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Ruhr-Universität Bochum

We consider the optimal design problem for a comparison of two
regression curves, which is used to establish the similarity between the
dose response relationships of two groups. An optimal pair of designs
minimizes the width of the confidence band for the difference between
the two regression functions. Optimal design theory (equivalence the-
orems, efficiency bounds) is developed for this non standard design
problem and for some commonly used dose response models optimal
designs are found explicitly. The results are illustrated in several ex-
amples modeling dose response relationships. It is demonstrated that
the optimal pair of designs for the comparison of the regression curves
is not the pair of the optimal designs for the individual models. In
particular it is shown that the use of the optimal designs proposed in
this paper instead of commonly used ”non-optimal” designs yields a
reduction of the width of the confidence band by more than 50%.

1. Introduction. An important problem in many scientific research
areas is the comparison of two regression models that describe the relation
between a common response and the same covariates for two groups. Such
comparisons are typically used to establish the non-superiority of one model
to the other or to check whether the difference between two regression mod-
els can be neglected. These investigations have important applications in
drug development and several methods for assessing non-superiority, non-
inferiority or equivalence have been proposed in the recent literature [for
a recent reference see for example Gsteiger, Bretz and Liu (2011)]. For ex-
ample, if the “equivalence” between two regression models describing the
dose response relationships in the groups individually has been established
subsequent inference in drug development could be based on the combined
samples. This results in more precise estimates of the relevant parameters,
for example the minimum effective dose. Comparison of curves problems
have been investigated in linear and nonlinear models [see Liu et al. (2009),
Gsteiger, Bretz and Liu (2011), Liu, Jamshidian and Zhang (2011)] and also
in nonparametric regression models [see for example Hall and Hart (1990)
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2 H. DETTE AND K. SCHORNING

and Dette and Neumeyer (2001)]. A common approach in all these references
is to estimate regression curves in the different samples and to investigate the
maximum or an L2-distance (taken over the possible range of the covariates)
of the difference between these estimates (after an appropriate standardiza-
tion by a variance estimate).
This paper is devoted to the construction of efficient designs for the com-
parison of two parametric curves. Although the consideration of optimal
designs for dose response models has found considerable interest in the re-
cent literature [see for example Dette et al. (2008), Dragalin et al. (2010) and
Dette, Bornkamp and Bretz (2013) for recent references], we are not aware
of any work on design of experiments for the comparison of two parametric
regression curves. However, the effective planning of the experiments in the
comparison of curves will yield to a substantially more accurate statistical
inference. We demonstrate these advantages in Section 5 showing that the
width of the (simultaneous) confidence bands proposed by Gsteiger, Bretz
and Liu (2011) for the difference of the curves is about two times smaller if
a design constructed in this paper is used instead of a standard design.
The remaining part of this paper is organized as follows. Some terminology
(for the comparison of two parametric curves) will be introduced in Section
2, where we also give an introduction to optimal design theory in the present
context. The particular difference to the classical setup is that for the com-
parison of two curves two designs have to be chosen simultaneously (each
for one group or regression model). A pair of optimal designs minimizes an
integral or the maximum of the variance of the prediction for the difference
of the two regression curves calculated in the common region of interest.
Section 3 is devoted to some optimal design theory and we derive particu-
lar equivalence theorems corresponding to the new optimality criteria and
a lower bound for the efficiencies, which can be used without knowing the
optimal designs. It turns out that in general the optimal pair of designs is
not the pair of the optimal designs in the individual models.
In general, the problem of constructing optimal designs is very difficult and
has to be solved numerically in most cases of practical interest. Some analyt-
ical results are given in Section 4 for the commonly used Michaelis Menten,
Emax and loglinear model. In Section 5 we use the developed theory to
investigate specific optimal design problems for the comparison of nonlin-
ear regression models, which are frequently used in drug development. In
particular we demonstrate by means of a simulation study that the derived
optimal designs yield substantially narrower confidence bands. Some further
discussion is given in Section 6. In Section 6.1 we briefly indicate how the
results can be generalized if optimization can also be performed with respect
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to the allocation of patients to the different groups, while some robustness
issues are discussed in Section 6.2. Finally, all proofs and technical details
are deferred to an Appendix in Section 7.

2. Comparing parametric curves. Consider the regression models

(2.1) Yijk = mi(tij , ϑi) + εijk ; i = 1, 2; j = 1, . . . , `i ; k = 1, . . . , nij ,

where εijk are independent random variables, such that εijk ∼ N (0, σ2
i ), i =

1, 2. This means that two groups (i = 1, 2) are investigated and in each group
observations are taken at `i different experimental conditions ti1, . . . , ti`i ,
which vary in the design space (for example the dose range) X ⊂ R, and nij
observations are taken at each tij (i = 1, 2; j = 1, . . . , `i). Let ni =

∑`i
j=1 nij

denote the total number of observations in group i (= 1, 2) and n = n1 +
n2 the total sample size. Two regression models m1 and m2 with d1- and
d2-dimensional parameters ϑ1 and ϑ2 are used to describe the dependence
between response and predictor in the two groups. For asymptotic arguments
we assume that limni→∞

nij

ni
= ξij ∈ (0, 1) and collect this information in

the matrix

ξi =

(
ti1 . . . ti`i
ξi1 . . . ξi`i

)
, i = 1, 2.

Following Kiefer (1974) we call ξi an approximate design on the design space
X . This means that the support points tij define the distinct experimental
conditions where observations are to be taken and the weights ξij represent
the relative proportion of observations at the corresponding support point
tij (in each group). If an approximate design is given and ni observations can
be taken, a rounding procedure is applied to obtain integers nij (i = 1, 2,
j = 1, . . . , `i) from the not necessarily integer valued quantities ξijni [see
Pukelsheim and Rieder (1992)]. We note that d1 and d2 are determined by
the models m1 and m2 under consideration and that in this section the sam-
ple sizes n1 and n2 for the two groups are also fixed. The optimal allocation
of patients to the two different groups (for a fixed total sample size) will be
discussed in Section 6.1.
Assume that observations are taken according to an approximate design
and that an appropriate rounding procedure has been applied. In order to
measure the quality of an experimental design we use an asymptotic ar-
gument and assume that limni→∞

nij

ni
= ξij ∈ (0, 1). Then, under the com-

mon assumptions of regularity, the maximum likelihood estimates, say ϑ̂1, ϑ̂2

in both samples are asymptotically normally distributed (after appropriate
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standardization). Moreover, the prediction for the difference of the experi-
mental condition t satisfies

√
n
(
m1(t, ϑ̂1)−m2(t, ϑ̂2)− (m1(t, ϑ1)−m2(t, ϑ2))

) D−→ N
(
0, ϕ(t, ξ1, ξ2)

)
,

where the symbol
D−→ denotes weak convergence, the function ϕ is defined

by

(2.2) ϕ(t, ξ1, ξ2) =
σ2

1

γ1
fT1 (t)M−1

1 (ξ1, ϑ1)f1(t) +
σ2

2

γ2
fT2 (t)M−1

2 (ξ2, ϑ2)f2(t),

Mi(ξi, ϑi) =

∫
X
fi(t)f

T
i (t)dξi(t)

is the information matrix of the design ξi in model mi and
fi(t) = ∂

∂ϑi
mi(t, ϑi) ∈ Rdi is the gradient of mi with respect to the pa-

rameter ϑi ∈ Rdi (i = 1, 2). For these calculations we assume in particular
that the limit

γi = lim
n→∞

ni
n
∈ (0, 1), i = 1, 2

exists and that m1, m2 are continuously differentiable with respect to the
parameters ϑ1, ϑ2. Note that under different distributional assumptions on
the errors εijk in model (2.1) similar statements can be derived with different
covariance matrices in the asymptotic distribution.
Therefore the asymptotic variance of the prediction m1(t, ϑ̂1) − m̂2(t, ϑ̂2)
at an experimental condition t is given by ϕ(t, ξ1, ξ2), where ξ = (ξ1, ξ2) is
the pair of designs under consideration. Gsteiger, Bretz and Liu (2011) used
this result to obtain a simultaneous confidence band for the difference of the
two curves. More precisely, if Z is a range where the two curves should be
compared (note that in contrast to Gsteiger, Bretz and Liu (2011) here the
set Z does not necessarily coincide with the design space X ) the confidence
band is defined by
(2.3)

T̂ ≡ sup
t∈Z

|m1(t, ϑ̂1)−m2(t, ϑ̂2)− (m1(t, ϑ1)−m2(t, ϑ2))|

{ σ̂
2
1
γ1
f̂1(t)M−1

1 (ξ1, ϑ̂1)f̂1(t) +
σ̂2
2
γ2
f̂2(t)M−1

2 (ξ2, ϑ̂2)f̂2(t)}1/2
≤ D.

