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In many fields of technological developments, understanding and controlling
material fatigue is an important point of interest. This article is concerned with
statistical modeling of the damage process of prestressed concrete under low cyclic
load. A crack width process is observed which exhibits jumps with increasing
frequency. Firstly, these jumps are modeled using a Poisson process where two
intensity functions are presented and compared. Secondly, based on the modeled
jump process, a stochastic process for the crack width is considered through a
stochastic differential equation (SDE). It turns out that this SDE has an explicit
solution. For both modeling steps, a Bayesian estimation and prediction procedure
is presented.

Keywords: Nonhomogeneous Poisson process (NHPP), crack growth, Bayesian estimation,
predictive distribution.

1. Introduction

In constructional engineering, material fatigue is a relevant topic of research because it is
important to predict the lifetime of, for example, bridges. Experiments in this field, espe-
cially under low loadings, are very rare because they are very expensive and take very long,
at times over several months. Maurer and Heeke (2010) carried out five experiments where
prestressed concrete beams with initial cracks have been put under cyclic load. Recently, two
new experiments were conducted, see Heeke et al. (2015). All seven data series are considered
here. Each prestressed concrete beam contains 35 tension wires which usually break at differ-
ent time points. Therefore, the resulting crack widths which can be seen in Figure 1 for two
of the experiments, exhibit jumps with increasing frequency that influence the crack growth
process substantially. Structure-borne noise measurements during the experiments provide
information concerning the break times of the tension wires which match the observed jumps
in the crack width data. This finding has important implications for the estimation procedure.

*TU Dortmund University, Faculty of Statistics, Vogelpothsweg 87, D-44221 Dortmund, Germany,
hermann@statistik.tu-dortmund.de
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Figure 1: Crack width data resulting from the first two experiments of Maurer and Heeke
(2010)

A model often used for crack growth in the engineering literature is the deterministic process
defined by the Paris-Erdogan equation

da m

Tt = C(AK) (1)
where a denotes the crack length, N the number of cycles corresponding to the crack length
a, while C' and m are material constants. AK denotes the stress intensity factor range that
depends on the square root of a. That leads to an autoregressive process whose differences in-
crease with the growth of the process itself. For further information see, for example, Sobczyk
and Spencer (1992). Because any process resulting from this equation will be deterministic
and, therefore, will not describe the uncertainties of the growth process, this approach will
be extended in the remainder.

A diffusion model would be one extension of the ordinary differential equation in (1). A
Bayesian approach for growth diffusions is investigated in Hermann et al. (2015) within a
hierarchical model and applied to a data set of experiments in aluminum alloy which is a
homogeneous material in contrast to concrete. Therefore, we need some additional approach
for modeling the irregular jumps in the concrete data. In Heeke et al. (2015), the underlying
jump process is modeled by a nonhomogeneous Poisson process (NHPP), which is embedded in
a nonlinear regression model. Of course, other jump processes are possible, but the NHPP is a
good starting point because we observe very few jumps and cannot, therefore, estimate many
parameters. Since we observe an increasing frequency of the jumps, a homogeneous process
would not be able to predict reliably. Therefore, a NHPP is reasonable. A two-parameter
approach for the intensity was used in Heeke et al. (2015) and provided good results. Instead
of the nonlinear regression model for the concrete crack width, in the following we introduce
a more intuitive process model; it is defined by a stochastic differential equation (SDE) that
extends the Paris-Erdogan equation (1) and includes the NHPP which fits the jumps in
the data. In the Bayesian estimation scheme, the fact of known event times of the jump
process will be important. Otherwise the approach would yield a hidden Markov model and
a challenge would be to estimate, i.e. filter, the jump process. Based on samples from the
posterior distribution, a predictive distribution for the NHPP as well as for the jump diffusion
process will be presented. This distribution provides point prediction as well as prediction
intervals.



NHPPes are well-known in the literature. A good overview of the Bayesian analysis can be
found in Rios Insua et al. (2012). Meeker and Escobar (1998), for example, present maximum
likelihood estimators for several intensity functions and give a historical overview of the liter-
ature employing NHPPes in reliabilty theory, see pp. 413-420. Sobczyk and Spencer (1992)
introduce cumulative jump models based on homogeneous and nonhomogeneous Poisson pro-
cesses to describe crack growth as a discontinuous random process. A Bayesian approach for
NHPPes can be found in Kuo and Yang (1996) with application in software reliability, in
Yuan et al. (2009) for modeling pitting corrosion in steam generator tubes and in Pievatolo
and Ruggeri (2004) for reliability of complex repairable systems.

