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Abstract

We propose a model-independent multivariate sequential procedure to monitor changes

in the vector of componentwise unconditional variances in a sequence of p-variate random

vectors. The asymptotic behavior of the detector is derived and consistency of the pro-

cedure stated. A detailed simulation study illustrates the performance of the procedure

confronted with different types of data generating processes. We conclude with an appli-

cation to the log returns of a group of DAX listed assets.
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1. Introduction

In financial contexts, variances and volatilities are of major interest since they can be used to

evaluate the risk of financial instruments. Motivated by the fact that structural stability is impor-

tant for forecasting and inference, this paper is concerned with possible structural changes in

variances. From an empirical point of view, it is clear that, in general, variances of stock returns

cannot be taken as constant over (a longer period of) time and tend to increase heavily in times

of instability, see, e.g., Schwert (2011) or Charles and Darné (2014). There are many papers

which deal with models for time-varying conditional variances; a prominent one is Bollerslev

(1986) which proposes the well-known GARCH(p, q) model. On the other hand, it is far from

clear whether also the unconditional variances should be modeled in a time-varying way. Also,

once such a possible change in the unconditional variance is detected, the question of dating

the breakpoint arises.

This paper proposes methods for answering these two questions. In particular, our aim is to

monitor the vector of variances of a series of random vectors of moderate dimension p. In

practice, it is often important to get informed about changes in the model structure as soon as

possible after their appearance to be able to react to the change. Hence, a monitoring proce-

dure could be of more practical relevance than a retrospective test. The focus lies on changes

in the individual variances since Bissantz et al. (2011) show that the impact of fluctuations is

distinctively larger for volatilities than for correlations. Thus, we refrain from monitoring the

whole covariance matrix as proposed by Aue et al. (2009b) in the retrospective case. If the

covariances are monitored as well, the vector of moments that are supervised tends to be of

unpropitious high dimension even if the time series itself is of moderate dimension.

The procedure is based on the monitoring technique proposed by Chu et al. (1996) who used a

similar but univariate sequential method based on fluctuations to detect structural breaks in the

parameter vector of a linear regression model. Their approach was refined and further investi-

gated by Horváth et al. (2004), Aue et al. (2006) and Aue et al. (2009a), among others. Groen
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et al. (2013) expanded the approach to the multivariate case. Nevertheless, even if the main goal

in Groen et al. (2013) is to monitor structural changes in multivariate sequences, as it is in our

case, the focus is put on the parameters of the linear regression model and not in the individual

variances of the components of the sequence, thus making their approach different to our own.

While authors as Berkes et al. (2004) and Aue et al. (2011) extended the field of applications to

the monitoring of parameters in univariate GARCH(p, q) models and high frequency portfolio

betas, respectively, Wied and Galeano (2013) presented a model-independent monitoring pro-

cedure to detect changes in the correlation of bivariate time series. Retrospective methods to

detect changes in the covariance or correlation structure of random vectors were proposed by

Aue et al. (2009b) respectively by Wied (2014). We combine the sequential approach with the

attempt to survey moments of multivariate processes.

Since whole random vectors often provide more information than single random variables, the

additional information should be used to develop a procedure which enables monitoring the

vector of variances of the individual components. Although we are only interested in the vector

of variances, such a procedure could be able to detect changes in one or several variances more

efficiently than using several univariate procedures similar to the correlation monitoring proce-

dure proposed by Wied and Galeano (2013) that could be adapted to the situation by using the

Bonferroni-Holm method.

The rest of the paper is organized as follows. Section 2 introduces the proposed monitoring

procedure for detecting a changepoint in the vector of variances of a multivariate random vari-

able as soon as possible and derives the asymptotic properties of the chosen detector. Sections 3

and 4 present a detailed simulation study and an application to real data that illustrate the beha-

vior of the procedure in finite settings. Finally, section 5 provides some conclusions. All proofs

are presented in Appendix A, while Appendix B contains tables with the simulation results

from section 3.
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2. The monitoring procedure

Let (Xt, t ∈ Z) be a sequence of p dimensional random vectors whose elements possess finite

fourth moments and cross moments. W.l.o.g. we assume that E (Xt) = 0, t ∈ Z. This assump-

tion is natural in financial contexts when one considers daily log returns of financial assets. The

value of interest is the vector of variances associated with the single components of the random

vector Xt =
(
Xt1, . . . , Xtp

)′
denoted by

σ2
t =

(
σ2

t1, . . . , σ
2
tp

)′
with σ2

t j = Var
(
Xt j

)
= E

(
X2

t j

)
, for j = 1, . . . , p.

Since often a non time-varying variance structure cannot be assumed, we are interested in a

monitoring procedure that supervises the vector of variances and reports a potential structural

break as soon as possible after it has occurred. We estimate the variances from growing sub-

samples and compare them with estimators obtained from a reference data set that is assumed

as being not affected by a variance change. In the context of sequential testing, this implies

using a historical sample to obtain a first estimator of the vector of variances. In the monitoring

period the historical sample is successively extended by p dimensional data points that are used

to update the chosen detector. This reflects the fact that data like daily asset or index prices is

observed step by step. The formal constancy assumption for the historical period of length m is

Assumption 1. σ2
1 = . . . = σ2

m, where m is a positive integer.

The validity of this assumption can be checked by performing retrospective changepoint detec-

tion procedures on the historical data set, for instance a procedure similar to the one proposed

by Wied et al. (2012b). In practice, it is usually possible to find a sufficient amount of historical

data points with a stable variance structure.

In the following, we want to test the null hypothesis of equal vectors of variances

H0 : σ2
1 = . . . = σ2

m = σ2
m+1 = . . .

versus the alternative H1 that σ2
t changes at one or several unknown points in the monitoring
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period. LetFB be the set of functions f : [0,∞ )→ R that are bounded and can be approximated

by step functions on the interval [0, B + 1]. Throughout the paper the variable B indicates how

much longer the monitoring period is compared to the historical data set. We consider the

alternative H1 that the individual variances can be decomposed as

Var
(
Xt j

)
= σ2

t j = σ̄2
j + g j

( t
m

)
, j = 1, . . . , p, t ∈ Z, (1)

with σ̄2
j , j = 1, . . . , p, time-invariant constants and structural stability determining functions

g j(·) ∈ FB, j = 1, . . . , p. While g j(z) = 0, for z ∈ [0, 1] and for all j = 1, . . . , p, for at least one

j ∈ {1, . . . , p} let
∫ B+1

1

∣∣∣g j(z)
∣∣∣ dz > 0. The property

∫ B+1

1

∣∣∣g j(z)
∣∣∣ dz > 0 indicates that the variance

of the j-th vector component is affected by a structural change.

In order to derive asymptotic results concerning size and power of the procedure that will be

presented below, some assumptions have to be imposed first. They are counterparts of the

assumptions (A1)-(A3) in Wied et al. (2012a) and to (A2)-(A4) in Wied and Galeano (2013),

respectively.

Assumption 2. For Ut :=
(
X2

t1 − E
(
X2

t1

)
, . . . , X2

tp − E
(
X2

tp

))′
and S j :=

∑ j
t=1 Ut, j ∈ N, we have

lim
m→∞

E
(

1
m

S mS ′m

)
=: Dp

where Dp is a finite and positive definite matrix.

Assumption 3. The r-th absolute moments of the components of Ut are uniformly bounded for

some r > 2.

Assumption 4. The process (Xt, t ∈ Z) is L2-near epoch dependent, see e.g.Davidson (1994),

with size − r−1
r−2 , where r is from Assumption 3, and constants (ct), t ∈ Z, on a sequence (Yt), t ∈ Z,

which is α-mixing of size φ∗ := − r
r−2 , i.e.

||Xt − E (Xt|σ(Yt−l, . . . ,Yt+l))||2 ≤ ctvl
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with lim
l→∞

vl = 0, such that ct ≤ 2||Ut||2 with Ut from Assumption 3 and || · ||2 the L2-norm .

The proposed procedure is inspired by the model-independent fluctuation test proposed by

Wied and Galeano (2013) for the detection of changes in the correlation of two sequences of

random variables. The fluctuations arise from the comparison of variance estimates calculated

from several subsamples of the available data. Denote by
[
σ̂2

]l

k
the estimate of the vector of

variances calculated from Xk to Xl, k < l:

[
σ̂2

]l

k
=

([
X2

1

]l

k
,
. . . ,

[
X2

p

]l

k

)
with

[
X2

j

]l

k
=

1
l − k + 1

l∑
t=k

X2
t j, for j = 1, . . . , p.

Then, estimates of the vector of variances from growing samples are compared to estimates re-

sulting from the historical data. Under the hypothesis of equal vectors of variances the estimate

vectors should not differ too much. In Wied and Galeano (2013) the fluctuations could easily be

defined as the absolute differences of the two correlation estimates. In the multivariate setting

two vectors have to be compared. Let

Vk =
k
√

m
D̂−

1
2

([
σ̂2

]m+k

m+1
−

[
σ̂2

]m

1

)
=

k
√

m
D̂−

1
2



[
X2

1

]m+k

m+1
−

[
X2

1

]m

1
...[

X2
p

]m+k

m+1
−

[
X2

p

]m

1


, k ∈ N,

with D̂p an estimator of the matrix Dp defined in Assumption 2 that is calculated from the

first m observations. Possible estimation methods are for instance kernel estimation as in Wied

et al. (2012a) and Wied and Galeano (2013) or bootstrapping as in Wied (2014). Simulations

reveal that both estimation methods give approximately equivalent results. We prefer the kernel

estimator since its calculation requires less time. Define

Ṽt =
1
√

m
Ũt with Ũt =

(
X2

t1 −

[
X2

1

]m

1
, . . . , X2

tp −
[
X2

p

]m

1

)′
.
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Then, a consistent estimator of Dp is given by

D̂p =

r∑
t=1

r∑
u=1

k
(
t − u
δr

)
ṼtṼu

′ with k(x) =


1 − |x|, |x| ≤ 1

0, otherwise.

Here, k(x) is the Bartlett kernel and δr the bandwidth that determines up to which lag outer

products of the vectors Ṽt are used to calculate the estimator. The choice of the kernel is moti-

vated by the approach in Wied et al. (2012a). However, a different bandwidth was chosen since

simulations show that δr =
[
r

1
4

]
is the most suitable one compared to alternative bandwidths.

Consistency of the estimator D̂p is necessary for deriving the asymptotic distribution of the

detector that is presented later in Theorem 1.

As it is desirable to construct a one dimensional detector that can be compared to the values

of a univariate threshold function, possible solutions are to use either the Euclidian norm or a

quadratic form of the vector of differences. The latter was considered by Aue et al. (2009b)

in the retrospective setting. The detector used by our monitoring procedure is the Euclidean

norm of Vk. The value of ||Vk||2 is calculated online for every k in the monitoring period.

The procedure stops when the detector exceeds the value of a scaled threshold function w(·).

As soon as this happens, the null hypothesis of no variance change cannot be taken as valid

anymore and is rejected. Accordingly, the stopping rule can be defined as

τm = min
{

k ≤ [mB] : ‖Vk‖2 > c · w
(

k
m

)}
, (2)

with w(·) a positive and continuous function and c a constant chosen such that under a valid null

hypothesis lim
m→∞

P(τm < ∞) = α ∈ (0, 1) is the test significance level. Along the lines of Aue

et al. (2011) we write τm < ∞ to indicate that the detector has exceeded the threshold function

cw(·) in the monitoring period which implies a rejection of the hypothesis of equal vectors of

variances. If ||Vk||2 does not exceed the corresponding value of the threshold function in the

whole monitoring period, we mark this by τm = ∞, see Aue et al. (2011). This leads to our

main result:
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Theorem 1. Under H0, Assumptions 1-4 and for any B > 0,

lim
m→∞

P (τm < ∞) = lim
m→∞

P
(

sup
b∈[0,B]

‖Vbm·bc+2‖2

w (b)
> c

)
= P

(
sup

b∈[0,B]

||G(b)||2
w (b)

> c
)
, (3)

where
{
G(b) =

(
G1(b), . . . ,Gp(b)

)′
, b ∈ [0, B]

}
is a p-variate stochastic process whose compo-

nent processes are p independent mean zero Gaussian processes
{
G j(b), b ∈ [0, B]

}
with co-

variance function E
(
G j(k)G j(l)

)
= min(k, l) + kl, for j = 1, . . . , p.

