
Comparing Graphs
Algorithms & Applications

Dissertation

zur Erlangung des Grades eines

Dok t o r s d e r N a t u rw i s s e n s c h a f t e n

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Nils Morten Kriege

Dortmund

2015

Nils Morten Kriege
Lehrstuhl XI - Algorithm Engineering
Fakultät für Informatik
Technische Universität Dortmund
Otto-Hahn-Str. 14
44227 Dortmund

Tag der mündlichen Prüfung: 28.09.2015

Dekan: Prof. Dr. Gernot A. Fink

Gutachter: Prof. Dr. Petra Mutzel
(TU Dortmund, Fakultät für Informatik)
Prof. Dr. Kristian Kersting
(TU Dortmund, Fakultät für Informatik)

Abstract
Graphs are a well-studied mathematical concept, which has become ubiq-
uitous to represent structured data in many application domains like com-
puter vision, social network analysis or chem- and bioinformatics. The ever-
increasing amount of data in these domains requires to efficiently organize
and extract information from large graph data sets. In this context tech-
niques for comparing graphs are fundamental, e.g., in order to obtain mean-
ingful similarity measures between graphs. These are a prerequisite for the
application of a variety of data mining algorithms to the domain of graphs.
Hence, various approaches to graph comparison evolved and are wide-spread
in practice. This thesis is dedicated to two different strategies for comparing
graphs: maximum common subgraph problems and graph kernels.

We study maximum common subgraph problems, which are based on clas-
sical graph-theoretical concepts for graph comparison and are NP-hard in the
general case. We consider variants of the maximum common subgraph prob-
lem in restricted graph classes, which are highly relevant for applications in
cheminformatics. We develop a polynomial-time algorithm, which allows to
compute a maximum common subgraph under block and bridge preserving
isomorphism in series-parallel graphs. This generalizes the problem of com-
puting maximum common biconnected subgraphs in series-parallel graphs.
We show that previous approaches to this problem, which are based on the
separators represented by standard graph decompositions, fail. We introduce
the concept of potential separators to overcome this issue and use them al-
gorithmically to solve the problem in series-parallel graphs. We present algo-
rithms with improved bounds on running time for the subclass of outerplanar
graphs. Finally, we establish a sufficient condition for maximum common
subgraph variants to allow derivation of graph distance metrics. This leads
to polynomial-time computable graph distance metrics in restricted graph
classes. This progress constitutes a step towards solving practically relevant
maximum common subgraph problems in polynomial time.

The second contribution of this thesis is to graph kernels, which have their
origin in specific data mining algorithms. A key property of graph kernels
is that they allow to consider a large (possibly infinite) number of features
and can support graphs with arbitrary annotation, while being efficiently
computable. The main contributions of this part of the thesis are (i) the de-
velopment of novel graph kernels, which are especially designed for attributed
graphs with arbitrary annotations and (ii) the systematic study of implicit
and explicit mapping into a feature space for computation of graph kernels
w.r.t. its impact on the running time and the ability to consider arbitrary an-
notations. We propose graph kernels based on bijections between subgraphs
and walks of fixed length. In an experimental study we show that these ap-
proaches provide a viable alternative to known techniques, in particular for
graphs with complex annotations.

iii

Acknowledgements
Many people supported and encouraged me during the work on this thesis.
First of all, I want to thank my advisor Prof. Petra Mutzel for giving me the
opportunity to work in her research group at the TU Dortmund. I am deeply
grateful for her scientific guidance during the past years and for giving me the
freedom to pursue my own research ideas. She also made various conference
trips all over the world possible, which I enjoyed a lot.

I would also like to thank my co-advisor Prof. Kristian Kersting for the
interesting scientific discussions and for immediately agreeing to serve as the
second referee of this thesis. Furthermore, I would like to thank Prof. Jo-
hannes Fischer and Dr. Falko Bause for agreeing to serve as members of my
defense committee.

I am grateful to the co-authors of my papers for sharing their experi-
ence and knowledge. I would also like to thank our collaborators from the
department of chemical biology, in particular, the members of the group of
Dr. Oliver Koch for sharing their chemical knowledge.

I would like to thank my colleagues at the Chair XI for the pleasant
and productive atmosphere as well as for the relaxing coffee breaks. Special
thanks go to Dr. Karsten Klein and my roommates Bernd Zey and Till Schäfer
for numerous interesting discussions. I would like to thank Fritz Bökler,
Andre Droschinsky, Christopher Morris, Till Schäfer and Dr. Jan Kriege for
proofreading parts of this thesis and making valuable suggestions.

Finally, I would like to express my deep gratitude to my family, in partic-
ular, my parents, and Karen, who supported me in every possible way in all
times.

Nils Morten Kriege
Essen, June 2015

iv

Contents

Abstract . iii
Acknowledgements . iv

1 Introduction 1
1.1 Applications in Cheminformatics 2

1.1.1 Graphs in Cheminformatics 4
1.1.2 Comparing Molecular Graphs 6
1.1.3 Exploring Chemical Space with Scaffold Hunter 6

1.2 Challenges in Graph Comparison 12
1.3 Contribution and Organization of this Thesis 13
1.4 Corresponding Publications . 15

2 Preliminaries 17
2.1 Numbers, Sets, Relations and Functions 17
2.2 Graphs . 18

2.2.1 Multigraphs and Digraphs 19
2.2.2 Subgraphs . 19
2.2.3 Separators and Connectivity 20
2.2.4 Specific Graph Classes 20

2.3 Isomorphism Problems in Graphs 22
2.3.1 Isomorphism Problems in Labeled Graphs 26

2.4 Fundamental Graph Problems and Algorithms 27
2.5 Notation . 30

3 Common Subgraph Problems 33
3.1 Exact Exponential-Time Algorithms 34

3.1.1 Reduction to the Clique Problem 35
3.1.2 Recent Algorithms . 36
3.1.3 A Faster Algorithm by Graph Canonization 37

3.2 A Polynomial-Time Algorithm for MCST 39
3.3 Variants of MCS Problems and their Complexity 42

3.3.1 Vertex- and Edge-Induced Common Subgraphs 44
3.3.2 Finding Connected Common Subgraphs 45
3.3.3 Polynomial-Time Algorithms and Hardness Results . . . 46

3.4 Finding Biconnected MCIS in Series-Parallel Graphs 49

v

3.4.1 Tree Decompositions and Common Subgraph Problems 50
3.4.2 Theoretical Background for Novel Approaches 54
3.4.3 A Polynomial-Time Algorithm for 2-MCIS 57
3.4.4 Solving 2-MCIS in Outerplanar Graphs 63

3.5 Finding BBP-MCCIS in Series-Parallel Graphs 68
3.5.1 Decomposing Series-Parallel Graphs 69
3.5.2 A Polynomial-Time Algorithm for BBP-MCCIS 71

3.6 Graph Distance Metrics . 76
3.6.1 Basic Definitions and Complexity 77
3.6.2 Distance Metrics from Maximum Common Subgraphs . 78
3.6.3 Polynomial-time Computable Graph Distance Metrics . 79

3.7 Summary and Future Work . 84

4 Graph Kernels 89
4.1 Kernels and Kernel Methods 91

4.1.1 Classification and Support Vector Machines 91
4.1.2 Standard Kernels and Closure Properties 94
4.1.3 Kernels as Similarity Measures 95

4.2 Kernels for Structured Data . 96
4.2.1 Kernels on Sets . 96
4.2.2 Convolution Kernels . 97
4.2.3 Distance Metrics and Complete Kernels 97

4.3 Graph Data: Labels and Attributes 98
4.3.1 Taking Annotations into Account 99
4.3.2 Transforming Attributes to Simple Labels 101

4.4 Explicit and Implicit Kernel Computation 102
4.4.1 Computing Kernel Matrices 103
4.4.2 Storing Feature Vectors 104
4.4.3 Explicit Mapping of R-convolution Kernels 105

4.5 Related Work on Graph Kernels 107
4.5.1 Random Walk Graph Kernels 107
4.5.2 Subgraph and Graphlet Kernels 111
4.5.3 Path, Tree Pattern and Further Kernels 111
4.5.4 Graph Kernels in Cheminformatics 114
4.5.5 Summary and Motivation of our Contribution 115

4.6 Fixed Length Walk Kernels . 117
4.6.1 Basic Definitions . 118
4.6.2 Walk and R-convolution Kernels 119
4.6.3 Implicit Kernel Computation 120
4.6.4 Explicit Kernel Computation 124
4.6.5 Application to Shortest-Path Kernels 125
4.6.6 Experimental Evaluation 125

4.7 Subgraph Matching Kernels . 132
4.7.1 Basic Definitions . 132

vi

4.7.2 Relations to other Kernels 134
4.7.3 Kernel Computation . 137
4.7.4 Experimental Evaluation 144

4.8 Comparative Experimental Evaluation 148
4.8.1 Method and Data Sets 148
4.8.2 Results and Discussion 152

4.9 Summary and Future Work . 155

5 Conclusion and Outlook 161

Bibliography 163

vii

viii

Ein Unterschied, der dem Verstand
nichts gibt, ist kein Unterschied.

Johann Wolfgang von Goethe
(1749–1832)

Chapter 1

Introduction

Similarity between objects is subjective and there is no absolute standard
measure. Yet recognizing similarities is a fundamental principle in percep-
tion and facilitates to simplify and understand complex relations. A concept
of similarity is as well the key for various data mining methods used to dis-
cover patterns and relations in possibly large data sets of objects representing
real-world entities. Graphs are a versatile data structure used to represent
structured objects in many application domains such as biology, chemistry,
pattern recognition or social networks analysis. The breadth of problems
requiring to deal with graphs is growing rapidly and a great number of ap-
proaches to their comparison have been developed and are widely used in
practice. This thesis is dedicated to two different strategies for comparing
graphs: maximum common subgraph problems and graph kernels. While the
first is a classical graph-theoretical approach, graph kernels inherently trans-
form graphs into vector data and have their origin in specific data mining
algorithms.

It would go beyond the scope of this thesis to review graph compari-
son techniques comprehensively and we confine ourselves to representative
techniques with fundamentally different characteristics. Figure 1.1 gives an
overview over important techniques, which can be divided into three cate-
gories. A traditional approach is to represent graphs by vectors, which is in
particular appealing since such data is easy to manage and compare. Vector
representations of graphs typically count the number of occurrences of specific
features of a graph. Each element of the vector is associated with one feature,
for example, a specific subgraph or path. In case of binary fingerprints just
the presence of a feature is indicated by a bit, but the number of occurrences
is not counted. Since features typically are of limited size and number, vector
representations can be generated and compared efficiently. This technique is
widely used in application domains like cheminformatics, where molecules are
represented by so-called chemical fingerprints. Graph kernels can be consid-
ered a generalization of the above technique and do not necessarily require
the size and number of features to be limited to compute a similarity measure

1

2 Chapter 1. Introduction

Graph-theoretical problems:
• Maximum common subgraph
• Subgraph isomorphism

• Graph isomorphism

Graph Kernels:
• Random walk kernels

Vector representations:
• Counting small subgraphs, paths etc.
• Binary fingerprints C

o
n

si
st

en
cy

/I
n

te
rp

re
ta

b
ili

ty
 C

o
m

p
lexity/R

u
n

n
in

g tim
e

Figure 1.1: Techniques for graph comparison

efficiently. Notably, the number of all walks two graphs have in common can
be taken into account by a polynomial-time computable similarity measure,
although the length and number of walks is infinite. However, more complex
features, e.g., without repeated vertices, may lead to graph kernels that no
longer can be computed in polynomial time, unless P = NP.

A graph-theoretical problem closely related to graph comparison asks for
a maximum common subgraph of two given graphs, i.e., a largest possible
subgraph that is contained in both graphs. This problem is well-known to be
NP-hard, but has the unique advantage that a derived similarity measure is
well interpretable by visual inspection of the common subgraph. The problem
generalizes the subgraph isomorphism problem, which is as well NP-hard,
and the graph isomorphism problem. The graph isomorphism problem asks
whether two graphs have the same structure and has neither been shown
to be NP-complete nor polynomial-time solvable. This indicates the high
complexity inherent to these approaches to compare graphs.

The techniques briefly introduced above have varying characteristics and
differ in terms of computational complexity and their general notion of simi-
larity. The most important—and most challenging—property of a similarity
measure is to which extent it provides valid results with respect to a specific
standard or task. As stated initially, there is no absolute standard similar-
ity measure and this is as well the case for many concrete applications of
graph comparison techniques. However, it is possible to assess the validity
by investigating, for example, how well the result of a data mining algorithm
based on a specific similarity measure aligns with experimental results or the
expectations of domain specialists.

1.1 Applications in Cheminformatics

We motivate the importance of graph comparison techniques by examples
from the domain of cheminformatics. As this thesis can offer only a glimpse
into this topic, we refer the reader to textbooks like (Gasteiger and Engel,

1.1. Applications in Cheminformatics 3

2003; Bajorath, 2004; Bunin et al., 2007; Bajorath, 2011) for a more compre-
hensive introduction. We already use basic concepts from graph theory in
this section, which are formally defined in Section 2.

The term cheminformatics (or synonymously chemoinformatics) is rela-
tively new and was coined in the late nineties by Brown (1998). Gasteiger
and Engel (2003) concisely define the term as follows:

“Chemoinformatics is the application of informatics methods to
solve chemical problems.”

Notably, such methods have been used in chemistry long before the term
cheminformatics has been introduced and their application can be dated back
to the advent of computers in the 1940s (Brown, 2009). However, it is appar-
ent that there is a growing need for computer aided methods caused, among
others, by the increasing amount of available chemical data.

Drug discovery is the main application area of cheminformatics and aims
at the development of new medications to cure particular diseases. Most
drugs are so called small molecules with a low molecular weight. The search
for a new drug is a time consuming and rather expensive process, which typi-
cally starts with the identification of a target protein related to the biological
process that should be influenced. In a next step, small molecules that bind
to the target protein are searched, which are referred to as hits. This pro-
cess involves the test of large synthesized libraries of chemical compounds for
biological activity against the target protein in automated high-throughput
screening methods. The discovery of hits is just the starting point, which
is followed by the selection of promising molecules and their modification
and optimization, e.g., to reduce side effects, increase the oral availability or
avoid patent issues. The bioactivity results of screening tests as well as fur-
ther information are stored for each molecule together with its structure in
chemical databases. This information is increasingly made publicly available
by projects like PubChem or ChEMBL (Gaulton et al., 2012). PubChem
by now contains more than 68 million1 chemical compounds and is growing
rapidly.

The term chemical space refers to the infinite set of all theoretically possi-
ble molecules. The subset of druglike molecules contains only those molecules
that satisfy certain criteria, which are essential for the availability as drug.
These criteria are not clearly defined and estimates of the number of druglike
molecules range from 1012 to 10180 molecules (Brown, 2009). In any case only
an extremely small fraction of these compounds is of interest for a specific
disease and the search for a potential new drug is therefore often compared
to “searching a needle in a haystack”. Clearly, it is not possible to synthesize
and test all druglike molecules and, hence, it is essential to explore the space
of these molecules systematically in order to find molecules with the desired

1PubChem compound search result, 12 May 2015, https://pubchem.ncbi.nlm.nih.gov

https://pubchem.ncbi.nlm.nih.gov

4 Chapter 1. Introduction

CH3

O

O

N

NN

N

CH3

C3H

(a) Structural formula (b) Ball-and-stick model

Figure 1.2: Two representations of the caffeine molecule.2

properties and the required biological activity. One starting point is the space
spanned by molecules contained in publicly available databases of compounds
that have been synthesized or are even available for purchase. Furthermore,
large data sets of molecules that never have been synthesized can be gener-
ated in silico by computer aided methods according to chemical rules. Since
the structure of a molecule is closely related to its properties, a key technique
is to organize and mine molecules based on their structural similarity (Mag-
giora and Shanmugasundaram, 2011). We first review how the structure of a
molecule can be represented as graph and discuss the relation between typical
tasks in cheminformatics and the associated graph theoretical problems.

1.1.1 Graphs in Cheminformatics

Long before computers and the term cheminformatics emerged, chemistry
was one of the early application areas of graph theory (see Biggs et al., 1986,
Chapter 4): Isomers are molecules with the same number of atoms of each
element, but different chemical structure. From the middle of the nineteenth
century the fact that isomers may exhibit different properties was explained
by considering the chemical bonds between the individual atoms. In this
context first graphical notations for molecules similar to structural formulas
as they are common today were introduced, cf. Figure 1.2(a). The term
graph was originally introduced by the mathematician J. J. Sylvester as an
abbreviating term for these notations (Biggs et al., 1986). The close relation
between the field of chemistry and graph theory also becomes apparent by
the chemical term valency, which is synonymously used for the degree of a
vertex in graph theory.

It is apparent that a structural formula as shown in Figure 1.2(a) can
be directly interpreted as graph. For some tasks the 3D arrangement of
atoms as shown in Figure 1.2(b) is more adequate. However, representing

2 Figure 1.2(b), image source: http://en.wikipedia.org/wiki/File:Caffeine_%281%
29_3D_ball.png.

http://en.wikipedia.org/wiki/File:Caffeine_%281%29_3D_ball.png
http://en.wikipedia.org/wiki/File:Caffeine_%281%29_3D_ball.png

1.1. Applications in Cheminformatics 5

this information by a graph is less intuitive and there are different approaches,
e.g., by incorporating distances between atoms (see Marialke et al., 2007). We
will come back to such models later in Section 4.7.2 and for now focus on the
first case.

The molecular graph of a chemical compound is the labeled graph, where
vertices represent the atoms and edges the bonds of the molecule. The vertex
labels correspond to the atom types identified by their chemical symbol, e.g.,
C, N, O etc. for carbon, nitrogen and oxygen, respectively. The edge labels
encode the type of chemical bonds, e.g., -, = etc. for single and double bonds,
respectively. Since the hydrogen atoms are essentially determined by the
atom type and the bonds between non-hydrogen atoms, they are often not
explicitly represented by the molecular graph.

Molecular graphs derived from small molecules typically have several char-
acteristic properties:

• Molecular graphs exhibit a characteristic distribution of vertex and edge
labels. Kriege (2009) considered a data set of 187 266 molecular graphs
and observed that 45.1% of all vertices represent hydrogen atoms, 40.8%
carbon atoms, 6.5% oxygen and 5.2% nitrogen atoms. The vertices
representing other atom types each constitute less than 1% of the total
number of vertices.

• The maximum degree of molecular graphs is bounded by a small con-
stant (≤ 4 with very few exceptions) as a result of the atom valency
(also see Kriege, 2009, Section 3.4.1).

• Almost all molecular graphs are planar,3 and most are even outerplanar.
Horváth et al. (2010) considered the NCI data set4 of 250 251 chemical
compounds and recognized 8.8% of these graphs as trees and 94.3% as
being outerplanar. For every block of these graphs the authors consid-
ered the number of edges that are not incident to the outer face in an
outerplanar embedding. At most 11 such edges were found in any block
and 99.9% of these graphs exhibit at most 5 such edges in any block.
Hence, these graphs are outerplanar 6-almost trees.

• Molecular graphs typically are tree-like. Yamaguchi et al. (2003) com-
puted the tree width of 9 712 molecular graphs derived from the LIG-
AND database (Goto et al., 2002) and found that there is only one
graph with tree width 4, while all other have tree width at most 3. Ac-
tually, 19.4% of the graphs are trees and 95% are partial 2-trees, i.e.,
series-parallel graphs.

3Note, that we mean planar in a graph theoretical sense, while a molecule typically is
considered planar if all atoms are on the same plane w.r.t. their 3D arrangement.

4National Cancer Institute (NCI) Open Database Compounds, http://cactus.nci.
nih.gov/download/nci/

http://cactus.nci.nih.gov/download/nci/
http://cactus.nci.nih.gov/download/nci/

6 Chapter 1. Introduction

These properties can be exploited in order to obtain algorithms, which are
able to compare molecular graphs efficiently.

1.1.2 Comparing Molecular Graphs

A chemical database can be interpreted as a graph database containing a set
D = {G1, . . . , Gn} of molecular graphs. There are several common tasks in
cheminformatics closely related to graph isomorphism problems.

Unique identification: A database should not contain duplicates and it
must be possible to test if a molecule with a given structure is con-
tained in the database. Hence, it is beneficial to associate a unique
identifier with each molecule, which is computed from its structure. So-
called canonical SMILES (Brown, 2009) are one example of standard
methods for this purpose, which can be considered a complete invariant
for labeled graphs, cf. Problem 2.2.

Substructure search: It is a common task to search for the molecules in
the database that contain a specified structure. Interpreting the speci-
fied structure as graph Q, this task requires to decide for every graph
G ∈ D if a subgraph isomorphism from Q to G exists, cf. Problem 2.3.
Since chemical databases must be able to answer a large number of
substructure queries with a short response time, typically graph index-
ing techniques are employed. These techniques build an index once in
a preprocessing step in order to be able to answer subsequent queries
more efficiently (see Klein et al., 2011, and references therein).

Structural similarity: Structural similarity is a pervasive concept in chem-
informatics and there are various tasks that require to determine a
meaningful similarity between molecular graphs. Analogously to sub-
structure search one might be interested in the k molecules of the
database that are most similar to a given query structure. Another
common task is to identify homogeneous subsets of similar molecules
by clustering techniques. Such a clustering can, for example, be em-
ployed to explore the database systematically or to find representative
subsets. Finally, it is desirable to predict the biological properties of
untested molecules based on a subset of molecules with known proper-
ties. All these tasks are closely related to similarity measures between
graphs.

1.1.3 Exploring Chemical Space with Scaffold Hunter

We further motivate the importance of graph comparison in the domain of
cheminformatics by presenting the tool Scaffold Hunter, which was developed
with the goal to facilitate drug discovery by means of visual analytics tech-
niques (Wetzel et al., 2009; Klein et al., 2012; 2013a). After introducing the

1.1. Applications in Cheminformatics 7

• Drug discovery is not suitable for a
fully automatic process.

• Intuition & expertise of specialists

• Construction of new hypotheses

• Decision Making

Analytical Reasoning

• Integration of diverse data
resources to take advantage of
publicly available information

• Investigation of experimentally
obtained data to test hypotheses

Data Integration

• Visualization of raw data and
analysis results requires different
views tailored for the specific tasks.

• Views should be customizable and
linked in an intuitive manner.

Interactive Visualization

• Data mining methods to reveal
patterns within the data

• Structure-based organization of
molecules to foster elucidation of
structure-activity relationships

Automated Analysis

Analytical
Reasoning
Analytical
Reasoning

Data
Integration

Data
Integration

Automated
Analysis

Automated
Analysis

Interactive
Visualization
Interactive

Visualization

Figure 1.3: Challenges for visual analytics approaches in drug discovery

software and the underlying concepts, we discuss the use of graph compari-
son techniques in the context of the software. Scaffold Hunter is a publicly
available5 Java-based open source tool that has been continuously developed
since its start in 2007 as a student project group at TU Dortmund (Gorecki
et al., 2008).

Visual Analytics for Chemical Databases

Visual analytics is the science of analytical reasoning facilitated by interactive
visual interfaces (Thomas and Cook, 2005). Hence, it combines techniques
from several fields like data mining and information visualization. The drug
discovery process requires a large amount of time, money and other resources
and suffers from a small and even decreasing success rate. Although auto-
mated computational methods have become a standard tool, drug discovery
essentially depends on the intuition and expertise of specialists. This obser-
vation suggests that drug discovery can greatly benefit from visual analytics
techniques, which is also supported by the fact that an increasing number
of software tools incorporating visualization techniques have been developed
recently (see, e.g., Lounkine et al., 2010; Bertini et al., 2011; Gutlein et al.,
2012). Figure 1.3 illustrates the knowledge discovery process typically under-
lying visual analytics approaches and highlights the specific challenges arising
when this concept is applied to the domain of drug discovery. In drug discov-
ery a straight forward process from raw data over analysis to visualization is
not appropriate.

The architecture of Scaffold Hunter has been designed to support a work-
flow in accordance with the visual analytics concepts, see Figure 1.4. When
first analyzing and browsing a compound library, typically new hypotheses
are generated and it is desirable to refine the current data set by filtering, or to
perform new specific computational analysis. Moreover, further experiments
may be conducted and the results obtained should again be integrated into

5http://scaffoldhunter.sourceforge.net

http://scaffoldhunter.sourceforge.net

8 Chapter 1. Introduction

Refinement

Automated Analysis Data Integration

Filtering
• Property based
• Substructure search
• Selection

Subsets

Scaffold Tree

Clustering

Interactive Visualization

Dendrogram View

Scaffold Tree View

Plot View

Spreadsheet View

G
lo

b
al

 S
el

ec
ti

o
n

 &

A
n

n
o

ta
ti

o
n

s

Integration of additional data

SDF

CSV

SQL

Calculation
• Scaffold Tree
• Descriptors

Database
• MySQL
• HSQLDB

Plugins

Figure 1.4: Realization of visual analytics concepts in Scaffold Hunter

the database for detailed investigation. The concepts and their implemen-
tation have been shown to be useful in practice for several cheminformatics
tasks (Wetzel et al., 2009; Klein et al., 2013a).

The tool offers a flexible plugin mechanisms to allow integration of chem-
ical data form various resources into an internal database. The data can be
further enhanced by the automatic calculation of chemical descriptors like dif-
ferent chemical fingerprints. Scaffold Hunter provides a subset management,
which allows to organize molecules into hierarchies of subsets, e.g., to par-
tition the data into smaller sets or to store interesting intermediate results.
Subsets can be created by manual selection of molecules or by means of a
versatile filtering mechanism based on properties stored in the database. In
addition, an integrated structure editor allows the user to perform filtering
based on substructures. Subsets can be analyzed and visually explored by
several methods in order to allow the user to view the data from different
perspectives.

Methods and Views

Scaffold Hunter supports multiple views on the data opened simultaneously,
cf. Figure 1.5(b), and allows to quickly switch between views and to open new
views for specific subsets. A global selection concept links the simultaneous
representations of compounds over all views. Numerical property values can
be represented by mapping colors to the visual representations or by scaling
objects, see Figure 1.5.

Scaffold based approaches. The scaffold tree algorithm computes a hi-
erarchical classification for chemical compound sets based on their common
core structures referred to as scaffolds. We only summarize the basic ideas of
the algorithm, please refer to (Schuffenhauer et al., 2007) for further details.
Essentially the scaffold tree algorithm proceeds as follows: Each compound is

1.1. Applications in Cheminformatics 9

(a) Scaffold tree view (b) Multiple linked views

(c) Molecule cloud (d) Scaffold network

(e) Tree map

Figure 1.5: Different views on chemical compound data sets

10 Chapter 1. Introduction

associated with its unique scaffold that is obtained by cutting off all terminal
side chains preserving double bonds directly attached to the core structure.
Then each scaffold is simplified stepwise by removing a single ring, such that
the obtained ancestor scaffold remains connected. In the case that multiple
rings can be pruned, different parent scaffolds can be generated. From these
a unique scaffold is selected by a set of deterministic rules based on structural
considerations with the aim to preserve the most characteristic ring structure.
The procedure terminates as soon as a scaffold consisting of a single ring is
obtained. Typically multiple molecules in a data set share a common scaffold
and ancestors generated in the successive process of simplification coincide.
By merging the scaffolds that occur more than once, the scaffold tree is ob-
tained. Scaffold Hunter allows to visualize the scaffold tree based on different
tree layout techniques, e.g., a radial layout as shown in Figure 1.5(b). A
different representation of the scaffold tree by means of tree maps (Johnson
and Shneiderman, 1991) is as well supported, see Figure 1.5(e). This alter-
native space-filling approach represents the scaffold tree structure by nested
rectangles.

The scaffold tree concept has proven to be useful for various research tasks
(see, e.g., Renner et al., 2009; Wetzel et al., 2010; Bon and Waldmann, 2010).
The selection of a single parent scaffold simplifies the structural relations and
allows for intuitive visualization. However, there is no single optimal solu-
tion to select a unique parent scaffold for a specific task and, for example,
bioactivity was employed as well as a selection criterion (Renner et al., 2009).
Considering all parent relations leads to a directed acyclic graph and visu-
alization of large data sets becomes a challenging task. Figure 1.5(d) shows
an example of a small data set visualized within Scaffold Hunter using the
Sugiyama layout techniques of the graph drawing library OGDF (Chimani
et al., 2013).

Molecule cloud. Word clouds are a popular method to visualize key words
of large textual data sets. The concept was recently transferred to the do-
main of molecular databases: Themolecule cloud proposed by Ertl and Rohde
(2012) represents scaffolds as cloud diagram, where the size of a scaffold rep-
resents the number of molecules associated with it. The approach has been
integrated as a view module in Scaffold Hunter, see Figure 1.5(c). Going
beyond the original concept, the molecule cloud view utilizes layout algo-
rithms for semantics-preserving word clouds (Barth et al., 2014), which allow
to place semantically related objects close to each other. Different similarity
measures for chemical compounds are supported to arrange the scaffolds of a
cloud in a meaningful manner.

Clustering. Scaffold Hunter includes sequential agglomerative hierarchical
non-overlapping (SAHN) clustering techniques, which realize a classification
concept orthogonal to the scaffold tree concept (Schuffenhauer and Varin,

1.1. Applications in Cheminformatics 11

2011). Starting with individual objects as clusters, SAHN clustering tech-
niques successively merge the two clusters that are closest to each other w.r.t.
to some distance function. The distance between two clusters typically is de-
fined based on the distances between the individual elements they contain.
Several alternative approaches to this task, so-called linkage methods, are
known. The result of this merging process is a binary tree, where every inner
node is associated with a merge operation and the corresponding distance
between this pair. This tree is commonly visualized as a dendrogram, see
Figure 1.5(b) (right part of the main window). SAHN clustering methods are
heavily applied in cheminformatics (Downs and Barnard, 2003) and users may
be accustomed to dendrogram representations. Scaffold Hunter supports var-
ious distance measures defined on either the numeric properties of molecules
or their chemical fingerprints, which encode their structure. For large data
sets a heuristic SAHN clustering algorithm has been integrated, which is ap-
plicable provided that the employed distance function satisfies the triangle
inequality. The approach obtains subquadratic running time in practice with
a linear number of distance computations (Kriege et al., 2014b).

Applications of Graph Comparison Techniques

There are several graph comparison techniques implemented in Scaffold Hunter
and various possible extensions that could improve the usability of the soft-
ware further. We summarize the use of these techniques and the requirements
for adequate approaches stemming from the concrete application.

The internal database relies on unique identifiers of molecules and scaffolds
realized by canonical SMILES. These are used as well for the identification of
scaffolds obtained multiple times in the course of the scaffold tree algorithm.
The substructure search functionality is implemented by an efficient graph-
based system employing fingerprints for filtering and a subgraph isomorphism
algorithm tailored to molecular graphs for verification of false positives (Klein
et al., 2011). The exploration process could be supported by techniques for
similarity searching, which are not yet integrated.

Methods to determine the structural (dis)similarity between molecules
are employed by several views: Clustering techniques rely on a distance func-
tion between molecules. The efficient heuristic approach integrated in Scaf-
fold Hunter has been combined with various graph distance metrics derived
from (i) molecular fingerprints, (ii) the size of maximum common subgraphs,
and (iii) graph kernels (Kriege et al., 2014b). The experimental comparison
of these approaches suggests that fingerprints perform worst in combination
with the clustering algorithm, where the task was to recreate planted clus-
ter structures in synthetic graphs. The heuristic approach was shown to be
able to cluster considerably larger data sets on standard hardware, which is
crucial for the data sets typically considered in cheminformatics. This has
been achieved by exploiting the triangle inequality, which is satisfied by the

12 Chapter 1. Introduction

employed distance measures. Hence, there is a demand for similarity mea-
sures that satisfy certain mathematical properties. This is as well motivated
by so-called kernel methods like support vector machines, which can be used
for classification. Incorporating such techniques allows to predict properties
of untested molecules based on a set of experimentally tested molecules and
would be a useful extension of Scaffold Hunter.

Almost all views already allow or could greatly benefit form incorporat-
ing structural similarity, since elucidating the relation between structure and
chemical properties is a key task in drug discovery. The general idea that sim-
ilar molecules should be located close to each other is, for example, realized
by ordering the children of all nodes in the scaffold tree according to their
similarity and is an integral part of the molecule cloud view. The tree map
could benefit as well from placing similar compounds near to each other. This
direction has been explored by Gronemann et al. (2013), where the degrees of
freedom in arranging nested substructures by a tree mapping algorithm are
exploited to optimize secondary constraints. Here, similarities cannot be ex-
pected to be represented without distortion and, hence, efficient approaches,
which give less accurate results, seem to be adequate.

Two requirements for graph comparison techniques used in this context
are apparent: First, interactive visualization requires a fast response time and,
hence, graph comparison techniques employed must be efficient. Second, the
similarity should be well interpretable, e.g., by highlighting the parts two
molecules have in common.

1.2 Challenges in Graph Comparison

Efficient techniques for comparing graphs are the key to organize, manage
and mine structured data efficiently. The requirements and constraints for
these techniques heavily depend on the specific task and the application do-
main and sometimes cannot yet be reconciled. In particular, one wants to
obtain measures of similarity, which (i) are easy to interpret, (ii) are valid
and meaningful w.r.t. the considered task, (iii) can be computed efficiently,
(iv) satisfy specific mathematical properties, (v) are applicable to graphs with
the annotations that are required to model real-world objects adequately.

There is a complex interplay between these requirements: The employed
graph model clearly has a crucial impact on the computational efficiency and
the validity of a similarity measure. For example, molecules could be repre-
sented by so-called reduced graphs, a summary representation, where groups
of connected atoms are collapsed into a single vertex (Birchall and Gillet,
2011). Clearly, reduced graphs are smaller and often less complex, poten-
tially allowing for more efficient algorithms. When using such graph models,
one might want to annotate vertices of the graphs by additional information,
e.g., the molecular weight of the group they represent in order to obtain a

1.3. Contribution and Organization of this Thesis 13

valid similarity measure. In this case techniques for graph comparison must
be able to take such information into account.

A similarity measure is easily interpretable if it allows to understand why
two graphs are considered similar. This is often desirable for similarity mea-
sures used in data mining and is even more essential when employed for visual
analytics. We have detailed that the drug discovery process depends on the
expertise and intuition of specialists. The similarity value of two molecules
computed based on their fingerprints does not allows for intuitive interpreta-
tion while common substructures could be highlighted and visualized. How-
ever, computing common subgraphs of maximum size is a hard computational
problem while fingerprint based methods allow for efficient computation.

In order to obtain valid results, standard graph theoretic problems may
be inadequate or must be modified. The success of scaffold based approaches
suggests that rings and chains of molecules could be handled separately to
some extent. Instead of collapsing rings into single vertices, one could, for
example, require that common substructures must preserve these in some
kind of way. Such modifications again may have an impact on the complexity
of the related computational problem. Finally, it is desirable that measures of
similarity satisfy certain mathematical properties. For example, every object
should be considered more similar to itself than to any other objects. A
dissimilarity between objects possibly should satisfy the triangle inequality.

Considering these partly conflicting demands, a single approach to graph
comparison that satisfies all needs simultaneously cannot be expected.

1.3 Contribution and Organization of this Thesis

In Chapter 2 we provide basic definitions and results from graph theory.
Following we consider two techniques for comparing graphs, which exhibit
distinct characteristics and pursue fundamentally different goals.

Chapter 3 is dedicated to common subgraph problems. Computing com-
mon subgraphs of maximum possible size exceptionally allows to derive easily
interpretable similarity measures, but involves solving a computationally hard
problem. In order to obtain efficient algorithms for such problems, we focus
on structurally simple graphs with the goal to extend the class of graphs
for which efficient algorithms are known. This is motivated by the applica-
tion in cheminformatics, where molecular graphs are known to have certain
characteristics as discussed above. Furthermore, additional constraints for
meaningful common subgraphs can be applied. In particular, we study a vari-
ation, which distinguishes between rings and chains—the blocks and bridges
of the molecular graph—to obtain polynomial running time in series-parallel
graphs. We discuss under which conditions graph distance metrics can be
derived from the different notions of common subgraphs.

The second contribution of this thesis is to the relatively novel field of

14 Chapter 1. Introduction

graph kernels and presented in Chapter 4. Graph kernels can be consid-
ered a generalization of traditional techniques based on vector embeddings.
Graph kernels satisfy the properties of an inner product in a feature space
and thereby allow to apply various machine learning algorithms to the domain
of graphs. A key advantage of graph kernels compared to classical methods
is that they allow to consider a large (possibly infinite) number of features
and can support graphs with arbitrary annotation, while being efficiently
computable. Notably, the flexibility of annotating graphs with arbitrary at-
tributes allows more adequate graph models of real-world objects and may
ultimately lead to more valid similarity measures. The main contributions of
this part of the thesis are (i) the development of novel graph kernels, which
fully exploit these advantages and (ii) the systematic study of the decline in
efficiency caused by the flexibility to consider arbitrary annotations.

Chapters 3 and 4 both present an overview on the associated related
work, put our achievements in the context of the state of the art and give
an outlook on future work. Finally, Chapter 5 concludes by summarizing the
contributions presented in this thesis and their impact on graph comparison
in general.

1.4. Corresponding Publications 15

1.4 Corresponding Publications
The results presented in this thesis have partially been published as listed
below. The software Scaffold Hunter briefly described in Section 1.1.3 has
been presented in the following publications:

• Karsten Klein, Nils Kriege, and Petra Mutzel. Scaffold Hunter – visual analysis
of chemical compound databases. In Proceedings of the International Conference
on Computer Graphics Theory and Applications and International Conference on
Information Visualization Theory and Applications (GRAPP & IVAPP), pages 626–
635, 2012

• Karsten Klein, Nils Kriege, and Petra Mutzel. Scaffold Hunter: Facilitating drug
discovery by visual analysis of chemical space. In Gabriela Csurka, Martin Kraus,
Robert S. Laramee, Paul Richard, and José Braz, editors, Computer Vision, Imaging
and Computer Graphics. Theory and Application, volume 359 of Communications
in Computer and Information Science, pages 176–192. Springer Berlin Heidelberg,
2013b. ISBN 978-3-642-38240-6

• Karsten Klein, Oliver Koch, Nils Kriege, Petra Mutzel, and Till Schäfer. Visual
analysis of biological activity data with Scaffold Hunter. Molecular Informatics, 32
(11-12):964–975, 2013a. ISSN 1868-1751

Chapter 3 contains results from the following articles. Further details are
presented at the beginning of the chapter.

• Nils Kriege and Petra Mutzel. Finding maximum common biconnected subgraphs in
series-parallel graphs. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán
Ésik, editors, Mathematical Foundations of Computer Science 2014, volume 8635 of
Lecture Notes in Computer Science, pages 505–516. Springer Berlin Heidelberg, 2014.
ISBN 978-3-662-44464-1

• Nils Kriege, Florian Kurpicz, and Petra Mutzel. On maximum common subgraph
problems in series-parallel graphs. In Kratochvíl Jan, Mirka Miller, and Dalibor Fron-
cek, editors, International Workshop on Combinatorial Algorithms, IWOCA 2014,
volume 8986 of Lecture Notes in Computer Science, pages 200–212. Springer Inter-
national Publishing, 2014a. ISBN 978-3-319-19314-4. Journal version submitted to
the European Journal of Combinatorics

• Andre Droschinsky, Nils Kriege, and Petra Mutzel. Efficient enumeration algorithms
for common subgraph problems in outerplanar graphs. 2015. In preparation

Chapter 4 contains results previously published in the following articles. Fur-
ther details are presented at the beginning of the chapter.

• Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In
Proceedings of the 29th International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress, 2012

• Nils Kriege, Marion Neumann, Kristian Kersting, and Petra Mutzel. Explicit versus
implicit graph feature maps: A computational phase transition for walk kernels. In
Data Mining (ICDM), 2014 IEEE International Conference on, pages 881–886, Dec
2014c

16 Chapter 1. Introduction

Sehr geringe Unterschiede begründen
manchmal sehr große Verschiedenheiten.

Marie von Ebner-Eschenbach
(1830–1916)Chapter 2

Preliminaries

In this section we introduce the notation and terminology used throughout
this thesis. Basic concepts of graph theory are presented here, additional data
structures that are only relevant for individual sections are introduced where
needed. For a comprehensive introduction to graph theory, please refer to a
standard textbook, e.g., (Diestel, 2005).

2.1 Numbers, Sets, Relations and Functions

We refer to the set of natural numbers including zero by N = {0, 1, 2, . . . },
N+ = N\{0} denotes the natural numbers without zero. The real numbers are
denoted by R and we refer by R≥0 and R+ to the non-negative and positive
real numbers, respectively. We denote the set of all k-element subsets of a
set M by [M]k. The union of two sets M1 and M2 is denoted by M1 ∪M2
and the disjoint union by M1]M2. A partition of a set M is a set M =
{M1, . . . ,Mk} of disjoint non-empty subsets of M with M =

⊎k
i=1Mi. The

subsetsM1, . . . ,Mk are said to be the cells of the partition. We denote vectors
v ∈ Kn and matrices M ∈ Kn×n over (a field) K in bold, using capital
letters for the latter. For a vector v we refer to the element at position i
either by vi or [v]i. We denote the inner product of two vectors v,w ∈ Kn by
〈v,w〉. In this thesis, the inner product is usually realized by the dot product
〈v,w〉 = v>w = v1w1 + · · · + vnwn, where v,w ∈ Rn. The (Euclidean)
norm of a vector v is defined as ‖v‖ =

√
〈v,v〉 and ‖v−w‖ consequently is

the (Euclidean) distance between v and w. For a matrix M we refer to the
element in the i-th row and j-th column either by mij or [M]ij .

A relation on the sets M1, . . . ,Mk is a subset R ⊆ M1 × · · · ×Mk. A
binary relation on M is a relation ∼⊆ M2 and we write a ∼ b if and only if
(a, b) ∈∼, and a 6∼ b otherwise. An equivalence relation is a binary relation
on M that is
(i) reflexive, i.e., ∀x ∈M : x ∼ x,
(ii) symmetric, i.e., ∀x, y ∈M : x ∼ y =⇒ y ∼ x, and

17

18 Chapter 2. Preliminaries

(iii) transitive, i.e., ∀x, y, z ∈M : x ∼ y ∧ y ∼ z =⇒ x ∼ z.
The equivalence class of x ∈M under an equivalence relation ∼ is defined as
[x]∼ = {y ∈ M | x ∼ y}; the set of equivalence classes forms a partition of
M . A binary relation that is symmetric and transitive, but not necessarily
reflexive, is called partial equivalence relation.

A function from X to Y is a relation f ⊆ X × Y such that for every
element x ∈ X there is exactly one element y ∈ Y with (x, y) ∈ f . In this
case, we use the notation f : X → Y instead of f ⊆ X × Y , and f(x) = y
instead of (x, y) ∈ f . Given a function f : X → Y , we refer to the domain of
f by dom(f) = X and the codomain of f by codom(f) = Y . The image of a
subset A ⊆ X under f is defined as f(A) = {y ∈ Y | ∃x ∈ A : f(x) = y}; the
image img(f) of the function f is f(X). A function f : X → Y is
(i) an injection if f(a) = f(b) =⇒ a = b holds for all a, b ∈ X,
(ii) a bijection if it is an injection and img(f) = codom(f).

A partial function f from X to Y , written f : X Y , is a function f : X ′ →
Y for some X ′ ⊆ X; in this case we have dom(f) = X ′.

2.2 Graphs

Unless explicitly stated otherwise throughout this thesis we consider simple
undirected graphs according to the following definition; the set of all such
graphs is denoted by G.

Definition 2.1 (Graph). A graph G = (V,E) consists of a finite set V (G) =
V of vertices and a finite set E(G) = E ⊆ [V]2 of edges.

For convenience, in the following an edge {u, v} is denoted by uv or vu, both
refer to the same edge. Two vertices u and v are said to be adjacent if
uv ∈ E and referred to as endpoints of the edge uv. The edge uv is said to be
incident to its endpoints; two edges are adjacent if they share one endpoint.
The degree deg(v) of a vertex v is the number of edges incident to v; a vertex
v with deg(v) = 0 is said to be isolated. We denote the maximum degree of G
by ∆(G) = max{deg(v) | v ∈ V (G)}. The vertices adjacent to a vertex v are
denoted by N(v) = {u ∈ V | uv ∈ E} and referred to as neighbors of v. The
order of a graph G is its number of vertices and denoted by |G| = |V (G)|.
The size of a graph G is its number of edges and denoted by ‖G‖ = |E(G)|.
A graph G with |G| = 0 is said to be empty. An adjacency matrix of a graph
G of order n is a symmetric matrix A ∈ {0, 1}n×n with aij = 1 if vivj ∈ E(G)
and 0 otherwise, for some numbering of vertices. A walk is a sequence of
vertices (v0, . . . , vn) such that vivi+1 ∈ E for 0 ≤ i < n. The vertices and the
edges connecting consecutive vertices are said to be contained in the walk.
The length of a walk is the number of edges it contains. A walk with no
repeated vertices is called path. A cycle is a walk of length at least 3 with no
repeated vertices except v0 = vn. A chord is an edge e connecting two vertices

2.2. Graphs 19

of a cycle that does not contain the edge e. A cycle is called chordless if it
does not possess a chord. We say a graph is a path (cycle) if there is a path
(cycle) containing all the vertices and edges of the graph. Let G = (V,E) be
a graph, the graph G = (V, [V]2 \E) is referred to as complement graph of G.

2.2.1 Multigraphs and Digraphs

A multigraph G is a generalization of Definition 2.1 where the edge set E(G)
and every edge e ∈ E(G) are multisets. Multisets may contain the same
element multiple times. An edge {v, v} is called a self-loop and two edges are
said to be parallel if they connect the same endpoints.

A directed graph or digraph G = (V,E) consists of a finite set V of vertices
and a finite set E ⊆ V × V of edges. We denote an edge (u, v) of a digraph
as uv, for short. Note that in contrast to graphs, for digraphs uv and vu
refer to different edges. For an edge uv the vertices u and v are referred to as
source vertex and target vertex, respectively; uv is an incoming edge of v and
an outgoing edge of u. The in-degree deg−(v) of a vertex v is the number of
incoming edges of v, the out-degree deg+(v) the number of outgoing edges. We
denote the maximum in-degree of a digraph G by ∆−(G) = max{deg−(v) |
v ∈ V (G)} and the maximum out-degree by ∆+(G) = max{deg+(v) | v ∈
V (G)}. The definition of adjacency matrices carries over from graphs to
digraphs, for which the resulting matrix is not necessarily symmetric. A
(directed) walk from a start vertex s to an end vertex t is a sequence of
vertices (s = v0, . . . , vn = t) such that vivi+1 ∈ E for 0 ≤ i < n. A (directed)
path is a directed walk with no repeated vertices. A directed walk of length at
least 2 with no repeated vertices except s = t is a (directed) cycle. A digraph
without directed cycles is called acyclic. A digraph G that contains an edge
vu for every edge uv ∈ E(G) can be interpreted as an undirected graph. In
this sense digraphs generalize graphs according to Definition 2.1.

2.2.2 Subgraphs

The concept of subgraphs transfers the inclusion relation of sets to the domain
of graphs. A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E), written
G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. If G′ is a subgraph of G, then G is said to be
a supergraph of G′. A subgraph G′ ⊆ G is said to be proper if G′ 6= G and we
write G′ ⊂ G. Let V ′ ⊆ V and E′ = {uv ∈ E | u, v ∈ V ′}, then G′ = (V ′, E′)
is said to be a (vertex-)induced subgraph ofG denoted byG′ v G. We say that
V ′ induces G′ in G and refer to the induced subgraph by G[V ′]. Let E′ ⊆ E
and V ′ be the set of vertices that appear as endpoint of at least one edge in
E′, then G′ = (V ′, E′) is said to be an edge-induced subgraph of G. We say
E′ induces G′ in G and refer to the induced subgraph by G[E′]. Edge-induced
subgraphs do not contain isolated vertices and, vice versa, every subgraph not
containing isolated vertices is an edge-induced subgraph for some subset of
edges. A graph G is called minimal (maximal) with some property if G itself

20 Chapter 2. Preliminaries

has the property, but no proper subgraph G′ ⊂ G (supergraph G′ ⊃ G) does.
A subgraph G′ ⊆ G is said to be a spanning subgraph of G if V (G′) = V (G).
A subset of edges E′ ⊆ E is said to span G = (V,E) if G[E′] is a spanning
subgraph of G.

2.2.3 Separators and Connectivity

A graph is connected if at least one path between any two vertices exists
and is disconnected otherwise. A (connected) component of G is a maximal
connected subgraph of G. We write G\S for the graph G[V (G)\S] obtained
from G by deleting the vertices S ⊆ V (G). For a subset of edges T ⊆ E(G)
we define G \ T = (V (G), E(G) \ T). A set S ⊆ V (G) is called |S|-separator
or separator of a graph G if G \ S is disconnected. A graph G with |G| > k
is called k-connected if it does not contain a j-separator with j < k; a 2-
connected graph is also called biconnected. A block is a maximal biconnected
subgraph of G and a bridge is an edge that is not contained in a block. If {v}
is a separator then v is called cutvertex. Any two blocks and bridges of G may
have at most one vertex in common, which is a cutvertex. A graph G is said
to have connectivity κ(G) = k if it is k-connected, but not (k+ 1)-connected.
A separator S is called (a, b)-separator if G\S contains two distinct connected
components C and D, such that a ∈ V (C) and b ∈ V (D); an (a, b)-separator
S is said to separate a from b. A separator S is said to separate A ⊆ V (G)
from B ⊆ V (G) if S is an (a, b)-separator for all a ∈ A and b ∈ B. A
separator S is called minimal if there are vertices a, b ∈ V (G), such that S
is an (a, b)-separator, but there is no (a, b)-separator S′ with S′ ⊂ S. Note
that a minimal separator may be contained in another minimal separator. A
separator S is said to cross another separator T if G\T contains components
C,D such that S ∩ V (C) 6= ∅ and S ∩ V (D) 6= ∅. In other words: S crosses
T if there are vertices a, b ∈ S that are separated by T . Let S, T be minimal
separators, then S crosses T if and only if T crosses S (Parra and Scheffler,
1995, Lemma 3). Two non-crossing separators are said to be parallel.

2.2.4 Specific Graph Classes

The subset of graphs that have a special property are referred to as graph
class. We briefly review some graph classes that are relevant for this thesis
and refer the reader to the textbook by Brandstädt et al. (1999) for a com-
prehensive survey. A graph is called complete if every pair of distinct vertices
is adjacent. The complete graph on n vertices is denoted by Kn. Given a
graph G = (V,E), two disjoint sets U ⊆ V andW ⊆ V with U]W = V form
a bipartition of G if there is no edge uv ∈ E with u and v both in U or both
in W . A graph G is called bipartite if a bipartition of G exists and we use
the notation G = (U,W,E) to explicitly refer to the bipartition U , W . The
complete bipartite graph on n = |U | and m = |W | vertices is the graph with
bipartition U , W such that for every u ∈ U and v ∈ W the edge uv exists;

2.2. Graphs 21

this graph is denoted by Kn,m. A forest is a graph containing no cycles. A
(free) tree is a connected forest. A rooted tree is a tree T together with a
distinguished vertex r ∈ V (T). The vertex u is the parent of v if (v, u, . . . , r)
is a path in T with root r. If u is the parent of v, then v is referred to as
child of u.

The following concepts intuitively allow to measure how “tree-like” a
graph is. A graph G is called a k-almost tree if ‖B‖ < |B|+ k is satisfied for
every block B in G. The 1-almost trees are known as cactus graphs (Brand-
städt et al., 1999).

Definition 2.2 (Tree Decomposition). A tree decomposition of a graph
G is a pair (T,X), where T is a tree and X = (Xi)i∈V (T) a family of vertex
subsets Xi ⊆ V (G) called bags satisfying:
T1 V (G) =

⋃
i∈V (T)Xi,

T2 for every edge uv ∈ E(G) there is a node i ∈ V (T) with {u, v} ⊆ Xi,
T3 for every i, j, k ∈ V (T), if j lies on the unique path with endpoints i

and k then Xi ∩Xk ⊆ Xj.

We refer to the vertices of the tree T as nodes to distinguish them from the
vertices of the input graph. The width of a tree decomposition (T,X) is
defined as max{|Xi| − 1 | i ∈ V (T)} and the tree width tw(G) of a graph G is
the minimum width among all possible tree decompositions of G. The graphs
with tree width less or equal to k are also known as partial k-trees. A crucial
feature of tree decompositions is their close relation to graph separators: Let
(T,X) be a tree decomposition of a connected graph G and ab any edge in T .
Let Ta and Tb be the connected components of T \{ab} and A =

⋃
i∈V (Ta)Xi,

B =
⋃
i∈V (Tb)Xi, then either (i) the intersection of the bags Xa ∩ Xb = S

separates A \ S from B \ S in G; or (ii) A ⊆ B or B ⊆ A. Therefore,
κ(G) ≤ tw(G) and the equation κ(G) = tw(G) = k is satisfied for k-connected
partial k-trees only. The partial 2-trees are also called series-parallel graphs.

A graph is planar if it admits a planar drawing, i.e., a drawing in the
plane such that no two edges cross. A planar drawing of a graph divides
the plane into connected regions called faces, which are enclosed by edges.
The unbounded region is referred to as the outer face. An edge and a face
are said to be incident if the edge lies on the boundary of the face. Two
faces are adjacent if they are incident with a common edge. A combinatorial
embedding of a graph specifies for every vertex the cyclic, clockwise order of
all incident edges. A planar drawing defines a combinatorial embedding and
every planar drawing that defines the same combinatorial embedding yields
the same set of faces. A planar embedding is a combinatorial embedding with
a distinguished outer face. A planar graph G with at least three vertices has
at most 3|G| − 6 edges (Diestel, 2005, Corollary 4.2.10). A graph is called
outerplanar if it admits a planar drawing, in which every vertex lies on the
boundary of the outer face. The associated planar embedding is referred to as

22 Chapter 2. Preliminaries

outerplanar embedding. Every outerplanar graph is series-parallel, but, vice
versa, not every series-parallel graph is outerplanar.