Here, σ̂2
1, σ̂

2
2, f̂1, f̂2 denote estimates of the quantities σ2

1, σ
2
2, f1, f2, respec-

tively and the constant D is chosen, such that P(T̂ ≤ D) ≈ 1−α. Note that
Gsteiger, Bretz and Liu (2011) proposed the parametric bootstrap for this
purpose. Consequently, a “good” design, more precisely, a pair ξ = (ξ1, ξ2)
of two designs on X , should make the width of this band as small as pos-
sible at each t ∈ Z. This corresponds to a simultaneous minimization of
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the asymptotic variance in (2.2) with respect to the choice of the designs
ξ1 and ξ2. Obviously, this is only possible in rare circumstances and we
propose to minimize a norm of the function ϕ as a design criterion. For
a precise definition of the optimality criterion we assume that the set Z
contains at least d ≥ max{d1, d2} points, say t1, . . . , td, such that the vec-
tors f1(t1), . . . , f1(td1) and f2(t1), . . . , f2(td2) are linearly independent in Rd1
and Rd2 , respectively. It then follows, that a pair of designs ξ = (ξ1, ξ2),
which allows to predict the regression function m1 and m2 at all points
t1, . . . , td1 and t1, . . . , td2 , respectively, must have nonsingular information
matrices M1(ξ1, ϑ1) and M2(ξ2, ϑ2). Therefore the optimization will be re-
stricted to the class of all designs ξ1 and ξ2 with non-singular information
matrices throughout this paper.
A worst case criterion is to minimize

µ∞(ξ) = µ∞(ξ1, ξ2) = sup
t∈Z
{ϕ(t, ξ1, ξ2)}(2.4)

with respect to ξ = (ξ1, ξ2) over a region of interest Z. Alternatively, one
could use an Lp-norm

(2.5) µp(ξ) = µp(ξ1, ξ2) =
(∫
Z
ϕp(t, ξ1, ξ2)dλ(t)

)1/p

of the function ϕ defined in (2.2) with respect to a given measure λ on the
region Z (p ∈ [1,∞)), where the measure λ has at least d ≥ max{d1, d2}
support points, say t1, . . . , td, such that the vectors f1(t1), . . . , f1(td1) and
f2(t2), . . . , f2(td2) are linearly independent in Rd1 and Rd2 , respectively.

Definition 2.1. For p ∈ [1,∞], γ1, γ2 fixed, a pair of designs ξ?,p =
(ξ?,p1 , ξ?,p2 ) is called locally µp-optimal design (for the comparison of the
curves m1 and m2) if it minimizes the function µp(ξ1, ξ2) over the space
of all approximate pairs of designs (ξ1, ξ2) on X × X with nonsingular in-
formation matrices M1(ξ1, ϑ1), M2(ξ2, ϑ2).

Remark 2.2.

1. The space Z does not necessarily coincide with the design space X .
The special case Z∩X = ∅ corresponds to the problem of extrapolation
and will be discussed in more detail in Section 4.

2. If one requires ξ1 = ξ2 (for example by logistic reasons) and Z = X
the criterion µ∞ is given by

max
t∈X

{σ2
1

γ1
fT1 (t)M−1

1 (ξ, ϑ1)f1(t) +
σ2

2

γ2
fT2 (t)M−1

2 (ξ, ϑ2)f2(t)
}
.
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It then follows from Theorem 1 in Läuter (1974) that this criterion is
equivalent to the weighted D-optimality criterion
(detM1(ξ, ϑ1))ω1(detM2(ξ, ϑ2))ω2 , where the weights are given by ω1 =
σ2
1
γ1

and ω2 =
σ2
2
γ2

. Criteria of this type have been studied intensively
in the literature [see Lau and Studden (1985), Dette (1990), Zen and
Tsai (2004) among others]. Similarly, the criterion µ1 corresponds to
a weighted sum of I-optimality criteria in the case X = Z.

3. It follows from Minkowski’s inequality that in general the pair of the
optimal designs for the individual models mi (i = 1, 2), is not neces-
sarily µp-optimal in terms of Definition 2.1.

In some applications it might not be possible to conduct the experiments
for both groups simultaneously. This situation arises, for example, in the
analysis of clinical trials where data from different sources is available and
one trial has already been conducted, while the other is planned in order to
compare the corresponding two response curves. In this case only one design
(for one group), say ξ1, can be chosen, while the other is fixed, say η. The
corresponding criteria are defined as

(2.6) νp(ξ1) = µp(ξ1, η), p ∈ [1,∞],

and νp is minimized in the class of all designs on the design space X with
non-singular information matrix M1(ξ1, ϑ1). The corresponding design min-
imizing νp is called νp-optimal throughout this paper.

3. Optimal Design Theory. A main tool of optimal design theory are
equivalence theorems which, on the one hand, provide a characterization of
the optimal design and, on the other hand, are the basis of many proce-
dures for their numerical construction [see for example Dette, Pepelyshev
and Zhigljavsky (2008) or Yu (2010), Yang, Biedermann and Tang (2013)].
Moreover, they are frequently used to reduce the infinite dimensional opti-
mization problems arising in optimal design theory to finite dimensional ones
by deriving upper bounds on the number of support points of the optimal
design. As the criteria under consideration are convex we can derive corre-
sponding characterizations for the µp-criteria. The following two results give
the equivalence theorems in the cases p ∈ [1,∞) (Theorem 3.1) and p =∞
(Theorem 3.2). These statements are used in Section 5 to check optimality
of numerically determined designs. Moreover, Theorem 3.2 is used in an ef-
ficient algorithm for the determination of µ∞-optimal designs in Section 5.
Proofs can be found in Section 7. Throughout this paper supp(ξ) denotes
the support of the design ξ on X .
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Theorem 3.1. Let p ∈ [1,∞). The design ξ?,p = (ξ?,p1 , ξ?,p2 ) is µp-
optimal if and only if the inequality∫

Z
ϕ(t, ξ?,p1 , ξ?,p2 )p−1

(γ1

σ2
1

ϕ2
1(t1, t, ξ

?,p
1 ) +

γ2

σ2
2

ϕ2
2(t2,t, ξ

?,p
2 )
)
dλ(t)

− µpp(ξ
?,p
1 , ξ?,p2 ) ≤ 0

(3.1)

holds for all t1, t2 ∈ X , where

(3.2) ϕi(d, t, ξ
?,p
i ) =

σ2
i

γi
fTi (d)M−1

i (ξ?,pi , ϑi)fi(t), i = 1, 2

and the function ϕ(t, ξ?,p1 , ξ?,p2 ) is defined in (2.2). Moreover, equality is
achieved in (3.1) for any (t1, t2) ∈ supp(ξ?,p1 )× supp(ξ?,p2 ).

Theorem 3.2. The design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 ) is µ∞-optimal if and only
if there exists a measure %? on the set of the extremal points

(3.3) Z(ξ?,∞) =

{
t0 ∈ Z : ϕ(t0, ξ

?,∞
1 , ξ?,∞2 ) = sup

t∈Z
ϕ(t, ξ?,∞1 , ξ?,∞2 )

}
of the function ϕ(t, ξ?,∞1 , ξ?,∞2 ), such that the inequality

(3.4)

∫
Z(ξ?,∞)

(γ1

σ2
1

ϕ2
1(t1, t, ξ

?,∞
1 ) +

γ2

σ2
2

ϕ2
2(t2, t, ξ

?,∞
2 )

)
d%?(t)− µ∞(ξ?,∞) ≤ 0

holds for all t1, t2 ∈ X , where the functions ϕ1 and ϕ2 are defined in
(3.2). Moreover, equality is achieved in (3.4) for any (t1, t2) ∈ supp(ξ?,∞1 )×
supp(ξ?,∞2 ).

Theorem 3.1 and Theorem 3.2 can be used to check the optimality of
a given design. However, in general the explicit calculation of locally µp-
optimal designs is very difficult. In order to investigate the quality of a
(non-optimal) design ξ = (ξ1, ξ2) for the purpose of comparing curves, we
consider its µp-efficiency which is defined by

(3.5) effp(ξ) =
µp(ξ

?,p)

µp(ξ)
∈ [0, 1].

The following theorem provides a lower bound for the efficiency of a design
ξ = (ξ1, ξ2) in terms of the functions appearing in the equivalence Theorems
3.1 and 3.2. It is remarkable that this bound does not require knowledge of
the optimal design.



8 H. DETTE AND K. SCHORNING

Theorem 3.3. Let ξ = (ξ1, ξ2) be a pair of designs with non singular
information matrices M1(ξ1, ϑ1), M2(ξ2, ϑ2).

(a) If p ∈ [1,∞), then
(3.6)

effp(ξ) ≥
µpp(ξ)

maxt1,t2∈X
∫
Z ϕ(t, ξ1, ξ2)p−1

(
γ1
σ2
1
ϕ2

1(t, t1, ξ1) + γ2
σ2
2
ϕ2

2(t, t2, ξ2)
)
dλ(t)

.