Theorem 1 establishes the asymptotic behavior of the monitoring procedure based on the stop-

ping rule τm in (2). As argued in detail in Aue et al. (2011) and Wied and Galeano (2013) the

limiting probability in (3) can be led back to the behavior of p independent standard Brownian

motions
{
W j (b) : b ∈ [0, 1]

}
, j = 1, . . . , p. Since

{
G j (b) : b ∈ [0, B]

}
has the same distribution

as
{
(1 + b) W j (b/ (1 + b)) : b ∈ [0, B]

}
, for j = 1, . . . , p, we have

sup
b∈[0,B]

‖G(b)‖2
w (b)

= sup
b∈[0,B]

√∑p
j=1

[
G j(b)

]2

w (b)
L
= sup

b∈[0,B]

(1 + b)
√∑p

j=1

[
W j

(
b

1+b

)]2

w (b)
(4)

with A1
L
= A2 indicating that A1 and A2 possess the same distribution. As in Wied and Galeano

(2013) the threshold function w(·) can be chosen as

w (b) = (1 + b) ·max
{(

b
1 + b

)γ
, ε

}
(5)

with γ ∈
[
0, 1

2

)
and ε > 0 a fixed constant that solely serves to guarantee the divisibility by w(·)

and can be chosen arbitrarily small in applications. The parameter γ can be used to adjust the

procedure such that it performs at its best in a certain expected situation. As discussed in Wied

and Galeano (2013) in detail, there is a trade off between the aim to detect arisen structural

breaks as soon as possible and the purpose to reduce the probability of type I errors to the

significance level. A value of γ chosen closely to 1
2 tends to cause a soon rejection of the null

hypothesis. This is desirable if a structural change is expected to take place shortly after the

beginning of the monitoring period, but also tends to produce type I errors, while the null is still
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valid. In contrast, using a smaller value for γ rather results in a reduction of type I errors but

also leads to a testing routine that is less capable of indicating structural breaks arising early

in the monitoring period. Further simulations show that large values of γ lead to unacceptable

high percentages of falsely rejected null hypotheses especially for higher dimensions of the

random vectors under supervision. Hence, in the following no γ values larger than 0.25 are

considered. Substituting w(·) from (5) and defining u = b
1+b as well as s =

u(1+B)
B allows to write

expression (4) along the lines of Wied and Galeano (2013) as

sup
b∈[0,B]

‖G(b)‖2
w (b)

L
= sup

u∈[0, B
1+B ]

√∑p
i=1 [Wi (u)]2

max {uγ, ε}
L
= sup

s∈[0,1]

( B
1 + B

) 1
2−γ

√∑p
i=1 [Wi (s)]2

max
{
sγ, ε

(
1+B

B

)γ} .
Since under the conditions of Theorem 1

lim
m→∞

P(τm < ∞) = P

 sup
s∈[0,1]

( B
1 + B

) 1
2−γ

√∑p
i=1 [Wi (s)]2

max
{
sγ, ε

(
1+B

B

)γ} > c

 ,
Monte Carlo simulations can be used to obtain the constant c = c(α) such that

P

 sup
s∈[0,1]

( B
1 + B

) 1
2−γ

√∑p
i=1 [Wi (s)]2

max
{
sγ, ε

(
1+B

B

)γ} > c (α)

 = α,

for any α ∈ (0, 1). Thus, the probability of a false alarm is approximately α if m is large enough.

α = 0.01 α = 0.05 α = 0.1
γ B p = 2 p = 5 p = 10 p = 2 p = 5 p = 10 p = 2 p = 5 p = 10

0.5 1.9062 2.3268 2.8462 1.5514 2.0265 2.5802 1.3991 1.8817 2.4146
0 1 2.2924 2.8653 3.5217 1.9039 2.4659 3.1544 1.7003 2.3122 2.9439

2 2.6246 3.3371 4.0214 2.1915 2.8704 3.6375 1.9737 2.6447 3.4005
0.5 2.5231 3.1579 3.8898 2.1439 2.7760 3.4385 1.9431 2.5872 3.2596

0.25 1 2.8124 3.4880 4.2737 2.3881 3.0361 3.8051 2.1627 2.8457 3.6051
2 2.9854 3.7461 4.5824 2.5351 3.2927 4.1315 2.3001 3.0523 3.8723

Table 1: Simulated critical values c (α).

Simulated critical values for all combinations of p ∈ {2, 5, 10}, B ∈ {0.5, 1, 2}, γ ∈ {0, 0.25} and

for significance levels of α ∈ {0.01, 0.05, 0.1} can be taken from Table 1. To obtain the values
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of c, 10.000 Brownian motions are simulated on a grid of 10.000 equidistant points.

Up to now, we have focused on the behavior of the detector under the null hypothesis. In the

considered case the alternative is rather broad including scenarios with a single or multiple

structural breaks in one or several vector components as well as variance changes of minor or

major magnitude. This suggests investigating the testing power against local alternatives.

Assumption 5. For the process (Xt, t ∈ Z) with Xt =
(
Xt1, . . . , Xtp

)′
the variances of the indi-

vidual vector components can be decomposed as

Var
(
X j,t

)
= σ̄2

j +
1
√

m
g j

( t
m

)
, j = 1, . . . , p,

with σ̄2
j and g j(·), j = 1, . . . , p, as in (1).

Theorem 2. Under a sequence of local alternatives, Assumptions 1-5 and for any B > 0

lim
m→∞

P (τm < ∞) = lim
m→∞

P
(

sup
b∈[0,B]

‖Vbm·bc+2‖2

w (b)
> c

)
= P

(
sup

b∈[0,B]

||G(b) + h(b)||2
w (b)

> c
)
,

with
{
G(b) =

(
G1(b) . . .Gp(b)

)′
, b ∈ [0, B]

}
as in Theorem 1 and h(·) = H ·

(
h1(·), . . . , hp(·)

)′
.

Up to a constant, H is the limit of D̂p under H0, while the function h j(b) B
∫ b+1

1
gi(u)du = 0 for

all b ∈ [0, B] if and only if the j-th component is not affected by a variance change.

Theorem 2 yields that even a small variance change in just one single component can be de-

tected with high probability if the historical period is large enough. To obtain general statements

about the testing power, the magnitude of a variance change is assumed to tend to∞. This can

be modeled by defining one of the structural stability determining functions g j(·), j = 1, . . . , p,

as a scaled function g∗(·) and assume the scaling factor to tend to ∞ implying an increasing

magnitude of a shift in the respective component of the vector of variances.

Assumption 6. At least one of the structural stability determining functions g j(·) ∈ FB with∫ b+1

1

∣∣∣g j(z)
∣∣∣ dz > 0 can be decomposed as g j(·) = M · g∗(·) with g∗(·) ∈ FB.

Under the alternative of at least one structural break in the vector of variances in the monitoring
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period and Assumption 6, let PH1(M) be the probability that the detector exceeds the threshold

function during the monitoring period for given M.

Theorem 3. Let g∗(·) ∈ FB be arbitrary but fixed. Under Assumptions 1-4 and 6, for every

ε > 0 there exists an Mε such that for all M > Mε

lim
m→∞

PH1(M) > 1 − ε.

Theorem 3 yields that a variance change of sufficiently high magnitude will be detected with

given probability if the length of the historical period tends to∞ even if just one single compo-

nent is affected by the change or if multiple components experience contrary variance changes.

If the detector actually exceeds the threshold function, the presence of a structural change is

indicated. This leads to the challenge to determine the location of the changepoint. This does

not necessarily have to coincide with the first hitting time τm. In fact, an abrupt change of the

variances will often take time to affect the detector strongly enough to get identified by the

procedure. A possible estimator of the changepoint location is a multivariate equivalent to the

one used by Wied et al. (2012a) and Wied and Galeano (2013):

k̂ = arg max
1≤ j≤τm−1

D j,τm with D j,τm B
j
√
τm

D̂−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



[
X2

1

]m+ j

m+1
−

[
X2

1

]m+τm−1

m+1
...[

X2
p

]m+ j

m+1
−

[
X2

p

]m+τm−1

m+1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2

.

This type of estimator led to satisfying results in the univariate case, hence we use it to esti-

mate the location of an indicated changepoint. However, a detailed analysis of the estimator’s

properties lies beyond the scope of this paper. The performance of the proposed procedure as

well as the properties of the first hitting times τm, the estimated changepoint locations k̂ and the

estimated location fractions λ̂ = k̂
mB will be investigated in the following section.
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3. Simulations

This section is devoted to a performance analysis of the proposed monitoring procedure in finite

samples. Each of the regarded scenarios is constructed using different tuning parameters. First,

the dimension of the random vectors is chosen as p ∈ {2, 5, 10}. Since all of the asymptotics

are based on the length of the historical period tending to ∞, large values of m are considered.

We choose m ∈ {500, 1.000, 2.000}. In the context of financial data like asset returns, these

values correspond to time periods of approximately 2, 4 and 8 years. It is important to note that

smaller values of m may lead to noninvertible estimates of Dp in practice, especially for higher

dimensions p. On the other hand, since the historical period must be assumed to be free from

variance changes, larger values for m can hardly be found in practice. Furthermore, we choose

B ∈ {0.5, 1, 2} implying that the monitoring period is shorter, of the same length or longer than

the historical period. Finally, the parameters in the threshold function w(·) have to be specified:

ε is chosen as 10−6 in all of the following simulation settings and γ ∈ {0, 0.25}. These values

represent the aim to detect changes that are expected to occur earlier or later in the monitoring

period. The theoretical size used for all of the simulations is α = 0.05. In each case 10.000

time series are simulated. To simulate c(α) 10.000 Brownian motions are simulated on a grid

of 10.000 equidistant points.

3.1. Monitoring time series of i.i.d. random vectors

To begin with, we investigate the size of the proposed procedure under the null hypothesis of

no structural break. First, we simulate time series that capture neither serial nor cross-sectional

dependence to gain reference values to which the performance in more complex scenarios can

be compared. As simplest possible case, realizations of processes of i.i.d. random vectors are

simulated. These simulation results can work as a benchmark for more complex simulation sce-

narios. The random vectors under consideration are i.i.d. multivariate normal and multivariate

t distributed with ν = 8 degrees of freedom. As covariance matrix the matrices
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Σ2 =

 1 0.7

0.7 1

 , Σ5 =



1 0.3 0.4 0.5 0.6

0.3 1 0.3 0.4 0.5

0.4 0.3 1 0.3 0.4

0.5 0.4 0.3 1 0.3

0.6 0.5 0.4 0.3 1


and Σ10 =



1 0.1 0.11 0.12 0.15 0.2 0.25 0.3 0.35 0.4

0.1 1 0.1
. . .

. . .
. . .

. . .
. . .

. . . 0.35
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0.35
. . .

. . .
. . .

. . .
. . .

. . . 0.1 1 0.1

0.4 0.35 0.3 0.25 0.2 0.15 0.12 0.11 0.1 1



are used as well as identity matrices Ip of corresponding dimension p. To enable a reasonable

comparison of the results, the covariance matrices in the case of the t distribution are standar-

dized by multiplying ν−2
ν

. The results are given in Tables 4 and 5 in Appendix B and illustrated

in Figure 1. For the sake of clarity and since the results differ only slightly for the different

values of the tuning parameter γ and the different types of covariance matrix, the figure only

shows the empirical sizes for γ = 0 and an identity covariance matrix.
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Figure 1: Size comparison: i.i.d. random vectors with matrix Dp known and estimated, respectively, and
scalar BEKK time series.

The fact that there is hardly a difference in the empirical sizes depending on whether the co-

variance matrix is diagonal or not was expected as our procedure is only based on estimates

of the main diagonal elements of the covariance matrix and not of the remaining entries. In

general, the empirical size increases with the dimension. In order to determine the source of

this, we use the actual matrix Dp that can be easily calculated for an identity covariance matrix

13



Ip and its standardized analogue ν−2
ν

Ip, respectively. The matrix is given as Dp = 2Ip for normal

distributed random vectors and as Dp =
2(ν−1)
ν−4 Ip for t distributed ones. The results are also given

in Tables 4 and 5 in Appendix B and illustrated in Figure 1. They state that the main fraction of

the increased size is caused by an insufficient estimation of the matrix Dp. Furthermore, heavy

tails in the distribution of the random vectors entail an additional size increase. Unfortunately,

the estimation of the matrix Dp could not be improved by using an alternative bandwidth or

estimation procedure. The empirical size is distinctly larger in the case of the t distributed ran-

dom vectors and decreases with growing length of the historical period m. This convergence

to the theoretical size goes back to the fact that all of the asymptotic statements are established

for m→ ∞. While for the different values of B - indicating different lengths of the monitoring

period - no tendency in the empirical sizes can be recognized, larger values of γ result in a

slight increase of the sizes. This is a plausible result as larger values of this parameter tend

to sensitize the procedure for changes that are expected early in the monitoring period at the

expense of increased probabilities of false alarms.

