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Abstract

We construct a sequential monitoring procedure for changes in the tail index and extreme quan-
tiles of β-mixing random variables, which can be based on a large class of tail index estimators.
The assumptions on the data are general enough to be satisfied in a wide range of applications.
In a simulation study empirical sizes and power of the proposed tests are studied for linear and
non-linear time series. Finally, we use our results to monitor Bank of America stock log-losses from
2007 to 2012 and detect changes in extreme quantiles without an accompanying detection of a tail
index break.

Keywords: Sequential monitoring, change point, β-mixing, tail index, extreme quantiles, func-
tional central limit theorem
JEL classification: C12 (Hypothesis Testing), C14 (Semiparametric and Nonparametric Meth-
ods), C22 (Time-Series Models)

1 Motivation

The tail index of a random variable is arguably one of the most important parameters of its distribution:

It determines some fundamental properties like the existence of moments, tail asymptotics of the

distribution and the asymptotic behavior of sums and maxima. As a measure of tail thickness, the

tail index is used in fields where heavy tails are frequently encountered, such as (re)insurance, finance,

and teletraffic engineering (cf. Resnick, 2007, Sec. 1.3, and the references cited therein). Particularly

in finance the closely related extreme quantiles play a prominent role as a risk measure called Value-

at-Risk (VaR).

The use of the variance as a risk measure has a long tradition in finance. Under Gaussianity the

variance completely determines the tails of the distribution, which is no longer the case with heavy-

tailed data. Hence, in order to assess the tail behavior of a time series, practitioners often estimate the

tail index or an extreme quantile, the implicit assumption being their constancy over time. There are
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several suggestions in the literature on how to test this crucial assumption: Quintos, Fan and Phillips

(2001) developed so called recursive, rolling and sequential tests for independent and GARCH data

for tail index constancy based on the Hill (1975) estimator. Tests based on other estimators than the

Hill (1975) estimator were first proposed by Einmahl, de Haan and Zhou (2015+) for independent and

Hoga (2014) for dependent data. To the best of our knowledge the only paper dealing with changes

in extreme quantiles is Hoga (2015). All these tests are of a retrospective nature.

We are not aware of any work on online surveillance methods for constancy of the tail index

and extreme quantiles. This is important because, as noted in Chu, Stinchcombe and White (1996),

‘[b]reaks can occur at any point, and given the costs of failing to detect them, it is desirable to detect

them as rapidly as possible. One-shot tests cannot be applied in the usual way each time new data

arrive, because repeated application of such tests yields a procedure that rejects a true null hypothesis

of no change with probability one as the number of applications grows.’ This paper will fill this gap

for closed-end procedures. To allow for sufficient flexibility in the use of tail index estimators, we will

use the approach of Hoga (2014).

Whether a monitoring procedure for a change in the tail index or an extreme quantile is of interest

will largely be a matter of context. If interest centers on VaR, which is widely used in the banking

industry and by financial regulators as a risk measure, the quantile monitoring procedure will be more

relevant. If however interest centers on the mean excess function of the (log-transformed) data X,

then, since E (logX − log t|X > t) converges to the extreme value index of X as t→∞, the tail index

alternative seems more appropriate. Furthermore, the tail index per se could also be of interest as

there are indications that it has predictive power for stock returns (Kelly and Jiang, 2014), where

higher (lower) tail indices of returns indicate higher (lower) absolute returns.

The outline of this paper is as follows. The main results under the null and two alternatives are

stated in Section 2. Simulations and an empirical application are presented in Sections 3 and 4. The

proofs are collected in the Appendix.

2 Main results

2.1 Preliminaries and assumptions

To introduce the required notation let X1, . . . , Xn be a sequence of random variables defined on some

probability space (Ω,A, P ) with survivor function F̄i (x) := 1− Fi(x) = P (Xi > x), that is regularly

varying with parameter −αi (written F̄i ∈ RV−αi), i.e.,

F̄i (x) = x−αiLi (x) , x > 0, (1)

where Li : (0,∞)→ (0,∞) is slowly varying, i.e.,

lim
x→∞

Li (λx)

Li (x)
= 1 ∀ λ > 0. (2)
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If Xi is Pareto distributed, then Li(x) ≡ c > 0. Since slow variation of the function Li(x) means,

loosely speaking, that it behaves like a constant function at infinity, we say that Xi with tails as in (1)

has Pareto-type tails. In the context of extreme value theory, αi is called the tail index and γi := 1/αi

the extreme value index (Resnick, 2007, Sec. 4.5.1).