One possibility to include the counting process into a whole framework for the crack width
is to use the ideas of Chiquet et al. (2009) where a piecewise deterministic Markov process
is investigated. Since they use a stationary Markov process with finite state space, their
approach is not directly applicable to our case. The approach presented in the following is
based on the ideas by Bodo et al. (1987) and Shimizu and Yoshida (2006), respectively, who
both take the SDE of a diffusion process and add a term for the jumps which yields a jump
diffusion model. Both assume a homogeneous Poisson process and Shimizu and Yoshida
(2006) assume an ergodic process which is not suitable for our data, but the idea of the
process will be borrowed. Rifo and Torres (2009) present a Bayesian significance test for
jump detection in a diffusion process. However, in our data set, the jumps are observed
because of sound measurements determining the tension wires’ breaking. An overview of so-
called jump diffusion processes is given in @ksendal and Sulem (2005). All in all, the employed
jump diffusion process fits in the framework of Lévy jump processes but with nonstationary
increments because of the increasing frequency of the Poisson process.

In this paper, a novel two-stage modeling procedure is presented. Firstly, the posterior
distribution of the NHPP’s intensity rate parameters is approximated with a MCMC sampler
and integrated in the predictive distribution of the NHPP, which itself is approximated by
drawing from a sampling procedure. Secondly, the posterior distribution of the parameters
in the jump diffusion process, modeling the crack width, is approximated by samples drawn
by a Gibbs sampler. These parameter samples and the counting process samples, drawn from
the predictive distribution obtained in the first modeling step, are employed to approximate
the predictive distribution for the jump diffusion process, i.e. the crack width curve.

The remainder of this work is structured as follows: In the next section, the two-stage
model is presented and the Bayesian estimation and prediction procedure is employed, in
Subsection 2.1 for the NHPP and in Subsection 2.2 for the model describing the crack width.
Section 3 displays the results for the crack width data. Afterwards, Section 4 sums up and
gives a short outlook.

2. Modeling, estimation and prediction

2.1. Poisson process

The first important modeling step is to describe the wire failure process, which by construction
is a counting process. When resorting to the most widely used counting process, i.e. the
Poisson process, it is clear that a nonhomogeneous specification has to be employed: When a
tension wire fails, the load distributes on fewer wires and, therefore, the probability of another
wire failure grows. Denoting the number of broken wires at time ¢ with Ny we assume the
process to start at 0, i.e. Ng = 0 almost surely. The differences are independent, i.e. for



arbitrary 0 < ¢; < ... < t,, the increments Ny, — Ny, ..., Ny, — Ny, , are independent, and
Poisson distributed, i.e. for all 0 < s < t: Ny — Ny is Poisson distributed with parameter
fst A¢(u)du. This leads to a NHPP {N;, t € [0,00)} with intensity rate \¢(t). We will
compare two different types of E[N;] = fg Ae(u) du =: A¢(t), one for polynomial and one for
exponential growth:

Aelt) = (;) €= (@.8) € [1.oo) x (0,00) @)

A¢(t) = exp(at + ¢) — exp(c), &= (a,c) € (0,00) xR, (3)

where function (2) has the nice property that the derivative of A¢(t) is the hazard rate of the
Weibull distribution and the homogeneous case of the process is nested by setting « = 1. This
specification is also known as power law in the literature, see for example Yu et al. (2007). The
second function (3) represents an exponential intensity rate that takes up the idea of the Paris-
Erdogan equation (1) with the special case of m = 2. This equation would lead to a function
f(t) = bexp(at) which is just another parameterization for the derivative of the function in
(3). Of course, one could try an approach based on the general Paris-Erdogan equation with
a third parameter m. However, some experiments we use for prediction consist of four or five
observed event times which makes it difficult to estimate more than two parameters.

Based on the event times 0 < 77 < ... < T, < T with T; = min{s: N; =i} and T the last
observation time point, the likelihood is given by

m

P(T1, ., Tl €) = exp(—Ae(T)) [ [ Ae(T3),
=1

see, e.g., Rios Insua et al. (2012) p. 119. There is no obvious conjugate prior distribution
for £ so we will use the Metropolis-Hastings (MH) algorithm, see Robert and Casella (2004)
p- 270. The employed proposal density is described in the Appendix, Section B.1. In our
application, we use a noninformative approach without any prior information.