In the following, the power of the monitoring procedure is investigated considering two dif-

ferent types of scenario. In both cases the covariance matrix in the pre-break period equates

the matrix Σp whose diagonal elements are affected by a structural break later in the series. In

the first setting, the variances of all components increase from 1 to 1.3. In the second one, the

variance of only one of the components jumps to 1.5. In both scenarios the power to detect

an early and a later occurring change are compared. Since the length of the monitoring period

depends on the parameters m and B, we assume that, independent of the length of the time se-

ries, the change happens at the same fraction of the monitoring period indicated by λ∗ ∈ (0, 1).

We choose λ∗ ∈ {0.05, 0.5} to mark changepoints located at the beginning (k∗ = 0.05mB) or

in the middle (k∗ = 0.5mB) of the monitoring period. The results for the first scenario are

given in Tables 6 and 7 in Appendix B and illustrated in Figure 2, while those for the second

scenario are presented in Tables 8 and 9 and illustrated in Figure 3. They state that the power

increases considerably with growing length of the historical and the monitoring period. If all

14



of the variances are affected by a change, the power increases with growing dimension of the

random vectors. If only one of the variances experiences a change, the frequency of detecting

the change decreases for growing dimension p since the portion of variance components that

are not struck by the change increases. Early changes can be detected reliably in both scena-

rios. However, the power gets quite low if the changepoint is located in the advanced series,

especially for t distributed random vectors as the rejection fractions in Tables 7 and 9 state. The

direct comparison of the two scenarios shows that a major change in just one of the variances

can be detected more frequently than a minor change that affects all of the variances only when
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Figure 2: Power: i.i.d. random vectors when all of the variances are affected by a change.

the dimension is rather small and the change occurs not too late in the monitoring period. In

all of the settings the procedure performs worse in the case of t distributed random vectors, but

the differences to the normal distribution results are declining with m. Also, in most cases the

power is lower for the higher value of γ. While for a later change this is a plausible result, it

contradicts the expectation that early changes can be detected more frequently using a higher

value of γ. An explanation for this result is that in both cases the values of the detector are

compared to the values of the scaled threshold function that has a higher slope in the case of

the larger tuning parameter. Since both functions intersect the down scaling of the differences
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by multiplying k
√

m can cause an earlier crossing of the threshold function for γ = 0 than for

γ = 0.25. Overall, changes that occur right after the beginning of the monitoring period can be

detected much more frequently than those located in the advanced monitoring period no matter

how the tuning parameter was chosen.

Now, the results can be compared to scenarios of continuously appearing changes, i.e., a slow

linear increase of the affected variances that starts at λ∗1 = 0.05 and 0.5, respectively, and is

completed at λ∗2 = 0.3 and 0.75, respectively. The results are also illustrated in Figures 2 and 3

and presented in Tables 6-9 in Appendix B as values in parentheses. The impact of variations
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Figure 3: Power: i.i.d. random vectors when only one of the variances is affected by a change.

in the parameters remains the same as in the situation of a sudden variance change. However,

the power is considerably lower in the case of a slow increase. Since the power simulations for

sudden changes suggest that later changes can be detected less frequently it is clear that changes

that are completed later in the monitoring period are more difficult to be detected. Although in

our simulations the detectability of changes that start in the advanced monitoring period is kind

of low especially for short historical periods, the power increases quickly with growing length

of the historical period.
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3.2. Monitoring scalar BEKK time series

Up to now, the random vectors under consideration only possessed dependence between the

individual vector components. In practice, time series that additionally exhibit serial depen-

dence, which is permitted in moderate magnitude by Assumption 4, are of larger interest. In

financial contexts, it may be desirable to detect changes in the vector of unconditional variances

of random vectors whose conditional covariance matrices are expected to be time-varying. A

common way to model this behavior and to explain volatility clusters that usually can be ob-

served in financial time series is to use a multivariate GARCH model. Assume

Xt = H
1
2
t εt, (6)

where (εt, t ∈ Z) is a sequence of i.i.d. Rp-valued random vectors, H
1
2
t is the square root of the

conditional covariance matrix Ht = Cov (Xt|It) and It = σ (Xt−1, Xt−2, . . .) is the information

set at time t. Since Bollerslev (1986) states that even GARCH models of low order are able to

explain the behavior of many financial time series well, we will focus on models that are solely

based on lagged conditional covariance matrices and observations of first order. To specify the

conditional covariance matrix we use the two parameter model, see Ding and Engle (2001),

that arises from the scalar diagonal model when performing variance targeting as in Engle and

Mezrich (1996) and that is a special case of the BEKK(1, 1, 1) model proposed by Engle and

Kroner (1995). We will refer to the scalar BEKK model in the following. Here, the conditional

covariance matrix is recursively defined by

Ht = (1 − α − β) H + αXt−1X′t−1 + βHt−1, (7)

where α and β are positive scalars with |α + β| < 1 to guarantee stationarity and H is the

unconditional covariance matrix of Xt, t ∈ Z. The following lemma, whose proof can be found

in Appendix A, provides a useful help to check the validity of Assumption 3. Let Γ B E
(
X2

t X2
t
′
)

with X2
t =

(
X2

t1, . . . , X
2
tp

)′
be the matrix of fourth moments and cross moments of Xt. Denote

by vec(·) the vec operator that stacks the columns of a matrix in a vector of dimension p2
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and vech(·) the vech operator that stacks only the lower triangular part including the main

diagonal of a symmetric matrix in a vector of dimension d = 1
2 p(p + 1). Let Dp and Lp

with vec(A) = Dpvech(A) and vech(A) = Lpvec(A) be the duplication and elimination matrix,

respectively. These matrices are, as well as the transformation matrix Gp, defined in Hafner

(2003).

Lemma 1. The matrix Γ exists if and only if all the eigenvalues of

Z B (A1 ⊗ A1) Gp + A1 ⊗ B1 + B1 ⊗ A1 + B1 ⊗ B1

with A1 = αLpDp and B1 = βLpDp are smaller than one in modulus.

This postulation leads to a strong restriction of the parameter space. Only small values of α de-

fine processes that satisfy the assumptions even for random vectors of dimension 5 or 10. Thus,

when applying the procedure to real data there might be a large chance to falsely detect changes

that in fact did not appear. Additional simuations show that there are indeed considerable size

distortions and that we get false signals right at the beginning of the observations period. In our

application to real asset returns this has to be kept in mind. An approach to tackle this problem

is presented in section 4.

Since the parameter space is restricted by the assumptions, the results do not differ very much

for different choices of the parameters. Thus, we consider just one parameter combination cho-

sen as (α, β) = (0.03, 0.45). The innovation vectors εt are i.i.d. multivariate standard normal

distributed and standardized t distributed with 8 degrees of freedom. All variable parameters

are chosen as in the i.i.d. case. According to the dimension p ∈ {2, 5, 10}, the unconditional

covariance matrix H is chosen as Σp from Section 3.1. Results concerning the empirical size

are presented in Tables 10 and 11 in the Appendix B. To simplify the comparison to the i.i.d.

case, the results are also illustrated in Figure 1 for γ = 0. The size is slightly higher in the

case of serial dependence. The influence of parameter variations is similar to the i.i.d. case dis-

regarding the fact that large values of B cause a size decrease when serial dependence is present.
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Since each of the considered time series consists of a bundle of p univariate possibly correlated

processes one could think about monitoring the single component series with the univariate

equivalent of the procedure with detector

||Vk||2 =
k
√

m
D̂−

1
2

1

∣∣∣∣[σ̂2
j

]m+k

m+1
−

[
σ̂2

j

]m

1

∣∣∣∣ , j = 1, . . . , p, (8)

where D̂1 is a scalar. To fortify why the multivariate approach should be preferred to the

univariate one we compare size and power when monitoring scalar BEKK time series. To

guarantee that asymptotically the probability of type I error, i.e. that one of the p detectors (8)

exceeds the threshold function during the monitoring period, does not exceed α = 0.05, the

significance levels are adjusted by using the Bonferroni-Holm method. The simulated sizes
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Figure 4: Size comparison: scalar BEKK time series under the use of a multivariate or several univariate
procedures.

are presented in Tables 10 and 11 in Appendix B. Also, the results for γ = 0 and B = 1 are

illustrated in Figure 4 for the multivariate and the univariate procedure. The size is slightly

lower for the univariate procedures, but the differences decline with m. Moreover, the problem

of an increased error I probability when monitoring realizations of random vectors with heavy

tailed distribution cannot be avoided by using univariate procedures.

Next, the multivariate and univariate procedure are confronted with alternative scenarios cor-
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Figure 5: Power: scalar BEKK time series under the use of the multivariate procedure when all of the
variances are affected by the change.

responding to those presented in 3.1. The results for the multivariate procedure are given in

Tables 12-15 and those for univariate procedures in Tables 16-17 in Appendix B. Figures 5

and 6 illustrate the performance of the multivariate procedure. Although the time series exhibit
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Figure 6: Power: scalar BEKK time series under the use of the multivariate procedure when only one of
the variances is affected by the change.
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serial dependence, the results resemble those of the i.i.d. case very strongly. The power is

slightly lower, but the impact of changes in the variable parameters remains the same.

The power results for the univariate procedure are illustrated in Figure 7. Since the results

resemble strongly those of the multivariate procedure, the figure only shows the values for

sudden changes and normal distributed innovations. To simplify the comparison, the graphic

also contains the rejection frequencies for the multivariate procedure. As in the i.i.d. case,

early changes can be detected reliably by both procedures while later changes are detected by

the multivariate procedure more frequently. The latter one especially shows its strength when

all of the variances experience a minor change or if just one of the variances is affected by

a larger change but the historical period is rather short. Unfortunately, the higher power of

the multivariate procedure goes along with a slightly increased size compared to the univariate

procedure.
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Figure 7: Power: scalar BEKK time series with N
(
0,Σp

)
distributed innovations under the use of several

univariate procedures.

Since it is not only of interest to detect changes in the vector of variances but also to signalize

their presence as soon as possible after they have occurred, we look closer at the properties of

the first hitting times τm and the estimated changepoint locations k̂ or location fractions λ̂ = k̂
mB .
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Figure 8: Properties of the standardized delay times and the estimated location fractions λ̂when monitor-
ing scalar BEKK time series with N

(
0,Σp

)
distributed innovations and all of the variances are affected

by the change.

While only the results for γ = 0 are visualized, the remaining parameters take the same values

as before. To simplify the comparison for different sample lengths, Figures 8 and 9 illustrate

the standardized delay times dm := τm−k∗

mB and the bias of the location fraction estimator. Right

under the boxplots, the graphics also show the means ± the standard deviations of the respective
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Figure 9: Properties of the standardized delay times and the estimated location fractions λ̂ when moni-
toring scalar BEKK time series with N

(
0,Σp

)
distributed innovations and only one of the variances is

affected by the change.
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group. In general, the delay times decrease with growing length of the historical period and

dimension. For small dimensions the procedure stops earlier if only a part of the variances is

affected by a mayor change while for higher dimensions the delay time is shorter for smaller

changes that affect more or all of the variances. This is in line with the power results discussed

before.

Since the first hitting times determine which fraction of the data set is used to estimate the

changepoint location, it is expected that the properties of the location fraction estimator resem-

ble those of the first hitting times.
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Figure 10: Power: scalar BEKK time series with N
(
0,Σp

)
distributed innovations and the variances of

the innovations change.