Define

Ui (x) := F−1i

(
1− 1

x

)
, x > 1,

as the (1− 1/x)-quantile, F−1i being the left-continuous inverse of Fi. Throughout k = k (n) ∈ N will

denote a sequence satisfying k ≤ n− 1,

k −→
(n→∞)

∞ and
k

n
−→

(n→∞)
0, (3)

controlling the number of largest order statistics used in the estimation of the tail index and p =

p(n)→ 0, n→∞, will denote a sequence of small probabilities, for which we want to test for a change

in an appertaining extreme (right-tail) quantile Ui(1/p). For t− s ≥ 1/n and y ∈ [0, 1] set

Xk (s, t, y) := (bk (t− s) yc+ 1) -th largest value of Xbnsc+1, . . . , Xbntc.

Under the assumption of strictly stationary Xi we write F̄ = F̄i and U = Ui. Let γ̂(s, t) := γ̂n (s, t)

(0 ≤ s < t <∞, t− s ≥ 1/n) denote a generic tail index estimator based on the
(
bk(t− s)c+1

)
-largest

order statistics of the subsample Xbnsc+1, . . . , Xbntc. Then (see Hoga, 2015, for a motivation)

x̂p (s, t) := Xk (s, t, 1)
(np
k

)−γ̂(s,t)
(4)

is the so called Weissman (1978) estimator for the extreme quantile U(1/p). To give an example of a

tail index estimator we introduce the Hill (1975) estimator of γ

γ̂H(0, 1) :=
1

k

k−1∑
i=0

log

(
Xn−i:n
Xn−k:n

)
,

where Xn:n ≥ Xn−1:n ≥ . . . ≥ X1:n denote the order statistics of the sample X1, . . . , Xn.

The dependence concept we will use in the following is that of β-mixing. A sequence of random

variables {Xi}i∈N is called β-mixing iff the β-mixing coefficients β (l) converge to zero, i.e.,

β (l) := sup
m∈N

E

[
sup

A∈F∞m+l+1

|P (A|Fm1 )− P (A)|

]
−→

(l→∞)
0,

where F∞m := σ (Xm, Xm+1, . . .) and Fml := σ (Xl, . . . , Xm). For more on this mixing concept we refer

to Bradley (2007).

Write D[a, b] for the space of cadlag functions on [a, b] (0 ≤ a < b <∞) endowed with the Skorohod

topology and D(I), I ⊂ Rl compact, for the multiparameter extension.

In order to construct a monitoring procedure for a tail index change, we have to assume tail index

(or, equivalently, extreme value index) constancy over some historical period (also called training

period) of suitable length n:
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(A1) γ1 = . . . = γn, n ∈ N.

This assumption can of course be tested by any of the retrospective change point tests proposed

in, e.g., Hoga (2014, 2015).

As soon as a period X1, . . . , Xn of tail index or extreme quantile stability is identified and more

observations Xn+1, . . . become available, we are interested in an online surveillance method testing

H0,γ : γ1 = . . . = γn = γn+1 = . . . vs.

H≶
1,γ : γ1 = . . . = γn = . . . = γbnt∗c ≶ γbnt∗c+1 = γbnt∗c+2 = . . . ,

(5)

and

H0,U : U1

(
1

p

)
= . . . = Un

(
1

p

)
= Un+1

(
1

p

)
= . . . versus

H≶
1,U : U1

(
1

p

)
= . . . = Un

(
1

p

)
= . . . = Ubnt∗c

(
1

p

)
≶ Ubnt∗c+1

(
1

p

)
= Ubnt∗c+2

(
1

p

)
= . . .

(6)

for some t∗ ≥ 1 denoting the unknown change point. We use H0 or H≶
1 as shorthand notation for

both of H0,γ , H0,U or H≶
1,γ , H≶

1,U .

We use the following detectors for (5)

V γ̂
n (t) :=

[
(t− 1)

√
k (γ̂ (1, t)− γ̂ (0, 1))

]2
k
´ 1
t0

[s (γ̂ (0, s)− γ̂ (0, 1))]2 ds
, t ≥ 1 + t0,

W γ̂
n (t) :=

[
t0
√
k (γ̂ (t− t0, t)− γ̂ (0, 1))

]2
k
´ 1
t0

[t0 (γ̂ (s− t0, s)− γ̂ (0, 1))]2 ds
, t ≥ 1 + t0,

and for (6)

V
x̂p
n (t) :=

[
(t− 1)

√
k

log(k/(np)) log
(
x̂p(1,t)
x̂p(0,1)

)]2
´ 1
t0

[
s

√
k

log(k/(np)) log
(
x̂p(0,s)
x̂p(0,1)

)]2
ds
, t ≥ 1 + t0,

W
x̂p
n (t) :=

[
t0

√
k

log(k/(np)) log
(
x̂p(t−t0,t)
x̂p(0,1)

)]2
´ 1
t0

[
t0

√
k

log(k/(np)) log
(
x̂p(s−t0,s)
x̂p(0,1)

