

)
dx+

∫
Cn

(
|v|2 + |∇v|2

)
dx

+ 4 ‖vn − v‖H1(Ω) ‖v‖H1(Ω) .
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If we set M = {x ∈ Ω: v > 0} and M = {x ∈ Ω: − v > 0}, respectively, Lemma
3.13 implies

|Bn| → 0 and |Cn| → 0.

Thus, the assertion follows due to Lemma 3.12.
(ii): We decompose the domain as Ω = Am ∪ Bm with Am = {x ∈ Ω: v(x) ≥ m}
and Bm = {x ∈ Ω: v(x) < m}. Theorem 3.14 then yields

‖v −min(v,m)‖2H1(Ω) =

∫
Am

|v −m|2 + |∇v|2 dx ≤
∫
Am

|v|2 + |∇v|2 dx,

where min(v,m) = m− (m− v)+ was used. As Am+1 ⊂ Am, we moreover find

lim
m→∞

|Am| =
∣∣⋂

m∈N
Am
∣∣ = |{x ∈ Ω: v(x) =∞}| = 0

so that (ii) is a consequence of Lemma 3.12.

On account of Lemma 3.15 we observe thatH1
0 (Ω) is also closed under truncation:

Corollary 3.16. Let v ∈ H1
0 (Ω) and m ∈ N. Then v+,min(v,m) ∈ H1

0 (Ω).

Proof. Due to the definition of H1
0 (Ω) there exists a sequence {ϕn}n∈N ⊂ C∞0 (Ω)

with ϕn → v in H1(Ω). From Lemma 3.15(i) we infer

C0(Ω) ∩H1(Ω) 3 ϕ+
n → v+ in H1(Ω).

Together with Theorem A.13 and Corollary A.16 this shows

τv+ = lim
n→∞

τϕ+
n = 0 a.e. on Γ.

Because of min(v,m) = m− (m− v)+ we similarly obtain τ min(v,m) = 0.

In order to derive (3.10) for v ∈ H1(Ω) it will moreover be crucial that every set of
zero capacity has µ-measure zero. To this end we need the next auxiliary result.

Lemma 3.17. Let E ⊂ Ω, F = {v ∈ H1
0 (Ω) ∩ C(Ω), v ≥ 1 on E} and F0 = {v ∈

H1
0 (Ω) ∩ C(Ω), v ≥ 0 on Ω, v ≥ 1 on E}. Then it holds

inf
F

{
‖v‖2H1

0 (Ω)

}
= inf
F0

{
‖v‖2H1

0 (Ω)

}
.

Proof. Since F0 ⊂ F , we know

inf
F

{
‖v‖2H1

0 (Ω)

}
≤ inf
F0

{
‖v‖2H1

0 (Ω)

}
.
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If {vn}n∈N ⊂ F is a minimizing sequence, then Corollary 3.16 implies {v+
n }n∈N ⊂ F0

with ‖v+
n ‖

2
H1

0 (Ω) ≤ ‖vn‖
2
H1

0 (Ω). Therefore we conclude

inf
F

{
‖v‖2H1

0 (Ω)

}
≥ inf
F0

{
‖v‖2H1

0 (Ω)

}
,

which completes the proof.

Lemma 3.17 enables us to prove that the measure µ in (3.10) vanishes on every set
of zero capacity.

Lemma 3.18. Let Ω̃ be a bounded Lipschitz domain with Ω ( Ω̃. Moreover let
f ∈

(
H1(Ω)

)′ and µ ∈M+(Ω) such that

〈f, v〉 =

∫
Ω
v dµ ∀ v ∈ H1(Ω) ∩ C(Ω).

If D ∈ B(Ω̃) is a set of zero capacity, then D ∩ Ω belongs to B(Ω) and satisfies
µ(D ∩ Ω) = 0.

Proof. Let K ⊂ Ω be compact. Furthermore let ϕK ∈ H1
0 (Ω̃) ∩ C(Ω̃) be arbitrary

with ϕK ≥ 0 in Ω̃ and ϕK ≥ 1 in K. As ϕK is an element of H1(Ω) ∩ C(Ω), we
obtain

µ(K) =

∫
Ω
χK dµ ≤

∫
Ω
ϕK dµ = 〈f, ϕK〉 ≤ ‖f‖(H1(Ω))′ ‖ϕK‖H1(Ω) ≤ c ‖ϕK‖H1(Ω̃)

≤ c ‖ϕK‖H1
0 (Ω̃) ,

where Friedrich’s inequality was used for the last estimate. Invoking Lemma 3.17
we arrive at

µ(K) ≤ c inf
{
‖v‖H1

0 (Ω̃) : v ∈ H1
0 (Ω̃) ∩ C(Ω̃), v ≥ 1 on K

}
.

Proposition A.3a) hence leads to

µ(K) ≤ c cap(K; Ω̃)
1
2 , (3.15)

since we minimize on a smaller set. In view of Definition A.27 and Lemma A.28 we
observe D ∩ Ω ∈ B(Ω). Consequently, due to the regularity of the measure µ and
(3.15) it follows

µ(D ∩ Ω) = sup
{
µ(K) : K ⊂ D ∩ Ω, K compact

}
≤ c sup

{
cap(K; Ω̃)

1
2 : K ⊂ D ∩ Ω, K compact

}
.

From Theorem A.4i) we deduce µ(D ∩ Ω) ≤ c cap(D ∩ Ω; Ω̃)
1
2 ≤ c cap(D; Ω̃)

1
2 so

that µ(D ∩ Ω) = 0.
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We are ready for the desired extension of the Riesz representation theorem to the
space

(
H1(Ω)

)′.
Theorem 3.19. Let f ∈

(
H1(Ω)

)′ be positive, i.e., it holds 〈f, v〉 ≥ 0 for all
v ∈ H1(Ω) with v ≥ 0 a.e. in Ω, and let Ω̃ ) Ω be a bounded Lipschitz domain.
Then there exists a unique measure µ ∈M+(Ω) such that

〈f, v〉 =

∫
Ω
v dµ (3.16)

for all v ∈ H1(Ω), where (3.16) is fulfilled by a representative of v, which is quasi-
continuous in Ω̃. Moreover, if D ∈ B(Ω̃) is a set of zero capacity, then µ(D∩Ω) = 0.

Remark 3.20. Resulting from Corollary A.10 and the second assertion of The-
orem 3.19 the integral in (3.16) does not depend on the chosen quasi-continuous
representative.

Proof of Theorem 3.19. According to Lemma 3.11 and Lemma 3.18 there exists a
unique µ ∈M+(Ω) vanishing on all sets D∩Ω with cap(D; Ω̃) = 0 such that (3.16)
holds for every v ∈ H1(Ω) ∩ C(Ω). By performing the two steps mentioned above,
we show that C(Ω) can be omitted, if proper representatives are considered. Let
v ∈ H1(Ω) and ṽ ∈ H1

0 (Ω̃) with ṽ = v a.e. in Ω, see e.g. [31, Lemma 1.29]. We
assume w.l.o.g. that ṽ is nonnegative a.e. in Ω̃. If this is not the case, we apply the
arguments to ṽ+ and ṽ− separately.
Step 1 : By definition of H1

0 (Ω̃) there is a sequence {vn}n∈N ⊂ C∞0 (Ω̃) with vn →
ṽm := min(ṽ,m) in H1

0 (Ω̃) as n → ∞ for every m ∈ N, cf. also Corollary 3.16.
Because of ṽm = m− (m− v)+ and Lemma 3.15(i) we thus infer

vmn := min(vn,m)
n→∞−−−→ ṽm in H1

0 (Ω̃).

Thanks to Lemma A.12 there exists a subsequence of quasi-continuous representa-
tives, w.l.o.g. denoted by the same symbols, with

vmn
n→∞−−−→ ṽm q.e. in Ω̃.

Therefore, Lemma 3.18 yields

vmn
n→∞−−−→ ṽm µ-a.e. in Ω.

As vmn ≤ m a.e. in Ω̃ for all n ∈ N by definition, we derive from Lemma A.9 and
Lemma 3.18

vmn ≤ m µ-a.e. in Ω.

Note that restrictions of Borel-measurable functions are measurable w.r.t. the re-
spective Borel-sigma-algebra on the restricted domain by Corollary A.29. This
property will frequently be used in the following without further reference. Since
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m ∈ H1(Ω) ∩ C(Ω) is µ-integrable, Lebesgue’s dominated convergence theorem
implies ∫

Ω
vmn dµ n→∞−−−→

∫
Ω
ṽm dµ <∞. (3.17)

In addition, we find H1(Ω) ∩ C(Ω) 3 vmn → ṽm in H1(Ω) as n→∞ so that∫
Ω
vmn dµ = 〈f, vmn 〉

n→∞−−−→ 〈f, ṽm〉 ,

which combined with (3.17) leads to

〈f, ṽm〉 =

∫
Ω
ṽm dµ. (3.18)

Step 2 : Invoking Lemma A.9, we derive from ṽm+1 ≥ ṽm a.e. in Ω̃ that ṽm+1 ≥ ṽm
q.e. in Ω̃. Let Em ∈ B(Ω̃) denote the set of points x ∈ Ω, where ṽm+1 < ṽm. Due
to Theorem A.4ii) the union of all sets Em has zero capacity. Consequently, the
sequence {ṽm}m∈N is monotonously increasing q.e. in Ω̃ and thus µ-a.e. in Ω by
Lemma 3.18. Thanks to Lemma 3.15(ii) we moreover know

ṽm
m→∞−−−−→ ṽ in H1

0 (Ω̃). (3.19)

Again, on account of Lemma A.12 there exists a subsequence of quasi-continuous
representatives, w.l.o.g. denoted in the same way, with

ṽm
m→∞−−−−→ ṽ q.e. in Ω̃.

Hence, we conclude from Lemma 3.18

ṽm
m→∞−−−−→ ṽ µ-a.e. in Ω.

In view of (3.18) we have shown

• 0 ≤ ṽm↗ ṽ µ-a.e. in Ω as m→∞

• ṽm ∈ L1(Ω;µ).

Note that two different quasi-continuous representatives coincide µ-a.e. in Ω, cf.
Corollary A.10 and Lemma 3.18. This is why (3.18) holds true for all quasi-
continuous representatives of ṽm. Because of the convergence (3.19) the sequence
{ṽm}m∈N is bounded so that∫

Ω
ṽm dµ = 〈f, ṽm〉 ≤ ‖f‖H1(Ω)∗ ‖ṽ

m‖H1(Ω) ≤ c.