(b) If p =∞, then
(3.7)

eff∞(ξ) ≥ µ∞(ξ)

min%∈Ξ(Z(ξ)) maxt1,t2∈X
∫
Z(ξ)

γ1
σ2
1
ϕ2

1(t1, t, ξ1) + γ2
σ2
2
ϕ2

2(t2, t, ξ2)d%(t)
,

where Ξ(Z(ξ)) is the set of all measures on Z(ξ) defined in (3.3).

Roughly speaking the lower bound for the efficiency is the ratio of the
two terms in the equivalence Theorem 3.1 (in the case p <∞) and Theorem
3.2 (in the case p =∞). Consequently, for an optimal design the bound is 1
and for a nearly optimal design the bound is close to 1.
Now, we consider the case where one design η is already fixed and the crite-
rion can only be optimized by the other design. The proofs of the following
two results are omitted since they are similar to the proofs of Theorems 3.1
and 3.2.

Theorem 3.4. Let p ∈ [1,∞). The design ξ?,p1 is νp-optimal if and only
if the inequality

(3.8)

∫
Z
ϕp−1(t, ξ?,p1 , η)

(γ1

σ2
1

ϕ2
1(t1, t, ξ

?,p
1 ) + ϕ2(t, t, η)

)
dλ(t)− νpp(ξ?,p1 ) ≤ 0

holds for all t1 ∈ X , where ϕi and ϕ are defined in (3.2) and (2.2), respec-
tively. Moreover, equality is achieved in (3.8) for any t1 ∈ supp(ξ?,p1 ).

Theorem 3.5. The design ξ?,∞1 is ν∞-optimal if and only if there exists
a measure %? on the set of the extremal points

Z(ξ?,∞1 ) =

{
t0 ∈ Z : ϕ(t0, ξ

?,∞
1 , η) = sup

t∈Z
ϕ(t, ξ?,∞1 , η)

}
of the function ϕ(t, ξ?,∞1 , η), such that the inequality

(3.9)

∫
Z(ξ?,∞1 )

γ1

σ2
1

ϕ2
1(t1, t, ξ

?,∞
1 )d%?(t)−

∫
Z(ξ?,∞1 )

ϕ1(t, t, ξ?,∞1 )d%?(t) ≤ 0

holds for all t1 ∈ X , where the functions ϕ1 is defined in (3.2). Moreover,
equality is achieved in (3.9) for any t1 ∈ supp(ξ?,∞1 ).
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4. Some analytical results - extrapolation. In this section we present
some analytical results which illustrate the difficulties in determining de-
signs for the comparison of curves explicitly. These results can also be used
to check the accuracy and speed of convergence of the developed algorithms
(as the solutions are known). To be precise, we consider the criterion µ∞ and
the case where the design space X and the space Z do not intersect, which
corresponds to the problem of comparing two curves for extrapolation. In
general, extrapolation is not an easy task and has to be addressed very care-
fully, because it is not clear if the postulated relation between response and
predictor holds also in regions, where no data is available. However, in dose
response studies (such as Phase II clinical trials or studies in toxicology)
experimenters usually have information about the functional form describ-
ing this relation. Often models appear as solutions of differential equations
which are used to describe chemical reactions. In such cases extrapolation
is well justified. Moreover, in toxicology there are many cases where it is in
fact necessary to do a reasonable extrapolation, because patients cannot be
treated with too high doses.
We are particularly interested in the difference between curves modeled by
the Michaelis Menten, Emax and loglinear model. It turns out that the
results for these models can be easily obtained from a general result for
weighted polynomial regression models, which is of own interest and will be
considered first. For this purpose assume that the design space X and the
range Z are intervals, that is X = [LX , UX ], Z = [LZ , UZ ] and that both
regression models m1 and m2 are given by functions of the type

(4.1) mi(t) = ωi(t)

pi∑
j=0

ϑij t
j , i = 1, 2,

where ω1, ω2 are known positive weight functions on X ∪ Z. The models
m1, m2 are called weighted polynomial regression models and in the case
of one model several design problems have been discussed in the literature,
mainly for the D- and E-optimality criterion [see for example Dette (1993),
Heiligers (1994), Antille and Weinberg (2003), Chang (2005a,b) or Dette and
Trampisch (2010)]. It is easy to show that the systems {ωi(t)tj |j = 0, . . . , pi}
are Chebyshev systems on the convex hull of X ∪Z, say conv(X ∪Z), which
means that for any choice ϑi0, . . . , ϑipi the equation ωi(t)

∑pi
j=0 ϑijt

j = 0
has at most pi solutions in conv(X ∪Z) [see Karlin and Studden (1966)]. It
then follows from this reference that there exist unique polynomials vi(t) =
ωi(t)

∑pi
j=0 aijt

j , i = 1, 2 satisfying the properties

1. for all t ∈ X the inequality |vi(t)| ≤ 1 holds.
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2. there exist pi + 1 points LX ≤ ti0 < ti1 < . . . < tipi ≤ UX such that
vi(tij) = (−1)j for j = 0, . . . , pi.

The points ti0, . . . , tipi are called Chebyshev points while vi is called Cheby-
shev or equioscillating polynomial. The following results give an explicit
solution of the µ∞-optimal design problem if the functions m1 and m2 are
weighted polynomials.

Theorem 4.1. Consider the weighted polynomials (4.1) with differen-
tiable, positive weight functions ω1, ω2 such that for ωi(t) 6= c ∈ R
{1, ωi(t), ωi(t)t, . . . , ωi(t)t2pi−1} and {1, ωi(t), ωi(t)t, . . . , ωi(t)t2pi} are Cheb-
shev systems (i = 1, 2). Assume that X ∩ Z = [LX , UX ] ∩ [LZ , UZ ] = ∅.

1. If UX < LZ and ω1, ω2 are strictly increasing on Z, the support points
of the µ∞- optimal design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 ) are given by the extremal
points of the Chebyshev polynomial v1(t) for ξ?,∞1 and v2(t) for ξ?,∞2

with corresponding weights

(4.2) ξij =
|Lij(UZ)|∑pi
k=0 |Lik(UZ)|

j = 0, . . . , pi, i = 1, 2.

Here Lij(t) = ωi(t)
∑pi

j=0 `ijt
j is the j-th Lagrange interpolation poly-

nomial with knots ti0, . . . , tipi, i = 1, 2 defined by the properties
Lij(tik) = δjk, j, k = 1, . . . , pi (and δjk denotes the Kronecker sym-
bol).

2. If LX > UZ and ω1, ω2 are strictly decreasing on Z, the support points
of the µ∞-optimal design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 ) are given by the extremal
points of the Chebyshev polynomial v1(t) for ξ?,∞1 and v2(t) for ξ?,∞2

with corresponding weights

ξij =
|Lij(LZ)|∑pi
k=0 |Lik(LZ)|

, j = 0, . . . , pi, i = 1, 2.

Remark 4.2. It is worthwhile to mention that for general p 6= ∞ the
µp-optimal designs have to be found numerically if the degree of the polyno-
mials is larger than 2. The situation is similar as in the problem of calculating
optimal designs with respect to Kiefer’s Φp-criteria for (unweighted) polyno-
mial regression models. Only in the cases p = 0 and p =∞ corresponding to
the D- and E-criterion explicit results are available [see Pukelsheim (2006)].
The µp-optimal design problems are even harder and only the µ∞-optimal
designs can be found explicitly for weighted polynomial regression models.

Example 4.3. If both regression models m1 and m2 are given by poly-
nomials of degree p1 and p2, we have ω1 ≡ ω2 ≡ 1 and the µ∞-optimal



COMPARING CURVES 11

design can be described even more explicitly. For the sake of brevity we
only consider the case UX < LZ . According to Theorem 4.1 ξ?,∞1 and ξ?,∞2

are supported at the extremal points of the polynomials v1(t) and v2(t). If
ω1 ≡ ω2 ≡ 1 these are given by the Chebyshev polynomials of the first kind
on the interval [LX , UX ], that is

v1(t) = Tp1

(
2t− (UX + LX )

UX − LX

)
and v2(t) = Tp2

(
2t− (UX + LX )

UX − LX

)
,

where Tp(x) = cos(p arccosx), x ∈ [−1, 1]. Consequently, the component
ξ?,∞i of the optimal design is supported at the pi + 1 Chebyshev points

tij =
(1− cos( jpi π))UX + (1 + cos( jpi π))LX

2
, j = 0, . . . , pi

with corresponding weights

(4.3) ξij =
|Lij(UZ)|∑pi
k=0 |Lik(UZ)|

, j = 0, . . . , pi

where

Lij(t) =

pi∏
k=0,k 6=j

t− tik
tij − tik

is the Lagrange interpolation polynomial at the knots ti0, . . . , tipi .