So far, we considered changes that affect the diagonal elements of the unconditional covariance

matrix H directly. Now, assume that the variances of the innovation vectors εt jump from 1

to 1.5. The power results are presented in Table 18 in Appendix B and illustrated in Figure 10

along with the results for comparable changes that affect the elements of the unconditional

covariance matrix H directly. Changes in the innovations’ variances can be detected almost

as reliably as changes that affect the main diagonal entries of H. This is a plausible result

considering the model structure in (6).
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To complete the simulation study, we illustrate the behavior under increasing magnitudes of the

changes. Figure 11 shows the rejection frequencies of the procedure given different magnitudes

of an earlier or later shift that affects all of the variances. Assume that all of the variances

equal 1 before the change and experience a change of magnitude ∆ ∈ {−0.7,−0.6, . . . , 0.6, 0.7}.

The investigation is limited to the case of a historical period consisting of 1.000 observations,

a monitoring period that is as long as the historical data set and scalar BEKK time series with

multivariate normal or standardized t distributed innovation vectors. To ensure invertibility of

the covariance matrix, H is chosen as the identity and standardized identity matrix, respectively.
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Figure 11: Power: scalar BEKK time series with N
(
0, σ2Ip

)
or tν

(
0, ν−2

ν σ
2Ip

)
distributed innovations

and variance shifts of varying magnitude ∆.

In line with the previous results, the power approaches 1 with increasing absolute magnitude

of the variance change and dimension. Besides, it is noticeable that for smaller absolute values

of ∆ the change is detected more frequently in the case of increasing variances compared to a

decrease of the same amount.

4. Real data example

Finally, we use the proposed procedure to monitor a time series of log returns, namely those of

the DAX listed assets of Allianz, Bayer, DeutscheBank, RWE and S iemens from 1979 to 2014.

Fitting a scalar BEKK model to the observations suggests that the parameters α and β are con-

siderably higher than allowed by Lemma 1 such that the process does not fulfill Assumption 3.

To circumvent this problem, we use GARCH residuals as inputs in the detector. Additional

simulations show that filtering multivariate GARCH time series and monitoring the residual
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vectors leads to empirical sizes close to those in the i.i.d. case indicating that the time series of

GARCH residuals show similar characteristics as the underlying innovation vectors. A detailed

investigation of this behavior that was considered for the univariate case in Kulperger and Yu

(2005) is the object of future research.

The significance level for all following applications is α = 0.05. Our approach is as follows:

The parameters α and β as well as the unconditional covariance matrix H are estimated from a

historical data set of length m ∈ {500, 1.000} via two stage quasi maximum likelihood estima-

tion as described in Pedersen and Rahbek (2014). Since longer historical periods rather tend

to be affected by variance change, m is limited to a maximum of 1.000 observations. After

the estimation, the monitoring procedure is applied to the resulting series of residuals. Since

the parameters are estimated from the historical period, it must be ensured that it is free from

variance changes. To avoid missing a changepoint in the historical period, we first perform a

retrospective version of the procedure to X1, . . . , Xm. This procedure is similar to the method in

Aue et al. (2009a) or a multivariate variant of Wied et al. (2012a) or Wied et al. (2012b) with

detector

Qk =
k
√

m
D̂−

1
2

p

([
σ̂2

]k

1
−

[
σ̂2

]m

1

)
,

where

lim
m→∞

P

 sup
b∈[0,1]

∣∣∣∣∣∣Qbm·bc+2

∣∣∣∣∣∣
2

w(b)
> c

 = P

 sup
b∈[0,1]

∣∣∣∣∣∣Bp(b)
∣∣∣∣∣∣

2

w(b)
> c


and Bp(·) is a p dimensional Brownian bridge whose component processes are p independent

Brownian bridges. According to Aue et al. (2009a) the location of a detected changepoint can

be estimated by

k̂r := sup
2≤k≤m

Qk.

If this retrospective inspection indicates the presence of a changepoint, all observations be-

fore the estimated changepoint k̂r are cut off. Then, a new historical data set consisting of

Xk̂r+1, . . . , Xk̂r+m is created and tested for another changepoint using the retrospective proce-

dure. If no changepoint is detected in the historical period, the model parameters are estimated
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from the historical data and used to gain a sequence of residual vectors to which the monitoring

procedure can be applied. If a changepoint is detected in the monitoring period and located

at k̂, the following m data points form the new historical period. This practice is reiterated until

no more changepoint can be found in the monitoring period or until there are less than m data

points left after the last detected changepoint. Unfortunately, performing several retrospective

tests on only partially exchanged observations leads to an increased probability to commit a

type I error. However, we neglect this problem as we need a changepoint-free historical period

to be able to perform the procedure properly. Choosing γ = {0, 0.25} and B as the number of

remaining data points after the historical period divided by m, we obtain changepoints that are

presented in Table 2.

m = 500
γ = 0 γ = 0.25

τm k̂ τm k̂ τm k̂ τm k̂
1983-03-24 1981-05-12 2002-06-13 1982-06-24 1981-05-13 2002-06-13
1984-10-22 1984-08-13 2003-04-15 1984-10-22 1984-08-13 2003-04-15

1985-09-16 2003-11-24 1985-09-16 2003-11-24
1992-03-12 1988-07-22 2007-05-22 2006-06-14 1992-02-10 1988-07-22 2006-06-15 2006-03-03
1991-03-07 1990-10-24 2008-09-19 2008-09-10 1990-10-09 1990-09-12 2008-03-18 2008-03-14
1996-11-08 1996-02-12 2009-04-02 1997-09-23 1996-06-11 2013-01-08 2011-08-31
1999-12-24 1999-03-15 2012-07-23 2011-12-05 1998-09-30 1998-07-13 2014-05-30 2013-11-18
2001-10-15 2001-08-07 2014-11-20 2014-09-17 2003-02-26 2001-08-07

m = 1.000
1985-04-12 1984-08-13 2004-05-19 1984-10-30 1984-08-13 2003-12-22 2003-04-11
1992-03-26 1991-01-17 2008-11-25 2008-09-05 1991-12-24 1989-10-17 2004-05-19
1997-01-27 1996-06-11 2009-05-19 1991-03-20 2008-10-10 2008-09-05

1998-07-13 2011-08-08 1996-12-04 1996-06-11 2009-05-19
2004-06-30 2003-04-16 1998-07-13 2011-08-08

Table 2: First hitting times and estimated changepoint locations when applying the monitoring procedure
to asset returns of Allianz, Bayer, Deutsche Bank, RWE and Siemens.

Along with the log returns of the Allianz and S iemens assets, Figure 12 illustrates the change-

points that are detected using γ = 0 and m = 1.000. The time series are divided effectively in

parts of higher or lower volatility by the procedure. The remaining time series show a similar

behavior and will not be illustrated here for the sake of clarity. The reported changepoints are

used to split the time series in parts of constantly higher and lower variance. The sample stan-

dard deviations between two succeeding changepoints are presented in Table 3 and illustrated

in Figure 13 for the Allianz and the S iemens asset.

The results illustrated in Figures 12 and 13 can be associated with distinctive events in the last
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25 years. The late eighties were influenced strongly by the stock market crash and the Cher-

nobyl catastrophe. The latter one is of interest since the asset of RWE, an energy generating

company that relies on nuclear power since the seventies, is included in our sample. By the end
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Figure 12: Returns of the Allianz and S iemens assets with detected changepoints (γ = 0 and m = 1.000).
—– indicates that a changepoint was detected in the monitoring period; - - - indicates that a changepoint
was detected in the historical period.

of the nineties the volatilities increased in the course of the financial crises in Southeast Asia

and Russia, a trend that was reinforced around the turn of the millennium by the bursting of

the dotcom bubble and the beginning of the Iraq war. The following years of sinking volatility
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Figure 13: Sample standard deviations of the returns of the Allianz and S iemens assets between suc-
ceeding detected changepoints.
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were interrupted by the Lehman bankruptcy and the following finance and debt crisis. Also, es-

pecially the asset of RWE was strongly influenced by the consequences of the nuclear incident

in Fukushima in 2011.

Estimation period Allianz Bayer Deutsche Bank RWE Siemens
1979-01-02 to 1984-08-12 0.0100 0.0103 0.0096 0.0084 0.0089
1984-08-13 to 1991-01-16 0.0214 0.0154 0.0167 0.0167 0.0156
1991-01-17 to 1996-06-10 0.0124 0.0116 0.0105 0.0102 0.0097
1996-06-11 to 2003-03-20 0.0193 0.0187 0.0173 0.0179 0.0173
1998-07-13 to 2003-04-15 0.0276 0.0255 0.0261 0.0218 0.0289
2003-04-16 to 2004-05-18 0.0218 0.0199 0.0171 0.0155 0.0170
2004-05-19 to 2008-09-04 0.0150 0.0148 0.0146 0.0130 0.0160
2008-09-04 to 2009-05-18 0.0498 0.0311 0.0627 0.0325 0.0431
2009-05-19 to 2011-08-07 0.0160 0.0157 0.0213 0.0133 0.0172
2011-08-08 to 2014-12-31 0.0174 0.0166 0.0236 0.0197 0.0137

Table 3: Sample standard deviations calculated from the time periods between detected changepoints

5. Conclusion

We propose a multivariate monitoring procedure to detect changes in the vector of variances of

a sequence of random vectors and analyzed its size and power properties. An application to a

group of asset returns reported plausible changepoints that could be associated to past events

that actually showed strong influence on the stock market.

In the paper, we refrain from monitoring the whole covariance matrix as proposed by Aue et al.

(2009b) in the retrospective case and only focus on the variances instead. From a practitioner’s

point of view an application of the proposed procedure extended to the covariances to time

series of higher dimension is problematic. Even for a moderate number of observation units,

Dp is of unpropitious high dimension. The matrix has to be estimated and the quality of the

estimate declines with p which shows strong influence on the performance of the procedure.

To circumvent this problem, one should pursue different approaches, e.g., one could monitor

the largest eigenvalue of covariance matrices. We leave this task for future research.
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A. Appendix: Proofs

The proofs of Theorem 1-3 are along the lines of Wied and Galeano (2013).

Proof of Theorem 1

Let D[d1, d2] be the space of càdlàg functions on the interval [d1, d2] equipped with the supre-

mum norm. Denote the time invariant vector of variances by σ2 =
(
σ2

1, . . . , σ
2
p

)′
and define

{Pm(d), d ∈ [c, B]} by

Pm(d) = D̂−
1
2
[m · d] − [m · c]

√
m

([
σ̂2

][m·d]

[m·c]
− σ2

)
= D̂−

1
2
[m · d] − [m · c]

√
m


[
σ̂2

1

][m·d]

[m·c]
− σ2

1

...[
σ̂2

p

][m·d]

[m·c]
− σ2

p

 .

Then, it has to be shown for fixed c ≥ 0, assuming m → ∞ that {Pm(d), d ∈ [c, B]} converges

in distribution to {Wp(d) − Wp(c), d ∈ [c, B]} on D[c, B] with Wp(·) being a p dimensional

Brownian Motion. This leads to

S m(b) :=

D̂−
1
2

[m·b]+2
√

m

([
σ̂2

]m+[m·b]+2

m+1
− σ2

)
D̂−

1
2
√

m
([
σ̂2

]m

1
− σ2

)
⇒d

Wp(b + 1) −Wp(1)

Wp(1)

 , for b ∈ [0, B] .

Consequently,

V[m·b]+2 = D̂−
1
2
[m · b] + 2
√

m

([
σ̂2

]m+[m·b]+2

m+1
− σ2

)
− D̂−

1
2
[m · b] + 2
√

m

([
σ̂2

]m

1
− σ2

)
converges to the process {Wp(b+1)−(b+1)Wp(1), b ∈ [0, B]}. Applying the continuous mapping

theorem and calculating the covariance structure of the limit process proves the result. �
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Proof of Theorem 2

The proof uses the same arguments as the one of Theorem 1 and is mainly based on the fact

that for fixed c ≥ 0, and m→ ∞ the process {Pm(d), d ∈ [c, B]} converges in distribution to


Wp(d) −Wp(c) + H


∫ d

c
g1(z)dz
...∫ d

c
gp(z)dz

 , d ∈ [c, B]


on D[c, B]. The constant H is, up to a constant, the limit of D̂ under the null hypothesis, see the

proof of Theorem 2 in Wied et al. (2012a). This result is a generalization of arguments used in

Theorem 2 in Wied et al. (2012a), executed along the lines of to the proof of Theorem 1. �

Proof of Theorem 3

Assume w.l.o.g. g1(·) B Mh(·). Then, the detector converges in the following way:

sup
b∈[0,B]

∥∥∥Vbmbc+2

∥∥∥
2

d
⇒ sup

b∈[0,B]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


G1(b)
...