The following concepts are essential to characterize graph classes by for-
bidden substructures. An edge uv is subdivided by replacing uv with a new
vertex w and two edges uw and wv. The graph M is a topological minor of G
if a subgraph of G can be obtained1 by subdividing edges of M . An edge uv
is contracted by merging its endpoints into a new vertex w, which becomes
adjacent to all the former neighbors of u and v. A graph M is a minor of a
graph G if M can be obtained from G by successively (i) contracting edges,
(ii) deleting edges and (iii) deleting isolated vertices. If M is a topological
minor of a graph G, then M also is a minor of G. Hence, the class of graphs
that do not contain M as a topological minor is at least as general as the
class of graphs that do not contain M as a minor.

We provide alternative characterizations of some of the graph classes de-
fined above: A graph is a cactus if and only if it does not contain the complete
graph on four vertices missing one edge as minor (El-Mallah and Colbourn,
1988). A graph is outerplanar if and only if it contains neither K4 nor K2,3
as a minor (Brandstädt et al., 1999; Diestel, 2005); it is series-parallel if and
only if it does not contain K4 as a minor (Diestel, 2005, Proposition 12.4.2).
Finally, a graph is planar if and only if it contains neither K5 nor K3,3 as
a minor (Diestel, 2005, Theorem 4.4.6). This famous result was originally
shown for topological minors by Kuratowski (1930) and later for minors by
Wagner (1937).

2.3 Isomorphism Problems in Graphs
In this section we introduce basic concepts to describe that graphs exhibit
the same structure or substructures. We briefly review the complexity status
and algorithms for the related computational problems.

A graph isomorphism is a mapping of vertices that preserves adjacencies.

Definition 2.3 (Graph Isomorphism). Let G and H be two graphs, a bi-
jection ψ : V (G)→ V (H) is a (graph) isomorphism if

uv ∈ E(G)⇐⇒ ψ(u)ψ(v) ∈ E(H) ∀u, v ∈ V (G). (2.1)

Two graphs G and H are said to be isomorphic, written G ' H, if an iso-
morphism between G and H exists.

Note that an isomorphism implicates a bijection between the edges of a graph.
An automorphism of a graph G is an isomorphism ψ : V (G) → V (G). The
set of automorphisms of G is denoted by Aut(G). Definition 2.3 leads to the
following well-studied decision problem.

1More precisely a graph “with the same structure” must be obtained according to the
concept of isomorphism introduced later by Definition 2.3.

2.3. Isomorphism Problems in Graphs 23

Problem 2.1 (GI). Graph Isomorphism
Input: Two graphs G and H.
Task: Decide if G ' H holds.

GI is one of few problems belonging to NP, which has neither been shown to
be NP-complete nor polynomial-time solvable (Garey and Johnson, 1979). Al-
though the problem has been extensively studied (see, e.g., Read and Corneil,
1977; Arvind and Torán, 2005, and references therein), the complexity sta-
tus still remains open (Johnson, 2005; Grohe, 2013). For many graph classes
the problem can be solved in polynomial time (Köbler, 2006): These include
planar graphs (Hopcroft and Wong, 1974), partial k-trees (Bodlaender, 1990)
and, more generally, graphs with forbidden minors; polynomial-time algo-
rithms are also known for graphs of bounded degree (Luks, 1982). All these
previous results were recently unified and generalized by Grohe and Marx
(2015) for graphs with forbidden topological minors. In practice, the prob-
lem can be solved fairly well (McKay, 1981; McKay and Piperno, 2014) and
difficult instances are often hard to find and generated synthetically. For
general graphs the best known algorithm for more than three decades ob-
tains a running time of exp(O(

√
n logn)) for graphs of order n as reported

by Babai et al. (1983). The method is based on the approach for graphs
of bounded degree by Luks (1982) and employs a (color) degree reduction
technique due to Zemlyachenko et al. (1985). Hence, GI can be solved in
moderately-exponential time, meaning that the running time is bounded by
exp(O(nα)) with α < 1. A problem is said to be GI-hard if it is at least as hard
as graph isomorphism and GI-complete if it is as hard as graph isomorphism
w.r.t. polynomial-time reduction (for details, see Booth and Colbourn, 1979).
The graph isomorphism problem, for example, remains GI-complete when
the input graphs are restricted to connected graphs or bipartite graphs. Iso-
morphism problems for other classes of mathematical objects like automata
and semigroups and certain combinatorial problems are also known to be
GI-complete (Booth and Colbourn, 1979).

A graph invariant is a function I on G, such thatG ' H =⇒ I(G) = I(H).
In the case that I not only provides a necessary, but also sufficient condition
for graph isomorphism, i.e., G ' H ⇐⇒ I(G) = I(H), the graph invariant
I is said to be complete. The canonical form C(G) of a graph G is a unique
adjacency matrix of G such that G ' H ⇐⇒ C(G) = C(H) and, hence, C is
a complete invariant. Gurevich (1997) showed that every complete invariant
can be used to obtain a canonical form. The above definition leads to the
following well-studied computational problem closely related to GI.

Problem 2.2 (CAN). Graph Canonization
Input: A graph G.
Task: Compute a complete graph invariant C(G).

24 Chapter 2. Preliminaries

Clearly, CAN is GI-hard, while it is an open problem if CAN is polynomial
time reducible to GI (Arvind and Torán, 2005). For the above mentioned
graph classes for which polynomial-time GI algorithms are known CAN can
as well be solved in polynomial time. In fact, GI algorithms often compute
a complete graph invariant in order to test graphs for isomorphism. This
also is the case for the most general approach by Grohe and Marx (2015) as
well as for most practical algorithms (McKay and Piperno, 2014). The best
known algorithm for general graphs was proposed by Babai and Luks (1983)
and achieves a moderately-exponential running time asymptotically bounded
by exp(n1/2+o(1)), where n is the order of the input graph. The algorithm
is based on the same approach used by Babai et al. (1983) to solve GI and
closely matches its running time (Arvind and Torán, 2005). Canonization is
of high practical relevance since it allows, for example, to easily test if a graph
is contained in a large database of graphs, when these are stored in canonical
form.

An (induced) subgraph isomorphism from G to H is an isomorphism be-
tween G and an (induced) subgraph H ′ of H.

Definition 2.4 (Subgraph Isomorphism). Let G and H be two graphs.
An injection ψ : V (G)→ V (H) is a subgraph isomorphism from G to H if

uv ∈ E(G) =⇒ ψ(u)ψ(v) ∈ E(H) ∀u, v ∈ V (G). (2.2)

Definition 2.5 (Induced Subgraph Isomorphism). Let G and H be two
graphs. An injection ψ : V (G)→ V (H) is an induced subgraph isomorphism
from G to H if

uv ∈ E(G)⇐⇒ ψ(u)ψ(v) ∈ E(H) ∀u, v ∈ V (G). (2.3)

Clearly, each induced subgraph isomorphism also is a subgraph isomorphism,
but not vice versa. Again, there are well-studied computational problems
related to the two above definitions.

Problem 2.3 (SI). Subgraph Isomorphism
Input: Two graphs G and H.
Task: Decide if a subgraph isomorphism from G to H exists.

Problem 2.4 (ISI). Induced Subgraph Isomorphism
Input: Two graphs G and H.
Task: Decide if an induced subgraph isomorphism from G to H exists.

In the context of subgraph isomorphism problems as above we refer to G as
the pattern graph. If G and H are of the same order and size, SI and ISI
algorithms decide if G and H are isomorphic. However, several well-known
NP-complete problems can also be reduced in polynomial time to subgraph

2.3. Isomorphism Problems in Graphs 25

isomorphism. This includes deciding if a clique of size k (cf. the related
optimization Problem 2.6) or a Hamiltonian cycle exists in a graph. Thus,
SI and ISI are NP-complete for general graphs even if the pattern graph has
a very special structure, i.e., it either is complete or a cycle. The complexity
has been studied in detail. Let k = |G| be the order of the pattern graph
and n = |H| the order of H. If the pattern graph G is a tree and H is
a forest, SI and ISI can be solved in time O

(
k1.5n/ log k

)
(Matula, 1978;

Reyner, 1977; Verma and Reyner, 1989; Shamir and Tsur, 1999). Vice versa,
if G is a forest and H is a tree, the problems are NP-complete (Garey and
Johnson, 1979). SI is NP-complete if G and H are outerplanar even when G
is connected (Sysło, 1982; Lingas, 1989). If G is biconnected and both input
graphs are outerplanar, ISI can be solved in time O(n2) (Sysło, 1982) and
SI in O(kn2) (Lingas, 1989). Lingas and Sysło (1988) showed that SI can
be solved in time O(n3 + k4.5n2) if G is biconnected and both input graphs
are series-parallel. SI can be solved in time O(kk+1n) if G is a connected,
bounded-degree graph and H is a partial k-tree (Matoušek and Thomas,
1992). Generalizing the result for bounded-degree graphs Hajiaghayi and
Nishimura (2007) showed that polynomial running time time can still be
achieved when G is a log-bounded fragmentation graph, i.e., the removal of at
most k vertices results in O(k logn) connected components, where n = |G|.
SI can be solved in time O(kk+1n3.5) if G is k-connected and H is a partial
k-tree (Matoušek and Thomas, 1992; Gupta and Nishimura, 1994). Dessmark
et al. (2000) improved the running time toO(nk+2) for arbitrary k andO(n3.5)
for k ∈ {2, 3}. If G and H are partial k-paths2 SI can be solved in time O(n3)
for arbitrary k (Gupta and Nishimura, 1996a). On the contrary, Gupta and
Nishimura (1996a;b) proved that SI on partial k-trees is NP-complete if G is
not k-connected or has more than k vertices of unbounded degree. Eppstein
(1999) showed that SI (as well as ISI) on planar graphs can be solved in O(n)
for fixed k. The superexponential dependency on k of the SI test can be
reduced from kO(k) to 2O(k) (Dorn, 2010).

In practice, backtracking algorithms for general graphs are often employed
successfully. These approaches typically maintain (either explicit or implicit)
a set of candidate vertices of H for every vertex of G and extend a map-
ping step-by-step performing backtracking if the current mapping cannot be
completed. Whenever the mapping is extended the candidate sets are fil-
tered to some extent. Further the ordering, in which the mapping is ex-
tended turned out to be crucial in practice. The early algorithm by Ullmann
(1976) uses elaborate candidate filtering referred to as refinement. Later
computational less demanding filtering techniques in combination with cer-
tain vertex orderings were shown to be more efficient for practical instances.
Cordella et al. (1999) proposed the VF algorithm and experimentally showed
it to outperform Ullmann’s algorithm on several synthetically generated in-

2A graph is a partial k-path if it admits a tree decomposition (T,X) of width at most k,
where the tree T is a path.

26 Chapter 2. Preliminaries

stances (Cordella et al., 1999). The approach subsequently was improved, in
particular with respect to memory requirements, referred to as VF2 (Cordella
et al., 2001), and shown to be efficient in an extensive experimental compar-
ison (Foggia et al., 2001; Cordella et al., 2004). For molecular graphs Ull-
mann’s algorithm has been considered most convenient for years (Barnard,
1993; Willett, 1999). More recently, it was shown that straight-forward ap-
proaches similar to VF2 not managing candidate sets explicitly are highly
efficient for molecular graphs in practice (Kriege, 2009; Klein et al., 2011).
Subgraph isomorphism was considered in the context of constraint program-
ming (see, e.g., Zampelli, 2008, and references therein) and recently less de-
manding filtering techniques were again proposed by Ullmann (2011) and
combined with efficient bit-vector representations.

Definition 2.6 (Common Subgraph (Isomorphism)). Let G and H be
two graphs, an isomorphism ψ between G′ ⊆ G and H ′ ⊆ H is called common
subgraph isomorphism of G and H; the graph G′ ' H ′ is a common subgraph
of G and H. The isomorphism ψ induces the subgraph isomorphisms ψG :
V (H ′)→ V (G) from H ′ to G and ψH : V (G′)→ V (H) from G′ to H.

Note that a common subgraph isomorphism is a partial function ψ : V (G)
V (H) w.r.t. to the vertices of G. We say a common subgraph (isomorphism)
is induced if G′ and H ′ both are induced subgraphs; it is a common edge
subgraph (isomorphism) if both are edge-induced subgraphs. A common sub-
graph isomorphism is said to be maximal if it cannot be extended. Note
that a common subgraph isomorphism may be a maximal common induced
subgraph isomorphism and at the same time a common edge subgraph iso-
morphism that is not maximal. Clearly, in general a common subgraph may
be connected or disconnected. Combining these properties leads to several
variants of common subgraph problems, which differ regarding their complex-
ity. The related optimization problems are discussed in detail in Chapter 3.

2.3.1 Isomorphism Problems in Labeled Graphs

In practice graphs typically are used to model complex structures like chem-
ical compounds or proteins. Then vertices and edges represent real-world
objects like atoms and molecular bonds and must typically be annotated by
additional information like the atom or bond type.

Definition 2.7 (Labeled Graph). Let L = LV ∪ LE be a finite set of la-
bels, a labeled graph is a graph G equipped with a function τ : V (G)]E(G)→
L, which assigns a vertex label τ(v) ∈ LV to every vertex v ∈ V (G) and an
edge label τ(e) ∈ LE to every edge e ∈ E(G).

We refer to L as label alphabet, which could be, e.g., L = {red, green, blue}
or the possible atom and bond types of a molecular graph. The elements

2.4. Fundamental Graph Problems and Algorithms 27

of these sets can typically not be naturally ordered and we refer to them
as categorical or discrete labels in order to distinguish them from the more
general annotations of attributed graphs introduced later in Section 4.3, which
can be continuous and multi-dimensional.

For two graphs G, H with labels τ1 and τ2 a bijection ψ : V (G)→ V (H)
is said to preserve labels if

τ1(v) = τ2(ψ(v)) ∀v ∈ V (G) (2.4)
τ1(uv) = τ2(ψ(u)ψ(v)) ∀uv ∈ E(G). (2.5)

Two labeled graphs G and H are isomorphic if there is a bijection ψ :
V (G) → V (H) that (i) preserves adjacencies according to Equation (2.1),
Definition 2.3; and (ii) simultaneously preserves labels according to Equa-
tions (2.4), (2.5). A graph G′ with labels τ ′ is a subgraph of a graph G
with labels τ if G′ ⊆ G and τ ′ is the function τ restricted to the domain
V (G′)]E(G′). The definitions of vertex- and edge-induced subgraphs as well
as the definition of the various isomorphism problems can directly be trans-
ferred to labeled graphs. This includes automorphism, (induced) subgraph
isomorphism and common (induced) subgraph isomorphism. When applied
to labeled graphs, we in general assume that labels must be preserved by iso-
morphisms. Occasionally, we refer to Definition 2.3 even for labeled graphs
as isomorphism between the underlying unlabeled graphs.

Research with a focus on theoretical results typically does not consider
labels. For graphs with uniform labels, Equations (2.4), (2.5) always hold and
we obtain the ordinary isomorphism problems. Hence, negative complexity
results for isomorphism problems on unlabeled graphs carry over to labeled
graphs. Notably, the NP-hardness proof by Akutsu and Tamura (2012) for a
common subgraph problem in degree-bounded partial k-trees requires graphs
to be labeled, but the authors conjecture that the result holds as well for
unlabeled graphs. Vice versa, the proposed polynomial-time algorithms can
typically be adjusted to take labels into account. Moreover, in practice, the
presence of labels often reduces the search space and can even be used algo-
rithmically to improve running times (Kriege, 2009; Klein et al., 2011).

2.4 Fundamental Graph Problems and Algorithms
A matching in a graph G is a subset of edges M ⊆ E(G) such that no two
edges in M share a common vertex, i.e., e ∩ e′ = ∅ for all distinct edges
e, e′ ∈ M . A matching is perfect if every vertex of G is incident to exactly
one edge in M .

Problem 2.5 (MWBM). Maximum Weight Bipartite Matching
Input: A bipartite graph G = (U, V,E) with edge weights w : E → R.
Task: Determine the maximum weight w(M) =

∑
e∈M w(e) of a matching

M ⊆ E in G.

28 Chapter 2. Preliminaries

For convenience, we occasionally allow the edge weight −∞. Note that a
maximum weight matching does not contain any edge e with weight w(e) < 0
and we may delete all edges with non-positive weight without affecting the
optimal solution. The Maximum Weight Bipartite Perfect Matching
(MWBPM) is defined analogous to Problem 2.5, but asks for the maximum
weight of a perfect matching (provided that the input graph admits a perfect
matching). MWBM can be reduced to MWBPM by constructing a graph that
contains two copies of the MWBM instance and additional edges with weight
zero between every two copies of the same vertex (Duan and Su, 2012). The
Assignment problem asks for the minimum weight of a perfect matching.
By negating all weights of an MWBPM instance, we can transform it into an
equivalent assignment problem and vice versa. The assignment problem can
be solved in time O(n3) by an elaborated implementation of the Hungarian
method, where G is assumed to be a complete bipartite graph of order n.
Fredman and Tarjan (1987) obtained a running time of O(n2 logn + nm),
where n = |G| and m = ‖G‖, by employing Fibonacci heaps in combina-
tion with Dijkstra’s algorithm to solve the subproblem of finding shortest
paths. In case of integral edge weights from the set {−N, . . . , N} the as-
signment problem can be solved in O(

√
nm log(nN)) by means of scaling

techniques (Gabow and Tarjan, 1989). The best known scaling algorithm for
MWBM, Problem 2.5, runs in O(m

√
n logN) time (Duan and Su, 2012). The

Maximum (Cardinality) Bipartite Matching problem is a special case
of Problem 2.5, where all edges have weight one. The classical algorithm by
Hopcroft and Karp (1973) solves this problem in O(m

√
n) time.

Given a graph G = (V,E), a clique is a subset of vertices C ⊆ V such
that G[C] is a complete graph. A clique C is said to be maximal if there is no
clique C ′ with C ⊂ C ′ and maximum if there is no clique C ′ with |C| < |C ′|.
The following Problem 2.6 is known to be NP-complete (Garey and Johnson,
1979).

Problem 2.6 (CLIQUE). Maximum Clique
Input: A graph G.
Task: Determine the size of a maximum clique in G.

Given a graph G = (V,E), a vertex cover is a subset of vertices C ⊆ V such
that for all edges uv ∈ E either u ∈ C or v ∈ C or both. A vertex cover C is
said to be minimal if there is no vertex cover C ′ with C ′ ⊂ C. A vertex cover
C is said to be minimum if there is no vertex cover C ′ with |C ′| < |C|.

Problem 2.7 (VC). Minimum Vertex Cover
Input: A graph G.
Task: Determine the size of a minimum vertex cover in G.

Given a graph G = (V,E), an independent set is a subset of vertices S ⊆ V
such that G[S] contains no edges, i.e., ∀u, v ∈ S : uv /∈ E. An independent

2.4. Fundamental Graph Problems and Algorithms 29

set S is said to be maximal if there is no independent set S′ with S ⊂ S′. An
independent set S is said to be maximum if there is no independent set S′
with |S| < |S′|.

Problem 2.8 (IS). Maximum Independent Set
Input: A graph G.
Task: Determine the size of a maximum independent set in G.

The above problems are closely related: The set C ⊆ V (G) is a vertex cover
in G if and only if the set S = V (G) \C is an independent set in G. Further-
more, C is a minimal (minimum) vertex cover if and only if S is a maximal
(maximum) independent set. The set S ⊆ V is an independent set in G if
and only if S is a clique in G. Furthermore, S is a maximal (maximum)
independent set in G if and only if S is a maximal (maximum) clique in G.

30 Chapter 2. Preliminaries

2.5 Notation
Notation and symbols used throughout this thesis are summarized in Ta-
bles 2.1, 2.2, 2.3. The symbols presented in Table 2.3 are introduced in
Chapter 4 and listed here for completeness.

Table 2.1: General notation and symbols.

Symbol Meaning

N, N+ Natural numbers with and without zero
R, R≥0, R+ All, non-negative, positive real numbers
M1]M2 Disjoint union of sets M1 and M2
P(M) Power set of M
[M]k Subsets of the set M with k-element
vi = [v]i Element at position i of vector v
〈v,w〉 Dot product
‖v‖, ‖v−w‖ Norm and distance
mij = [M]ij Element at (i, j) of matrix M
dom(f) Domain of function f
codom(f) Codomain of function f
img(f) Image of function f

Table 2.2: Notation and symbols for graphs.

Symbol Meaning

G Set of graphs
|G| Order of G, i.e., |V (G)|
‖G‖ Size of G, i.e., |E(G)|
deg(v) Degree of vertex v
∆(G) Maximum degree of graph G
N(v) Neighbors of v
G Complement graph of G
G[V] Subgraph induced by V
⊆, v Subgraph, induced subgraph relation
G \ S Graph obtained by deleting S
κ(G) Connectivity of G
Kn, Kn,m Complete and complete bipartite graph
tw(G) Treewidth of G
ψ, ' Isomorphism, isomorphism relation
Aut(G) Automorphisms of G
L, τ Label alphabet, labeling function
A, α Attributes, attributing function
G×H, ×w Direct product graph, weighted —
G∇H, ∇w Association graph, weighted —

2.5. Notation 31

Table 2.3: Notation and symbols for kernels.

Symbol Meaning

K, k Kernel functions
KRBF Gaussian RBF kernel
Kδ Dirac kernel
K̂ Normalized kernel
X Objects compared by kernels
D Data set (of graphs)
κV , κE Vertex, edge kernel
H Feature space
φ Feature map X → H
Φ Feature vector representing an element in H

32 Chapter 2. Preliminaries

Gemeinsamkeit ist immer etwas
Hinzugekommenes, und wir
wissen nicht was.

Hermann Bahr
(1863–1934)Chapter 3

Common Subgraph Problems

In this chapter common subgraph problems and closely related variations
are considered. The most elementary problem of that kind arguably is the
following.

Problem 3.1 (MCIS). Maximum Common Induced Subgraph
Input: Two graphs G and H.
Task: Determine the maximum order of a common induced subgraph of

G and H.
MCIS is well-known to be NP-hard1 (Johnston, 1976). In Section 3.1 we
summarize known bounds on the running time of exact exponential-time al-
gorithms. In addition, we discuss a modification of a folklore algorithm which
improves over the worst-case time bound of the fastest exact MCIS algorithm
for general graphs. Subsequently polynomial-time solvable special cases are
considered, which become tractable either by restricting to specific common
subgraphs, by considering only specific graph classes or—most fruitful—a
combination of both. After giving an overview on relevant algorithms and
complexity results, we present an algorithm to compute the order of a max-
imum common biconnected subgraph of two series-parallel graphs. While
this problem was believed to be solved, we identify key obstacles that were
overlooked by previous approaches and present new solutions to overcome
them. For the special case of outerplanar graphs we present a new algorithm,
which is shown to yield quadratic running time. We extend our approach to
solve a problem of high practical relevance, which asks to find a maximum
common subgraph that preserves the structure of blocks and bridges of the
input graphs. Following this, we discuss graph distance metrics derived from
maximum common subgraph problems. Finally, we summarize our results
and point out promising directions of future research.

The main contributions of this chapter are the following:
1Please note that the common subgraph problems considered in this chapter are opti-

mization problems. For convenience, we say that an optimization problem P is NP-hard if
there is a polynomial-time reduction from an NP-complete decision problem to P .

33

34 Chapter 3. Common Subgraph Problems

• We present an exponential-time exact MCIS algorithm in Section 3.1.
While not suitable for practical purpose, we obtain a worst-case bound
on its running time that constitutes an improvement over the fastest
algorithms currently known. This result has not been published previ-
ously.

• In Section 3.4 we propose an algorithm to find a maximum common
biconnected subgraph in series-parallel graphs based on the novel con-
cept of potential separators. Parts of this section have been published
in (Kriege and Mutzel, 2014).

• For the same problem we present a different algorithm in Section 3.4.4
that is restricted to outerplanar graphs, where it achieves quadratic run-
ning time. This result is intended for publication as part of (Droschin-
sky, Kriege, and Mutzel, 2015).

• We consider a related problem, where the task is to find a maximum
common connected subgraph that preserves the blocks and bridges of
the input graphs. In Section 3.5 we present a polynomial-time algorithm
for this problem in series-parallel graphs, which utilizes the algorithm
developed in Section 3.4. The basic idea of the approach is due to the
author of this thesis, the results were initially elaborated by Kurpicz
(2014) as part of his Master’s thesis and have also been published in
(Kriege, Kurpicz, and Mutzel, 2014a). The algorithms and the text
presented here were revised and widely rewritten by the author of this
thesis. Parts of Section 3.5 have been submitted for publication to the
European Journal of Combinatorics.

• In Section 3.6 we introduce the concept of triangle consistency as a
sufficient condition for maximum common subgraph variants to allow
derivation of graph distance metrics. In combination with our algo-
rithms we obtain polynomial-time computable graph distance metrics
for cactus graphs. The results of this section have not been published
previously.

3.1 Exact Exponential-Time Algorithms

Considerable effort has been spent into developing and improving maximum
common subgraph algorithms for practical purposes (see, e.g., Raymond and
Willett, 2002; Raymond et al., 2002a;b; Conte et al., 2007; Ehrlich and Rarey,
2011). In addition, maximum common subgraph problems have been formu-
lated as integer linear programs (see Manić et al., 2009; Bahiense et al., 2012;
Piva and de Souza, 2012) and constraint satisfaction problems (Vismara and
Valery, 2008), such that general purpose solvers can be applied. However,
only few algorithms have been thoroughly analyzed in terms of running time.

3.1. Exact Exponential-Time Algorithms 35

We briefly summarize the fundamentals of a classical approach and then re-
view recently proposed algorithms, for which better bounds on the worst-case
running time have been shown. Finally, we propose a new algorithm, which is
shown to obtain the best worst-case bound that is currently known for exact
MCIS algorithms on general graphs.

3.1.1 Reduction to the Clique Problem

The most common approach in practice is to exploit the one-to-one correspon-
dence between common induced subgraph isomorphisms of the input graphs
and cliques in the association graph,2 which was already described by Levi
(1973).

Definition 3.1 (Association Graph). For two graphs G = (V,E), H =
(V ′, E′), the association graph is denoted by G∇H = (V, E) and defined as

V = V × V ′

E =
{

(u, u′)(v, v′) ∈ [V]2
∣∣∣ u 6= v ∧ u′ 6= v′∧(

uv ∈ E ∧ u′v′ ∈ E′ ∨ uv /∈ E ∧ u′v′ /∈ E′
)}
.

Each vertex of the association graph represents a mapping of a vertex of
G to a vertex of H. Two vertices in the association graph are adjacent if
their corresponding vertex mappings are compatible, i.e., the involved vertices
exhibit the same relation (adjacent or non-adjacent) in both graphs.

Levi (1973) has shown that two graphs G and H have a common induced
subgraph with k vertices if and only if there is a clique with k vertices in
G∇H. Further, there is a one-to-one correspondence between the common
induced subgraph isomorphisms and cliques in the association graph. Let
C = {(v1, v

′
1), . . . , (vk, v′k)} be a clique in G∇H, U = {v1, . . . , vk} ⊆ V (G)

and U ′ = {v′1, . . . , v′k} ⊆ V (H), then ψ(vi) = v′i, for i ∈ {1, . . . , k}, is an
isomorphism between G[U] and H[U ′]. Consequently, the maximum cliques
in the association graph correspond to the isomorphisms between maximum
common induced subgraphs. Note that there may be different isomorphisms
acting on the same sets of vertices of the two input graphs.

This relation allows to reduce the maximum common induced subgraph
problem (Problem 3.1) to the maximum clique problem (Problem 2.6). There
is a multitude of algorithms devised for maximum clique detection, see the
surveys by Pardalos and Xue (1994) and Bomze et al. (1999) for an overview.
The algorithm by Bron and Kerbosch (1973) enumerates all maximal cliques

2Also commonly called compatibility graph (Koch, 2001; Durand et al., 1999) or product
graph (Koch, 2001; Cazals and Karande, 2005). In the context of a more systematic study
of graph products Hammack et al. (2011) refers to the association graphs as weak modular
product graph.

36 Chapter 3. Common Subgraph Problems

and is often used in practice (see, e.g., Koch, 2001). If one is only inter-
ested in an arbitrary maximum clique or just the size of a maximum clique,
branch-and-bound techniques are used to speed up the search. These essen-
tially allow to ignore unfruitful branches in the search tree, whenever an upper
bound of the possible solution size within the branch drops below the best
known current solution. Consequently, these techniques benefit from heuris-
tics to find a good solution early. One example of these algorithms is due to
Wood (1997), which is employed by Stahl et al. (2005). Conte et al. (2007)
performed an extensive experimental comparison including several clique de-
tection algorithms (e.g., Balas and Yu, 1986). However, the study does not
reveal clear evidence for one algorithm being preferable in practice. The theo-
retical fastest known maximum clique algorithm is due to Robson (2001) and
requires time O(20.249N) = O(1.1888N) to find a maximum clique in a graph
of order N .3 The order of the association graph clearly is nm, where n = |G|
and m = |H|. Hence, the best known worst-case bound for this approach is
O(20.249nm).

3.1.2 Recent Algorithms

Suters et al. (2005) more recently proposed an exact algorithm termed clique
branching to compute a maximum common induced subgraph, which exploits
the specific structure of association graphs. It is observed that the comple-
ment of an association graph contains a large number of cliques. This fact
is used algorithmically when computing the minimum vertex cover in this
graph.4 The method is shown to require O((m + 1)n) time. Moreover, the
authors state that this worst-case bound is superior to those known for algo-
rithms that where analyzed previously.

Motivated by that claim Akutsu and Tamura (2012) presented and an-
alyzed straight-forward exponential-time algorithms for several variations of
the maximum common subgraph problem. Algorithm 3.1 shows the general
approach, which simply enumerates all induced subgraphs of the two input
graphs and checks all pairs for isomorphism—basically implementing a naive
brute-force approach. Let T'(n) be the time to solve the graph isomorphism
problem between two induced subgraphs of order n, cf. line 4. The number
of induced subgraphs corresponds to the number of subsets of the vertices,
which is 2n for a set of n vertices. Let n, m be the order of the two input
graphs as above and assume w.l.o.g. that n ≤ m. Algorithm 3.1 then requires

3The algorithm by Robson (2001) has not been published and is difficult to follow.
Notably, there is a simple algorithm for which a worst-case bound of O(20.288N) has been
shown by advanced analysis techniques (Fomin et al., 2006).

4Actually these cliques directly correspond to independent sets in the association graph
and are due to the fact that a vertex (u, v) cannot be adjacent to a vertex (u, w) for any
w ∈ V (H) according to Definition 3.1. Thus, a clique algorithm directly operating on the
association graph should allow the same bound on running time. The article states only
vague arguments for solving the complementary problem instead.

3.1. Exact Exponential-Time Algorithms 37

Algorithm 3.1: A folklore algorithm for exact MCIS
Input : Two graphs G, H.
Output : Order of a maximum common subgraph.

1 mcs← 0
2 forall the G′ v G do
3 forall the H ′ v H do
4 if G′ ' H ′ then . Graph isomorphism algorithm
5 mcs← max{mcs, |G′|}

6 return mcs

Algorithm 3.2: Improved exact MCIS by graph canonization
Input : Two graphs G, H.
Output : Order of a maximum common subgraph.

1 A ← ∅; B ← ∅
2 for k ← 1 to min{|G|, |H|} do
3 forall the V ′ ∈ [V (G)]k do
4 A ← A∪ C(G[V ′]) . Graph canonization algorithm
5 forall the V ′ ∈ [V (H)]k do
6 B ← B ∪ C(H[V ′])

7 C ← A ∩ B . Set of all common subgraphs
8 return maximum order |G′| of a graph G′ ∈ C

O(2n·2m·T'(n)). For many graph classes GI can be solved in polynomial time,
see Section 2.3. For general graphs a running time T'(n) = exp(O(

√
n logn))

can be obtained (Babai et al., 1983), which for Algorithm 3.1 yields a total
running time of O(2n+m+c

√
n logn), where c is a constant. Please note that

it is necessary to introduce the constant c as exp(O(n)) = 2O(n) 6= O(2n).
Since c

√
n logn = o(n), reducing the term n + m in the exponent means an

asymptotic improvement of the running time for any constant c. This folklore
algorithm yet is asymptotically faster than the O((m + 1)n) time algorithm
by Suters et al. (2005).

3.1.3 A Faster Algorithm by Graph Canonization

In the following we refine this simple algorithm and obtain a better bound
on the running time. The key idea for improvement is not to check all pairs
of subgraphs for isomorphism, but to compute the canonical form individu-
ally for each graph in order to allow a linear time isomorphism test between
pairs of preprocessed graphs afterwards. The pseudo-code of the procedure
is presented as Algorithm 3.2. For both input graphs the set of all induced

38 Chapter 3. Common Subgraph Problems

Table 3.1: Summary on worst-case bounds for maximum common subgraph algo-
rithms for two arbitrary input graphs of order n and m, where n ≤ m.

Algorithm Running Time

Clique reduction (Levi, 1973; Robson, 2001) O
(
20.249nm)

Clique branching (Suters et al., 2005) O ((m+ 1)n)

Algorithm 3.1 (Akutsu and Tamura, 2012) O
(

2n+m+c
√
n logn

)
Algorithm 3.2 O

(
2m+n1/2+o(1)

)

subgraphs in canonical form is computed. Let TCAN(n) be the time required
to compute the canonical form of a graph of order n, cf. lines 4 and 6. Two
graphs in canonical form can then be tested for isomorphism simply by ver-
ifying that the O(n2) elements of their adjacency matrices are equal. Since
there are O(2k) induced subgraphs of a graph of order k, lines 2 to 6 can be
computed in time O((2n + 2m)TCAN(n)), where n = |G| and m = |H| and
w.l.o.g. we again assume n ≤ m. We can implement the set intersection in
line 7 as follows when using lists to store the canonical forms.5 First the lists
are sorted lexicographically and then we scan both lists simultaneously using
a pointer for each list starting at the first element. By successively either
increasing the pointer of the lists that addresses the lexicographically smaller
element or, in case of equality, keeping an element as result and increasing
both pointers, we obtain the intersection. Sorting a list with 2m elements
lexicographically, where a comparison takes O(n2) time due to the size of the
adjacency matrices, requires O(n2 · 2m · log 2m) = O(n2 ·m · 2m) total time.
The scan of both lists as detailed above requires time O(n2 · 2m) resulting in
a total running time of O(n2 ·m · 2m) for the set intersection. Consequently,
Algorithm 3.2 requires a total time of O(2m · TCAN(n) + n2 · m · 2m). For
general graphs the best known algorithm for canonization achieves a running
time of TCAN(n) = exp(n1/2+o(1)) (Babai and Luks, 1983). Then the second
addend is dominated by the first for increasing n and the total running time
simplifies to O(2m · exp(n1/2+o(1)).

The bounds on running time for the different algorithms are summarized
in Table 3.1. Figure 3.1 illustrates the growth of functions closely related
to the asymptotic running times, where we assume T'(n) = TCAN(n) =
O(2

√
n logn) for simplicity. Note that for many graph classes GI can be solved

in polynomial time and typically there is an accompanying canonization ap-
proach with comparable running time (Babai and Luks, 1983, also see Sec-
tion 2.3). Even for general graphs, T' and TCAN both grow moderately
exponentially for the best known algorithms, whereas the number of induced

5The approach essentially corresponds to a slightly modified version of the conquer-step
of the divide and conquer algorithm Mergesort.

3.2. A Polynomial-Time Algorithm for MCST 39

0 2 4 6 8 10 12 14 16 18 20
20

216

232

248

264

Order of the input graphs (n = m)

F
u
n
ct
io
n
va
lu
e
(r
u
n
n
in
g
ti
m
e) 20.249n

2

(n+ 1)n

22n+
√
n logn

2n+
√
n logn

Figure 3.1: Growth of functions closely related to the worst-case bounds of the four
exact maximum common subgraph algorithms.

subgraphs increases exponentially (with linear exponent) w.r.t. the number
of vertices. Clearly, the algorithm with the best theoretical worst-case bound
on running time presented in this section is not likely to be useful in prac-
tice. Even for small graphs the running time is prohibitive. Moreover, the
exponential space requirement of Algorithm 3.2 would be problematic.

The idea of preprocessing elements individually in order to simplify a
related problem between all pairs of objects, also turned out to be useful in
the context of graph kernels, cf. Chapter 4.

3.2 A Polynomial-Time Algorithm for the Maxi-
mum Common Subtree Problem

The asymptotically best known algorithms consider all possible induced sub-
graphs of the input graphs. The exponential number of subgraphs renders
polynomial-time computation for these approaches impossible. The key idea
to obtain polynomial-time algorithms for restricted graph classes is to consider
certain well-defined subproblems for a specific set of subgraphs. We present
a fundamental approach for the maximum common subtree problem, which
was sketched by Matula (1978) in the context of subtree isomorphism. The
idea to solve the more general maximum common subtree problem involves
multiple maximum weighted bipartite matching problems, cf. Problem 2.5,
and is attributed to Jack R. Edmonds. Therefore we refer to the approach
as Edmonds-Matula algorithm. Similar techniques have later been described
on several occasions in literature, for example, see (Akutsu, 1993) for trees
or (Gupta and Nishimura, 1998; Kao et al., 2001) for rooted trees.

40 Chapter 3. Common Subgraph Problems

1

2

3

4

5 6

7 8

9

10

(a) Tree G

1

2

3

4

5 6 7

8

(b) Tree H

Figure 3.2: Two input trees G and H with a maximum common subtree of order
7. Light gray vertices are not part of the maximum common subtree.

Problem 3.2 (MCST). Maximum Common Subtree
Input: Two trees G and H.
Task: Determine the maximum order of a common subtree of G and H.

Figure 3.2 shows an example of two trees and a maximum common sub-
tree. Note that the desired common subgraph must be a tree, in particular, it
must be connected. This requirement is essential to obtain a polynomial-time
algorithm, since Problem 3.1 remains NP-hard even when the input graphs
are restricted to trees (Brandenburg, 2000). This result can be obtained by a
simple modification of the classical reduction of 3-Partition to Subforest
Isomorphism (Garey and Johnson, 1979, Theorem 4.6).

The Edmonds-Matula algorithm systematically decomposes a tree T into
rooted subtrees. For an edge uv ∈ E(T) we denote by T uv the subtree rooted at
v, where the child u and its descendants are deleted, see Figure 3.3. Likewise
T vu refers to the other subtree associated with the same edge, which is rooted
at u and does not contain v and its descendants. For every pair of rooted
subtrees of the two input graphs G and H the maximum common subtree un-
der the restriction that the roots are mapped to each other is computed. The
results of these subproblems are stored in a table D that is filled by dynamic
programming. Let Gis and H

j
t be two rooted subtrees and Ms = {s1, . . . , sn}

and Mt = {t1, . . . , tm} the children of s in Gis and t in Hj
t , respectively.

1 2 3

4

5

6 7

8

9 10

(a) Subtree G4
5

1 2 3

4

5

6

7 8

(b) Subtree H3
4

6

7

1

2

54

(c) Matching problem

Figure 3.3: Two rooted subtrees (a) and (b) and the associated weighted bipartite
matching problem (c). Light gray vertices and edges are not part of the rooted
subtrees, root vertices are shown in solid black; edges without label in (c) have
weight 1.

3.2. A Polynomial-Time Algorithm for MCST 41

Then D(Gis, H
j
t) = 1 + MwbMatching(Ms,Mt, w), where MwbMatching

is the size of a maximum weight bipartite matching in the complete bipartite
graph with vertex set Ms]Mt and edge weights w, cf. Problem 2.5. The
edge weights correspond to the solutions for pairs of smaller rooted subtrees
and are determined according to w(sk, tl) = D(Gssk , H

t
tl

), k ∈ {1, . . . , n},
l ∈ {1, . . . ,m}. The matching defines the mapping of the children of the
two roots, cf. Figure 3.3(c). The table D is filled by processing subproblems
in order of increasing size of the involved rooted subtrees, such that the re-
quired partial solutions are always available from D. Finally, the solution of
the original problem is determined by combining all pairs of corresponding
rooted subtrees according to Algorithm 3.3.

Algorithm 3.3: Maximum Common Subtree
Input : Trees G and H.
Data : Table D containing solutions for all subproblems.
Output : Order of a maximum common subtree of G and H.

1 mcs← 0
2 forall the (is, jt) ∈ E(G)× E(H) do
3 p← D(Gis, H

j
t) +D(Gsi , Ht

j) . Mapping i to j and s to t.
4 q ← D(Gis, Ht

j) +D(Gsi , H
j
t) . Mapping i to t and s to j.

5 mcs← max{mcs, p, q}
6 return mcs

The size of the table D is 2 ‖G‖ · 2 ‖H‖ and each cell can be computed
in time O(n3) by the Hungarian method, where n is the order of the com-
plete bipartite graph (see Section 2.4). Consequently, the total running time
of the algorithm is O(n5), where n = max{|G|, |H|}. Typically, not all the
matching instances have size n, but yet the bound on running time is tight.
This is seen for the case when G and H both are star graphs, i.e., trees
with all but one vertex of degree one. However, the running time can be
improved to O(n4) by considering only a specific subset of the rooted sub-
trees of one input graph, which is sufficient to guarantee that the optimal
solution is found (Droschinsky et al., 2015).6 Further improvement is possi-
ble by exploiting the following two properties: First, the emerging matching
instances are closely related since the symmetric difference of the children of
T uv and Twv contains exactly the two vertices u and w. Second, the matching
instances exhibit integral edge weights with a largest possible magnitude of
O(n). Hence, scaling algorithms are more efficient for these graphs than the
general Hungarian method, cf. Section 2.4.

6This was observed earlier by Schietgat et al. (2013), who state an even better bound
on the running time of O(n2.5) for a more general problem, which yet remains subject of
discussion (private communication with the authors).

42 Chapter 3. Common Subgraph Problems

3.3 Variants of Maximum Common Subgraph Prob-
lems and their Complexity

There are various different variants of maximum common subgraph prob-
lems considered in literature. As discussed in the previous section MCIS is
NP-hard in trees, but polynomial-time solvable when the common subgraph
must be connected. This fact already suggests that there is a complex rela-
tion between the problem definition and the properties of the input graphs.
Some variants of common subgraph problems are even motivated by the fact
that more general definitions are known to be NP-hard, but restrictions still
yield meaningful results in practice. We first summarize basic definitions
of different variants and then discuss their relation before providing known
complexity results in Section 3.3.3.

Several authors consider common subgraph problems that do not ask for
induced subgraphs as Problem 3.1, but require the desired common subgraph
to be edge-induced. Consequently, the size of a solution in terms of its number
of edges is maximized for this variant.

Problem 3.3 (MCES). Maximum Common Edge Subgraph
Input: Two graphs G and H.
Task: Determine the maximum size of a common edge-induced subgraph

of G and H.

If in addition the common subgraph is required to be connected, we refer
to the problem as Maximum Common Connected Edge Subgraph (MC-
CES) and Maximum Common Connected Induced Subgraph (MCCIS)
problem, respectively. The connectivity of the common subgraph has an es-
sential influence on the complexity of the problem in general as we already
have seen for trees. Even subgraph isomorphism is NP-complete when the
pattern graph is a tree and the other is outerplanar (Sysło, 1982). Therefore,
the concept of block and bridge preserving (BBP) subgraph isomorphism has
been proposed by Horváth et al. (2006; 2010) and was later transferred to
common subgraph problems (Schietgat et al., 2007; 2008; 2011; Akutsu and
Tamura, 2013). This restriction renders efficient algorithms for outerplanar
graphs possible. Notably, finding maximum common subgraphs under BBP
isomorphism yields meaningful results for molecular graphs in practice and
even compares favorably to ordinary maximum common subgraphs in em-
pirical studies (Schietgat et al., 2008; 2011). Formally, a common subgraph
isomorphism ψ between two graphs G and H is said to be block and bridge
preserving if and only if the associated subgraph isomorphisms ψG and ψH
to the input graphs G and H both satisfy:
BBP1 any two edges from different blocks in the common subgraph are

mapped to edges from different blocks in the input graph;

3.3. Variants of MCS Problems and their Complexity 43

1

2
3

4

5

6

(a) Graph G

1

2
3

4

5

6

7

(b) Graph H

Extension CES CIS BBP

5 7→ 5 3 3 3
5 7→ 5, 6 7→ 6 3 7 7
5 7→ 6 3 3 7
5 7→ 6, 6 7→ 5 3 7 7

(c) Common subgraph isomorphisms

Figure 3.4: Different common subgraph problems. Assume we have a common
subgraph isomorphism ψ : V (G) V (H) with ψ(x) = x for x ∈ {1, 2, 3, 4} between
the two input graphs (a), (b). The table (c) shows several extensions of this isomor-
phism that are all associated with common connected edge-induced subgraphs, but
not necessarily induced subgraphs and block and bridge preserving isomorphisms.

BBP2 each bridge in the common subgraph is mapped to a bridge in the
input graph.

Figure 3.4 illustrates possible isomorphisms between common subgraphs and
the constraints they satisfy. The BBP constraint can be applied to the dif-
ferent maximum common subgraph problems by taking only common sub-
graphs into account, for which a BBP isomorphism exists. So far, only BBP-
MCCES in outerplanar graphs has been studied (Schietgat et al., 2007; 2008;
2011; Akutsu and Tamura, 2013), although BBP-MCCIS is as well of inter-
est. BBP-MCCIS is equivalent to Problem 3.2 when the input graphs are
restricted to trees, since trees do not contain any blocks. Whereas, when
the input graphs are required to be biconnected, i.e., they do not contain
bridges, BBP-MCCIS computes a maximum common biconnected induced
subgraph. Otherwise the common subgraph must contain at least one bridge,
whereas the input graphs do not—hence, condition (BBP2) must be violated.
Connectivity is essential for the complexity of maximum common subgraph
problems in tree-like graphs leading to the following problem.

Problem 3.4 (k-MCIS). Maximum Common k-connected Induced
Subgraph in Partial k-trees
Input: Two k-connected partial k-trees G and H.
Task: Determine the maximum order of a common k-connected induced

subgraph of G and H.

The closely related problem, where the maximum size of an edge-induced
common subgraph is to be searched, is analogously referred to as k-MCES.
Note that 1-MCIS is equivalent to the maximum common subtree problem,
cf. Problem 3.2. We discuss several fundamental relations between problem
variants and algorithmic modifications applicable to MCIS algorithms in order
to solve specific variants.

44 Chapter 3. Common Subgraph Problems

e1 e2

e3

(a) G ' K3

e1 e2

e3

(b) H ' K1,3

e1

e2

e3

(c) L(G) ' L(H)

Figure 3.5: The non-isomorphic graphs (a) and (b) have the same line graph (c).

3.3.1 Vertex- and Edge-Induced Common Subgraphs

The exact algorithms described in Section 3.1 solve MCIS. However, in certain
application domains like cheminformatics common edge subgraphs are some-
times considered more desirable. It is typically possible to adapt algorithms
to directly solve the edge-induced variant. However, general approaches that
reduce common edge subgraph problems to induced subgraph problems in
adequately modified input graphs are widely-applied in practice.

Approaches Based on Line Graphs

Nicholson et al. (1987) first proposed a general solution based on the reduction
to the clique problem, cf. Section 3.1.1, which was later applied on various
occasions (Tonnelier et al., 1990; Durand et al., 1999; Koch, 2001). Instead of
directly creating the association graph of the two input graphs, the association
graph of the line graphs7 is created.

Definition 3.2 (Line Graph). The line graph L(G) of a graph G is the
graph with vertex set V (L(G)) = E(G), in which two vertices are adjacent if
and only if the two corresponding edges are adjacent in G.

Obviously, two isomorphic graphs have isomorphic line graphs. A classical
result states that almost always the reverse holds as well.

Theorem 3.1 (Whitney, 1932). Given two connected graphs G and H. If
L(G) ' L(H) then G ' H, unless G ' K1,3 and H ' K3 or vice versa.8

The single exception is referred to as ∆Y -exchange (Raymond andWillett,
2002; Raymond et al., 2002b) or triode-triangle interchange (Durand et al.,
1999) and depicted in Figure 3.5.

The family of line graphs is closed under vertex removal, i.e., each induced
subgraph of a line graph again is a line graph. Furthermore one can observe

7Often referred to as edge graph or, in the context of molecular graphs, bond graph (Ton-
nelier et al., 1990).

8The result was originally formulated without the notion of line graphs and instead
directly relates graph isomorphism to edge isomorphism. An edge isomorphism is a bijection
between edges such that any two edges are adjacent in one graph if and only if the associated
edges in the other graph are adjacent.

3.3. Variants of MCS Problems and their Complexity 45

that each vertex-induced subgraph of L(G) directly corresponds to an edge-
induced subgraph of G and vice versa. Based on this idea common edge
subgraphs can be detected, if ∆Y -exchanges are handled adequately: For a
common induced subgraph isomorphism between two line graphs that maps
a K3, it must be verified that the corresponding edge-induced subgraphs
in the original graphs are either both K3 or both K1,3. The check can be
incorporated in the clique detection algorithm, but the same idea also can
be used for other exact MCIS algorithms. Tonnelier et al. (1990) as well as
Durand et al. (1999) and later Koch (2001) directly define an equivalent edge
association graph without requiring the notion of line graphs.

An Approach Based on Subdivision Graphs

Vismara and Valery (2008) proposed an alternative to the classical method
based on line graphs. Here the subdivision graphs of the two input graphs
are considered.

Definition 3.3 (Subdivision Graph). Let G be a graph. The subdivision
graph S(G) is obtained from G by subdividing every edge.

We can distinguish two types of vertices in a subdivision graph: Those con-
tained in the original graph and those that represent edges of the original
graph. The subdivision graph is bipartite with respect to these two sets.
Clearly, every edge-induced subgraph of G corresponds to an induced sub-
graph of S(G). But, vice versa, not every induced subgraph of S(G) corre-
sponds to an edge-induced subgraph of G.

There are several technicalities that must be considered to obtain a max-
imum common (connected) edge-induced subgraph isomorphism between the
original graphs from their subdivision graphs. First, vertices representing
original vertices must not be mapped to vertices representing edges and vice
versa. Furthermore, a subgraph of a subdivision graph is only valid, if ev-
ery vertex that represents an edge has degree two in the subgraph. Finally,
the size of the solution corresponds to the number of vertices that represent
edges in the common induced subgraph isomorphism between the subdivision
graphs. For further details of the approach as well as additional constrains to
restrict to connected common edge subgraphs the reader is referred to (Vis-
mara and Valery, 2008). The resulting problem again corresponds to a special
clique problem in a product graph and is formulated as a constraint satisfac-
tion problem.

3.3.2 Finding Connected Common Subgraphs

Tonnelier et al. (1990) considered the problem of enumerating all maximal
connected common edge subgraph isomorphisms between two graphs G and
H. An algorithm is proposed, which enumerates all maximal cliques in the

46 Chapter 3. Common Subgraph Problems

association graph L(G)∇L(H) obtained from the line graphs of G and H. In
a subsequent filtering step disconnected subgraphs are removed. Koch (2001)
avoids the exhaustive enumeration by directly restricting the solution space
searched by backtracking. The key idea of the approach is to distinguish
between two types of edges in the association graph: Edges that are due to
common adjacencies are so called c-edges, all other edges are referred to as d-
edges and represent the absence of adjacency in both graphs, cf. Definition 3.1.
A clique C in an association graph A is called c-clique if A[C] is spanned by c-
edges. Koch (2001) showed that a clique in the association graph corresponds
to an isomorphism between common connected edge subgraphs if and only if
it is a c-clique.

Based on this observation the algorithm by Bron and Kerbosch (1973) is
extended to find only c-cliques, which considerably reduces the solution space.
Some flaws in the algorithm were later corrected by Cazals and Karande
(2005).

3.3.3 Polynomial-Time Algorithms and Hardness Results

While the general problem MCIS clearly is NP-hard, several special cases
for restricted graph classes are known that allow to obtain polynomial-time
algorithms. There is a complex interplay between graph classes, the properties
of the desired common subgraph and the complexity of the problem, which
is yet not fully understood. Table 3.2 summarizes known results that are
particularly relevant for our work.

As previously mentioned MCIS/MCES in trees is NP-hard, while MCCIS
and MCCES can be solved in polynomial time. For two rooted trees the
problem can be solved in O(n2.5 logn) (Gupta and Nishimura, 1998), which
can be improved to O(

√
dn2 log 2n

d), where d denotes the maximum vertex
degree (Kao et al., 2001). The approach by Gupta and Nishimura (1998) also
allows to solve MCST w.r.t. topological embedding, which allows to map edges
of the common subtree to vertex-disjoint paths of the input trees. MCCES
in connected k-almost trees is NP-hard for any k ≥ 1, but can be solved in
polynomial time in connected almost trees of bounded degree (Akutsu, 1993).
MCCIS can also be solved in polynomial time when one of the input graphs
is a bounded-degree partial k-tree and the other is a connected graph with a
polynomial number of possible spanning trees (Yamaguchi and Mamitsuka,
2003; Yamaguchi et al., 2004). This is a generalization of the result for almost
trees by Akutsu (1993) since almost trees are a subclass of these graphs.

Solving BBP-MCCES in outerplanar graphs can be achieved in polyno-
mial time as shown in several publications (Schietgat et al., 2007; 2008; 2013;
Akutsu and Tamura, 2013). By non-trivial modification of an algorithm for
BBP-MCCES Akutsu and Tamura (2013) proved that MCCES in outerplanar
graphs of bounded degree is polynomial-time solvable. Since this work focuses
on the complexity of the general problem with bounded degree constraint,

3.3. Variants of MCS Problems and their Complexity 47

T
ab

le
3.
2:

Su
m
m
ar
y
on

co
m
pl
ex
ity

re
su
lts

fo
r
th
e
m
ax

im
um

co
m
m
on

in
du

ce
d
su
bg

ra
ph

pr
ob

le
m

an
d
its

va
ria

nt
s.