)]2
ds
, t ≥ 1 + t0,

where t0 > 0 defines the (minimal) fraction of n upon which the tail index estimators are based. We

are inclined to reject H0 iff the following stopping times terminate (in the sense of being finite):

τV
γ̂

n := inf
{
t ∈ [1 + t0, T ] : V γ̂

n (t) > c
}
,

τW
γ̂

n := inf
{
t ∈ [1 + t0, T ] : W γ̂

n (t) > c
}
,

and

τV
x̂p

n := inf
{
t ∈ [1 + t0, T ] : V

x̂p
n (t) > c

}
,

τW
x̂p

n := inf
{
t ∈ [1 + t0, T ] : W

x̂p
n (t) > c

}
,
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where from now on inf ∅ :=∞ and c > 0 is chosen, such that under H0, limn→∞ P (τn <∞) = α for

some prespecified significance level α ∈ (0, 1) (see Theorem 1 below). Here T > 1 denotes the arbitrar-

ily large closed end of the procedure, i.e., the method terminates after observations Xn+1, . . . , XbnT c.

Closed end procedures are quite common (e.g., Aue, Hörmann, Horváth, Hušková and Steinebach,

2012; Wied and Galeano, 2013).

Remark 1. (a) The detector V γ̂
n comes closer in spirit to many of the detectors in the online

monitoring literature, where an estimate of some parameter based on the historical period is

compared to that based on the (ever longer) monitoring period (again, e.g., Aue et al., 2012;

Wied and Galeano, 2013). However, the procedure based on V γ̂
n is not consistent against H>1,γ ,

cf. Theorem 2 below, which is the reason for introducing the method based on W γ̂
n .

(b) We could have based our procedure equally well on detectors of the type

V γ̂
n (t) :=

1

σ2γ̂,γ

[
(t− 1)

√
k (γ̂ (1, t)− γ̂ (0, 1))

]2
,

where σ2γ̂,γ is a consistent estimator of the asymptotic variance of
√
k(γ̂(0, 1)− γ) based on the

observations X1, . . . , Xn in the observation period (e.g., the one in Theorem 2 of Hoga (2014)).

It turns out however, that in simulations values of even n = 500 for the training period are

not sufficient to deliver accurate variance estimates, which distorts the sizes of our surveillance

methods severely. This is why we opted for the self-normalized approach advocated in Shao and

Zhang (2010), which delivers far superior size in simulations. Simulation evidence in Shao and

Zhang (2010) suggests that for retrospective tests in finite samples the price to be paid for using

a self-normalization approach vs. a variance estimation approach is slightly lower power.

Under H0 we will assume beyond (A1) that:

(A2) {Xi}i∈N is a strictly stationary β-mixing process with continuous marginals and mixing coeffi-

cients β (·), such that

lim
n→∞

n

rn
β (ln) +

rn√
k

log2(k) = 0 (7)

for sequences {ln}n∈N ⊂ N, {rn}n∈N ⊂ N tending to infinity with ln = o(rn), rn = o(n).

(A3) There exists a function r = r (x, y), such that for all x, y ∈ [0, y0 + ε] (y0 ≥ 1, ε > 0)

lim
n→∞

n

rnk

∑
1≤i,j≤rn

Cov

(
I{Xi>U( n

kx)}, I
{
Xj>U

(
n
ky

)}) = r (x, y) . (8)

(A4) For some constant C > 0

n

rnk
E

[
rn∑
i=1

I{
U
(
n
ky

)
<Xi≤U( n

kx)
}
]4
≤ C(y − x) ∀0 ≤ x < y ≤ y0 + ε, n ∈ N.
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(A5) There exist ρ < 0 and a function A(·) with eventually positive or negative sign, limt→∞A(t) = 0,

such that for any y > 0

lim
t→∞

U(ty)
U(t) − y

γ

A(t)
= yγ

yρ − 1

ρ
,

where
√
kA(n/k)→ 0 as n→∞.

For the detectors for changes in extreme quantiles we need the following further assumptions:

(A6) limn→∞
np
k = 0, limn→∞ k

−1/2 log (np) = 0.

(A7) The sequence k satisfies

U (1/p)

U (n/k)

(np
k

)γ
− 1 = o

(
1√
k

)
. (9)

The conditions (A2)-(A5) correspond to conditions (C1)-(C4) in Hoga (2014). For a discussion

of these conditions, as well as some easier-to-verify sufficient conditions for (A3) and (A4) see Hoga

(2014), where also some examples of time series satisfying these conditions are presented. Condi-

tions (A6)-(A7) correspond to conditions (C5)-(C6) in Hoga (2015). (A6) provides a range for

p: limn→∞
np
k = 0 provides an upper bound for the decay of p (indicating the limitations of the ex-

treme value theory approach towards the center of the distribution) while limn→∞ k
−1/2 log (np/k) =

limn→∞ k
−1/2 log (np) = 0 provides a lower bound, beyond which estimation is no longer feasible.

