INFLUENCE OF AXIAL WORKPIECE POSITION IN THE COIL FOR ELECTROMAGNETIC PULSE JOINING

Shed some light on the black box

J. Bellmann^{1,3}, J. Lueg-Althoff², A. Lorenz, S. Schulze¹, S. Gies², A. E. Tekkaya², E. Beyer^{1,3}

¹Fraunhofer Institute for Material and Beam Technology (IWS) ²Institute of Forming Technology and Lightweight Construction (IUL), TU Dortmund ³Institute of Manufacturing Technology (IF), TU Dresden

© Fraunhofer IWS BELL: 05.10.2015, Dortmund, I²FG

IWS

Content

TECHNISCHE 🗾 Fraunhofer

IWS

Content

TECHNISCHE Fraunhofer

Dresden

IWS

1. Motivation and former research work Welding parameters

- Front conditions estimated using welding windows
- Conditions have to be applied to part design and setup
- Geometric factors:
 - Coil-flyer standoff
 - Parent-flyer standoff
 - Parent-flyer contouring
 - Working length

🖉 Fraunhofer 📖

1. Motivation and former research work "Traditional" welding front regimes

One sided Front:

- + Longer path for jet development
- + Lower deformation energy
- Higher shear in flyer

Two front process:

- + Less shear in flyer
- Higher deformation energy
- Reduced weld length

- Questions:
- How does the working length affect the front development in MPW?
- What is the optimal working length?

Content

Dresden

IWS

TECHNISCHE 🗾 Fraunhofer

6

2. Experiments and simulations **Experimental setup**

MP 50 kJ/ 25 kV (Bmax)

Parent:

C45 Steel

 $Ø_{outer} = 33 \text{ mm}$

f_{circuit}~23 kHz

Coils (CuZnZr1, $Ø_{inner} = 42 \text{ mm}$)

Parent

UL

Flyer: EN AW-6060 T66 (AlMgSi0.5) 1.0 mm thickness $Ø_{outer} = 40 \text{ mm}$

IWS

Dresden

Coil 2

	I _{coil} Charging Working lengths [mm]												
	[mm]	energy [kJ]	4	5	6	7	8	9	10	11	12	15	17
Coil 1	15	11.5	X			Х	Х	Х	Х	Х	Х	Х	Х
Coil 2	10	7.7	х	X	Х	Х	х	х	Х		Х		
		.			TECHN			Frau	nhof	er 🦕	Mr	hal	har

Flyer

2. Experiments and simulations **Experimental sequence**

Preparation

Joining

- Flyer velocity (time): PDV
- Current (time):

Rogowski Current Probe

Analysis

© Fraunhofer IWS BELL: 05.10.2015, Dortmund, I²FG

2. Experiments and simulations Measuring the flyer elongation

Calculation of the elongation for each flyer segment

2. Experiments and simulations **Simulation**

IWS Dresden

2. Experiments and simulations **Simulation with Finite Element Method Magnetics (FEMM)**

Input:

- Setup data
- Current amplitude
- Current frequency

Output:

Field formation

www.femm.info

Content

U

TECHNISCHE 🗾 Fraunhofer

Dresden

IWS

2

3. Results Simulation of the magnetic field for different I_w

- Magnetic field at
 workpiece surface larger
 for smaller working
 length, but not directly
 proportional
- Increase in magnetic field at the workpiece edge, decreases with increasing working length

Fraunhofer

IWS

Dresden

3. Results Simulation of the magnetic field for two flyer orientations

Magnetic field at workpiece surface larger for flyer direction

TECHNISCHE

to the 90° coil edge

3. Results

Experiments & simulation of the one-front process

- $I_{w} \leq 0.5 I_{coil}$
- Deformation begins at flyer edge
- Continuous deformation along one front
- Easy ejection of jet away from joining front

Optimal for welding

3. Results Welding experiments using the one-front process

Welding in samples with $\rm I_{w} \leq 0.5 \ I_{\rm coil}$

- Non-uniform wavy interfacial structure
- Thin intermetallic layer
- Weld length increases with I_w

Fraunhofer

IWS

3. Results Experiments & simulation of the two-front process

- $\blacksquare I_{coil} < I_{w}$
- First contact near coil center
- Front propagation outwards in two directions
- Smaller deformation angles than single-front

Coil width suboptimal for two-sided welding front

3. Results

BELL: 05.10.2015, Dortmund, I²FG

3. Results **Experiments & simulation of the transition-front process**

• 0.5
$$I_{coil} < I_w < I_{coil}$$

- Flyer deformation in flat manner \rightarrow Reduced deformation angles
- Jet hindered or trapped between joining partners

IWS

3. Results Experiments & simulation of the transition-front process

- Samples pulsed at various energies to compare front characteristics
- I_w = 10 mm

Т

Front propagation direction

7.2 kJ

15.7 kJ

NISCHE 🗾 Fraunhofer 📖 🥼

IWS

Dresden

Same basic features for all samples

3. Results Shear stress simulation at the contact zone

Shear stress at flyer edge increases with decreasing working length

Increase in shear stress for transition regimes (7...13 mm) at 7 mm distance from flyer edge

© Fraunhofer IWS BELL: 05.10.2015, Dortmund, I²FG

3. Results Visioplastic measuring of the flyer elongation

- Highest elongation at the flyer edge
- Increase in elongation for transition regimes (7...13 mm) at 7 mm distance from flyer edge

IWS

Conclusion

Three front regimes related to the working length were identified:

	One-sided Front	Transition Front	Two-sided Front		
Geometric relation	Ι _w < 0,5 Ι _{coil}	$0,5 \mid_{coil} < \mid_{w} < \mid_{coil}$	Ι _{coil} < Ι _w		
	1F 4 mm	T 11-mm	2F 17 mm		
Jet escape	easy	trapped	easy		
Weld formation	optimal	no	suitable		

- Pulse energy does not have large effect on deformation flyer shape
- Good correlation between calc. shear stress and measured elongations

© Fraunhofer IWS BELL: 05.10.2015, Dortmund, I²FG

IWS

Thank you for your attention.

This work is based on the results of the subproject A1 within the priority program SPP 1640 of the Deutsche Forschungsgemeinschaft (DFG). This project is executed together with the IUL at Technische Universität Dortmund. The authors would like to thank the DFG for the financial support.

Lorenz, Amanda; Lueg-Althoff, J.; Göbel, Gunther; Weddeling, C.; Beyer, Eckard; Tekkaya, A. E. (2014): Influence of Axial Workpiece Positioning during Magnetic Pulse Welding of Aluminum-Steel Joints. In: Proceedings of the 6th International Conference on High Speed Forming. 6th International Conference on High Speed Forming. Daejeon, Korea, May 26-29, 2014.