N
ot
e
th
at

th
e
gr
ap

h
cl
as
se
s
ar
e
re
la
te
d
as

fo
llo

w
s:

tr
ee
s
⊂

ou
te
rp
la
na

r
gr
ap

hs
⊂

se
rie

s-
pa

ra
lle

l
gr
ap

hs
⊂

pa
rt
ia
l
k
-t
re
es
;
tr
ee
s
⊂
k
-a
lm

os
t
tr
ee
s
⊂

pa
rt
ia
l

k
-t
re
es

(B
od

la
en
de
r,

19
86
);

(∆
-b
ou

nd
ed

—
th
e
m
ax

im
um

de
gr
ee

is
bo

un
de
d
by

a
co
ns
ta
nt
;?

—
th
e
re
su
lt

w
as

or
ig
in
al
ly

sh
ow

n
fo
r
th
e

ed
ge
-in

du
ce
d
va
ria

nt
).

In
pu

t
gr

ap
h
cl
as
s

C
on

st
ra

in
t

C
om

pl
ex

it
y

T
re
es

—
N

P-
ha

rd
(B

ra
nd

en
bu

rg
,2

00
0)

co
nn

ec
te
d

P
(M

at
ul
a,

19
78
,S

ec
.3

.2
)

k
-a
lm

os
t
tr
ee
s

co
nn

ec
te
d

N
P-
ha

rd
fo
r
an

y
k
≥

1
(A

ku
ts
u,

19
93
)

∆
-b
ou

nd
ed

co
nn

ec
te
d

P
(A

ku
ts
u,

19
93
)

O
ut
er
pl
an

ar
gr
ap

hs
co
nn

ec
te
d

N
P-
ha

rd
(S
ys
ło
,1

98
2)

bi
co
nn

ec
te
d

P
(S
ec
.3

.4
.4
)

co
nn

ec
te
d,

B
B
P

P
(K

rie
ge

et
al
.,
20
14
a,

Se
c.

3.
5)

∆
-b
ou

nd
ed

co
nn

ec
te
d

P
(A

ku
ts
u
an

d
Ta

m
ur
a,

20
13
)?

Se
ri
es
-p
ar
al
le
l
gr
ap

hs
bi
co
nn

ec
te
d

P
(K

rie
ge

an
d
M
ut
ze
l,
20
14
,S

ec
.3

.4
)

co
nn

ec
te
d,

B
B
P

P
(K

rie
ge

et
al
.,
20
14
a,

Se
c.

3.
5)

bi
co
nn

ec
te
d,

on
e
ve
rt
ex

of
un

bo
un

de
d
de
gr
ee

co
nn

ec
te
d

N
P-
ha

rd
(K

rie
ge

et
al
.,
20
14
a)

P
ar
ti
al
k
-t
re
es

j-
co
nn

ec
te
d,
j
<
k

N
P-
ha

rd
fo
r
an

y
k
≥

1
(B

ra
nd

en
bu

rg
,2

00
0)

k
-c
on

ne
ct
ed

O
pe

n
fo
r
k
>

2
(S
ec
.3

.4
.1
,3

.7
)

∆
-b
ou

nd
ed
,k

=
11

(v
er
te
x-
la
be

le
d)

co
nn

ec
te
d

N
P-
ha

rd
(A

ku
ts
u
an

d
Ta

m
ur
a,

20
12
)

∆
-b
ou

nd
ed

co
nn

ec
te
d

O
pe

n
fo
r
k
∈
{2
,.
..
,1

0}
(S
ec
.3

.7
)

48 Chapter 3. Common Subgraph Problems

the authors only gave a rough bound of O(n10) for their BBP-MCCES algo-
rithm, where n = max{|G|, |H|}. The BBP-MCCES approach by Schietgat
et al. (2007) was shown to be efficient in practice (Schietgat, 2010; Schietgat
et al., 2013) and different worst-case bounds have been provided over time in
consecutive publications: Starting with O(n7) (Schietgat et al., 2007), then
O(n5) (Schietgat et al., 2008; Schietgat, 2010) and finally O(n2√n) (Schietgat
et al., 2013).9

Note that the subgraph isomorphism problem, i.e., to determine if G is
isomorphic to a subgraph of H, can be reduced to the maximum common sub-
graph problem: There is an induced subgraph isomorphism fromG toH if and
only if a maximum common induced subgraph between G and H has order
|G|. Therefore, the NP-completeness results presented in Section 2.3 imply the
NP-hardness of the maximum common subgraph problem. However, the case
where G and H have a certain property that the desired common subgraph
not necessarily must have does not directly follow from such a reduction. The
complexity of subgraph isomorphism in partial k-trees is exceptionally well
studied. In a nutshell, subgraph isomorphism is solvable in polynomial time
in partial k-trees if the pattern graph either is k-connected or has bounded
degree (Matoušek and Thomas, 1992; Gupta and Nishimura, 1994). In con-
trast, it is NP-complete when the pattern graph is not k-connected or has
more than k vertices of unbounded degree (Gupta and Nishimura, 1996b).

Unfortunately such a clear demarcation for partial k-trees is not known for
maximum common subgraph problems and their complexity in partial k-trees
is still not fully understood. However, since practically relevant graphs for
maximum common subgraph computation, e.g., derived from small molecules,
often have small treewidth (Yamaguchi et al., 2004; Horváth and Ramon,
2010), it is highly relevant to develop polynomial-time algorithms for tractable
graph classes and to clearly identify graph classes, where the problem remains
NP-hard. The above mentioned polynomial-time solvable cases of common
subgraph problems impose constraints that are comparable to those that ren-
der subgraph isomorphism tractable.

9The proofs of the worst-case bounds are not the main focus of the publication and are
rather brief. The analysis leading to O(n2√n) leaves several questions open:

• The authors propose to use the algorithm by Hopcroft and Karp (1973) to solve
maximum weight bipartite matching problems (defined as in Problem 2.5) in time
O(n2√n). Since this algorithm computes a maximum cardinality matching in bipar-
tite graphs and is not designed to take weights into account, it remains unclear how
to apply it to the instances that occur.

• The analysis of the method RMCScompound relies on the fact that a vertex v
contributes at most deg(v) vertices to a matching instance. While this certainly
is true, the analysis does not seem to take into account that there may be up to
deg(v) + 1 matching instances of that size for a vertex v of the second input graph.

Unfortunately, these issues could not yet be clarified by contacting the authors. Using the
Hungarian method for solving the matching problems and taking account of the additional
instances would yield a total running time of O(n4) for the approach.

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 49

However, the positive results for common subgraph problems are mostly
limited to outerplanar graphs, which are a subclass of the series-parallel
graphs, i.e., the partial 2-trees. As a matter of fact, the more general posi-
tive results for subgraph isomorphism in partial k-trees cannot be transferred
to common subgraph problems: Recently, Akutsu and Tamura (2012) have
shown that MCCIS and MCCES both are NP-hard in vertex-labeled partial
11-trees of bounded degree—a class of graphs which allows for polynomial-
time subgraph isomorphism algorithms (Matoušek and Thomas, 1992; Gupta
and Nishimura, 1994). Essentially the complexity of maximum common con-
nected subgraph problems is unknown for graphs of bounded-degree that are
not outerplanar and have tree width less than 11.

We consider the positive result that subgraph isomorphism in k-connected
partial k-trees can be solved in polynomial time, which is closely related to
k-MCIS and k-MCES. Since a tree is a graph, where every edge is a bridge,
BBP-MCCIS generalizes the maximum common subtree problem as defined
in Problem 3.2, which is equivalent to 1-MCIS. Applying BBP-MCCIS and
BBP-MCCES to biconnected series-parallel graphs actually solves 2-MCIS
and 2-MCES, respectively. Hence, 2-MCES in outerplanar graphs, a subclass
of the partial 2-trees, was solved as a subproblem of BBP-MCCES (Schietgat
et al., 2013; Akutsu and Tamura, 2013). Schietgat (2010) stated that their
algorithm for 2-MCES as part of the approach for BBP-MCCES is related
to the subgraph isomorphism algorithm for biconnected outerplanar graphs
by Lingas (1989). The concept of block and bridge preserving isomorphisms
cannot be expected to render common subgraph problems tractable in par-
tial k-trees with k > 2: Computing the maximum common (k− 1)-connected
subgraph of two k-connected partial k-trees is known to be NP-hard (Bran-
denburg, 2000). This was shown using techniques of Gupta and Nishimura
(1996b) for proving that subgraph isomorphism is NP-complete when the pat-
tern graph is a partial (k − 1)-tree and the other a partial k-tree. However,
the positive result for subgraph isomorphism in k-connected partial k-trees
was reported to be transferred to solve k-MCIS and k-MCES for arbitrary
k (Bachl et al., 2004; Hajiaghayi and Nishimura, 2007).10 We will show in
Section 3.4.1 that the mentioned approach is flawed and fails even for series-
parallel graphs. While we present a different solution for these graphs, the
general problem remains open for k > 2.

3.4 Finding Maximum Common Biconnected In-
duced Subgraphs in Series-Parallel Graphs

We consider 2-MCIS, where the input graphs are biconnected partial 2-trees,
i.e., series-parallel graphs, and the common induced subgraph is required to

10In both references the result is attributed to an unpublished manuscript by Brandenburg
(2000), which was kindly provided by its author.

50 Chapter 3. Common Subgraph Problems

be biconnected. When the input graphs are not biconnected, it is sufficient to
solve 2-MCIS for all pairs of blocks of the two input graphs to obtain a max-
imum common biconnected induced subgraph. It was believed that k-MCIS
can be solved by means of normalized tree decompositions that were previ-
ously applied to solve subgraph isomorphism (Brandenburg, 2000). However,
we show that this is actually not the case and that approaches directly based
on (normalized) tree decompositions in general must fail even for k = 2. We
discuss key obstacles of tree decompositions arising for common subgraph
problems. These issues do neither occur in outerplanar graphs, for which
the more general BBP-MCCES problem is polynomial-time solvable (Schi-
etgat et al., 2007; Akutsu and Tamura, 2013), nor for the related subgraph
isomorphism problem.

We introduce the concept of potential separators, i.e., separators of a sub-
graph to be searched that not necessarily are separators of the input graph.
We characterize these separators and propose a polynomial-time solution for
2-MCIS based on the SP-tree data structure. In order to obtain polynomial-
time algorithms for BBP-MCCIS in series-parallel graphs it is necessary to
solve 2-MCIS in polynomial time. Vice versa, it is possible to solve BBP-
MCCIS in series-parallel graphs by a combination of slightly modified algo-
rithms for 1- and 2-MCIS applied to the blocks and bridges of the input graphs
as we will show later in Section 3.5. In addition, the concepts introduced in
the following may form the basis for solving k-MCIS for k > 2.

3.4.1 Tree Decompositions and Common Subgraph Problems

We first introduce graph-theoretical concepts and data structures that are
especially relevant for the 2-MCIS problem considered here. Then we discuss
the problems that occur when these decompositions are applied in order to
solve common subgraph problems before we present our novel algorithm.

Normalized Tree Decompositions

As a consequence of the close relation between tree decompositions and sep-
arators, cf. Sections 2.2.3, 2.2.4, the inequality κ(G) ≤ tw(G) holds for any
graph G. The equality κ(G) = tw(G) = k is satisfied for k-connected partial
k-trees only—a class of graphs that turned out to be tractable for subgraph
isomorphism. To obtain a polynomial-time algorithm for subgraph isomor-
phism in k-connected partial k-trees Gupta and Nishimura (1994) proposed
a normalized tree decomposition making k-separators explicit as separator
nodes, which are distinguished from clique nodes. Here, we call a tree decom-
position (T,X) normalized if V (T) can be divided into the two disjoint sets
S and C of separator and clique nodes, respectively, such that
N1 S and C is a bipartition of T and all leaves of T are clique nodes,
N2 all separator and clique nodes have bags of size k and k+1, respectively,

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 51

a

b c

d e

f g

h

(a) Graph G

a, d, h a, c, e

a, b, d

a, d, e

d, e, f d, e, g

a, d a, e

d, e

(b) NTD(G)

S

S

S

S S

P

P

a

b

d

a

d

a

d
h

a

c

d
e

d
e

d
ef d

e
g

(c) T (G)

Figure 3.6: A biconnected partial 2-tree G (a), a normalized tree decomposition
of G (b) and an SP-tree of G (c) with the associated skeleton graphs (dashed lines
represent virtual edges).

N3 for each path (i, j, k) in T : Xj = Xi ∪Xk if j ∈ C and Xj = Xi ∩Xk

if j ∈ S.
The bags associated with separator nodes form a set of pairwise parallel sep-
arators. Figure 3.6(b) shows an example of a normalized tree decomposition,
denoted by NTD(G). Note that in general a (normalized) tree decomposition
is not unique for a given graph. Therefore, a so-called tree decomposition
graph was used by Gupta and Nishimura (1994), which is a directed acyclic
graph incorporating all possible normalized tree decompositions. Normalized
tree decompositions and tree decomposition graphs can be computed in time
O(n2) and O(nk+2), respectively (Gupta and Nishimura, 1994).

SP-tree Data Structure

For biconnected partial 2-trees, SP-trees are a well-known data structure,
which reflects their series parallel composition, cf. Figure 3.6(c). We use
a notation and definition common for SPQR-trees (see, e.g., Chimani and
Hliněný, 2011), a generalization of SP-trees, which can be computed in linear
time (Gutwenger and Mutzel, 2001).

Definition 3.4 (SP-tree). Let G be a biconnected partial 2-tree with at least
three vertices. The SP-tree T = T (G) is the smallest tree that satisfies the
following properties:
SP1 Each node11 µ of T is associated with a skeleton graph Sµ = (Vµ, Eµ).
11As for tree decompositions, we refer to the vertices of the tree T as nodes to distinguish

them from the vertices of the graph G.

52 Chapter 3. Common Subgraph Problems

Each edge uv of Eµ is either a real edge with uv ∈ E(G) or a virtual
edge where {u, v} forms a 2-separator of G.

SP2 T has two different node types with the following skeleton structures:
S: The skeleton Sµ is a cycle, i.e., µ represents a series composition.
P: The skeleton Sµ is a multigraph consisting of two vertices and

multiple parallel edges between them, i.e., µ represents a parallel
composition.

SP3 For two adjacent nodes µ and ν the skeleton Sµ contains a virtual edge
eν that represents Sν and vice versa. The node ν is called pertinent
to the edge eν .

SP4 The original graph G can be obtained by merging the skeletons of adja-
cent nodes, where the virtual edges eµ and eν are not part of the result-
ing graph and their common endpoints are merged for all µν ∈ E(T).

The S-nodes VS(T) and the P-nodes VP(T) form a bipartition of T . Since a
vertex v of a graph may occur in multiple skeleton graphs of the SP-tree T ,
we denote by µ(v) the representative of v in the skeleton Sµ. For the sake
of simplicity we do not distinguish vertices of the original graph and their
representatives in skeleton graphs, where clear from context. Let T be the
SP-tree of G and r = uv be an arbitrary edge in G. The SP-tree rooted at
r is obtained by rooting T at the node τ such that r is a real edge in Sτ .
Let µ be a child of ν with respect to the parent-child relationship induced by
the root τ . The virtual edge eν in Sµ is called reference edge of µ, denoted
by ref(µ). The edge r is considered the reference edge of τ . For a node µ of
the SP-tree T (G), there is a direct correspondence between the virtual edges
of the skeleton graph Sµ and the connected components of T \ µ. Note that
the cyclic ordering of virtual edges in the skeleton of an S-node µ induces an
ordering of the neighbors of µ in T , whereas the neighbors of a P-node are
unordered.

A normalized tree decomposition of a graph G can be obtained from its
SP-tree by successively selecting and splitting an S-node µ that has a skeleton
graph with more than three vertices. Two arbitrary non-adjacent vertices u, v
of Sµ form a separator of G. We create a new P-node ν adjacent to two new
S-nodes µ′ and µ∗, such that V (Sν) = {u, v} and there are two virtual edges
in the skeleton graph with pertinent nodes µ′ and µ∗. The skeleton graphs Sµ′
and Sµ∗ represent the two parts of Sµ separated by {u, v} and the node µ is
replaced by µ′ and µ∗ and ν in the SP-tree, such that (SP4) still holds. Note
that this tree still fulfills the properties (SP1)–(SP4), but no longer is smallest
possible as required for an SP-tree by Definition 3.4. When there is no S-
node left with a skeleton with more than three vertices, the tree corresponds
to a normalized tree decomposition, whereas P-nodes map to separator nodes
and S-nodes to clique nodes. Conversely, the SP-tree can be obtained from
a normalized tree decomposition of a partial 2-tree by successively merging

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 53

t

u

v

s

x

(a) Graph G

t′

u′

v′

s′

x′

(b) Graph H

Figure 3.7: Example where straight-forward algorithms based on tree decomposi-
tion fail.

each separator node s with its adjacent clique nodes if (i) deg(s) = 2 and
(ii) the vertices in the associated bag Xs are not adjacent in G.

For all P-nodes ν of T (G) the set V (Sν) is a bag of a separator node of
every normalized tree decomposition of G. SP-trees are unique, which fol-
lows from the fact that the triconnected components represented by the more
general SPQR-trees are unique (Hopcroft and Tarjan, 1973). In contrast,
normalized tree decompositions are not unique. Note that different normal-
ized tree decompositions can be obtained from an SP-tree with the procedure
detailed above depending on the vertices selected to split S-nodes with more
than three vertices.

Application to Common Subgraph Problems

A key property of tree decompositions is their close relation to separators,
which allows to systematically divide graphs into subgraphs along the tree
structure. Based on solutions for these parts, typically a solution for the
input graphs is computed. This is the case for the Edmonds-Matula algorithm
presented in Section 3.2. A key observation for correctness of the approach
is the following.

Observation 3.1. Let C be a common subtree of the two trees G and H
with isomorphism ψ. If v is a 1-separator of C, then ψG(v) and ψH(v) are
1-separators of G and H, respectively.

This fact allows to determine a solution based on results for pairs of sub-
trees of the input graphs determined by the separating vertices. Figure 3.7
illustrates that this observation does not hold in a similar manner for the
2-separators of biconnected series-parallel graphs: The maximum common
subgraph in the given example consists of the parts of the graphs depicted in
black. Note that in every normalized tree decomposition of G and H there
is a separator node with bag {u, v} and {s′, t′}, respectively. This follows
from (Dessmark et al., 2000, Theorem 3.3) and is apparent from the relation
between separator nodes of a normalized tree decomposition and P-nodes of
the SP-tree, which are unique. For a maximum common subgraph C with

54 Chapter 3. Common Subgraph Problems

isomorphism ψ we must have ψ(x) = x′ for x ∈ {u, v, s, t}. Let a = ψ−1
G (u),

b = ψ−1
G (v), then {a, b} is a separator of C, but {ψH(a) = u′, ψH(b) = v′}

is not a separator of H. When computing common subgraphs based on nor-
malized tree decompositions, typically all vertices of a bag in NTD(G) are
matched to the vertices of a bag in NTD(H). One obstacle here is that nor-
malized tree decompositions are not unique. This can be overcome by means
of tree decomposition graphs. However, in the example, there are no bags
with corresponding vertices in any normalized tree decomposition. There-
fore, it is difficult to apply normalized tree decompositions to solve common
subgraph problems. In contrast to the subgraph isomorphism problem, where
normalized tree decompositions have been successfully applied, a key obstacle
here is that the subgraph to be searched may be a subgraph of both input
graphs. Hence, each input graph may contain parts that are not contained
in the common subgraph, but constrain their possible normalized tree de-
compositions. This is the reason why the approach of Brandenburg (2000)
mentioned in (Bachl et al., 2004; Hajiaghayi and Nishimura, 2007) does not
work.

To overcome this issue, in Section 3.4.2 we introduce the concept of a
potential separator, i.e., a separator of a subgraph to be searched that not
necessarily is a separator of the input graphs. For a given potential separator
P we characterize the maximal subgraph that is separated by P and propose a
decomposition of series-parallel graphs into split graphs based on all possible
potential separators analogously to the approach by Edmonds-Matula for
trees. In Section 3.4.3 we provide an algorithm based on SP-trees that solves
2-MCIS by implicitly matching the split graphs of the two input graphs.

3.4.2 Theoretical Background for Novel Approaches

We say P = {u, v} is a potential separator of a biconnected partial 2-tree G
if there is a biconnected induced subgraph G′ v G with separator P .

Observation 3.2. Let C be a biconnected common subgraph of the bicon-
nected partial 2-trees G and H with isomorphism ψ. If {u, v} is a 2-separator
of C, then {ψG(u), ψG(v)} and {ψH(u), ψH(v)} are potential separators of G
and H, respectively.

In the following we characterize the maximal biconnected induced subgraph
G∗P that is separated by a potential separator P . Since a potential separator
not necessarily separates G, there may be parts of G keeping G\P connected,
which can consequently not be contained in G∗P . We show that these parts are
associated with specific separators of G that we refer to as critical. We call a
2-separator S of a biconnected partial 2-tree G compulsive if every normalized
tree decomposition NTD(G) contains a separator node i with bag Xi = S. If
S is compulsive for G and there is an induced biconnected subgraph G′ v G,
such that S is a non-compulsive separator of G′, we say S is critical.

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 55

Lemma 3.1. Let G be a biconnected partial 2-tree and S = {u, v} ⊂ V (G).
The following statements are equivalent:
(i) The set S is a critical separator of G,
(ii) S is compulsive for G and uv /∈ E(G),
(iii) there is a P-node ν in the SP-tree T (G) with V (Sν) = S and uv /∈ E(G),
(iv) the graph G\S has at least three connected components and uv /∈ E(G),
(v) there is no 2-separator that crosses S in G, but in a biconnected induced

subgraph G′ v G.

Proof. A separator S = {u, v} of G is compulsive if and only if (a) the graph
G \ S has at least three connected components (see Dessmark et al., 2000,
Theorem 3.3) or (b) the vertices u and v are adjacent and G \ S has at
least two connected components. Condition (b) and the equivalence follows
from the relation between normalized tree decompositions and SP-trees and
the fact that P-nodes are unique. Note that if u and v are adjacent then
condition (b) also holds for every induced biconnected subgraph G′ v G that
is separated by S. Consequently a critical separator must consist of non-
adjacent vertices, i.e., condition (a) must hold in G, but not in G′. Assume
u and v are not adjacent and condition (a) holds and let C1, . . . , Cl be the
connected components of G \ S, l ≥ 3. Then G′ = G[V (C1)] V (C2)] S] is
a biconnected subgraph of G with separator S such that S is not compulsive
for G′, since neither (a) nor (b) apply. Therefore S is critical. This proves
the equivalence of the statements (i) and (ii) of Lemma 3.1. The equivalence
of the statements (ii), (iii) and (iv) directly follows from the characterization
of compulsive separators. Let G′ be defined as above, then there are two
vertices i ∈ V (C1), j ∈ V (C2) such that T = {i, j} separates G′ and crosses S.
However, T does not separate G since there is a path from u to v through C3.
Therefore, (iv) implies (v). Vice versa, the existence of a 2-separator T in an
induced subgraph G′ v G that crosses S requires uv /∈ E(G) since otherwise
T would not separate G′. Assume G\S has two connected components, then
T also separates G, contradicting the assumption that there is no 2-separator
of G that crosses S.

The graph in Figure 3.6(a), for example, contains the compulsive separators
S1 = {a, d} and S2 = {d, e}, which are both critical. Extending the symmetric
relation of crossing separators, we say a 2-separator S crosses a set of two
vertices T = {u, v} if and only if S is an (u, v)-separator. Lemma 3.2 provides
the key for our characterization of the maximal biconnected subgraph of G
that is separated by a potential separator P (see Corollary 3.1).

Lemma 3.2. Let G be a biconnected partial 2-tree and S a critical separa-
tor that crosses a potential separator P = {u, v}. Let Cu and Cv denote
the components of G \ S containing the vertex u and v, respectively. Every
biconnected induced subgraph G′ v G separated by P is a subgraph of the
biconnected graph GSP = G[V (Cu)] V (Cv)] S].

56 Chapter 3. Common Subgraph Problems

a

b c

c

d

d e

f g

hr

G̃r
dc

Gr
dc

(a) Split at {d, c}

a

b

b

c

d

e

g

g

rG̃r
bg

Gr
bg

(b) Shear split at {b, g}

a

b c

d

d

e

e

f g

hr

G̃r
de

Gr
de

(c) Split at {d, e}

Figure 3.8: Splitting the graph shown in Figure 3.6(a).

Proof. Let S = {s, t} be a critical separator that crosses the potential sep-
arator P = {u, v}. Let G′ be a biconnected induced subgraph of G that is
separated by P . Since G is biconnected and S is a (u, v)-separator of G,
there must be two disjoint paths from u to v containing s and t, respectively.
Therefore, s and t must also be contained in G′. According to Lemma 3.1 the
graph G \ S has components C1, . . . , Cl, l ≥ 3, and there are disjoint paths
from s to t in G through each component, since G is biconnected. Assume
some vertices of a component Ci, i ∈ {1, . . . , l}, neither containing the vertex
u nor v, i.e., Ci 6= Cu and Ci 6= Cv, are contained in G′. If there is a path
from s to t through these vertices then P would not separate G′. If there is
no such path then G′ cannot be biconnected. Hence, vertices of Ci cannot be
contained in G′ and therefore G′ ⊆ GSP .

Corollary 3.1. Let P be a potential separator of G and S = {S1, . . . , Sl} the
set of critical separators that cross P . The graph G∗P = G[

⋂
S∈S V (GSP)] is

the maximal biconnected subgraph of G with separator P .

In other words: The graph G∗P is the subgraph in which for all critical sepa-
rators Si that cross P the vertices in connected components of G \Si neither
containing u nor v are removed. This fact allows us to decompose biconnected
partial 2-trees at the potential separators and can be used algorithmically to
compute partial solutions for well-defined subgraphs. For a potential sepa-
rator P = {u, v} and a distinguished edge r ∈ E(G∗P), r 6= uv, we say P

splits G into the two subgraphs Gruv and G̃ruv, referred to as split graphs. Let
C1, . . . , Cl be the connected components of G∗P \ P and w.l.o.g. let C1 con-
tain at least one endpoint of the distinguished edge r. Then G̃ruv denotes the
subgraph G[V (C1)] {u, v}] and Gruv refers to G[

⊎l
i=2 V (Ci)] {u, v}], where

u and v are called base vertices. In case of a potential separator P that is
not a separator of G, i.e., G∗P 6= G, the operation is referred to as shear split.

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 57

Figure 3.8 illustrates the different split operations. When the vertices u, v are
not a potential separator, but adjacent, Gruv is defined as the edge e = uv,
if e 6= r, and the graph (V,E \ e) otherwise. Note that we may assume split
graphs to be biconnected which can be achieved by inserting a virtual edge
between the two base vertices as illustrated by dashed lines in Figure 3.8. The
split graphs shown in Figure 3.8(b) are determined by the potential separator
P = {b, g} that is not a separator of G. Note that the critical separators
S1 = {a, d} and S2 = {d, e} both cross P and hence the vertices h and f are
not contained in G∗P and the split graphs associated with P .

3.4.3 A Polynomial-Time Algorithm for 2-MCIS

We present a polynomial-time algorithm for 2-MCIS that is based on the SP-
tree data structure and considers the split graphs of the input graphs defined
by potential separators. Let Υ(v) = {µ ∈ V (T) | u ∈ V (Sµ), µ(v) = u} be
the set of allocation nodes of a vertex v, i.e., the nodes of T whose skeleton
contains a representative of v. We define the shear path P (u, v) as the shortest
path in the SP-tree between an S-node µ1 ∈ Υ(u) and an S-node µl ∈ Υ(v).
Lemma 3.3 characterizes the potential separators of a biconnected partial
2-tree by means of the SP-tree.

Lemma 3.3. Let P (u, v) = (µ1, ν1, . . . , νl−1, µl) be a shear path, then the set
T = {u, v} is
(i) a potential separator of G if and only if there is no P-node νi, i ∈
{1, . . . , l − 1}, with Sνi containing a real edge,

(ii) a separator of G if and only if l = 1.
In case (i), T is crossed by the critical separators V (Sνi), i ∈ {1, . . . , l − 1}.

Proof. The structure of the SP-tree assures that all compulsive separators
that cross T are associated with P-nodes on the shear path. Note that the
vertices of these separators must be contained in a biconnected subgraph
separated by T . If there is a P-node ν such that Sν contains a real edge,
the edge must also be contained in the induced subgraph and T cannot be
a potential separator. According to Lemma 3.1 other P-nodes correspond to
critical separators. If the length of the shear path is 1, both vertices of T are
contained in the skeleton of the same S-node, which is a cycle, and therefore
T is a separator.

The maximal biconnected subgraph G∗P of G that is separated by a potential
separator P = {u, v} of G can be obtained based on the shear path by keeping
the components determined by µi and µi+1 at each critical separator V (Sνi).
Note that a representative contained in a skeleton graph is associated with
a unique node of the SP-tree. We extend the definition of split paths and
split graphs to representatives from skeleton graphs of S-nodes. Given two
representatives P = {u, v}, the end vertices of the shear path P (u, v) are the

58 Chapter 3. Common Subgraph Problems

a

b

b

c

d

e

e

g

r
G̃r

be4

Gr
be4

(a) Subgraphs

S

S

Sµ

Sµ1 Sµ2

P

P

a1

b

d1

r
a2

d2

a3

d3

h

a4

c

d4

e1
x

d5
e2

d6
e3f

x1

d7

e4
g

x2

(b) SP-tree and skeleton graphs

Figure 3.9: The graph G̃rbe4
shown with filled black vertices and edges in (b)

represents the vertices already considered and Grbe4
, non-filled in (b), the unmapped

vertices of the graph G, cf. Figure 3.6(a). Parts no longer considered for solutions
are shown in gray. In the example we have childS(x) = {µ1, µ2}, parentS(d7) =
parentS(d6) = d4 and µ(a) = µ(ai) = a4, i ∈ {1, . . . , 4}.

unique allocation nodes of u and v. We can still use Lemma 3.3 to determine
if P is a potential separator and define the graph G∗P and the split graphs
accordingly based on the critical separators. Further split graphs emerge for
representatives u, v in a skeleton Sµ, where µ is an S-node with ref(µ) =
uv, e.g., in Figure 3.9(b) the split graph Grd7e4

would consist of Sµ. Note
that all split graphs defined by potential separators can as well be obtained
using certain representatives. Figure 3.9 illustrates a shear split defined by
representatives as well as the corresponding split graphs and provides an
example for the additional notation: For a virtual edge e in the skeleton of
an S-node we denote the children of the P-node pertinent to e by childS(e).
For a vertex v that is an endpoint of the reference edge in a skeleton Sµ we
refer to the representative of v in the next S-node on the path to the root by
parentS(v).

Algorithm 3.4 computes the SP-tree for both input graphs G, H and
implicitly extends a partial mapping ψ between split graphs step-by-step. In
each state the graphs G̃ruv and H̃r′

u′v′ are already processed and the mapping
is extended to the unexplored subgraphs Gruv and Hr

u′v′ , where ψ(u) = u′

and ψ(v) = v′. The main procedure starts with pairs of S-nodes, maps two
edges of their skeleton graphs and roots the SP-trees at these edges by the
function Root. Once set in the main procedure, the roots remain unchanged
in all recursive calls to subprocedures, which make use of the induced parent-
child relationship. Initially edges of the skeleton graphs are considered only
if their endpoints are adjacent in the input graph. Note that this includes all

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 59

Algorithm 3.4: 2-MCIS
Input : Biconnected partial 2-trees G and H.
Output : Order of a maximum common biconnected subgraph.

1 T ← T (G); U ← T (H) . Compute SP-tree decomposition
2 mcs← 0
3 forall the (µ, µ′) ∈ VS(T)× VS(U) do . Pairs of series components
4 r ← arbitrary edge uv in Sµ with uv ∈ E(G)
5 Root(T , r) . Root SP-tree T at the edge r
6 forall the edges r′ = u′v′ in Sµ′ with r′ ∈ E(H) do
7 Root(U , r′) . Root SP-tree U at the edge r′
8 p←McisSeries(u, v, u′, v′)
9 q ←McisSeries(u, v, v′, u′) . Alternative edge mapping

10 mcs← max{mcs, p, q}

11 return mcs+ 2

real edges contained in the skeleton graph as well as the virtual edges with
a pertinent P-node ν such that Sν contains a real edge. In case of a virtual
edge the subgraph represented by the pertinent P-node is not considered
subsequently. This is admissible since common subgraphs containing parts of
these components can be obtained starting with root edges included in these
components.

Ongoing with this mapping the procedure McisSeries essentially follows
the cyclic skeleton graphs of the two S-nodes simultaneously and successively
extends the mapping by the next unmapped vertices. Let µ be an S-node with
reference edge ts and a skeleton graph Sµ consisting of a cycle (ck, c1, . . . , ck),
where ck = t and c1 = s. The function Next(v, Sµ) returns the edge (v =
ci, cj), where j = i+ 1 mod k, i.e., the next edge in the cyclic order given by
the skeleton graph. The direction in which the cycle is traversed is determined
by the ordering of the parameters of McisSeries. Different cases apply based
on the type of edges that are mapped. The basic case is that the edges can be
matched (line 11). Then the size of the maximum common subgraph depends
on (i) MatchEdge, i.e., the maximum common subgraph of the split graphs
associated with the edges and (ii) the result of the recursive call McisSeries
with the new base vertices. Furthermore, the size of the mapping is increased
by one for the vertex w, which is mapped to w′. When the next vertex
corresponds to the first base vertex, i.e., the split graph consists of a single
edge, the recursion ends (line 8). However, if this does not hold for both split
graphs, the mapping cannot be completed as indicated by the return value
−∞ (line 10). Assume the edge under consideration is virtual and the vertices
are not adjacent in G, then a critical separator is reached (line 12). In this
case the algorithm recursively proceeds with a representative of the second
base vertex from a skeleton of a different S-node that is a child of the P-node

60 Chapter 3. Common Subgraph Problems

Algorithm 3.5: Comparing split graphs of series components.
Input : Base vertices u, v of G, v ∈ V (Sµ) and u′, v′ of H,

v′ ∈ V (Sµ′).
Output : Order of a 2-MCIS of Gruv and Hr′

u′v′ under the restriction
that u is mapped to u′ and v to v′.

Procedure McisSeries(u, v, u′, v′)
1 e = vw ← Next(v, Sµ) . Next edge in Sµ
2 e′ = v′w′ ← Next(v′, Sµ′) . Next edge in Sµ′
3 if e = ref(µ) then . Return to parent S-node
4 return McisSeries(u,parentS(v), u′, v′)
5 if e′ = ref(µ′) then . Return to parent S-node
6 return McisSeries(u, v, u′, parentS(v′))
7 if w = u and w′ = u′ then . Completed skeleton
8 return MatchEdge(v, w, v′, w′)
9 if w = u xor w′ = u′ then . Incompletable mapping

10 return −∞
11 mcs←MatchEdge(v, w, v′, w′) + McisSeries(u,w, u′, w′) + 1
12 if e /∈ E(G) or e′ /∈ E(H) then . Consider critical separators
13 if e ∈ E(G) then M ← {µ} else M ← childS(e)
14 if e′ ∈ E(H) then M ′ ← {µ′} else M ′ ← childS(e′)
15 forall the (η, η′) ∈M ×M ′ do
16 p←McisSeries(u, η(v), u′, η′(v′)) . Perform shear split
17 mcs← max{mcs, p}

18 return mcs

pertinent to the edge. All possible pairs of such S-nodes are considered and
the best solution is selected (line 17). Note that it is eventually required to
go back to the previous S-node to finally complete a mapping. This step is
realized when the reference edge is reached in line 4 and 6, respectively.

The function MatchEdge is called whenever the mapping is extended.
Note that the parameters are adjacent vertices from skeleton graphs and the
corresponding edges may be real or virtual. Assume a given edge is virtual in
the skeleton, then an edge between these vertices may or may not exist in G.
We do not obtain a valid mapping between induced subgraphs if such an edge
exists in one of the graphs, but not in the other (line 2). However, we can
still map a virtual edge to a real edge if the skeleton of the pertinent P-node
contains a real edge (line 4). In this case the subgraph represented by the de-
scendants of the P-node is not part of the common subgraph. Finally, assume
both edges are virtual, then the endpoints are 2-separators, see (SP1), and
the 2-MCIS between the associated unmapped connected components has to

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 61

Algorithm 3.6: Comparing split graphs associated with edges.
Input : Vertices u, v, u′, v′ with uv ∈ E(Sµ) and u′v′ ∈ E(Sµ′).
Output : Order of a 2-MCIS of Gruv and Hr′

u′v′ under the restriction
that u is mapped to u′ and v to v′.

Procedure MatchEdge(u, v, u′, v′) . Let e = uv, e′ = u′v′

1 if e ∈ E(G) xor e′ ∈ E(H) then
2 return −∞ . Subgraph not induced
3 if e is real in Sµ or e′ is real in Sµ′ then
4 return 0 . Valid mapping
5 M ← childS(e); M ′ ← childS(e′)
6 forall the m = (η, η′) ∈M ×M ′ do . Pairs of S-node children
7 w(m)←McisSeries(η(u), η(v), η′(u′), η′(v′))
8 p←MwbMatching(M,M ′, w) . Compute max. weight matching
9 if p = 0 and e /∈ E(G), e′ /∈ E(H) then

10 return −∞ . Not biconnected
11 else return p

be added to the result. To this end, MwbMatching is performed between
the children of the pertinent P-nodes (line 8), where the edge weights w are
determined by McisSeries on pairs of the associated split graphs (line 7).
Note that if the result of the matching is 0 and there is no edge between
the base vertices, there is no path between the base vertices through the
split graph considered. Since in this case the common subgraph would not
be biconnected, the value −∞ is returned (line 10). Otherwise the result
corresponds to the size of the matching (line 11). Note that for two edges
e = uv and e′ = u′v′ the result of MatchEdge(u, v, u′, v′) may differ from
MatchEdge(u, v, v′, u′) since the ordering of the parameters determines the
mapping of the base vertices. The two base vertices also contribute to the size
of the solution. These are taken into account by the main procedure (Algo-
rithm 3.4, line 11), but not in the procedures McisSeries and MatchEdge
handling pairs of split graphs.

Analysis

We argue that Algorithm 3.4 solves 2-MCIS in polynomial time. A bicon-
nected subgraph G′ can be obtained from a biconnected partial 2-tree only
by deleting components of G \ S for compulsive separators S. A separator
may remain compulsive for the subgraph, either because the two vertices are
adjacent in G or because G′ \ S has at least three components. These cases
are handled for the two input graphs by the procedure MatchEdge. If the
separator does not remain compulsive, there are separators of G′ that do not

62 Chapter 3. Common Subgraph Problems

separate G, but are potential separators of G. Algorithm 3.4 considers all
possible potential separators of both input graphs by building all possible
valid shear paths in McisSeries, cf. Lemma 3.3. Furthermore, it considers
the associated split graphs, which is sufficient according to Corollary 3.1.

In order to analyze the running time we first consider the number of
possible split graphs.

Lemma 3.4. Let G be a biconnected partial 2-tree and n = |G|. The number
of split graphs of G is O(n2).

Proof. Each split graph Gruv is defined by a potential separator P = {u, v}
and a deleted component that is determined by the edge r. There are O(n2)
potential separators P . Let c(P) denote the number of connected components
of G∗P \ P . For each potential separator the number of split graphs is 2c(P).
We distinguish between potential separators P with c(P) = 2 and those with
c(P) > 2. Note that potential separators that are no separators of G always
yield exactly two connected components. In total O(n2) split graphs can be
caused by potential separators P with c(P) = 2. According to Lemma 3.1
there is a one-to-one correspondence between separators P with c(P) > 2
and P-nodes in the SP-tree. Since the number of P-nodes is well-known to be
O(n) and c(P) < n, the number of split graphs caused by these separators
also is O(n2).

Theorem 3.2. The problem 2-MCIS can be solved in time O(n6), where n =
max{|G|, |H|}.

Proof. Each call of the recursive methods McisSeries and MatchEdge
computes 2-MCIS for two split graphs defined by the parameter list. We can
easily transform the methods into dynamic programming algorithms filling
a table indexed by split graphs. Thus, as soon as a cell of the table has
been computed, every successive call for the same pair of split graphs can
be answered in O(1). Note that the number of vertices and edges, either
virtual or real, in skeleton graphs is linear in the number of vertices of the
input graph. According to Lemma 3.4 a table of size O(n4) is sufficient.
We consider the function McisSeries first. Assume that when computing
McisSeries the results for all smaller split graphs are already determined
and stored in the table. The running time of each call is then dominated
by the loop in line 15 that requires O(n2) time. Therefore the total running
time spend in McisSeries is O(n6). The function MatchEdge involves
MwbMatching which can be solved in O(n3) by the Hungarian algorithm,
cf. Section 2.4. Non-trivial matching problems must only be solved when
the given edges e and e′ both are virtual. Since there can be at most O(n2)
such pairs the total running time spend in MatchEdge is O(n5). The total
running time of a dynamic programming variant of Algorithm 3.4 is then
dominated by the function McisSeries and consequently O(n6).

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 63

3.4.4 Solving 2-MCIS in Outerplanar Graphs

The outerplanar graphs are a subset of the series-parallel graphs and exhibit
special characteristics that can be exploited algorithmically. The problem
2-MCES was solved in the context of BBP-MCCES in outerplanar graphs,
but not carefully analyzed, see Section 3.3.3 for the best known bounds on
the running time for this related problem.

We first show that the running time of Algorithm 3.4 presented in Sec-
tion 3.4.3 is cubic when the input graphs are restricted to outerplanar graphs.
Then we develop a new algorithm, which is specifically designed for outer-
planar graphs and achieves quadratic time complexity. Being on par with
the best known subgraph isomorphism algorithm for these graphs in terms of
asymptotic complexity, the approach clearly beats the running time of known
BBP-MCCES algorithms.

Tighter Bounds for the General Approach

The following property is the key to our improved analysis of Algorithm 3.4
when applied to outerplanar graphs.

Lemma 3.5. Let G be a biconnected partial 2-tree, G is outerplanar if and
only if all P-nodes of T (G) have degree two.

Proof. It is well-known that a graph is outerplanar if and only if it does not
containK4 orK2,3 as a minor (Diestel, 2005). Assume there is a P-node ν in T
with degree at least 3. Then each adjacent S-node contains a path connecting
the two vertices in V (Sν) and consequently G contains K2,3 as minor and is
not outerplanar. If G contains K2,3 as minor then the two vertices of degree
three are a compulsive separator of G (cf. Proof of Lemma 3.1) and lead to
a P-node with at least three adjacent S-nodes, each of which represents a
component containing exactly one of the vertices with degree two.

According to Lemma 3.5 combined with Lemma 3.1 there cannot be any
critical separators in outerplanar graphs and, hence, every potential separator
also is a separator. Therefore parts of Algorithm 3.4 become trivial and we
obtain the following result.

Theorem 3.3. Algorithm 3.4 solves 2-MCIS in outerplanar graphs in time
O(n3), where n = max{|G|, |H|}.

Proof. Since there are no critical separators, lines 13–17 of McisSeries are
never reached. The sets M and M ′ in line 5 of MatchEdge always con-
sist of single S-nodes, because all P-nodes have degree two. Therefore both
functions are computed in O(1) except the running time required for recur-
sive calls. Algorithm 3.4 starts with pairs of edges and causes O(n2) calls
of McisSeries. Each again involves O(n) recursive calls of the procedures
McisSeries and MatchEdge leading to a total running time of O(n3).

64 Chapter 3. Common Subgraph Problems

u

v

A B S
µ1

P
ν

S
µ2

(a) Two faces sharing an edge

u

v

A O S
µ

(b) The outer face

Figure 3.10: In (a) an edge uv is shown that is incident to two faces A and B in
an outerplanar embedding. In the associated SP-tree each face corresponds to an
S-node and the edge to a P-node adjacent to both S-nodes. In (b) the situation for
an edge incident to the outer face O is depicted.

An Improved Algorithm for Outerplanar Graphs

We can obtain an even better algorithm for 2-MCIS in outerplanar graphs
based on the observation that the whole matching process in outerplanar
graphs is uniquely determined by certain starting parameters. Our approach
exploits the fact that biconnected outerplanar graphs have a unique outerpla-
nar embedding in the plane, up to the mirror image (see, e.g., Sysło, 1982).
Thus, every edge is incident to exactly two faces that are uniquely defined.
We say a face is mapped by an isomorphism ψ when all the vertices bordering
the face are mapped by ψ. We distinguish four cases to describe the mapping
of an edge uv ∈ E(G) to an edge u′v′ ∈ E(H) by an isomorphism ψ between
biconnected induced subgraphs. Assume the edge uv is incident to the faces
A and B in G and u′v′ is incident to A′ and B′ in H. At least one face
incident to uv must be mapped by ψ, since the common subgraph must be
biconnected. For the sake of simplicity of the case distinction, we also asso-
ciate the two faces that are not mapped if applicable. The isomorphism ψ
may map the endpoints of the edges uv and u′v′ in two different ways—just
as the two incident faces. We assume that there are arbitrary total orders ≺
on the vertices and faces, respectively. W.l.o.g. assume that u ≺ v, u′ ≺ v′

and A ≺ B, A′ ≺ B′. Then we can distinguish the following cases:

Type 1: u 7→ u′, v 7→ v′ and A 7→ A′, B 7→ B′

Type 2: u 7→ v′, v 7→ u′ and A 7→ A′, B 7→ B′

Type 3: u 7→ u′, v 7→ v′ and A 7→ B′, B 7→ A′

Type 4: u 7→ v′, v 7→ u′ and A 7→ B′, B 7→ A′

Given an isomorphism ψ between biconnected common induced subgraphs
that maps the two endpoints of an edge e, let the function type(e, ψ) ∈
{1, . . . , 4} determine the type of the mapping as above. The following result
is the key to obtain an efficient 2-MCIS algorithm.

Lemma 3.6. Let ψ and ψ′ be maximal isomorphisms between biconnected
common induced subgraphs of the biconnected outerplanar graphs G and H.

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 65

Assume e ∈ E(G) is mapped to the same edge e′ ∈ E(H) by ψ and ψ′, then

type(e, ψ) = type(e, ψ′)⇐⇒ ψ′ = ψ.

Proof. It is obvious that the direction ⇐= is correct. We prove the implica-
tion =⇒: Since the common subgraph is required to be biconnected, ψ and
ψ′ must map at least one face of G incident to the edge e to a face of H
incident to e′. The two faces as well as the mapping of endpoints of the two
edges are uniquely determined by the type of the mapping. We consider the
mapping of the vertices on the cyclic border of these faces. Since the mapping
of two vertices lying on this cycle is fixed, the mapping of all vertices on the
border of the face is unambiguously determined. Every mapping of connected
subgraphs can be obtained by adding further adjacent vertices to an initial
mapping. Since the common subgraph here is required to be biconnected,
the extension of the mapping must include all the vertices of a neighboring
face. For this face, again, the mapping of the endpoints of the shared edge
implicates the mapping of all vertices on the cyclic border and the extension
is unambiguous. Therefore, the mapping can be successively extended to an
unmapped face and all isomorphisms between biconnected common induced
subgraphs that map e according to the given type can be obtained. Conse-
quently, ψ(u) = ψ′(u) holds for all u ∈ dom(ψ) ∩ dom(ψ′). Since ψ and ψ′

are maximal it is not possible that one of them can be extended and, hence,
we must have dom(ψ) = dom(ψ′) and the result follows.

We develop an efficient algorithm for 2-MCIS by means of SP-trees, which
conveniently encode the adjacency relation between the faces of outerplanar
graphs. Figure 3.10 illustrates the correspondence between faces and S-nodes
in the SP-tree. Each face is associated with an S-node with exception of the
outer face. SP-trees easily allow to computationally distinguish the above
cases and the type distinction. The isomorphism ψ induces a mapping of
faces of G to faces of H which corresponds to a mapping of S-nodes of T (G)
to S-nodes of T (H). This allows to (i) determine type(e, ψ) for a given edge e
and isomorphism ψ as well as (ii) to initialize a mapping of an edge according
to a specific type fixing the mapping of incident faces. Note that for some edge
pairs not all four types of mappings are possible. Clearly, an isomorphism
between biconnected subgraphs can only map the vertices of faces bordered
by the same number of vertices. We say two S-nodes µ and µ′ representing
faces are compatible if |Sµ| = |Sµ′ |. The skeleton graphs of two compatible
S-nodes can always be mapped. We say that type t ∈ {1, . . . , 4} is valid
for a pair of edges if at least one incident face can be mapped according to
type t, i.e., the edges occur in S-nodes µ of T (G) and µ′ of T (H) that are
compatible. Note that it is possible to map an edge that occurs in a single
S-node µ, cf. Figure 3.10(b), to an edge that occurs in two S-nodes µ1, µ2, cf.
Figure 3.10(a). Assume µ is compatible with µ1 and µ2, then all four types

66 Chapter 3. Common Subgraph Problems

are valid. However, if µ is compatible with µ1, but not with µ2 and µ1) ≺ µ2,
then only types 1 and 2 are valid.

The proof of Lemma 3.6 constructively shows how to obtain a maximal
solution given an edge of both input graphs together with the mapping of
their endpoints and incident faces. This approach is realized by the pro-
cedures MatchCycle and MatchEdge of Algorithm 3.7. The function
MatchCycle matches the skeleton graph of an S-node, i.e., all vertices on
the border of a face. For each edge on the border the function MatchEdge
is called, which extends the mapping beyond the current face to an adjacent
face if possible. In case of two virtual edges, the other S-nodes of the pertinent
P-nodes are mapped by the function MatchCycle if they are compatible.
Combining the mappings returned by these procedures yields the unique max-
imal isomorphism ψ that maps the two given edges according to the specified
type. The running time to compute a maximal solution ψ by these procedures
is O(|ψ|).

The main procedure of Algorithm 3.7 uses a table D(e, e′, t), e ∈ E(G),
e′ ∈ E(H) and t ∈ {1, . . . , 4}, storing the size of the unique maximal isomor-
phism between biconnected induced subgraphs containing a type t mapping
of the edge e to the edge e′. The size of the table is 4 ‖G‖ ‖H‖ = O(nm),
where n = |G| and m = |H|. This bound is valid, since ‖G‖ = O(|G|) holds
for every planar graph G and, hence, in particular for outerplanar graphs.
The algorithm starts with all pairs of edges and all valid types of mappings
between them. For each, the maximal isomorphism between biconnected com-
mon induced subgraphs is computed by extending this initial mapping. The
size of this isomorphism ψ is then stored in D for all pairs of edges mapped by
ψ considering the type of the mapping. Keeping these values allows to avoid
generating the same isomorphism multiple times. Finally, the maximum size
of any maximal isomorphisms is returned, which is the size of a 2-MCIS.

The time to compute SP-trees is linear (Gutwenger and Mutzel, 2001) and
therefore does not dominate the running time of the algorithm. The main
procedure loops over the O(n2) pairs of edges and the four possible mappings
for each pair. A mapping ψ is computed by the proceduresMatchCycle and
MatchEdge in time O(|ψ|) = O(n). Improved analysis gives the following
result.

Theorem 3.4. Algorithm 3.7 solves 2-MCIS in outerplanar graphs in time
O(n2), where n = max{|G|, |H|}.

Proof. We allocate the costs for calls of MatchCycle and MatchEdge to
the cells of the table D. An isomorphism containing k edges is computed
in time O(k) and as a result exactly k cells of the table D are filled with
a value. The value of a cell is computed at most once: Line 4 assures that
an edge mapping of a specific type is not used as initial mapping when the
corresponding cell is already filled. Every initial mapping that is extended
must lead to an isomorphism containing only edge mappings associated with

3.4. Finding Biconnected MCIS in Series-Parallel Graphs 67

Algorithm 3.7: 2-MCIS in outerplanar graphs
Input : Biconnected outerplanar graphs G and H.
Output : Order of a 2-MCIS.
Data : Table D(e, e′, t), e ∈ E(G), e′ ∈ E(H), t ∈ {1, . . . , 4} storing

the size of a 2-MCIS ψ with e 7→ e′ and type(e, ψ) = t.
1 T ← T (G); U ← T (H) . Compute SP-tree decomposition
2 forall the edge pairs (uv, u′v′) ∈ E(G)× E(H) do
3 for t← 1 to 4 do
4 if type t valid and D(uv, u′v′, t) undefined then

. Let ψ and µ, µ′ be initialized according to type t.
5 ψ ← ψ]MatchEdge(u, v, ψ(u), ψ(v), µ, µ′)
6 ψ ← ψ]MatchCycle(u, v, ψ(u), ψ(v), µ, µ′)
7 [Output ψ] . Optionally output maximal isomorphism
8 forall the edges e ∈ E(G) mapped to e′ ∈ E(H) by ψ do
9 D(e, e′, type(e, ψ))← |ψ|

10 return maximum entry in D
Procedure MatchCycle(u, v, u′, v′, µ, µ′)

Input : Adjacent vertices u, v ∈ V (Sµ) and u′, v′ ∈ V (Sµ′).
Output : Extension of the isomorphism with u 7→ u′ and v 7→ v′

fixed to the faces represented by µ and µ′.
Data : Skeleton graphs Sµ and Sµ′ containing the cycles

(v = v0, . . . , vk = u, v) and (v′ = v′0, . . . , v
′
k = u′, v′).

11 ψµ ← {vi 7→ v′i | 1 ≤ i < k }
12 for i← 1 to k do
13 ψµ ← ψµ]MatchEdge(vi−1, vi, v

′
i−1v

′
i, µ, µ

′)
14 return ψµ

Procedure MatchEdge(u, v, u′, v′, µ, µ′)
Input : Adjacent vertices u, v ∈ V (Sµ) and u′, v′ ∈ V (Sµ′).
Output : Extension of the isomorphism with u 7→ u′ and v 7→ v′

fixed to pertinent nodes of uv ∈ E(Sµ) and u′v′ ∈ E(Sµ′).
15 if uv virtual in Sµ and u′v′ virtual in Sµ′ then

. Let childS(uv) = {η} and childS(u′v′) = {η′}.
16 if η and η′ are compatible then
17 return MatchCycle(u, v, u′, v′, η, η′)

18 return ∅

68 Chapter 3. Common Subgraph Problems

undefined cells according to Lemma 3.6. Therefore the total costs of the
algorithm can be allocated to cells of D, such that each cell pays O(1). This
proves that the total running time is bounded by the size of the table, which
is O(n2).