2.2 Results under the null and the alternative

We are now ready to state the main results under the null, describing the asymptotic behavior of our

monitoring procedures based on the stopping rules τn. Here and henceforth we will assume that these

stopping times are based on one of the tail index estimators from Examples 1 - 3 in Hoga (2014).

Theorem 1. Suppose (A1)-(A5) hold for y0 = 1. Then for any t0 > 0, T > 1 + t0 and

Vt0,T :=
supt∈[1+t0,T ] [W (t)− tW (1)]2´ 1

t0
[W (s)− sW (1)]2 ds

, (10)

Wt0,T :=
supt∈[1+t0,T ] [W (t)−W (t− t0)− t0W (1)]2´ 1

t0
[W (s)−W (s− t0)− t0W (1)]2 ds

,

with {W (t)}t∈[0,T ] a standard Brownian motion,

(i) under H0,γ

lim
n→∞

P
(
τV

γ̂

n <∞
)

= P (Vt0,T > c) ,

lim
n→∞

P
(
τW

γ̂

n <∞
)

= P (Wt0,T > c) ,
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(ii) under H0,U and additionally (A6)-(A7)

lim
n→∞

P
(
τV

x̂p

n <∞
)

= P (Vt0,T > c) ,

lim
n→∞

P
(
τW

x̂p

n <∞
)

= P (Wt0,T > c) .

Next, we investigate the behavior of our procedures under the ‘one-sided’ alternativesH≶
1 . To prove

our results the observations will be denoted by the triangular array of random variables Xn,i, n ∈ N,

i = 1, . . . , n, which have a common marginal survivor function F pre ∈ RV−αpre (F post ∈ RV−αpost) for

i ∈ Ipre := {1, . . . , bnt∗c} (i ∈ Ipost := {bnt∗c+ 1, . . . , bnT c}). Set

Upre(x) = F−1pre

(
1− 1

x

)
and Upost(x) = F−1post

(
1− 1

x

)
.

Theorem 2. Let the triangular array of observations {Xn,i}n∈N,i=1,...,n be given by

Xn,i :=

{
Yn, i ∈ Ipre,
Zn, i ∈ Ipost,

where {Yn}n∈N and {Zn}n∈N both satisfy conditions (A2)-(A5) with y0 = T and

k, γpre, Upre(·), rpre(·, ·) and k, γpost, Upost(·), rpost(·, ·)

respectively. Suppose further that

rpre(tx, ty) = trpre(x, y) and rpost(tx, ty) = trpost(x, y) ∀t ∈ [0, 1] , x, y ∈ [0, y0] . (11)

Then

(i)

lim
n→∞

P
(
τV

γ̂

n <∞
)

= 1 under H<1,γ ,

lim
n→∞

P
(
τV

γ̂

n <∞
)

= P (Vt0,T > c) under H>1,γ ,

(ii)

lim
n→∞

P
(
τW

γ̂

n <∞
)

= 1 under H≶
1,γ ,

where under H>1 additionally t∗ ∈ [1, T − t0] must hold.

Suppose that additionally (A6)-(A7) hold for {Yn} and {Zn}. Then

(iii)

lim
n→∞

P
(
τV

x̂p

n <∞
)

= 1 under H≶
1,γ ,

(iv)

lim
n→∞

P
(
τW

x̂p

n <∞
)

= 1 if t∗ ∈ [1, T − t0] under H≶
1,U .
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Remark 2. (a) For a discussion of condition (11) and the choice of k we refer to Hoga (2014,

Remark 8).

(b) If the Xn,i are generated as in Theorem 2 the hypothesis H≶
1,γ is a strict subset of the hypothesis

H≶
1,U . E.g., taking Zn = aYn, a 6= 1, is covered under H≶

1,U , but not under H≶
1,γ , since scaling

does not affect the tail index. If however (e.g.) H>1,γ is true, we have Upre/Upost ∈ RVγpre−γpost>0

and hence

Upre(1/pn)

Upost(1/pn)
−→

(n→∞)
∞,

s.t. H>1,U is true.

(c) Under H>1 the procedure based on τ
V γ̂

n has power equal to size, which motivated the study of

τ
Wγ̂

n .

3 Simulations

In this section we investigate the finite-sample behavior of the monitoring procedures based on the

stopping times τW
γ̂/x̂p

n since, unlike with τV
γ̂/x̂p

n , they are generally consistent against both alternatives

H≶
1 . Throughout we simulate 5,000 times from time series with historical periods of length n = 100, 500

and T = 4, such that the total length is bnT c = 500, 2000. Furthermore we use t0 = 0.2 and k/n = 0.2

and the estimator γ̂ = γ̂H of the extreme value index we employ is the Hill (1975) estimator, which

is in the class of kernel estimators in Example 1 in Hoga (2014). Simulation results were quite robust

to the particular choice of k/n and the tail index estimator and are available from the authors upon

request. The quantiles of the distribution of Vt0,T for t0 = 0.2 and T = 4 given in (10) are tabulated

in Table 1.

