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Abstract

In this article, a pointwise nonparametric kernel based estimator for the drift function in a Lévy driven
jump diffusion model is proposed. Under ergodicity and stationarity of the underlying process X, we
derive asymptotic properties as consistency and asymptotic normality of the estimator. In addition, we
propose a consistent estimator of the asymptotic variance. Moreover, we show that this approach is robust
under microstructure noise by using the preaveraging approach proposed in Podolskij and Vetter (2006).
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1. Introduction

In recent literature, it has been shown that several financial time series possess additional jump compo-
nents; see Johannes (2004) and Das (2002) in the context of jump diffusion models. Hence, it is reasonable
that models for this data should invoke an additive jump component, which is responsible for indicating
macro- or microeconomic shocks during the evolution of processes of interest like stock prices or volatili-
ties. Common models, for which nonparametric estimation procedures for the state-dependent drift and
volatility have been conducted, are based on jump diffusion models which incorporate a Brownian part
and an additive independent Poisson-driven jump part; see Bandi and Nguyen (2003) or Johannes (2004).
Hence, this class of processes allows a finite number of jumps on every finite time interval. In contrast
to those jump diffusion models, models with infinite activity processes are used in current literature to
model economic values of interest. A fundamental paper in this direction was proposed by Carr et al.
(2002), who suggested the use of the so-called CGMY model in order to model, for instance, processes
with infinite activity and finite variation. Comparable models are given by the variance gamma model
(Madan et al. (1998)), the hyperbolic model (Eberlein and Keller (1995)) and, for instance, the finite mo-
ment log stable model (Carr and Wu (2003)). The first test statistic in order to determine between finite
and infinite activity price processes was proposed by Aı̈t-Sahalia and Jacod (2011), who found evidence
for the presence of infinite activity jumps in their empirical findings based on transactions of two most
traded stocks, namely Intel and Microsoft. In view of these papers and findings, we think that the present
paper states an important generalization of the findings in Bandi and Nguyen (2003) in order to capture
price processes with a jump component of infinite activity originating from a pure jump Lévy-process.
In order to handle these models adequately, we focus on the nonparametric estimation of the coefficients
of those processes. In particular, we will propose a kernel based nonparametric drift estimator in a Lévy
driven diffusion model for which desirable asymptotic properties such as consistency and asymptotic nor-
mality are established. The derivation of these properties takes place in a double asymptotics scheme,
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which means that we will work with a high-frequency sample of the underlying process X observed on
an increasing time interval [0, T ].
Nonparametric inference for jump diffusions has attained some attention in the literature until now. For
example, the above mentioned paper by Bandi and Nguyen (2003) investigates nonparametric kernel
estimators for the coefficients of a diffusion driven by a finite activity jump process. Moreover, Shimizu
(2008) as well as Mancini and Renò (2011) proposed a threshold estimator for the unknown drift and
volatility function. An alternative method was proposed in Schmisser (2014), who suggested the use of a
penalized least squares estimator based on model selection. Subsequently, we will focus on the same class
of stochastic processes as in Schmisser (2014) and will conduct nonparametric inference, too. In the con-
text of discontinuous stochastic volatility models, Kanaya and Christensen (2015) proposed a two-stage
kernel based estimation procedure for the drift and the dispersion coefficient of the underlying volatility.
In this context, see also Comte et al. (2010) for an alternative nonparametric approach to estimate the
coefficients of the underlying volatility.
In the context of nonparametric inference for diffusions possessing continuous paths, a pioneering work has
been published by Bandi and Phillips (2003). They derived an asymptotic theory for pointwise estimators
of state-dependent drift and volatility functions. Moreover, a recently published article by Strauch (2015)
investigates the minimax optimal rates for the drift of an ergodic diffusion in the multivariate setting.
To the best of our knowledge, those rates are not yet derived in the context of nonparametric inference
for jump diffusions. In the univariate and continuous framework, we refer to Hoffmann (1999), where
minimax optimal rates of nonparametric estimators were derived.
The paper is organized as follows: in Section 2, the model under investigation is introduced and, moreover,
the used assumptions are stated. The following section presents the main results of this paper, namely
the consistency as well as the asymptotic normality of the proposed drift estimator and the consistent es-
timation of its asymptotic variance. Section 4 is devoted to the incorporation of microstructure noise. We
will see that our estimation procedure is robust to noisy observations by using the preaveraging approach
proposed by Podolskij and Vetter (2006). For this purpose, we will perform a slight modification of the
estimator by working with averaged observations. Section 5 concludes the paper and gives an outlook to
further research investigations. All proofs are postponed to the Appendix.

2. The model and used assumptions

Consider the following jump diffusion process X = (Xt)t≥0 such that

dXt = b(Xt)dt+ σ(Xt)dWt + ξ(Xt−)dLt, X0 = η, (2.1)

where b, σ and ξ are unknown functions and X possesses the initial distribution η ∼ Γ(dx) such that
E[X2

0 ] <∞. Moreover, L is a pure jump Lévy process of the form

dLt =

∫
R
y(µ(dt, dy)− ν(dy)dt) :=

∫
R
yµ̄(dt, dy),

where µ is a Poisson random measure compensated by its intensity measure ν(dy)dt. We assume that the
Lévy measure ν(dy) satisfies

E[L2(1)] = V ar(L(1)) =

∫
R
y2ν(dy) <∞.

We also presume that W and L are independent processes and that η is independent of W and L.
Suppose that we observe X in a high frequency setting on the interval [0, T ] on an equidistant grid at time
points 0,∆, 2∆, ..., n∆ = T . Our first aim will be the construction of a meaningful pointwise estimator of
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the drift function b at a design point x based on the available sample X0, X∆, X2∆, ..., Xn∆ = XT such
that

∆→ 0 as well as T = n∆→∞.

Let us now list our assumptions on the considered model, which will ensure that X is strictly stationary
and ergodic.

