
FOUNDATIONS OF ACTIVE AUTOMATA LEARNING:
AN ALGORITHMIC PERSPECTIVE

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

MALTE ISBERNER

Dortmund

2015

Tag der mündlichen Prüfung: 29.09.2015
Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter:
Prof. Dr. Bernhard Steffen
Prof. Dr. Frits Vaandrager

Foundations of Active Automata Learning
An Algorithmic Perspective

Malte Isberner

Tuesday 6th October, 2015

Abstract

The wealth of model-based techniques in software engineering—such as model checking or
model-based testing—is starkly contrasted with a frequent lack of formal models in practical
settings. Sophisticated static analysis techniques for obtaining models from a source- or byte-
code representation have matured to close this gap to a large extent, yet they might fall short
on more complex systems: be it that no sufficiently robust decision procedures are available, or
that the system performs calls to external, closed source libraries or even remote web services.

Active automata learning has been proposed as a means of overcoming this problem: by ex-
ecuting test cases on a system, finite-state machine models reflecting a portion of the actual
runtime behavior of the targeted system can be inferred. This positions active automata learn-
ing as an enabler technology, extending the range of application for a whole array of formal,
model-based techniques. Its usefulness has been proven in many different subfields of formal
methods, such as black-box model checking, test-case generation, interface synthesis, or com-
positional verification. In a much-noted case study, active automata learning played a key role
in analyzing the internal structure of a botnet with the aim of devising countermeasures.

One of the major obstacles of applying active automata learning in practice is, however, the
fact that it is a rather costly technique: to gain sufficient information for inferring a model, a
large number of test cases need to be executed, which is also referred to as “posing queries.”
These test cases may be rather heavy-weighted, comprising high-latency operations such as
interactions with hardware or remote network services, and learning systems of moderate size
may take hours or days even when using algorithms with polynomial query complexities.

The costliness of the technique calls for highly efficient algorithms that do not waste any in-
formation. The reality is surprisingly different from that ideal: many active automata learning
algorithms that are being used in practice—including the well-known L∗ algorithm, which was
the first one with a polynomial query complexity—frequently resort to heuristics to ensure cer-
tain properties, resulting in an increased overall query complexity. However, it has rarely been
investigated why or even if these properties are necessary to ensure correctness, or what vio-
lating them entails. Related is the observation that descriptions of active automata learning
algorithms are often less-than-formal, and merely focus on somehow arriving at a correctness
proof instead of motivating and justifying the single steps.

It is one of the stated goals of this thesis to change this situation, by giving a rigorously formal de-
scription of an approach to active automata learning that is independent of specific data struc-
tures or algorithmic realizations. This formal description allows the identification of a number
of properties, some of which are necessary, while others are merely desirable. The connection
between these properties, as well as possible reasons for their violation, are investigated. This
leads to the observation that, while for each property there is an existing algorithm maintaining
it, no algorithm manages to simultaneously maintain all desirable properties.

Based on these observations, and exploiting further insights attained through the formaliza-
tion, a novel active automata learning algorithm, called TTT, is developed. The distinguishing

i

characteristic of TTT is that it eventually ensures that all desirable properties are maintained.
This is realized based on a careful observation of how certain syntactic and semantic properties
are related to each other, and how their violations can be exploited for further refinements.

The approach of developing an algorithm strictly adhering to principles identified as desir-
able in a formal framework yields a number of benefits: a proof that the TTT algorithm is the
first space-optimal active automata learning algorithm is given, meaning there can be no al-
gorithm with an asymptotically lower space complexity correctly accomplishing the same task.
Since TTT maintains all observations (i.e., responses to queries) made throughout the learning
process in its data structures, this theoretical result indicates a very economic handling of in-
formation, indicating that the algorithm indeed poses only those queries which are necessary.
On the practical side, our evaluations show that TTT is superior to virtually every other learning
algorithm. This especially applies if counterexamples are non-minimal (a situation frequently
encountered in practice), and if furthermore not only the number of queries, but also their com-
bined length is considered.

A further limitation of active automata learning is that it is restricted to regular languages (or
systems whose behavior can be described by a regular language), at least in its classical for-
mulation. Extensions have been proposed recently, mainly concerning the handling of data.
In this thesis, we will investigate another dimension, namely context-free control structure: by
presenting an algorithm for inferring visibly pushdown automata, we extend the applicability of
active automata learning to systems with (recursive) calls and returns. In doing so, we further
highlight the benefits of a rigorous formalization: identifying key similarities between regular
and visibly pushdown languages provides what can be described as a clear recipe to build an
algorithm for learning visibly pushdown languages, which furthermore allows leveraging many
of the optimizations developed for the setting of regular languages.

We will thus not only describe a “simply working” algorithm for inferring visibly pushdown
automata, but one that can be regarded as a visibly pushdown version of the TTT algorithm,
called TTT-VPA. This algorithm has a similar space complexity and, according to a preliminary
experimental evaluation, exhibits a similarly superior performance, especially in the presence
of long counterexamples. While there is no wide range of other algorithms against which we can
compare the performance of TTT-VPA, we evaluate the impact of those steps which can be re-
garded as characteristic for TTT, and show that they result in a significant performance increase
also in the setting of visibly pushdown languages. This can be regarded as a clear indication
that adhering to formally identified principles indeed pays off, and is the key to developing al-
gorithms of superior practical performance.

ii

Acknowledgements

First and foremost, I would like to thank Bernhard Steffen for his support and guidance over the
past eight years. Thank you for introducing me to the beautiful field of active automata learning,
tirelessly motivating, supporting and challenging me, and for making sure that I keep a balance
between the formal and the intuitive.

I would like to thank Frits Vaandrager, for agreeing to act as my second referee on rather short
notice and in spite of a very tight schedule, and for providing many helpful remarks which have
been incorporated into the final version of this thesis.

My PhD studies would have been a lot less exciting without three fantastic summer internships
in 2012, 2013, and 2014, which really had a great impact on my further development, both pro-
fessionally and personally. I owe special thanks to Bengt Jonsson, Dimitra Giannakopoulou, and
Vishwanath Raman for making them possible.

I would furthermore like to thank all my colleagues, in particular those from Dortmund, for
creating a warm atmosphere at work, and for many fun conversations that brightened up my
day-to-day life. Special thanks go out to Falk Howar, for many fruitful and stimulating discus-
sions about automata learning and other things.

I am especially grateful to my family for their support and encouragement for as long as I can
remember. Many thanks go out to Lisa Steinmann and Rebecca Doherty, for their effort of proof-
reading this thesis. Last but not least, I want to thank my girlfriend Maren Geske for her support,
for tolerating me even when being completely caught up in my research, and for simply every-
thing else.

iii

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

Acronyms xv

Notation xvii

1. Introduction 1
1.1. Research Questions . 2
1.2. Scope of This Thesis . 3
1.3. Overview of the Contributions . 4

1.3.1. Comments on Individual Contributions . 4
1.4. Outline . 5

2. Preliminaries 7
2.1. Mathematical Notation . 7

2.1.1. Sets . 7
2.1.2. Partial Functions . 8
2.1.3. Equivalence Relations . 8

2.2. Alphabets, Words, and Automata . 8
2.2.1. Alphabets and Words . 9
2.2.2. Transition Systems . 10
2.2.3. Finite-State Acceptors . 11
2.2.4. Finite-State Transducers . 15
2.2.5. Common FSM Concepts . 17

3. An Abstract Framework for Active Automata Learning 21
3.1. Regular Languages, DFAs, and the Myhill-Nerode Theorem 21

3.1.1. Quotient and DFA Minimization . 22
3.1.2. The Nerode Congruence . 23

3.2. Approximating Regular Languages by Experimentation 25
3.2.1. The MAT Framework . 25
3.2.2. Black-Box Classification Schemes . 27
3.2.3. Refining Black-Box Abstractions . 34

3.3. An Abstract Framework for Counterexample Analysis . 37
3.3.1. Formal Definitions . 38
3.3.2. Finding Breakpoints . 39

v

Contents

3.3.3. Prefix-based Counterexample Analysis . 40
3.3.4. Suffix-based Counterexample Analysis . 42
3.3.5. Improved Search Strategies . 45
3.3.6. Comparison . 45

3.4. Realizations . 46
3.4.1. Data Structures . 46
3.4.2. Handling Counterexamples . 49
3.4.3. Complexity Considerations . 50

3.5. Adaptation for Mealy Machines . 51
3.5.1. Black-Box Abstractions for Mealy Machines . 52
3.5.2. Handling Counterexamples and Inconsistencies 55
3.5.3. Data Structures . 56

3.6. Discussion . 57
3.6.1. Consistency Properties . 57
3.6.2. Limitations . 59

4. Discrimination Trees 61
4.1. White-Box Setting . 62

4.1.1. Formal Definitions and Notation . 62
4.1.2. General Operations . 63
4.1.3. Discrimination Trees and Automata . 64
4.1.4. Computing Discrimination Trees . 67
4.1.5. Semantic Suffix-Closedness . 72

4.2. Black-Box Setting: Learning with Discrimination Trees . 76
4.2.1. Discrimination Trees as Black-Box Classifiers . 76
4.2.2. Spanning-Tree Hypothesis . 77
4.2.3. The Observation Pack Algorithm . 78
4.2.4. A Note on Discrimination Tree-based Learning Algorithms 84

5. The TTT Algorithm 87
5.1. Design Goals and High-level Overview . 88

5.1.1. Property Restoration . 89
5.1.2. Interplay of Data Structures . 90

5.2. Technical Realization . 91
5.2.1. Temporary and Final Discriminators . 91
5.2.2. Discriminator Finalization – Simple Case . 92
5.2.3. Output Inconsistencies and Subsequent Splits . 94
5.2.4. Discriminator Finalization – Complex Case . 96
5.2.5. Restoring Semantic Suffix-Closedness . 102

5.3. The Complete Algorithm . 104
5.3.1. Complexity . 104
5.3.2. Space Optimality . 106

5.4. Adaptation for Mealy Machines . 107
5.5. Evaluation . 109

5.5.1. Evaluation Metrics . 109
5.5.2. Realistic Systems . 110

vi

Contents

5.5.3. Randomly Generated Automata . 113
5.5.4. Interpretation of the Results . 114

6. Learning Visibly Pushdown Automata 117
6.1. Preliminaries . 119

6.1.1. Well-Matched Words . 119
6.1.2. Visibly Pushdown Automata . 121
6.1.3. 1-SEVPAs and Normalized Stack Alphabets . 123

6.2. A Unified Congruence for Well-Matched VPLs . 124
6.2.1. Finite Characterization . 126

6.3. Black-Box Learning of VPLs . 127
6.3.1. Black-box Abstractions for VPLs . 128
6.3.2. Consistency Properties . 130
6.3.3. Counterexample Analysis . 131

6.4. A VPDA Version of TTT . 135
6.4.1. Data Structures . 135
6.4.2. Discriminator Finalization . 136
6.4.3. Progress and Subsequent Splits . 137
6.4.4. An Example Run . 138
6.4.5. Complexity . 138

6.5. Preliminary Evaluation . 141
6.5.1. Experimental Setup . 141
6.5.2. Counterexamples of Growing Length . 141
6.5.3. Automata of Growing Size . 143
6.5.4. Interpretation of the Results . 143

6.6. Envisioned Applications . 144

7. Related Work 147
7.1. Works Directly Related to the Contents of This Thesis . 147

7.1.1. Unifying Formalization of Active Automata Learning 147
7.1.2. Algorithmic Improvements of Classical Active Automata Learning 148
7.1.3. Extending Active Automata Learning to Context-Free Structures 149

7.2. Other Works Related to Active Automata Learning . 150
7.2.1. Grammatical Inference and Passive Automata Learning 150
7.2.2. Extending Active Automata Learning Beyond Regular Languages 150
7.2.3. Applications of Active Automata Learning in Formal Methods 151
7.2.4. Active Automata Learning Tools and Framework 153

8. Conclusions 155
8.1. Future Work and Open Problems . 157

References 161

A. Supplementary Material 181
A.1. Overview of Active Learning Algorithms’ Complexities . 181

vii

List of Figures

2.1. Taxonomy of various types of finite-state machines . 11
2.2. Example FSM visualizations . 12

3.1. Conceptual approach of abstract counterexample analysis 38
3.2. Example observation table and corresponding automaton 46
3.3. Example discrimination trees . 48
3.4. Example Mealy observation table and discrimination tree 57

4.1. Visualization of the role of the lowest common ancestor (LCA) in a tree 64
4.2. Valid discrimination trees for a DFA . 66
4.3. DFA An . 67
4.4. Effect of the SPLITsingle operation . 69
4.5. Effect of the SPLITtree operation . 72
4.6. Trie representing a suffix-closed set . 74
4.7. DFA A′

n . 75
4.8. Spanning-tree hypothesis . 78
4.9. Connection between spanning-tree hypothesis and discrimination tree 79
4.10. Evolution of hypothesis and discrimination tree during a run of Observation Pack 83

5.1. Life-long learning approach . 88
5.2. Illustration of necessary violations when learning the DFA A′

n 90
5.3. Interplay of data structures in the TTT algorithm . 91
5.4. TTT data structures after introduction of temporary discriminator and soft closing 93
5.5. Closed hypothesis and discrimination tree after replacing temporary discriminator 94
5.6. Abstract visualization of discriminator finalization . 94
5.7. Hypotheses and discrimination trees during a run of TTT 96
5.8. TTT data structures after addressing output inconsistency 97
5.9. Block subtree after preprocessing . 99
5.10. Extraction of the 0-subtree . 102
5.11. Integration of extracted subtrees, finalization, resulting hypothesis 103
5.12. Abstract visualization of finalization rules for Mealy machines 108
5.13. Performance of discrimination tree-based algorithms on realistic systems 112
5.14. Zoomed-in version of the plots from the above figure . 112
5.15. Results for a randomly generated DFA (n =1000, k =50) 113
5.16. Results for randomly generated DFAs of growing size . 115

6.1. Two VPAs accepting the same language . 122
6.2. Abstract visualization of discriminator finalization rules for internal and return

actions . 136

ix

List of Figures

6.3. Abstract visualization of discriminator finalization rule for calls 137
6.4. TTT-VPA data structures until first split . 139
6.5. Possible final discrimination trees and final hypothesis during a run of TTT-VPA . 140
6.6. Performance of 1-SEVPA learning algorithms for randomly generated 1-SEVPA with

n =50, |Σcall|= |Σint |=2, |Σret |=1 . 142
6.7. Performance of 1-SEVPA learning algorithms for randomly generated 1-SEVPA with

n =50, |Σcall|= |Σret |=3, |Σint |=2 . 142
6.8. Performance of 1-SEVPA learning algorithms as a function of n 142

x

List of Tables

5.1. Performance of selected learning algorithms on pots2 110
5.2. Performance on selected learning algorithms on peterson3 111

A.1. Query and symbol complexities of active automata learning algorithms 181

xi

List of Algorithms

3.1. The “learning loop” . 26
3.2. Abstract counterexample analysis using binary search . 39
3.3. Dynamic computation of U (given κ) in a breadth-first fashion 49

4.1. Sifting operation in a discrimination tree T . 63
4.2. Lowest common ancestor computation in a discrimination tree T 65
4.3. Compute a (quasi-)complete discrimination tree for a given DFA 68
4.4. SPLITsingle: split a block corresponding to a leaf in two . 70
4.5. SPLITtree: split a block by “carving out” a splitting subtree 71
4.6. Initialization routine for the Observation Pack algorithm 80
4.7. Realization of refinement in the Observation Pack algorithm 81

5.1. “Soft” sifting in a discrimination tree . 92
5.2. TTT-REPLACE-BLOCKROOT: Discriminator finalization in the TTT algorithm 98
5.3. Helper functions for TTT-REPLACE-BLOCKROOT . 100
5.4. CREATE-NEW helper function for EXTRACT . 101
5.5. TTT-REFINE: Refinement step of the TTT algorithm . 105

xiii

Acronyms

CE counterexample

DFA deterministic finite automaton

DPDA deterministic pushdown automaton

DT discrimination tree

EQ equivalence query

FSA finite-state acceptor

FSM finite-state machine

KV Kearns and Vazirani’s algorithm

LCA lowest common ancestor

MAT minimally adequate teacher

MQ membership query

NFA non-deterministic finite automaton

OP Observation Pack

OT observation table

PDA pushdown automaton

RS Rivest and Schapire’s algorithm

RSFA residual finite-state automaton

SEVPA single-entry visibly pushdown automaton

VPA visibly pushdown automaton

VPL visibly pushdown language

xv

Notation

General

Symbol Meaning See ...

� Set of Boolean values, �= {0,1} p. 7

� Set of non-negative integers, �= {0,1,2,...} p. 7

� Set of all integers, �= {0,1,−1,2,−2,...} p. 7

|X | Cardinality of set X p. 7

2X Power set of set X , 2X = {Y |Y ⊆X } p. 7

f : X � Y Partial function from X to Y p. 8

dom f Domain of a (partial function) f p. 8

[x]≈ Equivalence class of x wrt. equivalence relation ≈ p. 8

ind(≈) Index of an equivalence relation ≈ p. 8

X /≈ Quotient of X wrt. equivalence relation ≈ p. 8

∼P Equivalence relation induced by partiton P p. 8

∼ f Equivalence kernel of a function f p. 8

[x] f Equivalence class of x wrt. ∼ f p. 8

Words, Languages, Automata

Symbol Meaning See ...

Σ Input alphabet p. 9

a Single input symbol, a ∈Σ p. 9

Σ∗ Set of words over alphabet Σ p. 9

w Single word, w ∈Σ∗ p. 9

|w | Length of a word w ∈Σ∗ p. 9

ε The empty word, i.e., the unique word of length 0 p. 9

Σ+ Set of non-empty words over Σ, Σ+ =Σ∗ \{ε} p. 9

u ·v , u v Concatenation of u and v p. 9

U ·V , U V Concatenation lifted to sets U ,V ⊆Σ∗ p. 9

�pref (�pref) “is-(strict-)prefix-of” relation p. 10

Pref(w) Set of all prefixes of w p. 10

�suff (�suff) “is-(strict-)suffix-of” relation p. 10

xvii

Notation

Symbol Meaning See ...

Suff(w) Set of all suffixes of w p. 10

A NFA, DFA, or generic finite-state machine pp. 12ff.

D Output domain, usually D=� or D=Ω∗ p. 15

QA Set of states of automaton A pp. 12ff.

q Single state, q ∈QA pp. 12ff.

q0,A Initial state of automaton A, q0,A ∈QA pp. 12ff.

∆A Transition relation of NFA A, ∆A⊆QA×Σ×QA p. 12

δA (Extended) transition function of automaton A pp. 13ff.

FA Final states of FSA A, FA⊆QA pp. 12, 14

M Mealy machine p. 15

Ω Output alphabet p. 15

γM Transition output function of Mealy machine M p. 15

λA Output function of automaton A p. 12

λ
q
A State output function of state q in automaton A p. 15

A[w] State in automaton A reached by word w ∈Σ∗ p. 17

≡, ≡A Equivalence between states of automaton A p. 17

L(A) Language accepted by a DFA A p. 14

�k Class of Chomsky type-k languages p. 21

Active Automata Learning

General

Symbol Meaning See ...

λ Target output function (over alphabet Σ) p. 25

A (Canonical) target DFA, λ=λA p. 25

n Number of states of A, n =Σ∗/∼=λ p. 26

k Size of the input alphabet, k = |Σ| p. 26

m Length of longest counterexample p. 26
∼=λ Nerode congruence wrt. suffix output function λ p. 23

H Inferred hypothesis p. 25

Black-Box Abstractions

Symbol Meaning See ...

κ Black-box classifier, κ: Σ∗ →� p. 28

Chκ(u) Characterizing set (wrt. κ) of u ∈Σ∗ p. 28

Sepsκ(u ,u ′) Separator set (wrt. κ) of u ,u ′ ∈Σ∗ p. 28

xviii

Symbol Meaning See ...

sepκ(u ,u ′) Unique element in Sepsκ(u ,u ′) (if applicable) p. 61

Kλ Set of all valid black-box classifiers for output function λ p. 28

U Short (or representative) prefixes, U ⊂Σ∗ p. 29

R Black-box abstraction, R= 〈U ,κ〉 p. 29

� (R) Classes of black-box abstraction R p. 29

V Global set of distinguishing suffixes, V ⊂Σ∗ p. 29

� (�) (Strict) refinement relation between black-box classifiers and
abstractions

p. 34

ρR(C) Representatives of a class C ∈� (R), ρR(C) =C ∩U p. 30

α Abstract counterexample p. 38

E Effect domain of an abstract counterexample α p. 38

� Effect relation of an abstract counterexample α p. 38

l Length of an abstract counterexample α p. 38

η Effect mapping of an abstract counterexampleα,η : {0,...,l}→
E

p. 38

	q � Access sequence (unique representative) of state q ∈QH p. 43

	w �H Access sequence of state reached by w ∈Σ∗, 	w �H= 	H[w]� p. 44

Discrimination Trees

Symbol Meaning See ...

T Discrimination tree p. 62

NT , IT , LT Nodes, inner nodes, leaves of discrimination tree T p. 62

rT Root node of discrimination tree T , rT ∈NT p. 62

n A node in a discrimination tree pp. 62ff.

l A leaf in a discrimination tree pp. 62ff.

SigT (n) Signature of a node n ∈NT p. 62

ChT (n) Characterizing set of a node n ∈NT p. 62

lcaT (a ,b) Lowest common ancestor of nodes a and b in T p. 64

sepT (a ,b) Separating discriminator of nodes a and b in T p. 64

π(T) Block partition induced by discrimination tree T p. 65

B A block B ∈π(T) p. 68

depth(T) Depth of discrimination tree T p. 66

xix

Notation

Visibly Pushdown Automata

Symbol Meaning See ...
�Σ Visibly pushdown alphabet, �Σ= 〈Σcall,Σret ,Σint〉 p. 119

Σcall Set of call actions p. 119

c Single call action, c ∈Σcall p. 121ff.

Σret Set of return actions p. 119

r Single return action, r ∈Σret p. 121ff.

Σint Set of internal actions p. 119

i Single internal action, i ∈Σ p. 121ff.

β Call-return balance, β : �Σ∗ →� p. 120

MC(�Σ) Set of call-matched words over �Σ p. 120

MR(�Σ) Set of return-matched words over �Σ p. 120

WM(�Σ) Set of well-matched words over �Σ, WM(�Σ) =MC(�Σ)∩MR(�Σ) p. 120

LWM (A) Well-matched language of VPA A p. 123

LA Set of locations of VPA A p. 121

� Single location, �∈ LA p. 121ff.

�0,A Initial location of VPA A, �0,A ∈ LA p. 121

Γ, ΓA Stack alphabet (of VPA A) p. 121

γ Single stack symbol, γ∈ Γ p. 121

σ Stack contents, σ∈ Γ ∗ p. 121

δcall,A Call transition function of VPA A p. 121

δret,A Return transition function of VPA A p. 121

δint,A Internal transition fucntion of VPA A p. 121

CP(�Σ) Set of context pairs over �Σ p. 125

CPU (�Σ) Set of U-context pairs over �Σ p. 132

xx

1. Introduction

Nearly thirty years ago, Dana Angluin published her seminal work Learning Regular Sets from
Queries and Counterexamples [19], in which she proved that the class of regular languages could
be learned efficiently (i.e., in time polynomial in the size of the canonical DFA for this language)
using so-called membership and equivalence queries. More precisely, for an unknown regular
language L , a learner can infer a model of the canonical DFA for L by asking polynomially many
questions of the form “Is the word w in L?” and “Is L the language recognized by my current
hypothesis DFA H?” The problem solved by Angluin [19] is also referred to as active automata
learning (sometimes also called regular inference). It is part of the field of grammatical infer-
ence [61] (or grammar induction), which is concerned with learning formal representations (i.e.,
automata or grammars) of languages in an abstract sense.

The positive learnability result for a complete and practically relevant class of languages re-
ceived a lot of attention; at the time of writing, Google Scholar lists 1,500 citations for the above
article. However, applications of the technique remained rare for a long time. A bibliographical
survey by de la Higuera [60] lists map learning (i.e., an entity such as a robot inferring a map of
its environment, as sketched by Rivest and Schapire [155]) as the only application of active au-
tomata learning as described above. The requirement of a teacher who must provide a definite
and truthful answer to a query (i.e., noise cannot be tolerated) led most practical applications
to focus on passive inference techniques instead [75, 168], where the teacher is replaced with a
sample set containing labeled data, which the learner may access.

With the dawn of the new millennium came what can be described as a renaissance of active
automata learning: the seminal works of Peled et al. on black-box checking [81, 149, 150], and
by Steffen et al. on test-based model generation [84, 85, 101, 102], established a connection be-
tween active automata learning and the area of formal methods. By using active automata learn-
ing to generate models to be used by two widely-used formal, model-based techniques—model
checking [24, 56] and model-based testing [39]—, the works paved the way for overcoming a
frequently encountered, major obstacle of these techniques: the unavailability of such models
in many scenarios. These initial works sparked a series of further investigations of the applica-
bility of active automata learning in the context of formal methods, e.g., for interface synthe-
sis [16, 71, 99], typestate analysis [173], or compositional verification [57, 70].1

The “adoption” of active automata learning by the formal methods community can by all
means be described as fruitful: the plethora of practical applications inspired elaborate engi-
neering efforts, greatly enhancing the efficiency in practical scenarios [48, 103, 130]. Challenges
arising due to the characteristics of real-life software systems furthermore spawned research
pushing the boundaries of the technique, resulting in algorithms for richer classes of models,
e.g., adequately addressing phenomena such as time [79, 80] or data [1, 5, 45, 111]. Further evi-
dence of the importance of formal methods for furthering the development of active automata
learning, which however is of more anecdotal nature, is the fact that the 2010 ZULU competi-

1A more comprehensive overview can be found in Section 7.2.3.

1

1. Introduction

tion [58], organized by members of the grammatical inference community, was actually won by
a member of the formal methods community [94].

Despite these impressive improvements concerning the practicality and range of active automata
learning, advancements on the purely algorithmic side remain rare. Even comparably recent
works applying active automata learning in practice, the authors of which often put consider-
able engineering effort into speeding up the learning process (e.g., through parallelization [48,
96] or by exploiting domain-specific knowledge [27, 103, 130]), are oftentimes based on the orig-
inal L∗ algorithm as described by Angluin [19]. This seems somewhat surprising, as algorithms
with considerably better worst-case bounds (and from the experience of the author, also much
better practical performance) have subsequently been proposed [115, 155]. Possible reasons for
the relatively poor adoption of such improvements are that they are significantly harder to not
only implement (in contrast to the rather simple L∗ algorithm), but also to understand.

Balcázar et al. [25], in their 1997 survey on active automata learning algorithms, pointed out
that most of the original works on active automata learning hardly provide easy-to-grasp intu-
itions, and that “what makes the proof work” is often less than obvious. This is reflected in the
fact that many active automata learning algorithms show a strongly heuristical nature: they re-
sort to strategies that somehow work, in the sense that they guarantee progress or correctness,
without however adequately addressing or even identifying the phenomena at hand. Poorer
practical or worst-case performance is one of the consequences; more objectionable from a
philosophical standpoint is that these heuristics actually miss what should be one of the central
research question in active learning: which are the questions that I need to ask?

1.1. Research Questions

It has been pointed out above that a likely reason for many active automata learning algorithms
resorting to heuristics is the lack of a precise understanding or even identification of the phe-
nomena at hand, in particular when it comes to the analysis of counterexamples. This presump-
tion is supported by the observation that the extent to which descriptions of active automata
learning are truly formal is rather limited. However, only a strict mathematical characterization
establishes a precise enough language which allows to reason about these phenomena in the
first place. This gives rise to the first research question addressed in this thesis:

How can the phenomena encountered in active automata learning be characterized
formally and independently of a concrete algorithmic realization, what is their sig-
nificance, and what are desirable properties and characteristics that a learning algo-
rithm should possess?

Chapter 3 is dedicated to this question. A central insight that results from this consideration
is that counterexamples are a manifestation of the more general concept of (reachability and
output) inconsistencies. This challenges the typical approach of using observed inconsistencies
to derive counterexamples, and suggests to regard counterexample analysis as merely a special
case of inconsistency analysis.

While a precise mathematical formalization is prerequisite for devising efficient solutions, de-
signing an algorithm involves much more, such as organizing and maintaining data efficiently.
The second research question thus involves more than a straightforward application and im-
plementation of the identified abstract concepts:

2

1.2. Scope of This Thesis

How can the insights gained through a rigorous formalization be translated into an
efficient active learning algorithm, and how does the practical performance of an al-
gorithm designed along these guidelines differ from existing algorithms?

Several chapters in this thesis are related to this research question, as an algorithm cannot pos-
sibly be separated from the data structures it uses: the efficiency of most well-known algorithms
is due to their cleverly exploiting the characteristics of specific data structures, and, conversely,
the fact that it allows to efficiently solve certain problems is what constitutes the value of a data
structure. Consequently, we will thus first study the data structure that enables efficient active
automata learning algorithms in detail (Chapter 4), before describing how an active learning
algorithm can be built on top of it in Chapter 5.

In its application in the context of formal methods, classical active automata learning often
reaches its limits due to its restriction to finite-state systems. Several recent works investigate
the possibility to extend it to certain classes of infinite-state systems. This gives rise to our third
and final research question:

To what extent—and if so, how—can the mathematical formalization and the iden-
tified principles of efficient algorithm design be transferred to the active inference of
richer classes of models, e.g., modeling infinite-state systems?

This question will be addressed in Chapter 6, choosing visibly pushdown automata as a mod-
eling formalism for infinite-state systems with recursion. As this question focuses on a transfer
of concepts, an “incremental” consideration is justified, i.e., looking at what the (minimum)
changes required for accommodating to the modified setting are, instead of building an inde-
pendent, full-fledged theoretical framework from scratch.

1.2. Scope of This Thesis

This thesis is on a middle ground between theory and practice of automata learning: on one
hand, our considerations are purely theoretical in that our assumptions do not go beyond those
established by Angluin [19] for the so-called MAT framework. In particular, we do not con-
cern ourselves with practical realizability of queries (including equivalence queries); this is the
subject of several survey papers [167], tutorials [100], and some recent PhD theses [1, 93, 105,
138]. Understanding the connection between active automata learning on one hand and model-
based techniques on the other hand is certainly helpful, in particular as a motivation, but not
necessary to understand the technical content of this thesis. In terms of the contents, our re-
quirement is a strictly mathematical characterization of the phenomena at hand, and, when it
comes to algorithmic realization, a precise explanation of why every single step and query is
necessary.

On the other hand, the motivation for the research presented in this thesis clearly originates
from the practical applications of active automata learning in the context of formal methods.
This is reflected, for instance, in the cost model that we apply for the worst-case analyses of
algorithms: for a long time, it was common to consider the asymptotic number of member-
ship queries required by a learning algorithm only (query complexity), as every query results in
a single-bit answer (true/1 or false/0). From a practical perspective, however, it is clear that the

3

1. Introduction

time required for realizing a query asymptotically grows at least linearly in its length. This mo-
tivates a worst-case analysis of the total number of symbols in all queries (symbol complexity),
that we will present for all algorithms (cf. also Table A.1 in Appendix A). The motivation of gen-
erating (state-machine) models to be used with model-based techniques also justifies a narrow
focus on only such techniques, and excluding other types of active learning (e.g., of Boolean
formulae [22, 40] or Support Vector Machines [160]). Furthermore, this perspective motivates
the considered extensions beyond DFAs and regular languages, namely Mealy machines, com-
monly used for modeling reactive systems [128], and visibly pushdown automata [11], which
have been proposed as a model for programs with recursion.

1.3. Overview of the Contributions

Guided by the research questions listed above, the contributions presented in this thesis are the
following:

• Formalization of active automata learning: A rigorous formalization of refinement-based
active DFA learning is established. The mathematical precision of the presentation allows
to naturally identify previously neglected phenomena, especially concerning the analysis
of counterexamples. In particular, it is shown that counterexamples are manifestations
of special cases of inconsistencies, which can be analyzed using dedicated techniques.
The established mathematical framework furthermore provides guidelines for efficient
algorithm design, while allowing to reduce proofs of the correctness and complexity of
learning algorithms to casting them as instantiations of the framework.

• Algorithmic advancements of classical active automata learning: A novel, highly effi-
cient active automata learning algorithm is presented, exploiting the insights attained
through the above rigorous formalization and following the identified guidelines. While
the asymptotic complexity analysis cannot expose the practical benefits due to worst-case
assumptions, a series of experiments will demonstrate that this new learning algorithm
outperforms virtually every existing one, in particular in the presence of non-minimal
counterexamples.

• Extension to richer classes: The identified concepts and principles of an efficient algo-
rithm for actively inferring DFAs is transferred to the setting of visibly pushdown automata,
which can be used to model programs with recursion. The practical performance evalu-
ation of this algorithm is further witness to the claim that a solid formal basis is key to
achieving efficiency and scalability in practice.

1.3.1. Comments on Individual Contributions

Section 3.3 of this thesis is partly based on the paper An Abstract Framework for Counterexample
Analysis in Active Automata Learning [108]. I was the lead author of all sections of this paper.
The idea of applying other worst-case logarithmic search heuristics evolved in discussions with
Bernhard Steffen. I was solely responsible for the formalization, implementation and for carry-
ing out the experiments.

The version presented in this thesis differs from the framework presented in the above pa-
per by allowing arbitrary (instead of binary) effect domains, which allows for instantiating the

4

1.4. Outline

framework in settings without unique representatives, and increases the efficiency when learn-
ing Mealy machines.

Chapter 5 is partly based on the paper The TTT Algorithm: A Redundancy-free Approach to Ac-
tive Automata Learning [110]. I am the lead author of all sections of this paper. The idea of
maintaining both prefix-closedness and suffix-closedness in a discrimination tree-based learn-
ing algorithm, which allows for storing the data in three trees, evolved in discussions among the
authors of this paper. I was solely repsonsible for the algorithmic realization and working out
the technical details, including in particular the realization of discriminator finalization, as well
as the proof of space optimality. Furthermore, I was solely responsible for the implementation
and conducting the experiments.

The version of TTT presented in this thesis differs from the description in the above paper in
several aspects. First, it is now clearly specified that a step of counterexample analysis is only
performed when no finalization is possible. Second, the finalized discriminator is obtained as
the LCA of the successors of all states within a block, not just two arbitrary states, which allows
to preserve semantic suffix-closedness. Third, the description has been adapted to show that
soft sifting is sufficient for evaluating state output functions, which reduces the number of hard
sifts required for counterexample analysis. In addition to the improved efficiency, this results in
a much clearer specification of the algorithm. The evaluation in Section 5.5 uses an improved
implementation based on the description in this thesis, and not the implementation that was
used in the above paper. Again, I was solely responsible for all these extensions.

All other contents of this thesis, including the above-described extensions to the respective pa-
pers, are my own and original work, unless explicitly stated otherwise through citations.

1.4. Outline

This thesis is structured as follows: Chapter 2 establishes the notation used in this thesis, and
provides definitions for frequently used mathematical concepts. It furthermore gives a brief
overview on finite-state machines. These are discussed in much greater detail in Chapter 3,
which also formally introduces the problem of active automata learning and describes the char-
acteristics of deterministic finite automata that make learning them feasible in the first place.
Based on this initial considerations, a mathematical framework for active automata learning al-
gorithms is developed that will serve as the basis for algorithms developed in the remainder of
the thesis.

The next two chapters are devoted to a detailed presentation of the TTT algorithm. Chapter 4
describes the data structure of discrimination trees, which play an essential role for efficient
active automata learning due to their inherent redundancy freeness. For a clearer exposition of
their characteristics, they are first presented in a white-box scenario, before describing how to
realize black-box learning. Chapter 5 then describes the actual and technically very involved
TTT algorithm, including a practical evaluation and comparison to other, previously existing
algorithms.

Chapter 6 goes a step further, first describing how visibly-pushdown systems can be learned
in a black-box setting. The second part of the chapter then describes how the ideas behind TTT

can be transferred to this modified setting, resulting once more in a highly efficient algorithm.
Finally, Chapter 7 gives an overview on other works that are related to the topics of this thesis,

5

1. Introduction

before Chapter 8 concludes the thesis, summing up its contents and discussing possible direc-
tions for future research.

6

2. Preliminaries

The aim of this chapter is to establish a common syntax and semantics for concepts that are
relevant for this entire thesis. In particular, while it should be possible to only selectively read
certain chapters of this thesis, the definitions and notations presented in this chapter are essen-
tial for almost all of them, and thus should not be skipped.

Conceptually, this chapter is divided into two sections: the first one focuses on purely math-
ematical concepts like functions, relations etc. While the reader is expected to have some basic
understanding of these, they often appear with slight semantical variations in the literature (for
example, is 0 an element of � or not?). Establishing a homogeneous and consistent syntax and
semantics is thus the goal of this first section, along with introducing some more “exotic” nota-
tion, e.g., concerning partial functions.

The second section focuses on words and automata, both of which are structures that can
be described in mathematical terms, but are often used with a distinct and well-established
notation in the context of theoretical computer science.

Most of the definitions presented in this chapter are folklore and can be found in the same
or similar ways in a large number of works of other authors. For additional information on the
subject of automata theory and transition systems, we refer the reader to the standard litera-
ture [24, 91].

2.1. Mathematical Notation

The goal of this section is to introduce the notation for common concepts in mathematics that
are of importance for this thesis. Of course, a mathematical background is indispensable for
reading this thesis, as clearly not every single elementary concept can be introduced. For this
reason, the description is limited to concepts where either no or several concurrently used def-
initions and notations exist.

2.1.1. Sets

Let � denote the set of non-negative integers (or natural numbers), including 0 (i.e., � =
{0,1,2,...}). The set of positive integers is denoted by �+, while � is the set of all integers (in-
cluding negative ones). We furthermore define �=df {0,1} as the set of Boolean values, where
0 is identified with false and 1 is identified with true. However, the values 0 and 1 will always
be introduced explicitly in their respective contexts, and are not implicitly identified with the
evaluation of some first-order logical statement such as x ∈X .

For a set X , |X | denotes its cardinality, i.e., the number of elements it contains. Furthermore,
2X denotes the powerset of X , thus 2X =

�

X ′ |X ′ ⊆X
�

.

7

2. Preliminaries

2.1.2. Partial Functions

Let X and Y be arbitrary sets. A partial function f from X to Y , denoted by f : X � Y , is a
right-unique relation f ⊆ X ×Y . We write f (x) = y if there exists (x , y)∈ f and say that f (x) is
defined; otherwise, we say that f (x) is undefined. The domain of a partial function, denoted by
dom f , is the set of all x ∈ X such that f (x) is defined. Two partial functions f1, f2 : X � Y are
equal, denoted by f1 = f2, if and only if dom f1 =dom f2 and, for all x ∈dom f1, f1(x) = f2(x).

2.1.3. Equivalence Relations

A reflexive, symmetric and transitive binary relation ≈⊆X ×X on an arbitrary set X is called an
equivalence relation (on X). For x ∈X , [x]≈=df

�

x ′ ∈X | x ≈ x ′
�

denotes the equivalence class of
x (with respect to ≈). An equivalence relation ≈ on X is said to saturate a subset X ′ ⊆ X if and
only if X ′ is the union of some equivalence classes of ≈. Note that in this case, we have

X ′=
⋃

x∈X ′

[x]≈,

and each equivalence class [x]≈ of ≈ is either a subset of or disjoint from X ′. The quotient (or
quotient set) of X with respect to an equivalence relation≈ is defined as the set of all equivalence
classes, and is denoted by X /≈=df {[x]≈ | x ∈X }. The index of an equivalence relation ≈, ind(≈),
is defined as the number of equivalence classes, i.e., ind(≈) =df |X /≈|.

The quotient forms a partition of X , and is also called the partition of X induced by ≈. In gen-
eral, a partition of X is a set P ⊂2X such that (i) ∀B ∈P : B �=�, (ii) ∀B ,B ′ ∈P : (B =B ′ ∨B ∩B ′= �),
and (iii)

⋃

B∈P B =X . The elements of P are also called blocks. Each element x ∈X corresponds
to exactly one block B ∈P such that x ∈B . The size |P | of a partition P is the number of distinct
blocks it contains. If |P |=k , then P is also called a k -partition of X . If all elements of P are sin-
gletons (i.e., |P |= |X | if X is finite), P is called the discrete partition of X . Just as an equivalence
relation ≈ on X induces a partition of X , each partition P ⊂ 2X of X induces an equivalence
relation ∼P ⊆X ×X , such that x ∼P x ′ if and only if x and x ′ are in the same block of P .

For an arbitrary function f : X →Y mapping elements of X to some arbitrary set Y , ∼ f ⊆X ×X
denotes the equivalence kernel of f , which is defined via x1 ∼ f x2 ⇔df f (x1)= f (x2). For simplic-
ity, we denote the equivalence class of x with respect to ∼ f by [x] f , instead of the more explicit
[x]∼ f

. The quotient X /∼ f is also referred to as the partition (of X) induced by f .
Given two equivalence relations ≈1,≈2 ⊆ X ×X on X , ≈2 is said to refine ≈1 if and only if for

all x , x ′ ∈ X , x ≈2 x ′ implies x ≈1 x ′. In this case, each equivalence class of ≈1 is a (disjoint)
union of equivalence classes of ≈2. Moreover, for the cardinality of the quotient sets, we have
|X /≈2| ≥ |X /≈1|. Note that each equivalence relation refines itself; if ≈2 and ≈1 are distinct in
the above case, we say that the refinement is strict (or, that ≈2 strictly refines ≈1). If both the
refinement is strict and the quotient set |X /≈1| is finite, the above property can be strengthened
to |X /≈2|> |X /≈1|.

2.2. Alphabets, Words, and Automata

Automata, or finite-state machines, are an important concept in theoretical computer science,
used for modeling a large class of systems. In this thesis, we are primarily concerned with finite-
state machines, that furthermore operate on a finite input alphabet.

8

2.2. Alphabets, Words, and Automata

2.2.1. Alphabets and Words

Throughout this thesis, letΣbe an arbitrary non-empty1 alphabet. A finite sequence of elements
of Σ (which in this context are called symbols) is called a (finite) word over Σ.2 In the following,
we fix the alphabet Σ, and will omit the explicit “over Σ” when talking about words.

The length of a word w is defined as the length of this sequence, and is denoted by |w |. The
unique word of length zero is called the empty word, and is denoted by ε. Single symbols a ∈Σ
are identified with words of length 1. We write Σm for the set of all words of length m ∈�, and
Σ≤m for the set of all words of length up to m , i.e.,

Σ≤m =df

m
⋃

i=0

Σi .

The set of all words of arbitrary (but finite) length is denoted by Σ∗, and Σ+ denotes the set of all
non-empty words. These can be defined as

Σ∗=df

∞
⋃

i=0

Σi and Σ+ =df

∞
⋃

i=1

Σi ,

respectively. Note that Σ+ =Σ∗ \{ε}.
Let w ∈Σ∗ be a word of length m ∈�, and assume that w1,...,wm ∈Σ are the single symbols of

which w consists; we also write w = w1 ...wm to express this fact.3 The concatenation of words
w ,w ′ ∈Σ∗, denoted by w ·w ′, is the word obtained from concatenating the symbol sequences of
w and w ′. Thus, if w =w1 ...wm and w ′=w ′

1 ...w ′
m ′ , w ·w ′=w1 ...wm w ′

1 ...w ′
m ′ and |w ·w ′|=m+

m ′. Concatenation is an associative operation, meaning that for w ,w ′,w ′′ ∈Σ∗, we have (w ·w ′)·
w ′′=w ·(w ′ ·w ′′)=w ·w ′ ·w ′′. We will sometimes omit the “·” symbol, and simply write w w ′ for
the concatenation of w and w ′. An explicit “·” will be written either to improve readability, or to
emphasize a logical subdivision of the concatenated word. We lift the concatenation operation
to sets of words in the natural way: for U ,V ⊆Σ∗, we have

U ·V =df {u ·v |u ∈U ,v ∈V }.

We furthermore allow either of the operands of this lifted concatenation operation to be a single
word instead of a set, which is then identified with the corresponding singleton set. That is, for
u ∈Σ∗ and V ⊆Σ∗, we have u ·V = {u}·V .

For U ⊆Σ∗ and i ∈�, U i denotes the set containing all words that can be represented by con-
catenating i (not necessarily distinct) words fromU , i.e., U 0 =df {ε}, andU i+1 =df U ·U i for i ∈�.
Similarly to the definition of Σ∗, the Kleene star operation on a set U is defined as

U ∗=df

∞
⋃

i=0

U i .

1While it is possible to define some of the following concepts for empty alphabets also, we will generally assume
alphabets to be non-empty, unless explicitly stated otherwise.

2In the literature, the term string is frequently used in lieu of word. However, we prefer the latter, as string in a
computer science context is commonly associated with being defined over some “natural” alphabet, such as the set
of all UTF-16 characters.

3In certain circumstances, the need for introducing finite sequences of words will arise, the elements of which
might also be named wi . This should however not lead to any confusion: whenever a word is introduced as, e.g.,
w ∈Σ∗, wi refers to the i -th symbol of w . Otherwise, if wi refers to a word in a sequence of words, we explicitly state
wi ∈Σ∗.

9

2. Preliminaries

A subword of a word w ∈Σ∗ is a word w ′ ∈Σ∗ such that there exist u ,v ∈Σ∗ satisfying w =
u ·w ′ ·v . Assuming that w =w1 ...wm is a word of length m = |w |, for 1≤ i ≤ j ≤m , wi .. j denotes
the subword wi ...w j of w . If i > j , then wi .. j = ε.4

A prefix of a word w ∈Σ∗ is a word u ∈Σ∗ such that there exists a word v ∈Σ∗ satisfying w =u ·v ,
i.e., u =w1..i for some 0≤ i ≤ |w |. We write u �pref w to express the fact that u is a prefix of w . If
furthermore |u |< |w | (i.e., u �= w) holds, u is called a strict prefix of w . The prefix set of a word
w , i.e., the set of all its prefixes, is denoted by Pref(w) =df

�

u ∈Σ∗ |u �pref w
�

. This definition
can be generalized to sets of words S ⊆Σ∗ in the following, natural way:

Pref(S) =df

⋃

w∈S

Pref(w).

S is called prefix-closed if and only if Pref(S) =S .
The counterpart of a prefix is a suffix. Formally, v ∈Σ∗ is a suffix of w ∈Σ∗, denoted by v �suff

w , if there exists a word u ∈Σ∗ such that w = u ·v (i.e., v = wi ..|w | for some 1≤ i ≤m +1). The
concepts of suffix set, suffix-closedness, and strict suffix are defined in analogy to their prefix
counterparts. Note that both �pref ⊆Σ∗×Σ∗ and �suff ⊆Σ∗×Σ∗ are partial orders on the set Σ∗.

For u ∈Σ∗ and an arbitrary v ∈Σ∗, the word u ·v is called an extension of u . The set of all
extensions of a word, uΣ∗, is thus the largest set such that u is a prefix of all its elements. In the
special case that |v |= 1, u ·v is called a one-letter extension. The (finite, if Σ is finite) set of all
possible one-letter extensions is denoted by uΣ.

2.2.2. Transition Systems

Transition systems are a ubiquitous concept in computer science, as they describe, in an ab-
stract way, the evolution of a system over time (or an abstracted, often discrete version thereof).
This evolution is described by changes in the state of such a system. In the most general sense,
the concept of a state merely encompasses the potential future evolutions of the system, though
usually some context-dependent interpretation is attached to single states (such as it being “ac-
cepting” or “rejecting” in the context of finite-state acceptors, see below). A transition from
one state to the next (successor state) is often associated with some label (“action”), which may
be associated with some externally triggered event (e.g., a button being pressed, network data
being received), but can also correspond to an implicit event such as a certain period of time
having passed.

The notion of transition systems that we will introduce here will merely serve syntactical pur-
poses, that is, establishing a common notation for reasoning about (specific) evolutions of states
in such a system. Thus, a transition system in the following sense usually does not occur explic-
itly as part of some problem or as input to an algorithm, but rather is a structure induced by
some other object such as a DFA, as described in the next subsection.

4This also applies if j is an otherwise invalid index, such as i =1, j =0.

10

2.2. Alphabets, Words, and Automata

FSM

FSA

NFA

DFA

finite-state
transducer

. . .

. . .

Mealy
machine

. . .

Figure 2.1.: Taxonomy of various types of finite-state machines

Definition 2.1 (Transition system)

A transition system is a triple 〈S ,Act,→〉, where

• S is a set of states,

• Act is a set of actions,

• →⊆S×Act×S is the transition relation.

For states s ,s ′ ∈ S and an action a ∈ Act, we write s
a−→ s ′ to denote that (s ,a ,s ′) ∈→. s −→ s ′

expresses that there exists some a ∈Act such that s
a−→ s ′. For a sequence (or word) of actions

w = a1a2 ...am ∈Act∗, we write s
w
=⇒ s ′ if there exist states s0,...,sm ∈S such that s0 = s , sm = s ′,

and si−1
ai−→ si for all 1≤ i ≤m (note that if w = ε and thus m = 0, this reduces to s = s ′). Again,

s =⇒ s ′ denotes that there exists some w ∈Act∗ such that s
w
=⇒ s ′.

2.2.3. Finite-State Acceptors

Transition systems are often given through one of the various forms of finite-state machines
(FSMs). Intuitively, an FSM gives rise to a transition system over a finite set of states (usually
denoted by Q instead of S), where each transition is triggered by an action from a finite set of
actions (denoted by Σ instead of Act, and referred to as the alphabet). Apart from this common
property of finite state-space and alphabet, there exists a large variety of different finite-state
machine models for various tasks, e.g., realizing a binary classifier for words, or translating input
words into output words (over a potentially different alphabet). Figure 2.1 visualizes a fragment
of a taxonomy of different types of FSMs, including those that are considered in this thesis. The
next sections will formally introduce the mentioned machine models.

Finite-state acceptors (FSAs) are certainly among the most fundamental concepts in theoret-
ical computer science. Conceptually, they realize a binary classifier for (finite) words over some
finite alphabet Σ, i.e., they can be seen as computing a unary predicate on Σ∗.

FSAs generally come in two flavors: non-deterministic finite automata (NFAs) and determini-
stic finite automata (DFAs).5 While DFAs have a lot of desirable properties and are conceptually

5The term “(non-)deterministic finite automaton” is well-established for these kinds of finite-state acceptors,
although it could be criticized that finite-state acceptor would be a better substitute for finite automaton, due to the
vagueness of the latter.

11

2. Preliminaries

q0 q1

q2 q3

a

a
bb

a

a

bb

(a) Example NFA (that is also a DFA)

q0 q1

q2 q3

a/x
a/y

b /x

a/x
b /x

b /x
a/x
b /x

(b) Example Mealy machine

Figure 2.2.: Example FSM visualizations

much simpler to work with, we will first introduce NFAs, as they form the general case.

Definition 2.2 (NFA)

Let Σ be a finite input alphabet. A non-deterministic finite automaton (NFA) A (over Σ) is a
tuple A=

�

QA,Σ,Q0,A,∆A,FA
�

, where

• QA is a finite, non-empty set of states,

• Q0,A⊆QA is a non-empty set of initial states,

• ∆A⊆QA×Σ×QA is a transition relation, where (q ,a ,q ′)∈∆A indicates that the automa-
ton can move from state q to state q ′ upon reading the input symbol a , and

• FA⊆QA is a set of final (or accepting) states.

Semantics of an NFA. An NFA A induces the transition system 〈S ,Act,→〉 with S =QA, Act =Σ,
and →=∆A. A word w ∈Σ∗ is said to be accepted by A if and only if there exists an initial state

q ∈Q0,A and an accepting state q ′ ∈ FA such that q
w
=⇒q ′, otherwise it is said to be rejected by A.

The language L(A) of an NFA A (or the language accepted by A) is the set of all accepted words,

i.e., L(A) =df

�

w ∈Σ∗ | ∃q ∈Q0,A,q ′ ∈ FA : q
w
=⇒q ′

�

.

In many contexts, it is more convenient to refer to the semantics of an NFA A in terms of a
function instead of its language, which is a set. In fact, this is indispensable for the case of finite-
state transducers (see Section 2.2.4), and thus a prerequisite for a generalization of the theory
developed in the next chapter.

Definition 2.3 (Output function)

Let A be an NFA over an input alphabet Σ. The output function of A, λA, is defined as

λA : Σ∗ →�, λA(w) =df

�

1 if w ∈L(A)

0 otherwise
∀w ∈Σ∗.

Note that λA is simply the characteristic function (or indicator function) of L(A). Throughout
this entire thesis, we will prefer output functions over languages: for a language L ⊆Σ∗, we will

12

2.2. Alphabets, Words, and Automata

refer to its characteristic function as its output function λL : Σ∗ →�. Thus, λA = λL(A). Con-
versely, for an arbitrary output function λ : Σ∗ →�, the corresponding language is λ−1(1).

Visualization of NFAs. NFAs (or, FSMs in general) are typically visualized by representing their
transition system as a graph: nodes correspond to states (drawn as circles), and edges (drawn
as arrows) between nodes indicate the existence of a transition. The edges are typically labeled
with the corresponding action from Σ. The initial states are visualized by having an incoming
edge with no source node and no label. In the case of NFAs, states can furthermore be accepting
or rejecting. This is commonly visualized by drawing the accepting states with a double circle,
and the rejecting ones with a single circle.

Figure 2.2a shows an NFA that recognizes the language over Σ= {a ,b } containing an even
number of a s and b s. It has four states, q0 through q3, where q0 is the only initial and also the
only accepting state.

Remark 2.1

In Definition 2.2, the transitions of an NFA A are described in terms of a transition relation
∆A. However, it can be useful to treat this relation as a function of a state and an input symbol,
mapping into the powerset of QA. Thus, the (non-deterministic) transition function δA : QA×
Σ→2QA is defined as:

δA(q ,a) =df

�

q ′ ∈QA | (q ,a ,q ′)∈∆A
�

∀q ∈QA,a ∈Σ.

We first lift δA to sets of states in the usual fashion, i.e.,

δA(Q
′,a) =df

⋃

q∈Q ′

δA(q ,a) ∀Q ′ ⊆QA,a ∈Σ,

and then use this to define the extension ofδA to words w ∈Σ∗, denoted byδ∗
A : QA×Σ∗→2QA ,

in the following, inductive fashion:

δ∗
A(q ,ε) =df

�

q
�

∀q ∈QA,

δ∗
A(q ,a ·w) =df δ∗

A(δA(q ,a),w) ∀q ∈QA,a ∈Σ,w ∈Σ∗.

Note thatδ∗
A could alternatively be defined in terms of the relation=⇒defined in Section 2.2.2:

we have δ∗
A(q ,w) =

�

q ′ ∈QA |q
w
=⇒q ′

�

for all q ∈QA,w ∈Σ∗.

We will furthermore follow the common approach of identifying δA and δ∗
A, motivated by

the fact that they coincide for arguments of length 1. Hence, in the remainder, δA can refer
to both the “normal” as well as the extended transition function of A.

The above remark on treating the transition relation as a transition function allows us to con-
veniently define two important properties of NFAs.

13

2. Preliminaries

Definition 2.4 (determinism, completeness)

Let A be an NFA over Σ. A is called:

(i) deterministic6 if and only if |Q0,A|=1 and |δA(q ,a)| ≤1 for all q ∈QA,a ∈Σ.

(ii) complete if and only if δA(q ,a) �= � for all q ∈QA,a ∈Σ.

Deterministic and complete NFAs are of such importance that it is common to define them
in their own, slightly adjusted fashion, instead of treating them as restricted NFAs. In particular,
replacing the set of initial states Q0,A with a single initial state q0,A ∈QA, and the transition rela-
tion ∆A with a deterministic transition function δA : QA×Σ→QA in Definition 2.2, one arrives
at the following, common definition of deterministic finite automata (DFA).

Definition 2.5 (DFA)

Let Σ be a finite input alphabet. A deterministic finite automaton (DFA) A is a tuple A=
�

QA,Σ,q0,A,δA,FA
�

, where

• QA is a finite, non-empty set of states,

• q0,A ∈QA is the designated initial state,

• δA : QA×Σ→QA is the transition function, where δA(q ,a) =q ′ indicates that A moves
from state q to state q ′ upon reading input symbol a , and

• FA⊆QA is the set of final (or accepting) states.

As each DFA A is also an NFA,7 we do not need to re-define the formal semantics for DFAs, nor
specify how they are visualized (incidentally, the NFA from Figure 2.2a is also a DFA). It should be
noted that the transition function δA maintains its functional nature when extended to words
(cf. Remark 2.1). The definition of the language recognized by a DFA A can thus be rephrased
slightly more concisely as

L(A) =df

�

w ∈Σ∗ |δA(q0,A,w)∈ FA
�

.

The output function λA for a DFA is defined in the same way as for NFAs, and we therefore also
have L(A) =λ−1

A (1). However, particularly in the context of DFAs it is convenient to also define
an output function for individual states.

6The fact that non-deterministic finite automata can be deterministic may sound confusing at first. However,
while the latter refers to a property that may be present in instances of the formalism, the former describes a degree
of freedom that the formalism permits, not enforces.

7There is a slight syntactical difference in the transition function δA when A is treated as a DFA versus when it
is treated as an NFA: in the former case, it maps into QA, whereas in the latter case it maps into 2QA . However, due
to determinism and completeness (Definition 2.4), the images of the NFA-style transition function are guaranteed to
be singleton sets, which we identify with their only element.

14

2.2. Alphabets, Words, and Automata

Definition 2.6 (State output function)

Let A be a DFA over Σ, and let q ∈QA be an arbitrary state of A. The state output function of
q ∈QA, λ

q
A, is defined as

λ
q
A : Σ∗ →�, λ

q
A(w) =df

�

1 if δA(q ,w)∈ FA
0 otherwise

∀w ∈Σ∗.

Note that the state output function λ
q
A is essentially the output function λA′ of a DFA A that is

derived from A by changing the initial state to q . Thus, λA=λ
q0,A
A .

2.2.4. Finite-State Transducers

A DFA can either accept or reject an input word, i.e., it computes a Boolean-valued output func-
tionλ : Σ∗→�. The restriction of the codomain to� is often inadequate for modeling the output
behavior of realistic systems. In the general case, the output behavior is described by a function
λ : Σ∗ →D, where D is some arbitrary output domain. Reactive systems [128], which usually do
not terminate but only produce intermediate outputs, obey even further restrictions, as will be
discussed below.

It is typical to choose D =Ω∗, for some output alphabet Ω. The output function λ : Σ∗ →Ω∗

thus takes words over one alphabet, Σ, and translates them into words over another alphabet,
Ω. Machines that accomplish this task are commonly referred to as transducers, and for the
special case that they compute the output function in finite space, as finite-state transducers.

There are many formalisms for finite-state transducers. We will concentrate on the particu-
larly simple and widely used one of a Mealy machine.

Definition 2.7 (Mealy machine)

Let Σ be a finite input alphabet and Ω be a finite output alphabet. A Mealy machine over Σ
and Ω is a tuple M=

�

QM,Σ,Ω,q0,M,δM,γM
�

, where

• QM is a finite, non-empty set of states,

• q0,M ∈QM is the designated initial state,

• δM : QM×Σ→QM is the transition function, and

• γM : QM×Σ→Ω is the transition output function.

Semantics of a Mealy machine. Upon reading an input symbol a ∈Σ, a Mealy machine M
moves from the current state q ∈ QM (starting with the initial state) to the successor state
δM(q ,i) while producing the output symbol γM(q ,a). The concatenation of all output sym-
bols that have been produced when reading an input word w ∈Σ∗ forms the output of M in
response to w . Thus, a Mealy machine M computes an output function λM : Σ∗ →Ω∗.

To give a formal definition ofλM, let us first introduce the extended transition output function
γ∗M : QA×Σ∗ → Ω∗, which—in analogy to the extended transition function (cf. Remark 2.1)—
extends the normal transition output function γM : QA×Σ→Ω from single symbols to words. It

15

2. Preliminaries

is defined inductively as follows:

γ∗M(q ,ε) =df ε,

γ∗M(q ,a ·w) =df γM(q ,a) ·γ∗M(δM(q ,a),w) ∀q ∈QM,w ∈Σ∗,a ∈Σ.

Again, we will identify γM and γ∗M, as the latter coincides with the former for arguments of
length one. The output function λM can then simply be defined via λM(w) =df γM(q0,M,w).
Note that also for a Mealy machine M we can define a state output function (cf. Definition 2.6):
for q ∈QM, the state output function λ

q
M : Σ∗→Ω∗ is simply defined as λ

q
M(w)=df γM(q ,w), for

all w ∈Σ∗.
Remark 2.2

The output function of a Mealy machine M will always satisfy the following two properties:

∀w ,w ′ ∈Σ∗ : w �pref w ′ ⇒λM(w)�pref λM(w ′) (2.1)

and
∀w ∈Σ∗ : |λM(w)|= |w |. (2.2)

(2.1) corresponds to the property of a (deterministic) reactive system [128] that never termi-
nates, but instead continuously receives inputs from the environment and produces output
symbols. Thus, every output λM(w) in response to a finite input word w ∈Σ∗ can always be
extended by supplying new inputs, i.e., extending w .

The property (2.2) establishes a one-to-one correspondence between input and output
symbols. Note that the output alphabet Ω may contain arbitrarily complex symbols, includ-
ing a special symbol indicating no output (quiescence), or symbols corresponding to several
outputs produced consecutively. However, it is impossible to directly model systems that pro-
duce outputs before receiving the first input, or systems that keep on producing outputs in-
definitely, without receiving inputs in between. Such phenomena can only be modeled indi-
rectly, e.g., by introducing special input symbols for initialization or for indicating the absence
of an actual input.

Transducers satisfying (2.2) are sometimes also called letter-to-letter transducers (e.g., by
Sakarovitch [158]). Letter-to-letter transducers are significantly simpler to infer in a passive
learning setting (a survey on this topic, including passive inference of various kinds of trans-
ducers that are not letter-to-letter transducers, is given by de la Higuera [61]), as it is then
not necessary to determine which subwords of the input and output words correspond to the
same transition. In an active learning context, however, this alignment can be inferred triv-
ially by querying λ(w ′) for each w ′ ∈Pref(w)\{ε}. As we are solely considering active learning
in this thesis, we can thus neglect this difference, and will use the term “transducer” synony-
mously with “letter-to-letter transducer”.

Visualizing Mealy machines. The transition structure of a Mealy machine M is visualized
in a similar way as for NFAs and DFAs: states in QM are drawn as circles (note that for Mealy
machines, there is no concept of acceptance, thus all states are drawn as single circles). The
initial state has an unlabeled incoming edge that has no source state. An edge from state q to
state q ′ labeled with a/o expresses the fact that q ′ = δM(q ,a) and o = γM(q ,a). Figure 2.2b
shows a Mealy machine over Σ= {a ,b } with four states, q0 (the initial state) through q3, and
using Ω=

�

x , y
�

as its output alphabet.