From the monotone convergence theorem it then follows∫
Ω
ṽm dµ m→∞−−−−→

∫
Ω
ṽ dµ <∞. (3.20)
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Since ṽm → ṽ in H1(Ω) according to (3.19), we furthermore observe∫
Ω
ṽm dµ = 〈f, ṽm〉 m→∞−−−−→ 〈f, ṽ〉 . (3.21)

Together, (3.20) and (3.21) imply

〈f, ṽ〉 =

∫
Ω
ṽ dµ.

For ṽ = v a.e. in Ω, we have found a quasi-continuous representative defined on Ω
such that (3.16) is fulfilled.

In the subsequent section we will not have to deal with a positive f ∈
(
H1(Ω)

)′
but with λ ∈

(
τν [V ]

)′ which is positive for all z ∈ τν [V ] with z ≥ 0 a.e. on ΓC .
Nevertheless, as for every z ∈ τν [V ] there is a function w ∈ H1(Ω) with τw = z
a.e. on Γ by the inverse trace theorem (Theorem A.19), such λ can fortunately be
interpreted as a positive functional on H1(Ω).

Lemma 3.21. Let λ ∈
(
τν [V ]

)′ such that 〈λ, z〉 ≥ 0 for all z ∈ τν [V ] with z ≥ 0

a.e. on ΓC and let Ω̃ ) Ω be a bounded Lipschitz domain. Then there exists a
unique measure µ ∈M+(Ω), concentrated on the set ΓC , such that

〈λ, z〉 =

∫
ΓC

v dµ (3.22)

for all z ∈ τν [V ], where (3.22) is fulfilled by a representative of v ∈ H1(Ω) with
τv = z a.e. on ΓC , which is quasi-continuous in Ω̃. Moreover it holds µ(D∩Ω) = 0
for all D ∈ B(Ω̃) with cap(D; Ω̃) = 0 and∫

ΓC

v1 dµ =

∫
ΓC

v2 dµ (3.23)

for all v1, v2 ∈ H1(Ω) with τv1 = τv2 a.e. on ΓC .

Proof. In view of Assumption 3.1(1) we know ΓC = Γ ∩ E = Ω ∩ Ωc ∩ E with
E ⊂ Rd closed. Hence, the set ΓC is compact and the finite open covering

GC :=
n⋃
i=1

Bδ/2(xi), xi ∈ ΓC , n ∈ N

with δ := dist(ΓC ,ΓD) > 0 intersects ΓD trivially. Due to Lemma A.24 (partition
of unity) there is a smooth function ζC ∈ C∞0 (GC) with 0 ≤ ζC ≤ 1, ζC ≡ 1 on ΓC
and ζC ≡ 0 on ΓD. From Theorem A.14 and Corollary A.18 we deduce

τ(ζCv) = 0 a.e. on ΓD (3.24a)
τ(ζCv) = τv a.e. on ΓC (3.24b)
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for all v ∈ H1(Ω). Note that ζC is locally Lipschitz continuous by the mean value
theorem and thus globally Lipschitz continuous on the compact set Ω, i.e., ζC ∈
C0,1(Ω). Thanks to (3.24a) and Theorem A.22 there exists v ∈ V with τνv =
τ(ζCv) and τTv = 0, where we used the identity τv = (τνv)ν + τTv leading to
τv = 0 a.e. on ΓD. Therefore, the trace τ(ζCv) is an element of τν [V ] for all
v ∈ H1(Ω). If v ∈ H1(Ω) fulfills v ≥ 0 a.e. in Ω, then Proposition A.21 implies
τ(ζCv) ≥ 0 a.e. on ΓC . Accordingly we infer 〈λ, τ(vζC)〉 ≥ 0 by assumption. In
other words, the functional f ∈

(
H1(Ω)

)′ defined through 〈f, v〉 = 〈λ, τ(ζCv)〉 is
positive. Consequently, Theorem 3.19 yields

〈λ, τ(ζCv)〉 =

∫
Ω
v dµ (3.25)

for a representative of v, which is quasi-continuous in Ω̃, and with unique measure
µ ∈M+(Ω) vanishing on D∩Ω if cap(D; Ω̃) = 0. Now let z ∈ τν [V ] and v ∈ H1(Ω)
with τv − z = 0 a.e. on ΓC , cf. Theorem A.19. On account of (3.24b) we derive

τ(ζCv)− z = 0 a.e. on ΓC

so that the assumption on λ results in

〈λ, τ(ζCv)− z〉 ≥ 0 and 〈λ, z − τ(ζCv)〉 ≥ 0, (3.26)

i.e., 〈λ, z〉 = 〈λ, τ(ζCv)〉. Together with (3.25) this shows (3.22) and by the same
arguments we obtain∫

Ω
v1 dµ =

∫
Ω
v2 dµ ∀ v1, v2 ∈ H1(Ω) with τv1 = τv2 a.e. on ΓC .

It remains to be proven that µ is concentrated on ΓC . For ε > 0 we consider the
finite open covering of the compact set ΓC

Uε :=
k⋃
i=1

Bε(xi), xi ∈ ΓC , k ∈ N.

Since Ω \ Uε = Ω ∩ U cε is also a compact set, there is a finite open covering

Gε :=
l⋃

i=1

Bε/2(xi), xi ∈ Ω \ Uε, l ∈ N

with Gε ∩ ΓC = ∅. Analogously to above we can find ζε ∈ C∞0 (Gε) with 0 ≤ ζε ≤ 1
and ζε ≡ 1 in Ω \ Uε. As ζε is bounded by 1 ∈ H1(Ω) for every ε > 0 and

ζε
ε→0−−→ χΩ\ΓC pointwisely in Rd,

it follows from (3.25) and Lebesgue’s dominated convergence theorem that

〈λ, τ(ζCζε)〉 =

∫
Ω
ζε dµ

ε→0−−→
∫

Ω
χΩ\ΓC dµ = µ(Ω \ ΓC).

Because of (3.24b) we further note τ(ζCζε) = 0 a.e. on ΓC and hence 〈λ, τ(ζCζε)〉 =
0 for every ε > 0, cf. also (3.26). This is why we conclude µ(Ω \ ΓC) = 0.
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Lemma 3.21 is independent of the chosen function v ∈ H1(Ω) with τv = z a.e.
on ΓC , cf. (3.23). In the remainder of this section we introduce a specifically
chosen extension operator E : H1/2(Γ) → H1

0 (Ω̃), customized for the purposes of
the subsequent section, with τE(z)|Ω = z a.e. on ΓC , where Ω̃ ) Ω is a bounded
Lipschitz domain. Before we are in the position to define E, we need the following
auxiliary lemma.

Lemma 3.22. Let Ω̃ ) Ω be a bounded Lipschitz domain such that Ω̃ \ Ω is con-
nected. If f ∈ H1(Ω) and g ∈ H1(Ω̃ \ Ω) satisfy τf = τg a.e. on Γ, then the
compound function h defined by

h =

{
f, a.e. on Ω,

g, a.e. on Ω̃ \ Ω

belongs to H1(Ω̃). Moreover, if τg = 0 a.e. on ∂Ω̃, then h ∈ H1
0 (Ω̃).

Remark 3.23. The assumption on Ω̃ in Lemma 3.22 is necessary in order to
guarantee that the difference Ω̃ \Ω is also a Lipschitz domain. A set Ω̃ ⊂ Rd which
satisfies this assumption can be constructed for instance by extending the exterior
boundary of Ω.

Proof of Lemma 3.22. Both B(Ω) and B(Ω̃ \Ω) are subsets of B(Ω̃), which implies
measurability of h : (Ω̃,B(Ω̃))→ (R,B(R)) with

‖h‖2
L2(Ω̃)

= ‖f‖2L2(Ω) + ‖g‖2
L2(Ω̃\Ω)

<∞.

We have to verify if h has a weak derivative ∂h ∈ L2(Ω̃). To this end let ϕ ∈
C∞0

(
Ω̃
)
and νi denote the ith component of the unit outward normal vector on Γ.

Integration by parts yields∫
Ω̃
h ∂iϕ dx =

∫
Ω
f ∂iϕ dx+

∫
Ω̃\Ω

g ∂iϕ dx

=

∫
Γ
τf ϕνi ds−

∫
Ω
∂if ϕ dx+

∫
Γ
τg ϕ (−νi) ds−

∫
Ω̃\Ω

∂ig ϕ dx

= −
∫

Ω
∂if ϕ dx−

∫
Ω̃\Ω

∂ig ϕ dx,

where ϕ ≡ 0 on ∂Ω̃ was used. Now we define ∂h : Ω̃→ R through

∂h =

{
∂f, a.e. on Ω

∂g, a.e. on Ω̃ \ Ω.

The same arguments as above lead to ∂h ∈ L2(Ω̃) so that h ∈ H1(Ω̃) with weak
derivative ∂h. According to Theorem A.15 and Theorem A.14 we derive τh = τg
a.e. on ∂Ω̃. Therefore, the function h is an element of H1

0 (Ω̃), if τg = 0 a.e. on
∂Ω̃.
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Due to Lemma 3.22 every z ∈ H1/2(Γ) can be extended to a function, which belongs
to H1

0 (Ω̃).

Corollary 3.24. Let Ω̃ ) Ω be a bounded Lipschitz domain such that Ω̃ \ Ω is
connected and let z ∈ H1/2(Γ). Then there exists v ∈ H1

0 (Ω̃) with τv|Ω = z a.e. on
Γ, depending continuously on z. In particular it holds

‖v‖H1
0 (Ω̃) ≤ c ‖z‖H1/2(Γ) .

Proof. With the help of the inverse trace operator we define

v =

{
τ−1z, a.e. on Ω

τ−1z̃, a.e. on Ω̃ \ Ω,
(3.27)

where z̃ ∈ H1/2(∂(Ω̃ \ Ω)) is given by

z̃ =

{
z, a.e. on Γ

0, a.e. on ∂Ω̃.
(3.28)

Thanks to Lemma 3.22 we know v ∈ H1
0 (Ω̃) and the estimate follows from Theorem

A.19.

For the calculation of the sets appearing in (3.8) we require an extension, which is
not only continuous but also nonnegative whenever z ≥ 0 a.e. on ΓC .