Gp(b)

 + D−
1
2



M ·
∫ b+1

1
h(u)du∫ b+1

1
g2(u)du
...∫ b+1

1
gp(u)du



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2

. (9)

Denote D−
1
2 B

(
di j

)
i, j=1,...,p

and define constants c1(b) B
∫ b+1

1
h(u)du and ci(b) B

∫ b+1

1
gi(u)du,

i = 2, . . . , p. Thus, (9) has asymptotically the same distribution as

sup
b∈[0,B]

√√√ p∑
j=1

G j(b) + Md j1c1(b) +

p∑
i=2

d jici(b)

2

. (10)

Since Dp is positive definite there exists j ∈ {1, . . . , p} with d j1 , 0. Assuming M → ∞,

we have
∣∣∣G j(b) + Md j1c1(b)

∣∣∣ → ∞. Thus, Jensen’s inequality implies that for all b ∈ [0, B] the

square root of the sum in (10) tends to ∞. This implies that (10) will exceed every quantile of

the asymptotic null distribution for M → ∞. �
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Proof of Lemma 1

Hafner (2003) provides conditions to establish the existence of the matrix of fourth moments

and cross moments of a multivariate GARCH(1, 1) model in vech representation:

vech (Ht) = C0 + A1vech
(
Xt−1X′t−1

)
+ B1vech (Ht−1) , (11)

where C0 is a d dimensional parameter vector and A1 and B1 are parameter matrices of dimen-

sion d × d. The closely related vec representation is given as

vec (Ht) = C∗0 + A∗1vec
(
Xt−1X′t−1

)
+ B∗1vec (Ht−1) (12)

and contains several redundant equations that lead to inflated parameter matrices A∗1 and B∗1 of

dimension p2 × p2 and a parameter vector C∗0 of dimension p2. Following Engle and Kroner

(1995), the model in (7) can be given in vec representation by choosing

C∗0 = (1 − α − β)
[
H

1
2 ⊗ H

1
2
]

vec
(
Ip

)
, A∗1 = αIp2 and B∗1 = βIp2 . (13)

in (12). Thus, (7) can be given in vech representation by transforming it first to its vec and then

to its vech representation. Substituting (13) in (12) and multiplying Dp and Lp gives

C0 = (1 − α − β) Lp · H
1
2 ⊗ H

1
2 · vec

(
Ip

)
, A1 = αLpDp and B1 = βLpDp (14)

in model (11). Using (14) and Gp from Hafner (2003) to construct Z allows to check the

existence of Γ according to Hafner (2003). �
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B. Appendix: Tables

p = 2 p = 5 p = 10
γ B m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000

D
is

kn
ow

n

0.5 0.0476 0.0431 0.0451 0.0493 0.0518 0.0535 0.0500 0.0502 0.0515
0 1 0.0432 0.0465 0.0496 0.0485 0.0501 0.0500 0.0487 0.0488 0.0474

2 0.0459 0.0435 0.0507 0.0507 0.0520 0.0536 0.0527 0.0533 0.0493
0.5 0.0522 0.0489 0.0434 0.0550 0.0480 0.0518 0.0499 0.0496 0.0499

0.25 1 0.0487 0.0473 0.0498 0.0470 0.0474 0.0457 0.0473 0.0485 0.0487
2 0.0516 0.0462 0.0478 0.0528 0.0506 0.0539 0.0529 0.0522 0.0517

Σ
=

I p

0.5 0.0659 0.0558 0.0574 0.0740 0.0641 0.0607 0.1041 0.0726 0.0652
0 1 0.0608 0.0605 0.0528 0.0802 0.0659 0.0588 0.1080 0.0781 0.0650

2 0.0689 0.0605 0.0598 0.0852 0.0657 0.0573 0.1016 0.0826 0.0628
0.5 0.0639 0.0613 0.0545 0.0839 0.0677 0.0613 0.1034 0.0752 0.0633

0.25 1 0.0674 0.0623 0.0573 0.0879 0.0668 0.0584 0.1144 0.0884 0.0755
2 0.0702 0.0564 0.0539 0.0820 0.0747 0.0605 0.1132 0.0813 0.0666

Σ
=

H
p

0.5 0.0636 0.0588 0.0569 0.0788 0.0652 0.0607 0.1005 0.0741 0.0645
0 1 0.0632 0.0611 0.0580 0.0845 0.0669 0.0607 0.1083 0.0814 0.0696

2 0.0662 0.0588 0.0589 0.0844 0.0735 0.0644 0.1024 0.0787 0.0642
0.5 0.0620 0.0672 0.0576 0.0844 0.0732 0.0646 0.1134 0.0818 0.0680

0.25 1 0.0646 0.0570 0.0518 0.0900 0.0800 0.0652 0.1128 0.0850 0.0760
2 0.0696 0.0640 0.0508 0.0926 0.0664 0.0688 0.1190 0.0946 0.0690

Table 4: Size when monitoring a sequence of realizations of i.i.d. N
(
0,Σp

)
distributed random vectors.

p = 2 p = 5 p = 10
γ B m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000

D
is

kn
ow

n

0.5 0.0492 0.0509 0.0520 0.0713 0.0614 0.0610 0.0777 0.0719 0.0695
0 1 0.0520 0.0512 0.0523 0.0633 0.0634 0.0641 0.0767 0.0696 0.0690

2 0.0533 0.0526 0.0555 0.0634 0.0631 0.0639 0.0746 0.0771 0.0724
0.5 0.0631 0.0590 0.0582 0.0831 0.0754 0.0657 0.1073 0.0911 0.0907

0.25 1 0.0636 0.0601 0.0586 0.0810 0.0762 0.0706 0.0945 0.0912 0.0813
2 0.0625 0.0621 0.0528 0.0845 0.0749 0.0706 0.1033 0.0914 0.0872

Σ
=

I p

0.5 0.0914 0.0796 0.0711 0.1356 0.1066 0.0830 0.1943 0.1430 0.1053
0 1 0.0942 0.0821 0.0664 0.1405 0.1045 0.0832 0.2037 0.1386 0.1069

2 0.1027 0.0800 0.0701 0.1475 0.1085 0.0836 0.2013 0.1384 0.0961
0.5 0.1095 0.0906 0.0775 0.1632 0.1239 0.0993 0.2329 0.1635 0.1169

0.25 1 0.1199 0.0906 0.0815 0.1713 0.1279 0.1020 0.2487 0.1810 0.1324
2 0.1079 0.0967 0.0738 0.1741 0.1259 0.0961 0.2490 0.1670 0.1210

Σ
=

H
p

0.5 0.0966 0.0818 0.0717 0.1382 0.1067 0.0900 0.2008 0.1382 0.1006
0 1 0.1003 0.0792 0.0686 0.1413 0.1101 0.0848 0.2107 0.1459 0.1057

2 0.0978 0.0791 0.0745 0.1413 0.1112 0.0860 0.1962 0.1405 0.1013
0.5 0.1140 0.0918 0.0836 0.1622 0.1212 0.0924 0.2472 0.1706 0.1162

0.25 1 0.1138 0.0878 0.0712 0.1850 0.1316 0.1026 0.2522 0.1662 0.1224
2 0.1174 0.0918 0.0718 0.1796 0.1334 0.1036 0.2702 0.1832 0.1214

Table 5: Size when monitoring a sequence of realizations of i.i.d. tν
(
0, ν−2

ν Σp
)

distributed random
vectors with ν=8 degrees of freedom.
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k∗ = 0.05 k∗ = 0.5
γ B m = 500 1000 2000 m = 500 1000 2000

0.5 0.7775 (0.6665) 0.9597 (0.8941) 0.9995 (0.9938) 0.3398(0.2276) 0.5127 (0.3389) 0.7670 (0.5243)
0 1 0.8923 (0.7960) 0.9939 (0.9742) 1.0000 (0.9998) 0.4174 (0.2798) 0.6592 (0.4258) 0.9101 (0.6819)

2 0.9549 (0.8972) 0.9992 (0.9929) 1.0000 (1.0000) 0.5121 (0.3336) 0.7742 (0.5253) 0.9703 (0.8163)

p
=

2

0.5 0.7664 (0.6482) 0.9552 (0.8818) 0.9995 (0.9929) 0.3137 (0.2073) 0.4846 (0.3123) 0.7483 (0.4987)
0.25 1 0.8876 (0.7848) 0.9917 (0.9644) 1.0000 (0.9997) 0.3930 (0.2599) 0.6095 (0.3750) 0.8885 (0.6337)

2 0.9432 (0.8689) 0.9987 (0.9901) 1.0000 (1.0000) 0.4585 (0.2890) 0.7364 (0.4771) 0.9604 (0.7841)
0.5 0.9568 (0.8929) 0.9987 (0.9911) 1.0000 (1.0000) 0.5393 (0.3564) 0.7563 (0.5098) 0.9642 (0.7866)

0 1 0.9926 (0.9671) 1.0000 (0.9997) 1.0000 (1.0000) 0.6677 (0.4431) 0.8977 (0.6687) 0.9967 (0.9264)
2 0.9991 (0.9934) 1.0000 (1.0000) 1.0000 (1.0000) 0.7540 (0.5245) 0.9590 (0.7791) 0.9994(0.9782)

p
=

5

0.5 0.9553 (0.8852) 0.9987 (0.9900) 1.000 (0.9999) 0.5155 (0.3344) 0.7431 (0.4934) 0.9546 (0.7501)
0.25 1 0.9919 (0.9630) 1.0000 (0.9997) 1.0000 (1.0000) 0.6409 (0.4137) 0.8752 (0.6294) 0.9951 (0.9044)

2 0.9990 (0.9918) 1.0000 (1.0000) 1.0000 (1.0000) 0.7286 (0.4893) 0.9508 (0.7509) 0.9994 (0.9725)
0.5 0.9998 (0.9977) 1.0000 (1.0000) 1.0000 (1.0000) 0.8464 (0.6361) 0.9821 (0.8518) 1.0000 (0.9870)

0 1 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 0.9491 (0.7749) 0.9989 (0.9529) 1.0000 (0.9994)
2 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 0.9820 (0.8546) 1.0000 (0.9885) 1.0000 (1.0000)

p
=

10

0.5 0.9997 (0.9969) 1.0000 (1.0000) 1.0000 (1.0000) 0.8270 (0.6084) 0.9736 (0.8174) 1.000 (0.9840)
0.25 1 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 0.9349 (0.7433) 0.9986 (0.9434) 1.0000 (0.9994)

2 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 0.9774 (0.8499) 0.9999 (0.9868) 1.0000 (1.0000)

Table 6: Power when monitoring a sequence of realizations of i.i.d. N
(
0,Σp

)
distributed random vectors

when all of the variances are affected by a change.

k∗ = 0.05 k∗ = 0.5
γ B m = 500 1000 2000 m = 500 1000 2000

0.5 0.6063 (0.5079) 0.7991 (0.7059) 0.9636 (0.9083) 0.2868 (0.2222) 0.3797 (0.2635) 0.5689 (0.3786)
0 1 0.7377 (0.6359) 0.9112 (0.8363) 0.9921 (0.9746) 0.3566 (0.2595) 0.4842 (0.3329) 0.7015 (0.4742)

2 0.8173 (0.7291) 0.9568 (0.9032) 0.9984 (0.9933) 0.4045 (0.2834) 0.5500 (0.3715) 0.8021 (0.5726)

p
=

2

0.5 0.6154 (0.5066) 0.7883 (0.6833) 0.9547 (0.8912) 0.2821 (0.2216) 0.3584 (0.2454) 0.5247 (0.3401)
0.25 1 0.7339 (0.6217) 0.8980 (0.8100) 0.9902 (0.9670) 0.3479 (0.2564) 0.4371 (0.2967) 0.6646 (0.4337)

2 0.8026 (0.7045) 0.9513 (0.8896) 0.9980 (0.9916) 0.3775 (0.2677) 0.5176 (0.3450) 0.7730 (0.5302)
0.5 0.7924 (0.7084) 0.9349 (0.8636) 0.9971 (0.9836) 0.4229 (0.3303) 0.5270 (0.3801) 0.7286 (0.5106)