Assumption A1

i) The functions b, σ and ξ are globally Lipschitz-continuous.

ii) The function σ is bounded away from zero (ellipticity condition) as well as uniformly bounded for
all x:

∃ σ1, σ0 ∈ R+ : ∀x ∈ R : 0 < σ1 ≤ σ(x) ≤ σ0.

iii) The function ξ is non-negative and also bounded:

∃ ξ0 ∈ R+ : ∀x ∈ R : 0 ≤ ξ(x) ≤ ξ0.

iv) The function b is elastic (cf. Masuda (2007)). This means that

∃ M > 0 : ∀x ∈ R, |x| > M : xb(x) . −x2.

v) The Lévy measure ν possesses the properties that

V ar(L(1)) =

∫
R
y2ν(dy) <∞, and ν({0}) = 0.

Under Assumption A1,i) a unique strong solution X of (2.1) exists (Masuda (2007)). Furthermore, we
remark that under A1,iv) b cannot be bounded as it is required in Bandi and Nguyen (2003). More-
over, under A1,i)-v), this solution is equipped with a unique invariant probability distribution Γ(dx). In
addition, X is exponentially β-mixing, which means that

∃ γ > 0 : sup
s∈R+

∫
||Pt(x, ·)− ηPs+t(·)||ηPs(dx) =: βX(t) = O(e−γt), as t→∞,

where (Pt)t∈R+
denotes the transition semigroup of the underlying process X with initial distribution

η. Moreover, ηPt denotes the distribution of Xt and ||λ|| defines the total variation norm of a signed
measure λ; see Masuda (2007).
Using Theorem 2.1 in Masuda (2007), we can deduce the ergodicity of X, which means that for all
measurable functions g ∈ L1(Γ(dx)):

1

T

∫ T

0

g(Xs)ds −→
∫
R
g(x)Γ(dx) a.s., as T →∞.

For equivalent reformulations of A1,iv), we recommend Masuda (2007).
We remark that due to our assumptions on the Lévy measure ν and the Lipschitz-continuity of the
coefficients b, σ and ξ, we have that E[X2

t ] <∞, too.
Moreover, we impose that

vi) Γ is absolutely continuous with respect to the Lebesgue measure and, thus, possesses a Lebesgue
density π such that Γ(dx) = π(x)dx.
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Notice that the process X is strictly stationary, because we assumed that X0 = η ∼ Γ(dx).
In order to construct a meaningful estimator of b(x), we make use of the following approximations, whose
analogs in the finite activity case were also used in Bandi and Nguyen (2003):

b(x) = lim
∆→0

1

∆
E[Xt+∆ −Xt|Xt = x] (2.2)

σ̃2(x) := σ2(x) + ξ2(x)V ar(L(1)) = lim
∆→0

1

∆
E[(Xt+∆ −Xt)

2|Xt = x] (2.3)

ξ̃k(x) := ξk(x)ck(L(1)) = lim
∆→0

1

∆
E[(Xt+∆ −Xt)

k|Xt = x], (2.4)

provided that all appearing terms exist and where

ck(L(1)) =

∫
R
zkν(dz)

denotes the k-th cumulant of the random variable L(1) ≡ L1. In contrast to the Brownian case, higher
order moments do not vanish and are all dependent on the jump component. This indicates the essential
difference to the ordinary diffusion case.
Now suppose that we observe the underlying process X at n equidistant time points over the interval
[0, T ]:

X0, X∆, X2∆, ..., Xn∆ ≡ XT .

The approximations (2.2)-(2.4) yield us to the construction of nonparametric estimators for the values of
interest. Hence, it seems intuitive to use, for instance, local polynomial estimators for the estimation of
b(x). Therefore, we propose a Nadaraya-Watson like estimator for the unknown drift at x according to

b̂(x) :=
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) (X(i+1)∆−Xi∆)

∆
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) ,

where K is a kernel function and h a bandwidth. Comparable approaches have been conducted in Bandi
and Phillips (2003) for diffusions possessing continuous paths as well as in Bandi and Nguyen (2003) for
diffusions with jumps which originate from a finite activity process.
We now state the following assumptions on the kernel function K.

Assumption A2

i) Let K be a bounded probability density function which is symmetric around zero, differentiable
and Lipschitz-continuous.

ii) Let K fulfill ∫
R
z2K(z)dz <∞ and

∫
R
K2(z)dz <∞.

Let us shortly remark that A2 is standard in kernel based estimation procedures. One could also allow
higher order kernels, for example a kernel function K of order l ∈ N, which means that∫

R
K(z)dz = 1,

∫
R
zjK(z)dz = 0, j = 1, ..., l − 1 and

∫
R
zlK(z)dz <∞.

This would cause an asymptotic bias reduction, but for the sake of simplicity we will restrict ourselves
to the case of kernels of order two.
For our purposes, one can always think of the Gaussian kernel

KG(z) :=
1√
2π
e−

1
2 z

2
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as a toy-example for which all assumptions hold true. Of course, there are many other choices for kernel
functions possible, but in the literature it is quite reputable that the choice of the kernel function is not
as important as the choice of the bandwidth parameter.

3. Asymptotic results

3.1. Estimation of b(x)

Let us now focus on the asymptotic properties of b̂(x). Under appropriate assumptions on ∆, h, and n
we will derive its weak consistency as well as the asymptotic normality.

Theorem 3.1 (Weak Consistency). Let ∆ and h fulfill

n∆h = Th→∞ and ∆1/2h−2 → 0.

Moreover, let assumptions A1 and A2 hold true. Then, provided that π(x) > 0, we can conclude that

b̂(x)
P−→ b(x), as n→∞.

In addition to the consistency, we will now derive the asymptotic distribution of our proposed estimator.
For this purpose, we have to strengthen the assumptions in a slightly manner.

Assumption A3

i) Let the drift function b as well as the stationary density π be twice continuously differentiable.

ii) Let ∆ and h satisfy
∆1/2h−2 → 0, n∆h5 → 0 and n∆2h−3 → 0.

iii) Let the Lévy-measure ν fulfill ∫
R
y4ν(dy) <∞.