Lemma 3.25. Let Ω̃ ) Ω be a bounded Lipschitz domain such that Ω̃\Ω is connected
and let z ∈ H1/2(Γ). Then there exists a unique solution v ∈ H1

0 (Ω̃) of

(∇v, ∇ϕ)L2(Ω̃;Rd) = 0 ∀ϕ ∈ K0

τv|Ω = z a.e. on ΓC
(3.29)

with K0 :=
{
ϕ ∈ H1

0 (Ω̃) : τϕ|Ω = 0 a.e. on ΓC
}
. In addition, the solution operator

associated with (3.29) is linear continuous.

Proof. Let us consider the minimization problem

Minimize
1

2
‖v‖2

H1
0 (Ω̃)

s.t. v ∈ K :=
{
ϕ ∈ H1

0 (Ω̃) : τϕ|Ω = z a.e. on ΓC
}
.

 (3.30)

In view of Corollary 3.24 the admissible set K is nonempty. It is convex and closed,
as the trace operator is linear continuous, cf. Theorem A.14. The squared norm
furthermore defines a continuous, radially unbounded and strictly convex functional
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on H1
0 (Ω̃). Thus, Problem (3.30) admits a unique solution v ∈ K, whose necessary

and sufficient optimality condition is given by

(∇v, ∇(ϕ− v))L2(Ω̃;Rd) ≥ 0 ∀ϕ ∈ K. (3.31)

Since K = {v}+K0, we derive (3.29) from (3.31). The solution of (3.29) depends
linearly on z and Corollary 3.24 implies

‖v‖H1
0 (Ω̃) ≤ c ‖z‖H1/2(Γ) ,

where the optimality of v was used.

The solution operator associated with Problem (3.29) is the extension operator we
are looking for.

Definition 3.26. The solution operator associated with (3.29), which maps z ∈
H1/2(Γ) 7→ v ∈ H1

0 (Ω̃), is denoted by E.

In order to prove the nonnegativity of E mentioned above we have to improve the
assertion of Corollary 3.16.

Lemma 3.27. Let v ∈ H1(Ω), z ∈ H1/2(Γ) and {zn}n∈N ⊂ H1/2(Γ) a sequence
with zn → z. Then it holds

(i) τv+ = (τv)+ a.e. on Γ

(ii) z+
n → z+ in H1/2(Γ).

Proof. (i): On account of Theorem A.15 there exists a sequence {ϕn}n∈N ⊂ C∞(Ω)
with ϕn → v in H1(Ω). Consequently, Theorem A.14 yields τϕn → τv in H1/2(Γ)
and therefore

τϕn → τv in L2(Γ).

We decompose the boundary as Γ = An ∪Bn ∪Cn ∪Dn with An = {x ∈ Γ: τϕn >
0, τv > 0}, Bn = {x ∈ Γ: τϕn > 0, τv ≤ 0}, Cn = {x ∈ Γ: τϕn ≤ 0, τv ≤ 0} and
Dn = {x ∈ Γ: τϕn ≤ 0, τv > 0}. Then we obtain the estimate∥∥(τϕn)+ − (τv)+

∥∥2

L2(Γ)
=

∫
An

|τϕn − τv|2 ds+

∫
Bn

|τϕn|2 ds+

∫
Dn

|τv|2 ds

≤
∫
An

|τϕn − τv|2 ds+

∫
Bn

|τϕn − τv|2 ds

+

∫
Dn

|τv − τϕn|2 ds

≤ 3 ‖τϕn − τv‖2L2(Γ) .
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This shows (τϕn)+ → (τv)+ in L2(Γ) and hence

(τϕn)+ → (τv)+ a.e. on Γ, (3.32)

if a proper subsequence is considered. According to Theorem A.13, Corollary A.16
and Lemma 3.15(i) we moreover observe (τϕn)+ = τϕ+

n → τv+ in H1/2(Γ). Sim-
ilarly to (3.32), there exists a subsequence, w.l.o.g. denoted by the same symbols,
such that

(τϕn)+ → τv+ a.e. on Γ. (3.33)

Together, (3.32) and (3.33) imply (i).
(ii): From the inverse trace theorem (Theorem A.19) we infer

‖τ−1z − τ−1zn‖H1(Ω) = ‖τ−1(z − zn)‖H1(Ω) ≤ c ‖zn − z‖H1/2(Γ)
n→∞−−−→ 0.

Thanks to Lemma 3.15(i) and Theorem A.14 we find

τ(τ−1zn)+ → τ(τ−1z)
+ in H1/2(Γ)

so that (ii) is a result of (i).

The next corollary covers the nonnegativity of E(z) for every z ∈ H1/2(Γ) with
z ≥ 0 a.e. on ΓC . This will be the crucial property of the operator E.

Corollary 3.28. Let z ∈ H1/2(Γ) with z ≥ 0 a.e. on ΓC . Then the solution of
(3.29) satisfies v ≥ 0 a.e. in Ω̃.

Proof. Due to min(v, 0) = −(−v)+ and Lemma 3.27(i) we can test with min(v, 0) ∈{
ϕ ∈ H1

0 (Ω̃) : τϕ|Ω = 0 a.e. on ΓC
}
in (3.29), which leads to

‖min(v, 0)‖H1
0 (Ω̃) = 0.

Friedrich’s inequality yields min(v, 0) = 0 a.e. in Ω̃ and thus v ≥ 0 a.e. in Ω̃.

3.2.2. The density property

With the results of the previous section at hand we can now establish (3.8). In [62,
Section 3] Mignot proves the density (3.7) by exploiting that the closed and convex
set C ⊂ X satisfies

{x}+X+ ⊂ C or {x}+X− ⊂ C ∀x ∈ C, (3.34)

where X+ and X− consist of all positive and negative parts of functions in the
Dirichlet space X, respectively. Since the convex set C involves the normal trace
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operator τν , cf. (3.2), condition (3.34) is generally not fulfilled in our setting. There-
fore, we cannot directly transfer Mignot’s technique of proof to PBC . Instead a known
result for infinite-dimensional optimization problems is employed.

First, we recall that u = PBC (w) with w ∈ V is equivalent to u being a solution of
the minimization problem (3.5), i.e.,

Minimize
1

2
〈B(u−w), u−w〉

s.t. u ∈ V, F (u) ∈ K︸ ︷︷ ︸
⇔u∈C

.

Moreover we introduce the linearized cone of C at u ∈ C, which is given by

Lu(C) =
{
v ∈ V : F ′(u)v ∈ KF (u)(K)

}
.

Note here that Ku(V ) = V . As every u ∈ C is regular in the sense of Zowe-
Kurcyusz [77], cf. Lemma 3.8, the following proposition, which states the existence
of multipliers for admissible but not necessarily optimal functions, can be deduced
from the proof of [77, Theorem 3.1].

Proposition 3.29. Let u ∈ C and û ∈ Lu(C)+. Then there exists a multiplier
λ ∈

(
τν [V ]

)′ such that

û+ F ′(u)∗λ = 0 in V ′

λ ∈ K0, 〈λ, F (u)〉 = 0, F (u) ∈ K.

Besides, the linearized cone Lu(C) coincides with Ku(C):

Lemma 3.30. For every u ∈ C it holds Ku(C) = Lu(C).

Proof. Let u ∈ C be arbitrary.
"⊂": If v ∈ Ku(C), then we observe

F ′(u)v = τνv = τν(α(s− u)) = α(τνs− ψ − τνu+ ψ)

= α(τνs− ψ − F (u)) = α(z − F (u))

with α ≥ 0, s ∈ C and z := τνs − ψ ∈ K. We infer F ′(u)v ∈ KF (u)(K) and
therefore v ∈ Lu(C).
"⊃": Let v ∈ Lu(C) so that

F ′(u)v = τνv = α(z − F (u)) = α(z − τνu+ ψ)

with α ≥ 0 and z ∈ K. In case α = 0 nothing is to show. Otherwise we set
s = v/α+ u ∈ V and obtain

τνs =
1

α
τνv + τνu = z − τνu+ ψ + τνu ≤ ψ a.e. on ΓC ,
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where z ∈ K was used for the estimate. Hence, the function v fulfills v = α(s−u)
with s ∈ C, which implies v ∈ Ku(C).

Based on Lemma 3.21 and Corollary 3.28 we next derive a characterization of the
dual cone [Ku(C)]0B. To this end we define for a quasi-continuous representative of
E(τνu− ψ), w.l.o.g. denoted by the same symbol,

Au =
{
x ∈ ΓC : E(τνu− ψ) = 0

}
, (active set)

cf. also Lemma A.11. Note that Au changes only on sets of zero capacity, if a
different quasi-continuous representative is considered, cf. Corollary A.10.

Lemma 3.31. For every u ∈ C the dual cone [Ku(C)]0B is given by

[Ku(C)]0B =

{
v ∈ V : ∃µ ∈M+(Ω) concentrated on Au such that

〈Bv, s〉 =

∫
ΓC

Eτνs dµ ∀ s ∈ V
}
.

(3.35)

The integrals are defined in the sense of Lemma 3.21 and satisfy (3.23). Moreover,
every measure µ ∈M+(Ω) in (3.35) vanishes on all sets D∩Ω with D ∈ B(Ω̃) and
cap(D; Ω̃) = 0.

Proof. Let u ∈ C be arbitrary.
"⊂": If v ∈ [Ku(C)]0B, then we know 〈Bv, s〉 ≤ 0 for all s ∈ Ku(C). As a result
of Lemma 3.30 the functional −Bv ∈ V ′ is an element of Lu(C)+. Thanks to
Proposition 3.29 there is a λ ∈ K0 with

−Bv + τ∗νλ = 0 in V ′, 〈λ, τνu− ψ〉 = 0. (3.36)

Since 〈λ, z〉 ≥ 0 for all z ∈ τν [V ] with z ≥ 0 a.e. on ΓC , Lemma 3.21 yields the
existence of a unique measure µ ∈M+(Ω) such that

µ(Ω \ ΓC) = 0, 〈λ, z〉 =

∫
ΓC

Ez dµ ∀ z ∈ τν [V ] (3.37)

and (3.23) is satisfied. In addition, it holds µ(D ∩ Ω) = 0 for all D ∈ B(Ω̃) with
cap(D; Ω̃) = 0. Together, (3.36) and (3.37) show

〈Bv, s〉 = 〈λ, τνs〉 =

∫
ΓC

Eτνs dµ,
∫

ΓC

E(τνu− ψ) dµ = 0, (3.38)

where Assumption 3.1(3) was used. From Corollary 3.28 and u ∈ C it follows
E(τνu−ψ) ≤ 0 a.e. in Ω̃ so that E(τνu−ψ) ≤ 0 q.e. in Ω̃ for every quasi-continuous
representative by Lemma A.9 and thus

E(τνu− ψ) ≤ 0 µ-a.e. in Ω. (3.39)
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Taking (3.38) into account we conclude

µ
({
x ∈ ΓC : |E(τνu− ψ)| > 0

})
= 0.