α 0.50 0.60 0.70 0.80 0.90 0.95 0.99
α-quantile 15.3 18.1 21.7 26.8 36.2 45.4 71.3

Table 1: α-quantiles of Vt0,T (t0 = 0.2, T = 4)

We investigate size using data from a linear ARMA(1,1) and a non-linear ARCH(1) model. Specif-

ically, we simulate {Xi}i=1,...,bnT c from the two data generating processes (DGPs)

Xi = 0.3 ·Xi−1 + Zi + 0.7 · Zi−1, Zi
i.i.d.∼ t10, (ARMA)

X2
i =

(
0.01 + 0.3125 ·X2

i−1
)
Z2
i , Zi

i.i.d.∼ N (0, 1), (ARCH)

where t10 denotes Student’s t-distribution with 10 degrees of freedom (i.e., tail index equal to 10). For

the verification of the conditions (A2)-(A7) we refer to Hoga (2015) and the references cited therein.

The |Xi| generated from the ARMA(1,1)-model have tail index 10 because of Lemma 5.2 in Datta
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DGP Size bnT c = 500 bnT c = 2000

W γ̂ W x̂p W γ̂ W x̂p

p = 0.1 0.01 0.001 p = 0.1 0.01 0.001

(ARMA) 0.10 0.194 0.111 0.147 0.179 0.100 0.085 0.089 0.095
0.05 0.129 0.068 0.097 0.120 0.054 0.042 0.049 0.055

(ARCH) 0.10 0.173 0.105 0.163 0.175 0.117 0.092 0.125 0.124
0.05 0.110 0.063 0.107 0.116 0.067 0.051 0.077 0.073

Table 2: Empirical sizes of monitoring procedures based on W γ̂ and W x̂p for bnT c realizations of
(ARMA) and (ARCH)

and McCormick (1998). The tail index of the X2
i from the ARCH(1)-model is given by 8/2 = 4 (cf.

Davis and Mikosch, 1998, Table 1).

For both models tests are oversized for bnT c = 500 and rejections depend quite significantly on p.

For bnT c = 2000 this dependence decreases and the size distortions vanish almost completely for the

ARMA data and are markedly less severe for the ARCH data.

DGP Break Level bnT c = 500 bnT c = 2000

W γ̂ W x̂p W γ̂ W x̂p

p = 0.1 0.01 0.001 p = 0.1 0.01 0.001

(ARMA) 0.05 0.10 0.241 0.471 0.408 0.344 0.226 0.984 0.795 0.575
0.05 0.170 0.354 0.309 0.252 0.145 0.958 0.686 0.450

0.5 0.10 0.223 0.405 0.315 0.276 0.202 0.969 0.708 0.478
0.05 0.150 0.290 0.232 0.201 0.132 0.932 0.590 0.359

(ARCH) 0.05 0.10 0.365 0.305 0.453 0.428 0.519 0.613 0.692 0.651
0.05 0.265 0.228 0.361 0.337 0.408 0.496 0.597 0.546

0.5 0.10 0.268 0.237 0.330 0.315 0.372 0.485 0.539 0.490
0.05 0.185 0.164 0.252 0.228 0.277 0.374 0.438 0.389

Table 3: Empirical power of monitoring procedures based on W γ̂ and W x̂p for bnT c realizations of
(ARMA) and (ARCH)

To assess the power of our tests we generate data from the following two models, where the

historical data in both cases were generated according to the models already investigated under the

null:

Xi,n =

{
0.3 ·Xi−1 + Zi + 0.7 · Zi−1, i = 1, . . . , bnt∗c ,
0.8 ·Xi−1 + Zi + 0.7 · Zi−1, i = bnt∗c+ 1, . . . , bnT c ,

Zi
i.i.d.∼ t10, (12)

X2
i,n =

{(
0.01 + 0.3125 ·X2

i−1
)
Z2
i , i = 1, . . . , bnt∗c ,(

0.01 + 0.5773 ·X2
i−1
)
Z2
i , i = bnt∗c+ 1, . . . , bnT c ,

Zi
i.i.d.∼ N (0, 1), (13)

where n = 100, 500 and T = 4 as before and t∗ = 1.15, 2.5, corresponding to breaks after 5% and

50% of the observation period. In the ARMA(1,1)-model with the break in the AR-parameter from
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0.3 to 0.8 there is no break in the tail index, but a break in the variance from 0.92 to 1.81, i.e., a

more volatile distribution after the break. In the ARCH case the parameter shift induces a tail index

change from 8/2 = 4 to 4/2 = 2 (cf. Davis and Mikosch, 1998, Table 1), i.e., heavier tails after the

break. At the same time the variance is finite pre-break and (hairline) infinite post-break.