While Theorem 4.1 and Example 4.3 are of own interest, they turn out to
be particularly useful to find µ∞-optimal designs for some commonly used
dose response models. To be precise we consider the Michaelis Menten model

(4.4) m(t, ϑ) =
ϑ1t

ϑ2 + t

the loglinear model with fixed parameter ϑ3

(4.5) m(t, ϑ) = ϑ1 + ϑ2 log(t+ ϑ3)

and the Emax model

(4.6) m(t, ϑ) = ϑ1 +
ϑ2t

ϑ3 + t
.

The following result specifies the µ∞-optimal designs for the comparison of
curves if X ∩ Z = ∅ and m1 and m2 are given by any of these models.
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Corollary 4.4. Assume that the regression models m1 and m2 are
given by one of the models (4.4) - (4.6), LX ≥ 0 and UX < LZ . The µ∞-
optimal design is given by ξ?,∞ = (ξ?,∞1 , ξ?,∞2 ), where ξ?,∞i is given by

ξ?,∞MM =

(
ϑ2UX (

√
2−1)

(2−
√
2)UX+ϑ2

UX

ϑ2(UZ−UX )

UXUZ (3
√
2−4)+ϑ2(

√
2UZ−(4−2

√
2)UX )

(
√
2−1)[(2−

√
2)UXUZ+ϑ2(UZ−(

√
2−1)UX )]

UXUZ (3
√
2−4)+ϑ2[

√
2UZ−(4−2

√
2)UX ]

)
,

if mi is the Michaelis Menten model and ϑ2UX (
√

2−1)

(2−
√

2)UX+ϑ2
≥ LX > 0, by

ξ?,∞LogLin =

(
LX UX

log(UZ+ϑ3)−log(UX+ϑ3)
2 log(UZ+ϑ3)−(log(LX+ϑ3)+log(UX+ϑ3))

log(UZ+ϑ3)−log(LX+ϑ3)
2 log(UZ+ϑ3)−(log(LX+ϑ3)+log(UX+ϑ3))

)
,

if mi is the loglinear model and by

ξ?,∞Emax =

(
LX

2UXLX+(UX+LX )ϑ3
2ϑ3+UX+LX

UX
(g(UZ ,UX )+g(UZ ,LX ))g(UZ ,UX )

L
4g(UZ ,UX )g(UZ ,LX )

L
(g(UZ ,UX )+g(UZ ,LX ))g(UZ ,LX )

L

)
if mi is the Emax model. Here the function g is defined by
g(a, b) = a

a+ϑ3
− b
b+ϑ3

and L is a normalizing constant, that is L = g2(UZ , UX )+

6g(UZ , UX )g(UZ , LX ) + g2(UZ , LX ).

5. Numerical results. In most cases of practical interest the µp-optimal
designs have to be found numerically. In the case p <∞ the optimality crite-
ria are in fact differentiable. In this case - as the criteria under consideration
are convex - several procedures from convex optimization theory can be
used for this purpose, which have been adapted to the specific optimiza-
tion problems (such as no upper bound on the dimension) occurring in the
determination of optimal experimental designs [see Dette, Pepelyshev and
Zhigljavsky (2008), Yang (2010) or Yang, Biedermann and Tang (2013)].
In particular the optimality of the numerically constructed designs can be
easily checked using the equivalence Theorem 3.1. For this reason we con-
centrate on the case p =∞ which is also probably of most practical interest,
because it directly refers to the maximum width of the confidence band. The
µ∞-optimality criterion is not necessarily differentiable. As a consequence
there appears the unknown measure %? in Theorem 3.2, which has also to
be calculated in order to check the µ∞-optimality of a given design (or to
obtain a tight lower bound for its efficiency by an application of 3.3). For-
mer algorithms for minimax optimal design problems are based on analogues
of Theorem 3.2 such that the measure %? has to be calculated simultane-
ously with the optimal design [see for example Wong and Cook (1993)]. We
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now derive an alternative procedure using the Particle Swarm Optimization
(PSO), which calculates the µ∞-optimal design and the corresponding mea-
sure %? consecutively. For this purpose recall the definition of ϕ̃i in (3.2),
and consider an arbitrary design ξ = (ξ1, ξ2) and an arbitrary measure %
defined on the set of the extremal points Z(ξ), then the following inequality
holds

max
t1,t2∈X

∫
Z(ξ)

( γ1
σ2
1
ϕ2

1(t1, t, ξ1) + γ2
σ2
2
ϕ2

2(t2, t, ξ2))d%(t)

≥
∫
X

∫
Z(ξ)

γ1
σ2
1
ϕ2

1(t1, t, ξ1)d%(t)dξ1(t1) +

∫
X

∫
Z(ξ)

γ2
σ2
2
ϕ2

2(t2, t, ξ2)d%(t)dξ2(t2)

=

∫
Z(ξ)

ϕ(t, ξ1, ξ2)d%(t) = µ∞(ξ).

On the other hand it follows from the equivalence Theorem 3.2 that the
opposite inequality also holds for the µ∞-optimal design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 )
and the corresponding measure %? on Z(ξ?,∞) [see inequality (3.4)]. Con-
sequently, the measure %? is the measure on Z(ξ?,∞) which minimizes the
function

N∞(%, ξ?,∞) = max
t1,t2∈X

∫
Z(ξ?,∞)

( γ1
σ2
1
ϕ2

1(t1, t, ξ
?,∞
1 ) + γ2

σ2
2
ϕ2

2(t2, t, ξ
?,∞
2 ))d%(t)(5.1)

= max
t1∈X

σ2
1
γ1
fT1 (t1)M−1

1 (ξ?,∞1 )M1(%)M−1
1 (ξ?,∞1 )f1(t1)

+ max
t2∈X

σ2
2
γ2
fT2 (t2)M−1

2 (ξ?,∞2 )M2(%)M−1
2 (ξ?,∞2 )f2(t2).

The µ∞-optimal design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 ) and the corresponding measure
%? for the equivalence theorems are now calculated numerically in four con-
secutive steps using Particle Swarm Optimization (PSO) [see for example
Clerc (2006)]:

1. We calculate the µ∞-optimal design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 ) using PSO.
2. We calculate numerically the set of extremal points
Z(ξ?,∞) = {z1, . . . , zk} of the function ϕ(t, ξ?,∞1 , ξ?,∞2 ).

3. We calculate numerically the measure %? on Z(ξ?,∞) = {z1, . . . , zk}
which minimizes the function N∞(%, ξ?,∞) defined in (5.1) using PSO.

4. We check the optimality of the design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 ) calculated
in step 1 by an application of Theorem 3.2 using the measure %? from
Step 3.
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Table 1
Commonly used dose response models with their parameter specifications [from Bretz,

Pinheiro and Branson (2005)].

model m(t, ϑ) parameters

Emax ϑ1 + ϑ2t
t+ϑ3

(0.2, 0.7, 0.2)

exponential ϑ1 + ϑ2 exp(t/ϑ3) (0.183, 0.017, 0.28)
loglinear ϑ1 + ϑ2 log(t+ ϑ3) (0.74, 0.33, 0.2)

In its original form the PSO is a metaheuristic algorithm whose conver-
gence can not be proved. However, there exist several modifications of the
method, such that convergence can established mathematically [see for ex-
ample van den Bergh and Engelbrecht (2010) or Bonyadi and Michalewicz
(2014) among others]. In our implementation we did not use any modifica-
tion of this type, but we added Step 4 in the procedure to check the derived
designs for optimality by an application of the equivalence Theorem 3.2. Due
to the convexity of the corresponding optimization problems this procedure
is very reliable and the PSO algorithm with 400 particles and 250 iterations
was able to find the µ∞-optimal design with the required accuracy in all
considered examples. This usually requires about 8 minutes cpu time on a
standard PC.
In the following discussion we consider the exponential, loglinear and Emax
model with their corresponding parameter specifications depicted in Table
1. These models have been proposed by Bretz, Pinheiro and Branson (2005)
as a selection of commonly used models to represent dose response relation-
ships on the dose range [0, 1]. These authors also proposed a design which
allocates 20% of the patients to the dose levels 0, 0.05, 0.2, 0.6 and 1, and
which will be called standard design in the following discussion. We consider
µ∞-optimal designs for the three combinations of these models, where the
design space and the region of interest are given by X = Z = [0, 1]. The
variances σ2

1 and σ2
2 are equal and given by σ2 = 1.4782 as proposed in Bretz,

Pinheiro and Branson (2005) and we assume γ1 = γ2 = 0.5. The resulting
µ∞-optimal designs are displayed in Table 2. In the diagonal blocks we have
two identical designs reflecting the fact that in this case m1 = m2. These
designs are actually the D-optimal designs for the corresponding common
model, which follows by a straightforward application of the famous equiv-
alence theorem for D- and G-optimal designs [see Kiefer and Wolfowitz
(1960)].
In the other cases the optimal designs are obtained from Table 2 as follows.
For example, the µ∞-optimal design for the combination of the Emax (m1)
and the exponential model (m2) can be obtained from the right upper block.
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Table 2
µ∞-optimal designs for different model combinations. Upper rows: support points. Lower

rows: weights given in percent (%).

