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Introduction: Project COILTIM 

• Produce efficient welding of similar / dissimilar metal pairs 

• Joint quality analysis with process parameters 

• Joint quality analysis of the effect of metal dissimilarity 

• Modeling and simulation of the MPF/MPW 

• Feasibility study and development of processing tools 
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[MPF/MPW: Magnetic Pulse Forming / Magnetic Pulse Welding] 



Outline 
• Methods about the EM numerical modelling, investigating 

the influence of the cylindrical rod in a MPW 

• Main focuses on the numerical modelling of MPW 
• EM component 

• Interfacial behaviour 

• Contact behaviour 

• Field shaper effect in forming and welding 

• Change in force direction, during MPF/MPW 

• Development of negative velocity and spring back effect in 
ring expansion process 

• Identification of material models for MPF/MPW processes 
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[EM: Electromagnetic; MPF: Magnetic Pulse Forming; MPW: Magnetic Pulse Welding ] 
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Preliminary models: Tube 

compression with and without rod 

using helix coils 
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Tube without cylinder rod model Tube with cylinder rod model 



Model 1 Model 1 Model 2 Model 3 Ring expansion 

Input current used in those preliminary 

models 

(I. Henchi et al, 10th International LS-Dyna  User Conference) 
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Material Model 

(T. Mabrouki et al. 2008, Int. Journal of Machine tools & Manufacture) 
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Electromagnetic properties of 

material  
• σ of the work piece: Aluminum alloy – 30% IACS 

(1.74 x 104 S/mm) 

• Copper helix coil – 70% IACS (4.06 x 104 S/mm) 

• Steel coil – 7% IACS (4.06 x 103 S/mm) 

• µr = µ / µ0, for copper alloy, steel and air are 
considered to be ~ 1 

• However this µr may significantly vary with the type 
of steel 
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Coil geometry and non axisymmetric 

deformation 

Model Geometry 

Pressure distribution 

Effective plastic strain distribution  

8 



Introduction Model 1 Model 2 Model 3 Ring expansion 

Model with one turn symmetric  coil  
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Material and other parameters 
• Core and solid made from aluminium A2024 – T351 

• One turn coil with axis-symmetric geometry used and a 
symmetric current flow expected 
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Expected a symmetric current flow 
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A 
A 

Section A-A 
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The multi-layered mesh to capture the 

gradient of the eddy current 
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Investigation of nodal velocity  
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Model without the cylinder rod  
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Nodal velocity from the top edge 
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With Solid rod in the model, 

but without contact 
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Nodal velocity from top edge for 

the model with the cylinder rod 
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Comparison of velocity  

without and with the cylinder rod 

0.0E+00 

5.0E+04 

1.0E+05 

1.5E+05 

2.0E+05 

2.5E+05 

3.0E+05 

3.5E+05 

4.0E+05 

4.5E+05 

0.0E+00 1.0E-06 2.0E-06 3.0E-06 4.0E-06 5.0E-06 6.0E-06 

V
e

lo
ci

ty
 (

m
m

/s
) 

Time (s) 

top edge - without cylinder rod 

top edge - with cylinder rod 

2 mm below top edge - without cylinder model 

2 mm below top edge - with the cylinder rod 

17 

0.0E+00 

5.0E+05 

1.0E+06 

1.5E+06 

2.0E+06 

2.5E+06 

3.0E+06 

0.0E+00 2.0E-06 4.0E-06 C
u

rr
e

n
t 

(A
) 

Time (s) 



Introduction Model 1 Model 2 Model 3 Ring expansion 

Comparison of plastic strain  

without and with the cylinder rod 
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Plastic strain without the cylinder rod            Plastic strain with the cylinder rod 
                    Maximum : 7.54%                                          Maximum: 6.47% 
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Welding and contact models 

• Mechanical + Electromagnetic contact algorithms 
used in these models 
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von Mises stress distribution (MPa) 

Fieldshaper 
slot side 

Opposite 
side 
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Effective stress at the beginning of 

the impact (MPa) 

Fieldshaper 
slot side 

Opposite 
side 
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von Mises stress and Lorentz force 

(N/mm3) 
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direction of force without the solid 

rod, in a tube only model 
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Eddy current changes in welding model, 
just Before the impact at 11µs 
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Eddy current changes in welding model, 
at 5µs and just before the impact at 11µs 
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At 5µs 
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Eddy current changes in flyer tube 
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Just after 
impact 13µs 

Just before 
 impact 11µs 

Onset of  
impact  12µs 

After 
impact 14µs 
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Average radial Lorentz force near free edge 

and 2.5mm below the free edge 
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Ring expansion simulation test 

3D model in LS-DYNA 

A (MPa) B (MPa) C n 

324 114 0.42 0.002 

Johnson-Cook parameters used for ring (AA6061-T6) 

schematic cross-section(Initial state) 
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Plastic strain in the ring expansion 

29 



Introduction Model 1 Model 2 Model 3 Ring expansion 

Analysis of process parameters  
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Spring back effect 
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Stress here is denoted as σ1 

Ring radius here is denoted as ri 

Max spring back radius: Vibration frequency: Max spring back velocity: 
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Identification of suitable material models for 

MPF/MPW 
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a) Johnson-Cook model: 
 
 

b) Cowper-Symonds model: 
 

•       is the von Mises stress in quasi-static deformations. It 
could be determined by quasi-static tensile test; 
 
•            is the viscoplasticity factor. Two most common models: 
 
 

Viscoplasticity: 

[MPF/MPW: Magnetic Pulse Forming / Magnetic Pulse Welding] 
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Diagram of identification steps 
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Reference 
measurements 

Simulation by LS-
DYNA® 

Output 
measurements 

Set constitutive 
model values 

Calculate the 
difference  

Minimize the 
difference by 

SiDoLo® 

[SiDoLo®: Software toolbox used for identification] 
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Result for Johnson-Cook model  
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Target Start Result 

0.0335 0.09 0.033503 

Determination of C, with 

Target Start Result 

0.0335 0.005 0.033383 
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Result for Cowper-Symonds model  
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Target Start Result 

C 20000 10000 19778.6 

p 4.0 5.0 4.0 

Determination of C and p, with 



Conclusions 

Conclusions 
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• Predictive numerical models were developed for MPF/MPW 

• The changes in the deformation behaviours with additional 
components were investigated 

• Fieldshaper slot effect was investigated 

• Change in Lorentz force direction and eddy current were also 
studied 

• Changes in electromagnetic field significantly influence the 
deformation behaviours 

• Vibration due to spring back was studied in a ring expansion test 

• Numerical models developed for the purpose of identification of 
material’s constitutive models in MPF/MPW 

[MPF/MPW: Magnetic Pulse Forming / Magnetic Pulse Welding] 
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