Based on the MH-resulting samples £, ...,&5 ~ p(§| T1,...,Tn), the following predictive
distribution for the next event time can be approximated by

p(TW*L+1| Tla"'va) = /p(TW*L+1| Tﬂ’hg) p(£| Tla"'aTm) dg

= [l exp (~{Ae(Ti) = AelTu)}) - pl€] T o) d

K
1 . )
~ 52 26 () exp (~{g (Tie) = Mg (T)})
k=1

For predicting a trajectory, we need more than one next event time. Therefore, we approxi-



mate the predictive distribution for ¢ > 2

+z +z 1 ) (§| m-+i— 17T1a"'7Tm)d£ (4)

)= [n,
< [T €T T de
1y

( m+z| m-i— 1>T17---a

( +7,‘ m-+i— 17§k)

~
~

5
> A T exp (~1Ag (Th) — A (T}

k 1

which leads to trajectory samples T}, < T;L(Jlr)l <1 +)2 < ... until T ;L(QZ arrives some fixed t*,
[ =1,...,L. The number of event times differs for each trajectory, because the number of
jumps Ng is random and varies for each path. The practical implementation of this sampling
procedure is explained in the appendix, Section B.2.

The trajectory samples of the Poisson process can be calculated as follows

={j:T <t<T }l—l L. (5)

In the following, point predlctlons w1ll be given by the pointwise median of these sampled
processes and interval predictions by the pointwise §— and (1 — §)- quantiles.

2.2. Jump diffusion process

Inference for the wire failure process is a key input for the next step, where we intend to
investigate the crack width process. This process is modeled by a SDE of the form

dXt = ¢Xt dt+’th th +(9Xt dNt, (6)

with some constant initial value xg and {W;, t € [0,00)} denoting a Wiener process which
has to be independent of the NHPP {N;, ¢t € [0,00)}. Assuming ¢,7,0 > 0 and a positive
starting value leads to a growth process almost surely. This is a stochastic extension of the
simplified version of the Paris-Erdogan equation dX; = ¢X;dt as mentioned above in (1).
The SDE in (6) has a unique strong solution given by

2
Xy =z -exp (gf)t - %t + Wi +log(1 + H)Nt> : (7)

This can be seen by direct calculation using It6’s formula for noncontinuous semimartingales,
see Protter (2005) p. 79, and is, for example, employed in @Pksendal and Sulem (2005), p. 7
in example 1.15.

We get the Bayesian model

2
log(Xti)‘Ntia ¢7727 9 ~ N(lOg(IIZ’O) + (¢ - %)t’t + lOg(l + Q)Ntlaf};tl) (8)

Ny, ~ Pois(A¢(ts)), i=1,...,n
¢ N( prlor prlor)
’}/ ~ IG(aprlor bprlor)
5:: log(l + 9) -~ N(mprlor prlor)



For the whole data vector n = (¢, 9~, 72), this leads to a multivariate normal likelihood for the
logarithms

(log(th)’ "'710g(th))| 77=Ntu "'7Ntn ~ N(Hn(ﬁ)’ 'VQTH)’

) .
where pu,(n) = log(wo)-ln—l—((b—%)-(h, v tn)+0-(Niy s ooy N,y ), T = (min(ts, t5) )i j=1,....n and
1, = (1,..,1) € R". In the following, denote with t,) the vector (t1,...,t,), with log(X),)
the vector (log(Xy, ), ...,1og(X4,)), and with N, the vector (N, ..., Ny, ).

Estimation of ¢ and 0 is simplified by the fact that the normal prior is conjugate to the
multivariate normal likelihood. The full conditional posterior for ¢ is given by

¢’ log(X)(n)v (n)» 7'7 NN( pOSt gOSt)

-1
1 1
post
U¢ - (7275( )T t(n) + Ugrior)

101 T

post_gpost [ Mo L () (X 1 1ot Lt N

m¢ - v¢> Uprior + ,.YQ (n)+n 0g )(n) - Og(l'()) n + 9 (n) — (n)
¢

and for 6 by

5| IOg( )n)? (n)s ¢7’7 NN( pOSt7 gOSt)

-1
1
post -1
Vg (7 N(n) N(n) + vgrmr)

. . mlgrlor 1 . 72 T
mg Uop . prior + ?N(n)Tn_ <log(X)(n) —log(xo)1y — (¢ — 2)t(n)> .
0

