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Abstract: The bootstrap is a popular and powerful method for assessing precision

of estimators and inferential methods. However, for massive datasets which are in-

creasingly prevalent, the bootstrap becomes prohibitively costly in computation and

its feasibility is questionable even with modern parallel computing platforms. Recently

Kleiner, Talwalkar, Sarkar, and Jordan (2014) proposed a method called BLB (Bag

of Little Bootstraps) for massive data which is more computationally scalable with

little sacrifice of statistical accuracy. Building on BLB and the idea of fast double

bootstrap, we propose a new resampling method, the subsampled double bootstrap,

for both independent data and time series data. We establish consistency of the sub-

sampled double bootstrap under mild conditions for both independent and dependent

cases. Methodologically, the subsampled double bootstrap is superior to BLB in terms

of running time, more sample coverage and automatic implementation with less tuning

parameters for a given time budget. Its advantage relative to BLB and bootstrap is

also demonstrated in numerical simulations and a data illustration.
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1 Introduction

In the past decade, we have witnessed massive data (or big data) generated in many

fields. Datasets grow in size in part because they are increasingly being collected by

ubiquitous information-sensing mobile devices, remote sensing technologies, and wire-

less sensor networks, among others. Although our computing power has also been

advancing steadily, the surge of massive data presents challenges to both computer

scientists and statisticians in terms of data storage, computation and statistical anal-

ysis. As nicely summarized in Jordan (2013), a key question for statistical inference in

the massive data context is “Can you guarantee a certain level of inferential accuracy

within a certain time budget even as the data grow in size”? From a statistical point

of view, there is a great need for new methods that are theoretically sound and remain

computationally feasible even for massive data sets. The classical theoretical criteria

to assess the quality of an inferential procedure such as mean squared error, size/power

are still relevant, but for massive data, computational efficiency and algorithm qual-

ity are also important considerations in comparing different statistical methods and

procedures.

With any statistical inference method, an inextricably associated problem is to

assess the precision of that inference, and this remains important for the statistical

analysis of massive data sets. For example after parameter estimation from a data set,

a natural next step is to measure how precise the estimation method is, and this can

be measured by the mean squared error, width of confidence interval, and so on. The

bootstrap (Efron (1979)) is a powerful and popular procedure that can be applied to

estimate precision for a wide variety of inference methods. It has well-known statis-

tical properties including consistency and higher-order accuracy under quite general

settings. It is conceptually appealing as it is straightforward to implement, using re-

samples from the data as a proxy for samples, and is automatic in nature such that

the user can implement it without advanced statistical knowledge. However, the ben-

efits of bootstrap come at a considerable computational cost. Each iteration of the

bootstrap involves the calculation of a statistical function on a resample of the original

data. For a data of size n, on average each resample includes 0.63n distinct sample

points — therefore each iteration of the bootstrap carries a computational cost of the

same order as that of the original inference on the data. Even though this problem can

be alleviated with the advent of modern parallel computing platforms, it is still quite

overwhelming to repeatedly process such resampled datasets for data of huge size, say
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a terabyte. Therefore, this calls for new bootstrap methods that are computationally

scalable while maintaining good statistical properties.

In their recent work Kleiner, Talwalkar, Sarkar, and Jordan (2014) introduced

a new resampling procedure called Bag of Little Bootstraps (BLB, hereafter). This

procedure consists of randomly selecting small subsets of the data, and then performing

a bootstrap on each subset, by constructing weighted resamples of the subset such

that the resample size equals the size of the original data. The estimator is calculated

on these resamples in the same manner as bootstrap. It is worth noting that this

method bears some resemblance to the traditional subsampling (Politis and Romano

(1994a)) or m out of n bootstrap (Bickel, Götze, and van Zwet (1997)), which involve

subsamples or resamples of size much smaller than the bootstrap, thereby reducing the

computational cost. However, these methods (subsampling or m out of n bootstrap)

usually require a rescaling of the output, to adjust for the difference between sample

size and resample or subsample size. This feature makes them less user-friendly, since

in order to evaluate the precision of an estimation method, the practitioner typically

needs to know the rate of convergence of the estimator being used. Additionally, as

demonstrated in Kleiner et al. (2014), the performance of subsampling or m out of n

bootstrap depends quite strongly on the choice of parameters such as subsample size.

By contrast, the resamples in BLB are of the same size as the data, so no rescaling

of output is needed thereby retaining the automatic and user-friendly nature of the

bootstrap. On the other hand, although the resamples are nominally of the same size

as the original data, they contain only a small number of distinct points coming from

the subset, which reduces the computational cost of calculating a statistical function

of the resamples. The estimates of precision from a few subsets can be averaged to

obtain the BLB estimate of precision.

In Kleiner et al. (2014) the authors recommend a large number of resamples from

each subset, and a small number of random subsets. However, this means that only a

small fraction of the original data is used in computing the BLB estimate, as a large

majority of data points may not appear in any of the subsets used. Additionally, run-

ning a large number of resamples on each subset might incur high computational costs,

even if each resample has less runtime than bootstrap resamples. These two issues can

affect the performance of BLB in terms of statistical accuracy and computational cost,

respectively.

When facing the trade-off between statistical accuracy and computational cost, a
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practical question we need to answer is: “given a certain computation time budget, how

can a practitioner optimally use that budget to come up with an estimate of precision?”

The bootstrap has an obvious answer to this question — keep taking resamples until

the budget runs out. This answer holds true irrespective of the statistical inferential

method whose precision is of interest. However, it is not obvious how to answer this

question for BLB, since it is not clear how to optimize the two tuning parameters

— namely number of resamples per subset and the number of subsets, under the

time budget constraint. Two natural strategies would be — with a fixed number of

resamples per subset use as many random subsets as possible, or with a fixed number

of random subsets use as many resamples per subset as possible. Both strategies might

be sub-optimal in practice, depending upon the particular problem at hand. Kleiner

et al. (2014) suggest a novel adaptive method for selecting the tuning parameters,

where one first fixes a tolerance parameter, and then for each subset, one can keep

taking resamples till that tolerance level is reached. This method provides a nice way

of adaptively choosing tuning parameters for a given level of desired accuracy. However

for a given computational time budget, the variability of the precision estimate is not

known a priori, and hence it is not clear how to choose an appropriate value of the

tolerance parameter that is neither too ambitious nor too conservative for the inference

method of interest.

In this article we present a new resampling procedure called the Subsampled Double

Bootstrap (SDB, hereafter) for massive data. Double bootstrap was first proposed by

Beran (1988) as a way of improving the accuracy of bootstrap, but is considerably more

expensive than bootstrap and becomes computationally infeasible for massive data.

Fast double bootstrap (FDB, hereafter), which was independently proposed by White

(2000) and Davidson and MacKinnon (2000,2007), is an interesting alternative that

only resamples once in the second stage of bootstrapping and can dramatically speed

up the double bootstrap. The FDB has been applied to many tests in econometrics,

see Davidson and MacKinnon (2002), Ahlgren and Antell (2008), Richard (2009),

among others. Recently, Giacomini, Politis, and White (2013) applied the idea of

FDB to reduce the computational cost in running Monte carlo experiments to assess

the performance of bootstrap estimators and tests. They demonstrated the consistency

of this method and called it a ‘warp-speed method’ to emphasize its rapidness. Chang

and Hall (2014) recently studied the higher order accuracy of FDB in terms of bias

correction and coverage accuracy of confidence intervals. In the massive data context,
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the FDB is still too expensive since its computational cost is about twice the cost of

bootstrap. Therefore we propose to do subsampling first and then apply the idea of a

single resample in the double bootstrap step to the randomly drawn subset of massive

data, to evaluate the precision of a statistical inference method. Since our method

is a combination of subsampling and double bootstrap, we call it subsampled double

bootstrap (SDB). In the implementation of SDB, we randomly draw a large number

of small subsets of the data, but instead of bootstrapping the subsets we construct

only one resample from each subset. Since these resamples have the same nominal

size as the original data but only a small number of distinct points, SDB retains the

automatic nature and computational strength of BLB. The ensemble of resamples is

then used to estimate the precision of the inference method, in the same manner as

bootstrap. Note that SDB inherits certain features from FDB but is computationally

much cheaper than FDB. The number of distinct points in the first-stage subsample

and the second-stage resample of SDB are small compared to the number of distinct

points in the first-stage and second-stage resamples of FDB, and this makes SDB much

faster.

To see the statistical and computational advantages of SDB, note that the esti-

mation time of one SDB iteration is comparable to that of two resamples for a BLB

subset, and hence SDB can cover a large number of random subsets in the time it takes

BLB to complete a large number of resamples for a single random subset. Hence, SDB

can provide a much more comprehensive coverage of the data than BLB within a given

time budget. Further, given a certain computational time budget, utilizing that budget

with SDB is straightforward as it does not require the choice of any tuning parameters.

The practitioner can, just like bootstrap, simply keep running subset-resamples until

the time budget runs out.

The rest of the article is organized as follows. In Section 2 we describe SDB in

independent data setting. Section 3 demonstrates the consistency of SDB for inde-

pendent data, and Section 4 reports two simulation studies comparing SDB, BLB,

and bootstrap for independent data. We introduce a time series version of SDB in

Section 5. Section 6 demonstrates consistency for the dependent case, and Section 7

reports two simulation studies for time series data. We provide a data illustration on

a large meteorological time series dataset in Section 8, and the article concludes with

discussion in Section 9. Proofs of the theoretical results are in the Appendix and some

simulation figures are in supplementary materials. The R codes used for simulation
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and data analysis are also in supplementary materials, as well as the dataset analyzed.