The measure µ is therefore concentrated on Au.
"⊃": Now let v ∈ V and µ ∈M+(Ω) be concentrated on Au with

〈Bv, s〉 =

∫
ΓC

Eτνs dµ ∀ s ∈ V.

Furthermore, if µ(D ∩ Ω) = 0 for all D ∈ B(Ω̃) with cap(D; Ω̃) = 0, we obtain
E(τνs−ψ) ≤ 0 µ-a.e. in Ω for every s ∈ C by the same arguments leading to (3.39).
Because the positive measure µ vanishes outside Au =

{
x ∈ ΓC : E(τνu−ψ) = 0

}
,

we find

〈Bv, s− u〉 =

∫
ΓC

Eτν(s− u) dµ

=

∫
ΓC

E(τνs− ψ) dµ︸ ︷︷ ︸
≤0

+

∫
ΓC

E(ψ − τνu) dµ︸ ︷︷ ︸
=0

≤ 0

for all s ∈ C, which is equivalent to v ∈ [Ku(C)]0B.

Lemma 3.31 combined with the bipolar theorem enables us to calculate the set
Ku(C):

Lemma 3.32. For every u ∈ C the closure of Ku(C) is given by

Ku(C) =
{
v ∈ V : Eτνv ≤ 0 q.e. on Au

}
,

where Eτνv denotes a quasi-continuous representative.

Proof. Let u ∈ C be arbitrary and s ∈ [Ku(C)]0B so that

〈Bs, v〉 ≤ 0 ∀v ∈ Ku(C)

is fulfilled. Then the functional Bs ∈ V ′ is an element of the polar cone (Ku(C))◦.
Moreover, in view of the Lax-Milgram theorem there exists a unique s ∈ V for
every f ∈ (Ku(C))◦ with Bs = f and 〈Bs, v〉 = 〈f, v〉 ≤ 0 for all v ∈ Ku(C).
Consequently, we infer

(Ku(C))◦ =
{
Bs : s ∈ [Ku(C)]0B

}
.

The bipolar theorem and Lemma 3.31 yield

Ku(C) = (Ku(C))◦◦ =
{
v ∈ V : 〈Bs, v〉 ≤ 0 ∀ s ∈ [Ku(C)]0B

}
=

{
v ∈ V :

∫
ΓC

Eτνv dµ ≤ 0 ∀µ ∈Mu

}
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with Mu ⊂M+(Ω) defined by

Mu =

{
µ ∈M+(Ω): µ is concentrated on Au, ∃ s ∈ V such that

〈Bs, v〉 =

∫
ΓC

Eτνv dµ ∀v ∈ V
}
.

Furthermore, for µ ∈M+(Ω) concentrated on Au and v ∈ V we observe∫
ΓC

Eτνv dµ =

∫
Au

Eτνv dµ.

According to the last assertion of Lemma 3.31 we therefore conclude

Ku(C) ⊃
{
v ∈ V : Eτνv ≤ 0 q.e. on Au

}
, (3.40)

where the estimate is satisfied by a quasi-continuous representative of Eτνv.
In order to establish the reverse inclusion let v ∈ Ku(C) be arbitrary. Then there
exist sequences {vn}n∈N ⊂ C and {tn}n∈N ⊂ R+ with tn(vn − u) → v in V .
Invoking Theorem A.22, we deduce tnτν(vn−u)→ τνv in H1/2(Γ). Thanks to the
continuity of E, cf. Lemma 3.25, it follows

E(tnτν(vn − u))→ Eτνv in H1
0 (Ω̃)

so that Lemma A.12 leads to

E(tnτν(vn − u))→ Eτνv q.e. in Ω̃, (3.41)

if quasi-continuous representatives of a proper subsequence are considered. From
the definition of Au we derive Eτν(vn − u) = E(τνvn − ψ) q.e. on Au. Note here
the linearity of E. In addition, the same arguments as in the proof of Lemma 3.31
show E(τνvn − ψ) ≤ 0 q.e. in Ω̃ and hence

tnEτν(vn − u) ≤ 0 q.e. on Au.

Together with (3.41) this implies Eτνv ≤ 0 q.e. on Au and in particular

Ku(C) ⊂
{
v ∈ V : Eτνv ≤ 0 q.e. on Au

}
,

which completes the proof.

Remark 3.33. For the proof of Lemma 3.32 it is crucial that the dual pairing
〈Bs, v〉 with s ∈ [Ku(C)]0B and v ∈ V can be written as an integral w.r.t. a measure
µ ∈ M+(Ω) concentrated on Au. Without this representation we are not able to
exploit local information as performed in (3.40). From the proof of Lemma 3.31
we know Bs = λ ◦ τν with λ ∈ K0, cf. (3.36). If one aimed to use a property of
v ∈ V in a subset Ω0 ⊂ Ω or a property of τνv on a subset Γ0 ⊂ Γ solely based
on (3.36), it would be necessary to consider the dual pairings 〈λ, τν(χΩ0v)〉 and
〈λ, χΓ0τνv〉, respectively. However, in general it holds χΩ0v /∈ V and χΓ0τνv /∈
H1/2(Γ). The big advantage of the integral representation is thus the possibility to
test with characteristic functions.
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With the help of Lemma 3.31 we can also calculate the set [span(w−u)]0B. To this
end we state another auxiliary lemma.

Lemma 3.34. Let w ∈ V and u = PBC (w) with associated multiplier λ ∈
(
τν [V ]

)′.
Then it holds B(w−u) = λ ◦ τν in V ′ and w−u ∈ [Ku(C)]0B. In particular, there
exists a measure µλ ∈M+(Ω) concentrated on Au such that

〈λ, τνv〉 =

∫
ΓC

Eτνv dµλ ∀v ∈ V. (3.42)

The integral is defined in the sense of Lemma 3.21 and satisfies (3.23). Moreover,
it holds µλ(D ∩ Ω) = 0 for all D ∈ B(Ω̃) with cap(D; Ω̃) = 0.

Proof. The first assertion is a consequence of (3.6) with ` = Bw. Let 0 6= v ∈
Ku(C) be arbitrary so that αv + u ∈ C for some α > 0. From (3.4) we infer
〈B(w − u), (αv + u)− u〉 ≤ 0 and therefore 〈B(w − u), v〉 ≤ 0 for all v ∈ Ku(C),
which yields w−u ∈ [Ku(C)]0B. Lemma 3.31 implies (3.42) and the last claim.

Since by definition v ∈ V belongs to [span(w−u)]0B if and only if 〈B(w − u), v〉 =
0, we arrive at the following result.

Lemma 3.35. Let w ∈ V and u = PBC (w) with associated multiplier λ ∈
(
τν [V ]

)′.
Then there exists a measure µλ ∈M+(Ω) concentrated on Au such that

[span(w − u)]0B =

{
v ∈ V : 〈λ, τνv〉 =

∫
ΓC

Eτνv dµλ = 0

}
.

The integral is defined in the sense of Lemma 3.21 and satisfies (3.23). Moreover,
it holds µλ(D ∩ Ω) = 0 for all D ∈ B(Ω̃) with cap(D; Ω̃) = 0.

Having the characterizations of the sets Ku(C) and [span(w − u)]0B available, we
are ready to prove the density property (3.8).

Theorem 3.36. For every w ∈ V and u = PBC (w) the set Ku(C)∩ [span(w−u)]0B
is dense in Ku(C) ∩ [span(w − u)]0B.

Proof. Let w ∈ V , u = PBC (w), 0 6= v ∈ Ku(C) ∩ [span(w − u)]0B and {vn}n∈N ⊂
Ku(C) with vn → v in V . We can assume w.l.o.g. that vn 6= 0 for all n ∈ N. If this
is not the case, we eliminate all zeros from the sequence. This is why there exists
{tn}n∈N ⊂ R+ \ {0} such that tnvn + u ∈ C, i.e., tnτνvn + τνu ≤ ψ a.e. on ΓC
for all n ∈ N. By manipulating τνvn and applying Theorem A.22 we will obtain a
sequence {ṽn}n∈N ⊂ Ku(C) ∩ [span(w − u)]0B with ṽn → v in V . For this purpose
we define

z := τνv, zn := τνvn.
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In view of Lemma 3.32 and Lemma 3.35 the quasi-continuous representatives of Ez
satisfy

Ez ≤ 0 q.e. on Au (3.43a)∫
ΓC

Ez dµ = 0 with µ ∈M+(Ω) concentrated on Au. (3.43b)

Due to (3.43a) we observe (Ez)+ = 0 q.e. in Au. Thus, the last assertion of Lemma
3.35 and (3.43b) result in

0 =

∫
ΓC

Ez dµ =

∫
ΓC

(Ez)+ dµ−
∫

ΓC

(Ez)− dµ = −
∫

ΓC

(Ez)− dµ.

Moreover, from Lemma 3.27(i) and (3.29) we derive τ(Ez)− = (τEz)− = z− =
τEz− a.e. on ΓC , which combined with (3.23) leads to∫

ΓC

Ez− dµ = 0. (3.44)

Next, we introduce the abbreviation

z̃−n := min(z−n , z
−).

Note that z− and z−n as well as z̃−n are elements of H1/2(Γ) according to Lemma
3.27(ii). Because of z− ≥ z̃−n a.e. on ΓC we deduce from Corollary 3.28, Lemma
A.9 and Lemma 3.35 that

E(z̃−n − z−) ≤ 0 µ-a.e. in Ω.

Taking the linearity of E, (3.44) and the positivity of µ into account, we hence
arrive at ∫

ΓC

Ez̃−n dµ =

∫
ΓC

E(z̃−n − z−) dµ ≤ 0.

Since z̃−n ≥ 0 by definition, the same arguments yield∫
ΓC

Ez̃−n dµ = 0. (3.45)

Considering u ∈ C and tnzn + τνu ≤ ψ a.e. on ΓC we furthermore find

tnz
+
n + τνu ≤ max

(
τνu, tnzn + τνu

)
≤ ψ a.e. on ΓC (3.46)

and consequently

0 ≤ z+
n ≤

1

tn
(ψ − τνu) a.e. on ΓC .