For the estimation of 2 with the prior density

p(7?) = %( 2)=aP 1 oy (—bp;;r) we calculate the conditional posterior density

()~
1 1 — rior
exp (=25 { 3008000~ 1o (T Bor(X )y = ()™ + 57 1),

Since f1,,(n) also depends on 42, its posterior is not an inverse Gamma distribution. But we
can conduct a Metropolis Hastings step within the Gibbs sampler and use the inverse Gamma,
as proposal density. With u é 5(72) := pn(n), define

q(72’§2, (b’ 5) — (72)7(%+aprior)71

1 1 ~ _ ~ rior
oxp (25 { 008X )0y = 1, 5P lor(X )y = 1, 5PN 4977} )

which is proportional to an inverse Gamma density of ¥2 dependent on 52. The Metropolis
Hastings step in the kth iteration begins with drawing from the proposal

2 2.2 Y
Yeand ~ AV V15 Ph—150%—1),



which is accepted with probability

min{l p(’}/gand| log(X)(n)aN(n)a¢Z_1792_1)Q(7£i1"733nd7¢z_1)9;:_1)}
p(’)/;%*,l\ log(X)(n)vN(n)a¢7;7179Z;71)Q(702and’7]%*717¢27179]:71)

. 1 1 1
=minq L exp| 5| 55—+ 35—
2 Ve-1 “Veand

* — 1 *
(08 =t T O + (0 — O T ) ) -

The full calculation can be seen in Appendix A. The Gibbs sampler unites the three estimation
steps as follows

¢2Np(¢| log( )n)7 ek 177](: 1)
912 Np(e‘ log( ) ¢k77k—1)
W~ p(v?] log(X )(n), (n),m,@?;), k=1,.., K.

In a last step, we calculate the predictive density p(X;«| X(n),N(n)) for t* > t,. From
the solution (7) it becomes clear that the logarithm of X;« conditional upon Ny is normally

distributed with mean log(z¢) + (¢ — 7;)t* + 0Ny and variance 42t*. The solution (7) is a
first order Markov process, which implies that

log(Xt*)‘ log(th)7 Ntn’ Ni= 7
2 ~
~ A7 ((0806,,) + (9= ) = 1) + B0~ Ni), 26 —1))
This leads to the predictive distribution

p(log(Xe+)| Xy, Neny) 9)

p(log(X¢)| log(Xt, ), Nt Nes,m) - p(n] X(nys Neny) - P(Nex| Niwy) d(n, Ni=)

I
- T~

K
~ Z (log(X;)
k

log(Xt ) Ntn: Nt(*k)a 77]{)

where 7} = (qbz,g,’;,'yz*), k = 1,..., K, are the posterior samples from the Gibbs sampler

and Nt(*k ) the samples from the predictive distribution of the counting process as seen in
(5) with L = K. Sampling from (9) can be realised by a rejection sampling method, see,
for example, Robert and Casella (2004), p. 47. Here, we only sample pointwise from a
univariate distribution. An alternative would be sampling trajectories of the process. Non-
Bayesian trajectory simulation methods for jump diffusion processes can be found in Casella
and Roberts (2011) or Giesecke and Smelov (2013). The corresponding Bayesian formulation
for trajectory prediction will be future work.

3. Application to crack growth in prestressed concrete

In the following we will apply the proposed method to the data set mentioned in the introduc-
tion. Two experiments can be seen in Figure 1 whereas a detailed explanation of the whole
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Figure 2: Boxplots of the posterior distributions for o and 8 in the case of A¢(t) = (%)

(top) and for a and c in the case of A¢(t) = exp(at + ¢) — exp(c) (bottom) of the
NHPP

data set can be found in Heeke et al. (2015). For all estimations, we divide the number of
load cycles by one million to avoid numerical problems. Since we assume a time-continuous
process, we could also take the observed time in seconds, but in the engineering literature the
number of load cycles is usually chosen as the independent variable. For the estimation of the
intensity rate parameter £, we take the number of load cycles in million up to the wire failures
as event times which are observed in the seven experiments. To get good starting values for
the MH algorithm, we take a grid (o € [1,5], 8 € [0.1,8] and a € [0, 3], ¢ € [-5, 1], each with
distance of 0.1) where we take the point with the maximum likelihood to start the chain. We
draw 201000 iterations. With a burnin of 1000 and a thinning rate of 100, K = 2000 samples
remain to approximate the posterior distribution. We get a summary for the seven data series
in the boxplots in Figure 2.