m1/ m2 Emax loglinear exponential

Emax

0.00 0.14 1.00 0.00 0.22 1.00 0.00 0.74 1.00
33.3̄ 33.3̄ 33.3̄ 34.0 32.5 33.5 40.3 27.4 32.3
0.00 0.14 1.00 0.00 0.15 1.00 0.00 0.15 1.00
33.3̄ 33.3̄ 33.3̄ 33.4 32.7 33.9 32.0 28.2 39.8

loglinear

0.00 0.23 1.00 0.00 0.74 1.00
33.3̄ 33.3̄ 33.3̄ 39.2 26.8 34.0
0.00 0.23 1.00 0.00 0.24 1.00
33.3̄ 33.3̄ 33.3̄ 33.5 27.8 38.7

exponential

0.00 0.75 1.00
33.3̄ 33.3̄ 33.3̄
0.00 0.75 1.00
33.3̄ 33.3̄ 33.3̄

The first component is the design for the exponential model, which allo-
cates 40.3% , 27.4% , 32.3% of the patients to the dose levels 0.00, 0.74, 1.00.
The second component is the design for the Emax model which allocates
32.0% , 28.2%, 39.8% of the patients to the dose levels 0.00, 0.15, 1.00.

In Figure 1 we demonstrate the application of the equivalence Theorem
3.2 for the combinations Emax and exponential model and exponential and
loglinear model.
The advantages of the new designs are illustrated in Figure 2, where we
present the improvement of the confidence bands proposed by Gsteiger,
Bretz and Liu (2011) for the difference between the two regression functions
if the µ∞-optimal design is used instead of a pair of the standard designs.
The sample sizes in both groups are n1 = 100 and n2 = 100, respectively.
The presented confidence bands are the averages of uniform confidence bands
calculated by 100 simulation runs. We observe that inference on the basis of
an µ∞-optimal design yields a substantial reduction in the (maximal) width
of the confidence band.

It was also pointed out by a referee that it might be of interest to investigate
the sensitivity of this improvement with respect to misspecification of the
parameters in the locally µ∞-optimality criterion. Exemplarily we consider
the locally µ∞-optimal design for the combination for the Emax and the
exponential model. The µ∞-optimal design has been constructed for the pa-
rameter constellation given in Table 1, whereas the actual “true” parameters
for the Emax and exponential model are given by ϑEmax = (0.1, 0.35, 0.1)T
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Fig 1. Illustration of Theorem 3.2. The figures show the function on the left hand side
of inequality (3.4). Left figure: The combination of exponential and Emax model. Right
figure: The combination of the loglinear and the exponential model.

Table 3
The µ∞-efficiencies (in %) of the standard design, of the pairs of D-optimal designs

(displayed in the diagonal blocks of Table 2) and of the robust optimal design (cf. Section
6.2).

model 1 / model 2 loglin / exp loglin / Emax exp / Emax

standard design 58.85 72.83 59.00

D-optimal designs for Emax 2.21 93.81 2.24

D-optimal designs for loglinear 7.31 92.44 7.40

D-optimal designs for exponential 15.08 3.72 4.29

robust optimal design 67.30 89.65 69.57

and ϑexp = (0.1, 0.05, 0.167)T (scenario A) and by ϑEmax = (0.4, 0.7, 0.4)T

and ϑexp = (0.4, 0.2, 0.66)T (scenario B), respectively. In Figure 3 we com-
pare the resulting confidence bands obtained from the µ∞-optimal design
(with misspecified parameters) with those obtained from the standard de-
sign. We observe that - despite the misspecification of the parameters - the
µ∞-optimal design yields substantially narrower confidence bands in both
scenarios. Further investigations, which are not reported for the sake of
brevity, showed a similar picture and we conclude that the µ∞-optimal de-
sign is robust against (moderate) misspecification of the parameters. The
construction of robust designs with respect to extreme misspecification of
the parameters will be discussed in Section 6.2.
Besides the comparison of the different confidence bands produced by the
µ∞-optimal design and the standard design proposed in Bretz, Pinheiro and
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Fig 2. Confidence bands obtained from the µ∞-optimal design (solid lines) and a standard
design (dashed lines). The dotted line shows the true difference of the curves. Left figure:
The combination of exponential and Emax model. Right figure: The combination of the
loglinear and the exponential model.

Branson (2005) we can also compare different designs using the efficiency
defined by (3.5). For example the efficiencies of the µ∞-optimal design for
the combination for the Emax and the exponential model with misspecified
parameters are given by 79.93% (for scenario A) and by 80.09% (for scenario
B), while the standard design has efficiencies 27.31% and 63.32% in these
cases.
A more detailed comparison of the designs for different models (with cor-
rectly specified parameters) is given in Table 3, where we also investigate
the problem of model misspecification. If the model is correctly specified we
observe a substantial loss of efficiency if the standard design is used instead
of a µ∞-optimal design. In row 2-4 of Table 3 we show the correspond-
ing efficiencies of the µ∞-optimal design, if these designs are used for the
comparison of different curves. For example, the µ∞-optimal design for two
Emax models has µ∞-efficiencies 2.21%, 93.81% and 2.24%, if it is used for
the comparison of the loglinear and exponential, the loglinear and Emax and
the exponential and Emax model, respectively. The results indicate that the
optimal designs are sensitive with respect to misspecification of the para-
metric form of the regression functions, and that they do not necessarily
improve the standard design in such cases. In the last row of Table 3 we
display the efficiencies of a robust design which will be constructed by the
methodology developed in Section 6.2. We observe an improvement of the
standard design in all considered scenarios.
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Fig 3. Confidence bands obtained from the standard design (dashed lines) and the µ∞-
optimal design for the Emax and the exponential model under misspecification of the model
parameters (solid lines). The optimal designs have been calculated for the parameters given
in Table 1, where the actual “true” parameters are given by ϑEmax = (0.1, 0.35, 0.1)T

and ϑexp = (0.1, 0.05, 0.167)T (left panel) and by ϑEmax = (0.4, 0.7, 0.4)T and
ϑexp = (0.4, 0.2, 0.66)T (right panel).

6. Further discussion.

6.1. Optimal allocation to the two groups. So far we have assumed that
the sample sizes n1 and n2 in the two groups are fixed and cannot be chosen
by the experimenter. In this section we will briefly indicate some results, if
optimization can also be performed with respect to the relative proportions
γ1 = n1/(n1 + n2) and γ2 = n2/(n1 + n2) for the two groups. Following
the approximate design approach we define γ as a probability measure with
masses γ1 and γ2 at the points 0 and 1, respectively, and a µ∞-optimal
design as a triple ξ?,∞ = (ξ?,∞1 , ξ?,∞2 , γ?), which minimizes the functional

µ∞(ξ1, ξ2, γ) = sup
t∈Z

ϕ(t, ξ1, ξ2, γ),

where

ϕ(t, ξ1, ξ2, γ) =
σ2

1

γ1
fT1 (t)M−1

1 (ξ1, ϑ1)f1(t) +
σ2

1

γ2
fT2 (t)M−1

2 (ξ2, ϑ2)f2(t).

Similar arguments as given in the proof of Theorem 3.1 give a characteri-
zation of the optimal designs. The details are omitted for the sake of brevity.

Theorem 6.1. A design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 , γ?) is µ∞-optimal if and
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Table 4
The µ∞-optimal design (ξ?,∞1 , ξ?,∞2 , γ?) for the comparison of the Emax and the

exponential model, where optimization is also performed with respect to the relative
sample sizes γ = (γ1, γ2) for the two groups. The weights are given in %.

γ∗ ξ?,∞1 ξ?,∞2

(30.2, 69.8)
0.00 0.15 1.00
32.4 24.9 42.7

0.00 0.75 1.00
36.9 30.4 32.7

only if there exists a measure %? on the set

Z(ξ?,∞1 , ξ?,∞2 , γ?) = {t ∈ Z : µ∞(ξ?,∞1 , ξ?,∞2 , γ?) = ϕ(t, ξ?,∞1 , ξ?,∞2 , γ?)}

such that the inequality∫
Z(ξ?,∞1 ,ξ?,∞2 ,γ?)

I{ω=0}
σ2
1

ϕ2
1(t, t1, ξ

?,∞
1 )+ I{ω=1}

σ2
2

ϕ2
2(t, t2, ξ

?,∞
2 ) d%?(t)

− µ∞(ξ?,∞1 , ξ?,∞2 , γ?) ≤ 0

(6.1)

is satisfied for all t1, t2 ∈ X and ω ∈ {0, 1}, where ϕi is defined in (3.2)
with γi = γ?i . Moreover, equality is achieved in (3.4) for any (t1, t2, ω) ∈
supp(ξ?,∞1 )× supp(ξ?,∞2 )× {0, 1}.