16

2.2. Alphabets, Words, and Automata

2.2.5. Common FSM Concepts

To conclude this chapter, we want to discuss some important concepts and operations that uni-
formly apply to all the presented types of (deterministic) FSMs. The generalization of these
concepts is essential for a theory of automata learning that is not inherently tied to a specific
machine model such as DFAs. While it is inevitable that some distinctions need to be made at
the model level (for example, it is at least not obvious how the concept of whether a state is ac-
cepting or not (DFAs) and what the output of a transition is (Mealy machines) could be treated
uniformly), these specific algorithms can build upon a common basis that is formulated at what
a computer engineer would call the interface level.

In the following, we will assume that a deterministic FSM A over Σ has states QA, an initial
state q0,A, a transition function δA, and an output function λA. We further assume that the
output function λA maps from Σ∗ to some output domain D (i.e., D=� for DFAs, and D=Ω∗ for
Mealy machines), and that for every state q ∈QA, there exists a state output functionλ

q
A : Σ∗→D.

In general, the state output function λ
q
A is the output function λA′ of the FSM A′ obtained from

A by changing the initial state to q0,A′ =df q .

Reached and reachable states. The fact that a deterministic FSM has a designated initial state
q0,A ∈QA, along with the functional characteristics of the (extended) transition function, en-
sures that for every word w ∈Σ∗, there is a unique state q that is reached by w from the initial
state. We will denote this state by A[w], thus A[w]=df δA(q0,A,w). A state q ∈QA is called reach-
able if and only if there exists w ∈Σ∗ such that A[w]=q . The notation is extended to sets of words
in the natural fashion, yielding

A[W] =df

�

A[w] |w ∈Σ∗� ∀W ⊆Σ∗.

The set of reachable states is thus A[Σ∗]. If QA = A[Σ∗] (i.e., all states are reachable), A is called
trim. If an FSM A is not trim, i.e., the set of unreachable states QA \A[Σ∗] is nonempty, the FSM

A′ obtained by removing all unreachable states (that is, QA′ = A[Σ∗] and δA′ is obtained as the
restriction of δA to QA′ ×Σ) computes the same output function as A.

Semantic equivalence and separators. The following definition formally states what it means
when two FSMs A and A′ are semantically equivalent.

Definition 2.8 (Equivalent FSMs and states)

(i) Let A and A′ be FSMs. A and A′ are equivalent (A≡A′) if and only if their output func-
tions are equal, i.e., λA=λA′ .8

(ii) Let A be a deterministic FSM, and let q ,q ′ ∈QA be states of A. q and q ′ are equivalent

(q ≡ q ′) if and only if their output functions are equal, i.e., λ
q
A=λ

q ′

A .

Incidentally, two FSMs A and A′ are equivalent if and only if their initial states are equivalent,
i.e., A≡A′⇔q0,A≡ q0,A′ . To explicitly separate the equivalence between states from the equiv-
alence between FSMs, we will also write ≡A to denote the equivalence between states of some
FSM A.

8Note that, for FSMs A and A′ to be equivalent, at the very minimum they have to operate on a common in-
put alphabet Σ, and their output images have to be equal, i.e., λA(Σ) =λA′ (Σ), implying that their output domains
intersect.

17

2. Preliminaries

Equality of functions over a common domain is defined pointwisely, i.e., for two functions to
be equal they need to have the same domain, and need to map every element of this domain to
the same value. Thus, if two (state) output functions are not equal (and thus the FSMs or states
not equivalent), but have the same domain Σ∗, their values for at least one argument w ∈Σ∗

must differ.
Definition 2.9 (Separators)

(i) Let A and A′ be FSMs over Σ such that A �≡A′. A separator (or inequivalence witness)
for A and A′ is a word w ∈Σ∗ such that λA(w) �=λA′ (w).

(ii) Let q ,q ′ ∈QA be states of a deterministic FSM A such that q �≡A q ′. A separator (or in-

equivalence witness) for q and q ′ is a word w ∈Σ∗ such that λ
q
A(w) �=λ

q ′

A (w).

Two FSMs or states which are inequivalent (i.e., for which there exists a separator) are thus
also called separable. There typically exist (often infinitely) many different separators for two
FSMs or states. For example, in the case of Mealy machines, every extension of a separator is
again a separator. This motivates a minimality criterion for separators: a separator is minimal
if none of its strict prefixes is a separator. Again, there may exist a large (or infinite) number of
minimal separators, and two minimal separators may differ vastly in their length. There may
furthermore be several different shortest separators (i.e., separators of minimum length).

Minimality, isomorphisms and canonicity. There often is a large number of different FSMs
realizing the same output function λ : Σ∗ →D, all of which are equivalent to each other. Of par-
ticular interest among these are the ones with a minimum number of states. Precisely, an FSM

A is called minimal if every other FSM A′ such that A≡A′ satisfies |QA′ | ≥ |QA|. Obviously, min-
imal FSMs may contain neither unreachable nor distinct yet equivalent states, as these could be
removed or merged without changing the output function. The question of whether minimal
FSMs are unique naturally arises. However, this requires us to first establish a coarser notion of
“equality” among FSMs, as an (arbitrary) renaming of the states is sufficient to obtain an FSM

that is not identical to the original one.

Definition 2.10 (Isomorphism)

Let A,A′ be FSMs of the same type over Σ. An isomorphism is a function f : QA→QA′ , satis-
fying the following conditions:

• f is a bijection, i.e., it is both injective and surjective (note that this requires |QA|= |QA′ |),

• f (q0,A) =q0,A′ ,

• ∀q ∈QA,a ∈Σ : f (δA(q ,a)) =δA′ (f (q),a), and

• for all q ∈QA, q and f (q) are locally equivalent.

In the above definition, we relied on the concept of states being “locally equivalent”. This means
that, considering the respective FSM type, the states are “equivalent” when considered in isola-
tion, i.e., not taking the whole transition structure into account. For example, in the case of DFAs
A and A′, states q ∈QA,q ∈QA′ are locally equivalent if and only if q ∈FA⇔q ′ ∈FA′ . For Mealy
machines M and M′, the corresponding property is ∀a ∈Σ :γM(q ,a) =γM′ (q ′,a).

18

2.2. Alphabets, Words, and Automata

Definition 2.10 allows us to establish a notion of equality that abstracts from a possible re-
naming or reordering on the states of an FSM.

Definition 2.11

Let A,A′ be FSMs of the same type. A and A′ are isomorphic, denoted by A�A′, if and only
if there exists an isomorphism f : QA→QA′ .

It should be noted that A�A′ implies A≡A′, but generally not vice versa.
The original motivation for introducing the concept of isomorphisms was to reason about

the uniqueness of minimal FSMs. When “uniqueness” is interpreted modulo isomorphisms,
one arrives at the definition of canonicity.

Definition 2.12 (Canonicity)

Let A be an FSM that is minimal, i.e., no other FSM A′ with less states computes the same
output function λA. If every equivalent FSM A′ with the same number of states is isomorphic
to A, A is called the canonical FSM for λA.

Without going into further detail at this point, let us remark that both DFAs and Mealy machines
admit canonical forms, i.e., for every DFA A (Mealy machine M), there exists an equivalent DFA

A′ (Mealy machine M′) such that A′ (M′) is canonical.

Suffix output function. A final remark concerns the fact that the output value for a composed
word u ·v can often be decomposed into a part that is associated with the prefix u reaching the
state A[u], and the effect (i.e., the value of the state output function for A[u]) that the suffix v
has when executed from A[u] on.

Definition 2.13 (Suffix output function)

Let A be a deterministic FSM over Σ with output domain D. The suffix output function of A,

λ
suff
A , is defined as

λ
suff
A : Σ∗×Σ∗ →D, λ

suff
A (u ,v) =df λ

A[u]
A (v) ∀u ,v ∈Σ∗.

It is typically possible to derive λ
suff
A (u ,v) from λA(u ·v) in a relatively simple way. For example,

if A is a DFA, we have λ
suff
A (u ,v) =λA(u ·v). In the case of a Mealy machine M, λ

suff
M (u ,v) can

be obtained from λM(u · v) by discarding all but the last |v | symbols. Berg et al. [31] call an
output function with this property suffix-observable. In this thesis, we will exclusively consider
FSM models with suffix-observable output functions. By slight abuse of notation, we will thus
identify the normal and the suffix output function of an FSM A, that is, we write λA(u ,v) instead

of λ
suff
A (u ,v), as the presence of a second argument distinguishes it from the normal output

function.

19

3. An Abstract Framework for Active Automata
Learning

Active automata learning is the inference of finite-state machines (often DFAs) through exper-
imentation (or testing). That is, given an output function λ : Σ∗ →�, the goal is to find a DFA

which computes λ merely from the observed values of λ for a certain set of arguments. The
term active refers to the fact that the learner may choose these arguments. However, the learner
may only perform one such evaluation of λ (“query”) at a time, and the requirement of termi-
nating eventually constrains her to a finite number of queries.

In this chapter, we will develop a mathematical framework allowing us analyze and reason
about algorithms with the aim of accomplishing the above task. We start by highlighting impor-
tant properties of and theorems about regular languages in the next section, which are essential
for gaining an understanding about why regular languages are learnable in the first place. After-
wards, we will formalize the problem of black-box inference, and establish the frame conditions
under which the problem can be tackled by inference algorithms, before describing—on an ab-
stract level—a possible approach that is followed by most existing algorithms.

3.1. Regular Languages, DFAs, and the Myhill-Nerode Theorem

In his seminal work Three models for the description of language, Chomsky [51] established a
hierarchy of formal languages (i.e., languages over a given finite alphabet Σ, generated by a for-
mal description such as a (formal) grammar) consisting of four classes. While the largest of these
classes, �0 or “type-0 languages”, imposes almost no restrictions on the formal description of
the languages it contains, each of the other classes—�1 (type-1) to �3 (type-3)—imposes ad-
ditional restrictions, such that each of these three classes is a proper subclass of its preceding
classes.

The most restricted class, �3, is also referred to as the class of regular languages. Despite
its many restrictions, it constitutes perhaps the most important class of formal languages in
theoretical computer science due to its “well-behavedness”: the class of regular languages is
closed under almost any operation, such as concatenation, complementation, or the Kleene star,
and—given a suitable representation—most of these operations can be computed efficiently.

The mentioned “suitable representation” is that of deterministic finite automata (DFAs). It is
well-known that the class of regular languages coincides with the class of languages that can
be recognized by a DFA. Representing a regular language L in terms of a DFA allows deciding
the membership problem (“given w ∈Σ∗, is w ∈ L?”) in linear time (in the length of w), and
admits polynomial-time (in the size of the representing DFAs) algorithms for computing the
complement, union, and intersection of regular languages (with the resulting regular language
again being represented as a DFA). Furthermore, emptiness (“is L = �?”) and universality (“is
L =Σ∗?”) can be decided efficiently as well.

21

3. An Abstract Framework for Active Automata Learning

An important property of DFAs is that they admit a canonical minimal form: for each DFA,
there exists an equivalent DFA (i.e., accepting the same regular language) with a minimal num-
ber of states. Moreover, this DFA is unique up to isomorphism, and hence called the canonical
DFA for a regular language (cf. also Section 2.2.5). Again, the canonical DFA can be computed
efficiently [88].

It should be noted at this point that some operations, such as concatenating two regular lan-
guages, might result in a DFA of exponential size [174], and thus cannot be computed efficiently
when restricted to the DFA modeling formalism. They can, however, be computed efficiently in
a relaxed modeling formalism, namely that of non-deterministic finite automata (NFAs, see Sec-
tion 2.2.3 for a formal definition). Dropping the requirement of determinism does not change
the expressive power (i.e., the class of languages accepted by an NFA is still the class of regu-
lar languages), and moreover it still allows the membership problem as well as some properties
(such as emptiness) to be decided efficiently. However, deciding other properties such as univer-
sality becomes NP-hard. Additionally, the NFA formalism does not admit a minimal canonical
form, meaning there may exist several non-isomorphic NFAs with the same minimal size and
accepting the same language.

3.1.1. Quotient and DFA Minimization

It has been remarked in the beginning of this section that for each DFA A, there exists an equiv-
alent DFA �A such that �A has a minimal number of states, and that every other DFA A′ that is
both equivalent to A and has the same number of states as �A is isomorphic to �A. �A is therefore
also called the canonical DFA for the output function λA.

Given a DFA A, the canonical DFA �A for λA can be computed in time O
�

|QA||Σ|log2 |QA|
�

,
as has been shown by Hopcroft [88]. Minimization usually consists of two stages: removing
unreachable states (if A is not trim), and merging equivalent states. The first stage, removing
unreachable states, is pretty straightforward: all states in QA, which cannot be reached from
the initial state (i.e., all states in QA \A[Σ∗]) are removed. The second phase is more involved.
The notion of equivalent states has already been introduced in Section 2.2.5: two states q ,q ′ are

equivalent (q ≡A q ′) if and only if their state output functions are identical, i.e., λ
q
A=λ

q ′

A .
Intuitively, merging equivalent states can be done by calculating the equivalence classes of

≡A, and keeping only one representative of each class (and rerouting transitions to other states
in the class to this representative). The formal equivalent of this merging operation is the quo-
tient on DFAs.

Definition 3.1 (DFA Quotient)

Let A be a DFA over Σ, and let ≈⊆QA×QA be an equivalence relation over QA, satisfying the
following two conditions:

(i) ≈ saturates FA, and

(ii) ∀q ,q ′ ∈QA : q ≈q ′=⇒
�

∀a ∈Σ :δA(q ,a)≈δA(q ′,a)
�

.

The quotient DFA A/≈=
�

QA/≈,Σ,q0,A/≈,δA/≈,FA/≈
�

is then defined as follows:

• QA/≈=df QA/≈,

• q0,A/≈=df [q0,A]≈,

22

3.1. Regular Languages, DFAs, and the Myhill-Nerode Theorem

• δA/≈([q]≈,a) =df [δA(q ,a)]≈ ∀q ∈QA,a ∈Σ, and

• FA/≈=df

�

[q]≈ |q ∈ FA
�

.

The conditions that ≈ needs to satisfy guarantee that both δA/≈ and FA/≈ are well-defined, i.e.,
their definition does not depend on the choice of the representative element q ∈QA (or q ∈FA).

Given a DFA A, the quotient operation allows us to concisely specify the minimal DFA equiv-
alent to A.

Lemma 3.1

Let A be a DFA over Σ, let A′ be the trim version of A (i.e., QA′ =df A[Σ∗]), and let ≡A′ ⊆QA′ ×
QA′ denote the equivalence on states of A′ as defined in Section 2.2.5. Then, A′/≡A′ is the
canonical DFA for λA.

3.1.2. The Nerode Congruence

The previous Lemma 3.1 outlines how, given a DFA A with output function λA, a canonical DFA
�A with the same output function can be constructed, namely by merging equivalent states inA.

In this section, we will show how �A can be constructed not from an existing DFA, but simply by
exploiting properties of an arbitrary output functionλ : Σ∗→� that is the characteristic function
of a regular language. In the following, we will refer to such output functions as regular output
functions.

In analogy to regular languages, one can characterize regular output functions as the class of
functions λ : Σ∗ →� for which a DFA computing them exists. The famous Myhill-Nerode theo-
rem1 [144] provides an alternative characterization of regular output functions, that does not
rely on the notion of a DFA. As a first step, we define the Nerode congruence on words.

Definition 3.2 (Nerode congruence)

Let λ : Σ∗ →� be an arbitrary �-valued output function over Σ. The Nerode congruence is the
binary relation ∼=λ⊆Σ∗×Σ∗, defined by

u ∼=λ u ′⇔df

�

∀v ∈Σ∗ :λ(u ,v) =λ(u ′,v)
�

∀u ,u ′ ∈Σ∗,

where λ(u ,v) is the value of the suffix output function, derived from λ in analogy to Defini-
tion 2.13.

One easily sees that the Nerode congruence is an equivalence relation on Σ∗ that saturates
λ−1(1). It is also a right-congruence, meaning it satisfies

∀u ,u ′,v ∈Σ∗ : u ∼=λ u ′ ⇒u ·v ∼=λ u ′ ·v.

The Nerode congruence is also called the syntactical right-congruence. It can be shown that any
right-congruence ≈⊆Σ∗×Σ∗ saturating λ−1(1) refines ∼=λ .

The intuition behind Definition 3.2 can perhaps better be explained using the concept of
residual output functions.

1In this thesis, we present a slightly modified form of the description, as we reason about output functions, not
languages.

23

3. An Abstract Framework for Active Automata Learning

Definition 3.3 (Residual output function)

Let λ : Σ∗→� be an arbitrary formal language over Σ, and let u ∈Σ∗ be an arbitrary word. The
residual output function of u with respect to λ, u−1λ, is defined as

(u−1λ)(v) =df λ(u ,v) ∀v ∈Σ∗.

Obviously, we have u ∼=λ u ′ if and only if u−1λ=u ′−1λ.
Residual output functions are the equivalent of state output functions (cf. Definition 2.6) in

the case that a DFA A for the (regular) language is given. In fact, for any state q ∈QA of a DFA

A and any word u ∈Σ∗ such that A[u] = q , we have λ
q
A = u−1λA. More generally, if we define

∼A⊆Σ∗×Σ∗ as the equivalence relation that relates words u ,u ′ reaching the same state inA (i.e.,
u ∼A u ′⇔df A[u] = A[u ′]), it can be shown that ∼A refines ∼=λA . If A is furthermore canonical,
we have ∼A=∼=λA .

The Nerode congruence ∼=λ can thus be regarded as the word-level equivalent of the equiva-
lence relation ≡A⊆QA×QA, relating equivalent states of a DFA A. It should be noted, however,
that ∼=λ can be defined for arbitrary output functions, not just regular ones. The famous Myhill-
Nerode theorem [144] provides a characterization of regular output functions based on ∼=λ .

Theorem 3.1 (Myhill-Nerode characterization of regular output functions)

Let λ : Σ∗→� be a �-valued output function. λ is regular if and only if the index of the Nerode
congruence ∼=λ is finite.

Proof : We first show that ∼=λ has finitely many equivalence classes if λ is regular. In this case,
there exists a DFA AwithλA=λ. We have already stated above that the relation∼A, relating
words reaching the same state inA, refines ∼=λ , i.e., has at least as many equivalence classes
as ∼=λ . However, ∼A cannot have more than |QA| equivalence classes. Since QA is finite, ∼=λ

can only have finitely many equivalence classes.

For the opposite direction, we need to show that if ∼=λ has finitely many equivalence
classes, there exists a DFA A with λA = λ. The proof for this is constructive: let A =
�

QA,Σ,q0,A,δA,FA
�

be the DFA defined as follows:

• QA=df Σ
∗/∼=λ ,

• q0,A=df [ε]∼=λ
,

• δA([w]∼=λ
,a) =df [w ·a]∼=λ

,

• FA=df

�

[w]∼=λ
|λ(w) =1

�

.

To prove that A computes λ, observe that the construction of A admits a very simple in-
ductive proof for the fact that, for all w ∈Σ∗, A[w] = [w]∼=λ

: the definitions of q0,A and δA
can be taken ad verbatim to form the base case and inductive step, respectively. Thus,
λA(w) =1⇔ A[w] = [w]∼=λ

∈ FA⇔λ(w) =1.

It should be noted that the construction in the above proof is very similar to the construction of
the minimal DFA in Lemma 3.1 by means of the quotient operation (cf. Definition 3.1). In fact,
it can easily be generalized to right-congruences other than the Nerode congruence, yielding a
variant of the quotient operation on Σ∗ that results in a DFA.

24

3.2. Approximating Regular Languages by Experimentation

3.2. Approximating Regular Languages by Experimentation

We have concluded the previous section by looking at how the canonical DFA A for an arbi-
trary regular output function λ : Σ∗→� can be constructed from certain properties of λ (i.e., the
equivalence classes of its corresponding Nerode relation). This requires knowledge of the pre-
cise definition of λ, as establishing the Nerode relation (or simply determining that two words
u ,u ′ ∈Σ∗ are Nerode-inequivalent) requires us to consider the complete, infinite domain Σ∗.

In this section, we will investigate how an approximation of the Nerode congruence (and thus
the canonical DFA) can be constructed in a setting where we can only inspect finitely many val-
ues of λ (and assuming that the input alphabet Σ is known). For the rest of this chapter, we
assume that λ is in fact regular, i.e., there exists an (unknown) DFA A such that λ =λA, which
we will also refer to as the target DFA. Furthermore, we assume A to be canonical. This makes it
easier to reason about the progress of the approximation, even though properties of A cannot
be exploited.

3.2.1. The MAT Framework

An important conceptual contribution by Angluin [19], besides presenting the first polynomial
active automata learning algorithm L∗, was to establish the framework that made an efficient
algorithm possible in the first place: the Minimally Adequate Teacher (MAT) model.

In the beginning of this chapter, we already stated that we would be allowed to inspect (finitely
many, which is due to the fact that algorithms need to terminate in finite time) values of the
output function λ. In the active learning setting, the learning algorithm (also referred to as the
learner) may choose the argument w ∈Σ∗ of λ, and pose a so-called membership query (MQ)
for w to the teacher, who then replies with λ(w).

Angluin [20] has shown that using membership queries alone, it is generally not possible to
infer the correct target DFA using a polynomial number of membership queries. Moreover, it is
easy to see that from the learner’s perspective, there is no reasonable stopping criterion without
any further input by the teacher: for every finite sample set S ⊂Σ∗ for which membership queries
have been posed, there are infinitely many different explanations, i.e., distinct, non-isomorphic
DFAs whose output on S is consistent with the observations.2 Further queries may decrease
the uncertainty as to whether the conjectured hypothesis is correct (or refute it), but may never
eliminate it.

For this reason, Angluin [19] postulated that a teacher, in order to be “minimally adequate”,
needs to answer a second kind of queries as well: an equivalence query (EQ) is posed by the
learner for a conjectured DFA H (the “hypothesis”), and is met with a response from the teacher
that either indicates success (i.e., λ=λH), or provides a counterexample. A counterexample is a
word w ∈Σ∗ satisfying λ(w) �=λH(w), i.e., exposing the inadequacy of the conjectured DFA.3

2The aforementioned only holds if the number of states of the target DFA is unknown to the learner, but even if
it is, an exponential number of membership queries is required [20].

3Equivalence queries that provide a counterexample are sometimes referred to (e.g., by de la Higuera [61]) as
strong equivalence queries, in contrast to weak equivalence queries that merely indicate whether the conjectured
hypothesis is equivalent to the target DFA or not. Throughout this entire thesis, the term “equivalence query” will
always refer to the strong variant, and weak equivalence queries will not be considered at all.

25

3. An Abstract Framework for Active Automata Learning

Algorithm 3.1 The “learning loop”
Require: Access to a MAT answering membership and equivalence queries (MQ and EQ) wrt. a

target DFA A
Ensure: Hypothesis H satisfying H≡A

1: Build initial hypothesis H using MQs
2: while EQ(H) does not indicate success do
3: Let w ∈Σ∗ be the provided counterexample
4: Refine H using MQs, taking w into account
5: end while
6: return final hypothesis H

The Learning Loop

The availability of membership and equivalence queries immediately gives rise to a general al-
gorithmic skeleton, that virtually all general-purpose active automata learning algorithms build
upon. We will refer to this skeleton as the “learning loop”, shown as Algorithm 3.1. After an
initial hypothesis construction phase using membership queries (line 1), the process alternates
between posing equivalence queries (line 2) and hypothesis refinement, the latter again using
membership queries and the provided counterexample (line 4). Thus, active automata learning
can be viewed as a special kind of counterexample-guided refinement.

The learning loop only terminates when an equivalence query eventually signals success. For
this reason, the partial correctness of Algorithm 3.1 is trivial: the fact that the result upon termi-
nation is correct is guaranteed by the very nature of equivalence queries. Thus, at least from
a theoretical standpoint, devising a learning algorithm (by describing how to realize the hy-
pothesis construction and refinement phases) essentially encompasses two aspects: achieving
termination by ensuring that eventually a correct hypothesis is conjectured, and doing so as
efficiently as possible (i.e., with a minimum number of membership and equivalence queries).

Complexity Measures

A question that naturally arises is what constitutes the actual input to a learning algorithm, as
asymptotic complexity is usually given as a function of the input size. Generally, the following
three parameters are considered:

• n =df |Σ∗/∼=λ |, the size of the (canonical) target DFA A,

• k =df |Σ|, the size of the input alphabet (sometimes also treated as a constant), and

• m , the length of the longest counterexample returned by an equivalence query (note that
the generation of counterexamples is not under the learner’s control, thus they also con-
stitute an input to the algorithm).

While the first two parameters, n and k , are determined entirely by the target DFA A, the last
one, m , is determined by the teacher. In most cases, (adversarial) teachers can provide coun-
terexamples of arbitrary length, making it hard for the learner to analyze them. Assuming that
a learner never conjectures a hypothesis of size bigger than n , a cooperative teacher [175] can

26

3.2. Approximating Regular Languages by Experimentation

always respond with a counterexample of length O (n). On the other hand, for many combina-
tions of conjectured hypothesis and target DFA, every counterexample is of lengthΩ(n). Since in
most practical applications the teacher cannot be assumed to be cooperative, m =Ω(n) usually
is a reasonable assumption.

Analyzing the complexity of an active automata learning algorithm differs from the analysis of
other algorithms in that the time spent on “raw” computations, such as for manipulating data
structures, is usually neglected in favor of the query complexity, i.e., the (asymptotic) number of
membership and equivalence queries posed by a learner. The reason for this is that the compu-
tation time is usually a low-order polynomial in the above parameters, and is in practice always
dominated by the time spent on queries. Thus, the following complexity measures are used to
assess the performance of a learning algorithm, all of which are usually specified asymptotically
and as a function of n , k , and m :

• (membership) query complexity, the number of membership queries posed by a learner,

• equivalence query complexity, the number of equivalence queries posed by a learner, and

• symbol complexity, the overall number of symbols contained in all words for which mem-
bership queries have been posed.

Of these measures, the first is usually regarded as the most important one. The equivalence
query complexity is usually neglected, as it is easy to establish that no more than n −1 equiv-
alence queries need to be made (by ensuring that, starting with a one-state initial hypothesis,
every counterexample gives rise to at least one additional state). Furthermore, Balcázar et al. [25]
have shown that this upper bound cannot be significantly lowered without forsaking a polyno-
mial membership query complexity.

The symbol complexity has long been neglected in favor of a uniform cost model for member-
ship queries, regardless of their length. Isberner et al. [110] point out that this is not sufficient,
as in many practical applications of active automata learning, the cost for realizing a member-
ship query is linear in the length of the respective word. On the other hand, Choi et al. [50]
describe a scenario with a very high fixed cost per membership query, where the length of the
query is indeed mostly negligible. As theoretical considerations should be oblivious of concrete
application scenarios, membership query and symbol complexities should be regarded as two
independent cost measures.

3.2.2. Black-Box Classification Schemes

After having established the precise frame conditions in which an active automata learning al-
gorithm operates, we can now begin with establishing our abstract framework for learning al-
gorithms, in order to shed further light on how and why the inference of the correct target DFA

works.
In the introduction to Section 3.2, we have stated our goal of approximating the Nerode con-

gruence. In the most general sense, we are thus looking for a way to determine the equivalence
class of an arbitrary word u ∈Σ∗ wrt. some equivalence relation that approximates the Nerode
congruence ∼=λ .

27

3. An Abstract Framework for Active Automata Learning

Definition 3.4 (Black-box classifier)

A black-box classifier is a function κ: Σ∗ →� , where � is an arbitrary class domain.
κ is called a valid over-approximation (or simply valid) wrt. some output function λ if and

only if
∀u ,u ′ ∈Σ∗ :κ(u) �=κ(u ′)⇒u �∼=λ u ′.

Without further knowledge about the definition of λ, the only way to establish this is to main-
tain witnesses that prove the inequivalence (wrt. ∼=λ) of two words u ,u ′ ∈Σ∗ satisfying κ(u) �=
κ(u ′). Therefore, in the case that κ(u) �=κ(u ′), the classifier κ needs to establish λ(u ,v) �=λ(u ′,v)
for at least one v ∈Σ∗.
Definition 3.5 (Suffix-based black-box classifier)

Let Σ be an arbitrary input alphabet. A (finite) suffix-based black-box classifier is a black-
box classifier κ: Σ∗ →� , where � =

�

f : Σ∗�� | |dom f |<∞
�

, and for all u ,u ′ ∈Σ∗ such that
κ(u) �=κ(u ′), we have

∃v ∈domκ(u)∩domκ(u ′) :κ(u)(v) �=κ(u ′)(v).

κ is called valid for some suffix-observable output function λ : Σ∗ →� if and only if

∀u ∈Σ∗ :∀v ∈domκ(u) :κ(u)(v) =λ(u ,v).

The set of all valid suffix-based black-box classifiers for λ is denoted by Kλ .

It is easy to see that a suffix-based black-box classifier κ∈Kλ that is valid for λ in the sense of the
above definition is also valid in the sense of Definition 3.4 due to the existence of a separating
suffix (or separator) v . Note that this implies that any two f , f ′ ∈κ(Σ∗) either have a non-empty
intersection of their domains, orκ(Σ∗) is a singleton containing only the function that is nowhere
defined.

In the following, we will only consider suffix-based black-box classifiers, and use the term
“black-box classifier” synonymously.

Definition 3.6 (Characterizing set, separator set)

Let λ : Σ∗ →� be an output function, and let κ∈Kλ be a black-box classifier for λ.

• The characterizing set (wrt. κ) of a word u ∈Σ∗, Chκ(u), is defined as

Chκ(u) =df domκ(u).

• The separator set (wrt. κ) of words u ,u ′ ∈Σ∗, Sepsκ(u ,u ′), is defined as

Sepsκ(u ,u ′) =df

�

v ∈Chκ(u)∩Chκ(u
′) |κ(u)(v) �=κ(u ′)(v)

�

.

The characterizing set for a word (also called prefix, as it is combined with a suffix when evalu-
ating λ) u ∈Σ∗ can be regarded as the set of suffixes v ∈Σ∗ that are being tested (by evaluating
λ(u ,v)) to determine the equivalence class of u . Since the point of the suffixes in the character-
izing set is to discriminate between equivalence classes, they are also referred to as discrimina-
tors. As has been remarked above, the characterizing set of two prefixes must always intersect,

28

3.2. Approximating Regular Languages by Experimentation

or be empty for all prefixes. The separator set, on the other hand, contains the evidence for two
prefixes u ,u ′ ∈Σ∗ being inequivalent under κ, i.e., Sepsκ(u ,u ′)=� if and only if u ∼κ u ′. By slight
abuse of notation, we will also sometimes use equivalence classes of ∼κ as arguments of Sepsκ,
i.e., Sepsκ([u]κ,[u ′]κ) =Sepsκ(u ,u ′), which is apparently well-defined.

Remark 3.1

It makes sense to establish that the relation ∼κ, besides being refined by ∼=λ , furthermore sat-
urates λ−1(1). This can be ensured by enforcing ε ∈Chκ(u) for all u ∈Σ∗. This property greatly
simplifies many proofs in this chapter, which is why we will implicitly assume that it holds for
all black-box classifiers that we consider.

Probably the simplest way of defining a valid black-box classifier is to introduce a global set
of suffixes V ⊂Σ∗ that homogeneously applies to all prefixes.

Definition 3.7 (Global suffix-based classifier)

Let κ: Σ∗ →� be a suffix-based classifier. κ is called global if for all u ,u ′ ∈Σ∗, we have

Chκ(u) =Chκ(u
′) =V

for some global suffix set V ⊂Σ∗.

A prominent example of a global suffix-based classifier is the observation table, which forms
the main data structure of the L∗ algorithm [19] and some of its derivatives. We will elaborate on
this in Section 3.4.1.

Black-Box Abstractions

So far we have only considered how a classification of words, that is guaranteed to be refined by
the Nerode congruence ∼=λ , can be established via a black-box classifier κ. However, identifying
the corresponding equivalence classes in Σ∗/∼κ still requires to potentially consider the entire
infinite domain Σ∗. Thus, we need to maintain information about these equivalence classes (or
rather their representatives, as the classes might be infinite) as well.

Definition 3.8 (Black-box abstraction)

Let λ : Σ→� be an arbitrary output function. A black-box abstraction of λ is a pair R= 〈U ,κ〉,
where U ⊂Σ∗ is a finite set of short prefixes satisfying ε ∈ U , and κ∈Kλ is a black-box classifier
for λ. The set of classes of R, � (R), is defined as � (R) =df {[u]κ |u ∈ U}.

We have remarked in Section 3.1.2 that any relation that is strictly refined by the Nerode con-
gruence while saturating λ−1(1) cannot be a right-congruence. Thus, applying a quotient con-
struction as in the proof of Theorem 3.1 in general is not well-defined. However, limiting the
definition to the representatives in U , a weaker requirement suffices.

Definition 3.9 (Closedness, determinism)

Let R= 〈U ,κ〉 be a black-box abstraction. R is called . . .

(i) closed if and only if for all short prefixes u ∈ U and all symbols a ∈Σ, there exists a short
prefix u ′ ∈ U such that ua ∼κ u ′ (i.e., [ua]κ ∈� (R)).

29

3. An Abstract Framework for Active Automata Learning

(ii) deterministic4 if and only if for all short prefixes u ,u ′ ∈ U and all symbols a ∈Σ, we have

u ∼κ u ′ ⇒ua ∼κ u ′a .

The following definition details the quotient construction for closed and deterministic black-
box abstractions.

Definition 3.10

Let R= 〈U ,κ〉 a closed and deterministic black-box abstraction. The DFA corresponding to R,
DFA(R), is the DFA H, where

• QH=df {[u]κ |u ∈ U},

• q0,H=df [ε]κ,

• δH([u]κ,a) =df [ua]κ ∀u ∈ U ,a ∈Σ, and

• FH=df {[u]κ |u ∈ U ,κ(u)(ε) =1}.

Remark 3.2

It is crucial to observe that, for a black-box abstraction R= 〈U ,κ〉, states of H=DFA(R) are
identified with equivalence classes of ∼κ (more precisely: those equivalence classes that have
an element in U). This identification will be exploited in the following, as it allows us to reason
about statements such as “H[u]= [u]κ”, i.e., does the equivalence class of the state reached by
u in H match the equivalence class of u itself?

As equivalence classes of ∼κ are subsets of Σ∗, we can refer to the representative elements of
some equivalence class [u]κ (u ∈Σ∗) via [u]κ∩U . This notation however easily leads to con-
fusion. Therefore, we will always refer to the representatives by means of a special mapping
ρR : Σ∗/∼κ→2U , defined via ρR([u]κ) =df [u]κ∩U for all u ∈Σ∗.

Consistency Properties

The question of how well the DFA H=DFA(R) reflects the information contained in κ(u), u ∈ U ,
naturally arises. It would be desirable if, for all u ∈ U and v ∈Chκ(u), we had λH(u ,v)=κ(u)(v)=
λ(u ,v). However, we will see that there are multiple reasons for why this might not be the case.

Definition 3.11 (Reachability inconsistency, reachability (in)consistent)

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction, and let H=DFA(R) be the
corresponding DFA. A word u ∈Σ∗ constitutes a reachability inconsistency (wrt. R) if and only
if H[u] �= [u]κ.
R is called reachability inconsistent if and only if there exists u ∈ U such that u constitutes

a reachability inconsistency. Otherwise, i.e., if ∀u ∈ U : [u]κ = H[u], R is called reachability
consistent.

4Angluin [19] calls this property “consistency”. It is however more adequate to view it as a case of apparent non-
determinism, caused by an overly coarse abstraction. The term “consistency”, furthermore, is more adequate for two
properties that we will define in the next section.

30

3.2. Approximating Regular Languages by Experimentation

The obvious reason for possible violations of reachability consistency is the fact that ∼κ cannot
be a right-congruence (unless ∼κ=∼=λ), hence the (inductive) correctness proof of Theorem 3.1
is not applicable. However, it is possible to ensure that∼κ behaves like a right-congruence when
restricted to U (and thus ensuring reachability consistency ofR) by enforcing a simple syntactic
property.

Lemma 3.2

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction. If U is prefix-closed, R is
reachability consistent.

Proof : Assume that R= 〈U ,κ〉 is a closed and deterministic black-box abstraction such that
U is prefix-closed, but R is reachability inconsistent, i.e., there exists u ∈ U such that
H[u] �= [u]κ. Assume w.l.o.g. that u is a shortest such element of U . Since H[ε] =q0,H= [ε]κ
by definition, we can infer that |u | ≥ 1. Thus, we can decompose u into u = u ′ ·a , where
u ′ ∈ U (due to prefix-closedness) and a ∈Σ. As we have assumed u to be a shortest vi-
olating prefix, we have H[u ′] = [u ′]κ. However, from the definition of H[·], we know that
H[u] =δH(H[u ′],a), which according to Definition 3.10 is [u ′a]κ = [u]κ, contradicting our
assumption that u is a prefix violating reachability consistency.

Even with reachability consistency established, it is not guaranteed that H correctly reflects
the observed behavior of λ. We start by formally defining the (in-)consistency property.

Definition 3.12 (Output inconsistency, output (in-)consistent)

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction, and let H=DFA(R) be the
corresponding DFA. A pair (u ,v)∈ U ×Σ∗ constitutes an output inconsistency (wrt. R) if and

only if λ[u]κ
H (v) �=λ(u ,v).

R is called output inconsistent if and only if there exist u ∈ U ,v ∈ Chκ(u) such that (u ,v)
constitutes an output inconsistency. Otherwise, i.e., if

∀u ∈ U :∀v ∈Chκ(u) :λ[u]κ
H (v) =λ(u ,v) =κ(u)(v),

R is called output consistent.

Violations of output consistency of a black-box abstractionR= 〈U ,κ〉 are caused by the fact that
the construction of H in Definition 3.10 does not establish any connection between the value
of κ(u)(v), u ∈ U ,v ∈ Chκ(u), and whether the state δH([u]κ,v) is accepting (except for v = ε).
Thus, the information about the output behavior for longer suffixes v is not propagated when
the transition structure of H is being constructed.

Steffen et al. [167] introduced the concept of semantic suffix closedness to maintain output
consistency. However, Van Heerdt [86] has shown that their definition is insufficient, i.e., does
not ensure output consistency in the above sense. Furthermore, the definition is specific to the
used data structure. We thus give an improved and generalized definition of this concept, and
show that it indeed ensures output consistency.

Definition 3.13 (Semantic suffix-closedness)

Let R= 〈U ,κ〉 be a black-box abstraction. R is called semantically suffix-closed if and only if
for all prefixes u ∈ U and all suffixes v ∈Chκ(u) such that v =a ·v ′, we have v ′ ∈Chκ(u ·a).

31

3. An Abstract Framework for Active Automata Learning

Lemma 3.3

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction. If R is semantically suffix-
closed, then R is output consistent.

Proof : Assume thatR= 〈U ,κ〉 is a closed, deterministic, and semantically suffix-closed black-
box abstraction, that however is not output consistent. Therefore, there exists a prefix u ∈
U and suffix v ∈ Chκ(u) such that λ[u]κ

H (v) �= κ(u)(v), where H= DFA(R). We furthermore
assume that u and v are chosen such that v is a shortest (over all possible choices for u)
violating suffix.

The definition of FH in Definition 3.10 guarantees that λ[u]κ
H (ε) = κ(u)(ε). In particular,

this implies that the above violating suffix v cannot be empty. Thus, we can decompose
it into v = a · v ′, where v ′ ∈ Chκ(ua) due to semantic suffix-closedness. As v was cho-
sen to be the shortest violating suffix, we can infer that, for all u ′ ∈ U such that u ′ ∼κ ua ,

λ[u ′]κ
H (v ′) = κ(u ′)(v ′) = κ(ua)(v ′) = κ(u)(v). Hence, λ[u]κ

H (v) = λ[u ′]κ
H (v ′) = κ(u ′)(v ′) = κ(u)(v),

contradicting our assumption that (u ,v) constituted an output inconsistency.

A relatively easy way to establish semantic suffix-closedness is to use a global suffix-based ab-
straction, and ensure that the global suffix set V remains suffix-closed (the L∗ algorithm follows
this approach). Maintaining semantic suffix-closedness in other settings requires significantly
more work, as Chapter 5 of this thesis will show.

We conclude our description of consistency properties with the following statement.

Corollary 3.1 (Observation consistency)

Let R= 〈U ,κ〉 be black-box abstraction of some output function λ : Σ∗→�. If R is both reach-
ability and output consistent, we have

∀u ∈ U :∀v ∈Chκ(u) :λH(u ,v) =λ(u ,v).

Proof : Let u ∈ U and v ∈ Chκ(u) be chosen arbitrarily. By definition, we have λH(u ,v) =
λH[u]
H (v). Reachability consistency guarantees H[u]= [u]κ, and output consistency ensures

λ[u]κ
H (v) =κ(u)(v) =λ(u ,v).

Correctness and Termination

Reachability and output consistency ensure that the behavior observed when evaluating λ dur-
ing the classification using κ is correctly reflected in the constructed DFA H=DFA(R). The fol-
lowing lemma, which is a generalized version of the one given by Isberner and Steffen [108],
states the guarantees that can be made about the structural relation between H and the un-
known target DFA A.

Lemma 3.4 (Invariants of black-box abstractions)

LetR= 〈U ,κ〉be a closed and deterministic black-box abstraction of a regular output function
λ=λA, and let H=DFA(R) be the DFA for R. Then, the following invariants hold:

32

3.2. Approximating Regular Languages by Experimentation

(I1) Inequivalent (with respect to ∼κ) prefixes in U lead to different states in A:

∀u ,u ′ ∈ U : u �∼κ u ′ ⇒ A[u] �= A
�

u ′�.

(I2) The acceptance of a state in H corresponding to a prefix in U is correct:

∀u ∈ U : [u]κ ∈ FH⇔ A[u]∈ FA.

(I3) If both a state in A and its a -successor (a ∈Σ) have been discovered by prefixes in U ,
the corresponding transition in H is correct:

∀u ,u ′ ∈ U ,a ∈Σ : A[ua] = A
�

u ′�⇒δH([u]κ,a) = [u ′]κ.

Proof :

• (I1): Let u ,u ′ ∈ U be such that u �∼κ u ′. There then exists a suffix v ∈Sepsκ(u ,u ′) such

that λ(u ,v) =κ(u)(v) �=κ(u ′)(v) =λ(u ′,v). Thus λA[u]
A (v) �=λ

A[u ′]
A (v), and hence A[u] �=

A[u ′].

• (I2): By Definition 3.10, we have [u]κ ∈ FH ⇔ κ(u)(ε) = 1. Since κ(u)(ε) = λ(u ,ε) =
λA[u]
A (ε), we can conclude that [u]κ ∈ FH⇔ A[u]∈ FA.

• (I3): Let u ,u ′ ∈ U ,a ∈Σ be such that A[ua] = A[u ′]. δH([u]κ,a) �= [u ′]κ would imply
ua �∼κ u ′, which however cannot be the case, as it—in conjunction with (I1)—would
contradict A[ua] = A[u ′].

Active automata learning is sometimes also referred to as regular extrapolation, resembling
polynomial extrapolation: from a finite number of supports (i.e., pairs of x and y values of some
unknown target function), a polynomial function is inferred that “explains” the given values.
Similarly, from a finite number of observations, an automaton is inferred that is consistent with
the observations. Note that the extrapolation step in active automata learning is the construc-
tion of the DFA: the black-box classifier over-approximates the Nerode congruence, but evalu-
ating it for arbitrary words requires evaluating λ. By extrapolating the transition structure (up
to the observable granularity of the classifier) from U to Σ∗, an additional extrapolation error is
introduced.

It is a well-known result from polynomial extrapolation that if the target function is a polyno-
mial of degree d , and the number of supports is at least d +1, the extrapolated polynomial will
be identical to the target function, i.e., the extrapolation error vanishes entirely. A similar result
exists for the case of regular extrapolation.

Theorem 3.2 (Zero-error theorem of black-box abstractions)

Let R= 〈U ,κ〉 be a black-box abstraction of an output function λ=λA, where A is the canon-
ical DFA for λ. If |� (R)|= |Σ∗/∼=λ |, then . . .

(i) R is necessarily closed and deterministic, thus DFA(R) df =H is defined,

(ii) λH=λ (in particular, R is reachability and output consistent), and

33

3. An Abstract Framework for Active Automata Learning

(iii) H is isomorphic to A.

Proof :

(i) Assume that R is not closed, i.e., there exists u ∈ U and a ∈Σ such that for all u ′ ∈ U ,
ua �∼κ u ′. Then, |Σ∗/∼κ|> |� (R)|= |Σ∗/∼=λ |, contradicting the validity requirement that
∼=λ refines ∼κ.

If R is not deterministic, there exists u ,u ′ ∈ U and a ∈Σ such that u ∼κ u ′, but ua �∼κ

u ′a . Let v ∈ Sepsκ(ua ,u ′a) be a separator for ua and u ′a , i.e., κ(ua)(v) =λ(ua ,v) �=
λ(u ′a ,v) = κ(u ′a ,v), thus a · v proves that u �∼=λ u ′. Since ∼κ refines ∼=λ , we have
[u]∼=λ

,[u ′]∼=λ
⊆ [u]κ and, since u �∼=λ u ′, [u]∼=λ

∩ [u ′]∼=λ
= �. Thus, [u]κ is the union of at

least two distinct equivalence classes of ∼=λ , which implies |Σ∗/∼=λ |> |Σ∗/∼κ|, contra-
dicting the assumption.

(ii) Follows directly from (iii).

(iii) Let U ′ ⊆ U be a subset of representatives of U such that ε ∈ U ′, and for every element
u ∈ U there exists exactly one u ′ ∈ U ′ such that u ∼κ u ′ (i.e., all elements of U ′ are
pairwisely inequivalent wrt. ∼κ). Apparently,

�

[u]κ |u ∈ U ′
�

=� (R). Let furthermore
f : QH →QA be a function mapping states of H (i.e., elements of � (R)) to states of
A, defined by f ([u]κ) =df A[u] for all u ∈ U ′. Applying the invariants introduced in
Lemma 3.4, we now show that f is an isomorphism. First, observe that f is injective
due to (I1), and since |QH|= |� (R)|= |Σ∗/∼=λ |= |QA|, f is a bijection.

• f (q0,H) = f ([ε]κ) = A[ε] =q0,A by definition.

• Let u ∈ U ′,a ∈Σ be chosen arbitrarily, and let u ′ ∈ U ′ be such that A[ua] = A[u ′]
(note that such a u ′ must exist, as A[ua] has a preimage under f). Applying
(I3) yields δH([u]κ,a) = [u ′]κ. Thus, f (δH([u]κ,a)) = f ([u ′]κ) = A[u ′] = A[ua] =
δA(A[u],a) =δA(f ([u]κ),a).

• [u]κ ∈ FH⇔ A[u] = f ([u]κ)∈ FA follows directly from (I2).

3.2.3. Refining Black-Box Abstractions

We have concluded the previous section with Theorem 3.2, stating that the extrapolation error
vanishes entirely if a black-box abstractionR has reached the granularity of the Nerode congru-
ence corresponding to the unknown regular target function λ.

Until now, we have not discussed how, starting with a trivial initial black-box abstraction, this
level of granularity can eventually be achieved. Before we continue, it is helpful to first formalize
the notion of refinement between black-box abstractions. We start by defining refinement on
the level of black-box classifiers, which goes beyond refinement of their equivalence kernels
only.

Definition 3.14 (Refinement of black-box classifiers)

Letκ,κ′ ∈Kλ be black-box classifiers for some output functionλ : Σ∗→B . κ′ refinesκ, denoted
by κ′ �κ, if and only if:

• ∼κ′ refines ∼κ (i.e., for all u ,u ′ ∈Σ∗, we have κ′(u) =κ′(u ′)⇒κ(u) =κ(u ′)), and

34

3.2. Approximating Regular Languages by Experimentation

• for all u ∈Σ∗, we have Chκ′ (u)⊇Chκ(u).

The refinement is strict (denoted by κ′ �κ) if and only if ∼κ′ strictly refines ∼κ. This implies
that there exists u ∈Σ∗ such that Chκ′ (u)⊃Chκ(u).

Definition 3.15 (Refinement of black-box abstractions)

Let R= 〈U ,κ〉 be a black-box abstraction. A black-box abstraction R′=
�

U ′,κ′
�

is said to refine
R, denoted by R′ �R, if and only if:

• U ′ ⊇ U , and

• κ′ �κ.

We say that R′ strictly refines R (R′�R) if and only if R′ �R, and � (R′)>� (R).5

Establishing the first of the refinement conditions in the above definition, augmenting U , is
straightforward. To describe how a (suffix-based) black-box classifier κ can be modified in a
way that preserves the restrictions of Definition 3.4 while satisfying those of the above Defini-
tion 3.15, we introduce the concept of splitting classes of ∼κ.

Definition 3.16

Let κ∈ Kλ be a suffix-based black-box classifier of some output function λ. A split of κ with
respect to a class C ⊆Σ∗ and a suffix (or discriminator) v ∈Σ∗ is defined as follows:

split: Kλ×2Σ∗
×Σ∗ →Kλ

split(κ,C ,v)(u) =df

�

κ(u)∪{v �→λ(u ,v)} if u ∈C

κ(u) otherwise

Note that C must be saturated by ∼κ in order to ensure that split(κ,C ,v) is a valid black-box
classifier, i.e., obeys the restrictions of Definitions 3.4 and 3.5.

It is easy to see that, if C is saturated by ∼κ, split(κ,C ,v) refines κ, and furthermore that if there
exists u ,u ′ ∈C such that λ(u ,v) �=λ(u ′,v), split(κ,C ,v) strictly refines κ.

Remark 3.3

The above definition of the split function results in the coarsest refinement κ′ of κ satisfy-
ing ∀u ∈C : v ∈Chκ′ (u). Depending on superimposed syntactical constraints, learning algo-
rithms might use an even more refined classifier in the situations where the split function is
used in the following. For example, if the algorithm uses a global suffix-based classifier, the
new classifier might simply be obtained by adding v to the global suffix set V , thus satisfy-
ing the above property while preserving the global characteristics of the classifier. Similarly,
if the suffixes are maintained in a (semantically) suffix-closed fashion, further suffixes might
be added to the characterizing sets as well. Since all of these classifiers obeying additional
syntactical constraints refine κ′, the correctness of the lemmas and theorems in this chapter
remains unaffected.

5Note that the introduced notation, while intuitive, may lead to unexpected results: there may exist black-box
abstractions R,R′ such that R′ �R, R ��R′, and yet R′ ��R.

35

3. An Abstract Framework for Active Automata Learning

In Section 3.2.1 we have remarked that in the general setting, refinements of the hypothesis
(which is induced by a black-box abstraction) are triggered by counterexamples. However, in
some cases a black-box abstraction itself contains enough information to derive a refined ver-
sion of it. This is the case if it is impossible to construct a DFA from it, or if one of the consistency
properties (Definitions 3.11 and 3.12) are violated.

Lemma 3.5

Let R= 〈U ,κ〉 be a black-box abstraction of an output function λ. If R is not closed or not
deterministic, then there exists a black-box abstraction R′=

�

U ′,κ′
�

such that R′�R.

Proof : First, assume that R is not closed. There then exists u ∈ U and a ∈Σ such that for
all u ′ ∈ U , ua �∼κ u ′. Hence, by choosing U ′ =df U ∪{ua }, we establish |� (R′)|> |� (R)| (as
κ′=κ, thus � (R)⊆� (R′) and [ua]∼κ

∈� (R′)\� (R)) and therefore R′�R.

Let us now consider the case that R is not deterministic. Then, there exist u ,u ′ ∈ U
and a ∈ Σ such that u ∼κ u ′, but ua �∼κ u ′a . Let v ∈ Sepsκ(ua ,u ′a) be a separator, i.e.,
κ(ua)(v) �=κ(u ′a)(v). Consider the black-box classifier κ′ obtained from κ by splitting the
equivalence class of u and u ′ using a v , i.e.,κ′=df split(κ,[u]κ,a v). Since u ∼κ u ′ but u �∼κ′ u ′

(as κ′(u)(a v) �=κ′(u ′)(a v)), we have R′�R.

In the above proof, an unclosed black-box abstraction R= 〈U ,κ〉 is refined by augmenting U ,
and non-determinism is resolved by refining κ. The following corollary states that these are not
only sufficient, but also necessary to eventually to re-establish the desired property (closedness
or determinism).

Corollary 3.2

Let R= 〈U ,κ〉 be a black-box abstraction, and let R′=
�

U ′,κ′
�

be a (not necessarily strict) re-
finement of R.

(i) If R is not closed and U ′= U , then R′ is not closed.

(ii) If R is not deterministic and κ′=κ, then R′ is not deterministic.

Proof :

(i) Let u ∈ U ,a ∈Σ be such that ua �∼κ u ′ for all u ′ ∈ U . Since κ′ �κ, this also implies that
ua �∼κ′ u ′ for all u ′ ∈ U , hence R′=

�

U ,κ′
�

is not closed.

(ii) Let u ,u ′ ∈ U ,a ∈Σ be such that u ∼κ u ′, but ua �∼κ u ′a . Since u ,u ′ are also elements of
U ′ ⊇ U , and κ=κ′, the above assumption remains unaffected when considering ∼κ′ ,
hence R′=

�

U ′,κ
�

is not deterministic.

It should be noted, however, that the refined black-box abstraction R′ from the proof of
Lemma 3.5 is not necessarily closed or deterministic. This then gives rise to yet another strict
refinement R′′�R′, and so on. As the number of classes in each black-box abstraction strictly
increases, but cannot grow beyond |Σ∗/∼=λ |due to the validity ofκ, Theorem 3.2 guarantees that,
for a regular output function λ, the process eventually stabilizes with a closed and deterministic
black-box abstraction.

36

3.3. An Abstract Framework for Counterexample Analysis

As we have noted above, reachability and output inconsistencies also guarantee the existence
of a strict refinement. In these cases, they also induce counterexamples, i.e., they can be ana-
lyzed to obtain a word w ∈Σ∗ such that λH(w) �=λ(w).6 In Section 3.3, we will see however that
the more appropriate perspective is to view counterexamples as special cases of reachability or
output inconsistencies, and how these phenomena can be analyzed in order to derive refined
black-box abstractions (via the detour of introducing an unclosedness or non-determinism).
Before looking into this, we will however first state how the “special” case of actual counterex-
amples may be exploited to refine a black-box abstraction.

Theorem 3.3

Let R= 〈U ,κ〉 be a suffix-based black-box abstraction of an output function λ, and let H=
DFA(R). Furthermore, let w ∈Σ∗ be a counterexample, i.e.,λH(w) �=λ(w). Then, the following
two statements are true:

(i) w contains a prefix �u �a �pref w , �u ∈Σ∗, �a ∈Σ, such that H[�u] = [�u]κ, but H[�u �a] �= [�u �a]κ,
thus R′= 〈U ∪{�u},κ〉 is non-deterministic.

(ii) w can be decomposed into w = �u �a �v , �u , �v ∈Σ∗, �a ∈Σ such that ∃u ∈ρR(H[�u]) : ∀u ′ ∈
ρR(H[�u �a]) :λ(u �a , �v) �=λ(u ′, �v), thus R′= 〈U ,split(κ, H[�u �a], �v)〉 is not closed.

At this point, we defer the proof to the next section. In particular, we will present two
lemmas—Lemma 3.6 in Section 3.3.3 and Lemma 3.8 in Section 3.3.4—from which the proof
for (i) and (ii) in the above theorem follows directly.

3.3. An Abstract Framework for Counterexample Analysis

In this section, we will prove the existence of the prefix and the decomposition of a counterex-
ample with the properties stated in Theorem 3.3. Apart from proving their mere existence, we
will also describe how they can be determined algorithmically. Notably, both cases can be re-
duced to instances of a more abstract problem, and solved with the very same approach.

We start by introducing our abstract framework for counterexample analysis, which is an ex-
tended and more flexible version of the one presented by Isberner and Steffen [108], and then
describe how the problem of finding a prefix as mentioned in Theorem 3.3 (i) (prefix-based coun-
terexample analysis, Section 3.3.3), and the problem of finding a decomposition according to
Theorem 3.3 (ii) (suffix-based counterexample analysis, Section 3.3.4) can be formulated in this
framework.

The general idea is shown in Figure 3.1: Theorem 3.3 states that a counterexample can be
analyzed to either find a prefix or a decomposition, each satisfying certain properties. In both
cases, the concrete counterexample is transformed to a common mathematical structure, called
abstract counterexample, on which search algorithms can be applied to find a breakpoint. This
breakpoint can then be used to derive either a prefix according to Theorem 3.3 (i), or a decom-
position according to Theorem 3.3 (ii), depending on the source of the abstract counterexample.

6This counterexample is usually of the form u ·v , where u ∈ UΣ and v ∈Chκ(u).

37

3. An Abstract Framework for Active Automata Learning

w ∈Σ∗

w ∈Σ∗

Prefix-based counterexample analysis (Theorem 3.3 (i))

Suffix-based counterexample analysis (Theorem 3.3 (ii))

abstract
counterexample

α
breakpoint

i

prefix
�u �a �pref w

decomposition
w = �u �a �v

search

Figure 3.1.: Conceptual approach of abstract counterexample analysis applied to a concrete
counterexample w ∈Σ∗

3.3.1. Formal Definitions

We start by formally introducing the concept of an abstract counterexample, which for now we
will treat as a merely syntactical entity, and leave it to the above-referenced subsections to es-
tablish a connection between a concrete counterexample w ∈Σ∗ and its abstracted version. The
intuition that indices in an abstract counterexample correlate in a certain way to positions in the
corresponding concrete counterexample shall suffice at this point.

Definition 3.17 (Abstract counterexample)

An abstract counterexample is a quadruple α=
�

E,�,l ,η
�

, where

• E is an arbitrary set (the effect domain),

• �⊆E×E is a transitive binary relation on E (the effect relation),

• l ∈�+ is a positive integer, denoting the length of the abstract counterexample, and

• η : {0,...,l}→E is the effect mapping.

An abstract counterexample is called valid if and only if η(0) �� η(l).

The validity requirement is essential for guaranteeing the existence of a breakpoint, i.e., an
index i such that η(i) is not related (wrt. �) to its immediate successor η(i +1). Again, we treat
breakpoints as a purely syntactical concepts, with the intuition that breakpoints in the abstract
counterexample allow to determine the prefix and the decomposition of the concrete coun-
terexample, respectively.

Definition 3.18 (Breakpoint)

Let α=
�

E,�,l ,η
�

be an abstract counterexample. A breakpoint in α is an index i , 0 ≤ i < l ,
satisfying

η(i) �� η(i +1).

Corollary 3.3

Let α be an abstract counterexample. If α is valid, then it contains a breakpoint.

Proof : Assume that α=
�

E,�,l ,η
�

is a valid abstract counterexample not containing a break-

38

3.3. An Abstract Framework for Counterexample Analysis

Algorithm 3.2 Abstract counterexample analysis using binary search

Require: Valid abstract counterexample α=
�

E,�,l ,η
�

Ensure: Breakpoint i ,0≤ i < l , satisfying η(i) �� η(i +1)
1: function BINARY-SEARCHleft(α)
2: low←0, high← l
3: while (high− low)>1 do � Invariant: η(low) �� η(high)
4: mid←

�

low+high
2

�

5: if η(low) �� η(mid) then
6: high←mid
7: else � η(mid) �� η(high) by transitivity
8: low←mid
9: end if

10: end while � Postcondition: η(low) �� η(high)∧high= low+1
11: return low
12: end function

point, i.e.,
∀0≤ i < l :η(i)� η(i +1).

By transitivity of�, we can conclude that then alsoη(0)�η(l), contradicting the assumption
that α was valid.

3.3.2. Finding Breakpoints

It is obvious that a breakpoint can be found using linear search, by scanning the indices of an
abstract counterexample α=

�

E,�,l ,η
�

in ascending (descending) order and comparing each
value of η to its immediate successor (predecessor). In fact, this even allows us to find the left-
most (rightmost) breakpoint; however, in the worst-case, η has to be evaluated at every single
index.

A much better solution exists. Exploiting the transitivity of � (which guarantees the exis-
tence of a breakpoint in an abstract counterexample in the first place), a binary search strategy
can be employed: for indices low,high satisfying high− low>1 and η(low) �� η(high), any index
i ,low< i <high will satisfy at least one ofη(low) ��η(i) andη(i) ��η(high). The breakpoint search
algorithm using binary search is given as Algorithm 3.2. Note that unlike in the case of a totally
ordered search domain, there may be some degree of freedom regarding where to continue the
search, as it is possible that both η(low) �� η(mid) as well as η(mid) �� η(high) hold. In this case,
the search can be continued in either half, depending on whether breakpoints are preferred to be
located near the left or the right.7 Algorithm 3.2 prefers breakpoints towards the left end (hence
the name BINARY-SEARCHleft). To obtain a version preferring breakpoints towards the right end,
it is sufficient to replace the if condition in line 5 with η(mid) �� η(high), and swap the bodies of
the if and the else blocks (lines 6 and 8, respectively).

We conclude the description of the abstract framework with the following proposition stating
the complexity, and continue with describing instantiations of the framework.

7Note that binary search however cannot guarantee to find the leftmost or rightmost breakpoint.

39

3. An Abstract Framework for Active Automata Learning

Proposition 3.1

A breakpoint in an abstract counterexample α=
�

E,�,l ,η
�

can be found by evaluating η at no

more than 2+
�

logl

=O(logl) different indices.8

3.3.3. Prefix-based Counterexample Analysis

We will now describe how the problem of finding a prefix �u �a of a counterexample Σ∗ satisfying
the conditions of Theorem 3.3 (i) can be reduced to finding a breakpoint in an abstract coun-
terexample, i.e., the realization of the upper half of Figure 3.1. This comprises the derivation
of an abstract counterexample from a concrete one, and the translation of a breakpoint in the
abstract counterexample into the desired prefix.

First, however, we will elaborate on the mentioned aspect that counterexamples pose a special
case of reachability inconsistencies.

Lemma 3.6

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction of an output function λ,
and let H=DFA(R) be the corresponding DFA.

(i) If w ∈Σ∗ is a counterexample (i.e., λH(w) �=λ(w)), then w also constitutes a reachability
inconsistency, i.e., H[w] �= [w]κ.

(ii) If w ∈Σ∗ constitutes a reachability inconsistency, it contains a prefix �u �a �pref w , �u ∈
Σ∗, �a ∈Σ, such that H[�u] = [�u]κ, but H[�u �a] �= H[�u �a].

(iii) If �u ∈Σ∗, �a ∈Σ satisfy the conditions of (ii), R′= 〈U ∪{�u},κ〉 is not deterministic.

Proof : At this point, we only prove (i) and (iii), and give a constructive proof for (ii) in the
remainder of this section.

(i) Let w ∈ Σ∗ be a counterexample, i.e., λH(w) �= λ(w). As λH(w) = λH[w]
H (ε) �= λ(w) =

λ(w ,ε) = κ(w ,ε), we can conclude that H[w] and [w]κ must be distinct, as they are
separated by ε.

(iii) Let �u ∈Σ∗, �a ∈Σ be such that H[�u] = [�u]κ, but H[�u �a] �= [�u �a]κ. Apparently, �u /∈ U , as
otherwise H[�u �a] = δH(H[�u], �a) = [�u �a]κ. Thus, there exists u ∈ U such that u ∼κ �u
(u ∈ρR(H[�u])), but u �a �κ �u �a (as [u �a]κ = H[�u �a] �= [�u �a]κ). As a result, R′ will be non-
deterministic.