Let us shortly remark that A3,i) is required for the determination of the rate of the bias. A3,ii) ensures
that the bias term is negligible and that appearing Taylor-remainder terms are negligible, too. Finally,
A3,iii) is needed for the derivation of the asymptotic distribution via a standard central limit theorem
for triangular arrays of martingale difference sequences.
We are now ready to state our next important theorem.

Theorem 3.2. Under Assumptions A1-A3, provided that π(x) > 0 and n∆h→∞, it holds that

√
n∆h(b̂(x)− b(x))

D−→ N
(

0,
||K||22(V ar(L(1))ξ2(x) + σ2(x))

π(x)

)
, as n→∞.

Remark 3.3. By defining analogous estimators for higher conditional moments (see (2.4)), an increasing
time span T → ∞ is necessary for the consistent estimation, too. This fact is also pointed out for the
finite activity case in Bandi and Nguyen (2003), p. 304.
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Example 3.4. By letting ∆ ∼ n−α and h ∼ n−β, where α, β > 0, the restrictions on ∆ and h can be
reformulated according to

α+ 5β > 1, 2α− 3β < 1, α+ β < 1, 4β < α.

Thus, in terms of the rate

G(α, β) :=
1− α− β

2
,

the maximal value of G under these restrictions is given by

G(αopt, βopt) := G(0.615, 0.077) ≈ 0.154.

0.3 0.4 0.5 0.6 0.7 0.8

−0.1

0

0.1

0.2

0.3

α

β

(α∗;β∗)

Fig. 1. Plot of the constraints on G(α, β) and the corresponding optimal coordinates (α∗;β∗).

By setting
n∆h5 = O(1), as n→∞,

an asymptotic bias occurs such that the AMSE of b̂(x) has the following form

AMSE(b̂(x)) =
(

ABIAS(b̂(x))
)2

+ AVAR
(
b̂(x)

)
= h4µ2

2(K)Λ(x) +

∫
RK

2(z)dzσ̃2(x)

n∆hπ(x)
,

where

Λ(x) :=
b′(x)π′(x)

π(x)
+
b′′(x)

2

denotes one part of the bias term,

µ2(K) =

∫
R
z2K(z)dz

the second moment of K , and

σ̃2(x) := σ2(x) + V ar(L(1))ξ2(x).

6



By minimizing the AMSE with respect to h, the resulting bandwidth is called “oracle bandwidth” and
in our case this optimal bandwidth hopt,oracle(x) has the form

hopt,oracle(x) = (n∆)−1/5

(
σ̃2(x)

∫
RK

2(z)dz

4µ2
2(K)Λ2(x)π(x)

)−1/5

.

Using this bandwidth, the optimal AMSE is of order

AMSE
(
b̂(x)

)
= O

(
(n∆)−4/5

)
.

We remark that this order is achieved provided that

T 8/5∆→ 0

in order to ensure that h fulfills A3, ii).

3.2. Estimation of the Asymptotic Variance

In order to establish asymptotic pointwise confidence intervals, a consistent estimator of the asymptotic
variance is needed. Hence, in view of Theorem 3.2, the asymptotic variance is given by

σ2(x) :=
||K||22(V ar(L(1))ξ2(x) + σ2(x))

π(x)
.

As it is pointed out in the Appendix, the denominator π(x) can be consistently estimated by

π̂(x) =
∆

Th

n−1∑
i=0

K

(
x−Xi∆

h

)
=

1

nh

n−1∑
i=0

K

(
x−Xi∆

h

)
.

In order to conduct a meaningful estimator for the numerator, we make use of approximation (2.3).
Therefore, we propose the estimator of σ̃2(x) as follows:

ˆ̃σ2(x) :=
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) (X(i+1)∆−Xi∆)2

∆
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

) .

For the derivation of the consistency of this estimator, we have to strengthen the assumptions of Theorem
3.1 marginally.

Theorem 3.5 (Weak Consistency). Under Assumptions A1, A2, and additionally under the assumption
that the Lévy measure ν fulfills ∫

R
y4ν(dy) <∞,

ˆ̃σ2(x) is a (weak) consistent estimator for σ̃2(x), provided that π(x) > 0. In particular, we find out that

ˆ̃σ2(x)
P−→ σ̃2(x), as n→∞.
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Using this theorem, we are able to deduce approximate pointwise confidence intervals for b(x) according
to

Ix :=

[
b̂(x)−

Φ−1
(
1− α

2

)
ˆ̄σ(x)

√
n∆h

≤ b(x) ≤ b̂(x) +
Φ−1

(
1− α

2

)
ˆ̄σ(x)

√
n∆h

]
,

where

ˆ̄σ(x) :=
||K||22 ˆ̃σ2(x)

π̂(x)

and provided that the bias is negligible.

4. Robustness to Microstructure Noise

In this section, we will work with noisy observations of the form

Yi∆ = Xi∆ + εi∆, i = 1, ..., n,

where we assume that εi∆, i = 1, ..., n, are i.i.d. random variables such that

E[εi∆] = 0 and E[ε2
i∆] := σ2

ε

for all i and ∆. Moreover, the processes ε and X are assumed to be independent.
It is widely known that in the case of high-frequency observation schemes, measurement errors as well as
the so-called microstructure noise play significant roles and can be found in several financial data sets;
see Zhang et al. (2005), Jacod et al. (2009) or Jones (2003). In the framework of Itô-diffusions, Podolskij
and Vetter (2006) introduced the so-called pre-averaging approach for the nonparametric estimation of
integrated volatility and quarticity based on realized bipower variation. This widely used approach has,
for instance, been studied in Jacod et al. (2009) in a more general setting and in the context of stochastic
volatility models in Kanaya and Christensen (2015) as well as for diffusions without jumps in Greenwood
et al. (2015). We will focus on their approach for the estimation of b(x) in our considered Lévy-driven
diffusion model as follows.
We decompose the available sample Yi∆, i = 1, ..., n, into mn := m subgroups of length rn := r, such
that mr = n. Without loss of generality, we assume that n can be decomposed into the product of m
and r. Otherwise, one would introduce a first and a last block with a length smaller than r. Moreover,
the block length as well as the number of blocks fulfill

r →∞, m =

⌊
n

r

⌋
→∞, and ∆r → 0 as n→∞.