Example 6.2. The µ∞-optimal design (ξ?,∞1 , ξ?,∞2 , γ?) can be deter-
mined numerically in a similar way as described in Section 5, and we briefly
illustrate some results for the comparison of the Emax model with the ex-
ponential model, where the parameters are given in Table 1. The variances
are σ2

1 = 1.4782 in the first group and σ2
2 = 5 · 1.4782 in the second group

and the optimal designs (calculated by the PSO) are presented in Table 4.
Note that the optimal design allocates only 30.2% of the observations to the
first group. A comparison of the optimal designs from Table 4 with the cor-
responding optimal designs from Table 2 (calculated under the assumptions
σ2

1 = σ2
2 and γ1 = γ2 = 0.5) shows that the support points are very similar,

but there appear differences in the weights.

6.2. Robustness. For the sake of transparency the discussion presented
so far considers locally optimal designs [see Chernoff (1953)] for “known”
models in the two samples. Besides the specification of the models these
designs require a-priori information about the corresponding parameters. In
several situations preliminary knowledge regarding the model and/or un-
known parameters is available. A typical example are phase II clinical dose
finding trials, where some useful knowledge regarding model and correspond-
ing parameters is already available from phase I [see Dette et al. (2008)].
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Moreover, these designs can be applied as benchmarks for commonly used
designs, and locally optimal designs serve as basis for constructing optimal
designs with respect to more sophisticated optimality criteria, which are
efficient and robust against model assumptions [see Läuter (1974), Dette
(1990), Chaloner and Verdinelli (1995), Dette (1997) among others].
In this section we briefly indicate how the methodology introduced in the
previous sections can be further developed to address uncertainty with re-
spect to the model assumptions. For the sake of brevity we restrict ourselves
to the µ∞-criterion and note that similar results as presented in this section
can be obtained for the criterion (2.5). In order to reflect the dependence
of the criterion (2.4) on the regression functions m1,m2, the parameters
ϑ1, ϑ2 and the variances σ2

1, σ
2
2 in our notation we will use the notation

µ1,2
∞ (ξ1, ξ2, ϑ1, ϑ2, σ

2
1, σ

2
2) for the criterion introduced in equation (2.4). Sim-

ilarly, we denote the efficiency introduced in (3.5) by

(6.2) eff1,2
∞ (ξ, ϑ1, ϑ2, σ

2
1, σ

2
2) =

µ1,2
∞ (ξ1,2,?

ϑ1,ϑ2,σ2
1 ,σ

2
2
, ϑ1, ϑ2, σ

2
1, σ

2
2)

µ1,2
∞ (ξ, ϑ1, ϑ2, σ2

1, σ
2
2)

where ξ1,2,?
ϑ1,ϑ2,σ2

1 ,σ
2
2

is the locally µ∞-optimal design minimizing the functional

µ1,2
∞ (·, ϑ1, ϑ2, σ

2
1, σ

2
2) (for fixed models m1,m2, fixed parameters ϑ1, ϑ2 and

fixed variances σ2
1, σ

2
2). We assume that p models, say m1, . . . ,mp, are avail-

able to describe the relation between predictor and response in both groups.
We address uncertainty with respect to the parameters in model mk by a
prior distribution, say πk, for the corresponding parameter ϑk ∈ Θk ⊂ Rdk
and with respect to the variance σ2

i by a prior distribution on R+, say τi
(i = 1, 2). A design is called robust optimal design for the comparison of the
two curves if it maximizes the functional
(6.3)

Φ(ξ) =

p∑
k,l=1

αk,l

∫
R+

∫
R+

∫
Θk

∫
Θl

eff k,l∞ (ξ, ϑk, ϑl, σ
2
1 , σ

2
2)πk(dϑk)πl(dϑl)τ1(dσ2

1)τ2(dσ2
2),

where the quantities αk,l denote non-negative weights reflecting the experi-
menters belief about the pair (mk,ml) for group 1 and 2 with

∑p
k,l=1 αk,l = 1

(here and throughout this section we assume the existence of all integrals).
Exemplarily, we mention a generalization of Theorem 3.2. The proof is omit-
ted for the sake of brevity.

Theorem 6.3. The design ξ? = (ξ?1 , ξ
?
2) is robust optimal for the com-

parison of the two curves if and only if for all k, l = 1, . . . , p, for all ϑk ∈
supp(πk), ϑl ∈ supp(πl) and for all σ2

i ∈ supp(τi) (i = 1, 2) there exist
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measures %?,k,l
ϑk,ϑl,σ

2
1 ,σ

2
2

on the sets of the extremal points

Zk,l
ϑk,ϑl,σ2

1 ,σ
2
2
(ξ?) =

{
t0 ∈ Z

∣∣∣ σ2
1

γ1
fTk (t0, ϑk)M−1

k (ξ?1 , ϑk)fk(t0, ϑk)

+
σ2

2

γ2
fTl (t0, ϑl)M

−1
l (ξ?2 , ϑl)fl(t0, ϑl) = µk,l∞ (ξ?1 , ξ

?
2 , ϑk, ϑl, σ

2
1 , σ

2
2)
}
,

such that the inequality∫
R>0

∫
R>0

p∑
k,l=1

αk,l

∫
Θk

∫
Θl

{eff k,l
∞ (ξ?, ϑk, ϑl, σ

2
1, σ

2
2)

µk,l∞ (ξ?, ϑk, ϑl, σ
2
1, σ

2
2)
Lk,l(ζ1, ζ2, ξ

?, %?,k,l
ϑk,ϑl,σ

2
1 ,σ

2
2
)

−eff k,l
∞ (ξ?, ϑk, ϑl, σ

2
1, σ

2
2)
}
πk(dϑk)πl(dϑl)τ1(dσ2

1)τ2(dσ2
2) ≤ 0

with Lk,l := Lk,l(ζ1, ζ2, ξ
?, %?,k,l

ϑk,ϑl,σ
2
1 ,σ

2
2
) defined by

Lk,l =
(σ2

1

γ1
tr
(
Mk(%?,k,l

ϑk,ϑl,σ2
1 ,σ

2
2
, ϑk)M−1

k (ξ?1 , ϑk)Mk(ζ1, ϑk)M−1
k (ξ?1 , ϑk)

)
+
σ2

2

γ2
tr
(
Ml(%

?,k,l
ϑk,ϑl,σ2

1 ,σ
2
2
, ϑl)M

−1
l (ξ?2 , ϑl)Ml(ζ2, ϑl)M

−1
l (ξ?2 , ϑl)

))
holds for all approximate pairs of designs ζ = (ζ1, ζ2) on X × X .

Efficient robust designs can be calculated by a generalization of the algo-
rithm developed in Section 5 and we illustrate the application of the algo-
rithm in the examples considered in Section 5. As indicated in this section,
the µ∞-optimal designs are robust with respect to moderate misspecifica-
tion of the model parameters [see the discussion at the end of Section 5],
however, they are less robust with respect to misspecification of the para-
metric regression models [see Table 3]. For this reason we use one-point
priors πk, πl, τ1, τ2, in equation (6.3) (supported at the parameters specified
in Table 1 for the three models). For the weights αk,l in (6.3) we choose
α1,1 = α2,2 = α3,3 = 1/3 and αk,l = 0, for k 6= l. This means that we
construct a robust design for the comparison of two Emax, two exponential
and two log-linear models.
The robust optimal design is given by ξrobust = (ξ1,robust, ξ2,robust), where
ξ1,robust has masses 30.27%, 30.72%, 19.56%, 19.44% at the points 0.00 ,
0.17, 0.77, 1.00 and ξ2,robust has masses 29.96%, 30.18%, 19.38%, 20.48% at
the points 0.00, 0.17, 0.76 1.00. Its efficiencies are given in the last row of
Table 3. We observe a substantial improvement of the standard design. It
might also be of interest to compare the two designs for equal models for the



22 H. DETTE AND K. SCHORNING

two groups. The efficiencies of the standard design are 67.98%, 42.87% and
74.29% for the Emax/Emax, exp/exp and loglin/loglin case, respectively,
while the corresponding efficiencies of the robust optimal design are 90.40%,
59.96% and 90.79%. In all scenarios the robust optimal design provides a
substantial improvement of the standard design.
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7. Proofs. Let Ξ denote the space of all approximate designs on X and
define for ξ1, ξ2 ∈ Ξ

(7.1) M(ξ1, ξ2, ϑ1, ϑ2) =

( γ1
σ2
1
M1(ξ1, ϑ1) 0d1×d2

0d2×d1
γ2
σ2
2
M2(ξ2, ϑ2)