Let us now look at how finding a prefix according to Lemma 3.6 (ii) can be reduced to finding
a breakpoint in an abstract counterexample.

8Unless otherwise noted, log denotes the binary logarithm (log2).

40

3.3. An Abstract Framework for Counterexample Analysis

Definition 3.19

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction, and let H= DFA(R) be
the corresponding DFA. The derived abstract counterexample of a word w ∈Σ∗ is the abstract
counterexample α=

�

{0,1},≥,|w |,η
�

, where

η : {0,..., |w |}→{0,1}, η(i) =df

�

0 if H[w1..i] = [w1..i]κ
1 otherwise

∀0≤ i ≤ |w |.

Lemma 3.7

LetR= 〈U ,κ〉 be a closed and deterministic black-box abstraction, letH=DFA(R) be its asso-
ciated DFA, and let w ∈Σ∗ be a word constituting a reachability inconsistency, i.e., H[w] �=[w]κ.
Then, the derived abstract counterexample α for w as defined in Definition 3.19 is valid, and
if i is a breakpoint in α, �u =w1..i , �a =wi+1 satisfy the conditions of Lemma 3.6 (ii).

Proof : We first show that α is valid. Since H[ε] = [ε]κ by definition, we have η(0) =0. Further-
more, since w constitutes a reachability inconsistency, we have η(|w |) = 1. Since 0 �≥ 1, we
can conclude that α is valid.

Let us now assume that i ,0 ≤ i < |w |, is a breakpoint in α, i.e., η(i) = 0 and η(i +1) = 1.
Let �u =df w1..i and �a =df wi+1 (thus �u �a = w1..i+1). Applying the definition of η, the break-
point condition translates to H[�u] = [�u]κ and H[�u �a] �= [�u �a]κ, which directly correspond to
the conditions stated in Lemma 3.6 (ii).

Remark 3.4

Lemma 3.6 (iii) provides “instructions” on how a black-box abstraction can be refined using
the information from a reachability inconsistency, i.e., by adding the prefix �u to U . The result-
ing short prefix set U ′ usually is not prefix-closed, which may introduce further reachability
inconsistencies. However, these can be analyzed and exploited for refinement with the same
analysis technique.

We conclude the description of prefix-based counterexample analysis9 with an analysis of its
complexity. We have already stated in Proposition 3.1 that, for an abstract counterexample of
length m , η needs to be evaluated at O(logm) different indices in order to find a breakpoint.
Evaluating η as defined in Definition 3.19 requires evaluating κ on an arbitrary prefix of the
counterexample, which in turn requires a number of membership queries equal to the size of the
respective characterizing set. Let χ be the size of the largest characterizing set, then O(χ logm)
queries are sufficient. We will see in the next chapter that, for a target DFA of size n , χ =O(n)
can be guaranteed, but also χ =Θ(n) might be necessary. Thus, if the sizes of the characterizing
sets are bounded by n , O(n logm) membership queries are required.

How long are these membership queries? If the breakpoint is at position m −1 and binary
search is used, all of the prefixes of w for which κ is evaluated have a length greater or equal
to m/2. The length of the overall query depends on the length of the suffixes in the respective
characterizing sets. Thus, if σ is the length of the longest suffix in any characterizing set, the
combined number of symbols in all membership queries made during prefix-based counterex-
ample analysis is in O

�

(χ logm)(m +σ)
�

. If the length of all suffixes as well as the size of the

9In this context, we will use the word “counterexample” to refer to any kind of reachability inconsistency.

41

3. An Abstract Framework for Active Automata Learning

characterizing sets are bounded by n , this can be simplified to O
�

(n logm)(n +m)
�

, and—under
the assumption that m =Ω(n)—even further to O(nm logm).

Proposition 3.2

If R= 〈U ,κ〉 is a black-box abstraction of a regular output function λ (with n =df |Σ∗/∼=λ |) sat-
isfying

∀u ∈Σ∗ : (|Chκ(u)|=O(n)∧∀v ∈Chκ(u) : |v |=O(n)),

prefix-based analysis of a counterexample of length m =Ω(n) requires O(n logm) member-
ship queries that altogether contain O(nm logm) symbols.

3.3.4. Suffix-based Counterexample Analysis

We will now consider suffix-based counterexample analysis. Here, the problem is to find a de-
composition w = �u �a �v of a counterexample w satisfying the conditions of Theorem 3.3 (ii). This
comprises describing how an abstract counterexample can be derived from a concrete one, and
how a breakpoint in the abstract counterexample corresponds to the desired decomposition,
thus realizing the lower half of Figure 3.1. Again, we first start by relating counterexamples to
the more general concept of output inconsistencies.

Lemma 3.8

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction of an output function λ,
and let H=DFA(R) be the corresponding DFA.

(i) If w ∈Σ∗ is a counterexample (i.e., λH(w) �=λ(w)), then (ε,w) also constitutes an output
inconsistency, i.e., λ[ε]κ

H (w) �=λ(ε,w).

(ii) If (x , y) ∈ U ×Σ∗ constitutes an output inconsistency, y can be decomposed into y =
�u �a �v , �u , �v ∈Σ∗, �a ∈Σ, such that

∃u ∈ρR(δH([x]κ, �u)) :∀u ′ ∈ρR(δH([x]κ, �u �a)) :λ(u �a , �v) �=λ(u ′, �v).

(iii) If (x , y)∈ U×Σ∗ constitutes an output inconsistency and y = �u �a �v is a decomposition of
y satisfying the conditions of (ii), R′= 〈U ,split(κ,δH([x]κ, �u �a), �v)〉 is not closed.

Proof : Again, we only prove (i) and (iii), and give a constructive proof for (ii) in the remainder
of this section.

(i) Let w ∈Σ∗ be a counterexample, i.e., λH(w) �=λ(w). As λH(w) =λH(ε,w) =λ
q0,H
H (w) �=

λ(ε,w)=λ(w) and q0,H=[ε]κ by definition, (ε,w) constitutes an output inconsistency.

(iii) Let (x , y) ∈ U ×Σ∗ constitute an output inconsistency, and let y = �u �a �v and u ∈
ρR(δH([x]κ, �u)) be chosen such that we have

∀u ′ ∈ρR(δH([x]κ, �u �a)) :λ(u �a , �v) �=λ(u ′, �v). (3.1)

Note that this implies u �a /∈ U , as otherwise u �a ∈ρR(δH([x]κ, �u �a)), and the universal
quantification would not be valid.

42

3.3. An Abstract Framework for Counterexample Analysis

Let κ′ =df split(κ,δH([x]κ, �u �a), �v). For any u ′ ∈ ρR(δH([x]κ, �u �a)), we know that
Chκ′ (u ′) = Chκ′ (u �a) = Chκ(u ′)∪{�v } (as u ′,u �a ∈ δH([x]κ, �u �a)), and furthermore that
κ′(u ′)(�v) �=κ′(u �a)(�v) due to (3.1). Thus, u �a �κ u ′ for any u ′ ∈ρR(δH([x]κ, �u �a)). u �a ∈
UΣ furthermore cannot be ∼κ′-equivalent to any other short prefix, as the set U has
not changed and it was not ∼κ-equivalent to any short prefix not in ρR(δH([x]κ, �u �a))
(and thus also not ∼κ′-equivalent, as ∼κ′ refines ∼κ). Therefore, κ′ is not closed.

We now describe how determining a decomposition according to Lemma 3.8 (ii) can be re-
duced to finding a breakpoint in a corresponding derived abstract counterexample.

Definition 3.20

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction, and let H=DFA(R) be the
corresponding DFA. The derived abstract counterexample of a pair (x , y)∈U×Σ∗ is the abstract
counterexample α=

�

2� \{�},⊆,|y |,η
�

, where the effect mapping η is defined as follows:

η :
�

0,..., |y |
�

→2� \{�}, η(i) =df

�

λ(u , yi+1..|y |) |u ∈ρU (δH([x]κ, y1..i))
�

.

Lemma 3.9

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction of some output function
λ : Σ∗ →�, let H=DFA(R) be its associated DFA, and let (x , y)∈ U ×Σ∗ constitute an output

inconsistency, i.e., λ[x]κ
H (y) �=λ(x , y). Then, the derived abstract counterexample α as defined

in Definition 3.20 is valid, and if i is a breakpoint in α, �u = y1..i , �a = yi+1, �v = yi+2..|y | satisfy the
conditions of Lemma 3.8 (ii).

Proof : Again, we start by first showing thatα is valid. Since ε is always in the characterizing set
of any prefix in U , we know that∀u ,u ′ ∈ρR(δH([x]κ, y)) :λ(u ,ε)=κ(u)(ε)=κ(u ′)(ε)=λ(u ,ε).
Thus, η(|y |) is the singleton

�

λ[x]κ
H (y)

�

. Since (x , y) constitutes an output inconsistency,

we know that λ[x]κ
H (y) �= λ(x , y). As η(0) contains λ(x , y) (note that x ∈ U , and therefore

x ∈ρR([x]κ)), we can conclude that η(0) contains an element not in η(|y |) =
�

λ[x]κ
H (y)

�

. We
therefore have established thatη(|y |) is a singleton and distinct fromη(0), thusη(0) �⊆η(|y |).

Let now i ,0 ≤ i < |y |, be a breakpoint in α, i.e., η(i + 1) is a singleton and η(i) �=
η(i + 1). Let �u =df y1..i , �a =df yi+1 (thus �u �a = y1..i+1), and �v =df yi+2..|y |. As η(i) =
�

λ(u , �a �v) |u ∈ρR(δH([x]κ, �u))
�

contains an element not in η(i +1), and since λ(u , �a �v) =
λ(u �a , �v), there needs to exist a u ∈ ρR(δH([x]κ, �u)) such that λ(u �a , �v) is distinct from
all values in

�

λ(u ′, �v) |u ′ ∈ρR(δH([x]κ, �u �a))
�

= η(i +1). This satisfies the condition from
Lemma 3.8 (ii).

Remark 3.5

The presentation is much more complicated than in the original version due to Rivest and
Schapire [155], as we consider the general case where there might be several representative
short prefixes for each state in H. If we can assume that for all q ∈QH we have |ρR(q)|=1, and
denoting the unique element of the set ρR(q) by 	q �, the presentation becomes much simpler
(and more intuitive): we can simply choose � as our effect domain, the equality relation as

43

3. An Abstract Framework for Active Automata Learning

the effect relation, and define the effect mapping as

η(i) =df λ(δH([x]κ, y1..i)�, yi+1..|y |).

The breakpoint condition then translates to

λ(δH([x]κ, �u)� �a , �v) �=λ(δH([x]κ, �u �a)�, �v).

If furthermore [x]κ =q0,H (as is the case for the output inconsistency directly derived from a
counterexample, cf. Lemma 3.8 (i)), this can be simplified to

λ(�u �H �a , �v) �=λ(�u �a �H, �v),

where 	u �H is shorthand for 	H[u]�. This highlights that transforming the target of the �a -
transition of the state H[�u] to its representative prefix in U changes the future behavior wrt.
�v , thus justifying the introduction of a new state as the target of this transition.

Remark 3.6

Lemma 3.8 (iii) again provides instructions on how the information obtained from analyz-
ing an output inconsistency can be used to trigger refinement, namely by splitting the class
δH([x]κ, �u �a)using �v as discriminator. This usually violates semantic suffix-closedness, which
may result in further output inconsistencies. In analogy to Remark 3.4, these can however be
dealt with using exactly the technique we just described.

Again, a note on the query and symbol complexities is in order. Evaluating η as defined in
Definition 3.20 requires one membership query per element in ρR(δH([x]κ, y1..i)). Thus, if r is
the maximum number of representatives per class in � (R), O(r logm) membership queries are
required, where m = |y |. It can easily be ensured that every class in � (R) has a unique repre-
sentative in U (the algorithm by Rivest and Schapire [155] accomplishes this, for instance). In
this case, the number of membership queries reduces to O(logm).

Let us now consider the symbol complexity. The length of the suffix in the membership
queries of the form λ(u , yi+1..|y |) is only bounded by m . If � is the maximum length of any pre-
fix in U , then m +� is an upper bound for the length of each query. Thus, the total number of
symbols in all queries during the suffix-based analysis of a counterexample is O

�

(m+�)r logm
�

.
It is furthermore easy to ensure that no prefix in U is longer than n , which—in conjunction
with assuming that each class has a unique representative—allows us to simplify the symbol
complexity to O

�

(n+m)logm
�

, and further to O(m logm) under the additional assumption that
m =Ω(n).

Proposition 3.3

If R= 〈U ,κ〉 is a black-box abstraction of a regular output function λ (with n =df |Σ∗/∼=λ |) sat-
isfying

|� (R)|= |U |∧∀u ∈Σ∗ : |u |=O(n),

suffix-based analysis of a counterexample of length m =Ω(n) requires O(logm) membership
queries that altogether contain O(m logm) symbols.

44

3.3. An Abstract Framework for Counterexample Analysis

3.3.5. Improved Search Strategies

Isberner and Steffen [108] have observed that binary search, while guaranteeing a logarithmic
worst-case complexity for finding breakpoints, suffers from the disadvantage that long coun-
terexamples inevitably lead to long queries: for instance, assuming that w ∈Σ∗ constitutes a
reachability inconsistency, binary search (cf. Algorithm 3.2) will first evaluate the effect mapping
η of the corresponding abstract counterexample at index 	m/2�, where m = |w |, corresponding
to classifying w1..	m/2�. Thus, the length of the first query is at least 	m/2�, which might be a
problem if m is excessively long.

When analyzing reachability inconsistencies, it is generally preferable to evaluate η at low
indices, as this corresponds to shorter queries. To realize this while maintaining a logarithmic
worst-case complexity, Isberner and Steffen [108] propose to use exponential search instead of
binary search, i.e., evaluating η(0), η(20) =η(1), η(21) =η(2), etc., until η(2i) �� η(2i+1), and then
using binary search (preferring breakpoints to the left) to find a breakpoint between indices 2i

and 2i+1. In the worst case, this requires roughly twice as many queries (i.e., evaluations of η) as
binary search, but in practice the number of queries is often much lower, and these queries are
furthermore shorter. The experimental evaluation [108] suggests that exponential search results
in almost the shortest prefixes (second only to linear search, which guarantees finding shortest
prefixes but requires the highest number of queries), while requiring the lowest number of both
queries and symbols of all considered approaches.

The same considerations also apply to the analysis of output inconsistencies (x , y)∈ U ×Σ∗.
There, however, queries are of the form λ(u , yi+1..|y |), where u ∈ U . This means that evaluating η
at higher indices corresponds to shorter queries (at least shorter suffixes, but u ∈ U is generally
assumed to be rather short, compared to y). Thus, the direction of the exponential search needs
to be reversed (considering η(l −20), η(l −21) etc.), and binary search needs to be adapted to
prefer breakpoints to the right (cf. Section 3.3.2).

3.3.6. Comparison

In the previous sections, we have shown that both prefix- and suffix-based counterexample
analysis (or, more generally, analysis of both reachability and output inconsistencies) can be re-
duced to a common problem: finding a breakpoint in an abstract counterexample. This break-
point determines the prefix �u in the case of prefix-based analysis, and the decomposition �u �a �v
in the case of suffix-based analysis. The prefix or decomposition can be used to obtain a refined
black-box abstraction R′, by violating determinism or closedness, respectively. Restoring these
as described in the proof of Lemma 3.5 may violate reachability or output consistency, which
can however be restored by repeated applications of the respective counterexample analysis
method.

The symmetry breaks when the cost of the respective analysis is considered. If short prefixes in
U are kept ∼κ-inequivalent (which is rather easy to accomplish), finding a breakpoint for suffix-
based analysis is possible using O(logm) queries, where m is the length of the counterexample.
On the other hand, there are regular output functionsλ where characterizing sets of sizeΘ(n) are
necessary (n = |Σ∗/∼=λ |). Thus, prefix-based analysis in these cases requires O(n logm) queries.
Finding an intuitively accessible reason why suffix-based counterexample analysis is inherently
less expensive than its prefix-based counterpart remains an open problem.

45

3. An Abstract Framework for Active Automata Learning

V
︷ ︸︸ ︷

ε a

U

ε 1 0
a 0 1
b 0 0
b b 1 0

UΣ\U

a a 1 0
a b 0 0
b a 0 0
b b a 0 1
b b b 0 0

(a) Sample observation table

[ε]

[a]

[b]

a

b

a b

a
b

(b) Automaton constructed from observation
table on the right

Figure 3.2.: Example observation table and corresponding automaton during a run of L∗ [19]

3.4. Realizations

In this section, we will show how many existing learning algorithms can be viewed as instan-
tiations of the described framework. Most learning algorithms vary in two aspects: the data
structures they use for realizing a black-box abstraction and storing observations, and how they
handle counterexamples. We will thus first introduce the two prevalent data structures, discuss
how they realize black-box abstractions in the sense of this chapter, and use these to sort exist-
ing active automata learning algorithms into groups. Within these groups, we will then discuss
how each algorithm handles counterexamples, and how this handling relates to the approaches
presented in Section 3.3.

Note that the above only applies to learning algorithms that can in some way be regarded as
descendants of L∗. We will explicitly not cover learning algorithms that take an entirely different
approach, i.e., that are not based on an over-approximation of the Nerode congruence (such as
the CGE algorithm by Meinke [132]), or that do not aim at inferring canonical DFAs (such as NL∗

by Bollig et al. [36]).

3.4.1. Data Structures

Generally, there are two prevalent data structures used in an active automata learning context:
observation tables and discrimination trees. These are typically used for storing information on
how to realize the black-box classifier κ, as well as storing the short prefix set U .

Observation tables. Perhaps the most famous data structure to be used in the context of ac-
tive automata learning is the observation table. Originally introduced by Gold [75], it forms the
central data structure of the first efficient active automata learning algorithm L∗, presented by
Angluin [19]. Variants of the observation table are used in a number of active automata learning
algorithms for other machine types as well.

An example observation table, derived from querying the DFA from Figure 2.2a, is shown in
Figure 3.2a. Both rows and columns of the table are indexed with words from Σ∗. Further-
more, the table is split in two parts: in the upper part, rows are indexed with prefixes from

46

3.4. Realizations

U = {ε,a ,b ,b b }, corresponding to states in the constructed DFA (shown in Figure 3.2b). As con-
structing the DFA requires determining the equivalence class of ua for each u ∈ U ,a ∈Σ, the
rows in the lower part correspond to those prefixes in UΣ that are not present in the upper part.

The cell corresponding to a row labeled by u and a suffix labeled by v stores the observation
λ(u ,v). Hence, an observation table realizes a global suffix-based classifier (cf. Definition 3.7),
as each of the suffixes in the global suffix set V , which is given by the column labels, applies to
all prefixes that are used as row indices.

Two prefixes are determined to be equivalent if the contents of the corresponding rows are
equal. Thus, as the row labeled by a b in the lower part of the table contains the same values
as the row in the upper part labeled by b , [b] is chosen as the b -successor of [a] in Figure 3.2b.
For the same reason, there is no separate state for [b b], as it is determined to be equivalent to
ε. Finally, [ε] is accepting in the corresponding DFA since the value in the column labeled by ε
is 1.

To realize splitting of classes, a column with the new suffix is added to the table, and the newly
introduced cells are filled using membership queries. Augmenting U is achieved by adding new
rows to the upper part of the table (and thus also to the lower part). In the frequently occurring
case that the new row label is in UΣ\U (e.g., for fixing an unclosedness as described in the proof
of Lemma 3.5), this process is better described as moving a row from the lower to the upper part
of the table (and adding new rows in the lower part).

Discrimination trees. The observation table data structure is intuitive and easy to visualize,
but contains some inherent redundancy (apart from the superfluous short prefix b b in the
above example): usually not all suffixes inV are necessary to distinguish the equivalence classes.
For example, the suffix ε alone is sufficient to distinguish [ε] from the other two classes.

Kearns and Vazirani [115] proposed to realize the classification using a decision tree, which
we will refer to as discrimination tree. An example for such a discrimination tree is shown in
Figure 3.3a, for the same target DFA as the above observation table.10 The process of classify-
ing a prefix u ∈Σ∗ using a discrimination tree can informally be described as follows: starting
at the root node, whenever the current node is an inner node (elliptical shape) labeled with a
discriminator v ∈Σ∗, λ(u ,v) is evaluated. We then proceed to the 0-child (dashed arrow) or to
the 1-child (solid arrow), depending on the observed outcome. This process is repeated until we
finally reach a leaf (rectangular shape), which is labeled with the representative short prefix(es)
u ′ ∈ U , determining the class [u ′] of u . The whole process of moving from the root to a leaf in
this fashion is referred to as sifting u into the tree.

The set of short prefixes is given by the set of all leaf labels, i.e., U = {ε,a ,b } in Figure 3.3a.
The characterizing set for a prefix u ∈Σ∗ is exactly the set of discriminators encountered at inner
nodes on the path from the root to the tree, i.e., Ch(ε)= {ε}, and Ch(a)=Ch(b)= {ε,a }. Another
useful property of a discrimination tree is that for two inequivalent prefixes u ,u ′ ∈Σ∗, there
is guaranteed to be a single separator, which is the label of the lowest common ancestor of the
corresponding leaves reached when sifting u and u ′, respectively (this will be explained in more
detail in Section 4.1.2).

It should be noted that a discrimination tree does not store information about the classes of
the successors of states identified by short prefixes in U—in contrast to an observation table,
where the lower part exists for precisely this reason. Thus, whenever a hypothesis H is con-

10We have omitted the superfluous short prefix b b that was part of the observation table from Figure 3.2a. While
it would be possible to permit leaves with multiple short prefix labels, this is typically avoided in existing algorithms.

47

3. An Abstract Framework for Active Automata Learning

ε

εa

ab

(a) Discrimination tree resulting in the
DFA from Figure 3.2b

ε

εa

ab

b

(b) Discrimination tree after splitting leaf labeled
with b

Figure 3.3.: Example discrimination trees

structed, every word ua ∈ UΣ needs to be sifted into the tree (which requires a lot of additional
membership queries), or this information has to be stored in a separate data structure. We will
give a detailed description on how this can be accomplished efficiently in Section 4.2.2.

Splitting classes in a discrimination tree is usually accomplished by splitting leaves, i.e., re-
placing a leaf with an inner node with two children (leaves). Figure 3.3b shows the result of
splitting the leaf labeled with b (and drawn with a thick border) in Figure 3.3a using b as dis-
criminator.11 This results in a leaf with no label, which calls for augmenting U . This is in turn
accomplished by attaching a label to the unlabeled leaf.

A notable aspect about splitting leaves in a discrimination tree is that it results in the least
refined classifier that accommodates the new suffix for the class to be split: if κ is the classifier
associated with the discrimination tree from Figure 3.3a, then the associated classifier of Fig-
ure 3.3b is κ′ = split(κ,[b]κ,b) (cf. Definition 3.16), which in turn is the least refined classifier
that both refines κ and satisfies b ∈ Chκ′ (b). This distinguishes discrimination trees from ob-
servation tables, where splitting classes is realized by adding suffixes to V , resulting in an even
more refined classifier (cf. Remark 3.3).

Other approaches. Most algorithms that infer canonical DFAs by over-approximating the
Nerode congruence choose to store their observations and classification results in one of the
above two data structures. An exception is the DHC algorithm by Merten et al. [138, 140]: it real-
izes a black-box abstraction merely in terms of a global black-box classifier κ that is determined
by the global suffix set V . The set U is computed dynamically as a minimal prefix-closed set
containing ε, resulting in a closed (in the sense of Definition 3.9) black-box abstraction. The
computation is typically performed in a breadth-first fashion, as sketched in Algorithm 3.3. An
undesirable side-effect of this approach is that the set U does not necessarily grow monotoni-
cally. Hence, subsequent black-box abstractions might not be refinements of each other in the
sense of Definition 3.15.

11The fact that the discriminator is the same as the leaf label is pure coincidence.

48

3.4. Realizations

Algorithm 3.3 Dynamic computation of U (given κ) in a breadth-first fashion
Require: Black-box classifier κ∈Kλ

Ensure: Prefix-closed set U such that 〈U ,κ〉 is closed and deterministic
1: U←{ε}
2: Q ← init_queue(ε) � initialize new queue containing ε
3: while Q �= � do
4: u ←poll(Q) � retrieve and remove first element in Q
5: for a ∈Σ do
6: if � ∃u ′ ∈ U : ua ∼κ u ′ then � found closedness violation
7: U← U ∪{ua }
8: add(Q ,ua) � enqueue ua
9: end if

10: end for
11: end while

3.4.2. Handling Counterexamples

The choice of data structures is probably the most distinguishing characteristic between active
learning algorithms, whereas the approach to handling counterexamples is much more subtle
(in fact, some algorithms even treat counterexample handling as a “plug-in”). In the following,
we thus list existing counterexample handling strategies separately for each data structure.

Observation table-based algorithms. These form the majorities of active automata learning
algorithms that have been described. The comparably large number of different strategies is
due to heuristic approaches that maintain both prefix-closedness of U and suffix-closedness of
V , while attempting to keep the overhead low.

Classical L∗ [19] When presented with a counterexample w ∈Σ∗, all elements of Pref(w) are
added to U (i.e., to the upper part of the table). This includes the prefix �u �pref w according
to Theorem 3.3 (i), and thus—in conjunction with Corollary 3.2 (ii), which is applicable
since V remains unchanged—causes non-determinism.

L∗
col (“Maler/Pnueli”) [127] Even though Maler and Pnueli [127]presented an algorithm for infer-

ring a subclass of Büchi automata, their strategy of adding all suffixes of a counterexample
w ∈Σ∗ to V has been adapted to the DFA case and is often referred to as L∗

col. One of these
suffixes is �v satisfying the conditions of Theorem 3.3 (ii). Adding it to V causes all classes,
including H[�u �a], to be split, which in conjunction with Corollary 3.2 (i) results in an un-
closedness.

Shahbaz’s algorithm [161] A counterexample w is decomposed into w =u ·v such that u ∈ UΣ
and u is of maximal length (over all possible decompositions satisfying this constraint).
This is justified by the fact that the algorithm maintains U as a prefix-closed set, and the
decomposition according to Theorem 3.3 (ii) necessarily implies �u �a /∈ U (as otherwise
ρR(H[�u �a])∩ρR(H[�u]) · {�a } �= �). Thus, under these circumstances, the suffix �v must be
a suffix of v . Adding all elements in Suff(v) to V causes an unclosedness for the same
reasons as the above strategy.

49

3. An Abstract Framework for Active Automata Learning

Suffix1by1 [106] Presented with a counterexample w ∈Σ∗, elements of Suff(w) are added to V
one by one, in ascending order of their lengths. This process is repeated until the table
is no longer closed. Theorem 3.3 (ii) guarantees that a suffix causing an unclosedness is
eventually encountered, however, Suffix1by1 does not guarantee to add a suffix satisfying
the conditions of Theorem 3.3 (ii), as an unclosedness may be caused merely by coinci-
dence. Still, it is ensured that an unclosedness with subsequent refinement occurs.

Rivest and Schapire [155] Using binary search, a single suffix satisfying the conditions of Theo-
rem 3.3 (ii) is determined and added to V (which thus is not maintained as suffix-closed),
resulting in an unclosedness and subsequent refinement.

Discrimination-tree based algorithms. For this class of algorithms, there are basically only two
documented approaches that can be found in the literature. This is probably due to the fact that
maintaining suffix-closedness, which is the main point of many of the heuristics for observation
table-based algorithms, is not trivially possible in a discrimination tree without violating the
property of each inner node having at least two children.

Kearns and Vazirani [115] Given a counterexample w ∈ Σ∗, a prefix �u �a �pref w satisfying the
conditions of Theorem 3.3 (i) is determined using linear search (a binary or exponential
search strategy was proposed by Isberner and Steffen [108]), and �u is added to U . This
causes non-determinism, which is immediately resolved by splitting the leaf correspond-
ing to �u , using �a ·v as discriminator. Here, v ∈ Sepsκ(H[�u �a],[�u �a]κ) is a suffix separating
[�u �a]κ and H[�u �a].

Observation Pack [93] Given a counterexample w ∈Σ∗, a decomposition �u �a �v =w satisfying the
conditions of Theorem 3.3 (ii) is determined using binary search, and �v is used to split the
class H[�u �a]. This results in an unclosedness, which is immediately resolved by adding
	�u �H · �a to U , where 	�u �H denotes the unique representative of H[�u] (cf. Remark 3.5).

3.4.3. Complexity Considerations

Even though the asymptotic complexities (according to the measures described in Section 3.2.1)
are specific to each algorithm, some lower bounds can be established for those algorithms that
can be regarded as instances of the described framework. Table A.1 in Appendix A provides an
overview.

It is obvious that at most n −1 equivalence queries are required, as each counterexample wrt.
a black-box abstraction R can be exploited for refinement (cf. Theorem 3.3), resulting in a strict
increase of |� (R)|. However, Theorem 3.2 guarantees that once |� (R)|= n , the hypothesis is
necessarily correct.

Query complexity. Let us now consider the membership queries that are necessary to con-
struct the final hypothesis (i.e., assuming that U and κ are given such that R= 〈U ,κ〉 satisfies
|� (R)|= n). Of course, queries need to be asked for constructing the intermediate hypothe-
ses as well, but due to the usually monotonic growth of U and the monotonic refinement of κ,
this information can be reused and does not need to be considered separately. Constructing
the final hypothesis requires determining the classes wrt. ∼κ of all elements in U ∪UΣ. If χ is
the maximum size of any characterizing set (i.e., χ =maxu∈U |Chκ(u)|), this requires O(|U | ·k ·χ)
membership queries.

50

3.5. Adaptation for Mealy Machines

It is easy to ensure |U |=n (i.e., by maintaining U as a set of pairwisely inequivalent prefixes).
If we could ensure χ =O(n), this would in combination result in an overall membership query
complexity of O(k n 2), which coincides with the known lower bound for the problem, proven by
Balcázar et al. [25]. However, to achieve χ =O(n), the characterizing sets may be augmented by
no more than a constant number of suffixes with each counterexample. This cannot be ensured
by algorithms that add all suffixes of (a suffix of) a counterexample to the characterizing sets,
such as the one by Maler and Pnueli [127], Shahbaz’s algorithm [161], or Suffix1by1 [105, 106]:
these can only guarantee χ =O(nm), resulting in an overall query complexity of O(k n 2m),
which intersects Ω(k n 3) under the assumption m =Ω(n).12 The original L∗ algorithm [19] faces
a similar problem: adding all prefixes of a counterexample to U results in |U |=O(nm) while
ensuring χ ≤n , resulting in the same worst-case complexities.

The discrimination tree-based algorithms [93, 115], as well as the one by Rivest and
Schapire [155], maintain unique representatives in U , and only augment (some or all) charac-
terizing sets by a single suffix per counterexample, thus ensuring |U | ≤ n ,χ ≤ n and resulting
in a query complexity in O(k n 2) for hypothesis construction. However, counterexample analy-
sis, i.e., determining either the prefix to add to U or the suffix to use for refinement, requires
additional membership queries, resulting in query complexities in O(k n 2 +n logm) (Rivest
and Schapire, Observation Pack; cf. Proposition 3.3) or O(k n 2+n 2 logm) (Kearns and Vazirani;
cf. Proposition 3.2). Note that especially the former query complexity is almost optimal, and in
fact coincides with the known lower bound if the length of counterexamples satisfies m =2O(nk).
It remains an open problem to show that either Ω(k n 2+n logm) is the actual lower bound for
the problem, or to give an algorithm that achieves a query complexity in O(k n 2) regardless of
the length of counterexamples.13

Symbol complexity. Obtaining the corresponding symbol complexities is fairly easy: note that
all of the mentioned algorithms either add prefixes of a counterexample to U , or suffixes of a
counterexample to the characterizing sets. This means that either the length of the prefixes
is bounded by m and those of the suffixes by n , or vice versa. Since every query for hypothesis
construction is composed of a prefix u ∈ U∪UΣ and a suffix v ∈Chκ(u), the length of each of this
queries is in O(n +m), or O(m) under the assumption m =Ω(n). Thus, the symbol complexities
for the algorithms can be obtained by multiplying the above asymptotic query complexities by
m (or n +m).

3.5. Adaptation for Mealy Machines

The presented framework is already very general, in the sense that it does not rely on specifics of
the DFA learning scenario, such as, e.g., that the output domainD=� contains only two values.14

Generalizing the concepts to variants of DFAs with larger (yet finite) output domains is straight-
forward. An example are three-valued DFAs (3DFAs), that augment the usual set of outputs—

12It should be noted that the estimate is very pessimistic (but nonetheless realizable), as adding a large number
of suffixes to V table usually results in many additional states, thus reducing the overall number of required coun-
terexamples.

13A possible approach would be to show that counterexamples of length m = 2ω(k n) contain so much inherent
redundancy that it is possible to reduce them to counterexamples of length 2O(k n) using at most O(k n) membership
queries per counterexample. This would guarantee an asymptotic overall query complexity of O(k n2). However, it
remains unclear how this could be accomplished without the learner knowing the true value of n .

14An exception to this is, of course, the construction of the hypothesis DFA according to Definition 3.10.

51

3. An Abstract Framework for Active Automata Learning

“accept” and “reject”—with a third one, corresponding to “don’t care”. A learning algorithm for
3DFAs was presented by Chen et al. [47].

These generalizations are often used as a blueprint for developing automata learning algo-
rithms for actively inferring finite-state transducers: it is often stated (e.g., by Hopcroft and Ull-
man [90] in the first edition of their classic book) that DFAs essentially are Moore machines [142]
with a binary output alphabet. This perspective might be adequate in a “white-box” context, but
not in the black-box context of active learning: if λ : Σ∗ →Ω∗ is the output function of a Moore
machine (or any other letter-to-letter transducer, cf. Remark 2.2), then, for words w ,w ′ ∈Σ∗ such
that we have w �pref w ′, evaluating λ(w ′) yields strictly more information than evaluating λ(w).
This is unlike the case of (multi-valued) DFAs, where it is not possible to deduce the value ofλ(w)
from knowing λ(w ′), or vice versa.15 Merely considering the last symbol of an output word, as
was done in the first active automata learning algorithm for Mealy machines by Niese [129, 146],
means discarding potentially valuable information, which is inexcusable for an algorithm that
is meant to be efficient.

This calls for treating transducers as a separate class of target systems, rather than as a special
case of multi-valued DFAs. Between the prevalent—and, to some extent,16 equi-expressive—
models of Mealy and Moore machines, the former are clearly the more desirable ones to con-
sider, as they may be smaller than the latter by a factor of the size of the output alphabet. The
first active automata learning algorithm for Mealy machines, L∗

M, is due to Niese [129, 146], and
the description was later improved and formalized by Shahbaz and Groz [161]. In this section,
we will sketch how the described framework can be adapted to cover the learning of Mealy ma-
chines. We will see that the consideration on a strictly formal level exposes considerably more
differences than the comparison between L∗ and L∗

M (which is a relatively straightforward adap-
tion of the former) would suggest, which is due to the fact L∗

M is often used in conjunction with a
number of heuristics that ensure a successful termination at the cost of additional membership
queries.

3.5.1. Black-Box Abstractions for Mealy Machines

The concept of black-box abstractions (cf. Definition 3.8) remains mostly unchanged in the con-
text of learning a Mealy machine model for an output function λ : Σ∗ →Ω∗, where λ=λM is the
output function of some canonical (“target”) Mealy machine M. This is mostly due to the fact
that the relation ∼=λ as defined in Definition 3.2 has the same characteristics as for DFAs: its in-
dex is finite if and only if there exists a Mealy machine computingλ, and the equivalence classes
in Σ∗/∼=λ furthermore correspond to the states of the canonical Mealy machine for λ [167].

Thus, we use a finite set U ⊂Σ∗ of short prefixes to represent equivalence classes of a relation
induced by a black-box classifier κ. Reflecting the fact that the output domain is D =Ω∗, the

15There may exist cases where precisely this is possible, depending on the observed values: if the language of the
target DFA is known to be prefix-closed, λ(w ′) = 1 implies λ(w) = 1, and λ(w) = 0 implies λ(w ′) = 0. However, such
domain-specific knowledge is usually better incorporated using optimizing filters, as described by, e.g., Margaria
et al. [130].

16There exist two slightly different definitions of Moore machines: one where the current state determines the
output (this were the semantics originally intended by Moore [142]), and one where the successor state determines
the output. In the former case, the first output symbol is always fixed, thus there might exist Mealy machines that
cannot be translated into a Moore machine of this kind (unless the first output symbol is discarded). The latter
interpretation is truly equi-expressive with Mealy machines, but lacks a canonical form, as there might be several
possible choices for the initial state due to its output not being observable.

52

3.5. Adaptation for Mealy Machines

black-box classifier κ is now defined as a function mapping prefixes u ∈Σ∗ to partial functions
(with finite domains) from Σ∗ to Ω∗. Hence, formally we have

κ: Σ∗ →
�

f : Σ∗�Ω∗ | |dom f |<∞
�

.

The validity requirement remains unchanged as well: for u ∈Σ∗ and v ∈Chκ(u), we demand that
κ(u)(v) =λ(u ,v), exploiting the property of suffix-observability of Mealy machine output func-
tions, i.e., λ(u ,v) =λ(u ·v)|u |+1..|u |+|v |. If the above validity requirement is satisfied, it is guaran-
teed that ∼κ is refined by the relation ∼=λ .

Remark 3.7 (Terminology)

Shu and Lee [162] introduced the term output query for the equivalent of a membership
query in the setting of learning transducers, which was subsequently adapted by Shahbaz
and Groz [161] in their description of L∗

M. However, in this thesis—and in accordance with the
original L∗

M description given by Niese [129, 146]—we will use the term “membership query”
to denote the evaluation of any (suffix-observable) output function λ(·,·), since it refers to the
same concept regardless of whether the target FSM is a DFA or a Mealy machine. It should be
noted that this choice is made for historical reasons only, as “output query” is admittedly the
more general term.

Transition Outputs

In a Mealy machineM (cf. Definition 2.7), the concept of accepting or rejecting states is replaced
with transition outputs, i.e., a mapping γM : QM →Ω. We have remarked in Section 2.2.5 that
these constitute the local property of states in a Mealy machine, that, e.g., has to be preserved
by an isomorphism. In the case of DFA learning, we have ensured the correctness of the local
property “acceptance” by enforcing that ε is always a member of the characterizing sets.

A comparable approach in the context of learning Mealy machines would be to require Σ⊆
Chκ(u) for all u ∈Σ∗.17 In fact, L∗

M does just that by initializing the global suffix set as V =Σ. Ir-
fan et al. [107] have observed that this scales poorly for large alphabet sizes. Furthermore, this
cannot be realized when using a discrimination tree data structure without relaxing the require-
ment that each inner node must have at least two children. However, as ε has no discriminatory
power in the context of Mealy machines, there is no “natural” choice for a minimum subset of
all characterizing sets other than �.

Irfan et al. [107]proposed the algorithm L1, which is a modification of L∗
M that starts withV =�,

and maintains the transition outputs separately. In particular, since the elements of U represent
states in the hypothesis, a transition output has to be determined for each u ∈ U ,a ∈Σ through
the query λ(u ,a). The results of these queries are stored in the corresponding rows labeled with
(U∪UΣ)\{ε}. Note thatV =�means that there can be only one equivalence class, thus the initial
hypothesis is guaranteed to have a single state only.

Output Determinism

The L1 algorithm relies on the Suffix1by1 heuristic [105, 106] for refinement, thus keeping all ele-
ments of U pairwisely inequivalent wrt. ∼κ. In the general case, however, we need to strengthen

17Here, elements of Σ are interpreted as words of length 1.

53

3. An Abstract Framework for Active Automata Learning

our notion of determinism (cf. Definition 3.9) to also comprise output determinism (called “out-
put consistency” by Van Heerdt [86]).

Definition 3.21 (Output deterministic)

Let R= 〈U ,κ〉 be a black-box abstraction of some output function λ : Σ∗ →Ω∗. R is called
output deterministic if and only if

∀u ,u ′ ∈ U ,a ∈Σ : u ∼κ u ′ ⇒λ(u ,a) =λ(u ′,a).

Note that enforcing Σ⊆Chκ(u) for all u ∈Σ∗ trivially ensures output determinism.
If there are u ,u ′ ∈ U ,a ∈Σ that violate output determinism, this can be resolved—in analogy

to the proof of Lemma 3.5—by splitting the class [u]κ, using a as the new discriminator.

Hypothesis Construction

If a black-box abstraction R= 〈U ,κ〉 satisfies the condition of output determinism in addition
to closedness and determinism as defined in Definition 3.9, it is possible to construct a Mealy
machine from it (in analogy to Definition 3.10).

Definition 3.22

Let R= 〈U ,κ〉 be a closed, deterministic and output deterministic black-box abstraction for
some output function λ : Σ∗ →Ω∗. The Mealy machine corresponding to R, Mealy(R), is the
Mealy machine H, where

• QH=df {[u]κ |u ∈ U},

• q0,H=df [ε]κ,

• δH([u]κ,a) =df [ua]κ ∀u ∈ U ,a ∈Σ, and

• γH([u]κ,a) =df λ(u ,a) ∀u ∈ U ,a ∈Σ.

Thanks to the definition of γH, hypotheses satisfy the following modified version of invari-
ant (I2) from Lemma 3.4 (where A denotes the canonical Mealy machine for λ):

(I2-Mealy) The transition outputs of a state in H corresponding to a prefix in U are correct:

∀u ∈ U ,a ∈Σ :γH([u]κ,a) =γA(A[u],a).

Transition Output Inconsistencies

A central result of Section 3.3 was that counterexamples constitute both reachability and out-
put inconsistencies. However, if the initial black-box abstraction has only one equivalence class
(e.g., if V = �), reachability inconsistencies cannot occur. Luckily (as it would otherwise break
the symmetry), this does not mean that the first counterexample necessarily needs to be con-
sidered as an output inconsistency. Instead, we can resolve this by supplementing the notion of
reachability inconsistencies with an additional, yet very similar concept.

54

3.5. Adaptation for Mealy Machines

Definition 3.23 (Transition output inconsistency)

Let R= 〈U ,κ〉 be a closed and deterministic black-box abstraction of some output function
λ : Σ∗ →Ω∗, and let H=Mealy(R) be the corresponding hypothesis. A pair (u ,a)∈Σ∗×Σ con-
stitutes a transition output inconsistency if and only if γH(H[u],a) �=λ(u ,a). (u ,a) is called a
proper transition output inconsistency if furthermore H[u] = [u]κ.

If (u ,a)∈Σ∗×Σ constitutes a transition output inconsistency that is not a proper one, u con-
stitutes a reachability inconsistency. A proper transition output inconsistency (u ,a) is still very
similar to a reachability inconsistency: it exposes that the representatives of H[u] behave dif-
ferently (wrt. a) than the state reached by u in the target Mealy machine M. Consequently,
adding u to the set of short prefixes U will result in a violation of output determinism according
to Definition 3.21.

Note that ifΣ is a subset of all characterizing sets, there cannot be any proper transition output
inconsistencies, as then a ∈Sepsκ(H[u],[u]κ).

3.5.2. Handling Counterexamples and Inconsistencies

In Section 3.3, we have shown that counterexamples can be regarded as (reachability or output)
inconsistencies, and that the usual counterexample analysis techniques are more general, as
they can be used to analyze these inconsistencies to achieve refinement. These results translate
to Mealy machines, but some modifications are required to account for their characteristics.

The general notion of a counterexample (wrt. an hypothesisH) is that it is a word w ∈Σ∗ satis-
fying λH(w) �=λ(w). To make the proofs in this section work, we impose the additional assump-
tion λH(w)|w | �=λ(w)|w |, i.e., the outputs differ in their last symbol. We do not lose generality,
as every counterexample w ∈Σ∗ in the general sense contains a prefix w ′ �pref w satisfying the
additional assumption. Moreover, assuming that λ(w) is known, this prefix can be determined
without additional membership queries. Finally, since the length of a counterexample affects
the performance, it is in any case reasonable to shorten a counterexample as much as possible,
i.e., using w1..� as the counterexample, where �= min{i ∈� |1≤ i ≤ |w |∧λH(w)i �=λ(w)i } (re-
sulting in the shortest prefix w ′ �pref w that is still a counterexample). We call a counterexample
obtained in this fashion a reduced counterexample.

Prefix-based Analysis

If w ∈Σ∗ is a reduced counterexample, it is obvious that (w1..|w |−1,w|w |) constitutes a transition
output inconsistency. If it is a proper one, w1..|w |−1 is a prefix that, when added to U , violates out-
put determinism (which can be resolved by splitting its class using w|w | as discriminator). Oth-
erwise, w1..|w |−1 constitutes a reachability inconsistency that can be analyzed using the method
described in Section 3.3.3.

Suffix-based Analysis

While, for a (reduced) counterexample w ∈Σ∗, (ε,w) constitutes an output inconsistency in the
usual sense, Lemma 3.8 and its proof are not applicable “as-is” in the context of Mealy ma-
chines. The reason for this is that, for an arbitrary decomposition w = x y z , x , y ,z ∈Σ∗, we gen-
erally have λ(x y ,z) �=λ(x , y z) (unless y =ε), but merely λ(x y ,z)�suff λ(x , y z), or, alternatively,
λ(x y ,z)=λ(x , y z)|y |+1..|y |+|z | (note that the conditions in Theorem 3.3 (ii) and Lemma 3.8 (ii) are

55

3. An Abstract Framework for Active Automata Learning

formulated in such a way that the suffix argument to the output function is of the same length
on both sides of the inequation).

Let us therefore describe how the abstract counterexample derivation has to be adapted to
address this. Since the output domain is nowΩ∗ instead of� in the DFA case, the apparent choice
for the effect domain is 2Ω∗ \ {�}. Observe that any output inconsistency (x , y) ∈ U ×Σ∗ must

satisfy |y |≥2, as, for all a ∈Σ, λ[x]κ
H (a)=γH([x]κ,a)=λ(x ,a)holds by construction. Furthermore,

we assume that an output inconsistency (x , y) being analyzed is reduced, i.e., for every strict
prefix y ′ �pref y , (x , y ′) does not constitute an output inconsistency (this apparently holds for
the output inconsistency directly derived from a reduced counterexample, and can otherwise

be ensured by truncating y after the first mismatch between λ[x]κ
H (y) and λ(x , y)).

To address the above-mentioned aspect that the length of the value of λ(·,·) is determined by
the length of the suffix argument (with the effect thatη(i)∩η(j)=� for i �= j), we need to re-define
the effect relation. Let �⊆ (2Ω∗ \{�})× (2Ω∗ \{�}) be the relation defined via

X � Y ⇔df ∀z ∈X :∃z ′ ∈ Y : z ′ �suff z ∀� �=X ,Y ⊆Ω∗.18

We will now sketch how choosing � as the effect relation ensures validity, and the correspon-
dence between the breakpoint condition to the condition stated in Lemma 3.8 (ii).

Note that, for a reduced output inconsistency (x , y) ∈ U ×Σ∗, η(|v |) = {ε}, thus η(0)�η(|y |),
violating validity. However, η(|y |−1) =

�

λ[x]κ
H (y)|y |

�

. Since λ(x , y)∈η(0), η(0) ��η(|y |−1) due to
(x , y) being reduced. Thus, the length of the abstract counterexample needs to be |y |−1, instead
of |y | in the DFA case.

Finally, let us take a look at the breakpoint condition. η(i) �� η(i + 1) means that there
exists u ∈ ρR(δH([x]κ, �u)) such that for all u ′ ∈ ρR(δH([x]κ, �u �a)), λ(u ′, �v) ��suff λ(u , �a �v), with
�u , �a , �v as defined in Section 3.3.4. This implies λ(u �a , �v) �= λ(u ′, �v), resulting in the condition
of Lemma 3.8 (ii).

3.5.3. Data Structures

A final aspect we want to discuss is how data structures change due to the adapted notion of
black-box classifiers and abstractions defined in this section. As in Section 3.4.1, we will only
consider observation tables and discrimination trees.

Examples of these data structures (containing output values corresponding to the Mealy ma-
chine shown in Figure 2.2b) can be seen in Figure 3.4. The observation table, shown in Fig-
ure 3.4a, contains in its cells output words of the length of the respective column header (suffix
from V), that are the suffix output with respect to the prefix labeling the row. Additionally, each
row that is not labeled with ε contains the output symbol corresponding to the transition it
identifies.

When looking at the discrimination tree in Figure 3.4b, one immediately notices that it is not
a binary tree. An inner node labeled with v ∈Σ∗ no longer has only two children (a 0- and a 1-
child), but may have a child for each element in Ω|v |. The edge pointing to each child is labeled

18The correspondence between this relation and the subset relation used in the DFA case becomes apparent from
the fact that changing “�suff ” to “=” results in a definition of the subset relation itself. Furthermore, an alternative
and possibly more efficient approach to checking whether X �Y holds is based on the observation that all elements
of Y are of the same length �. Transforming X into the set X ′ by replacing every element z ∈X with z|z |−�+1..|z | allows
to reduce the test for X �Y to testing X ′ ⊆Y , which can be realized more efficiently in practice by using a hash data
structure.

56

3.6. Discussion

a a a a
ε x x y y
a / x y y y y
b / x x x x y
a b / x x x x x
a a / y y y y y
b a / x x x y y

...

(a) Observation table

a

aa a a

ε b a b

yx

x y y x x y x x x

(b) Discrimination tree

Figure 3.4.: Example (Mealy) observation table and discrimination tree for the Mealy machine
from Figure 2.2b

with the respective output word. A consequence of this is that, whenever some word u ∈Σ∗

is sifted into the tree, the result might be a “virtual” leaf, i.e., a leaf that has a defined parent
and incoming edge label, but is not part of the tree. This phenomenon, however, is not new:
discovering new classes en passant occurs all the time when an observation table is used, and
can be handled in the same way (e.g., by adding an element of UΣ\U to U if this occurs during
hypothesis construction).

3.6. Discussion

We have presented a mathematical framework for formulating active automata learning algo-
rithms following the approach of approximating the Nerode congruence by refinement. We
have shown that a large number of learning algorithms, specifically those that can be regarded
as variants or offsprings of the L∗ algorithm, can be formulated in this framework independently
of their data structures. This unified description provides deep insights into the role of syntacti-
cal properties (such as prefix- or suffix-closedness), allows a precise identification of sometimes
occurring deficiencies in the model and how they can be remedied, and exposes the duality of
the two prevalent counterexample analysis approaches.

A similar attempt to unify the description of learning algorithms has been made by Balcázar
et al. [25]. However, their observation packs framework can be considered as more of an attempt
to formulate an efficient learning algorithm rather than an actual unified description of exist-
ing learning algorithms (e.g., the problem that in the original L∗ algorithm there can be more
than one short prefix per equivalence class is simply eliminated by pointing out that, in the case
of a closed and deterministic observation table, the “superfluous” short prefixes can safely be
discarded). Also, the described counterexample analysis is limited to the binary search method
proposed by Rivest and Schapire [155], and thus provides no further insights as to why the orig-
inal one proposed by Angluin [19], or the similar one by Kearns and Vazirani [115] work.

3.6.1. Consistency Properties

An important contribution of the framework is the precise identification of the two desirable
consistency properties, namely reachability consistency (Definition 3.11) and output consistency

57

3. An Abstract Framework for Active Automata Learning

(Definition 3.12), along with the syntactic properties that guarantee them (prefix-closedness
of U and semantic suffix-closedness of the characterizing sets). Both consistency properties
are crucial, as their violation means that the inferred hypothesis does not properly reflect all
observations, which should however be a minimum requirement to be fulfilled by a learning
algorithm.

Potential violations of these properties have long been neglected, as prefix-closedness of U
and suffix-closedness of the global suffix set V of the observation table data structure were
treated as properties to be enforced, at the cost of an unnecessary large number of prefixes
and/or suffixes. For example, Angluin [19] proposed adding all prefixes of a counterexam-
ple as rows of the table to maintain prefix-closedness, and Maler and Pnueli [127] propose
the dual strategy of adding all suffixes of a counterexample as columns of the table. Shahbaz
and Groz [161] and Irfan et al. [106] propose several heuristics, all of which maintain suffix-
closedness of the suffix set. This seems surprising, given that Rivest and Schapire [155] already
showed that adding a single suffix was sufficient, and that the learning algorithm converges with
a correct final hypothesis. The most likely explanation for this is that their approach was gener-
ally poorly understood, which is supported by the fact that Irfan [105] in Section 5.2.5 of his PhD
thesis incorrectly claims that Rivest and Schapire’s approach would result in an infinite loop.

Reachability inconsistencies can probably be considered a rather exotic phenomenon, as the
only algorithm that forgoes the prefix-closedness of the short prefix set U is the one by Kearns
and Vazirani [115]. While the consequence that this may cause a counterexample to be classified
incorrectly after a single step of counterexample analysis has been observed (e.g., by Balle [26],
and in fact this even occurs in the example given by Kearns and Vazirani), the usual treatment
was to simply re-analyze the counterexample until it ceases to be one, instead of analyzing the
reachability inconsistency as a phenomenon by its own right, as discussed in Section 3.3.3.

Lee and Yannakakis [123] observed that removing the suffix-closedness requirement of the
suffix set in the observation table, as proposed by Rivest and Schapire [155], leads to non-
canonical hypotheses. Steffen et al. [167] suggested a relaxed notion of suffix-closedness, called
“semantic suffix-closedness”, as a weaker property that would still ensure canonical hypothe-
ses. Their definition of this concept however is not sufficient for ensuring canonicity and/or
output consistency (in fact, our notion of semantic suffix closedness according to Definition 3.13
coincides with ordinary suffix-closedness for observation tables). Besides pointing out the in-
sufficiency of the aforementioned property, Van Heerdt [86] remarked that in the case of non-
canonical hypotheses, the observations stored in the table conflict with the corresponding hy-
pothesis. He suggests to use these conflicts as counterexamples, which, when done exhaus-
tively, will eventually guarantee canonical hypotheses. Again, this approach transforms output
inconsistencies to counterexamples, without adequately addressing the nature of output incon-
sistencies as discussed in Section 3.3.4.

In general, there is a fascinating symmetry between the role of prefixes and suffixes in a learn-
ing algorithm. This is reflected in how the (syntactical) closedness properties ensure the (se-
mantic) consistency properties, as discussed above, and furthermore in the counterexample
analysis approaches: in prefix-based counterexample analysis according to Theorem 3.3 (i),
adding the identified prefix �u to U in general violates prefix-closedness, while in suffix-based
counterexample analysis (Theorem 3.3 (ii)), suffix-closedness is violated when a class is split us-
ing the suffix �v . The inconsistencies potentially caused by violations can however be addressed
using exactly the same analysis strategy that caused them in the first place, without having to
analyze the full counterexample they induce.

58

3.6. Discussion

3.6.2. Limitations

The developed framework is inherently limited to an active automata learning approach based
on approximating the Nerode congruence by means of refinement. While the majority of ex-
isting learning algorithms fall into this category, it should not go unmentioned that other ap-
proaches exist.

Meinke [132] has introduced a learning algorithm for Mealy machines, called CGE (congru-
ence generator extension), that takes a conceptually dual approach: instead of starting with a
maximally coarse approximating relation that is refined throughout the learning process, CGE
starts with a maximally fine relation (i.e., the identity relation), and coarsens it by merging equiv-
alence classes. This corresponds to learning the loop structure (i.e., when are two words equiv-
alent?) of the target automaton, whereas the framework developed in this chapter is geared
towards learning algorithms that infer the separators of states in the target automaton. Some
other algorithms following that approach, such as the IKL algorithm by Meinke et al. [136], have
been proposed as well. Although Meinke and Sindhu [134] report superior performance for the
application of learning-based testing, these algorithms have exponential worst-case query com-
plexities, making them less attractive from a theoretical perspective when compared to L∗-style
algorithms with their polynomial query complexities.

Another category of algorithms which cannot be formulated in our framework are those that
do not learn canonical DFAs (or Mealy machines). Perhaps the most prominent example is the
NL∗ algorithm by Bollig et al. [36], which learns residual finite-state automata (RSFAs), as intro-
duced by Denis et al. [62]. RSFAs are a kind of NFAs that admit a canonical form, but due to
allowing non-determinism can be exponentially more succinct than their equivalent canonical
DFA. Another potentially non-deterministic class of automata admitting a canonical form are
universal automata [83, 124], the inference of which has been described by Björklund et al. [35].
In both cases, states in the hypothesis no longer necessarily correspond to the identified equiv-
alence classes of ∼κ. While it is certainly possible to obtain a description of the mechanisms be-
hind the respective algorithms building upon the concepts and notation developed in this chap-
ter, it particularly remains unsure how (or if) the counterexample analysis techniques could be
translated to the case of non-deterministic hypotheses.

Finally, active learning approaches that go beyond the MAT framework of membership and
equivalence queries are not covered. In particular, there are practically relevant application
scenarios where queries that go beyond the power of membership queries are available: when
learning reactive systems, the output corresponding to each input symbol can typically be ob-
served immediately. This allows a learner to choose the next input symbol depending on the
outputs observed so far. Thus, a membership query does not consist of a single (static) word,
but is instead decomposed into an initial reset query and several symbol queries. This idea has
been exploited in the field of state-machine testing by Lee and Yannakakis [122], who give an
algorithm for calculating so-called adaptive distinguishing sequences (a clarification of the algo-
rithm was later given by Krichen [118]). Smeenk et al. [164] apply this algorithm in an automata
learning context as a means of approximating equivalence queries, and report that they found it
to be the only viable way of finding counterexamples for large, realistic systems. The approach
of using adaptive sequences directly in the learning process (and not only for conformance test-
ing) is currently being investigated in a Master’s thesis under the author’s supervision [68]. First
results look promising, but the technique is still preliminary and outside the scope of this thesis.

59

4. Discrimination Trees

In the previous chapter, we introduced the concept of black-box abstractions, which approx-
imate the Nerode congruence ∼=λ by means of a black-box classifier. In the abstract sense, a
black-box classifier κ maps a word to a partial function from Σ∗ to �. In Section 3.4.1, two dif-
ferent data structures were presented for realizing such a classifier: observation tables and dis-
crimination trees. The former uses a global set of suffixes, while for the latter the set of suffixes
in the characterizing set depends on the resulting class itself.

While being slightly more difficult to implement than observation tables, discrimination trees
have certain characteristics that make them the preferable data structure: two classes of its in-
duced classifier κ always have a unique separator, i.e., for all u ,u ′ ∈Σ∗, Sepsκ(u ,u ′) is either a
singleton (the element of which we will refer to by sepκ(u ,u ′)), or the empty set. Conversely,
for every discriminator there exist at least two classes which it separates.1 Thus, the classifier
induced by a discrimination tree is minimal or redundancy-free in the sense that no inner node
can be omitted without reducing its discriminatory power. Therefore, using a discrimination
tree-like data structure is the conceptual counterpart of maintaining unique representatives in
U : the latter ensures determinism of the black-box abstraction, while using a discrimination
tree (generally) ensures closedness.

Furthermore, as we have already pointed out in Section 3.4.1, discrimination trees allow re-
alizing the splitting of classes (by means of splitting leaves) precisely as described in Defini-
tion 3.16 (p. 35), instead of a split resulting in an even more refined classifier. As refining a class
requires conducting further membership queries for the elements of U ∪ UΣ it contains, the
aforementioned property is essential for devising a learning algorithm that only poses those
queries that are necessary to address the phenomena identified at an abstract level.

The above clearly motivates basing an active automata learning algorithms on the discrimina-
tion tree data structure. Kearns and Vazirani [115] presented the first algorithm that followed
this approach. Since the TTT algorithm, which we will present in the next chapter, is inherently
based on using a discrimination tree, we dedicate this entire chapter to the details of this data
structure.

To allow a clearer focus, we will first introduce discrimination trees as a data structure in the
white-box case, i.e., representing information about an automaton with a known and fully vis-
ible structure. We will then continue to detail on their use in a black-box (learning) setting, by
presenting the Observation Pack algorithm due to Howar [93]. This algorithm also serves as the
basis for the description of TTT, which then follows in the next chapter.

1We assume that a discrimination tree is always maintained in such a way that (i) every inner node has at least
two children (resulting in the requirement of a full binary tree in the DFA case), and (ii) every leaf corresponds to a
non-empty equivalence class (with a possible exception before the first counterexample is fully processed, as will be
discussed in Section 4.2.3).

61

4. Discrimination Trees

4.1. White-Box Setting

As mentioned above, we first investigate the use of discrimination trees in a white-box setting.
This means that we consider them as a data structure to store information about a DFA A, the
structure of which is fully known, as this greatly eases reflecting on their properties and poten-
tial.

4.1.1. Formal Definitions and Notation

We start by giving a (somewhat, as will be motivated in Remark 4.1 below) formal definition of
discrimination trees, complementing the intuitive presentation from Section 3.4.1.

Definition 4.1 (Discrimination tree)

Let Σ be an input alphabet. A �-valued discrimination tree (over Σ) is a rooted directed binary
tree T , where

• the set of nodes is denoted by NT , and can be written as the disjoint union of the set of
inner nodes IT and the set of leaves LT , i.e., NT =IT ·∪LT ,

• the designated root node is denoted by rT ∈NT ,

• each inner node is labeled with a discriminator v ∈Σ∗, referred to via n .discriminator
for all n ∈IT ,

• each inner node has exactly two children, a 0-child and a 1-child. For n ∈IT and o ∈�,
the o -child is referred to via n .children[o].

The subtree rooted at the o -child of a node n ∈NT is also referred to as the o -subtree of n . A
node n ∈NT is called a child of a node n ′ ∈NT if there exists o ∈� such that n is the o -child of
n ′. n ∈NT is called a descendant of n ′ ∈NT if there exists a sequence n0,...,nm ∈NT , m ∈�,
such that n0 =n ′, nm =n and, for all 0≤ i <m , ni+1 is a child of ni . If n ∈NT is a descendant of
n ′ ∈NT , n ′ is called an ancestor of n . If furthermore n �=n ′, n is called a proper descendant of
n ′, and n ′ is a proper ancestor of n . The sets of all descendants and ancestors of a node n ∈NT
is denoted by DescT (n) and AncestT (n), respectively.

Definition 4.2 (Characterizing set, signature)

Let T be a �-valued discrimination tree over some input alphabet Σ.

• The characterizing set of a node n ∈NT , ChT (n), is the set of all discriminators of the
proper ancestors of n , i.e.,

ChT (n) =df

�

n ′.discriminator |n ′ ∈AncestT (n)\{n}
�

.

• The signature of a node n ∈NT , SigT (n), is defined as the set of all pairs (v,o)∈Σ∗ ×�
such that v is the discriminator labeling a proper ancestor n ′ of n , and n is in the o -
subtree of n ′, formally:

SigT (n) =df

�

(n ′.discriminator,o)
�

�n ′ ∈AncestT (n)\{n}
∧o ∈�∧n ∈DescT (n

′.children[o])
�

.