Instead of working with the contaminated raw data set Yi∆, i = 1, ..., n, we build averages inside every
block j, where j = 1, ..., r. Thus, we define

Ȳj := Ȳj,∆ :=
1

r

r∑
i=1

Y((j−1)r+i)∆

and analogously

X̄j := X̄j,∆ :=
1

r

r∑
i=1

X((j−1)r+i)∆, and ε̄j := ε̄j,∆ :=
1

r

r∑
i=1

ε((j−1)r+i)∆.

Using these notations, we obtain
Ȳj = X̄j + ε̄j .
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The motivation for this approach is that the averages Ȳj act as approximations of the averages X̄j , which
are, in turn, approximations of the original sample Xi∆, i = 1, ..., n.
Let us now define a drift estimator b̂Y (x) based on the sample Ȳj , j = 1, ...,m, according to

b̂Y (x) :=

1
mh

∑m−1
j=1 K

(
Ȳj−x
h

) (
Ȳj+1 − Ȳj

)
r∆
mh

∑m−1
j=1 K

(
Ȳj−x
h

) .

In order to establish the asymptotic properties of this estimator, we will make use of the results in our
previous section. For this purpose, we have to impose the following assumptions, mainly concerning the
rates of convergence of the included sequences.

Assumption A4

i) The noise process ε = (εt)t≥0 is an i.i.d. process, in particular, the random variables εi∆, i = 1, ..., n,
are i.i.d. with

E[εi∆] = 0 and E[ε2
i∆] = σ2

ε <∞
for all 0 ≤ i∆ ≤ T .

ii) The processes X = (Xt)t≥0 and ε = (εt)t≥0 are independent.

iii) The block length r fulfills
r →∞ and ∆r → 0 as n→∞.

Moreover, the number of blocks m behaves like m = bn/rc → ∞ as n→∞.

iv) The appearing parameters r, h and ∆ are connected via

n∆rh5 → 0, n(∆r)2h−3 → 0,

(∆r)1/2h−2 → 0 and n∆(rh3/2)−1 → 0.

We are now ready to state our main theorem concerning the asymptotic distribution of b̂Y (x).

Theorem 4.1. Under Assumptions A1-A4, provided that π(x) > 0 and n∆rh→∞, it holds that

√
n∆h

(
b̂Y (x)− b(x)

)
D−→ N

(
0,
||K||22(σ2(x) + ξ2(x)V ar(L(1)))

π(x)

)
, as n→∞.

Example 4.2. In the noisy setting it would be interesting to derive an optimal rate of convergence under
the assumptions on r, ∆ and h, too.
By letting

∆ ∼ n−α, h ∼ n−β , and r ∼ nρ, α, β, ρ > 0,

a variety of connections between α, β and ρ exists. Let again be

G(α, β) :=
1− α− β

2

and maximize the function G with respect to

α− ρ+ 5β > 1, 2(α− ρ)− 3β > 1, α− ρ+ β < 1,

α− ρ− 4β > 0, 4α− 3ρ− 3β > 1, 3α− ρ− 3β > 1,

3α− 3β − 2ρ > 1, α+ 2ρ− 3β > 1, −α+ β + ρ < 1,

2α− 3β > 1, −2α+ β + 3ρ < 1, and 3α− 2ρ− 3β > 1.
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These different connections appear during the proofs and some of them are redundant. Nonetheless, we
state them here for the sake of completeness.
The simplex algorithm yields the following result:

α ≈ 0.821, β ≈ 0.077,

which leads to an optimal rate under our assumptions, which is proportional to n0.051. This rate is slower
than in the case of non-noisy data, which is not surprising. We already know that in our setting r∆
denotes the sampling frequency of the new random sample {X̄j , j = 1, ...,m} and should behave like ∆
in the previous section without additional noise. Therefore, we choose r ∼ n0.2 such that r∆ ∼ n−0.62,
which is approximately the optimal result for α in the previous section.

5. Conclusion

In this paper we proposed a pointwise nonparametric kernel based estimator for the unknown drift func-
tion b in a Lévy-driven jump diffusion model. We derived the consistency and the asymptotic normality
and, moreover, showed that this estimator is robust under microstructure noise by a slight variation of
the original estimator.
In view of the works by Comte et al. (2007, 2009), it would be interesting to treat the case of an integrated
diffusion process X, whose drift has to be estimated.
Furthermore, in the context of stochastic volatility models (cf. Barndorff-Nielsen and Shephard (2004) as
well as Comte et al. (2010)), we think that it would be interesting to estimate the state-dependent drift
of the underlying volatility in those models, too.
Finally, the question which bandwidth selection procedure is optimal is often elusive in the literature.
Hence, we think that a theoretical treatment of this issue in the framework of (jump) diffusions is im-
portant and interesting, too. All mentioned extensions are under preparation and will be covered in
forthcoming papers.

6. Appendix

In this section, we will present the proofs of the stated results. The following proposition is very helpful
for the derivation of the upper stated theorems. It can be found in Schmisser (2014) and, therefore, we
omit its proof.

Proposition 6.1. Let X = (Xt)t≥0 be the solution of (2.1). Under assumptions A1,i)-vi), it exists a
constant C > 0 such that

E

[
sup
|s−t|≤∆

(Xs −Xt)
2

]
≤ C∆,

provided that ∆ ≤ 1.
Moreover, provided that ∫

R
y4ν(dy) <∞,

the fourth moments can also be bounded by

E

[
sup
|s−t|≤∆

(Xs −Xt)
4

]
≤ C̃∆,

where ∆ ≤ 1 and C̃ denotes another positive and deterministic constant.
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We will now present the proof of Theorem 3.1.