We observe similar estimations for the seven data series for the parameters o and ¢ whereas
the estimations for 8 and a differ between the data series. This can be explained by the very
different lifetimes of the experiments. The second experiment takes just over two hundred
thousand load cycles, whereas the fifth and seventh take over fifteen million.

Drawing iteratively from the predictive distribution, we take the pointwise median from
the samples for the counting process in (5) for a point prediction and the 0.025- and 0.975-
quantile for a 95%-prediction interval, respectively. The results for the first two series are
presented in Figure 3, the prediction with the exponential intensity in black lines and the
corresponding result with the power law intensity in red lines. One can hardly notice any
difference. The same picture for the other five data series is given in the Appendix, Section
D, where also all following figures can be found for these experiments.

The next step is to estimate the parameters of the jump diffusion process, i.e., to conduct
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the Gibbs sampler. The resulting posterior distributions for ¢, 6 and ~? are shown in Figure
4. Above all, a big difference can be seen between the second and sixth experiment and all
the others. Especially the variance parameter v2 is estimated very high in comparison to the
other series.

In Figure 5 we see the resulting predictions for the crack width process, based on the
predictions for the Poisson process with the power law intensity rate (2) in red and with
the exponential intensity (3) in black, again for the first two series. There were very little
differences for the counting process, but there are practically no differences for the crack width
process. Therefore, both intensity rates can be recommended for these data series.
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Figure 7: First (left) and second (right) data series with point and interval prediction based
on a first part of the series for the counting process

As already mentioned, an important issue is the prediction of the further development at
an early stage of the respective process. To investigate the model properties in this case, we
use only the first part of the observed data (80% for the first five and the seventh, 90% for the
sixth series) for each series. In Figure 6, we compare the posterior distributions resulting from
the estimation based on the whole series (“all”) and the truncated series (“first”). Except
the second series, « is estimated a little smaller for the truncated series in all cases. We see
the effect in the predictions given in Figure 7 for the first two experiments. In the first series,
the point prediction does not follow the true curve but predicts a lower development whereas
the prediction in the second series describes the true development quite well.

Figure 6 shows the comparison of the posteriors for a and ¢ in the case of the exponential
intensity (3). Except for the second experiment, the posteriors do not differ much. This
is also supported by Figure 7, where the prediction with the exponential intensity for the
first series follows the true curve exactly. The second curve gets overpredicted substantially
because of the overestimated a.
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Figure 9: First (left) and second (right) data series with point and interval prediction based
on the first part of the series for the crack width process

The comparison of the estimations for the parameters ¢, 0 and ~? can be seen in Figure
8. In all cases, the estimation of the variance parameter 72 is a little smaller based on
the truncated series. Additionally, in all cases except for the second experiment, the other
parameters are estimated to lower values, as well. The result of the prediction are presented
in Figure 9. In summary, we can say that the posteriors conditional on the first part of the
series lead to a good prediction for the further development. While the counting process for
the second experiment was overpredicted, the prediction for the crack width works well with
the exponential intensity rate.

Therefore, we can say without restriction that the exponential intensity works well for
the prediction of the crack width. For the prediction of the counting process, this is the
case for all series except for the second. As the model will be applied to bridges and other
constructions mad of prestressed concrete, it is better to predict a failure too early than too
late. This leads to the recommendation to use the exponential intensity for the prediction of

11



the further development of the process. For a prediction of a new experiment under the same
conditions, both intensity rates are equally recommendable. This result is also supported by
the simulation study, which can be found in the Appendix, Section C. Beside testing the
estimation and prediction scheme under known parameters, cross validation is made. It turns
out that prediction based on the posterior conditional on the completely observed process
works well with both intensity functions. For prediction based on the truncated series a
difference is visible. The results in the case of predicting with the exponential intensity while
the power law is the true underlying one are better than vise versa.

4. Conclusion

In this paper, a two-stage modeling procedure for the fatigue process in prestressed concrete
is presented. Firstly, the predictive distribution for the failure process of the tension wires
is calculated. For modeling this failure process, a NHPP is assumed and two intensity rates
are compared, one with polynomial and one with exponential growth. It turns out that the
results are comparable for both intensity functions if the aim is fitting the data or predicting a
new experiment under the same experimental conditions. If the aim is predicting the further
development at an early stage of the process, however, the exponential function is highly
recommended. This function actually represents the Paris-Erdogan law that is well-known in
the engineering literature to describe fatigue behavior.

Secondly, the predictive distribution of the NHPP, especially the uncertainty of the process,
is used in the calculation of the predictive distribution of the concrete crack width process that
is modeled by a jump diffusion. It turns out that for this process, the exponential intensity
rate is recommendable without restrictions as well for this data set.