62

4.1. White-Box Setting

Algorithm 4.1 Sifting operation in a discrimination tree T
Require: A start node n ∈NT , an evaluation function e : Σ∗ →�
Ensure: Leaf forming the result of sifting (wrt. e) being returned

1: function siftT (n ,e)
2: while n ∈IT do � n is not a leaf
3: o ← e (n .discriminator)
4: n ←n .children[o]
5: end while
6: return n
7: end function

Note that the characterizing set is the set obtained from the signature when applying the first
projection on all of its elements. Alternatively, the signature can be regarded as a partial function
Σ∗��, and hence ChT (n)=domSigT (n) (cf. also Definition 3.6, p. 28). The root node rT , finally,
is the unique node in T satisfying ChT (rT) =SigT (rT) = �.

Visualization. An example for the visualization of a discrimination tree has already been given
in Figure 3.3a: inner nodes are drawn as ellipses, while leaves are drawn as rectangles. The dis-
criminator of an inner node constitutes its label. Edges point from an inner node to its children,
where the edge to the 0-child is drawn as a dashed line, and the edge to the 1-child as a solid
line. The root, finally, is the unique inner node that has no incoming edges.

Remark 4.1

Starting with this chapter, we adapt a less mathematical and more computer science-like no-
tation, for the sake of readability. This is motivated by the fact that we will present many
algorithms, for which the “dot notation” known from most object-oriented programming lan-
guages seems a more natural choice than introducing various function symbols, that are fur-
thermore hard to memorize for the reader. Using this notation also in mathematical defini-
tion and proofs may be unconventional, but a uniform notation certainly makes for an easier
understanding.

4.1.2. General Operations

Let us now introduce two important operations that can be used to obtain information from a
discrimination tree: sifting and computing the lowest common ancestor (LCA). The former uses
the discrimination tree for classification, whereas the latter emphasizes the separation of classes
represented in a discrimination tree.

Sifting

The important operation of sifting has already been introduced in Section 3.4.1, in the context of
active learning. Here, we will present a generalized notion that is applicable in both white-box
and black-box scenarios.

Formally, we can define sifting as a higher-order function siftT : NT ×�Σ∗ →LT , which maps
a start node n ∈NT and an evaluation function e : Σ∗ →� to the leaf which forms the end re-
sult of the following process: starting with the start node n ∈NT , we first check if it is a leaf,

63

4. Discrimination Trees

T rT

lcaT (a ,b)

a b

Figure 4.1.: Visualization of the role of the lowest common ancestor (LCA) in a tree

in which case we are done; the leaf then forms the result of sifting. Otherwise, if it is an in-
ner node, we apply the evaluation function to its discriminator, i.e., compute the outcome
o =df e (n .discriminator). This outcome determines the successor, meaning that we move to
the o -child of n and repeat the described process until termination. An algorithmic description
is given as Algorithm 4.1.

We will sometimes omit the explicit specification of a start node, and implicitly assume the
root to be the start node. Thus, siftT (e) = siftT (rT ,e).

Lowest Common Ancestor

The lowest common ancestor of two nodes a ,b in a tree (denoted by lcaT (a ,b)) is the first com-
mon node that is encountered on the respective paths from the node to the root. The signif-
icance of the lowest common ancestor stems from the fact that, when considering the paths
from the root to a and b , the lowest common ancestor is the node at which those paths diverge,
as visualized in Figure 4.1. Therefore, given nodes a ,b ∈NT such that neither is an ancestor of
the other, we define their separator as sepT (a ,b) =df lcaT (a ,b).discriminator.

A particularly efficient way of computing the LCA is possible if nodes store a pointer to
their parent node (except for the root node, for which the value of the parent pointer is as-
sumed to be nil), denoted by n .parent, and their depth in the tree, denoted by n .depth. Here,
the root is the only node satisfying rT .depth = 0, and all other nodes n ∈NT \ {rT } satisfy
n .depth = n .parent.depth+1. Algorithm 4.2 shows how the LCA can be computed for two
nodes a ,b ∈NT under these circumstances. The total number of loop iterations is bounded
by max

�

a .depth,b .depth
�

−n .depth, where n is the lowest common ancestor of a and b .

4.1.3. Discrimination Trees and Automata

Until now, we have treated discrimination trees as a general data structure, without any seman-
tic assumptions. In particular, we left open both the significance of the leaves (which form the
codomain of the sift operation), as well as that of the evaluation function e .

A very natural way of linking discrimination trees and automata (DFAs) is to associate the
leaves of the former with (sets of) states of the latter, and use the structure of the tree for repre-
senting information about the state output functions λq

A of these states. This link is established

64

4.1. White-Box Setting

Algorithm 4.2 Lowest common ancestor computation in a discrimination tree T
Require: Nodes a ,b ∈NT , depth values and parent pointers
Ensure: Lowest common ancestor of a and b in T is returned

1: function lcaT (a ,b)
2: if a .depth> b .depth then
3: tmp←a ,a ← b ,b ← tmp � swap a and b
4: end if � Postcondition: a .depth≤ b .depth
5: while a .depth< b .depth do
6: b ← b .parent
7: end while � Postcondition: a .depth= b .depth
8: while a �= b do � Invariant: a .depth= b .depth
9: a ←a .parent

10: b ← b .parent
11: end while � Postcondition: a = b
12: return a
13: end function

by the following definition.

Definition 4.3 (Valid discrimination tree)

Let A be a DFA, and let T be a discrimination tree where each leaf l ∈LT is associated with a
set of states of A, referred to via l .states⊆QA. Then, T is called valid for A, if and only if

(i) π(T) =df {l .states | l ∈LT } forms a partition of QA, and

(ii) ∀l ∈LT :∀(v,o)∈SigT (l) :∀q ∈ l .states :λ
q
A(v) =o .

An alternative interpretation of the above is that for every state q ∈QA, siftT (λ
q
A) results in the

unique leaf l ∈LT satisfying q ∈ l .states. The partition π(T) is called the induced partition of T .
Note that ∼π(T) can never strictly refine ≡A, as otherwise equivalent states would be separated
by one of the discriminators in T . This calls for investigating the special case that ∼π(T) =≡A.

Definition 4.4 ((Quasi-)complete discrimination tree)

Let A be a DFA and let T be a valid discrimination tree for A.

• T is called quasi-complete (for A) if, for all l ∈LT , we have

∀q ,q ′ ∈ l .states : q ≡A q ′.

• T is called complete (for A) if, for all l ∈LT , we have |l .states|=1.

Note that a complete discrimination tree is also quasi-complete, but not vice versa. In both
cases we have π(T) =QA/≡A. In the case of complete discrimination trees, this partition is fur-
thermore the discrete partition of QA. Thus, if A is canonical, every quasi-complete discrimi-
nation tree T for A is also complete, whereas for a non-canonical DFA, there cannot exist any
complete discrimination trees.

65

4. Discrimination Trees

ε

a b q0

q3q1q2

(a) Valid but incomplete discrimination tree

ε

a b q0

q3
a

q2 q1

(b) Complete discrimination tree

Figure 4.2.: Valid discrimination trees for the DFA from Figure 2.2a

Figure 4.2 shows discrimination trees for the DFA depicted in Figure 2.2a. The leaves are la-
beled with the sets of states associated with them. Figure 4.2a depicts a discrimination tree that
is valid but incomplete, whereas Figure 4.2b depicts a complete discrimination tree for the DFA.

Separating words. We have noted above that complete discrimination trees exist for canonical
DFAs only. In a canonical DFA A, there exists a separating word for each pair of states q ,q ′ ∈QA
(q �=q ′), i.e., a word v ∈Σ∗ witnessing that q and q ′ are inequivalent due to λ

q
A(v) �=λ

q ′

A (v).
A useful property of (quasi-)complete discrimination trees for a DFA A is that they provide

a way of efficiently accessing separators for every pair of inequivalent states q �≡A q ′. Assum-
ing that each state q ∈QA stores a reference to the unique leaf l ∈LT satisfying q ∈ l .states
(in the case of complete discrimination trees, we even have

�

q
�

= l .states), which we will re-
fer to via q .node, the separator of states q ,q ′ ∈QA satisfying q �≡A q ′ can be determined as
sepT (q ,q ′) =df sepT (q .node,q ′.node) = lcaT (q .node,q ′.node).discriminator. For example, ac-
cording to the discrimination tree from Figure 4.2b, we can determine a separator witnessing
the inequivalence of q0 and q3 to be sepT (q0,q3) = ε.

Best and worst case depths. The depth of a treeT , denoted by depth(T), is defined as the length
of the longest path from the root to a leaf (i.e., the tree consisting only of a single root leaf has
depth 0). It is well known that the minimum depth of a full binary tree with n leaves is �logn �, in
which case the tree is referred to as a balanced binary tree, whereas the maximum depth is n−1.
It is easy to see that there exist (families of) canonical DFAs A where it is possible to construct a
balanced complete discrimination tree (we will give a concrete example later). The more inter-
esting question is whether balanced complete discrimination trees can be constructed for any
canonical DFA A. Unfortunately, the answer is negative, as the following lemma states.

Lemma 4.1

Let Σ be an arbitrary non-empty input alphabet. There exists a family {An}n∈�+ of canonical
DFAs overΣ such that |An |=n , and every complete discrimination tree forAn has depth n−1.

Proof : Fix a ∈Σ to be an arbitrary input symbol. Define An as the canonical DFA recogniz-
ing the language of all words w ∈Σ∗ satisfying ∃m ∈� : #a (w) = (n −1)+m ·n (here, #a (w)

66

4.1. White-Box Setting

q0 q1 q2 · · · qn−2 qn−1
a a a a a

Σ\{a } Σ\{a } Σ\{a } Σ\{a }

Σ\{a }

a

Figure 4.3.: DFA An as defined in the proof of Lemma 4.1

denotes the number of occurrences of the symbol a in w). The structure of this DFA is
sketched in Figure 4.3, and it can be formally defined as:

• QAn
=df

�

qi |0≤ i <n
�

,

• q0,An
=df q0,

• δAn
(qi ,a) =df q(i+1) mod n ∀0≤ i <n , δAn

(q ,a ′) =df q for all q ∈QA,a ′ ∈Σ\{a }, and

• FAn
=df

�

qn−1

�

.

It is easy to see that symbols in Σ\{a } can never help with distinguishing the states in QAn
.

Thus, the only potential discriminators we need to consider are those of the form a �, �∈�.
However, for qi ∈QAn

, 0≤ i <n , we have λ
qi
An

(a �) =1 if and only if i =n −1− (� mod n), and

λ
qi
An

(a �) = 0 otherwise. Consequently, at least one of the children of any inner node in any
complete discrimination tree forAn must be a leaf, resulting in a topology with depth n−1.

4.1.4. Computing Discrimination Trees

In the previous subsection, we have already reasoned about best- and worst-case depths of com-
plete discrimination trees for canonical DFAs. However, we have not yet shown that there actu-
ally exists a complete discrimination trees for every canonical DFA. In this subsection, we will
provide an algorithm to compute such a complete discrimination tree. The algorithm is similar
to the famous DFA minimization algorithm due to Hopcroft [88]. In fact, the algorithm we are
going to present can also be used for minimizing DFAs: when provided with a non-canonical
DFA A, it will compute a quasi-complete discrimination tree T , i.e., the blocks of the induced
partition contain equivalent states only, and thus—assuming that A is trim—the canonical DFA

for A can be computed as A/∼π(T) (cf. Definition 3.1, p. 22).
The algorithm for computing a (quasi-)complete discrimination tree for a DFA A is given as

Algorithm 4.3. As mentioned before, its structure closely resembles the minimization algorithm
due to Hopcroft [88]. The main difference, apart from the discrimination tree initialization in
lines 1–3 and the fact that the current partition is given implicitly by the current discrimination
tree T , is the call to the SPLIT function in line 15. Unlike in Hopcroft’s original algorithm, where
simply two blocks B0,B1 satisfying B ′=B0 ·∪B1 would be returned, the result of the SPLIT call is a
subtree T ′, which is subsequently used to replace the leaf l (line 16) and thus refine the partition.

An important observation is that the algorithm can be modified to run incrementally: given
a discrimination tree T that is valid for A (but not necessarily (quasi-)complete), the algorithm
will augment T by further splitting its leaves to form a (quasi-)complete discrimination tree.
This does not require any major modifications, apart from eliminating the discrimination tree

67

4. Discrimination Trees

Algorithm 4.3 Compute a (quasi-)complete discrimination tree for a given DFA

Require: A DFA A=
�

QA,Σ,q0,A,δA,FA
�

Ensure: A (quasi-)complete discrimination tree T for A
1: T0 ←MAKE-LEAF(QA \FA) � create a leaf for the state set QA \FA
2: T1 ←MAKE-LEAF(FA) � create a leaf for the state set FA
3: T ←MAKE-INNER(ε,T0,T1) � create inner node with children T0 and T1, labeled with ε
4: W ←� � initialize worklist
5: if |FA|< |QA \FA| then
6: Add FA to W
7: else
8: Add QA \FA to W
9: end if

10: while W �= � do
11: B ′ ←poll(W)
12: for a ∈Σ do
13: if ∃l ∈LT : � �=δA(l .states,a)∩B ′ �=δA(l .states,a) then � some transitions into B ′

14: B ← l .states � block to be split
15: T ′ ←SPLIT(A,T ,B ,a)
16: REPLACE-LEAF(T ,l ,T ′) � replace leaf l in T with T ′

17: if B ∈W then
18: remove(W ,B)
19: Add all newly created partition blocks to W
20: else
21: Add all newly created partition blocks but the largest to W
22: end if
23: end if
24: end for
25: end while
26: return T

initialization performed in lines 1–3. Conversely, Algorithm 4.3 can be stopped at any time,
resulting in a discrimination tree that is valid, but not necessarily quasi-complete.

There is some degree of freedom concerning how to realize the SPLIT function. In the fol-
lowing, we will discuss two variants. Note that both of these variants will result in a runtime
complexity of at least Ω(k n 2). However, as in a learning context we are generally not too con-
cerned with computation runtime (membership queries are the far more limiting factor), this
should not bother us. Smetsers and Moerman [165] have recently presented an algorithm for
computing a complete discrimination tree (which they call “complete splitting tree”, adapting
the terminology of Lee and Yannakakis [123]) in time O (k n logn). The simpler approaches pre-
sented in the following however convey the underlying ideas more clearly.

Splitsingle

Let us now consider the first strategy for implementing SPLIT, which we call SPLITsingle. The
idea of this strategy is to consider all a -successors of the states in a block, determine the lowest

68

4.1. White-Box Setting

v

q1q2q3 v ′

v

a ·v v ′

q2 q3 q1

SPLITsingle

⇒

Figure 4.4.: Effect of the SPLITsingle operation on a discrimination tree. The dotted lines corre-
spond to the a -transitions in the automaton

common ancestor of their corresponding leaves2 (the discriminator of which we assume to be
v), and use a ·v to split the current block. Since the choice of l (and thus B ′) through the if
condition in line 13 of Algorithm 4.3 ensures that not all a -successors of states in B ′ point into
the same block, the lowest common ancestor is guaranteed to be an inner node. Furthermore,
the LCA property ensures that some of the a -transitions of states in B ′ point into a block in the
0-subtree of the LCA, and others point into a block in the 1-subtree. Thus, a ·v is capable of
splitting B ′ into two non-empty blocks.

The effect of SPLITsingle is sketched in Figure 4.4. The dotted lines point to the blocks cor-
responding to the a -successors of the states q1,q2,q3 of some corresponding DFA. The edges
examined during the computation of the lowest common ancestor of these leaves, as well as the
lowest common ancestor node itself, are drawn with bold lines.

The algorithmic realization of SPLITsingle is given as Algorithm 4.4. The for loop in lines 3–11
realizes the computation of the lowest common ancestor of the nodes corresponding to the a -
successor of states in B . The discriminator of this LCA is then used to obtain a new discriminator
v ′ (line 13) that is capable of splitting B into B0 and B1 = B \B0 (line 14). These sets are then
combined into a new discrimination tree T ′ with v ′ as its root discriminator.

Note that it is not necessary to evaluate λ
q
A for the states in B , but simply determine into

which subtree of the LCA their a -transitions point. The LCA computation can even be adapted
to compute the partition of states into B0 and B1 on-the-fly. This is however a rather technical
optimization that we will not detail any further.

Splittree

The idea of the SPLITtree realization of splitting a block is to take into account the whole structure
of the subtree rooted at the lowest common ancestor of the a -successor nodes, instead of only
considering whether a transition points into its 0- and 1-subtrees. Thus, the structure induced

2We have introduced the concept of a lowest common ancestor for two nodes only, but it can easily be general-
ized to an arbitrary (finite) number of nodes. An important observation for this is that the lowest common ancestor
operation is both associative and commutative.

69

4. Discrimination Trees

Algorithm 4.4 SPLITsingle: split a block corresponding to a leaf in two

Require: DFA A, discrimination tree T , block B ⊆QA, symbol a ∈Σ
Ensure: Discrimination tree T ′ consisting of an inner node with two leaves as children, whose

state sets form a partition of B
1: function SPLITsingle(A,T ,B ,a)
2: succs_lca←nil � common LCA of a -successors of nodes in B
3: for q ∈B do � compute common LCA
4: q ′ ←δA(q ,a)
5: n ←q ′.node � node in T corresponding to a -successor of q
6: if succs_lca=nil then
7: succs_lca←n
8: else
9: succs_lca← lcaT (succs_lca,n)

10: end if
11: end for
12: v ← succs_lca.discriminator
13: v ′ ←a ·v � new discriminator for splitting B
14: B0 ←

�

q ∈B |λq
A(v

′) =0
�

, B1 ←B \B0 � partition B using v ′

15: T0 ←MAKE-LEAF(B0), T1 ←MAKE-LEAF(B1)
16: T ′ ←MAKE-INNER(v ′,T0,T1)
17: return T ′

18: end function

by the edges that are visited during the LCA computation (i.e., the bold edges from the left of
Figure 4.4) needs to be replicated by the returned tree.

Figure 4.5 gives an intuition by sketching the effect of a SPLITtree operation: the original dis-
crimination tree on the left is the same one as shown in Figure 4.4. However, instead of merely
exploiting that the lowest common ancestor of the a -successors can be used to partition the
block

�

q1,q2,q3

�

into
�

q2,q3

�

(0-subtree) and
�

q1

�

(1-subtree), it is furthermore taken into ac-
count that the substructure highlighted in bold also contains the information that the node la-
beled with v ′ (now also highlighted in bold) furthermore distinguishes the a -successor blocks
of q2 and q3. The effect can thus be described as an iterated application attempt of SPLITsingle

on all resulting non-singleton blocks, considering the same input symbol a . However, we will
see that SPLITtree can be realized in such a way that the subtree replacing the leaf in Figure 4.5 is
“carved out” directly.

Algorithm 4.5 describes the process. For every state q in the partition block B to be split,
its a -successor q ′ in A is determined. q is recorded as one of the new states corresponding
to the “extracted version” of the leaf q ′.node via the states mapping (line 15). Then, n and all
its ancestors are marked via the mark mapping (lines 8–11). The fact that MARK may only be
called for a leaf, along with the upwards propagation of markings (lines 17–20) ensures that every
marked inner node will have at least one marked child.

In the second phase, a new tree is extracted from the existing discrimination tree. Abstracting
from the technical aspects that have to be addressed in the recursive implementation of the
EXTRACT function, the idea can be summed up as follows:

70

4.1. White-Box Setting

Algorithm 4.5 SPLITtree: split a block by “carving out” a splitting subtree

Require: DFA A, discrimination tree T , block � �=B ⊆QA, symbol a ∈Σ
Ensure: Discrimination tree T ′ reflecting the structure of how the a -successors of states in B

are split in T
1: function SPLITtree(A,T ,B ,a)
2: for l ∈LT do � Initialize mapping states from leaves to sets of states
3: states[l]←�
4: end for
5: for n ∈NT do � Initialize mapping mark from nodes to Booleans
6: mark[n]← false
7: end for
8: for q ∈B do � mark all nodes corresponding to a -successors of states in B
9: q ′ ←δA(q ,a)

10: MARK(q ′.node,q)
11: end for � B �= � and upwards propagation of mark ensure mark[rT] = true
12: T ′ ←EXTRACT(rT)
13: return T ′

14: function MARK(l ,q) � mark a leaf l ∈LT and its ancestors
15: states[l]← states[l]∪

�

q
�

16: n ← l
17: while n �=niland¬mark[n] do � upwards propagation of mark
18: mark[n]← true
19: n ←n .parent
20: end while
21: end function

22: function EXTRACT(n) � carve out a marked subtree; precondition: mark[n] = true
23: if n ∈LT then � n is a leaf
24: return MAKE-LEAF(states[n])
25: else � n is an inner node
26: if ¬mark[n .children[0]] then � only 1-subtree is marked
27: return EXTRACT(n .children[1])
28: else if ¬mark[n .children[1]] then � only 0-subtree is marked
29: return EXTRACT(n .children[0])
30: else � both subtrees are marked
31: T0 ←EXTRACT(n .children[0])
32: T1 ←EXTRACT(n .children[1])
33: v ←n .discriminator, v ′ ←a ·v � use v ′=a v as new discriminator
34: return MAKE-INNER(v ′,T0,T1)
35: end if
36: end if
37: end function
38: end function

71

4. Discrimination Trees

v

q1q2q3 v ′

v

a ·v v ′

a ·v ′ q1

q3 q2

SPLITtree

⇒

Figure 4.5.: Effect of the SPLITtree operation on a discrimination tree. The dotted lines corre-
spond to the a -transitions in the automaton

1. Clone the original discrimination tree, replacing the blocks associated with each leaf
according to the states mapping, and prepending a to all discriminators labeling inner
nodes.

2. Remove all unmarked nodes from the discrimination tree. Since the MARK function en-
sures that all ancestors of a marked node are marked as well, the tree will remain con-
nected. Furthermore, as we already observed, it is guaranteed that each inner node will
have at least one child.

3. Eliminate all inner nodes with only a single child by replacing them with their child. These
will be all nodes on the path from the root to the lowest common ancestor as determined
by SPLITsingle, as well as all nodes that do not distinguish any of the a -successors (such as
the inner node on the right of Figure 4.5 that is the 1-child of the node labeled with v).

Finally, the extracted discrimination tree T ′ is returned.

4.1.5. Semantic Suffix-Closedness

In Definition 3.13 (p. 31), we have already introduced semantic suffix-closedness in the context
of black-box abstractions. This concept however can be transferred to a white-box setting as
well.

Definition 4.5 (Semantically suffix-closed discrimination trees)

Let T be a valid discrimination tree for some DFA A. For q ∈QA, let ChT (q)denote the charac-
terizing set of the corresponding leaf, i.e., ChT (q) =ChT (q .node) as defined in Definition 4.2.
T is called semantically suffix-closed if and only if

∀q ∈QA,a ∈Σ,v ∈Σ∗ : a v ∈ChT (q)⇒ v ∈ChT (δA(q ,a)).

72

4.1. White-Box Setting

Apparently, not every valid discrimination tree is semantically suffix-closed. The question
of how a semantically suffix-closed discrimination tree can be computed thus naturally arises.
Luckily, this does not require a new algorithm, as the following lemma states.

Lemma 4.2

Algorithm 4.3, using SPLITsingle (Algorithm 4.4) or SPLITtree (Algorithm 4.5) for splitting leaves,
computes a semantically suffix-closed discrimination tree.

Proof : We will only consider the case of SPLITsingle, as the correctness for SPLITtree follows from
the above observation that the latter can be regarded as an iterated application of the for-
mer.

It is easy to see that semantic suffix-closedness holds for the initially constructed discrim-
ination tree, as the only occurring discriminator is ε. The only time the property could be
violated is when new discriminators are introduced, i.e., when leaves are split by applying
SPLITsingle. However, the new discriminator v ′ is determined as a ·v in line 13, where v is the
discriminator labeling the lowest common ancestor of (the leaves corresponding to) all a -
successors of states in the current block. Thus, for every q ∈ B and q ′=df δA(q ,a), q ′.node
is part of the subtree rooted at an inner node labeled with v (the LCA), thus preserving se-
mantic suffix-closedness.

It should be noted that the above proof establishes a property that is actually stronger than
mere semantic suffix-closedness: every state corresponding to a leaf that is a descendant of an
inner node labeled with a v (a ∈Σ,v ∈Σ∗) will not only have v in the characterizing set of its
a -successor, but all a -successors of all descendants will actually have the same ancestor node
labeled with v .

The significance of semantically suffix-closed discrimination trees is further underlined by the
fact that they can be stored in a very compact manner.

Proposition 4.1

A valid, semantically suffix-closed discrimination tree for a DFA A with n states can be stored
using O(n) space.

Proof : Since no valid discrimination tree can have more than n leaves, and since every inner
node has exactly two children, the overall number of nodes is bounded by 2n −1. Further-
more, since the states sets of the leaves form a partition, all of those sets can be represented
using in total O(n) space.

It remains to be shown that the discriminators do not require a superlinear amount of
space. For this, first observe that semantic suffix-closedness trivially implies that the overall
set of discriminators occurring in the discrimination tree is suffix-closed. It is well-known
that a suffix-closed set S of size |S |=m can be represented in spaceO(m)using a data struc-
ture called a trie (see below). As the number of inner nodes is bounded by n −1, there can
be no more than n −1 distinct discriminators, hence the trie for the complete set of dis-
criminators requires O(n) space.

In the above proof, we referred to a data structure called a trie [59]. Before continuing, we
want to discuss this data structure in more detail. A trie is a rooted, directed tree (edges point

73

4. Discrimination Trees

ε

a

a a

a

b a

b

a

b

a b

b a b

b

a

b b

b

c b

c

b

Figure 4.6.: Trie representing the suffix-closed set S = {ε,a ,b ,a a ,b a ,a b ,b b ,c b ,b a b }

from a node to its parent), in which every edge is labeled with a symbol from Σ. Every node
corresponds to the word obtained by concatenating the symbols labeling the edges on the path
from this node to the root; the root hence corresponds to the empty word ε. Note that the words
corresponding to the nodes are not stored explicitly, otherwise the space complexity would be
quadratic for a suffix-closed set.

An example for a trie is shown in Figure 4.6: here, the trie representing the set S =
{ε,a ,b ,a a ,b a ,a b ,b b ,c b ,b a b } is shown. Note that some nodes may have only a single child.
Suffix-closedness of S ensures that for each node corresponding to a word in the set, its parent
node corresponds to a word in the set, too. Thus, there are |S | nodes and |S |−1 edges in the trie.

Let us briefly remark that it is very easy to adapt the computation of a (semantically suffix-
closed) discrimination tree such that the discriminators are stored in a trie. The only time new
discriminators are added (apart from the initialization in of the root with ε in line 3 of Algo-
rithm 4.3, which can be realized by passing a reference to the root of the (otherwise empty) trie)
are line 13 in Algorithm 4.4 and line 33. In both places, the new discriminator v ′ is of the form
v ′=a v . Since v is an existing discriminator that we can assume to be represented as a node in
the trie, v ′ can be added to the trie by inserting a new node with the node corresponding to v
as its parent and a as its outgoing edge label.

Semantic Suffix-Closedness and Best-Case Depth

In Lemma 4.1, we have stated that, while there might be canonical DFAs that admit complete
discrimination trees of logarithmic depth, the worst-case depth of a complete discrimination
tree is linear in the size of the automaton. Naturally, the additional constraint of semantic suffix-
closedness cannot result in an even greater depth (as n −1 is the worst-case depth for any full
binary tree with n leaves). However, as the following lemma states, it may result in the best-case
(logarithmic) depth not being realizable.

Lemma 4.3

Given an arbitrary input alphabet Σ, there exists a family of canonical DFAs
�

A′
n

�

n∈�+ such
that for all n ∈�+:

(i) |A′
n |=n ,

74

4.1. White-Box Setting

q0 q1 q2 · · · qn−2 qn−1
a a a a a

Σ\{a } Σ\{a } Σ\{a } Σ\{a }

Σ

Figure 4.7.: DFA A′
n as defined in the proof of Lemma 4.3

(ii) there exists a complete discrimination tree of depth �logn � for A′
n , but

(iii) every semantically suffix-closed complete discrimination tree for A′
n has depth n −1.

Proof : Let n ∈�+ be a positive integer, and in the following fix an arbitrary input symbol a ∈Σ.
Consider the canonical DFA A′

n over Σ shown in Figure 4.7, accepting all words containing
at least n −1 a ’s. Formally:

• QA′
n
=df

�

qi |0≤ i <n
�

,

• q0,A′
n
=df q0,

• δA′
n
(qi ,a) =df qmin{i+1,n−1} for all 0≤ i <n ,δA′

n
(qi ,a ′) =df qi for all a ′ ∈Σ\{a }, and

• FA′
n
=df

�

qn−1

�

.

Similarly to the proof of Lemma 4.1, we do not need to consider symbols other than a as
they cannot help distinguishing states (i.e., any word containing symbols other than a has
the same discriminatory power after removing all those other symbols).

Let us briefly sketch the construction of a complete discrimination tree with optimal
depth. Observe that any set of states Q ′ =

�

qi ,qi+1,...,qj−1,qj

�

, i ≤ j , with contiguous in-
dices can be partitioned into two halves of almost equal size (i.e., differing by at most one),
using a n−1−�(i+ j)/2� as discriminator (resulting in

�

qi ,...,q	(i+ j−1)/2�
�

and
�

q�(i+ j)/2�,...,qj

�

).
The fact that the resulting halves again consist of states with contiguous indices allows for
a recursive application of this procedure, starting with QA′

n
, and obviously resulting in a

discrimination tree with logarithmic depth.

We will now outline why a logarithmic depth cannot be achieved when respecting the re-
striction of semantic suffix-closedness. First, observe that no discriminator other than a n−2

can distinguish q0 and q1. Since the overall set of discriminators needs to be suffix-closed,
this means that all n −1 discriminators a n−2,a n−3,...,a 1,a 0 = ε are required. Since there
are exactly n −1 inner nodes in a complete discrimination tree for a canonical DFA of size
n , the discriminators of all inner nodes must be pairwisely distinct.

Now, observe that the root discriminator must be either ε or a n−2. Any other discrimina-
tor a �, 1≤�<n−2, partitions the set QA′ into two non-singleton sets

�

q0,q1,...,qn−2−�
�

and
�

qn−1−�,...,qn−1

�

. However, since a � ∈ Ch(q0) and a � ∈ Ch(qn−2), and since δA′
n
(q0,a) = q1

and δA′
n
(qn−2,a) = qn−1, semantic suffix-closedness would require both a �−1 ∈Ch(q1) and

a �−1 ∈Ch(qn−1). Since q1 and qn−1 are in different subtrees of the root (which is labeled with
a �), this would require a node with discriminator a �−1 to be present in both the 0- and the
1-subtree of the root, which is impossible as every discriminator can only occur once. Thus,
the partitioning induced by the root discriminator necessarily contains a singleton block,

75

4. Discrimination Trees

and the other block has contiguous indices. The argumentation can be continued recur-
sively to show that in every step of the discrimination tree construction, semantic suffix-
closedness can only be preserved with an “extreme” choice for the discriminator (i.e., one
of the resulting blocks is a singleton), resulting in a topology realizing the worst-case depth
of n −1.

The above lemma should however not lead to the impression that semantically suffix-closed
discrimination trees are inferior. First, they generally admit a maximally compact representa-
tion, as we have shown above. Second, they can be computed by inspecting local properties only
(i.e., the immediate successors of a state), whereas the construction of the tree with logarithmic
depth in the above proof requires knowledge about the global structure of the automaton (a
fact that is of particular importance in a learning context, as we will see in the next section).
Third, computing a discrimination tree with optimal depth is generally a hard problem [104].
It nevertheless highlights a dilemma that is often encountered in active automata learning: the
principled way of finding a solution works well in the average case, but it is almost always pos-
sible to find single instances where heuristics perform better.

4.2. Black-Box Setting: Learning with Discrimination Trees

In this section, we will describe a discrimination tree-based learning algorithm, commonly
called Observation Pack [93, 108], which can be regarded as a precursor to the TTT algorithm
that we will present in the next chapter. The Observation Pack algorithm is a straightforward
adaption of Rivest and Schapire’s algorithm [155], replacing the observation table data struc-
ture with a discrimination tree.

4.2.1. Discrimination Trees as Black-Box Classifiers

Discrimination trees as black-box classifiers were introduced informally in Section 3.4.1. The
formalization of discrimination trees presented in the previous section calls for some brief re-
marks on how the concepts can be adapted to a black-box setting.

As usual, we assume that there is some suffix-observable output function λ : Σ∗→� for which
we want to infer a model, and that we can evaluate via membership queries. Our formal de-
scription of sifting in Section 4.1.2 (cf. also Algorithm 4.1) requires as argument an evaluation
function e : Σ∗ →�. Since we want to use a discrimination tree T to classify a word u ∈Σ∗, we
will use as evaluation function the residual output function of u wrt. λ, i.e., u−1λ (cf. Defini-
tion 3.3, p. 24). As we usually assume λ to be fixed, we will also simply refer to this as sifting
the prefix u into a discrimination tree T , i.e., siftT (u) =df siftT (u

−1λ) for all u ∈Σ∗. A discrimi-
nation tree T therefore induces an equivalence relation ∼T ⊆Σ∗×Σ∗, defined via u ∼T u ′⇔df

siftT (u)= siftT (u
′). This relation is refined by∼=λ , and if we ensure that ε is the root discriminator

of T , it furthermore saturates λ−1(1). Thus, a discrimination tree black-box classifier can be cast
into the notion of a suffix-based black-box classifier κ∈Kλ according to Definition 3.5 (p. 28) by
defining κ(u)=df SigT (siftT (u)), where the signature SigT (siftT (u))⊆Σ∗×� is treated as a partial
function. The notion of characterizing and separator sets (cf. Definition 3.6, p. 28) translates
accordingly, where the structure of a discrimination tree guarantees that SepsT (u ,u ′) is a sin-
gleton if u �∼T u ′ (and the empty set otherwise), the unique element of which we will refer to

76

4.2. Black-Box Setting: Learning with Discrimination Trees

by sepT (u ,u ′). This motivates to identify κ and T , (e.g., we define ChT (u) =df ChT (siftT (u))),
and, as a further simplification, we identify leaves of T with equivalence classes of ∼T (i.e.,
[u]T = siftT (u)). Note that we always assume T to be a full binary tree, meaning that sifting
is a total function (possibly resulting in the creation of unlabeled leaves on-the-fly).

4.2.2. Spanning-Tree Hypothesis

In many descriptions of learning algorithms, a clear distinction between the central data
structure—e.g., an observation table, storing the observations plus some additional data, such
as the set of short prefixes U—and the hypothesis constituting the output of the learning al-
gorithm can be observed. More precisely, the observation data structure is what is being built
during the actual learning phase, and the hypothesis is then constructed in a separate step, from
the information stored in the observation data structure. For example, Angluin [19] describes
how a DFA can be built from scratch from a closed and “consistent” (in our terminology: deter-
ministic) observation table, and other authors such as Rivest and Schapire [155] or Kearns and
Vazirani [115] follow a similar pattern.

Howar et al. [94] have observed that it is much more adequate to use the hypothesis itself
as a prime representation of (parts of) the knowledge of the learner, which grows and evolves
over the entire course of the learning process, instead of repeatedly being reconstructed from
scratch. This is particularly effective in the case of learning algorithms that maintain a prefix-
closed set of unique representatives U . In this case, the learner’s knowledge about the structure
of the target system can be maintained in a spanning-tree hypothesis, with the following char-
acteristics:

(C1) The spanning-tree hypothesis grows monotonically over the course of the entire learning
process, i.e., states are added, but never removed. Furthermore, whenever the target of a
transition changes, the new target can only be a newly introduced state (this is justified
by invariant (I3) stated in Lemma 3.4, p. 32).

(C2) Each of the k outgoing transitions of a state is either a tree transition or a non-tree transi-
tion.

(C3) An outgoing tree transition of a state stores a reference to its target state, and the target
state of a tree transition will never change.

(C4) The set of all tree transitions forms a directed spanning tree, the root of which is the initial
state. Every state other than the initial one has a unique incoming tree transition.

(C5) The representative prefix associated with a state is called its access sequence, and it can be
obtained by concatenating all transition labels on the path from the root of the spanning
tree to the respective state (similar to a trie, but in reverse direction). This ensures that
representative prefixes are unique, that the access sequence of the initial state is ε, and
that the set U of all representative prefixes is prefix-closed.

(C6) The (transition) access sequence of the outgoing a -transition of a state with access se-
quence u ∈ U is defined as ua . In the case of tree transitions, this is the same as the access
sequence of the target state.

77

4. Discrimination Trees

q0 q1

q2 q3

ε a

b b a

a

a

bb

a

a

bb

Figure 4.8.: Spanning-tree hypothesis, corresponding to the short prefix set U = {ε,a ,b ,b a }.
States are annotated with their access sequences

(C7) A non-tree transition with access sequence ua ∈UΣ stores the characterizing observations
(wrt. the employed black-box abstraction, see below) for ua .

(C8) States are added to the hypothesis by converting non-tree transitions into tree transitions,
pointing to the new state.

Instead of having to create a new DFA to return as its intermediate hypothesis, a learner can sim-
ply return a view on the (evolving) spanning-tree hypothesis, hiding the distinction between
tree and non-tree transitions, and transparently substituting the correct target states for the
characterizing observations stored with the non-tree transitions (provided that the employed
black-box abstraction is complete and deterministic).

An example spanning-tree hypothesis is depicted in Figure 4.8. Here, tree transitions are ren-
dered in bold, and the states are annotated with their access sequences.

Combination with Discrimination Trees

In (C7) we have stated that a non-tree transition in the spanning-tree hypothesis stores the char-
acterizing observations for its access sequences. If the black-box classifier is realized by means
of a discrimination tree, this simply means that a non-tree transition points to a node in the
discrimination tree, as opposed to tree transitions, which point to a state in the hypothesis.

Figure 4.9 illustrates this. As usual, tree transitions are drawn in bold. The pointer from non-
tree transitions in the hypothesis (left) to nodes in the discrimination tree (right) are visualized
using dotted lines. The a -transition of q2 as well as the b -transitions of q1 (omitted for the sake
of readability) and q2 point to leaves in the discrimination tree, which correspond to states in the
hypothesis. The b -transition of q0, on the other hand, points to an inner node of the discrimina-
tion tree. This corresponds to an uncertainty regarding the target of this transition, represented
as non-determinism in the hypothesis: any of the states corresponding to leaves in the subtree
rooted at this inner node are possible candidate targets. The non-determinism can be resolved
by sifting the transition (rather: its access sequence b) further down the tree.3

4.2.3. The Observation Pack Algorithm

We will now present the Observation Pack algorithm by Howar [93, 108], which is a rather
straightforward combination of the discrimination tree data structure with the counterexample

3Note that this manifestation of non-determinism is not to be confused with non-determinism of black-box
abstractions as defined in Definition 3.9, which arises due to an insufficiently refined black-box classifier.

78

4.2. Black-Box Setting: Learning with Discrimination Trees

q0

q1

q2

a

a

a

b

b

b

ε

a

q1 q2

q0

Figure 4.9.: Example illustrating the connection between a spanning-tree hypothesis (left) and
its associated discrimination tree (right). The b -transition of q0 points to an inner
node in the discrimination tree and thus introduces non-determinism, while the a -
and b -transitions of q2 point to a leaf and therefore are deterministic

analysis proposed by Rivest and Schapire [155]. As observed in Section 3.2.1, a learning algo-
rithm can conceptually be split into two operations: initialization and refinement (i.e., coun-
terexample processing). We will describe the data structures used by Observation Pack along
with the fairly trivial initialization phase, and will then take a look at how refinement is achieved.
Both phases will then be illustrated along an example run. We conclude our presentation of Ob-
servation Pack with a brief complexity analysis.

Initialization and Data Structures

The initialization phase of the Observation Pack algorithm can be described very concisely: cre-
ate a new single-state hypothesis and a discrimination tree consisting of an inner node (labeled
with ε) and two leaves, and determine the leaf corresponding to the initial state by sifting ε into
the tree. Then, determine the targets of the transitions of the initial state.

The corresponding pseudocode is given as Algorithm 4.6. The if block in lines 6–10 determine
whether the initial state is accepting or not by looking at whether the corresponding leaf is in
the 0- or the 1-subtree of the root (throughout the algorithm, the acceptance of states is always
determined in this way). The call to LINK in line 11 establishes the link between a state q ∈QH
and a leaf l ∈LT : we assume that each state q has a pointer to its corresponding node in the
discrimination tree (referred to via q .node), and conversely, every leaf l has a pointer to the
state it corresponds to (referred to via l .state, which may be nil). Thus, LINK(l ,q) establishes
l .state=q ∧q .node= l .

The last line before the return statement (line 12) refers to a function called
CLOSETRANSITIONS, also shown in Algorithm 4.6. We assume that the outgoing transi-
tions of every state q ∈QH can be accessed as q .trans[a] for a ∈Σ. Furthermore, every outgoing
transition t can either be a tree or a non-tree transition. As mentioned in the previous section,
non-tree transitions point to nodes in the discrimination tree T . For a non-tree transition t ,
this target node is referred to via t .tgt_node. Every transition is initialized with t .tgt_node= rT ,
i.e., pointing to the root of the discrimination tree. We furthermore assume that for a tree

79

4. Discrimination Trees

Algorithm 4.6 Initialization routine for the Observation Pack algorithm
Require: Access to suffix-observable output function λ : Σ∗ →� (implicit)
Ensure: Initial hypothesis H with corresponding discrimination tree T

1: function OBSERVATIONPACK-INIT

2: H←CREATEHYPOTHESIS() � create new hypothesis with single state q0,H
3: T0 ←MAKE-LEAF(nil), T1 ←MAKE-LEAF(nil) � initialize discrimination tree
4: T ←MAKE-INNER(ε,T0,T1)
5: l ← siftT (ε) � sift ε (representing q0,H) into the tree
6: if (ε,1)∈SigT (l) then � node corresponding to q0,H is in 1-subtree of the root
7: FH←

�

q0,H
�

8: else � node corresponding to q0,H is in 0-subtree
9: FH←�

10: end if
11: LINK(l ,q0,H) � establish link between leaf and state
12: CLOSETRANSITIONS(H,T)
13: return 〈H,T 〉
14: end function

Require: (Unclosed) spanning-tree hypothesis H, discrimination tree T
Ensure: Hypothesis H is closed
15: procedure CLOSETRANSITIONS(H,T)
16: N ←� � transitions pointing to new states
17: do
18: while Open(H) �= � do
19: t ← choose(Open(H))
20: tgt ← siftT (t .tgt_node,t .aseq) � sift transition further down the tree
21: t .tgt_node← tgt
22: if tgt ∈LT andtgt.state=nil then � discovered new state (“unclosedness”)
23: N ←N ∪{t }
24: end if
25: end while
26: if N �= � then
27: t ← choose(N) � e.g., transition with minimal access sequence
28: q ←MAKETREE(t) � convert t into a tree transition, adding a new state
29: N ←

�

t ′ ∈N | t ′.tgt_node �= t .tgt_node
�

� update N
30: LINK(t .tgt_node,q)
31: end if
32: while N �= �
33: end procedure

80

4.2. Black-Box Setting: Learning with Discrimination Trees

Algorithm 4.7 Realization of refinement in the Observation Pack algorithm

1: procedure OBSERVATIONPACK-REFINE(H,T ,w)
2: 〈�u , �a , �v 〉←ANALYZE-OUTINCONS(ε,w) � suffix-based analysis
3: SPLIT(H,T , �u , �a , �v) � split state in H and leaf in T
4: CLOSETRANSITIONS(H,T)
5: end procedure

6: procedure SPLIT(H,T , �u , �a , �v)
7: qpred ← H[�u]
8: t ←qpred.trans[�a]
9: qold ← t .tgt_state

10: qnew ←MAKETREE(t) � turn t into a tree transition
11: 〈l0,l1〉←SPLIT-LEAF(qold.node, �v) � replace leaf with inner node and two leaves
12: if λ(qold�, �v) =0 then
13: LINK(l0,qold)
14: LINK(l1,qnew)
15: else
16: LINK(l0,qnew)
17: LINK(l1,qold)
18: end if
19: end procedure

transition t , t .tgt_node refers to the leaf associated with its target state. The target state of a
(tree or non-tree) transition t is referred to via t .tgt_state.

A non-tree transition whose target node is not a leaf is referred to as an open transition (in
this case, t .tgt_state will be nil), and Open(H) denotes the set of all open transitions in H. In the
body of the while loop (lines 19–24), a single transition t ∈ Open(H) is selected and closed, by
sifting it further down the tree until it points to a leaf (the sifting is performed using its access
sequence, which we refer to via t .aseq). If this leaf has no associated state (i.e., l .state=nil), the
transition is recorded in a set N of transitions pointing to new states. This basically constitutes
an unclosedness. Note that in the case of DFA learning, there can only be one such situation in
the entire course of the algorithm: the first time a state with an acceptance value different from
that of the initial state is discovered.

Finally, in lines 27–30, one of the transitions pointing to an undiscovered state, say t , is se-
lected (e.g., by choosing the transition with a shortest access sequence among all transitions in
N), and then converted into a tree transition (line 28). This results in a new state being added
to H, which is subsequently linked with the target node of t . The acceptance value of this new
state is again determined by considering in which of the root’s subtrees its corresponding node
is (omitted for the sake of brevity). The introduction of a new state results in new (open) transi-
tions which need to be closed, thus the outer do..while loop is executed again, until no further
states are added.

81

4. Discrimination Trees

Refinement

The idea of how the hypothesis and discrimination tree are refined in the Observation Pack al-
gorithm is easily explained. The corresponding pseudocode is shown as Algorithm 4.7. First,
note that every state of H has a unique representative short prefix, namely its access sequence,
which is referred to via 	q �. This allows the simpler formulation of suffix-based counterexample
analysis, as stated in Remark 3.5 (p. 43).

Theorem 3.3 (ii) (p. 37) states that a counterexample w ∈Σ∗ can be decomposed into w = �u �a �v
with the following property: let qpred =df H[�u] and qold =df H[�u �a], we then have λ(qpred��a , �v) �=
λ(qold�, �v). Thus, the �a -successor of qpred must be different from qold, which calls for the intro-
duction of a new state qnew. This state is created by converting the �a -transition of qpred into a
tree transition (line 10). The leaf that formerly corresponded to qold is split and replaced4 by an
inner node with discriminator �v and two leaves. The states qold and qnew are then linked to these
leaves, according to their future behavior wrt. �v (lines 12–18; note that the future behavior wrt.
�v has already been tested in the course of counterexample analysis, thus testing the if condition
requires no additional membership query). Finally, the open transitions inH are closed (line 4).
This comprises the new transitions of qnew, but also the non-tree transitions that used to point
to qold: for them, one needs to determine whether they keep pointing to qold or whether their
target changes to qnew, by testing them against �v .5

An Example Run

Let us now briefly take a look at how Observation Pack infers a model of a concrete automaton.
As the target DFA, we choose the one from Figure 2.2a, accepting words with an even number of
a ’s and b ’s.

The initial state is obviously accepting. During initialization, both a and b are found to lead
to an undiscovered non-accepting state, which triggers the introduction of a new state (using a
as its access sequence). The corresponding spanning-tree hypothesis is shown in Figure 4.10a,
and the corresponding discrimination tree in Figure 4.10b.

The initial hypothesis H classifies some words incorrectly. One of these words is w =
b a a a a a a b , since λH(w) = 0, but λ(w) = 1. Applying suffix-based counterexample analysis
(cf. Section 3.3.4), a decomposition 〈�u , �a , �v 〉= 〈ε,b ,a a a a a a b 〉 is determined.6 Thus, the b -
transition of qpred = H[ε] =q0 is converted into a tree transition, resulting in the introduction of
a new state. Furthermore, the leaf in the discrimination tree corresponding to qold =H[b]=q1 is
split, using a a a a a a b as the discriminator. The resulting data structures, after closing all open
transitions, are shown in Figures 4.10c and 4.10d.

The refined hypothesisH′ from Figure 4.10c still classifies w =b a a a a a a b incorrectly. A sec-
ond suffix-based counterexample analysis yields the decomposition 〈�u , �a , �v 〉= 〈b ,a ,a a a a a b 〉.7

4It would perhaps be more adequate to say that the leaf is converted to an inner node, as the inner node is meant
to be the same object as the leaf. This is of importance, as otherwise the tgt_node pointer of the incoming non-tree
transitions of qold would be invalidated, instead of pointing to the inner node.

5It makes sense to maintain a separate, global list of open transitions instead of scanning the entire hypothesis
for open transitions every time CLOSETRANSITIONS is called. This can be accomplished easily by maintaining a list of
incoming non-tree transitions for each state. Every time the leaf corresponding to a state is split, all those transitions
are added to the list of open transitions.

6This decomposition is in fact the only one satisfying the conditions of Theorem 3.3 (ii).
7Again, this is the only valid decomposition.

82

4.2. Black-Box Setting: Learning with Discrimination Trees

q0 q1
a
b

a

b

(a) Initial hypothesis

ε

q1 q0

(b) Initial discrimination tree

q0

q1

q2

a

a
b

b

b

a

(c) Hypothesis after first refinement

ε

a a a a a a b q0

q1 q2

(d) Discrimination tree after first refinement

q0

q1

q2

q3

a

a
b

b

b

b

a

a

(e) Hypothesis after second refinement

ε

a a a a a a b q0

a a a a a b q2

q1 q3

(f) Discrimination tree after second refinement

Figure 4.10.: Evolution of hypothesis and discrimination tree during a run of Observation Pack

83

4. Discrimination Trees

Converting the a -transition of qpred = H′[b] = q2 into a tree transition, and splitting the leaf as-
sociated with qold = H′[b a] = q1 using a a a a a b as discriminator results in the final hypothesis
shown in Figure 4.10e. Figure 4.10f shows the accompanying discrimination tree.

Complexity

In the following, we analyze the worst-case complexity of the Observation Pack algorithm, using
the parameters n ,k ,m as described in Section 3.2.1 for describing the input size, and assuming
m =Ω(n).

Query Complexity. The majority of membership queries results from sifting non-tree tran-
sitions into the tree. Since this is done incrementally, no more than n −1 membership queries
(n−1 being the worst-case depth of a discrimination tree) will be required per transition, result-
ing in a total of O(k n 2) membership queries during sifting (note that, although asymptotically
irrelevant, tree transitions also factor into that number, as each tree transition is derived from a
non-tree transition that had to be sifted to some level of the discrimination tree). Counterexam-
ple analysis can be done using O(logm) queries per counterexample (cf. Proposition 3.3, p. 44),
contributing anotherO(n logm) membership queries. This yields an overall membership query
complexity of O(k n 2+n logm).

Symbol Complexity. Since the set of access sequences is prefix-closed, no access sequence
contains more than n symbols. Thus, all n −1 counterexample analysis steps combined require
O(nm logm) symbols (as already stated in Proposition 3.3). The discriminators in the discrimi-
nation tree (except for the root discriminator ε) are obtained as suffixes of provided counterex-
amples, thus their length can only be bounded by m . Since these suffixes are used for queries
during hypothesis construction (i.e., closing transitions), the asymptotic upper bound for the
symbol complexity is O(k n 2m +nm logm).

Space complexity. The spanning-tree hypothesis can be stored in space Θ(k n) (note that
access sequences of states do not need to be stored explicitly, as they are determined by the
spanning tree). The discrimination tree has 2n −1 nodes, and each of the n −1 inner nodes
needs to store a discriminator of length in O(m). This results in an overall space complexity in
O(k n +nm).

4.2.4. A Note on Discrimination Tree-based Learning Algorithms

All active automata learning algorithms that we have considered so far require n −1 equiva-
lence queries in the worst case. Furthermore, as already mentioned in Section 3.4.3, Balcázar
et al. [25] have shown that any algorithm with a polynomial membership query complexity re-
quires Ω(n/logn) equivalence queries in the worst case. In practice, however, discrimination
tree-based algorithms typically require much more counterexamples than their observation
table-based counterparts. Howar [93], in Section 2.2.4 of his PhD thesis, even reports that “it
has often been argued that using this strategy [of splitting only a single class] for handling coun-
terexamples is not a wise choice in practice since the number of equivalence queries increases
drastically.” This harsh judgment is due to the fact that, in practice, equivalence queries are
often unavailable and need to be approximated using membership queries. Techniques that
provide guarantees—such as correctness under the assumption that the target system has no
more than ∆n additional states wrt. the current hypothesis, as is the case for the W-method due

84

4.2. Black-Box Setting: Learning with Discrimination Trees

to Chow [52]—typically even require exponentially many membership queries. Thus, (approxi-
mated) equivalence queries are generally regarded as being very expensive.

However, the seemingly better equivalence query complexity of observation table-based al-
gorithms is, once again, due to heuristics. Since filling an observation table requires posing
much more membership queries than sifting access sequences into a discrimination tree, less
equivalence queries are to be expected, as every query that is not strictly necessary can expose
diverging behavior. Consider a discrimination tree-based algorithm that, after constructing a
hypothesis, additionally poses membership queries for all combinations of elements in U∪UΣ
and discriminators in the discrimination tree, regardless of where they occur. Any observed
diverging outputs could then be used as counterexamples, reducing the apparent number of
equivalence queries precisely at the cost of posing more membership queries.

The above justifies to consider filling an observation table as more of a built-in heuristic for
approximating equivalence queries. It is however hard to argue why this should be a feature
of an algorithm itself, since such heuristics can just as well be applied “on top”, furthermore
leaving the freedom to resort to potentially better heuristics (e.g., the evolving hypothesis ap-
proach proposed by Howar et al. [93, 94]). Moreover, there may be scenarios where membership
queries are expensive, but inexpensive sources of counterexamples exist, such as in black-box
checking [81, 82, 149, 150] or learning-based testing [134, 136, 163]. Here, model checking is
used to check (intermediate) hypotheses against a specification, which may result in spurious
counterexamples, i.e., apparent violations of the specification that are merely due to incorrect
hypotheses. Exploiting such sources of counterexamples exhaustively before resorting to meth-
ods such as random testing, as proposed by Meinke et al. [136], helps steering the learning pro-
cess in a direction relevant to the specification, and furthermore allows random (model-based)
testing techniques to use a more refined model as a basis.

Undoubtedly, using a discrimination tree-based algorithm in a practical setting forces the user
to put more thought into how equivalence queries can be realized or approximated. But then
again, merely relying on the heuristics implicitly encoded in the observation table data structure
is not a good idea to begin with, either.

85

5. The TTT Algorithm

In the previous chapter, we have presented the Observation Pack algorithm, which combines
the discrimination tree data structure originally introduced by Kearns and Vazirani [115] with
the binary search counterexample analysis strategy due to Rivest and Schapire [155] (cf. also
Remark 3.5, p. 43). The worst-case query complexity of Observation Pack is O(k n 2+n logm),
which is already very close to the known lower bound of O(k n 2) (and even coincides with the
latter assuming m =2O(k n)). Also, its performance in practice has been observed to be very good,
which is witnessed by the fact that it was the algorithm used by the winning entry [94] in the
2010 ZULU competition [58]. In this competition, participants were ranked according to the
quality of their inferred hypotheses after a limited number of membership queries and without
any equivalence queries (i.e., requiring the participants to approximate these using member-
ship queries).

However, the Observation Pack algorithm suffers from the fact that the length of the queries it
generates grows with the length of the counterexamples provided by the teacher.1 This does not
pose a problem in settings where a cooperative teacher [175] provides minimal counterexam-
ples. However, such an assumption is rather unrealistic, as equivalence queries often have to be
approximated using membership queries (as described in Section 4.2.4). In such settings, tech-
niques guaranteeing minimal counterexamples are usually avoided: they typically require ex-
ploring the search space in a breadth-first fashion, resulting in a number of membership queries
that is exponential in the exploration depth d (i.e., in Ω(k d)).

Other sources of counterexamples may exhibit even more extreme properties. Bertolino
et al. [33] propose a life-long learning approach (sketched in Figure 5.1), where inferred models
of networked systems are continuously validated by monitoring their live executions. If a di-
vergence between the observed and the predicted behavior is detected, the corresponding exe-
cution trace is provided to the learner as a counterexample. Isberner et al. [110] however point
out that this causes major performance degradations in the learning process, as these coun-
terexamples may consist of tens of thousands of symbols, which is inacceptable due to the fact
that the time for realizing a membership query typically grows linearly with its length (cf. also
Section 3.2.1).

On a much smaller scale, the example run of Observation Pack in Section 4.2.3 (cf. also Fig-
ure 4.10) already hinted at the problem at hand: the provided first counterexample resulted in
the discriminator a a a a a a b being added to the discrimination tree (cf. Figure 4.10d). In the
considered case, the third hypothesis from Figure 4.10e (and thus the discrimination tree from
Figure 4.10f) was already the final one, but assuming it were not, every subsequently added tran-
sition would possibly have to be tested against the discriminator a a a a a a b when sifting it into
the tree. Thus, a single long counterexample at an early stage results in long queries throughout
the entire rest of the learning process.

1Notably, the ZULU competition only limited the number of membership queries, not the total number of sym-
bols occurring in them.

87

5. The TTT Algorithm

,∆

,

,∆,

,

,

∆,

,,∆,

,

,∆
,

,∆

,

,∆,

,

,∆

Figure 5.1.: Life-long learning approach, proposed by Bertolino et al. [33] (source: [110])

In this chapter, we will develop an algorithm, called TTT [110], that overcomes the above de-
ficiencies of the Observation Pack algorithm. It accomplishes this by eagerly attempting to
clean up its internal data structures, by replacing discriminators extracted from counterexam-
ples (which simply “do the job” of splitting a class) with discriminators which are derived from
the transition structure of the hypothesis (and typically are of shorter length). Thus, while long
counterexamples might incur some inherent overhead during their analysis itself, the effect on
the internal data structures after fully processing a counterexample is the same as if a minimal
counterexample had been processed.

The next section starts by describing the idea and design goals on a high level, while the sub-
sequent sections detail on the technical realization. Section 5.3.2 elaborates on an interesting
theoretical property of TTT, namely the fact that it is space-optimal. The practical evaluation re-
ported on in Section 5.5 furthermore disproves the assumption that the above-sketched process
of “cleaning up” incurs some overhead: the evaluation results show that there is no noticeable
such overhead even in the presence of minimal counterexamples, and a significant performance
gain in the case of non-minimal counterexamples. Notably, this gain can not only be observed
when considering the overall number of symbols (reducing the number of which by shortening
discriminators was the initial goal of TTT), but a reduction of the number of membership queries
can sometimes be observed, too, suggesting that TTT is uniformly superior to other considered
algorithms.

5.1. Design Goals and High-level Overview

One of the goals stated in the introduction to this thesis was to formally characterize phenomena
in active automata learning, to identify desirable properties, and to use these findings as a basis
for developing an efficient algorithm that adequately addresses these phenomena to ensure the

88

5.1. Design Goals and High-level Overview

desirable properties.
Clearly, two fundamental properties of black-box abstractions are closedness and determinism

(cf. Definition 3.9, p. 29), as they are preconditions for being able to construct a DFA hypothe-
sis. Interestingly, while the alternated check (and, if they are found to be violated, restoration
attempts) of these properties dominates the flow of control of the original L∗ algorithm due to
Angluin [19], nothing comparable can be found in the Observation Pack algorithm (cf. Algo-
rithms 4.6 and 4.7). This is due to superimposed constraints which guarantee determinism and
closedness: maintaining U (implicitly given by the spanning-tree hypothesis) as a set of pair-
wisely inequivalent short prefixes renders the determinism requirement trivial, while the dis-
crimination tree data structure prevents unclosednesses.2 Note that both are manifestations of
minimality requirements: the former means that no superfluous short prefix is ever added to U ,
while the latter is due to the fact that when sifting a transition into the discrimination tree, only
queries that are necessary to discriminate between existing classes are posed, thus precluding
the possibility of “accidentally” identifying new classes (at least for a binary output domain).

Besides these two necessary preconditions, we also identified two desirable properties—
reachability consistency (cf. Definition 3.11, p. 30) and output consistency (cf. Definition 3.12,
p. 31)—which are not necessary for correctness or being able to construct a hypothesis (Theo-
rem 3.2 furthermore guarantees that they will be satisfied eventually), but rather correspond to a
certain quality of the hypothesis with respect to the observations. Furthermore, we have identi-
fied how these properties can be ensured by enforcing certain syntactical constraints: maintain-
ing U as a prefix-closed set guarantees reachability consistency, while maintaining semantically
suffix-closed characterizing sets ensures output consistency.

Unlike in the above case of closedness and determinism, which are taken care off by the mere
choice of data structures, there seems to be a trade-off between the syntactical properties en-
suring reachability and output consistency: the algorithm by Kearns and Vazirani [115] ensures
semantic suffix-closedness, but short prefixes are no longer maintained in a prefix-closed fash-
ion. In contrast, the Observation Pack algorithm ensures prefix-closedness of U (by means of the
spanning-tree hypothesis), but forgoes (semantic) suffix-closedness of the discriminator sets.
For both algorithms, the cause for the violation of the respective properties is their strategy of
handling counterexamples (cf. Theorem 3.3 as well as Remarks 3.4 and 3.6, respectively).

5.1.1. Property Restoration

Lemma 3.6 (iii) states how the result of a prefix-based counterexample analysis (or reachabil-
ity inconsistency analysis) can be exploited to refine a black-box abstraction: adding the prefix
�u to U causes non-determinism, which is then eliminated by splitting an equivalence class.
Lemma 3.8 (iii) handles the symmetrical case, concerning the result of an output inconsistency
analysis: splitting a class using �u as discriminator causes an unclosedness, which is eliminated
by adding a new prefix to U . From this perspective, it can be argued that the above descrip-

2There are two exceptions to this: unclosednesses can occur when learning Mealy machines (cf. Section 3.5.3),
as only two identified children are necessary to cause the introduction of an inner node in the first place, but many
more children can be discovered en passant. The other exception occurs when learning DFAs: the first state with an
acceptance value different from that of the hypothesis is also discovered en passant (this case is handled in line 22 of
Algorithm 4.6), which basically means it is added to the hypothesis by eliminating an unclosedness. However, since
this occurs only once during the learning process, and other unclosednesses can in fact not occur when learning
DFAs, the above statement is justified when contrasting the situation to observation tables.

89

5. The TTT Algorithm

q0

q1

a

a

ε

a n−2

q0 q1

ε

a

(a) Violation of semantic suffix-closedness if
prefix-closedness of U is maintained

q0

qn−2

a

ε

a

q0 qn−2

ε

a n−2

(b) Violation of prefix-closedness of U if seman-
tic suffix-closedness is maintained

Figure 5.2.: Illustration of necessary violations when learning the DFA from Figure 4.7

tion about the two algorithms (Kearns and Vazirani’s algorithm and Observation Pack) main-
taining closedness and determinism the entire time is somewhat imprecise: unclosedness and
non-determinism are momentarily introduced during counterexample analysis, and then elim-
inated immediately.

Since violations of prefix-closedness of U or (semantic) suffix-closedness also arise from han-
dling counterexamples, one may ask whether it might be possible to immediately restore those
properties as well. Unfortunately, this is generally not the case, at least not atomically. Consider
the DFA A′

n depicted in Figure 4.7: if prefix-closedness is to be maintained, the first new short
prefix to be added is a . However, distinguishing a from ε requires the discriminator a n−2, which
violates semantic suffix-closedness (sketched in Figure 5.2a). On the other hand, maintaining
suffix-closedness means that the first discriminator used to split a leaf must be a , which how-
ever can only distinguish a n−2 from any other short prefix corresponding to a rejecting state,
violating prefix-closedness of U (cf. Figure 5.2b).