)
as the block diagonal matrix with information matrices γ1

σ2
1
M1(ξ1, ϑ1) and

γ2
σ2
2
M2(ξ2, ϑ2) in the diagonal. The set

M(2) = {M(ξ1, ξ2, ϑ1, ϑ2) : ξ1, ξ2 ∈ Ξ}

is obviously a convex subset of the set NND(d1 + d2) of all non-negative
definite (d1 + d2) × (d1 + d2) matrices. Moreover, if δt denotes the Dirac
measure at the point t ∈ X it is easy to see that M(2) is the convex hull of
the set

D(2) = {M(δt1 , δt2 , ϑ1, ϑ2) : t1, t2 ∈ X} ,

and that for any p ∈ [1,∞] the function µp(ξ) = µp((ξ1, ξ2)) defined in (2.5)
and (2.4) is convex on the set Ξ× Ξ.
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Proof of Theorem 3.1 Note that the function ϕ in (2.2) can be written
as ϕ(t, ξ1, ξ2) = fT (t)M−1(ξ1, ξ2, ϑ1, ϑ2)f(t), where fT (t) = (fT1 (t), fT2 (t))
and M(ξ1, ξ2) ∈M(2) is defined in (7.1). Similarly, we introduce the notation
Φ(M, t) = fT (t)M−1f(t) for a matrixM ∈M(2) and we rewrite the function
µp(ξ1, ξ2) as
(7.2)

µ̃p(M) =
(∫
Z

(Φ(M, t))p dλ(t)
)1/p

=
(∫
Z

(
fT (t)M−1f(t)

)p
dλ(t)

)1/p
.

Because of the convexity of µp the design ξ?,p = (ξ?,p1 , ξ?,p2 ) is µp-optimal if
and only if the derivative of µ̃p(M) evaluated in M0 = M(ξ?,p1 , ξ?,p2 , ϑ1, ϑ2)
is non-negative for all directions E0 = E − M0, where E ∈ M(2), i.e.
∂µ̃p(M0, E0) ≥ 0. Since M(2) = conv(D(2)) it is sufficient to verify this
inequality for all E ∈ D(2).
Assuming that integration and differentiation are interchangeable, it follows
by standard calculations that the derivative at M0 = M(ξ1, ξ2, ϑ1, ϑ2) in
direction E0 = M(δt1δt2 , ϑ1, ϑ2)−M0 is given by

(7.3) ∂µ̃p(M0, E0) = µp(ξ1, ξ2)
[
1− µp(ξ1, ξ2)−p

∫
Z
β(t, t1, t2)dλ(t)

]
where the function β is given by

(7.4) β(t, t1, t2) = ϕ(t, ξ1, ξ2)p−1( γ1
σ2
1
(ϕ1(t, t1, ξ1))2 + γ2

σ2
2
(ϕ2(t, t2, ξ2))2).

Consequently, the design ξ?,p = (ξ?,p1 , ξ?,p2 ) is µp-optimal if and only if the
inequality

(7.5)

∫
Z
β(t, t1, t2)dλ(t)−

(
µp(ξ

?,p
1 , ξ?,p2 )

)p ≤ 0

is satisfied for all t1, t2 ∈ X , which proves the first part of the assertion.
It remains to prove that equality holds for any point (t1, t2) ∈ supp(ξ?,p1 )×
supp(ξ?,p2 ). For this purpose we assume the opposite, i.e. there exists a point
(t1, t2) ∈ supp(ξ?,p1 )× supp(ξ?,p2 ), such that there is strict inequality in (7.5).
This gives∫

X

∫
X

∫
Z
β(t, t1, t2)dλ(t)dξ?,p1 (t1)dξ?,p2 (t2) <

(
µp(ξ

?,p
1 , ξ?,p2 )

)p
.

On the other hand, we have∫
X

∫
X

∫
Z
β(t, t1, t2)dλ(t)dξ?,p1 (t1)dξ?,p2 (t2)

=

∫
Z
ϕ(t, ξ?,p1 , ξ?,p2 )pdλ(t) =

(
µp(ξ

?,p
1 , ξ?,p2 )

)p
.
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This contradiction shows that equality in (7.5) must hold whenever (t1, t2) ∈
supp(ξ?,p1 )× supp(ξ?,p2 ).

Proof of Theorem 3.2 By the discussion at the beginning of the proof
of Theroem 3.1 the minimization of the function µ∞(ξ1, ξ2) is equivalent to
the minimization of

(7.6) µ̃∞(M) = sup
t∈Z

Φ(M, t) = sup
t∈Z

fT (t)M−1f(t)

for M ∈M(2). From Theorem 3.5 in Pshenichnyi (1971) the subgradient of
µ̃∞(M) evaluated at a matrix M0 in direction E is given by

Dµ̃∞(M0, E) =
{∫
Z(M0)

∂Φ(M0, E, t)d%(t) : % measure on Z(M0)
}
,

where the set Z(M0) is defined by Z(M0) = {t ∈ Z : µ̃∞(M0) = Φ(M0, t)} ,
and the derivative of Φ(M0, t) in direction E is given by ∂Φ(M0, E, t) =
−fT (t)M−1

0 EM−1
0 f(t). Applying the results from page 59 in Pshenichnyi

(1971) it therefore follows that the design ξ?,∞ = (ξ?,∞1 , ξ?,∞2 ) is µ∞-optimal
if and only if there exists a measure %? on Z(M(ξ?,∞1 , ξ?,∞2 , ϑ1, ϑ2)) such that
the inequality∫
Z(M0)

∂Φ(M0, E0, t)d%
?(t)

=

∫
Z(M0)

∂Φ(M0, E, t)d%
?(t) +

∫
Z(M0)

fT (t)M−1
0 f(t)d%?(t) ≥ 0

holds for all E0 = E − M0, E ∈ M(2). Since M(2) = conv(D(2)) it is

sufficient to consider the directions E0 = E −M0, where E ∈ D(2). Thus,
this inequality is fulfilled if and only if there exists a measure %? on Z(M0) =
Z(ξ?,∞) = Z?, such that the inequality

∫
Z?

fT (t)M−1(ξ?,∞1 , ξ?,∞2 , ϑ1, ϑ2)M(δt1 , δt2 , ϑ1, ϑ2)M−1(ξ?,∞1 , ξ?,∞2 , ϑ1, ϑ2)f(t)d%?(t)

≤
∫
Z?

fT (t)M−1(ξ?,∞1 , ξ?,∞2 , ϑ1, ϑ2)f(t) d%?(t) = µ∞(ξ?,∞1 , ξ?,∞2 )

(7.7)

is satisfied for all M(δt1 , δt2 , ϑ1, ϑ2) ∈ D(2). Observing the definition of ϕi in
(3.2), the left-hand part of (7.7) can be rewritten as

∫
Z(ξ?,∞)

γ1
σ2
1
ϕ2

1(t1, t, ξ
?,∞
1 )+
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γ2
σ2
2
ϕ2

2(t2, t, ξ
?,∞
2 ) d%?(t), and the inequality (7.7) reduces to (3.4). The remain-

ing statement regarding the equality at the support points follows by the
same arguments as in the proof of Theorem 3.1 and the details are omitted
for the sake of brevity.

Proof of Theorem 3.3 For both cases consider the function (µ̃p(M))−1

where µ̃p has been defined in (7.2) and (7.6). Note that for each t ∈ Z the
function M → (f(t)TM−1f(t))−1 is concave [see Pukelsheim (2006), p. 77],
and consequently the function

(µ̃∞(M))−1 = 1
maxt∈Z f(t)TM−1f(t)

= min
t∈Z

(f(t)TM−1f(t))−1

is also concave. The concavity of (µ̃p(M))−1 in the case 1 ≤ p < ∞ follows
by similar arguments. For p ∈ [1,∞] the directional derivative of (µ̃p(M))−1

at the point M0 in direction E0 = M −M0 is given by

∂(µ̃p(M0, E0))−1 = −(µ̃p(M0))−2∂µ̃p(M0, E0).

We now consider the case p ∈ [1,∞), the remaining case p = ∞ is briefly
indicated at the end of this proof. Observing (7.3) a lower bound of the
directional derivative of µ̃p at M0 = M(ξ1, ξ2, ϑ1, ϑ2) in direction E0 =
M(δt1δt2 , ϑ1, ϑ2)−M0 is given by

∂µ̃p(M0, E0) ≥ µ̃p(M0)
[
1−

maxt1,t2
∫
Z β(t, t1, t2)dλ(t)

µ̃pp(M0)

]
where β(t, t1, t2) is defined in (7.4). Consequently, we have

(7.8) ∂(µ̃p(M0, E0))−1 ≤ 1

µ̃p(M0)

[maxt1,t2
∫
Z β(t, t1, t2)dλ(t)

µ̃pp(M0)
− 1
]
.