How to use prior knowledge of existing experiments when analyzing a new experiment under
different experimental conditions will be future work. One idea is to include experimental
variables like the stress range into the model. Furthermore, simultaneous prediction bands
for the jump diffusion process would be preferable to pointwise intervals. The solution of
this problem is not self-evident, since sampling from a multivariate distribution is needed.
Moreover, from the heuristic of the counting process it would be also suitable to investigate a
self-exciting process, see, for example, Rios Insua et al. (2012) p. 125, instead of the NHPP.
If a tension wire breaks, the load distributes on one wire less, which could then be included in
the intensity rate that would depend on the past event times or the number of broken wires
up to time t.
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Appendix
A. Ratio for Metropolis Hastings step for +?

Define k(%) = 5(10g(X)(n) — tn ()T (10g(X ) (ny — pn ()" + 0P with g, (1) = log (o) -
3 ~
Ly + (¢ — %) - tn) + 0 - Ny The conditional posterior density of +2 is given by

p(v?] 108(X) (n), Nny» 6, 0)

—(R4q riory__ 1 1 — rior
) I e (= {08000~ )T Bor(X )y = ()T + 177 |
1

:(72),(%+aprior),1 - exp <_ 72k(72)>

and the proposal by
~ ~ (g riory__ ]. ~
a7 .0) = ()T exp (‘Mw))

This leads to the ratio
(’y?and’ 1Og(X)(TL)7 N(TL)’ qs;;fl’ 9;;71)(1(71%* 1 ”ygand’ QSZ 1 9;; 1)
p(ylz*_l‘ log(X>(n)7N(n)7¢z_150]z_1)q(’ycand|’y 1a¢]€ 179;: 1)

(,ygand)f(%Jrapnor)*l - exp (_vczildk(’y?and)> (fy’%*_l)f(%Jraprlor)*l - exp <—%%1*_1 k(’}’?and)>
()" exp (‘ %ﬁ(vﬁtn) (120a)” T exp (k1))
1 2
Vcand ) exXp <_713*1 k(’ycand)>

o (-
S T e ———;
(-

1 1 . 1 «
’Ycand) 2% k(V(?and) + 2% k(ngl) + 2 k(fygfl)
Ve—1 Vie—1 “eand

Cand

1 1 "
=exp| | 5 T 53— (k(%%A) - k’(%?and)) .
ﬁykfl fycand

2) which do not depend on v? we can further simplify the expression.

Because of terms in k(7
¢t(n) —6- N(n) It holds

Define Cy, := log(X) ) — log(zo) - 15, —
2 (k(7¢51) = k(Yana))
i Tk ! e Yo '
k: 1, k 1y cand -1 cand
(e B ) (e e

* 1 *
:(’713 1 ’Y(:and) (n ) ICT 4((7]3—1)2 - (Vgand)Z)t(n)T t(n)
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Hence the ratio is given by

1 1 N
exp o T (]‘C(’YI%A) - k(’Ygand))
’Yk,1 ’ycand

1{ 1 1 . B 1, 4 B
=€exXp 5 "o + S ((’7131 - ’ygand)t(n)Tn 107,1; + 1((’71371)2 - (Wgand)Q)t(n)Tn 1ta)> :
Vi—1 “cand

B. Algorithms

In the following we give a detailed explanation of the algorithms presented in the Sections
2.1 and 2.2.

B.1. Proposal density

The first algorithm is the Metropolis Hastings algorithm, see Robert and Casella (2004), p.
270. We use it to obtain the posterior distribution for the parameter £ in the cumulative
intensity rate of the counting process. After choosing a starting value &;, we have to choose a
proposal density. The normal distribution often is a good option and is used for ¢. But for a
strictly positive parameter, another choice is suitable. We propose to draw a candidate v/€.q4n4

. *40.1 . .
from N (/& og) with o) = \/?0: in the k-th step. The constant ¢, which determines the
proposal standard deviation, is chosen with respect to the chain’s autocorrelation and the
acceptance rate. Then, & 4nd = \/ﬁcamf stems from a proposal density

£ 1 1 0\ 2
Q(gcand| gk) - mexp <_%‘g (\/ gcand - \/i) > ) fcand € [0700)