Nevertheless, it is possible—and this is the way the TTT algorithm works—to restore the prop-
erty of (semantic) suffix-closedness3 after a sequence of insertions of new states. The DFA from
Figure 4.7 discussed above constitutes the worst-case, as every state needs to be added to re-
store suffix-closedness; however, often a much smaller number of additional states is sufficient
to reach a point which allows restoration of suffix-closedness.

5.1.2. Interplay of Data Structures

The fact that the TTT algorithm maintains a suffix-closed set of discriminators allows for stor-
ing the overall set of discriminators in a trie (cf. Proposition 4.1). The resulting interplay of data
structures is visualized in Figure 5.3: the spanning-tree hypothesis (left) maintains information
about the access sequences of states, and separates definite (tree) transitions from tentative
(non-tree) ones. States and (non-tree) transitions of the hypothesis are associated with (or point

3Actually, TTT only ensures that the overall set of discriminators is suffix-closed, without the black-box abstrac-
tion necessarily being semantically suffix-closed. As, due to its other characteristics, the TTT algorithm natively in-
cludes a check for output inconsistencies (and elimination of these), output consistency is eventually restored, and
neglecting to ensure semantic suffix-closedness makes for a much simpler implementation. We will elaborate on
the necessary adaptations for actually restoring and ensuring semantic suffix-closedness in Section 5.2.5.

90

5.2. Technical Realization

q0 q1 q2

q3 q4 q5

a
b

a
b

a

b

a

b

a

b

a

b

ε

aq5

b a

b

q4

a a

q1q2 q0q3

ε

a b

a a b a

a b

a b

Figure 5.3.: Interplay of data structures in the TTT algorithm (left to right): spanning-tree hy-
pothesis, discrimination tree, suffix trie (source: [100])

to) nodes in the discrimination tree (middle). The inner nodes of the discrimination tree in turn
correspond to nodes in the suffix trie (right), allowing for a compact representation and stor-
age. The combination of these three tree-based data structures—spanning-Tree, discrimination
Tree, and suffix Trie—is what gives rise to the name TTT.

5.2. Technical Realization

The TTT algorithm builds on top of the Observation Pack algorithm. In particular, it eliminates
excessively long discriminators (as discussed in the previous section) by continuously cleaning
up the internal data structures and reorganizing the discrimination tree. As the Observation
Pack algorithm has already been discussed in great detail in Section 4.2.3, the description of TTT

in this section will thus be kept incremental, i.e., focusing on the additional steps only, some of
which however are quite involved.

5.2.1. Temporary and Final Discriminators

When presented with a counterexample, the Observation Pack algorithm analyzes this coun-
terexample to obtain a decomposition 〈�u , �a , �v 〉. It then splits a leaf in the discrimination tree,
and labels the new inner node with �v . This node remains unchanged in the discrimination tree
throughout the entire course of the learning process, potentially leading to performance prob-
lems due to long queries, as discussed in the introduction of this chapter.

The first steps that TTT takes when being presented with a counterexample are the same as
those of Observation Pack (cf. Algorithm 4.7): it splits a node in the discrimination tree, using the
obtained suffix �v as the new discriminator. However, since �v usually violates suffix-closedness
of the discriminator set, meaning it cannot be added to the suffix trie by adding a single node, it is
marked as temporary. In contrast, nodes labeled with a discriminator that is already integrated
into the suffix trie are called final. In terms of data structures, we assume that every (inner) node
n ∈NT has a Boolean flag n .temp indicating whether n is temporary. Whenever a leaf is split,
its flag is set to true. Furthermore, we assume that we always have rT .temp= false, i.e., the root

91

5. The TTT Algorithm

Algorithm 5.1 “Soft” sifting in a discrimination tree
Require: Discrimination tree T , node n ∈NT , prefix u ∈Σ∗, output function λ (implicit)

1: function soft-siftT (n ,u)
2: while n ∈IT and¬n .temp do
3: o ←λ(u ,n .discriminator)
4: n ←n .children[o]
5: end while
6: return n
7: end function

discriminator ε is guaranteed to be final.
The term “temporary” (which we will apply to both a discriminator and its corresponding

node) here refers to the fact that the respective discriminator will subsequently be replaced (“fi-
nalized”) with another discriminator. In fact, we will see that even the entire topology of subtrees
rooted at temporary inner nodes may change.

Soft Sifting

To avoid posing membership queries involving temporary (and thus potentially long) discrimi-
nators as suffixes, the TTT algorithm modifies the behavior of the CLOSETRANSITIONS procedure
(cf. Algorithm 4.6) such that the sifting of transitions is only continued until the first temporary
discriminator is encountered. This is also referred to as soft sifting. Thus, as a result, the hypoth-
esis might still be non-deterministic (in particular, the incoming non-tree transitions of the state
qold being split remain unmodified, and point to the newly introduced temporary inner node).

The logic of soft-sifting is given as Algorithm 5.1. The modified procedure
CLOSETRANSITIONS-SOFT can thus be obtained from the Observation Pack version, with
the only modification that soft-siftT is called in line 20 of Algorithm 4.6. Note that, in contrast
to the regular siftT function, the result of soft sifting is no longer guaranteed to be a leaf, which
motivates the additional check in the if statement in line 22 of Algorithm 4.6, handling newly
discovered states.

5.2.2. Discriminator Finalization – Simple Case

After calling CLOSETRANSITIONS-SOFT, the hypothesis usually remains non-deterministic, but
every non-tree transition points to either a leaf, or a temporary inner node with a final (non-
temporary) parent.

Let us introduce the context of a block subtree, or simply block. A block subtree is a maximal
subtree containing neither final inner nodes nor unlabeled (meaning: without an associated
state) leaves, i.e., it contains only labeled leaves and temporary inner nodes. We also identify
the block subtree with all the states corresponding to the leaves it contains (in which case we
usually use the term “block”, though we make no strict distinction). Since every labeled leaf is
either part of a (bigger) block, or constitutes a singleton block, it is obvious that the set of all
blocks forms a partition of QH.

Consider the situation depicted in Figure 5.4. The target DFA is the same that was used for
the example run of Observation Pack (cf. Figure 4.10), and the figure depicts the data structures

92

5.2. Technical Realization

q0

q1

q2

a

a
b

b

b

a

a

b

ε

a a a a a a b q0

q1 q2

a a a a a a b

q1 q2q2q

q0q0q

b

a

b

a

Figure 5.4.: TTT data structures after introduction of temporary discriminator and soft closing.
The dashed outline marks the inner node as temporary, while dotted lines represent
the tgt_node pointers. Rounded rectangles indicate blocks

while the counterexample w = b a a a a a a b is being processed. As stated above, the first steps
are the same as in Observation Pack: a new state with access sequence b is introduced, and
the suffix a a a a a a b is used to split the leaf formerly corresponding to q1. However, in TTT this
discriminator is marked as temporary, which is visualized by the respective inner node having
a dashed outline.

Blocks are visualized as rounded rectangles enclosing the respective subtree. In Figure 5.4,
there are two blocks: a singleton block, containing only the leaf corresponding to q0, and a non-
trivial block, which contains q1, q2 and the temporary discriminator. Blocks also determine the
“granularity” of non-determinism in the hypothesis: we have δH(q1,b) = δH(q2,a) =

�

q1,q2

�

,
whereas the a -transition of q1 and the b -transition of q2 point to a singleton block and are thus
deterministic. The outgoing transitions of q0 are both tree transitions and therefore always de-
terministic, even though they point to states in a non-singleton block.

For now, let us simply assume that every temporary inner node is part of a block, meaning that
every proper ancestor of a block root is final. This is obviously the case in Figure 5.4, and we will
later discuss how this can be ensured in general. This means that the lowest common ancestor
from any two nodes in distinct block subtrees is necessary final. Recalling the white-box dis-
crimination tree computation presented in Section 4.1.4, the path to replacing the temporary
discriminator with a final one becomes pretty obvious.

The dotted lines in Figure 5.4 represent the tgt_node pointers of the outgoing transitions of q1

and q2. As we can easily see, for both a and b , the corresponding transitions of both states point
into different blocks. Since the respective target nodes are separated by the final discriminator
ε, ε ·a and ε ·b can both be used to distinguish q1 and q2. Assume that we choose ε ·a =a as the
final discriminator. The fact that λ(q1�,a)=λ(a ,a)=1 and λ(q2�,a)=λ(b ,a)=0 can be derived
from the target nodes of the a -transitions of q1 and q2. Therefore, no additional membership
queries are required to construct the discrimination tree shown in Figure 5.5. Note that the
role of a for separating q1 and q2 is not exactly the same as that of the temporary discriminator
a a a a a a b : in Figure 5.4, q1 was the 0-child of its parent and q2 the 1-child, whereas it now is the
other way round. The corresponding hypothesis (shown in the left of Figure 5.5, after closing all
open transitions) is now deterministic, as there are no more temporary discriminators.

93

5. The TTT Algorithm

q0

q1

q2

a

a
b

b

a

b

ε

a q0

q2 q1q2q2q

q0q0q

q1

Figure 5.5.: Closed hypothesis and discrimination tree after replacing the temporary discrimi-
nator a a a a a a b in Figure 5.4 with the final discriminator a

q1

q2

q1

q2q2q

v

a

a

⇒

q1

q2

q1

q2q2q

a v

Figure 5.6.: Abstract visualization of discriminator finalization

The abstract idea behind discriminator finalization is illustrated in Figure 5.6: the a -
transitions of q1 and q2 in the same block (enclosing ellipse) point into different blocks, which
in turn are separated by the final discriminator v . This allows to split the block containing q1

and q2 into two blocks which are separated by a v .

5.2.3. Output Inconsistencies and Subsequent Splits

Unfortunately, discriminator finalization is not always as easy as the previous subsection might
suggest. There may be situations in which it is impossible to finalize any discriminator, since all
outgoing a -transitions (for any a ∈Σ) of nodes in one block point into the same block. This can
be formalized as follows.

Define by π(T) the set of all blocks in a discrimination tree T , where a block is defined as in
the previous Section 5.2.2. Clearly, π(T) forms a partition of QH. The above condition that no
final discriminator can be determined can be characterized formally via

∀B ∈π(T) :∀a ∈Σ :∃B ′ ∈π(T) :δH(B ,a)⊆B ′, (5.1)

where δH denotes the (non-deterministic!) transition function of H lifted to sets of states, as
introduced in Remark 2.1.

An important observation is that (5.1) still holds if the extended transition function and words
w ∈Σ∗ instead of single symbols are considered. Furthermore, the fact that the root of T is

94

5.2. Technical Realization

always final ensures that ∼π(T) saturates FH (i.e., ∀B ∈π(T) : B ⊆ FH∨B ∩FH = �). As a conse-
quence, the non-determinism in H does not cause any uncertainty wrt. whether a word w ∈Σ∗

is accepted or not, i.e.,

∀B ∈π(T) :∀w ∈Σ∗ :δH(B ,w)⊆ FH∨δH(B ,w)∩FH= �.

Thus, it makes sense to define state output functions λ
q
H for q ∈QH regardless of the non-

determinism, and all states within the same block are equivalent in the sense that their state
output functions are equal. The intuition behind this is that due to (5.1), any two “determiniza-
tions” ofH obtained by arbitrarily choosing one of the possible targets for each transition would
be equivalent. This implies that even if all transitions were fully closed using “hard” sifting (i.e.,
not stopping at temporary nodes), the output functions would not change, resulting in a non-
canonical deterministic hypothesis computing the same output function as the current non-
deterministic one.

Addressing Output Inconsistencies

The fact that we can assign output functions to states regardless of non-determinism enables
us to reason about output inconsistencies in our hypothesis. Since every pair of distinct states
q �= q ′ in some block B ∈π(T) is separated by their (temporary) lowest common ancestor, but
their state output functions agree on all possible arguments, this necessarily means that one of
them must constitute an output inconsistency. Formally, this means that whenever (5.1) holds,
then also

∀B ∈π(T) : |B |>1⇒∃q ∈B :∃(v,o)∈SigT (q) :λ
q
H(v) �=o .

Such an output inconsistency can be addressed using the techniques from Section 3.3.4. Ana-
lyzing an output inconsistency in the simplified way described in Remark 3.5 (p. 43) however re-
quires a deterministic transition function. Thus, whenever an output inconsistency (q ,v) needs
to be analyzed, the visited transitions need to be determinized on-the-fly by “hard” sifting.4

As a result, new states with new transitions (that are then softly closed) are added to the hy-
pothesis, along with new temporary discriminators in the discrimination tree. Note that every
temporary discriminator is inserted by splitting a leaf (which is by definition part of a block),
thus resulting in the block being augmented, and preserving the above-stated property that no
temporary discriminators occur outside of block subtrees. Since every newly introduced state
is guaranteed to be distinct from every existing state, Theorem 3.2 (p. 33) guarantees that even-
tually a “correct” (if all transitions were closed using “hard” sifting) hypothesis is obtained, that
is furthermore canonical. Since (5.1) implies that no determinization (in the above sense) of
the hypothesis is canonical, it follows that a finite number of subsequent splits must eventually
cause (5.1) to become violated.

Let us give an example to illustrate the process. Assume that the target DFA is the one shown in
the left of Figure 5.3. The initial hypothesis and discrimination tree are shown in Figures 5.7a
and 5.7b, respectively. After being provided the counterexample w = a b b a b , the first refine-
ment step results in the non-deterministic hypothesis shown in Figure 5.7c, with the corre-
sponding discrimination tree from Figure 5.7d. Since there is only a single block in the dis-
crimination tree, it is obvious that no finalization step is possible.

4When using a non-local search heuristic such as binary or exponential search, it makes sense to do this lazily.
That is, for determining the state reached by v from q in the determinized hypothesis, one can check whether there
is an index i ,1≤ i < |v |, such that |δH(q ,v1..i)|=1, and start from the largest such index.

95

5. The TTT Algorithm

q0

a ,b

(a)

ε

q0q0q0q

(b)

q0

q1

ab

b

a ,b

a ,b

(c)

ε

b b a b

q0 q1

b b a b

q0q0q q1

(d)

Figure 5.7.: Hypotheses and discrimination trees during a run of TTT on the DFA shown in Fig-
ure 5.3

Analyzing the output inconsistency constituted by (q1,b b a b) results in the leaf correspond-
ing to q0 being split, using b a b as the temporary discriminator, and the introduction of a new
state, q4, with access sequence a b .5 As a result, the accepting state q5 is discovered en passant,
and assigned the access sequence a b a . The corresponding hypothesis and discrimination tree
are shown in Figure 5.8, where all missing transitions non-deterministically point to

�

q0,q1,q4

�

.

5.2.4. Discriminator Finalization – Complex Case

If, after a number of subsequent splits, condition (5.1) is violated, this again allows us to finalize
discriminators. However, we are now faced with a more complex situation than the one de-
scribed in Section 5.2.2: blocks may now contain more than just two states, which means in
particular that block subtrees may contain more than one temporary inner node. Even worse,
there may be non-tree transitions that point to a proper descendant of a block root, as hard
sifting might have become necessary during counterexample analysis.6

First, let us reconsider what the violation of (5.1) means: there exists a block B and a symbol
a ∈Σ, such that for q ,q ′ ∈B with q �=q ′, the a -transitions of q and q ′ point into different blocks.
Consequently, the lowest common ancestor of the corresponding transitions’ tgt_node’s is a fi-
nal inner node. This furthermore implies that the lowest common ancestor of the tgt_node’s of
all a -transitions of states in B is a final inner node, since every ancestor of a final inner node is
also final.

The situation we are now facing is thus very similar to the one during discrimination tree
computation in the white-box setting, where the discrimination tree is augmented using the
SPLITSINGLE function (cf. Algorithm 4.4 and Algorithm 4.5): if v ′ is the (final!) discriminator of
the common LCA of all a -successors of states in a block B , then v =a v ′ is a discriminator that
preserves suffix-closedness of the discriminator set, and can be used to split B into two non-

5For simplicity, we use the corresponding state names from the final hypothesis shown in Figure 5.3, instead of
assigning contiguous indices.

6Note that as a result, non-tree transitions may point to arbitrary nodes within a block subtree: closing them
using hard sifting results in them pointing to a leaf, but this leaf may subsequently be split.

96

5.2. Technical Realization

q0 q1

q4 q5

a

b

a
a

(a) Hypothesis after subsequent split

ε

b b a b q5

b a b q1

q0 q4

b b a b

b a b q1

q0q0q q4q4q

q5q5q

(b) Discrimination tree after subsequent split

Figure 5.8.: TTT data structures after addressing the output inconsistency (q1,b b a b) from
Figure 5.7 by subsequently splitting q0. Non-deterministic transitions point to
�

q0,q1,q4

�

and are omitted for the sake of clarity

empty blocks.
The general idea of discriminator finalization is to “replace” the discriminator of the root of a

block subtree using a final discriminator obtained in the above fashion. The root is chosen to
maintain the property that every descendant of a temporary node is also temporary or a leaf.
Accomplishing this is however not trivial: the final discriminator v usually partitions the states
in the block in a way that is different from that of the temporary block root discriminator �v . In
fact, there might be situations where �v remains necessary to separate some states in one (or
even both) of the sub-blocks resulting from the split using v .

Discriminator Replacement

The general strategy for replacing discriminators at the root of block subtrees bears some re-
semblance to the SPLITtree approach (cf. Figure 4.5), which is based on “carving out” subtrees,
and can be described as follows:

1. For each state q labeling a leaf in the block subtree, perform a membership query λ(q �,v)
to determine whether it needs to be in the 0- or the 1-subtree of the new final inner node.7

2. Carve out a subtree containing only the leaves for which the membership query returned
0. This can be accomplished by marking all such leaves, and propagate the marking all the
way up to the block root. Then, discard all unmarked nodes, and replace all inner nodes
with a single child with this child.

3. The resulting subtree forms the 0-subtree of the new final inner node.

7Since v =a v ′, where v ′ is the suffix labeling the least common ancestors of the target nodes of all a -transitions,
a membership query is not really required here. Instead, it suffices to determine the label of the subtree of this LCA
into which the a -transition of q points.

97

5. The TTT Algorithm

Algorithm 5.2 TTT-REPLACE-BLOCKROOT: Discriminator finalization in the TTT algorithm

1: procedure TTT-REPLACE-BLOCKROOT(T ,rB ,v)
2: Initialize mark as a map from nodes to sets of Booleans
3: Initialize inc0,inc1 as maps from nodes to sets of transitions
4: Initialize state0,state1 as maps from leaves to states
5: mark[rB]←{0,1} � ensure marks are not propagated beyond block root
6: for n ∈Desc(rB) do � iterate over all nodes in the block
7: for t ∈n .incoming do � compute resulting subtree for incoming transitions
8: o ←λ(t .aseq,v)
9: inco [n]← inco [n]∪{t } � record inc. transitions of the o -subtree version of n

10: MARK(n ′,o) � mark node with o if at least one transition is in the o -subtree
11: end for
12: if n ∈LT then � n is a leaf
13: q ← l .state
14: o ←λ(q �,v)
15: stateo [n]←q � record state for the o -subtree version of n
16: MARK(n ,o) � mark node with o if its state is in the o -subtree
17: end if
18: end for
19: T0 ←EXTRACT(rB ,0) � extract the subtrees
20: T1 ←EXTRACT(rB ,1)
21: T ′ ←MAKE-INNER(v,T0,T1) � . . . make them children of a node with discriminator v
22: REPLACE-NODE(T ,rB ,T ′) � . . . and replace the entire block subtree
23: end procedure

4. Repeat 2. and 3. for 1 instead of 0.

5. Replace the block root with an inner node labeled with the final discriminator v , and the
0- and 1-subtrees as described above as children.

While the approach outlined above is already quite complex, it is insufficient because it does
not address the non-tree transitions pointing to proper descendants of the block root, which
might have been introduced by hard sifting during counterexample analysis. Of course, it would
be possible to reset all these transitions by letting them point to the new final inner node that
replaces the block root (and softly close them by sifting them down one level), but that would
also mean to throw away the information gained through hard sifting, which is unacceptable if
redundancy freeness is our aim.

This problem calls for an even more involved approach, for which we show the pseu-
docode in Algorithms 5.2 through 5.4, and that we now want to discuss. The procedure
TTT-REPLACE-BLOCKROOT, given as Algorithm 5.2, constitutes the entry point to discriminator
replacement in the TTT algorithm. It maintains the following maps to realize the subtree extrac-
tion: mark maps nodes in the block subtree to subsets of �, thereby representing the marks for
the extraction of the 0- and the 1-subtree.8 Like in SPLITtree (cf. Algorithm 4.5), it will be main-

8An alternative way, that more closely resembles the way mark is used in Algorithm 4.5, would be to maintain
two separate maps mark0 and mark1, mapping nodes to Booleans.

98

5.2. Technical Realization

b b a b

b a b q1

q0 q4

{1}{0}

{0,1}
inc0 =

�

q0
b−→
�

{0}

10

0
inc0 =

�

q1
a−→
�

inc0 =
�

q4
b−→,q5

b−→
� {0,1}

Figure 5.9.: Block subtree from Figure 5.8 after computing inco , stateo and mark values

tained in such a way that marks are always propagated upwards in the block subtree, i.e., for
o ∈� and a node n in the subtree that is not the block root rB , o ∈mark[n] (we also say that “n is
o -marked”) implies o ∈mark[n .parent]. Marking the block root (line 5) ensures that marks are
not propagated beyond this node.

Furthermore, maps inco and stateo , o ∈�, are maintained, mapping nodes to sets of non-tree
transitions and leaves to states, respectively. Their significance can be explained as follows. A
node n in the discrimination tree, in case it is a leaf, stores a reference to the state it corresponds
to (n .state), and we furthermore assume that any node stores a set of all its incoming non-tree
transitions (referred to via n .incoming). The extraction process can be thought of as creating
two copies of the block subtree, one for each possible output value o ∈�, and the semantic
information stored with a node (i.e., the incoming transitions and, in the case of leaves, the
state) are then reassigned to one of the copies of this node—-which one depends on the output
behavior wrt. v . Since the extracted subtrees are created on-the-fly, the purpose of these four
maps is to store the data for these copies of nodes yet to be created.

The maps are filled with data in the for loop iterating over all nodes in the block subtree
(lines 6–18). Lines 7–11 take care of preliminarily assigning incoming transitions to the future
copy by adding them to the inco [n] set, and lines 12–16 take care of assigning the states labeling
leaf. Whenever any of these are determined to correspond to the future o -copy of n (o ∈�), n is
marked with o . Thus, whenever a node n in the block subtree is o -marked, this indicates that it-
self or one of its descendants has a non-empty inco set or a non-nil stateo value. The for loop in
lines 6–18 can thus be thought of as a preprocessing step for the subsequent subtree extraction.

Example. Continuing our example from Figure 5.8, it is obvious that the a -transition of q4

points to a different block (namely the singleton
�

q5

�

) than the a -transitions of the other two
states in the same block. Thus, a ·ε=a is a final discriminator that can split the bigger block.

In the following, we assume for the purpose of demonstration that the b -transition of q0

points to the temporary inner node labeled with b a b and the a -transition of q1 points to the
leaf associated with q4. All other non-tree transitions point to the block root. The result of com-
puting the inco and stateo values (and thus the markings) for the final suffix v = a is shown in

Figure 5.9. The non-empty inco sets of each node are shown next to the node; we write q
a−→

to refer to the a -transition of q . One of the bottom corners of each leaf is annotated with the
value corresponding to its state, that is, leaf l is annotated with o ∈� if and only if stateo [l] �=nil.
Finally, one of the top corners of each node is annotated with the corresponding mark set.

99

5. The TTT Algorithm

Algorithm 5.3 Helper functions for TTT-REPLACE-BLOCKROOT (Algorithm 5.2)
Require: Node n , output value o ∈�, mark mapping (implicit)
Ensure: n and all its ancestors in the block subtree have an o mark

1: procedure MARK(n ,o)
2: while o /∈mark[n] do � propagate mark all the way up to the block root
3: mark[n]←mark[n]∪{o}
4: n ←n .parent
5: end while
6: end procedure

Require: Node n , output value o ∈�, stateo and inco mappings (implicit)
Ensure: Subtree containing only o -marked nodes is returned

7: function EXTRACT(n ,o)
8: if n ∈LT then � n is a leaf
9: if stateo [n] �=nil then � corresponding state is in o -subtree

10: res←MAKE-LEAF(stateo [n]) � create the o -subtree version of n
11: else � an incoming non-tree transition is in the o -subtree
12: return CREATE-NEW(n) � see Algorithm 5.4
13: end if
14: else � n is an inner node
15: c0 ←n .children[0], c1 ←n .children[1]
16: if o ∈mark[c0]∧o ∈mark[c1] then � both children are o -marked
17: T0 ←EXTRACT(c0,o) � therefore, n is necessary in the o -subtree
18: T1 ←EXTRACT(c1,o)
19: res←MAKE-INNER(n .discriminator,T0,T1) � create o -subtree version of n
20: else if o ∈mark[c0] then � only the 0-child is marked (i.e., n is unnecessary)
21: inco [c0]← inco [c0]∪ inco [n] � incoming transitions “fall through”
22: return EXTRACT(c0,o)
23: else if o ∈mark[c1] then � only the 1-child is marked (symmetrical case)
24: inco [c1]← inco [c1]∪ inco [n]
25: return EXTRACT(c1,o)
26: else � both children are unmarked (i.e., n has an o -incoming transition)
27: return CREATE-NEW(n) � see Algorithm 5.4
28: end if
29: end if
30: res.incoming ← inco [n] � res is the o -subtree version of n , update inc. transitions
31: return res
32: end function

100

5.2. Technical Realization

Algorithm 5.4 CREATE-NEW helper function for EXTRACT (cf. Algorithm 5.3)
Require: Node n , output value o ∈�
Ensure: Leaf with a newly created state (from one of the o -incoming transitions of n) is returned

1: function CREATE-NEW(n ,o)
2: t ← choose(inco [n]) � choose any transition (e.g., with shortest access sequence)
3: q ←MAKETREE(t) � convert t into a tree transition, resulting in new state q
4: res←MAKE-LEAF(q) � create leaf for q , which is the o -subtree version of n
5: res.incoming ← inco [n]\{t } � update incoming non-tree transitions
6: return res
7: end function

Subtree Extraction

The recursive EXTRACT function, shown in lines 7–32 of Algorithm 5.3, is a considerably more
complex version of the one presented in the context of SPLITtree (cf. Algorithm 4.5). It creates, for
a given output value o ∈�, an extracted version of the block subtree on-the-fly. While most of the
algorithm is straightforward and almost self-explanatory, we want to emphasize two aspects.

It may be the case that a leaf is o -marked (o ∈�), but the corresponding stateo value is nil
(lines 11–13). This means there is at least one transition in its inco set (we call such a transition
an o -incoming transition), and the behavior of these transitions wrt. the new suffix v is observ-
ably distinct from any state in the hypothesis: v separates them from the state associated with
this leaf, and the temporary and final discriminators in the discrimination tree separate them
from all other states in the hypothesis. This calls for the introduction of a new state, which is
realized by the CREATE-NEW procedure shown as Algorithm 5.4. A new state is created by con-
verting one of its o -incoming non-tree transitions into a tree transition, similar to an en passant
discovery of a new state while closing transitions (cf. Algorithm 4.6). Another manifestation of
this phenomenon is when an inner node is o -marked, but none of its children are. Again, this
necessarily implies that its inco set is non-empty, and the introduction of a new state is required
for the same reason as above (line 27).

The second aspect we want to highlight is that it may be the case that an inner node is o -
marked, but only one of its children is o -marked as well. This basically means that a copy of the
inner node is not necessary in the extracted subtree (as it would only have a single child), with
the consequence that the respective o -incoming transitions simply “fall through” to its marked
parent. This is realized by adding them all to the inco set of the marked child (lines 21 and 24 of
Algorithm 5.3).

Example. In Figure 5.9, we have shown the block subtree from Figure 5.8b annotated with the
mark, stateo and inco values of its nodes. Since there is only a single state and no transition that
is marked with 1, it is obvious that the extracted 1-subtree only consists of a single leaf associated
with q4. We therefore want to investigate the extraction process of the 0-subtree in detail.

The left of Figure 5.10 shows the block subtree after removing all nodes whose mark set did
not contain 0. The sets next to nodes are the inc0 sets. The inner node labeled with b a b has only
one child, and can thus be eliminated. The result of doing so is shown in the right of Figure 5.10.
As a consequence, the b -transition of q0 which formerly pointed to this inner node is reassigned
to the leaf corresponding to q0.

The extracted 0- and 1-subtrees are then integrated into the overall discrimination tree, by

101

5. The TTT Algorithm

b b a b

b a b q1

q0

�

q0
b−→
�

�

q1
a−→
�

�

q4
b−→,q5

b−→
�

⇒

b b a b

q1q0

�

q0
b−→
�

�

q1
a−→
�

�

q4
b−→,q5

b−→
�

Figure 5.10.: Extraction of the 0-subtree from Figure 5.9

replacing the block root with a final inner node labeled with a and the extracted subtrees as
its children. The resulting discrimination tree is shown in Figure 5.11a, the sets next to nodes
correspond to the incoming transition sets.

Since q4 has now been separated from q0 and q1, another final discriminator can be obtained:
the b -transition of q1 points to q4, while the b -transition of q0 points into the block containing
q0 and q1. Since both blocks are separated by a , the final discriminator b a can be used to replace
the remaining temporary one. Carrying out the replacement as described in this section results
in the discrimination tree shown in Figure 5.11b and the (deterministic) hypothesis shown in
Figure 5.11c.

5.2.5. Restoring Semantic Suffix-Closedness

We have remarked in Section 5.1.1 that the version of TTT that we have presented so far actually
only maintains the discriminators as elements of a suffix-closed set, but does not necessarily
maintain semantic suffix-closedness as defined in Definition 3.13 (p. 31). Clearly, this is not
due to discriminator finalization: computing the lowest common ancestor of all a -successors
of nodes in a subtree, and obtaining the new discriminator by concatenating a and the LCA’s
discriminator preserves semantic suffix-closedness for all states currently in the subtree in the
same way as in the white-box scenario (cf. Section 4.1.5). However, adding new states during
counterexample analysis (i.e., when splitting leaves, cf. Algorithm 4.7, or from incoming transi-
tions during subtree extraction, cf. Algorithm 5.4) might violate semantic suffix-closedness, as
the outgoing transitions of a newly added state have not been tested before.

To restore semantic suffix-closedness, it is crucial to first strengthen our property according
to our observation from the proof of Lemma 4.2 (p. 73): for every final inner node n labeled
with discriminator a v , there exists a final inner node n ′ labeled with v such that every outgoing
a -transition of a state in the subtree rooted at n points into the subtree rooted at n ′.

Let us now consider the case that a state qnew is newly added to the hypothesis (and thus a leaf
l to the discrimination tree T) during counterexample analysis, which violates the above prop-
erty. That is, there exists a final inner node n among the ancestors of l that is labeled with a v ,
but the a -transition of qnew points to a node n ′′ that is not a descendant of the node n ′ (labeled
with v) as defined above. Assume that n is chosen such that it is the topmost node in the tree
for which the new state violates the property.

Let n ′′′ be the lowest common ancestor of n ′ and n ′′, and assume it is labeled by v ′. Then, the

102

5.2. Technical Realization

ε

a

b b a b

q5

q0 q1

q4b b a b

q0q0q q1

q5q5q

q4q4q

�

q0
b−→
�

�

q1
a−→
�

�

q4
b−→,q5

b−→
�

(a) Discrimination tree after first finalization

ε

a

b a

q5

q0 q1

q4

q0q0q q1

q5q5q

q4q4q

(b) Discrimination tree after second finaliza-
tion

q0 q1

q4 q5

a

b

a
a

b

a

b
b

(c) Corresponding deterministic hypothesis

Figure 5.11.: Integration of the extracted subtrees into the discrimination tree, subsequent final-
ization, and corresponding hypothesis a

103

5. The TTT Algorithm

a -transition of qnew points into one of the child subtrees of n ′′′, while the a -transitions of every
other state in the subtree rooted at n point into the other subtree. This means that a v ′ can be
used to separate qnew from all other states in the subtree rooted at n .

Restoring semantic suffix-closedness thus requires inserting a new final inner node labeled
with a v ′ above n . The required restructuring of the tree can be handled as described in the
previous subsections. Note that this means that the final part of the tree no longer grows mono-
tonically. However, since all affected states but qnew will be in one of the child subtrees of the
newly added node, no final discriminator becomes obsolete (only the temporary one used to
separate qnew from qold does). Furthermore, the handling of incoming non-tree transitions in Al-
gorithm 5.3 might introduce new states, which again might violate semantic suffix-closedness.

The above outlines a clear approach for maintaining semantic suffix-closedness, but introduces
considerable implementation overhead since the final parts of discrimination trees no longer
grow monotonically. Besides, we will see in the next subsection that a check for output in-
consistencies is performed continuously anyway, which is why maintaining semantic suffix-
closedness is not necessary to ensure output consistency. In the following, we will thus only
consider versions of TTT that omit the above procedure of explicitly restoring semantic suffix-
closedness for the sake of simplicity.

5.3. The Complete Algorithm

Assembling the entire TTT algorithm from the steps discussed in the previous subsections is now
relatively easy. The most important observation is that, whenever the property (5.1) defined
on p. 94 is violated, a finalization step is possible, and whenever it holds (and there still are
temporary discriminators), an output inconsistency must be present. This output inconsistency
can then, in the next loop iteration, be analyzed as described in Section 3.3.4, leading to a split
as in the case of Observation Pack (cf. Algorithm 4.7).

The actual refinement step is given as Algorithm 5.5, and can be described as a non-strict
alternation of output inconsistency analysis and discriminator finalization steps, preferring the
latter whenever possible. The initialization phase for TTT is not shown separately, as it is the
same as for Observation Pack (cf. Algorithm 4.6).

5.3.1. Complexity

Let us now take a look at the asymptotic complexities of the TTT algorithms. The parameters n ,
k and m are defined as described in Section 3.2.1.

Query Complexity. The worst-case query complexity is the same as that for the Observation
Pack algorithm, i.e., O(k n 2+n logm): each of the k n transitions of the hypothesis eventually
needs to be sifted down the entire tree, which has a worst-case depth of n−1. Note that this sift-
ing can occur either explicitly, in a call of CLOSETRANSITIONS-SOFT, or implicitly in the prepa-
ration for discriminator finalization (i.e., in REPLACE-BLOCKROOT, cf. Algorithm 5.2). In both
cases, a single membership query is performed per state or transition for each final discrimina-
tor that is added to the ancestor set (i.e., per level in the tree).

Furthermore, no more than n −1 counterexample analysis steps are necessary, and due to
states having unique representatives, the query complexity for this is O(n logm) (cf. Proposi-
tion 3.3, p. 44). While the need of “hard” sifting might arise during counterexample analysis,

104

5.3. The Complete Algorithm

Algorithm 5.5 TTT-REFINE: Refinement step of the TTT algorithm
Require: Current hypothesis H, corresponding discrimination tree T , counterexample w
Ensure: Refined hypothesis H and discrimination tree T

1: procedure TTT-REFINE(H,T ,w)
2: (qx , y)← (q0,H,w) � output inconsistency to analyze in first iteration
3: do
4: 〈�u , �a , �v 〉←ANALYZE-OUTINCONS(qx �, y) � according to Lemma 3.8 (p. 42)
5: SPLIT(H,T , �u , �a , �v) � as in Algorithm 4.7, marking new inner node as temp.
6: CLOSETRANSITIONS-SOFT(H,T) � cf. Algorithm 4.6
7: while ∃B ∈π(T),a ∈Σ :�B ′ ∈π(T) :δH(B ,a)⊆B ′ do � condition (5.1) violated

� finalization step
8: rB ←blk_root(B)
9: succ_lca← lcaT

�

q .trans[a].tgt_node |q ∈B
�

� compute LCA of a -successors
10: v ′ ← succ_lca.discriminator
11: v ←a ·v � assemble new final discriminator
12: REPLACE-BLOCKROOT(T ,rB ,v) � cf. Algorithm 5.2
13: CLOSETRANSITIONS-SOFT(H,T)
14: end while � Postcondition: condition (5.1) holds
15: if ∃B ∈π(T) : |B |>1 then � there are non-trivial blocks remaining

� condition (5.1) plus non-trivial blocks ⇒ output inconsistency
16: (qx , y)← choose

�

(q ,v) |q ′
x ∈B ∧∃o ∈� : o �=λ

q
H(v)∧ (v,o)∈SigT (q)

�

� continue with analyzing chosen output inconsistency in next iteration
17: end if
18: while ∃B ∈π(T) : |B |>1 � Postcondition: all inner nodes are final
19: end procedure

observe that no more than n −1 temporary nodes will ever be added to the discrimination tree,
and that each of the k n transitions is tested at most once against every temporary discriminator
(this is due to the way in which the transition targets are preserved during subtree extraction,
cf. Algorithm 5.3). Therefore, no more than in total O(k n 2) queries will every be performed dur-
ing hard sifts.

Symbol Complexity. While hard sifts do not affect the asymptotic membership query complex-
ity, the same cannot be said wrt. the symbol complexity. First, observe that the O(k n 2) queries
during “regular” (i.e., neglecting the necessity for hard sifting) hypothesis construction con-
tain O(k n 3) symbols, and that the number of symbols in queries for counterexample analysis is
O(nm logm), in accordance with Proposition 3.3. However, it may be necessary for counterex-
ample analysis to sift every transition against (asymptotically) every temporary discriminator,
which means that O(k n 2) queries, each containing O(n +m) =O(m) symbols need to be per-
formed. This results in an overall symbol complexity of O(k n 2m+nm logm), which is the same
as for Observation Pack. In Section 5.5, we will however see that the number is much smaller in
practice.

Space Complexity. Storing the spanning-tree hypothesis requires space inΘ(k n). As remarked
in Proposition 4.1, the discrimination tree—after elimination of all temporary discriminators,
and assuming that final discriminators are stored in a trie—can be stored in linear space, i.e.,

105

5. The TTT Algorithm

Θ(n). Note that temporary discriminators are always suffixes of counterexamples, and thus can
be stored in constant space (represented by a single index) in addition to the counterexample.
Since the counterexample is provided to the learner from outside, i.e., the learner is not respon-
sible for storing it, and all temporary discriminators have been eliminated when a refinement
step is finished, it can be argued that all data under the control of the learner never requires
more than Θ(k n) space.

The following proposition completes our preliminary analysis.

Proposition 5.1

The TTT algorithm correctly infers a model for an unknown regular output function using at
most n −1 equivalence queries and O(k n 2+n logm) membership queries, which altogether
contain O(k n 2m +nm logm) symbols.

5.3.2. Space Optimality

The loose analysis in the previous section showed that the overall space consumption is Θ(k n),
and this space requirement is dominated by the spanning-tree hypothesis. In the introduc-
tion to this chapter, we have claimed that the space complexity of TTT is even optimal. While
it may be intuitive that a “reasonable” automaton representation (e.g., via a transition table)
needs Θ(k n) space, it is not entirely self-evident that there should not be better ways of storing
canonical DFAs: after all, a transition table neither ensures that all states are reachable, nor that
they are pairwisely inequivalent.

A first hint that this can be neglected is the (perhaps surprising) observation that the vast
majority of all DFAs of a given size are canonical: according to Domaratzki et al. [63], there are
26,617,614 distinct (i.e., accepting distinct languages) canonical DFAs with n = 4 states over an
alphabet of size k = 3. If the canonicity requirement is dropped (i.e., including also those lan-
guages that can be accepted by DFAs with n ∈ {1,2,3} states), the number of distinct accepted
languages grows by a mere 0.2% to 26,659,656.

However, these numbers only consider non-isomorphic DFAs, and it is still possible to encode
the same (up to isomorphism) DFA in a transition table in (n −1)! different ways. To prove opti-
mality of the space complexity, we need to move away from a uniform cost model and analyze
the space complexity in a logarithmic cost model, i.e., considering how many bits are required
for the respective data structures.

It is well known that for encoding an object x ∈S , on average �log|S |� bits are required to dis-
tinguish it from all the other objects in S . Thus, if the number of (non-isomorphic) canonical
DFAs with n states over an alphabet of size k is fk (n), showing that the space complexity of TTT

is in O(log fk (n)) proves optimality.
Domaratzki et al. [63] give a lower bound of fk (n)≥ f1(n)n (k−1)n , which can be intuitively ex-

plained as follows: let A be a canonical DFA over a unary alphabet Σ1. If this DFA is extended
to a DFA A′ over Σ⊇Σ1 by adding arbitrary transitions for input symbols in Σ\Σ1, A′ remains
canonical: every pair of states is separable by a word in Σ1, and the Σ1 transitions in A′ are the
same as in A. Since there are n (k−1)n possible choices for the new transitions, the above result
follows. Obtaining a lower bound for f1(n) is considerably harder, and we will content ourselves
by simply reporting the combined result that fk (n)∼n2n−1n (k−1)n . As a consequence, we obtain
log fk (n)∈Θ(k n logn).

106

5.4. Adaptation for Mealy Machines

What about the space complexity of TTT in the logarithmic cost model? The discrimination tree
contains at most 2n−1 nodes, each of which needs to store a pointer to its parent.9 Furthermore,
inner nodes need to store pointers to their two children and to one of the n−1 nodes in the suffix
trie, and leaves need to store a pointer to one of the n states in the hypothesis. As in all cases the
number of potential target objects is in Θ(n), no more than Θ(logn) bits are required per node
in the discrimination tree, yielding an overall logarithmic space complexity of Θ(n logn).

In the suffix trie, the only data that need to be stored for each node are its parent and the
alphabet symbol labeling the outgoing edge. This yields a logarithmic space complexity of
Θ(logn + logk) per node, and thus Θ(n logn +n logk) in total.

Again, the spanning tree hypothesis is the most crucial. Every state needs to maintain whether
it is accepting or not (Θ(1) bits), a reference to its corresponding node in the discrimination
tree (Θ(logn) bits), its parent state in the spanning tree (Θ(logn) bits), and k outgoing transi-
tions. Each transition needs to store whether it is a tree or non-tree transition (Θ(1) bits), and
its target state (tree transition) or node in the discrimination tree (non-tree transition), both of
which can be referred to using Θ(logn) bits. Note that it is not necessary to store the alphabet
symbol associated with a transition, as this is given implicitly by the ordering of the outgoing
transitions of a state (for a more efficient computation of access sequences, it makes sense to
store the symbol associated with the unique incoming tree transition, which contributes an un-
critical Θ(n logk) bits in total). Combining all this, we obtain an overall space consumption of
Θ(n+n logk +nk logn)=Θ(k n logn) bits for the spanning-tree hypothesis, which therefore also
dominates the overall space consumption.

Proposition 5.2

The TTT algorithm is space-optimal, i.e., every correct active DFA learning algorithm has the
same or a worse asymptotic space complexity in the logarithmic cost model.

5.4. Adaptation for Mealy Machines

In this section, we briefly want to discuss how TTT can be adapted to learn Mealy machines. The
formal framework has already been established in Section 3.5, including the necessary adap-
tions to data structures: for learning Mealy machines, the discrimination tree is no longer nec-
essarily a binary tree, but inner nodes can have arbitrary outdegree. As a consequence, many
new states can be discovered en passant, which CLOSETRANSITIONS from Algorithm 4.6 how-
ever already takes care of. Furthermore, the spanning-tree hypothesis must maintain for each
transition its output symbol.

Finalization rules. Of particular importance for TTT is the finalization of discriminators.
When learning Mealy machines, the separator for two states cannot always be extracted from
the separator of its successors. Rather, two states might differ due to their transition outputs.
Figure 5.12a illustrates the abstract finalization rule for this case: if the output of the a -transition

9In the algorithmic descriptions in this chapter, we have furthermore assumed that a node in the discrimination
tree stores the set of all incoming non-tree transitions, which would require in total Θ

�

k n log(k n)
�

=Θ
�

k n (logk +
logn)

�

additional bits, and thus exceed the established lower bound—at least for large alphabets, i.e., k =nω(1). How-
ever, these transitions can also be determined by iterating over all transitions in the entire hypothesis, and processing
those that have a matching target node on-the-fly. This introduces additional computation effort, but does not affect
correctness nor query and/or symbol complexities.

107

5. The TTT Algorithm

q1

q2

q1

q2q2q

a/x

a/y

⇒

q1

q2

q1

q2q2q

a
x

y

(a) Output rule

q1

q2

q1

q2q2q

v

a/x

a/x

o

o ′
⇒

q1

q2

q1

q2q2q

a v
x ·o

x ·o ′

(b) Successor rule

Figure 5.12.: Abstract visualization of finalization rules for Mealy machines

of two states q1 and q2 differs, a can be used to separate these states, regardless of the targets of
these transitions. Another adaption concerns the classical finalization rule, i.e., for states q1,q2,
the a -transitions of which point into different blocks. In this case, the output of the a -transitions
(say x , and assuming that the transitions have the same output, otherwise the aforementioned
rule applies) can be prepended to the outputs of the a -successors wrt. their separator v (say,
o ,o ′ ∈Ω∗), to form the outputs separating q1 and q2 according to a v . This is illustrated in Fig-
ure 5.12b.

Output inconsistencies. If no finalization is possible while there still are non-singleton blocks,
the TTT algorithm analyzes an output inconsistency (which must exist) to introduce a new state,
as described in Section 5.2.3. An important observation was that the hypothesis, in spite of
its non-determinism due to non-singleton blocks, nevertheless exposes a deterministic output
behavior, i.e., condition (5.1) defined on p. 94 allowed us to define state output functions that
are invariant under all possible resolutions of non-determinism (through hard sifting).

The finalization rule from Figure 5.12a ensures that, whenever no finalization step is possible,
every two states in each block have the same transition outputs. Formally:

∀B ∈π(T) :∀q1,q2 ∈B ,a ∈Σ :γH(q1,a) =γH(q2,a).

This means that it is possible to assign homogeneous transition outputs to entire blocks, which
in conjunction with (5.1) can be extended from single symbols to words (i.e., the extended transi-
tion output functionγ∗H remains deterministic when lifted to sets of states within a single block).
This makes it possible to define deterministic state output functions whenever no finalization
is possible, thus allowing us to detect output inconsistencies.

Subtree extraction. A final modification concerns the extraction of subtrees, as described in
Section 5.2.4 (in particular Algorithm 5.3). Since it is not known a priori which output values
wrt. the replacement discriminator v will be observed (and the set of all possible outcomes Ω|v |

may be too large), the inc and state maps in Algorithm 5.2 have to be maintained as mapping
nodes (or leaves, in the latter case) to (sparse) maps from Ω∗ to sets of transitions or states. Con-
sequently, the mark mapping maps nodes to subsets of Ω∗, and the subtree extraction has to
be adapted to extract a subtree of every element of the mark set of the currently visited node
(except for the case when the mark set contains only a single value, as then the inner node is

108

5.5. Evaluation

eliminated and the incoming transitions “fall through”). In particular, this means that lines 19–
21 need to be adapted to call EXTRACT for every element of mark[rB], and the results of these
calls form the children of the newly created inner node.

5.5. Evaluation

The query and symbol complexity analysis in Section 5.3 may seem a bit frustrating: all the ad-
ditional effort did not allow us to reduce the asymptotic worst-case complexities of the Observa-
tion Pack algorithm. However, this analysis was based on overly pessimistic assumptions, such
as the necessity for hard sifting every non-tree transition to enable counterexample analysis.

We therefore have conducted a series of experiments in which we attempt to measure the
practical performance of active automata learning algorithms. As the results in this section will
show, the TTT algorithm does in fact uniformly outperform every other algorithm in the pres-
ence of non-optimal counterexamples.

5.5.1. Evaluation Metrics

In accordance with the theoretical complexity analyses, we will measure the practical perfor-
mance by considering how many membership queries were required to completely learn se-
lected target systems, how many symbols these queries contain, and how many unsuccessful
equivalence queries (i.e., how many counterexamples) were required.

Most learning algorithms (some more than others) pose the same queries more than once.
These redundancies may be due to the inherent structure of the learning algorithm, or occur
merely coincidentally, e.g., during counterexample analysis. In situations where membership
queries are the predominant bottleneck, it is common to use a cache to store the answers to pre-
viously asked queries [130], avoiding duplicates. Thus, in some experimental setups, we will dis-
tinguish between total queries (those posed by the learner) and unique queries (those that could
not be answered by the cache). The same applies to the number of symbols in these queries.

There are several possible ways of realizing equivalence queries. Since in all of our experiments
we have a model of the target system at our disposal, it is possible to realize so-called “perfect”
equivalence queries by means of simply checking equivalence between the hypothesis and the
target DFA (e.g., using the near-linear algorithm by Hopcroft and Karp [89]). Such equivalence
queries provide minimal counterexamples that are typically easy to analyze, but provide rela-
tively little information.

In realistic scenarios, perfect equivalence queries are not available. Instead, equivalence
queries are typically approximated using membership queries, often employing randomization
(e.g., random sampling of words). Sophisticated strategies, which have proven to be quite suc-
cessful in practice, have been presented by Howar [93]. However, the clever search for coun-
terexamples is only indirectly related to the TTT algorithm itself (cf. also Section 4.2.4). Instead,
we want to investigate the typical problem of such heuristics, namely that they often yield un-
necessarily long counterexamples. Thus, exploiting our knowledge of the target systems in the
experimental setup, we will randomly generate true counterexamples of certain lengths, and
investigate the impact of the counterexample length on the performance.

We will not consider the actual (wall-clock) runtimes, as these primarily measure the quality
of the implementation, and not of the algorithm itself. For this reason, the hardware specs of

109

5. The TTT Algorithm

Algorithm Queries Symbols CEs

total unique total unique

L∗ 2,294,747 2,232,100 28,311,774 27,605,073 74

Rivest/Schapire 1,508,780 1,464,614 17,728,161 17,257,794 70

Suffix1by1 1,551,177 1,503,369 18,275,210 17,758,490 68

Observation Pack 73,027 61,728 797,705 682,764 590

Kearns/Vazirani 102,615 61,554 1,088,394 681,213 592

TTT 72,361 61,535 793,465 681,528 592

Table 5.1.: Performance of selected learning algorithms on thepots2 example (n =664, k =32)
with perfect equivalence queries

the system on which the experiments were conducted do not matter. All experiments have been
conducted on algorithms implemented in LearnLib10 [112], a Java-based active automata learn-
ing framework developed by the author and others.

5.5.2. Realistic Systems

The first class of systems that we want to consider are models of “realistic” systems that were
obtained from the CADP toolset [69]: a model of a plain old telephony system (pots2; n = 664,
k = 32), and a model of Peterson’s mutual exclusion protocol (peterson3; n = 1328, k = 57).
These systems have frequently been used as benchmarks for active automata learning algo-
rithms, e.g., by Berg et al. [32] and Howar [93].

Perfect Equivalence Queries

In the first series of experiments, we assume that perfect equivalence queries are available, i.e.,
the teacher provides minimal counterexamples to the learner. We compare the performance on
the above-mentioned systems in this setting for six different algorithms:

• three observation-table based algorithms: the original L∗ by Angluin [19], the improved
version by Rivest and Schapire [155], and the Suffix1by1 heuristic by Irfan et al. [105, 106].
Since the latter is guaranteed to only add a subset of the suffixes that would be added by
L∗

col [127] and Shahbaz’s algorithm [161], it is to be expected that these have a similar or
worse performance than Suffix1by1.

• three discrimination tree-based algorithms: Kearns and Vazirani’s algorithm [115], the
Observation Pack by Howar [93], and the TTT algorithm.

The results for pots2 are shown in Table 5.1. For the observation table-based algorithms,
Rivest and Schapire’s algorithm and Suffix1by1 perform slightly better than the original L∗ al-
gorithm, and require roughly the same number of counterexamples. The discrimination tree-
based algorithms all perform similar to each other when unique queries are considered (Kearns

10http://learnlib.de/

110

http://learnlib.de/

5.5. Evaluation

Algorithm Queries Symbols CEs

total unique total unique

L∗ 10,787,029 10,621,252 183,545,947 180,939,208 84

Rivest/Schapire 8,932,489 8,776,885 144,285,141 141,923,902 117

Suffix1by1 8,932,246 8,776,870 144,523,450 142,161,533 111

Observation Pack 149,021 123,420 2,114,674 1,754,539 1,202

Kearns/Vazirani 230,168 123,480 3,151,542 1,756,274 1,202

TTT 147,818 123,416 2,102,141 1,754,456 1,202

Table 5.2.: Performance of selected learning algorithms on thepeterson3 example (n =1328,
k =57) with perfect equivalence queries

and Vazirani’s algorithm poses significantly more duplicate queries than the other two algo-
rithms). Their number of both queries and symbols is lower by a factor of 20–30x compared to
the table-based algorithms, while requiring about ten times as many counterexamples.

Table 5.2, which displays the results forpeterson3, shows similar characteristics: this time,
the number of queries of the discrimination tree-based algorithms (which all three have almost
the same performance, again with the notable exception that Kearns and Vazirani’s algorithm
poses more duplicate queries) is lower by a factor of 70–85x, and the number of symbols even
by a factor of 80-100x. However, this time even more than ten times as many counterexamples
are required.

The vast performance difference between observation table-based and discrimination tree-
based justifies to concentrate on the latter in the remaining evaluations. While they require sig-
nificantly more equivalence queries, it is to be expected that exploiting the much lower number
of membership queries to realize sophisticated heuristics for finding counterexamples [93, 94]
is the much more beneficial approach in settings where equivalence queries can only be ap-
proximated (cf. also Section 4.2.4).

Counterexamples of Growing Length

The previous setting of perfect counterexamples showed no significant differences between the
three discrimination tree-based algorithms (if only unique queries are considered). This is not
surprising: part of our motivation for the TTT algorithm was the problem of long counterexam-
ples. Clearly, if counterexamples are of minimal length, the effort spent on replacing temporary
discriminators can hardly yield significant returns (but also does not incur noticeable overhead).

For the next series of experiments, we change the setting to randomly generating true coun-
terexamples of varying length (between 20 and 200, in increments of 10), and consider the (query
and symbol) performance of a learning algorithm as a function of the counterexample length.
Due to the observed characteristic of Kearns and Vazirani’s algorithm to pose duplicate queries,
a cache is employed also in this series of experiments, such that we will only consider unique
queries. Furthermore, due to the findings reported by Isberner and Steffen [108] (cf. also Sec-
tion 3.3.5), exponential search will be used to analyze counterexamples for all algorithms.11

11Since Kearns and Vazirani’s algorithm is prefix-based, while the other two algorithms are suffix-based, the di-
rection of the search is reversed for the former.

111

5. The TTT Algorithm

0.5

1

1.5

2

2.5

3

20 40 60 80 100 120 140 160 180 200

Qu
er
ie
s
[x

10
^
5]

Counterexample length [symbols]

KV
OP
TTT

(a) Number of unique queries (pots2)

0

0.5

1

1.5

2

2.5

3

3.5

20 40 60 80 100 120 140 160 180 200

Sy
m
bo
ls
[x

10
^
7]

Counterexample length [symbols]

KV
OP
TTT

(b) Symbols in unique queries (pots2)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

20 40 60 80 100 120 140 160 180 200

Qu
er
ie
s
[x

10
^
6]

Counterexample length [symbols]

KV
OP
TTT

(c) Number of unique queries (peterson3)

0

0.5

1

1.5

2

2.5

3

3.5

20 40 60 80 100 120 140 160 180 200

Sy
m
bo
ls
[x

10
^
8]

Counterexample length [symbols]

KV
OP
TTT

(d) Symbols in unique queries (peterson3)

Figure 5.13.: Performance of discrimination tree-based algorithms on pots2 and
peterson3

1

1.5

2

2.5

20 40 60 80 100 120 140 160 180 200

Q
ue
rie
s
[x

10
^
5]

Counterexample length [symbols]

KV
TTT

(a) Number of unique queries

0

0.5

1

1.5

2

2.5

20 40 60 80 100 120 140 160 180 200

Sy
m
bo
ls
[x

10
^
7]

Counterexample length [symbols]

KV
TTT

(b) Number of symbols in unique queries

Figure 5.14.: Zoomed-in version of the plots from Figures 5.13c and 5.13d, excluding Observa-
tion Pack

112

5.5. Evaluation

5.04

5.06

5.08

5.1

5.12

5.14

5.16

5.18

5.2

0 100 200 300 400 500

Q
ue
ri
es

[x
10
^
5]

Counterexample length [symbols]

KV
OP
TTT

(a) Number of unique queries

0

1

2

3

4

5

6

7

0 100 200 300 400 500

S
ym
bo
ls
[x
10
^
7]

Counterexample length [symbols]

KV
OP
TTT

(b) Number of symbols in unique queries

Figure 5.15.: Results for a randomly generated DFA (n =1000, k =50)

The results for this series of experiments are shown in Figure 5.13. The Observation Pack al-
gorithm (OP), on which TTT is based, performs rather poorly and is affected heavily by long
counterexamples. Kearns and Vazirani’s algorithm (KV) performs significantly better, but TTT

still uses by far the least number of both queries and symbols. Even in the zoomed-in versions
of the plots for peterson3 (shown in Figure 5.14), hardly any impact of the counterexample
length on TTT’s performance can be seen.

5.5.3. Randomly Generated Automata

Randomly generated automata often exhibit characteristics which are rarely found in real-life
systems. For example, they can typically be learned requiring only a small number of counterex-
amples even for discrimination tree-based algorithms. Howar et al. [94] report that in the ZULU
challenge [58], in which the participants were to infer models of randomly-generated DFAs, on
average three membership queries were sufficient to identify a new state. Nevertheless, the fact
that randomly generating DFAs allows fine-tuning of their parameters (e.g., state space and al-
phabet size, ratio of accepting vs. non-accepting states etc.) makes them an important bench-
mark for evaluating learning algorithms.

Counterexamples of Growing Length

For the first series of experiments on randomly generated DFAs, a single DFA with n =1000 states
over an input alphabet of size k = 50 was generated.12 The size of generated counterexamples
was then increased from 10 to 500 in increments of 10, and for each counterexample length, 5
independent runs were conducted for each algorithm (on the same DFA, however).

The results are shown in Figure 5.15. TTT generally needs the lowest number of membership
queries (cf. Figure 5.15a), but all three algorithms are within a very close range. Unlike in the

12The characteristics of the result did not change significantly when varying both the alphabet and the state space
size.

113

5. The TTT Algorithm

previous series of experiments, the length of counterexamples seems to have no effect on the
number of queries. A possible explanation is that for (uniformly) randomly generated systems,
every word has the same expected discriminatory power, meaning that on average it partitions
a randomly chosen set of states in two almost equal halves (the fact that the DFA itself was ran-
domly generated prohibits any biases). This leads to nearly perfectly balanced discrimination
trees. On systems that exhibit a more specific structure, long suffixes (as occurring when using
the Observation Pack algorithm, but not Kearns and Vazirani’s algorithm) are disadvantageous,
as they are more specific and thus do not partition sets of states in a balanced way.

The combined number of symbols in all unique queries is shown in Figure 5.15b. Again, TTT

remains nearly unaffected by counterexamples of growing length. However, in contrast to the
previous series of experiments (cf. Figure 5.13), the performance of the Observation Pack al-
gorithm is much closer to that of TTT, while the number of symbols required by Kearns and
Vazirani’s algorithm grows quickly with the length of the counterexamples.

Automata of Growing Size

As the prefix-based counterexample analysis strategy implemented in Kearns and Vazirani’s al-
gorithm handles long counterexamples on randomly generated DFAs rather poorly, in our last
series experiments we focus on a direct comparison between Observation Pack and TTT. This
time, we randomly generated DFAs of sizes between 10 and 1000 (in increments of 10) over an
alphabet of size k =25, and averaged both membership queries and symbol counts over 10 runs
on different automata with the same state count.

For the previous experiment series with non-optimal counterexamples, we used a fixed coun-
terexample length throughout the entire course of a single learning process. This time, we
choose as the length for each counterexample 1.5 times the number of states in the current
hypothesis. Note that this means that counterexamples in early phases of the learning process
will be shorter, which should not make a difference for TTT but might be advantageous for other
algorithms.

The number of queries, shown in Figure 5.16a, shows hardly any difference between TTT and
Observation Pack. In fact, both curves almost perfectly fit k n logn , which is the “optimal” query
complexity with a fully balanced discrimination tree. Still, the difference in the number of sym-
bols (cf. Figure 5.16b) is significant: TTT requires only about one-third as many symbols as Ob-
servation Pack, even though the generated counterexamples were of rather moderate length.

5.5.4. Interpretation of the Results

The experimental results we reported on in the previous subsection clearly position TTT as the
preferable learning algorithm in almost any circumstance: in the settings with perfect equiva-
lence queries, when we can expect nothing to be gained by optimizations geared towards exces-
sively long counterexamples, TTT is on par with the other discrimination tree-based algorithms
(which, in turn, are clearly superior to the observation table-based ones). However, in virtually
every scenario with non-minimal counterexamples, TTT requires a significantly lower number
of symbols (and sometimes also queries) than the other two discrimination tree-based algo-
rithms. In fact, TTT seems to be virtually unaffected by growing counterexample lengths, as
neither its symbol nor query performance changes observably.

114

5.5. Evaluation

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000

Q
ue
ri
es
[x
10
^
5]

State count

OP
TTT

(a) Number of unique queries

0

1

2

3

4

5

6

7

0 200 400 600 800 1000

S
ym
bo
ls
[x
10
^
6]

State count

OP
TTT

(b) Number of symbols in unique queries

Figure 5.16.: Results for randomly generated DFAs of growing size (k =25), using 1.5|H| as coun-
terexample length

An interesting aspect is that in some settings, the Observation Pack algorithm clearly beats
Kearns and Vazirani’s algorithm, while in other settings it is the other way round. This is most
likely due to different characteristics of prefix- and suffix-based counterexample analysis, which
constitutes the main difference between the two algorithms: apparently, either the structure of
the system or the method of generating counterexamples in one case favors prefix-based anal-
yses, whereas in the other case it favors suffix-based analyses. The TTT algorithm, on the other
hand, always outperforms them both, even in settings where the suffix-based analysis which it
is based upon is apparently disadvantaged.

Moreover, an important observation is that on systems of realistic structure, TTT significantly
reduces the number of membership queries compared to the other two algorithms, while this
effect cannot be observed for randomly generated systems. We conjecture that this is due to the
fact that in the former case, the shorter discriminators found by TTT partition the sets of states
more evenly, leading to better-balanced discrimination trees. This also explains the advantage
of Kearns and Vaziranis’ algorithm over Observation Pack on these systems, and furthermore
once again shows that randomly generated automata have their limits when it comes to expos-
ing characteristics of learning algorithms.

It should be noted that in all experiments, the length of the counterexamples were rather moder-
ate, as they hardly exceeded a length of n . If counterexamples result from monitoring executions
of live systems, as sketched in Figure 5.1, traces can easily exceed lengths of tens of thousands of
symbols. It can be clearly stated that in such a setting, the use of any other algorithm than TTT

is simply infeasible, as the plots clearly show that the gap between TTT’s performance and that
of the other algorithms grows further—even in relative terms—with increasing counterexample
lengths.