Now, we consider the matrices M = M(ξ?,p1 , ξ?,p2 , ϑ1, ϑ2) of the µp-optimal
design and M0 = M(ξ1, ξ2, ϑ1, ϑ2) of any fixed design ξ = (ξ1, ξ2) with
nonsingular information matrices M1(ξ1, ϑ1) and M2(ξ2, ϑ2) and define the
function gp(α) = µ̃p((1− α)M0 + αM))−1, which is concave because of the
concavity of (µ̃p(M))−1. This yields

1

µ̃p(M)
− 1

µ̃p(M0)
= gp(1)− gp(0) ≤ ∂gp(α)

∂α

∣∣∣
α=0

= ∂(µ̃p(M0, E0))−1

Consequently, we obtain from (7.8) the inequality

effp(ξ) =
µ̃p(M)

µ̃p(M0)
≥ µ̃pp(M0)

maxt1,t2
∫
Z β(t, t1, t2)dλ(t)

,
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which proves the assertion of Theorem 3.3 in the case 1 ≤ p < ∞. In the
case p =∞ we use similar arguments which provides the upper bound

∂(µ̃∞(M0, E0))−1 ≤

1

µ̃∞(M0)

{min%∈Ξ(Z0
maxt1,t2∈X

∫
Z0

(fT (t)M−1
0 f(t1, t2))2d%(t)

µ̃∞(M0)
− 1
}
,

(7.9)

where f(t1, t2) is defined by fT (t1, t2) = (fT1 (t1), fT2 (t2))T Z0 = Z(M0) and
Ξ(Z0) is set of all measures % supported on Z0. The details are omitted for
the sake of brevity.

Proof of Theorem 4.1 For the sake of brevity we now restrict ourselves
to the proof of the first part of Theorem 4.1. The second part can be proved
analogously. Let UX < LZ and recall the definition of the function ϕ(t, ξ1, ξ2)
defined in (2.2). The function ϕ(t, ξ1, ξ2) is obviously increasing on Z, if the
functions

ϕi(t, t, ξi) =
σ2
i

γi
fTi (t)M−1

i (ξi)fi(t) =
σ2
i

γi
ω2
i (t)(1, t, . . . , tpi)M−1

i (ξi)(1, t, . . . , t
pi)T

are increasing on Z for i = 1, 2. In this case we have

(7.10) max
t∈Z

ϕ(t, ξ1, ξ2) = ϕ(UZ , ξ1, ξ2) = ϕ1(UZ , ξ1) + ϕ2(UZ , ξ2).

Because of this structure the components of the optimal design can be calcu-
lated separately for ϕ1 and ϕ2. Since both {ω1(t), ω1(t)t, . . . , ω1(t)tp1} and
{ω2(t), ω2(t)t, . . . , ω2(t)tp2} are Chebyshev systems on X ∪Z it follows from
Theorem X.7.7 in Karlin and Studden (1966) that the support points of
the design ξi minimizing ϕi(UZ , ξi) are given by the extremal points of the
equioscillating polynomials vi(t), while the corresponding weights are given
by (4.2).
In order to prove the monotonicity of ϕi, (i = 1, 2) let ξi denote a de-
sign with ki support points ti0, . . . , tiki−1 ∈ X and corresponding weights
ξi0, . . . , ξiki−1.
Since {1, ωi(t), ωi(t)t, . . . , ωi(t)t2pi−1} and {1, ωi(t), ωi(t)t, . . . , ωi(t)t2pi} are
Chebshev systems for ωi(t) 6= c ∈ R, the complete class theorem of Dette
and Melas (2011) can be applied and it is sufficient to consider minimal
supported designs ξi. Consequently, we set ki = pi + 1.

Define Xi =
(
ωi(tik)t

l
ik

)
k,l=0,...,pi

, then it is easy to see that the jth Lan-
grange interpolation polynomial is given by
Lij(t) = eTj X

−1
i (ωi(t), ωi(t)t, . . . , ωi(t)t

pi)T , where ej denotes the jth unit
vector (just check the defining condition Lij(ti`) = δj`). With these notations
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the function ϕi(t, ξi) can be rewritten as

ϕi(t, t, ξi) =
σ2
i

γi
ω2
i (t)

(
1, t, . . . , tpi

)
X−Ti W−1

i X−1
i

(
1, t, . . . , tpi

)T
:=

σ2
i

γi

pi∑
j=0

1

ξij
(Lij(t))

2,

(7.11)

where Wi = diag(ξi0, . . . , ξipi). Now Cramer’s rule and a straightforward
calculation yields the following representation for the Lagrange interpolation
polynomial

Lij(t) = (−1)pi−jωi(t)

∏pi
k=0,k 6=j ωi(tik)∏pi

k=0 ωi(tik)

det


1 . . . 1 1 . . . 1 1
ti0 . . . tij−1 tij+1 . . . tipi t
... . . .

...
... . . .

...
...

tpii0 . . . tpiij−1 tpiij+1 . . . tpiipi tpi



det


1 . . . 1
ti0 . . . tipi
... . . .

...
tpii0 . . . tpiipi


=

ωi(t)

ωi(tj)

pi∏
k=0,k 6=j

t− tik
tij − tik

.

Therefore the partial derivative of ϕi(t, ξi) with respect to t is given by

∂

∂t
ϕi(t, t, ξi) =

σ2
i

γi

pi∑
j=0

2

ξij
(Lij(t))

2
(ω′i(t)
ωi(t)

+

pi∑
l=0

1

t− til

)
.

Note that til < t for all til ∈ X and t ∈ Z and that both ωi(t) and ω′i(t) are
positive. Consequently, the partial derivative is positive and the function
ϕi(t, ξi) is increasing in t ∈ Z. Thus, the maximum value of ϕi(t, ξi) is
attained in UZ ∈ Z and (7.10) follows.

Proof of Corollary 4.4 For the sake of brevity we only prove the result
for the Emax model (4.6), where it essentially follows by an application of
Theorem 4.1 with ω(t) ≡ 1. The proofs for the Michaelis Menten model and
for the loglinear model are similar. In the Emax model the gradient is given
by f(t, ϑ) = (1, t

t+ϑ3
, −ϑ2t

(t+ϑ3)2
). Using the strictly increasing transformation

z = v(t) = t
ϑ3+t the function f can be rewritten by

f(t, ϑ) =

1 0 0
0 1 0

0 −ϑ2
ϑ3

ϑ2
ϑ3

 1
z
z2

 := Pϑ

 1
z
z2

 .
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Thus, for an arbitrary design ξ the function fT (t)M−1(ξ)f(t) reduces to

ϕ(t, ξ) = fT (t)M−1(ξ)f(t) = (1, z, z2)P Tϑ

(
PϑM̃(ξ̃)P Tϑ

)−1
Pϑ (1, z, z2)T

= (1, z, z2)M̃−1(ξ̃)(1, z, z2)T = ϕ̃(z, ξ̃)

where M̃(ξ̃) = (
∫
X z

i+jdξ̃(z))i,j=0,1,2 and ξ̃ is the design on the design space

X̃ = [ LX
ϑ3+LX

, UX
ϑ3+UX

] induced from the actual design ξ by the transforma-

tion z = t
ϑ3+t . The function ϕ̃(z, ξ̃) coincides with the variance function of

a polynomial regression model with degree 2 and constant weight function
ω(t) ≡ 1. The corresponding design and extrapolation space are given by
X̃ = [ LX

ϑ3+LX
, UX
ϑ3+UX

] and Z̃ = [ LZ
ϑ3+LZ

, UZ
ϑ3+UZ

], respectively. According to

Example 4.3 (p1 = 2) the component ξ̃i of the µ∞-optimal design is sup-
ported at the extremal points of the Chebyshev polynomial of the first kind
on the interval X , which are given by

LX
ϑ3 + LX

,
1

2

( LX
ϑ3 + LX

+
UX

ϑ3 + UX

)
,

UX
ϑ3 + UX

For the weights we obtain by the same result ξ0 = |L0|
L , ξ1 = |L1|

L , ξ2 = |L2|
L

where

|L0| =
(

2 UZ
UZ+ϑ3

−
(

UX
UX+ϑ3

+ LX
LX+ϑ3

))(
UZ

UZ+ϑ3
− UX

UX+ϑ3

)
|L1| = 4

(
UZ

UZ+ϑ3
− LX

LX+ϑ3

)(
UZ

UZ+ϑ3
− UX

UX+ϑ3

)
|L2| =

(
UZ

UZ+ϑ3
− LX

LX+ϑ3

)(
2 UZ
UZ+ϑ3

−
(

UX
UX+ϑ3

+ LX
LX+ϑ3

))
L = |L0|+ |L1|+ |L2|.

The support points of the µ∞-optimal design ξ are now obtained by the
inverse of the transformation and the assertion for the Emax model follows
from the definition of the function g and a straightforward calculation.
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