Proof of Theorem 3.1. Focus on the following decomposition of b̂(x):

b̂(x) =
1
nh

∑n−1
i=0 K

(
Xi∆−x

h

)
(X(i+1)∆ −Xi∆)

∆
nh

∑n−1
i=0 K

(
Xi∆−x

h

)
=

1
h

∑n−1
i=0 K

(
Xi∆−x

h

) (∫ (i+1)∆

i∆
b(Xs)ds+

∫ (i+1)∆

i∆
σ(Xs)dWs +

∫ (i+1)∆

i∆
ξ(Xs−)dLs

)
∆
h

∑n−1
i=0 K

(
Xi∆−x

h

)
=

1
h

∑n−1
i=0 K

(
Xi∆−x

h

)
b(Xi∆)

∆
h

∑n−1
i=0 K

(
Xi∆−x

h

)
+

1
h

∑n−1
i=0 K

(
Xi∆−x

h

) (∫ (i+1)∆

i∆
(b(Xs)− b(Xi∆)) ds+

∫ (i+1)∆

i∆
σ(Xs)dWs +

∫ (i+1)∆

i∆
ξ(Xs−)dLs

)
∆
h

∑n−1
i=0 K

(
Xi∆−x

h

) .

The first term of the numerator is a consistent estimate of b(x). The second one is a remainder term. The
last two terms are noise terms, which will play a role for the determination of the asymptotic distribution
but are at this stage negligible, too.
At first, focus on the denominator

D(x) : =
∆

Th

n−1∑
i=0

K

(
Xi∆ − x

h

)

=
1

T

∫ T

0

1

h
K

(
x−Xs

h

)
ds+

∆

Th

n−1∑
i=0

K

(
Xi∆ − x

h

)
−
∫ T

0

1

h
K

(
x−Xs

h

)
ds

=
1

T

∫ T

0

1

h
K

(
x−Xs

h

)
ds+

1

Th

n−1∑
i=0

∫ (i+1)∆

i∆

(
K

(
Xi∆ − x

h

)
−K

(
x−Xs

h

))
ds

:=
1

T

∫ T

0

1

h
K

(
x−Xs

h

)
ds+ Fn1 .

We are interested in the rate of convergence of the approximation error Fn1 and consider, therefore, its L1-
distance. Under the assumption that K is Lipschitz-continuous, by Proposition 6.1, the Cauchy-Schwarz
as well as the Jensen inequality, we conclude that

E[|Fn1 |] ≤
1

Th

n−1∑
i=0

E

[∫ (i+1)∆

i∆

∣∣∣∣K (Xi∆ − x
h

)
−K

(
x−Xs

h

) ∣∣∣∣ds
]

≤ 1

Th

n−1∑
i=0

E

[∫ (i+1)∆

i∆

||K ′||∞
∣∣∣∣Xi∆ −Xs

h

∣∣∣∣1[i∆,(i+1)∆](s)ds

]

≤ ||K
′||∞

Th2

n−1∑
i=0

E

(∫ (i+1)∆

i∆

(Xi∆ −Xs)
2ds

)1/2
∆1/2

≤ ∆1/2||K ′||∞
Th2

n−1∑
i=0

∫ (i+1)∆

i∆

(
E[Xi∆ −Xs)

2]
)1/2

ds

.
∆1/2

Th2

n−1∑
i=0

∫ (i+1)∆

i∆

∆1/2ds =
n∆2

Th2
=

∆

h2
.

11



With the help of the ergodicity of X it holds that

1

T
· IV =

1

T

∫ T

0

1

h
K

(
x−Xs

h

)
ds+OP

(
∆

h2

)
−→ π(x), as n, T →∞.

Therefore, the denominator converges to π(x) in probability.
The first term in the numerator can be handled in an analogous way and it turns out that it converges
to b(x)π(x) in probability. By the Lipschitz continuity of b, the remainder term is of order OP

(
∆
h2

)
, too.

Let the filtration (Ft)t≥0 of sub-σ-algebras be given by

Ft = σ(X0, (Ws, Ls), s ≤ t).

For the Brownian noise term, consider its L2-distance as follows:

E

( 1

Th

n−1∑
i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

σ(Xs)dWs

)2


=
1

T 2h2

n−1∑
i=0

E

[
K2

(
Xi∆ − x

h

)
E

[∫ (i+1)∆

i∆

σ2(Xs)ds

∣∣∣∣Fi∆
]]

≤ σ1
∆

T 2h2

n−1∑
i=0

E

[
K2

(
Xi∆ − x

h

)]
.

1

Th
.

Using the Burkholder-Davis-Gundy type inequality (see Schmisser (2014), Result 11), we have that

E

[
sup
|s−t|≤∆

(∫ s

t

ξ(Xs−)dLs

)2 ∣∣∣∣Ft
]
≤ C2E

[∫ t+∆

t

ξ2(Xu)du

∣∣∣∣Ft
](

1 +

∫
R
y2ν(dy)

)
.

Hence, the second noise term possesses the same rate of convergence as the first one. This finishes the
proof by using the quotient limit theorem for stationary Markov processes (cf. Revuz and Yor (1999),
Theorem 3.12).

We now state the proof of the asymptotic normality of b̂(x).