The candidate will be compared to the old value in a ratio, that means, it will be accepted,
Le. £Z+1 = Seand, if

p(Th 7Tm| fcand) Q(Elﬂ gcand)

o P(Tl, 7Tm| 52) Q(écand| 62)7

with u drawn from a uniform density on [0,1], otherwise set §; , = &;. For the chosen
proposal density, the proposal ratio shrinks to

Q(gz‘ gcand) Vv gcand

q(gcand‘ 52) E]:

B.2. Sampling NHPP

There are several procedures to simulate a NHPP proposed in the literature, see for example
Lewis and Shedler (1979) or Lewis and Shedler (1976) for the specific intensity rate in (3).
Here, we decided to sample the event times which uniquely determine the counting process. In
the main article, we already calculated the predictive density (4). Direct sampling from this
distribution can be employed by a rejection method, but for a large sample of the posteriors
of &, this can take very long and it is difficult to find a good candidate area. Therefore, we
propose the following procedure.
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Firstly, assume that we want to predict a new series 17,75, ... dependent on the observed
Ty, ...,Tp,. We start with 77 = 0. For 7 > 1, the distribution function of the density

( z+1|T* Tla"'? sz z+1|T* Ek

with &5, ..., &5 ~ p(&|Th, ..., Tpn) is given by

K

Fre (8|7, Ty, T, Z / S| Ty, &%) ds
k._
K

Z e (8 T7, &) = Ht),

k;:

where
Fre (] 17, &) = P(Ti5, <t[ T7,§) =1 — exp (—A¢(t) + Ae(T))

is the cumulative distribution function of event time 77", ; and depends on 7. Hence, H is
explicitly given. If H~! would be known, we would get samples from the dlstrlbutlon of H by
H~Y(u), where u ~ (0, 1) has the uniform distribution on [0,1]. Since H~! is not calculable,
we obtain H~!(u) by a binary search algorithm, see, for example, Gentle et al. (2012) p. 60,
starting at 7"

C. Simulation Study

To verify the estimation and prediction procedure we conduct a small simulation study with
1000 series. In time points tg = 0,t; = 0.01,...,t100 = 1 we simulate one thousand Poisson
processes each for the two intensity rates

a0 = (5) €= (0,8) € [1,00) x (0,0
A¢(t) = exp(at + ¢) — exp(c), &= (a,c) € (0,00) x R.

Afterwards, we simulate the jump diffusion processes with the power law intensity.

C.1. Counting process

We simulate one thousand Poisson processes by drawing the event times with the distribution
function

FTm_H (t| Tm7§) = P(Tm—‘rl < t‘ Tm7§) =1- €xp (_Af(t) + Aﬁ(Tm)) .

Invertation yields

Ql~

/8 (Af(Tm) - log(l - u)) 75 = (0‘76)

Ft U m,S) =
T (0] T € {i(log{exp(aTm+C)—1Og(1—“)}_c) &= (a0).

Sampling the event times is employed by drawing uniform distributed «* and take FT_;H (u*| T, §)
as a sample for T, 11, m = 0,1,2, ... until ¢1p9 = 1 is reached.
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The power law intensity

For the parameters « = 5 and 8 = 0.5 we see in Figure 10 the first one hundred simulated
series. With the noninformative estimation approach we get through the MH-algorithm for

Ny
0 5 10 15 20 25 30

Figure 10: First one hundred simulated NHPP series with A¢(t) = (%)5

each series a sample of length K = 2000 (201000 chain iterations, 1000 burn-in samples,
thinning rate 100) where we see in Figure 11 the 95% credibility intervals exemplarily for the
first one hundred series. The point inside each interval marks the point estimation, i.e. the
median of the posterior distribution. 943 of all one thousand intervals for o and 945 of the
intervals for 8 cover the true value.
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Figure 11: 95% Credibility intervals for the first 100 simulations, red: true value; coverage
rate over all 1000: 0.943 for «, 0.945 for 3

Based on these posterior samples as described in Section 2.1, a prediction for the NHPP
series is made. The resulting samples

{Nt*(l):{j~ (l)<t<T+1}|t€[() o)}, 1 =1,...,2000,

are multivariate predictions for the whole series. Therefore, the pointwise 0.025- and 0.975-
quantiles can be seen as simultanuous prediction bands and a coverage rate is calculated by
counting how many of the simulation series are covered by their prediction bands. This is
the case for 983 of the one thousand series. In addition we can investigate if an prediction
interval would also cover the other simulated series what, for example, would be the case
if we want to make a prediction for a new experiment under same conditions. For the one
thousand intervals in average would each of them cover 69.1% of the other series.
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The exponential intensity

With the same time points as before we simulate one thousand series for the NHPP with the
exponential intensity rate with a = 4 and ¢ = —1. The first hundred processes are shown in
Figure 12.