We argue that the running time of Algorithm 3.7 essentially corresponds to
the running time of the best known induced subgraph isomorphisms algorithm
for biconnected outerplanar graphs: Sysło (1982) presented an algorithm that
decides if G is isomorphic to an induced subgraph of H in O(tpr), where t is
‖H‖+ 1, p is the size of a face of G, which can be selected arbitrary, and r is
the number of faces of size p in H. The best possible bound of this running
time in terms of the number of vertices also is O(n2), where n = |H|.

We can easily modify our algorithm to enumerate all maximal isomor-
phisms between biconnected common induced subgraphs of two biconnected
outerplanar graphs without affecting the total running time by adding line 7.
To enumerate all maximum solutions we may proceed as follows: First we
run the unmodified version of Algorithm 3.7 once to obtain the size Wmax
of a maximum solution. Then we run a modified version that outputs an
isomorphism ψ as soon as it is found only if it has size Wmax. This approach
can as well be adapted to handle labeled graphs, which requires minor mod-
ifications (see Droschinsky et al., 2015, for further information).

3.5 Finding BBP-MCCIS in Series-Parallel Graphs
In this section we consider the task to find a maximum common connected in-
duced subgraph that preserves the structure of blocks and bridges of the input
graphs (BBP-MCCIS). The concept was introduced by Schietgat et al. (2007),
who considered the related problem BBP-MCCES in outerplanar graphs. Ac-
cording to the definition in Section 3.3 a solution must fulfill the two condi-
tions (BBP1) and (BBP2), which can as well be applied to series-parallel
graphs, where different algorithmic challenges occur. In order to solve this
problem, we make use of the following observation: Every two edges in an
input graph that are not in the same block cannot be in the same block in
any common subgraph. Hence, together with condition (BBP1) and (BBP2)
we may infer that vertices in one block of G can only be mapped to vertices
contained in the same block of H such that the mapped vertices form a bi-
connected common subgraph. This means that blocks and bridges can be
considered separately to some extent and allows us to solve BBP-MCCIS by
systematically decomposing the input graphs and solving the associated sub-
problems. We use the BC-tree data structure to decompose the connected
input graphs into tree-like parts consisting of bridges and maximal bicon-
nected subgraph, i.e., the blocks. Every block is then again decomposed by
means of SP-trees and is handled by a modified version of the 2-MCIS algo-
rithm presented in Section 3.4. Clearly, whenever two vertices of blocks are

3.5. Finding BBP-MCCIS in Series-Parallel Graphs 69

v

x

u w

y z

r

(a) Input graph G

B

Λ

C

Γ

B

B C B

w
w
w

x
w x x

(b) BC-tree T(G)

SP

Sλ

P

S
η

S

µ

v

z

(c) SP-tree TΛ = T (SΛ)

Figure 3.11: A series-parallel graph (a) and its BC-tree (b) with the associated
skeleton graphs. Block B-nodes have a gray background color, while bridge B-nodes
are not filled. The SP-tree of the skeleton graph associated with the block B-node Λ
is shown in (c) together with its skeleton graphs.

mapped that are both cutvertices of the input graphs, the components be-
yond these cutvertices must be considered for BBP-MCCIS. Solving MCCIS
for the bridges that appear in the BC-tree is similar to the problem 1-MCIS
and handled by an algorithm based on the ideas of the approach described in
Section 3.2.

3.5.1 Decomposing Series-Parallel Graphs

We now consider connected series-parallel graphs that contain at least one
edge. In the case that input graphs are disconnected, we treat all pairs of
connected components individually. The problem is trivial when one input
graph (or one connected component) consists of an isolated vertex. We first
decompose graphs by means of BC-trees to distinguish between blocks and
bridges.

Definition 3.5 (BC-tree). Given a connected graph G with at least two
vertices, let C denote the set of cutvertices, Bl the set of blocks, Br the set of
bridges and B = Br]Bl. The BC-tree T = T(G) is the tree with nodes B]C
and edges between nodes B ∈ B and c ∈ C if and only if c ∈ V (B).

We refer to the nodes of T representing cutvertices as C-nodes and distinguish
between bridge and block B-nodes; given a BC-tree T, we refer to the three
sets of nodes by VC(T), VBr(T) and VBl(T), respectively. Each node Λ in
a BC-tree has a skeleton graph SΛ consisting of the vertices and edges of
G represented by that node, i.e., a single vertex for C-nodes, two vertices
connected by an edge for bridge B-nodes and a biconnected subgraph for
block B-nodes, cf. Figure 3.11. SP-trees allow to decompose biconnected
series-parallel graphs and can consequently be applied to the skeleton graphs
of block B-nodes. In the following we associate an SP-tree TΛ = T (SΛ) with
every block B-node Λ, cf. Figure 3.11(c). For the readers convenience, we
use Greek uppercase letters to refer to B- and C-nodes of the BC-tree, while
Greek lowercase letters denote S- and P-nodes of an SP-tree, respectively.

70 Chapter 3. Common Subgraph Problems

v

w

(a) Gr
vw

u w

z

(b) Gr
uw

x

w

(c) Gr
w

v

x

w

z

(d) Gr
vz

Figure 3.12: Some split graphs obtained from the graph depicted in Figure 3.11(a):
In (a) and (b) the graph is split at different 2-separators, in (c) at a cutvertex and
in (d) at a potential separator that does not separate G. Base vertices are not filled.

Our BBP-MCCIS algorithm computes the solution based on subproblems
for well-defined subgraphs of the input graphs closely related to these two
data structures. Note that the split graphs defined in Section 3.4 for bi-
connected series-parallel graphs were obtained from 2-separators since these
graph contain no 1-separators, i.e., cutvertices. We generalize the notion of
split graphs for connected series-parallel input graphs. Given a set of vertices
S, let CSi denote the connected components of G \ S and assume w.l.o.g.
that at least one endpoint of a distinguished edge r is contained in CS1 . Let
CrS =

⊎
i≥2 V (CSi). We now consider the following split graphs: Let S = {v},

where v is a cutvertex, then Grv denotes the graph G[CrS] S] with base ver-
tex v. Let S = {u, v} be a minimal separator, then Gruv denotes the graph
G[CrS \ (Cr{u}] C

r
{v})] S]; we say u and v are the base vertices of Gruv. Fig-

ure 3.12 shows an example of several split graphs obtained from the graph
depicted in Figure 3.11(a).

Note that there is a one-to-one correspondence between split graphs ob-
tained from cutvertices and specific rooted subtrees of the BC-tree of G. Let
Grv be a split graph, consider the C-node Γ representing the base vertex v and
the unique B-node Λ with r ∈ E(SΛ), then the tree rooted at Γ, where the
child subtree containing Λ is deleted, is associated with the split graph. This
is similar to the rooted subtrees defined in the classical approach for MCST,
cf. Section 3.2. For example, the split graph depicted in Figure 3.12(c) corre-
sponds to the subtree of the BC-tree shown in Figure 3.11(b) that is obtained
by rooting the tree at Γ and deleting Λ.

For handling block B-nodes we build on the algorithm described in Sec-
tion 3.4, which is based on split graphs closely related to the SP-tree data
structure. The approach obtains additional split graphs from potential sep-
arators, which are not only the 2-separators of the graph G, but also the
2-separators of an induced biconnected subgraph of G. In a series-parallel
graph all pairs of non-adjacent vertices that are contained in the same chord-
less cycle are potential separators. Note that the split graphs used here again
can readily be obtained from a potential separator P based on the graph G∗P ,

3.5. Finding BBP-MCCIS in Series-Parallel Graphs 71

Algorithm 3.8: BBP-MCCIS
Input : Two non-empty series-parallel graphs G and H.
Output : Order of a BBP-MCCIS of the graphs G and H.
Data : BC-trees T and U of G and H, respectively; SP-trees TΛ for

every block B-node Λ in T and U.
1 mcs← −∞
2 forall the (Λ,Λ′) ∈ VBl(T)× VBl(U) do . Pairs of block B-nodes
3 Root(T,Λ); Root(U,Λ′)
4 forall the (µ, µ′) ∈ VS(TΛ)× VS(TΛ′) do . Pairs of S-nodes
5 r ← arbitrary uv ∈ E(Sµ) ∩ E(G); Root(TΛ, r)
6 forall the edges r′ = u′v′ ∈ E(Sµ′) ∩ E(H) do
7 Root(TΛ′ , r

′)
8 p← BbpMcisSeries(u, v, u′, v′)
9 p← BbpMcisSeries(u, v, v′, u′) . Alternative mapping

10 mcs← max{mcs, p, q}

11 forall the (Λ,Λ′) ∈ VBr(T)× VBr(U) do . Pairs of bridge B-nodes
12 Root(T,Λ); Root(U,Λ′)
13 r = uv ← E(SΛ); r′ = u′v′ ← E(SΛ′)
14 p← BbpMatchVertex(u, u′) + BbpMatchVertex(v, v′)
15 q ← BbpMatchVertex(u, v′) + BbpMatchVertex(v, u′)

mcs← max{mcs, p, q}
16 return max{1,mcs+ 2}

cf. Corollary 3.1. For example, in Figure 3.11(a) the set S = {v, z} would be
a potential separator, but not a separator of the graph, since u remains con-
nected to w in G \ S through the vertex y. Consequently, this vertex cannot
be contained in the subgraph that is separated by S. Applying the definition
of split graph to G∗P yields the split graph shown in Figure 3.12(d).

3.5.2 A Polynomial-Time Algorithm for BBP-MCCIS

We now present a polynomial-time algorithm, which solves BBP-MCCIS in
series-parallel graphs based on the decomposition of input graphs by means
of BC- and SP-trees. We apply the idea presented in Section 3.2 for MCST to
the BC-trees and combine solutions for smaller subproblems between rooted
subtrees by means of MwbMatching. In a similar manner the block B-nodes
are handled by means of SP-trees, where certain additional technicalities must
be considered as described in Section 3.4.

We assume that for the two given series-parallel graphs the associated
BC- and SP-trees are already computed. Our approach computes the size
of a BBP-MCCIS between the two input graphs by recursively dividing the
problem into smaller subproblems defined between split graphs obtained from

72 Chapter 3. Common Subgraph Problems

these data structures. The main procedure, presented as Algorithm 3.8, starts
with all pairs of B-nodes in the BC-trees of the input graphs. Since blocks
and bridges must be preserved, only pairs of block B-nodes (line 2–10) and
pairs of bridge B-nodes (line 11–15) are considered:

In the former case, the algorithm loops over all possible pairs of S-nodes
in the SP-trees of the two blocks. Two distinguished edges serve as starting
point by fixing the mapping of their endpoints. The resulting subproblem
then is handled by the procedure BbpMcisSeries. This part is similar to
the main procedure of our 2-MCIS approach, see Algorithm 3.4. The main
procedure does not take into account that the vertices u and u′ (or v and v′)
may be cutvertices or that the edges r and r′ could be virtual. These cases
are not considered since the possible better result would be obtained anyway
for a different starting configuration.

In the latter case, the edges associated with the bridge B-nodes serve as
starting point of the mapping. Again, the two possible mappings of endpoints
are considered and the solution is determined based on the return values of
the procedure BbpMatchVertex, see Algorithm 3.10. Assume we have the
bridges r = uv of G and r′ = u′v′ of H and map the vertex u to u′ and v to v′,
then the result is obtained by computing the BBP-MCCIS between the split
graphs Gru and Gr′u′ and add the result for the opposing split graphs Grv and
Gr
′
v′ . Finally, the procedure returns the best solution found and accounts for

the two base vertices, which have been mapped, by adding two. It is possible
that no solution has been found, e.g., when one graph consists of bridges
only and the other merely of blocks. Note that a single vertex can always be
mapped without violating (BBP1) and (BBP2). Hence, in this case the value
1 is returned (line 16), where we assume the input graphs to be non-empty.

Whenever we compute the BBP-MCCIS between two split graphs, we
require that the mapping of base vertices is fixed and compute the maximum
possible solution under this constraint. Whenever a procedure is called the
BC-trees and SP-trees considered have been rooted by the procedure Root at
distinct B-nodes and at distinct edges, respectively. Therefore, we can make
use of the parent-child relationship between adjacent nodes. In particular,
we may infer which parts of the graphs have already been considered, since
these are associated with the branches containing the root. We will give the
details of the procedures called by Algorithm 3.8 in the following.

The procedure BbpMcisSeries—detailed as Algorithm 3.9 for the sake
of completeness—exactly corresponds to the procedure McisSeries with a
single crucial difference in line 7 (highlighted in the pseudocode). Here the
next vertex according to the cyclic order of the skeleton graph is mapped
and the problem is divided into several subproblems. In addition to the
subproblems considered for 2-MCIS the new procedureBbpMatchVertex is
called in order to take cutvertices into account. We illustrate the subproblems
and how they align with our definition of split graphs in the following by
considering the example shown in Figure 3.11(a). Assume that the main

3.5. Finding BBP-MCCIS in Series-Parallel Graphs 73

Algorithm 3.9: Variant of Algorithm 3.5 considering cutvertices.
Input : Base vertices u, v of G, v ∈ V (Sµ) and u′, v′ of H,

v′ ∈ V (Sµ′).
Output : Order of a BBP-MCCIS between Gruv and Hr′

u′v′ under the
restriction that u is mapped to u′ and v to v′.

Procedure BbpMcisSeries(u, v, u′, v′)
1 e = vw ← Next(v, Sµ) . Next edge in Sµ
2 e′ = v′w′ ← Next(v′, Sµ′) . Next edge in Sµ′
3 if e = ref(µ) then return BbpMcisSeries(u,parentS(v), u′, v′)
4 if e′ = ref(µ′) then return BbpMcisSeries(u, v, u′, parentS(v′))
5 if w = u and w′ = u′ then return BbpMatchEdge(v, w, v′, w′)
6 if w = u xor w′ = u′ then return −∞ . Incompletable mapping
7 mcs← BbpMatchEdge(v, w, v′, w′) + BbpMatchVertex(w,w′)

+BbpMcisSeries(u,w, u′, w′) + 1
8 if e /∈ E(G) or e′ /∈ E(H) then . Consider critical separators
9 if e ∈ E(G) then M ← {µ} else M ← childS(e)

10 if e′ ∈ E(H) then M ′ ← {µ′} else M ′ ← childS(e′)
11 forall the (η, η′) ∈M ×M ′ do
12 p← BbpMcisSeries(u, η(v), u′, η′(v′))
13 mcs← max{mcs, p}

14 return mcs

procedure has started with a pair of block B-nodes, where the first is Λ ∈
V (T). Further, assume that the S-node µ has been selected from the SP-tree
associated with the block, which has been rooted at the edge r. Then, the
next vertex in Sµ is w, which is connected to the base vertex v by the virtual
edge vw. The situation corresponds to the case that is handled in line 7
of the procedure BbpMcisSeries. The problem here is divided into three
subproblems: First, if possible, the part of the input graph represented by the
virtual edge must be considered, i.e., the split graph Grvw, see Figure 3.12(a).
This is done by calling the procedure BbpMatchEdge. Second, the vertex w
is a cutvertex in G and the split graph Grw, see Figure 3.12(c), must be taken
into account whenever w is mapped to a cutvertex in H. This is handled
by the new procedure BbpMatchVertex, which is explained in detail later.
Finally, the remainder of the skeleton Sµ must be considered, which is done
by the recursive call of BbpMcisSeries, where the vertex w replaces v as
base vertex. Consequently, this procedure tries to map the split graph Gruw,
see Figure 3.12(b). Since the vertex w is mapped, one is added to the sum
over the values returned by these procedures.

The procedure BbpMatchEdge works exactly as MatchEdge (Algo-
rithm 3.6) used as part of the 2-MCS algorithm with the difference that in

74 Chapter 3. Common Subgraph Problems

Algorithm 3.10: Comparing split graphs associated with cutvertices.
Input : Two vertices u ∈ V (G), u′ ∈ V (H).
Output : Order of a BBP-MCCIS between Gru and Hr′

u′ under the
restriction that u is mapped to u′; 0 if u and u′ not both are
cutvertices.

Procedure BbpMatchVertex(u, u′)
1 if u and u′ not both are cutvertices then
2 return 0
3 M ← childB(u); M ′ ← childB(u′) . Get B-node children
4 forall the m = (Λ,Λ′) ∈M ×M ′ do
5 if Λ and Λ′ both are bridge B-nodes then
6 uv ← E(SΛ); u′v′ ← E(SΛ′) . Get associated bridges
7 w(m)← BbpMatchVertex(v, v′) + 1
8 else if Λ and Λ′ both are block B-nodes then

. Get S-nodes containing an edge incident to the base vertex
9 N ← {µ ∈ VS(TΛ) | ∃uv ∈ E(Sµ) ∩ E(G)}

10 N ′ ← {µ′ ∈ VS(TΛ′) | ∃u′v′ ∈ E(Sµ′) ∩ E(H)}
11 forall the (µ, µ′) ∈ N ×N ′ do . Pairs of relevant S-nodes
12 r ← arbitrary edge uv ∈ E(Sµ) ∩ E(G); Root(TΛ, r)
13 forall the edges r′ = u′v′ ∈ E(Sµ′) ∩ E(H) do
14 Root(TΛ′ , r

′)
15 p← BbpMcisSeries(u, v, u′, v′)
16 w(m)← max{w(m), p}

17 else w(m)← −∞ . Non BBP matching
18 return MwbMatching(M,M ′, w)

line 7 the weights are determined by the adapted procedure BbpMcisSeries,
of course. The procedure constructs maximum weight bipartite matching in-
stances, cf. Problem 2.5, to determine the mapping between connected com-
ponents obtained from 2-separators.

The new procedures BbpMatchVertex relies on the same approach
to find the best possible mapping between split graphs obtained from 1-
separators, i.e., cutvertices. The method is presented as Algorithm 3.10
and computes the size of a BBP-MCCIS of two split graphs obtained from
cutvertices. Therefore, 0 is returned if the given vertices u and u′ not both
are cutvertices. Otherwise, we consider their child B-nodes childB(u) and
childB(u′) in the rooted BC-trees. To this end, we again create a weighted
complete bipartite graph with vertex partition childB(u)] childB(u′). The
weight of an edge is the size of a BBP-MCCIS of the two split graphs asso-
ciated with its endpoints. Note that the node sets contain block B-nodes as

3.5. Finding BBP-MCCIS in Series-Parallel Graphs 75

well as bridge B-nodes. Edges connecting different types of B-nodes obtain
weight −∞ (line 17) as mapping them contradicts restriction (BBP1). This
assures that these edges are not contained in any maximum weight matching.
The weight of an edge between two bridge B-nodes is determined by a recur-
sive call of BbpMatchVertex, where the current base vertices are replaced
by the other endpoints of the bridges. In case of two block B-nodes the BBP-
MCCIS is determined in a similar manner as in the main procedure with the
difference that only S-nodes are considered that contain a representative of
the base vertex with an appropriate incident edge r ∈ E(G), which is mapped
to an edge r′ ∈ E(H). These two edges serve as roots of the SP-trees and
for each pair the procedure BbpMcisSeries is called. The maximum value
returned by any of these calls yields the edge weight. Note that the mapping
of the base vertices is fixed and—in contrast to the main procedure—we do
not need to consider all the possible mappings.

Analysis

We analyze Algorithm 3.8 and show that BBP-MCCIS can be solved in poly-
nomial time for series-parallel graphs. We give improved bounds on the run-
ning time for the case that both input graphs are outerplanar.

Theorem 3.5. The problem BBP-MCCIS in series-parallel graphs can be
solved in time O(n6), where n = max{|G|, |H|}.

Proof. The correctness of the algorithm is based on the argumentation above
and the results presented in Section 3.4. The BC- as well as SP-tree data
structure can be computed in linear time (Gutwenger and Mutzel, 2001).
This also holds for our data structure, where we have an SP-tree for every
block B-node. To prove the running time, we again transform the algorithm
in a dynamic programming approach as for the proof of Theorem 3.2 using a
table of size O(n4) for all pairs of split graphs from 2-separators. In addition,
we now have to consider split graphs that are obtained from cutvertices, for
which another table of size O(n2) is sufficient.

Again assume that for each split graph that is smaller than the split graph
considered by the current call of one of the procedures, the BBP-MCCIS has
been computed. Then all calls to procedures are answered in constant time
by a lookup in the table. Consequently, the total running time required by
the procedure BbpMcisSeries remains unchanged compared toMcisSeries
and we obtain O(n6) with the same arguments used previously. The total
running time of BbpMatchEdge still is O(n5) due a quadratic number of
possible MwbMatching calls. The procedures BbpMatchVertex also is
based on MwbMatching. Here, each matching problem corresponds to a
pair of rooted subtrees of the BC-trees. There can be at most O(n2) such
pairs and each matching problem can be solved in O(n3) by the Hungarian
method. Therefore, the total running time of this procedure also is O(n5).

76 Chapter 3. Common Subgraph Problems

Finally, we consider the main procedure, Algorithm 3.8. Since we may
assume that all calls to procedures are answered in constant time by lookups in
the tables, the running time of the procedure isO(n2). Consequently, the total
running time of the algorithm is dominated by the procedure BbpMcisSeries
and is O(n6).

If we restrict to outerplanar graphs, we can again use the fact, that each
P-node in the SP-trees has degree two, cf. Lemma 3.5.

Theorem 3.6. The problem BBP-MCCIS in outerplanar graphs can be solved
in time O

(
n5), where n = max{|G|, |H|}.

Proof. The proof is similar to the proof of Theorem 3.5 and uses arguments
previously used for the proof of Theorem 3.3. Since all P-nodes in SP-trees
of outerplanar graphs have degree two according to Lemma 3.5, the total
running time of BbpMcisSeries reduces to O(n4), since the sets M and M ′
considered in line 11 contain only one element. Moreover, there is no need
to call MwbMatching in the procedure BbpMatchEdge. Consequently
the running time of a single call of BbpMatchEdge becomes constant. For
the procedure BbpMatchVertex the restriction to outerplanar graphs does
not allow improved bounds on the running time since the number of rooted
subtrees of the BC-tree does not change. Therefore the total running time is
O(n5).

For the proof of Theorem 3.6 we make use of a table to store results between
all pairs of split graphs. Please note that it would be possible to utilize more
efficient 2-MCIS algorithms specifically designed for outerplanar graphs as
described in Section 3.4.4, which rely on a smaller table. However, since the
total running time is dominated by the procedure BbpMatchVertex, this
would not directly allow us to obtain an improved result. Nevertheless, since
this method essentially corresponds to the MCST algorithm presented in Sec-
tion 3.2, further improvement of the running time is possible (see Droschinsky
et al., 2015).

3.6 Graph Distance Metrics

The size of an optimal solution to a maximum common subgraph problem
can be used to quantify the (dis)similarity between two graphs. A metric is
a dissimilarity measure that satisfies certain conditions like the triangle in-
equality. These properties are not only desirable because they align with an
intuitive notion of dissimilarity, but can also be used algorithmically to speed
up distance-based algorithms. For example, searching a graph database for
the graphs that are highly similar to a given input graph can be performed
more efficiently in metric spaces (Zezula et al., 2006; Shang et al., 2010).

3.6. Graph Distance Metrics 77

The k-means clustering approach by Elkan (2003), which exploits the trian-
gle inequality satisfied by a metric, has been applied in the domain of graphs
(Jain and Obermayer, 2010). A similar idea was employed by Kriege et al.
(2014b) to develop an hierarchical clustering algorithm, which has been used
for graphs by means of maximum common subgraph based distance metrics.
Remarkably, the conditions that must be satisfied to obtain a graph distance
metric from maximum common subgraphs have not yet received considerable
attention. In the following, we first give elementary definitions and the re-
lation between graph distance metrics and the graph isomorphisms problem.
We then briefly review maximum common subgraph based distance metrics
previously used and finally discuss their applicability for polynomial-time
computable maximum common subgraph variants.

3.6.1 Basic Definitions and Complexity

A dissimilarity function on a set of objects X is a function d : X×X → R that
computes a dissimilarity value for a pair of objects from X . Intuitively, the
dissimilarity value should be low for similar objects and large for dissimilar
objects. A dissimilarity function that satisfies specific properties is called
metric and—in the domain of graphs—is defined as follows.

Definition 3.6 (Graph Distance Metric). A dissimilarity function d : G×
G → R is a graph distance metric, if and only if it satisfies the following con-
ditions for all G,H,F ∈ G:

d(G,H) ≥ 0 non-negativity (3.1)
d(G,H) = 0 ⇔ G ' H identity (3.2)

d(G,H) = d(H,G) symmetry (3.3)
d(G,F) ≤ d(G,H) + d(H,F) triangle inequality (3.4)

Note that a graph distance metric must be able to recognize if two graphs
are isomorphic to satisfy Equation (3.2).

Proposition 3.1. Computing any graph distance metric is GI-hard.

Proof. Let d be a graph distance metric. We can decide if two graphs G and
H are isomorphic by computing d(G,H) and verifying Equation (3.2).

Vice versa, one may ask if there is any graph distance metric, such that its
computation is in GI. We give a positive answer to this question by providing
a trivial graph distance metric. Consider the dissimilarity function

d'(G,H) =
{

0 if G ' H,
1 otherwise.

(3.5)

Proposition 3.2. The dissimilarity function d' is a graph distance metric.

78 Chapter 3. Common Subgraph Problems

Proof. Conditions (3.1), (3.2),(3.3) are trivially fulfilled by d'. Assume con-
dition (3.4) does not hold. Then there must be three graphs G, H, F , such
that d(G,F) > d(G,H) + d(H,F). This inequality does only hold when the
left hand side is strictly positive, i.e., G 6' F , and the right hand side is zero,
i.e., G ' H and H ' F . Since the isomorphism relation is transitive, this
contradicts the assumption.

No polynomial-time algorithm for graph isomorphism in general graphs
is known. Weakening the identity requirement without giving up the other
properties of a metric facilitates the design of polynomial-time computable
dissimilarity functions for graphs. A dissimilarity function is a pseudometric,
if it satisfies Equations (3.1), (3.3), (3.4) and

d(G,H) = 0 ⇐ G ' H. (3.6)

A pseudometric does not necessarily distinguish non-isomorphic graphs. How-
ever, we pursue the goal to obtain graph distance metrics for specific graph
classes, which as a sideline solve graph isomorphism and can be computed in
polynomial-time.

3.6.2 Distance Metrics from Maximum Common Subgraphs

Several graph distance metrics have been proposed that are derived from the
size of a maximum common subgraph. We refer to the size of a maximum
common subgraph by JMcs(G,H)K and do not distinguish between the dif-
ferent variants of the problem and possible realizations of a size function J·K
for now. The following dissimilarity functions were shown to yield a metric:

d1(G,H) = 1− JMcs(G,H)K
max{JGK, JHK}

(BS)

d2(G,H) = 1− JMcs(G,H)K
JGK + JHK− JMcs(G,H)K (WSKR)

d3(G,H) = JGK + JHK− 2JMcs(G,H)K (FV)

Each of these graph distance metrics was proposed for a specific definition of
the maximum common subgraph problem. Bunke and Shearer (1998) pro-
posed (BS) for MCIS in labeled graphs, where JGK = |G|. Wallis et al. (2001)
modified the denominator of this graph distance metric to obtain (WSKR),
where the denominator reminds on the cardinality of the union of sets. This
change is motivated by the fact that the “graph union” can be considered
a more appropriate measure of the problem size than the maximum size
of the graphs. The authors state that the result holds as well for MCES.
The dissimilarities (BS) and (WSKR) are normalized, i.e., they range be-
tween 0 and 1. Fernández and Valiente (2001) proposed (FV) for MCES with

3.6. Graph Distance Metrics 79

C

O

C

(a) G

C

O

C

N

(b) H

C

N

C

(c) F

Figure 3.13: Labeled graphs for which known metrics do not fulfill the triangle
inequality under MCCIS.

JGK = |G| + ‖G‖, and observed that the size of a minimum common super-
graph is closely related to the size of a maximum common subgraph. The
same graph distance metric was obtained by De Raedt and Ramon (2009)
based on MCIS with JGK = |G|.

None of the above metrics employs a polynomial-time computable variant
of the maximum common subgraph problem. We discuss the application of
these metrics to different problem variants in the following.

3.6.3 Polynomial-time Computable Graph Distance Metrics

We have developed several polynomial-time algorithms for variations of max-
imum common subgraph problems in restricted graph classes. An obvious
question is if the result computed by these algorithms can be used to obtain
a graph distance metric. The above distance metrics were proposed for maxi-
mum common subgraphs without the constraint of being connected. However,
MCIS and MCES without connection constraint are NP-hard even in trees,
cf. Section 3.3.3. Do the above dissimilarities yield a graph distance metric
when employing MCCES or MCCIS algorithms? We give a negative answer
by providing a counterexample.

Proposition 3.3. The dissimilarities (BS), (WSKR) and (FV) are no graph
distance metrics for MCCIS in labeled graphs with JGK = |G|.

Proof. Consider the example of labeled graphs shown in Figure 3.13. Employ-
ing MCCIS we have |Mcs(G,H)| = 3, |Mcs(H,F)| = 3 and |Mcs(G,F)| = 1
and consequently:

d1 G H F

G 0 1/4 2/3
H 1/4 0 1/4
F 2/3 1/4 0

d2 G H F

G 0 1/4 4/5
H 1/4 0 1/4
F 4/5 1/4 0

d3 G H F

G 0 1 4
H 1 0 1
F 4 1 0

The triangle inequality (3.4), is violated by all three dissimilarity functions,
since di(G,F) > di(G,H) + di(H,F) for all i ∈ {1, 2, 3}.

80 Chapter 3. Common Subgraph Problems

(a) G (b) H (c) F

Figure 3.14: Outerplanar graphs for which known metrics do not satisfy the triangle
inequality under BBP-MCCES.

A similar counterexample can be constructed to show that (BS), (WSKR)
and (FV) violate the triangle inequality for MCCES in labeled graphs with
JGK = ‖G‖.

Schietgat et al. (2007; 2013) proposed an algorithm for BBP-MCCES and
claimed that the approach yields a metric in combination with the dissimi-
larity (BS) and JGK = |G|+ ‖G‖. We show that this is not the case.

Proposition 3.4. The dissimilarities (BS), (WSKR) and (FV) are no graph
distance metrics for BBP-MCCES with JGK = |G|+ ‖G‖.

Proof. Consider the example shown in Figure 3.14. Employing BBP-MCCES
with JGK = |G| + ‖G‖, we have JMcs(G,H)K = 6, JMcs(H,F)K = 8 and
JMcs(G,F)K = 112 and consequently:

d1 G H F

G 0 1/3 7/8
H 1/3 0 1/9
F 7/8 1/9 0

d2 G H F

G 0 1/3 12/13
H 1/3 0 1/9
F 12/13 1/9 0

d3 G H F

G 0 3 12
H 3 0 1
F 12 1 0

The triangle inequality (3.4) is violated by all three dissimilarity functions,
since di(G,F) > di(G,H) + di(H,F) for all i ∈ {1, 2, 3}.

Based on the example shown in Figure 3.14 we can easily verify that (BS),
(WSKR) and (FV) also violate the triangle inequality for BBP-MCCES with
JGK = |G| and JGK = ‖G‖.

We have seen that the relation between the precise definition of the maxi-
mum common subgraph problem and the validity of the triangle inequality is
non-trivial and neglecting this is a serious pitfall. We have not yet obtained
a graph distance metric from any of the polynomial-time solvable problem
variants. In the following we focus on maximum common induced subgraph
problems with JGK = |G|.

Definition 3.7 (Triangle Consistency). An MCIS variant is triangle con-
sistent if for all graphs G,H,F ∈ G there are maximum common subgraph
isomorphisms ψ1 : V (G) V (H) and ψ2 : V (H) V (F) such that

|Mcs(G,F)| ≥ | img(ψ1) ∩ dom(ψ2)|. (3.7)
12Here, we assume that a single vertex is a BBP-MCCES, which would be coherent with

the size function used. However, the same result holds for the different interpretation.

3.6. Graph Distance Metrics 81

We show that triangle consistency is a sufficient condition to ensure that the
dissimilarities (WSKR) and (FV) satisfy the triangle inequality. We have not
investigated (BS) further, since it is similar in spirit to (WSKR) and differs
only w.r.t. the normalizing denominator.

Lemma 3.7. The triangle inequality is satisfied for the dissimilarity (WSKR)
if the maximum common subgraph definition is triangle consistent.

Proof. We consider arbitrary graphs F,G,H ∈ G and assume that there are
maximum common subgraph isomorphisms ψ1 : V (G) V (H) and ψ2 :
V (H) V (F). Further, we assume that the vertex sets of all three graphs
are disjoint and define VG = (V (G) \ dom(ψ1))] img(ψ1) and VF = (V (F) \
img(ψ2))] dom(ψ2). Then |Mcs(G,H)| = |VG ∩ V (H)| and |G| + |H| −
|Mcs(G,H)| = |VG∪V (H)|. Consequently, the triangle inequality d2(G,F) ≤
d2(G,H) + d2(H,F) holds if and only if

d2(G,F) ≤ 1− |VG ∩ V (H)|
|VG ∪ V (H)| + 1− |VF ∩ V (H)|

|VF ∪ V (H)| . (3.8)

Since we assume triangle consistency, we have |Mcs(G,F)| ≥ | img(ψ1) ∩
dom(ψ2)| = |VG ∩ VF | and, hence,

d2(G,F) = 1− |Mcs(G,F)|
|G|+ |F | − |Mcs(G,F)| ≥ 1− |VG ∩ VF |

|VG ∪ VF |
. (3.9)

We may plug in the right hand side of inequality (3.9) into (3.8) and observe
that the triangle inequality holds for d2 w.r.t. the graphs F,G,H as above
if the triangle inequality dJ(VG, VF) ≤ dJ(VG, V (H)) + dJ(V (H), VF) holds,
where

dJ(X,Y) = 1− |X ∩ Y |
|X ∪ Y |

.

The dissimilarity dJ is known as Jaccard distance or Tanimoto distance and
indeed satisfies the triangle inequality for any finite sets as proven, e.g., by
Lipkus (1999).

We obtain the same result for (FV) by a straight-forward proof of the
triangle inequality.

Lemma 3.8. The triangle inequality is satisfied for the dissimilarity (FV) if
the maximum common subgraph definition is triangle consistent.

Proof. We consider arbitrary graphs F,G,H ∈ G, plugging (FV) into the
triangle inequality and rearranging yields:

|Mcs(G,H)|︸ ︷︷ ︸
=| img(ψ1)|

+ |Mcs(H,F)|︸ ︷︷ ︸
=| dom(ψ2)|

≤ |H|︸︷︷︸
=|V (H)|

+ |Mcs(G,F)|︸ ︷︷ ︸
≥| img(ψ1)∩dom(ψ2)|

82 Chapter 3. Common Subgraph Problems

u v

(a) G

u v

(b) H

u v

(c) F (d) Cactus

Figure 3.15: Outerplanar graphs (a)–(c) for which known metrics do not satisfy
the triangle inequality under BBP-MCCIS; example of a cactus graph (d).

We assume that the maximum common subgraph definition is triangle con-
sistent. Hence, there are maximum common subgraph isomorphisms ψ1 :
V (G) V (H) and ψ2 : V (H) V (F) and Equation (3.7) holds. This
allows to express the size of the maximum common subgraphs in the above
inequality by the set cardinalities related to the image and domain of ψ1 and
ψ2, respectively, as specified by the terms below the braces. Note that all
these sets are subsets of V (H) and for any two sets A,B ⊆ C, we know that
|A|+ |B| ≤ |C|+ |A ∩B|. Hence, the triangle inequality is satisfied.

We have introduced the concept of triangle consistency and seen that it is a
sufficient condition for maximum common subgraph variants to obtain graph
distance metrics. We consider BBP-MCCIS, for which we have presented
polynomial-time algorithms in series-parallel graphs, cf. Section 3.5. Note
that the problem generalizes MCST/1-MCIS and 2-MCIS. The series-parallel
graphs include the outerplanar graphs, which again include the cactus graphs.

Consider the graphs shown in Figure 3.14, we can transform this coun-
terexample used to prove Proposition 3.4 into an instance, for which BBP-
MCCIS violates triangle consistency by subdividing every edge. Note that
the resulting graphs do not all remain outerplanar, but are series-parallel.

Observation 3.3. BBP-MCCIS violates triangle consistency in series-parallel
graphs.

In the above example, for any BBP-MCCIS isomorphisms ψ1 : V (G) V (H)
and ψ2 : V (H) V (F) we have | img(ψ1)| = 6 and | dom(ψ2)| = 8. Hence, at
least 5 vertices must be contained in the intersection of both since the common
superset V (H) consist of 9 vertices. However, |Mcs(G,F)| = 1 and, hence,
triangle consistency (3.7) does not hold for BBB-MCCIS in series-parallel
graphs.

Observation 3.4. BBP-MCCIS violates triangle consistency in outerplanar
graphs.

This can be seen from the example depicted in Figures 3.15(a)–(c), where
the edge uv incident to the two faces in H is contained in ψ1 and ψ2, but
not in a BBP isomorphism between G and F , which contains at most one

3.6. Graph Distance Metrics 83

vertex. An edge incident to two faces does not occur in cactus graphs, cf.
Figure 3.15(d). More specifically the above example shows that 2-MCIS is
not triangle consistent in outerplanar graphs. We can also observe that the
triangle inequality actually is not satisfied by (BS), (WSKR) and (FV) for
the above examples.

However, when restricting the graph class further, we obtain the following
positive result for cactus graphs.

Lemma 3.9. BBP-MCCIS is triangle consistent in cactus graphs.

Proof. Consider cactus graphs F,G,H ∈ G and let ψ1 : V (G) V (H) and
ψ2 : V (H) V (F) be BBP-MCCIS isomorphisms and H1 = H[img(ψ1)]
and H2 = H[dom(ψ2)] the corresponding common subgraphs. Let ψ3 :
V (G) V (F) be the mapping between G and F such that ψ3(v) = ψ2(ψ1(v))
for all vertices v ∈ dom(ψ1) with ψ1(v) ∈ dom(ψ2). It suffices to show
that ψ3 is a BBP common connected induced subgraph isomorphism (BBP-
CCISI). In this case every BBP-MCCIS must have at least the size of ψ3
and |Mcs(G,F)| ≥ |ψ3| = | img(ψ1) ∩ dom(ψ2)| is satisfied. This triv-
ially holds if |ψ3| = 0 or |ψ3| = 1 since the empty mapping and the map-
ping of a single vertex is a BBP-CCISI. We consider the case where at
least two vertices are mapped by ψ3 and consider the common subgraph
H3 = H[img(ψ1) ∩ dom(ψ2)]. We show that (i) H3 is connected, (ii) ψ3
satisfies (BBP2); and (iii) ψ3 satisfies (BBP1).

To prove (i), we assume H3 is disconnected. Let C1 and C2 be connected
components of H3. No vertex of C1 is adjacent to any vertex of C2 in H since
H3 is an induced subgraph of H. All the vertices of C1 and C2 are contained
in the connected graphs H1 and H2. Hence, there must be a path p1 in H1
and p2 in H2 from a vertex in C1 to a vertex in C2. The path p1 contains at
least one vertex that is not contained in p2 and vice versa. Let m1 and m2
be the first vertices on the paths p1 and p2 that are not contained in H3 with
m1 6= m2. The two vertices m1 and m2 must be contained in the same block
of H. Hence, ψ1 and ψ2 either violate (BBP2) or H cannot be outerplanar:
Assume the edges incident to m1 contained in p1 are part of a block in H1.
There are two vertex-disjoint path between any two vertices contained in this
block. In the supergraph H, there must be another path between two vertices
of this block through m2. Hence, there must be a pair of vertices connected
by at least three vertex-disjoint paths of length at least 2. Consequently, H
containsK2,3 as a minor and cannot be outerplanar, in particular not a cactus
graph. This contradicts the assumption and, hence, H3 must be connected.

To prove (ii), we consider a bridge e of G. Since ψ1 is BBP, it must map
e to a bridge e′ of H. Since ψ2 is as well BBP it must map e′ to a bridge
e′′ of F . Hence, ψ3 maps a bridge of G only to a bridge of H3. Assume H3
contains a bridge e that is mapped to a block edge of an input graph by one
of the two subgraph isomorphisms associated with ψ3. Since ψ1 and ψ2 are
BBP, the edge e must be mapped to a block edge in both input graphs. Since

84 Chapter 3. Common Subgraph Problems

in cactus graphs BBP isomorphisms must map all vertices of a block, both
ψ1 and ψ2 must map the whole block and, hence, the edge e must be a block
edge in H3, contradicting the assumption.

We prove (iii) by assuming that ψ3 violates (BBP1). Since H3 is con-
nected, it must contain two blocks B1, B2 sharing a cutvertex c and V (B1)∪
V (B2) are contained in the same block of H and consequently of H1 and H2.
There must be two vertex-disjoint paths connecting B1 and B2 that do not
contain c. Similar arguments as used above to prove (i) show that H can-
not be outerplanar and consequently not a cactus graph, contradicting the
assumption.

Note that the above result holds as well for BBP-MCCIS applied to labeled
graphs. We conclude this section with the following theorem.

Theorem 3.7. The dissimilarities (WSKR) and (FV) are polynomial-time
computable graph distance metrics for BBP-MCCIS in connected cactus graphs.

Proof. The dissimilarity functions both clearly are non-negative and symmet-
ric. Two connected cactus graphs of order n are isomorphic if and only if their
BBB-MCCIS is of order n. Hence, the identity requirement of a metric is ful-
filled. According to Lemmas 3.7, 3.8 and 3.9 the triangle inequality holds
and, hence, the dissimilarities (WSKR) and (FV) are graph distance met-
rics under the above assumptions. Polynomial running time for computation
follows from Theorem 3.6.

3.7 Summary and Future Work

Whenever the task is to elucidate structural similarities between graphs, com-
mon subgraph problems naturally occur. Consequently, these problems are
practically relevant in various application domains, where real world ob-
jects are modeled as graphs. In cheminformatics graphs are derived from
molecules and have several properties that can be exploited algorithmically—
nevertheless common subgraph problems remain difficult to solve, both, from
a theoretical as well as a practical point of view. We have identified the
problem k-MCIS, whose complexity is open although it is fundamental. We
have considered the class of series-parallel graphs and studied 2-MCIS, for
which we presented a polynomial-time algorithm. In addition, we discussed
the special case of 2-MCIS, where input graphs are outerplanar, and gave
improved algorithms and bounds on the running time. The problem 2-MCIS
appears as a subproblem of BBP-MCCIS in series-parallel graphs, which is
highly relevant in cheminformatics. For this problem we have designed a
polynomial-time algorithm as well.

In previous work a tree decomposition graph was proposed that incorpo-
rates all possible tree decompositions of a graph. However, a key problem

3.7. Summary and Future Work 85

for using this data structure for common subgraph problems is that it does
not contain all tree decompositions of subgraphs of the graph. To overcome
this issue we proposed the new concept of potential separators. One may ask
if one can extend tree decompositions to obtain a correspondence between
subtrees of the tree decomposition and the subgraphs of the input graphs.
This would require to take the potential separators into account and remains
future work. The concept of potential separators on its own as well as such a
data structure may turn out to be useful as well for other related problems,
e.g., the Isomorphic Subgraph problem considered by Bachl et al. (2004).

Since we only considered 2-MCIS the following problem remains open.

Open Problem 3.1. Can k-MCIS be solved in polynomial time for k > 2?

In the affirmative case, it would be interesting to generalize the concept of
block and bridge preserving common subgraphs, such that k-connected com-
ponents (Holberg, 1992) or k-blocks (Carmesin et al., 2014) are preserved.

For outerplanar graphs BBP-MCCES was fundamental for solving un-
restricted MCCES in outerplanar graphs of bounded degree (Akutsu and
Tamura, 2013). We have obtained a BBP-MCCIS algorithm for series-parallel
graphs by extending our 2-MCIS approach. Furthermore, it was shown by
Kurpicz (2014) that the degree-bound is crucial for the complexity: Finding
an MCCIS of two biconnected series-parallel graphs with all but one vertex of
degree bounded by three is NP-hard (also see Kriege et al., 2014a). Can our
BBP-MCCIS approach serve as a starting point for solving MCCIS in series-
parallel graphs, where all vertices have bounded degree, as it was possible for
outerplanar graphs? More generally one may ask if MCCIS in partial k-trees
of bounded degree is tractable. Akutsu and Tamura (2012) have proven the
negative result that MCCIS is NP-hard even for (vertex-labeled) partial 11-
trees with maximum degree 6. Consequently, the following question is open.

Open Problem 3.2. Can MCCIS be solved in polynomial time for partial
k-trees of bounded degree for some k ∈ {2, . . . , 10}?

While we focused on induced subgraph problems, in practice often edge-
induced subgraphs are desired, which give rise to closely related maximum
common subgraph problems, cf. Section 3.3.1. MCES can be reduced to MCIS
by considering the line graphs of the input graphs or subdivision graphs. Both
reductions require to handle technicalities like the ∆Y -exchange or mappings
between original vertices and those that subdivide edges. Apart from this the
graph class of the input graphs not necessarily is preserved: Figure 3.16(b)
shows a simple example demonstrating that partial k-trees are not closed un-
der taking line graphs. However, the subdivision graph of a partial k-tree
obviously again is a partial k-tree making this approach promising to transfer
MCIS algorithms for partial k-trees to MCES. We have presented an algo-
rithm for 2-MCIS in outerplanar graphs with quadratic running time. The

86 Chapter 3. Common Subgraph Problems

(a) Input graph G (b) Line graph L(G)
(black vertices)

(c) Subdivision graph
S(G)

Figure 3.16: An outerplanar graph (a), its line graph (b) and subdivision graph (c).
While the input graph is a partial 2-tree its line graph has tree width 3. The subdivi-
sion graph has the same treewidth as the input graph, but is no longer outerplanar.

problem 2-MCIS generalizes the induced subgraph isomorphism problem in
biconnected outerplanar graphs, for which the best known algorithm due to
Sysło (1982) also has quadratic running time. For the subgraph isomorphism
problem in biconnected outerplanar graphs the best known algorithm has cu-
bic running time (Lingas, 1989). However, since the subdivision graph of an
outerplanar graph not necessarily again is outerplanar as demonstrated by
Figure 3.16(c), we can not directly apply Algorithm 3.7. It remains future
work to modify our algorithms based on SP-trees for 2-MCES in outerpla-
nar graphs—this might yield asymptotically better running times than those
obtained by BBP-MCCES algorithms.

We have first studied the conditions under which maximum common sub-
graph variants allow to define graph distance metrics. We have shown that
our algorithms can be used to obtain graph distance metrics for connected
cactus graphs including the class of trees. This is a rather restricted graph
class, but—as we have shown—even in outerplanar graphs polynomial-time
computable maximum common subgraph variants do not yield a metric in
combination with common dissimilarity functions. Graph distance metrics
are important in practice, e.g., when graphs are compared in order to per-
form similarity searching in graph databases or clustering. Hence, as future
work one could devise maximum common subgraph variants that can be used
to obtain graph distance metrics while at the same time allow for polynomial-
time computation in restricted graph classes.

In this chapter several novel algorithms have been proposed. While we
focused on the theoretical side, the problems considered are also of high prac-
tical relevance. It is promising future work to implement these algorithms
and further engineer them in order to obtain high efficiency on real-world in-
stances. Graphs derived from molecules, for example, are typically annotated
by vertex and edge labels. It is in general possible to adapt our algorithms
to consider labels and we presented an adapted version of Algorithm 3.7 in
(Droschinsky et al., 2015). However, for the more complex algorithms ade-

3.7. Summary and Future Work 87

quate elaborated modifications are likely to drastically improve the running
time in practice. Developing efficient implementations taking labels into ac-
count as well as their experimental comparison on real-world graphs remains
future work.

Here, we essentially only considered the task to compute the size of an
optimal solution. While it is straight-forward to modify our algorithms to
obtain a single optimal solution, typically there are multiple solutions of the
same size. The development of enumeration algorithms for common sub-
graph problems, which output all these solutions, is a promising direction
of future research. Algorithm 3.7 can easily be modified to output all max-
imal or maximum isomorphisms between biconnected common induced sub-
graphs of biconnected outerplanar graphs in polynomial time. However, in
general the number of solutions is not polynomially bounded in the input
size. In this case, it is of interest to develop special enumeration algorithms
with a running time bounded in the size of the input and the output. The
first enumeration algorithms for maximum common subgraph problems with
provable running time were recently proposed for maximum common sub-
tree isomorphisms (Droschinsky et al., 2014) and BBP-MCCIS isomorphisms
in outerplanar graphs (Droschinsky et al., 2015). The algorithms are based
on the classical approach described in Section 3.2 and the combination with
Algorithm 3.7, respectively, and were shown to have polynomial-delay. This
means that the time before the output of the first solution, and after the out-
put of a solution until providing the next solution or halting, is polynomially
bounded in the input size (Johnson et al., 1988). It remains future work to de-
velop efficient enumeration algorithms for other variants of common subgraph
problems.

Only recently first positive results on the parameterized complexity of
MCIS were obtained by Abu-Khzam (2014), where the parameter k is a
bound on the size of the minimum vertex covers of the input graphs. Find-
ing other parameterization for which MCIS is fixed parameter tractable is
promising future research. The initial quote of this chapter suggests that
finding the common parts in fact is equivalent to finding the parts that were
added. In many applications like cheminformatics highly similar input graphs
are of special interest. It remains an interesting task—both, in theory and
practice—to focus on the additional parts and to solve MCIS efficiently, where
p = |G| + |H| − 2|Mcs(G,H)| is considered as a parameter or (small) con-
stant.

88 Chapter 3. Common Subgraph Problems

The totality is not, as it were,
a mere heap, but the whole is
something besides the parts.

Aristotle
(384–322 BCE)Chapter 4

Graph Kernels

In order to successfully apply machine learning algorithms in the domain
of graphs, meaningful (dis)similarity measures between graphs are a prereq-
uisite. We have seen in Section 3.6 that the size of a maximum common
subgraph can be used to derive a distance metric on graphs. However, find-
ing maximum common subgraphs efficiently is non-trivial even for highly re-
stricted graph classes. In addition, not all polynomial-time solvable problem
variants can be used to obtain a graph distance metric from the result.

In this chapter we consider graph kernels, i.e., (similarity) functions be-
tween1 two graphs that satisfy specific mathematical properties. While in
principle akin to similarity functions between vector embeddings of graphs,
graph kernels provide unique advantages over these classical methods. We
make several contributions to the theory of graph kernels, in particular w.r.t.
implicit and explicit computation schemes. In this context we develop and
analyze algorithms for both methods of computation, demarcate their ability
to support attributed graphs and analyze their running times in theory and
practice. Although the main focus of our work lies on algorithmic aspects,
comparative experimental results including the application to classification
tasks on various real-world data sets are presented.

In Section 4.1 the fundamentals of kernels and kernel methods are sum-
marized. In Section 4.2 we discuss kernels for structured data. In particular,
we bridge the gap between graph distance metrics and so-called complete
graph kernels. Subsequently, we discuss two aspects of graph kernels in detail
that are essential for our work: In Section 4.3 we consider possible anno-
tations of graphs, how graph kernels can cope with general attributes and
under which conditions labeled graphs are an adequate model. The section
gives the required background and justification to distinguish between graph
kernels for attributed graphs and those for labeled graphs. In Section 4.4 we
discuss implicit and explicit methods of computation for kernels in general

1These must be distinguished from kernels that compute similarities between two vertices
of the same graph, which are sometimes also called graph kernels (see, e.g., Kondor and
Lafferty, 2002; Neumann et al., 2013).

89

90 Chapter 4. Graph Kernels

and analyze the running time of both approaches when applied to graph data
sets. Moreover, we show under which conditions R-convolution kernels can
be computed by explicit mapping. Then, in Section 4.5, we discuss related
work on graph kernels with a special focus on these two aspects, i.e., support
for arbitrary labels and implicit or explicit computation. In the following
we propose graph kernels based on walks of fixed length and develop implicit
and explicit computation schemes (Section 4.6). These are subsequently com-
pared experimentally w.r.t. to their running time in practice. Section 4.7 is
dedicated to a novel graph kernel based on common subgraph isomorphisms
which are scored with respect to the mapped attributes of vertices and edges.
After presenting experiments for this kernel with a focus on running time,
we present an extensive comparative experimental evaluation with state-of-
the-art graph kernels. Finally, we summarize and discuss directions of future
work.

The main contributions of this chapter are the following:

• In Section 4.4 we analyze implicit and explicit computation schemes for
kernels in order to provide the algorithmic background for the compu-
tation of graph kernels. Further we observe a relation between binary
kernels and (partial) equivalence relations. Based on this we provide a
sufficient condition to derive explicit computation schemes for general
R-convolution kernels. A preliminary version of this section has been
published in (Kriege, Neumann, Kersting, and Mutzel, 2014c).

• We propose efficient algorithms for fixed length walk kernels, based
on explicit mapping and product graph based implicit computation in
Section 4.6. The product graph based computation fully supports ar-
bitrary attributes and benefits from restrictive vertex and edge kernels.
No algorithm for random walk kernels based on explicit computation
has previously been proposed. Our experimental evaluation shows that
both methods of computation behave complementary in terms of run-
ning time depending on data set size and label diversity of the graphs.
Parts of this section have been published in (Kriege, Neumann, Kerst-
ing, and Mutzel, 2014c)

• In Section 4.7 we propose a graph kernel that is based on subgraphs and
allows to score all possible mappings by vertex and edge kernels. This
is the first kernel based on subgraphs that also supports graphs with
complex attributes. We observe a contrasting trend in terms of running
time for explicit and implicit computation as for walk-based kernels.
Parts of this section have been published in (Kriege and Mutzel, 2012).