2 SDB for independent data

Consider an i.i.d. sample Xn = {X1, . . . , Xn} drawn from some unknown distribution

P . The parameter of interest is θ = θ(P ), for which an estimate θ̂n = θ̂(Xn) is

obtained from the sample. (Please see the discussion following Theorem 3.1 for a

more rigorous definition of the types of parameter and estimator covered under the

scope of SDB.) Having chosen the estimator, the statistician often seeks to obtain

further information regarding the precision of the estimator θ̂(Xn). This requires the

estimation of some measure involving the sampling distribution of θ̂(Xn) and the true

value of the parameter θ. For example, the precision of an estimator can be measured

by the mean squared error or the width of a 95% confidence interval for θ.

Such measures of precision can usually be defined in terms of a root function

Tn(θ̂n, θ) involving the estimator and the parameter. Let Qn = Qn(P ) be the un-

known sampling distribution of Tn, and assume that the precision measure can be

represented as ξ(Qn) for a suitable functional ξ(·). For example, suppose θ is the

population mean, θ̂(Xn) is the sample mean, and the measure of interest is the scaled

MSE nE[(θ̂n− θ)2]. In our notation, we define the root as Tn(θ̂n, θ) =
√
n(θ̂n− θ), and

define the functional as ξ(Qn) =
∫
x2dQn(x), where Qn is the sampling distribution of

Tn(θ̂n, θ).

Estimation of ξ(Qn) can be performed by a resampling method like bootstrap.

Let Pn be the empirical distribution of the sample Xn, then we can approximate

Qn(P ) by Q̂n = Qn(Pn). To do so, we generate a large number (R) of resamples

X ∗jn = {Xj1 , . . . , Xjn}, j = 1, . . . , R from the observed sample Xn. Treating the origi-

nal estimate θ̂(Xn) as the population parameter and the resample estimate θ̂(X ∗jn ) as

an estimated value of this parameter, we compute the root Tn(θ̂(X ∗jn ), θ̂(Xn)) for each

resample, and obtain the empirical distribution Q̂n,R of this ensemble of roots. Condi-

tionally on Xn, the empirical distribution Q̂n,R converges to the resampling distribution

Qn(Pn) as R goes to infinity. The underlying idea of the bootstrap is to estimate the

unknown sampling distribution Qn of the root function by this empirical distribution

Q̂n,R, and estimate the measure ξ(Qn) by the plug-in estimator ξ(Q̂n,R).

In conventional bootstrap, each resample contains an average of 0.63n distinct

sample points — the computational cost of calculating each resample estimate θ̂(X ∗n)
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is therefore comparable to those of the original sample. Running R iterations requires

performing this task R times, which can be computationally demanding for massive

datasets, particularly when it involves computation of complex statistics. This limits

the application of bootstrap for massive datasets.

For BLB, we fix a subset size b (typically b = nγ for some 0 < γ < 1) and construct

a suitable number (S) of random subsets, X ∗jn,b = {Xj1 , . . . , Xjb}, j = 1, . . . , S, from

the observed sample Xn. Next, for each subset X ∗jn,b, we generate R weighted resamples

of size n — this can be represented by (X ∗jn,b,W
∗(j,k)
n,b ), k = 1, . . . , R where W∗(j,k)n,b =

{W1, · · · ,Wb} is a vector representing the frequencies of (X ∗jn,b) in the kth resample.

The weight vector W∗(j,k)n,b is generated from a multinomial distribution with n trials

and b cells with uniform chance for each cell, independently of the subset. Treating

θ̂(X ∗jn,b) as the population parameter and the resample estimate θ̂(X ∗jn,b,W
∗(j,k)
n,b ) as an

estimated value of this parameter, we compute the root Tn(θ̂(X ∗jn,b,W
∗(j,k)
n,b ), θ̂(X ∗jn,b)) for

each resample, and obtain the empirical distribution Q̂j
n,b,R of this ensemble of roots. In

the same spirit as bootstrap, we apply the plug-in estimator ξ(Q̂j
n,b,R) for each subset,

and average over different subsets to obtain the estimator 1
S

∑S
j=1 ξ(Q̂

j
n,b,R) of ξ(Qn).

We propose a subsampled double bootstrap scheme (SDB) based on subsets in the

same manner as BLB, but using only one resample per subset. We fix a subset size

b and construct a large number (S) of random subsets, X ∗jn,b = {Xj1 , . . . , Xjb}, j =

1, . . . , S, from the observed sample Xn. However, we generate only one resample from

the jth subset, corresponding to W∗(j,1)n,b as defined above, and calculate a single root

T ∗jn = Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b ), θ̂(X ∗jn,b)) from the resample estimate and the subset estimate.

With this ensemble {R∗jn : j = 1, . . . , S}, we compute the empirical distribution Q̂n,b,S

of roots and estimate ξ(Qn) using the plug-in estimator ξ(Q̂n,b,S). Algorithm 1 outlines

the computational steps involved.

Note that the computational advantages of SDB and BLB relative to the bootstrap

are applicable only when the estimator θ̂ of interest can take the weighted data rep-

resentation as its argument. This property holds for a large class of commonly used

estimators, including M -estimators. For a subset X ∗n,b with resample weights W∗n,b,
the resample estimate can then be expressed as θ̂(X ∗n,b,W∗n,b). Since BLB and SDB

resamples have nominal size n but only O(b) distinct points, computing the resample

estimate for these methods is much cheaper than that for bootstrap, which has O(n)

distinct points in the resamples.
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Input : Data Xn = {X1, . . . , Xn}
θ: parameter of interest

θ̂n: estimator

Tn(θ̂n, θ): root function

ξ(·): measure of accuracy

b: subset size

S: number of subsets

Output: ξ(Q̂n,b,S): Estimate of ξ

for j ← 1 to S do

(i) Choose random subset X ∗jn,b from Xn
(ii) Compute θ̂(X ∗jn,b) from X ∗jn,b
(iii) Generate resample (X ∗jn,b,W

∗(j,1)
n,b ) from X ∗jn,b

(iv) Compute resample estimate θ̂(X ∗jn,b,W
∗(j,1)
n,b ) from (X ∗jn,b,W

∗(j,1)
n,b )

(v) Compute resample root: T ∗jn = Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b ), θ̂(X ∗jn,b))

end

1. Compute empirical distribution of roots: Q̂n,b,S = ecdf of {T ∗1n , . . . , T ∗Sn }
2. Calculate the plug-in estimator ξ(Q̂n,b,S)

Algorithm 1: SDB algorithm

2.1 Comparison of SDB, BLB, and Bootstrap

For both BLB and SDB, the resample estimation step applies to a resample with O(b)

distinct points, whereas in bootstrap the resample has O(n) distinct points. This makes

SDB and BLB computationally much cheaper than bootstrap when b << n. Denote

the computational time for performing the estimation process θ̂ on a sample of size m

by t(m). In this formulation of computational time we focus on sample size to illustrate

the resampling methods, and ignore other factors affecting computational time. For

an estimator that can take the weighted data representation, the estimation time for

a resample with nominal size n but only b distinct points is t(b). The estimation time

for bootstrap, BLB, and SDB, for conducting inference in one original data sample,

are listed in Table 1, where the symbols have the same meaning as earlier. Bootstrap

requires estimation on the original data and its R resamples. Each BLB subset requires

estimation on the subset and its R resamples. Each SDB subset requires estimation

on the subset and the single resample.

For BLB, Kleiner et al. (2014) recommends R = 100 and a small value of S (2-10

depending on b). For illustration, let n = 100, 000 and b = n0.6, then the number of
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Name Estimation Time

Bootstrap (R + 1)× t(n)

BLB S(R + 1)× t(b)
SDB 2S × t(b)

Table 1: Estimation time for different resampling methods

distinct points in each resample is at most 1000, resulting in much faster computation

than bootstrap. However, in terms of sample coverage, each subset can cover at most

1% of the data, so 10 subsets can at best cover 10% of the data at an expense of

1010×t(b). The SDB can run more than 500 different subsets at the same expense,

providing a far more comprehensive coverage of the data.

Further, given a certain time budget, it is not clear how to choose the tuning pa-

rameters R and S that will provide optimal statistical accuracy for BLB. The adaptive

method proposed by Kleiner et al. (2014) provides an interesting alternative by choos-

ing a tolerance parameter ε instead of R and S. But even then, it is not clear how to

choose an appropriate ε in practice, since t(m) is not known a priori, and neither do we

know the estimation variability as a function of sample size. For the SDB (with a given

subset size) and the bootstrap, the estimation time involves only one parameter, the

number of resamples (or subsets), and hence the practitioner can simply keep running

resamples until the time budget runs out.

3 Theory for independent data

In this section, we provide a theoretical analysis of the SDB in a general empirical

process setting. Consider a class of functions F [each element mapping from Rk to R].

Denote by `∞(F) the space of bounded functions which map from F to R. To describe

consistency of the SDB, consider the SDB-process

ĜB
n,b(f) :=

1√
n

b∑
i=1

(Wi,n − n/b)f(XR−1(i)).

Here, W := (W1,n, ...,Wb,n) ∼ Multinomialb(n, 1/b, ..., 1/b) independent of X1, ..., Xn

and R follows a uniform distribution on the permutations of {1, ..., n} and is inde-

pendent of X1, ..., Xn,W . Note that in empirical process settings, it is important to
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specify the underlying probability space. This is done in the mathematical appendix

[see Section 10.1]. In order to show that the SDB ‘works’ in a process setting, we

need to establish that the distribution of the SDB process ĜB
n,b [conditional on the

observations Xi] is close to the distribution of the empirical process Gn where

Gn(f) :=
1√
n

n∑
i=1

(f(Xi)− E[f(X1)])

when both are viewed as elements of `∞(F). To this end we show that the SDB-process

converges in distribution, conditionally on the data X1, ..., Xn, to the same Gaussian

process as the empirical process Gn.