Note that for the ARMA(1,1) model in (12) H0,γ is true. However, as in finite samples an upward

break in the variance may not be clearly discerned from one in the tail index by our procedure, we

should expect more rejections for τW
γ̂

n than in Table 2. This is confirmed by the results in Table 3.

Furthermore, the variance change is most frequently detected using τW
x̂p

n for p = 0.1. This may be

explained by the higher variance of x̂p for smaller values of p, which makes detection of a quantile

break very difficult, if the quantiles do not lie sufficiently far apart, as is plausible here, where a mere

variance change occured.

If there is a break in the tail index and the variance as in the ARCH-case, one can see from Table

3 that the procedures based on the Weissman (1978) estimator clearly perform better than that based

on the Hill (1975) estimator. Heuristically, this may be explained by the fact that the Weissman

(1978) estimator also takes differences in scale before and after the break into account (via Xk(s, t, 1),

see (4)). Since in reality changes in the tail index will most likely result in changes of scale, one should

use the tests based on W x̂p . Further, one should use τW
x̂p

n with p = 0.01, as this choice leads to the

highest power.

To assess how promptly changes are detected, Figures 1 and 2 show histograms of the (finite)

realizations of τW
γ̂

n and τW
x̂p

n at the 10% level for the ARMA and the ARCH models given in (12)

and (13) respectively with bnT c = 2000. There are 19 bars in all plots at points 1 + l · 0.05 · 3
(l = 1, . . . , 20). The value of t∗ at which the changes are located are given by 1.15 = 1 + 1 · 0.05 · 3
(l = 1) and 2.5 = 1 + 10 · 0.05 · 3 (l = 10).

The results for the ARMA model are displayed in Figure 1. The high false detection rate for the

tail index-based method seems largely to be due to false detections just shortly after the break, as

can be seen from the distinctive peak in panel (a1) and (a2). The detections with τW
x̂p

n for p = 0.1

in (b1) and (b2) indicate that a very large portion of detections occur within the time corresponding

to the two bars right after the break. This holds to a lesser extent for the results shown in (c1)

and (c2), where, however, detection rates were poor. Overall the detection speed is satisfactory but

faster for larger values of p. For the ARCH model one can see slightly dissimilar detection patterns

for all procedures. The highest number of detections always occurs one or two bars after the break

and that rate goes down only slowly so that detections (if they occur) take on average longer than

in the ARMA case. This may be explained by the fact that ARCH models incorporate conditional

heteroscedasticity, such that detection of changes in the variability of time series is inherently more

difficult. We need to observe longer periods of higher variance before one can reject the null here.
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Figure 1: Histograms of detection times τW
γ̂

n , τW
x̂p
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(b1), (c1)), t∗ = 2.5 ((a2), (b2), (c2)) for bnT c = 2000
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4 Application

In this section we apply our tests to the lower tail of log-returns, i.e., log-losses, of Bank of America

stocks covering the period of the financial crisis of 2007-2008, where short selling US financial stocks

was halted until October 2, 2008 following an SEC order released on September 19, 2008. The return

series we consider is displayed in the top part of Figure 4. Results for stock prices of other US

financial companies (Morgan Stanley, Citigroup and Goldman Sachs) are very similar and can be

obtained upon request. Since we try to detect changes in unconditional quantiles our focus is on

the long-term distributional changes in the time series, not on short-term changes in the conditional

distribution. We set our (artificial) training and observation period to be the years from 2005 to 2012

corresponding to 2012 observations, X1, . . . , X2012, the first quarter of which (roughly the years 2005

and 2006) make up the training period.
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Figure 3: (a) Pareto quantile plot of shifted data. (b) Hill estimates as a function of upper order
statistics k used in the estimation.

Next, we verify that our two central assumptions, the stationary mixing assumption (A2) and

the heavy tail assumption (A5), are plausibly met by the time series in the training period. To

check whether there is evidence for heavy tails we plot the Pareto quantile plot in Figure 3 (a), where

the points (− log(j/(n + 1)), logXn−j+1:n), j = 1, . . . , n, are plotted. See Beirlant, Vynckier and

Teugels (1996) for more on Pareto quantile plots. In order for all logXn−j+1:n’s to be well defined

we shifted the observations to the positive half-line by adding the absolute value of the smallest

return plus 0.01. An upward sloping linear trend, like the one that can be seen in Figure 3 (a) from

− log(j/(n + 1)) ≈ 1.5 onwards, for some j = 1, . . . , k + 1 in the plot indicates a good fit of the tail
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to (strict) Pareto behavior. An estimate of α can be obtained by the slope of the line from the point

(− log((k + 1)/(n + 1)), logXn−k:n) onwards, roughly 0.2. This is confirmed in the (slightly upward

trending) Hill plot in Figure 3 (b), which displays the Hill estimates of the shifted data as a function

of the upper order statistics k used in the estimation. As for the mixing assumption (A2) we remark

that GARCH-models, which are widely used to model financial return data like the one considered

here, are geometrically strong mixing, i.e., β(k) = ηk, η ∈ (0, 1). Further, applying the retrospective

tests of Hoga (2014) and Hoga (2015) we find no evidence of extreme quantile or tail index breaks

during that period which would violate the stationarity assumption. Hence, we proceed with our

monitoring procedure.