• In Section 4.8 we present an experimental evaluation of our novel graph
kernels and compare them to several other state-of-the art kernels on
benchmark graphs with simple labels and attributes. A preliminary
version of this section has been published in (Kriege and Mutzel, 2012).

4.1. Kernels and Kernel Methods 91

4.1 Kernels and Kernel Methods
In this section we briefly summarize fundamental definitions and properties of
kernels and their application as an integral part of support vector machines
for classification. For a comprehensive introduction to kernel methods in
machine learning, please refer to (Schölkopf and Smola, 2001; Vert et al.,
2004; Hofmann et al., 2008; Steinwart and Christmann, 2008).

A symmetric matrix A ∈ Rn×n is positive semidefinite (p.s.d.) if c>Ac ≥
0 for any c ∈ Rn and positive definite if c>Ac > 0 for any non-zero c ∈ Rn.

Definition 4.1 (Kernel, Kernel Matrix). A function K : X × X → R is
called a kernel on X if the n × n matrix K with entries kij = K(xi, xj) is
symmetric and p.s.d. for any X = {x1, . . . , xn} ⊆ X , n ∈ N.2The matrix K
is referred to as kernel matrix.

Assume X = Rd, the dot product between vectors always gives rise to a
matrix that is p.s.d. and symmetric. Consequently,

K(x,y) = 〈x,y〉 = x>y =
d∑

x=1
[x]i[y]i, (4.1)

is a kernel on X . Roughly speaking, every kernel can be expressed as a
dot product: A function K : X × X → R is a kernel if and only if there
is a real Hilbert space H and a map φ : X → H, such that K(x, y) =
〈φ(x), φ(y)〉H for all x, y ∈ X (Steinwart and Christmann, 2008, Theorem
4.16). We call φ a feature map and H a feature space of the kernel K. A
Hilbert space H is a vector space equipped with an inner product 〈·, ·〉H that
is complete with respect to the norm induced by the inner product. The
concept of Hilbert spaces can be considered a generalization of the Euclidean
space to any finite or infinite number of dimensions. An example of an infinite-
dimensional Hilbert space is the space of all infinite sequences x = (x1, x2, . . .)
of real numbers with

∑∞
i=1 x

2
i < ∞, where the inner product is realized by

〈x, y〉 =
∑∞
i=1 xiyi. For our purpose—as usually when learning with kernels

(Schölkopf and Smola, 2001)—it is sufficient to think of 〈·, ·〉 as a dot product.
The fact that every kernel can be considered a dot product in some feature

space and, vice versa, every dot product yields a kernel, is fundamental and
has been exploited on various occasions in machine learning.

4.1.1 Classification and Support Vector Machines

The most prominent example of kernel methods arguably are Support Vec-
tor Machines (SVMs), which can be employed for classification. To provide
a readily understandable context for the application of graph kernels, we

2In the literature on kernel methods it is also common to use the term positive definite
instead of positive semidefinite if c>Kc ≥ 0 for any c ∈ Rn.

92 Chapter 4. Graph Kernels

briefly explain classification problems, review the development of SVMs and,
in particular, their relation to kernels.

Problem 4.1 (CLASS). Classification
Input: Training set T = {(x1, y1), . . . , (xn, yn)} of objects xi ∈ X with

class labels yi ∈ Y for all 1 ≤ i ≤ n.
Task: Learn a function f : X → Y predicting class labels.

In the following, we consider the binary classification problem, where
Y = {−1, 1}. Although, we are eventually interested in the classification of
graphs, i.e., X = G, let us first assume that X = Rd, d ∈ N. The key idea of
SVMs is to find a hyperplane in Rd that separates the objects in the training
set with label −1 from those with label +1. As soon as such a hyperplane is
found, the label of every object without known class label can be predicted
by deciding on which side of the hyperplane it is located.

Given a training set T , let X+ = {x | (x,+1) ∈ T}, X− = {x | (x,−1) ∈
T} and X = X+]X−. The sets X+ and X− are said to be linearly separable
if there is a vector w ∈ Rd and a real number b ∈ R such that every x ∈ X+

satisfies 〈w,x〉 + b > 0 whereas every x ∈ X− satisfies 〈w,x〉 + b < 0. Let
us first assume that the training data set is linearly separable like the data
points in Figure 4.1(a). In this case, there is at least one separating hyper-
plane and, in the general case, multiple different separating hyperplanes exist.
The classical approach by Vapnik and Lerner (1963) selects the hyperplane
that maximizes the margin, i.e., the minimum distance between the hyper-
plane and any data point. Finding this hyperplane gives rise to a quadratic
optimization problem, which is not discussed here. For details we refer the
reader to a standard text book such as (Schölkopf and Smola, 2001). Let
(w, b) describe the desired hyperplane. The normal vector w can be defined
as as a linear combination of elements from X such that only the vectors that
lie on the margin have a non-zero coefficient—these vectors are said to sup-
port the hyperplane and can be obtained from a solution to the optimization
problem. The sign of the function f(x) = 〈w,x〉+ b indicates on which side
of the hyperplane the unclassified data point x lies and, thus, predicts a class
label.

The classical approach clearly is not applicable when the training data
is not linearly separable. Further, the concept of maximizing the margin
is highly sensitive to outliers. Relaxing the strict constraint, so-called soft-
margin SVMs allow data points lying within the margin: The class of C-
SVMs introduces a penalty term into the objective function for violating the
margin constraint. The regularization constant C allows to control the trade-
off between constraint violation and the width of the margin. Schölkopf et al.
(2000) modified the approach to obtain a more intuitive and interpretable
parameter leading to ν-SVMs. It is essential to note that the optimization
problems arising for the different types of SVMs can be formulated such that

4.1. Kernels and Kernel Methods 93

x2

x1

∆

(a) Linear classification

x2

x1

(b) Non-linear classification

Figure 4.1: Learning a classifier for a binary classification problem on X = R2;
black and red dots represent X+ and X−, respectively. In (a) the two sets are
linearly separable and the separating hyperplane that maximizes the margin ∆ is
shown. The corresponding support vectors are depicted as rectangles. In (b) the
data points are not linearly separable in the input space R2, but in the feature space
associated with the kernel used for classification.

all training data points appear only in dot products. Let S be the set of
support vectors of a solution and αs the coefficient associated with s ∈ S,
then

f(x) = b+ 〈w,x〉 = b+
〈∑

s∈S
αss,x

〉
= b+

∑
s∈S

αs〈s,x〉. (4.2)

Hence, deciding on which side of the corresponding hyperplane an unclassified
data point lies, is also possible by computing dot products between data points
only.

By now we assumed that the training data is linearly separable. However,
we cannot expect this property for real-world data. Consider the example
shown in Figure 4.1(b), the data points cannot be separated by a hyperplane.
However, by mapping the data points from the input space in some feature
space, where they become linearly separable, would allow us to apply SVMs
in the feature space in order to solve the original problem. Assume there is
such a function φ : X → H and we have computed a separating hyperplane
Pφ in H, then P = {x ∈ X | φ(x) ∈ Pφ} may form, for example, a curve in X
as depicted in Figure 4.1(b). This generalization of a hyperplane is referred
to as decision boundary. In order to predict the class label of any object,
we map it into feature space and decide on which side of the hyperplane it
lies. This approach allows to obtain a non-linear classification in the input
space X . Remind the correspondence between kernels and dot products in
some feature space and the fact that SVMs merely require the dot product
between data points, cf. Equation (4.2). Instead of providing the training
data points X ⊆ Rd as input for an SVM algorithm, we may provide the

94 Chapter 4. Graph Kernels

training data X ⊆ X and a kernel function K : X × X → R, or simply
the corresponding kernel matrix. This reduces the classification problem to
the task of designing adequate kernel functions allowing us to obtain non-
linear classification in the input space. A kernel function may be efficiently
computable, although a corresponding feature space is of high or even infinite
dimension. In this case it would be prohibitive to explicitly map elements into
feature space. Kernels allow to operate in this high-dimensional feature space
implicitly avoiding the computational expensive mapping. Exploiting this fact
is known as kernel trick. Moreover, note that the input of SVM algorithms
no longer is restricted to data points from Rd, but we may use arbitrary
objects as long as we provide a kernel on these objects. Thus, SVMs become
a powerful tool even for learning in structured data like graphs by means of
graph kernels, i.e., a kernel function K : G × G → R on graphs.

4.1.2 Standard Kernels and Closure Properties

Various kernel functions for vector data are known (Genton, 2002; Hofmann
et al., 2008), which will again be of interest for kernels on graphs that are
annotated by vertex and edge attributes. As we have stated earlier every
kernel corresponds to the dot product in some feature space. Directly apply-
ing the dot product to vector data according to Equation (4.1) is referred to
as linear kernel. Other kernels obtain non-linear decision boundaries in the
input space. Let x,y ∈ Rd in the following, where d ∈ N. The polynomial
kernel is defined as

Kpoly(x,y) = (〈x,y〉+ c)p, (4.3)
where p ∈ N and c ≥ 0 are parameters. Note that the linear kernel is obtained
as a special case of the polynomial kernel for c = 0 and p = 1.

A popular kernel is the Gaussian radial basis function or (Gaussian) RBF
kernel, which is defined as

KRBF(x,y) = exp
(
−‖x− y‖2

2σ2

)
, (4.4)

where σ is a parameter. Since the kernel only depends on the distance vector
x−y and not directly on x and y, it is said to be translation invariant. This
kernel is frequently and often successfully used in practice and generally con-
sidered a reasonable first choice for classification of vector data (Hsu et al.,
2003). The classifier learned corresponds to the sum of Gaussian centered
on the support vectors and, thus, rather complex decision boundaries can be
obtained (Vert et al., 2004). The Gaussian RBF kernel matrix is positive
definite (Hofmann et al., 2008), implying that the associated feature space
has an infinite number of dimensions. Thus, it is prohibitive to compute the
feature map explicitly, while evaluating the kernel according to Equation (4.4)
allows to implicitly operate in this feature space. Nevertheless, for compu-
tational reasons, cf. Section 4.4, it was shown to be practical to compute an

4.1. Kernels and Kernel Methods 95

explicit mapping in a low-dimensional feature space, such that the dot prod-
uct in this feature space approximates the Gaussian RBF kernel (Rahimi and
Recht, 2008; Cotter et al., 2011). Since the RBF kernel is globally supported,
i.e., KRBF(x,y) > 0 for all x,y ∈ Rd, it gives rise to dense kernel matrices.
However, compactly supported RBF kernels have been investigated, which
yield sparse kernel matrices with a certain information loss (see Zhang and
Genton, 2004; Zhu, 2012, and references therein). The arising sparsity can
lead to substantial savings in storage and computation time when exploited
adequately by kernel-based algorithms.

The simplest kernels one may think of is Kc(x, y) = c for all x, y ∈ X ,
where c is a constant. For c = 0 and c = 1 this kernel is referred to as
zero kernel and one kernel, respectively. The Dirac kernel or delta kernel is
widely-used and defined as

Kδ(x, y) =
{

1 if x = y,

0 otherwise,
(4.5)

where x, y ∈ X . The zero, one and Dirac kernel do not require that X = Rd.
Kernels are closed under certain operations allowing to combine known

kernels to obtain new functions that again are valid kernels. Let K1 and K2
be kernels on X , then the linear combination with non-negative coefficients
a1, a2 ∈ R≥0

K(x, y) = a1K1(x, y) + a2K2(x, y) (4.6)
is again a kernel. Further, the product of two kernels yields a kernel:

K(x, y) = K1(x, y) ·K2(x, y) (4.7)

This allows, for example, to obtain a compactly supported kernel from a
globally supported RBF kernel by multiplication with a known compactly
supported kernel.

4.1.3 Kernels as Similarity Measures

We have mathematically defined what kernels are. In order to design novel
kernel functions it is useful to have a more intuitive interpretation. From a
statistics perspective kernels can be considered covariances (Genton, 2002).
However, in the following we will think of a kernel function as a measure of
similarity between objects, see (Vert et al., 2004) for a detailed justification of
this viewpoint. This perspective might not readily align with the geometric
interpretation of the dot product in some feature space. For example, 〈x,x〉 <
〈x, 2x〉 for x ∈ Rd, x 6= 0, although according to intuition one might want
to require that every object exhibits a higher similarity to itself than to any
other object. One can obtain a valid kernel K̂ with this property from any
kernel K by normalization according to

K̂(x, y) = K(x, y)√
K(x, x)K(y, y)

. (4.8)

96 Chapter 4. Graph Kernels

Note that K̂ may range between −1 and 1 with K̂(x, x) = 1 for all x ∈ X ,
i.e., all entries on the main diagonal are one for every kernel matrix derived
from K̂. Equation (4.8) is referred to as cosine normalization since

K̂(x, y) =
〈
φ(x)
‖φ(x)‖ ,

φ(y)
‖φ(y)‖

〉
= cos θ, (4.9)

where θ is the angle between φ(x) and φ(y) in feature space (Ah-Pine, 2010).
Although other methods for normalization are known we refer to Equa-
tion (4.8) when speaking of normalization.

4.2 Kernels for Structured Data
The standard kernels discussed in Section 4.1.2 are, with few exceptions, only
applicable to vector data. However, kernel methods can be readily applied
to any kind of data as long as a kernel is available. Consequently, kernels
for structured data, which is common in real-world applications, have been
proposed, among them are graph kernels. Please refer to (Gärtner, 2009) for
a more profound overview on kernels for structured data.

4.2.1 Kernels on Sets

We first consider kernels on sets, which are assumed to be finite. Let A and
B be sets from a universe U , the function

K∩(A,B) = |A ∩B| (4.10)

is a kernel on P(U) referred to as intersection kernel. Let φ : P(U)→ {0, 1}|U |
be the mapping of sets to their characteristic vectors, then K∩(A,B) =
φ(A)>φ(B) and, thus, a p.s.d. function. Note that this immediate explicit
mapping scheme of the intersection kernel does not directly carry over to mul-
tisets, where the characteristic vector would specify the multiplicity of each
element in the multiset.

Assume we have given a kernel k on U and, in order to compare two sets
A,B ⊆ U , we want to use k to compare the individual elements of the two
sets. The cross product kernel is defined as

K×(A,B) =
∑
a∈A

∑
b∈B

k(a, b). (4.11)

For k = Kδ this kernel coincides with the intersection kernel, i.e., K×(A,B) =
K∩(A,B). Hence, for this choice of k, the cross product kernel also corre-
sponds with the dot product between the characteristic vectors.

More general kernels based on similar ideas can be obtained for infinite
sets as well as for multisets. The set intersection, for example, yields a valid
kernel on semirings of sets for all measures (Gärtner, 2009, Proposition 3.4).
The kernels above can be applied to sets, but not yet to complex structured
data.

4.2. Kernels for Structured Data 97

4.2.2 Convolution Kernels

Haussler (1999) proposed R-convolution kernels, which provide a generic
framework to define kernels between composite objects. Suppose x ∈ R =
R1 × · · · × Rd are the parts of X ∈ X according to some decomposition.
Let R ⊆ R × X be a relation such that (x, X) ∈ R if and only if X can be
decomposed into the parts x. Let R−1(X) = {x | (x, X) ∈ R} and assume
R−1(X) is finite for all X ∈ X . The function

K(X,Y) =
∑

x∈R−1(X)

∑
y∈R−1(Y)

d∏
i=1

ki([x]i, [y]i)︸ ︷︷ ︸
k(x,y)

(4.12)

is a valid kernel provided that ki is a valid kernel on Ri for all i ∈ {1, . . . , d}
and referred to as R-convolution kernel. Note that k(x,y) clearly is a valid
kernel on R if ki are valid kernels on Ri, since kernels are closed under taking
the product, cf. Section 4.1.2. In fact, Equation (4.12) for arbitrary d can be
easily obtained from the case d = 1 for an appropriate choice of R1 and k1 as
noted by Shin and Kuboyama (2010). The class of R-convolution kernels is
popular to define kernels on structured data and most graph kernels can be
seen as instances of R-convolution kernels (Vishwanathan et al., 2010), where
d = 1 is a common choice. In fact R-convolution kernels are closely related
to the cross product kernel: If we assume d = 1 and R = R1 = U , the R-
convolution kernel essentially boils down to the decomposition of structured
objects X into sets {x ∈ U | x ∈ R−1(X)}, which are then compared by
the kernel k1 on U according to Equation (4.11). This view is sufficient
for our approach to develop explicit mapping schemes for graph kernels in
Section 4.4.3.

4.2.3 Distance Metrics and Complete Kernels

We have discussed graph distance metrics derived from maximum common
subgraphs in Section 3.6. In this section we bridge the gap between graph
kernels and graph distance metrics.

Every kernel K on X is associated with a feature map φ : X → H into a
feature space. We can compute the distance in a feature space H of a kernel
K on X by employing the kernel trick—no matter if feature vectors can be
computed explicitly or not—according to

dK(x, y) = ‖φ(x)− φ(y)‖ =
√
K(x, x) +K(y, y)− 2K(x, y), (4.13)

which is referred to as kernel metric. Note that dK yields a metric on H and
in general a pseudo-metric on X . However, it is a metric on X if and only if
φ is an injection (see, e.g., Steinwart and Christmann, 2008).

The feature map φ : G → H of a kernel K on graphs can be viewed
as a graph invariant. Thus, an interesting property of a graph kernel K

98 Chapter 4. Graph Kernels

is, whether the associated function φ is a complete graph invariant. If it
is not, there are non-isomorphic graphs G,H ∈ G with φ(G) = φ(H) that
cannot be distinguished by K. Gärtner et al. (2003) introduced the concept
of complete graph kernels as kernels on graphs, where the feature map φ is an
injection. This exactly is the case if and only if φ is a complete graph invariant.
Consequently dK according to Equation (4.13) yields a graph distance metric
if K is a complete graph kernel and a pseudo metric otherwise. Thus, with
Proposition 3.1 we obtain the result that computing any complete graph
kernel is GI-hard, which was as well observed by Gärtner et al. (2003).

Vice versa, it is not straightforward to derive a valid graph kernel from
arbitrary graph distance metrics. Consider the Gaussian RBF kernel, cf.
Equation (4.4), which relies on the Euclidean distance ‖x− y‖ between the
two input vectors x and y. It might seem natural to replace the Euclidean
distance by a graph distance pseudo-metric to obtain a graph kernel. How-
ever, in general this approach does not yield a p.s.d. kernel. Haasdonk and
Bahlmann (2004) have shown that satisfying the properties of a metric is a
necessary, but not sufficient condition for this approach to yield a valid ker-
nel. Let us assume we obtained a valid kernel by plugging-in a graph distance
metric into a Gaussian RBF kernel. The Gaussian RBF kernel gives rise to
positive definite kernel matrices implying that the associated feature map is
an injection. Thus, this approach would indeed yield a complete graph ker-
nel. For other approaches to derive kernels from distances, see (Haasdonk
and Bahlmann, 2004; Neuhaus and Bunke, 2006).

4.3 Graph Data: Labels and Attributes

To model real-world objects adequately by means of graphs it is required to
annotate vertices and edges. Molecules provide an intuitive example, where
graphs are annotated by categorical labels from a finite set. We have in-
troduced labeled graphs in Definition 2.7 to model this kind of annotations.
Apart from that, one may as well think of labels that are continuous, e.g.,
edges may be annotated with real-valued Euclidean distances. Furthermore,
labels could be multi-dimensional, i.e., vertices and edge are annotated with
multiple categorical or real-valued properties. Even more general, we may
have to deal with arbitrary objects as vertex or edge annotation, e.g., a ver-
tex of a graph may again be associated with another graph. We obtain a
general definition of such graphs by allowing arbitrary objects from a set A
as annotations. We refer to these as attributed graphs to distinguish them
from labeled graphs.

Definition 4.2 (Attributed Graph). An attributed graph is a graph G
equipped with a function α : V (G)] E(G) → A, which assigns an attribute
α(v) to every vertex v ∈ V (G) and α(e) to every edge e ∈ E(G).

4.3. Graph Data: Labels and Attributes 99

Note that for attributed graphs, we do not make any assumptions regard-
ing the structure of A. Labeled graphs are a special case of attributed graphs
obtained when A is a finite set of categorical values. In this case we say
that the graph has simple labels. Finally, we refer to attributed graphs with
uniform labels, e.g., A = {ε}, as unlabeled. Hence, labeled graphs generalize
unlabeled graphs and are in turn generalized by attributed graphs.

4.3.1 Taking Annotations into Account

Clearly, graph kernels should be able to make best possible use of the anno-
tations provided. Most graph kernels decompose graphs and compare their
parts, cf. Section 4.2.2, which eventually are their annotated vertices and
edges. The proposed graph kernels differ in their ability to handle labels
or attributes. We distinguish kernels for unlabeled, labeled and attributed
graphs. Kernels for unlabeled graphs consider all vertices and edges as “com-
patible”. Kernels for labeled graphs take into account pairs of vertices and
edges only if they have equal labels, which is typically adequate for categorical
labels.

For general attributed graphs the requirement of strict equality of at-
tributes is not appropriate and prior knowledge on how to compare attributes
is required. In order to support graphs with attributes one can make use of
the fact that kernels can be combined according to the rules detailed in Sec-
tions 4.1.2 and 4.2. Hence, we say that a kernel supports attributed graphs
when it admits two kernel functions κV and κE on A as input and uses them
internally to compare vertex and edge attributes. Where clear from context,
we occasionally neglect the index and assume that κ(x) means κV (x) if x is
a vertex and κE(x) if x is an edge. For convenience, we write κ(x) instead of
κ(α(x)).

A kernel on attributed graphs can be applied to graphs with simple labels
by setting κV = κE = Kδ, i.e., the Dirac kernel according to Equation (4.5).
This kernel then realizes the strict equality requirement inherent to kernels for
graphs with simple labels. However, the flexibility of vertex and edge kernels
also allows to design kernels on labels that penalize the matching of certain
non-equal labels while other different label combinations are completely for-
bidden or allowed. In a molecular graph, for example, matching an oxygen
atom and a nitrogen atom may be considered acceptable when the task is
to predict biological activity by means of graph kernels. On the contrary,
matching an oxygen atom and a carbon atom possibly should not be allowed
because of their different effect w.r.t. the biological activity. When graphs
have continuous, real-valued attributes, requiring exact equality is not ap-
propriate; the possibility of specifying kernel function to obtain an adequate
similarity measure between attributes overcomes this problem.

As a running example, we consider attributed graphs, where edges are
annotated by real-valued distances, and discuss three possible choices for κE

100 Chapter 4. Graph Kernels

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

K
er
n
el

va
lu
e

Kdist
RBF

Kdist
∆

Kdist
bin

(a) Varying x, y = 5 fixed

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

x

K
er
n
el

va
lu
e

Kdist
RBF

Kdist
∆

Kdist
bin

(b) Varying x, y = 7 fixed

Figure 4.2: Kernel functions to compare distances, where x is varied and y is fixed
at either 5 (a) or 7 (b). The Gaussian RBF kernel Kdist

RBF with σ = 1.2 and the
triangular kernel Kdist

∆ with c = 3 have a peak at y and decrease with the difference.
The kernel Kdist

bin (x, y) does not change for y = 5 and y = 7 fixed, since both values
fall in the same bin.

as input for kernels supporting attributed graphs. These have been reported
to be used in the context of graph kernels for the comparison of real-valued
distances x, y ∈ R in real-world problems:

Kdist
RBF(x, y) = exp

(
−|x− y|

2

2σ2

)
(4.14)

Kdist
∆ (x, y) = 1

c
·max{0, c− |x− y|} (4.15)

Kdist
bin (x, y) =

{
1 if bin(x) = bin(y),
0 otherwise,

(4.16)

where bin : R → N is a function performing some kind of binning as, for
example,

bin(x) =


1 if x < 3, “near”
2 if 3 ≤ x ≤ 7,
3 if x > 7. “far”

(4.17)

The three functions are illustrated in Figure 4.2. Equation (4.14) is obtained
from the standard Gaussian RBF kernel. The triangular kernel Kdist

∆ accord-
ing to Equation (4.15) depends on the threshold parameter c ∈ R. It ranges
between zero and one, assigning one to equal distances, zero if the discrep-
ancy exceeds the threshold c, and a value anti-proportional to the difference
otherwise. This kernel was, for example, implemented in the toolkit Chem-
CPP (Perret and Mahé, 2006) for the pharmacophore kernel (Mahé et al.,
2006, see Sections 4.5, 4.7.2) and used to compare distances between atoms
in a 3D model of molecules. Borgwardt et al. (2005) used a variant of this

4.3. Graph Data: Labels and Attributes 101

function without the normalizing coefficient 1/c for the comparison of dis-
tances between secondary structure elements of proteins and referred to it as
Brownian Bridge kernel. The idea of binning as in Equation (4.16) has been
used on several occasions for the comparison of graphs with continuous la-
bels and was reported to be successful, e.g., for continuous distances between
atoms in (Mahé et al., 2006). However, it is not clear if this approach is gener-
ally suitable: Consider again our example of a real-valued edge attribute with
the binning function according to Equation (4.17). Assume the edge in one
graph is annotated with x = 7 and the other with y = 7 + ε, for some small
ε > 0. Then these two edge labels would yield Kdist

bin (x, y) = 0, since only the
second distance is considered “far”. This issue is illustrated in Figure 4.2(b)
and has been referred to as discontinuity on bin-boundaries problem by Fober
et al. (2012). Binning also is possible for more complex attributes, which are,
e.g., multi-dimensional. In order to perform binning for arbitrary attributes,
a function bin : A → N is sufficient, which could, for example, be obtained
by hashing techniques (Neumann et al., 2012b). However, the problem of
discontinuity on bin-boundaries can be expected to become more serious for
multi-dimensional continuous attributes.

From the above discussion it becomes apparent that the three possible
solutions differ in their ability to score the discrepancy between distances
adequately. The three kernel functions also have distinct characteristics that
crucially affect the computation of graph kernels when used as edge kernels.
The Gaussian RBF kernel is globally supported and always yields a non-
zero value, while the triangular kernel is compactly supported. We will later
see that this difference drastically influences the running time required for
computing kernels for attributed graphs. The binning kernel also is compactly
supported and is closely related to the discretization of attributes to transform
attributed graphs into labeled graphs.

4.3.2 Transforming Attributes to Simple Labels

We have observed that a kernel for attributed graphs, where vertex and edge
kernels are realized by the Dirac kernel, compares labels in a similar manner as
kernels for graphs with simple labels. Most graph kernels yet were proposed
with labeled graphs in mind. Thus, an obvious question is if we can, the
other way round, apply graph kernels designed for unlabeled or simply labeled
graphs to attributed graphs? Clearly, we can compare attributed graphs by
applying any graph kernel to the underlying unlabeled graphs—which will not
exploit the possible rich information of annotations at all. Directly applying a
kernel for labeled graphs to attributed graphs in general is hardly promising,
since, for example, distances that are “nearly” equal typically should also
contribute to the kernel value. A better approach would be to transform these
attributed graphs into graphs with meaningful simple labels. The binning
kernel, cf. Equation (4.16), is based on a function, which maps attributes to

102 Chapter 4. Graph Kernels

Explicit
(EX)

Implicit
(IM)

G H

DotProduct

PSD function

φ(G)
φ(H)

K(G,H)

Figure 4.3: Explicit and implicit computation of a kernel K between two graphs
G and H.

discrete values. A function bin : A → L, where L is a finite set, can as well be
realized by hashing. Then, we can use this function to transform attributed
graphs into labeled graphs by simply relabeling all vertices and edges.

Assume we have a kernel for attributed graphs and employ a binning
vertex and edge kernel according to Equation (4.16) for some binning function.
Applying this kernel to a data set would yield exactly the same result as
applying the same graph kernel with κV = κE = Kδ to the data set after
transformation to simply labeled graphs based on the same binning function.
In general, after transformation, we can apply every graph kernel designed
for labeled graphs to the data set. Note that this is only possible, because
we mimic a very restricted kernel to compare edge labels; this would not be
possible for edge kernels according to Equations (4.14), (4.15). As we will
see later, the flexibility of supporting arbitrary vertex and edge kernels for
attributes is closely related to the employed method of computation.

4.4 Explicit and Implicit Kernel Computation

Although the analysis and results presented in this section are valid for ker-
nels in general, we occasionally refer to graph kernels in the following and
give concrete examples arising in the domain of graph data. As previously
mentioned, every kernel K(G,H) can be considered as a function that gives
rise to a p.s.d. kernel matrix or, equivalently, as a dot product 〈φ(G), φ(H)〉,
where φ is a mapping into a feature space. These two aspects are related to
the algorithmic strategies employed to compute graph kernels, cf. Figure 4.3:

(i) One way is functional computation, e.g., by computing kernel values
for the individual substructures obtained for some decomposition, which
are then combined. In this case the feature map not necessarily is known
and the feature space may be of infinite dimension. Therefore, we refer
to this approach closely related to the famous kernel trick as implicit
computation.

(ii) The other strategy is to compute the feature vector φ(G) for each graph
G explicitly in order to obtain the kernel values from the dot product

4.4. Explicit and Implicit Kernel Computation 103

between pairs of feature vectors. These feature vectors commonly count
how often certain substructures occur in a graph.

The running time of kernel methods may heavily depend on the strategy used:
Consider, for example, the SVM classifier according to Equation (4.2). When
computing feature maps explicitly, the normal vector of the hyperplane can
be constructed explicitly as well and evaluating the classifier once requires
computing a single dot product only. Using implicit computation the number
of kernel computations required depends on the number of support vectors
defining the hyperplane. We do not consider a specific kernel method in the
following, but analyze the running time for computing a kernel matrix.

4.4.1 Computing Kernel Matrices

Applying kernel methods often involves computing a kernel matrix, which
stores the kernel values for all pairs of data objects. For the moment we do
not want to go into the computational details of any specific graph kernel,
but consider the difference in running time of explicit and implicit computa-
tion schemes when computing a kernel matrix. Algorithm 4.1 generates the
kernel matrix in a straightforward manner by directly computing the kernel
functions, thus applying a mapping into feature space implicitly. Here, we
assume that the procedure ComputeKernel does not internally generate
the feature vectors of the two graphs passed as parameters to compute the
kernel function, of course. While this would in principle be possible, it would
involve computing the feature vector of every graph O(n) times. When ex-
plicit mapping is applied, the feature vectors can be generated initially once
for each graph of the data set. Then the matrix is computed by taking the
dot product between these feature vectors, cf. Algorithm 4.2.

Both approaches differ in terms of running time, which depends on the
complexity of the individual procedures that must be computed in the course
of the algorithms.

Proposition 4.1. Algorithm 4.1 computes an n × n kernel matrix in time
O(n2Tk), where Tk is the running time of ComputeKernel to compute a
single kernel value.

Algorithm 4.1: Computation by implicit mapping into feature space.
Input : A set of graphs D = {G1, . . . , Gn}.
Output : Symmetric n× n kernel matrix K with entries kij .

1 for i← 1 to n do
2 for j ← i to n do
3 kij ← ComputeKernel(Gi, Gj) . kji = kij

104 Chapter 4. Graph Kernels

Algorithm 4.2: Computation by explicit mapping into feature space.
Input : A set of graphs D = {G1, . . . , Gn}.
Data : Feature vectors Φi, i ∈ {1, . . . , n}.
Output : Symmetric n× n kernel matrix K with entries kij .

1 for i← 1 to n do
2 Φi ← FeatureMap(Gi) . Compute φ(Gi)
3 for i← 1 to n do
4 for j ← i to n do
5 kij ← DotProduct(Φi,Φj) . kji = kij

Proposition 4.2. Algorithm 4.2 computes an n × n kernel matrix in time
O(nTφ + n2Tdot), where Tφ is the running time of FeatureMap to compute
the feature vector for a single graph and Tdot the running time of DotProduct
for computing the dot product between two feature vectors.

Clearly, an algorithm based on explicit mapping can only be competitive
with implicit computation, when the time Tdot is smaller than Tk. In this case,
however, even a time-consuming feature mapping Tφ pays off with increasing
data set size. The running time Tdot, thus, is crucial for explicit computation
and depends on the data structure used to store feature vectors.

4.4.2 Storing Feature Vectors

Although feature vectors may be real-valued, of course, we obtain an ad-
equate and more intuitive notion when thinking of integer valued vectors,
which count the occurrences of features. This restricted view is almost always
sufficient for the explicit computation schemes we develop in the following.
Then the i-th element of a feature vector of a graph G counts the occurrences
of the i-th feature in G. The ordering of the features must be consistent over
all feature vectors, but in principle is arbitrary. In addition, feature vectors
are typically sparse and many of the theoretically possible features do not
occur at all in a specific data set. When considering the label sequences of
walks in a molecular graph, for example, a label sequence H=H would corre-
spond to a hydrogen atom with a double bond to another hydrogen atom.
This does not occur in valid chemical structures, but cannot be excluded in
advance without domain knowledge. Therefore, we may adequately represent
feature vectors by a binary relation

φ(G) = {(i, c) ∈ N× R+ | Feature i occurs c > 0 times in G}, (4.18)

where i is a unique identifier of a feature, which we here assume to be a natural
number. An appropriate implementation of this dictionary data structure is
a hash table. The function DotProduct(Φ1,Φ2) can then be computed in

4.4. Explicit and Implicit Kernel Computation 105

time Tdot = O(min{|Φ1|, |Φ2|}) in the average case and depends only on the
size of the smaller feature vector. In particular, the running time does not
depend on the theoretical dimension of the feature space, but on the number
of different features that actually occur in the individual objects.

We introduce some notation for feature vectors as specified above and
define basic operations on feature vectors used in the following. As above,
we write Φ to denote a feature vector in H and φ : G → H for the feature
map. Given a feature vector Φ, where more convenient, we interpret it as a
function Φ : N→ R+ according to

Φ(i) =
{
c if (i, c) ∈ Φ,
0 otherwise.

(4.19)

For two feature vectors Φ1 and Φ2 we define addition by

Φ1 + Φ2 =
{

(i, c) ∈ N× R+
∣∣∣ c = Φ1(i) + Φ2(i) > 0

}
(4.20)

and the multiplication of a feature vector Φ with a scalar s ∈ R as

s · Φ =
{

(i, c) ∈ N× R+
∣∣∣ c = s · Φ(i) > 0

}
. (4.21)

4.4.3 Explicit Mapping of R-convolution Kernels

We have introduced general R-convolution kernels in Section 4.2.2 as a generic
framework to define kernels between composite objects. Here, we establish
a sufficient condition that allows to construct feature maps of these kernels.
This idea will later be applied in order to derive algorithms for the explicit
computation for several concrete graph kernels, which typically can be seen
as instances of R-convolution kernels (Vishwanathan et al., 2010). Consider
Equation (4.12) and assume that each term of the summation is determined
by a kernel k onR with img(k) = {0, 1}. We show that under this assumption
we can systematically construct a mapping into a feature space.

We say a kernel k on X is binary if k(x, y) is either 0 or 1 for all x, y ∈ X .
Given a binary kernel, we refer to

∼k= {(x, y) ∈ X × X | k(x, y) = 1} (4.22)

as the relation on X induced by k. Next we will establish several properties of
this relation that will turn out to be useful for the construction of a feature
map.

Lemma 4.1. Let k be a binary kernel on X , then x ∼k y =⇒ x ∼k x holds
for all x, y ∈ X .

Proof. Assume there are x, y ∈ X such that x 6∼k x and x ∼k y. By the
definition of ∼k we obtain k(x, x) = 0 and k(x, y) = 1. The symmetric kernel

106 Chapter 4. Graph Kernels

matrix obtained by k for X = {x, y} thus is either
(0 1

1 0
)
or
(0 1

1 1
)
, where we

assume that the first row and column is associated with x. Both matrices are
not p.s.d. and, thus, k is not a kernel contradicting the assumption.

Lemma 4.2. Let k be a binary kernel on X , then ∼k is a partial equivalence
relation meaning that the relation ∼k is
(i) symmetric, i.e., ∀x, y ∈ X : x ∼k y =⇒ y ∼k x and
(ii) transitive, i.e., ∀x, y, z ∈ X : x ∼k y ∧ y ∼k z =⇒ x ∼k z.

Proof. Property (i) follows from the fact that k must be symmetric accord-
ing to Definition 4.1. Assume property (ii) does not hold. Then there are
x, y, z ∈ X with x ∼k y∧y ∼k z and x 6∼k z. Since x 6= z must hold according
to Lemma 4.1 we can conclude that X = {x, y, z} are pairwise distinct. We
consider a kernel matrix K obtained by k for X and assume that the first,
second and third row as well as column is associated with x, y and z, respec-
tively. There must be entries k12 = k21 = k23 = k32 = 1 and k13 = k31 = 0.
According to Lemma 4.1 the entries of the main diagonal k11 = k22 = k33 = 1
follow. Consider the coefficient vector c with c1 = c3 = 1 and c2 = −1, we
obtain

c>Kc =
(
1 −1 1

)1 1 0
1 1 1
0 1 1


 1
−1
1

 = −1 < 0.

Hence, K is not p.s.d. and k is not a kernel contradicting the assumption.

Corollary 4.1. Let Xref = {x ∈ X | x ∼k x}, then ∼k is an equivalence
relation on Xref .

We now again consider Equation (4.12), where R−1(X) ⊆ R for all X ∈ X
and assume k is a binary kernel on R. Let Ck : Rref → N be a function that
assigns each element x ∈ Rref to (an identifier of) its equivalence class [x]∼k
under the relation ∼k. We define

Fi(X) =
{
x ∈ R−1(X) ∩Rref

∣∣∣ Ck(x) = i
}

(4.23)

for all equivalence classes i and the feature map by

φ(X) =
{

(i, c) ∈ N× N+
∣∣∣ c = |Fi(X)| > 0

}
. (4.24)

Theorem 4.1. Let K be an R-convolution kernel according to Equation (4.12)
with k a binary kernel on R. Let φ be defined as above, then

K(X,Y) = φ(X)>φ(Y). (4.25)

Proof. Note that an element x ∈ R \ Rref does not contribute to the sum
in Equation (4.12) according to Lemma 4.1. Thus it suffices to consider
the elements in Rref , where ∼k yields an equivalence relation according to

4.5. Related Work on Graph Kernels 107

Corollary 4.1. Consider an equivalence class i under ∼k. Clearly, only two
elements from the same equivalence class contribute with the value one to
the sum in Equation (4.12). Assume there are a elements of R−1(X) in
the equivalence class i and b elements of R−1(Y). Then pairs of elements
from these classes contribute a total of ab to the sum in Equation (4.12).
Note that (i, a) and (i, b) are contained in the feature vectors φ(X) and φ(Y),
respectively. Therefore, the features associated with the class i by the function
Ck exactly contributes ab to the dot product. The result follows, since the
observation holds for all equivalence classes.

Note that the sufficient condition of Theorem 4.1 not necessarily requires that
k is the Dirac kernel. One may, for example, also think of kernel functions
for continuous attributes that perform some kind of binning according to
Equation (4.16). In the case that k is not a binary kernel, but yields either 0
or t, where t ∈ R+, we can multiply feature vectors by

√
t to obtain a mapping

in a feature space. More general, assume that k(x, y) = λ(Ck′(x)) · k′(x, y),
where k′ is a binary kernel and λ a weight function, which associates a non-
negative weight to each equivalence class of the relation induced by k′. Then
we can modify the feature map according to

φ(X) =
{(

i, c ·
√
λ(i)

)
∈ N× N+

∣∣∣∣ c = |Fi(X)| > 0
}
, (4.26)

such that Theorem 4.1 and Equation (4.25) hold for this feature map.

4.5 Related Work on Graph Kernels
In recent years various graph kernels have been proposed and were applied to
different domains. We discuss graph kernels in detail here that are related to
our work and briefly summarize other graph kernels.

4.5.1 Random Walk Graph Kernels

Gärtner et al. (2003) and Kashima et al. (2003) simultaneously proposed
graph kernels based on random walks, which count the number of walks two
graphs have in common. These kernels were proposed for digraphs and ap-
plied to real-world graphs, which are mostly undirected, by inserting an edge
vu for every edge uv.

The description of the random walk kernel by Kashima et al. (2003) is
motivated by a probabilistic view on kernels and based on the idea of so-
called marginalized kernels. It is stated that the features considered by the
kernel are the label sequences produced by random walks. Since the length
of the walks is not bounded, the feature space must be of infinite dimension.
A method of computation is proposed based on a recursive reformulation of
the kernel, which at the end boils down to finding the stationary state of a

108 Chapter 4. Graph Kernels

discrete-time linear system. Since this kernel was later generalized by Vish-
wanathan et al. (2006; 2010) we do not go into the mathematical details
of the original publication. The approach fully supports attributed graphs,
since vertex and edge labels encountered on walks are compared by user-
specified kernels. However, it is unclear how this aligns with the specified
feature space, where each dimension should be the count of a label sequence,
cf. Section 4.6.2 for a more detailed discussion of this. Subsequently Mahé
et al. (2004) extended this formulation of random walk kernels with a focus
on application in cheminformatics (Mahé et al., 2005) to improve the scala-
bility and relevance as similarity measure: An unfavorable characteristic of
random walks is that they may visit the same vertex several times. Walks
even allow to traverse an edge from u to v and instantly return to u via the
same edge, a problem referred to as tottering. These repeated consecutive
vertices do not provide useful information and even may harm the validity
as similarity measure. Hence, the marginalized graph kernel was extended to
avoid tottering by replacing the underlying 1st-order Markov random walk
model by a 2nd-order Markov random walk model (Mahé et al., 2004; 2005).
A 2nd-order Markov random walk on a graph G = (V,E) can be carried out
by a 1st-order random walk on a transformed graph with |V | + |E| vertices.
Thus, the complexity of the kernel computation increases. This technique to
prevent tottering only eliminates walks (v1, . . . , vn) with vi = vi+2 for some
i, but it does not require the considered walks to be paths, i.e., repeated
vertices still occur. Especially for the classification of chemical compounds
the kernel has been combined with an enrichment of vertex labels. For each
vertex, information on its environment is added to its label by employing the
Morgan algorithm (Mahé et al., 2004; 2005). This leads to a reduced num-
ber of compatible vertices and thus reduces the running time of the kernel
computation in practice.

Gärtner et al. (2003) also explicitly define the feature space of their ran-
dom walk kernel as label sequences derived from walks, but propose a different
method of computation based on the direct product graph of two input graphs
with simple labels.

Definition 4.3 (Direct Product Graph). For two labeled digraphs3 G =
(V,E) and H = (V ′, E′) the direct product graph is denoted by G×H = (V, E)
and defined as

V =
{
(v, v′) ∈ V × V ′

∣∣ τ(v) = τ(v′)
}

E =
{
(u, u′)(v, v′) ∈ V × V

∣∣ uv ∈ E ∧ u′v′ ∈ E′ ∧ τ(uv) = τ(u′v′)
}
.

A vertex (edge) in G × H has the same label as the corresponding vertices
(edges) in G and H.

3The definition is analogously valid for graphs: If both, G and H are graphs, the direct
product graph can again be interpreted as graph, cf. Section 2.2.1.

4.5. Related Work on Graph Kernels 109

There is a one-to-one correspondence between walks in G ×H and walks in
the graphs G and H with the same label sequence. The direct product kernel
is then defined as

Krw(G,H) =
|V|∑
i,j=1

[∞∑
l=0

λlAl
×

]
ij

, (4.27)

where A× is the adjacency matrix of G×H and λ = (λ0, λ1, . . .) a sequence
of weights such that the sum converges. It was shown that this is the case
for λi = γi, i ∈ N, and γ < 1

a , where a ≥ min{∆+(G×H),∆−(G×H)}. For
this choice of weights the closed form expression

Krw(G,H) =
|V|∑
i,j=1

[
(I− γA×)−1

]
ij

(4.28)

with I the identity matrix exists, which can be computed by matrix inversion.
Since the expression reminds of the geometric series transferred to matrices,
Equation (4.28) is referred to as geometric random walk kernel. The running
time to compute the geometric random walk kernel between two graphs is
dominated by the inversion of the adjacency matrix associated with the di-
rect product graph. For two graphs of order n we obtain a n2 × n2 matrix in
the worst-case, which results in a running time of O(n2ω), where ω < 2.376,
by employing the matrix multiplication algorithm by Coppersmith and Wino-
grad (1987) for matrix inversion (see Cormen et al., 2001, Section 28.4). How-
ever, this approach is not efficient in practice and in (Gärtner et al., 2003;
Vishwanathan et al., 2010) the running time is given as roughly O(n6). The
approach was extended to handle transition graphs, where edges are anno-
tated by transition probabilities, which gives rise to a direct product graph
with edge weights. As already observed by Mahé et al. (2004) the approach is
closely related to the marginalized kernel, which can as well be computed by
means of the direct product graph, where vertices and edges are annotated
with certain weights. For random walk kernels the definition of a feature map
was provided for theoretical purpose or to show that the function indeed is
a valid kernel. Explicit kernel computation would be prohibitive because of
the infinite dimension of the feature space.

Vishwanathan et al. (2010) propose a generalizing framework for random
walk based graph kernels and argue that the approach by Kashima et al.
(2003) and Gärtner et al. (2003) can be considered special cases of this kernel.
The publication does not address vertex labels and makes extensive use of the
Kronecker product between matrices denoted by ⊗ and lifts it to the feature
space associated with an (edge) kernel. Given an edge kernel κE on the
attributes A, let φ : A → H be a feature map. For an attributed graph G the
feature matrix Φ(G) then is defined as [Φ(G)]ij = φ(α(vivj)) if vivj ∈ E(G)
and 0H otherwise. Then W× = Φ(G) ⊗ Φ(H) yields a weight matrix of the

110 Chapter 4. Graph Kernels

direct product graph G×H.4 The proposed kernel is defined as

Krw(G,H) =
∞∑
l=0

µlq>×Wl
×p×, (4.29)

where p× and q× are initial and stopping probability distributions and µl
coefficients such that the sum converges. Several methods of computation
are proposed, which yield different running times depending on a parameter
specific to that approach. The parameter k either denotes the number of
fixed-point iterations, power iterations or the effective rank of W×. The
running times to compare graphs of order n also depend on the edge labels
of the input graphs and the desired edge kernel: For unlabeled graphs the
running time O(n3) is achieved and O(dkn3) for labeled graphs, where d = |L|
is the size of the label alphabet. The same running time is obtained for edge
kernels with a d-dimensional feature space, while O(kn4) time is required in
the infinite case. For sparse graphs O(kn2) is obtained in all cases, where a
graph G is said to be sparse if ‖G‖ = O(|G|). Further improvements of the
running time were subsequently obtained by non-exact algorithms based on
low rank approximations of W× (Kang et al., 2012).

Random walk kernels have been applied to protein-protein interaction
(PPI) networks by Borgwardt et al. (2007). In order to take missing edges
into account, which is crucial for PPI networks, the kernel

Kcomp(G,H) = Krw(G,H) +Krw(G,H), (4.30)

was proposed, which is the sum of a random walk kernel Krw applied to
the original graphs as well as to their complement graphs. Borgwardt et al.
(2005) also proposed random walk kernels to predict protein function. To
this end, proteins are modeled by attributed graphs, where vertices represent
secondary structure elements of the proteins and edges their geometric rela-
tion and sequence order. Both, vertices and edges, are annotated by various
categorical and real-valued properties. A specific kernel for the comparison of
walks in these graphs is designed, which takes these attributes into account
and leads to a weight matrix similar to W×. However, only walks up to a
predetermined length are taken into account by the kernel used for protein
function prediction. This might suggest that it is not necessary or even not
beneficial to consider the infinite number of possible walks to obtain a satis-
fying prediction accuracy. Harchaoui and Bach (2007) applied kernels based
on walks of a fixed length to image classification and developed a dynamic
programming approach for their computation. Remarkably, the flexibility of
selecting a certain walk length ` here is considered an advantage compared
to the approaches that are able to consider walks of unbounded length, while
` earlier was referred to as “unwanted parameter” by Kashima et al. (2003).

4Here vertex labels are ignored, i.e., V (G×H) = V (G)× V (H).

4.5. Related Work on Graph Kernels 111

We refer to these kernels that consider only walks of (at most) a specified
length as fixed length walk kernels. There is yet no empirical evidence that
fixed length walk kernels are preferable to those allowing infinite walk lengths
or vice versa.

4.5.2 Subgraph and Graphlet Kernels

A drawback of random walk kernels is that walks are structurally simple, for
example, it is not clear to what extent the presence of a certain substructure
like a functional group of a molecule is unambiguously encoded by walks. An
obvious choice is to define a graph kernel based on subgraphs.

Definition 4.4 (Subgraph Kernel). Given two graphs G,H ∈ G and a
weight function λ : G → R≥0. The subgraph kernel is defined as

K⊆(G,H) =
∑
G′⊆G

∑
H′⊆H

λ(G′) · k'(G′, H ′), (4.31)

where k' : G × G → {0, 1} is the isomorphism kernel, i.e., k'(G′, H ′) = 1 if
and only if G′ and H ′ are isomorphic.

Instead of decomposing graphs according the general subgraph relation G′ ⊆
G, one may as well restrict to induced subgraphs G′ v G; we refer to the
corresponding kernel as induced subgraph kernel denoted by Kv. A similar
kernel based on counting common subgraphs of unbounded size was defined
by Gärtner et al. (2003) and its computation was shown to be NP-hard.
Thus, another direction in the development of graph kernels focuses on small
subgraphs of a fixed size. The graphlet kernel proposed by Shervashidze
et al. (2009) for unlabeled graphs explicitly constructs feature vectors. Each
entry counts the occurrences of induced subgraphs of size k ∈ {3, 4, 5}. By
sampling techniques and subgraph enumeration algorithms tailored to graphs
of bounded degree, the approach becomes applicable to large graphs. Further
sampling techniques for graphlets were proposed by Shi et al. (2009) and
combined with hashing to obtain a compact representation. These approaches
are primarily designed for unlabeled graphs. Taking simple labels into account
also was shown to be tractable for molecular graphs (see, e.g., Wale et al.,
2008). However, attributed graphs are not supported by these approaches.

4.5.3 Path, Tree Pattern and Further Kernels

As seen above it is a promising strategy to modify the input graphs before
computing a kernel between them, e.g., by refining vertex labels (Mahé et al.,
2004) or by taking the complement graph, cf. Equation (4.30). This again
is the idea of the shortest-path kernel (Borgwardt and Kriegel, 2005), which
compares all shortest paths in the two graphs according to their lengths and

112 Chapter 4. Graph Kernels

vertex attributes. The shortest-path kernel is defined as

Ksp(G,H) =
∑

u,v∈V (G)

∑
w,z∈V (H)

κV (u,w) · κd(duv, dwz) · κV (v, z), (4.32)

where duv denotes the length of a shortest path from u to v, the kernel κd
compares path lengths and κV the vertex attributes of the associated start
and end vertices of the paths. Computation is essentially performed in two
steps: For each graph G of the data set the complete graph G′ with vertex
set V (G) is generated, where an edge uv is annotated with the length of a
shortest path from u to v. The shortest-path kernel then is equivalent to
the walk kernel with fixed length ` = 1 between these transformed graphs,
where the kernel essentially compares all pairs of edges. The kernel κd used to
compare path lengths may, for example, be realized by the Brownian Bridge
kernel or the Dirac kernel, cf. Section 4.3.1. A drawback of the shortest-
path kernel is that the vertices lying on shortest paths cannot be taken into
account. Recently the GraphHopper kernel was proposed, which allows to
compare all the vertices encountered while hopping along shortest paths by
a given vertex kernel (Feragen et al., 2013). In order to compute the kernel,
for every vertex v of the graphs under comparison a matrix Mv is generated
such that the entry [Mv]ij is the number of times the vertex v appears as the
i-th vertex on a shortest path containing j vertices. Using these matrices the
GraphHopper kernel is computed according to

Kgh(G,H) =
∑

u∈V (G)

∑
w∈V (H)

〈Mv,Mw〉κV (v, w), (4.33)

where 〈Mv,Mw〉 =
∑
ij [Mv]ij [Mw]ij . Note that the GraphHopper kernel

adds up the vertex kernel values for vertices on shortest paths, while the
shortest-path kernel is based on a product. Hence, the notion of compatible
paths that contribute to the total kernel value is quite different for the two
approaches: Assume there are two paths (u, . . . , v) in G and (w, . . . , z) in H
with the same number of vertices and κV (u,w) = 0 and κV (v, z) > 0. Note
that these two paths would in any case contribute to the GraphHopper kernel,
but in no case to the shortest-path kernel, cf. Equation (4.32).