115

6. Learning Visibly Pushdown Automata

In the previous part of this thesis, we have examined the foundation of learning finite-state ma-
chines. In particular, we have developed a framework that allows to treat the majority of existing
learning algorithms uniformly, which is essential for identifying and comparing their character-
istics. These considerations have led to the identification of a number of desirable properties,
and, based on these, the development of an algorithm with superior practical performance.

However, the approach laid out in the previous chapters inherently relies on approximating—
and finally identifying—the Nerode congruence. Thus, it is constrained to �3, i.e., the class of
regular languages, as languages in these class are characterized precisely by their number of
Nerode equivalence classes being finite. The finite index of the Nerode congruence guarantees
that, after a finite number of refinement steps (counterexamples), we obtain a correct model for
the target language (cf. Theorem 3.2, p. 33).

The above restriction hinders practical applications of active automata learning, as many real-
life systems exhibit non-regular behavior, i.e., they cannot be modeled using finite-state ma-
chines, as they maintain some form of unbounded memory.1 A possible approach is to switch
the goal from identifying a certain language (or, more generally, output function) to merely ap-
proximating it. As a non-regular language is characterized by the fact that recognizing it re-
quires unbounded space, it can be approximated by placing a finite bound on this space re-
quirement. As an intuitive example, it is well known that the language of matching parentheses
(i.e., L () = {ε,(),()(),(()),...}) is not regular. However, if a bound is placed on the nesting depth of
parentheses, it becomes regular again. Other non-regular languages can be approximated in a
similar fashion.

If the methods presented so far are applied to non-regular languages, an equivalence query
would, in principle, never indicate success, but continuously provide new counterexamples.
These counterexamples determine the nature of the approximation. The extent to which the
result preserves the semantics of the original language is highly dependent on the counterexam-
ples provided to the learner, a factor that cannot always be controlled. Moreover, there might
be languages that are inherently irregular to such an extent that no reasonable regular approxi-
mation conveys their essence in a satisfactory way.

The question of how much further up in the Chomsky hierarchy we can go and still obtain re-
sults as strong as for the regular case naturally arises. Unfortunately, we already hit a road block
when considering the next class �2 in the Chomsky hierarchy, i.e., the class of context-free lan-
guages. While having been actively investigated, learning formal descriptions of context-free
languages (such as context-free grammars) comes with numerous difficulties, and theoretical
learnability results for the full class are generally negative (de la Higuera [61] provides a survey),

1There typically are two forms of manifestations of this unboundedness (which can occur simultaneously): in
one case, there is a finite number of memory locations, which however can store data values from an infinite domain
(e.g.,�). An example for this class are register automata [43, 114]. Another model is to assume an unbounded number
of memory locations, each of which can store values from a finite domain. An example for the latter are the visibly
pushdown automata that we will consider in this chapter.

117

6. Learning Visibly Pushdown Automata

or overly restricted: Angluin [19], for instance, discusses active learning of context-free gram-
mars in Chomsky normal form, but under the assumption that the set of non-terminals and the
start symbol are known to the learner, and furthermore membership queries can be asked for
each language generated by a specified non-terminal, not just the start symbol. On the more
fundamental side, even in a white-box setting it is impossible to realize a minimally adequate
teacher, as the equivalence of two context-free grammars is undecidable.

It is well known that the machine model corresponding to context-free languages are push-
down automata (PDA). A PDA can be described as a (nondeterministic) finite automaton
equipped with a stack. Symbols (from a finite alphabet, which may be entirely different from
the input alphabet) can be pushed onto the stack, and the behavior of the automaton may de-
pend on the symbol on top of the stack, which can be removed (popped) during the execution
of a transition.

The fact that PDAs are equipped with a stack makes them attractive as a model for systems
with function calls and recursion [41, 42], which can also be modeled by pushing the current
state onto the stack when a call is made, and restoring the state upon returning by popping the
old state from the stack. Unfortunately, PDAs in general are a far too strong model for this ap-
plication in a verification context: from universality over equivalence to inclusion, pretty much
all properties concerning unrestricted context-free languages are undecidable [78].

The strict subclass of deterministic context-free languages [72], which can be recognized by
deterministic pushdown automata (DPDA), is significantly more well-behaved in this regard:
equivalence and universality are decidable for DPDAs, but other properties such as inclusion
remain undecidable [23, 67]. Moreover, the class of deterministic context-free languages lacks a
number of closure properties: the union of two deterministic context-free languages might be
a nondeterministic context-free language. To summarize, even if we were able to obtain PDA or
DPDA models by active learning, they would most likely be of only limited use in many applica-
tion contexts due to their computational intractability.

As a remedy, Alur and Madhusudan [11] proposed visibly pushdown languages (VPLs) as a re-
stricted form of context-free languages that admit decidability of the majority of interesting
properties, and are closed under most operations such as complementation, union, or inter-
section. Thus, VPLs mirror many desirable characteristics of regular languages, even though
the complexities of most operations are much higher than for regular languages [166]. The cor-
responding machine model are visibly pushdown automata (VPAs), which constitute a restricted
form of PDAs.

The word “visibly” refers to the fact that each symbol of the input alphabet (usually denoted
by �Σ, see below for a formal description) belongs to exactly one of three classes, and each class
uniquely determines the stack operation: call symbols push a symbol onto the stack, while re-
turn symbols pop a symbol off the stack; internal symbols do not modify or even inspect the
stack. It should be noted that the restriction compared to general (deterministic) context-free
languages manifests itself not primarily in the fact that it is communicated to the outside what
actions are performed on the stack (and the symbols being pushed onto the stack furthermore
remain invisible to the outside), but rather in the fact that there is a fixed association between
input symbols and stack actions. For example, the language L () of matched parentheses is a VPL

for a suitable partition of the input alphabet (i.e., if “(” is treated as a call and “)” as a return
symbol), while LPal =

�

w w R |w ∈Σ∗
�

, the language of even-length palindromes, is not a VPL, as
each symbol would need to behave as a call symbol in the first half, and as a return symbol in the

118

6.1. Preliminaries

second half. However, if VPAs are used as a model for programs with recursion, this restriction
is negligible, as calls and returns are both visible and clearly designated.

Another interesting property of VPLs (which they share with regular languages) is that there
is no loss in expressive power when constraining the corresponding machine model (finite au-
tomata or VPAs) to deterministic behavior. That is, any VPL can be recognized by a determini-
stic VPA, and any non-deterministic VPA can be determinized without changing the accepted
language. While this possibly incurs an exponential blow-up, it allows us to focus on the con-
ceptually simpler deterministic version without any loss of expressive power. Thus, in the sequel
we generally write VPA to refer to the deterministic version, unless otherwise noted.

The favorable properties of VPLs and VPAs make them a natural candidate for investigating the
extent to which the framework developed for actively learning regular languages can be trans-
ferred to a richer class. Kumar et al. [119] have presented a learning algorithm for a special type
of VPAs, called modular VPAs. Their learning algorithm is an adaption of the algorithm by Kearns
and Vazirani [115], and while their notion of modular VPAs is restricted in the sense that there
can only be a single return, it can easily be generalized. However, their algorithm contains no
optimizations whatsoever, and in particular may have an exponential query complexity even if
only minimal counterexamples are provided. In this chapter, we will show how the techniques
from the previous chapters, which paved the way for an efficient DFA learning algorithm, can
be transferred to learning VPAs.

6.1. Preliminaries

We start by formalizing some of the above-mentioned concepts. The first step is to define the
adapted alphabet structure, with its designated call and return symbols. The majority of defi-
nitions and propositions in this section can be found similarly in the original paper describing
VPLs by Alur and Madhusudan [11], some of which have been adjusted to make for a simpler
presentation of the main contents of this chapter.

Definition 6.1 (Visibly Pushdown Alphabet)

A visibly pushdown alphabet is a triple �Σ= 〈Σcall,Σret ,Σint〉, where

• Σcall is a finite set of call symbols,

• Σret is a finite set of return symbols,

• Σint is a finite set of internal symbols,

and Σcall,Σret ,Σint are pairwisely disjoint.

In the sequel, we will identify �Σ with the set Σcall ·∪Σret ·∪Σint , i.e., the disjoint union of all its
component sets. This allows us to write �Σ∗ to denote the set of all words over �Σ.

6.1.1. Well-Matched Words

As mentioned in the introduction of this chapter, call and return symbols correspond to push
and pop operations on the stack of a recognizing VPA. The set �Σ∗ contains all possible (finite)
sequences over �Σ, including those that begin with a return symbol (corresponding to a pop on

119

6. Learning Visibly Pushdown Automata

an empty stack), and those that end with a call symbol (corresponding to a non-empty stack
at the end). While it is perfectly possible to define corresponding semantics for these cases, it
often makes sense (and considerably simplifies presentation) to explicitly exclude such cases.
The following definition helps formalizing this.

Definition 6.2 (Call/return balance)

Let �Σ= 〈Σcall,Σret ,Σint〉 be a visibly pushdown alphabet. The call/return balance is a function
β : �Σ∗ →�, defined as

β (ε) =df 0, β (w ·a) =df β (w)+

1 if a ∈Σcall

−1 if a ∈Σret

0 if a ∈Σint

∀w ∈ �Σ∗,a ∈ �Σ.

Note that the call/return balance β is a purely syntactical measure: for instance, it does not
depend on any semantical assumptions about what popping an empty stack entails. However,
it allows us to concisely define the concept of call-matched, return-matched, and well-matched
words.

Definition 6.3 (Call-matched, return-matched, well-matched)

Let �Σ= 〈Σcall,Σret ,Σint〉 be a visibly pushdown alphabet. w ∈ �Σ∗ is called . . .

(i) return-matched if and only if for all prefixes u ∈ Pref(w), we have β (u)≥ 0. The set of
return-matched words over �Σ is denoted by MR(�Σ).

(ii) call-matched if and only if for all suffixes v ∈Suff(w), we have β (v)≤ 0. The set of call-
matched words over �Σ is denoted by MC(�Σ).

(iii) well-matched if and only if w is both return-matched and call-matched. The set of well-
matched words over �Σ is denoted by WM(�Σ) =MR(�Σ)∩MC(�Σ).

The following properties of call-, return-, and well-matched words complement the above,
rather technical definition by providing an intuition on how these words are structured.

For any word w ∈ �Σ∗ of the form w = u c v (u ,v ∈ �Σ∗,c ∈Σcall), if there exists a decomposition
of v into v = v ′r v ′′ (v ′,v ′′ ∈ �Σ∗,r ∈Σret) such that v ′ is well-matched, we call r the matching
return for c .2 If such a decomposition exists, it is unique, and we say that c is matched (or is a
matched call) in w . Otherwise, we say that c is unmatched (in w).

Analogously, if w = u r v (u ,v ∈ �Σ∗,r ∈Σret), we say that r is matched (or is a matched return)
if there exists a decomposition of u into u ′c u ′′ such that u ′′ is well-matched, and c is called the
matching call for r . Again, this decomposition is unique if it exists, and if it does not exist, we
say that r is unmatched (in w). We write w = u c w ′r v to express the fact that c and r match
each other in w .

If w ∈MR(�Σ), every return symbol in w is matched, and we can uniquely decompose w into
w = w1c1w2c2 ...cm−1wm , such that each wi , 1≤ i ≤m , is a well-matched word, and ci ∈Σcall,
1≤ i <m , are the unmatched calls in w . The same works for a word w ∈MC(�Σ), which can be

2Here, the identifiers c and r refer to the symbols in the context of the word w , not symbols from Σcall and Σret
as isolated entities.

120

6.1. Preliminaries

decomposed into w1r1w2r2 ...rm−1wm , where each wi is well-matched, and ri ∈Σret , 1≤ i <m ,
are the unmatched returns in w . Finally, a well-matched word w ∈WM(�Σ) contains neither un-
matched calls nor unmatched returns, which implies that each call symbol in w can be uniquely
associated with a return symbol in w , and vice versa.

6.1.2. Visibly Pushdown Automata

As mentioned before, a VPA is basically a finite-state machine equipped with an (unbounded)
stack, which can store symbols ranging over some alphabet Γ. Formally, we can model the con-
tents of a stack as a word over Γ, where the first symbol corresponds to the topmost symbol on
the stack, and so on. The empty stack is represented by the empty word ε. We define three func-
tions for operating on a stack: push adds a symbol to the top of the stack, while pop removes the
topmost symbol (it has no effect when invoked on the empty stack). Finally, peek returns the
top of a non-empty stack, and returns a special symbol ⊥ (that is not part of the stack alphabet
Γ) when invoked on the empty stack. Note that in the context of VPAs, peek always occurs in con-
junction with pop; merely inspecting the topmost symbol without removing it is not possible.

These operations can be formally defined as follows:

push: Γ ∗×Γ→ Γ ∗, push(σ,γ) =df γ ·σ ∀σ∈ Γ ∗,γ∈ Γ

peek : Γ ∗ → Γ ·∪{⊥}, peek(ε) =df ⊥, peek(γ ·σ) =df γ ∀σ∈ Γ ∗,γ∈ Γ

pop : Γ ∗ → Γ ∗ pop(ε) =df ε, pop(γ ·σ) =df σ ∀σ∈ Γ ∗,γ∈ Γ

Definition 6.4 (VPDA)

Let �Σ= 〈Σcall,Σret ,Σint〉 be a visibly pushdown alphabet. A (deterministic) visibly pushdown
automaton (VPA) over �Σ is a tuple A=

�

LA,�Σ,�0,A,ΓA,δA,FA
�

, where

• LA is a finite, non-empty set of locations,

• �0,A ∈ LA is the initial location,

• ΓA is the stack alphabet,

• δA is the transition function, and is defined as the union of three functionsδA=δcall,A ·∪
δret,A ·∪δint,A, where

– δcall,A : LA×Σcall → LA×ΓA is the call transition function,

– δret,A : LA×Σret × (ΓA ·∪{⊥})→ LA is the return transition function,

– δint,A : LA×Σint → LA is the internal transition function, and

• FA⊆ LA is a set of accepting (or final) locations.

Semantics of a VPA. We describe the semantics of a VPA A in terms of an infinite-state transi-
tion system, where S =df LA×Γ ∗A is the state (or configuration) space, and Act =df �Σ defines the

set of actions. The initial configuration is
�

�0,A,ε
�

. The transition relation −→⊆ (LA×Γ ∗A)× �Σ×
(LA×Γ ∗A) is defined as follows:

• 〈�,σ〉 i−→
�

�′,σ
�

if and only if δint,A(�,i) = �′ (for all �,�′ ∈ LA,i ∈Σint ,σ∈ Γ ∗A)

121

6. Learning Visibly Pushdown Automata

�0

�1

�2 �3

�4

c1/γ1 c2/γ2

a b

r /γ1 r /γ2

(a)

�0

�1 �2

�3

�4

c1/γ c2/γ

a b

r /γ

(b)

Figure 6.1.: Two VPAs accepting the same language L= {c1a r,c2b r }

• 〈�,σ〉 c−→
�

�′,push(σ,γ)
�

if and only if δcall,A(�,c) = (�′,γ) (for all �,�′ ∈ LA,c ∈Σcall,γ∈ Γ,σ∈
Γ ∗A)

• 〈�,σ〉 r−→
�

�′,pop(σ)
�

if and only if δret,A(�,r,peek(σ)) = �′ (for all �,�′ ∈ LA,r ∈Σret ,σ∈ Γ ∗A)

We define the (extended) transition function δA to reason about successor states using func-
tional notation, i.e., we treat it as a function δA : (LA×Γ ∗A)× �Σ∗ → (LA×Γ ∗A), where the value of

δA(〈�,σ〉,w) is defined as the unique pair
�

�′,σ′
�

∈ LA×Γ ∗A satisfying 〈�,σ〉
w
=⇒

�

�′,σ′
�

. A word

w ∈ �Σ∗ is accepted by a VPA if and only if there exist �∈FA,σ∈ Γ ∗A such that
�

�0,A,ε
� w
=⇒〈�,σ〉. The

language of a VPA is defined as the set of all words it accepts, i.e.,

L(A) =df

�

w ∈ �Σ∗ | ∃�∈ FA,σ∈ Γ ∗A :
�

�0,A,ε
� w
=⇒〈�,σ〉

�

.

Any language L⊆ �Σ∗ that is accepted by some VPA is a visibly pushdown language (VPL).

Visualization of VPAs. VPAs are visualized in a manner similar to finite-state machines, i.e.,
as a graph representing the transition structure. Two example VPAs over the visibly pushdown
alphabet �Σ= 〈Σcall,Σret ,Σint〉, where Σcall = {c1,c2}, Σret = {r }, and Σint = {a ,b }, and accepting the
languageL={c1a r,c2b r }, are shown in Figure 6.1: locations are drawn as circles, and an incom-
ing arrow without a source node indicates the initial location. Accepting locations are drawn as
double circles. Internal transitions are simply labeled with the respective internal action. La-
bels of call transitions are of the form c /γ, where c ∈Σcall is the call action, and γ∈ Γ is the stack
symbol that is being pushed onto the stack. Labels of return transitions look similarly, i.e., they
are of the form r /γ for a return symbol r ∈Σret , but in this context γ∈ Γ is the stack symbol that
is being popped from the stack. Not all transitions are shown in the VPAs from Figure 6.1; those
that are omitted lead into a sink location (not shown).

Restriction to well-matched words. Note that an empty stack is no prerequisite for acceptance,
and imposing this strictly reduces the expressive power, as the contents of the stack are con-
trolled by the call and return symbols occurring in a word w ∈ �Σ∗ only (in other words, this con-
strains the acceptable languages to subsets of MC(�Σ)). Similarly, encountering a return symbol

122

6.1. Preliminaries

when the stack is empty does not necessarily result in rejection, and enforcing this constrains
the acceptable languages to subsets of MR(�Σ). Thus, if both an empty stack is defined as a pre-
requisite for acceptance, and return transitions on ⊥ are prohibited, the accepted language is
necessarily well-matched. It is common to superimpose these rules by considering the well-
matched language LWM (A) =df L(A)∩WM(�Σ) of A. Since WM(�Σ) is a VPL, and VPLs are closed
under intersection, LWM (A) is always a VPL. In the sequel, we will only consider well-matched
languages, as it greatly simplifies the presentation.

For a well-matched word w ∈WM(�Σ), we always have δA(
�

�0,A,ε
�

,w) = 〈�,ε〉 for some �∈ LA.

This gives rise to define the location reached in A by a well-matched word w ∈WM(�Σ), denoted
by A[w], as the location � making the above equation true.

Remark 6.1

In particular in the context of automata learning, it is much more convenient to consider
output functions instead of languages. As we constrain ourselves to well-matched languages
only, we generally assume output functions to be of the form λ : WM(�Σ)→�, instead of the
more general signature λ : �Σ∗ →�, and refer to such a λ as a well-matched output function.
Expressions of the form λ(w), where w ∈ �Σ∗ \WM(�Σ), are still permitted, but assumed to be 0
regardless of the concrete function λ.

For a VPA A, the (well-matched) output functionλA : WM(�Σ)→� is defined as the character-
istic function of LWM (A)⊆WM(�Σ). If for some well-matched output function λ : WM(�Σ)→�
there exists a VPA A satisfying λ = λA, we refer to A as a (well-matched) visibly pushdown
(language) output function, or simply a (well-matched) VPL output function.

6.1.3. 1-SEVPAs and Normalized Stack Alphabets

Alur et al. [14]have shown that, in general, there is no unique minimal VPA for a given VPL L⊆ �Σ∗.
The reason is the degree of freedom permitting to distribute information across both locations
and stack contents. Consider, for example the VPAs from Figure 6.1. Both have the same number
of locations, without being isomorphic to each other. Furthermore, merging any two locations
inevitably changes the accepted language (note that for these VPAs, we did not assume a restric-
tion to well-matched words). However, the VPA shown in Figure 6.1a, while in the initial location
“remembers” the call symbol (c1 or c2, determining whether a or b is expected subsequently)
by pushing either γ1 or γ2 onto the stack, and moving to the target location �1. In contrast, the
VPA from Figure 6.1b pushes the same stack symbol γ onto the stack for both call symbols, but
remembers the call symbol by its choice of the target location (�1 or �2).

This conflict can only be resolved by imposing some restriction on the form of a VPA. In the
model of k -module single entry visibly pushdown automata (k -SEVPAs), this is achieved by par-

titioning Σcall to form a partition {Σ j
call}

k
j=1 of size k ,3 and requiring that for each c ∈Σcall, the

successor location be solely defined by the partition class to which c belongs. The set of loca-
tions is furthermore partitioned into k +1 subsets (“modules”), such that internal transitions
only run within the same module, and there is only one entry location (i.e., call target) per mod-
ule. It can be shown that, for a fixed k -partition of Σcall, 1≤ k ≤ |Σcall|, there is a unique (up to
isomorphism) minimal (i.e., canonical) k -SEVPA for every well-matched VPL.

3Note that k here is not the size of the alphabet.

123

6. Learning Visibly Pushdown Automata

We will focus on 1-SEVPA here, which do not require choosing a partition of the call alphabet,
and are characterized by the restriction that the target location of every call transition in a 1-
SEVPA A is the initial location �0,A.4

Another simplification can be achieved by normalizing the stack alphabet. In a complete VPA

A with location set LA, there are exactly |LA| · |Σcall| call transition. Thus, changing the stack
alphabet to LA×Σcall, and requiring that every call transition in A be of the form δcall,A(�,c) =
(�′,(�,c)) for all � ∈ LA,c ∈Σcall and some �′ ∈ LA (and replacing the stack symbols in the cor-
responding return transitions with their normalized form) does not change the semantics, as
it corresponds to a stack alphabet of the finest possible granularity. In conjunction with the
1-SEVPA property, every call transition will thus be of the form δcall,A(�,c) =

�

�0,A,(�,c)
�

. As all
VPAs that we will consider in the following are 1-SEVPAs, and we will therefore omit an explicit
definition of the call transition function.

6.2. A Unified Congruence for Well-Matched VPLs

Alur et al. [14] introduce several congruences for well-matched VPLs. The first and most simple
one is essentially the syntactic middle congruence on well-matched words. That is, for a well-
matched VPL output function λ : WM(�Σ)→�, the relation ≈λ ⊆WM(�Σ)×WM(�Σ) is defined via

w ≈λ w ′⇔df ∀u ∈ �Σ∗,v ∈ �Σ∗ :λ(u w v) =λ(u w ′v) ∀w ,w ′ ∈WM(�Σ). (6.1)

Note that u w v is well-matched if and only u w ′v is well-matched. More precisely, these are
well matched if and only if u ∈MR(�Σ),v ∈MC(�Σ), and β (u) =−β (v). Making these constraints
explicit is not necessary, as ill-matched words are mapped to 0 underλ, and thus words u ,v ∈ �Σ∗

violating the aforementioned conditions cannot possibly separate words w ,w ′ ∈ WM(�Σ) with
respect to ≈λ .

Holzer and König [87] have shown that for regular languages (which form a subclass of VPLs),
the number of equivalence classes of the syntactic middle congruence can be as large as n n ,
where n is the number of equivalence classes of the Nerode congruence. Thus, the relation ≈λ

is of theoretical interest only: among other things, VPLs can be characterized by having a finite
number of equivalence classes with respect to ≈λ .

For k -SEVPAs, Alur et al. [14] define congruences ∼λ,0 through ∼λ,k , each corresponding to
one of the k +1 modules, that are of much smaller index by imposing restrictions on the role
of the prefix u in (6.1). Due to our slightly modified notion of 1-SEVPAs (see above), a single
congruence is sufficient for our case. This congruence, again defined on well-matched words,
is basically the coarsest refinement of the two equivalence relations ∼λ,0 and ∼λ,1 that would
result from their definition of a 1-SEVPA.

First, we introduce as an auxiliary definition the concept of context pairs.

4The term “1-SEVPA” is not used consistently by Alur et al. [14]: while a VPA in the aforementioned sense (i.e.,
the initial location being the target of all call transitions) is referred to as being a 1-SEVPA, the formal definition of
k -SEVPA requires that the initial location be part of a module (the “base module”, corresponding to an empty stack)
that contains no locations which are call targets. We will ignore this technical difference here, and stick with our
above definition of 1-SEVPA.

124

6.2. A Unified Congruence for Well-Matched VPLs

Definition 6.5 (Context pairs)

Let �Σ be a visibly pushdown alphabet. The set of context pairs over �Σ, CP(�Σ), is defined as

CP(�Σ) =df

�

〈u ,v 〉 ∈ (WM(�Σ) ·Σcall)
∗×MC(�Σ) |β (u) =−β (v)

�

.

Note that u in the above definition is either the empty word ε, or is from the set MR(�Σ) ·Σcall.
Furthermore, for each 〈u ,v 〉 ∈CP(�Σ), we have u ·v ∈WM(�Σ).5

We can now proceed to define our unified congruence relation.

Definition 6.6

Letλ : WM(�Σ∗)→�be a well-matched VPL output function. The relation�λ ⊆WM(�Σ)×WM(�Σ)
is defined via

w �λ w ′⇔df ∀〈u ,v 〉 ∈CP(�Σ) :λ(u ·w ·v) =λ(u ·w ′ ·v)

for all w ,w ′ ∈WM(�Σ).

It is easily seen that �λ is a congruence. The following theorem states its significance.

Theorem 6.1

Let λ : WM(�Σ)→� be a well-matched output function. λ is a (well-matched) VPL output func-
tion if and only if WM(�Σ)/�λ is finite.

Proof : It is obvious that the syntactic middle congruence ≈λ refines �λ . If λ is a VPL output
function, WM(�Σ)/≈λ is finite [14], and thus also WM(�Σ)/�λ .

For the opposite direction, assume that WM(�Σ)/≈λ is finite, then define the 1-SEVPA A=
�

LA,�Σ,�0,A,ΓA,δA,FA
�

, where

• LA=df WM(�Σ)/�λ ,

• �0,A=df [ε]�λ
,

• ΓA=df LA×Σcall,

• δA=δcall,A ·∪δret,A ·∪δint,A, where

– δret,A
�

[w]�λ
,r,([w ′]�λ

,c)
�

=df [w ′c w r]�λ
∀w ,w ′ ∈WM(�Σ),r ∈Σret ,c ∈Σcall,

– δint,A([w]�λ
,i) =df [w i]�λ

∀w ∈WM(�Σ),i ∈Σint , and

• FA=df

�

[w]�λ
|λ(w) =1

�

.

Then, λA=λ, and thus λ is a VPL output function.

The previous statement can be proven inductively by showing that, after having read a
word w = w1c1w2c2 ...cm−1wm ∈ MR(�Σ), where c1,...,cm−1 ∈ Σcall are the unmatched call
symbols in w , and w1,...,wm ∈WM(�Σ), the current location is [wm]�λ

, and the stack con-
tents are ([wm−1]�λ

,cm−1)...([w1]�λ
,c1). This is trivially guaranteed by construction. Thus,

when having read a complete word w ∈WM(�Σ), the stack will be empty, and the location
will be [w]�λ

, which is accepting if and only if λ(w) =1.

5Actually, we even have
�

u ·v | 〈u ,v 〉 ∈CP(�Σ)
�

=WM(�Σ).

125

6. Learning Visibly Pushdown Automata

6.2.1. Finite Characterization

The above theorem is essentially the (well-matched) VPL equivalent for the Myhill-Nerode The-
orem (Theorem 3.1). In both cases, the proof is of major importance, as it describes how a re-
spective machine model (DFA or VPA) can be constructed from a congruence relation satisfying
certain properties.

The right-congruence property of the Nerode congruence allowed an inductive characteriza-
tion of inequivalence of two words w ,w ′ ∈Σ∗, i.e., w �∼= w ′ if and only if λ(w) �= λ(w ′) (“base
case”) or w a �∼= w ′a for some a ∈Σ (inductive step). This observation forms the basis of most
minimization algorithms for DFAs, and it also allows us to build the discriminators in a suffix-
closed fashion in the TTT algorithm (cf. Section 5.2.2).

The following lemma states a very similar characteristic of our congruence relation �λ defined
above.

Lemma 6.1

Let λ : WM(�Σ)→� be a well-matched VPL output function, and let �λ⊆ WM(�Σ)×WM(�Σ) be
the congruence relation defined in Definition 6.6. Then, the following equivalence holds:

w ��λ w ′⇔
�

λ(w) �=λ(w ′)

∨ ∃i ∈Σint : w i ��λ w ′i

∨ ∃c ∈Σcall,r ∈Σret ,v ∈WM(�Σ) : w c v r ��λ w ′ c v r

∨ ∃r ∈Σret ,c ∈Σcall,u ∈WM(�Σ) : u c w r ��λ u c w ′r
�

.

Proof : It is obvious that each of these cases implies w ��λ w ′, as they form special cases of the
(negated) right-hand side of Definition 6.6.

For proving that these cases exhaustively cover all possible ones, let w ,w ′ ∈ WM(�Σ) be
such that w ��λ w ′. According to Definition 6.6, there then exist 〈u ,v 〉 ∈ CP(�Σ) such that
λ(u w v) �=λ(u w ′v) (in particular, we have β (u) =−β (v)). If v = ε, then also u = ε, and thus
λ(w) �=λ(w ′). Otherwise, we distinguish the following three cases:

• Case 1: v begins with an internal symbol i ∈Σint . Let v ′ be such that v = i v ′. We then
have w i ��λ w ′i , since λ(u ·w i ·v ′) �=λ(u ·w ′i ·v ′).

• Case 2: v begins with a call symbol c ∈Σcall. Let v ′ be the shortest non-empty, well-
matched prefix of v , and define v ′′ such that v = v ′v ′′. Note that v ′ ends with a return
symbol r ∈Σret , thus we can write v ′ as v ′= c v ′′′r . We can conclude that w c v ′′′r ��λ

w ′c v ′′′r , since λ(u ·w c v ′′′r ·v ′′) �=λ(u ·w ′c v ′′′r ·v ′′).

• Case 3: v begins with a return symbol r ∈Σret . Define v ′ such that v = r v ′. This case
can only occur if β (u)>0, hence u �=ε. u then ends with a call symbol c ∈Σcall, and we
can define u ′ such that u = u ′c . Let u ′′ be the longest well-matched suffix of u ′, and
define u ′′′ such that u ′= u ′′′u ′′. Observe that

�

u ′′′,v ′
�

∈CP(�Σ). Therefore, u ′′c w r ��λ

u ′′c w ′r , since λ(u ′′′ ·u ′′c w r ·v ′) �=λ(u ′′′ ·u ′′c w ′r ·v ′).

Cases 2 and 3 in the above lemma require additional words u ,v ∈WM(�Σ) to establish the in-
equivalence of w and w ′. As a learning algorithm in the style of Chapter 3 needs to represent

126

6.3. Black-Box Learning of VPLs

(an approximation of)�λ in a finite manner, this potentially poses a problem, as arbitrary words
in WM(�Σ) may be required to prove the inequivalence of words w ,w ′ ∈WM(�Σ). The following
lemma states that we need not be concerned, as only the equivalence class of the auxiliary words
u ,v matters.

Lemma 6.2 (Sufficiency of representatives)

Let R ⊆ WM(�Σ) be a set of representatives with respect to �λ , i.e., for all w ,w ′ ∈ R , we have
w �= w ′ ⇒ w ��λ w ′, and furthermore WM(�Σ) =

⋃

w∈R [w]�λ
. Then, WM(�Σ) can be substituted

with R in Lemma 6.1.

Proof : Define the function ρ : WM(�Σ)→R to map words w ∈WM(�Σ) to their representative
elements in R , i.e., ρ is the unique function satisfying ρ(w)�λ w for all w ∈ WM(�Σ). We
prove the following implications:

∀c ∈Σcall,r ∈Σret ,v ∈WM(�Σ) : w c v r ��λ w ′c v r

⇒w cρ(v)r ��λ w ′cρ(v)r (6.2)

and

∀r ∈Σret ,c ∈Σcall,u ∈WM(�Σ) : u c w r ��λ u c w ′r

⇒ρ(u)c w r ��λ ρ(u)c w ′r (6.3)

where w ,w ′ ∈WM(�Σ).

(6.2): Let c ∈ Σcall,r ∈ Σret ,v ∈ WM(�Σ) such that w c v r ��λ w ′c v r . Since v �λ ρ(v),
we can conclude that both w c · v · r �λ w c ·ρ(v) · r and w ′c · v · r �λ w c ·ρ(v) · r , as
〈w c ,r 〉,

�

w ′c ,r
�

∈CP(�Σ). However, with �λ being an equivalence relation, the assumption
w c v r ��λ w ′c v r yields w cρ(v)r ��λ w ′cρ(v)r .

(6.3): Let c ∈ Σcall,r ∈ Σret ,u ∈ WM(�Σ) such that u c w r ��λ u c w ′r . Since u �λ ρ(u),
we can conclude that both u c · w · r �λ ρ(u)c · w · r and u c · w ′ · r �λ ρ(u)c · w ′ · r , as
〈ε,c w r 〉,

�

ε,c w ′r
�

∈ CP(�Σ). With �λ being an equivalence relation, the assumption
u c w r ��λ u c w ′r yields ρ(u)c w r ��λ ρ(u)c w ′r .

6.3. Black-Box Learning of VPLs

In this section, we will pursue the goal of developing an efficient active learning algorithm for
VPAs. As usual, we assume the existence of a minimally adequate teacher (cf. Section 3.2.1) that
answers membership and equivalence queries: for the target function λ : WM(�Σ)→�, which is
a well-matched VPL output function, a membership query for a word w ∈WM(�Σ) corresponds
to evaluating λ(w). An equivalence query, on the other hand, checks if λH =λ, where H is the
current hypothesis VPA, and returns a (well-matched) counterexample if the answer is negative.

The learning algorithm we propose always infers 1-SEVPAs. Note that this is merely a choice
of how to represent the hypothesis, and does not induce any limitation on the output functions
λ (beyond the requirement that it is a well-matched VPL output function). While for certain
k -partitions of Σcall the corresponding k -SEVPA may be much smaller than the 1-SEVPA we are

127

6. Learning Visibly Pushdown Automata

going to infer, the concentration on 1-SEVPA is justified by the fact that they do not require any
additional knowledge about the structure of the target systems. Besides, our algorithm can eas-
ily be adapted to infer k -SEVPA for a given k -partition of Σcall.

Our aim is to develop a VPA variant of the TTT algorithm. While this may sound like a daunting
task, given the complexity of the DFA version of TTT alone, we will see that the previous chapters
of this thesis provide us with an extremely powerful “toolbox” that can easily be adapted and
enhanced to also work in the VPA case.

The preceding section outlined a clear path towards black-box inference of visibly pushdown
languages in the style of Chapter 3: instead of approximating the Nerode congruence ∼=λ , which
for VPLs cannot be assumed to have finite index, we approximate the congruence �λ defined
in Definition 6.6, identifying its equivalence classes by means of a finite set of short prefixes
U ⊂ WM(�Σ), and using this to construct a hypothesis 1-SEVPA in a way similar to the proof of
Theorem 6.1.

Clearly, a more formal transfer of the concepts developed and the phenomena identified in
Chapter 3 from regular to visibly pushdown languages is required. We will however dispense
with developing a full-fledged framework for active inference of VPLs from scratch, and instead
focus on those properties required for our algorithm only. As we are taking the TTT algorithm
as a basis, this justifies the following simplifications:

• We assume that the set of representative short prefixes U is maintained such that its el-
ements are pairwisely inequivalent. That is, we need not concern ourselves with non-
determinism as per Definition 3.9, which is caused by multiple representatives for the
same class. Furthermore, this means that a location � has a uniquely defined representa-
tive 	�� ∈ U .

• We assume that U is maintained in a certain manner (the VPL equivalent of prefix-
closedness, as we will define below) that guarantees reachability consistency, i.e., H[��]=
� for every hypothesis location (justifying the term access sequence for 	��).

• We focus on suffix-based counterexample analysis only (cf. Section 3.3.4), which, thanks
to the above two assumptions, can be done using the simplified version described in Re-
mark 3.5.

In the next subsection, we will formalize black-box abstractions for VPLs to the extent needed
for developing the algorithm, and under the above simplifying assumptions. This formalization
includes a description of counterexample analysis as an instantiation of the abstract framework
described in Section 3.3. We will then shift our focus onto the algorithmic realization, and dis-
cuss the necessary adaptions for the TTT algorithm, such as data structures and modified dis-
criminator finalization.

6.3.1. Black-box Abstractions for VPLs

We have already sketched above that approximating the Nerode congruence does not make
sense in the context of actively learning VPLs, as its index cannot assumed to be finite. Instead,
we want to approximate the congruence relation �λ ⊆ WM(�Σ)×WM(�Σ) as defined in Defini-
tion 6.6, and this approximation again is realized by means of a black-box classifier (cf. Defini-
tion 3.4, p. 28), i.e., a function κ defined on WM(�Σ) designed in such a way that it is guaranteed
that �λ refines ∼κ.

128

6.3. Black-Box Learning of VPLs

Adapting this to the setting of VPLs requires a careful investigation of the differences be-
tween the classical Nerode congruence, defined in Definition 3.2 (p. 23), and the congruence
�λ . Clearly, the role of suffixes v ∈ Σ∗, which act as witnesses that two words are Nerode-
inequivalent, is in our setting assumed by context pairs 〈u ,v 〉∈CP(�Σ), giving rise to the following
definition.

Definition 6.7 (VPL black-box classifier)

Let λ : WM(�Σ)→� be a well-matched output function. A VPL black-box classifier for λ is a
function

κ: WM(�Σ)→
�

f : CP(�Σ)�� | |dom f |<∞
�

.

For w ∈WM(�Σ), Chκ(w) =df domκ(w) denotes the characterizing set of w . Furthermore, the

set of separators of words w ,w ′ ∈WM(�Σ) is defined as

Sepsκ(w ,w ′) =df

�

〈u ,v 〉 ∈Chκ(w)∩Chκ(w
′) |κ(w)(〈u ,v 〉) �=κ(w ′)(〈u ,v 〉)

�

.

Finally, κ is called valid for λ if and only if:

• ∀w ∈WM(�Σ) :∀〈u ,v 〉 ∈Chκ(w) :κ(w)(〈u ,v 〉) =λ(u ·w ·v), and

• ∀w ,w ′ ∈WM(�Σ) : w �∼κ w ′ ⇒Sepsκ(w ,w ′) �= �.

It is easy to see that the equivalence kernel of a valid black-box classifier κ for an output func-
tion λ is refined by the relation �λ . Therefore, κ induces an over-approximation of �λ . We will
furthermore implicitly assume that a valid black-box classifier κ satisfies ∀w ∈WM(�Σ) : 〈ε,ε〉 ∈
Chκ(w), ensuring that λ−1(1) is saturated by ∼κ.

The step from a black-box classifier to a black-box abstraction (cf. Definition 3.8, p. 29) again
involves the introduction of a finite set of representatives for the (rather: some) equivalence
classes of ∼κ

Definition 6.8 (VPL black-box abstraction)

Let λ : WM(�Σ)→� be a well-matched output function. A VPL black-box abstraction for λ is a
tuple R= 〈U ,κ〉, where

• U ⊂WM(�Σ) is a finite set of short prefixes that serve as representatives for the identified
equivalence classes, satisfying ε ∈ U , and

• κ is a valid VPL black-box classifier for λ.

Before we can construct a VPA from a black-box abstraction R, we need to establish two nec-
essary properties in analogy to Definition 3.9 (p. 29).

Definition 6.9 (Closedness, determinism)

Let R= 〈U ,κ〉 be a VPL black-box abstraction. R is called . . .

1. closed if and only if:

(1.a) ∀w ∈ U ,i ∈Σint :∃w ′ ∈ U : w i ∼κ w ′, and

(1.b) ∀w ,w ′ ∈ U ,c ∈Σcall,r ∈Σret :∃w ′′ ∈ U : w c w ′r ∼κ w ′′.

129

6. Learning Visibly Pushdown Automata

2. deterministic if and only if:

(2.a) ∀w ,w ′ ∈ U ,i ∈Σint : w ∼κ w ′ ⇒w i ∼κ w ′i ,

(2.b) ∀w ,w ′,w ′′ ∈ U ,c ∈Σcall,r ∈Σret : w ∼κ w ′ ⇒w c w ′′r ∼κ w ′c w ′′r , and

(2.c) ∀w ,w ′,w ′′ ∈ U ,c ∈Σcall,r ∈Σret : w ∼κ w ′ ⇒w ′′c w r ∼κ w ′′c w ′r .

We have already stated above that we will assume in the following that black-box abstractions
are always deterministic, simply by maintaining U as a set of pairwisely inequivalent short pre-
fixes. Still, it is worthwhile to carefully study the definition of this property, as it exhibits the
increased complexity compared to the regular case.

If a black-box abstractionR satisfies these two properties, it is possible to construct a 1-SEVPA

from it.

Definition 6.10

Let R= 〈U ,κ〉 be a closed and deterministic VPL black-box abstraction. The VPA associated
with R is the 1-SEVPA H=df VPA(R), defined via

• LH=df {[w]κ |w ∈ U},

• �0,H=df [ε]κ,

• ΓH=df LH×Σcall,

• δH=δcall,H ·∪δret,H ·∪δint,H, where

– δret,H ([w]κ,r,([u]κ,c)) =df [u c w r]κ ∀w ,u ∈ U ,c ∈Σcall,r ∈Σret ,

– δint,H ([w]κ,i)) =df [w i]κ ∀w ∈ U ,i ∈Σint , and

• FH=df {[w]κ |w ∈ U ∧κ(w)(〈ε,ε〉) =1}.

Note that the above definition mirrors the construction of a 1-SEVPA in the proof of Theo-
rem 6.1, restricted to U .

6.3.2. Consistency Properties

The notion of reachability consistency (cf. Definition 3.11, p. 30) was already sketched in the
introduction of this section: for every location �∈ LH of H, we denote by 	�� its corresponding
representative element in U . Reachability consistency can then be defined as

∀�∈ LH : H[��] = �.

In the case of regular languages, reachability consistency could be guaranteed by maintaining
U as a prefix-closed set. It is not entirely obvious how the concept of prefix-closedness can be
translated to sets of well-matched words, as not every prefix of a well-matched word is itself
well-matched. In addition to the following definition, we will thus explicitly show that it indeed
does ensure reachability consistency.

Definition 6.11 (Well-matched prefix-closedness)

Let S ⊆WM(�Σ) be a set of well-matched words over �Σ. S is called well-matched prefix-closed

130

6.3. Black-Box Learning of VPLs

if and only if the following conditions are satisfied:

(i) if there exist i ∈Σint ,w ∈WM(�Σ) such that w i ∈S , then also w ∈S , and

(ii) if there exist c ∈Σcall,r ∈Σret ,u ,w ∈WM(�Σ) such that u c w r ∈S , then also u ,w ∈S .

Lemma 6.3

LetR=df 〈U ,κ〉 be a closed and deterministic VPL black-box abstraction. If U is well-matched
prefix-closed, then R is reachability consistent.

Proof : Assume that U is well-matched prefix-closed, but R is reachability inconsistent. Let
w ∈ U be the shortest word constituting a reachability inconsistency. By definition, the
empty word can never constitute a reachability inconsistency. Furthermore, since w ∈
WM(�Σ), w can only end with either an internal or a return symbol.

Case 1: w ends with an internal symbol i ∈Σint , i.e., w = w ′i for some w ′ ∈ U (due to well-
matched prefix-closedness). Since w was chosen as the shortest element of U consti-
tuting a reachability inconsistency and |w ′|< |w |, we have H[w ′] = [w ′]κ. However, H
was constructed such that δint,H([w ′]κ,i) = [w ′i]κ= [w]κ. Consequently, H[w] = [w]κ,
contradicting the assumption that w constituted a reachability inconsistency.

Case 2: w ends with a return symbol r ∈Σret , i.e., w =u c w ′r for some c ∈Σcall and u ,w ′ ∈ U
due to well-matched prefix-closedness of U . Since u and w ′ are both shorter than

w , they cannot constitute reachability inconsistencies. Thus,
�

�0,H,ε
� u
=⇒〈[u]κ,ε〉 c−→

�

�0,H,([u]κ,c)
� w ′

=⇒
�

[w ′]κ,([u]κ,c)
�

. Since by definition δret,H
�

[w ′]κ,r,([u]κ,c)
�

=
[u c w ′r]κ = [w]κ, we have H[w] = [w]κ, which again contradicts the assumption that
w constituted a reachability inconsistency.

Remark 6.2

Just like a prefix-closed set, a finite well-matched prefix-closed set S ⊂WM(�Σ) can be stored
in space O(|S |): every element in S that is not the empty word can be represented by a single
internal action and a pointer to another element in S , or a call and a return symbol, combined
with two pointers to other elements in S , resulting in constant space per element.

However, there is an important difference: while the length of words in a prefix-closed S
set is bounded by |S |−1, words in a well-matched prefix closed set can have lengths that
are exponential in the size of the set: consider, e.g., the well-matched prefix-closed set S =
�

ε,c r ,c r c c r r ,c r c c r r c c r c c r r r ,...
�

⊂WM(�Σ).

6.3.3. Counterexample Analysis

Motivated by the characteristics of our envisioned algorithm, we only consider the case of suffix-
based counterexample analysis in analogy to Section 3.3.4, furthermore simplified by the as-
sumption of unique representatives and guaranteed reachability consistency (cf. Remark 3.5,
p. 43).

One of the most important results from Section 3.3.4 (in particular Lemma 3.8) was that suffix-
based counterexample analysis is actually analysis of output inconsistencies. While it may be

131

6. Learning Visibly Pushdown Automata

tempting to translate the definition of output inconsistencies (cf. Definition 3.12, p. 31) directly
from the regular case, i.e., by replacing the role of a suffix with a context pair, a slightly modified
notion considerably simplifies the presentation: the idea of output inconsistency analysis can
be described as pinpointing the transition which, when represented explicitly as an element of
either U ·Σint or U ·Σcall ·U ·Σret (as on the right-hand side of the definition of δret, and δint, in
Definition 6.10), behaves differently from its successor location, represented as an element of
U .

If an output inconsistency was defined as an arbitrary pair (w ,〈u ,v 〉) ∈ U ×CP(�Σ) satisfying
λH(u ·w ·v) �=λ(u ·w ·v), a “wrong” transition in either the prefix u or the suffix v could cause
the diverging behavior. The following, modified definition of an output inconsistency ensures
that we can concentrate on the suffix part, and do not need to worry about the prefix part.

Definition 6.12 (U-context pair; output inconsistency)

Let R= 〈U ,κ〉 be a VPL black-box abstraction of some VPL output function λ : WM(�Σ)→�.

1. The set of U-context pairs, denoted by CPU (�Σ), is defined as the set

CPU (�Σ) =df

�

〈u ,v 〉 ∈ (U ·Σcall)
∗×MC(�Σ) |β (u) =−β (v)

�

⊂CP(�Σ).

2. Assume further that R is closed and deterministic, and let H=VPA(H) be its associated
VPA. A pair (w ,〈u ,v 〉)∈ U×CPU (�Σ) constitutes an output inconsistency if and only if

λH(u ·w ·v) �=λ(u ·w ·v).

The definition of U-context pairs above precisely accomplishes to eliminate the possibility of
incorrect transitions in the prefix part of an output inconsistency, at least if reachability consis-
tency can be assumed.6

In the original Definition 3.12, we have furthermore introduced the term “output
(in-)consistent” to denote a property of black-box abstractions, referring to whether it is pos-
sible to obtain an output inconsistency by combining a short prefix u ∈ U with an element of
its characterizing set Chκ(u). The above, modified notion of output inconsistencies would only
allow a translation of this if Chκ(u)⊆ CPU (�Σ) could be ensured. We will see that ensuring this
is indeed possible, and furthermore results automatically from a straightforward application of
the technique described in the following.

Abstract Counterexample Derivation

One of our stated goals was to leverage the abstract counterexample analysis framework, de-
veloped in Section 3.3 of this thesis, for counterexample (or output inconsistency) analysis. As
suffix-based analysis is based on the notion of access sequence transformations [108], we first
need to investigate how this concept translates to the case of VPLs.

6Let us briefly sketch what a generalization that does not rely on such assumptions would look like. Assuming
that (w ,〈u ,v 〉)∈ U×CPU (�Σ) constitutes an output inconsistency, and u =u1c1u2c2 ...um cm ∈ (U ·Σcall)∗, where ui ∈
U , ci ∈Σcall for all 1≤ i ≤m , let σ∈ Γ ∗H denote the stack contents associated with u , i.e., σ= ([um]κ,cm) · · ·([u1]κ,c1).

The generalized notion of this output inconsistency would then be λ
〈[w]κ,σ〉
H (v) �=λ(u ·w ·v), where λ

〈[w]κ,σ〉
H is the

corresponding state output function for the state 〈[w]κ,σ〉 of H.

132

6.3. Black-Box Learning of VPLs

For a location �∈ LH, 	�� ∈ U denotes its unique representative in U . In Remark 3.5, we have
furthermore introduced the notation 	·�H, defined via 	u �H=df 	H[u]� (this is the original notion
of access sequence transformations).

A state in the context of visibly pushdown systems is a more complicated concept, as it com-
prises not only a (control) location from a finite set, but also stack contents of unbounded
length. Let us therefore generalize the concept of an access sequence from locations to states.
We start by looking at the stack contents. Let σ= ([um]κ,cm) · · ·([u1]κ,c1) ∈ (LH×Σcall)∗, where
ui ∈ U ,ci ∈Σcall for all 1≤ i ≤m , be a representation of stack contents. The access sequence of
σ, 	σ�, is defined as the word 	σ�= u1c1 ...um cm . The intuition is that 	σ� is the unique, canon-
ical word in (U ·Σcall)∗ which, when read by H, results in the state

�

�0,H,σ
�

. This complements
the notion of an access sequence 	�� of a location �, which is the canonical word in U which,
when read by H, results in the state 〈�,ε〉.7 Combined, we can define the access sequence of a
state 〈�,σ〉 ∈ LH×Γ to be 	〈�,σ〉�= 	σ� · 	��. The access sequence transformation 	w �H of a word
w ∈MR(�Σ) is then simply defined as 	w �H=df

�

δH
��

�0,H,ε
�

,w
��

.
Let us discuss some properties of access sequence transformations in the context of VPAs.

Due to the 1-SEVPA-property, we have, for arbitrary words u ,u ′ ∈MR(�Σ) and c ∈Σcall, 	u c �H =
	u �Hc , and 	u c u ′�H= 	u �Hc 	u ′�H. Since reachability consistency ensures that elements of U are
invariant under access sequence transformations, a direct consequence is that all elements of
(U ·Σcall)∗∪ (U ·Σcall)∗ ·U are invariant under access sequence transformations as well.

The following lemma relates counterexamples and output inconsistencies, and states how they
can be exploited for refinement. It can thus be regarded as the VPL version of Lemma 3.8 (p. 42).

Lemma 6.4

Let R= 〈U ,κ〉 be a closed and deterministic VPL black-box abstraction of some well-matched
output function λ : WM(�Σ)→� with associated hypothesis H=VPA(R).

(i) If w ∈ WM(�Σ) is a counterexample, then (ε,〈ε,w 〉) ∈ U ×CPU (�Σ) constitutes an output
inconsistency.

(ii) If (w ,
�

x , y
�

) ∈ U ×CPU (�Σ) constitutes an output inconsistency, y can be decomposed

into y = �u �a �v , �u , �v ∈ �Σ∗, �a ∈ �Σ such that λ(x ·w · �u �H �a · �v) �=λ(x ·w · �u �a �H · �v).

(iii) Let (w ,
�

x , y
�

) ∈ U ×CPU (�Σ) constitute an output inconsistency, and let y = �u �a �v be a
decomposition satisfying the conditions of (ii). Let u be the longest suffix of w �u such
that u �a is well-matched, and let u ′ be such that w �u =u ′u (note that u ′ ∈ (WM(�Σ)·Σcall)∗,
thus 	u ′�H ∈ (U ·Σcall)∗). Then,

�

x · 	u ′�H, �v
�

∈CPU (�Σ) is a U-context pair distinguishing

	u �H �a and 	u �a �H. Thus, 	u �H �a �∼κ′ 	u �a �H for κ′=df split
�

κ, H[u �a],
�

x · 	u ′�H, �v
��

.

Proof : As usual, we only prove (i) and (iii), and leverage our abstract counterexample analysis
framework for proving (ii).

(i) Since w ∈WM(�Σ) is a counterexample, we have λH(w) �=λ(w). This immediately im-
plies that (ε,〈ε,w 〉)∈ U×CPU (�Σ) constitutes an output inconsistency, as λH(ε ·ε ·w) =
λH(w) �=λ(w) =λ(ε ·ε ·w).

7Again, both intuitive descriptions rely on reachability consistency.

133

6. Learning Visibly Pushdown Automata

(iii) Let y = �u �a �v be a decomposition satisfying the conditions of (ii), let u be the longest
suffix of w �u such that u �a is well-matched, and let u ′ be such that w �u =u ′u . As noted,
u ′ ∈ (WM(�Σ) ·Σcall)∗, thus 	x w �u �H �a = x 	u ′�H · 	u �H �a and 	x w �u �a �H = x 	u ′�H · 	�u �a �H.
The conditions of (ii) can thus be written as λ(x 	u ′�H · 	u �H �a · �v) �=λ(x 	u ′�H · 	�u �a �H · �v),
yielding that

�

x · 	u ′�H, �v
�

is a context pair separating 	u �H �a and 	u �a �H.

It should be noted that Lemma 6.4 (iii) again provides instructions on how to exploit the result
of an output inconsistency analysis to refine the VPL black-box abstraction. In particular, the
context pair that is used for splitting a class in κ (resulting in the refined classifier κ′) is always
in CPU (�Σ), thus maintaining Chκ′ (u)⊆CPU (�Σ) for all u ∈WM(�Σ).

Another important observation is that adding 	u �H �a to U preserves well-matched prefix-
closedness of U : if �a ∈Σint , then u ∈WM(�Σ) and thus 	u �H ∈ U . In this case, 	u �H �a is the access
sequence of the internal �a -transition of H[u]. Otherwise, �a must be an element of Σret , and u �a
being well-matched implies 	u �H ∈ U ·Σcall ·U . Let 	u �H= �u c �u ′, then 	u �H �a is the �a -return tran-
sition of H[�u ′] for the stack symbol (H[�u],c). Therefore, adding 	u �H �a to U can in both cases be
realized by converting a non-tree transition of H into a tree transition. Furthermore, the con-
struction ofH implies that 	u �H �a and 	u �a �H where equivalent wrt. ∼κ, thus the refined classifier
κ′=df split

�

κ, H[u �a],
�

x · 	u ′�H, �v
��

is a strict refinement of κ.

Let us now take a look at how our abstract counterexample framework can be leveraged to obtain
a decomposition with the properties stated in Lemma 6.4 (ii).

Definition 6.13 (Derived abstract counterexample)

Let R = 〈U ,κ〉 be a closed and deterministic VPL black-box abstraction of some well-
matched output function λ : WM(�Σ)→� with associated hypothesis H=VPA(R). For a pair
(w ,

�

x , y
�

)∈ U ×CPU (�Σ), the derived abstract counterexample is the abstract counterexample

α=
�

�,=,|y |,η
�

, where the effect mapping is defined as

η :
�

0,..., |y |
�

→�, η(i) =df λ(x ·w · y1..i �H · yi+1..|y |).

Lemma 6.5

Let R= 〈U ,κ〉 be a closed and deterministic VPL black-box abstraction of some well-matched
output function λ : WM(�Σ)→ �, let H = DFA(R) be its associated VPA, and let (w ,

�

x , y
�

) ∈
U ×CPU (�Σ) constitute an output inconsistency, i.e., λH(x ·w · y) �=λ(x ·w · y). Then, the ab-
stract counterexample α derived according to the above Definition 6.13 is valid, and if i is a
breakpoint inα, �u = y1..i , �a = yi+1, �v = yi+2..|y | is a decomposition of y satisfying the conditions
of Lemma 6.4 (ii).

Proof : We start by showing that the derived abstract counterexample α is valid. First, observe
that 	x ·w �H= x ·w as remarked above (since x ∈ (U ·Σcall)∗,w ∈ U). Thus, η(0)=λ(x ·w · y) �=
λH(x ·w · y), due to (w ,

�

x , y
�

) constituting an output inconsistency. On the other hand,
η(|y |)=λ(x ·w · y �H)=λH(x ·w · y), since the location represented by 	x ·w · y �H df =u ∈ U is
accepting if and only ifκ(u)(〈ε,ε〉)=λ(u)=1. We therefore have established thatη(0) �=η(|y |)

The fact that the decomposition corresponding to a breakpoint satisfies the conditions
of Lemma 6.4 (ii) follows directly from the definition of η and the breakpoint condition.

134

6.4. A VPDA Version of TTT

Remark 6.3

The observed property that, for arbitrary u ∈MR(�Σ) and c ∈Σcall, we have 	u c �H= 	u �Hc , im-
plies that positions i corresponding to call symbols in y (i.e., satisfying yi+1 ∈Σcall) can never
be breakpoints. This can be exploited to derive a marginally smaller abstract counterexample
in which these positions are eliminated.

6.4. A VPDA Version of TTT

After describing how certain key concepts—black-box abstractions, hypothesis construction,
and counterexample analysis—of the framework developed in Chapter 3 can be transferred to
the setting of VPLs, we can now describe how the TTT algorithm presented in Chapter 5 can be
adapted to learn visibly pushdown automata, or, more precisely, 1-SEVPAs. Since TTT has already
been described in great technical detail, the description in this section will remain incremental,
i.e., only elaborating on the differences and necessary adaptions.

One of the motivations for developing the TTT algorithm was to reduce the overall length of
queries, especially in the presence of non-minimal counterexamples. This is of even greater
importance in the context of VPAs: as Kumar et al. [119] observe, even a cooperative teacher [175]
might be forced to provide counterexamples of length exponential in the size of the target 1-
SEVPA, which also means that if techniques like random sampling are used for approximating
equivalence queries, sampled words of considerable length need to be generated in order to
achieve a reasonable chance of finding counterexamples. This, in turn, results in an increased
probability of generating counterexamples that are much longer than minimal ones, which calls
for attempts to shorten the length of queries.

However, the above observation also means that posing queries of exponential length might
be inevitable. Thus, all sophisticated finalization techniques cannot help the symbol complexity
becoming exponential in the worst case. We will detail on the guarantees that can be made in
Section 6.4.5.

6.4.1. Data Structures

In the previous Section 6.3, we have observed that when learning VPLs, context pairs instead of
suffixes assume the role of discriminators. This provides a clear guideline on how the discrimi-
nation tree data structure needs to be changed: inner nodes are no longer labeled with a single
suffix v , but with a context pair 〈u ,v 〉 ∈ CPU (�Σ). When sifting a word w (such as a transition
access sequence) into the tree, at each inner node labeled with 〈u ,v 〉, the outcome of the mem-
bership query λ(u ·w ·v) determines the successor node. The general notions of soft and hard
sifting, as well as of temporary discriminators (cf. Section 5.2.1) remain unaffected.

What about the spanning-tree hypothesis (cf. Section 4.2.2)? As mentioned before, the hypothe-
sis will always be maintained as a 1-SEVPA, which in particular means that we can omit explicitly
specifying any call transitions. The remaining internal and return transitions can again be ei-
ther tree or non-tree transitions, with the tree transitions forming a spanning-tree, rooted at the
initial location.

Access sequences are assigned to locations and transitions as follows. The initial location has
the access sequence ε. Every outgoing i -transition (i ∈Σint) of a location � (the access sequence

135

6. Learning Visibly Pushdown Automata

�1

�2

�1

�2

〈u ,v 〉

i

i

⇒

�1

�2

�1

�2

〈u ,i v 〉

(a) Finalization rule for internal transitions

�1

�2

�1

�2

〈u ,v 〉

r /(�,c)

r /(�,c)

⇒

�1

�2

�1

�2

〈u 	��c ,r v 〉

(b) Finalization rule for returns

Figure 6.2.: Abstract visualization of discriminator finalization rules for internal and return ac-
tions

of which is denoted by 	��) is assigned the access sequence 	��i . An outgoing return-transition of
� labeled r /(�′,c), where r ∈Σret ,c ∈Σcall and �′ ∈ LH, is assigned the access sequence 	�′�c 	��r .
The access sequences of locations other than the initial one, finally, are the access sequences of
their unique incoming tree transition.

6.4.2. Discriminator Finalization

The impressive practical efficiency of TTT is mostly due to its discriminator finalization step, i.e.,
replacing the “temporary” discriminators that are extracted directly from the counterexample
with discriminators that are derived from the known transition structure of the hypothesis. In
principle, the discriminator finalization step can be regarded as a refinement step during DFA

minimization, where the current partition is given by the set of blocks in the discrimination tree.
We have already remarked in Section 6.2.1 that the basis for this is the “inductive” characteri-

zation of inequivalence wrt. the Nerode congruence, i.e., for two words w ,w ′ which are Nerode-
inequivalent but still satisfy λ(w) =λ(w ′), a separating word for them can be obtained from a
separator of one of their a -successors (a ∈Σ). This is directly reflected in the visualization of the
finalization rule shown in Figure 5.6.

For visibly pushdown languages and the congruence�λ as defined in Definition 6.6, a very simi-
lar yet slightly more complex approach is possible. Instead of one finalization rule as in the case
of regular languages,8 when learning VPLs there are three different rules that may apply, each
one corresponding to one of the non-trivial disjuncts on the right-hand side of the equivalence
in Lemma 6.1. Two of these rules, namely the one for internal and return transitions, are visual-
ized in Figure 6.2. The rule for internal actions (Figure 6.2a) is almost a straightforward adaption
of the finalization rule for the regular case, with the exception that the prefix part of the context
pair (i.e., u) separating the successors needs to be present in the new separator for �1 and �2 as
well. The rule for return transitions (Figure 6.2b) requires modifying this prefix, to ensure that
the topmost element on the stack allows triggering the considered r -transition.

The rule for calls, depicted in Figure 6.3, is somewhat more complicated. This is due to the

8Or two, if the extension to Mealy machines as described in Section 5.4 is considered.

136

6.4. A VPDA Version of TTT

� 〈u ,v 〉

r /(
,c)�1

r /(,c)
�2

/(,�(�(1

/(,c�(�(2

⇒

�1

�2

�1

�2

〈u ,c 	��r v 〉

Figure 6.3.: Abstract visualization of discriminator finalization rule for calls

fact that there are no (meaningful) call transitions in 1-SEVPA. For this reason, the locations
�1 and �2 that should be separated by a final discriminator are not the source locations of these
transitions, but instead are part of the return transition (in the form of the stack symbol) of some
other location.

6.4.3. Progress and Subsequent Splits

An important insight during the development of TTT was that there may be situations in which
none of the finalization rules are applicable, which however implies that an output inconsis-
tency must be present. Reasoning about output inconsistencies was however only possible be-
cause the inapplicability of any finalization rule (as formally characterized by condition (5.1) on
p. 94) guaranteed that the possibly non-deterministic hypothesis behaves deterministically up
to the granularity of the block structure.

To see that the same is true in the case of visibly pushdown languages, let us first formally
characterize the situation that none of the rules from Figures 6.2 and 6.3 are applicable. As usual,
π(T) denotes the block partition induced by the block subtrees of the discrimination tree T .