Again, thanks to Corollary 3.28, Lemma A.9 and Lemma 3.35 we conclude

0 ≤ Ez+
n ≤

1

tn
E(ψ − τνu) µ-a.e. in Ω.
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As the measure µ is concentrated on Au, it follows∫
ΓC

Ez+
n dµ = 0. (3.47)

Together, (3.45)–(3.47) show ∫
ΓC

E(z+
n − z̃−n ) dµ = 0 (3.48a)

tn(z+
n − z̃−n ) + τνu ≤ tnz+

n + τνu ≤ ψ a.e. on ΓC , (3.48b)

where we used z̃−n ≥ 0 a.e. on ΓC for the first estimate in (3.48b). By Theorem A.22
there exists a sequence {sn}n∈N ⊂ H1

(
Ω;Rd

)
with τνsn = (z+

n − z̃−n )− z, τTsn = 0
and

‖sn‖H1(Ω;Rd) ≤ c
∥∥(z+

n − z̃−n )− z
∥∥
H1/2(Γ)

.

In view of Lemma 3.27(ii) we infer

z+
n − z̃−n = z+

n −min(z−n , z
−)

= z+
n − (min(z−n − z−, 0) + z−)

n→∞−−−→ z+ − z− = z in H1/2(Γ)

so that sn → 0 in H1
(
Ω;Rd

)
. In addition, we know

τsn = τνsnν + τTsn = ((z+
n − z̃−n )− z)ν = 0 a.e. on ΓD,

and therefore sn ∈ V . Recall here that z = zn = 0 a.e. on ΓD, as v ∈ V and
vn ∈ V . This is why v + sn → v in V with

τν(v + sn) = z + (z+
n − z̃−n )− z = z+

n − z̃−n .

From (3.48b) we derive v + sn ∈ Ku(C) and (3.48a) combined with Lemma 3.35
implies that v + sn belongs to [span(w − u)]0B. Finally, we set ṽn = v + sn to
complete the proof.

Theorem 3.10 and Theorem 3.36 lead to the directional differentiability of the
control-to-state map GS :

Corollary 3.37. The control-to-state map GS : V ′ → V is directionally differen-
tiable. In particular, for ` ∈ V ′ and δ` ∈ V ′ it holds

GS(`+ tδ`)−GS(`)

t
→ η as t↘ 0,

where η ∈ V is the solution of the following VI

η ∈ Su, 〈Bη, v − η〉 ≥ 〈δ`, v − η〉 ∀v ∈ Su. (3.49)

The convex cone Su is defined by

Su =
{
v ∈ V : Eτνv ≤ 0 q.e. on Au, 〈λ, τnv〉 = 0

}
(3.50)

with u = GS(`) and associated multiplier λ ∈
(
τν [V ]

)′.
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Remark 3.38. Due to the coercivity of B the variational inequality (3.49) admits a
unique solution for every δ` ∈ V ′ and the mapping δ` 7→ η is Lipschitz continuous,
cf. Theorem 3.3.

Remark 3.39. Because of the inequality in (3.50) the directional derivative is gen-
erally not linear w.r.t. to the direction and the control-to-state map GS thus not
Gâteaux differentiable, if the active set Au has positive capacity. We point out that
the capacity of a set can be positive, while its Lebesgue measure is zero, see e.g. [3,
Section 5.8.2].

Proof of Corollary 3.37. Since GS = PBC ◦B−1, cf. (3.9), we deduce from Theorem
3.10 and Theorem 3.36

GS(`+ δ`)−GS(`)

t
=
PBC (B−1`+ tB−1δ`)− PBC (B−1`)

t

t↘0−−→ η,

where η denotes the projection of B−1δ` on the set Su = Ku(C)∩[span(B−1`−u)]0B
w.r.t. the norm induced by B. To be more precise, the function η belongs to Su

and solves the variational inequality〈
B(η −B−1δ`), v − η

〉
= 〈Bη, v − η〉 − 〈δ`, v − η〉 ≥ 0 ∀v ∈ Su.

Furthermore, Lemma 3.32 and Lemma 3.35 show that Su satisfies (3.50).

Despite Remark 3.39 we obtain Gâteaux differentiability of GS on a dense subset
of V ′ similarly to [62, Théorème 3.4]:

Theorem 3.40. There exists a dense subset V ′ ⊂ V ′, where the control-to-state
map GS is Gâteaux differentiable. The Gâteaux derivative at ` ∈ V ′ in direction
δ` ∈ V ′ is the solution of the following variational equation

η ∈ Su, 〈Bη, v〉 = 〈δ`, v〉 ∀v ∈ Su (3.51)

with Su :=
{
v ∈ V : Eτνv = 0 q.e. on Au

}
and u = GS(`).

Proof. The space V and hence its dual V ′ are Hilbert spaces and the operator GS
is Lipschitz continuous, cf. Proposition 3.4. Therefore, the existence of the set V ′ is
a consequence of [62, Théorème 1.2]. If GS is Gâteaux differentiable at ` ∈ V ′, then
we know η := ∂GS(`; δ`) = −∂GS(`;−δ`) for all δ` ∈ V ′. From Corollary 3.37 we
infer

η ∈ Su, 〈Bη, v − η〉 ≥ 〈δ`, v − η〉 ∀v ∈ Su (3.52)

and in addition

− η ∈ Su, 〈B(−η), v − (−η)〉 ≥ 〈−δ`, v − (−η)〉 ∀v ∈ Su

⇐⇒ η ∈ −Su, 〈Bη, v − η〉 ≥ 〈δ`, v − η〉 ∀v ∈ −Su (3.53)
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with Su =
{
v ∈ V : Eτνv ≤ 0 q.e. on Au, 〈λ, τnv〉 = 0

}
. Together, (3.52) and

(3.53) yield

η ∈ Su ∩ −Su, 〈Bη, v − η〉 ≥ 〈δ`, v − η〉 ∀v ∈ Su ∩ −Su.

Since Su := Su∩−Su =
{
v ∈ V : Eτνv = 0 q.e. on Au

}
is a subspace, we arrive at

(3.51). Here we used that λ ◦ τν can be represented by an integral w.r.t. a measure
µλ ∈ M+(Ω) concentrated on the set Au and vanishing on all sets D ∩ Ω with
cap(D; Ω̃)=0, cf. Lemma 3.34. Finally, we note that the solution of (3.51) indeed
depends linearly on δ`.

3.3. First-order necessary optimality conditions

Based on the directional differentiability of GS it is possible to derive necessary
optimality conditions for the optimal control problem (PS). In particular, we will
establish first-order conditions, which are comparable with the strong stationarity
system for mathematical programs with complementarity constraints (MPCCs) in
finite dimensions given in [69, Theorem 2].

We make the following assumption, which is supposed to hold throughout this
section.

Assumption 3.41. The objective functional J : V×U → R is Fréchet differentiable.

According to Theorem 3.9 Problem (PS) is equivalent to a MPCC in function
space:

Minimize J(u,f)

s.t.


Bu+ τ∗νλ = Rf in V ′

〈λ, z〉 ≥ 0 ∀ z ∈ τν [V ] with z ≥ 0 a.e. on ΓC

τνu(x)− ψ(x) ≤ 0 a.e. on ΓC

〈λ, τνu− ψ〉 = 0,

with R : U → V ′ as defined in (2.14). Our first-order analysis requires directional
differentiability of the reduced objective functional J(GS(R·), ·) : U → R guaranteed
by the next auxiliary lemma.

Lemma 3.42 ([44, Lemma 3.9]). Let X and Y be normed vector spaces. Moreover
let G : X → Y be directionally differentiable at x ∈ X and I : Y ×X → R be Fréchet
differentiable. Then the functional j : X → R defined through j(x) = I(G(x), x) is
directionally differentiable at x and its directional derivative in direction δx ∈ X is
given by

∂j(x; δx) = I ′(G(x), x)(∂G(x; δx), δx).
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Now we can deduce a necessary optimality condition involving solely primal vari-
ables:

Lemma 3.43. Let f̄ ∈ U be a local optimal solution of (PS) with associated state
ū ∈ V . Then it holds

∂uJ(ū, f̄)η + ∂fJ(ū, f̄)δf ≥ 0 ∀ δf ∈ U, (3.54)

where η solves (3.49) with Su = Sū and δ` = Rδf .

Proof. In view of Corollary 3.37 and the linearity of the operator R the composition
GS ◦R : U → V is directionally differentiable with

(GS ◦R)(f + tδf)− (GS ◦R)(f)

t
=

=
GS(Rf + tRδf)−GS(Rf)

t

t↘0−−→ ∂GS(Rf ;Rδf) ∀f ∈ U, ∀ δf ∈ U.

As the objective functional J : V × U → R is Fréchet differentiable by assump-
tion, Lemma 3.42 thus yields directional differentiability of the mapping U 3 f 7→
j(f) := J(GS(Rf),f) ∈ R with

∂j(f̄ ; δf) = ∂uJ(GS(Rf̄), f̄)∂GS(Rf̄ ;Rδf) + ∂fJ(GS(Rf̄), f̄)δf .

Due to local optimality of f̄ we conclude the assertion.

Because the space U includes distributed controls f1 ∈ L2
(
Ω;Rd

)
, strong station-

arity for (PS) can be proven analogously to [27, Section 5]. For this purpose we
need another auxiliary result.

Lemma 3.44. Let f̄ ∈ U be a local optimal solution of (PS) with associated state
ū ∈ V . Then there exists a ω̄ ∈ V such that

∂uJ(ū, f̄)η − 〈δ`, ω̄〉 ≥ 0 ∀ δ` ∈ V ′,

where η solves (3.49) with Su = Sū.

Proof. Thanks to Lemma 3.43 it is already known that

∂uJ(ū, f̄)∂GS(Rf̄ ;Rδf) + ∂fJ(ū, f̄)δf ≥ 0 ∀ δf ∈ U. (3.55)

The variational inequality (3.49) is uniquely solvable and the associated solution
operator is Lipschitz continuous by Remark 3.38. Since ∂GS(Rf̄ ;R0) = 0, we
therefore arrive at the estimate

−∂fJ(ū, f̄)δf ≤ c
∥∥∂uJ(ū, f̄)

∥∥
V ′

∥∥Rδf∥∥
V ′
. (3.56)
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Next, we show that the linear operator R is injective. If f , g ∈ U satisfy Rf = Rg,
then the density of C∞0

(
Ω;Rd

)
in L2

(
Ω;Rd

)
, cf. [1, Satz 2.14], implies the existence

of a sequence {hn1}n∈N ⊂ V with

0 = 〈R(f − g), hn1 〉 =

∫
Ω

(f1 − g1) · hn1 dx n→∞−−−→ ‖f1 − g1‖
2
L2(Ω;Rd) . (3.57)

Now let f̃2 ∈ L2
(
Γ;Rd

)
and g̃2 ∈ L2

(
Γ;Rd

)
denote the extensions by zero of f2

and g2, respectively. According to Theorem A.20 there is a sequence {hn2}n∈N ⊂
H1(Ω;Rd

)
with

τhn2 → f̃2 − g̃2 in L2
(
Γ;Rd

)
. (3.58)

Similarly to the proof of Lemma 3.21 we furthermore find {ζn}n∈N ⊂ C0,1(Ω) with
0 ≤ ζn ≤ 1, ζn ≡ 0 on ΓD and

ζn → χΩ\ΓD pointwisely in Ω.

