

Comparison between experimental and simulated velocities in a MPW geometry

I²FG, Dortmund – October 2015

Julien Deroy, Gilles Avrillaud, Samuel Ferreira, Anne-Claire Jeanson

Outline

- 1. Overview
- 2. Experimental setup
- 3. Simulations of the process
- 4. Sensitivity analysis
- 5. Correlation between simulation and experiment
- 6. Conclusion

OVERVIEW

Overview – About Bmax

Developer and provider of advanced metal processing using High Pulse Power:

- Electro-HydroForming (EHF)
- Magnetic Pulse Forming and crimping (MPF MPC)
- Magnetic Pulse Welding (MPW)

Strong technical support

- Multiphysics simulations
- High velocity material characterization

Bmax France Toulouse

Overview - Simulation stakes

Stakes of Simulation

- Propose predictive processes (required by most companies)
- Respond faster to customers
- Reduce development costs

Objectives

- Predict parts feasibility
- Optimize processes and components (coils, dies)
- Limit the number of experiments
- Understand physics

Necessary step

 Assess the correlation between experiments and simulation, especially for velocities

EXPERIMENTAL SETUP

Velocity measurement – PDV system Principle

- Collaboration with IUL (Dortmund) and OSU (Columbus, Ohio)
- Fully integrated, off-the-shelf 3U rack solution available from Bmax
- 4 measurement channels, up to ~ 800 m/s measured velocities
- Cheaper and much easier to use than VISAR

Velocity measurement – MPW configuration

PDV system integrated in a mobile Faraday cage

View of the different measurement angles and positions

SIMULATION OF THE PROCESS

Simulation of a MPW configuration

Tube geometry:

- 2 mm thick
- Outer diameter 80 mm
- Working length 7.5 mm

Material data			
MATERIAL	Al6060 T6		
Density	2700 kg/m3		
Young modulus	69.5 GPa		
Poisson ratio	0.33		
Yield stress Re	150 MPa		
Max elongation A%	12 %		
Ultimate tensile strength Rm	215 Mpa		
Electrical conductivity	31.6 MS/m		

Outer tube after shot & Corresponding numerical deformed shape (Contours ≈ Displacement)

3D Simulations – Example of coil slot influence

3D effects can be predicted on 3D simulations. Coil slot decreases locally the velocity

Radial velocity depending on angular location

Initial numerical simulation

- Hypotheses
 - 2D axisymmetric model with measured current as input
 - Bilinear elastoplastic constitutive law
 - Burgess resistivity model
- Simulation input parameters
 - Element formulation
 - Measured current
 - Tube position
 - Constitutive law (yield stress, tangent modulus)

2D axisymmetric coupled simulation of the process

Initial numerical simulation

Observations

- Global shape is OK
- Overestimated simulated velocities compared to measured ones
- Non constant differences indicates overestimated angle at 1 mm and less differences for the other positions

SENSITIVITY ANALYSIS

Sensitivity analysis – Element formulation

- Different element formulations available
 - Constant stress solid element (Elform +1)
 - Fully integrated S/R solid (Elform 2)
 - Fully integrated S/R solid intended for elements with poor aspect ratio, accurate (Elform -2)

• Element formulation has no influence on the results

Sensitivity analysis – Measured current

A 5% offset is a realistic possible error due to the following uncertainties:

- We calibrated our current measurement and showed a 4 % uncertainty.
- Noise due to capacitive coupling (recently reduced to 2 %)

5 % decrease in current amplitude induces a 13 % decrease in the first velocity peak

Accurate current measurement is critical for the process simulation

Sensitivity analysis – Working length

- Adding 0.5 mm to the working length (+7 %) reduces the measured velocities by 10 %
- Accurate positioning is critical to the process simulation

Sensitivity analysis -Yield stress

- First velocity peak isn't affected by the yield stress
- A realistic 30 % increase of the yield stress decreases the second velocity peak by 9 %
- Plastic strain occurs only later during loading (after 10 μs)

Sensitivity analysis – Tangent Modulus

- An unrealistic change (x10) leads to little influence in simulated velocity
- Only second velocity peak decreases by 14 %

High strain rate material behavior

Ph.D. in High Speed Dynamics ending this year with 2 laboratories specialized in forming and high strain rates behavior

CORRELATION BETWEEN SIMULATION AND EXPERIMENT

Correlation between simulation and experiment

- Main changes
 - New test with better current measurement
 - Modified Johnson-Cook model with parameters from M. Beusink Master's thesis (Measurements and simulations on the (dynamic) properties of aluminium alloy AA6060
- Much better agreement

Conclusion

- As previously shown, the major factor for the sensitivity analysis are, in order of importance:
 - Measured current
 - Positioning
 - Yield stress

Paramètre	Variation du paramètre	Variation sur la vitesse simulée	
		1 ^{er} pic	2 ^{ème} pic
Measured current	5 %	13 %	13 %
Positioning	7 %	10 %	10 %
Yield stress	30 %	0 %	9 %

- Given experimental uncertainties, the simulation reproduces quite well the velocities.
- This correlation is a necessary basis for predictive forming simulation of complex parts.