Theorem 3.1. Assume that F is a Donsker class for P , that Xi ∼ P are i.i.d. and

that additionally Fδ := {f − g : f, g ∈ F , P (f − g)2 ≤ δ} is measurable in the sense

discussed in Giné and Zinn (1984) for each δ > 0. Then we have for min(n, b)→∞

ĜB
n,b

P
 
W,R

G

in `∞(F) where G denotes a centered Gaussian process with covariance E[G(f)G(g)] =

cov(f(X), g(X)).

In the above Theorem, conditional weak convergence
P
 
W,R

is in the sense described

in Kosorok (2008), Section 2.2.3. A proof of this result can be found in the mathemat-

ical appendix [Section 10.1].

One remarkable fact about Theorem 3.1 is that, in addition to F being P-Donsker,

the only requirement on the class of functions F is a mild measurability condition. This

means that the SDB on a process level ‘works’ whenever the corresponding functional

central limit Theorem holds true (up to the mild measurability assumption on the

function class F), i.e. the SDB can be applied in a very wide variety of settings. The

proof relies on basic tools from empirical process theory [in particular, a fundamental

result on the exchangeable bootstrap, see Theorem 3.6.3 in van der Vaart and Wellner

(1996)], but is completely different from the proof of Theorem 1 in Kleiner et al. (2014).

The reason is that in the BLB one initial subset is fixed, while in the SDB a different

subset of the data is used in each iteration. The latter fact poses additional challenges

for the theoretical analysis of SDB.

Theorem 3.1 provides a fundamental building block for the analysis of SDB. Com-

bined with the continuous mapping theorem and functional delta method for the boot-

strap [see for instance Kosorok (2008), Theorem 10.8 and Theorem 12.1], it can be
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utilized to validate the consistency of SDB for a wide range of applications. For illus-

tration purposes, let us consider an application of the functional delta method for the

bootstrap with the root Tn(θ̂n, θ) :=
√
n(θ̂n − θ). Assume that we are interested in

conducting inference on a parameter θ which can be represented as φ((f 7→ Pf)f∈F),

and the estimator takes the form θ̂(X ) = φ((f 7→ Pnf)f∈F) for a suitable map φ. More

precisely, we assume that φ satisfies the following condition

(H) There exists a V which is a vector space with V ⊂ `∞(F) such that the sample

paths of G lie in V with probability one. The map φ : `∞(F) → Rk is com-

pactly differentiable tangentially to V in the point H : f 7→ Pf . Denote the

corresponding derivative by φ′H .

For f ∈ F , write Pn,bf := 1
n

∑b
i=1Wi,nf(XR−1(i)). Then, in the notation from Section 2,

we have θ̂(X ∗jn,b,W
∗(j,1)
n,b ) = φ((f 7→ Pn,bf)f∈F). Now the delta method for the bootstrap

[Theorem 12.1 in Kosorok (2008)] yields for min(n, b)→∞

Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b ), θ̂(Xn)) =

√
n(θ̂((X ∗jn,b,W

∗(j,1)
n,b ))− θ̂(Xn))

P
 
W,R

φ′HG.

At the same time, the classical functional delta method yields

Tn(θ̂(Xn), θ) =
√
n(θ̂(Xn)− θ) φ′HG.

Assume measurability of θ̂((X ∗jn,b,W
∗(j,1)
n,b )), θ̂(Xn). Write L for the distribution of φ′HG,

Ln for the distribution of Tn(θ̂(Xn), θ), and denote by LBn,b(R,W ) the distribution of

Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b ), θ̂(Xn)) conditional on R,W . Denoting by d a metric on the space of

distributions on Rk which metrizes weak convergence, we have proved that d(Ln,L)→
0 as n → ∞ and d(LBn,b(R,W ),L) → 0 in outer probability as min(n, b) → ∞. In

particular, this shows that for any map ξ from the space of distributions to Rk which is

continuous in the point L with respect to the metric d, we have ξ(LBn,b(R,W ))−ξ(L)→
0 in outer probability. This shows that the conclusion of Theorem 1 in Kleiner et al.

(2014) continues to hold in the SDB setting.

4 Simulation study for independent data

In this section, we report two simulation studies comparing the performance of boot-

strap, BLB, and SDB in large simulated datasets in the i.i.d. framework. We used

model settings similar to Kleiner et al. (2014). Since they have already demonstrated
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that BLB performs better than the m out of n bootstrap and subsampling, we did not

include these methods in our study.

4.1 Multiple Linear Regression

Consider a d-dimensional multiple linear regression model

yi = β1xi,1 + . . .+ βdxi,d + ei

for i = 1, . . . , n. Our parameter of interest is the d-dimensional vector of slope co-

efficients, whose true value is β = (β1, ..., βd) = (1, . . . , 1)′. We use the usual OLS

estimator β̂. We also want to construct a simultaneous 95% confidence region for β.

Traditionally we use the F-statistic

Tn(β̂, β) =
(β̂ − β)′X ′X(β̂ − β)/d

(y −Xβ̂)′(y −Xβ̂)/(n− d− 1)

to construct the joint confidence region. Let q0.95 be the 95% quantile of the true (un-

known) distribution of Tn(β̂, β). Then the confidence region is given by {β : Tn(β̂, β) ≤
q0.95}. In general the true distribution of Tn, and hence its quantile q0.95, is unknown.

But it can be estimated by the resampling techniques described in the previous section,

with ξ(Qn) = q0.95 where Qn is the true distribution of Tn.

In our simulations, we use a model from the simulation study of Kleiner et al. (2014).

We generate xi,j
iid∼ t3 and ei

iid∼ N(0, 100) independently. For normally distributed

errors, we know that Tn ∼ F (d, n− d− 1), and hence the true quantiles are given by

those of the corresponding F distribution. We define the error rate as

| q̂0.95
q0.95

− 1|

where q̂ and q represent the estimated and true quantiles of Tn, respectively. We use

subset size b = nγ with γ = 0.6, 0.7, 0.8 for both BLB and SDB, and let n=100000,

d=100. Following Kleiner et al. (2014) we fix R = 100 for BLB. We allowed the

competing methods to run for 60 seconds.

4.2 Logistic Regression

Consider a d-dimensional multiple logistic regression model

yi
ind∼ Ber(pi) where pi = β1xi,1 + . . .+ βdxi,d
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for i = 1, . . . , n. Our parameter of interest is the d-dimensional vector of slope co-

efficients, whose true value is β = (β1, . . . , βd) = (1, . . . , 1)′. We use the maximum

likelihood estimator β̂n which does not have a closed form expression for this model,

but can be numerically computed using a Newton-Raphson method. We use the R

function glm for fitting the model. As before, we want to construct a simultaneous

95% confidence region for β. Define the root function

Tn(β̂, β) = (β̂ − β)′Σ̂(β̂ − β)

where Σ̂ =
∑n

i=1
exp(x′iβ̂)

[1+exp(x′iβ̂)]
2
xix
′
i. Let q0.95 be the 95% quantile of the true (unknown)

distribution of Tn(β̂, β). Then the confidence region is given by {β : Tn(β̂, β) ≤ q0.95}.
In general the true distribution of Tn, and hence its quantile q0.95, is unknown. But it

can be estimated by the resampling techniques described in the previous section, with

ξ(Qn) = q0.95 as the target precision parameter, where Qn is the true distribution of

Tn.

We generate xi,j
iid∼ t3 and obtain a numerical approximation of q0.95 using 10000

Monte Carlo simulations. As before, we define the error rate as |q̂0.95/q0.95−1|. We use

subset size b = nγ with γ = 0.6, 0.7, 0.8 for both BLB and SDB, and use n=100000,

d=10. Following Kleiner et al. (2014) we fix R = 100 for BLB. We allowed the com-

peting methods to run for 20 seconds.

4.3 Comparison of SDB, BLB, and Bootstrap

The methods are compared with respect to the time evolution of error rates. Note that

this is different from conventional analysis where error rates from competing methods

are compared for the same number of iterations. This makes sense because different

methods have different estimation time profiles (as formulated in Table 1), and we want

to investigate which method is the fastest to produce reasonably accurate results. We

consider a time grid 1, 2, . . . , 60 (in seconds) and at each time point t, we look up the

latest iteration that was completed by this time, and calculate the error corresponding

to the estimate ξ̂ from cumulative iterations including that iteration. For each method

and any t, this can be interpreted as the error rate obtained by that method for a

given computation time budget of t seconds. Different methods will have different

numbers of iterations completed within the same time budget. For bootstrap and

SDB, latest iteration means the latest completed resample or subset-resample, while

for BLB (following Kleiner et al. (2014)) the latest iteration means the latest completed

13



subset. Note that till the first iteration is complete, we do not have an estimate ξ̂, so

we consider the error rate to be 1 till the first iteration is completed. Error rates are

averaged across 20 Monte Carlo simulations.

Figure 1 shows the time evolution of error rates for bootstrap, BLB, and SDB.

Bootstrap has the highest computing cost which gets reflected in its slow convergence.