0 1 0.8999 (0.8297) 0.9860 (0.9547) 0.9996 (0.9981) 0.5232 (0.3931) 0.6607 (0.4719) 0.8745 (0.6661)
2 0.9515 (0.8975) 0.9965 (0.9827) 1.0000 (0.9996) 0.5944 (0.4377) 0.7575 (0.5446) 0.9353 (0.7727)

p
=

5

0.5 0.8056 (0.7119) 0.9358 (0.8603) 0.9962 (0.9803) 0.4245 (0.3355) 0.5147 (0.3700) 0.7008 (0.4799)
0.25 1 0.8995 (0.8250) 0.9841 (0.9503) 0.9996 (0.9977) 0.5094 (0.3898) 0.6412 (0.4536) 0.8501 (0.6338)

2 0.9493 (0.8881) 0.9963 (0.9807) 1.0000 (0.9995) 0.5757 (0.4201) 0.7412 (0.5294) 0.9227 (0.7483)
0.5 0.9326 (0.8790) 0.9889 (0.9687) 0.9999 (0.9990) 0.6205 (0.4834) 0.7074 (0.5246) 0.8861 (0.6824)

0 1 0.9763 (0.9506) 0.9989 (0.9939) 1.0000 (1.000) 0.7016 (0.5559) 0.8513 (0.6592) 0.9639 (0.8228)
2 0.9929(0.9806) 0.9999 (0.9990) 1.0000 (1.0000) 0.7831 (0.6117) 0.9144 (0.7545) 0.9899 (0.9103)

p
=

10

0.5 0.9355 (0.8776) 0.9879 (0.9651) 0.9999 (0.9988) 0.6117 (0.4798) 0.6832 (0.4983) 0.8769 (0.6645)
0.25 1 0.9781 (0.9510) 0.9990 (0.9919) 1.0000 (1.0000) 0.6956 (0.5564) 0.8293 (0.6292) 0.9581 (0.8033)

2 0.9951 (0.9771) 0.9999 (0.9986) 1.0000 (1.0000) 0.7683 (0.6135) 0.8965 (0.7175) 0.9907 (0.8983)

Table 7: Power when monitoring a sequence of realizations of i.i.d. tν
(
0, ν−2

ν Σp
)

distributed random
vectors with ν=8 degrees of freedom when all of the variances are affected by a change.
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k∗ = 0.05 k∗ = 0.5
γ B m = 500 1000 2000 m = 500 1000 2000

0.5 0.9695 (0.9298) 0.9991 (0.9975) 1.0000 (1.0000) 0.6006 (0.4040) 0.8514 (0.6364) 0.9853 (0.8923)
0 1 0.9972 (0.9843) 1.0000 (1.0000) 1.0000 (1.0000) 0.7483 (0.5150) 0.9573 (0.7892) 0.9995 (0.9784)

2 0.9997 (0.9982) 1.0000 (1.0000) 1.0000 (1.0000) 0.8618 (0.6383) 0.9894 (0.8994) 1.0000 (0.9970)

p
=

2

0.5 0.9656 (0.9196) 0.9989 (0.9967) 1.0000 (1.0000) 0.5672 (0.3673) 0.8248 (0.5966) 0.9825 (0.8792)
0.25 1 0.9967 (0.9809) 1.0000 (1.0000) 1.0000 (1.0000) 0.7167 (0.4821) 0.9520 (0.7731) 0.9994 (0.9712)

2 0.9997 (0.9968) 1.0000 (1.0000) 1.0000 (1.0000) 0.8280 (0.5847) 0.9861 (0.8746) 1.0000 (0.9953)
0.5 0.9310 (0.8578) 0.9972 (0.9877) 1.0000 (0.9996) 0.4833 (0.3255) 0.7406 (0.4878) 0.9518 (0.7774)

0 1 0.9883 (0.9588) 1.0000 (0.9997) 1.0000 (1.0000) 0.6319 (0.4153) 0.8966 (0.6611) 0.9950 (0.9283)
2 0.9995 (0.9908) 1.0000 (1.0000) 1.0000 (1.0000) 0.7430 (0.5007) 0.9621 (0.7900) 0.9995 (0.9792)

p
=

5

0.5 0.9244 (0.8443) 0.9968 (0.9853) 1.0000 (0.9996) 0.4566 (0.2945) 0.7144 (0.4595) 0.9444 (0.7568)
0.25 1 0.9874 (0.9533) 1.0000(0.9996) 1.0000 (1.0000) 0.6135 (0.3952) 0.8707 (0.6152) 0.9936 (0.9140)

2 0.9988 (0.9890) 1.0000 (1.0000) 1.0000 (1.0000) 0.7191 (0.4722) 0.9530 (0.7582) 0.9994 (0.9720)
0.5 0.8507 (0.7481) 0.9878 (0.9524) 1.0000 (0.9996) 0.3891 (0.2557) 0.5842 (0.3674) 0.8753 (0.6334)

0 1 0.9600 (0.8996) 0.9993 (0.9941) 1.0000 (1.0000) 0.5139 (0.3417) 0.7631 (0.5013) 0.9753 (0.8131)
2 0.9896 (0.9530) 1.0000 (0.9996) 1.0000 (1.0000) 0.6127 (0.4093) 0.8885 (0.6395) 0.9963 (0.9210)

p
=

10

0.5 0.8541 (0.7444) 0.9879 (0.9504) 1.0000 (0.9996) 0.3814 (0.2543) 0.5727 (0.3550) 0.8574 (0.5955)
0.25 1 0.9575 (0.8892) 0.9993 (0.9934) 1.0000 (1.0000) 0.4898 (0.3244) 0.7453 (0.4769) 0.9702 (0.7898)

2 0.9886 (0.9477) 1.0000 (0.9995) 1.0000 (1.0000) 0.5843 (0.3821) 0.8730 (0.6110) 0.9950 (0.9082)

Table 8: Power when monitoring a sequence of realizations of i.i.d. N
(
0,Σp

)
distributed random vectors

when only one of the variances is affected by a change.

k∗ = 0.05 k∗ = 0.5
γ B m = 500 1000 2000 m = 500 1000 2000

0.5 0.8771 (0.7992) 0.9861 (0.9606) 0.9994 (0.9989) 0.4695 (0.3303) 0.6917 (0.4828) 0.9132 (0.7289)
0 1 0.9597 (0.9155) 0.9976 (0.9921) 0.9998 (0.9997) 0.5990 (0.4133) 0.8311 (0.6079) 0.9802 (0.8709)

2 0.9873 (0.9641) 0.9998 (0.9976) 0.9999 (0.9999) 0.7014 (0.4957) 0.9167 (0.7339) 0.9965 (0.9512)

p
=

2

0.5 0.8717 (0.7878) 0.9836 (0.9544) 0.9993 (0.9986) 0.4522 (0.3206) 0.6599 (0.4538) 0.8969 (0.6931)
0.25 1 0.9564 (0.9064) 0.9972 (0.9904) 0.9998 (0.9997) 0.5784 (0.3974) 0.8124 (0.5769) 0.9731 (0.8427)

2 0.9848 (0.9551) 0.9995 (0.9972) 0.9999 (0.9998) 0.6687 (0.4624) 0.9015 (0.7018) 0.9945 (0.9395)
0.5 0.8261 (0.7345) 0.9710 (0.9238) 0.9995 (0.9968) 0.4155 (0.3161) 0.5889 (0.3971) 0.8428 (0.6091)

0 1 0.9327 (0.8623) 0.9955 (0.9846) 0.9999 (0.9997) 0.5220 (0.3706) 0.7521 (0.5402) 0.9508 (0.7864)
2 0.9748 (0.9352) 0.9993 (0.9958) 0.9999 (0.9998) 0.6300 (0.4340) 0.8600 (0.6618) 0.9851 (0.8855)

p
=

5

0.5 0.8295 (0.7370) 0.9686 (0.9165) 0.9996 (0.9961) 0.4205 (0.3272) 0.5665 (0.3805) 0.8277 (0.5871)
0.25 1 0.9307 (0.8552) 0.9947 (0.9801) 0.9999 (0.9997) 0.5102 (0.3687) 0.7196 (0.5018) 0.9423 (0.7646)

2 0.9728 (0.9267) 0.9993 (0.9950) 0.9999 (0.9998) 0.6135 (0.4242) 0.8380 (0.6273) 0.9832 (0.8746)
0.5 0.7508 (0.6610) 0.9238 (0.8528) 0.9961 (0.9843) 0.3973 (0.3184) 0.4922 (0.3394) 0.7157 (0.4896)

0 1 0.875 (0.8071) 0.9815 (0.9522) 0.9998 (0.9989) 0.4815 (0.3773) 0.6395 (0.4323) 0.8718 (0.6423)
2 0.9469 (0.8809) 0.9958 (0.9849) 1.0000 (0.9994) 0.5613 (0.4238) 0.7520 (0.5393) 0.9498 (0.7700)

p
=

10

0.5 0.7605 (0.6705) 0.9207 (0.8456) 0.9954 (0.9806) 0.4150 (0.3410) 0.4838 (0.3398) 0.6851 (0.4607)
0.25 1 0.8764 (0.8014) 0.9819 (0.9512) 0.9998 (0.9983) 0.4830 (0.3883) 0.6348 (0.4341) 0.8552 (0.6176)

2 0.9462 (0.8787) 0.9950 (0.9822) 1.0000 (0.9993) 0.5660 (0.4325) 0.7358 (0.5250) 0.9416 (0.7451)

Table 9: Power when monitoring a sequence of realizations of i.i.d. tν
(
0, ν−2

ν Σp
)

distributed random
vectors with ν=8 degrees of freedom when only one of the variances is affected by a change.
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p = 2 p = 5 p = 10
γ B m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000

0
0.5 0.0733 0.0694 0.0612 0.0984 0.0778 0.0662 0.1325 0.1031 0.0834
1 0.0788 0.0706 0.0602 0.1056 0.0789 0.0739 0.1408 0.1051 0.0876

m
ul

tiv
ar

ia
te

pr
oc

ed
ur

e
2 0.0762 0.0716 0.0692 0.1058 0.0861 0.0723 0.1326 0.0973 0.0785

0.25
0.5 0.0751 0.0704 0.0578 0.1103 0.0822 0.0734 0.1362 0.0987 0.0798
1 0.0879 0.0693 0.0666 0.1147 0.0888 0.0787 0.1540 0.1128 0.0925
2 0.0836 0.0694 0.0596 0.1149 0.0810 0.0731 0.1477 0.1113 0.0908

0
0.5 0.0645 0.0596 0.0524 0.0912 0.0789 0.0683 0.1031 0.0812 0.0682
1 0.0705 0.0634 0.0607 0.0905 0.0803 0.0694 0.1101 0.0897 0.0733

un
iv

ar
ia

te
pr

oc
ed

ur
es

2 0.0653 0.0602 0.0504 0.0961 0.0759 0.0738 0.0953 0.0732 0.0639

0.25
0.5 0.0706 0.0624 0.0555 0.1065 0.0884 0.0757 0.1226 0.0884 0.0699
1 0.0753 0.0701 0.0567 0.1001 0.0767 0.0687 0.1306 0.0992 0.0852
2 0.0844 0.0743 0.0644 0.1048 0.0860 0.0689 0.1428 0.1068 0.0870

Table 10: Size when monitoring scalar BEKK time series with parameters α = 0.03, β = 0.45 and
N

(
0,Σp

)
distributed innovations.

p = 2 p = 5 p = 10
γ B m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000

0
0.5 0.1091 0.0877 0.0798 0.1533 0.1207 0.0987 0.2430 0.1674 0.1288
1 0.1045 0.0871 0.0754 0.1703 0.1294 0.0978 0.2492 0.1816 0.1319

m
ul

tiv
ar

ia
te

pr
oc

ed
ur

e

2 0.1133 0.0938 0.0747 0.1684 0.1323 0.1001 0.2434 0.1663 0.1194

0.25
0.5 0.1278 0.1005 0.0831 0.2012 0.1462 0.1173 0.2771 0.1974 0.1417
1 0.1336 0.1082 0.0894 0.2101 0.1567 0.1091 0.3112 0.2143 0.1568
2 0.1361 0.1018 0.0862 0.2017 0.1540 0.1160 0.3068 0.2131 0.1525