Proof of Theorem 3.2. We start with the derivation of the numerator as follows:

√
Th

(
1

Th

n−1∑
i=0

K

(
Xi∆ − x

h

)
(X(i+1)∆ −Xi∆)− b(x)

)

=
√
Th

(
1

Th

n−1∑
i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

b(Xs)ds− b(x)

)

+
√
Th

(
1

Th

n−1∑
i=0

K

(
Xi∆ − x

h

)(∫ (i+1)∆

i∆

σ(Xs)dWs +

∫ (i+1)∆

i∆

ξ(Xs−)dLs

))

=
√
Th

(
1

T

∫ T

0

1

h
K

(
x−Xs

h

)
b(Xs)ds− b(x) + Fnb

)

+
1√
Th

n−1∑
i=0

K

(
Xi∆ − x

h

)(∫ (i+1)∆

i∆

σ(Xs)dWs +

∫ (i+1)∆

i∆

ξ(Xs−)dLs

)

12



=
√
Th

(
1

T

∫ T

0

1

h
K

(
x−Xs

h

)
(b(Xs)− b(x)) ds+ Fnb

)
(6.5)

+
1√
Th

n−1∑
i=0

K

(
Xi∆ − x

h

)(∫ (i+1)∆

i∆

σ(Xs)dWs +

∫ (i+1)∆

i∆

ξ(Xs−)dLs

)
,

where Fnb denotes the approximation error, which is negligible compared to the other terms. By letting
T →∞, the first term is a bias which is of order O(h2):∫

R

1

h
K

(
x− y
h

)
(b(y)− b(x))π(y)dy =

∫
R
K(z)(b(x− zh)− b(x))π(x− zh)dz

=

∫
R
K(z)

(
−zhb′(x) +

z2h2

2
b′′(x) +O(h3)

)(
π(x)− zhπ′(x) +O(h2)

)
dz

=

∫
K(z)

(
b′(x)π(x)(−zh) + z2h2b′(x)π′(x)

z2h2

2
b′′(x)π(x)

)
dz +O(h3)

= h2

∫
z2K(z)dz

(
b′(x)π′(x) +

b′′(x)π(x)

2

)
+O(h3) = O(h2).

By the use of Th5 = n∆h5 → 0 as n→∞, this term is negligible, too.
Observe that the remaining two terms are martingale difference sequences with respect to the upper
defined filtration (Ft)t≥0. By invoking a standard central limit theorem for arrays of martingale difference
sequences as, for instance, in Shiryayev (1995), we can treat the noise terms by analogous arguments. In
fact, by the boundedness of

∫
R y

4ν(dy) and the independence of L and W , we can finish the proof.

We now state the proof of the consistency of ˆ̃σ2(x).

Proof of Theorem 3.5. In order to establish the consistency of ˆ̃σ2(x), we use Itô´s formula to decompose
the squared increment as follows:

(X(i+1)∆ −Xi∆)2 = 2

∫ (i+1)∆

i∆

(Xs− −Xi∆)dXs

+

∫ (i+1)∆

i∆

(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds+

∫ (i+1)∆

i∆

ξ2(Xs−)

∫
R
y2µ̄(dy, ds)

= 2

∫ (i+1)∆

i∆

(Xs −Xi∆)b(Xs)ds+ 2

∫ (i+1)∆

i∆

(Xs −Xi∆)σ(Xs)dWs

+ 2

∫ (i+1)∆

i∆

(Xs− −Xi∆)ξ(Xs−)dLs +

∫ (i+1)∆

i∆

(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds

+

∫ (i+1)∆

i∆

ξ2(Xs−)

∫
R
y2µ̄(dy, ds)

13



Due to this representation, we are able to decompose the estimator ˆ̃σ2(x) into the following five parts

ˆ̃σ2(x) =
1
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
(X(i+1)∆ −Xi∆)2

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
=

2
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(Xs −Xi∆)b(Xs)ds

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
+

2
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(Xs −Xi∆)σ(Xs)dWs

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
+

2
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(Xs− −Xi∆)ξ(Xs−)dLs

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
+

1
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
(σ2(Xs) + ξ2(Xs)V ar(L(1)))ds

∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

)
+

1
Th

∑n−1
i=0 K

(
Xi∆−x

h

) ∫ (i+1)∆

i∆
ξ2(Xs−)

∫
R y

2µ̄(dy, ds)
∆
Th

∑n−1
i=0 K

(
Xi∆−x

h

) .

By the use of Proposition 6.1, the first three terms of the numerator converge to zero, which is exemplified
in the term, which involves the drift b:

E[|I ′|] = E

[∣∣∣∣ 2

Th

n−1∑
i=0

K

(
Xi∆ − x

h

)∫ (i+1)∆

i∆

(Xs −Xi∆)b(Xs)ds

∣∣∣∣
]

≤ 2

Th

n−1∑
i=0

∫ (i+1)∆

i∆

E

[∣∣∣∣K (Xi∆ − x
h

) ∣∣∣∣ · ∣∣∣∣(Xs −Xi∆)b(Xs)

∣∣∣∣] ds
≤ 2||K||∞

Th

n−1∑
i=0

∫ (i+1)∆

i∆

E [|Xs −Xi∆| · |b(Xs)|] ds

≤ 2||K||∞
Th

n−1∑
i=0

∫ (i+1)∆

i∆

(
E
[
(Xs −Xi∆)2

])1/2 (
E[b2(Xs)]

)1/2
ds

.
∆1/2

Th

n−1∑
i=0

∫ (i+1)∆

i∆

(
E[b2(Xs)]

)1/2
ds =

∆1/2n∆

Th

(
E[b2(X0)]

)1/2
= O

(
n∆3/2

Th

)
= O

(
∆1/2

h

)
= o(1), as n→∞.

Using the ergodicity property of X, we conclude that the fourth term converges to σ̃2(x)π(x) in prob-
ability. The last term is a martingale term, which is handled in analogy to the drift case. Using the
consistency of the denominator, we see that

ˆ̃σ2(x)
P−→ σ̃2(x), as n, T →∞.

For the derivation of the proof of Theorem 4.1, we will need an analog to Proposition 6.1 in the noisy
framework.
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Proposition 6.2. Under Assumptions A1,i)-vi) and ∆ ≤ 1, the following statements hold true

1) max
1≤j≤m

E
[
(Xjr∆ −X(j−1)r∆)2

]
. r∆,

2) max
1≤j≤m

E
[
(X̄j −X(j−1)r∆)2

]
. r∆,

3) max
1≤j≤m−1

E
[
(X̄j+1 − X̄j)

2
]
. r∆.