In contrast to subgraphs, tree patterns are allowed to contain repeated
vertices just like random walks and were initially proposed by Ramon and
Gärtner (2003). This approach is based on all common subtree patterns of a
specified height contained in the graphs and was developed for graphs with
simple labels. However, the computation schemes based on implicit mapping
can be extended to support attributed graphs. The concept of tree patterns
was refined by Mahé and Vert (2009) to obtain kernels for molecular graphs,
which were then applied in toxicity and anti-cancer activity prediction tasks.
Harchaoui and Bach (2007) modified the approach for image classification,
were graphs derived from images typically have a fixed embedding in the
plane. These kernels can be considered predecessors of the Weisfeiler-Lehman

4.5. Related Work on Graph Kernels 113

kernels proposed by Shervashidze and Borgwardt (2009); Shervashidze et al.
(2011), which are based on vertex label refinement. These kernels employ the
classical 1-dimensional Weisfeiler-Lehman heuristic for graph isomorphism
testing and consider subtree patterns consisting of the entire neighborhood
of each vertex up to given distance. For a parameter h and a graph G with
simple labels τ , a sequence of refined labels (τ0, . . . , τh) is computed, where
τ0 = τ and τi is obtained from τi−1 by the following procedure: Sort the
multiset of labels {τi−1(u) | u ∈ N(v)} for every vertex v lexicographically to
obtain a unique string of labels by their concatenation and add τi−1(v) as pre-
fix. Assign a new label τi(v) to every vertex v by mapping the string to a new
label. The mapping of strings to new labels is referred to as label compres-
sion and performed in order to avoid that the length of strings increases over
several iterations, which comes at the cost of an increasing label alphabet.
Given an arbitrary graph kernel used as base kernel, the Weisfeiler-Lehman
kernel then is the sum of the results obtained by the base kernel applied to
pairs of graphs with label τi after the i-th refinement step. The Weisfeiler-
Lehman subtree kernel is obtained for a base kernel counting common vertex
labels; another base kernel considered is the shortest-path kernel. Compared
to the earlier tree pattern kernels this approach reduces the number of fea-
tures and the required running time considerably since computation typically
can be achieved by explicit mapping, depending on the used base kernel, of
course. Hido and Kashima (2009) independently developed a highly efficient
neighborhood hash kernel which is similar in spirit to the Weisfeiler-Lehman
subtree kernel, but represents simple labels by bit vectors and uses logical
operations and hashing to encode the direct neighborhood. Bai et al. (2014)
propose a label refinement technique that is essentially equivalent to the re-
finement step of Weisfeiler-Lehman graph kernels and combine it with an
information theoretical kernel on the vertex label distribution after different
iterations of refinement. The kernel is proposed for “attributed graphs”, but
the authors do not discuss continuous labels and—using the clear distinction
we have introduced—the kernel seems to be designed for graphs with sim-
ple labels only. Propagation kernels proposed by Neumann et al. (2012b)
provide a generic framework to define kernels on graphs based on an informa-
tion propagation scheme for labels and attributes. Propagation, e.g., based
on random walks, is performed individually on the two input graphs and
a kernel is obtained by comparing label distributions after every propaga-
tion step. In this respect, the approach is similar to the Weisfeiler-Lehman
subtree kernel and also efficiently computed by explicit mapping. In case
of continuous (multi-dimensional) attributes a binning kernel according to
Equation (4.16) is employed, where the binning function is realized by lo-
cality sensitive hashing. The extensive experimental evaluation shows highly
promising results regarding running time and prediction accuracy, even for
the attributed graph data sets used for comparison. By adapting the propaga-
tion scheme, the approach becomes, for example, also applicable to partially

114 Chapter 4. Graph Kernels

labeled graphs (Neumann et al., 2012a). The Neighborhood Subgraph Pairwise
Distance Kernel (NSPDK) proposed by Costa and Grave (2010) associates a
string representing the neighborhood subgraph with every vertex. For compu-
tational reasons graph invariants are used to encode neighborhood subgraphs
avoiding graph canonization. By this means, pairs of neighborhood graphs
that are likely to be isomorphic to another pair of neighborhood graphs that
exhibits exactly the same distance are taken into account. The approach is
similar to the Weisfeiler-Lehman shortest-path kernel.

Menchetti et al. (2005) proposed a weighted decomposition kernel, which
determines matching substructures by a restrictive kernel (a so-called selec-
tor) and weights each matching by a kernel defined on attribute frequencies
in the context of the matching, e.g., the environment of an atom of a molec-
ular graph. The approach was used for biological sequences and molecular
graphs (Menchetti et al., 2005; Ceroni et al., 2007). Horváth et al. (2004)
proposed the cyclic pattern kernel which decomposes (molecular) graphs into
cycles and trees. Let G′ EG denote that G′ either is a cycle in G or a maxi-
mal connected subgraph containing only bridges of G. Each graph G is then
represented by the set {C(G′) | G′EG}, where C is a complete graph invari-
ant for labeled cycles and trees. Graph canonization allows for a unique set
representation and the kernel is then defined as intersection kernel between
these sets. A different approach to define kernels on graphs is based on vector
embeddings of graphs with respect to the (dis)similarities to a fixed set of ob-
jects called prototypes (see Riesen and Bunke, 2009, and references therein).
Given a set of prototypes P = {P1, . . . , Pn}, e.g., as set of graphs, every graph
G of the data set is represented by a vector (d(G,P1), . . . , d(G,Pn))>, where
d(·, ·) is any graph dissimilarity measure. After embedding graphs into this
vector space, kernel methods become readily applicable.

4.5.4 Graph Kernels in Cheminformatics

Several graph kernels were tailored especially to molecular graphs and general
graph kernels were refined for the application in cheminformatics (Horváth
et al., 2004; Swamidass et al., 2005; Ceroni et al., 2007; Mahé and Vert, 2009).
However, so-called fingerprints are a well-established classical technique in
cheminformatics to represent molecules by feature vectors. Commonly fea-
tures are obtained by (i) enumeration of all substructures of a certain class
contained in the molecular graphs, (ii) taken from a predefined dictionary of
relevant substructures or (iii) generated in a preceding data-mining phase.
Fingerprints are then used to encode the number of occurrences of a feature
or only its presence or absence by a single bit per feature. Often hashing
is used to reduce the fingerprint length to a fixed size at the cost of infor-
mation loss (see, e.g., Daylight, 2008). These techniques can then easily be
combined with kernels on vector data and similarity measures common for fin-
gerprints like the Tanimoto coefficient are closely related to kernels (Ralaivola

4.5. Related Work on Graph Kernels 115

et al., 2005). Approaches of the first category include, for example, techniques
based on all paths contained in a graph (Daylight, 2008) or all subgraphs up
to a certain size (Wale et al., 2008), similar to graphlets. Ralaivola et al.
(2005) experimentally compared random walk kernels to kernels derived from
path-based fingerprints and has shown that these reach similar classification
performance on molecular graph data sets. Extended connectivity fingerprints
encode the neighborhood of atoms iteratively as the Weisfeiler-Lehman kernel
and can be considered a standard tool in cheminformatics for more than a
decade (Rogers and Hahn, 2010). Predefined dictionaries compiled by experts
with domain-specific knowledge exist, e.g., MACCS/MDL Keys for drug dis-
covery (Durant et al., 2002). Techniques like frequent subgraph mining can
be combined with feature selection to generate discriminative features for a
specific task in a preceding data-mining phase (Deshpande et al., 2005).

The pharmacophore kernel was proposed by Mahé et al. (2006) to com-
pare chemical compounds based on characteristic features together with their
relative spatial arrangement and thus has to deal with continuous distances.
Kernels for chemical compounds have been successfully employed for various
tasks in cheminformatics including the prediction of mutagenicity, toxicity
and anti-cancer activity (Swamidass et al., 2005). Especially for attributed
molecular graphs the optimal assignment kernel was proposed (Fröhlich et al.,
2005), which computes a vertex mapping with a maximum score, in which
vertices are in turn compared by kernel functions taking the neighborhood
and various attributes into account. However, the proposed function was
subsequently shown not to be p.s.d. (Vert, 2008; Vishwanathan et al., 2010).
Nevertheless, such a function can be used for classification, e.g., by subsequent
transformation of the kernel matrix. Mohr et al. (2010) proposed to derive a
graph similarity measure by computing the maximum common subgraph and
employs a P-SVM (Hochreiter and Obermayer, 2006) for classification, since
the derived function is not a valid kernel.

4.5.5 Summary and Motivation of our Contribution

The proposed techniques can be classified into approaches that use explicit
feature mapping and those that directly compute a kernel function. If explicit
representations are manageable, these approaches usually outperform other
kernels with respect to running time on large data sets. This is in accordance
with our analysis in Section 4.4. However, these approaches typically do not
support attributed graphs, cf. Table 4.1.

The development of graph kernels is commonly and justifiably motivated
as follows: Techniques like SVMs have been developed for vectorial data while
real-world data often is structured and adequately modeled by graphs. To
overcome this issue the key idea is to define kernels on graphs in order to
plug them into kernel methods. As we have observed most state-of-the-art
graph kernels recently proposed employ explicit mapping for computation.

116 Chapter 4. Graph Kernels

Table 4.1: Summary on selected graph kernels regarding computation by explicit
(EX) and implicit (IM) feature mapping (φ) and support for attributed graphs
(Attr.). ? — attributes not considered in publication, but method can be extended;
† — vertex attributes only).

Graph Kernel φ Attr.

Random Walk (Gärtner et al., 2003; Kashima et al., 2003) IM 3
Tree Pattern (Ramon and Gärtner, 2003; Mahé and Vert, 2009) IM 3?

Shortest-Path (Borgwardt and Kriegel, 2005) IM 3†

Graphlet (Shervashidze et al., 2009) EX 7
NSPDK (Costa and Grave, 2010) EX 7
Weisfeiler-Lehman (Shervashidze et al., 2011) EX 7
Propagation (Neumann et al., 2012b) EX 7
Subgraph Matching (Kriege and Mutzel, 2012, see Sec. 4.7) IM 3

GraphHopper (Feragen et al., 2013) IM 3†

These approaches, thus, in fact transform graph data to vector data explic-
itly to apply kernel methods, which typically just is the linear kernel. As a
consequence one may ask if graph kernels essentially are nothing more than
techniques to transform graph data into vector data? Such techniques were
actually commonly used, e.g., in cheminformatics, cf. Section 4.5.4, long be-
fore the advent of graph kernels. Moreover, techniques highly similar to those
recently proposed in the context of graph kernels have long been considered
state-of-the art in application domains as cheminformatics. Is the research
on graph kernels actually reinventing the wheel?

The unique advantage of graph kernels over the transformation into vec-
tor data is that the kernel trick can be employed, i.e., efficient computation
may be possible by operating in a high or infinite dimensional feature space
implicitly only. Two possible advantages of the kernel trick for graphs are
apparent:

(i) An infinite number of parts may be taken into account while the kernel
remains efficiently computable. This was the case for the first graph
kernels based on random walks.

(ii) For the comparison of annotations one may resort to the whole toolbox
of known kernels and compose a graph kernel from vertex and edge
kernels. The feature spaces of these kernels for attributed graphs may
have an infinite dimension, which stems from the employed vertex and
edge kernels.

Remarkably most recent research does not address any of these two aspects
but focuses primarily on graphs with simple labels and uses a restricted num-
ber of parts. There is yet no empirical evidence that an infinite number of
parts is beneficial for graph classification tasks. This explains the success of

4.6. Fixed Length Walk Kernels 117

graph kernels that are both, efficiently computed by explicit mapping and at
the same time provide excellent prediction accuracy for simply labeled graphs
like the Weisfeiler-Lehman and related kernels. We also observe this exper-
imentally by considering fixed length walk kernels which are shown to be
competitive or even superior compared to their infinite length counterparts
on standard benchmark sets.

By now only few data sets with attributed graphs are available for com-
parative experimental studies, which is most likely due to the fact that their
comparison is non-trivial and kernels for attributed graphs only recently re-
ceived considerable attention. However, it has been observed on several occa-
sions in concrete applications that the prediction accuracy can be increased
by annotating vertices or edges with additional attributes (see, e.g., Borg-
wardt et al., 2005; Fröhlich et al., 2005; Harchaoui and Bach, 2007). There
are first empirical indications that kernels designed for graphs with simple la-
bels combined with binning techniques are not suitable for attributed graphs
in general (Mahé et al., 2006; Fober et al., 2012; Feragen et al., 2013) for
the reasons detailed in Section 4.3.1, although for certain data sets satisfy-
ing results have been reported (Mahé et al., 2006; Neumann et al., 2013).
Walk-based kernels are not competitive for graphs with simple labels, but the
computational techniques proposed for random walk and tree pattern kernels
directly allows or can be extended to compare vertex and edge attributes by
kernel functions. Thus, for attributed graphs, these early graph kernels again
are of interest. We present graph kernels based on walks of fixed length in
Section 4.6 and develop an implicit computation scheme for attributed graphs
and an explicit computation scheme for labeled graphs.

Approaches based on walks or tree patterns have the drawback that they
are based on simple features including repeated vertices. This problem has
been overcome by novel graph kernels like subgraph and graphlet kernels,
cf. Section 4.5.2, which are though restricted to graphs with simple labels.
Therefore, we develop subgraph matching kernels in Section 4.7, which are
closely related to these kernels but fully support attributed graphs. We em-
ploy an implicit computation scheme to provide the flexibility to compare
vertex and edge attributes by means of arbitrary kernel functions.

4.6 Fixed Length Walk Kernels

We propose an explicit and implicit computation scheme for a walk-based
graph kernel. Walk kernels are a prominent example of graph kernels and
are widely used in practice. Our product graph based implicit computation
scheme fully supports arbitrary vertex and edge kernels and exploits their
sparsity. Previously no algorithms based on explicit mapping for compu-
tation of walk-based kernels have been proposed. To obtain authoritative
experimental results we carefully implemented and engineered algorithms for

118 Chapter 4. Graph Kernels

both approaches. We give the details of our algorithms in the following.
Finally, we experimentally compare the running times of both computation
strategies systematically with respect to the label diversity, data set sizes and
the walk length. As it turns out, there exists a computational phase transi-
tion for our walk kernels from explicit to implicit computations. We identify
the label diversity and walk lengths as key parameters affecting the running
time, either contrary or to a strongly different extent.

4.6.1 Basic Definitions

A fixed length walk kernel counts “common” walks of length `. We generalize
the concept of common walks for attributed graphs. Note that for any two
consecutive vertices of a walk the connecting edge is uniquely defined. For
convenience, we include these edges in the sequence of adjacent vertices. In
the following, a walk of length ` in a graph G is a sequence of vertices and
edges (v0, e1, v1, . . . , e`, v`) such that ei = vi−1vi ∈ E(G) for i ∈ {1, . . . , `}.
The set of walks of length ` in a graph G is denoted by W`(G).

Definition 4.5 (`-walk kernel). The `-walk kernel between two attributed
graphs G,H ∈ G is defined as

K=
` (G,H) =

∑
w∈W`(G)

∑
w′∈W`(H)

kW (w,w′), (4.34)

where kW is a kernel between walks.

Definition 4.5 is very general and does not specify how to compare walks.
An obvious choice is to decompose walks and define kW in terms of vertex
and edge kernel functions, denoted by κV and κE , respectively. We consider

kW (w,w′) =
∏̀
i=0

κV (vi, v′i)
∏̀
i=1

κE(ei, e′i), (4.35)

where w = (v0, e1, . . . , v`) and w′ = (v′0, e′1, . . . , v′`) are two walks.5 Assume
the graphs in a data set have simple vertex and edge labels τ : V]E → L. An
appropriate choice then is to use the Dirac kernel for both, vertex and edge
kernels, between the associated labels. In this case two walks are considered
equal if and only if the labels of all corresponding vertices and edges are equal.
We refer to this kernel by

kδW (w,w′) =
∏̀
i=0

Kδ(τ(vi), τ(v′i))
∏̀
i=1

Kδ(τ(ei), τ(e′i)), (4.36)

5The same idea to compare walks was proposed by Kashima et al. (2003) as part of the
marginalized kernel between labeled graphs.

4.6. Fixed Length Walk Kernels 119

whereKδ is the Dirac kernel. For graphs with continuous or multi-dimensional
annotations this choice is not appropriate and κV and κE should be selected
depending on the application-specific vertex and edge attributes.

A variant of the `-walk kernel can be obtained by considering all walks
up to length `.

Definition 4.6 (Max-`-walk kernel). The Max-`-walk kernel between two
attributed graphs G,H ∈ G is defined as

K≤` (G,H) =
∑̀
i=0

λiK
=
i (G,H), (4.37)

where λ0, . . . , λ` ∈ R≥0 are weights.

In the following we primary focus on the `-walk kernel, although our algo-
rithms and results can be easily transferred to the Max-`-walk kernel.

4.6.2 Walk and R-convolution Kernels

We show that the `-walk kernel is p.s.d. if kW is a valid kernel by seeing it as an
instance of an R-convolution kernel. We use this fact to develop an algorithm
for explicit mapping later based on the ideas presented in Section 4.4.3.

Theorem 4.2. The `-walk kernel is positive semidefinite if kW is defined
according to Equation (4.35) and κV and κE are valid kernels.

Proof. Equation (4.34) with kW defined according to Equation (4.35) is the R-
convolution kernel directly obtained when graphs are decomposed into walks
w = (v0, e1, v1, . . . , e`, v`) = (x0, . . . , x2`) and

ki =
{
κV if i even,
κE otherwise

for i ∈ {0, . . . , 2`}. Then kW equals
∏2`
i=0 ki(xi, x′i), implying that the `-walk

kernel is a valid kernel if κV and κE are valid kernels.

Since kernels are closed under taking linear combinations with non-negative
coefficients, cf. Section 4.1.2, we obtain the following corollary.

Corollary 4.2. The Max-`-walk kernel is positive semidefinite.

If the employed kernel on walks satisfies the conditions discussed in Sec-
tion 4.4.3, explicit feature mapping could be obtained by assigning walks to
the equivalence classes of the relation induced by the kernel. We assume
graphs to have simple labels from the alphabet L and consider the kernel kδW
given by Equation (4.36). This kernel clearly satisfies the condition to derive
an explicit feature map and is a natural choice. A walk w of length ` is then

120 Chapter 4. Graph Kernels

associated with a label sequence τ(w) = (τ(v0), τ(e1), . . . , τ(v`)) ∈ L2`+1. In
this case graphs are decomposed into walks and and two walks w and w′ are
considered equivalent if and only if τ(w) = τ(w′); each label sequence can be
considered an identifier of an equivalence class of ∼kδW . This gives rise to the
feature map φ=

` defined by

φ=
` (G) =

{
(i, c) ∈ L2`+1 × N+

∣∣∣ c = |{w ∈ W`(G) | τ(w) = i}| > 0
}
. (4.38)

According to Theorem 4.1 we have

K=
` (G,H) = φ=

` (G)>φ=
` (H).

A feature map of the Max-`-walk kernel can be obtained from the feature
maps of all i-walk kernels with i ≤ ` according to

φ≤` (G) =
∑̀
i=0

√
λi · φ=

i (G), (4.39)

where each value in a feature vector is multiplied by the square root of the
associated weight. Note that the identifiers stored in φ=

i (G) and φ=
j (G) are

disjoint for i 6= j.

4.6.3 Implicit Kernel Computation

An essential part of the implicit computation scheme is the generation of the
product graph that is then used to compute the `-walk kernel.

Computing Direct Product Graphs

In order to support graphs with arbitrary attributes, vertex and edge kernels
κV and κE are considered as part of the input. Product graphs can be used
to represent these kernel values between pairs of vertices and edges of the
input graphs in a compact manner. We avoid to create vertices and edges
that would represent incompatible pairs with kernel value zero. The following
definition can be considered a weighted version of the direct product graph
introduced by Gärtner et al. (2003) for kernel computation, cf. Definiton 4.3.6

Definition 4.7 (Weighted Direct Product Graph). For two attributed
graphs G = (V,E), H = (V ′, E′) and given vertex and edge kernels κV and
κE, the weighted direct product graph (WDPG) is denoted by G ×w H =

6Note that we consider undirected graphs while Definiton 4.3 refers to directed graphs
as in (Gärtner et al., 2003).

4.6. Fixed Length Walk Kernels 121

C

1

C

2

O3 O 4

(a) G

C

1

O2 O 3

C

4

(b) H

(1, 1)

(2, 1)

(3, 2) (3, 3)(4, 2) (4, 3)

(2, 4)

(1, 4)

(c) G×w H

Figure 4.4: Two attributed graphs G (a) and H (b) and their weighted direct
product graph G×w H (c). We assume the vertex kernel to be the Dirac kernel and
κE to be 1 if edge labels are equal and 1

2 if one edge label is “=” and the other is
“-”. Thin edges in G×w H represent edges with weight 1

2 , while all other edges and
vertices have weight 1.

(V, E , w) and defined as

V =
{
(v, v′) ∈ V × V ′

∣∣ κV (v, v′) > 0
}

E =
{

(u, u′)(v, v′) ∈ [V]2
∣∣∣ uv ∈ E ∧ u′v′ ∈ E′ ∧ κE(uv, u′v′) > 0

}
w(v) = κV (u, u′) ∀v = (u, u′) ∈ V
w(e) = κE(uv, u′v′) ∀e ∈ E ,where e = (u, u′)(v, v′).

An example with two graphs and their weighted direct product graph
obtained for specific vertex and edge kernels is shown in Figure 4.4. Algo-
rithm 4.3 computes a weighted direct product graph and does not consider
edges between pairs of vertices (v, v′) that have been identified as incompat-
ible, i.e., κV (v, v′) = 0.

Since the weighted direct product graph is undirected, we must avoid
that the same pair of edges is processed twice. Therefore, we suppose that
there is an arbitrary total order ≺ on the vertices V, such that for every pair
(u, s), (v, t) ∈ V found either (u, s) ≺ (v, t) or (v, t) ≺ (u, s) holds. In line 8
we restrict the edge pairs that are compared to one of these cases.

Proposition 4.3. Let n = |G|, n′ = |H| and m = ‖G‖, m′ = ‖H‖. Al-
gorithm 4.3 computes the weighted direct product graph in time O(nn′TκV +
mm′TκE), where TκV and TκE is the running time to compute vertex and edge
kernels, respectively.

Note that in case of a sparse vertex kernel, which yields zero for most of
the vertex pairs of the input graph, |G×wH| � |G| · |H| holds. Algorithm 4.3
compares two edges by κE only in case of matching endpoints (cf. lines 7, 8),
therefore in practice the running time to compare edges (line 7–13) might be

122 Chapter 4. Graph Kernels

Algorithm 4.3: Weighted Direct Product Graph
Input : Graphs G, H, vertex and edge kernels κV and κE .
Output : Graph G×w H = (V, E , w).
Procedure Wdpg(G,H, κV , κE)

1 forall the v ∈ V (G), v′ ∈ V (H) do
2 w ← κV (v, v′)
3 if w > 0 then
4 create vertex z = (v, v′)
5 V ← V] {z}
6 w(z) = w

7 forall the (u, s) ∈ V do
8 forall the v ∈ N(u), t ∈ N(s) with (v, t) ∈ V, (u, s) ≺ (v, t) do
9 w ← κE(uv, st)

10 if w > 0 then
11 create edge e = (u, s)(v, t)
12 E ← E] {e}
13 w(e) = w

considerably less than suggested by Proposition 4.3. We show this empirically
in Section 4.6.6. In case of sparse graphs, i.e., |E| = O(|V |), and vertex
and edge kernels which can be computed in time O(1) the running time of
Algorithm 4.3 is O(n2), where n = max{|G|, |H|}.

Counting Weighted Walks

Given an undirected graph G with adjacency matrix A, let a`ij denote the
element at (i, j) of the matrix A`. It is well-known that a`ij is the number of
walks from vertex i to j of length `. The number of `-walks of G consequently
is ∑

i,j

a`i,j = 1>A`1 = 1>r`, (4.40)

where r` = Ar`−1 with r0 = 1. The i-th element of the recursively defined
vector r` is the number of walks of length ` starting at vertex i.

Note that even for sparse (connected) graphs A` quickly becomes dense
with increasing walk length `. The `-th power of an n × n matrix A can
be computed naively in time O(nω`) and O(nω log `) using exponentiation
by squaring, where ω is the exponent of matrix multiplication. The vector
r` can be computed by means of matrix-vector multiplications, where the
matrix A remains unchanged over all iterations. Further methods to compute
matrix powers are known, e.g., based on diagonalization of the adjacency
matrix. However, the approach we use is closely related to vector-matrix

4.6. Fixed Length Walk Kernels 123

multiplication and turned out to be efficient in practice for reasonable choices
of the walk length `.

In order to compute the `-walk kernel we do not want to count the walks,
but sum up the weights of each walk, which in turn are the product of vertex
and edge weights. Let kW be defined according to Equation (4.35), then we
can formulate the `-walk kernel as

K=
` (G,H) =

∑
w∈W`(G)

∑
w′∈W`(H)

kW (w,w′) =
∑

v∈V (G×wH)
r`(v), (4.41)

where r` is determined recursively according to

ri(u) =
∑

uv∈E(G×wH)
w(u) · w(uv) · ri−1(v) ∀u ∈ V (G×w H)

r0(u) = w(u) ∀u ∈ V (G×w H).

Note that ri can as well be formulated as matrix-vector products. Since the
direct product graph tends to be sparse we present a graph-based approach
for computation, see Algorithm 4.4.

Algorithm 4.4: Implicit computation of `-walk kernel
Input : Graphs G, H, kernels κV , κE and length parameter `.
Output : Value K=

` (G,H) of the `-walk kernel.
1 (V, E , w)←Wdpg(G,H, κV , κE) . Compute G×w H
2 forall the v ∈ V do
3 r0(v)← w(v) . Initialization
4 for i← 1 to ` do
5 forall the u ∈ V do
6 ri(u)← 0
7 forall the v ∈ N(u) do . Neighbors of u in G×w H
8 ri(u)← ri(u) + w(u) · w(uv) · ri−1(v)

9 return
∑
v∈V r`(v)

Theorem 4.3. Let n = |V|, m = |E|. Algorithm 4.4 computes the `-walk
kernel in time O(n+ `(n+m) +TWdpg), where TWdpg is the time to compute
the weighted direct product graph.

Note that the running time depends on the size of the product graph and
n� |G| · |H| and m� ‖G‖ · ‖H‖ is possible as discussed in Section 4.6.3.

The Max-`-walk kernel is the sum of the j-walk kernels with j ≤ ` and,
hence, with Equation (4.41) we can also formulate it recursively as

K≤` (G,H) =
∑̀
i=0

λiK
=
i (G,H) =

∑̀
i=0

λi
∑

v∈V (G×wH)
ri(v). (4.42)

124 Chapter 4. Graph Kernels

This value can be obtained from Algorithm 4.4 by simply changing the return
statement in line 9 according to the right-hand side of the equation without
affecting the asymptotic running time.

4.6.4 Explicit Kernel Computation

Provided that the kernel kW on walks satisfies the conditions discussed in
Section 4.4.3, explicit computation schemes could be obtained by enumerating
all walks and counting the members of the equivalence classes of the relation
∼kW . We again consider graphs with simple labels from the alphabet L and
the kernel kδW given by Equation (4.36). We develop an efficient algorithm
tailored to this setting, which computes the feature vectors as specified in
Equation (4.38).

A straightforward approach would require to enumerate all walks in or-
der to count the label sequences associated with them. We propose a more
elaborated approach that exploits the simple composition of walks similar to
the approach for weighted walks, cf. Section 4.6.3. A walk of length ` can
be decomposed into a walk of length ` − 1 with an additional edge and ver-
tex added at the front. This allows to obtain the number of walks of length
` with a given label sequence starting at a fixed vertex v by concatenating
(τ(v), τ(vu)) with all label sequences for walks starting from a neighbor u of
the vertex v. Algorithm 4.5 provides the pseudo code of this computation.

Algorithm 4.5: Generating feature vectors of the `-walk kernel
Input : Graph G, length parameter `.
Output : Feature vector φ=

` (G) of label sequences and counts
associated with length ` walks in G.

Data : Feature vectors Φv
i : L2i+1 → N of label sequences associated

with i-walks starting at v.
1 forall the v ∈ V (G) do
2 Φv

0(τ(v))← 1 . Initialization, length 0 walks
3 for i← 1 to ` do
4 forall the u ∈ V (G) and v ∈ N(u) do
5 forall the w with Φv

i−1(w) > 0 do
6 w′ ← (τ(u), τ(uv)) + w . Concatenate label sequence
7 Φu

i (w′)← Φu
i (w′) + Φv

i−1(w)

8 return
∑
v∈V (G) Φv

` . Combine vectors

Theorem 4.4. Given a graph G with n = |G| vertices and m = ‖G‖ edges,
Algorithm 4.5 computes the `-walk kernel feature vector φ=

` (G) in time O(n+
`(n + m)s), where s is the maximum number of different label sequences of
(`− 1)-walks staring at a vertex of G.

4.6. Fixed Length Walk Kernels 125

Assume Algorithm 4.5 is applied to unlabeled sparse graphs, i.e., ‖G‖ =
O(|G|), then s = 1 and the feature mapping can be performed in time O(n+
`n). With Proposition 4.2 we have a total running time to compute a kernel
matrix for d graphs of order n of O(d`n+ d2), for ` > 0.

4.6.5 Application to Shortest-Path Kernels

The shortest-path kernel, cf. Equation (4.32), is computed by applying the
1-walk kernel to complete graphs, where edges are annotated by shortest-
path distances (Borgwardt and Kriegel, 2005). Note that κE then compares
shortest-path lengths and can, for example, be realized by the kernels (4.14)
or (4.15) or the Dirac kernel. Vertices may be annotated with simple la-
bels or continuous attributes and are compared by κV . Therefore, our two
approaches to compute walk kernels of fixed length directly yield efficient ex-
plicit and implicit computation schemes for the shortest-path kernel. Clearly,
the explicit version is only applicable when shortest-path lengths and vertex
labels are compared by the Dirac kernel. For the binning kernel (4.16), we
could relabel edges as detailed in Section 4.3.2 to obtain graphs with simple
labels, which are manageable by the explicit computation scheme.

4.6.6 Experimental Evaluation

We compare the implicit and explicit computation schemes for fixed length
walk kernels experimentally with a focus on running times. We present a
more comprehensive experimental comparison including prediction accuracies
and a large number of different graph kernels at the end of this chapter in
Section 4.8. The discussion of running times for walk kernels in Sections 4.6.3
and 4.6.4 suggested that

(i) implicit computation benefits from sparse vertex and edge kernels,

(ii) explicit computation is promising for graphs with a uniform label struc-
ture, which exhibit few different features, and then scales to large data
sets.

We experimentally analyze this trade-off between label diversity and running
time for synthetic and real-world data sets. Finally, we use our walk kernels
to compare graphs after applying different levels of label refinement using the
Weisfeiler-Lehman method (Shervashidze et al., 2011) and to compute the
shortest-path kernel. Both computation schemes consistently produced the
same kernel matrix in all experiments. While for the shortest-path kernel ex-
plicit mapping—when applicable—clearly outperforms implicit computation,
we observe a computational phase transition for walk kernels.

All algorithms were implemented in Java and the default Java HashMap
implementation was used to store feature vectors, see Section 4.4.2. Experi-
ments were conducted using Java OpenJDK v1.7.0 on an Intel Core i7-3770

126 Chapter 4. Graph Kernels

CPU at 3.4GHz (Turbo Boost disabled) with 16GB of RAM using a single
processor only. The reported running times are average values over 5 runs.
We performed classification experiments using the C-SVM implementation
LIBSVM (Chang and Lin, 2011). We report mean prediction accuracies ob-
tained by 10-fold cross-validation repeated 10 times with random fold as-
signment. Within each fold the regularization parameter C was chosen from
{10−5, 10−4, . . . , 105} by cross-validation based on the training set.

Synthetic Data Sets

In order to systematically vary the label diversity we generated synthetic
graphs by the following procedure: The number of vertices was determined
by a Poisson distribution with mean 20. Edges were inserted between a
pair of vertices with probability 0.1. The label diversity depends on the
parameter pV . Edges were uniformly labeled; a vertex obtained the label
0 with probability 1 − pV . Otherwise the labels 1 or 2 were assigned with
equal probability. In addition, we vary the data set size d between 100 and
300 adding 20 randomly generated graphs in each step. We analyze the
running time to compute the d×d kernel matrix. For the product graph based
computation we used the Dirac kernel as vertex and edge kernel according to
Equation (4.36).

The results are depicted in Figure 4.5, were a label diversity of 50 means
that pV = 0.5. Figure 4.5(a) shows that the running time for implicit compu-
tation increases with the data set size and decreases with the label diversity.
This observation is in accordance with our hypotheses. When the label di-
versity increases, there are less compatible pairs of vertices and the weighted
direct product graph becomes smaller. Consequently, its computation and
the counting of weighted walks require less running time. For explicit compu-
tation we observe a different trend: While the running time increases with the
size of the data set, the approach is extremely efficient for graphs with uni-
form labels (pV = 0) and becomes slower when the label diversity increases.
Combining both results, cf. Figure 4.5(c), shows that both approaches yield
the same running time for a label diversity of pV ≈ 0.3, while for higher values
of pV implicit computation is preferable and explicit otherwise.

Molecular Data Sets

In the previous section we have observed how both approaches behave when
the label diversity is varied. We use a data set of graphs derived from small
molecules7 to analyze the running time on a real-world data set with a prede-
termined label diversity. Vertex labels correspond to the atom types and edge
labels represent single, double, triple and aromatic bonds, respectively. This
time we vary the walk length and the data set size by starting with a random

7NCI Open Database, GI50, U251; http://cactus.nci.nih.gov

http://cactus.nci.nih.gov

4.6. Fixed Length Walk Kernels 127

implicit
 8
 6
 4
 2

 100

 150

 200

 250

 300

Data set size

 0
 10

 20
 30

 40
 50

 60

Label diversity

 0

 2

 4

 6

 8

 10

Runtime [s]

(a) Implicit computation

explicit
 6
 4
 2

 100

 150

 200

 250

 300

Data set size

 0
 10

 20
 30

 40
 50

 60

Label diversity

 0

 2

 4

 6

 8

 10

Runtime [s]

(b) Explicit computation

implicit
explicit

100
150

200
250

300

Data set size

0102030405060

Label diversity

0

2

4

6

8

10
Runtime [s]

(c) Implicit and explicit computation

Figure 4.5: Running time to generate the kernel matrix by implicit and explicit
computation of walk kernels with fixed length 7 for synthetic data sets with varying
label diversity. Figures (a) and (b) show contour lines obtained by linear interpola-
tion.

128 Chapter 4. Graph Kernels

subset and adding additional graphs that were selected randomly from the
remaining graphs of the data set.

Figure 4.6(a) shows that the running time of the implicit computation
scheme heavily depends on the size of the data set. The increase with the
walk length is less considerable. This can be explained by the time TWdpg
required to compute the product graph, which is always needed independent
of the walk length. For short walks explicit computation is very efficient, even
for larger data sets, cf. Figure 4.6(b). However, when a certain walk length is
reached the running time increases drastically. This can be explained by the
growing number of different label sequence. Notably for walks of length 8 and
9 the running time also largely increases with the data set size. This indicates
that the time Tdot has a considerable influence on the running time. In the
following section we analyze the running time of the different procedures of
the two algorithms in more detail. Figure 4.6(c) shows that for walk length
up to 7 explicit computation beats implicit computation on the molecular
data set.

Enzymes and Mutag

We have shown that up to a certain walk length explicit computation is more
efficient than implicit computation. We want to clarify the relation between
the walk length and the prediction accuracy in a classification task. In ad-
dition, we analyze the ratio between the time Tφ for computing the explicit
mapping and Tdot for taking dot products. For the implicit computation
scheme we want to clarify the running time of TWdpg and the time required
for counting weighted walks. We apply both algorithms to two widely-used
data sets, Mutag (188 graphs, 2 classes) and Enzyme (600 graphs, 6 classes),
and vary the walk length. See Section 4.8.1 for details on these data sets.

Figure 4.7 shows the running time of both algorithms depending on the
walk length and gives the time for product graph computation and explicit
mapping, respectively. In addition, the prediction accuracy is presented. For
both data sets we observe that up to a walk length of 7 explicit mapping
is more efficient. Notably a peak of the accuracy is reached for walk length
smaller than 7 in both cases. For the Mutag data set walks of length 3
provide the best results and walks of length 6 for the Enzyme data set, i.e.,
in both cases explicit mapping should be preferred when computing a walk
kernel of fixed length. The running time of the product graph computation is
constant and does not depend on the walk length. For explicit mapping the
time required to compute the dot product becomes dominating when the walk
length is increased. This can be explained by the fact that the generation of
the kernel matrix involves a quadratic number of dot product computations,
see Proposition 4.2. Note that the given times include a quadratic number
of product graph computations while the times for generating the feature
vectors include only a linear number of operations.

4.6. Fixed Length Walk Kernels 129

implicit
 5

 100

 200

 300

 400

Data set size

 0 1 2 3 4 5 6 7 8 9

Walk Length

 0

 2

 4

 6

 8

 10

 12

 14

 16

Runtime [s]

(a) Implicit computation

explicit
 10

 100

 200

 300

 400

Data set size

 0 1 2 3 4 5 6 7 8 9

Walk Length

 0

 2

 4

 6

 8

 10

 12

 14

 16

Runtime [s]

(b) Explicit computation

implicit
explicit

100

200

300

400

Data set size

0123456789

Walk Length

0
2
4
6
8

10
12
14
16
Runtime [s]

(c) Implicit and explicit computation

Figure 4.6: Running time to generate the kernel matrix by implicit and explicit
computation of walk kernels with varying length for the molecular data set. Fig-
ures (a) and (b) show contour lines obtained by linear interpolation.

130 Chapter 4. Graph Kernels

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8 9
 80

 82

 84

 86

 88

 90

R
u
n

ti
m

e
 [
s
]

A
c
c
u
ra

c
y

Walk length

explicit
mapping

implicit
WDPG

accuracy

(a) Mutag

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8
 20

 25

 30

 35

 40

 45

 50

 55

R
u

n
ti
m

e
 [
s
]

A
c
c
u
ra

c
y

Walk length

explicit
mapping

implicit
WDPG

accuracy

(b) Enzyme

Figure 4.7: Running time to generate the kernel matrix and prediction accuracy
on the Enzyme and Mutag data sets depending on the walk length.

As a side note, we also compared the accuracy of our kernels based on
walks of fixed length to the accuracy reached by the geometric random walk
kernel (GRW) according to Equation (4.28), which considers arbitrary walk
lengths. The parameter γ of the geometric random walk kernel was selected
by cross-validation from {10−5, 10−4, . . . , 10−2}. We observed that the accu-
racy of our kernel is competitive on the Mutag data set (GRW 87.3), and
considerably better on the Enzyme data set (GRW 31.6), cf. Figure 4.7. This
is remarkable, since our approach with walk length 6 yields best results and
is efficiently computed by explicit mapping, which would be impossible for
the geometric random walk kernel.

4.6. Fixed Length Walk Kernels 131

implicit
explicit

0
1

2
3

4
5

Walk length

0
1

2
3

WL iteration

0

10

20

30

40

50
Runtime [s]

Figure 4.8: Running time to generate the kernel matrix by implicit and explicit
computation of walk kernels with varying walk length and iterations of Weisfeiler-
Lehman refinement on the Enzyme data set.

Weisfeiler-Lehman Label Refinement

Walk kernels have been successfully combined with label refinement tech-
niques (Mahé et al., 2004). Weisfeiler-Lehman label refinement (WL) has
recently been applied to develop graph kernels (Shervashidze et al., 2011).
To further analyze the sensitivity w.r.t. label diversity, we again use the En-
zyme data set, which consists of graphs with three vertex and two edge labels
initially, and apply our algorithms after 0 to 3 iterations of WL, see Figure 4.8.

If no refinement is applied, the explicit mapping approach beats the prod-
uct graph based algorithm for the used walk lengths. However, as soon as
a single iteration of label refinement is performed, the product graph based
algorithm becomes competitive for walk length 0 and 1 and outperforms the
explicit mapping approach for higher walk lengths. The running times do not
change substantially for more iterations of refinement. This indicates that a
single iteration of Weisfeiler-Lehman refinement results in a high label diver-
sity that does not increase considerably for more iterations on the Enzyme
data set. When using our walk-based kernel as base kernel of a Weisfeiler-
Lehman graph kernel (Shervashidze et al., 2011), our observation suggests
to start with explicit computation and switch to the implicit computation
scheme after few iterations of refinement.

Shortest-Path Kernel

For the shortest-path kernel we found that explicit mapping clearly outper-
forms implicit computation by several orders of magnitude with respect to
running time. This is in accordance with our theoretical analysis and our
results suggest to always use explicit computation schemes for this kernel
whenever applicable.

132 Chapter 4. Graph Kernels

4.7 Subgraph Matching Kernels
Recently developed graph kernels primarily focus on large data sets of graphs
with simple labels, while kernels for attributed graphs have obtained less at-
tention, cf. Section 4.5. This is remarkable since graph kernels have the
unique advantage over vector representations to make use of vertex and edge
kernel functions, which compare the annotations. We propose kernels for
attributed graphs based on subgraph matchings, i.e., structure-preserving bi-
jections between subgraphs. State-of-the-art kernels based on common sub-
graphs (Wale et al., 2008; Shervashidze et al., 2009) were shown to be suc-
cessful for graphs with simple labels, but are not applicable to attributed
graphs. Our approach, on the contrary, allows to rate mappings of subgraphs
by a flexible scoring scheme comparing vertex and edge attributes by kernels.
We show that subgraph matching kernels generalize several known kernels
and can be computed by a graph-theoretical algorithm inspired by classical
approaches to the maximum common subgraph problem based on association
graphs, cf. Section 3.1.1. Instead of deriving a similarity measure from a
maximum common subgraph, our approach considers all mappings between
subgraphs up to a fixed size and therefore has polynomial running time.

4.7.1 Basic Definitions

According to Definition 2.6 a common subgraph isomorphism between two
graphs is an isomorphism between their subgraphs. We consider attributed
graphs G, H and denote the set of all common induced subgraph isomor-
phisms (CISI) between the underlying unlabeled graphs as B(G,H). In case
of labeled graphs we refer to the subset of B(G,H) that also preserves labels
by I(G,H), cf. Section 2.3.1.

Based on this definition we define the following function and will see later
that it is p.s.d. and, thus, a valid kernel.

Definition 4.8 (CISI Kernel). Let I(G,H) denote the set of all label pre-
serving CISIs of two labeled graphs G and H and λ : G → R≥0 a weight
function. The function

Kcisi(G,H) =
∑

ψ∈I(G,H)
λ(G′), (4.43)

where G′ = G[dom(ψ)], is called common induced subgraph isomorphism
kernel.

When vertices and edges are annotated with arbitrary attributes it is
inappropriate to require a mapping to preserve labels exactly. To this end, we
generalize Definition 4.8 to allow for a more flexible scoring of isomorphisms
referred to as graph matching.8

8Please note that the term matching is used ambiguously in the context of graphs and

4.7. Subgraph Matching Kernels 133

Definition 4.9 (Subgraph Matching Kernel). Given two graphs G and
H with attributes, let B(G,H) denote the set of all CISIs between the underly-
ing unlabeled graphs and let λ : G → R≥0 be a weight function. The subgraph
matching kernel is defined as

Ksm(G,H) =
∑

ψ∈B(G,H)
λ(G′)

∏
v∈V ′

κV (v, ψ(v))
∏

uv∈E(G′)
κE(uv, ψ(u)ψ(v)),

where V ′ = dom(ψ), G′ = G[V ′] and κV , κE are vertex and edge kernels.

Theorem 4.5. The subgraph matching kernel is positive semidefinite.

Proof. The structure of a graph G = (V,E) with n vertices can be encoded
by a tuple (v,E), where v = (v0, . . . , vn)> is a vector of the vertices V for
some fixed ordering and E is a n× n matrix of elements E] {ε}, such that

eij =
{
vivj if vivj ∈ E,
ε otherwise.

By extending v and E by additional rows and columns filled with ε-elements
we can encode graphs of different size into the same space. Each permuta-
tion of the vertices of a graph yields a valid encoding and a graph can be
decomposed into all its encodings. This allows us to define a graph kernel by
specifying an R-convolution, see Section 4.2.2. Let R(v,E, G) be a relation,
where v and E are defined as above, G is a graph and R(v,E, G) = 1 if and
only if (v,E) is an encoding of G. Let R−1(G) = {(v,E) | R(v,E, G) = 1}
be the set of encodings of G. We can now specify the R-convolution kernel

kenc(G,H) =
∑

(u,E)∈R−1(G)
(v,F)∈R−1(H)

∏
i

κ′V (ui, vi)
∏
i,j

κ′E(eij , fij), (4.44)

where κ′V (ε, v) = κ′V (v, ε) = 0 for all vertices v, κ′V (ε, ε) = 1 and κ′V = κV oth-
erwise. The kernel κ′E is defined analogously. The product in Equation (4.44)
yields one for isomorphic graphs G and H, but only if their encodings are
equal, and zero otherwise. For a graph of order n there are n! possible encod-
ings and, thus, n!n! pairs of encodings for two graphs, n! of which correspond
to the same bijection. Combining this kernel with a convolution kernel based
on the decomposition into induced subgraphs and a suitable chosen weight
function yields

K(G,H) =
∑
G′vG

∑
H′vH

λ(G′)
|G′|! kenc(G′, H ′). (4.45)

may refer to a subset of edges in a single graph as in Problem 2.5 or to a bijection between
the vertices of two different graphs.

134 Chapter 4. Graph Kernels

The coefficient accounts for the n! pairs of encodings of two graphs with n
vertices, which correspond to the same bijection. Further, the weight λ(G′)
distributes over the addition in Equation (4.44) and each pair of encodings
corresponding to an isomorphism ψ is weighted by λ(G′) = λ(G[dom(ψ)]).
Consequently, the kernel in Equation (4.45) is equivalent to Ksm.

We can identify Definition 4.8 as a special case of Definition 4.9, where

κV (v, v′) =
{

1 if τ1(v) = τ2(v′),
0 otherwise and

κE(e, e′) =
{

1 if τ1(e) = τ2(e′),
0 otherwise.

Using these vertex and edge kernels, only isomorphisms that preserve labels
according to Equations (2.4), (2.5) contribute to the kernel value. Hence, the
CISI kernel is a special case of the subgraph matching kernel and we may
state the following corollary.

Corollary 4.3. The CISI kernel is positive semidefinite.

4.7.2 Relations to other Kernels

In this section we show how the CISI kernel as special case of the subgraph
matching kernel is related to the subgraph kernel. Further we show how
an explicit computation scheme can be obtained for CISI by means of the
general approach for R-convolution kernels described in Section 4.4.3. Fi-
nally, we observe that subgraph matching kernels can be used to compute the
pharmacophore kernel proposed for chemical compounds.

Relation to the Subgraph Kernel

We consider the induced variant of the subgraph kernel according to Defini-
tion 4.4. The induced subgraph kernel basically counts isomorphic induced
subgraphs, while the CISI kernel counts the number of isomorphisms between
induced subgraphs. Since there may be more than one isomorphism between a
pair of isomorphic induced subgraphs that exhibit non-trivial automorphisms,
both concepts differ in detail.

Theorem 4.6. Let Kv be the induced subgraph kernel with weight function
λv and Kcisi the CISI kernel with weight function

λcisi(G) = λv(G)
|Aut(G)| . (4.46)

Then Kcisi(G,H) = Kv(G,H) for all graphs G,H ∈ G.

Proof. For each pair (G′, H ′) that contributes to the sum of Equation (4.31),
G′ ' H ′ holds. CISIs exist for these pairs of graphs only. There are
|Aut(G′)| = |Aut(H ′)| isomorphism between G′ and H ′, each of which is
contained in I(G,H) and contributes to Equation (4.43). This is compen-
sated by the correction term |Aut(G′)|−1.

4.7. Subgraph Matching Kernels 135

We have developed a general approach to derive feature maps of R-
convolution kernels in Section 4.4.3 and have already observed that the sub-
graph matching kernel is an instance of a R-convolution kernel, cf. proof
of Theorem 4.5. The decomposition into induced subgraphs is crucial for
the induced subgraph kernel and the R-convolution kernel specified in Equa-
tion (4.45). We consider the CISI kernel, i.e., the subgraph matching kernel
where κV and κE are Dirac kernels, and chose λ(G) = |Aut(G)|−1. Following
the proof of Theorem 4.5 and the above argument in Theorem 4.6 we obtain

Ksm(G,H) =
∑
G′vG

∑
H′vH

kenc(G′, H ′)
|G′|! · |Aut(G′)| =

∑
G′vG

∑
H′vH

k'(G′, H ′).

The isomorphism kernel k' is binary and, thus, according to Theorem 4.1
we can derive a feature map based on a function C : G → N with C(G) =
C(H) ⇐⇒ k'(G,H) = 1. Let F (G, i) = {G′ v G | C(G′) = i}, then the
corresponding feature vector φ(G) distinguishes subgraphs up to isomorphism
and counts their number of occurrences in G. Computing such a function
C corresponds to graph canonization, Problem 2.2, which is well-studied.
By solving the graph canonization problem instead of graph isomorphism
we can explicitly compute a feature map of the subgraph (matching) kernel.
Although graph canonization clearly is at least as hard as graph isomorphism,
the number of canonizations required is linear in the number of subgraphs,
while a quadratic number of isomorphism tests would be required for all pairs
of subgraphs. The same principle has been applied in Section 3.1.3 to obtain
a maximum common subgraph algorithm with improved theoretical bounds
on running time. Here, the gap in terms of running time even increases when
computing a whole kernel matrix and not just the kernel value for two graphs,
cf. Section 4.4.1. We will show this experimentally in Section 4.7.4.

Recently, several graph kernels have been proposed that are based on sub-
graphs, see Section 4.5.2. The graphlet kernel is an instance of the induced
subgraph kernel and computed by an explicit mapping scheme. However, only
unlabeled graphs of order five or less are considered by this kernel, such that
the canonizing function can be computed easily. Furthermore the number of
features, i.e., different subgraphs of small size, stays easily manageable when
labels are ignored. However, the same approach was also taken in (Wale et al.,
2008) considering larger connected subgraphs of labeled graphs derived from
molecular structures. The arguments above suggest that explicit computation
of the subgraph matching kernel is far more efficient. Note that we considered
a very restricted version of the subgraph matching kernel, for which we could
derive explicit feature vectors which generalize those of several known kernels
for graphs with highly restricted labels. Subgraph matching kernels allow to
specify arbitrary vertex and edge kernel and we propose an implicit compu-
tation scheme in Section 4.7.3. This flexibility when comparing attributes
comes at the cost that efficient explicit computation schemes become difficult
or impossible, since the condition of Theorem 4.1 is not necessarily fulfilled.

136 Chapter 4. Graph Kernels

(a) Pharmacophore (b) Molecular distance graph G(M)

Figure 4.9: Structure of Aspirin in 3D, where a pharmacophore according to the
model used by Mahé et al. (2006) is highlighted in green (a) and the edges of the
molecular distance graph (b).9

Relation to the Pharmacophore Kernel

Mahé et al. (2006) proposed a kernel to compare chemical compounds based
on characteristic features together with their relative spatial arrangement,
so-called pharmacophores. To this end, a molecule is represented by a set of
pairs M = {(xi, li) ∈ R3 × A}i, where xi are the coordinates of a feature
i in a 3-dimensional space and li is an associated annotation. A pharma-
cophore is a triple of pairwise distinct features, see Figure 4.9(a), and the set
of pharmacophores associated with a molecule M is

P(M) = {(a1, a2, a3) ∈M3 | a1 6= a2, a1 6= a3, a2 6= a3}.

The pharmacophore kernel between two molecules M and M ′ is defined as

Kp(M,M ′) =
∑

p∈P(M)

∑
p′∈P(M ′)

ki(p, p′)ks(p, p′)

and measures the similarity of two molecules based on triples of similar char-
acteristic features with a similar spatial arrangement, which is quantified by
the two kernels ki and ks, respectively. These are defined as

ki(p, p′) =
3∏
i=1

kfeat(li, l′i) and

ks(p, p′) =
3∏
i=1

kdist(‖xi − xi+1‖ ,
∥∥x′i − x′i+1

∥∥),
9 The illustration is based on the ball-and-stick model of the aspirin molecule published

by Ben Mills, http://commons.wikimedia.org/wiki/File:Aspirin-B-3D-balls.png.

http://commons.wikimedia.org/wiki/File:Aspirin-B-3D-balls.png

4.7. Subgraph Matching Kernels 137

where the index i + 1 is taken modulo 3, p = ((x1, l1), (x2, l2), (x3, l3)) and
p′ = ((x′1, l′1), (x′2, l′2), (x′3, l′3)). The kernels kfeat and kdist can be specified for
the comparison of annotations and distances, respectively.

From the representation M of a molecule as used by the pharmacophore
kernel we can construct the molecular distance graph G(M) = (V,E) with
attributes α, which is the complete graph defined as

V = {v1, . . . , v|M |} with α(vi) = li 1 ≤ i ≤ |M |
E = [V]2 with α(vivj) = ‖xi − xj‖ 1 ≤ i < j ≤ |M |.

An example of the molecular distance graph derived from the drug Aspirin is
shown in Figure 4.9(b).

Theorem 4.7. Let Kp be a pharmacophore kernel and Ksm the subgraph
matching kernel with weight function

λ(G) =
{

6 if |G| = 3,
0 otherwise

and vertex and edge kernels defined as

κV (v, v′) = kfeat(α(v), α(v′)) and
κE(e, e′) = kdist(α(e), α(e′)).

Then Kp(M,M ′) = Ksm(G(M), G(M ′)) holds.

Proof. The weight function λ ensures that only subgraphs with three vertices
contribute to the value of Ksm. Since G(M) is a complete graph, every com-
mon subgraph induced by three vertices is a triangle, i.e., all subsets with
three features and their pairwise distances are taken into account. For a pair
of two subgraphs with three vertices, there are 6 bijections considered by the
subgraph matching kernel. For each subset with three elements there are six
different triples representing all possible permutations. The pharmacophore
kernel considers all pairs of such triples in P(M) ×P(M ′). For two subsets
with three elements, there are 36 such pairs and 3! = 6 combinations cor-
respond to the same bijection between the elements. Thus, multiplying the
value of 3-element subgraph matchings by 6 compensates for this.

4.7.3 Kernel Computation

In this section we propose an algorithm to implicitly compute the CISI and
subgraph matching kernel. Our technique is inspired by a classical result
of Levi (1973) who observed a relation between common subgraphs of two
graphs and cliques in their association graph. This idea is commonly used
to reduce the maximum common induced subgraph problem to a maximum
clique problem as detailed in Section 3.1.1.

138 Chapter 4. Graph Kernels

O3

C2

N1

(a) G

O

1

C

2

N

3

C

4

C5

O6

(b) H

(1, 3)

(3, 1) (2, 2)

(2, 4)

(3, 6) (2, 5)

(c) G∇wH

Figure 4.10: Two attributed graphs G (a) and H (b) and their weighted association
graph G∇wH (c). We assume the vertex kernel to be the Dirac kernel and κE to be
1 if edge labels are equal and 1

2 if one edge label is “=” and the other is “-”. Thin
edges in G∇wH represent edges with weight 1

2 , while all other edges and vertices
have weight 1; dashed lines represent d-edges.

Here, we use the fact that for two graphs G and H the vertex subset C
is a clique in the association graph G∇H defined according to Definition 3.1
if and only if there is a corresponding CISI ψ ∈ I(G,H). As a consequence
we can enumerate (or count) all CISIs by enumerating (counting) the cliques
of the association graph. In order to compute the subgraph matching kernel
we adapt the approach and the definition of the association graph. Similar to
the weighted direct product graph used to compute walk kernels, we annotate
the association graph with the values of vertex and edge kernels.