Corollary A.18, Theorem A.14 and (3.58) consequently lead to ζnhn2 ∈ V and

τ(ζnh
n
2 ) = ζn|Γτ(hn2 )→ χΓ\ΓD(f̃2 − g̃2) a.e. on Γ,

in case a proper subsequence is considered. As a result of (3.58) and ζn ∈ [0, 1] for
all n ∈ N the sequence {τ(ζnh

n
2 )}n∈N is bounded in L2

(
Γ;Rd

)
. Hence, there is a

weakly convergent subsequence, w.l.o.g. denoted in the same way, whose weak limit
coincides with the pointwise limit by Egorov’s theorem, cf. the proof of Lemma
2.18, so that

0 = 〈R(f − g), ζnh
n
2 〉 =

∫
ΓN

(f2−g2) ·τN (ζnh
n
2 ) ds→ ‖f2 − g2‖

2
L2(ΓN ;Rd) . (3.59)

Together, (3.57) and (3.59) yield f = g in U . The operator R is therefore bijective
from U to its image R[U ] with linear inverse R−1 and the left-hand side in (3.56)
can be seen as a linear functional on R[U ]. This functional is dominated by the
sublinear function p : V ′ → R defined through

p(`) = c
∥∥∂uJ(ū, f̄)

∥∥
V ′
‖`‖V ′ .

In view of the Hahn-Banach theorem it follows that −∂fJ(ū, f̄)R−1 can be ex-
tended to a linear and continuous functional on V ′. Because the space V is a
Hilbert space, we identify the extension with a function ω̄ ∈ V and obtain

〈ω̄, Rδf〉 = −∂fJ(ū, f̄)δf ∀ δf ∈ U. (3.60)

Moreover, on account of [1, Satz 2.14] the embedding V ↪→ L2
(
Ω;Rd

)
is dense.

Since the operator R̃ : L2
(
Ω;Rd

)
→
(
L2
(
Ω;Rd

))′ defined by

〈R̃f , g〉(L2(Ω;Rd))′,L2(Ω;Rd) =

∫
Ω
f · g dx
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is isometrically isomorphic, its image R̃
[
L2
(
Ω;Rd

)]
and thus R[U ] is densely em-

bedded in V ′ due to Proposition A.26. Note here that Rδf = R̃δf1 holds for all
δf = (δf1,0) ∈ U . From the Lipschitz continuity of ∂GS(Rf̄ ; ·) : V ′ → V , (3.55)
and (3.60) we infer the assertion.

The first-order necessary optimality conditions of strongly stationary type for (PS)
read as follows:

Theorem 3.45. Let f̄ ∈ U be a locally optimal solution of (PS) with associated
state ū ∈ V and multiplier λ̄ ∈

(
τν [V ]

)′. Then there exist an adjoint state ω̄ ∈ V
and a multiplier θ̄ ∈

(
τν [V ]

)′ such that

Bū+ τ∗ν λ̄ = Rf̄ in V ′ (3.61a)〈
λ̄, z

〉
≥ 0 ∀ z ∈ τν [V ] with z ≥ 0 a.e. on ΓC (3.61b)

τνū(x)− ψ(x) ≤ 0 a.e. on ΓC (3.61c)〈
λ̄, τνū− ψ

〉
= 0 (3.61d)

Bω̄ + τ∗ν θ̄ = ∂uJ(ū, f̄) in V ′ (3.61e)
ω̄ ∈ Sū,

〈
θ̄, τνv

〉
≥ 0 ∀v ∈ Sū (3.61f)

ω̄ + ∂f1
J(ū, f̄) = 0 a.e. in Ω (3.61g)

τ ω̄ + ∂f2
J(ū, f̄) = 0 a.e. on ΓN , (3.61h)

where the convex cone Sū is as defined in (3.50).

Proof. We define q ∈ V as the unique solution of

〈Bq, v〉 =
〈
∂uJ(ū, f̄), v

〉
∀v ∈ V. (3.62)

Let moreover Π: V → V be defined by

Π(v) =
(
∂GS(Rf̄ ; ·) ◦B

)
(v).

In consequence of the symmetry of C, cf. Assumption 3.1(2), the operator B is
self-adjoint. From Lemma 3.44, (3.62) and ∂GS(Rf̄ ; ·) = Π◦B−1 we therefore infer
the estimate

0 ≤ ∂uJ(ū, f̄)∂GS(Rf̄ ; δ`)−
〈
BB−1δ`, ω̄

〉
=
〈
Bq, ∂GS(Rf̄ ; δ`)

〉
−
〈
B−1δ`, Bω̄

〉
=
〈
Π(B−1δ`), B(q − ω̄)

〉
−
〈
(IV −Π)(B−1δ`), Bω̄

〉
=
〈
Π(B−1δ`), B(q − ω̄)

〉
−
〈
(IV −Π)(B−1δ`), BΠ(ω̄)

〉
−
〈
(IV −Π)(B−1δ`), B(IV −Π)(ω̄)

〉
(3.63)

for a ω̄ ∈ V satisfying (3.60) and for all δ` ∈ V ′. Herein, the mapping IV : V → V
denotes the identity. The operator Π is the projection on the set Sū w.r.t. to the
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norm induced by B, cf. the proof of Corollary 3.37. Hence, for every ξ ∈ V we
know

Π(ξ) ∈ Sū, 〈B(Π(ξ)− ξ), v −Π(ξ)〉 ≥ 0 ∀v ∈ Sū. (3.64)

Because Sū is a convex cone, we can test the variational inequality in (3.64) with
v = 2Π(ξ) and v = 0, which leads to

〈B(IV −Π)ξ, Π(ξ)〉 = 0 ∀ ξ ∈ V. (3.65)

Besides, Π is idempotent so that

Π ◦Π = Π, (IV −Π) ◦ (IV −Π) = IV −Π (3.66a)
Π ◦ (IV −Π) = (IV −Π) ◦Π = 0. (3.66b)

We insert δ` = B(IV −Π)(ω̄) ∈ V ′ in (3.63) and obtain

0 ≤
〈
Π(B−1B(IV −Π)(ω̄)), B(q − ω̄)

〉
−
〈
(IV −Π)(B−1B(IV −Π)(ω̄)), BΠ(ω̄)

〉
−
〈
(IV −Π)(B−1B(IV −Π)(ω̄)), B(IV −Π)(ω̄)

〉
= 〈(IV −Π)(ω̄), BΠ(ω̄)〉 − 〈(IV −Π)(ω̄), B(IV −Π)(ω̄)〉
= −〈B(IV −Π)(ω̄), (IV −Π)(ω̄)〉 ,

where (3.65), (3.66) and B = B∗ was used. Together with the coercivity of B this
implies

‖ω̄ −Π(ω̄)‖2V ≤ c 〈B(ω̄ −Π(ω̄)), ω̄ −Π(ω̄)〉 ≤ 0,

i.e., ω̄ = Π(ω̄) ∈ Sū. Now let s ∈ V be the solution of

〈Bs, v〉 = 〈B(ω̄ − q), v〉 ∀v ∈ V. (3.67)

Plugging δ` = BΠ(s) ∈ V ′ in (3.63) and taking account of (3.65)–(3.67) yields

0 ≤
〈
Π(B−1BΠ(s)), B(q − ω̄)

〉
−
〈
(IV −Π)(B−1BΠ(s)), BΠ(ω̄)

〉
−
〈
(IV −Π)(B−1BΠ(s)), B(IV −Π)(ω̄)

〉
= 〈Π(s), B(q − ω̄)〉 = −〈Bs, Π(s)〉 = −〈BΠ(s), Π(s)〉 .

Thanks to the coercivity of B we conclude Π(s) = 0. In view of (3.64) it therefore
follows

〈Bs, v〉 ≤ 0 ∀v ∈ Sū,

which by (3.67) and (3.62) is equivalent to

〈Bω̄, v〉 ≤ 〈Bq, v〉 =
〈
∂uJ(ū, f̄), v

〉
∀v ∈ Sū.

We define ζ̄ = ∂uJ(ū, f̄)−Bω̄ ∈ V ′ and find

Bω̄ + ζ̄ = ∂uJ(ū, f̄)〈
ζ̄, v

〉
≥ 0 ∀v ∈ Sū.

(3.68)
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Due to the linearity of the extension operator E we further deduce from Corollary
A.10 and (3.68) that 〈

ζ̄, v
〉

= 0 ∀v ∈ V with τνv = 0.

This is why the functional ζ̄ ∈ V ′ belongs to ker(τν)⊥. As the mapping τν : V →
τν [V ] is surjective, the set ker(τν)⊥ coincides with the range of τ∗ν , cf. [61, Theorem
6.6.2], and there exists θ̄ ∈

(
τν [V ]

)′ with ζ̄ = τ∗ν θ̄. Finally, by testing with (f1,0),
f1 ∈ L2

(
Ω;Rd), and (0,f2), f2 ∈ L2

(
ΓN ;Rd

)
, in (3.60), we derive ω̄ = ∂f1

J(ū, f̄)
a.e. in Ω and τ ω̄ = ∂f2

J(ū, f̄) a.e. on ΓN , respectively.

Remark 3.46. We want to compare the strong stationarity system (3.61) with the
one stated in [69, Theorem 2]. To this end we investigate a finite-dimensional
version of (PS). More precisely, we consider

Minimize Jh(u,f)

s.t.