Proof of Proposition 6.2. The first statement can be directly deduced by Proposition 6.1. Observe for the
second statement that

E[|X̄j −X(j−1)r∆|] ≤
1

r

r∑
i=1

E[|X((j−1)r+i)∆ −X(j−1)r∆|]

≤ 1

r

r∑
i=1

(
E[(X((j−1)r+i)∆ −X(j−1)r∆)2]

)1/2
.

1

r

r∑
i=1

(
∆

∫ ((j−1)r+i)∆

(j−1)r∆

E[b2(Xs)]ds+

∫ ((j−1)r+i)∆

(j−1)r∆

E[σ2(Xs)]ds

+ V ar(L(1))

∫ ((j−1)r+i)∆

(j−1)r∆

E[ξ2(Xs)]ds

)1/2

≤ 1

r

r∑
i=1

(
∆2iE[b2(X0)] + i∆(||σ2||∞ + ||ξ2||∞V ar(L(1)))

)1/2
.

1

r

r∑
i=1

(i∆)1/2 ≤ 1

r
∆1/2

(
r∑
i=1

i

)1/2
√
r .

r3/2∆1/2

r
= (r∆)1/2.

Now use Jensen´s inequality and the monotonicity of the function t→
√
t to finish the proof of statement

2).
Finally for 3), observe that

E[|X̄j+1 − X̄j |] ≤ E[|X̄j+1 −Xjr∆|] + E[|Xjr∆ −X(j−1)r∆|]
+ E[|X̄j −X(j−1)r∆|] . 3(r∆)1/2

due to 1) and 2).

Proof of Theorem 4.1. Recall that we observe a high-frequency sample

Yi∆ = Xi∆ + εi∆, i = 0, ..., n,

consisting of the original diffusion process and contaminated by additional noise. Now define

b̂X(x) :=

1
(m−1)h

∑m−1
j=1

(
Xjr∆ −X(j−1)r∆

)
K
(
X(j−1)r∆−x

h

)
r∆

(m−1)h

∑m−1
j=1 K

(
X(j−1)r∆−x

h

) :=
N̂X(x)

D̂X(x)
,

which is the drift estimator of b(x) based on a high-frequency sample {Xjr∆ := Xjδ, j = 0, ...,m}. The
new sample is a “thinned out version” with sampling frequency δ = ∆r → 0 of the original sample. From
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an asymptotic point of view, this has no impact on the derivation of the asymptotic distribution, since we
work in a high-frequency setting. Therefore, and under Assumptions A1-A4, this estimator is consistent
and asymptotically normally distributed due to Theorems 3.1 and 3.2:

√
mδh

(
b̂X(x)− b(x)

)
=
√
n∆h

(
b̂X(x)− b(x)

)
D−→ N

(
0,
||K||22σ̃2(x)

π(x)

)
, as n→∞.

Our aim is now to prove that

N̂X(x)− N̂Y (x) = oP ((n∆h)−1/2) = oP ((mδh)−1/2) (6.6)

as well as

D̂X(x)− D̂Y (x) = oP ((n∆h)−1/2) = oP ((mδh)−1/2), (6.7)

where analogously

b̂Y (x) =

1
(m−1)h

∑m−1
j=1 K

(
Ȳj−x
h

) (
Ȳj+1 − Ȳj

)
r∆

(m−1)h

∑m−1
j=1 K

(
Ȳj−x
h

) :=
N̂Y (x)

D̂Y (x)
.

We start with the derivation of (6.7). For this purpose, we make at first use of Proposition 6.2 as well as
the Lipschitz-continuity of K:

E[|D̂X(x)− D̂Y (x)|] ≤ r∆

(m− 1)h

m−1∑
j=1

E

[∣∣∣∣K ( Ȳj − xh

)
−K

(
X(j−1)r∆ − x

h

) ∣∣∣∣]

≤ r∆||K ′||∞
(m− 1)h2

m−1∑
j=1

E
[
|Ȳj −X(j−1)r∆|

]
=
r∆||K ′||∞
(m− 1)h2

m−1∑
j=1

E
[
|X̄j −X(j−1)r∆ + ε̄j |

]
.

r∆

(m− 1)h2

m−1∑
j=1

(
(r∆)1/2 +

σε√
r

)

= O

(
(∆r)3/2

h2
+

∆r1/2

h2

)
.

To prove (6.7), both following terms have to converge to zero in probability:

√
n∆h

(
D̂X(x)− D̂Y (x)

)
= OP

(
(n∆h)1/2(∆r)3/2

h2
+

(n∆h)1/2∆r1/2

h2

)
!
= oP (1), as n→∞, (6.8)

which is ensured by assumption A4.
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We now turn to the difference of both numerators and decompose it as follows:

N̂X(x)− N̂Y (x)

=
1

(m− 1)h

m−1∑
j=1

((
Ȳj+1 − Ȳj

)
K

(
Ȳj − x
h

)
−
(
Xjr∆ −X(j−1)r∆

)
K

(
X(j−1)r∆ − x

h

))

=
1

(m− 1)h

m−1∑
j=1

((
Ȳj+1 − Ȳj

)(
K

(
Ȳj − x
h

)
−K

(
X(j−1)r∆ − x

h

)))

+
1

(m− 1)h

m−1∑
j=1

(((
Ȳj+1 − Ȳj

)
−
(
Xjr∆ −X(j−1)r∆

))
K

(
X(j−1)r∆ − x

h

))
:= An(x) +Bn(x).

Again, we determine the L1-distance of both terms as follows:

E[|An(x)|] ≤ 1

(m− 1)h

m−1∑
j=1

E

[
|Ȳj+1 − Ȳj | ·

∣∣∣∣K ( Ȳj − xh

)
−K

(
X(j−1)r∆ − x

h

) ∣∣∣∣]

≤ ||K ′||∞
(m− 1)h2

m−1∑
j=1

E
[
|Ȳj+1 − Ȳj | · |Ȳj −X(j−1)r∆|

]
.
||K ′||∞

(m− 1)h2

m−1∑
j=1

(
r∆ +

1

r

)1/2

·
(
r∆ +

1

r

)1/2

=
r∆

h2
+

1

rh2
,

where we used the fact that

E
[
(ε̄j+1 − ε̄j)2

]
≤ 2

(
E[ε̄2

j+1] + E[ε̄2
j ]
)

=
4σ2

ε

r
.