The results are shown in the middle part of Figure 4. As in the simulations we choose k/n = 0.2

and t0 = 0.2. All procedures terminate at the 5%-level if the value of 45.4 is exceeded by the detector.

We see that the procedure testing for a change in the 10%-quantile of the log-returns terminates first

in November of 2007, followed later by the detection of a break in the 1%-quantile in August 2008. A

0.1%-quantile break is detected last in early 2009. However, we find no evidence of a tail index break

in the observation period. The lower part of Figure 4 sheds some light on this phenomenon. There,

the rolling extreme value index estimates based on samples of length bnt0c = 100, that the detectors

are based on, are presented. The estimates hover around the value of 0.6 during the whole period,

which is roughly the extreme value index estimate of 0.52 based on the training period. (Due to the

location dependence of Hill estimates, the extreme value index in the training period was estimated

to be roughly 0.2 for the shifted data in Figure 3 (b) and 0.52 now, based on non-shifted returns.

The extreme value index itself is of course shift-invariant.) This contrasts with the behavior of the

standard deviation estimates based on the same rolling windows, where we see a marked spike peaking

in early 2009. Hence, we find indications that the change in the extreme quantiles is not caused by

a change in the tail index but rather by a change in the scale of the log-returns. Largely, the above

results are consistent with the simulations under the alternative, where a variance change occured.

Procedures based on W x̂p detect mere variance changes more easily for larger values of p, while that

based on W γ̂ did not pick up a tail index change.

Appendix

Proof of Theorem 1: The proof of (i) mainly rests on a time shifted version of the convergence

established in Hoga (2014, Theorem 5) (cf. also the proof of Theorem 1 in Hoga (2014)). That is, for

some δ > 0 and ν ∈ (0, 1/2),

√
k

yν

1

k

bntc∑
i=1

[
I{Ũi>1− k

n
y} −

k

n
y

] D−→
(n→∞)

1

yν
W (t, y) in D ([t0, T ]× [0, y0 + δ])
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for a sequence of random variables Ũi ∼ U [0, 1], s.t.

Xi > U

(
n

ky

)
⇐⇒ Ũi > 1− k

n
y.

W (t, y) is a centered Gaussian process with covariance function

Cov (W (t1, y1) ,W (t2, y2)) = min (t1, t2) r (y1, y2) .

Hence,
√
k

yν

1

k

bntc∑
i=1

I{
Xi>U

(
n
ky

)} − ty
 D−→

(n→∞)

1

yν
W (t, y) in D ([t0, T ]× [0, y0 + δ]) .

The continuous mapping theorem (CMT) then implies

√
k

yν


1
k

∑bnmax(1+t0,t)c
i=n+1 I{

Xi>U
(
n
ky

)} − (max(1 + t0, t)− 1)y

1
k

∑bntc
i=bn(t−t0)c I

{
Xi>U

(
n
ky

)} − t0y
1
k

∑bntc
i=1 I

{
Xi>U

(
n
ky

)} − ty


D−→

(n→∞)

1

yν

W (max(1 + t0, t), y)−W (1, y)
W (t, y)−W (t− t0, y)

W (t, y)


in D3 ([t0, T ]× [0, y0 + δ]). Following the steps of the proof of Theorem 1 in Hoga (2014) we get (on

a suitable Skorohod probability space)

sup
t∈[t0,T ]

y≥y−1/γ
0 −δ

1

yν/γ

∣∣∣∣∣∣∣∣∣∣
√
k


1
k

∑bnmax(1+t0,t)c
i=n+1 I{

Xi>U
(
n
ky

)} − (max(1 + t0, t)− 1)y−1/γ

1
k

∑bntc
i=bn(t−t0)c I

{
Xi>U

(
n
ky

)} − t0y−1/γ
1
k

∑bntc
i=1 I

{
Xi>U

(
n
ky

)} − ty−1/γ


−

W (max(1 + t0, t), y)−W (1, y)
W (t, y)−W (t− t0, y)

W (t, y)

∣∣∣∣∣∣ a.s.−→
(n→∞)

0.