{
Mu+N>λ = Qf

λ ≥ 0, λ>(Nu−ψ) = 0, Nu ≤ ψ

 (3.69)

with objective functional Jh : Rn × Rn → R, vectors u,f ∈ Rn, λ,ψ ∈ Rm, and
matrices M,Q ∈ Rn×n and N ∈ Rm×n. The complementarity system in (3.69)
is obtained e.g. via a finite element discretization of (3.6). According to [69] a
solution (ū, λ̄, f̄) ∈ Rn × Rm × Rn of (3.69) is called strongly stationary, if there
exist multipliers ω̃ ∈ Rn and θ̃, ζ̃ ∈ Rm such that

M>ω̃ +N>θ̃ = −∂uJh(ū, f̄) (3.70a)

N ω̃ = ζ̃ (3.70b)

Q>ω̃ = ∂fJh(ū, f̄) (3.70c)

(Nu−ψ)iθ̃i = 0 ∀ i ∈ {1, . . . ,m} (3.70d)

λ̄iζ̃i = 0 ∀ i ∈ {1, . . . ,m} (3.70e)

θ̃i, ζ̃i ≥ 0 ∀ i ∈ {1, . . . ,m} with λ̄i = (N ū−ψ)i = 0. (3.70f)

From (3.70b), (3.70e) and (3.70f) we deduce (N ω̃)i ≥ 0 for all i ∈ {1, . . . ,m} with
λ̄i = (N ū − ψ)i = 0, (N ω̃)i = 0 for all i ∈ {1, . . . ,m} with λ̄i > 0 and thus
λ̄
>
N ω̃ = 0. Moreover, (3.70d) and (3.70f) lead to θ̃i = 0 for all i ∈ {1, . . . ,m}

with (N ū − ψ)i 6= 0 and θ̃i ≥ 0 for all i ∈ {1, . . . ,m} with λ̄i = (N ū − ψ)i = 0.
If v ∈ Rn satisfies (Nv)i ≤ 0 for all i ∈ {1, . . . ,m} with (N ū − ψ)i = 0 and
λ̄
>
Nv = 0, then we observe λi(Nv)i = 0 for all i ∈ {1, . . . ,m} and (Nv)i = 0

for all i ∈ {1, . . . ,m} with λ̄i > 0 so that θ̃
>
Nv ≤ 0. Consequently, the strong

stationarity system (3.70) implies

M>ω̄ +N>θ̄ = ∂uJh(ū, f̄) (3.71a)

ω̄ ∈ Sūh , θ̄
>
Nv ≥ 0 ∀v ∈ Sūh (3.71b)

Q>ω̄ + ∂fJh(ū, f̄) = 0, (3.71c)
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where ω̄ := −ω̃, θ̄ := −θ̃ and Sūh is given by

Sūh =
{
v ∈ Rn : (Nv)i ≤ 0 ∀ i ∈ {1, . . . , n} with (N ū−ψ)i = 0, λ̄

>
Nv = 0

}
.

Since (3.61g) together with (3.61h) is equivalent to R∗ω̄+∂fJ(ū, f̄) = 0, cf. (3.60),
we can interpret (3.71) as the finite-dimensional analogue of (3.61e)–(3.61h). Hav-
ing the surjectivity of the mapping τν : V → τν [V ] in mind, we assume now that
its counterpart N ∈ Rm×n is also surjective. From (3.71b) it follows (N ω̄)i ≤ 0

for all i ∈ {1, . . . ,m} with (N ū − ψ)i = 0, λ̄>N ω̄ = 0 and hence λ̄i(N ω̄)i = 0
for all i ∈ {1, . . . ,m}. Furthermore, the surjectivity of N yields θ̄i ≤ 0 for all
i ∈ {1, . . . ,m} with (N ū − ψ)i = λ̄i = 0 and θ̄i = 0 for all i ∈ {1, . . . ,m} with
(N ū − ψ)i 6= 0 so that θ̄i(N ū − ψ)i = 0 for all i ∈ {1, . . . ,m}. Altogether, we
infer from (3.71) the strong stationarity system (3.70) with ω̃ := −ω̄, θ̃ := −θ̄ and
ζ̃ := −N ω̄, which justifies that we used the same terminology in Theorem 3.45.
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4. Conclusion and outlook

In the previous chapters we investigated the optimal control of two variational
inequalities arising in mechanical contact problems - the static model of infinitesi-
mal elastoplasticity with linear kinematic hardening (VIE) and Signorini’s problem
(VIS). Solution operators associated with variational inequalities are commonly not
Gâteaux differentiable and the same applied for (VIE) and (VIS). As a result the
standard optimal control theory could not be employed. Nevertheless, in case of
(VIE) we were able to prove Bouligand differentiability of the solution operator
under additional regularity assumptions. By slightly weakening these assumptions
it was still possible to show directional differentiability. With these results at hand
we established two different second-order sufficient optimality conditions for the
optimal control of (VIE). The first condition was based on the Bouligand dif-
ferentiability of the solution operator and rather restrictive but applicable to a
general smooth objective functional. For an objective functional with a particu-
lar structure we then stated a sufficient condition, which was comparable with its
finite-dimensional counterpart in [69], using the directional differentiability of the
solution operator. With the help of an extension of Riesz’ representation theorem
it was also possible to show directional differentiability of the solution operator
associated with (VIS) by following the ideas of [62]. This allowed us to derive
first-order necessary optimality conditions of strongly stationary type for optimal
control problems subject to (VIS).
We have seen that the solution operator of (VIE) is Gâteaux differentiable if cer-
tain regularity requirements are satisfied and the biactive set of the solution, where
the operator is differentiated, is empty. The same holds true for (VIS), provided
that the active set vanishes. The topic of future research could be to exploit this
information in order to design efficient optimization algorithms for optimal con-
trol problems governed by (VIE) and (VIS), respectively. Bundle methods for
non-smooth problems or path-following approaches for regularized problems as in
[56, 71] could be combined with gradient-based optimization methods. By observing
the critical sets such algorithms would determine gradients via an adjoint calculus
and perform Newton-like steps, whenever it seems suitable, and switch back to a
bundle or path-following method otherwise. Maybe it is also possible to find de-
scent directions under additional assumptions, although the gradient does not exist,
so that a classical descent method can be performed, cf. [49]. Another alternative
could be to use information about the gradient within a trust region algorithm,
cf. [27]. In addition, the goal of future research should be of course to establish a
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substantial optimal control theory for the coupling of (VIE) and (VIS). In par-
ticular the existence of optimal solutions and subsequently the differentiability of
the solution operator associated with the coupled system must be discussed. Fur-
thermore, the underlying model must be extended. For instance the assumption of
linear kinematic hardening is not realistic and should be replaced by a nonlinear
hardening law.
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A. Auxiliary results

A.1. Capacity theory

We provide basics of capacity theory obtained from the books [3], [17] and [39]. Let
Ω ⊂ Rd be open and bounded. The following definition can be found in [3, Section
5.8.2].

Definition A.1 (Capacity).

a) For an open set U ⊂ Ω the capacity of U w.r.t. Ω is defined by

cap(U ; Ω) := inf
{
‖v‖2H1

0 (Ω) : v ∈ H1
0 (Ω), v ≥ 1 a.e. in U

}
.

b) This definition is extended to any subset E of Ω by

cap(E; Ω) := inf
{

cap(U ; Ω) : E ⊂ U ⊂ Ω, U open
}
.

Proposition A.2 ([3, Proposition 5.8.3]). Let E ⊂ be an arbitrary subset of Ω.
Then it holds

cap(E; Ω) = inf
{
‖v‖2H1

0 (Ω) : v ∈ H1
0 (Ω), v ≥ 1 a.e. in a neighborhood of E

}
.

Proposition A.3 ([3, Proposition 5.8.4]). Let K ⊂ Ω be compact and U ⊂ Ω be
open. Then it holds

a) cap(K; Ω) = inf
{
‖v‖2H1

0 (Ω) : v ∈ C∞0 (Ω), v ≥ 1 in K
}

b) cap(U ; Ω) = sup
{

cap(K; Ω) : K ⊂ U, K compact
}
.

Heinonen et al. define capacity in [39, Section 2] for compact and open sets as in
Proposition A.3. The definition is then extended to arbitrary sets as in Definition
A.1 b).

Theorem A.4 ([39, Theorem 2.2]). Let A,B ⊂ Ω with A ⊂ B and E =
⋃
n∈NEn

with {En}n∈N ⊂ P(Ω). Then it holds
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i) cap(A; Ω) ≤ cap(B; Ω)

ii) cap(E; Ω) ≤
∑

n∈N cap(En; Ω).

In [17, Section 6.4.3] capacity is defined only for Borel sets:

Definition A.5. Let E ∈ B(Ω) and α ∈ R.

a) We say that v ∈ H1
0 (Ω) satisfies v ≥ α in E in the sense of H1

0 (Ω), if there
exists a sequence vn → v in H1

0 (Ω) such that vn ≥ α a.e. in a neighborhood
of E.

b) The capacity of E, in the sense of H1
0 (Ω), is defined as

c(E; Ω) = inf
{
‖v‖2H1

0 (Ω) : v ≥ 1 in E in the sense of H1
0 (Ω)

}
.

In fact, Definition A.1 and Definition A.5 are equivalent.

Lemma A.6. Let E ∈ B(Ω). Then it holds c(E; Ω) = cap(E; Ω).

Proof. By the choice vn = v for all n ∈ N we see that every v ∈ H1
0 (Ω) with v ≥ 1

a.e. in a neighborhood of E also satisfies v ≥ 1 in E in the sense of H1
0 (Ω). Thanks

to Proposition A.2 it follows cap(E; Ω) ≥ c(E; Ω), since we minimize on a smaller
set. In order to prove the inverse estimate let

{vn}n∈N ⊂
{
v ∈ H1

0 (Ω): v ≥ 1 in E in the sense of H1
0 (Ω)

}
be a minimizing sequence so that

‖vn‖2H1
0 (Ω) → c(E; Ω).

Consequently, for every n ∈ N there exists a sequence {vnk}k∈N ⊂ H1
0 (Ω) with vnk ≥ 1

a.e. in a neighborhood of E and vnk → vn as k → ∞. If we extract vk ∈ {vnk}k∈N
with ∣∣‖vn‖2H1

0 (Ω) − ‖vk‖
2
H1

0 (Ω)

∣∣ < 1

k
,

then {vk}k∈N ⊂
{
v ∈ H1

0 (Ω): v ≥ 1 a.e. in a neighborhood of E
}
is also a mini-

mizing sequence, which implies cap(E; Ω) ≤ c(E; Ω).

Definition A.7 (Quasi-everywhere). We say that a property P is true quasi-
everywhere (q.e.) on Ω, if P is true except on a set of zero capacity.