Hence, we conclude that

E[|An(x)|] = O

(
r∆

h2
+

1

rh2

)
, as n→∞.

Furthermore, assumption A4 ensures that An(x) possesses the proper rate oP ((n∆h)−1/2):

√
n∆hAn(x) = OP

(
(n∆h)1/2r∆

h2
+

(n∆h)1/2

rh2

)
= oP (1), as n→∞.

The second term Bn(x) is, in a first stage, decomposed as follows:

Bn(x) =
1

(m− 1)h

m−1∑
j=1

(((
Ȳj+1 − Ȳj

)
−
(
Xjr∆ −X(j−1)r∆

))
K

(
X(j−1)r∆ − x

h

))

=
1

(m− 1)h

m−1∑
j=1

(((
X̄j+1 − X̄j

)
−
(
X(j+1)r∆ −Xjr∆

))
K

(
X(j−1)r∆ − x

h

))

+
1

(m− 1)h

m−1∑
j=1

(((
X(j+1)r∆ −Xjr∆

)
−
(
Xjr∆ −X(j−1)r∆

))
K

(
X(j−1)r∆ − x

h

))

+
1

(m− 1)h

m−1∑
j=1

(
(ε̄j+1 − ε̄j)K

(
X(j−1)r∆ − x

h

))
:=

3∑
k=1

Bn,k(x).
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At first look at term Bn,3(x):

Bn,3(x) =
1

(m− 1)h

m−1∑
j=1

(
(ε̄j+1 − ε̄j)K

(
X(j−1)r∆ − x

h

))

=
ε̄m

(m− 1)h
K

(
X(m−2)r∆ − x

h

)
− ε̄1

(m− 1)h
K

(
X0 − x
h

)
+

1

(m− 1)h

m−1∑
j=2

ε̄j

(
K

(
X(j−2)r∆ − x

h

)
−K

(
X(j−1)r∆ − x

h

))
.

Hence, the L1-distance can be bounded by

E[|Bn,3(x)|] ≤ 1

(m− 1)h
E

[∣∣∣∣ε̄m ·K (X(m−2)r∆ − x
h

) ∣∣∣∣]
+

1

(m− 1)h
E

[∣∣∣∣ε̄1 ·K
(
X0 − x
h

) ∣∣∣∣]
+

1

(m− 1)h

m−1∑
j=2

E

[
|ε̄j | ·

∣∣∣∣K (X(j−2)r∆ − x
h

)
−K

(
X(j−1)r∆ − x

h

) ∣∣∣∣]

≤ 2||K||∞
(m− 1)h

E[|ε̄m|] +
||K ′||∞

(m− 1)h2

m−1∑
j=2

E
[
|ε̄j | · |X(j−2)r∆ −X(j−1)r∆|

]
.

1

mhr1/2
+

1

mh2

m−2∑
j=1

1

r1/2
(r∆)1/2 = O

(
1

mhr1/2
+

∆1/2

h2

)
.

Again, by assumption A4, it holds that

√
n∆hBn,3(x) = OP

(
(n∆h)1/2

(m− 1)hr1/2
+

(n∆h)1/2∆1/2

h2

)
= oP (1), as n→∞.

Term Bn,2(x) can be decomposed in an analogous manner:

Bn,2(x) =
1

(m− 1)h

m−1∑
j=1

((
X(j+1)r∆ −Xjr∆

)
−
(
Xjr∆ −X(j−1)r∆

))
K

(
X(j−1)r∆ − x

h

)

=
(Xmr∆ −X(m−1)r∆)

(m− 1)h
K

(
X(m−2)r∆ − x

h

)
+

(X0 −Xr∆)

(m− 1)h
K

(
X0 − x
h

)
+

1

(m− 1)h

m−2∑
j=1

(X(j+1)r∆ −Xjr∆) ·
(
K

(
X(j−1)r∆ − x

h

)
−K

(
Xjr∆ − x

h

))
.

Now, the L1-distance can be bounded by

E[|Bn,2(x)|] ≤ ||K||∞
(m− 1)h

(
E[|Xmr∆ −X(m−1)r∆|] + E[|X0 −Xr∆|]

)
+
||K ′||∞

(m− 1)h2

m−2∑
j=1

E[|X(j+1)r∆ −Xjr∆| · |X(j−1)r∆ −Xjr∆|]

.
(r∆)1/2

(m− 1)h
+

(r∆)

h2
.
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Finally, assumption A4 guarantees that Bn,2(x) converges fast enough to zero in probability:

√
n∆hBn,2(x) = OP

(
(n∆h)1/2(r∆)1/2

(m− 1)h
+

(n∆h)1/2r∆

h2

)
= oP (1), as n→∞.

The remaining term Bn,1(x) can be decomposed according to

Bn,1(x) =
1

(m− 1)h

m−1∑
j=1

(((
X̄j+1 − X̄j

)
−
(
X(j+1)r∆ −Xjr∆

))
K

(
X(j−1)r∆ − x

h

))

=
(Xr∆ − X̄1)

(m− 1)h
K

(
X0 − x
h

)
+

(X̄m −X(m−1)r∆)

(m− 1)h
K

(
X(m−1)r∆ − x

h

)
+

1

(m− 1)h

m−2∑
j=1

(
X̄j+1 −X(j+1)r∆

)(
K

(
X(j−1)r∆ − x

h

)
−K

(
Xjr∆ − x

h

))
.

Following this decomposition, the L1-distance can be bounded by

E[|Bn,1(x)|] . (r∆)1/2

mh
+

(r∆)

h2
.

Hence,
Bn,1(x) = oP ((n∆h)−1/2), as n→∞,

which finishes the proof.
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