∀B ∈π(T) :
�

∀i ∈Σint :∃B ′ ∈π(T) :δint,H(B ,i)⊆B ′

∧ ∀�∈ LH,r ∈Σret ,c ∈Σcall :∃B ′ ∈π(T) :δret,H
�

B ,(�,c)
�

⊆B ′

∧ ∀�∈ LH,c ∈Σcall,r ∈Σret :∃B ′ ∈π(T) :δret,H
�

�,(B ,c)
�

⊆B ′
�

,

(6.4)

where the (non-deterministic) transition functions are lifted to sets of locations in the usual
fashion, i.e.:

δint,H(B ,i) =df

⋃

�′∈B
δint,H(�′,i) ∀B ∈π(T),i ∈Σint ,

δret,H
�

B ,r,(�,c)
�

=df

⋃

�′∈B
δret,H

�

�′,r,(�,c)
�

∀B ∈π(T),r ∈Σret ,c ∈Σcall,�∈ LH,

δret,H
�

�,r,(B ,c)
�

=df

⋃

�′∈B
δret,H

�

�,r,(�′,B)
�

∀B ∈π(T),c ∈Σcall,r ∈Σret ,�∈ LH.

Again, this allows us to define a (deterministic!) output function λH : WM(�Σ)→�, and thus
enables us to reason about output inconsistencies. These certainly must exist, as for two lo-
cations �1 �= �2 within the same block, there exists a separator 〈u ,v 〉, which is the label of their

137

6. Learning Visibly Pushdown Automata

(temporary) lowest common ancestor, proving λ(u · 	�1� ·v) �=λ(u · 	�2� ·v). Due to the above con-
dition, however, we know that λH(u · 	�1� ·v) =λH(u · 	�2� ·v), thus either (�1,〈u ,v 〉) or (�2,〈u ,v 〉)
must constitute an output inconsistency.

This output inconsistency can then be exploited for further refining the abstraction by split-
ting a leaf in the tree, as described in Section 6.3.3. However, since the abstraction induced by
the discrimination tree can never refine �λ , (6.4) must eventually be violated—assuming that λ
is a VPL output function, i.e., WM(�Σ)/�λ is finite—, enabling a finalization step.

6.4.4. An Example Run

We will omit a complete pseudocode listing of the algorithm here, as the description should
allow to easily infer the necessary modifications for the TTT algorithm and its data structures.
We will instead demonstrate a run of the algorithm on a small example, namely the VPL L=df

{c m i r m |m ∈�} over the visibly pushdown alphabet �Σ = 〈Σcall,Σret ,Σint〉, where Σcall =df {c },
Σret =df {r }, and Σint =df {i }.

The algorithm starts with the initial hypothesis shown in Figure 6.4a, where the accepting lo-
cation �1 with access sequence i is discovered en passant during initialization. The correspond-
ing discrimination tree is shown in Figure 6.4b. This hypothesis erroneously accepts the word
c c i c r i r r /∈L. Analysis of the counterexample shows thatλL(c c i c �Hr ·i r r)=λL(c c i c r ·i r r) �=
λL(c c i c r �H · i r r) =λL(c c · i r r). Following the description given in Section 6.3.3, the leaf cor-
responding to �0 is split, using the context pair 〈c c ,i r r 〉 as the temporary discriminator, and a
new location �2 with access sequence i c i r is introduced. This results in the hypothesis (omit-
ting most non-deterministic transitions) and discrimination tree as shown in Figure 6.4c. The
block targets of selected transitions are visualized using dotted lines.

This situation now allows two different ways of replacing the temporary discriminator: the
i -transitions of �0 and �2 point into separate blocks (corresponding to the rule shown in Fig-
ure 6.2a), and the r -transition of �1 points into different blocks depending on whether the stack
symbol is (�0,c) or (�2,c) (corresponding to the rule from Figure 6.3). Exploiting the former re-
sults in the discrimination tree shown in Figure 6.5a, while the latter results in the one shown
in Figure 6.5b. Regardless of which way is chosen, the resulting (final) hypothesis is the same,
namely the one shown in Figure 6.5c.

6.4.5. Complexity

Let us now take a closer look at the complexity of TTT-VPA. Assume that n is the number of loca-
tions in the canonical 1-SEVPA for λ, i.e., n =df |WM(�Σ)/�λ |. Obviously, the worst-case depth of a
corresponding discrimination tree is n−1. The number of transitions (only considering relevant
ones, i.e., ignoring call transitions) is n

�

|Σint |+n · |Σcall| · |Σret |
�

: for each return symbol in Σret ,
there are n · |Σcall| possible stack symbols to consider. Since furthermore every counterexam-
ple results in an increase in the number of equivalence classes, it is clear that n −1 equivalence
queries are sufficient.

Query complexity. Obviously, sifting transitions down the discrimination tree dominates
the query complexity (O(n) queries per transition). Hard sifts do not increase the number of
queries asymptotically, as we have already pointed out in Section 5.3.1. Counterexample analy-
sis using binary search (cf. Proposition 3.3) requires O(logm) queries per counterexample, thus

138

6.4. A VPDA Version of TTT

�0

�1

i
i

r /(�1,c)

r /(�0,c)

r /(�0,c)
r /(�1,c)

(a) Initial hypothesis

〈ε,ε〉

�0 �1

(b) Initial discrimination
tree

�0 �1

�2

i

r /(�1,c)

r /(�0,c) 〈ε,ε〉

〈c c ,i r r 〉 �1

�2 �0

〈c c ,i r r 〉

�2 �0

�1

i

(c) Non-deterministic hypothesis and corresponding discrimination tree after split

Figure 6.4.: TTT-VPA data structures during a run on L= {c m i r m |m ∈�} until first split

139

6. Learning Visibly Pushdown Automata

〈ε,ε〉

〈ε,i 〉 �1

�2 �0

(a) Discrimination tree after
finalization based on i -
transitions

〈ε,ε〉

〈ε,c i r 〉 �1

�2 �0

(b) Discrimination tree after
finalization based on r -
transition of �1

�0 �1

�2

i

r /(�1,c)

r /(�0,c)

i ,
r /(�2,c)

i r /(∗,c)

r /(∗,c)

(c) Final hypothesis

Figure 6.5.: Possible final discrimination trees and final hypothesis during a run of TTT-VPA on
L = {c m i r m |m ∈�}

O(n logm) queries in total, resulting in an overall query complexity of O(n 2 · |Σint |+n 3 · |Σcall| ·
|Σret |+n logm).

Proposition 6.1

TTT-VPA correctly infers a 1-SEVPA model of some well-matched VPL target output function
λ : WM(�Σ)→ � using at most n −1 equivalence queries and O(n 2 · |Σint |+n 3 · |Σcall| · |Σret |+
n logm) membership queries, where n =df |WM(�Σ)/�λ | is the size of the canonical 1-SEVPA

for λ.

Symbol complexity. We have already remarked in the introduction of this section that queries
of exponential length may be inevitable. This is due to the fact that a well-matched prefix-closed
set (such as U) of size n may contain words of exponential length (up to 2n −2). However, the
finalization steps (Figures 6.2 and 6.3) ensure that the combined length of every context pair in
the final discrimination tree is in O(n�), where � is the length of the longest element in U . For
counterexample analysis, finally, the worst-case estimate is that a prefix of m reaches a state
with a stack of size O(m), the access sequence of which thus may have a length in O(m�). As
a consequence, temporary discriminators of length O(m�) might be extracted from counterex-
amples.

If no hard sifts are ever necessary during learning, the symbol complexity is O(n 3� · |Σint |+
n 4� · |Σcall| · |Σret |+n�m logm). Under the worst-case assumption that hard sifts are necessary
for every transition and temporary discriminator, this increases to O

�

n 2�(n+m) · |Σint |+n 3�(n+
m) · |Σcall| · |Σret |+n�m logm

�

.

Space complexity. The space complexity of TTT-VPA is again dominated by the size of the
hypothesis, i.e., Θ(n · |Σint |+n 2 · |Σcall| · |Σret |). The set U of location access sequences is stored
implicitly as part of the spanning-tree hypothesis, and all discriminators combined requireΘ(n)
space: in each of the finalization rules shown in Figures 6.2 and 6.3, the new discriminator is
derived from a previously existing discriminator, combined with either an internal action i ∈Σint

(Figure 6.2a), or a call symbol, a return symbol, and an element of U (Figures 6.2b and 6.3). Thus,

140

6.5. Preliminary Evaluation

a constant number of symbols and pointers is required for each new discriminator, and since
there can never be more than n −1 discriminators, all (finalized) discriminators can be stored
using Θ(n) space.

6.5. Preliminary Evaluation

Visibly pushdown automata are a relatively recent formalism, and unlike in the case of finite-
state machines, there is no collection of publicly available models that would make for inter-
esting benchmarks, at least not to the knowledge of the author. Besides, there do not exist any
other learning algorithms that could be used for comparison: attempting to implement the al-
gorithm described by Kumar et al. [119] for 1-SEVPAs resulted in errors, and a closer inspection
of the algorithm revealed that the description is probably incomplete.9

6.5.1. Experimental Setup

The approach we have thus taken is similar to Section 5.5.3: we randomly generated 1-SEVPAs
over certain alphabets, minimized them, and compared the performance of learning algorithms
for growing counterexample sizes. To illustrate the impact of the discriminator finalization, we
compared TTT-VPA against an Observation Pack version for VPAs (i.e., omitting the discriminator
finalization steps in the algorithm described in the previous section). Exponential search was
used as a search strategy for finding breakpoints when analyzing (abstract) counterexamples.
We furthermore used a cache in all of the experiments such that only unique queries (and the
symbols occurring in these) were counted, even though no significant amount of redundant
queries could be observed.

When presented with minimal counterexamples, both algorithms showed a very similar per-
formance, which reflects our findings from the case of DFAs (cf. Section 5.5.2). We will thus only
consider the case of non-minimal counterexamples.

6.5.2. Counterexamples of Growing Length

For the first series experiments, we randomly generated a minimal 1-SEVPA with 50 locations
over the alphabet Σcall = {c1,c2}, Σret = {r1} and Σint = {a ,b }, and randomly generated (well-
matched) counterexamples of lengths between 10 and 500, in increments of 10. We measured
the queries and symbol complexities, averaged over 5 runs for each counterexample length.

The results can be seen in Figure 6.6. The VPA version of Observation Pack and TTT-VPA make
roughly the same number of membership queries, with Observation Pack showing a consider-
ably higher variance. As in the regular case, the number of queries seems to be virtually unaf-
fected by the length of the counterexample, which probably is due to the nature of randomly
generated automata (cf. Section 5.5.3). Looking at the number of symbols, TTT-VPA requires
roughly half as many symbols as Observation Pack for counterexamples exceeding a length of
100. Again, Observation Pack shows a significantly greater variance. An interesting aspect is

9In particular, the pseudocode listing of the discrimination tree refinement (to be found on p. 23 of the accom-
panying technical report [120]) only constructs discriminators by prepending a symbol to the suffix of a context pair,
except for in a boundary condition occurring only once per module (with the root of the initial module always being
labeled with 〈ε,ε〉). It is clear that this cannot be sufficient, as it—in case of a single module—means that only the
syntactical right-congruence (i.e., Nerode congruence) is approximated.

141

6. Learning Visibly Pushdown Automata

3

3.05

3.1

3.15

3.2

0 100 200 300 400 500

Q
ue
ri
es

[x
10

^
4]

Counterexample length [symbols]

OP
TTT

(a) Unique queries

0

0.25

0.5

0.75

1

1.25

1.5

0 100 200 300 400 500

S
ym

bo
ls
[x

10
^
6]

Counterexample length [symbols]

OP
TTT

(b) Symbols in unique queries

Figure 6.6.: Performance of 1-SEVPA learning algorithms for randomly generated 1-SEVPA with
n =50, |Σcall|= |Σint |=2, |Σret |=1

1.3

1.35

1.4

1.45

1.5

0 100 200 300 400 500

Q
ue
ri
es

[x
10

^
5]

Counterexample length [symbols]

OP
TTT

(a) Unique queries

0

1

2

3

4

5

6

7

0 100 200 300 400 500

S
ym

bo
ls
[x

10
^
6]

Counterexample length [symbols]

OP
TTT

(b) Symbols in unique queries

Figure 6.7.: Performance of 1-SEVPA learning algorithms for randomly generated 1-SEVPA with
n =50, |Σcall|= |Σret |=3, |Σint |=2

0

2

4

6

8

10

12

0 50 100 150 200 250

Q
ue
ri
es
[x
10
^
5]

Location count

OP
TTT

(a) Unique queries

0

1

2

3

4

5

0 50 100 150 200 250

S
ym
bo
ls
[x
10
^
7]

Location count

OP
TTT

(b) Symbols in unique queries

Figure 6.8.: Performance of 1-SEVPA learning algorithms as a function of n

142

6.5. Preliminary Evaluation

that for both algorithms, increasing the length of counterexamples beyond 150 seems to only
marginally affect the number of symbols.

We then looked at how increasing the alphabet size affects the performance. We introduced
one additional call symbol and two additional return symbols, resulting the alphabet Σcall =
{c1,c2,c3}, Σret = {r1,r2,r3} and Σint = {a ,b } (note that this corresponds to a 4.5-fold increase in
the number of return transitions). The results are shown in Figure 6.7. Apart from the total
numbers, these results do not differ significantly from the above: the number of membership
queries is within a very close range, but the queries posed by Observation Pack contain roughly
twice as many symbols as the queries posed by TTT-VPA.

6.5.3. Automata of Growing Size

For the last series of experiments, we randomly generated 1-SEVPAs over the smaller alphabet
(i.e., Σcall = {c1,c2}, Σret = {r1}, Σint = {a ,b }) with sizes (i.e., number of locations) between 10 and
250, in increments of 10. Counterexamples of a fixed length of m = 200 were provided to the
learning algorithms. Unique queries and symbols were then measured, again averaging over
five runs.

The results, shown in Figure 6.8, are in line with the expectations set by the previous experi-
ments. The number of unique queries is almost the same for both algorithms. Compared to the
similar setting in the regular case (as shown in Figure 5.16a), one notices immediately that the
growth is no longer near-linear, but instead quadratic. This is due to the fact that the number of
transitions grows quadratically with the number of locations, as there are n · |Σcall| · |Σret | return
transition per location (cf. also Section 6.4.5).

Finally, the plot depicting the number of symbols in all unique queries (Figure 6.8b) shows
the familiar pattern that discriminator finalization, as implemented in TTT-VPA, reduces this
number by roughly 50%.

6.5.4. Interpretation of the Results

The presented results underline two aspects: first, applying what can be called the “TTT prin-
ciple”, i.e., cleaning up the internal data structures to represent information about the hypoth-
esis in a minimal form, also pays off in the context of visibly pushdown systems. This is only
marginally visible when considering the number of membership queries (which most likely is
due to the characteristics of randomly generated systems, cf. Section 5.5.4), but the difference
grows significantly when considering the number of symbols in these queries.

Second, discriminator finalization seems to have a very stabilizing effect. in the sense that it
considerably reduces the variance of the number of both symbols and queries. Clearly, this is
due to the fact that TTT-VPA effectively reduces counterexamples, which were the main source
of randomness in the above experiments, to a minimal form.

The evaluation can however only be regarded as very preliminary. The problem that randomly
generated automata might not be that representative for realistic systems, as already stated in
Section 5.5.4, is even more grave in the case of visibly pushdown automata. In general, we can
expected TTT-VPA to perform even stronger, as the experiments presented in Section 5.5 suggest
that the TTT principle often leads to a reduction in the number of queries, an effect that can-
not be observed in the case of randomly generated systems due to the fact that any randomly

143

6. Learning Visibly Pushdown Automata

sampled discriminator results in an expected balanced partitioning of location sets. In fact, the
curve from Figure 6.8a is close to the optimal query complexity, i.e., assuming a discrimination
tree depth of logn (cf. also Section 6.4.5).

Furthermore, factors such as the alphabet size, or the number of call, return, and internal
symbols (and their ratios) all can have a significant impact on the performance of the learn-
ing algorithm. Conducting larger, more realistic case studies is thus inevitable to make a more
realistic assessment regarding not only of the performance of specific learning algorithms, but
concerning the applicability and feasibility of learning visibly pushdown systems in general.
However, the results in the previous section do suggest that for these case studies, TTT-VPA will
probably be the way to go.

6.6. Envisioned Applications

Let us conclude our chapter on learning visibly pushdown systems with sketching two possible
applications.

XML document processing. Visibly pushdown languages (sometimes also called languages
over nested words) have often been proposed [11, 12] for modeling the contents XML documents
(more precisely: the set of all XML documents that are valid wrt. some specification). Here, the
call symbols correspond to opening tags, whereas return symbols correspond to closing tags.10

While it is common to model XML document processing using tree automata (cf. the survey
by Schwentick [159]), this requires the document to be present in the form of a tree (such as a
DOM tree). A visibly pushdown automaton, on the other hand, reads data sequentially, and can
thus be used to process XML documents more efficiently in a streaming fashion, as proposed
by Kumar et al. [121].

In this context, learning can be used to obtain a specification (in the form of a visibly push-
down automaton) in situations where there is no DTD or schema available. For example, a
legacy program or a web service might parse and validate input XML documents program-
matically, and apply validation rules which are nowhere (formally) stated. By generating XML
documents to be fed to this program, a learning algorithm would then infer the structure that
valid documents need to possess, and the generated visibly pushdown automaton could be used
for the off-line validation of documents, or also to obtain a formal description such as an XML
schema or a DTD.

Compositional verification for pushdown systems. The second prototypical application of vis-
ibly pushdown languages is the verification of recursive programs. Again, the assumption that
calls and returns are marked as such is not a real constraint in this domain. For the logical
specification of such programs, Alur et al. [13] have proposed a temporal logic called CARET.
Applications of visibly pushdown languages in the context of white-box program analysis are
plenty: Chaudhuri and Alur [46], and also Roşu et al. [156] proposed basing monitors on visibly
pushdown automata for respecting the procedural structure of calls and returns, and a general
framework for temporal reasoning for procedural programs is presented by Alur and Chaud-
huri [10].

10It is common to assume well-formedness, which means that a single return symbol—representing the closing
tag for the topmost open one—is sufficient.

144

6.6. Envisioned Applications

It is not quite clear how these results could translate to a black-box setting. Kumar et al. [119]
introduce conformance testing of recursive Boolean programs, where the program is treated as
a black-box that needs to be validated against a specification. However, while it is possible to
instrument programs to make calls and returns visible as output (which could be useful for pas-
sively learning the specification of such a program from traces), it is hard to imagine how func-
tion calls and returns could be treated as inputs: when invoking a procedure, the subsequent or
recursive invocation of other procedures is generally under the control of the program—possibly
depending on further user input, which would however mostly correspond to internal actions; a
granularity of the (black-box) alphabet that allows triggering the invocation of other procedures
in arbitrary contexts is unlikely.

However, a fruitful application of VPA learning, which we leave as a direction for future re-
search, could be assumption learning in compositional verification, as originally proposed by
Cobleigh et al. [57]. Compositional verification is one proposed attempt to tackle the so-called
state-space explosion problem [56], i.e., the problem that the state-space of a complex system
composed of several components usually is far too big to be handled by an explicit-state model
checker. The approach of compositional verification is therefore to reduce the verification of the
whole system to verifying its components. However, components typically can only be proven
to work correct in a certain environment, which is given by the remaining components. Assume-
guarantee reasoning [151] aims at substituting the environment with an assumption about its
behavior, which is much more abstract (i.e., smaller) than the actual environment, but precise
enough to allow the analyzed component to guarantee correct behavior.

Since formulating such assumptions manually is challenging, Cobleigh et al. [57] proposed
to learn them using active automata learning. Naturally, this limits the assumptions—and thus
also the complexity of systems that can be analyzed—to whatever the learning algorithm can
produce. The original approach therefore focused on safety properties, and Farzan et al. [65] ex-
tended this approach to liveness properties assumptions by presenting a learning algorithm for
arbitrary ω-regular languages. The VPL learning algorithm developed in this chapter thus can
be used to extend this approach to subclasses of context-free properties as assumptions (e.g.,
corresponding to safety CARET formula). Due to the increased complexity of the composition
operation for visibly pushdown systems, the benefit of learning an assumption much smaller
than the respective environment would be even greater.

145

7. Related Work

In this chapter, we will discuss other works that are related to this thesis. We will first focus on
works that are directly relevant to the contents of this thesis, but also discuss works that, while
not being related to the core subjects of this thesis, are still related to the overall subject of active
automata learning, allowing the reader to obtain an overview.

7.1. Works Directly Related to the Contents of This Thesis

The next subsections discuss works that are similar or related to the contents of the previous
chapters, in the order in which they occur in this thesis. There are three lines of works that
we consider to be directly relevant to the contents of this thesis: approaches for unifying and
formalizing the description of active automata learning algorithms (Chapter 3), algorithmic im-
provements to classical active DFA learning (Chapters 4 and 5), and active learning of (visibly)
pushdown languages (Chapter 6). More general advancements, such as for richer classes of
languages that are however not related to visibly pushdown languages, will be discussed in Sec-
tion 7.2.

7.1.1. Unifying Formalization of Active Automata Learning

The need for a unifying and more formal description of active automata learning algorithms has
been identified by a handful of other researchers. The best-known attempt at this is probably
the observation pack framework due to Balcázar et al. [25], with the stated goal of providing a
unified view on the learning algorithms due to Angluin [19], Rivest and Schapire [154, 155], and
Kearns and Vazirani [115]. In their framework, an observation pack is a family of observations
(i.e., examples with the observed output value), which are organized in a certain way and need
to satisfy certain properties for being able to construct an automaton from them.

A formalization that bears many similarities to aspects of the framework presented in Chap-
ter 3 of this thesis was presented by Berg et al. [31], motivated by the aim of unifying the de-
scriptions of active automata learning and conformance testing [38]. The authors introduce the
concept of suffix-observability, that the descriptions in this thesis also rely on to ensure an easy
transfer to Mealy machines. Furthermore, there are some formal similarities: the concept of
an observation structure is introduced, which is a partial function mapping words (elements of
U ∪UΣ) to partial functions from Σ∗ to D, which is very similar to our notion of black-box clas-
sifiers and abstractions.

The main differences between the framework developed in Chapter 3 of this thesis and the
two above-mentioned attempts is that both of them encode a number of assumptions in their
formalization, that then result in a loss of generality. Examples for such assumptions are that
representative short prefixes are unique, form a prefix-closed set, that there is a global set of suf-
fixes, or that this set is suffix-closed. Imposing such assumptions of course makes it impossible

147

7. Related Work

to identify certain phenomena (e.g., reachability or output inconsistencies), the characteriza-
tion and precise description of which is one of the main results of Chapter 3. Also, the important
subject of counterexample analysis is only addressed very briefly, if at all.

7.1.2. Algorithmic Improvements of Classical Active Automata Learning

Since Anlguin’s initial presentation of L∗ [19], only a handful of improved versions or novel al-
gorithms have been presented. Rivest and Schapire [154, 155] introduced the idea of using
binary search to determine a single suffix of a counterexample that causes refinement, while
Kearns and Vazirani [115] suggested replacing the observation table with a discrimination tree.
Howar [93] then combined both ideas, resulting in the Observation Pack algorithm.

Counterexample handling. Maler and Pnueli [127] proposed the strategy of adding all suffixes
of a counterexample to the table (commonly referred to as L∗

col). Irfan et al. [105, 106] observed
the impact of long counterexamples on the number of membership queries, and presented the
Suffix1by1 heuristic to reduce the number of suffixes. However, suffix-closedness is maintained
at the cost of adding unnecessary suffixes, resulting in a worst-case query complexity that grows
linearly with the counterexample length (whereas Rivest and Schapire’s approach only results
in a logarithmic growth; cf. also Table A.1).

Further addressing the problem of long counterexamples, Isberner and Steffen [108]proposed
to use a binary search strategy also for Kearns and Vazirani’s algorithm, and to furthermore use
exponential search to avoid the problem that binary search poses at least one query of length
m/2, while maintaining a logarithmic worst-case complexity.

Another approach to tackling long counterexamples has been presented by Aarts [1], adapting
a technique proposed by Koopman et al. [117] for shortening counterexamples in the context of
model-based testing: the current hypothesis is used to heuristically detect possible loops in the
counterexample, which are then eliminated. As the check for “true” cycles are cheap to execute,
significant benefits can be obtained in practice.

However, all of these techniques are of heuristic nature. They may work very well in most prac-
tical circumstances, but there might always be pathological cases where they fail to reduce the
length of the counterexample significantly. On the other hand, TTT might require more hard sifts
for finalizing discriminators, but after a refinement step is complete, the resulting impact on the
internal data structures is the same as if a minimal counterexample had been processed. As our
experiments furthermore indicate that there is no noticeable overhead when processing min-
imal counterexamples, some of the above techniques (such as cycle removal) can furthermore
be combined with TTT to (heuristically) improve the average-case efficiency, but nonetheless
limit the negative impact in pathological cases.

Space complexity. Merten et al. [138, 140] addressed the issue of space complexity of learn-
ing algorithms with their presentation of the DHC algorithm, motivated by the fact that the im-
proved implementation quality of learning algorithms allowed to learn systems of such size that
space consumption became a real problem. However, the favorable space complexity of DHC
comes at the cost of not storing its observations. That is, in every refinement step, all previously
asked queries have to be asked again. This can be remedied by using a cache, which however
increases the space consumption again. Furthermore, the DHC algorithm does not minimize
the suffixes extracted from a counterexample, meaning its space complexity depends on m and
is not truly linear in the size of the hypothesis.

148

7.1. Works Directly Related to the Contents of This Thesis

Other algorithms and approaches. Meinke et al. [132, 133] proposed several algorithms (CGE,
ICGE) for learning-based testing [136] scenarios, which are based on string rewriting and uni-
versal algebra [135]. These algorithms follow an approach that can be considered as being dual
to the algorithms considered in this thesis: instead of refining an approximation of the Nerode
congruence, they start with a maximally fine relation and subsequently join classes. The authors
report superior performance for learning-based testing applications.

Bollig et al. [36] presented an observation table-based algorithm, called NL∗, which learns a
certain class of NFAs, namely RSFAs [62]. Since NFAs and DFAs are equi-expressive, this does
not extend the range of their learning algorithm beyond the scope of regular languages, but
merely concerns representation. However, RSFAs may be exponentially more succinct than
equivalent canonical DFAs, and the authors report favorable performance on a certain set of
benchmarks (consisting of randomly-generated regular expression), however only comparing
their algorithm to L∗ and L∗

col. Another approach for learning NFAs of was presented by Björk-
lund et al. [35]. They describe an observation table-based algorithm for learning universal au-
tomata [83, 124], a certain class of NFAs that are based on the concept of factors of a language,
without reporting on experimental results.

7.1.3. Extending Active Automata Learning to Context-Free Structures

In her paper presenting L∗, Angluin [19] describes a possible modification for learning context-
free grammars in Chomsky normal form, however requiring the learner to know the non-
terminals (corresponding to the states in a pushdown automaton, and learning only the transi-
tions [119]). Angluin and Kharitonov [21] prove that context-free languages can in general not
be learned from a MAT alone. It has often been pointed out (e.g., by Clark [53]) that a MAT
answering equivalence queries cannot even exist in a white-box setting, as equivalence of two
context-free grammars is undecidable. For this reason, most approaches focus on passive learn-
ing of (subclasses of) context-free grammars from positive [54, 157] or positive and negative ex-
amples [74]. Some approaches combine positive examples with membership queries, yielding
polynomial-time algorithms [55].

Alur and Madhusudan [11] relate visibly pushdown languages to the regular tree language of
stack trees. Kumar et al. [119] point out that it would be possible to combine this result with
the algorithm due to Sakakibara [157] (or the improved version by Drewes and Högberg [64]) for
learning regular tree languages to obtain a tree language representation of a visibly pushdown
language, which might however be non-deterministic and furthermore not exhibit certain struc-
tural properties to be expected from recursive programs.

Neider and Löding [143] investigate learning of visibly one-counter automata, which form a
strict subclass of visibly pushdown automata, in a MAT-like setting. Their approach is based on
learning a regular structure in the infinite behavior graph, using a data structure called “stratified
observation table”, and requiring access to a modified form of equivalence queries that permit
restricting the subset of the target language on which equivalence is checked.

A proper active learning algorithm for VPAs was first described by Kumar et al. [119] for com-
plete modular VPAs. The description is however very brief, and mostly relies on the reader’s
intuition to transfer the concepts of classical active automata learning to the setting of VPAs.
The accompanying technical report [120] provides significantly more details. However, a for-
mal framework that would allow to reason about other approaches (e.g., suffix-based instead

149

7. Related Work

of prefix-based counterexample analysis) or a more detailed discussion of the properties main-
tained by the algorithm is not established. As their algorithm requires a number of membership
queries that is at least linear in the length of a counterexample (which, in turn, may be exponen-
tial in the number of locations), the assumption of a cooperative teacher is proposed: by repre-
senting the counterexample in a certain, compact way (i.e., as a recursive equation system), the
query complexity could be kept sub-exponentially. In contrast, leveraging the counterexample
analysis framework developed in Section 3.3 of this thesis allows us to describe a counterexam-
ple analysis that is logarithmic in the length of the counterexample, and thus requires a polyno-
mial number of queries for arbitrary counterexamples of (single) exponential length.

7.2. Other Works Related to Active Automata Learning

In this section, we will discuss works that, while not being directly relevant to the contents of
this thesis, represent important advancements in the field of automata learning, or are relevant
for obtaining an understanding and overview of the context of the field.

7.2.1. Grammatical Inference and Passive Automata Learning

Active automata learning is a subfield of grammatical inference [61] (sometimes also called
grammar induction), which is concerned with inferring (“learning”) formal descriptions of lan-
guages (such as grammars or automata), including probabilistic languages or transducers which
are not formal languages in the strict sense (i.e., described by a formal grammar as defined by
Chomsky [51]). Grammatical inference itself has its origins in computational linguistics and
pattern recognition, and is sometimes also related to machine learning [141].

Many approaches in grammatical inference can be described as passive learning, i.e., they
construct automata (or other formal descriptions) from sets of examples. Gold [75] and An-
gluin [18] showed that computing the smallest DFA consistent with a given sample (i.e., a set of
words labeled with 0 or 1) was NP-hard. This has led to the development of (polynomial-time)
heuristics such as the RPNI algorithm due to Oncina and García [147], or the k -tails algorithm
due to Biermann and Feldman [34], which do not guarantee inferring the minimal consistent
DFA, but often return a sufficiently small one. Similar techniques for inferring transducers from
sample sets have been developed, such as the OSTIA algorithm by Oncina et al. [148].

Passive automata learning approaches are often used in the context of specification mining [17],
which attempts to automatically discover formal specifications of, e.g., protocols, by observing
regular program executions (for instance through analysis of log files). The aim of specifica-
tion mining, however, is to focus on normal behavior, whereas active automata learning aims
at exploring all possible behaviors.

A mixture between passive and active learning is inductive testing, as proposed by Walkinshaw
et al. [170]: an initial set of traces is used to construct a model, which then forms the basis for
generating test-cases. Executing these test-cases augments the sample set, allowing to construct
a refined model.

7.2.2. Extending Active Automata Learning Beyond Regular Languages

Maler and Pnueli [127] described an extension of the L∗ algorithm to a strict subclass of ω-

150

7.2. Other Works Related to Active Automata Learning

regular languages (Büchi automata), and Farzan et al. [65] later presented an algorithm for ac-
tively inferring arbitrary ω-regular languages.

An adaption of L∗ for Mealy machines was first presented by Niese Margaria et al. [129],
Niese [146], and its description later formalized by Shahbaz and Groz [161]. Based on Mealy
machine inference, Aarts and Vaandrager [2] have developed a technique for learning I/O au-
tomata [125] under some additional assumptions.

The above techniques have in common that they still infer models with an inherently finite
structure. To address the problem of effectively infinite alphabets (e.g., network messages con-
taining integer values), Aarts et al. [3] proposed the use of (manually supplied) abstractions.
Howar et al. [95] proposed an approach for automated counterexample-guided black-box in-
ference of a maximally coarsest alphabet abstraction (assuming a finite state-space but a po-
tentially infinite alphabet), which was later improved by Isberner et al. [109] to cover state-local
alphabets. A similar approach is due to Maler and Mens [126, 137], however assuming that al-
phabet symbols exhibit some properties (e.g., an ordering) on which their partitioning can be
based.

A lot of effort has been spent on a more adequate handling of data in the context of active
automata learning. Several formalisms have been proposed to model systems that may pass
around data values from unbounded domains, such as register automata [43, 44] (which can be
regarded as variants of the finite-memory automata introduced by Kaminski and Francez [114])
or scalar-set Mealy machines [5]. Learning algorithms for the first kind have initially been de-
scribed by Howar et al. [98], with a later extension to Mealy machines [97]; a survey on these
approaches, including the historical developments and highlighting important stepping stones,
has been given by Isberner et al. [111]. The original constraint that data values could be tested
for equality only was overcome in a recently presented extension [45] that relies on SMT solving.

Algorithms for learning scalar-set Mealy machines have initially been presented by
Aarts et al. [5, 6]. Aarts [1], in her PhD thesis, describes an improved approach that overcomes
many of the original limitations in comparison with the above approach of learning register au-
tomata. A comparison of both approaches was later conducted jointly [9].

The above work extends active automata learning from finite-state to infinite-state systems, by
allowing a finite number of memory locations that can store data values ranging over an un-
bounded domain and thus inducing an infinite configuration (state) space. However, a key limi-
tation is that the control structure remains finite. The work on inferring VPAs can thus be consid-
ered as being orthogonal to the above: in this setting, the control structure is context-free and
thus inherently infinite, while data can only be abstracted in a finite manner (i.e., by encoding
it into the alphabet and the locations, both of which are finite). An intuitive illustration of this
is the inference of a stack data structure, as described by Isberner et al. [111]: using register au-
tomata learning, a stack with a finite capacity storing data values from an infinite domain can
be learned. In contrast, using VPA learning it is possible to learn a stack with infinite capacity,
that can however only store data values from a finite domain.

7.2.3. Applications of Active Automata Learning in Formal Methods

Model checking. The first publication proposing the combination of active automata learning
and formal methods was “Black-box checking” by Peled et al. [149, 150]. The goal of checking

151

7. Related Work

a system against a (temporal) specification is accomplished by learning an initial model of a
system, and using a mixture of model checking [24, 56] (for either detecting true specification
violations, or obtaining spurious counterexamples to be used for refining the model) and con-
formance testing [38, 39], e.g., using the Vasilevskii-Chow method [52, 169] for generating coun-
terexamples. This work has spun off a lot of related approaches focusing on enabling model
checking or other model-based testing techniques in the setting of inexistent or inadequate
models. Groce et al. [81, 82], e.g., proposed adaptive model checking, also based on active au-
tomata learning, as a means to deal with inconsistencies between existing but incorrect models
and the actual system.

Test-case generation. Hagerer, Hungar et al. [84, 85, 101, 102, 129] were the first to report
on using active automata learning for model generation of realistic systems in a practical set-
ting, initially focusing on CTI (computer telephony integration) systems. Models for legacy sys-
tems, which were generated by using automata learning, were used to re-organize and improve
test suites. This scenario quickly inspired engineering efforts to improve the practical perfor-
mance [103, 130, 131], e.g., by using optimizing filters, led to the design of algorithms better
suited for reactive systems [129, 146], and furthermore motivated the development of dedicated
active automata learning tools and libraries [152, 153].

Network systems and protocols. Active automata learning is often used in the context of net-
work systems or protocols, or hardware systems, as these represent black-box systems in their
purest form. Aarts et al. [3] proposed a technique to learn models of communication protocols,
and subsequently conducted a number of case studies, inferring models of, e.g., the EU bio-
metric passport [4], bank cards [8], or the bounded retransmission protocol [7]. The technique
has also been used successfully by Fiterǎu-Broştean et al. [66] for learning fragments of the TCP
protocol.

Related is the use of active automata learning in the CONNECT project [28, 76, 113], which fo-
cused on ensuring interoperability of networked components in heterogeneous environments.
Here, learning was used to infer state-machine models of networked systems [30], and these
models were subsequently used to synthesize connectors realizing interoperability [29].

Security. Cho et al. [48] presented an application of active automata learning in the security
space that received a lot of attention: using L∗

M [129, 146, 161], they inferred a formal model
of the command and control protocol of a botnet. This model exhibited characteristics of the
protocol that could be used to devise a takedown strategy.

MACE [49] is another application in the security domain, which uses active automata learning
to recognize vulnerabilities in network protocol implementations. However, the proposed ap-
proach is a white-box one: learning is combined with symbolic or concolic execution [73, 116]
and assists the latter by identifying the behavioral structure on a larger scale.

Interface synthesis. Alur et al. [16] presented an automata learning-based approach to gen-
erating temporal interfaces for Java classes (i.e., automata recognizing the language of safe se-
quences of operations on objects). Predicate abstraction [77] is used to obtain an abstracted
version of the class, and the L∗ algorithm is then used to synthesize a corresponding model. A
similar approach was later proposed by Giannakopoulou et al. [71, 99], however based on sym-
bolic execution instead of predicate abstraction, allowing the inference and automated refine-
ment of symbolic transition guards.

152

7.2. Other Works Related to Active Automata Learning

Compositional verification. Cobleigh et al. [57]proposed an approach to compositional verifi-
cation based on active automata learning: the state-explosion problem, due to multiple compo-
nents acting in parallel, is circumvented by means of assume-guarantee reasoning. That is, the
problem of checking whether the composed system of two components conforms to a specifi-
cation is reduced to checking whether one of the component behaves correctly under a certain
assumption (that is more abstract than the concrete behavior of the other component), and
whether the other component guarantees this assumption. Active automata learning is used
to learn such an assumption. The original approach worked for safety properties only, Farzan
et al. [65] presented an extension admitting any ω-regular property to be learned as an assump-
tion. A symbolic version was proposed by Alur et al. [15].

Active continuous quality control. This technique, introduced by Windmüller et al. [145, 171,
172], aims at providing a better understanding of the evolution of a software system over time. By
inferring and then comparing models of different versions of a product (e.g., different releases
or revisions in a source code management system), developers can inspect graphical visual-
izations of functional changes, to better understand the implications of intended ones, and to
recognize unintended ones. Combined with checking the models against a specification, error
traces detected in one version can be used as counterexamples to refine existing models of pre-
vious versions, allowing to precisely pinpoint when a certain behavioral change was introduced.

7.2.4. Active Automata Learning Tools and Framework

The plethora of practical applications of active automata learning calls for tools and libraries
that offer these functionalities in a ready-to-use and reusable fashion. While the L∗ algo-
rithm [19] is relatively easy to implement, this is not true for more sophisticated algorithms, such
as the ones presented in this thesis. The same holds for many—often thoroughly engineered—
optimizations concerning the practical performance [130, 131]. As learning often takes con-
siderable time (Cho et al. [48] report a period of three weeks for inferring the botnet protocol),
an existing, well-engineered and highly optimized learning algorithm implementation should
therefore always be preferred over a—almost inevitably much simpler and less optimized—one-
off implementation of a standard learning algorithm such as L∗.

LearnLib1 [152, 153] was probably the first active automata learning framework. Originally writ-
ten in C++ and not being publicly available, the current version [112], developed by the author
and others, is now based on Java and released under an open-source license. LearnLib features
most active automata learning algorithms that have been described in the literature (including
the TTT algorithm), a rich infrastructure, and high scalability.

libalf 2 [37] is an open-source automata learning framework written in C++. It focuses entirely
on the algorithmic part and does not provide further infrastructure, e.g., to connect to real-
life systems. In contrast to LearnLib, it also features some passive learning algorithms such as
RPNI [147].

Tomte3 [1] is a tool focusing on the automated inference of abstractions required to learn realis-
tic systems. It uses learning algorithms from LearnLib internally, and complements these with
simultaneously inferred stateful abstractions, as described by Aarts et al. [5, 6].

1http://www.learnlib.de/
2http://libalf.informatik.rwth-aachen.de/
3http://tomte.cs.ru.nl/

153

http://www.learnlib.de/
http://libalf.informatik.rwth-aachen.de/
http://tomte.cs.ru.nl/

8. Conclusions

In this thesis, we have addressed the problem of active automata learning, i.e., learning finite-
state machine models by experimentation, from a theoretical and algorithmic perspective. As
a result, we have described a novel mathematical framework allowing to reason about how and
why active automata learning algorithms work. The attained insights have led to the develop-
ment of a new, highly efficient active automata learning algorithm that outperforms virtually
every other algorithm in the presence of long counterexamples. The ideas underlying this al-
gorithm could furthermore be translated with only little modification to the more complex sce-
nario of visibly pushdown automata.

In Section 1.1, we have formulated three research questions that we wanted to address in this
thesis. The first one concerned the formalization of active automata learning:

How can the phenomena encountered in active automata learning be characterized
formally and independently of a concrete algorithmic realization, what is their sig-
nificance, and what are desirable properties and characteristics that a learning algo-
rithm should possess?

The purely mathematical formulation of the framework presented in Chapter 3 allowed us
to characterize two desirable semantic properties—reachability and output consistency—
along with syntactic properties guaranteeing them: prefix-closedness and (semantic) suffix-
closedness. As most early active automata learning algorithms actually enforced these syntac-
tic properties, the inconsistencies resulting from a relaxation were only described later, and not
truly as independent phenomena. While Lee and Yannakakis [122]observed that forgoing suffix-
closedness, as proposed by Rivest and Schapire [155], leads to non-canonical hypotheses, Stef-
fen et al. [167] as well as Van Heerdt [86] additionally observed that in this case the information
in the observation table must be inconsistent with the hypothesis, and thus gives rise to a coun-
terexample. The proposed strategy, however, was to simply analyze this counterexample. The
same is true for the “dual” phenomenon of reachability inconsistencies, which can be observed
during runs of Kearns and Vazirani’s algorithm [115].

Our formalization yields the important insight that it is more adequate to reverse the per-
spective: counterexamples can themselves be regarded as either output or reachability incon-
sistencies. This allows a more efficient analysis, as a reachability inconsistency does not need
to constitute a counterexample, and, conversely, analyzing an output inconsistency does not
require the corresponding state to be reachable. Furthermore, we showed that both “counterex-
ample” analysis strategies are applicable even when most “reasonable” assumptions—such as
prefix-closedness of U or maintaining unique representatives—are dropped, and that they can
both be reduced to a much simpler, abstract problem. This uncovers a beautiful symmetry be-
tween the role of prefix-based and suffix-based analysis (and of prefixes and suffixes in general),
culminating in the observation that in both cases there is a direct correspondence between the
immediate refinement suggested by the analysis result, and the violation of the corresponding
syntactical property.

155

8. Conclusions

How can the insights gained through a rigorous formalization be translated into an
efficient active learning algorithm, and how does the practical performance of an al-
gorithm designed along these guidelines differ from existing algorithms?

Analyzing existing algorithms under the perspective of whether they manage to enforce the
identified desirable properties of reachability and output consistency, it seemed that appar-
ently one of them has to be sacrificed for maintaining the other. This is a direct consequence of
the above observation on how the application of prefix- or suffix-based counterexample anal-
ysis violates prefix- or suffix-closedness, respectively. Pursuing the naturally arising question
of whether it is possible to maintain both these syntactic properties simultaneously led to the
development of the TTT algorithm, the idea of which can be summarized as follows: the ob-
servation that maintaining one property inevitably leads to temporary violations of the other
gives rise to the approach of explicitly restoring the respective property as soon as possible, thus
“purging” the internal data structures from the effect of non-minimal counterexamples.

The theoretical complexity analysis revealed that TTT is space-optimal, meaning that no other
active automata learning algorithm can require an asymptotically lower amount of memory.
This result reflects a very economic handling of information, which is of particular importance
under the initially stated goal that an ideal learning algorithm should ask only those questions
that need to be asked.

Furthermore, while the theoretical query complexity analysis suggested that this results in no
asymptotic improvements over some existing algorithms, the experimental evaluation painted
a very different picture: in the case of long counterexamples, TTT is superior to all other algo-
rithms, to the extent that the length of counterexamples has little to no performance impact.
Notably, this does not only concern the number of symbols, which were our major concern
when developing this algorithm, but also the number of queries. Since the cleaning up of data
structures incurs no noticeable overhead in the presence of optimal counterexamples, we feel
confident to state that the TTT algorithm, developed along the above guidelines, is indeed su-
perior to every other algorithm in virtually all circumstances.

To what extent—and if so, how—can the mathematical formalization and the iden-
tified principles of efficient algorithm design be transferred to the active inference of
richer classes of models, e.g., modeling infinite-state systems?

While the TTT algorithm for regular languages is already technically quite involved, the rigorous
mathematical formalization allowed us to develop an extension for learning visibly pushdown
automata in a comparably simple manner. Building on a congruence-based characterization
of visibly pushdown languages developed by Alur et al. [14], most of the concepts from active
learning of regular languages could be transferred in a relatively direct and very natural fashion.
This in particular includes counterexample analysis, which can be dealt with as an instantiation
of the abstract framework developed in Chapter 3, and thus be tackled using search algorithms
of logarithmic worst-case complexity. This is of particular importance in the context of visibly
pushdown systems, as counterexamples may be of exponential length even in the presence of a
cooperative teacher.

An essential step for the TTT algorithm was the identification of finalization rules, based on
an inductive characterization of inequivalence in the Nerode congruence. Identifying similar
rules for the case of visibly pushdown systems provided a clear guideline to developing a variant

156

8.1. Future Work and Open Problems

of TTT for visibly pushdown automata, named TTT-VPA. Compared to an algorithm without
these finalization steps, TTT-VPA exhibits superior and in particular more stable performance,
suggesting that the TTT approach of maintaining a minimal internal representation is indeed
the key to developing robust and scalable automata learning algorithms.

8.1. Future Work and Open Problems

Despite the impressive pace in which active automata learning has evolved over the past years,
there are still an enormous number of unsolved questions and rather poorly-understood phe-
nomena to be found in the field. In the following, we will elaborate on some aspects that we
could only touch upon in the scope of this thesis, or that can be regarded as a straightforward
attempt of taking the results of this thesis to the next level.

Further investigation of the prefix/suffix symmetry. The mathematical framework developed
in Chapter 3 uncovered remarkable symmetries between the role of prefixes and suffixes, es-
pecially concerning the two prevalent counterexample analysis strategies. The TTT algorithm
developed in this thesis is based on suffix-based counterexample analysis. However, it can be
adapted to use prefix-based analysis with relatively little effort: Kearns and Vazirani’s algorithm
builds a suffix-closed set of discriminators, but violates prefix-closedness of U . It could there-
fore be used as a starting point for a prefix-based variant of TTT, which eventually maintains
both properties by restoring prefix-closedness of the access sequences. The similarities to the
suffix-based version of TTT might help to find a characterization of situations which favor ei-
ther prefix-based or suffix-based analysis. Moreover, it could contribute to an understanding as
to why prefix-based analysis seems to be inherently more complex than suffix-based analysis
(according to the worst-case analysis), a question raised in Section 3.3.6.

Optimality of learning algorithms. For TTT, we could only prove space-optimality (cf. Sec-
tion 5.3.2), but not optimality regarding the query or symbol complexities. While the query com-
plexity of O(k n 2+n logm) is close to the theoretical lower bound of Ω(k n 2) proven by Balcázar
et al. [25], it fails to meet it for excessively long counterexamples, i.e., of length m =2ω(k n). Lower
bounds analysis is often performed by considering a teacher who maintains a set of possible tar-
get systems, and every membership and equivalence query forces him to reveal an output, nar-
rowing down this set. While the learner can choose the membership queries (and choose when
to make an equivalence query), the teacher can choose an output that minimizes the potential
reduction of the number of target systems. One would need to investigate whether there exist
(classes of) target systems, for which counterexamples of such length could be generated such
that analyzing them provably requires a certain amount of effort (i.e., Ω(logm) queries). On the
other hand, no counterexamples of length greater than m =2ω(k n) need to be considered, as k n is
a trivial upper bound for a learning algorithm based on exhaustive exploration. Alternatively, it
might be possible to show that counterexamples of length m =2ω(k n) contain so much inherent
redundancy that it is possible to shorten them to counterexamples of length 2O(k n) by using no
more than O(k n) queries per counterexample, which would result in an optimal overall query
complexity. For simplicity, one could start by assuming that n is known to the learner.

The symbol complexity of learning algorithms has only rarely been considered, and not at all
in the context of lower bounds and optimality. However, as most queries of length ω(n) occur
during, or as a result of, counterexample analysis, a better understanding of the role that coun-

157

8. Conclusions

terexamples play in the context of lower bounds (see above) is likely to be a prerequisite for an
analysis that should yield meaningful results.

Practical performance of learning algorithms. We have noted that the query complexity of
TTT is almost optimal. The same, however, can already be said about Rivest and Schapire’s [155]
algorithm, that has the same worst-case query complexity (cf. Table A.1). Tables 5.1 and 5.2
speak a significantly different language. This shows that the asymptotic worst-case analysis is
of only limited value. Since reasoning about average-case complexities is hard—the problem
of merely estimating the number of canonical DFAs for given n and k is very involved [63], and
it is unclear how a “reasonable” distribution over these would look like, or how DFAs could be
sampled according to this distribution—, a better understanding on what makes a system hard
or expensive to learn is required.

It is, for example, known that automata as the one from Figure 4.3 (Howar [92] calls them “key
lock automata”), where a long sequence of symbols is required to reach the final state, are hard
to learn, whereas randomly generated DFAs often require surprisingly few queries [94]. This sug-
gests a connection between the (average or maximum) distance between the initial and other
states in the automaton on one hand, and the required number of queries on the other hand.
It would be interesting to investigate whether other such characterizations of “hard to learn” or
“easy to learn” DFAs can be established.

Theoretical and practical aspects of VPA learning. The transfer of the theory for active au-
tomata learning from regular to visibly pushdown systems, as outlined in Section 6.3, was sur-
prisingly easy. An interesting aspect to investigate is whether this can also be said for, e.g., op-
timality analysis: what is the lower bound for learning a visibly pushdown system? An obstacle
could be the fact that, while regular languages have a natural canonical representation whose
parameters (i.e., the size of the canonical DFA, or, equivalently, the index of the Nerode con-
gruence) allow reasoning about a lower bound, the same is not true for VPAs. The complexity
analysis for TTT-VPA that we gave in Section 6.4.5 is parametric in the size of the canonical 1-
SEVPA of the target system, but there could exist a k such that for a k -partition of Σcall, the corre-
sponding k -SEVPA (or even other models, admitting multiple entries) is exponentially smaller,
and the teacher cannot make any assumptions about the internal hypothesis representation of
the learner.

A practically relevant case study employing VPA learning is yet to be done. The experimental
evaluation in Section 6.5 was very preliminary, and realistic scenarios might expose completely
different characteristics. We have outlined two possible applications of VPA learning in Sec-
tion 6.6, namely XML document processing and compositional verification. An obstacle in prac-
tice might again be the choice of a canonical form: are 1-SEVPAs, which may be exponentially
larger than other types of VPAs [14], a suitable model for representing XML document structures
and temporal assumptions? If not, what are good heuristics to determine the corresponding
alphabet partitions in black-box scenarios? It is unlikely that these questions can be answered
in general, which is why case studies are essential for assessing the feasibility in the first place.

Applying the TTT idea to other classes. We have described the TTT idea of “purging” the in-
ternal data structures to eliminate the impact of long counterexamples in detail for learning
DFAs, Mealy machines, and visibly pushdown automata. The demonstrated efficacy suggests
that it may yield fruitful benefits for other classes of systems as well. The most interesting ex-
ample would certainly be register automata [1, 5, 98, 111], in particular since the number of
queries typically grows exponentially with the length of counterexamples. Aarts et al. [9], in

158

8.1. Future Work and Open Problems

their comparison of LearnLib [112, 139] and Tomte [1], report that, while the performance of
both approaches is similar for optimal counterexamples, using a heuristic shortening of coun-
terexamples [1, 117] as implemented in Tomte yields staggering benefits. Integrating the idea of
even minimizing the distinguishing suffixes that are internally used for maintaining both the
hypothesis structure and the abstraction1 into the register automaton learning algorithm by
Howar et al. [98] (or even the improved version relying on SMT-solving [45]) therefore sounds
highly promising.

1Tomte uses a normal Mealy machine learning algorithm under the hood, and maintains the abstraction (“map-
per”) separately. Since the abstraction is also refined in a counterexample-guided fashion that is very similar to the
learning process, applying the TTT idea on a full scale would also require modifications to Tomte, and is not accom-
plished merely by using TTT as the underlying Mealy machine learning algorithm.

159

Bibliography

[1] Fides Aarts. Tomte: Bridging the Gap Between Active Learning and Real-World Systems.
PhD thesis, Radboud University Nijmegen, 2014. URL http://hdl.handle.net/
2066/130428. (Cited on pages 1, 3, 148, 151, 153, 158, and 159.)

[2] Fides Aarts and Frits Vaandrager. Learning I/O Automata. In Paul Gastin and François
Laroussinie, editors, CONCUR 2010 - Concurrency Theory, volume 6269 of Lecture Notes
in Computer Science, pages 71–85. Springer Berlin / Heidelberg, 2010. DOI: 10.1007/
978-3-642-15375-4_6. (Cited on page 151.)

[3] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating Models of Infinite-State Com-
munication Protocols Using Regular Inference with Abstraction. In Alexandre Petrenko,
Adenilso Simão, and José Carlos Maldonado, editors, Testing Software and Systems, vol-
ume 6435 of Lecture Notes in Computer Science, pages 188–204. Springer Berlin Heidel-
berg, 2010. ISBN 978-3-642-16572-6. DOI: 10.1007/978-3-642-16573-3_14.
(Cited on pages 151 and 152.)

[4] Fides Aarts, Julien Schmaltz, and Frits Vaandrager. Inference and Abstraction of the Bio-
metric Passport. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Appli-
cations of Formal Methods, Verification, and Validation, volume 6415 of Lecture Notes
in Computer Science, pages 673–686. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-
16557-3. DOI: 10.1007/978-3-642-16558-0_54. (Cited on page 152.)

[5] Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen, and Frits Vaandrager. Au-
tomata Learning through Counterexample Guided Abstraction Refinement. In Dimitra
Giannakopoulou and Dominique Méry, editors, FM 2012: Formal Methods, volume 7436
of Lecture Notes in Computer Science, pages 10–27. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-32758-2. DOI: 10.1007/978-3-642-32759-9_4. (Cited on pages 1,
151, 153, and 158.)

[6] Fides Aarts, Faranak Heidarian, and Frits Vaandrager. A Theory of History Dependent
Abstractions for Learning Interface Automata. In Maciej Koutny and Irek Ulidowski, ed-
itors, CONCUR 2012 – Concurrency Theory, volume 7454 of Lecture Notes in Computer
Science, pages 240–255. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-32939-5. DOI:
10.1007/978-3-642-32940-1_18. (Cited on pages 151 and 153.)

[7] Fides Aarts, Harco Kuppens, Jan Tretmans, Frits Vaandrager, and Sicco Verwer.
Learning and Testing the Bounded Retransmission Protocol. In Proceedings of
the 11th International Conference on Grammatical Inference, volume 21 of JMLR
W&CP, 2012. URL http://www.jmlr.org/proceedings/papers/v21/
aarts12a/aarts12a.pdf. (Cited on page 152.)

161

http://hdl.handle.net/2066/130428
http://hdl.handle.net/2066/130428
http://dx.doi.org/10.1007/978-3-642-15375-4_6
http://dx.doi.org/10.1007/978-3-642-15375-4_6
http://dx.doi.org/10.1007/978-3-642-16573-3_14
http://dx.doi.org/10.1007/978-3-642-16558-0_54
http://dx.doi.org/10.1007/978-3-642-32759-9_4
http://dx.doi.org/10.1007/978-3-642-32940-1_18
http://www.jmlr.org/proceedings/papers/v21/aarts12a/aarts12a.pdf
http://www.jmlr.org/proceedings/papers/v21/aarts12a/aarts12a.pdf

Bibliography

[8] Fides Aarts, Joeri de Ruiter, and Erik Poll. Formal Models of Bank Cards for Free. In 2013
IEEE Sixth International Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 461–468, March 2013. DOI: 10.1109/ICSTW.2013.60. (Cited
on page 152.)

[9] Fides Aarts, Falk Howar, Harco Kuppens, and Frits Vaandrager. Algorithms for Inferring
Register Automata. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applica-
tions of Formal Methods, Verification and Validation. Technologies for Mastering Change,
volume 8802 of Lecture Notes in Computer Science, pages 202–219. Springer Berlin Heidel-
berg, 2014. ISBN 978-3-662-45233-2. DOI: 10.1007/978-3-662-45234-9_15.
(Cited on pages 151 and 158.)

[10] Rajeev Alur and Swarat Chaudhuri. Temporal Reasoning for Procedural Programs. In
Proceedings of the 11th International Conference on Verification, Model Checking, and Ab-
stract Interpretation, VMCAI’10, pages 45–60, Berlin, Heidelberg, 2010. Springer-Verlag.
ISBN 3-642-11318-4, 978-3-642-11318-5. DOI: 10.1007/978-3-642-11319-2_7.
(Cited on page 144.)

[11] Rajeev Alur and P. Madhusudan. Visibly Pushdown Languages. In Proceedings of the
Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC ’04, pages 202–211,
New York, NY, USA, 2004. ACM. ISBN 1-58113-852-0. DOI: 10.1145/1007352.
1007390. (Cited on pages 4, 118, 119, 144, and 149.)

[12] Rajeev Alur and P. Madhusudan. Adding Nesting Structure to Words. J. ACM, 56(3):16:1–
16:43, May 2009. ISSN 0004-5411. DOI: 10.1145/1516512.1516518. (Cited on
page 144.)

[13] Rajeev Alur, Kousha Etessami, and P. Madhusudan. A Temporal Logic of Nested Calls
and Returns. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 2988 of Lecture Notes in Computer Science,
pages 467–481. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-21299-7. DOI: 10.
1007/978-3-540-24730-2_35. (Cited on page 144.)

[14] Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Congruences for
Visibly Pushdown Languages. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia
Palamidessi, and Moti Yung, editors, Automata, Languages and Programming, volume
3580 of Lecture Notes in Computer Science, pages 1102–1114. Springer Berlin Heidelberg,
2005. ISBN 978-3-540-27580-0. DOI: 10.1007/11523468_89. (Cited on pages 123,
124, 125, 156, and 158.)

[15] Rajeev Alur, P. Madhusudan, and Wonhong Nam. Symbolic Compositional Verifica-
tion by Learning Assumptions. In Kousha Etessami and Sriram K. Rajamani, editors,
Computer Aided Verification, volume 3576 of Lecture Notes in Computer Science, pages
548–562. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-27231-1. DOI: 10.1007/
11513988_52. (Cited on page 153.)

[16] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis of Interface Spec-
ifications for Java Classes. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’05, pages 98–109, New York, NY, USA,

162

http://dx.doi.org/10.1109/ICSTW.2013.60
http://dx.doi.org/10.1007/978-3-662-45234-9_15
http://dx.doi.org/10.1007/978-3-642-11319-2_7
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1007/11523468_89
http://dx.doi.org/10.1007/11513988_52
http://dx.doi.org/10.1007/11513988_52

Bibliography

2005. ACM. ISBN 1-58113-830-X. DOI: 10.1145/1040305.1040314. (Cited on
pages 1 and 152.)

[17] Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining Specifications. In Proceed-
ings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’02, pages 4–16, New York, NY, USA, 2002. ACM. ISBN 1-58113-450-9. DOI:
10.1145/503272.503275. (Cited on page 150.)

[18] Dana Angluin. On the complexity of minimum inference of regular sets. Information and
Control, 39(3):337–350, 1978. ISSN 0019-9958. DOI: 10.1016/S0019-9958(78)
90683-6. (Cited on page 150.)

[19] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987. DOI: 10.1016/0890-5401(87)90052-6.
(Cited on pages 1, 2, 3, 25, 29, 30, 46, 49, 51, 57, 58, 77, 89, 110, 118, 147, 148, 149, 153,
and 181.)

[20] Dana Angluin. Queries and Concept Learning. Mach. Learn., 2(4):319–342, April 1988.
ISSN 0885-6125. DOI: 10.1023/A:1022821128753. (Cited on page 25.)

[21] Dana Angluin and Michael Kharitonov. When Won’t Membership Queries Help? In Pro-
ceedings of the Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91,
pages 444–454, New York, NY, USA, 1991. ACM. ISBN 0-89791-397-3. DOI: 10.1145/
103418.103420. (Cited on page 149.)

[22] Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning Read-once Formulas
with Queries. J. ACM, 40(1):185–210, January 1993. ISSN 0004-5411. DOI: 10.1145/
138027.138061. (Cited on page 4.)

[23] Peter R.J. Asveld and Anton Nijholt. The inclusion problem for some subclasses of context-
free languages. Theoretical Computer Science, 230(1–2):247–256, 2000. ISSN 0304-3975.
DOI: 10.1016/S0304-3975(99)00113-9. (Cited on page 118.)

[24] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.
ISBN 026202649X, 9780262026499. (Cited on pages 1, 7, and 152.)

[25] José L. Balcázar, Josep Díaz, Ricard Gavaldà, and Osamu Watanabe. Algorithms for Learn-
ing Finite Automata from Queries: A Unified View. In Ding-Zhu Du and Ker-I Ko, ed-
itors, Advances in Algorithms, Languages, and Complexity, pages 53–72. Springer US,
1997. ISBN 978-1-4613-3396-8. DOI: 10.1007/978-1-4613-3394-4_2. (Cited
on pages 2, 27, 51, 57, 84, 147, and 157.)

[26] Borja Balle. Implementing Kearns-Vazirani Algorithm for Learning DFA Only with Mem-
bership Queries. Technical report, Departament De Llenguatges I Sistemes, Universi-
tat Politècnica de Catalunya, Barcelona, 2010. URL http://www.cs.upc.edu/
~bballe/papers/zulu10.pdf. (Cited on page 58.)

[27] Oliver Bauer, Johannes Neubauer, Bernhard Steffen, and Falk Howar. Reusing System
States by Active Learning Algorithms. In Alessandro Moschitti and Riccardo Scandariato,
editors, Eternal Systems, volume 255 of CCSE, pages 61–78. Springer-Verlag, 2012. DOI:
10.1007/978-3-642-28033-7_6. (Cited on page 2.)

163

http://dx.doi.org/10.1145/1040305.1040314
http://dx.doi.org/10.1145/503272.503275
http://dx.doi.org/10.1016/S0019-9958(78)90683-6
http://dx.doi.org/10.1016/S0019-9958(78)90683-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1023/A:1022821128753
http://dx.doi.org/10.1145/103418.103420
http://dx.doi.org/10.1145/103418.103420
http://dx.doi.org/10.1145/138027.138061
http://dx.doi.org/10.1145/138027.138061
http://dx.doi.org/10.1016/S0304-3975(99)00113-9
http://dx.doi.org/10.1007/978-1-4613-3394-4_2
http://www.cs.upc.edu/~bballe/papers/zulu10.pdf
http://www.cs.upc.edu/~bballe/papers/zulu10.pdf
http://dx.doi.org/10.1007/978-3-642-28033-7_6

Bibliography

[28] Amel Bennaceur, Paola Inverardi, Valérie Issarny, and Romina Spalazzese. Automated
Synthesis of CONNECTors to support Software Evolution. ERCIM News, 2012(88),
2012. URL http://ercim-news.ercim.eu/en88/special/automated-
synthesis-of-connectors-to-support-software-evolution.
(Cited on page 152.)