0
0.5 0.0910 0.0713 0.0663 0.1443 0.1163 0.0924 0.1825 0.1369 0.1060
1 0.1004 0.0812 0.0700 0.1448 0.1144 0.0896 0.2025 0.1468 0.1158

un
iv

ar
ia

te
pr

oc
ed

ur
es

2 0.0988 0.0853 0.0661 0.1508 0.1217 0.0895 0.1941 0.1369 0.1079

0.25
0.5 0.1069 0.0919 0.0785 0.1761 0.1475 0.1107 0.2785 0.2102 0.1589
1 0.1199 0.1022 0.0825 0.1769 0.1392 0.1046 0.2782 0.2147 0.1570
2 0.1237 0.1015 0.0842 0.1932 0.1481 0.1157 0.2714 0.1964 0.1417

Table 11: Size when monitoring scalar BEKK time series with parameters α = 0.03, β = 0.45 and
tν

(
0, ν−2

ν Σp
)

distributed innovations with ν=8 degrees of freedom.

k∗ = 0.05 k∗ = 0.5
γ B m = 500 1000 2000 m = 500 1000 2000

0.5 0.7516 (0.6546) 0.9384 (0.8732) 0.9982 (0.9900) 0.3388 (0.2451) 0.4866 (0.3405) 0.7274 (0.5131)
0 1 0.8748 (0.7820) 0.9908 (0.9599) 1.0000 (0.9990) 0.4066 (0.2876) 0.6120 (0.4159) 0.8716 (0.6522)

2 0.9390 (0.8707) 0.9978 (0.9879) 1.0000 (1.0000) 0.4944 (0.3413) 0.7308 (0.5197) 0.9436 (0.7794)

p
=

2

0.5 0.7500 (0.6408) 0.9312 (0.8602) 0.9972 (0.9869) 0.3172 (0.2340) 0.4578 (0.3120) 0.6946 (0.4760)
0.25 1 0.8708 (0.7608) 0.9888 (0.9517) 1.0000 (0.9988) 0.3828 (0.2639) 0.5762 (0.3816) 0.8522 (0.6150)

2 0.9274 (0.8518) 0.9978 (0.9847) 1.0000 (1.0000) 0.4586 (0.3109) 0.6936 (0.4796) 0.9322 (0.7428)
0.5 0.9416 (0.8757) 0.9974 (0.9891) 1.0000 (0.9999) 0.5108 (0.3782) 0.7194 (0.5140) 0.9412 (0.7645)

0 1 0.9902 (0.9630) 1.0000 (0.9992) 1.0000 (1.0000) 0.6532 (0.4592) 0.8756 (0.6433) 0.9904 (0.9010)
2 0.9978 (0.9878) 1.0000 (1.0000) 1.0000 (1.0000) 0.7626 (0.5333) 0.9464 (0.7625) 0.9990 (0.9622)

p
=

5

0.5 0.9402 (0.8654) 0.9968 (0.9869) 1.0000 (0.9999) 0.4838 (0.3544) 0.6826 (0.4795) 0.9248 (0.7298)
0.25 1 0.9900 (0.9586) 1.0000 (0.9991) 1.0000 (1.0000) 0.6250 (0.4360) 0.8610 (0.6146) 0.9884 (0.8840)

2 0.9970 (0.9852) 1.0000 (1.0000) 1.0000 (1.0000) 0.7284 (0.5008) 0.9314 (0.7305) 0.9986 (0.9536)
0.5 0.9996 (0.9964) 1.0000 (1.0000) 1.0000 (1.0000) 0.8292 (0.6333) 0.9688 (0.8231) 0.9998 (0.9795)

0 1 0.9998 (0.9999) 1.0000 (1.0000) 1.0000 (1.0000) 0.9344 (0.7639) 0.9968 (0.9412) 1.0000 (0.9990)
2 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 0.9786 (0.8492) 0.9996 (0.9802) 1.0000 (1.0000)

p
=

10

0.5 0.9996 (0.9957) 1.0000 (1.0000) 1.0000 (1.0000) 0.8106 (0.6086) 0.9624 (0.8032) 0.9998 (0.9743)
0.25 1 0.9998 (0.9999) 1.0000 (1.0000) 1.0000 (1.0000) 0.9234 (0.7415) 0.9962 (0.9288) 1.0000 (0.9983)

2 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 0.9734 (0.8321) 0.9996 (0.9765) 1.0000 (1.0000)

Table 12: Power when monitoring scalar BEKK time series and all of the variances increase (N
(
0,Σp

)
distributed innovations).
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k∗ = 0.05 k∗ = 0.5
γ B m = 500 1000 2000 m = 500 1000 2000

0.5 0.5999 (0.5036) 0.7869 (0.6778) 0.9509 (0.8787) 0.3110 (0.2225) 0.3778 (0.2525) 0.5388 (0.3506)
0 1 0.7255 (0.6175) 0.8954 (0.8044) 0.9885 (0.9580) 0.3634 (0.2602) 0.4692 (0.3140) 0.6691 (0.4451)

2 0.8115 (0.7052) 0.9474 (0.8835) 0.9973 (0.9881) 0.4022 (0.2922) 0.5604 (0.3749) 0.7846 (0.5585)

p
=

2

0.5 0.6115 (0.5168) 0.7820 (0.6812) 0.9462 (0.8763) 0.3078 (0.2418) 0.3609 (0.2598) 0.5063 (0.3347)
0.25 1 0.7241 (0.6213) 0.8873 (0.7956) 0.9858 (0.9558) 0.3517 (0.2743) 0.4434 (0.3116) 0.6342 (0.4272)

2 0.8035 (0.6948) 0.9412 (0.8755) 0.9966 (0.9847) 0.3815 (0.2835) 0.5256 (0.3575) 0.7514 (0.5266)
0.5 0.7884 (0.7018) 0.9277 (0.8550) 0.9924 (0.9762) 0.4446 (0.3476) 0.5299 (0.3916) 0.7123 (0.5033)

0 1 0.8906 (0.8171) 0.9796 (0.9466) 0.9998 (0.9971) 0.5303 (0.4188) 0.6547 (0.4707) 0.8440 (0.6412)
2 0.9399 (0.8823) 0.9946 (0.9774) 1.0000 (0.9997) 0.5997 (0.4534) 0.7450 (0.5464) 0.9270 (0.7491)

p
=

5

0.5 0.7994 (0.7103) 0.9285 (0.8517) 0.9915 (0.9716) 0.4467 (0.3645) 0.5117 (0.3797) 0.6918 (0.4745)
0.25 1 0.8917 (0.8188) 0.9777 (0.9348) 0.9995 (0.9953) 0.5206 (0.4077) 0.6295 (0.4593) 0.8207 (0.6193)

2 0.9402 (0.8838) 0.9942 (0.9751) 0.9999 (0.9992) 0.5874 (0.4555) 0.7219 (0.5378) 0.9138 (0.7240)
0.5 0.9279 (0.8772) 0.9856 (0.9609) 0.9995 (0.9988) 0.6379 (0.5284) 0.7077 (0.5673) 0.8697 (0.6859)

0 1 0.9784 (0.9403) 0.9979 (0.9928) 1.0000 (0.9998) 0.7284 (0.5768) 0.8357 (0.6494) 0.9590 (0.8109)
2 0.9902 (0.9798) 0.9999 (0.9979) 1.0000 (1.0000) 0.7953 (0.6480) 0.9071 (0.7476) 0.9877 (0.9011)

p
=

10

0.5 0.9328 (0.8755) 0.9852 (0.9549) 0.9996 (0.9977) 0.6318 (0.5190) 0.6924 (0.5357) 0.8549 (0.6618)
0.25 1 0.9780 (0.9463) 0.9977 (0.9932) 1.0000 (1.0000) 0.7121 (0.5770) 0.8171 (0.6474) 0.9485 (0.7978)

2 0.9903 (0.9730) 0.9999 (0.9981) 1.0000 (1.0000) 0.7855 (0.6399) 0.8948 (0.7114) 0.9852 (0.8835)

Table 13: Power when monitoring scalar BEKK time series and all of the variances increase
(tν

(
0, ν−2

ν Σp
)

distributed innovations with ν=8 degrees of freedom).

k∗ = 0.05 k∗ = 0.5
γ B m = 500 1000 2000 m = 500 1000 2000

0.5 0.9582 (0.9063) 0.9986 (0.9950) 1.0000 (1.0000) 0.5642 (0.3937) 0.8276 (0.6026) 0.9776 (0.8623)
0 1 0.9938 (0.9794) 1.0000 (0.9995) 1.0000 (1.0000) 0.7120 (0.5065) 0.9364 (0.7684) 0.9990 (0.9646)

2 0.9992 (0.9954) 1.0000 (1.0000) 1.0000 (1.0000) 0.8358 (0.6141) 0.9808 (0.8814) 1.0000 (0.9938)

p
=

2

0.5 0.9552 (0.8979) 0.9986 (0.9926) 1.0000 (1.0000) 0.5410 (0.3747) 0.8000 (0.5614) 0.9728 (0.8442)
0.25 1 0.9918 (0.9721) 1.0000 (0.9996) 1.0000 (1.0000) 0.6862 (0.4712) 0.9248 (0.7320) 0.9990 (0.9583)

2 0.9988 (0.9948) 1.0000 (1.0000) 1.0000 (1.0000) 0.8102 (0.5855) 0.9752 (0.8482) 1.0000 (0.9906)
0.5 0.9120 (0.8341) 0.9954 (0.9784) 1.0000 (1.0000) 0.4640 (0.3264) 0.6984 (0.4779) 0.9378 (0.7516)

0 1 0.9804 (0.9454) 0.9996 (0.9985) 1.0000 (1.0000) 0.6216 (0.4172) 0.8746 (0.6438) 0.9914 (0.9058)
2 0.9962 (0.9862) 1.0000 (1.0000) 1.0000 (1.0000) 0.7292 (0.5058) 0.9454 (0.7637) 0.9990 (0.9696)

p
=

5

0.5 0.9028 (0.8256) 0.9950 (0.9760) 1.0000 (0.9999) 0.4368 (0.3021) 0.6646 (0.4463) 0.9226 (0.7299)
0.25 1 0.9782 (0.9364) 0.9996 (0.9985) 1.0000 (1.0000) 0.5964 (0.3930) 0.8588 (0.6079) 0.9894 (0.8873)

2 0.9960 (0.9811) 1.0000 (1.0000) 1.0000 (1.0000) 0.7004 (0.4869) 0.9330 (0.7326) 0.9986 (0.9614)
0.5 0.8280 (0.7390) 0.9804 (0.9396) 1.0000 (0.9985) 0.3942 (0.2859) 0.5632 (0.3695) 0.8462 (0.6011)

0 1 0.9480 (0.8844) 0.9990 (0.9919) 1.0000 (1.0000) 0.5062 (0.3666) 0.7442 (0.5067) 0.9612 (0.7968)
2 0.9878 (0.9499) 1.0000 (0.9995) 1.0000 (1.0000) 0.6328 (0.4210) 0.8622 (0.6228) 0.9936 (0.8966)

p
=

10

0.5 0.8266 (0.7231) 0.9772 (0.9302) 0.9998 (0.9980) 0.3790 (0.2779) 0.5384 (0.3554) 0.8232 (0.5619)
0.25 1 0.9464 (0.8729) 0.9988 (0.9882) 1.0000 (1.0000) 0.4914 (0.3485) 0.7208 (0.4888) 0.9528 (0.7668)

2 0.9860 (0.9483) 1.0000 (0.9982) 1.0000 (1.0000) 0.6102 (0.3947) 0.8396 (0.5893) 0.9902 (0.8758)

Table 14: Power when monitoring scalar BEKK time series and just one of the variances increases
(N

(
0,Σp

)
distributed innovations).
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k∗ = 0.05 k∗ = 0.5
γ B m = 500 1000 2000 m = 500 1000 2000

0.5 0.8604 (0.7823) 0.9778 (0.9444) 0.9998 (0.9982) 0.4666 (0.3340) 0.6556 (0.4609) 0.8922 (0.7014)
0 1 0.9487 (0.9004) 0.9965 (0.9895) 0.9999 (0.9997) 0.5838 (0.4263) 0.8107 (0.6036) 0.9716 (0.8481)