The performance of BLB and SDB are close to one another for generous time budgets,

but for lower time budgets SDB performs better by quickly giving a reliable estimate

while BLB takes some time to complete the first subset. This phenomenon becomes

particularly prominent for higher values of b as BLB’s computing time for each subset

becomes large. For small time budgets even bootstrap can beat BLB when b = n0.8,

since the time taken by BLB to complete a subset can exceed the given budget. A

similar phenomenon for small time budgets was observed in the simulation study of

Kleiner et al. (2014) (see Figure 1(a)—(c) in their paper for linear regression and

2 (a)—(c) for logistic regression), where bootstrap estimates are available but BLB

estimates are not available yet for subset size b = n0.8 or b = n0.9.

Remark 4.1. Computing time for the resampling methods depends on various aspects

of the computational infrastructure used, e.g. the processing power of the computer,

storage capacity, and statistical software or computing platform. All our simulations

were performed on a desktop computer with Intel(R) Core(TM)2 Duo CPU E8400

@3.00 GHz processor and 4 GB RAM, running R version 3.0.1. The computational

infrastructure influences the computing time of various resampling methods in identical

manner, so the relative performance of these methods should be qualitatively similar

in a different infrastructure, even if the absolute performances might vary.

Remark 4.2. It is relevant to note that while we have used models from Kleiner et al.

(2014) in these studies, the precision measure and the method of comparison between

resampling schemes are slightly different. They constructed marginal confidence inter-

vals for the individual regression coefficients, and combined results for the d coefficients

by averaging the error rate over the dimensions. Thus they are interested in measures

of precision of the individual estimation tasks of estimating the d coefficients. However,

in a multivariate regression setting, the joint estimation task of all coefficients taken

together might be of more interest. Accordingly, we constructed a simultaneous confi-

dence region for the d-dimensional vector of regression coefficients to assess precision

of this joint estimation task, and compute error in terms of this confidence region.
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For comparison between resampling schemes, Kleiner et al. (2014) allowed the com-

peting resampling schemes to converge, and for each iteration (defined as a complete

subset for BLB and resample for bootstrap), they computed the average cumulative

computing times and average error rates from five Monte Carlo simulations. They

compared resampling schemes on the basis of this average time vs average error trade-

off. In our simulations, we compare methods on the basis of error rate achieved for a

given time budget, over 20 Monte Carlo simulations. Thus time is not averaged across

simulations — rather, at a fixed point in time we look up the error rates obtained by

this time in the Monte Carlo simulations, and average them. If at a certain time point

no estimate is available yet (no iteration has been completed), we assign an error rate

of 1.

In particular, in our simulation plots, the error rate changes only when an iteration

has been completed. This makes them look ‘jerky’ and unstable as there are long

stretches of a flat line followed by a sudden drop. Since estimates change only upon the

completion of a new iteration, the arrival of new estimates is actually an intermittent

process rather than a continuous process with respect to the time axis, and the error

rate does not change unless a new estimate is available. Therefore it is realistic that

error rates change in a ‘jerky’ fashion rather than smoothly, and this is not a symptom

of instability.

Remark 4.3. Several bootstrap approaches exist in a regression setting — for example

paired bootstrap, residual bootstrap, wild bootstrap and so on. In these simulations

we have implemented the paired bootstrap, where both regressors and response are

resampled. The paired bootstrap method can be naturally extended to the BLB and

SDB algorithms, but it is unclear whether there are straightforward extensions for

residual bootstrap or wild bootstrap.

As pointed out by a referee, another alternative is to look at bootstrap p-values

instead of confidence regions for regression models. In our formulation ξ is a parameter

associated with the sampling distribution Qn of the root function Tn (which in this case

is the F-statistic), while the p-value is a statistic. However, one can implement Algo-

rithm 1 to ‘estimate’ the true p-value using the empirical distribution Q̂n,b,S. Limited

(unreported) simulation results suggest that SDB still possesses the same advantage

over BLB and bootstrap, which is reported for confidence region. A more careful in-

vestigation regarding the suitability of SDB for approximation of the p-value in theory

and finite sample simulations is left for future work.

15



0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 5 10 15 20

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 5 10 15 20

0.
0

0.
4

0.
8

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

0 5 10 15 20

0.
0

0.
4

0.
8

Figure 1: Time evolution of error rates for multiple linear regression with d=100

(left column) and multiple logistic regression with d=10 (right column). Sample size

n=100000, subset size is b = nγ where γ = 0.6 (top row), γ = 0.7 (middle row) and

γ = 0.8 (bottom row). Bootstrap errors are represented by solid lines, BLB errors by

dashed lines, and SDB errors by dotted lines. Errors are averaged over 20 simulations.

5 SDB for time series data

In this section, we extend SDB to time series data. Note that Kleiner et al. (2014)

have briefly mentioned an extension of BLB to the time series setting using stationary
16



bootstrap (Politis and Romano (1994b)), however no rigorous theory is provided. Also

see Laptev, Zaniolo, and Lu (2012) for a recent implementation on a large Twitter

dataset.

Suppose we observe Xn = {Xt}nt=1, which is a stretch of length n from the strictly

stationary time series {Xt}t∈Z, and let P denote the joint probability law that governs

the stationary sequence. Let θ = θ(P ) be our parameter of interest, and suppose we

have an estimator θ̂n(Xn) which is a measurable mapping from Xn to R. As with

independent data, we are interested in evaluating the precision of this statistical infer-

ence. As before, this can be formulated in terms of a root function Tn(θ̂n, θ), and the

precision can be expressed as ξ(Qn) where Qn is the true (unknown) distribution of

Tn.

For BLB, we first construct subsets of the original sample by randomly choosing

a continuous stretch of data X ∗n,b = {XJ+i}bi=1 where 0 ≤ J ≤ n − b + 1 and the

subset size b is fixed beforehand. From the jth subset, we then construct R weighted

resamples (X ∗jn,b,W
∗(j,k)
n,b ) for k = 1, . . . , R of size n using the Moving Block Bootstrap

(MBB, hereafter) of Künsch (1989) and Liu and Singh (1992). We use MBB instead of

stationary bootstrap used by Kleiner et al. (2014) since the MBB is conceptually sim-

pler, and easier in terms of theoretical treatment. For this, we consider some suitable

block length L < b and divide the subset {XJ , XJ+1, . . . , XJ+b−1} into an ensemble of

overlapping blocks {Xi, Xi+1, . . . , Xi+L−1} where J ≤ i ≤ J + b−L+ 1. The resample

is constructed by concatenating blocks that are randomly sampled from this ensemble,

till we obtain a chain of size n. Note that when n is not a multiple of L, we will need to

take a fraction of the final block in order to obtain a resample of length exactly n. This

gives us an ensemble of roots of the form Tn(θ̂(X ∗jn,b,W
∗(j,k)
n,b ), θ̂b(X ∗jn,b)), k = 1, . . . , R, and

we use the empirical distribution of this ensemble to approximate the unknown distri-

bution of Tn(θ̂n, θ). Averaging over j = 1, . . . , S subset estimates then gives the BLB

estimate of precision.

For SDB, for each subset X ∗jn,b, we generate only one MBB resample (X ∗jn,b,W
∗(j,1)
n,b )

to construct the root Tn(X ∗jn,b,W
∗(j,1)
n,b ), θ̂b(X ∗jn,b)). We do this a large number (S) of

times to generate an ensemble of roots, and use the empirical distribution of this

ensemble to approximate the unknown distribution of Tn(θ̂n, θ). Algorithm 2 outlines

the computational steps involved.

In the time series case, estimation time can be formulated as t(m) in a manner

similar to Section 2.1, where m is the number of distinct points, and the estimation
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Input : Data Xn = {X1, . . . , Xn}
θ: parameter of interest

θ̂n: estimator

Tn(θ̂n, θ): root function

ξ(·): measure of accuracy

b: subset size

L: block length

S: number of subsets

Output: ξ(Q̂n,b,S): Estimate of ξ

for j ← 1 to S do

(i) Choose random subset X ∗jn,b = {XJ+i}bi=1 from Xn where 0 ≤ J ≤ n− b+ 1

(ii) Compute θ̂(X ∗jn,b) from X ∗jn,b
(iii) Choose k = n/L blocks by randomly sampling k starting points

(t1, . . . , tk) from {J + 1, . . . , J + b− L+ 1} with replacement

(iv) Construct resample weights for subset:

Initialize: W∗(j,1)n,b ← (0 . . . 0︸ ︷︷ ︸
b

)

for i← 1 to k do

W∗(j,1)n,b ←W∗(j,1)n,b + (0 . . . 0︸ ︷︷ ︸
ti−1

1 . . . 1︸ ︷︷ ︸
L

0 . . . 0︸ ︷︷ ︸
b−ti−L+1

)

end

(v) Compute resample estimate θ̂(X ∗jn,b,W
∗(j,1)
n,b ) from (X ∗jn,b,W

∗(j,1)
n,b )

(vi) Compute resample root: R∗jn = Tn(θ̂(X ∗jn,b,W
∗(j,1)
n,b ), θ̂(X ∗jn,b))

end

1. Compute empirical distribution of roots: Q̂n,b,S = ecdf of {R∗1n , . . . , R∗Sn }
2. Calculate the plug-in estimator ξ(Q̂n,b,S)

Algorithm 2: SDB time series algorithm

times listed in Table 1 apply with MBB taking the place of bootstrap. MBB requires

estimation on the original data and its R resamples. Each BLB subset requires esti-

mation on the subset and its R resamples. Each SDB subset requires estimation on

the subset and the single resample.

Broadly speaking, the time series version of SDB retains the advantages discussed

in Section 2.1 in the context of independent data. For a given computational time

budget, by using a single resample for each random subset SDB can accommodate

much more comprehensive coverage of data than BLB. Also, BLB involves tuning

parameters R and S (or ε under the adaptive method) whose selection can be non-
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trivial, while SDB and MBB do not require this type of tuning parameter selection.