Definition 4.10 (Weighted Association Graph). For two graphs G =
(V,E), H = (V ′, E′) with attributes and given vertex and edge kernels κV and
κE, the weighted association graph (WAG) is denoted by G∇wH = (V, E , w)
and defined by the vertex set

V =
{
(v, v′) ∈ V × V ′

∣∣ κV (v, v′) > 0
}

and the edge set E = Ec] Ed consisting of c-edges Ec and d-edges Ed, where

Ec =
{

(u, u′)(v, v′) ∈ [V]2
∣∣∣ uv ∈ E ∧ u′v′ ∈ E′ ∧ κE(uv, u′v′) > 0

}
Ed =

{
(u, u′)(v, v′) ∈ [V]2

∣∣∣ uv /∈ E ∧ u′v′ /∈ E′ ∧ u 6= v ∧ u′ 6= v′
}
.

The weights w : V] E → R of vertices and edges are determined according to

w(v) = κV (v, v′) ∀v = (v, v′) ∈ V

w(e) =
{
κE(uv, u′v′) if e ∈ Ec
1 otherwise

}
∀e ∈ E ,where e = (u, u′)(v, v′).

An example of two graphs and their weighted direct product graph ob-
tained for specific vertex and edge kernels is shown in Figure 4.4. The dis-
tinction between c-edges, which represent common adjacency, and d-edges
representing common non-adjacency is due to Koch (2001). This allows to

4.7. Subgraph Matching Kernels 139

characterize the cliques corresponding to isomorphisms between connected
common subgraphs, also see Section 3.3.2. We will make use of edge types
later. The weight of a clique then is the product of the weights of all vertices
and edges contained in it. In Figure 4.10, there are two maximum cliques
C1 = {(1, 3), (2, 2), (3, 1)} and C2 = {(1, 3), (2, 5), (3, 6)} of size three, which
both correspond to an isomorphism between G and a subgraph of H. The
clique C2 contains the thin edge with weight one half since the edge with label
“=” is mapped to an edge with label “-” according to the mapping associated
with the clique. Thus, the weight of C1 is one and the weight of C2 is one half.
There is an interesting relation between the weighted association graph and
the weighted direct product graph. Note that the only difference according
to their definition is that the weighted association graph contains additional
d-edges, which all have weight one. The set of d-edges encode common non-
adjacency and, thus, these edges exactly correspond to the edges of the direct
product of the complement of the input graphs. Formally, we have

V (G∇wH) = V (G×w H)
E(G∇wH) = E(G×w H)︸ ︷︷ ︸

Ec

]E(G×w H)︸ ︷︷ ︸
Ed

,

where the weights of vertices and edges are inherited from the weighted direct
product graph. Here, we assume the edges of the complement graph to be
unlabeled and the edge kernel to be the one kernel, i.e., all edges in Ed obtain
weight one. As a consequence, if at least one of the graphs G and H is
complete, G∇wH = G×wH holds. The weighted association graph can easily
be computed analogously to the weighted direct product, cf. Algorithm 4.3.

Algorithm 4.6 makes use of the weighted association graph in order to
compute the subgraph matching kernel by enumeration of cliques as follows:
A current clique is extended stepwise by all vertices preserving the clique
property. These vertices form the candidate set P . Whenever the current
clique C is extended by a new vertex v, the weight of the vertex itself (line 8)
and all the edges connecting v to a vertex in C (line 10) are multiplied with
the weight c of the current clique to obtain the weight c′ of the new clique
C ′. Then the global variable, which at the end holds the result, is updated
by adding the weight of the new clique weighted by λ(G[C ′]) (line 11). Given
a clique C = {(v1, v

′
1), . . . , (vn, v′n)} in G∇wH, in slight abuse of notation

we write G[C] to refer to the induced subgraph G[{v1, . . . , vn}]. In order
to extend the clique further the procedure SMKernel is called recursively
with the new clique and a modified candidate set as parameter. The algorithm
effectively avoids duplicates by removing a vertex from the candidate set after
all cliques containing it have been exhaustively explored (line 13). Note that
the candidate set P in Algorithm 4.6 can be implemented using a single array
passed to each recursive call and two local indices. The array contains all
vertices in V and the indices indicate the first and last element of the current

140 Chapter 4. Graph Kernels

Algorithm 4.6: Subgraph matching kernel
Input : Graphs G, H, kernels κV , κE , weight function λ.
Param. : Weight c of the clique C, candidate set P .
Data : Global variable value.
Output : Value Ksm(G,H) of the subgraph matching kernel.

1 (V, E , w)←Wag(G,H, κV , κE) . Compute G∇wH
2 value← 0
3 SMKernel(1, ∅, V)
4 return value

Procedure SMKernel(c, C, P)
5 while |P | > 0 do
6 v ← arbitrary element of P
7 C ′ ← C] {v}
8 c′ ← c · w(v) . Multiply by vertex weight
9 forall the u ∈ C do

10 c′ ← c′ · w(uv) . Multiply by edge weights
11 value← value+ c′ · λ(G[C ′]) . Increase value
12 SMKernel(c′, C ′, P ∩N(v)) . Extend clique
13 P ← P \ {v}

candidate set occupying a contiguous interval of the array. In preparation
of a recursive call the indices are adjusted and some vertices are swapped
within the current interval, if necessary, such that the new candidate set
again occupies a contiguous section of the array. The candidate set used in a
recursive call always forms a subset of the current candidate set and it does
not matter in which order vertices are extracted from P . Hence, swapping
elements within the current interval does not harm correctness and it is not
necessary to restore the array when performing backtracking.

Restriction to Subgraph Classes

In this section we discuss restrictions to certain classes of subgraphs, their
relation to cliques in the association graph and appropriate modifications
of the enumeration algorithm. The restricted variants remain p.s.d., since
they are equivalent to the general subgraph matching kernel with a suitably
chosen weight function. The intention of restricting the class of subgraphs
is twofold: On the one hand this may prune the search space of the clique
detection algorithm and thus reduce the running time. On the other hand it
depends on the application domain which graphs yield a meaningful similarity
measure. The first constraint introduced here restricts the search space to
subgraphs of a specified maximum size, the second to connected subgraphs.

4.7. Subgraph Matching Kernels 141

Since finding a maximum clique or a maximum CISI is known to be an
NP-hard problem, it is required in practice to restrict the size of the subgraphs
considered. Modifying Algorithm 4.6 to stop the recursion whenever a fixed
maximum size k has been reached, effectively restricts the size of the cliques
and thereby the size of the matched subgraphs, which is quantified by the
number of vertices (see Algorithm 4.7, line 19).

Restricting to connected subgraphs may also substantially reduce the
search space, especially when graphs are sparse. Shervashidze et al. (2009) ob-
served that for unlabeled graphs using disconnected subgraphs is beneficial in
classification tasks. However, in general disconnected subgraphs convey only
limited structural information and may therefore be considered less relevant
or even inappropriate to determine a meaningful similarity. This depends on
the specific data set and application and we will discuss this question later
based on experimental results. We can realize the constraint by an adaption
of a technique proposed by Koch (2001); Cazals and Karande (2005). Let c-
cliques be defined as in Section 3.3.2 as cliques where each vertex of the clique
is connected to all other vertices of the clique via at least one path containing
only c-edges. There is a one-to-one correspondence between c-cliques and
isomorphisms between connected subgraphs. For example, in Figure 4.10 the
clique C = {(1, 3), (3, 6)} corresponds to an isomorphism between the discon-
nected subgraphs consisting of two isolated vertices. Since the single edge
connecting vertices of the clique is a d-edge, C is not a c-clique. We obtain
a larger clique C ′ = C] {(2, 5)} by adding one vertex. Then C ′ is a c-clique
and corresponds to a mapping of connected subgraphs. Algorithm 4.6 can
be adapted to enumerate only c-cliques by making sure that only vertices
are added that are adjacent to a vertex in the current clique via at least one
c-edge. This modification is presented as Algorithm 4.7, which maintains two
candidate sets P and D. The set P contains vertices that are adjacent to
all vertices of the current clique and are connected to at least one of them
via a c-edge. The set D contains vertices connected to all vertices of the
current clique exclusively by d-edges. Since only vertices in P are added to
the current c-clique the new clique again is c-clique. Note that a vertex u can
change over from D to P after adding a vertex v to C if and only if uv is a
c-edge (cf. line 20). The set of vertices adjacent to a vertex v via a c-edge is
denoted by Nc(v) = {u ∈ N(v) | uv ∈ Ec} and Nd(v) = {u ∈ N(v) | uv ∈ Ed}
is defined analogously for d-edges.

Running Time Analysis

In this section we analyze the worst-case running time of the proposed algo-
rithm to compute the subgraph matching kernel and discuss practical consid-
erations.

142 Chapter 4. Graph Kernels

Algorithm 4.7: Connected subgraph matching kernel with fixed size
Input : Graphs G, H, kernels κV , κE , weight function λ, size k > 0.
Param. : Weight c of the clique C, candidate sets P and D.
Data : Global variable value.
Output : Value of the connected subgraph matching kernel.

1 (V, E , w)←Wag(G,H, κV , κE) . Compute G∇wH
2 value← 0
3 P ← V
4 while |P | > 0 do
5 v ← arbitrary element of P
6 C ← {v}
7 value← value+ λ(G[C]) · w(v)
8 if |C| < k then . Check size restriction
9 CSMKernel(w(v), C, P ∩Nc(v), P ∩Nd(v)) . Extend clique

10 P ← P \ {v}
11 return value

Procedure CSMKernel(c, C, P , D)
12 while |P | > 0 do
13 v ← arbitrary element of P
14 C ′ ← C] {v}
15 c′ ← c · w(v) . Multiply by vertex weight
16 forall the u ∈ C do
17 c′ ← c′ · w(uv) . Multiply by edge weights
18 value← value+ λ(G[C ′]) · c′ . Increase value
19 if |C ′| < k then . Check size restriction
20 P ′ ← (P ∩N(v))] (Nc(v) ∩D)
21 D′ ← D ∩Nd(v)
22 CSMKernel(c′, C ′, P ′, D′) . extend clique
23 P ← P \ {v}

4.7. Subgraph Matching Kernels 143

Complexity. The running time of Algorithm 4.6 depends on the number
of cliques in the association graph. Since there is a one-to-one correspon-
dence between cliques and bijections contributing to the kernel value, we can
derive an upper bound for the number of cliques in the weighted associa-
tion graph G∇wH by considering the number of possible bijections. There
are

(n
k

)
induced subgraphs of size k in a graph with n vertices and up to k!

isomorphisms between graphs of size k. Thus, we have at most

C(k) =
k∑
i=0

i!
(
n

i

)(
m

i

)
≤

k∑
i=0

(
nm

i

)
cliques of size up to k in G∇wH, where n = |G| and m = |H|. Note that
just before every recursive call of SMKernel the global variable value is
increased by the weight of a new clique. Hence, the number of recursive calls is
bounded by C(k). The running time to compute the new clique and its weight
(line 7–10, Algorithm 4.6) is O(k), when k is the size of the current clique.
The running time required to compute the new candidate set by intersection
in preparation of the recursive call is linear in the order of the weighted
association graph. Therefore the worst-case running time of Algorithm 4.6
(modified to stop recursion at depth k) is O(TWag + N · C(k)) = O(TWag +
k ·Nk+1), where N = nm is the order of the weighted association graph and
TWag the time required to compute the weighted association graph. With
the same arguments this bound also holds for Algorithm 4.7. Although the
number c-cliques is expected to be considerably less in practice, in particular
for sparse graphs. However, for complete input graphs G, H, every clique in
G∇wH is a c-clique.

Practical considerations. The analysis of the complexity shows that a
reasonable performance in practice can only be expected when the maximum
size of the subgraphs considered is restricted. Therefore, the approach com-
petes against subgraph or graphlet kernels counting all subgraphs up to a
certain size two graphs have in common. Besides the differences described
in Section 4.7.2, the methods of computation exhibit substantially different
characteristics: The running time of our algorithm heavily depends on the
number of allowed mappings of subgraphs, which is related to the size and
density of the product graph. For instances with diverse labels in combination
with a restrictive vertex kernel (e.g., the Dirac kernel) the size of the product
graph is typically considerably reduced, such that |G∇wH| � |G| · |H|. In
a similar way diverse edge labels may diminish the number of edges. Due
to d-edges sparse graphs tend to have dense product graphs and contain a
large number of cliques. However, in this case the number of enumerated
cliques can be substantially reduced by restricting to c-cliques. The compu-
tation of the graphlet kernel is based on explicit mapping into feature space.
While this is beneficial for certain data sets, the number of subgraphs quickly
becomes very large for graphs with diverse labels rendering explicit mapping

144 Chapter 4. Graph Kernels

prohibitive (Shervashidze et al., 2009). Furthermore, subgraph kernels are not
applicable to attributed graphs. In these respects, our approach is comple-
mentary to subgraph kernels and shows promise for instances for which these
approaches fall short. The discussion of practical considerations is similar
as for the implicit and explicit computation schemes of walk-based kernels,
where we experimentally observed a computational phase transition, cf. Sec-
tion 4.6. We again systematically investigate the running time of explicit and
implicit computation of the subgraph (matching) kernel in the following.

4.7.4 Experimental Evaluation

In this section we compare the (connected) subgraph matching kernel to
closely related kernels, i.e., the pharmacophore kernel and the subgraph ker-
nel, with focus on running times. We present a comparative experimental
evaluation in Section 4.8. For the pharmacophore kernel (Mahé et al., 2006)
we used the C++ implementation provided by Perret and Mahé (2006). All
other algorithms were implemented in Java and experiments were conducted
using Sun Java JDK v1.6.0 on an Intel Xeon E5430 machine at 2.66GHz with
8GB of RAM using a single processor only.

Implicit vs. Explicit Computation

As detailed in Section 4.7.2 a restricted version of the subgraph matching ker-
nel computes results closely related to the subgraph kernel, a special instance
of which is the graphlet kernel. The explicit computation scheme, which then
becomes possible is expected to be favorable in terms of running time. We
have reimplemented a variation of the graphlet kernel taking connected in-
duced subgraphs with three vertices and simple vertex and edge labels into
account. Since the only possible features are triangles and paths of length
two, graph canonization is realized by selecting the lexicographically smallest
string obtained by concatenation of labels. For a path (u, . . . , v), two possible
strings can be obtained, namely τ(u) . . . τ(v) and τ(v) . . . τ(u); for a triangle,
each choice of a start vertex and the direction for traversing the cycle yields
a total number of six strings. Our implementation is similar to the approach
used by Shervashidze et al. (2011) as extension of the original graphlet ker-
nel (Shervashidze et al., 2009) to the domain of labeled graphs. We refer to
this method as graphlet kernel in the following. We compared the graphlet
kernel to the connected subgraph matching kernel with λ(G) = λv(G) = 1 if
|G| = 3 and 0 otherwise. In order not to penalize the running time of the con-
nected subgraph matching kernel by additional automorphism computations,
the weight function does not consider the number of automorphisms as in
Equation (4.46) and, consequently, not the same kernel values are computed.

For real-world instances we observed that explicit computation outper-
forms implicit computation by several orders of magnitude, see Section 4.8.

4.7. Subgraph Matching Kernels 145

This in accordance with our theoretical analysis. However, the practical con-
siderations suggest that explicit and implicit computation behave complemen-
tary and subgraph matching kernels become competitive if a sufficient small
and sparse weighted product graphs is generated, which occurs for graphs
with increasing label diversity as for the walk-based kernels. Hence, we ran-
domly generated graphs with the following procedure: The number of vertices
was determined by a Poisson distribution with mean 60. Edges were inserted
between a pair of vertices with probability 0.5. Labels for vertices and edges
were assigned with equal probability, whereas the size of the label alphabet
L = LV = LE is varied from 1, i.e., uniform labels, to 65. Note that the
graphs obtained by this procedure have different characteristics than those
used to show the computational phase transition for walk-based kernels. We
vary the data set size m between 100 and 300 adding 50 randomly generated
graphs in each step. We analyze the running time to compute the m × m
kernel matrix. For the subgraph matching kernel we used the Dirac kernel as
vertex and edge kernel.

Figure 4.11 shows a computational phase transition: For this synthetic
data set the subgraph matching kernel is more efficient than the graphlet
kernel for instances with 20-30 different labels and its running time increases
exponentially when the number of labels decreases. The graphlet kernel in
contrast is more efficient for graphs with uniform or few labels. For more
than 10 different labels, there is only a moderate increase in running time.
This can be explained by the fact that the number of features contained in the
graphs does not increase considerably as soon as a certain number of different
labels is reached. The enumeration of triangles dominates the running time
for this relatively dense synthetic data set. The running time behavior of
the subgraph matching is as expected and is directly related to the size and
number of edges in the weighted association graph.

Our synthetic data set differs from typical real-world instances, since we
generated dense graphs with many different labels, which are assigned uni-
formly at random. For real-world data sets the graphlet kernel consistently
outperforms the subgraph matching kernel by orders of magnitude, see Sec-
tion 4.8. It would be interesting to further investigate where this computa-
tional phase transition occurs for larger subgraphs and to analyze if the im-
plicit computation scheme then becomes competitive for instances of practical
relevance. This requires the implementation of non-trivial graph canonization
algorithms and remains future work. The results we obtained clearly suggest
to prefer the explicit computation schemes when no flexible scoring by vertex
and edge kernels is required.

Subgraph Matching vs. Pharmacophore Kernel

The subgraph matching kernel can be used to compute the pharmacophore
kernel, see Section 4.7.2. We compared our implementation of the subgraph

146 Chapter 4. Graph Kernels

Subgraph matching
 1e+03

 100
 10

 100
 150

 200
 250

 300

Data set size

 10 20 30 40 50 60

Number of labels

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048

Runtime [s]

(a) Subgraph matching kernel (implicit)

Graphlet
 63.1
 39.8
 25.1
 15.8
 10

 100
 150

 200
 250

 300

Data set size

 10 20 30 40 50 60

Number of labels

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048

Runtime [s]

(b) Graphlets with three vertices (explicit)

Subgraph matching
Graphlet

100
150

200
250

300

Data set size
102030405060

Number of labels

1
2
4
8

16
32
64

128
256
512

1024
2048

Runtime [s]

(c) Implicit and explicit computation

Figure 4.11: Running time to generate the kernel matrix by implicit and explicit
computation for synthetic data sets with varying size of the label alphabet. Fig-
ures (a) and (b) show contour lines obtained by linear interpolation.

4.7. Subgraph Matching Kernels 147

Table 4.2: Running time in minutes required to compute the kernel matrix.

BZR COX2 DHFR ER

PH with κE = Kdist
RBF 419.98 728.85 776.02 2100.77

SM with κE = Kdist
RBF 94.96 176.52 148.49 394.06

PH with κE = Kdist
∆ 154.59 261.73 333.24 861.15

SM with κE = Kdist
∆ 1.75 2.76 3.44 6.37

Table 4.3: Mean classification accuracy and standard deviation.

BZR COX2 DHFR ER

PH with κE = Kdist
RBF 76.49±1.42 72.39±1.51 77.87±1.44 81.15±1.00

SM with κE = Kdist
RBF 76.29±1.25 72.39±1.51 77.97±1.37 81.15±1.00

PH with κE = Kdist
∆ 77.59±1.36 72.12±1.12 79.29±0.93 82.56±0.72

SM with κE = Kdist
∆ 77.56±1.34 72.15±1.08 79.39±1.05 82.60±0.72

matching kernel to the implementation of pharmacophore kernel contained
in the library ChemCPP provided by Perret and Mahé (2006). In order to
demonstrate the usefulness of the pharmacophore kernel, Mahé et al. (2006)
used the four data sets COX2, BZR, DHFR and ER (Sutherland et al.,
2003), which come with 3D coordinates. For comparison purpose we gen-
erated benchmark data sets from the publicly available data10 by removing
highly similar structures and assigning class labels as in (Sutherland et al.,
2003; Mahé et al., 2006). We generated complete graphs from these com-
pounds, where edges are labeled with distances as described in Section 4.7.2
and vertex labels correspond to atom types without encoding charges. The
molecular distance graphs without hydrogen atoms have the characteristics
shown in Table 4.5.

Mahé et al. (2006) used a Gaussian RBF kernel to compare distances
according to Equation (4.14). Since this kernel is globally supported, i.e.,
Kdist

RBF(x, y) > 0 for all x, y ∈ R, using this kernel gives rise to a dense product
graph with our approach. Hence, we also used the compactly supported
triangular kernel according to Equation (4.15) as replacement, which results
in a sparse product graph. This kernel is also implemented in ChemCPP, but
the computation of the pharmacophore kernel does not fully exploit the arising
sparsity. The parameter optimization reported in the original publication
suggests using σ = 0.1 for the Gaussian RBF kernel, where distances are
expressed in ångström (Å). For the triangular kernel we selected c = 0.25,
which promises to yield comparable results.

10Supporting information accompanying the article (Sutherland et al., 2003) available at
http://pubs.acs.org/doi/suppl/10.1021/ci034143r.

http://pubs.acs.org/doi/suppl/10.1021/ci034143r

148 Chapter 4. Graph Kernels

We have computed the kernel matrix for all data sets using the pharma-
cophore kernel (PH) and our algorithm (SM) applying the Gaussian RBF
kernel and the triangular kernel, respectively, with the above-mentioned pa-
rameters. The results of the experimental comparison are summarized in
Tables 4.2 and 4.3. The improvement w.r.t. running time of the subgraph
matching kernel compared to the pharmacophore kernel can be explained by
two reasons: First the subgraph matching kernel is based on bijections instead
of comparing triples of vertices, which reduces the combinatorial explosion.
This effect can be expected to be even more crucial when using more than 3
vertices, which is not supported by the pharmacophore kernel, but is consid-
ered a worthwhile extension (Mahé et al., 2006). The second reason is that
our algorithm exploits the sparsity of the product graph. This particularly ex-
plains the difference in running time when using the triangular kernel instead
of the Gaussian RBF edge kernel. Regarding classification accuracy, there
is, of course, no noticeable difference between the pharmacophore kernel and
the subgraph matching kernel using the same kernel to compare distances.
Marginal discrepancies can be explained by numerical inaccuracies. Using a
triangular kernel instead of the Gaussian RBF kernel has only minor effects
on the classification accuracy, which has even improved for three of the four
data sets. At the same time using the triangular kernel drastically reduced
the running time for computing the subgraph matching kernel.

Our approach clearly beats the pharmacophore kernel regarding running
time when using the triangular kernel. This allows to apply our approach to
larger data sets. Furthermore, our technique is not limited to three vertices
and we consider larger subgraphs in the experimental comparison presented
in Section 4.8

4.8 Comparative Experimental Evaluation

In Sections 4.6.6 and 4.7.4 we have compared different algorithms that com-
pute conceptually equivalent kernels. Consequently, we focused on their dif-
ference in terms of running time, in particular, w.r.t. implicit and explicit
computation. In this section we compare the performance of the proposed
kernels to a wide range of state-of-the-art graph kernels regarding prediction
accuracy as well as running time. We report classification results on widely-
used benchmark data sets containing graphs with simple labels as well as
attributed graphs derived from real-world application in chem- and bioinfor-
matics.

4.8.1 Method and Data Sets

We performed classification experiments using the C-SVM implementation
LIBSVM (Chang and Lin, 2011). We report mean prediction accuracies as
well as standard deviations obtained by 10-fold cross-validation repeated 10

4.8. Comparative Experimental Evaluation 149

times with random fold assignment. Within each fold the regularization pa-
rameter C was chosen from {10−3, 10−2, . . . , 103} by cross-validation based
on the training set.

We compared the fixed length `-walk kernel (FLW, see Section 4.6) and
the subgraph matching kernel (SM and CSM with connection constraint,
see Section 4.7) to several state-of-the-art graph kernels summarized in Sec-
tion 4.5. We implemented graph kernels based on tree patterns (TP) and
adapted the approach to support attributed graphs. The definition by Ra-
mon and Gärtner (2003) is vague regarding subtrees without children. We
require subtrees to have at least one child, see (Mahé and Vert, 2009) for
a detailed discussion of this issue. The kernels (C)SM, FLW and TP sup-
port attributed graphs without restrictions. Furthermore, we compare to the
geometric random walk (GRW), shortest-path (SP), graphlet (GL, see Sec-
tion 4.7.4 for details), GraphHopper (GH), Weisfeiler-Lehman subtree (WL)
and Weisfeiler-Lehman shortest-path (WLSP) kernel. Our implementation
of these kernels supports graphs with simple vertex and edge labels when-
ever technically possible. SP and GH do not take edge annotations into
account. WLSP is similar to the Neighborhood Subgraph Pairwise Distance
Kernel recently proposed for graphs with simple labels (Costa and Grave,
2010). Computation of GRW is based on matrix inversion and we used the
standard library LAPACK11 for this. Since the library is not optimized for
sparse matrices derived from the (weighted) direct product graph, better run-
ning times could be obtained with specialized implementations as reported
by Vishwanathan et al. (2010), which were not available for Java.

These graph kernels can be tuned by several parameters. The maximum
size of (C)SM was chosen from k ∈ {1, 2, . . . , 7} and a uniform weight func-
tion was used. FLW refers to the `-walk kernel according to Definition 4.5
and was computed for walks of length ` ∈ {0, 1, . . . , 7}. The running times
reported here for FLW differ from those presented in the publication (Kriege
and Mutzel, 2012), since the algorithm and the implementation has been op-
timized subsequently as described in Section 4.6. GRW takes walks of infinite
length into account, where the weight of walks decreases with their length de-
pending on the parameter γ, cf. Equation (4.28). This parameter γ for GRW
was chosen from {10−5, 10−4, . . . , 10−2}. For TP we used a uniform weight λ
chosen from {10−5, 10−4, . . . , 10−2} with height h ∈ {1, 2, 3, 4}. The number
of iterations of WL/WLSP was chosen from h ∈ {0, 1, . . . , 5}. These intervals
were chosen on the basis of reported results in prior publications. All param-
eters were optimized by means of cross-validation on the training data sets
only. For SP and WLSP we tested different kernels to compare path lengths,
but found the Dirac kernel which requires paths to have exactly equal length
to yield comparable results. This choice allows to reduce computational costs
(see Borgwardt and Kriegel, 2005) and makes explicit computation possible;

11http://www.netlib.org/lapack/

http://www.netlib.org/lapack/

150 Chapter 4. Graph Kernels

when the vertex kernel is binary we can employ our walk-based kernel, see
Section 4.6.5. Both speed-up techniques are exploited by our implementa-
tion. As remarked by Wale et al. (2008) and Costa and Grave (2010), kernels
using features of different size are typically biased towards large features.
Therefore, we also normalized kernel values separately for each feature size
where applicable. Kernels that can be written as K(G,H) =

∑d
i=1Ki(G,H)

with Ki the kernel for feature size i and d the maximum feature size, were in
addition normalized according to K̃(G,H) =

∑d
i=1 K̂i(G,H). We used this

normalization technique for SM, CSM, WL and WLSP. The values Ki(G,H)
for each feature size i for (C)SM can easily be obtained by slightly modifying
Algorithms 4.6 and 4.7, respectively, such that for each i ∈ {1, . . . , k} a global
variable is maintained, which stores the sum over weights of size i cliques.

Since the running times may depend on the selected parameters, we report
the time required to compute the kernel matrix using parameters frequently
selected by the parameter optimization process. For a fair comparison all
kernels were implemented in Java with exception of the pharmacophore kernel
(PH), for which we again used the implementation provided by the authors
as in Section 4.7.4. Experiments were conducted using Sun Java JDK v1.6.0
on an Intel Xeon E5430 machine at 2.66GHz with 8GB of RAM using a single
processor only.

Graphs with simple labels

We employed benchmark data sets containing molecules12 and proteins: The
MUTAG data set consists of 188 chemical compounds divided into two classes
according to their mutagenic effect on a bacterium. The PTC data set con-
tains compounds labeled according to carcinogenicity on rodents divided into
male mice (MM), male rats (MR), female mice (FM) and female rats (FR).
Molecules can naturally be represented by graphs, where vertices represent
atoms and edges represent chemical bonds, cf. Section 1.1. We have removed
explicit hydrogen atoms and labeled vertices by atom type and edges by bond
type (single, double, triple or aromatic). The properties of these data sets
are summarized in Table 4.4.

We have obtained the data set ENZYME from Borgwardt et al. (2005),
which is associated with the task of assigning 600 enzymes to one of the 6
EC top level classes, which reflect the chemical reaction an enzyme catalyzes.
Vertices represent secondary structure elements (SSE) and are annotated by
their type, i.e., helix, sheet or turn. Two vertices are connected by an edge
if they are neighbors along the amino acid sequence or one of three nearest
neighbors in space. Edges are annotated with their type, i.e., structural or
sequential.

12Both data sets are widely used (see, e.g., Kashima et al., 2003) and can be obtained
from http://cdb.ics.uci.edu.

http://cdb.ics.uci.edu

4.8. Comparative Experimental Evaluation 151

Table 4.4: Properties of the graph data sets with simple labels.

Mutag MM FM MR FR Enzyme

|D| 188 336 349 344 351 600
Class size 125/63 129/207 143/206 152/192 121/230 6×100

Max. |V | 28 64 64 64 64 126
Avg. |V | 17.93 13.97 14.11 14.29 14.56 32.63
Max. |E| 33 71 71 71 71 149
Avg. |E| 19.79 14.32 14.48 14.69 15.0 62.14

Max. deg. 4 4 4 4 4 9
Avg. deg. 2.208 2.05 2.053 2.057 2.061 3.808

|LV | 7 20 18 18 19 3
|LE | 4 4 4 4 4 2

Attributed graphs

Benchmark data sets containing attributed graphs yet are less wide-spread.
The ENZYME data set originally contains a rich set of attributes (for details,
see Borgwardt et al., 2005). When all attributes are taken into account, we
observed that a simple kernel just comparing edges, i.e., FLW with ` = 1, is
sufficient for highest prediction accuracy. Hence, we decided not to consider
all attributes to make the graph structure crucial for the classification task.
We added a single continuous attribute representing the 3D length of the
SSE in ångström to each vertex of the ENZYME data set with simple labels.
The vertex kernel was defined as the product of the Dirac kernel on the type
attribute and the Brownian bridge kernel with parameter c = 3 originally
used on the length attribute, see (Borgwardt et al., 2005). The edge kernel
remains the Dirac kernel on the type attribute.

Further classification problems were derived from the chemical compound
data sets BZR, COX2, DHFR and ER we have already used in Section 4.7.4.
Since PH actually is not a graph kernel, it was directly applied to the original
representation; for the other kernels the molecular distance graphs were used.
Since there is no need to compute shortest paths, SP was directly applied to
these graphs. Thus, SP reduces to a kernel basically comparing edges and
was realized by FLW with ` = 1. The shortest-path computation of GH was
based on the computed distances as well, where we discretized lengths to
values in {0, . . . , 1000} since the approach is unreliable for real-valued edge
lengths. SM, FLW and TP support multi-dimensional edge attributes. For
these kernels we enriched the edge attributes by the type of the chemical bond,
where edges not corresponding to bonds obtained an additional distinct label.
The employed edge kernel was defined as the product of the Dirac kernel
on the bond type and the triangular kernel according to Equation (4.15)
on the distances. For PH the same triangular kernel was used to compare

152 Chapter 4. Graph Kernels

Table 4.5: Properties of the attributed graph data sets. For discrete attributes
the number of different values is listed and for continuous attributes the minimum
and maximum value, respectively. For multi-dimensional attributes each dimension
is considered individually.

Enzyme BZR COX2 DHFR ER

|D| 600 306 303 393 446
Class size 6×100 157/149 148/155 126/267 181/265

Max. |V | 126 33 36 39 43
Avg. |V | 32.63 21.3 26.28 23.87 21.33
Max. |E| 149 528 630 741 903
Avg. |E| 62.14 225.1 335.1 283.0 234.8

Max. deg. 9 32 35 38 42
Avg. deg. 3.808 21.13 25.51 23.72 22.02

Vertex attr.
[3
0-149

]
8 7 7 10

Edge attr. 2
[5
1.14-16.6

] [5
1.16-16.9

] [5
1.1-19.8

] [5
1.13-24.0

]

distances. In all cases the parameter c of the triangular kernel was chosen from
{0.1, 0.25, 0.5, 1.0} by cross-validation. Since the input graphs are complete,
SM and CSM yield the same results and we used the implementation of SM,
which in this case is more efficient. Note that in contrast to the experiments
presented in Section 4.7.4, we do not restrict SM to subgraphs of size 3.

4.8.2 Results and Discussion

The classification accuracies and running times are summarized in Tables 4.6
and 4.7. In terms of classification accuracy on graphs with simple labels no
general suggestion which kernel performs best can be derived. CSM performs
best on FM, where walk-based kernels perform slightly worse. The kernels
GRW and FLW in contrast reach high accuracy on MM, where CSM is less
competitive. CSM and GL are closely related, where the subgraph size of
CSM is determined by cross-validation and is fixed to 3 vertices for GL. This
explains why CSM reaches a higher accuracy on most data sets. Surprisingly
GL performs better than CSM on MUTAG. This might be explained by the
influence of automorphisms or be caused by disadvantageous decisions taken
in the process of cross-validation. CSM beats the accuracy of GL clearly on
the multiclass classification problem ENZYME with simple labels and yields
results comparable to WL and WLSP, while others perform worse. This ob-
servation also holds for ENZYME with attributes, where WL and WLSP can
no longer be applied. All approaches benefit substantially from the additional
vertex annotations, which indicates the importance of attributes, and CSM
reaches the highest classification accuracy. On molecular distance graphs we
observed that SM performs best in two of four cases and competitive on the

4.8. Comparative Experimental Evaluation 153

T
ab

le
4.
6:

M
ea
n
cl
as
sifi

ca
tio

n
ac
cu
ra
cy
,s
ta
nd

ar
d
de
vi
at
io
n
an

d
ru
nn

in
g
tim

e
in

se
co
nd

s
on

gr
ap

hs
w
ith

sim
pl
e
la
be

ls.
(P

ar
am

et
er
s
us
ed

w
he
n
m
ea
su
rin

g
ru
nn

in
g
tim

e:
C
SM

k
=

5,
FL

W
`

=
5,

T
P
h

=
2,

W
L/

W
LS

P
h

=
3;
∗
—

co
m
pu

ta
tio

n
by

ex
pl
ic
it
m
ap

pi
ng

)

M
et

ho
d

M
ut

ag
M
M

F
M

M
R

F
R

E
nz

ym
e

C
SM

85
.4
±
1.
2
30
.5

63
.3
±
1.
7
29
.2

63
.8
±
1.
0

30
.9

58
.1
±
1.
6
34
.8

65
.5
±
1.
4
36
.6

60
.4
±
1.
6

98
m

T
P

86
.7
±
0.
9
10
.0

66
.1
±
1.
1
14
.0

60
.5
±
1.
3
14
.9

56
.5
±
2.
2
16
.0

68
.0
±
0.
6

17
.2

42
.7
±
1.
6

38
m

G
RW

87
.4
±
1.
1
40
.1

66
.4
±
0.
7

46
.4

59
.2
±
1.
2
49
.2

57
.7
±
1.
1
53
.6

67
.9
±
0.
5

56
.7

31
.6
±
1.
3

22
9m

F
LW

F
LW

∗
87
.1
±
0.
7
1.
83

0.
35

66
.6
±
0.
5

2.
52

0.
31

57
.1
±
1.
4
2.
79

0.
36

56
.9
±
1.
4
2.
82

0.
33

65
.8
±
0.
8
3.
02

0.
37

37
.9
±
1.
9

78
.1

11
.7

G
H

86
.1
±
1.
8
4.
35

62
.8
±
1.
3
7.
16

62
.0
±
1.
4
7.
41

55
.4
±
1.
6
8.
89

64
.7
±
1.
1
8.
98

33
.8
±
1.
6
21
5.
4

SP
∗

83
.3
±
1.
4
0.
19

61
.0
±
2.
1
0.
16

60
.4
±
1.
7
0.
17

56
.2
±
2.
7
0.
17

67
.9
±
1.
5

0.
18

39
.4
±
0.
5

1.
01

G
L∗

87
.7
±
1.
0

0.
06

61
.2
±
1.
1
0.
04

58
.4
±
1.
1
0.
04

56
.5
±
1.
8
0.
03

65
.6
±
0.
9
0.
04

38
.3
±
1.
1

0.
46

W
L∗

86
.7
±
1.
4
0.
04

64
.8
±
1.
2
0.
08

61
.1
±
0.
8
0.
08

58
.5
±
1.
7
0.
08

67
.2
±
0.
7
0.
09

56
.4
±
0.
9

0.
54

W
LS

P
∗

85
.4
±
1.
2
0.
94

66
.6
±
1.
9

1.
16

60
.4
±
1.
3
1.
32

59
.7
±
1.
6

1.
27

65
.7
±
1.
3
1.
40

62
.9
±
1.
0

25
.7

T
ab

le
4.
7:

M
ea
n
cl
as
sifi

ca
tio

n
ac
cu
ra
cy
,s

ta
nd

ar
d
de
vi
at
io
n
an

d
ru
nn

in
g
tim

e
in

se
co
nd

s
on

at
tr
ib
ut
ed

gr
ap

hs
.
(P

ar
am

et
er
s
us
ed

w
he
n

m
ea
su
rin

g
ru
nn

in
g
tim

e:
(C

)S
M
k

=
5,

FL
W

`
=

5,
T
P
h

=
3;

Tr
ia
ng

ul
ar

K
er
ne
lc

=
0.

25
)

M
et

ho
d

E
nz

ym
e

B
ZR

C
O
X
2

D
H
F
R

E
R

(C
)S
M

69
.8
±
0.
7

11
5.
5

79
.4
±
1.
2

85
.5

74
.4
±
1.
7

19
5.
5

79
.9
±
1.
1
11
6.
2

82
.0
±
0.
8

16
3.
5

T
P

55
.5
±
0.
6

69
.8

—
>
24

h
—

>
24

h
—

>
24

h
—

>
24

h
P
H

—
77
.9
±
1.
6
19
2m

74
.6
±
1.
5

36
4m

80
.8
±
1.
2

41
8m

81
.4
±
0.
6

18
h

F
LW

63
.9
±
0.
3

15
.8

77
.9
±
1.
1

49
.8

74
.4
±
1.
5

82
.0

79
.1
±
1.
1

71
.1

81
.6
±
1.
1

84
.2

G
H

61
.3
±
1.
0
21
6.
8

71
.9
±
1.
1

8.
9

66
.4
±
1.
3

12
.9

67
.8
±
0.
2

14
.3

72
.7
±
1.
1

13
.0

SP
65
.7
±
1.
1
28
2.
2

78
.2
±
1.
2

40
.6

74
.5
±
1.
3

67
.4

77
.6
±
1.
5

59
.9

79
.9
±
1.
3

69
.7

154 Chapter 4. Graph Kernels

other data sets. However, the differences here are rather small. Selecting the
threshold parameter c by cross-validation explains the slight improvement
compared to the accuracies presented in Section 4.7.4. Mahé et al. (2006)
suggested to extend the pharmacophore kernel to take more than 3 points
into account. At least for the instances we have tested, we observed that this
does not lead to a considerable increase in classification accuracy. On the
contrary, even SP, which just compares 2 points, yields competitive results.
Nevertheless, the extension might prove useful where more complex binding
mechanism must be considered.

The results on running time for graphs with simple labels clearly show
that computation schemes based on explicit mapping outperform other ap-
proaches. For FLW we measured the running time for both, explicit and
implicit computation, and found the explicit algorithm to be more efficient
for all data sets, cf. Table 4.4. WLSP is by far the slowest of the approaches
based on explicit mapping. At first sight, it seems surprising that the observed
running times are even higher than the sum of the running times obtained
for SP and WL, since WLSP actually is obtained by a combination of these
two kernels. However, for approaches based on explicit mapping the time re-
quired for taking dot products is very important and depends on the number
of different features contained in the individual graphs, cf. Section 4.4. The
number of different features increases drastically when combining the two ap-
proaches and this explains the observed running times. Kernels computed by
implicit mapping are slower and CSM, TP and GRW lie in the same order
of magnitude, whereas CSM is the slowest. Alone our implicit computation
of FLW is competitive to the explicit mapping algorithms. For attributed
graphs with continuous labels WL and WLSP cannot be applied. On these
graphs SP cannot be computed by explicit mapping. This leads to a con-
siderable increase in running time of SP on the ENZYME data set, where
it is now the slowest of the five tested approaches, while the other kernels
noticeably benefit from the sparsity introduced by the vertex kernel taking
the length attribute into account. TP could not be employed to molecular
distance graphs, since the running time to compute a kernel matrix here ex-
ceeded 24h even for the most restrictive edge kernel with c = 0.1. This can
be explained by the fact that this class of graphs contains vertices with large
sets of matching neighbors, all subsets of which are considered by TP. The
running time of PH also is very high rendering the approach infeasible for
large data sets. We observed that the running time of SM increased with the
parameter c, which is as expected, since the product graph becomes more
dense when the threshold parameter is raised. The implicit computation of
FLW is shown to be more efficient than SM and is one of the most efficient
algorithms for attributed graphs, where the fact that SP on molecular graphs
is directly computed by FLW with ` = 1 without computing shortest paths
must be considered. We also compared CSM to SM and observed that CSM
is considerably faster on sparse graphs, while reaching a comparable predic-

4.9. Summary and Future Work 155

tion accuracy. Shervashidze et al. (2009) noticed in the context of unlabeled
graphlets that taking into account disconnected subgraphs increases the pre-
diction accuracy. We cannot confirm this observation for subgraph matching
kernels.

We discuss the results for GH in more detail since this kernel was partic-
ularly proposed for attributed graphs (following our publication of the sub-
graph matching kernel) and has already been compared to CSM by Feragen
et al. (2013)13 and Neumann et al. (2012b). We observed that GH provides
only moderate accuracy results, in particular for the used attributed graph
data sets. On molecular distance graphs the approach is the fastest, but ob-
tains the worst accuracy results. This cannot be explained by the fact that
GH does not take the bond types into account since SP and PH both provide
a high prediction accuracy on these graphs without using this information. A
possible explanation is that GH is not able to incorporate the graph structure
adequately for the prediction task: Since GH is a weighted sum over vertex
kernels, cf. Equation (4.33), it does not guarantee that any two or more ver-
tex pairs that contribute to the total kernel value exhibit a similar distance.
For the ENZYME data set GH again reaches only moderate accuracy results
and is one of the slowest kernels. This is remarkable since Feragen et al.
(2013) and Neumann et al. (2012b) report competitive results for GH on the
ENZYME data set. The reason for this most likely is, that we only used a sub-
set of the available attributes, while for the other experiments all attributes
were considered. As stated earlier, when using all attributes the classifica-
tion problem is greatly simplified and the graph structure is only marginally
relevant. Our results suggest that CSM—when applicable—remains a viable
alternative in cases where the graph structure and attributes must be taken
into account simultaneously.

4.9 Summary and Future Work

We have given an algorithmic view on the computation of graph kernels and
analyzed techniques based on implicit and explicit feature maps and their
ability to cope with attributed graphs. In particular, a sufficient condition
for R-convolution kernels to determine feature maps and derive explicit com-
putation schemes has been given. We have reviewed previous work in this con-
text, identified key advantages of graph kernels over traditional vector based
approaches, and—as the main contribution of this chapter—proposed fixed
length walk and subgraph matching kernels. For fixed length walk kernels im-
plicit and explicit computation schemes have been developed. For subgraph
matching kernels we have proposed an algorithm for implicit computation
and identified its relation to kernels for labeled graphs based on subgraphs
and explicit feature maps. Our implicit computation schemes fully support

13Please note that the Erratum contains updated experimental results.

156 Chapter 4. Graph Kernels

attributed graphs, while explicit computation schemes are well-suited for la-
beled graphs and often more efficient for real-world instances. In extensive
experimental comparisons, we verified theoretical and practical considerations
and observed computational phase transitions for both kernels depending on
the characteristics of graphs with simple labels. We believe that graph ker-
nels provide a unique potential over traditional approaches, which yet has
not been fully exploited. We discuss several directions of future work reach-
ing from incremental extensions of the kernels we have proposed to general
aspects in the development of graph kernels.

Walk kernels. Kernels based on (random) walks were among the first ker-
nels for graphs and received considerable attention. A remarkable property of
these kernels is that they consider an infinite number of substructures stem-
ming from walks of unbounded length and yet allow polynomial-time com-
putation by closed-form expressions. Thus, the computation of these kernels
employs the kernel trick and necessarily is implicit. Our results for kernels of
fixed length suggest that the benefit of considering an infinite number of walks
is limited. We have obtained similar accuracy results with walks of a fixed
length on several data sets. Moreover, for the walk lengths that yield best
accuracy results on these data sets explicit computation often turned out to
be faster. While it is known that computing graph kernels based on paths of
unbounded length is NP-hard (Gärtner et al., 2003), kernels based on paths of
fixed length clearly can be computed in polynomial time. Paths would com-
pletely avoid the problem of tottering, which is known to harm prediction
accuracy, and reduce the number of features that must be considered, since
paths are a subset of walks. While the running time required to compute
feature vectors is likely to increase compared to walks, the time for kernel
matrix computation is dominated by taking dot products, which crucially de-
pends on the number of features, cf. Section 4.4.1. Indeed techniques based
on paths of a fixed length are commonly used in cheminformatics and used to
determine the similarity between molecular graphs (Daylight, 2008; Ralaivola
et al., 2005). Our experimental evaluation provides new insights in the run-
ning time behavior of implicit and explicit computation of walk-based kernels
and suggests that implicit computation is preferable when graphs exhibit a
high label diversity. The most important advantage of implicit computation
schemes is that they fully support attributed graphs. Developing efficient
kernels based on paths of fixed length that support attributed graphs would
be interesting future work. Our algorithm for implicit computation of walk-
based kernels can serve as starting point for this.

Subgraph matching kernels. We have proposed a novel graph kernel,
which takes subgraphs into account and supports attributed graphs with-
out restriction. The experimental evaluation shows promising results for at-
tributed graphs from chem- and bioinformatics. Thus, we believe subgraph

4.9. Summary and Future Work 157

matching kernels are a viable alternative to existing approaches for attributed
graphs. Our approach already works well in practice for medium-sized graphs,
large graphs when vertex and edge kernels are sparse, or when restricted to
small or connected subgraphs. Improving the running time for large-scale
data sets and large graphs remains future work.

It is often sufficient to consider rather small subgraphs and, hence, small
cliques in the product graph. The pharmacophore kernel, for example, can
be computed based on 3-cliques, i.e., triangles. Recently, algorithms for the
enumeration of triangles were subject to an extensive experimental evaluation
by Ortmann and Brandes (2014). Modifying these algorithms, such that the
weights of triangles are computed in the course of the enumeration process,
allows to apply them to weighted direct product graphs with the goal to
compute the subgraph matching kernel for k = 3 faster.

Computing the CISI kernel can be done by counting cliques instead of
enumerating them. For just counting the number of cliques, algorithms with
a running time superior to the running time achieved by our algorithm are
known: For k = 1 and k = 2 the number of k-cliques corresponds to the num-
ber of vertices and edges, respectively. The number of 3-cliques is 1

6 tr(A3),
where A is the adjacency matrix of G∇H and tr(·) is the trace of a matrix,
i.e., essentially the number of walks of length 3 with the same start and end
vertex. Since matrix multiplication of an n × n-matrix can be computed in
O(nω) with ω < 2.376 (Coppersmith and Winograd, 1987), the number of 3-
cliques can be determined in O(nω). Cliques of size k = 4 can be counted in
O(nω+1) and general k-cliques in O(nωbk/3c+(k mod 3)) (Nešetřil and Poljak,
1985; Alon et al., 1997). Can the sum of weighted cliques be computed in a
similar manner? Such a modification could be useful in order to compute the
subgraph matching kernel.

The technique described in Section 3.3.1 based on line graphs allows to
solve MCES using an MCIS algorithm and is frequently combined with a
clique detection algorithm for the corresponding association graph. The same
ideas could be used to develop a variant of the subgraph matching kernel, that
considers edge-induced common subgraphs. For MCES of molecular graphs
the approach was shown to be able to improve the running time (Nicholson
et al., 1987) and this might as well be the case when applied to the sub-
graph matching kernel. However, a key obstacle might be the presence of
∆Y-exchanges causing cliques in the association graph that correspond to
subgraphs with a different structure.

Kernels have attractive properties that allow their combination. The
strength of the subgraph matching kernel when comparing distance graphs
was shown in Section 4.7.4 for molecular graphs. The following approach can
be considered an extension of the shortest-path kernel: We could first compute
complete graphs, where edges are annotated with shortest-path distances and
then apply the subgraph matching kernel to these graphs. This kernel would
not only consider vertex pairs with similar distances as the shortest-path ker-

158 Chapter 4. Graph Kernels

nel, but could be used to take k-tuples with pairwise similar distances into
account. The resulting kernel could as well be combined with vertex label
refinement (see, e.g., Mahé et al., 2004; Rogers and Hahn, 2010; Costa and
Grave, 2010; Shervashidze et al., 2011) based on the original graphs to ob-
tain an extension of the NSDPK or Weisfeiler-Lehman shortest-path kernel.
According to our analysis the running time of our approach is expected to
decrease with the number of refinement steps. The goal of such a kernel is to
take the relative position of vertices with the same environment into account.

Implicit and explicit computation. Graph kernels are typically pro-
posed with one method of computation. We have shown that implicit and
explicit computation schemes of the same kernel may behave complementary
with respect to running time. Thus, for future work, one should develop ex-
plicit computation schemes for other implicit graph kernels and vice versa.
While explicit computation schemes indeed often show superior running times
in practice, they are highly similar to traditional approaches transforming
graphs into vectors in order to apply machine learning tasks. A striking ad-
vantage of graph kernels is that they allow to compare attributes again by
kernel functions. This is yet only possible with implicit mapping schemes. An
open question is the following: If we assume that vertex and edge kernels can
be computed (or approximated) by explicit mapping into a feature space, can
we then obtain an explicit computation scheme of a (non-trivial) graph ker-
nel? How can we define the feature space of such a graph kernel and in which
way does its dimension depend on the dimension of the feature space of the
vertex and edge kernels? This is a promising direction of future research with
the goal to overcome the problem of discontinuity on bin-boundaries discussed
in Section 4.3.1 while preserving the efficiency of explicit computation.

Complete graph kernels. We feel that this fundamental concept deserves
more attention in order to systematically study the discriminative power of
graph kernels, both, in theory and practice. None of the graph kernels typ-
ically used in practice is complete. This actually is inherent to the concept
underlying almost all graph kernels, which are based on the decomposition of
graphs into substructures. The initial quote of this chapter suggests that—
when transferred to graphs—considering the parts, i.e., substructures, is not
sufficient to determine the whole graph. The famous graph reconstruction
conjecture, states that graphs are uniquely determined by all their proper
subgraphs. Thus, even for kernels based on all proper subgraphs, complete-
ness is not yet proven. The converse is easy to show for the subgraph sizes
typically considered by graph kernels as the graphlet kernel (Shervashidze
et al., 2011). We have obtained graph distance metrics by a fundamentally
different principle: The maximum common subgraph algorithms of Chapter 3
do not consider parts separately and can be used to derive polynomial-time
computable distance metrics for restricted graph classes. However, as detailed

4.9. Summary and Future Work 159

in Section 4.2.3 it is not straightforward to obtain valid kernels from these
approaches and this remains promising future work.

One reason why the concept of complete graph kernels has been neglected
so far, might be that kernels are meant to compute valid similarity mea-
sures and there is typically no need to distinguish all possible graphs up to
isomorphism in order to obtain high prediction accuracies. However, it is ab-
solutely necessary to distinguish non-isomorphic graphs with different class
labels. Thus, the following notions might proof useful: For a given data set
D = {(G1, y1), . . . , (Gn, yn)} of graphs Gi ∈ G with class labels yi ∈ Y for
all 1 ≤ i ≤ n, we say a graph kernel K is complete for D if for all graphs
Gi, Gj the implication φ(Gi) = φ(Gj) =⇒ yi = yj holds. Counting the num-
ber of graph pairs in a data set with different class labels that cannot be
distinguished by a graph kernel then yields a value that limits the classifica-
tion accuracy of a kernel on a specific data set. It would be interesting to
investigate how this measures aligns with the observed prediction accuracy.
If a graph kernel can distinguish all graphs (with different class labels) of a
data set, but at the same time provides poor classification accuracies, then
the classes are not separable in feature space by the used SVM. But does this
necessarily mean that the graph kernel is not adequate? It is an interesting
question if we can apply the same techniques that are commonly used for
vector data to obtain linear separability in feature space in the context of
graph kernels. We discuss this in the following paragraph.

Authoritative experimental comparison. The number of graph kernels
proposed grows rapidly, while obtaining fair authoritative experimental com-
parisons becomes increasingly difficult. As we have seen, many graph kernels
explicitly compute feature vectors and thus basically transform graph data to
vector data. Typically these kernels then just apply the linear kernel to these
vectors ob obtain a graph kernel. This is surprising since it is well-known
that for vector data often better results can be obtained by a polynomial
or Gaussian RBF kernel. These, however, are not used in combination with
graph kernels. By applying the kernel trick such kernels can as well be used
with graph kernels based on implicit computation. The Gaussian RBF kernel
could, for example, be combined with the kernel metric obtained from the
subgraph matching kernel to obtain a modified graph kernel. Experimen-
tal comparisons—including the one presented here—typically do not consider
such modification although this would be most interesting.