2 0.9842 (0.9540) 0.9988 (0.9972) 1.0000 (1.0000) 0.6880 (0.4919) 0.8969 (0.7163) 0.9913 (0.9296)

p
=

2

0.5 0.8574 (0.7725) 0.9756 (0.9365) 0.9997 (0.9977) 0.4532 (0.3186) 0.6304 (0.4463) 0.8750 (0.6724)
0.25 1 0.9458 (0.8842) 0.9960 (0.9870) 0.9999 (0.9996) 0.5645 (0.4001) 0.7889 (0.5738) 0.9643 (0.8206)

2 0.9818 (0.9450) 0.9988 (0.9970) 1.0000 (0.9998) 0.6656 (0.4827) 0.8810 (0.6907) 0.9892 (0.9206)
0.5 0.8043 (0.7142) 0.9612 (0.9085) 0.9989 (0.9929) 0.4229 (0.3175) 0.5673 (0.3925) 0.8130 (0.5881)

0 1 0.9135 (0.8439) 0.9933 (0.9759) 0.9996 (0.9997) 0.5342 (0.3904) 0.7229 (0.5086) 0.9314 (0.7587)
2 0.9673 (0.9233) 0.9989 (0.9946) 1.0000 (1.0000) 0.6248 (0.4487) 0.8317 (0.6239) 0.9774 (0.8684)

p
=

5

0.5 0.8046 (0.7168) 0.9599 (0.8983) 0.9988 (0.9940) 0.4274 (0.3304) 0.5554 (0.3863) 0.7947 (0.5621)
0.25 1 0.9109 (0.8507) 0.9921 (0.9773) 0.9996 (0.9994) 0.5316 (0.4003) 0.7030 (0.5138) 0.9199 (0.7378)

2 0.9656 (0.9207) 0.9986 (0.9925) 1.0000 (0.9999) 0.6135 (0.4460) 0.8176 (0.5954) 0.9744 (0.8456)
0.5 0.7439 (0.6705) 0.9084 (0.8354) 0.9925 (0.9750) 0.4308 (0.3587) 0.4926 (0.3673) 0.7025 (0.4872)

0 1 0.8722 (0.7969) 0.9784 (0.9419) 0.9996 (0.9984) 0.5129 (0.3983) 0.6390 (0.4642) 0.8607 (0.6375)
2 0.9304 (0.8736) 0.9932 (0.9747) 1.0000 (0.9993) 0.5776 (0.4425) 0.7384 (0.5159) 0.9330 (0.7415)

p
=

10

0.5 0.7505 (0.6736) 0.9033 (0.8235) 0.9915 (0.9700) 0.4482 (0.3761) 0.4862 (0.3648) 0.6792 (0.4611)
0.25 1 0.8728 (0.7939) 0.9749 (0.9367) 0.9996 (0.9960) 0.5220 (0.4322) 0.6207 (0.4526) 0.8381 (0.6152)

2 0.9326 (0.8691) 0.9924 (0.9741) 1.0000 (0.9993) 0.5859 (0.4655) 0.7270 (0.5185) 0.9238 (0.7241)

Table 15: Power when monitoring scalar BEKK time series and just one of the variances increases
(tν

(
0, ν−2

ν Σp
)

distributed innovations with ν=8 degrees of freedom).

normal distribution t distribution
k∗ = 0.05 k∗ = 0.5 k∗ = 0.05 k∗ = 0.5

γ B m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000
0.5 0.7570 0.9416 0.9987 0.3344 0.4931 0.7526 0.5714 0.7736 0.9479 0.2615 0.3506 0.5175

0 1 0.8772 0.9886 1.0000 0.4108 0.6381 0.8932 0.7161 0.8947 0.9892 0.3477 0.4684 0.6811
2 0.9477 0.9978 1.0000 0.5164 0.7538 0.9583 0.8052 0.9508 0.9960 0.4051 0.5672 0.7915

p
=

2

0.5 0.7495 0.9351 0.9984 0.3119 0.4591 0.7204 0.5846 0.7773 0.9474 0.2691 0.3455 0.5025
0.25 1 0.8716 0.9870 1.0000 0.3797 0.5985 0.8686 0.7056 0.8849 0.9875 0.3338 0.4399 0.6480

2 0.9404 0.9972 1.0000 0.4822 0.7214 0.9491 0.7843 0.9414 0.9952 0.3752 0.5244 0.7544
0.5 0.9400 0.9966 1.0000 0.5042 0.7155 0.9250 0.7913 0.9293 0.9957 0.4323 0.5455 0.7252

0 1 0.9850 0.9997 1.0000 0.6220 0.8525 0.9851 0.8905 0.9839 0.9992 0.5141 0.6556 0.8657
2 0.9962 1.0000 1.0000 0.6988 0.9099 0.9960 0.9375 0.9932 1.0000 0.5767 0.7372 0.9157

p
=

5

0.5 0.9385 0.9962 1.0000 0.4826 0.6860 0.9078 0.8023 0.9288 0.9952 0.4331 0.5283 0.7040
0.25 1 0.9834 0.9995 1.0000 0.5850 0.8201 0.9799 0.8859 0.9820 0.9989 0.4984 0.6240 0.8391

2 0.9955 1.0000 1.0000 0.6542 0.8836 0.9942 0.9334 0.9925 0.9999 0.5514 0.7052 0.8952
0.5 0.9953 1.0000 1.0000 0.7139 0.8957 0.9934 0.9227 0.9872 0.9999 0.6011 0.7131 0.8720

0 1 0.9996 1.0000 1.0000 0.7678 0.9476 0.9990 0.9599 0.9977 1.0000 0.6367 0.7810 0.9346
2 1.0000 1.0000 1.0000 0.8812 0.9903 0.9999 0.9895 0.9999 1.0000 0.7353 0.8737 0.9812

p
=

10

0.5 0.9947 1.0000 1.0000 0.6850 0.8697 0.9896 0.9223 0.9868 0.9996 0.5964 0.6914 0.8481
0.25 1 0.9993 1.0000 1.0000 0.7346 0.9293 0.9988 0.9620 0.9973 1.0000 0.6287 0.7620 0.9199

2 1.0000 1.0000 1.0000 0.8425 0.9802 0.9999 0.9888 0.9997 1.0000 0.7054 0.8446 0.9732

Table 16: Power when using univariate monitoring procedures: scalar BEKK time series and all of the
variances increase.
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normal distribution t distribution
k∗ = 0.05 k∗ = 0.5 k∗ = 0.05 k∗ = 0.5

γ B m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000
0.5 0.9095 0.9958 1.0000 0.4507 0.7100 0.9453 0.7367 0.9279 0.9962 0.3457 0.5112 0.7653

0 1 0.9785 1.0000 1.0000 0.6033 0.8653 0.9945 0.8710 0.9813 0.9996 0.4473 0.6616 0.8949
2 0.9957 1.0000 1.0000 0.7160 0.9497 0.9999 0.9285 0.9932 0.9995 0.5292 0.7599 0.9532

p
=

2

0.5 0.8975 0.9944 1.0000 0.4309 0.6846 0.9381 0.7297 0.9196 0.9947 0.3366 0.4876 0.7357
0.25 1 0.9750 0.9999 1.0000 0.5588 0.8394 0.9902 0.8592 0.9770 0.9994 0.4299 0.6328 0.8790

2 0.9955 1.0000 1.0000 0.6964 0.9356 0.9993 0.9224 0.9919 0.9995 0.5083 0.7353 0.9455
0.5 0.8684 0.9908 1.0000 0.3904 0.6333 0.9047 0.6736 0.8966 0.9909 0.3282 0.4417 0.6878

0 1 0.9695 0.9999 1.0000 0.5594 0.8340 0.9863 0.8340 0.9715 0.9978 0.4315 0.6155 0.8659
2 0.9910 1.0000 1.0000 0.6351 0.9132 0.9980 0.8934 0.9879 0.9987 0.4846 0.6865 0.9221

p
=

5

0.5 0.8554 0.9867 1.0000 0.3653 0.5873 0.8846 0.6773 0.8923 0.9898 0.3387 0.4318 0.6681
0.25 1 0.9585 0.9994 1.0000 0.5095 0.7948 0.9796 0.8219 0.9664 0.9973 0.4203 0.5829 0.8399

2 0.9907 0.9999 1.0000 0.6262 0.9021 0.9980 0.8898 0.9872 0.9986 0.4856 0.6712 0.9126
0.5 0.8388 0.9879 1.0000 0.3676 0.5919 0.8820 0.6612 0.8711 0.9903 0.3401 0.4302 0.6469

0 1 0.9599 0.9993 1.0000 0.5167 0.7915 0.9787 0.8167 0.9611 0.9984 0.4340 0.5860 0.8226
2 0.9854 1.0000 1.0000 0.5763 0.8748 0.9953 0.8709 0.9800 0.9994 0.4640 0.6514 0.8976

p
=

10

0.5 0.8393 0.9857 1.0000 0.3716 0.5752 0.8677 0.6824 0.8723 0.9901 0.3845 0.4463 0.6354
0.25 1 0.9577 0.9989 1.0000 0.5168 0.7788 0.9756 0.8277 0.9602 0.9983 0.4735 0.5954 0.8143

2 0.9838 1.0000 1.0000 0.5572 0.8563 0.9942 0.8696 0.9783 0.9993 0.4795 0.6418 0.8846

Table 17: Power when using univariate monitoring procedures: scalar BEKK time series and only one
of the variances increases.

normal distribution t distribution
k∗ = 0.05 k∗ = 0.5 k∗ = 0.05 k∗ = 0.5

γ B m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000 m = 500 1000 2000
0.5 0.7807 0.9559 0.9990 0.3618 0.5348 0.7816 0.6241 0.8071 0.9614 0.3136 0.3901 0.5716

0 1 0.8966 0.9933 1.0000 0.4497 0.6823 0.9162 0.7451 0.9112 0.9931 0.3738 0.5050 0.7194
2 0.9556 0.9994 1.0000 0.5335 0.7911 0.9715 0.8385 0.9619 0.9980 0.4442 0.6063 0.8187

p
=

2

0.5 0.7766 0.9521 0.9989 0.3408 0.5036 0.7546 0.6279 0.8001 0.9563 0.3127 0.3699 0.5420
0.25 1 0.8895 0.9910 1.0000 0.4205 0.6440 0.8970 0.7410 0.9043 0.9911 0.3607 0.4759 0.6876

2 0.9498 0.9988 1.0000 0.4972 0.7612 0.9651 0.8313 0.9570 0.9975 0.4228 0.5738 0.7890
0.5 0.9589 0.9994 1.0000 0.5760 0.7803 0.9645 0.8156 0.9416 0.9962 0.4771 0.5696 0.7556

0 1 0.9914 0.9999 1.0000 0.7058 0.9143 0.9969 0.9115 0.9866 0.9997 0.5624 0.6920 0.8862
2 0.9989 1.0000 1.0000 0.8065 0.9653 0.9997 0.9570 0.9969 1.0000 0.6372 0.7955 0.9505

p
=

5

0.5 0.9568 0.9994 1.0000 0.5514 0.7541 0.9564 0.8212 0.9397 0.9957 0.4742 0.5493 0.7296
0.25 1 0.9913 0.9999 1.0000 0.6816 0.8998 0.9964 0.9144 0.9861 0.9997 0.5556 0.6740 0.8684

2 0.9986 1.0000 1.0000 0.7865 0.9581 0.9997 0.9568 0.9968 1.0000 0.6228 0.7747 0.9403
0.5 0.9998 1.0000 1.0000 0.8720 0.9845 1.0000 0.9453 0.9906 0.9997 0.6657 0.7525 0.9024

0 1 1.0000 1.0000 1.0000 0.9604 0.9994 1.0000 0.9858 0.9998 1.0000 0.7544 0.8717 0.9721
2 1.0000 1.0000 1.0000 0.9888 1.0000 1.0000 0.9955 0.9998 1.0000 0.8266 0.9287 0.9936

p
=

10

0.5 0.9997 1.0000 1.0000 0.8578 0.9814 1.0000 0.9487 0.9902 0.9997 0.6690 0.7395 0.8920
0.25 1 1.0000 1.0000 1.0000 0.9535 0.9991 1.0000 0.9860 0.9998 1.0000 0.7472 0.8574 0.9665

2 1.0000 1.0000 1.0000 0.9854 0.9999 1.0000 0.9958 0.9998 1.0000 0.8191 0.9190 0.9920

Table 18: Power when the variance of the innovations increases.
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