However, an important tuning parameter in the time series setting is the block length

L which can affect both variability and the accuracy of the estimate of precision in all

three resampling methods.

6 Theory for dependent data

We begin by setting up a mathematical framework for SDB in the dependent case.

Throughout this section we assume that the observations X1, ..., Xn stem from a strictly

stationary time series {Xt}t∈Z. Given a sample X1, ..., Xn, the SDB procedure for time

series can be described through the following steps.

1. Pick a random variable J which is distributed uniformly on 0, ...., n− b− 1. This

corresponds to the first step of randomly selecting a block of length b from the

complete data.

2. Choose K = dn/Le random variables s1, ..., sK which are i.i.d. and distributed

uniformly on 0, ..., b− L+ 1. Generate the sample X∗1 , ..., X
∗
n by setting

(X∗kL+1, ..., X
∗
(k+1)L) := (XJ+sk , ..., XJ+sk+L−1)

3. After the first two steps above, one realization of the SDB process is given by

ĜB
n,b(f) :=

1√
n

n∑
i=1

(
f(X∗i )− 1

b

b∑
j=1

f(XJ+j)
)
.

Repeat a large number of times, each time generating a new J, s1, ..., sK .

As in the case of independent observations, our aim is to establish validity of the

SDB for general classes of functions. In contrast to the i.i.d. setting, where the

‘classical’ bootstrap for empirical processes is well understood, there are very few results

on bootstrap validity for general empirical processes. All of the available results rely

on the notion of β-mixing to measure dependence. More precisely, the k’th β-mixing

coefficient β(k) with k ∈ N is defined as

β(k) :=
1

2
sup

∑
(i,j)∈I×J

|P (Ai ∩Bj)− P (Ai)P (Bj)|
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where the supremum is taken over all finite measurable partitions (Ai)i∈I , (Bj)j∈J of

σ(Xt, t ≤ 0) and σ(Xt, t ≥ k), respectively. As of this writing, we are aware of only

three articles that deal with bootstrap validity for general empirical processes based

on dependent observations. Bühlmann (1995) considers the moving blocks bootstrap

under exponential decay of the β-mixing coefficients and classes of functions with poly-

nomial bracketing numbers. Radulović (1996) establishes the validity of the moving

blocks bootstrap for VC [see van der Vaart and Wellner (1996), Chapter 2.6.2 for a

definition] classes of functions under conditions on polynomial decay of β-mixing co-

efficients. Finally, Radulović (2009) revisits the disjoint blocks bootstrap and proves

its validity under generic conditions on the function class and decay of β-mixing co-

efficients. The latter paper also contains a nice overview of literature on bootstrap

validity under dependence [see also Radulović (2002) for a review of earlier results].

Our main result can be viewed as an analogue of Theorem 1 in Radulović (1996).

Theorem 6.1. Assume that F is a permissible [as defined on page 228-229 in Kosorok

(2008)] VC class with envelope function F such that E[F p(X1)] <∞ for some p > 2.

Assume that the mixing coefficients β satisfy β(k) ≤ k−q for some q > p/(p − 2). If

additionally there exist κ > 0, γ > 0, 0 < ρ < p−2
2(p−1) such that b, L satisfy

n−1/2Lbγ = o(n−κ), L→∞, L = O(bρ), n1/2 = O(b(p−1)γ),

we have

ĜB
n,b

P
 
J,S

G

in `∞(F) where G denotes a centered Gaussian process with covariance structure

E[G(f)G(g)] =
∑
t∈Z

(E[f(X1)g(Xt)]− E[f(X1)]E[g(X1)]).

A proof of this theorem is in the mathematical appendix [Section 10.2]. Theorem

6.1 shows that the time series version of SDB also works in a wide range of settings. In

particular, the continuous mapping theorem and delta method for the bootstrap can be

employed in the same fashion as discussed at the end of Section 3. We conjecture that

the assumptions on the dependence can be weakened if we consider more specialized

classes of functions, such as indicators of rectangles which would lead to the ‘classical’

empirical distribution function.
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7 Simulation study for time series

In this section we report the numerical performance of SDB, BLB, and MBB in two

simulation studies involving large time series data.

7.1 Median of AR(1) process

Consider an AR(1) time series formulated as

Xt = ρXt−1 + et

of length n = 100, 000 and random innovation et
iid∼ N(0, 1). The parameter of interest

is the population median M . We define Tn =
√
n(Mn −M) where Mn is the sample

median. We are interested in evaluating the precision of the estimator Mn. Our

measure of precision is a quantile of the distribution of Tn, i.e. ξ = qα(Tn) which can

be used for constructing confidence intervals, for example, with α = 5%, 95% we can

construct a 90% confidence interval.

We obtain the ‘true’ value ξtrue from 10000 simulations. The error rate is measured

by | ξ̂/ξtrue − 1 | . We implement and compare the three resampling methods, namely

MBB, BLB, and SDB. Block length is L = 10, 20, 50 for all methods, and we use subset

sizes b = 5000, 10000 for BLB and SDB. We allow each method to run for 60 seconds

for L = 20, 50 and 120 seconds for L = 10, to allow BLB to complete one subset.

7.2 Time Series Regression

We also studied the relative performance of MBB, BLB, and SDB in the time series

regression framework (see e.g. Andrews and Monahan (1992), Kiefer, Vogelsang, and

Bunzel (2000), Rho and Shao (2013)). Consider the time series regression model

yt = X ′tβ + ut

for t = 1, . . . , n where β is a d× 1 vector of regression coefficients, Xt is a d× 1 vector

of stationary regressors, and ut is a stationary error process that satisfies E[ut | Xt]

= 0. We considered the AR(1)-HOMO regression model of Andrews and Monahan

(1992) where the d regressors and the error process are mutually independent, mean

zero, homoskedastic, AR(1) processes with autocorrelation ρ and standard normally

distributed innovations, and set β = 0. We set n = 100, 000 and d = 10, and use
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ρ = −0.8, 0.5, 0.9. Similar to Section 4.1, the parameter of interest is β, estimator of

choice is the least-squares estimate β̂, and we measure precision by constructing a 95%

confidence region for β using the F-statistic. We obtain the ‘true’ value of q0.95 from

10000 simulations. We define error rate by |q̂0.95/q0.95 − 1| as before, and use block

lengths L = 10, 20, 50, subset sizes b = 5000, 10000 for BLB and SDB. To allow BLB

to complete one subset, we ran each method for 150 seconds for L = 10, 90 seconds

for L = 20, and 60 seconds for L = 50.

7.3 Comparison of SDB, BLB, and MBB

The methods are compared with respect to the time evolution of error rates, as dis-

cussed in Section 4.3. Error rates for different methods are averaged across 20 Monte

Carlo simulations. Results for L = 50 are displayed in Figures 2, 3, and 4. To save

space, results for L = 10, 20 are presented in supplementary materials. We can see

that SDB shows significant advantages over its competitors. In particular, it is encour-

aging to observe that for shorter time budgets (half of total runtime or less), SDB has

a clear advantage over the other methods in most cases. SDB can give a reasonable

estimate by 10-15 seconds in most cases, while the BLB can take a substantial time

to complete a single subset. MBB has highest computing cost which is reflected in its

slow convergence, but it appears that MBB can often provide a reasonable estimate

by the time taken by BLB to complete one subset, which is consistent with our finding

in the iid case.

An interesting aspect of these results is that block length affects both running time

and accuracy. The behavior of the resample estimate depends on block length, and

this affects accuracy of the resampling methods. The dependence of running time on

block length comes from the fact that construction of resample weights (Step (iv) of

Algorithm 2) depends on the number of blocks in the resamples, and this step affects

running time of the algorithms. However, the advantages of SDB in our numerical

results are consistent over the various values of block length used.

8 Data Analysis

We apply our method to analyze the Central England Temperature (CET) dataset,

which is a meteorological time series dataset consisting of 228 years (1780-2007) of av-

erage daily temperatures in central England. The CET dataset represents the longest
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Figure 2: AR(1) simulation results with ξ = 95% quantile of Tn =
√
n(Mn − M),

sample size n=100000, block length L=50, autocorrelation ρ = -0.8 (top row), 0.5

(middle row), 0.9 (bottom row), and subset size b = 5000 (left column) ,10000 (right

column). The plot displays the time evolution of error rates from 20 simulations when

each method was allowed to run for 120 seconds. MBB errors are in solid lines, BLB

in dashed lines, and SDB in dottted lines.
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Figure 3: AR(1) simulation results with ξ = 5% quantile of Tn =
√
n(Mn − M),

sample size n=100000, block length L=50, autocorrelation ρ = -0.8 (top row), 0.5

(middle row), 0.9 (bottom row), and subset size b = 5000 (left column) ,10000 (right

column). The plot displays the time evolution of error rates from 20 simulations when

each method was allowed to run for 120 seconds. MBB errors are in solid lines, BLB

in dashed lines, and SDB in dottted lines.
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Figure 4: Time series regression simulation results with ξ = 95% quantile of Tn =

MSM/MSE, sample size n=100000, dimension d = 10, block length L=50, autocor-

relation ρ = -0.8 (top row), 0.5 (middle row), 0.9 (bottom row), and subset size b =

5000 (left column) ,10000 (right column). The plot displays the time evolution of error

rates from 20 simulations when each method was allowed to run for 60 seconds. MBB

errors are in solid lines, BLB in dashed lines, and SDB in dottted lines.
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continuous thermometer-based temperature record on earth, and was previously an-

alyzed by Zhang, Shao, Hayhoe, and Wuebbles (2011) and Berkes, Gabrys, Horváth,

and Kokoszka (2009) in the context of inference for functional time series. In our

analysis, we treat the dataset as an univariate time series sample of daily average

temperatures. The sample size is n = 228× 365 = 83220, where we ignore leap years.