[29] Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson. Automated Media-
tor Synthesis: Combining Behavioural and Ontological Reasoning. In Robert M. Hierons,
Mercedes G. Merayo, and Mario Bravetti, editors, Software Engineering and Formal Meth-
ods - 11th International Conference (SEFM 2013), volume 8137 of LNCS, pages 274–288.
Springer, 2013. DOI: 10.1007/978-3-642-40561-7_19. (Cited on page 152.)

[30] Amel Bennaceur, Valérie Issarny, Daniel Sykes, Falk Howar, Malte Isberner, Bernhard Stef-
fen, Richard Johansson, and Alessandro Moschitti. Machine Learning for Emergent Mid-
dleware. In Alessandro Moschitti and Barbara Plank, editors, Trustworthy Eternal Systems
via Evolving Software, Data and Knowledge, volume 379 of Communications in Computer
and Information Science, pages 16–29. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-
45259-8. DOI: 10.1007/978-3-642-45260-4_2. (Cited on page 152.)

[31] Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Harald Raffelt, and Bern-
hard Steffen. On the Correspondence Between Conformance Testing and Regular Infer-
ence. In Maura Cerioli, editor, Fundamental Approaches to Software Engineering, volume
3442 of Lecture Notes in Computer Science, pages 175–189. Springer Berlin Heidelberg,
2005. ISBN 978-3-540-25420-1. DOI: 10.1007/978-3-540-31984-9_14. (Cited
on pages 19 and 147.)

[32] Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank Saksena. Insights to Angluin’s
Learning. Electron. Notes Theor. Comput. Sci., 118:3–18, February 2005. ISSN 1571-0661.
DOI: 10.1016/j.entcs.2004.12.015. (Cited on page 110.)

[33] Antonia Bertolino, Antonello Calabrò, Maik Merten, and Bernhard Steffen. Never-
stop Learning: Continuous Validation of Learned Models for Evolving Sys-
tems through Monitoring. ERCIM News, 2012(88):28–29, 2012. URL http:
//ercim-news.ercim.eu/en88/special/never-stop-learning-
continuous-validation-of-learned-models-for-evolving-
systems-through-monitoring. (Cited on pages 87 and 88.)

[34] Alan W. Biermann and Jerome A. Feldman. On the Synthesis of Finite-State Machines
from Samples of Their Behavior. IEEE Trans. Comput., 21(6):592–597, June 1972. ISSN
0018-9340. DOI: 10.1109/TC.1972.5009015. (Cited on page 150.)

[35] Johanna Björklund, Henning Fernau, and Anna Kasprzik. MAT Learning of Universal Au-
tomata. In Adrian-Horia Dediu, Carlos Martín-Vide, and Bianca Truthe, editors, Language
and Automata Theory and Applications, volume 7810 of Lecture Notes in Computer Sci-
ence, pages 141–152. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-37063-2. DOI:
10.1007/978-3-642-37064-9_14. (Cited on pages 59 and 149.)

164

http://ercim-news.ercim.eu/en88/special/automated-synthesis-of-connectors-to-support-software-evolution
http://ercim-news.ercim.eu/en88/special/automated-synthesis-of-connectors-to-support-software-evolution
http://dx.doi.org/10.1007/978-3-642-40561-7_19
http://dx.doi.org/10.1007/978-3-642-45260-4_2
http://dx.doi.org/10.1007/978-3-540-31984-9_14
http://dx.doi.org/10.1016/j.entcs.2004.12.015
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://dx.doi.org/10.1109/TC.1972.5009015
http://dx.doi.org/10.1007/978-3-642-37064-9_14

Bibliography

[36] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-style
Learning of Nfa. In Proceedings of the 21st International Jont Conference on Artifical Intel-
ligence, IJCAI’09, pages 1004–1009, San Francisco, CA, USA, 2009. Morgan Kaufmann Pub-
lishers Inc. URL http://ijcai.org/papers09/Papers/IJCAI09-170.
pdf. (Cited on pages 46, 59, and 149.)

[37] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider, and
DavidR. Piegdon. libalf: The Automata Learning Framework. In Tayssir Touili, Byron
Cook, and Paul Jackson, editors, Computer Aided Verification, volume 6174 of Lecture
Notes in Computer Science, pages 360–364. Springer Berlin Heidelberg, 2010. ISBN 978-3-
642-14294-9. DOI: 10.1007/978-3-642-14295-6_32. (Cited on page 153.)

[38] Ed Brinksma. Formal Methods for Conformance Testing: Theory Can Be Practical. In
Nicolas Halbwachs and Doron Peled, editors, Computer Aided Verification, volume 1633
of Lecture Notes in Computer Science, pages 44–46. Springer Berlin Heidelberg, 1999.
ISBN 978-3-540-66202-0. DOI: 10.1007/3-540-48683-6_6. (Cited on pages 147
and 152.)

[39] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner. Model-Based Testing of Reactive Systems, volume 3472 of Lecture Notes in Com-
puter Science. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBN 3540262784.
DOI: 10.1007/b137241. (Cited on pages 1 and 152.)

[40] Nader H. Bshouty. Exact Learning Boolean Functions via the Monotone Theory. Informa-
tion and Computation, 123(1):146–153, 1995. ISSN 0890-5401. DOI: 10.1006/inco.
1995.1164. (Cited on page 4.)

[41] Olaf Burkart and Bernhard Steffen. Model Checking for Context-free Processes. In W. R.
Cleaveland, editor, CONCUR ’92, volume 630 of Lecture Notes in Computer Science, pages
123–137. Springer Berlin Heidelberg, 1992. ISBN 978-3-540-55822-4. DOI: 10.1007/
BFb0084787. (Cited on page 118.)

[42] Olaf Burkart and Bernhard Steffen. Pushdown processes: Parallel composition and model
checking. In Bengt Jonsson and Joachim Parrow, editors, CONCUR ’94: Concurrency The-
ory, volume 836 of Lecture Notes in Computer Science, pages 98–113. Springer Berlin Hei-
delberg, 1994. ISBN 978-3-540-58329-5. DOI: 10.1007/BFb0015001. (Cited on
page 118.)

[43] Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten, and Bernhard Steffen. A Succinct
Canonical Register Automaton Model. In Tevfik Bultan and Pao-Ann Hsiung, editors, Au-
tomated Technology for Verification and Analysis, volume 6996 of Lecture Notes in Com-
puter Science, pages 366–380. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-24371-4.
DOI: 10.1007/978-3-642-24372-1_26. (Cited on pages 117 and 151.)

[44] Sofia Cassel, Bengt Jonsson, Falk Howar, and Bernhard Steffen. A Succinct Canonical Reg-
ister Automaton Model for Data Domains with Binary Relations. In Supratik Chakraborty
and Madhavan Mukund, editors, Automated Technology for Verification and Analysis, Lec-
ture Notes in Computer Science, pages 57–71. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-33385-9. DOI: 10.1007/978-3-642-33386-6_6. (Cited on page 151.)

165

http://ijcai.org/papers09/Papers/IJCAI09-170.pdf
http://ijcai.org/papers09/Papers/IJCAI09-170.pdf
http://dx.doi.org/10.1007/978-3-642-14295-6_32
http://dx.doi.org/10.1007/3-540-48683-6_6
http://dx.doi.org/10.1007/b137241
http://dx.doi.org/10.1006/inco.1995.1164
http://dx.doi.org/10.1006/inco.1995.1164
http://dx.doi.org/10.1007/BFb0084787
http://dx.doi.org/10.1007/BFb0084787
http://dx.doi.org/10.1007/BFb0015001
http://dx.doi.org/10.1007/978-3-642-24372-1_26
http://dx.doi.org/10.1007/978-3-642-33386-6_6

Bibliography

[45] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Learning Extended Fi-
nite State Machines. In Dimitra Giannakopoulou and Gwen Salaün, editors, Software
Engineering and Formal Methods, volume 8702 of Lecture Notes in Computer Science,
pages 250–264. Springer International Publishing, 2014. ISBN 978-3-319-10430-0. DOI:
10.1007/978-3-319-10431-7_18. (Cited on pages 1, 151, and 159.)

[46] Swarat Chaudhuri and Rajeev Alur. Instrumenting C Programs with Nested Word Moni-
tors. In Dragan Bošnački and Stefan Edelkamp, editors, Model Checking Software, volume
4595 of Lecture Notes in Computer Science, pages 279–283. Springer Berlin Heidelberg,
2007. ISBN 978-3-540-73369-0. DOI: 10.1007/978-3-540-73370-6_20. (Cited
on page 144.)

[47] Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw Wang.
Learning Minimal Separating DFA’s for Compositional Verification. In Stefan Kowalewski
and Anna Philippou, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 5505 of Lecture Notes in Computer Science, pages 31–45. Springer Berlin
Heidelberg, 2009. ISBN 978-3-642-00767-5. DOI: 10.1007/978-3-642-00768-
2_3. (Cited on page 52.)

[48] Chia Yuan Cho, Domagoj Babi ć, Eui Chul Richard Shin, and Dawn Song. Inference and
Analysis of Formal Models of Botnet Command and Control Protocols. In Proceedings
of the 17th ACM Conference on Computer and Communications Security, CCS ’10, pages
426–439, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0245-6. DOI: 10.1145/
1866307.1866355. (Cited on pages 1, 2, 152, and 153.)

[49] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen, Edward XueJun
Wu, and Dawn Song. MACE: Model-inference-assisted Concolic Exploration for Proto-
col and Vulnerability Discovery. In Proceedings of the 20th USENIX Conference on Secu-
rity, SEC’11, pages 10–10, Berkeley, CA, USA, 2011. USENIX Association. URL http://
www.usenix.org/events/sec11/tech/full_papers/Cho.pdf. (Cited
on page 152.)

[50] Wontae Choi, George Necula, and Koushik Sen. Guided GUI Testing of Android Apps with
Minimal Restart and Approximate Learning. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA ’13, pages 623–640, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2374-
1. DOI: 10.1145/2509136.2509552. (Cited on page 27.)

[51] Noam Chomsky. Three models for the description of language. IRE Transactions on Infor-
mation Theory, 2(3):113–124, September 1956. ISSN 0096-1000. DOI: 10.1109/TIT.
1956.1056813. (Cited on pages 21 and 150.)

[52] Tsun S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE Trans.
on Software Engineering, SE-4(3):178–187, May 1978. ISSN 0098-5589. DOI: 10.1109/
TSE.1978.231496. (Cited on pages 85 and 152.)

[53] Alexander Clark. Distributional Learning of Some Context-free Languages with a Mini-
mally Adequate Teacher. In Proceedings of the 10th International Colloquium Conference
on Grammatical Inference: Theoretical Results and Applications, ICGI’10, pages 24–37,

166

http://dx.doi.org/10.1007/978-3-319-10431-7_18
http://dx.doi.org/10.1007/978-3-540-73370-6_20
http://dx.doi.org/10.1007/978-3-642-00768-2_3
http://dx.doi.org/10.1007/978-3-642-00768-2_3
http://dx.doi.org/10.1145/1866307.1866355
http://dx.doi.org/10.1145/1866307.1866355
http://www.usenix.org/events/sec11/tech/full_papers/Cho.pdf
http://www.usenix.org/events/sec11/tech/full_papers/Cho.pdf
http://dx.doi.org/10.1145/2509136.2509552
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1109/TSE.1978.231496

Bibliography

Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15487-5, 978-3-642-15487-4. DOI:
10.1007/978-3-642-15488-1_4. (Cited on page 149.)

[54] Alexander Clark and Rémi Eyraud. Polynomial Identification in the Limit of Substitutable
Context-free Languages. J. Mach. Learn. Res., 8:1725–1745, December 2007. ISSN 1532-
4435. URL http://dl.acm.org/citation.cfm?id=1314498.1314556.
(Cited on page 149.)

[55] Alexander Clark, Rémi Eyraud, and Amaury Habrard. A Polynomial Algorithm for the In-
ference of Context Free Languages. In Alexander Clark, François Coste, and Laurent Mi-
clet, editors, Grammatical Inference: Algorithms and Applications, volume 5278 of Lecture
Notes in Computer Science, pages 29–42. Springer Berlin Heidelberg, 2008. ISBN 978-3-
540-88008-0. DOI: 10.1007/978-3-540-88009-7_3. (Cited on page 149.)

[56] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
Cambridge, MA, USA, 1999. (Cited on pages 1, 145, and 152.)

[57] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning As-
sumptions for Compositional Verification. In Hubert Garavel and John Hatcliff, editors,
Tools and Algorithms for the Construction and Analysis of Systems, volume 2619 of Lecture
Notes in Computer Science, pages 331–346. Springer Berlin Heidelberg, 2003. ISBN 978-3-
540-00898-9. DOI: 10.1007/3-540-36577-X_24. (Cited on pages 1, 145, and 153.)

[58] David Combe, Colin de la Higuera, and Jean-Christophe Janodet. Zulu: An Interactive
Learning Competition. In Anssi Yli-Jyrä, András Kornai, Jacques Sakarovitch, and Bruce
Watson, editors, Finite-State Methods and Natural Language Processing, volume 6062 of
Lecture Notes in Computer Science, pages 139–146. Springer Berlin Heidelberg, 2010. ISBN
978-3-642-14683-1. DOI: 10.1007/978-3-642-14684-8_15. (Cited on pages 2,
87, and 113.)

[59] Rene De La Briandais. File Searching Using Variable Length Keys. In Western Joint Com-
puter Conference, IRE-AIEE-ACM ’59 (Western), pages 295–298, New York, NY, USA, 1959.
ACM. DOI: 10.1145/1457838.1457895. (Cited on page 73.)

[60] Colin de la Higuera. A Bibliographical Study of Grammatical Inference. Pattern Recogn., 38
(9):1332–1348, September 2005. ISSN 0031-3203. DOI: 10.1016/j.patcog.2005.
01.003. (Cited on page 1.)

[61] Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, New York, NY, USA, 2010. ISBN 0521763169, 9780521763165.
(Cited on pages 1, 16, 25, 117, and 150.)

[62] François Denis, Aurélien Lemay, and Alain Terlutte. Residual Finite State Automata. Fun-
damenta Informaticae, 51(4):339–368, 2002. ISSN 0169-2968. (Cited on pages 59 and 149.)

[63] Michael Domaratzki, Derek Kisman, and Jeffrey Shallit. On the number of distinct lan-
guages accepted by finite automata with n states. Journal of Automata, Languages and
Combinatorics, 7(4):469–486, 2002. (Cited on pages 106 and 158.)

167

http://dx.doi.org/10.1007/978-3-642-15488-1_4
http://dl.acm.org/citation.cfm?id=1314498.1314556
http://dx.doi.org/10.1007/978-3-540-88009-7_3
http://dx.doi.org/10.1007/3-540-36577-X_24
http://dx.doi.org/10.1007/978-3-642-14684-8_15
http://dx.doi.org/10.1145/1457838.1457895
http://dx.doi.org/10.1016/j.patcog.2005.01.003
http://dx.doi.org/10.1016/j.patcog.2005.01.003

Bibliography

[64] Frank Drewes and Johanna Högberg. Learning a Regular Tree Language from a Teacher. In
Zoltán Ésik and Zoltán Fülöp, editors, Developments in Language Theory, volume 2710 of
Lecture Notes in Computer Science, pages 279–291. Springer Berlin Heidelberg, 2003. ISBN
978-3-540-40434-7. DOI: 10.1007/3-540-45007-6_22. (Cited on page 149.)

[65] Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw Wang.
Extending Automated Compositional Verification to the Full Class of Omega-Regular Lan-
guages. In C.R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 4963 of Lecture Notes in Computer Science, pages
2–17. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-78799-0. DOI: 10.1007/978-
3-540-78800-3_2. (Cited on pages 145, 151, and 153.)

[66] Paul Fiterǎu-Broştean, Ramon Janssen, and Frits Vaandrager. Learning Fragments of
the TCP Network Protocol. In Frédéric Lang and Francesco Flammini, editors, Formal
Methods for Industrial Critical Systems, volume 8718 of Lecture Notes in Computer Sci-
ence, pages 78–93. Springer International Publishing, 2014. ISBN 978-3-319-10701-1. DOI:
10.1007/978-3-319-10702-8_6. (Cited on page 152.)

[67] Emily P. Friedman. The inclusion problem for simple languages. Theoretical Com-
puter Science, 1(4):297–316, 1976. ISSN 0304-3975. DOI: 10.1016/0304-3975(76)
90074-8. (Cited on page 118.)

[68] Markus Frohme. Active Automata Learning with Adaptive Distinguishing Sequences. MSc
thesis, TU Dortmund University, Dortmund, Germany, 2015. (Cited on page 59.)

[69] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2010: A Tool-
box for the Construction and Analysis of Distributed Processes. In Parosh Aziz Abdulla and
K. Rustan M. Leino, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 6605 of Lecture Notes in Computer Science, pages 372–387. Springer Berlin
Heidelberg, 2011. ISBN 978-3-642-19834-2. DOI: 10.1007/978-3-642-19835-
9_33. (Cited on page 110.)

[70] Dimitra Giannakopoulou, Corina S. Pasareanu, and Jamieson M. Cobleigh. Assume-
Guarantee Verification of Source Code with Design-Level Assumptions. In Proceedings
of the 26th International Conference on Software Engineering (ICSE 2004), pages 211–220.
IEEE Computer Society, May 2004. ISBN 0-7695-2163-0. DOI: 10.1109/ICSE.2004.
1317443. (Cited on page 1.)

[71] Dimitra Giannakopoulou, Zvonimir Rakamarić, and Vishwanath Raman. Symbolic Learn-
ing of Component Interfaces. In Proceedings of the 19th International Conference on
Static Analysis, SAS’12, pages 248–264, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN
978-3-642-33124-4. DOI: 10.1007/978-3-642-33125-1_18. (Cited on pages 1
and 152.)

[72] Seymour Ginsburg and Sheila Greibach. Deterministic context free languages. Infor-
mation and Control, 9(6):620–648, 1966. ISSN 0019-9958. DOI: 10.1016/S0019-
9958(66)80019-0. (Cited on page 118.)

168

http://dx.doi.org/10.1007/3-540-45007-6_22
http://dx.doi.org/10.1007/978-3-540-78800-3_2
http://dx.doi.org/10.1007/978-3-540-78800-3_2
http://dx.doi.org/10.1007/978-3-319-10702-8_6
http://dx.doi.org/10.1016/0304-3975(76)90074-8
http://dx.doi.org/10.1016/0304-3975(76)90074-8
http://dx.doi.org/10.1007/978-3-642-19835-9_33
http://dx.doi.org/10.1007/978-3-642-19835-9_33
http://dx.doi.org/10.1109/ICSE.2004.1317443
http://dx.doi.org/10.1109/ICSE.2004.1317443
http://dx.doi.org/10.1007/978-3-642-33125-1_18
http://dx.doi.org/10.1016/S0019-9958(66)80019-0
http://dx.doi.org/10.1016/S0019-9958(66)80019-0

Bibliography

[73] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated Random
Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 213–223, New York, NY, USA, 2005. ACM.
ISBN 1-59593-056-6. DOI: 10.1145/1065010.1065036. (Cited on page 152.)

[74] E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447–
474, 1967. ISSN 0019-9958. DOI: 10.1016/S0019-9958(67)91165-5. (Cited on
page 149.)

[75] E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, 1978. ISSN 0019-9958. DOI: 10.1016/S0019-9958(78)
90562-4. (Cited on pages 1, 46, and 150.)

[76] Paul Grace, Nikolaos Georgantas, Amel Bennaceur, Gordon S. Blair, Franck Chauvel,
Valérie Issarny, Massimo Paolucci, Rachid Saadi, Bertrand Souville, and Daniel Sykes. The
CONNECT Architecture. In Formal Methods for Eternal Networked Software Systems - 11th
International School on Formal Methods for the Design of Computer, Communication and
Software Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced Lectures, pages
27–52, 2011. DOI: 10.1007/978-3-642-21455-4_2. (Cited on page 152.)

[77] Susanne Graf and Hassen Saïdi. Construction of Abstract State Graphs with PVS. In Orna
Grumberg, editor, Computer Aided Verification, volume 1254 of Lecture Notes in Computer
Science, pages 72–83. Springer Berlin Heidelberg, 1997. ISBN 978-3-540-63166-8. DOI:
10.1007/3-540-63166-6_10. (Cited on page 152.)

[78] Sheila Greibach. A note on undecidable properties of formal languages. Mathematical
systems theory, 2(1):1–6, 1968. ISSN 0025-5661. DOI: 10.1007/BF01691341. (Cited
on page 118.)

[79] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Inference of Timed Transition
Systems. Electronic Notes in Theoretical Computer Science, 138(3):87–99, 2005. DOI:
10.1016/j.entcs.2005.02.062. (Cited on page 1.)

[80] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-recording au-
tomata. Theoretical Computer Science, 411(47):4029–4054, 2010. ISSN 0304-3975. DOI:
10.1016/j.tcs.2010.07.008. (Cited on page 1.)

[81] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive Model Checking. In Joost-
Pieter Katoen and Perdita Stevens, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 2280 of Lecture Notes in Computer Science, pages 357–370.
Springer Berlin Heidelberg, 2002. ISBN 978-3-540-43419-1. DOI: 10.1007/3-540-
46002-0_25. (Cited on pages 1, 85, and 152.)

[82] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive Model Checking. Logic Jour-
nal of the IGPL, 14(5):729–744, 2006. DOI: 10.1093/jigpal/jzl007. (Cited on
pages 85 and 152.)

[83] Igor Grunsky, Oleksiy Kurganskyy, and Igor Potapov. On a Maximal NFA Without Mergible
States. In Proceedings of the First International Computer Science Conference on Theory

169

http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1016/S0019-9958(67)91165-5
http://dx.doi.org/10.1016/S0019-9958(78)90562-4
http://dx.doi.org/10.1016/S0019-9958(78)90562-4
http://dx.doi.org/10.1007/978-3-642-21455-4_2
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/BF01691341
http://dx.doi.org/10.1016/j.entcs.2005.02.062
http://dx.doi.org/10.1016/j.tcs.2010.07.008
http://dx.doi.org/10.1007/3-540-46002-0_25
http://dx.doi.org/10.1007/3-540-46002-0_25
http://dx.doi.org/10.1093/jigpal/jzl007

Bibliography

and Applications, CSR’06, pages 202–210, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN
3-540-34166-8, 978-3-540-34166-6. DOI: 10.1007/11753728_22. (Cited on pages 59
and 149.)

[84] Andreas Hagerer, Tiziana Margaria, Oliver Niese, Bernhard Steffen, Georg Brune, and
Hans-Dieter Ide. Efficient regression testing of CTI-systems: Testing a complex call-center
solution. Annual review of communication, Int.Engineering Consortium (IEC), 55:1033–
1040, 2001. (Cited on pages 1 and 152.)

[85] Andreas Hagerer, Hardi Hungar, Oliver Niese, and Bernhard Steffen. Model Generation
by Moderated Regular Extrapolation. In Ralf-Detlef Kutsche and Herbert Weber, editors,
Fundamental Approaches to Software Engineering, volume 2306, pages 80–95. Springer
Berlin / Heidelberg, 2002. ISBN 978-3-540-43353-8. DOI: 10.1007/3-540-45923-
5_6. (Cited on pages 1 and 152.)

[86] Gerco van Heerdt. Efficient Inference of Mealy Machines. BSc thesis, Radboud
University Nijmegen, Nijmegen, NL, June 2014. URL http://www.cs.ru.
nl/bachelorscripties/2014/Gerco_van_Heerdt___4167503___
Efficient_Inference_of_Mealy_Machines.pdf. (Cited on pages 31, 54,
58, and 155.)

[87] Markus Holzer and Barbara König. On deterministic finite automata and syntactic
monoid size. Theoretical Computer Science, 327(3):319–347, 2004. ISSN 0304-3975. DOI:
10.1016/j.tcs.2004.04.010. Developments in Language Theory. (Cited on
page 124.)

[88] John E. Hopcroft. An n log n Algorithm for Minimizing States in a Finite Automaton. Tech-
nical report, Stanford University, Department of Computer Science, Stanford, CA, USA,
January 1971. URL http://i.stanford.edu/pub/cstr/reports/cs/tr/
71/190/CS-TR-71-190.pdf. (Cited on pages 22 and 67.)

[89] John E. Hopcroft and Richard M. Karp. A Linear Algorithm for Testing Equivalence of Finite
Automata. Technical report, Department of Computer Science, Cornell University, De-
cember 1971. URL http://hdl.handle.net/1813/5958. (Cited on page 109.)

[90] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1969. ISBN 020102988X. (Cited on page 52.)

[91] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata the-
ory, languages, and computation - (2. ed.). Addison-Wesley series in computer science.
Addison-Wesley-Longman, 2001. ISBN 978-0-201-44124-6. (Cited on page 7.)

[92] Falk Howar. Inferenz Parametrisierter Moore-Automaten. MSc thesis, TU Dortmund Uni-
versity, Dortmund, Germany, 2009. (Cited on page 158.)

[93] Falk Howar. Active Learning of Interface Programs. PhD thesis, TU Dortmund University,
2012. URL http://hdl.handle.net/2003/29486. (Cited on pages 3, 50, 51,
61, 76, 78, 84, 85, 109, 110, 111, 148, and 181.)

170

http://dx.doi.org/10.1007/11753728_22
http://dx.doi.org/10.1007/3-540-45923-5_6
http://dx.doi.org/10.1007/3-540-45923-5_6
http://www.cs.ru.nl/bachelorscripties/2014/Gerco_van_Heerdt___4167503___Efficient_Inference_of_Mealy_Machines.pdf
http://www.cs.ru.nl/bachelorscripties/2014/Gerco_van_Heerdt___4167503___Efficient_Inference_of_Mealy_Machines.pdf
http://www.cs.ru.nl/bachelorscripties/2014/Gerco_van_Heerdt___4167503___Efficient_Inference_of_Mealy_Machines.pdf
http://dx.doi.org/10.1016/j.tcs.2004.04.010
http://i.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf
http://hdl.handle.net/1813/5958
http://hdl.handle.net/2003/29486

Bibliography

[94] Falk Howar, Bernhard Steffen, and Maik Merten. From ZULU to RERS - Lessons Learned in
the ZULU Challenge. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA (1), volume
6415 of Lecture Notes in Computer Science, pages 687–704. Springer, 2010. ISBN 978-3-642-
16557-3. DOI: 10.1007/978-3-642-16558-0_55. (Cited on pages 2, 77, 85, 87,
111, 113, and 158.)

[95] Falk Howar, Bernhard Steffen, and Maik Merten. Automata Learning with Automated Al-
phabet Abstraction Refinement. In Ranjit Jhala and David Schmidt, editors, Verification,
Model Checking, and Abstract Interpretation, volume 6538 of Lecture Notes in Computer
Science, pages 263–277. Springer Berlin / Heidelberg, 2011. DOI: 10.1007/978-3-
642-18275-4_19. (Cited on page 151.)

[96] Falk Howar, Oliver Bauer, Maik Merten, Bernhard Steffen, and Tiziana Margaria. The
Teachers’ Crowd: The Impact of Distributed Oracles on Active Automata Learning. In
Reiner Hähnle, Jens Knoop, Tiziana Margaria, Dietmar Schreiner, and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification, and Validation, Com-
munications in Computer and Information Science, pages 232–247. Springer Berlin Hei-
delberg, 2012. DOI: 10.1007/978-3-642-34781-8_18. (Cited on page 2.)

[97] Falk Howar, Malte Isberner, Bernhard Steffen, Oliver Bauer, and Bengt Jonsson. Inferring
Semantic Interfaces of Data Structures. In Tiziana Margaria and Bernhard Steffen, edi-
tors, Leveraging Applications of Formal Methods, Verification and Validation. Technologies
for Mastering Change, volume 7609 of Lecture Notes in Computer Science, pages 554–571.
Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34025-3. DOI: 10.1007/978-3-
642-34026-0_41. (Cited on page 151.)

[98] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring Canonical Reg-
ister Automata. In Viktor Koncak and Andrey Rybalchenko, editors, Verification, Model
Checking, and Abstract Interpretation, volume 7148 of Lecture Notes in Computer Sci-
ence, pages 251–266. Springer Berlin / Heidelberg, 2012. DOI: 10.1007/978-3-642-
27940-9_17. (Cited on pages 151, 158, and 159.)

[99] Falk Howar, Dimitra Giannakopoulou, and Zvonimir Rakamarić. Hybrid Learning: In-
terface Generation Through Static, Dynamic, and Symbolic Analysis. In Proceedings of
the 2013 International Symposium on Software Testing and Analysis, ISSTA 2013, pages
268–279, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2159-4. DOI: 10.1145/
2483760.2483783. (Cited on pages 1 and 152.)

[100] Falk Howar, Malte Isberner, and Bernhard Steffen. Tutorial: Automata Learning in Prac-
tice. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change, volume 8802 of
Lecture Notes in Computer Science, pages 499–513. Springer Berlin Heidelberg, 2014. ISBN
978-3-662-45233-2. DOI: 10.1007/978-3-662-45234-9_34. (Cited on pages 3
and 91.)

[101] Hardi Hungar and Bernhard Steffen. Behavior-based model construction. International
Journal on Software Tools for Technology Transfer, 6(1):4–14, 2004. ISSN 1433-2779. DOI:
10.1007/s10009-004-0139-8. (Cited on pages 1 and 152.)

171

http://dx.doi.org/10.1007/978-3-642-16558-0_55
http://dx.doi.org/10.1007/978-3-642-18275-4_19
http://dx.doi.org/10.1007/978-3-642-18275-4_19
http://dx.doi.org/10.1007/978-3-642-34781-8_18
http://dx.doi.org/10.1007/978-3-642-34026-0_41
http://dx.doi.org/10.1007/978-3-642-34026-0_41
http://dx.doi.org/10.1007/978-3-642-27940-9_17
http://dx.doi.org/10.1007/978-3-642-27940-9_17
http://dx.doi.org/10.1145/2483760.2483783
http://dx.doi.org/10.1145/2483760.2483783
http://dx.doi.org/10.1007/978-3-662-45234-9_34
http://dx.doi.org/10.1007/s10009-004-0139-8

Bibliography

[102] Hardi Hungar, Tiziana Margaria, and Bernhard Steffen. Test-based model generation for
legacy systems. In Proceedings of the 2003 International Test Conference (ITC 2003), vol-
ume 1, pages 971–980, October 2003. DOI: 10.1109/TEST.2003.1271205. (Cited
on pages 1 and 152.)

[103] Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-Specific Optimization in Au-
tomata Learning. In Warren A. Hunt Jr. and Fabio Somenzi, editors, Proc. 15th Int. Conf.
on Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages
315–327. Springer Verlag, July 2003. DOI: 10.1007/978-3-540-45069-6_31.
(Cited on pages 1, 2, and 152.)

[104] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, 5(1):15–17, 1976. ISSN 0020-0190. DOI: 10.
1016/0020-0190(76)90095-8. (Cited on page 76.)

[105] Muhammad Naeem Irfan. Analysis and optimization of software model inference algo-
rithms. PhD thesis, Université de Grenoble, Grenoble, France, September 2012. (Cited on
pages 3, 51, 53, 58, 110, 148, and 181.)

[106] Muhammad Naeem Irfan, Catherine Oriat, and Roland Groz. Angluin Style Finite State
Machine Inference with Non-optimal Counterexamples. In Proceedings of the First In-
ternational Workshop on Model Inference In Testing, MIIT ’10, pages 11–19, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0147-3. DOI: 10.1145/1868044.1868046.
(Cited on pages 50, 51, 53, 58, 110, 148, and 181.)

[107] Muhammad-Naeem Irfan, Roland Groz, and Catherine Oriat. Improving Model Inference
of Black Box Components having Large Input Test Set. In Proceedings of the Eleventh In-
ternational Conference on Grammatical Inference, ICGI 2012, University of Maryland, Col-
lege Park, USA, September 5-8, 2012, pages 133–138, 2012. URL http://jmlr.org/
proceedings/papers/v21/irfan12a/irfan12a.pdf. (Cited on page 53.)

[108] Malte Isberner and Bernhard Steffen. An Abstract Framework for Counterexample
Analysis in Active Automata Learning. In Proceedings of the 12th International Con-
ference on Grammatical Inference, volume 34 of JMLR Workshop & Conference Proceed-
ings, pages 79–93, 2014. URLhttp://jmlr.org/proceedings/papers/v34/
isberner14a.pdf. (Cited on pages 4, 32, 37, 45, 50, 76, 78, 111, 132, 148, and 181.)

[109] Malte Isberner, Falk Howar, and Bernhard Steffen. Inferring Automata with State-Local
Alphabet Abstractions. In Guillaume Brat, Neha Rungta, and Arnaud Venet, editors, NASA
Formal Methods, volume 7871 of LNCS, pages 124–138, 2013. DOI: 10.1007/978-3-
642-38088-4_9. (Cited on page 151.)

[110] Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT Algorithm: A Redundancy-
Free Approach to Active Automata Learning. In Borzoo Bonakdarpour and ScottA.
Smolka, editors, Runtime Verification, volume 8734 of Lecture Notes in Computer Science,
pages 307–322. Springer International Publishing, 2014. ISBN 978-3-319-11163-6. DOI:
10.1007/978-3-319-11164-3_26. (Cited on pages 5, 27, 87, 88, and 181.)

172

http://dx.doi.org/10.1109/TEST.2003.1271205
http://dx.doi.org/10.1007/978-3-540-45069-6_31
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1145/1868044.1868046
http://jmlr.org/proceedings/papers/v21/irfan12a/irfan12a.pdf
http://jmlr.org/proceedings/papers/v21/irfan12a/irfan12a.pdf
http://jmlr.org/proceedings/papers/v34/isberner14a.pdf
http://jmlr.org/proceedings/papers/v34/isberner14a.pdf
http://dx.doi.org/10.1007/978-3-642-38088-4_9
http://dx.doi.org/10.1007/978-3-642-38088-4_9
http://dx.doi.org/10.1007/978-3-319-11164-3_26

Bibliography

[111] Malte Isberner, Falk Howar, and Bernhard Steffen. Learning register automata: from lan-
guages to program structures. Machine Learning, 96(1-2):65–98, 2014. ISSN 0885-6125.
DOI: 10.1007/s10994-013-5419-7. (Cited on pages 1, 151, and 158.)

[112] Malte Isberner, Falk Howar, and Bernhard Steffen. The Open-Source LearnLib. In Daniel
Kroening and Corina S. Păsăreanu, editors, Computer Aided Verification, volume 9206
of Lecture Notes in Computer Science, pages 487–495. Springer International Publishing,
2015. ISBN 978-3-319-21689-8. DOI: 10.1007/978-3-319-21690-4_32. (Cited
on pages 110, 153, and 159.)

[113] Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon S. Blair, Paul Grace, Marta Z.
Kwiatkowska, Radu Calinescu, Paola Inverardi, Massimo Tivoli, Antonia Bertolino, and
Antonino Sabetta. CONNECT Challenges: Towards Emergent Connectors for Eternal Net-
worked Systems. In ICECCS, pages 154–161. IEEE Computer Society, June 2009. DOI:
10.1109/ICECCS.2009.44. (Cited on page 152.)

[114] Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994. ISSN 0304-3975. DOI: 10.1016/0304-3975(94)
90242-9. (Cited on pages 117 and 151.)

[115] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, USA, 1994. ISBN 0-262-11193-4. (Cited on pages 2,
47, 50, 51, 57, 58, 61, 77, 87, 89, 110, 119, 147, 148, 155, and 181.)

[116] James C. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385–394,
July 1976. ISSN 0001-0782. DOI: 10.1145/360248.360252. (Cited on page 152.)

[117] Pieter Koopman, Peter Achten, and Rinus Plasmeijer. Model-Based Shrinking for State-
Based Testing. In Jay McCarthy, editor, Trends in Functional Programming, volume 8322 of
Lecture Notes in Computer Science, pages 107–124. Springer Berlin Heidelberg, 2014. ISBN
978-3-642-45339-7. DOI: 10.1007/978-3-642-45340-3_7. (Cited on pages 148
and 159.)

[118] Moez Krichen. State Identification. In Manfred Broy, Bengt Jonsson, Joost-Pieter Ka-
toen, Martin Leucker, and Alexander Pretschner, editors, Model-Based Testing of Reactive
Systems, volume 3472 of Lecture Notes in Computer Science, pages 35–67. Springer Berlin
Heidelberg, 2005. ISBN 978-3-540-26278-7. DOI: 10.1007/11498490_3. (Cited on
page 59.)

[119] Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Minimization, Learning, and
Conformance Testing of Boolean Programs. In Christel Baier and Holger Hermanns, ed-
itors, CONCUR 2006 – Concurrency Theory, volume 4137 of Lecture Notes in Computer
Science, pages 203–217. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-37376-6. DOI:
10.1007/11817949_14. (Cited on pages 119, 135, 141, 145, and 149.)

[120] Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Minimization, Learning, and
Conformance Testing of Boolean Programs. Technical report, Department of Computer
Science, University of Illinois at Urbana-Champaign, June 2006. URL http://hdl.
handle.net/2142/11210. (Cited on pages 141 and 149.)

173

http://dx.doi.org/10.1007/s10994-013-5419-7
http://dx.doi.org/10.1007/978-3-319-21690-4_32
http://dx.doi.org/10.1109/ICECCS.2009.44
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1007/978-3-642-45340-3_7
http://dx.doi.org/10.1007/11498490_3
http://dx.doi.org/10.1007/11817949_14
http://hdl.handle.net/2142/11210
http://hdl.handle.net/2142/11210

Bibliography

[121] Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Visibly Pushdown Automata for
Streaming XML. In Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, pages 1053–1062, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-654-7.
DOI: 10.1145/1242572.1242714. (Cited on page 144.)

[122] David Lee and Mihalis Yannakakis. Testing finite-state machines: state identification and
verification. IEEE Transactions on Computers, 43(3):306–320, Mar 1994. ISSN 0018-9340.
DOI: 10.1109/12.272431. (Cited on pages 59 and 155.)

[123] David Lee and Mihalis Yannakakis. Principles and methods of testing finite state
machines–a survey. Proceedings of the IEEE, 84(8):1090–1123, Aug 1996. ISSN 0018-9219.
DOI: 10.1109/5.533956. (Cited on pages 58 and 68.)

[124] Sylvain Lombardy and Jacques Sakarovitch. The universal automaton. In Wilke Thomas
Flum Jörg, Grädel Erich, editor, Logic and Automata, History and Perspectives, vol-
ume 2 of Texts in Logic and Games, pages 457–504. Amsterdam University Press,
2008. URL https://hal-upec-upem.archives-ouvertes.fr/hal-
00620807. (Cited on pages 59 and 149.)

[125] Nancy A. Lynch and Mark R. Tuttle. Hierarchical Correctness Proofs for Distributed Algo-
rithms. In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’87, pages 137–151, New York, NY, USA, 1987. ACM. ISBN 0-89791-239-
X. DOI: 10.1145/41840.41852. (Cited on page 151.)

[126] Oded Maler and Irini-Eleftheria Mens. Learning Regular Languages over Large Alphabets.
In Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 8413 of Lecture Notes in Computer Science, pages 485–
499. Springer Berlin Heidelberg, 2014. ISBN 978-3-642-54861-1. DOI: 10.1007/978-
3-642-54862-8_41. (Cited on page 151.)

[127] Oded Maler and Amir Pnueli. On the Learnability of Infinitary Regular Sets. Informa-
tion and Computation, 118(2):316–326, 1995. ISSN 0890-5401. DOI: 10.1006/inco.
1995.1070. (Cited on pages 49, 51, 58, 110, 148, 150, and 181.)

[128] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag New York, Inc., New York, NY, USA, 1995. ISBN 0-387-94459-1. (Cited on pages 4,
15, and 16.)

[129] Tiziana Margaria, Oliver Niese, Harald Raffelt, and Bernhard Steffen. Efficient test-based
model generation for legacy reactive systems. In HLDVT ’04: Proceedings of the Ninth
IEEE International High-Level Design Validation and Test Workshop, pages 95–100, Wash-
ington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7803-8714-7. DOI: 10.1109/
HLDVT.2004.1431246. (Cited on pages 52, 53, 151, and 152.)

[130] Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. Knowledge-based relevance fil-
tering for efficient system-level test-based model generation. Innovations in Systems and
Software Engineering, 1(2):147–156, 2005. ISSN 1614-5046. DOI: 10.1007/s11334-
005-0016-y. (Cited on pages 1, 2, 52, 109, 152, and 153.)

174

http://dx.doi.org/10.1145/1242572.1242714
http://dx.doi.org/10.1109/12.272431
http://dx.doi.org/10.1109/5.533956
https://hal-upec-upem.archives-ouvertes.fr/hal-00620807
https://hal-upec-upem.archives-ouvertes.fr/hal-00620807
http://dx.doi.org/10.1145/41840.41852
http://dx.doi.org/10.1007/978-3-642-54862-8_41
http://dx.doi.org/10.1007/978-3-642-54862-8_41
http://dx.doi.org/10.1006/inco.1995.1070
http://dx.doi.org/10.1006/inco.1995.1070
http://dx.doi.org/10.1109/HLDVT.2004.1431246
http://dx.doi.org/10.1109/HLDVT.2004.1431246
http://dx.doi.org/10.1007/s11334-005-0016-y
http://dx.doi.org/10.1007/s11334-005-0016-y

Bibliography

[131] Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. Analyzing Second-Order Effects
Between Optimizations for System-Level Test-Based Model Generation. In Proceedings of
the 2005 IEEE International Test Conference (ITC 2005). IEEE Computer Society, November
2005. DOI: 10.1109/TEST.2005.1584006. (Cited on pages 152 and 153.)

[132] Karl Meinke. CGE: A Sequential Learning Algorithm for Mealy Automata. In José M. Sem-
pere and Pedro García, editors, Grammatical Inference: Theoretical Results and Applica-
tions, volume 6339 of Lecture Notes in Computer Science, pages 148–162. Springer Berlin
Heidelberg, 2010. ISBN 978-3-642-15487-4. DOI: 10.1007/978-3-642-15488-
1_13. (Cited on pages 46, 59, and 149.)

[133] Karl Meinke and Fei Niu. An Incremental Learning Algorithm for Extended Mealy Au-
tomata. In Proceedings of the 5th International Conference on Leveraging Applications of
Formal Methods, Verification and Validation: Technologies for Mastering Change - Volume
Part I, ISoLA’12, pages 488–504, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-
642-34025-3. DOI: 10.1007/978-3-642-34026-0_36. (Cited on page 149.)

[134] Karl Meinke and Muddassar Azam Sindhu. LBTest: A Learning-Based Testing Tool for
Reactive Systems. In IEEE Sixth International Conference on Software Testing, Verification
and Validation (ICST), 2013, pages 447–454, Mar 2013. DOI: 10.1109/ICST.2013.
62. (Cited on pages 59 and 85.)

[135] Karl Meinke and John V. Tucker. Universal Algebra. In S. Abramsky and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science (Vol. 1), pages 189–368. Oxford University
Press, Inc., New York, NY, USA, 1992. ISBN 0-19-853735-2. (Cited on page 149.)

[136] Karl Meinke, F. Niu, and M. Sindhu. Learning-Based Software Testing: A Tutorial. In Reiner
Hähnle, Jens Knoop, Tiziana Margaria, Dietmar Schreiner, and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification, and Validation, Communica-
tions in Computer and Information Science, pages 200–219. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-34780-1. DOI: 10.1007/978-3-642-34781-8_16. (Cited
on pages 59, 85, and 149.)

[137] Irini-Eleftheria Mens and Oded Maler. Learning Regular Languages over Large Ordered
Alphabets. CoRR, abs/1506.00482, 2015. URL http://arxiv.org/abs/1506.
00482. (Cited on page 151.)

[138] Maik Merten. Active automata learning for real-life applications. PhD thesis, TU Dort-
mund University, 2013. URL http://hdl.handle.net/2003/29884. (Cited on
pages 3, 48, and 148.)

[139] Maik Merten, Falk Howar, Bernhard Steffen, Sofia Cassel, and Bengt Jonsson. Demon-
strating Learning of Register Automata. In Cormac Flanagan and Barbara König, editors,
Tools and Algorithms for the Construction and Analysis of Systems, volume 7214 of Lecture
Notes in Computer Science, pages 466–471. Springer Berlin Heidelberg, 2012. ISBN 978-3-
642-28755-8. DOI: 10.1007/978-3-642-28756-5_32. (Cited on page 159.)

[140] Maik Merten, Falk Howar, Bernhard Steffen, and Tiziana Margaria. Automata Learning
with On-the-Fly Direct Hypothesis Construction. In Reiner Hähnle, Jens Knoop, Tiziana

175

http://dx.doi.org/10.1109/TEST.2005.1584006
http://dx.doi.org/10.1007/978-3-642-15488-1_13
http://dx.doi.org/10.1007/978-3-642-15488-1_13
http://dx.doi.org/10.1007/978-3-642-34026-0_36
http://dx.doi.org/10.1109/ICST.2013.62
http://dx.doi.org/10.1109/ICST.2013.62
http://dx.doi.org/10.1007/978-3-642-34781-8_16
http://arxiv.org/abs/1506.00482
http://arxiv.org/abs/1506.00482
http://hdl.handle.net/2003/29884
http://dx.doi.org/10.1007/978-3-642-28756-5_32

Bibliography

Margaria, Dietmar Schreiner, and Bernhard Steffen, editors, Leveraging Applications of
Formal Methods, Verification, and Validation, Communications in Computer and Infor-
mation Science, pages 248–260. Springer Berlin / Heidelberg, 2012. ISBN 978-3-642-
34780-1. DOI: 10.1007/978-3-642-34781-8_19. (Cited on pages 48 and 148.)

[141] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997. ISBN 0070428077, 9780070428072. (Cited on page 150.)

[142] Edward F. Moore. Gedanken-Experiments on Sequential Machines. Annals of Mathemat-
ical Studies, 34:129–153, 1956. (Cited on page 52.)

[143] Daniel Neider and Christof Löding. Learning Visibly One-Counter Automata in
Polynomial Time. Technical report, Department of Computer Science, RWTH
Aachen, January 2010. URL http://sunsite.informatik.rwth-aachen.
de/Publications/AIB/2010/2010-02.pdf. (Cited on page 149.)

[144] Anil Nerode. Linear Automaton Transformations. Proceedings of the American Mathemat-
ical Society, 9(4):541–544, 1958. ISSN 00029939. (Cited on pages 23 and 24.)

[145] Johannes Neubauer, Stephan Windmüller, and Bernhard Steffen. Risk-Based Testing via
Active Continuous Quality Control. International Journal on Software Tools for Technol-
ogy Transfer, 16(5):569–591, 2014. DOI: 10.1007/s10009-014-0321-6. (Cited on
page 153.)

[146] Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis, University of
Dortmund, Germany, 2003. URL http://hdl.handle.net/2003/2545. (Cited
on pages 52, 53, 151, and 152.)

[147] José Oncina and Pedro García. Identifying Regular Languages in Polynomial Time. In Ad-
vance in Structural and Syntactic Pattern Recognition, volume 5 of Machine Perception and
Artificial Intelligence, pages 99–108. World Scientific, 1992. (Cited on pages 150 and 153.)

[148] José Oncina, Pedro García, and Enrique Vidal. Learning Subsequential Transducers for
Pattern Recognition Interpretation Tasks. IEEE Trans. Pattern Anal. Mach. Intell., 15(5):
448–458, May 1993. ISSN 0162-8828. DOI: 10.1109/34.211465. (Cited on page 150.)

[149] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black Box Checking. In Jianping
Wu, SamuelT. Chanson, and Qiang Gao, editors, Formal Methods for Protocol Engineering
and Distributed Systems, volume 28 of IFIP Advances in Information and Communication
Technology, pages 225–240. Springer US, 1999. ISBN 978-1-4757-5270-0. DOI: 10.1007/
978-0-387-35578-8_13. (Cited on pages 1, 85, and 151.)

[150] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black Box Checking. J. Autom.
Lang. Comb., 7(2):225–246, November 2001. ISSN 1430-189X. URL http://dl.acm.
org/citation.cfm?id=767345.767349. (Cited on pages 1, 85, and 151.)

[151] Amir Pnueli. In Transition From Global to Modular Temporal Reasoning about Programs.
In Krzysztof R. Apt, editor, Logics and Models of Concurrent Systems, volume 13 of NATO
ASI Series, pages 123–144. Springer Berlin Heidelberg, 1985. ISBN 978-3-642-82455-5. DOI:
10.1007/978-3-642-82453-1_5. (Cited on page 145.)

176

http://dx.doi.org/10.1007/978-3-642-34781-8_19
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-02.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2010/2010-02.pdf
http://dx.doi.org/10.1007/s10009-014-0321-6
http://hdl.handle.net/2003/2545
http://dx.doi.org/10.1109/34.211465
http://dx.doi.org/10.1007/978-0-387-35578-8_13
http://dx.doi.org/10.1007/978-0-387-35578-8_13
http://dl.acm.org/citation.cfm?id=767345.767349
http://dl.acm.org/citation.cfm?id=767345.767349
http://dx.doi.org/10.1007/978-3-642-82453-1_5

Bibliography

[152] Harald Raffelt and Bernhard Steffen. LearnLib: A Library for Automata Learning and Ex-
perimentation. In Luciano Baresi and Reiko Heckel, editors, Fundamental Approaches
to Software Engineering, volume 3922 of Lecture Notes in Computer Science, pages 377–
380. Springer Berlin / Heidelberg, 2006. ISBN 978-3-540-33093-6. DOI: 10.1007/
11693017_28. (Cited on pages 152 and 153.)

[153] Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria. LearnLib: a frame-
work for extrapolating behavioral models. International Journal on Software Tools for
Technology Transfer (STTT), 11(5):393–407, 2009. ISSN 1433-2779. DOI: 10.1007/
s10009-009-0111-8. (Cited on pages 152 and 153.)

[154] Ronald L. Rivest and Robert E. Schapire. Inference of Finite Automata Using Homing Se-
quences. In Proc. 21st ACM Symp. on Theory of Computing, pages 411–420. MIT Laboratory
for Computer Science, ACM Press, May 1989. DOI: 10.1145/73007.73047. (Cited
on pages 147, 148, and 181.)

[155] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-
quences. Inf. Comput., 103(2):299–347, 1993. ISSN 0890-5401. DOI: 10.1006/inco.
1993.1021. (Cited on pages 1, 2, 43, 44, 50, 51, 57, 58, 76, 77, 79, 87, 110, 147, 148, 155,
158, and 181.)

[156] Grigore Roşu, Feng Chen, and Thomas Ball. Synthesizing Monitors for Safety Properties:
This Time with Calls and Returns. In Martin Leucker, editor, Runtime Verification, vol-
ume 5289 of Lecture Notes in Computer Science, pages 51–68. Springer Berlin Heidelberg,
2008. ISBN 978-3-540-89246-5. DOI: 10.1007/978-3-540-89247-2_4. (Cited on
page 144.)

[157] Yasubumi Sakakibara. Efficient learning of context-free grammars from positive struc-
tural examples. Information and Computation, 97(1):23–60, 1992. ISSN 0890-5401. DOI:
10.1016/0890-5401(92)90003-X. (Cited on page 149.)

[158] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, New
York, NY, USA, 2009. ISBN 0521844258, 9780521844253. (Cited on page 16.)

[159] Thomas Schwentick. Automata for XML—A Survey. Journal of Computer and System
Sciences, 73(3):289–315, 2007. ISSN 0022-0000. DOI: 10.1016/j.jcss.2006.10.
003. Special Issue: Database Theory 2004. (Cited on page 144.)

[160] Burr Settles. Active Learning Literature Survey. Technical report, University of
Wisconsin, Madison, 2010. URL http://burrsettles.com/pub/settles.
activelearning.pdf. (Cited on page 4.)

[161] Muzammil Shahbaz and Roland Groz. Inferring Mealy Machines. In FM ’09: Proceedings
of the 2nd World Congress on Formal Methods, pages 207–222, Berlin, Heidelberg, 2009.
Springer Verlag. ISBN 978-3-642-05088-6. DOI: 10.1007/978-3-642-05089-3_
14. (Cited on pages 49, 51, 52, 53, 58, 110, 151, 152, and 181.)

[162] Guoqiang Shu and David Lee. Testing Security Properties of Protocol Implementations - a
Machine Learning Based Approach. In 27th International Conference on Distributed Com-

177

http://dx.doi.org/10.1007/11693017_28
http://dx.doi.org/10.1007/11693017_28
http://dx.doi.org/10.1007/s10009-009-0111-8
http://dx.doi.org/10.1007/s10009-009-0111-8
http://dx.doi.org/10.1145/73007.73047
http://dx.doi.org/10.1006/inco.1993.1021
http://dx.doi.org/10.1006/inco.1993.1021
http://dx.doi.org/10.1007/978-3-540-89247-2_4
http://dx.doi.org/10.1016/0890-5401(92)90003-X
http://dx.doi.org/10.1016/j.jcss.2006.10.003
http://dx.doi.org/10.1016/j.jcss.2006.10.003
http://burrsettles.com/pub/settles.activelearning.pdf
http://burrsettles.com/pub/settles.activelearning.pdf
http://dx.doi.org/10.1007/978-3-642-05089-3_14
http://dx.doi.org/10.1007/978-3-642-05089-3_14

Bibliography

puting Systems (ICDCS ’07), pages 25–25, June 2007. DOI: 10.1109/ICDCS.2007.
147. (Cited on page 53.)

[163] Muddassar Azam Sindhu. Algorithms and Tools for Learning-based Testing of Reactive
Systems. PhD thesis, School of Computer Science and Communication, KTH Royal Insti-
tute of Technology, 2013. URL http://kth.diva-portal.org/smash/get/
diva2:610371/FULLTEXT02.pdf. (Cited on page 85.)

[164] Wouter Smeenk, Joshua Moerman, Frits W. Vaandrager, and David N. Jansen. Applying
Active Automata Learning to Embedded Control Software. In Proceedings of the 17th In-
ternational Conference on Formal Engineering Methods (ICFEM 2015), September 2015.
to appear. (Cited on page 59.)

[165] Rick Smetsers and Joshua Moerman. Minimal Separating Sequences for All Pairs of States.
Technical report, Institute for Computing and Information Sciences, Radboud University
Nijmegen, 2005. URL http://cs.ru.nl/~rick/files/sm2015.pdf. (Cited
on page 68.)

[166] Jiří Srba. Visibly Pushdown Automata: From Language Equivalence to Simulation and
Bisimulation. In Zoltán Ésik, editor, Computer Science Logic, volume 4207 of Lecture Notes
in Computer Science, pages 89–103. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-
45458-8. DOI: 10.1007/11874683_6. (Cited on page 118.)

[167] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to Active Automata Learn-
ing from a Practical Perspective. In Marco Bernardo and Valérie Issarny, editors, Formal
Methods for Eternal Networked Software Systems, volume 6659 of Lecture Notes in Com-
puter Science, pages 256–296. Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-
3-642-21455-4_8. (Cited on pages 3, 31, 52, 58, and 155.)

[168] Boris A. Trakhtenbrot and Ya M. Barzdin. Finite Automata: Behavior and Synthesis. Amer-
ican Elsevier Publishing Company, 1973. (Cited on page 1.)

[169] M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653–665, 1973. ISSN
0011-4235. DOI: 10.1007/BF01068590. (Cited on page 152.)

[170] Neil Walkinshaw, Kirill Bogdanov, John Derrick, and Javier Paris. Increasing functional
coverage by inductive testing: A case study. In Proceedings of the 22Nd IFIP WG 6.1 In-
ternational Conference on Testing Software and Systems, ICTSS’10, pages 126–141, Berlin,
Heidelberg, 2010. Springer-Verlag. ISBN 3-642-16572-9, 978-3-642-16572-6. DOI: 10.
1007/978-3-642-16573-3_10. (Cited on page 150.)

[171] Stephan Windmüller. Kontinuierliche Qualitätskontrolle von Webanwendungen auf Basis
maschinengelernter Modelle. Dissertation, Technische Universität Dortmund, July 2014.
URL http://hdl.handle.net/2003/33540. (Cited on page 153.)

[172] Stephan Windmüller, Johannes Neubauer, Bernhard Steffen, Falk Howar, and Oliver
Bauer. Active Continuous Quality Control. In 16th International ACM SIGSOFT Sym-
posium on Component-Based Software Engineering, CBSE ’13, pages 111–120. ACM SIG-
SOFT, New York, NY, USA, 2013. DOI: 10.1145/2465449.2465469. (Cited on
page 153.)

178

http://dx.doi.org/10.1109/ICDCS.2007.147
http://dx.doi.org/10.1109/ICDCS.2007.147
http://kth.diva-portal.org/smash/get/diva2:610371/FULLTEXT02.pdf
http://kth.diva-portal.org/smash/get/diva2:610371/FULLTEXT02.pdf
http://cs.ru.nl/~rick/files/sm2015.pdf
http://dx.doi.org/10.1007/11874683_6
http://dx.doi.org/10.1007/978-3-642-21455-4_8
http://dx.doi.org/10.1007/978-3-642-21455-4_8
http://dx.doi.org/10.1007/BF01068590
http://dx.doi.org/10.1007/978-3-642-16573-3_10
http://dx.doi.org/10.1007/978-3-642-16573-3_10
http://hdl.handle.net/2003/33540
http://dx.doi.org/10.1145/2465449.2465469

Bibliography

[173] Hao Xiao, Jun Sun, Yang Liu, Shang-Wei Lin, and Chengnian Sun. TzuYu: Learning state-
ful typestates. In 28th International IEEE/ACM Conference on Automated Software Engi-
neering (ASE 2013), pages 432–442, Nov 2013. DOI: 10.1109/ASE.2013.6693101.
(Cited on page 1.)

[174] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The State Complexities of Some Basic Op-
erations on Regular Languages. Theor. Comput. Sci., 125(2):315–328, March 1994. ISSN
0304-3975. DOI: 10.1016/0304-3975(92)00011-F. (Cited on page 22.)

[175] Sandra Zilles, Steffen Lange, Robert Holte, and Martin Zinkevich. Models of Cooper-
ative Teaching and Learning. J. Mach. Learn. Res., 12:349–384, February 2011. ISSN
1532-4435. URL http://www.jmlr.org/papers/volume12/zilles11a/
zilles11a.pdf. (Cited on pages 26, 87, and 135.)

179

http://dx.doi.org/10.1109/ASE.2013.6693101
http://dx.doi.org/10.1016/0304-3975(92)00011-F
http://www.jmlr.org/papers/volume12/zilles11a/zilles11a.pdf
http://www.jmlr.org/papers/volume12/zilles11a/zilles11a.pdf

A. Supplementary Material

A.1. Overview of Active Learning Algorithms’ Complexities

Name Ref. Query Complexity Symbol Complexity

L∗ [19] O(k n 2m) O(k n 2m 2)

L∗
col [127] O(k n 2m) O(k n 2m 2)

Shahbaz [106, 161] O(k n 2m) O(k n 2m 2)

Suffix1by1 [105, 106] O(k n 2m) O(k n 2m 2)

Rivest/Schapire [154, 155] O(k n 2+n logm) O(k n 2m +nm logm)

Kearns/Vazirani
(orig.)

[115] O(k n 2+n 2m) O(k n 2m +n 2m 2)

Kearns/Vazirani
(bin. search.)

[108] O(k n 2+n 2 logm) O(k n 2m +n 2m logm)

Observation Pack
[93, 108],
Sec. 4.2.3

O(k n 2+n logm) O(k n 2m +nm logm)

TTT
[110],
Chp. 5

O(k n 2+n logm) O(k n 2m +nm logm)

Table A.1.: Query and symbol complexities of active automata learning algorithms

181

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Notation
	Introduction
	Research Questions
	Scope of This Thesis
	Overview of the Contributions
	Comments on Individual Contributions

	Outline

	Preliminaries
	Mathematical Notation
	Sets
	Partial Functions
	Equivalence Relations

	Alphabets, Words, and Automata
	Alphabets and Words
	Transition Systems
	Finite-State Acceptors
	Finite-State Transducers
	Common FSM Concepts

	An Abstract Framework for Active Automata Learning
	Regular Languages, DFAs, and the Myhill-Nerode Theorem
	Quotient and DFA Minimization
	The Nerode Congruence

	Approximating Regular Languages by Experimentation
	The MAT Framework
	Black-Box Classification Schemes
	Refining Black-Box Abstractions

	An Abstract Framework for Counterexample Analysis
	Formal Definitions
	Finding Breakpoints
	Prefix-based Counterexample Analysis
	Suffix-based Counterexample Analysis
	Improved Search Strategies
	Comparison

	Realizations
	Data Structures
	Handling Counterexamples
	Complexity Considerations

	Adaptation for Mealy Machines
	Black-Box Abstractions for Mealy Machines
	Handling Counterexamples and Inconsistencies
	Data Structures

	Discussion
	Consistency Properties
	Limitations

	Discrimination Trees
	White-Box Setting
	Formal Definitions and Notation
	General Operations
	Discrimination Trees and Automata
	Computing Discrimination Trees
	Semantic Suffix-Closedness

	Black-Box Setting: Learning with Discrimination Trees
	Discrimination Trees as Black-Box Classifiers
	Spanning-Tree Hypothesis
	The Observation Pack Algorithm
	A Note on Discrimination Tree-based Learning Algorithms

	The TTT Algorithm
	Design Goals and High-level Overview
	Property Restoration
	Interplay of Data Structures

	Technical Realization
	Temporary and Final Discriminators
	Discriminator Finalization – Simple Case
	Output Inconsistencies and Subsequent Splits
	Discriminator Finalization – Complex Case
	Restoring Semantic Suffix-Closedness

	The Complete Algorithm
	Complexity
	Space Optimality

	Adaptation for Mealy Machines
	Evaluation
	Evaluation Metrics
	Realistic Systems
	Randomly Generated Automata
	Interpretation of the Results

	Learning Visibly Pushdown Automata
	Preliminaries
	Well-Matched Words
	Visibly Pushdown Automata
	1-SEVPAs and Normalized Stack Alphabets

	A Unified Congruence for Well-Matched VPLs
	Finite Characterization

	Black-Box Learning of VPLs
	Black-box Abstractions for VPLs
	Consistency Properties
	Counterexample Analysis

	A VPDA Version of TTT
	Data Structures
	Discriminator Finalization
	Progress and Subsequent Splits
	An Example Run
	Complexity

	Preliminary Evaluation
	Experimental Setup
	Counterexamples of Growing Length
	Automata of Growing Size
	Interpretation of the Results

	Envisioned Applications

	Related Work
	Works Directly Related to the Contents of This Thesis
	Unifying Formalization of Active Automata Learning
	Algorithmic Improvements of Classical Active Automata Learning
	Extending Active Automata Learning to Context-Free Structures

	Other Works Related to Active Automata Learning
	Grammatical Inference and Passive Automata Learning
	Extending Active Automata Learning Beyond Regular Languages
	Applications of Active Automata Learning in Formal Methods
	Active Automata Learning Tools and Framework

	Conclusions
	Future Work and Open Problems

	References
	Supplementary Material
	Overview of Active Learning Algorithms' Complexities