30

20

\

0 5 10

Figure 12: First one hundred simulated NHPP series with A¢(t) = exp(4t — 1) — exp(—1)

In Figure 13 we see similar to Figure 11 the approximated 95% credibility intervals with
the corresponding point estimation for a and c for the first one hundred series. Altogether,
940 of the credibility intervals of a and 930 of the credibility intervals for ¢ include the true
value. Based on these posterior samples, 971 of the prediction bands include the true process.
And each of the prediction interval bands would contain 66.2% of the other series in average.
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Figure 13: 95% credibility intervals for the first 100 simulation series, red: true value; coverage
rate over all 1000: 0.94 for a, 0.93 for ¢

C.2. Jump diffusion process

The jump diffusion process presented in the main article is given by

2
Xy =z - exp <¢t — %t + YWy + log(1 + H)Nt> .

Based on this explicit solution, simulations can be derived by plugging in the series of the
NHPP, samples drawn from the normal distribution for the Wiener process and the chosen
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paramters £g = 0.5,¢ = 0.1,4%2 = 0.12 and § = 0.2. In Figure 14, the first one hundred
simulations based on the NHPP with the power law intensity are displayed.

Based on the Gibbs sampler, in Figure 15, the 95% credibility intervals for ¢, 6 = log(1+6)
and 2 of the first one hundred series are displayed.
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Figure 14: First one hundred simulated jump diffusion series based on the NHPP series in
Figure 10
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Figure 15: 95% credibility intervals for the first 100 simulations for ¢, 6 and 72, red: true
value; coverage rate over all 1000: 0.958 for ¢, 0.959 for # and 0.941 for v

Based on the posterior samples resulting from the Metropolis-within-Gibbs sampler, which
is presented in the main article, and the predictive distribution samples of the NHPP, we
calculate the predictions for the simulated jump diffusion series. In Figure 16 we see the
pointwise coverage rates over the time. The solid line marks the amount of prediction intervals
that include the simulated data point they are calculated for. In the case of prediction for
a new series, it is also interesting, how many of the other simulated series are covered by a
prediction interval. The dotted line in Figure 16 marks the average amount of simulated data
points (999 in each time point) that are included in each prediction interval.
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Figure 16: Pointwise coverage rate for the jump diffusion process

C.3. Cross validation

The remaining question is, how the prediction works in the case that the assumed intensity
function is not the true but unknown curve underlying the data. For that investigation we
take the data set simulated with the power law intensity and conduct the estimation and
prediction procedure assuming the exponential one, and the other way round. Surprisingly,
the effect is very small. In Figure 17 we see the coverage rates for the jump diffusion processes
and they are comparable for both estimations, the true underlying and the wrongly assumed
one. Therefore, if the whole series is observed, assuming a different behavior seems to be
no disadvantage. The next question is, what happens in the case of predicting the further
development in the case that only a first part of the series is observed. Considering that, we
take only the first 81 observations of each series for the estimation and predict the last 20.
The resulting coverage rates are displayed in Figure 18. The difference is very small, but the
prediction with the exponential intensity in the case of the underlying power law seems to be
better than vice versa.

D. Additional Figures

In Section 3, figures for the prediction results are only displayed for the first two experiments.
In the following, the results for the remaining five experiments are shown. In Figure 19, we
can see prediction results for the wire failure process. The difference between the two intensity
rates are negligible and all interval bands include the true process. In Figure 20 we see the
prediction results, which are based on the estimation with truncated series. Here, the Markov
property is used and prediction is made for the further development of the series. For the
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Figure 18: Coverage rates for the prediction in tg; = 0.81,...,t190 = 1

third and the seventh experiment, both intensity functions lead to a prediction that is too
low. But the exponential intensity yields better results than the power law function.

In Figure 21, the prediction results for the crack width process can be seen. Except some
few points, the processes are well fitted. In Figure 22, we can see that for the third and
the seventh experiments the prediction goes totally wrong. Reasons can firstly be found in
the low prediction for the wire failure process and secondly in the very low estimation of the
parameter 6 in comparison to the estimation with the whole series, as can be seen in Figure

8.
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Figure 20: Point and interval prediction for the counting processes
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Figure 21: Point and interval prediction for the crack width processes
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Figure 22: Point and interval prediction for the crack width processes
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