We remove seasonality by subtracting from each observation the mean temperature for

that calendar day across 228 years. Our parameter of interest is the population mean µ

of this univariate time series. We use sample mean X̄ (calculated from the n = 83, 220

observations after removing seasonality) as the estimator of µ, and we want to con-

struct a 90% confidence interval for µ to assess the quality of estimation. We define

Tn =
√
n(X̄ − µ) as the root function, and let the precision measure ξ = (q0.95 − q0.05)

be the width of the 90% confidence interval.

We applied MBB, BLB, and SDB on this dataset with block length L = 10, 20, 50

and subset size b = 5000, 10000. MBB was allowed to run for 600 seconds, while BLB

and SDB were allowed to run for 300 seconds. Figure 5 displays the time evolution of ξ̂

for the competing methods. Note that in this empirical example the true width is not

known, however it appears that for any given block length, the three methods converge

to similar estimates of the width. MBB is the slowest to converge, and continues to

display substantial oscillations well after BLB and SDB have stabilized. BLB and SDB

quickly converge to stable estimates, but for small time budgets, SDB stabilizes faster.

9 Discussion

In this article we present a new resampling method, called subsampled double bootstrap

(SDB), for estimating the precision of inference methods in massive data. Our method

applies to both independent data and stationary time series data. The main idea is

to select small random subsets of the data and construct a single full size resample

from each random subset, in a manner reminiscent of fast double bootstrap (White

(2000) and Davidson and MacKinnon (2000)). Our method inherits the theoretical

strengths and automatic nature of classical resample based methods like bootstrap

(Efron (1979)) in the independent data context and MBB (Künsch (1989), Liu and

Singh (1992)) in the time series context. It also inherits the computational strengths

of subsample based methods like subsampling (Politis and Romano (1994a)) and m

out of n bootstrap (Bickel et al. (1997)). The advantage of our method over the
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Figure 5: Time evolution of ξ̂ for CET dataset (measured in Celsius), where ξ =

(q0.95−q0.05) is the width of the 90% confidence interval for µ based on Tn =
√
n(X̄−µ).

MBB was allowed to run for 600 seconds and BLB, SDB for 300 seconds. Block length

L=50 (top row), 20 (middle row), 10 (bottom row), and subset size b = 5000 (left

column) ,10000 (right column). MBB estimates are in solid lines, BLB in dashed lines,

and SDB in dottted lines.
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recently proposed BLB (Kleiner et al. (2014)) lies in sample coverage, running time,

and automatic implementation without having to choose additional tuning parameters

under a given time budget. Simulation studies and data analysis examples demonstrate

the advantage of our method over BLB and boostrap (i.i.d. case) or MBB (time series

case) for a given computational time budget.

An important practical aspect of both SDB and BLB is the choice of subset size.

Increasing the subset size leads to increasing benefits in terms of statistical accuracy but

at an increasing computational cost. In the time series case, the regularity conditions

of Theorem 6.1 impose some restrictions on b for consistency. In practice, for a given

computational time budget, it remains unclear how to choose an optimal subset size

that balances statistical accuracy and running time. A closely related problem is the

selection of optimal block length for the time series version of SDB and BLB. In the

context of classical resampling methods this problem has been well studied by Hall,

Horowitz, and Jing (1995), Bühlmann and Künsch (1999) among others. For the time

series version of SDB and BLB, we conjecture that the choice of optimal block length

is associated with subset size in addition to sample size and other parameters. We

leave these interesting directions to future work.

Further, it is worth mentioning that the higher order accuracy of BLB was studied

by Kleiner et al. (2014) and higher order accuracy of FDB has been recently studied

by Chang and Hall (2014). A relevant next step is a theoretical comparison of SDB

and BLB which will help identify scenarios where SDB works better than BLB, or vice

versa. This comparison will involve studying higher order properties of SDB, and we

plan to consider this in future research as well.

10 Appendix: Proofs of theoretical results

10.1 Proof of Theorem 3.1

We begin by setting up a probabilistic model for the SDB in the i.i.d. setting. When

dealing with empirical processes which are defined on classes of functions, measura-

bility questions play an important role and it is crucial to state what the underlying

probability space is– see Dudley (1999), Chapter 3.1 (page 91), for a discussion of

related matters. Here we will consider the following setup.

(P) Consider a product of three probability spaces (Ωn
i ,Ani , P n

i )i=1,...,3. Assume that
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the observations X1, ..., Xn are defined as coordinate projections on (Ωn
1 ,An1 , P n

1 ),

which is itself a product of n identical probability spaces [this is a standard

assumption in empirical process theory- see for instance Dudley (1999), Chapter

3.1]. Additionally, assume that on Ωn
2 we have a random vector (W1,n, ...,Wb,n) ∼

Multinomialb(n, 1/b, ..., 1/b) and that on Ωn
3 we have a random variable R which

follows a uniform distribution on the permutations of {1, ..., n}. In what follows,

denote the set of permutations of {1, ..., n} by σ(n). Also, we assume without loss

of generality that Ωn
i are finite for i = 2, 3 and that for i = 2, 3 the sigma-algebra

Ani is the power set of Ωn
i .

Throughout this proof, write W for the vector (W1,n, ...,Wb,n) and X for the vector

(X1, ..., Xn). Define the map

f 7→ (Zn(R,X,W ))(f) :=
1√
n

b∑
i=1

(Wi − n/b)f(XR−1(i)), f ∈ F .

Note that (Zn(R,X,W ))(·) can be viewed as an element of the space of functions

`∞(F). Throughout the proof, denote by BL1 the set of Lipschitz continuous functions

g : `∞(F)→ R with Lipschitz constant 1 that are additionally uniformly bounded by

1. Also, use the notation f ∗, f∗ to denote smallest measurable majorants and greatest

measurable minorants, respectively. For maps of several arguments, it will sometimes

be necessary to take measurable majorants and minorants with respect to only some

of the arguments. For example g(r,X,W )∗X,W will be used to denote the smallest

measurable majorant of the map (x,w) 7→ g(r, x, w) with r being held fixed. With this

notation, we need to show that [see Kosorok (2008), Section 2.2.3]

(i)

sup
h∈BL1

∣∣∣ER,Wh(Zn(R,X,W ))− E[h(G)]
∣∣∣ P∗→ 0.

(ii) For all h ∈ BL1

ER,Wh(Zn(R,X,W ))∗ − ER,Wh(Zn(R,X,W ))∗
P∗→ 0.

Here, ER,W denotes the expectation with respect toR,W . Note that the map (R,W ) 7→
h(Zn(R,X,W )) is measurable outer almost surely since R,W are defined on complete,
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discrete probability spaces.

Proof of (i) Write

ER,Wh(Zn(R,X,W )) =
1

n!

∑
r∈σ(n)

EW
[
h(Zn(r,X,W ))

]
Then

E∗X
[

sup
h∈BL1

∣∣∣ER,Wh(Zn(R,X,W ))− E[h(G)]
∣∣∣]

≤ E∗X
[ 1

n!

∑
r∈σ(n)

sup
h∈BL1

EW
∣∣∣h(Zn(r,X,W ))− E[h(G)]

∣∣∣]
≤ EX

[ 1

n!

∑
r∈σ(n)

EW
[(

sup
h∈BL1

∣∣∣h(Zn(r,X,W ))− E[h(G)]
∣∣∣)∗X,W ]]

=
1

n!

∑
r∈σ(n)

E∗
[

sup
h∈BL1

∣∣∣h(Zn(r,X,W ))− E[h(G)]
∣∣∣].

For each fixed value of r we have

(Zn(r,X,W ))(f) =
1√
n

b∑
i=1

(Wi,n − n/b)f(Xr−1(i)),

which implies that Zn(r,X,W ) depends on X only through (Xr−1(i))i=1,...,b. In partic-

ular

sup
h∈BL1

∣∣∣h(Zn(r, x, w))− E[h(G)]
∣∣∣ = S ◦ Πr(x,w)

where Πr(x,w) := ((xr−1(1), ..., xr−1(b)), w) and we defined for y, w ∈ Rb

S(y, w) := sup
h∈BL1

∣∣∣h(f 7→ 1√
n

b∑
i=1

(wi − n/b)f(yi)
)
− E[h(G)]

∣∣∣.
Since X1, ..., Xn,W are defined on a product probability space, it follows that the

measurable majorant of S◦Πr(X,W ) with respect to X,W can be expressed as S(·, ·)∗◦
Πr(x,w). This is a consequence of from Lemma 1.2.5 in van der Vaart and Wellner

(1996) and combined with the fact that S is uniformly bounded and Πr is a coordinate

projection on a product space. In particular, the symmetry of the problem implies

that

1

n!

∑
r∈σ(n)

E∗
[

sup
h∈BL1

∣∣∣h(Zn(r,X,W ))−E[h(G)]
∣∣∣] = E∗

[
sup
h∈BL1

∣∣∣h(Zn(id, X,W ))−E[h(G)]
∣∣∣]
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where id := (1, 2, ..., n). Moreover Theorem 3.6.3 in van der Vaart and Wellner (1996)

with the identification kn = n, n = b implies that

2 ≥ sup
h∈BL1

∣∣∣h(Zn(id, X,W ))− E[h(G)]
∣∣∣ P∗→ 0.

By dominated convergence, this yields

E∗
[

sup
h∈BL1

∣∣∣h(Zn(id, X,W ))− E[h(G)]
∣∣∣]→ 0,

and thus statement (i) is established.