And again retracing the proof of Hoga (2014, Corollary 1) we can see that

sup
t∈[t0,T ]
y≥y−1/γ

0

1

yν/γ

∣∣∣∣∣∣∣
√
k


1
k

∑bnmax(1+t0,t)c
i=n+1 I{Xi>yXk(1,max(1+t0,t),y)} − (max(1 + t0, t)− 1)y−1/γ

1
k

∑bntc
i=bn(t−t0)c I{Xi>yXk(t−t0,t,y)} − t0y

−1/γ

1
k

∑bntc
i=1 I{Xi>yXk(0,t,y)} − ty

−1/γ



−

W (max(1 + t0, t), y)−W (1, y)− y−1/γ [W (max(1 + t0, t), 1)−W (1, 1)]

W (t, y)−W (t− t0, y)− y−1/γ [W (t, 1)−W (t− t0, 1)]

W (t, y)− y−1/γW (t, 1)

∣∣∣∣∣∣ a.s.−→
(n→∞)

0.

From this the following joint convergence can be established similarly as in Examples 1 - 3 of Hoga

(2014):

√
k

(max(1 + t0, t)− 1) (γ̂(1,max(1 + t0, t))− γ)
t0 (γ̂(t− t0, t)− γ)
t (γ̂(0, t)− γ)

 D−→
(n→∞)

σγ̂,γ

W (max(1 + t0, t))−W (1)
W (t)−W (t− t0)

W (t)


(A.1)
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in D3[t0, T ]. From this and the CMT we obtain

V γ̂
n (t)

D−→
(n→∞)

W (t)− tW (1)´ 1
t0

(W (s)− sW (1))2 ds
in D[1 + t0, T ],

W γ̂
n (t)

D−→
(n→∞)

W (t)−W (t− t0)− t0W (1)´ 1
t0

(W (s)−W (s− t0)− t0W (1))2 ds
in D[1 + t0, T ].

The result is now proved via another application of the CMT.

For part (ii) we observe that it follows from (A.1) similarly as in the proof of Theorem 1 in Hoga

(2015) that

√
k

log (k/(np))


(max(1 + t0, t)− 1) log

(
x̂p(1,max(1+t0,t))

U(1/p)

)
t0 log

(
x̂p(t−t0,t)
U(1/p)

)
t log

(
x̂p(0,t)
U(1/p)

)


D−→
(n→∞)

σγ̂,γ

W (max(1 + t0, t))−W (1)
W (t)−W (t− t0)

W (1)

 in D3[t0, T ],

whence with the CMT again

V
x̂p
n (t)

D−→
(n→∞)

W (t)− tW (1)´ 1
t0

(W (s)− sW (1))2 ds
in D[1 + t0, T ]

W
x̂p
n (t)

D−→
(n→∞)

W (t)−W (t− t0)− t0W (1)´ 1
t0

(W (s)−W (s− t0)− t0W (1))2 ds
in D[1 + t0, T ].

The conclusion follows as before.

Proof of Theorem 2: Under H>1,γ we get by an adaptation of the proof of Hoga (2014, Theorem 3)

√
k (γ̂(1, t)− γpre)

D−→
(n→∞)

σγ̂,γ
W (t)−W (1)

t− 1
in D [1 + t0, T ]

(cf. also the proof of Theorem 1) and by a further close inspection that even

√
k

(
γ̂(1,max(1 + t0, t))− γpre

γ̂(0, t)− γpre

)
D−→

(n→∞)
σγ̂,γ

(
(W (max(1 + t0, t))−W (1))/(max(1 + t0, t)− 1)

W (t)/t

)
(A.2)

jointly in D[t0, T ]× R. Hence, the result for τV
γ̂

n in (i) follows as in the proof of Theorem 1. For the

other part of (i) it suffices to note that

γ̂(0, 1)
P−→

(n→∞)
γpre < γpost

P←−
(n→∞)

γ̂(1, T ),

because by Hoga (2014, Theorem 3) γ̂ will converge in probability to the dominant tail index (i.e., the

larger value of γ) in a sample with one tail index break.

For (ii) simply note that

γ̂(0, 1)
P−→

(n→∞)
γpre < γpost

P←−
(n→∞)

γ̂(t∗, t∗ + t0).
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If γpre 6= γpost in case (iii) we can deduce by arguments similar to those in the proof of Theorem

2 in Hoga (2015) that

x̂p(0, 1)

Upre(1/p)

P−→
(n→∞)

1,
x̂p(1, T )

Upre(1/p)

P−→
(n→∞)

(t∗ − 1)γpre .

The result follows.

Part (iv) is trivial, since

x̂p(0, 1)

Upre(1/p)

P−→
(n→∞)

1,
x̂p(t

∗, t∗ + t0)

Upost(1/p)

P−→
(n→∞)

1,

where Upre(1/p) 6= Upost(1/p).
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