There are yet several benchmark data sets containing graphs with simple
labels, unfortunately data sets with attributed graphs are yet not wide-spread.
This might be explained by the fact that only more recently graph kernels
for attributed graphs obtained considerable attention. Since then, several
kernels supporting attributed graphs have been proposed. These now allow
to develop novel, more complex graph models with non-discrete annotations.
Adding attributes to vertices and edges greatly enhances the freedom in mod-

160 Chapter 4. Graph Kernels

eling domain-specific problems and promises improved prediction accuracies
when taken into account by kernels adequately. The advantages of graph
kernels for attributed graphs compared to approaches for graphs with sim-
ple labels or based on transformation into vector data should be analyzed
in more detail. In particular, the transformation of attributes to discrete
labels by binning techniques as detailed in Section 4.3.2 should be further
investigated. Experimental comparison could give evidence when kernels for
attributed graphs can be replaced by kernels for simple labels, which are often
more efficient.

Large-scale comparative evaluations on a wide range of data sets with
the various graph kernels yet proposed would be highly desirable and—with
the growing number of available graph kernels—become both, increasingly
important and difficult to accomplish. Graph kernels often depend on pa-
rameters like the walk length and subgraph size. Authoritative experiments
must consequently perform the best possible parameter optimization for all
kernels and should combine each with different normalization techniques. Ex-
perimental evaluation would benefit from a common software framework for
graph kernels, since implementations typically differ with respect to the graph
file format, their ability to handle edge and vertex labels or attributes as well
as basic graph data structures. Moreover, many recently proposed graph
kernels rely on a base graph kernel or are obtained by combining standard
modifications to graphs like label refinement. Many graph problems reappear
in the context of graph kernels: This includes the enumeration of subgraphs,
subtrees, cycles, paths and walks as well as the related canonization prob-
lems; computing graph invariants, (Weisfeiler-Lehman) label refinements and
shortest paths is often required. A common framework would highly facilitate
the combination of kernels, their fair comparison and the prototyping of new
kernels. As part of the experimental evaluation presented in this thesis, not
only kernels proposed by us have been implemented, but various kernels of
other authors have been reimplemented. Releasing this software package in
the near future is planned.

Das Vergleichen ist das Ende des Glücks
und der Anfang der Unzufriedenheit.

Søren Aabye Kierkegaard
(1813–1855)

Chapter 5

Conclusion and Outlook

Comparing graphs and developing meaningful similarity measures between
graphs is of utmost importance and a premise in order to apply data min-
ing algorithms to graphs. Consequently such techniques have been studied
extensively. In this thesis, we considered two different techniques.

An essential advantage of solving maximum common subgraph problems
is that the result can be inspected visually. This is crucial, for example, in
cheminformatics, where visual analytics techniques become increasingly pop-
ular. In this application domain graphs often have a simple structure. Nev-
ertheless, in practice almost exclusively algorithms with exponential worst-
case running time are employed. Recently, progress in polynomial-time com-
putable maximum common subgraph problems in molecular graphs has been
made. Working around the limits established by known complexity results,
rings and chains—or blocks and bridges in the language of graphs—were con-
sidered separately. This does not only allow to obtain polynomial running
time for certain graph classes, but also yields chemical meaningful results.
This has been shown experimentally and the idea is as well supported by the
success of scaffold based approaches in cheminformatics. Building on these
ideas we have extended the graph class for which polynomial-time algorithms
were known from the outerplanar graphs to the series-parallel graphs. This
requires to overcome the limitations of graph decompositions that are based
on graph separators. We have introduced the concept of potential separators
and used them algorithmically to find a maximum common biconnected sub-
graph of two biconnected series-parallel graphs. This result finally allowed us
to compute block and bridge preserving maximum common connected sub-
graphs in series-parallel graphs. This progress constitutes a step towards
solving maximum common subgraph problems that are highly relevant in
practice in worst-case polynomial time. Further progress in this direction is
required and might ultimately change the practical use of maximum com-
mon subgraph algorithms in cheminformatics and other application domains,
where structurally simple graphs arise.

Another contribution of this thesis is to the field of graph kernels, a more

161

162 Chapter 5. Conclusion and Outlook

novel development in graph comparisons. This technique generalizes tradi-
tional techniques based on vector representations. A unique advantage of
graph kernels is that a large, possibly infinite, number of features can be con-
sidered efficiently and attributed graphs with continuous annotations can be
compared. We have developed novel kernels especially designed for attributed
graphs and studied under which conditions graph kernels can be computed
by explicit vector representations. This allowed us to systematically study
the impact of implicit and explicit computation of graph kernels on the run-
ning time. Our results suggest that explicit computation often is favorable,
while implicit computation schemes provide a higher flexibility when compar-
ing attributes. The advantage of annotating vertices and edges by attributes
is not yet fully exploited by widely used graph models. The development of
more sophisticated models with complex annotations requires domain specific
expert knowledge and is promising future work.

If I have seen further it is by
standing on the shoulders of giants.

Isaac Newton
(1643–1727)

Bibliography

Faisal N. Abu-Khzam. Maximum common induced subgraph parameterized
by vertex cover. Information Processing Letters, 114(3):99 – 103, 2014.
ISSN 0020-0190.

Julien Ah-Pine. Normalized kernels as similarity indices. In Mohammed J.
Zaki, Jeffrey Xu Yu, B. Ravindran, and Vikram Pudi, editors, Advances in
Knowledge Discovery and Data Mining, volume 6119 of Lecture Notes in
Computer Science, pages 362–373. Springer Berlin Heidelberg, 2010. ISBN
978-3-642-13671-9.

Tatsuya Akutsu. A polynomial time algorithm for finding a largest common
subgraph of almost trees of bounded degree. IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences, E76-A
(9), September 1993.

Tatsuya Akutsu and Takeyuki Tamura. On the complexity of the maximum
common subgraph problem for partial k-trees of bounded degree. In Kun-
Mao Chao, Tsan-sheng Hsu, and Der-Tsai Lee, editors, Algorithms and
Computation, volume 7676 of Lecture Notes in Computer Science, pages
146–155. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-35260-7.

Tatsuya Akutsu and Takeyuki Tamura. A polynomial-time algorithm for
computing the maximum common connected edge subgraph of outerplanar
graphs of bounded degree. Algorithms, 6(1):119–135, 2013. ISSN 1999-4893.

Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given
length cycles. Algorithmica, 17:209–223, 1997. ISSN 0178-4617.

Vikraman Arvind and Jacobo Torán. Isomorphism testing: Perspective and
open problems. Bulletin of the EATCS, 86:66–84, 2005.

László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceed-
ings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 171–183, New York, NY, USA, 1983. ACM. ISBN 0-
89791-099-0.

163

164 Bibliography

László Babai, William M. Kantor, and Eugene M. Luks. Computational
complexity and the classification of finite simple groups. In Foundations of
Computer Science, 1983., 24th Annual Symposium on, pages 162–171, Nov
1983.

Sabine Bachl, Franz-Josef Brandenburg, and Daniel Gmach. Computing and
drawing isomorphic subgraphs. J. Graph Algorithms Appl., 8(2):215–238,
2004.

Laura Bahiense, Gordana Manić, Breno Piva, and Cid C. de Souza. The
maximum common edge subgraph problem: A polyhedral investigation.
Discrete Applied Mathematics, 160(18):2523 – 2541, 2012. ISSN 0166-218X.
V Latin American Algorithms, Graphs, and Optimization Symposium —
Gramado, Brazil, 2009.

Lu Bai, Horst Bunke, and Edwin R. Hancock. An attributed graph kernel
from the jensen-shannon divergence. In Pattern Recognition (ICPR), 2014
22nd International Conference on, pages 88–93, Aug 2014.

Jürgen Bajorath, editor. Chemoinformatics: Concepts, Methods, and Tools
for Drug Discovery, volume 275 of Methods in Molecular Biology. Humana
Press, Totowa, New Jersey, 2004. ISBN 1-58829-261-4.

Jürgen Bajorath, editor. Chemoinformatics and Computational Chemical Bi-
ology, volume 672 of Methods in Molecular Biology. Humana Press, 2011.

Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary
graph. SIAM J. Comput., 15(4):1054–1068, 1986. ISSN 0097-5397.

John M. Barnard. Substructure searching methods: Old and new. Journal
of Chemical Information and Computer Sciences, 33(4):532–538, 1993.

Lukas Barth, Stephen G. Kobourov, and Sergey Pupyrev. Experimental com-
parison of semantic word clouds. In Joachim Gudmundsson and Jyrki Kata-
jainen, editors, Experimental Algorithms, volume 8504 of Lecture Notes in
Computer Science, pages 247–258. Springer International Publishing, 2014.
ISBN 978-3-319-07958-5.

Enrico Bertini, Hendrik Strobelt, Joachim Braun, Oliver Deussen, Ulrich
Groth, Thomas U. Mayer, and Dorit Merhof. HiTSEE: A visualization tool
for hit selection and analysis in high-throughput screening experiments. In
Biological Data Visualization (BioVis), 2011 IEEE Symposium on, pages
95–102, 2011.

Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph Theory 1736-
1936. Clarendon Press, New York, NY, USA, 1986. ISBN 0-198-53916-9.

Bibliography 165

Kristian Birchall and Valerie J Gillet. Reduced graphs and their applications
in chemoinformatics. Methods Mol Biol, 672:197–212, 2011.

Hans L. Bodlaender. Classes of graphs with bounded treewidth. Technical Re-
port RUU-CS-86-22, Department of Computer Science, Utrecht University,
1986.

Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chro-
matic index on partial k-trees. J. Algorithms, 11(4):631–643, 1990.

Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello
Pelillo. The maximum clique problem. In D.-Z. Du and P. M. Pardalos,
editors, Handbook of Combinatorial Optimization, volume A, pages 1–74.
Kluwer Academic Publishers, 1999.

Robin S. Bon and Herbert Waldmann. Bioactivity-guided navigation of chem-
ical space. Acc Chem Res, 43(8):1103–1114, Aug 2010.

Kellogg S. Booth and Charles J. Colbourn. Problems polynomially equivalent
to graph isomorphism. Technical Report CS-77-04, University of Waterloo,
Computer Science Department, June 1979.

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on
graphs. In Proceedings of the Fifth IEEE International Conference on Data
Mining, ICDM ’05, pages 74–81, Washington, DC, USA, 2005. IEEE Com-
puter Society. ISBN 0-7695-2278-5.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vish-
wanathan, Alex J. Smola, and Hans-Peter Kriegel. Protein function pre-
diction via graph kernels. Bioinformatics, 21 Suppl 1:i47–i56, Jun 2005.

Karsten M. Borgwardt, Hans-Peter Kriegel, S. V. N. Vishwanathan, and
Nicol N. Schraudolph. Graph kernels for disease outcome prediction from
protein-protein interaction networks. Pacific Symposium on Biocomputing,
pages 4–15, 2007.

Franz J. Brandenburg. Subgraph isomorphism problems for k-connected par-
tial k-trees. Unpublished Manuscript, 2000.

Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes:
A Survey. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1999. ISBN 0-89871-432-X.

Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM, 16:575–577, September 1973. ISSN
0001-0782.

166 Bibliography

Frank K. Brown. Chapter 35 - chemoinformatics: What is it and how does it
impact drug discovery. volume 33 of Annual Reports in Medicinal Chem-
istry, pages 375 – 384. Academic Press, 1998.

Nathan Brown. Chemoinformatics - an introduction for computer scientists.
ACM Comput. Surv., 41(2), 2009.

Barry A. Bunin, Brian Siesel, Guillermo A. Morales, and Jürgen Bajorath,
editors. Chemoinformatics: Theory, Practice, & Products. Springer Verlag,
2007.

Horst Bunke and Kim Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recognition Letters, 19(3-4):255–259, 1998.
ISSN 0167-8655.

Johannes Carmesin, Reinhard Diestel, Fabian Hundertmark, and Maya Stein.
Connectivity and tree structure in finite graphs. Combinatorica, 34(1):11–
46, 2014. ISSN 0209-9683.

Frédéric Cazals and Chinmay Karande. An algorithm for reporting maximal
c-cliques. Theor. Comput. Sci., 349(3):484–490, 2005.

Alessio Ceroni, Fabrizio Costa, and Paolo Frasconi. Classification of small
molecules by two- and three-dimensional decomposition kernels. Bioinfor-
matics, 23(16):2038–2045, Aug 2007.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:
27:1–27:27, May 2011. ISSN 2157-6904. Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm.

Markus Chimani and Petr Hliněný. A tighter insertion-based approximation
of the crossing number. In Luca Aceto, Monika Henzinger, and Jiří Sgall,
editors, Automata, Languages and Programming, volume 6755 of Lecture
Notes in Computer Science, pages 122–134. Springer Berlin Heidelberg,
2011. ISBN 978-3-642-22005-0.

Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau,
Karsten Klein, and Petra Mutzel. The Open Graph Drawing Framework
(OGDF). In R. Tamassia, editor, Handbook of Graph Drawing and Visual-
ization, chapter 17, pages 543–569. CRC Press, 2013.

Donatello Conte, Pasquale Foggia, and Mario Vento. Challenging complexity
of maximum common subgraph detection algorithms: A performance anal-
ysis of three algorithms on a wide database of graphs. J. Graph Algorithms
Appl., 11(1):99–143, 2007.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography 167

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. In Proceedings of the nineteenth annual ACM sympo-
sium on Theory of computing, STOC ’87, pages 1–6, New York, NY, USA,
1987. ACM. ISBN 0-89791-221-7.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Francesco Tortorella, and
Mario Vento. Graph matching: a fast algorithm and its evaluation. In In
Proc. of the 14th International Conference on Pattern Recognition, pages
1582–1584, 1999.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. An im-
proved algorithm for matching large graphs. In 3rd IAPR-TC15 Workshop
on Graph-based Representations, 2001.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A
(sub)graph isomorphism algorithm for matching large graphs. IEEE Trans.
Pattern Anal. Mach. Intell., 26(10):1367–1372, 2004. ISSN 0162-8828.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, September
2001. ISBN 0262531968.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise
distance kernel. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 255–
262, 2010.

Andrew Cotter, Joseph Keshet, and Nathan Srebro. Explicit approximations
of the gaussian kernel. CoRR, abs/1109.4603, 2011.

Chemical Information Systems Daylight. Daylight theory manual v4.9.
http://www.daylight.com/dayhtml/doc/theory, January 2008.

Luc De Raedt and Jan Ramon. Deriving distance metrics from generality
relations. Pattern Recogn. Lett., 30(3):187–191, February 2009. ISSN 0167-
8655.

Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis.
Frequent substructure-based approaches for classifying chemical com-
pounds. Knowledge and Data Engineering, IEEE Transactions on, 17(8):
1036 – 1050, aug. 2005. ISSN 1041-4347.

Anders Dessmark, Andrzej Lingas, and Andrzej Proskurowski. Faster algo-
rithms for subgraph isomorphism of k-connected partial k-trees. Algorith-
mica, 27:337–347, 2000. ISSN 0178-4617.

Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg, 3 edition, 2005.

168 Bibliography

Frederic Dorn. Planar subgraph isomorphism revisited. In Jean-Yves Marion
and Thomas Schwentick, editors, 27th International Symposium on Theo-
retical Aspects of Computer Science (STACS 2010), volume 5 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 263–274, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN
978-3-939897-16-3.

Geoff M. Downs and John M. Barnard. Clustering Methods and Their Uses
in Computational Chemistry, pages 1–40. John Wiley & Sons, Inc., 2003.
ISBN 9780471433514.

Andre Droschinsky, Bernhard Heinemann, Nils Kriege, and Petra Mutzel.
Enumeration of maximum common subtree isomorphisms with polynomial-
delay. In Hee-Kap Ahn and Chan-Su Shin, editors, Algorithms and Com-
putation, Lecture Notes in Computer Science, pages 81–93. Springer Inter-
national Publishing, 2014. ISBN 978-3-319-13074-3.

Andre Droschinsky, Nils Kriege, and Petra Mutzel. Efficient enumeration
algorithms for common subgraph problems in outerplanar graphs. 2015. In
preparation.

Ran Duan and Hsin-Hao Su. A scaling algorithm for maximum weight match-
ing in bipartite graphs. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages 1413–1424.
SIAM, 2012.

Paul J. Durand, Rohit Pasari, Johnnie W. Baker, and Chun-che Tsai. An
efficient algorithm for similarity analysis of molecules. Internet Journal of
Chemistry, 2:1–12, 1999.

Joseph L. Durant, Burton A. Leland, Douglas R. Henry, and James G. Nourse.
Reoptimization of mdl keys for use in drug discovery. Journal of Chemical
Information and Computer Sciences, 42(5):1273–1280, 2002.

Hans-Christian Ehrlich and Matthias Rarey. Maximum common subgraph
isomorphism algorithms and their applications in molecular science: a re-
view. Wiley Interdisciplinary Reviews: Computational Molecular Science,
1(1):68–79, 2011. ISSN 1759-0884.

Ehab S. El-Mallah and Charles J. Colbourn. The complexity of some edge
deletion problems. Circuits and Systems, IEEE Transactions on, 35(3):
354–362, Mar 1988. ISSN 0098-4094.

Charles Elkan. Using the triangle inequality to accelerate k-means. In Pro-
ceedings of the Twentieth International Conference on Machine Learning
(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 147–153,
2003.

Bibliography 169

David Eppstein. Subgraph isomorphism in planar graphs and related prob-
lems. Journal of Graph Algorithms & Applications, 3(3):1–27, 1999.

Peter Ertl and Bernhard Rohde. The molecule cloud - compact visualization
of large collections of molecules. Journal of Cheminformatics, 4(1):12, 2012.
ISSN 1758-2946.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen D. Bruijne, and
Karsten Borgwardt. Scalable kernels for graphs with continuous attributes.
In C.j.c. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.q. Wein-
berger, editors, Advances in Neural Information Processing Systems 26,
pages 216–224, 2013. Erratum available at http://image.diku.dk/aasa/
papers/graphkernels_nips_erratum.pdf.

Mirtha-Lina Fernández and Gabriel Valiente. A graph distance metric com-
bining maximum common subgraph and minimum common supergraph.
Pattern Recognition Letters, 22(6–7):753 – 758, 2001. ISSN 0167-8655.

Thomas Fober, Marco Mernberger, Gerhard Klebe, and Eyke Hüllermeier.
Fingerprint kernels for protein structure comparison. Molecular Informat-
ics, 31(6-7):443–452, 2012. ISSN 1868-1751.

Pasquale Foggia, Carlo Sansone, and Mario Vento. A database of graphs for
isomorphism and sub-graph isomorphism benchmarking. In Proc. of the
3rd IAPR TC-15 International Workshop on Graph-based Representations,
pages 176–187. Citeseer, 2001.

Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and con-
quer: A simple O(20.288n) independent set algorithm. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA
’06, pages 18–25, Philadelphia, PA, USA, 2006. Society for Industrial and
Applied Mathematics. ISBN 0-89871-605-5.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. J. ACM, 34(3):596–
615, 1987.

Holger Fröhlich, Jörg K. Wegner, Florian Sieker, and Andreas Zell. Optimal
assignment kernels for attributed molecular graphs. In Proceedings of the
22nd international conference on Machine learning, ICML ’05, pages 225–
232, New York, NY, USA, 2005. ACM. ISBN 1-59593-180-5.

Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network
problems. SIAM Journal on Computing, 18(5):1013–1036, 1989.

Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. ISBN
0-7167-1044-7.

http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf
http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf

170 Bibliography

Thomas Gärtner. Kernels for structured data. Series in machine perception
and artificial intelligence. World Scientific, Singapore, 2009.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hard-
ness results and efficient alternatives. In Bernhard Schölkopf and Manfred
Warmuth, editors, Learning Theory and Kernel Machines, volume 2777
of Lecture Notes in Computer Science, pages 129–143. Springer Berlin /
Heidelberg, 2003.

Johann Gasteiger and Thomas Engel, editors. Chemoinformatics: A Text-
book. Wiley VCH, October 2003. ISBN 3527306811.

Anna Gaulton, Louisa J. Bellis, A. Patricia Bento, Jon Chambers,
Mark Davies, Anne Hersey, Yvonne Light, Shaun McGlinchey, David
Michalovich, Bissan Al-Lazikani, and John P. Overington. Chembl: a large-
scale bioactivity database for drug discovery. Nucleic Acids Research, 40
(D1):D1100–D1107, 2012.

Marc G. Genton. Classes of kernels for machine learning: A statistics per-
spective. Journal of Machine Learning Research, 2:299–312, March 2002.
ISSN 1532-4435.

Adalbert Gorecki, Anke Arndt, Arbia Ben Ahmed, Andre Wiesniewski,
Cengizhan Yücel, Gebhard Schrader, Henning Wagner, Michael Rex,
Nils Kriege, Philipp Büderbender, Sergej Rakov, and Vanessa Bembenek.
ChemBioSpace Explorer: PG504 Endbericht, 2008.

Susumu Goto, Yasushi Okuno, Masahiro Hattori, Takaaki Nishioka, and Mi-
noru Kanehisa. Ligand: database of chemical compounds and reactions in
biological pathways. Nucleic Acids Research, 30(1):402–404, 2002.

Martin Grohe. Logical and structural approaches to the graph isomor-
phism problem. In Krishnendu Chatterjee and Jirí Sgall, editors, Math-
ematical Foundations of Computer Science 2013, volume 8087 of Lecture
Notes in Computer Science, pages 42–42. Springer Berlin Heidelberg, 2013.
ISBN 978-3-642-40312-5. Slides available at: https://ist.ac.at/mfcs13/
slides/gi.pdf.

Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for
graphs with excluded topological subgraphs. SIAM Journal on Computing,
44(1):114–159, 2015.

Martin Gronemann, Michael Jünger, Petra Mutzel, and Nils Kriege. Molmap
– visualizing molecule libraries as topographic maps. In Proceedings of
the International Conference on Computer Graphics Theory and Applica-
tions and International Conference on Information Visualization Theory
and Applications (GRAPP & IVAPP), 2013.

https://ist.ac.at/mfcs13/slides/gi.pdf
https://ist.ac.at/mfcs13/slides/gi.pdf

Bibliography 171

Arvind Gupta and Naomi Nishimura. Sequential and parallel algorithms for
embedding problems on classes of partial k-trees. In Erik Schmidt and Sven
Skyum, editors, Algorithm Theory — SWAT ’94, volume 824 of Lecture
Notes in Computer Science, pages 172–182. Springer Berlin / Heidelberg,
1994. ISBN 978-3-540-58218-2.

Arvind Gupta and Naomi Nishimura. Characterizing the complexity of sub-
graph isomorphism for graphs of bounded path-width. In Claude Puech
and Rüdiger Reischuk, editors, STACS 96, volume 1046 of Lecture Notes
in Computer Science, pages 453–464. Springer Berlin / Heidelberg, 1996a.
ISBN 978-3-540-60922-3.

Arvind Gupta and Naomi Nishimura. The complexity of subgraph isomor-
phism for classes of partial k-trees. Theoretical Computer Science, 164
(1–2):287 – 298, 1996b. ISSN 0304-3975.

Arvind Gupta and Naomi Nishimura. Finding largest subtrees and smallest
supertrees. Algorithmica, 21:183–210, 1998. ISSN 0178-4617.

Yuri Gurevich. From invariants to canonization. Bulletin of the EATCS, 63,
1997.

Martin Gutlein, Andreas Karwath, and Stefan Kramer. Ches-mapper - chem-
ical space mapping and visualization in 3d. Journal of Cheminformatics, 4
(1):7, 2012. ISSN 1758-2946.

Carsten Gutwenger and Petra Mutzel. A linear time implementation of spqr-
trees. In Joe Marks, editor, Graph Drawing, volume 1984 of Lecture Notes
in Computer Science, pages 77–90. Springer Berlin Heidelberg, 2001. ISBN
978-3-540-41554-1.

Bernard Haasdonk and Claus Bahlmann. Learning with distance substitu-
tion kernels. In Carl Edward Rasmussen, Heinrich H. Bülthoff, Bernhard
Schölkopf, and Martin A. Giese, editors, Pattern Recognition, volume 3175
of Lecture Notes in Computer Science, pages 220–227. Springer Berlin Hei-
delberg, 2004. ISBN 978-3-540-22945-2.

MohammadTaghi Hajiaghayi and Naomi Nishimura. Subgraph isomorphism,
log-bounded fragmentation, and graphs of (locally) bounded treewidth.
Journal of Computer and System Sciences, 73(5):755 – 768, 2007. ISSN
0022-0000.

Richard Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of Product
Graphs. Discrete Mathematics and Its Applications. Taylor and Francis,
2011. ISBN 9781439813041.

172 Bibliography

Zaïd Harchaoui and Francis Bach. Image classification with segmentation
graph kernels. In Computer Vision and Pattern Recognition, 2007. CVPR
’07. IEEE Conference on, june 2007.

David Haussler. Convolution kernels on discrete structures. Technical Report
UCSC-CRL-99-10, University of California, Santa Cruz, CA, USA, 1999.

Shohei Hido and Hisashi Kashima. A linear-time graph kernel. In ICDM
2009, The Ninth IEEE International Conference on Data Mining, pages
179 –188, dec. 2009.

Sepp Hochreiter and Klaus Obermayer. Support vector machines for dyadic
data. Neural Computation, 18(6):1472–1510, 2006.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel
methods in machine learning. Ann. Statist., 36(3):1171–1220, 06 2008.

Walter Holberg. The decomposition of graphs into k-connected components.
Discrete Mathematics, 109(1-3):133 – 145, 1992. ISSN 0012-365X.

John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected
components. SIAM Journal on Computing, 2(3):135–158, 1973.

John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism
of planar graphs (preliminary report). In Proceedings of the Sixth Annual
ACM Symposium on Theory of Computing, STOC ’74, pages 172–184, New
York, NY, USA, 1974. ACM.

Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels
for predictive graph mining. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD
’04, pages 158–167, New York, NY, USA, 2004. ACM. ISBN 1-58113-888-
1.

Tamás Horváth, Jan Ramon, and Stefan Wrobel. Frequent subgraph mining
in outerplanar graphs. In Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’06,
pages 197–206, New York, NY, USA, 2006. ACM. ISBN 1-59593-339-5.

Tamás Horváth, Jan Ramon, and Stefan Wrobel. Frequent subgraph mining
in outerplanar graphs. Data Mining and Knowledge Discovery, 21:472–508,
2010. ISSN 1384-5810.

Tamás Horváth and Jan Ramon. Efficient frequent connected subgraph min-
ing in graphs of bounded tree-width. Theoretical Computer Science, 411
(31–33):2784 – 2797, 2010. ISSN 0304-3975.

Bibliography 173

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to
support vector classification. Technical report, Department of Computer
Science, National Taiwan University, 2003. version updated 2010.

Brijnesh J. Jain and Klaus Obermayer. Elkan’s k-means algorithm for
graphs. In Grigori Sidorov, Arturo Hernández Aguirre, and Carlos Alberto
Reyes García, editors, Advances in Soft Computing, volume 6438 of Lecture
Notes in Computer Science, pages 22–32. Springer Berlin Heidelberg, 2010.
ISBN 978-3-642-16772-0.

Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling approach to
the visualization of hierarchical information structures. In Visualization,
1991. Visualization ’91, Proceedings., IEEE Conference on, pages 284–291,
Oct 1991.

David S. Johnson. The NP-completeness column. ACM Trans. Algorithms,
1(1):160–176, July 2005. ISSN 1549-6325.

David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou. On
generating all maximal independent sets. Information Processing Letters,
27(3):119 – 123, 1988. ISSN 0020-0190.

H. C. Johnston. Cliques of a graph-variations on the bron-kerbosch algo-
rithm. International Journal of Parallel Programming, 5:209–238, 1976.
ISSN 0885-7458.

U Kang, Hanghang Tong, and Jimeng Sun. Fast random walk graph kernel.
In Proceedings of the 2012 SIAM International Conference on Data Mining,
pages 828–838, 2012.

Ming-Yang Kao, Tak-Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. An
even faster and more unifying algorithm for comparing trees via unbalanced
bipartite matchings. Journal of Algorithms, 40(2):212 – 233, 2001. ISSN
0196-6774.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels be-
tween labeled graphs. In Proceedings of the Twentieth International Con-
ference on Machine Learning (ICML 2003), pages 321–328, 2003.

Karsten Klein, Nils Kriege, and Petra Mutzel. CT-index: Fingerprint-based
graph indexing combining cycles and trees. In IEEE 27th International
Conference on Data Engineering (ICDE), pages 1115 –1126, April 2011.

Karsten Klein, Nils Kriege, and Petra Mutzel. Scaffold Hunter – visual anal-
ysis of chemical compound databases. In Proceedings of the International
Conference on Computer Graphics Theory and Applications and Interna-
tional Conference on Information Visualization Theory and Applications
(GRAPP & IVAPP), pages 626–635, 2012.

174 Bibliography

Karsten Klein, Oliver Koch, Nils Kriege, Petra Mutzel, and Till Schäfer.
Visual analysis of biological activity data with Scaffold Hunter. Molecular
Informatics, 32(11-12):964–975, 2013a. ISSN 1868-1751.

Karsten Klein, Nils Kriege, and Petra Mutzel. Scaffold Hunter: Facilitating
drug discovery by visual analysis of chemical space. In Gabriela Csurka,
Martin Kraus, Robert S. Laramee, Paul Richard, and José Braz, editors,
Computer Vision, Imaging and Computer Graphics. Theory and Applica-
tion, volume 359 of Communications in Computer and Information Science,
pages 176–192. Springer Berlin Heidelberg, 2013b. ISBN 978-3-642-38240-6.

Ina Koch. Enumerating all connected maximal common subgraphs in two
graphs. Theor. Comput. Sci., 250(1-2):1–30, 2001.

Risi Imre Kondor and John D. Lafferty. Diffusion kernels on graphs and
other discrete input spaces. In Proceedings of the Nineteenth International
Conference on Machine Learning, ICML ’02, pages 315–322, San Francisco,
CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1-55860-873-7.

Nils Kriege. Erweiterte Substruktursuche in Moleküldatenbanken und ihre
Integration in Scaffold Hunter. Master’s thesis, TU Dortmund, December
2009.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed
graphs. In Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012.
icml.cc / Omnipress, 2012.

Nils Kriege and Petra Mutzel. Finding maximum common biconnected sub-
graphs in series-parallel graphs. In Erzsébet Csuhaj-Varjú, Martin Dietzfel-
binger, and Zoltán Ésik, editors, Mathematical Foundations of Computer
Science 2014, volume 8635 of Lecture Notes in Computer Science, pages
505–516. Springer Berlin Heidelberg, 2014. ISBN 978-3-662-44464-1.

Nils Kriege, Florian Kurpicz, and Petra Mutzel. On maximum common sub-
graph problems in series-parallel graphs. In Kratochvíl Jan, Mirka Miller,
and Dalibor Froncek, editors, International Workshop on Combinatorial
Algorithms, IWOCA 2014, volume 8986 of Lecture Notes in Computer
Science, pages 200–212. Springer International Publishing, 2014a. ISBN
978-3-319-19314-4. Journal version submitted to the European Journal of
Combinatorics.

Nils Kriege, Petra Mutzel, and Till Schäfer. Practical SAHN clustering for
very large data sets and expensive distance metrics. Journal of Graph
Algorithms and Applications, 18(4):577–602, 2014b.

Bibliography 175

Nils Kriege, Marion Neumann, Kristian Kersting, and Petra Mutzel. Explicit
versus implicit graph feature maps: A computational phase transition for
walk kernels. In Data Mining (ICDM), 2014 IEEE International Confer-
ence on, pages 881–886, Dec 2014c.

Casimir Kuratowski. Sur le problème des courbes gauches en topologie. Fun-
damenta Mathematicae, 15(1):271–283, 1930.

Florian Kurpicz. Efficient algorithms for the maximum common subgraph
problem in partial 2-trees. Master’s thesis, TU Dortmund, 2014.

Johannes Köbler. On graph isomorphism for restricted graph classes. In
Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and JohnV. Tucker, edi-
tors, Logical Approaches to Computational Barriers, volume 3988 of Lecture
Notes in Computer Science, pages 241–256. Springer Berlin Heidelberg,
2006. ISBN 978-3-540-35466-6.

G. Levi. A note on the derivation of maximal common subgraphs of two
directed or undirected graphs. Calcolo, Jan 1973.

Andrzej Lingas. Subgraph isomorphism for biconnected outerplanar graphs
in cubic time. Theoretical Computer Science, 63(3):295 – 302, 1989. ISSN
0304-3975.

Andrzej Lingas and Maciej Sysło. A polynomial-time algorithm for subgraph
isomorphism of two-connected series-parallel graphs. In Timo Lepistö and
Arto Salomaa, editors, Automata, Languages and Programming, volume
317 of Lecture Notes in Computer Science, pages 394–409. Springer Berlin
/ Heidelberg, 1988. ISBN 978-3-540-19488-0.

Alan Lipkus. A proof of the triangle inequality for the tanimoto distance.
Journal of Mathematical Chemistry, 26(1):263–265, October 1999.

Eugen Lounkine, Mathias Wawer, Anne Mai Wassermann, and Jürgen Bajo-
rath. Saranea: a freely available program to mine structure-activity and
structure-selectivity relationship information in compound data sets. J.
Chem. Inf. Model., 50(1):68–78, Jan 2010.

Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested
in polynomial time. Journal of Computer and System Sciences, 25(1):42 –
65, 1982. ISSN 0022-0000.

Gerald M. Maggiora and Veerabahu Shanmugasundaram. Molecular similar-
ity measures. Methods in Molecular Biology, 672:39–100, 2011.

Pierre Mahé and Jean-Philippe Vert. Graph kernels based on tree patterns
for molecules. Mach. Learn., 75:3–35, April 2009. ISSN 0885-6125.

176 Bibliography

Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-
Philippe Vert. Extensions of marginalized graph kernels. In Proceedings of
the twenty-first international conference on Machine learning, ICML ’04,
pages 70–, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5.

Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-
Philippe Vert. Graph kernels for molecular structure-activity relationship
analysis with support vector machines. J. Chem. Inf. Model., 45(4):939–
951, 2005.

Pierre Mahé, Liva Ralaivola, Véronique Stoven, and Jean-Philippe Vert. The
pharmacophore kernel for virtual screening with support vector machines.
J. Chem. Inf. Model., 46(5):2003–2014, 2006.

Gordana Manić, Laura Bahiense, and Cid de Souza. A branch&cut algorithm
for the maximum common edge subgraph problem. Electronic Notes in
Discrete Mathematics, 35(0):47 – 52, 2009. ISSN 1571-0653. Proceedings
of the Latin-American Algorithms, Graphs and Optimization Symposium
(LAGOS ’09).

Jörn Marialke, Robert Körner, Simon Tietze, and Joannis Apostolakis.
Graph-based molecular alignment (gma). J. Chem. Inf. Model., 47(2):591–
601, 2007.

Jiří Matoušek and Robin Thomas. On the complexity of finding iso- and
other morphisms for partial k-trees. Discrete Mathematics, 108(1-3):343–
364, 1992.

David W. Matula. Subtree isomorphism in O(n5/2). In P. Hell B. Alspach
and D.J. Miller, editors, Algorithmic Aspects of Combinatorics, volume 2
of Annals of Discrete Mathematics, pages 91 – 106. Elsevier, 1978.

Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45–87, 1981.

Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II.
Journal of Symbolic Computation, 60(0):94 – 112, 2014. ISSN 0747-7171.

Sauro Menchetti, Fabrizio Costa, and Paolo Frasconi. Weighted decomposi-
tion kernels. In Proceedings of the 22nd international conference on Ma-
chine learning, ICML ’05, pages 585–592, New York, NY, USA, 2005. ACM.
ISBN 1-59593-180-5.

Johannes Mohr, Brijnesh Jain, Andreas Sutter, Antonius Ter Laak, Thomas
Steger-Hartmann, Nikolaus Heinrich, and Klaus Obermayer. A maximum
common subgraph kernel method for predicting the chromosome aberration
test. J. Chem. Inf. Model., 50(10):1821–1838, Oct 2010.

Bibliography 177

Michel Neuhaus and Horst Bunke. Edit distance-based kernel functions for
structural pattern classification. Pattern Recognition, 39(10):1852 – 1863,
2006. ISSN 0031-3203. Similarity-based Pattern Recognition.

Marion Neumann, Roman Garnett, Plinio Moreno, Novi Patricia, and Kris-
tian Kersting. Propagation kernels for partially labeled graphs. In ICML–
2012 Workshop on Mining and Learning with Graphs (MLG–12), Edin-
burgh, UK, 2012a.

Marion Neumann, Novi Patricia, Roman Garnett, and Kristian Kersting. Ef-
ficient graph kernels by randomization. In Machine Learning and Knowl-
edge Discovery in Databases (ECML/PKDD), pages 378–393, 2012b. long
version arXiv:1410.3314 [stat.ML].

Marion Neumann, Roman Garnett, and Kristian Kersting. Coinciding walk
kernels: Parallel absorbing random walks for learning with graphs and few
labels. In Cheng Soon Ong and Tu Bao Ho, editors, Proceedings of the 5th
Annual Asian Conference on Machine Learning (ACML 2013), volume 29
of JMLR Proceedings, pages 357–372, 2013.

Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):
415–419, 1985.

V. Nicholson, C.-C. Tsai, M. Johnson, and M. Naim. A subgraph isomorphism
theorem for molecular graphs. In Graph Theory and Topology in Chemistry,
number 51 in Stud. Phys. Theoret. Chem., pages 226–230. Elsevier, 1987.

Mark Ortmann and Ulrik Brandes. Triangle listing algorithms: Back from the
diversion. In Catherine C. McGeoch and Ulrich Meyer, editors, Proceed-
ings of the Sixteenth Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 1–8, 2014.

Panos M. Pardalos and Jue Xue. The maximum clique problem. Journal of
Global Optimization, 4(3):301–328, April 1994.

Andreas Parra and Petra Scheffler. How to use the minimal separators of a
graph for its chordal triangulation. In Zoltán Fülöp and Ferenc Gécseg,
editors, Automata, Languages and Programming, volume 944 of Lecture
Notes in Computer Science, pages 123–134. Springer Berlin Heidelberg,
1995. ISBN 978-3-540-60084-8.

Jean-Luc Perret and Pierre Mahé. ChemCpp User-Guide, October 2006. Soft-
ware ChemCPP v1.0.2 available at http://chemcpp.sourceforge.net.

Breno Piva and CidCarvalho de Souza. Polyhedral study of the maximum
common induced subgraph problem. Annals of Operations Research, 199
(1):77–102, 2012. ISSN 0254-5330.

http://chemcpp.sourceforge.net

178 Bibliography

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In J.C. Platt, D. Koller, Y. Singer, and S.T. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 1177–1184.
Curran Associates, Inc., 2008.

Liva Ralaivola, Sanjay Joshua Swamidass, Hiroto Saigo, and Pierre Baldi.
Graph kernels for chemical informatics. Neural Networks, 18(8):1093 –
1110, 2005. ISSN 0893-6080. Neural Networks and Kernel Methods for
Structured Domains.

Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph
kernels. In First International Workshop on Mining Graphs, Trees and
Sequences, 2003.

John W. Raymond and Peter Willett. Maximum common subgraph iso-
morphism algorithms for the matching of chemical structures. Journal
of Computer-Aided Molecular Design, 16(7):521–533, 2002.

John W. Raymond, Eleanor J. Gardiner, and Peter Willett. Heuristics for
similarity searching of chemical graphs using a maximum common edge
subgraph algorithm. Journal of Chemical Information and Computer Sci-
ences, 42(2):305–316, 2002a.

John W. Raymond, Eleanor J. Gardiner, and Peter Willett. RASCAL: Calcu-
lation of graph similarity using maximum common edge subgraphs. Com-
put. J., 45(6):631–644, 2002b.

Ronald C. Read and Derek G. Corneil. The graph isomorphism disease.
Journal of Graph Theory, 1(4):339–363, 1977. ISSN 1097-0118.

Steffen Renner, Willem A L. van Otterlo, Marta Dominguez Seoane, Sabine
Möcklinghoff, Bettina Hofmann, Stefan Wetzel, Ansgar Schuffenhauer, Pe-
ter Ertl, Tudor I. Oprea, Dieter Steinhilber, Luc Brunsveld, Daniel Rauh,
and Herbert Waldmann. Bioactivity-guided mapping and navigation of
chemical space. Nat Chem Biol, 5(8):585–592, Aug 2009.

Steven W. Reyner. An analysis of a good algorithm for the subtree problem.
SIAM J. Comput., 6(4):730–732, 1977.

Kaspar Riesen and Horst Bunke. Dissimilarity based vector space embedding
of graphs using prototype reduction schemes. In Petra Perner, editor, Ma-
chine Learning and Data Mining in Pattern Recognition, volume 5632 of
Lecture Notes in Computer Science, pages 617–631. Springer Berlin Hei-
delberg, 2009. ISBN 978-3-642-03069-7.

John M. Robson. Finding a maximum independent set in time O(2n/4).
Technical Report 1251-01, Université de Bordeaux I, January 2001.

Bibliography 179

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. J.
Chem. Inf. Model., 50(5):742–754, May 2010.

Leander Schietgat. Graph-Based Data Mining for Biological Applications.
PhD thesis, Informatics Section, Department of Computer Science, Faculty
of Engineering, May 2010. Hendrik Blockeel and Maurice Bruynooghe
(supervisors).

Leander Schietgat, Jan Ramon, and Maurice Bruynooghe. A polynomial-time
metric for outerplanar graphs. In Mining and Learning with Graphs, MLG
2007, Firence, Italy, August 1-3, 2007, Proceedings, 2007.

Leander Schietgat, Jan Ramon, Maurice Bruynooghe, and Hendrik Block-
eel. An efficiently computable graph-based metric for the classification of
small molecules. In Jean-François Boulicaut, Michael Berthold, and Tamás
Horváth, editors, Discovery Science, volume 5255 of Lecture Notes in Com-
puter Science, pages 197–209. Springer Berlin / Heidelberg, 2008.

Leander Schietgat, Fabrizio Costa, Jan Ramon, and Luc De Raedt. Effective
feature construction by maximum common subgraph sampling. Machine
Learning, 83(2):137–161, 2011. ISSN 0885-6125.

Leander Schietgat, Jan Ramon, and Maurice Bruynooghe. A polynomial-
time maximum common subgraph algorithm for outerplanar graphs and
its application to chemoinformatics. Annals of Mathematics and Artificial
Intelligence, 69(4):343–376, 2013. ISSN 1012-2443.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001. ISBN 0262194759.

Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, and Peter L.
Bartlett. New support vector algorithms. Neural Comput., 12(5):1207–
1245, May 2000. ISSN 0899-7667.

Ansgar Schuffenhauer and Thibault Varin. Rule-based classification of chem-
ical structures by scaffold. Molecular Informatics, 30(8):646–664, 2011.
ISSN 1868-1751.

Ansgar Schuffenhauer, Peter Ertl, Silvio Roggo, Stefan Wetzel, Marcus A.
Koch, and Herbert Waldmann. The scaffold tree - visualization of the scaf-
fold universe by hierarchical scaffold classification. J. Chem. Inf. Model.,
47(1):47–58, January 2007.

Ron Shamir and Dekel Tsur. Faster subtree isomorphism. Journal of Algo-
rithms, 33(2):267 – 280, 1999. ISSN 0196-6774.

180 Bibliography

Haichuan Shang, Xuemin Lin, Ying Zhang, Jeffrey Xu Yu, and Wei Wang.
Connected substructure similarity search. In SIGMOD Conference, pages
903–914, 2010.

Nino Shervashidze and Karsten Borgwardt. Fast subtree kernels on graphs. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,
editors, Advances in Neural Information Processing Systems 22, pages
1660–1668, 2009.

Nino Shervashidze, S.V.N. Vishwanathan, Tobias H. Petri, Kurt Mehlhorn,
and Karsten M. Borgwardt. Efficient graphlet kernels for large graph com-
parison. In 12th International Conference on Artificial Intelligence and
Statistics (AISTATS), Clearwater Beach, Fl, USA, April, 16-18, 2009, 2009.
Society for Artificial Intelligence and Statistics.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research, 12:2539–2561, 2011.

Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and
S.V.N. Vishwanathan. Hash kernels for structured data. J. Mach. Learn.
Res., 10:2615–2637, December 2009. ISSN 1532-4435.

Kilho Shin and Tetsuji Kuboyama. A generalization of Haussler’s convolution
kernel — mapping kernel and its application to tree kernels. Journal of
Computer Science and Technology, 25:1040–1054, 2010. ISSN 1000-9000.

Martin Stahl, Harald Mauser, Mark Tsui, and Neil R. Taylor. A robust
clustering method for chemical structures. J Med Chem, 48(13):4358–4366,
Jun 2005.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer
Publishing Company, Incorporated, 1st edition, 2008. ISBN 0387772413.

W. Henry Suters, Faisal N. Abu-Khzam, Yun Zhang, Christopher T. Symons,
Nagiza F. Samatova, and Michael A. Langston. A new approach and faster
exact methods for the maximum common subgraph problem. In Lusheng
Wang, editor, Computing and Combinatorics, volume 3595 of Lecture Notes
in Computer Science, pages 717–727. Springer Berlin / Heidelberg, 2005.

Jeffrey J. Sutherland, Lee A. O’Brien, and Donald F. Weaver. Spline-fitting
with a genetic algorithm: a method for developing classification structure-
activity relationships. J Chem Inf Comput Sci, 43(6):1906–1915, 2003.

Sanjay Joshua Swamidass, Jonathan Chen, Jocelyne Bruand, Peter Phung,
Liva Ralaivola, and Pierre Baldi. Kernels for small molecules and the pre-
diction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics,
21 Suppl 1:i359–i368, Jun 2005.

Bibliography 181

Maciej M. Sysło. The subgraph isomorphism problem for outerplanar graphs.
Theoretical Computer Science, 17(1):91 – 97, 1982. ISSN 0304-3975.

James J. Thomas and Kristin A. Cook, editors. Illuminating the Path: The
Research and Development Agenda for Visual Analytics. August 2005.
ISBN 0-7695-2323-4.

Christian Tonnelier, Philippe Jauffret, Thierry Hanser, and Gérard Kauf-
mann. Machine learning of generic reactions: 3. an efficient algorithm
for maximal common substructure determination. Tetrahedron Computer
Methodology, 3(6):351–358, 1990.

Julian R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):
31–42, 1976. ISSN 0004-5411.

Julian R. Ullmann. Bit-vector algorithms for binary constraint satisfac-
tion and subgraph isomorphism. J. Exp. Algorithmics, 15:1.6:1.1–1.6:1.64,
February 2011. ISSN 1084-6654.

Vladimir N. Vapnik and Aleksandr Ya. Lerner. Pattern recognition using
generalized portrait method. Automation and Remote Control, 24, 1963.

Rakesh M. Verma and Steven W. Reyner. An analysis of a good algorithm for
the subtree problem, corrected. SIAM J. Comput., 18(5):906–908, 1989.

Jean-Philippe Vert. The optimal assignment kernel is not positive definite.
CoRR, abs/0801.4061, 2008.

Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. A primer on kernel
methods. In Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf,
editors, Kernel Methods in Computational Biology, pages 35–70. MIT Press,
2004.

S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph.
Fast computation of graph kernels. In Bernhard Schölkopf, John C. Platt,
and Thomas Hoffman, editors, Proceedings of the Twentieth Annual Con-
ference on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, volume 19, pages 1449–1456, Cambridge, MA, 2006.
MIT Press.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Imre Kondor, and
Karsten M. Borgwardt. Graph kernels. Journal of Machine Learning Re-
search, 11:1201–1242, 2010.

Philippe Vismara and Benoît Valery. Finding maximum common connected
subgraphs using clique detection or constraint satisfaction algorithms. In
HoaiAn Le Thi, Pascal Bouvry, and Tao Pham Dinh, editors, Modelling,
Computation and Optimization in Information Systems and Management

182 Bibliography

Sciences, volume 14 of Communications in Computer and Information Sci-
ence, pages 358–368. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-
87476-8.

Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische
Annalen, 114(1):570–590, 1937. ISSN 0025-5831.

Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor
spaces for chemical compound retrieval and classification. Knowl. Inf. Syst.,
14(3):347–375, 2008.

Walter D. Wallis, Peter Shoubridge, Miro Kraetzl, and D. Ray. Graph dis-
tances using graph union. Pattern Recognition Letters, 22(6/7):701–704,
2001.

Stefan Wetzel, Karsten Klein, Steffen Renner, Daniel Rauh, Tudor I. Oprea,
Petra Mutzel, and Herbert Waldmann. Interactive exploration of chemical
space with scaffold hunter. Nature Chemical Biology, 5(8):581–583, August
2009.

Stefan Wetzel, Wolfram Wilk, Samy Chammaa, Bianca Sperl, Anke G
Roth, Aybike Yektaoglu, Steffen Renner, Thorsten Berg, Christoph Arenz,
Athanassios Giannis, Tudor I Oprea, Daniel Rauh, Markus Kaiser, and Her-
bert Waldmann. A scaffold-tree-merging strategy for prospective bioactiv-
ity annotation of γ-pyrones. Angew Chem Int Ed Engl, 49(21):3666–3670,
May 2010.

Hassler Whitney. Congruent graphs and the connectivity of graphs. American
Journal of Mathematics, 54(1):150–168, 1932. ISSN 00029327.

Peter Willett. Matching of chemical and biological structures using subgraph
and maximal common subgraph isomorphism algorithms. The IMA Vol-
umes in Mathematics and its Applications, 108:11–38, 1999.

David R. Wood. An algorithm for finding a maximum clique in a graph.
Operations Research Letters, 21(5):211–217, 1997. ISSN 0167-6377.

Atsuko Yamaguchi and Hiroshi Mamitsuka. Finding the maximum common
subgraph of a partial k-tree and a graph with a polynomially bounded num-
ber of spanning trees. In Toshihide Ibaraki, Naoki Katoh, and Hirotaka
Ono, editors, Algorithms and Computation (ISAAC), volume 2906 of Lec-
ture Notes in Computer Science, pages 58–67. Springer Berlin Heidelberg,
2003. ISBN 978-3-540-20695-8.

Atsuko Yamaguchi, Kiyoko F. Aoki, and Hiroshi Mamitsuka. Graph complex-
ity of chemical compounds in biological pathways. Genome Informatics, 14:
376–377, 2003.

Bibliography 183

Atsuko Yamaguchi, Kiyoko F. Aoki, and Hiroshi Mamitsuka. Finding the
maximum common subgraph of a partial k-tree and a graph with a polyno-
mially bounded number of spanning trees. Inf. Process. Lett., 92(2):57–63,
2004.

Stéphane Zampelli. A constraint programming approach to subgraph isomor-
phism. PhD thesis, Universite catholique de Louvain, 2008.

V.N. Zemlyachenko, N.M. Korneenko, and R.I. Tyshkevich. Graph iso-
morphism problem. Journal of Soviet Mathematics, 29(4):1426–1481,
1985. ISSN 0090-4104. Translated from Zapiski Nauchnykh Seminarov
Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova
AN SSSR, Vol. 118, pp. 83–158, 1982.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Sim-
ilarity Search: The Metric Space Approach, volume 32 of Advances in
Database Systems. Springer, 2006. ISBN 0-387-29146-6.

Hao Helen Zhang and Marc Genton. Compactly supported radial basis func-
tion kernels. Technical Report 2570, Institute of Statistics, NCSU, 2004.

Sheng-Xin Zhu. Compactly supported radial basis functions: How and why?
Technical report, The Mathematical Institute, University of Oxford, 2012.

184 Bibliography

	Abstract
	Acknowledgements
	Introduction
	Applications in Cheminformatics
	Graphs in Cheminformatics
	Comparing Molecular Graphs
	Exploring Chemical Space with Scaffold Hunter

	Challenges in Graph Comparison
	Contribution and Organization of this Thesis
	Corresponding Publications

	Preliminaries
	Numbers, Sets, Relations and Functions
	Graphs
	Multigraphs and Digraphs
	Subgraphs
	Separators and Connectivity
	Specific Graph Classes

	Isomorphism Problems in Graphs
	Isomorphism Problems in Labeled Graphs

	Fundamental Graph Problems and Algorithms
	Notation

	Common Subgraph Problems
	Exact Exponential-Time Algorithms
	Reduction to the Clique Problem
	Recent Algorithms
	A Faster Algorithm by Graph Canonization

	A Polynomial-Time Algorithm for MCST
	Variants of MCS Problems and their Complexity
	Vertex- and Edge-Induced Common Subgraphs
	Finding Connected Common Subgraphs
	Polynomial-Time Algorithms and Hardness Results

	Finding Biconnected MCIS in Series-Parallel Graphs
	Tree Decompositions and Common Subgraph Problems
	Theoretical Background for Novel Approaches
	A Polynomial-Time Algorithm for 2-MCIS
	Solving 2-MCIS in Outerplanar Graphs

	Finding BBP-MCCIS in Series-Parallel Graphs
	Decomposing Series-Parallel Graphs
	A Polynomial-Time Algorithm for BBP-MCCIS

	Graph Distance Metrics
	Basic Definitions and Complexity
	Distance Metrics from Maximum Common Subgraphs
	Polynomial-time Computable Graph Distance Metrics

	Summary and Future Work

	Graph Kernels
	Kernels and Kernel Methods
	Classification and Support Vector Machines
	Standard Kernels and Closure Properties
	Kernels as Similarity Measures

	Kernels for Structured Data
	Kernels on Sets
	Convolution Kernels
	Distance Metrics and Complete Kernels

	Graph Data: Labels and Attributes
	Taking Annotations into Account
	Transforming Attributes to Simple Labels

	Explicit and Implicit Kernel Computation
	Computing Kernel Matrices
	Storing Feature Vectors
	Explicit Mapping of R-convolution Kernels

	Related Work on Graph Kernels
	Random Walk Graph Kernels
	Subgraph and Graphlet Kernels
	Path, Tree Pattern and Further Kernels
	Graph Kernels in Cheminformatics
	Summary and Motivation of our Contribution

	Fixed Length Walk Kernels
	Basic Definitions
	Walk and R-convolution Kernels
	Implicit Kernel Computation
	Explicit Kernel Computation
	Application to Shortest-Path Kernels
	Experimental Evaluation

	Subgraph Matching Kernels
	Basic Definitions
	Relations to other Kernels
	Kernel Computation
	Experimental Evaluation

	Comparative Experimental Evaluation
	Method and Data Sets
	Results and Discussion

	Summary and Future Work

	Conclusion and Outlook
	Bibliography