Proof of (ii)

It suffices to prove that [note that h∗ − h∗ ≥ 0]

E[h(Zn(R,X,W ))∗ − h(Zn(R,X,W ))∗]→ 0.

Observe that by the definition of measurable majorants we have

h(Zn(R,X,W ))∗ =
( ∑
r∈σ(n)

I{R = r}h(Zn(r,X,W ))
)∗

≤
∑
r∈σ(n)

I{R = r}
(
h(Zn(r,X,W ))

)∗X,W
,

since (R,X,W ) 7→ I{R = r}
(
h(Zn(r,X,W ))

)∗X,W
is measurable for each r ∈ σ(n).

Similarly

h(Zn(R,X,W ))∗ =
( ∑
r∈σ(n)

I{R = r}h(Zn(r,X,W ))
)
∗

≥
∑
r∈σ(n)

I{R = r}
(
h(Zn(r,X,W ))

)
∗X,W

.

Thus

E[h(Zn(R,X,W ))∗ − h(Zn(R,X,W ))∗]

≤ E
[ ∑
r∈σ(n)

I{R = r}
((
h(Zn(r,X,W ))

)∗X,W
−
(
h(Zn(r,X,W ))

)
∗X,W

)]
= E

[(
h(Zn(id, X,W ))

)∗X,W
−
(
h(Zn(id, X,W ))

)
∗X,W

]
where the equality in the last line follows by arguments similar to the ones given in

the proof of (i). Now the expression in the last line converges to zero by arguments

similar to the ones given in the proof of (i) and Theorem 3.6.3 in van der Vaart and

Wellner (1996) and thus (ii) follows. �
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10.2 Proof of Theorem 6.1

Throughout this proof, we will simplify notation by assuming that KL = n. It is easy

to see that this assumption can be relaxed.

Introduce the abbreviation S = (s1, ..., sK),X = (X1, ..., Xn). Denote by PS,J the

probability conditional on X and by PS the probability conditional on X , J . Similarly,

let ES,J ,ES,VarS,J and VarS denote the corresponding versions of conditional expecta-

tions and variances. Following the discussion on page 277 in Radulović (1996), we will

assume that all suprema we encounter are measurable. This might not always be true,

but permissibility of F ensures that suitable modifications of our arguments remain

correct [see the discussion on page 277 in Radulović (1996)].

Define the norm ‖f‖p,X := (E[|f(X1)|p])1/p. For an arbitrary δ-net Fδ for F with

respect to ‖·‖p,X , denote by fδ any point in Fδ which minimizes ‖f−g‖p,X over g ∈ Fδ.
Consider the approximating processes AB

δ,n(f) := ĜB
n,b(fδ),Aδ(f) := G(fδ). By Lemma

B.3 in Volgushev and Shao (2014) the claim of the Theorem follows once we establish

that

(i) For every i ∈ N: AB
1/i,n

P
 
J,S

A1/i for n→∞.

(ii) A1/i  G for i→∞.

(iii) For every ε > 0: limi→∞ lim supn→∞ P (supf∈F |AB
1/i,n(f)− ĜB

n,b(f)| > ε) = 0.

Part (ii) follows from the properties of the limiting process G [more precisely, there

exists a version of G with sample paths that are uniformly continuous with respect to

‖ · ‖2,X and thus ‖ · ‖p,X for p ≥ 2 - see Theorem 2.1 in Arcones and Yu (1994)]. It

thus remains to establish (i) and (iii).

In order to establish (i), it suffices to show that for any fixed, finite collection of

functions f1, ..., fk ∈ F we have

(ĜB
n,b(f1), ..., ĜB

n,b(fk))
P
 
J,S

(G(f1), ...,G(fk)). (1)

Denote by BL1 the set of functions on Rk which are bounded by 1 and are Lipschitz

continuous with Lipschitz constant bounded by 1. In order to establish (1), we need

to prove that

sup
h∈BL1

ES,J
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣ = oP (1) (2)
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Due to the independence between J and X and due to strict stationarity of {Xt}t∈Z, the

distribution of the tuple (XJ , ..., XJ+b−1) is the same as the distribution of (X1, ..., Xb)

[unconditionally]. Thus the arguments on page 272 in Radulović (1996) yield

(ĜB
n,b(f1), ..., ĜB

n,b(fk))
P
 
S

(G(f1), ...,G(fk)). (3)

Observe that

sup
h∈BL1

∣∣∣ES,J [h(ĜB
n,b(f1), ..., ĜB

n,b(fk))]− E[h(G(f1), ...,G(fk))]
∣∣∣

≤ sup
h∈BL1

EJES
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣
≤ EJ sup

h∈BL1

ES
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣.
Thus for any ε > 0

E sup
h∈BL1

∣∣∣ES,J [h(ĜB
n,b(f1), ..., ĜB

n,b(fk))]− E[h(G(f1), ...,G(fk))]
∣∣∣

≤ E sup
h∈BL1

ES
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣
≤ ε+ 2P

(
sup
h∈BL1

ES
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣ > ε
)

since
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk)) − E[h(G(f1), ...,G(fk))]

∣∣∣ ≤ 2 by the definition of BL1.

By (3), the probability in the last line of the above equation tends to zero [as n→∞]

for any fixed ε > 0, and this implies

E sup
h∈BL1

ES,J
∣∣∣h(ĜB

n,b(f1), ..., ĜB
n,b(fk))− E[h(G(f1), ...,G(fk))]

∣∣∣ = o(1).

This proves (2) and establishes (i).

Next, let us prove (iii). Fix ε > 0. For a function f , define its truncated version

f t(x) := f(x)I{F (x) ≤ bγ}. We shall prove that

sup
f∈F
|ĜB

n,b(f)− ĜB
n,b(f

t)| = oP (1). (4)

Additionally, we will apply restricted chaining to show that there exists a sequence of

sets of functions Fn ⊂ F , n ∈ N such that

P
(

sup
f,g∈F ,‖f−g‖p,X<δ

∣∣∣ĜB
n,b(f

t)− ĜB
n,b(g

t)
∣∣∣ > 3ε

)
≤ P

(
sup

f∈Fng∈F ,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)| ≥ ε
)

+ ξ(δ, n) (5)
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where limδ→0 limn→∞ ξ(δ, n) = 0 and that

P
(

sup
f∈Fn,g∈F ,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)| ≥ ε
)
→ 0 as n→∞. (6)

Taken together, (4)-(6) imply (iii).

Before proceeding with the proof, we remark that

ĜB
n,b(f) =

K∑
k=1

1√
n

L∑
i=1

(
f(X∗(k−1)L+i)−

1

b

b∑
j=1

f(XJ+j)
)

=:
K∑
k=1

Vk(f).

Note that by construction, the quantities V1(f), ..., VK(f) are independent conditionally

on J,X . Moreover, for any function f which is uniformly bounded, we have that

|Vk(f)| ≤ 2n−1/2L‖f‖∞. Thus by Bernstein’s inequality [Lemma 2.2.9 in van der

Vaart and Wellner (1996)]

PS

(∣∣∣ K∑
k=1

Vk(f)
∣∣∣ ≥ η

)
≤ 2 exp

(
− 1

2

η2

Kv2 + 2n−1/2L‖f‖∞η/3

)
(7)

for any v2 ≥ V arS(V1) [note that by construction V arS(V1) = V arS(Vk) for all k almost

surely]. Now from the definition of the bootstrap and the fact that KL = n

KV arS(Vk) =
1

b

b∑
i=1

( 1

L1/2

L∑
j=1

f(X̃J+i+j)
)2
−
(1

b

b∑
i=1

1

L1/2

L∑
j=1

f(X̃J+i+j)
)2
.

Additionally, due to the independence between J and the original sample and due

to strict stationarity, the distribution of the tuple (XJ+1, ..., XJ+b) is the same as the

distribution of (X1, ..., Xb) [unconditionally]. A close inspection of the proof of Lemma

3 in Radulović (1996) [after identifying (n, b) in the latter paper with (b, L) in our

notation] shows that under the assumption L = o(bρ) for some 0 < ρ < p−2
2(p−1) the

following two claims are true:

An(Gn) := (ln b)3 sup
h∈Gn

∣∣∣VarS

( 1

L1/2

L∑
i=1

ht(X∗i )
)
− Var

( 1

L1/2

L∑
i=1

ht(Xi)
)∣∣∣ = oP (1) (8)

for any sequence of sets Gn ⊂ F with cardinality O(nc) for some fixed c <∞, and

Bn := (ln b)2 sup
h∈F ′:‖h‖p,X≤(ln b)−3/2

VarS

( 1

L1/2

L∑
i=1

ht(X∗i )
)

= oP (1) (9)
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where F ′ := {f−g : f, g ∈ F}. Note that, when generating the subsamples, Radulović

(1996) uses ’wrapping’ while we do not. Following the discussion in Radulović (1996),

it is easy to see that asymptotically this does not matter.

Additionally, equation (14) in Radulović (1996) implies that

Var
( 1

L1/2

L∑
i=1

ht(Xi)
)
≤ C0‖ht‖2p,X (10)

for a constant C0 which depends only on p and the mixing coefficients β.

Proof of (4)

Observe that

sup
f∈F
|ĜB

n,b(f)− ĜB
n,b(f

t)| ≤ 1√
n

( n∑
i=1

F (X∗i )I{F (X∗i )>b
γ} +

1

b

b∑
j=1

F (XJ+j)I{F (XJ+j)>bγ}

)
.