Definition A.8 (Quasi-continuous). A function f : Ω → R is said to be quasi-
continuous in Ω, if there exists a sequence U1 ⊃ U2 ⊃ . . . ⊃ Un ⊃ Un+1 ⊃ . . . of
open sets in Ω such that f is continuous on Ω \ Un and cap(Un; Ω)→ 0 as n→∞.
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The following lemmas are taken from [17, Section 6.4.3]. Note that limn→∞ fn is a
measurable function and {x ∈ Ω: f � g} with �∈ {≤,≥, <,>,=} is a measurable
set, if the functions fn, n ∈ N, f and g are measurable. Therefore we will not have
to distinguish between c(·; Ω) and cap(·; Ω).

Lemma A.9 ([17, Lemma 6.49]). Let f : Ω→ R be quasi-continuous and measur-
able. If f ≥ 0 a.e. in Ω, then cap({x ∈ Ω: f < 0}; Ω) = 0.

Note that Ω must be an open set. Applied to the difference of two quasi-continuous
and measurable functions, which coincide a.e. in Ω, Lemma A.9 yields the next
corollary.

Corollary A.10. Let f, g : Ω → R be quasi-continuous and measurable. If f = g
a.e. in Ω, then f = g q.e. in Ω.

Lemma A.11 ([17, Lemma 6.50]). Let f ∈ H1
0 (Ω). Then f has a quasi-continuous

representative.

Lemma A.12 ([17, Lemma 6.52]). Let fn → f in H1
0 (Ω). Then there exists a sub-

sequence {fnk}k∈N such that its quasi-continuous representatives, w.l.o.g. denoted
by the same symbols, satisfy fnk → f q.e. in Ω.

A.2. The trace operator

In this section we collect several results on the trace operator mainly obtained from
Nečas [64]. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ.

Theorem A.13 ([1, Theorem A6.6]). There exists a unique linear continuous map
γ : H1(Ω)→ L2(Γ) such that

γv = v|Γ ∀ v ∈ H1(Ω) ∩ C(Ω). (A.1)

Theorem A.14 ([64, Theorems 2.4.2, 2.4.6 and 2.5.5]). There exists a unique linear
continuous map τ : H1(Ω)→ H1/2(Γ) such that

τv = v|Γ ∀ v ∈ C∞(Ω). (A.2)

The space H1/2(Γ) ⊂ L2(Γ) is a Hilbert Space. For a detailed definition we refer
to [32, Section 1.3] or [64, Section 2.5.2].

Theorem A.15 ([64, Theorem 2.3.1]). The space C∞(Ω) is dense in H1(Ω).

Corollary A.16. The operators γ and τ defined by (A.1) and (A.2), respectively,
are identical. In particular, it holds γv = τv a.e. on Γ for all v ∈ H1(Ω).
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Proof. Let v ∈ H1(Ω) ∩ C(Ω) be arbitrary. Due to Theorem A.15 there exists a
sequence {ϕn}n∈N ⊂ C∞(Ω) with ϕn → v in H1(Ω). In view of Theorem A.13 and
Theorem A.14 we deduce

ϕn|Γ → v|Γ in L2(Γ) and ϕn|Γ → τv in L2(Γ).

Thus, the operator τ satisfies

τv = v|Γ a.e. on Γ ∀ v ∈ H1(Ω) ∩ C(Ω),

which together with the uniqueness of γ implies the claim.

The operator τ is well-known as trace operator. For a vector-valued Sobolev function
v ∈ H1

(
Ω;Rd

)
the componentwise application of the trace operator is also denoted

by τv.

Lemma A.17 ([64, Lemma 2.5.5]). Let v ∈ H1(Ω) and h ∈ C0,1(Ω). Then it holds
vh ∈ H1(Ω) with

‖vh‖H1(Ω) ≤ c ‖v‖H1(Ω) ‖h‖C0,1(Ω) .

Corollary A.18. Let v ∈ H1(Ω) and h ∈ C0,1(Ω). Then it holds

τ(vh) = τvτh a.e. on Γ. (A.3)

Proof. Thanks to Theorem A.15 there is a sequence {ϕn}n∈N ⊂ C∞(Ω) with ϕn → v
in H1(Ω). On account of Lemma A.17 we arrive at the estimate

‖ϕnh− vh‖H1(Ω) = ‖(ϕn − v)h‖H1(Ω) ≤ c ‖ϕn − v‖H1(Ω) ‖h‖C0,1(Ω)

so that the product ϕnh converges to vh in H1(Ω). Theorem A.14 consequently
yields that

τϕn → τv in L2(Γ) and τ(ϕnh)→ τ(vh) in L2(Γ). (A.4)

Because the property (A.3) is fulfilled by continuous functions, cf. Theorem A.13
and Corollary A.16, we moreover infer

τ(ϕnh) = τϕnτh→ τvτh in L1(Γ). (A.5)

Together, (A.4) and (A.5) lead to the assertion.

Theorem A.19 (Inverse trace theorem, [64, Theorem 2.5.7]). The trace operator
τ has a linear continuous right inverse τ−1 : H1/2(Γ) → H1(Ω). In particular, it
holds

ττ−1z = z ∀ z ∈ H1/2(Γ)

and there exists a constant c > 0 such that

‖τ−1z‖H1(Ω) ≤ c ‖z‖H1/2(Γ) .
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Theorem A.20 ([64, Lemma 2.4.9]). The image of the trace operator τ is dense
in L2(Γ), i.e., it holds

τ [H1(Ω)] = L2(Γ).

The next proposition is a result of the embedding W 1,∞(Ω) ↪→ C(Ω), cf. [64,
Theorem 2.3.8], and [54, Proposition II.5.2].

Proposition A.21. The trace operator τ is positive, i.e., it holds τv ≥ 0 a.e. on
Γ for all v ∈ H1(Ω) with v ≥ 0 a.e. in Ω.

Let ν : Γ → Rd denote the unit outward normal vector field on Γ. The tangent
space of H1/2

(
Γ;Rd

)
is defined through

H
1/2
T

(
Γ;Rd

)
=
{
v ∈ H1/2

(
Γ;Rd

)
: v · ν = 0

}
.

Theorem A.22 ([53, Theorem 5.5]). Let Ω ⊂ Rd be a bounded domain with
C1,1-boundary Γ. The maps τν : H1

(
Ω;Rd

)
→ H1/2(Γ) and τT : H1

(
Ω;Rd

)
→

H
1/2
T

(
Γ;Rd

)
defined by

τνv = τv · ν, τTv = τv − (τνv)ν

are linear continuous. Moreover, for a given (h, g) ∈ H1/2(Γ)×H1/2
T

(
Γ;Rd

)
, there

exist v ∈ H1
(
Ω;Rd

)
and a constant c > 0 such that

τνv = h and τTv = g,

‖v‖H1(Ω;Rd) ≤ c
(
‖h‖H1/2(Γ) + ‖g‖

H
1/2
T (Γ;Rd)

)
.

Therefore, both τν and τT are surjective.

The operator τν is known as normal trace operator.

Corollary A.23. Let ΓD ⊂ Γ be measurable. The image τν [V ] of the set V ={
v ∈ H1

(
Ω;Rd

)
: τv = 0 a.e. on ΓD

}
under the normal trace operator τν is a

Hilbert space.

Proof. We aim to show that τν [V ] is closed in the Hilbert space H1/2(Γ) and hence
complete. For this purpose let {zn}n∈N ⊂ τν [V ] be a sequence with zn → z in
H1/2(Γ). In view of Theorem A.22 there exists {vn}n∈N ⊂ H1

(
Ω;Rd

)
with τνvn =

zn, τTvn = 0 and
‖vn‖H1(Ω;Rd) ≤ c ‖zn‖H1/2(Γ) . (A.6)

By definition of τν we know τνvn = 0 a.e. on ΓD and accordingly

τvn = (τνvn)ν + τTv = 0 a.e. on ΓD
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so that {vn}n∈N ⊂ V . Furthermore, the convergence of zn combined with (A.6)
yields the existence of a subsequence, w.l.o.g. denoted in the same way, converging
weakly to v ∈ V . Since τν is linear continuous and thus weakly continuous, we
find τνvn ⇀ τνv in H1/2(Γ). From the uniqueness of the weak limit we conclude
z = τνv with v ∈ V , which implies z ∈ τν [V ]. Consequently, the space τν [V ] is a
closed subset of H1/2(Γ).

A.3. Miscellaneous

Lemma A.24 (Partition of unity, [18, Lemma 9.3]). Let K ⊂ Rd be compact and let
U1, U2, . . . , Un be an open covering of K. Then there exist functions ϕi ∈ C∞0 (Ui),
i = 1, . . . , n, with

i) 0 ≤ ϕi ≤ 1 ∀ i ∈ {1, . . . , n}

ii)
∑n

i=1 ϕi(x) = 1 ∀x ∈ K and
∑n

i=1 ϕi(x) ≤ 1 ∀x ∈ Rd \K.

Proposition A.25 (Korn’s inequality, [72, Proposition 1.1 and Remark 1.3]). Let
ΓD ⊂ Γ be measurable with positive measure. Then there exists a constant cK > 0
such that

‖u‖2H1(Ω;Rd) ≤ cK
(
‖u‖2L2(ΓD;Rd) + ‖ε(u)‖L2(Ω;S)

)
∀u ∈ H1

(
Ω;Rd

)
,

where ε(u) denotes the linearized strain tensor, cf. (2.1).

Proposition A.26 ([31, Bemerkung I.5.14]). Let X and Y be Banach spaces.
Moreover let X be reflexive and dense in Y such that

‖x‖Y ≤ c ‖x‖X ∀ x ∈ X.

Then the dual space Y ′ can be identified with a dense subspace of the dual space X ′

such that
‖f‖X′ ≤ c ‖f‖Y ′ ∀ f ∈ Y ′.

Let X ⊂ Rd and M ⊂ X be arbitrary. Moreover let A denote a sigma-algebra on
the set X.

Definition A.27. The trace sigma-algebra of M in A is defined as

A|M := {A ∩M : A ∈ A}.

Lemma A.28 ([28, Korollar I.4.5]). Let the sigma-algebra A be generated by the
family E of subsets of X. Then the trace sigma-algebra A|M is generated by the
family

E|M := {E ∩M : E ∈ E}.
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Corollary A.29. If a mapping f : (X,B(X)) → (R,B(R)) is measurable, then its
restriction to M , f |M : (M,B(M))→ (R,B(R)), is measurable.

Proof. The inclusion mapping j : (M,B(X)|M )→ (X,B(X)) is measurable. Hence,
the composition f |M = f ◦ j : (M,B(X)|M ) → (R,B(R)) is measurable. From
Lemma A.28 we infer the assertion.
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