By the Chebyshev inequality it suffices to show that the expectation of the right-hand

side of the above inequality is o(1). From the definition of the bootstrap, it is not

difficult to see that for any i = 1, ..., n

0 ≤ E[F (X∗i )I{F (X∗i ) > bγ}] = E[F (X1)I{F (X1) > bγ}] ≤ ‖F‖p,X(P (F (X1) > bγ))
p−1
p

and the right-hand side of the equation above is of order o(b−(p−1)γ) by dominated con-

vergence. A similar bound holds for E[F (XJ+j)I{F (XJ+j) > bγ}]. Thus (4) follows

from the condition n1/2 = O(b(p−1)γ).

Proof of (5)

Define ψ1(x) := ex−1 and denote by ‖ ·‖ψ1 the corresponding Orlitz norm [see van der

Vaart and Wellner (1996), Chapter 2.2]. Fix δ > 0 and let kn denote the smallest

integer such that δ/2kn < (ln b)−3/2/2. Successively construct sets G1 ⊂ G2 ⊂ ... ⊂ Gkn
which are maximal subsets of F with the property ‖f − g‖p,X ≥ 2−iδ for all f, g ∈ Gi
[here, maximal means that no further element can be added to Gi without destroying

the property that ‖f − g‖p,X ≥ 2−iδ for all f, g ∈ Gi]. Observe that the cardinality of

Gkn is of polynomial order in 2−knδ [the cardinality of Gkn is bounded by the packing

number, which is polynomial since F is VC- see Theorem 2.6.7 and the discussion on

page 98 in van der Vaart and Wellner (1996)], and thus of polynomial order in n for

any fixed δ. Set α(n) := 2−knδ and identify the set Fn with Gkn . Next, define the event
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Dn := {An(Fn) ≤ 1} and note that P (Dn)→ 1 for n→∞ [recall the definition of An

in (8)] for any fixed δ, this follows from (8). Observe that IDn is independent of S and

that by definition of Dn we have for any f ∈ Fα(n) and any η > 0

P
(
|ĜB

n,b(f
t)|IDn > η

)
= EESI{|ĜBn,b(f t)|>η}IDn

≤ 2E
[
IDn exp

(
− 1

2

η2

VarS

(
L−1/2

∑L
i=1 h(X∗i )

)
+ 2

3
n−1/2Lbγη

)]
≤ 2E

[
IDn exp

(
− 1

2

η2

C0‖f t‖2p,X + (ln b)−3 + 2
3
n−1/2Lbγη

)]
≤ 2 exp

(
− 1

2

η2

C0‖f t‖2p,X + (ln b)−3 + 2
3
n−1/2Lbγη

)
where the first inequality follows from (7) and the second from the definition of Dn.

From the inequality above combined with Lemma 2.2.10 in van der Vaart and Wellner

(1996) [applied with m = 1] we obtain that for any f ∈ Fn∥∥∥ĜB
n,b(f

t)IDn

∥∥∥
ψ1

≤ C
(
n−1/2Lbγ + (‖f t‖2p,X + (ln b)−3)1/2

)
for some constant C that does not depend on f, δ, n. In particular we obtain for

sufficiently large n [due to the assumptions on L, b, n]∥∥∥ĜB
n,b(f

t)IDn

∥∥∥
ψ1

≤ C ′‖f t‖p,X ∀f ∈ Fn : ‖f t‖p,X ≥ (ln b)−3/2/2. (11)

We now shall apply Lemma 7.1 from Kley, Volgushev, Dette, and Hallin (2014). In

the notation of that Lemma, let T := F , d(f, g) := ‖f t − gt‖p,X , η̄ := (ln b)−3/2,Ψ :=

ψ1, η = δ,Gf := ĜB
n,b(f

t)IDn . A careful inspection of the proof of that Lemma reveals

that (11) is already sufficient to obtain the bound

sup
f,g∈F :‖f−g‖p,X≤δ

|ĜB
n,b(f

t)− ĜB
n,b(g

t)|IDn

≤ S1 + 2 sup
f∈Fn,g∈F ,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)|IDn

where S1 is such that [note that ψ−11 (x) = ln(1 + x) and that the packing number of

F with respect to ‖ · ‖p,X is of polynomial order since F is VC- see Theorem 2.6.7 and

the discussion on page 98 in van der Vaart and Wellner (1996)]

‖S1‖ψ1 ≤ C
[ ∫ δ

(ln b)−3/2/2

1 + | log ε|dε+ (δ + 2(ln b)−3/2)(1 + | log δ|)
]
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for some constant C independent of δ, n. To complete the proof of (5), observe that

P
(

sup
f,g∈F ,‖f−g‖p,X<δ

∣∣∣ĜB
n,b(f

t)− ĜB
n,b(g

t)
∣∣∣ > 3ε

)
≤ P

(
sup

f,g∈F ,‖f−g‖p,X<δ

∣∣∣ĜB
n,b(f

t)− ĜB
n,b(g

t)
∣∣∣IDn > 3ε

)
+ 1− P (Dn)

≤ P (|S1| > ε) + P
(

sup
f∈Fn,g∈F ,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)| ≥ ε
)

+ 1− P (Dn).

Setting ξ(n, δ) := P (|S1| > ε) + 1− P (Dn) completes the proof of (5).

Proof of (6)

Define Pnf := 1
n

∑n
i=1 f(Xi) and consider the pseudo-distance dn(f, g) := Pn|f − g|.

Observe that to each f ∈ F we can attach a f̃ ∈ Fn such that ‖f − f̃‖p,X ≤ (ln b)−3/2.

Let H := {f t − f̃ t : f ∈ F} and denote by Hn an n−2 net for H under dn. To each

h ∈ H, attach a h̃ ∈ H such that dn(h, h̃) ≤ n−2. Since F is VC, Hn can be chosen

such that, for n sufficiently large, the cardinality of Hn is bounded by C(PnF )cnc for

some fixed constants C, c which do not depend on J, S. Define the event [recall the

definition of Bn in (10)]

D̃n :=
{
Bn ∨

∣∣∣n−1 n∑
i=1

F (Xi)− E[F (X1)]
∣∣∣ ≤ 1

}
and note that by (10) P (D̃n)→ 1 [since under the assumptions of the present Theorem

PnF − EF [X1]→ 0 in probability] and that ID̃n is independent of S. Observe that

sup
f∈Fn,‖f−g‖p,X≤(ln b)−3/2

|ĜB
n,b(f

t)− ĜB
n,b(g

t)| ≤ sup
h∈H

∣∣∣ĜB
n,b(h̃)

∣∣∣+ sup
h∈H

∣∣∣ĜB
n,b(h− h̃)

∣∣∣
and that for any function f∣∣∣ĜB

n,b(f)
∣∣∣ ≤ 1√

n

n∑
i=1

|f(X∗i )|+
√
n

b

b−1∑
i=0

|f(XJ+i)| ≤
n2

√
n

1

n

n∑
i=1

|f(Xi)|+
n
√
n

b

1

n

n∑
i=1

|f(Xi)|

≤ 2n3/2 1

n

n∑
i=1

|f(Xi)|.

Thus by definition of h̃

sup
h∈H

∣∣∣ĜB
n,b(h− h̃)

∣∣∣ ≤ 2n3/2 sup
h∈H

1

n

n∑
i=1

|(h− h̃)(Xi)| ≤ 2n−1/2.
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Hence it suffices to show suph∈H

∣∣∣ĜB
n,b(h̃)

∣∣∣ = oP (1). To this end, note that on D̃n the

cardinality of Hn is bounded by C ′nc
′

for some constants C ′, c′ independent of n. Thus

P
(

sup
h∈H

∣∣∣ĜB
n,b(h̃)

∣∣∣ > τ
)

≤ P
({

sup
h∈Hn

∣∣∣ĜB
n,b(h)

∣∣∣ > τ
}
∩ D̃n

)
+ 1− P (D̃n)

= EES
[
I{suph∈Hn |ĜBn,b(h)|>τ}

ID̃n

]
+ o(1)

≤ EES
[ ∑
h∈Hn

I{|ĜBn,b(h)|>τ}
ID̃n

]
+ o(1)

= E
[
ID̃n

∑
h∈Hn

ES[I{|ĜBn,b(h)|>τ}
]
]

+ o(1)

= C ′nc
′E
[

sup
h∈H

ID̃nPS(|ĜB
n,b(h)| > τ)

]
+ o(1)

by (7)

≤ 2C ′nc
′E
[

sup
h∈H

exp
(
− 1

2

τ 2

VarS

(
L−1/2

∑L
i=1 h(X∗i )

)
+ 4

3
n−1/2Lbγτ

)
ID̃n

]
+ o(1)

≤ 2C ′nc
′E
[

exp
(
− 1

2

τ 2

suph∈HVarS

(
L−1/2

∑L
i=1 h(X∗i )

)
+ 4

3
n−1/2Lbγτ

)
ID̃n

]
+ o(1)

by the definition of H and D̃n

≤ 2C ′nc
′E
[

exp
(
− 1

2

τ 2

(ln b)−2 + 4
3
n−1/2Lbγτ

)
ID̃n

]
+ o(1)

≤ 2C ′nc
′
exp

(
− 1

2

τ 2

(ln b)−2 + 4
3
n−1/2Lbγτ

)
+ o(1)

since (lnn)2 = o(n−1/2Lbγ) by the assumptions on L, b, n

= o(1).

This shows that suph∈H

∣∣∣ĜB
n,b(h̃)

∣∣∣ = oP (1) and completes the proof of (6). �
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Bühlmann, P. (1995). The blockwise bootstrap for general empirical processes of sta-

tionary sequences. Stochastic Processes and their Applications 58 (2), 247–265.
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